
Cybermation ESP: dSeries

Release 5.0

Examples Cookbook

ESPD-5.0-EC-01

First Edition (April 2006)
This edition applies to Cybermation ESP: dSeries Release 5.0. The software and related
manuals are protected by copyright law.

Cybermation ESP: dSeries documentation
© Copyright 2006 Cybermation International Distribution SRL
All rights reserved.

No portion of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means without the express written permission of

Cybermation International Distribution SRL
www.cybermation.com

U.S. Government Users. RESTRICTED RIGHTS - Use, duplication or disclosure restricted
by the GSA ADP Schedule Contract with Cybermation USA, Inc., a subsidiary of
Cybermation International Distribution SRL.

Trademark Notice

Cybermation, ESP Workload Manager, and ESP Espresso are registered trademarks of
Cybermation, Inc.
ESP Alchemist is a registered trademark of Cybermation International Inc.
ESP System Agent and ESP Business Agent are trademarks of Cybermation International
Distribution SRL.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
IBM, AIX, OS/2, OS/400, RS/6000, z/OS, and WebSphere are trademarks of IBM.
Sun, Solaris, and Java are trademarks of Sun Microsystems, Inc.
SPARC is a trademark or registered trademark of SPARC International, Inc.
Intel and Pentium are registered trademarks of Intel Corporation.
Linux is a registered trademark of Linus Torvalds.
HP-UX and ALLBASE are registered trademarks of Hewlett Packard.
Oracle Applications and Oracle E-Business Suite are the trademarks or registered trademarks
of Oracle. Oracle is a registered trademark of Oracle Corporation.
PeopleSoft is a trademark of PeopleSoft Inc.
UNIX is a registered trademark of the Open Group.
WebLogic and WebLogic Server are trademarks of BEA Systems, Inc.
SAP, R/3, and ABAP are trademarks or registered trademarks of SAP AG.
Micro Focus and Net Express are registered trademarks of Micro Focus International Limited.

All other brand and product names are trademarks, registered trademarks or service marks of
their respective companies.

ESPD-5.0-EC-01 iii

Contents

Using this guide 1
Other guides in the Cybermation ESP: dSeries library 2
Receiving email notifications from Cybermation.. 3

Examples 5
Scheduling a job on, or after, a criteria ... 6
Scheduling a job within a month.. 7
Scheduling a job relative to another criteria .. 8
Scheduling a job to run every week and adjusting it for holidays 9
Scheduling a job based on Saturday and the 1st day of the month.................... 10
Scheduling a job based on the day of week for the 1st day of month 11
Scheduling a job based on day and day of month number................................ 12
Scheduling a job to run on the last five workdays of the month........................ 13
Scheduling a job relative to a special day .. 14
Scheduling a job based on Sunday and workdays ... 15
Scheduling a job to run based on a different day’s holiday status 16
Scheduling a job to run based on the last day of the previous month................ 17
Scheduling a job to run based on when another job was scheduled................... 18
Scheduling a job to run every two weeks .. 20
Scheduling a job to run every two weeks and advancing it for holidays 21
Scheduling a job on a random day of the month .. 22
Scheduling an Application to run within a date range 23

iv ESPD-5.0-EC-01

Scheduling a job to run within a date range ... 24
Scheduling a monthly job with multiple criteria... 25
Determining if a day in the past was a workday.. 26
Submitting a job at a particular time .. 27
Running an Application multiple times a day... 28
Running a job multiple times in an Application... 29
Scheduling an hourly Application within a time range 30
Scheduling a job to run based on day and time .. 32
Running different jobs based on the scheduled hour .. 33
Scheduling a different job to run every hour... 34
Scheduling a different script each quarter ... 35
Scheduling a cyclic Application .. 36
Keeping an Application active .. 38
Running ad hoc jobs .. 39
Adding a relationship between two unrelated jobs.. 40
Providing status for a long-running Application... 41
Setting up a job with optional predecessors .. 42
Setting up groups of optional predecessors ... 43
Setting up optional file trigger dependencies .. 45
Controlling concurrent access to a system .. 46
Running mutually exclusive groups of jobs... 47
Planning for system shutdown ... 49
Using job completion as a resource... 51
Running different jobs based on the exit code of predecessor 53
Taking different actions based on 1 of 3 successful return codes....................... 55
Resubmitting a job five minutes after it fails... 58
Running a recovery job after failure.. 60
Delaying job submission until the next hour .. 62
Bypassing a job without waiting for its predecessor .. 64
Running different jobs based on the time a predecessor job completes 65
Running jobs in a different order based on time... 67
Running the next scheduled Application early.. 70
Running an Application for any future date ... 71
Identifying critical jobs for disaster recovery planning 72
Auto-triggering an Event for a reoccurring job ... 73
Completing an Application when a file is not received by its cutoff time.......... 74
Ensuring a file exists before processing ... 76
Using date-qualified file names... 78
Processing a changing file name ... 79
Using the Application name in the script path ... 81
Setting up a dependency with a job’s previous run ... 82
Setting up a job with a predecessor scheduled for the next day 84
Providing notification if a job exceeds its maximum execution time................. 86
Bypassing non-critical jobs when jobs are late .. 87
Using the same Application for test and production... 89

Contents

ESPD-5.0-EC-01 v

Launching common Applications... 91
Setting up 4-5-4 periods... 93
Creating a variable for the accounting year ... 95
Calculating the week number... 96
Using date variables for multiple jobs ... 97
Building a date parameter .. 98
Creating a variable for the day of week number.. 100
Incrementing a cycle number ... 101

Index 103

vi ESPD-5.0-EC-01

ESPD-5.0-EC-01 1

Using this guide

The Examples Cookbook contains real-life examples of using Cybermation
ESP: dSeries, which you can adapt to meet your own business requirements. Many of
the examples were developed for customers and are being used in their installations.

Instructions for copying code

The code in the examples is meant to be copied and used as needed. You can use the
code in the examples by copying and pasting it from the PDF. If you need to
download the Adobe Acrobat PDF reader, you can download it for free from the
Adobe website at www.adobe.com.

To copy and paste code from the Adobe PDF

1. Activate the Select Text Tool by clicking this button .

2. Click and drag to select the text you want to copy.

3. Copy the selected text by pressing Ctrl+C.

4. Paste the text by pressing Ctrl+V.

2 ESPD-5.0-EC-01

Intended audience

The examples in this document are intended for users who have a basic working
knowledge of Cybermation ESP: dSeries. A wide range of examples is provided and will
be of use to beginner through to advanced users.

Many of the examples in this document use JavaScript script. For information on
using JavaScript script with Cybermation ESP: dSeries,, see A Guide to Using Scripts.

Case sensitivity

Schedule criteria is not case sensitive. The following are equivalent:

• LAST SATURDAY OF MONTH
• Last Saturday of Month
• last Saturday of month
• last saturday of month

The examples of schedule criteria in this book use lowercase.

Many examples in this document use JavaScript script. JavaScript script is case
sensitive. Be sure to use the correct case when creating JavaScript statements.

Other guides in the Cybermation ESP: dSeries library

Installing Cybermation ESP: dSeries

This guide covers the installation process for installing and configuring ESP Server’s
components: the relational database, ESP Server and its default Agent, and ESP
Desktop Client. The guide provides instructions for two types of installation: single
ESP Server (stand-alone) installations and ESP High Availability installations.

Administrator’s Guide

This guide covers post-installation procedures for working with ESP Server’s
components, establishing security, handling log files, configuring ESP High
Availability, issuing commands through the Command Console, and performing

Using this guide

ESPD-5.0-EC-01 3

maintenance. The guide also includes setup steps for integrating two Cybermation
ESP: dSeries systems. The appendix in this guide provides an Oracle primer for
administrators who are using the packaged Oracle database.

Cybermation ESP System Agent Administrator’s Guide

This guide describes how to install, configure, secure, maintain, and control ESP
System Agent. This guide also provides instructions to configure Cybermation Hosts
to work with ESP System Agent. The final chapters contain troubleshooting and
reference information.

Getting Started with Cybermation ESP: dSeries

This guide is for new Cybermation ESP: dSeries users who want to learn about the
product. Getting Started is a tutorial that teaches users how to schedule and run jobs
with Cybermation ESP: dSeries.

User’s Guide

This guide describes how to define, schedule, monitor, and control workflow with
Cybermation ESP: dSeries. It is the primary resource for schedulers and operators. The
guide also includes information on forecast and history reporting, previously found in
the Workload Reporting Guide, and real-life examples from the Examples Cookbook.

Beyond Basic Scheduling: A Guide to Using Scripts

This guide is intended for anyone who wants to create scripts that work with
Applications. The first six chapters of the guide cover JavaScript scripts. The final
chapter and appendix cover the ESPmgr utility and using it within scripts.

Receiving email notifications from Cybermation

You can register to receive email notifications when new releases, new fixes, or new
documents are available on the Cybermation Support website.

1. Go to the Cybermation Support site located at

http://support.cybermation.com.

2. Log in.

Note: You can register as a Support site user on the Login page.

3. On the Home page, select Notification Sign-up.

4 ESPD-5.0-EC-01

4. For each Cybermation product you are using, select the events you want to receive
notification for:

• New Releases
• New Fixes
• New Documentation

5. Click Submit.

Note: You can cancel email notifications at any time by repeating the above steps and
deselecting your options.

ESPD-5.0-EC-01 5

Examples

6 ESPD-5.0-EC-01

Scheduling a job on, or after, a criteria

Objective

Run a job on the 8th day of the month, if this is a Sunday. Otherwise, run the job on
the first Sunday after the 8th.

Solution

Use the following run criteria for the job:

sunday 8th monthly

Explanation

This solution runs the job on the first Sunday on or after the 8th day of each month.

Examples Cookbook

ESPD-5.0-EC-01 7

Scheduling a job within a month

Objective

Run a job on the 5th Friday of the month but only in months that have 5 Fridays.

Solution

Use the following run criteria for the job:

5th friday within month

Explanation

This solution runs the job on the 5th Friday of the month in months that contain 5
Fridays.

8 ESPD-5.0-EC-01

Scheduling a job relative to another criteria

Objective

Run a job on the first Friday after the 3rd Thursday of each month. Note that this will
not be the 3rd Friday of the month if the month starts on a Friday.

Solution

Use the following run criteria for the job:

3rd thursday of this month plus 1 day

Explanation

This solution runs the job on the day after the 3rd Thursday of the month. This is the
first Friday after the 3rd Thursday of the month.

Examples Cookbook

ESPD-5.0-EC-01 9

Scheduling a job to run every week and adjusting it for
holidays

Objective

Schedule a job to run every Monday, unless Monday is a holiday. If Monday is a
holiday, then run the job on the previous workday.

Solution

Use the following run criteria for the job:

monday less 0 workdays

Explanation

The job always runs on Mondays that are workdays. When Monday is a holiday, and
thus a non-workday, the job runs on the previous workday.

Variation

If, instead, you wanted to run the job on the first workday after the holiday, you can
use the following run criteria for the job:

monday plus 0 workdays

Variation

If, instead, you didn’t want to run the job at all when Monday falls on a holiday, you
can use the following run criteria for the job:

monday except holidays

10 ESPD-5.0-EC-01

Scheduling a job based on Saturday and the 1st day of the
month

Objective

Run a job on the 1st Saturday of the month unless the 1st Saturday is also the 1st day
of the month. If it is, then run the job on the 2nd Saturday of the month.

Solution

Use the following run criteria for the job:

saturday 2nd monthly

Explanation

Since this job does not run on the 1st day of the month, the earliest it can run is the
2nd day of the month. Thus, the job runs on the 1st Saturday on or after the 2nd day
of the month. In Cybermation ESP, this translates to “saturday 2nd monthly”.

Examples Cookbook

ESPD-5.0-EC-01 11

Scheduling a job based on the day of week for the 1st day of
month

Objective

Run a job on the 1st Monday of each month. If the month starts on a Saturday or a
Sunday, however, run the job on the 2nd Monday of the month instead.

Solution

Run the following JavaScript script at Event trigger time for the job:

genTime('one','1st day of this month');
if (oneDAY=='Saturday' || oneDAY=='Sunday')
 WOB.RunABC='2nd monday of month';
 else WOB.RunABC='1st monday of month';

Use the %WOB.RunABC variable as the run frequency in the job definition. For
example:

Explanation

The solution uses the genTime built-in function to generate date and time variables
for the 1st day of the current month. In this example, these variables are prefixed with
“one”.

The day of the week variable (oneDAY) is checked, and a variable representing the
job’s run frequency is set accordingly.

• If the 1st day of month was a Saturday or a Sunday, the WOB.RunABC variable is
set to “2nd monday of month”.

• Otherwise, the WOB.RunABC variable is set to “1st monday of month”.

12 ESPD-5.0-EC-01

Scheduling a job based on day and day of month number

Objective

Run a job on the last Saturday of the month, provided this date falls on the 26th
through to the 31st day of the month. Otherwise, run the job on the following
Saturday (in other words, the first Saturday of the next month).

Solution

Use the following JavaScript script at Event trigger time for the job:

WOB.runme=false;
genTime('lw','today less 1 week');
if (today('last saturday of month') && APPL._SDD > '25')
 WOB.runme=true;
if (today('first saturday of month') && lwDD < '26')
 WOB.runme=true;

Use the %WOB.runme variable as the run frequency in the job definition.

Explanation

This solution uses the genTime built-in function to generate date and time variables
for one week ago. These variables are prefixed with “lw”.

ESP Server selects the job for submission when the WOB.runme variable is true. This
occurs on either one of two Saturdays:

• If today is the last Saturday of the month and the date is after the 25th.

• If today is the first Saturday of the month and the date of the previous Saturday, as
indicated by the genTime variable lwDD, had a date earlier than the 26th. In this
situation, the job would not have run the previous Saturday and must therefore
run today.

Examples Cookbook

ESPD-5.0-EC-01 13

Scheduling a job to run on the last five workdays of the month

Objective

Schedule a job to run only on the last 5 workdays of each month.

Solution

Use the following JavaScript script at Event trigger time for the job:

genTime('last5wd','last workday of month less 4 workdays');
if (APPL._SDD >= last5wdDD && today('workday'))
 WOB.runme=true;
 else WOB.runme=false;

Use the %WOB.runme variable as the run frequency in the job definition.

Explanation

The genTime built-in function generates time and date variables for the 5th last
workday of the month. If the scheduled day is greater than or equal to the day of the
month for the fifth last workday of the month, as indicated by the last5wdDD
variable, and it is a workday, then the job is scheduled to run.

Example

The following calendar shows July 2006.

If workdays are Monday through Friday and there are no holidays at the end of July
2006, then the fifth last workday of the month falls on July 25. The last5wdDD
variable has a value of 25. This means that in July 2006, the job would be scheduled
only on July 25, 26, 27, 28, and 31 (not on July 29 or 30, which fall on a weekend).

Variation

Another solution is to use the following run criteria for the job:

Run last workday of month
Run last workday of month less 1 workday
Run last workday of month less 2 workdays
Run last workday of month less 3 workdays
Run last workday of month less 4 workdays

14 ESPD-5.0-EC-01

Scheduling a job relative to a special day

Objective

A job needs to run on the first Saturday on or after a special day.

Solution

Use the following run criteria for the job:

1st saturday of special_day

Explanation

This solution selects the job to run on the first instance of Saturday on or after the
special day name.

Examples Cookbook

ESPD-5.0-EC-01 15

Scheduling a job based on Sunday and workdays

Objective

Schedule a job to run on the first Sunday of the month. If the following Monday is a
holiday, then run the job on the Monday instead. If both Monday and Tuesday are
holidays, then run the job on the Tuesday instead. In other words, the job runs on the
day before the first workday after the first Sunday of the month.

Solution

Run the following JavaScript script at Event trigger time for the job:

WOB.genTime('1sun','1st sunday of this month plus 1 workday');

Use the following run criteria for the job:

%1sunDATE less 1 day

Explanation

This solution uses the genTime built-in function to generate date and time variables
for the first workday after the first Sunday of the month. In this example, the variables
are prefixed with ‘1sun’. The job is selected to run one day prior to this date.

Note: The genTime function is prefixed with WOB because one of the resulting
variables, lsunDATE, is used outside of the JavaScript script.

16 ESPD-5.0-EC-01

Scheduling a job to run based on a different day’s holiday
status

Objective

Schedule a job to run every Saturday, unless the following Monday falls on a holiday.
If the following Monday falls on a holiday, the job should not run.

Solution

Use the following JavaScript script at Event trigger time for the job:

if (today('saturday') && daysTo('holiday') != 2)
 WOB.runme='true';
else WOB.runme='false';

Use the %WOB.runme variable as the run frequency in the job definition.

Explanation

The job is scheduled to run if it is a Saturday and the number of days to the next
holiday is not equal to 2.

Note: It is assumed in this example that Sunday cannot be defined as a holiday.

Examples Cookbook

ESPD-5.0-EC-01 17

Scheduling a job to run based on the last day of the previous
month

Objective

Run a job on the 2nd workday of each month but only if the last day of the previous
month was a workday.

Solution

Use the following JavaScript script at Event trigger time for the job:

WOB.sched=false;
genTime('LWM','last workday of month starting today less 1
month');
genTime('LDM','last day of month starting today less 1 month');
if (LWMDATE==LDMDATE)
 WOB.sched='2nd workday of month';

Use the %WOB.sched variable as the run criteria for the job.

Explanation

This solution uses the genTime built-in function to generate date and time variables
for the last workday of the previous month and for the last day of the previous month.
If these two dates are equal then the last day of the previous month was a workday,
and the job is selected to run on the 2nd workday of the month.

For a general approach to determining whether a day in the past was a workday, refer
to “Determining if a day in the past was a workday” on page 26.

18 ESPD-5.0-EC-01

Scheduling a job to run based on when another job was
scheduled

Objective

Job A runs every Wednesday, unless Wednesday is a holiday. If Wednesday is a
holiday, job A runs on Thursday.

Schedule job B to run every Thursday, except when job A runs on Thursday. When
job A runs on Thursday, run job B on Friday.

Solution

To schedule a job to run based on when another job was scheduled

1. Use the following Java Script script at Event trigger time for the two jobs:

WOB.runA='false';
WOB.runB='false';
genTime('W','wednesday starting today less 2 days');
genTime('W0',WDATE + ' plus 0 workdays');
// Determine if job A should run
if (today('wednesday') && !today('holiday')) WOB.runA='true';
if (today('thursday') && yesterday('holiday')) WOB.runA='true';
// Determine if job B should run
if (today('thursday') && WOB.runA=='false') WOB.runB='true';
if (today('friday') & WDATE != W0DATE) WOB.runB='true';

2. Use the %WOB.runA variable as the run frequency for job A.

3. Use the %WOB.runB variable as the run frequency for job B.

Explanation

The genTime built-in function is used twice in this solution. The first genTime
generates date and time variables for Wednesday of the current week. The second
genTime generates date and time variables for the first workday on or after
Wednesday’s date. If the two genTime dates are not equal, then Wednesday was a
holiday.

Two variables, WOB.runA and WOB.runB, are used to represent the run frequencies
of job A and job B respectively. Each of these variables is set to either true (select job),
or false (do not select job).

Job A is selected to run when either of these conditions is true:

• Today is Wednesday and it is not a holiday.
• Today is Thursday and yesterday was a holiday.

Examples Cookbook

ESPD-5.0-EC-01 19

Job B is selected to run when either of these conditions is true:

• Today is Thursday and job A is not selected to run.
• Today is Friday and Wednesday was a holiday.

For a general approach to determining whether a day in the past was a workday, refer
to “Determining if a day in the past was a workday” on page 26.

20 ESPD-5.0-EC-01

Scheduling a job to run every two weeks

Objective

A job needs to run every two weeks and belongs to an Application with jobs with
many different frequencies. The job was scheduled to run on March 13, 2006.

Solution

Use the following JavaScript script at Event trigger time for the job:

WOB.sched=false;
num=daysFrom('March 13,2006');
if (num%14==0) WOB.sched='today';

Use the %WOB.sched variable as the run criteria for the job.

Explanation

This solution uses the daysFrom built-in function to calculate the number of days
since a prior run of the job (for example, March 13, 2006).

If this number is divisible by 14 (14 days is equivalent to two weeks) then a variable
called WOB.sched is set to ‘today’, otherwise it is set to false.

Variation

If all jobs in the Application need to run every two weeks, then you can simply
schedule the Event every two weeks.

Examples Cookbook

ESPD-5.0-EC-01 21

Scheduling a job to run every two weeks and advancing it for
holidays

Objective

A job in an Application needs to run every two weeks on Friday. If this falls on a non-
workday, run the job on the previous workday instead. Use Friday, August 1, 2003 as
the starting point.

Solution

Use the following JavaScript script at Event trigger time for the job:

WOB.sched=false;
if (today('friday less 0 workdays'))
 {
 genTime('thisfri','friday');
 num=daysBetween('aug 1, 2003',thisfriDATE,'days');
 if (num%14==0) WOB.sched='today';
 }

Use the %WOB.sched variable as the run criteria for the job.

Explanation

The code handles two conditions: when Friday is a workday and when Friday is not a
workday.

If today is Friday and it is a workday, ESP Server generates date and time variables for
today. A calculation is performed to see if the number of days from the starting point
to today is a multiple of 14 (14 days is equivalent to two weeks). If it is, the
WOB.sched variable is set to ‘today’.

If Friday is a holiday and today is the last workday before Friday, ESP Server generates
date and time variables for this Friday. A calculation is performed to see if the number
of days from the starting point to this coming Friday is a multiple of 14 (14 days is
equivalent to two weeks). If it is, the WOB.sched variable is set to ‘today’.

22 ESPD-5.0-EC-01

Scheduling a job on a random day of the month

Objective

A job needs to run at 11 AM on a random day each month.

Solution

To schedule a job on a random day of the month

1. Define a one-job Application. Use the following JavaScript script at Event trigger
time for the job:

genTime('nx',
'last day of month starting today plus 1 month');

APPL.random_number=(Math.floor(Math.random()*nxDD)
+1).toFixed(0);

2. In the Do not submit before field for the job, use 11am today plus
%random_number days.

3. Schedule an Event on the last day of the month to run your Application.

Explanation

The Application runs on the last day of each month and determines when the job
should run in the following month. The genTime built-in function creates date and
time variables, prefixed with nx, for the last day of the next month. The nxDD
variable represents the number of days in the next month. This solution uses the
Math.random function to generate a random number between 1 and nxDD,
inclusive. The result is rounded and the result, with zero decimal places, is assigned to
the APPL.random_number variable.

Note: Math.floor() rounds the result, and provides more evenly distributed results
than Math.round().

The Application builds with the job delayed for the random number of days at
11 AM.

Examples Cookbook

ESPD-5.0-EC-01 23

Scheduling an Application to run within a date range

Objective

Run an Application at 4 PM each day between two dates, date1 and date2, inclusively.

Solution

Use the following schedule criteria in the Event that runs the Application:

4pm daily starting date1 ending date2 plus 1 day

Alternatively, use the following schedule criteria:

4pm daily starting date1 ending 4:01pm date2

Explanation

By using “starting” and “ending” on the Schedule statement for the Event that runs
the Application, the Event is scheduled from date1 up to but not including date2. You
can either add one day to the ending date or include a time on the ending date to
ensure the schedule for date2 is included.

For example, to run an Application at 4 p.m. each day between Nov. 6, 2006 and Apr.
22, 2007, use the following schedule criteria:

4pm daily starting Nov 6,2006 ending Apr 22,2007 plus 1 day

or

4pm daily starting Nov 6,2006 ending 4:01pm Apr 22,2007

After the last run, the Schedule statement is deleted but the Event remains in case you
need to reschedule it or trigger it manually.

24 ESPD-5.0-EC-01

Scheduling a job to run within a date range

Objective

A job within an Application needs to run each Thursday between Nov. 6, 2006 and
Apr. 22, 2007, inclusively.

Solution

Run the following JavaScript script at Event trigger time for the job:

WOB.sched=false;
if (daysFrom('nov 6,2006') >= 0 && daysTo('apr 22,2007') >= 0)
 WOB.sched='thursday';

Use the %WOB.sched variable as the run criteria for the job.

Explanation

This solution uses the daysFrom and daysTo built-in functions to check if the
scheduled date falls within the date range. If so, the job’s run frequency is set to
‘Thursday’. Otherwise, the job’s run frequency is set to false.

Examples Cookbook

ESPD-5.0-EC-01 25

Scheduling a monthly job with multiple criteria

Objective

Run a job on Sunday between the 10th and 16th day of each month except in
February and August.

Solution

Use the following JavaScript script at Event trigger time for the job:

WOB.runme='false';
if (today('sunday') && today('10th - 16th day of month')
&& !today('anyday of Feb Aug'))

 WOB.runme='true';

Use the %WOB.runme variable as the run frequency in the job definition.

Explanation

The job is selected to run if it is Sunday, it is between the 10th and 16th day of the
month, and the month is not February or August.

Variation

Alternatively, you could use the following Run/Do not run conditions:

Run sunday
Do not run 1st-9th day of month
Do not run 17th-last day of month
Do not run anyday of feb aug

Variation

Since the job runs on the first Sunday after the 10th day of each month except in
February and August, you could use the following:

Run sunday 10th monthly
Do not run anyday of feb aug

Alternatively, you could use:

Run sunday 10th monthly except anyday of feb and aug

26 ESPD-5.0-EC-01

Determining if a day in the past was a workday

Objective

Sometimes you may need to determine if some day in the past was a workday or not.
For example, you may need to determine if last Friday was a workday, or if a fixed date
fell on a workday, and schedule a job based on the result.

Solution

The following JavaScript script sets a variable, APPL.val, to either true or false based
on whether or not October 13, 2005 was a workday.

genTime('one','oct 13,2005');
genTime('two',oneDATE + ' plus 0 workdays');
if (oneDATE == twoDATE) APPL.val='true';
 else APPL.val='false';

Explanation

This solution shows a general approach to checking if a day in the past was a workday.
The first genTime generates date and time variables for the day in the past. This could
be a criteria, such as “last day of month starting today less 1 month”, or it could be a
date such as “oct 13, 2005”.

The second genTime generates date and time variables for the first workday on, or
after, your first criteria. It uses the DATE variable from your first genTime and adds
‘plus 0 workdays’.

The two dates from the genTimes are then compared. If they are equal then the day in
the past was a workday; otherwise, it was a holiday.

Examples Cookbook

ESPD-5.0-EC-01 27

Submitting a job at a particular time

Objective

An Application runs each day at 4 PM, but one job within the Application must wait
until 6 PM.

Solution

Schedule an Event to run your Application at “4pm daily“. In the Do not submit before
field for the job, specify a time dependency of “6pm“.

Explanation

You cannot use a time dependency as part of the run criteria. When an Application is
generated, the run criteria determines whether a job should be selected to run. The Do

not submit before field identifies a submission time for the job. This time can be an
absolute time, such as “10pm”, or a time relative to the Event’s scheduled or triggered
time, such as “now plus 2 hours” or “realnow plus 3 hours”.

28 ESPD-5.0-EC-01

Running an Application multiple times a day

Objective

Each weekday, Monday through Friday, an Application needs to run multiple times a
day. The scheduled times are 10 AM, 2 PM, 6 PM, and 10 PM.

Solution

When you define the Event to run the Application, use multiple schedule criteria such
as the following:

Schedule 10am weekdays
Schedule 2pm weekdays
Schedule 6pm weekdays
Schedule 10pm weekdays

Explanation

This solution schedules the Event multiple times each weekday at the specified times.

Examples Cookbook

ESPD-5.0-EC-01 29

Running a job multiple times in an Application

Objective

Within a daily Application containing many different jobs, there is one job that needs
to run multiple times. Job MYJOB needs to run at 10am, 2pm, 6pm, and 10pm.

Solution

To run a job multiple times in an Application

You can define the same job multiple times and use the Qualifier field to distinguish the
jobs. Each instance of the job can have unique requirements, such as the time for
submission.

One approach is to use the submission time as the job qualifier. For example, in the
Qualifier field for the first instance of the job, you can use “10 AM”. The qualifiers and
submit times for the different runs of the job are shown in the table below.

In the Do not submit before field for each instance of the job, use the %WOB._qualifier
built-in variable.

Explanation

When the Application generates, ESP Server resolves the submission time for each job
based on the job qualifier.

If you need to change the submission time for any of these jobs, change the job
qualifier. For example, by renaming MYJOB.10AM (jobname.qualifier) to
MYJOB.11AM, the job will now be scheduled to run at 11am.

Job Name Qualifier Submit Time

MYJOB 10AM 10 AM

MYJOB 2PM 2 PM

MYJOB 6PM 6 PM

MYJOB 10PM 10 PM

30 ESPD-5.0-EC-01

Scheduling an hourly Application within a time range

Objective

Schedule an Application to run every hour from 8am to 4pm on workdays.

Solution

To schedule an hourly Application

1. Schedule an Event every hour to run your Application.

2. Use the Suspend at field to suspend the Event at 16:01 workdays.

3. Use the Resume at field to resume the Event at 07:59 workdays.

The following shows the Schedule dialog for such an Event:

You can use the list scheduled Events feature to verify the correct scheduling of your
Event.

Explanation

The Event is scheduled every hour on the hour. Suspend and resume criteria are used
within the Event to control processing. The Event is suspended just after its 4pm
execution on workdays and resumed just prior to its 8am execution on workdays. This
enables the Event to run hourly between 8am and 4pm on workdays.

Examples Cookbook

ESPD-5.0-EC-01 31

Variation

Another solution is to use multiple Schedule statements to schedule the Event
multiple times each workday. For example:

Schedule 8am workdays
Schedule 9am workdays
.
.
.
Schedule 4pm workdays

32 ESPD-5.0-EC-01

Scheduling a job to run based on day and time

Objective

An Event is scheduled every hour on the hour to run an Application. Job X in the
Application should only be selected to run on Fridays at 3 PM.

Solution

To schedule a job to run based on day and time

1. Use the following JavaScript script at Event trigger time for job X:

if (today('friday') && APPL._SHH=='15')
 WOB.runme='true';
else WOB.runme='false';

2. Use the %WOB.runme variable as the run frequency in the job definition.

3. Schedule an hourly Event to run the Application.

Explanation

Job X is selected to run only if it is Friday and the Event’s scheduled hour
(APPL._SHH) is 15 (in other words, the Event was scheduled at 3 PM).

Examples Cookbook

ESPD-5.0-EC-01 33

Running different jobs based on the scheduled hour

Objective

An Event is scheduled every hour on the hour. Different jobs run based on the
scheduled hour.

The schedule frequency for each job is:

• JOBA runs at 13:00, 15:00, and 17:00.
• JOBC runs at 08:00, 12:00, and 16:00.
• All other jobs run each hour.

Solution

To run different jobs based on the scheduled hour

1. Use the following JavaScript script at Event trigger time for each job:

WOB.runme=false;
//run different jobs based on scheduled hour
switch (WOB._name)
{
 case 'JOBA':
 if (APPL._SHH == '13' || APPL._SHH == '15' ||
 APPL._SHH == '17') WOB.runme=true;
 break;
 case 'JOBC':
 if (APPL._SHH == '08' || APPL._SHH == '12' ||
 APPL._SHH == '16') WOB.runme=true;
 break;
default:
 WOB.runme=true;
}

2. Use the %WOB.runme variable as the run criteria for each job.

Explanation

The WOB.runme variable is set based on the job name and the scheduled hour. “case”
statements are used for jobs with special requirements. If the name of a job in the
Application does not match one of the case statement labels, WOB.runme is set to
true for the job.

34 ESPD-5.0-EC-01

Scheduling a different job to run every hour

Objective

A one-job Application runs each hour. The name of the job in the Application
depends upon its scheduled time. The job names are called MYJOB followed by a
letter of the alphabet which is based on the scheduled hour. At 1 AM use the letter A,
at 2 AM use the letter B, and so on, as shown in the following table:

Solution

To schedule a different job to run every hour

1. Schedule an Event hourly to submit the one-job Application.

2. Use the following JavaScript script at Event trigger time for the job:

Letters='ABCDEFGHIJKLMNOPQRSTUVWX';
if (APPL._SHH == '00') hour = '24';
 else hour = APPL._SHH;
WOB.LastChar=Letters.substring(hour-1,hour);

3. For the name of the job, use:

MYJOB%LastChar

Explanation

The solution uses a symbolic variable called Letters, which is assigned a string
representing the letters of the alphabet from A to X. Each hour, ESP Server uses a
different substring of this variable based on the scheduled hour (APPL._SHH).

If the scheduled hour is midnight, then the “hour” variable is assigned the value of 24
to enable the correct substring. Otherwise, “hour” is assigned the value of the
APPL._SHH variable.

The LastChar variable is assigned the letter to be used based on the scheduled hour.
For example, at 4 AM, LastChar is determined by Letters.substring(3,4) which has the
value D. Remember that the first position in a string is 0. Job MYJOBD is submitted.

You can also use %LastChar in the path to the Script name or pass this variable as an
argument to the script being run.

Time Job Name

1 AM MYJOBA

2 AM MYJOBB

3 AM MYJOBC

... ...

11 PM MYJOBW

12 AM MYJOBX

Examples Cookbook

ESPD-5.0-EC-01 35

Scheduling a different script each quarter

Objective

Schedule a job and run a different script for the job each calendar quarter. Each
calendar quarter consists of three months, and the first quarter starts on January 1.

Solution

To schedule a different script each quarter

1. Use the following JavaScript script at run time for the job:

if (today('jan feb mar')) WOB.scriptname='quarter1';
if (today('apr may jun')) WOB.scriptname='quarter2';
if (today('jul aug sep')) WOB.scriptname='quarter3';
if (today('oct nov dec')) WOB.scriptname='quarter4';

2. Use the %WOB.scriptname variable in the Run a script field for the job. For
example:

Explanation

In a single job definition, the JavaScript script determines the current calendar
quarter, and sets the WOB.scriptname variable to “quarter1”, “quarter2”, “quarter3”,
or “quarter4”. When the job is ready to run, ESP Server resolves this variable and runs
the appropriate script.

36 ESPD-5.0-EC-01

Scheduling a cyclic Application

Objective

A group of jobs runs multiple times a day. The first run is at midnight. Once all of the
jobs have completed successfully, the next generation should run 60 minutes later.
The last run each day should occur no later than 7 PM.

Solution

To schedule a cyclic Application

1. Use a Link at the end of your Application (in other words, as a successor to all
other jobs) with a Delay submission when eligible by time of 60 minutes. Use the
following JavaScript script at run time for the Link:

if (WOB._RHH < '19' && APPL._SDATE == WOB._RDATE)
 execTrigger('%APPL._event','ADD');

2. Schedule an Event at midnight each day to run the Application.

Explanation

The Event is scheduled at midnight each day to run the first group of jobs.
Optionally, you can use time-based qualifiers for the jobs to distinguish each group of
jobs for ease of monitoring.

Examples Cookbook

ESPD-5.0-EC-01 37

In Cybermation ESP: dSeries, the flow looks like this:

A Link called RETRIG.EVENT waits for all jobs in the Application to complete
successfully. This RETRIG.EVENT Link waits 60 minutes before it becomes ready. It
then checks the actual time (WOB._RHH) and if the time is before 7pm on the same
day, it retriggers the original Event. The execTrigger built-in function with the ADD
option is used so that the regular daily scheduled Event at midnight is not affected.

B.%APPL._SHH

A.%APPL._SHH

C.%APPL._SHH

RETRIG.EVENT

38 ESPD-5.0-EC-01

Keeping an Application active

Objective

There are a number of standalone ad hoc jobs that can be requested by a user. When a
user requests you to run one of these jobs, you want to run the job by inserting the job
into an active Application.

Solution

To keep an Application active

You can schedule an Application each day to handle ad hoc jobs. In the Application,
define a Link with a Do not submit before time that is the usual cutoff time for receiving
requests (for example, 8pm). This time dependency keeps the Application active until
the time you specify and allows you to insert jobs.

When you want to run an ad hoc job, insert the job into this Application.

For example, the following shows an active Application called LEFTOVER that
contains a Link called KEEPOPEN. Two ad hoc jobs, ADHOCJOB1 and
BONUS_CHEQUES, have been inserted into this Application.

Explanation

An Application needs to be active for you to insert jobs. The KEEPOPEN Link keeps
the Application active until the Do not submit before time you specify. The Application
continues to stay active past the submit time for the Link until all inserted jobs
complete successfully.

Examples Cookbook

ESPD-5.0-EC-01 39

Running ad hoc jobs

Objective

A number of independent ad hoc jobs are defined in an Application. When a request
comes in to run one of these jobs, there needs to be an easy way of running the job.

Solution

To run ad hocs jobs

1. Define each of your ad hoc jobs in the Application.

2. Use Run Daily or Run Anyday as the run criteria for each job. You can set this as a
job default in your Application by using the Run frequency Application property.

3. Define an Event to run your Application. This Event will be triggered manually.

4. To run one of these ad hoc jobs, trigger the Event and specify the job name you
want to run in the Root jobs to run field. For example, to run job Myjob123, specify
the following:

Note: The job name is not case sensitive. You could specify MYJOB123,
myjob123, or MyJoB123.

Explanation

When you specify a single job name in the Root jobs to run field, only that job is selected
to run. This allows you to predefine ad hoc jobs and their requirements, and run them
on demand.

In the Root jobs to run field, you can also specify a job name followed by a plus (+) sign
to include the job and all its successors, or specify a list that contains job names and/or
job names followed by a plus sign. For example, specify Myjob123, Myjob456 to
run both of these ad hoc jobs.

Note: If an ad hoc job has predecessors and successors, then normally you would
define this as an on-request job in the Application containing the related jobs. You can
request such jobs from Monitor using the Request command.

40 ESPD-5.0-EC-01

Adding a relationship between two unrelated jobs

Objective

In an Application, two jobs (A and B) are unrelated. For the current run only, you
want to run job B after job A.

Solution

Prior to job B running, you insert a Link with a predecessor of A and a successor of B
to “link” the two jobs.

ESP Server automatically completes a Link as soon as its dependencies are met. When
job A completes, the Link becomes ready, completes itself, and releases job B.

Explanation

ESP Server automatically completes a Link as soon as its dependencies are met. When
job A completes, the Link becomes ready, completes itself, and releases job B.

A B

LINKME

Examples Cookbook

ESPD-5.0-EC-01 41

Providing status for a long-running Application

Objective

A long-running Application is scheduled to run at 8am each day. If the Application is
not complete by 8am the next day, send a message to indicate the Application is still
processing.

Solution

To provide notification for a long-running Application

1. Use a Link with a Do not submit before time of 8am tomorrow. The Link has no
job dependencies.

2. Customize the email message to send when the Link reaches the COMPLETE
state. For example: %APPL._name is still processing from %APPL._SDATE. This
message uses built-in variables for the name of the Application and the scheduled
date.

3. Define the Link as a conditional job, as shown below, because it may or may not
process.

Explanation

The Link, which has no dependencies other than time, sends a message at 8am the
next day if the Application is still processing.

There are two possible results:

• If all other jobs in the Application are complete prior to 8am the next day, the
Link is bypassed (since it is a conditional job) and the Application completes.

• Otherwise, if jobs are still processing at 8am the next day, a message is sent at that
time.

42 ESPD-5.0-EC-01

Setting up a job with optional predecessors

Objective

There are six jobs (A, B, C, D, E, and F), and you need to run another job (Z) after
any two of them complete successfully.

The requirement looks like this:

Solution

To set up optional predecessors

1. Define each of the six predecessor jobs as conditional jobs so that the Application
can be considered complete without all of the jobs completing.

2. Set up each of the six jobs as a predecessor to job Z.

3. In the General dialog, use the Release job when field for job Z to specify a release
count of 4, as shown below.

Explanation

By default, the release count for a job is 0, which means that each of its predecessors
needs to complete before it is released. In situations where a job has optional
predecessors, you can indicate a release count.

Job Z initially has a hold count of 6 because it has 6 predecessors. Job Z is released
when its hold count reaches 4. This is the case when 2 of its predecessors complete
successfully.

After job Z completes, some of its predecessors may not have completed. Since you’ve
defined the predecessors as conditional jobs, when job Z completes, ESP Server
bypasses any conditional jobs that are not complete and completes the Application.

A B F C E D

Z

Release job when 4
predecessors remain

Examples Cookbook

ESPD-5.0-EC-01 43

Setting up groups of optional predecessors

Objective

There are three groups of jobs with two jobs in each group. One job from each group
must complete before running a successor job.

The dependencies look like this:

Solution

To set up groups of optional predecessors

1. Set up a Link as a successor for each group of jobs.

2. Specify 1 in the Release job when field for each of these Links.

3. Set up each of the three Links to release successor job Z.

Either E or F Either C or D Either A or B

A B F C E D

Z

44 ESPD-5.0-EC-01

Visually, the solution looks like this:

Explanation

Initially, job Z has a hold count of 3 because it is waiting for each of the Links to
complete. Each Link completes when one of its predecessors completes successfully. In
other words, when one job in each of the three groups completes successfully, the
Links complete, and the successor job runs.

A B F C E D

Z

Release when 1
predecessor remains

Release when 1
predecessor remains

Release when 1
predecessor remains

LINK1 LINK2 LINK3

Examples Cookbook

ESPD-5.0-EC-01 45

Setting up optional file trigger dependencies

Objective

Job ABC cannot run until one of two files, either “FILEA” or “FILEB”, has been
created. Whichever one is created first, should cause ESP Server to submit the job.
Also, the Application does not need to wait for the other file before it completes.

The dependencies look like this:

Solution

To set up optional file trigger dependencies

1. Use a file trigger job, FILEA and FILEB, for each file dependency, and define the
file trigger conditions (for example, trigger upon creation). Set up each of these
jobs as a predecessor to job ABC.

2. In the Release job when field for job ABC, specify 1 to indicate it should be released
when 1 predecessor completes.

3. Define each of the file triggers as conditional jobs (Conditionally) so that the
Application can be considered complete without both of them completing.

Explanation

When ESP Server builds the Application, job ABC has a hold count of 2. By
specifying “Release Job When 1 predecessor remains” for job ABC, ESP Server
releases this job when its hold count becomes 1. This means ESP Server releases job
ABC when either FILEA or FILEB completes (in other words, when the file name
specified in its job definition is created).

The “Submit conditionally” setting on the FILEA and FILEB definitions indicates
that these jobs do not have to complete for the Application to complete. For example,
if FILEA completes and job ABC runs to successful completion, ESP Server bypasses
FILEB and the Application completes.

FILEB FILEA OR

ABC

46 ESPD-5.0-EC-01

Controlling concurrent access to a system

Objective

There are five connections allowed to a system referred to as the PMT system. If more
than five jobs try to access the system at the same time, the jobs fail and need to be
restarted. There is a need to limit the number of jobs that access the system at any
time to five.

Visually, the requirement looks like this:

Solution

To control the maximum number of concurrent job executions

1. Define a renewable resource with maximum and available counts of 5.

In Services, define a renewable resource named PMT with both Availability and
Maximum availability set to 5.

2. For each job that requires access to the PMT system, specify that the resource
requires 1 unit of the resource in the job definition Resources dialog.

Explanation

Since there are only 5 units of this renewable resource defined, only five of these jobs
can execute at a time.

If five jobs are using the resource then any other jobs needing the resource go into a
RESWAIT state. As each job completes (successfully or not), one unit of the resource
is freed up.

PMT
job24
job32
job19
job48

job13

job56

WAIT

Examples Cookbook

ESPD-5.0-EC-01 47

Running mutually exclusive groups of jobs

Objective

One group of jobs cannot execute while another group of jobs is running.

The criteria for this example are:

• One group of jobs consists of jobs B and C.

• The other group of jobs consists of jobs D and E.

• All jobs in one group must complete successfully before processing any jobs in the
other group.

Solution

To run mutually exclusive groups of jobs

The solution involves using a depletable resource that depletes to zero when one
sequence starts and replenishes when that sequence ends.

1. Define a depletable resource with an Availability count of 1. In this example, the
resource is named ONESTREAM.

In Services, define a depletable resource named ONESTREAM with Availability set
to 5.

2. Use a different Link as a predecessor to each group of jobs. Each Link requires one
unit of the depletable resource and completes itself when the resource requirement
is met.

3. Use a Link at the end of each group of jobs that uses the following JavaScript
script at run time to reset the available count of the depletable resource to 1.

resetResourceProperty('ONESTREAM','Availability','1');

The solution looks like this:

48 ESPD-5.0-EC-01

Explanation

In this example, ESP Server controls resources such that one group of jobs does not
execute while another group is running. The technique illustrated here can be used
whether or not both groups of jobs are in the same Application.

When one stream of jobs starts, the Link at the beginning of the stream (START.1 or
START.2) uses the one available unit of the depletable resource and thus prevents the
other stream from starting. When one stream completes, a Link (RESET.1 or
RESET.2) resets the resource count to 1 to allow the other stream to run.

The depletable resource is a requirement for each Link instead of a requirement for
the first job in each path. This prevents a problem that could occur if the first job fails
and cannot be restarted because the resource isn’t available.

Using a renewable resource with an Availability count of 1 is not sufficient here as you
want to ensure that once one path starts, it goes to completion. Also, you may not
know which path will start first.

Examples Cookbook

ESPD-5.0-EC-01 49

Planning for system shutdown

Objective

When a particular system is due to be shut down, long-running jobs should be
prevented from starting and notification needs to be provided.

Solution

To plan for a system shutdown

1. In Services, define a threshold resource named ELAPSED representing elapsed
time in minutes.

Initially, you can assign ELAPSED a Maximum availability count such as 1440 to
represent 24 hours.

2. Specify the ELAPSED resource as a dependency for the long-running jobs you
want to prevent from starting prior to system shutdown.

For example, if a job usually runs for 2 hours, specify the job requires 120 units of
the ELAPSED resource.

3. Set up an Application with a countdown procedure that you can use prior to a
system shutdown. You can use a Link that runs the following JavaScript script at
Event trigger time to set the available count of the resource and then retrigger
itself one minute later:

time=APPL._user1;
resetResourceProperty('ELAPSED','Availability',time);
APPL.remain=(time - 1).toFixed(0);
if (APPL.remain >= 0)
 execTrigger('%APPL._event','','now plus 1 minute',
'','%APPL.remain');

4. Indicate that an SNMP trap should be sent when the Link becomes ready.
Customize the message to indicate the number of minutes until shutdown. For
example:

System shutdown in %remain minutes

5. Define an Event (for example, OPER.SHUTDOWN) that runs your Application.
When you trigger this Event, specify the number of minutes until shutdown in
the Parameter 1 field.

Explanation

When you trigger the Event, you pass the number of minutes until shutdown.

50 ESPD-5.0-EC-01

In Cybermation ESP: dSeries, the Application run by the Event contains a Link that
does the following:

• Assigns the APPL._user1 variable to a variable called “time”.

• Sets the available count of a threshold resource called ELAPSED to the number of
minutes until shutdown.

• Decrements the time variable by 1.

• If the amount of time now left until shutdown is greater than or equal to zero,
ESP Server retriggers the Event in one minute. The amount of time left is passed
as user parameter 1.

• This recursive procedure repeats until the amount of time left is less than zero.

Jobs requiring the ELAPSED resource will not run unless a sufficient quantity of the
resource is available.

Examples Cookbook

ESPD-5.0-EC-01 51

Using job completion as a resource

Objective

This example uses a threshold resource to represent the completion of a job. For
example, you can have a job in one Application that is dependent on an on-request
job with an unpredictable frequency in another Application.

In this example, PAYJOB2 requires that the previous run of PAYJOB1 has completed
successfully.

Solution

To schedule a job dependent on an on-request job

1. In Services, define a threshold resource named PAYJOB1 with Availability of 0 to
represent the successful completion of PAYJOB1. In this example, the name of the
resource is the same as the name of the predecessor job, PAYJOB1.

2. For the successor job, define the first job as a resource requirement. In other
words, PAYJOB2 requires 1 unit of the PAYJOB1 resource.

3. Use a Link in each Application to set the available count of the resource.

When PAYJOB1 completes successfully, use a Link to set the available count of
the PAYJOB1 resource to 1. Use the following JavaScript script:

resetResourceProperty('PAYJOB1','Availability','1');

When PAYJOB2 completes successfully, use a Link to set the available count of
the PAYJOB1 resource to 0. Use the following JavaScript script at run time for
this Link:

resetResourceProperty('PAYJOB1','Availability','0');

52 ESPD-5.0-EC-01

Explanation

The dependencies look like this:

This solution uses a threshold resource to represent the completion of job PAYJOB1.

ESP Server produces the following results:

• When PAYJOB1 ends successfully, ESP Server runs a Link called
END.PAYJOB1. The Link sets the available count of the PAYJOB1 resource to 1.

• ESP Server does not submit PAYJOB2 until the PAYJOB1 resource is available.

• When PAYJOB2 completes successfully, ESP Server runs a Link called
END.PAYJOB2. The Link sets the available count of the PAYJOB1 resource to 0.
This prevents PAYJOB2 from running without its dependency the next time it is
scheduled.

END.PAYJOB1
(link)

PAYJOB1
(job)

END.PAYJOB2
(link)

PAYJOB2
(job)

Examples Cookbook

ESPD-5.0-EC-01 53

Running different jobs based on the exit code of predecessor

Objective

A job can end successfully with either an exit code of 0 or an exit code of 4. Different
groups, or paths, of successor jobs need to run based on a successful exit code.

The dependencies look like this:

Solution

ESP Server can release a job based on the exit code of a predecessor. For example, job
A can release job B on an exit code of 0 and release job D on an exit code of 4.

To run different jobs based on the exit code of predecessor

You specify these release conditions when you define the jobs in Define.

1. To specify a release condition, right-click the dependency line between the two
jobs, and select Release conditions.

In the Release Conditions dialog, you can choose the condition, as shown below.

2. Set up job A to release job B on an exit code of 0; set up job A to release job D on
an exit code of 4.

3. Set up job B to release job C; set up job D to release job E. By default, a job
releases its successor based on a successful completion.

 4 0

A

B D

C E

PATH1 PATH2

54 ESPD-5.0-EC-01

4. Identify 4 as a successful exit code for job A, as shown below. Note that it isn’t
necessary to identify 0 as a successful exit code for job A, as this is the default.

Explanation

This example shows two success paths. Since a job can end with only one exit code,
only one path is eligible to run.

If job A completes with an exit code of 0:

• Jobs B and C run.
• Jobs D and E are bypassed.

If Job A completes with an exit code of 4:

• Jobs D and E run.
• Jobs B and C are bypassed.

This approach only works when there are different success paths. As long as job A is
successful, only one of the two paths will run. ESP Server automatically bypasses the
jobs in the success path that do not run.

Examples Cookbook

ESPD-5.0-EC-01 55

Taking different actions based on 1 of 3 successful return
codes

Objective

A monthly Application is scheduled for 10 AM on the last workday of each month.
The first job, job A, can end successfully with an exit code of 0, 1, or 2. Different
actions are required based on the exit code, as described in the following table.

The requirements look like this:

Return Code for Job A Action

0 Run job B

1 Complete Application and run it again at 10 AM the next
workday

2 Cancel this month’s run

56 ESPD-5.0-EC-01

Solution

To take different actions based on 1 of 3 successful return codes

1. When you set up the Application, set up job A to release a Task (for example,
CHECK.EXIT_CODE) which then releases job B.

The dependencies look like this:

2. Use the Exit Codes dialog for job A to indicate that 1 and 2 are successful exit
codes. Note that 0 is a successful exit code by default.

3. Use an Alert for job A when it reaches a Complete state, which runs the following
JavaScript script:

switch (WOB._cmpc)
{
case '0':
// if cmpc is 0 then complete Task and let job b run
 execCommand('check.exit_code','%(APPL._name).%APPL._gen',
'ACTION COMPLETE');

 break;
case '1':
// if cmpc is 1 then complete appl and trigger next workday
 execCommand('ALL','%(APPL._name).%APPL._gen',
'ACTION COMPLETE');

 execTrigger('%APPL._event','ADD','10AM today plus 1 workday');
 break;
case '2':
// if cmpc is 2 then complete appl
execCommand('ALL','%(APPL._name).%APPL._gen',
'ACTION COMPLETE');

}

4. Schedule an Event at 10 AM on the last workday of each month to run your
Application.

B

CHECK.EXIT_CODE

A

Examples Cookbook

ESPD-5.0-EC-01 57

Explanation

When the first job, job A, completes successfully, an Alert triggers. The Alert’s
JavaScript script checks the exit code for job A (WOB._cmpc) and takes the
appropriate action. This solution uses “case” statements.

A Task, CHECK.EXIT_CODE, is set up as a successor to job A. This prevents job B
from running until ESP Server can check the exit code of job A.

Built-in variables are used for the Event name, Application name, and Application
generation number.

Variation

Alternatively, you can use the following JavaScript script. This solution uses “if ”
statements instead of “case” statements.

// if cmpc is 0 then complete Task and let job b run
if (WOB._cmpc==0)
execCommand('check_exitcode_a','%(APPL._name).%APPL._gen',
'ACTION COMPLETE');

// if cmpc is 1 then complete appl and trigger next workday
if (WOB._cmpc==1)
 {
 execCommand('ALL','%(APPL._name).%APPL._gen',

'ACTION COMPLETE');
 execTrigger('%APPL._event','ADD','10AM today plus 1 workday');
 }
// if cmpc is 2 then complete appl
if (WOB._cmpc==2)
 execCommand('ALL','%(APPL._name).%APPL._gen','ACTION COMPLETE');

58 ESPD-5.0-EC-01

Resubmitting a job five minutes after it fails

Objective

If a particular job fails, it should be resubmitted after a five-minute delay.

Solution

To resubmit a job five minutes after it fails

1. When you define the job, use the Notifications dialog and identify an Alert to be
triggered if the job fails.

2. Define the Alert, and use the following JavaScript script for the Alert:

execTrigger('CYBER.RESUB','','','','%WOB._name',
'%APPL._name','%APPL._gen');

3. Define a one-job Application containing a Link.

• Use a Do not submit before time of “now plus 5 minutes”.
• Use the following JavaScript script at run time to resubmit the failed job.

execCommand('%APPL._user1','%(APPL._user2).%APPL._user3',
'ACTION RESUB');

4. Define the CYBER.RESUB Event to run the one-job Application.

Explanation

If the job fails, an Alert triggers, which in turn triggers the CYBER.RESUB Event.
The built-in variables for job name, Application name, and generation number are
passed as user parameters to this Event. The Event builds an Application containing a
Link. The Link waits for five minutes, and then uses the execCommand built-in
function to resubmit the failed job.

Examples Cookbook

ESPD-5.0-EC-01 59

The following diagram shows the flow from the time of job failure to the time of job
resubmission.

Built-in variables are used to ensure the job is resubmitted in the correct generation of
the correct Application. This allows you to reuse the same technique for any number
of jobs regardless of the Applications to which they belong.

Link waits 5 minutes

Alert Triggers

Job ABC Fails in
Application XYZ

Link resubmits job ABC
in Application XYZ

Application RESUB
builds with 1 link

CYBER.RESUB Event
triggers

60 ESPD-5.0-EC-01

Running a recovery job after failure

Objective

There are a number of similar jobs. When one of these jobs fails, you want to run a
generic recovery Application that runs a recovery job and then completes the failed
job.

Solution

To run a recovery job after failure

1. Indicate an Alert is to be triggered when one of these jobs fails.

2. Define the Alert. Use the following JavaScript script. This script uses the
execTrigger built-in function to trigger a recovery Event, and passes the name of
the failed job, the Application to which it belongs, and the generation number for
that Application as user parameters. For example:

execTrigger('cyber.recover','','','','%WOB._name',
'%APPL._name','%APPL._gen');

3. Set up the recovery Application as follows:

• Define the recovery job. For the name of the job, you can use the name of the
failed job followed by a qualifier of RECOVER (for example,
%APPL._user1.RECOVER).

• Set up the recovery job to release a Link. For the Link, run a JavaScript script
at run time that uses the execCommand built-in function to complete the
failed job. For example:

 execCommand('%APPL._user1','%(APPL._user2).%APPL._user3',
 'ACTION COMPLETE');

The recovery Application looks like this:

4. Define an Event (CYBER.RECOVER) to run the recovery Application. This
Event will be triggered automatically.

Explanation

When the job fails, an Alert builds a recovery Application. This Application consists
of a recovery job followed by a Link that completes the failed job in the original
Application.

Examples Cookbook

ESPD-5.0-EC-01 61

Built-in variables for the job name, Application name, and generation number are
passed to the recovery Application as user parameters. This allows you to use the same
generic Application for jobs requiring a similar recovery process.

62 ESPD-5.0-EC-01

Delaying job submission until the next hour

Objective

When a job’s predecessor is complete, the job needs to be delayed until the beginning
of the next hour. For example, if job A completes at 10:17 AM then job B should be
submitted at 11 AM.

Solution

Delaying job submission until the next hour

1. Set up a Task (for example, RESET_SUBTIME_B) as a successor to job A and as
a predecessor to job B.

2. Use the following JavaScript script at run time for the Task:

execCommand('B','%(APPL._name).%APPL._gen',
'ACTION RESET EARLYSUB("HOURLY")');

execCommand('%WOB._name','%(APPL._name).%APPL._gen',
'ACTION COMPLETE');

The solution looks like this:

B

RESET_SUBTIME_B

A

Examples Cookbook

ESPD-5.0-EC-01 63

Explanation

Often you may need a job in an Application to wait for a particular time before
submission. You can use the Do not submit before field to specify a delayed submission
time, such as “7pm” or “now plus 30 minutes”. You can also use the Delay submission

when eligible by field to delay submission of a job relative to the time the job’s
predecessors are all complete (for example, “30” delays the job by 30 minutes).

In this example, you do not know what time the job’s predecessor will be complete,
and so it is not possible to use either the Do not submit before field or the Delay submission

when eligible by field.

When job A completes successfully, the Task becomes ready. The Task runs a
JavaScript script that uses the execCommand built-in function to reset job B’s submit
time to the beginning of the next hour, and then completes itself.

Built-in variables are used on each execCommand to represent the name of the
Application (%APPL._name) and the generation number (%APPL._gen) to ensure
the actions are performed against the correct generation of the Application.

The second execCommand uses the built-in variable for the job name
(%WOB._name). This is a common practice for self-completing Tasks. It allows you
to reuse the code in other Applications and allows you to change the name of the Task
without any changes to the JavaScript script.

64 ESPD-5.0-EC-01

Bypassing a job without waiting for its predecessor

Objective

Jobs A, B, and C are three sequential, daily jobs. If job B has not been submitted by
10am, job C should start (even if job A is running), and job B should not run.

Solution

To bypass a job without waiting for its predecessor

1. Set up the three sequential, daily jobs in an Application.

2. For job B, in the Submission field of the Time Dependencies dialog, specify a time of
10AM.

3. Use an Alert for job B when it reaches an Abandon Submission state.

4. Use the following JavaScript script for the Alert:

execCommand('%WOB._name','%(APPL._name).%APPL._gen',
 'ACTION COMPLETE');

Explanation

When a job’s abandon submission time is met, the job is flagged to be bypassed. The
job is not actually bypassed until its predecessors are complete. In this scenario, job C
can start once it is determined that job B will be bypassed (in other words, when job
B’s abandon submission time is met).

If job B is not submitted by 10 AM, the job’s submission is abandoned. The Alert
triggers to force complete job B, and job C is submitted.

Built-in variables are used for the job name (%WOB._name), Application name
(%APPL._name), and generation number (%APPL._gen) to ensure the correct job is
marked complete in the correct generation of the Application.

Variation

Since job B usually waits for job A to complete successfully prior to being bypassed,
another approach is to use the Predecessor dependencies field for job B to specify a time
just after 10 AM (for example, 10:01 AM). If job B’s abandon submission time is met,
job B is flagged to be bypassed. Its dependencies are then dropped, causing it to be
bypassed, and job C is eligible to start.

Examples Cookbook

ESPD-5.0-EC-01 65

Running different jobs based on the time a predecessor job
completes

Objective

After jobs A and B complete successfully, a different group of jobs needs to run based
on what time it is. If the time that job B completes successfully is prior to 15:00, ESP
Server should run jobs C and D. If the time is 15:00 or later, ESP Server should run
jobs E and F.

Solution

The dependencies look like this:

To run different jobs based on the time a predecessor job completes

1. Define jobs C, D, E, and F as request jobs, as shown in the following screenshot.

A

B

C

D

CHECK.TIME
<15:00 >=15:00

E

F

66 ESPD-5.0-EC-01

2. Use a Task after job B that uses the following JavaScript script at run time. This
script checks the time and takes the appropriate action.

if (WOB._RHH < '15')
 {
 execCommand('C','%(APPL._name).%APPL._gen',
 'ACTION REQUEST');
 execCommand('D','%(APPL._name).%APPL._gen',
 'ACTION REQUEST');
 }
else
 {
 execCommand('E','%(APPL._name).%APPL._gen',
 'ACTION REQUEST');
 execCommand('F','%(APPL._name).%APPL._gen',
 'ACTION REQUEST');
 }
execCommand('CHECK.TIME','%(APPL._name).%APPL._gen',
 'ACTION COMPLETE');

Explanation

After job B completes successfully, ESP Server uses a Task (for example,
CHECK.TIME) that runs a JavaScript script to check the actual time. If the time is
prior to 15:00, ESP Server requests jobs C and D. If the time is 15:00 or later, ESP
Server requests jobs E and F. In either case, ESP Server completes the Task to enable
the successors to run. The request jobs that are not requested are automatically
bypassed.

Note: A Task is used in this example so that ESP Server can check the time and take
action before all of the successor jobs are released.

Built-in variables are used on each execCommand to represent the name of the
Application and the generation number to ensure the actions are performed against
the correct generation of the Application.

Examples Cookbook

ESPD-5.0-EC-01 67

Running jobs in a different order based on time

Objective

After jobs A and B complete successfully, the order in which the successor jobs run is
based on what time it is. If the time that job B completes successfully is prior to 15:00,
ESP Server should run jobs C and D, and then jobs E and F. If the time is 15:00 or
later, ESP Server should run jobs E and F, and then jobs C and D.

Solution

The solution looks like this:

A

B

C

D

CHECK.TIME
<15:00 >=15:00

START.PATH1
(task)

START.PATH2
(task)

END.PATH1
(task)

E

F

END.PATH2
(task)

68 ESPD-5.0-EC-01

To run jobs in a different order based on time

1. Add a Task at the beginning and at the end of each of the two groups of successor
jobs. The names in this example are START.PATH1, START. PATH2,
END.PATH1, and END.PATH2.

2. Define END.PATH1 and END.PATH2 as request jobs, as shown in the
following screenshot:

3. Use a Link after job B and before each of the START Tasks that uses the following
JavaScript script at run time. This script checks the time and takes the appropriate
action.

//Determine which path to run first
if (WOB._RHH < '15')
 {
 execCommand('START.PATH1','%(APPL._name).%APPL._gen',
 'ACTION COMPLETE');
 execCommand('END.PATH1','%(APPL._name).%APPL._gen',
 'ACTION REQUEST');
 }
else
 {

execCommand('START.PATH2','%(APPL._name).%APPL._gen',
 'ACTION COMPLETE');
 execCommand('END.PATH2','%(APPL._name).%APPL._gen',
 'ACTION REQUEST');
 }

4. Use the following JavaScript script at run time for END.PATH1. It completes the
START.PATH2 Task.

execCommand('START.PATH2',’%(APPL._name).%APPL._gen',
 'ACTION COMPLETE');

5. Use the following JavaScript script at run time for END.PATH2. It completes the
START.PATH1 Task.

execCommand('START.PATH1','%(APPL._name).%APPL._gen',
 'ACTION COMPLETE');

Explanation

After job B completes successfully, ESP Server uses a Link (for example,
CHECK.TIME) that runs a JavaScript script to check the actual time. If the time is
prior to 15:00, ESP Server completes START.PATH1 and requests END.PATH1. If

Examples Cookbook

ESPD-5.0-EC-01 69

the time is 15:00 or later, ESP Server completes START.PATH2 and requests
END.PATH2. When one group of jobs completes, the requested END Task
completes the Task which starts the other group of jobs.

Built-in variables are used on each execCommand to represent the name of the
Application and the generation number to ensure the actions are performed against
the correct generation of the Application.

70 ESPD-5.0-EC-01

Running the next scheduled Application early

Objective

You need to run the next day’s version of an Application today.

Solution

As long as you need to replace the next scheduled instance of the Application, you can
simply trigger the Event to run the Application and select Replace next scheduled Event.

For example, if an Application runs daily at 8 a.m., and you want to run Friday’s
Application on Thursday afternoon, you can trigger the Event now and use the
Replace next scheduled Event option.

Explanation

ESP Server automatically selects the jobs and resolves variables based on the “replaced”
scheduled date.

Note: If you want to run a future version of the Application other than the next
scheduled occurrence, you can use the approach discussed in “Running an
Application for any future date” on page 71.

Examples Cookbook

ESPD-5.0-EC-01 71

Running an Application for any future date

Objective

You need to run a future version of an Application today.

Solution

Define another Event that runs the Application. Schedule the Event for the particular
date in the future and use the “ONCE” keyword on the Schedule statement.

Trigger this Event and select Replace next scheduled Event.

Explanation

To run an Application for any future date

For example, if you want to run an Event today as if it was Oct. 17, 2006, take the
following steps:

1. Schedule another Event to run the Application and use “schedule oct 17, 2006
once”.

2. Trigger the Event with the Replace next scheduled Event option. ESP Server triggers
the Event now and replaces the Oct. 17, 2006 execution.

ESP Server selects jobs and resolves criteria variables based on this Oct. 17, 2006 date.

The use of “ONCE” ensures the Event will not be scheduled again after you have
triggered it with the replace option.

Note: If the future version of the Application is the next scheduled occurrence, you
can use the approach discussed in “Running the next scheduled Application early” on
page 70.

72 ESPD-5.0-EC-01

Identifying critical jobs for disaster recovery planning

Objective

In the case of a disaster, certain jobs in an Application must run while other jobs are
deemed non-essential and should not be selected to run. As part of your disaster
planning, you want to set up the Application in advance so that changes to it are not
required in the event of a real, or planned, disaster.

Solution

To identify critical jobs for disaster recovery planning

1. In your calendar, define a special day called DISASTER. As there must be at least
one entry in the calendar for this special day to let you simulate properly, reference
a date far in the future. For example, September 13, 2024.

Note: The next DISASTER date should not be more than 25 years in the future
to allow for simulations.

2. Use a “Do not run disaster” run frequency condition in the Application for all
jobs deemed to be non-essential.

Explanation

Using this solution, you can identify which jobs should not run in the case of a
disaster. In the event of a real disaster or a disaster test, you can define another
occurrence of the special day, in your calendar, with the appropriate date. When an
Application builds, jobs with “Do not run disaster” will not be selected to run.

You can simulate your Applications for the “disaster” date to verify the correct
selection of jobs.

Examples Cookbook

ESPD-5.0-EC-01 73

Auto-triggering an Event for a reoccurring job

Objective

The Operations department has to run a special standalone job upon request. It is
always the same job, and they do not want an operator to have to trigger an Event to
run the job.

Solution

To auto-trigger an Event for a reoccurring job

1. Set up a one-job Application. Use a schedule frequency such as Run daily or
Run anyday, and define the special job on hold, as shown below:

2. Use the following JavaScript script at run time for the job:

//retrigger same event
execTrigger('%APPL._event');

3. Create a Date-Time/Manual Event without a Schedule statement that runs the
Application.

4. Manually trigger the Event to create the first generation.

Once the first generation of the Application is built, an Operator can use Monitor to
release the special job from hold whenever it needs to run. This causes the job to run,
the JavaScript script to execute, and the execTrigger built-in function retriggers the
same Event to build another generation with the job on hold again.

Explanation

After the Event is triggered and the job is put on hold for the first time, ESP Server
automatically triggers another occurrence of the Event every time the operator releases
the job.

74 ESPD-5.0-EC-01

Completing an Application when a file is not received by its
cutoff time

Objective

An Application requires an input file each day before it runs. The cutoff time for this
file is 7pm. If the input file is not received by this cutoff time, then the Application
should be marked complete.

The dependencies look like this:

Solution

To complete an Application when a file is not received by its cutoff time

1. Schedule an Event prior to 7pm to run the Application.

2. Define a file trigger job for the input file, and specify an overdue Not completed by
time of “7pm”.

3. Identify an Alert to be triggered if the file trigger becomes overdue.

4. Use the following JavaScript script in the Alert that runs when the file trigger
becomes overdue:

execCommand('all','%(APPL._name).%APPL._gen',
 'ACTION COMPLETE');

Explanation

If the file trigger does not complete on time (in other words, by 7pm), the Alert
triggers. The Alert runs a JavaScript script to complete the Application. Built-in

 7PM daily_input_file

send_data

process_data

Examples Cookbook

ESPD-5.0-EC-01 75

variables are used for the Application name and generation number to ensure the
correct generation is marked complete.

76 ESPD-5.0-EC-01

Ensuring a file exists before processing

Objective

Check to ensure a file exists before processing it. If the file does not exist, run a UNIX
script to create it.

The dependencies look like this:

Solution

To ensure a file exists before processing

This solution involves one file trigger job and two UNIX scripts. Take the following
steps to define the different jobs:

1. Define the file trigger job, CHECK4.FILE, to check for the existence of the file.

• Specify the name of the file in the File name field. For example:
 /export/home/jsmith/scripts/myfile
• Use the Existing option (Change type) as the trigger condition.
• On the General dialog, define the job as a conditional job (select the

Conditionally option).

2. Define the UNIX job, CREATE.FILE, to create the file if it does not exist.

• Specify the name of the UNIX script in the Script/Command name field. For
example, /export/home/jsmith/scripts/create.file.

• On the General dialog, define the job as a conditional job (select the
Conditionally option).

3. Define the UNIX job, PROCESS.FILE, to process the file.

• Specify the name of the UNIX script in the Script/Command name field. For
example, /export/home/jsmith/scripts/process.file.

• On the General dialog, specify 1 in the Release job when field.

 CHECK4.FILE

 CREATE.FILE

 PROCESS.FILE

Examples Cookbook

ESPD-5.0-EC-01 77

4. Set up the job relationships and release conditions:

• Set up CHECK4.FILE to release CREATE.FILE if it fails, and release
PROCESS.FILE if it is successful.

• Set up CREATE.FILE to release PROCESS.FILE if it is successful.

Explanation

This solution uses a file trigger job, CHECK4. FILE, to check for the existence of a
file. There are two possible outcomes:

• The file trigger fails. This means the file does not exist. Job CREATE.FILE is
released upon failure to create the file. Once this job completes, job
PROCESS.FILE is released to process the file. At the end of the Application, job
CHECK4.FILE is bypassed to enable the Application to complete.

• The file trigger completes successfully. This means the file exists. Job
PROCESS.FILE is released to process the file. At the end of the Application, job
CREATE.FILE is bypassed to enable the Application to complete.

Job PROCESS.FILE sets Release job when to 1 because it can run when either
CHECK4.FILE or CREATE.FILE are successful.

CHECK4.FILE and CREATE.FILE are conditional jobs. This allows them to be
bypassed automatically, if necessary, at the end of the Application.

78 ESPD-5.0-EC-01

Using date-qualified file names

Objective

An Application contains some file trigger jobs where the names of the files to be
created contain a date qualifier and a literal in the form: MMDDYY_ok. MM is the
scheduled month, DD is the scheduled day, and YY is the scheduled year.

Solution

When you define the file trigger jobs, you can use built-in symbolic variables for the
date and concatenate the literal at the end. For example, in the File name field you can
use:

/batch/interfaces/file1.%APPL._SMM%APPL._SDD%(APPL._SYY)_ok

Note: You need to enclose APPL._SYY in brackets, as the brackets act as delimiters.
Otherwise, ESP Server will try to resolve a variable called APPL._SYY_ok.

Explanation

When the Application generates, it resolves the built-in variables based on the
scheduled date of the Event. For example, on November 6, 2006, the above example
resolves to the following file name:

/batch/interfaces/file1.110606_ok

Variation

Another approach is to define a symbolic variable, representing the string, in a
JavaScript script. You can then use this variable in your job definitions. This is useful
when you need to use this file qualifier for many jobs. Also, if the format of the file
name changes, you need only to update the format in one place.

For example, use the following JavaScript script at Event trigger time:

APPL.datequal = APPL._SMM + APPL._SDD + APPL._SYY + '_ok';

When you define a file trigger job, you can use this variable in the File name field. For
example:

/batch/interfaces/file1.%APPL.datequal

Examples Cookbook

ESPD-5.0-EC-01 79

Processing a changing file name

Objective

When a file is created, a UNIX script needs to use the file name as input. The last 12
characters of the file name always change and are based on a date and time stamp. An
example of such a filename created on 09/29/04 at 23:14:56 is “file092904231456”.

Solution

To process a changing file name

1. Define the file trigger job (for example, CREATE).

• Specify the name of the file in the File name field. Use an asterisk (*) to mask
the file name. For example, /export/home/jsmith/file*.

• Use the Created option (Change type) as the trigger condition.

2. Define the UNIX script as the successor job (for example, PROCESS). Use
%APPL._ftfile in the Arguments to pass field.

The solution looks like this:

PROCESS

Argument: %APPL._ftfile
Resolves to: /export/home/jsmith/file092904231456

CREATE

File name specified: /export/home/jsmith/file*
Actual file name: /export/home/jsmith/file092904231456

80 ESPD-5.0-EC-01

Explanation

The file trigger job waits for a file to be created that matches the file name mask:
/export/home/jsmith/file*. When any such file is created, the file trigger job
completes and releases the successor job to process the file.

The built-in variable, APPL._ftfile, is assigned a value of the full file name whenever
file trigger activity takes place. You can pass this variable as an argument to the UNIX
script run after the file trigger completes.

Note: There is only one APPL._ftfile variable per generation of an Application. When
additional file triggers take place in the same generation of the Application, the
previous APPL._ftfile variable is overwritten.

Examples Cookbook

ESPD-5.0-EC-01 81

Using the Application name in the script path

Objective

The path to a number of UNIX scripts needs to include the name of the Application
in lowercase.

For example:

• /export/home/payroll/batch, for the Payroll Application.
• /export/home/billing/batch, for the Billing Application.

Solution

Use the following JavaScript script at run time, either for the Application or for
specific jobs within the Application. This script converts the Application name to
lowercase using the toLowerCase method of the String class.

APPL.applname = APPL._name.toLowerCase();

For the location of the script, use %(applname) in the path. For example:

/export/home/%(applname)/batch/jobabc

Explanation

APPL._name is a built-in variable representing the Application name but it resolves to
an uppercase name (for example, PAYROLL). This solution uses a JavaScript script to
convert the APPL._name variable to a lowercase variable, and you can then use this
variable in the path.

82 ESPD-5.0-EC-01

Setting up a dependency with a job’s previous run

Objective

An Application is scheduled each day. One daily job in the Application, job X, needs
to wait for its previous run to complete. However, other jobs in the Application can
run even if the previous day’s Application is not complete.

The dependencies look like this:

Solution

To set up a dependency with a job’s previous run

1. Use a variable as a qualifier for job X that is equal to the first 3 characters of the
scheduled day of the week: %APPL._SDAY(1:3).

2. Define the previous run of job X as an “External - Same Scheduler” job.

a. Use the genTime built-in function to generate date and time variables for the
previous day. You can use the following JavaScript script for the job at Event
trigger time.

 APPL.genTime('prev','today less 1 day');

b. Use the first 3 characters of the previous day’s day-of-week variable (from the
genTime above) as a qualifier for the External job: %APPL.prevDAY(1:3).

c. Set up this job to release today’s run of job X.
d. Use the External job scheduled: From field on this External job to reflect the

previous day (for example, yesterday).
e. Optionally, use the Home Application name field to specify the name of the

Application.

X . T U E

X . M O N

B

A

Y

Examples Cookbook

ESPD-5.0-EC-01 83

Explanation

Although there is an option to prevent multiple generations of an Application from
running at the same time, it cannot be used here. In this scenario, only one job needs
to wait.

This solution qualifies job X, and sets up the previous day’s run as an external
dependency to today’s run of job X. This ensures job X waits for its previous run to
complete, and it does not prevent the other jobs in the Application from running.

84 ESPD-5.0-EC-01

Setting up a job with a predecessor scheduled for the next day

Objective

Application APPL1 is scheduled at 1am on Saturday morning. Application APPL2 is
scheduled at 7pm on Friday. Job B in APPL2 runs on Friday and needs to wait for job
A in APPL1 that runs the next day.

The dependencies look like this:

Solution

To set up a job with a predecessor scheduled for the next day

Once APPL1 has been set up, take the following steps:

1. In APPL2, define job A as an “External - Same Scheduler” job. Set up job A as a
predecessor to job B.

2. For the run frequency of job B in APPL2, use Fridays.

3. For the run frequency of job A in APPL2, use Fridays.

This is the day on which you want to build the job as part of the distant
Application.

A

B

A

APPL1
Schedule 1am Saturday

APPL2
Schedule 7pm Friday

Examples Cookbook

ESPD-5.0-EC-01 85

4. For the job attributes of External job A in APPL2, use a External job scheduled: At
time of 1am tomorrow, as shown below.

This is the scheduled time for the Event that submits the job in the home
Application, APPL1. Optionally, you can specify the name of the Application that
submits the job (in other words, APPL1).

Explanation

When APPL2 builds on Friday, it will contain job A as a predecessor to job B. This
External job is posted complete when it runs successfully as part of APPL1, which is
scheduled for 1am on Saturday.

86 ESPD-5.0-EC-01

Providing notification if a job exceeds its maximum execution
time

Objective

Send an email message if a particular job runs longer than 2 hours.

Solution

To provide notification if a job exceeds its maximum execution time

1. Define the job with email notification for the OVERDUE state. Customize the
email message if you wish.

2. Use the following JavaScript script at run time for the job to reset the job’s Late
End time.

execCommand('%WOB._name','%(APPL._name).%APPL._gen',
 'ACTION RESET LATEEND("now plus 2 hours")');

Explanation

When the job is submitted (at run time), the JavaScript script uses the execCommand
built-in function to reset the job’s end time. The script takes the current time (“now”)
and adds the expected execution time of 2 hours.

This solution uses variables for the job name, Application name, and Application
generation number to ensure the time for the correct instance of the job is reset.

Examples Cookbook

ESPD-5.0-EC-01 87

Bypassing non-critical jobs when jobs are late

Objective

There are problems meeting a service level agreement (SLA) and the programmers
recommend bypassing some non-critical jobs when a particular Application is late.
For example, if certain jobs in an Application are not complete by 6am, bypass some
non-critical jobs.

Solution

To bypass non-critical jobs when jobs are late

1. Define a Link (for example, CRITICAL.POINT) as a successor to the important
jobs.

2. Specify an overdue Not completed by time for this Link of 6am.

3. Identify an Alert to be triggered if the Link becomes overdue.

4. Define the Alert that runs a JavaScript script to bypass the non-critical jobs. For
example:

execCommand('JOBC','OPJOBS.%APPL._gen','ACTION BYPASS');
execCommand('JOBE','OPJOBS.%APPL._gen','ACTION BYPASS');

Visually, the solution looks like this:

Explanation

JOB A and JOB B are important jobs. Each of these jobs releases a Link called
CRITICAL.POINT. If CRITICAL.POINT is not complete by 6am, it becomes
overdue and an Alert triggers. In Cybermation ESP: dSeries, the Alert runs a JavaScript
script that uses the execCommand built-in function to bypass jobs C and E.

In Cybermation ESP: dSeries, this solution uses a variable for the Application
generation number to ensure the jobs are bypassed in the correct generation of the
Application. Another solution is to specify a time to bypass job submission for each of
the non-critical jobs.

88 ESPD-5.0-EC-01

Variation

Another solution is to specify a time to bypass job submission for each of the non-
critical jobs.

Examples Cookbook

ESPD-5.0-EC-01 89

Using the same Application for test and production

Objective

Use the same Application to process work for the test environment and the
production environment, even when there are different job requirements for each
environment.

Solution

Set up Events to run a common Application. The naming convention for Events is
such that the 4-character Event prefix, either PROD or TEST, represents the
environment. The first four characters of the job names in the Application are either
PROD or TEST.

Use the following JavaScript script at Event trigger time to set a variable, APPL.env,
based on the Event name, that represents the environment.

APPL.env=APPL._event.substring(0,4);

You can then use the APPL.env variable in many different ways. Use this variable as
part of the Application name, as part of the ESP Agent name, and as part of the job
names. The following shows some examples:

• Part of the Application name: %(APPL.env)payroll
• Part of the ESP Agent name: SUNBOX_%APPL.env
• Part of the job names: %(APPL.env)AC123

The following diagram shows how a job name is resolved based on the Event name:

You can also use “if ” logic to handle different requirements for different
environments. For example, a job may run in one environment but not in the other.
You can use a JavaScript script, like the following script, at Event trigger time to
handle conditions like this.

if (APPL.env=='PROD') WOB.runthisjob ='daily'
 else WOB.runthisjob = false;

%(APPL.env)AC123

PROD.PAY

TEST.PAY

PRODAC123

TESTAC123

Events Jobname with Variable Resolved Jobnames

90 ESPD-5.0-EC-01

Explanation

Different Events for the two environments can run the same Application. The Events
use a naming standard that identifies the environment associated with them. A user-
defined symbolic variable named APPL.env is defined to represent the environment,
and it uses a substring of the built-in variable for the Event name. The APPL.env
variable can be used in many places.

If-else logic can be used to determine if a job should run based on the environment for
which the schedule is running.

Variation

This example could be extended further by passing the APPL.env variable as an
argument to the UNIX scripts being run.

Examples Cookbook

ESPD-5.0-EC-01 91

Launching common Applications

Objective

Use the same Application to run a set of jobs for different environments. For example,
three sequential jobs (A, B, and C) need to run for different Oracle database instances.
Each sequence of jobs requires the name of the ESP Agent and the name of the Oracle
instance being processed. The name of the Oracle instance is used as follows:

• An argument to the UNIX script being run.
• An environment variable, called ORACLE_SID.

Solution

This solution involves the use of a Link in one Application that launches a generic
Application for the different environments.

To launch common Applications

1. Set up an Application consisting of one Link (for example,
LAUNCH.ARCHIVE). This Link is used to launch the generic Application, and
provides a visible means for tracking that the launch takes place.

2. At Event trigger time, run a JavaScript script for the Link with a series of
execTrigger built-in functions that trigger the generic Application and pass the
variable information as user parameters. For example, the following triggers the
PROD.ARCHIVE Event to run the generic Application. It passes the name of the
Oracle instance as user parameter 1 and the ESP Agent name as user parameter 2:

execTrigger('PROD.ARCHIVE','','','','DB1','AGENT01');
execTrigger('PROD.ARCHIVE','','','','DB99','AGENT02');
execTrigger('PROD.ARCHIVE','','','','SQL1','TSTAIX32');
execTrigger('PROD.ARCHIVE','','','','SQL60','TSTLIN54');

3. Schedule an Event to run this Application.

4. Set up your common Application consisting of jobs A, B, and C. Use the
APPL._usern variables for the information that changes from one environment to
another.

a. Use the following JavaScript script at Event trigger time and at run time for
each job. This script takes the user parameters and assigns them to variables
with more specific names.

APPL.INSTANCE=APPL._user1;
APPL.AGENT=APPL._user2;

b. Use %AGENT in the Agent name field.
c. Use %INSTANCE in the Arguments to pass field.

92 ESPD-5.0-EC-01

d. On the Environment Variables dialog, define an environment variable:
ORACLE_SID=%INSTANCE.

Note: You can set these options globally, based on the type of job being defined, to
minimize the effort in defining each job.

e. Optionally, use %AGENT and/or %INSTANCE as part of the Application
name or as a job qualifier for each job. This makes it easier to distinguish the
jobs for monitoring and control purposes.

5. Define an Event to run your common Application. This Event should not be
scheduled since it is triggered from the launch Application.

Explanation

The Application containing a Link launches the generic Application several times
with the variable data passed as user parameters.

The first execTrigger passes “DB1” as user parameter 1 and “AGENT01” as user
parameter 2. The following shows the fields, variables, and resolved variables based on
these user parameters.

To add another group of jobs, simply add another execTrigger built-in function to the
launch Application to launch the generic Application with the new parameters. For
example, to use the MYTESTSYS ESP Agent to run the same generic Application for
the RWP instance of an Oracle database on the ESP Agent’s machine, add the
following:

execTrigger('PROD.ARCHIVE','','','','RWP','MYTESTSYS');

Field Variable Resolved Variable

Application Name %(AGENT)_%INSTANCE AGENT01_DB1

Agent Name %AGENT AGENT01

Job Names A.%INSTANCE
B.%INSTANCE
C.%INSTANCE

A.DB1
B.DB1
C.DB1

Arguments to pass %INSTANCE DB1

Environment Variable
Name and Value

ORACLE_SID=%INSTANCE ORACLE_SID=DB1

Examples Cookbook

ESPD-5.0-EC-01 93

Setting up 4-5-4 periods

Objective

Many jobs are scheduled and parameters are set based on 4-5-4 periods, where there is
a 4-week period, followed by a 5-week period, followed by a 4-week period.

The first few periods look like this:

Solution

To set up 4-5-4 periods

From the Special Days section of your calendar definition, take the following steps:

1. Click New.

2. In the Special day name field of the Special day definition dialog, specify a name for the
special period (for example, PERIOD454).

3. In the Starting date field, select the starting date of the first 4-5-4 period from the
calendar, for example January 1.

4. In the Frequency section, select Repeat.

5. In the Repeat text box, enter the number of 4-5-4 periods to define, for example 4.

6. Enter 13 in the Every text box and select weeks.

The 4-5-4 sequence repeats every 13 weeks.

7. Click OK.

You have defined the first 4-week period of each 4-5-4 sequence.

Start of Period Duration

January 1

January 29

March 5

April 2

April 30

June 4

July 2

4 weeks

5 weeks

4 weeks

4 weeks

5 weeks

4 weeks

94 ESPD-5.0-EC-01

8. Repeat the above steps to define the five-week period of each 4-5-4 sequence.
Change the start date to January 29.

9. Repeat the above steps to define the second 4-week period of each 4-5-4 sequence.
Change the start date to March 5.

10. Click the Save button to save your special period definition.

Explanation

This solution shows a quick technique for defining the 4-5-4 periods. It uses the fact
that the 4-5-4 sequence repeats every 13 weeks. You can define multiple repetitive
instances of a special day based on your starting point (Jan 1, 2005 in this example).

Once you define a special period, you can use it in scheduling criteria. You do not
need to know the day of the week or the date to which each statement refers. ESP
Server calculates this for you.

• Last workday of each 4-5-4 period:

LAST WORKDAY OF PERIOD454

• First workday of the current 4-5-4 period:

1ST WORKDAY OF THIS PERIOD454

• Last workday of the 2nd week of each 4-5-4 period:

LAST WORKDAY OF THE 2ND WEEK OF PERIOD454

Examples Cookbook

ESPD-5.0-EC-01 95

Creating a variable for the accounting year

Objective

Create a variable for the accounting year, to be used whenever you need to reference
the current accounting year. For example, from October 4, 2006 until October 1,
2007, inclusively, the accounting year symbolic variable should have the value 2007.

Solution

Use the following JavaScript script to create the variable:

APPL.genTime('AC','last day of acct_year');

Explanation

In this example, there are a number of special days called ACCT_YEAR. The
accounting year is the period between two ACCT_YEAR special days. Each
accounting year starts near the beginning of October. For example, the accounting
year for the year 2007 begins on October 4, 2006. The accounting year for the year
2008 begins on October 2, 2007.

At any point in the year, you need ESP Server to determine which accounting year
you are in. For example, from October 4, 2006 until October 1, 2007 (inclusively),
you want an accounting year variable to have the value 2007.

The simplest way to determine this is to use the genTime built-in function to generate
date and time variables for the last day of the accounting year. This will always give
you the actual accounting year no matter what the date is in the actual year. You can
then use the %ACYEAR variable, from the genTime, as you choose.

96 ESPD-5.0-EC-01

Calculating the week number

Objective

Many jobs require the week number. The week numbers start from 1 in one calendar
year and carry over into the next year. For example, this may be based on a fiscal year
that starts 9 days after the 1st Sunday of the year.

Solution

You can use the following JavaScript script to calculate the week number:

genTime('ly','today less 1 year');
genTime('fy','1st sunday of this year plus 9 days');
n=daysTo(fyDATE);
if (n > 0) styear=lyYEAR;
 else styear=fyYEAR;
x='1st sunday of year plus 9 days starting jan 1,' +styear;
genTime('w',x);
APPL.weekno=daysBetween(wDATE,'today plus 1 day','tuesday');

Explanation

This JavaScript script determines on which year to base the calculation. If the number
of days to the first Sunday of the current year plus 9 days is positive, then the current
fiscal year started in the previous calendar year. Otherwise, the current fiscal year
started this year.

The genTime built-in function generates date and time variables for the 1st day of the
current fiscal year. The daysBetween function is then used to calculate the week
number, and this number is assigned to a variable called APPL.weekno.

Examples Cookbook

ESPD-5.0-EC-01 97

Using date variables for multiple jobs

Objective

Many jobs within an Application use the same types of date variables when they run.

Solution

Use a Link at the beginning of your Application to calculate the variables needed for
the jobs in the Application. Prefix each of these variables with APPL.

For example, you could have an Application like this:

You can define a Link called set_variables at the beginning of your Application that
runs a JavaScript script at run time. The JavaScript script can set variables, such as the
following:

APPL.currdate = APPL._SMM + APPL._SDD + APPL._SYY;
APPL.genTime('fdom','first day of this month');
APPL.genTime('nwd','today plus 1 workday');

You can then pass these variables as arguments to those jobs that use them. For
example:

Explanation

This is a more efficient approach than running the same JavaScript script over and
over for many jobs. By prefixing the variables with “APPL” and running the script at
run time, the variables are available when each job within the Application runs.

98 ESPD-5.0-EC-01

Building a date parameter

Objective

A job requires a date parameter on the last workday of the month. The format of the
parameter consists of the letter M, followed by a series of two-digit day of the month
numbers. These numbers range from the current day up to 31 regardless of the
number of days in the month.

For example, if the last workday of the month is the 29th day of the month, the date
parameter looks like this:

M293031

Solution

The best approach to create this date parameter involves using a loop in a JavaScript
script. The following presents two solutions:

Solution 1

Use the following JavaScript script at run time for the job. This solution uses the “for”
statement.

APPL.dateparm='M';
genTime('lwd','last workday of month');
for (var i=lwdDD; i<=31; i++)
 {
 APPL.dateparm+=i;
 }

Solution 2

Use the following JavaScript script at run time for the job. This solution uses the
“while” statement.

APPL.dateparm='M';
genTime('lwd','last workday of month');
i=lwdDD;
while (i<=31)
 {
 APPL.dateparm+=i;
 i++;
 }

Explanation

The dateparm variable is initialized to “M”. A loop is used to concatenate each day of
the month onto the end of this variable starting with the last workday of the month
and ending with “31”.

Examples Cookbook

ESPD-5.0-EC-01 99

For example, if the last workday of the month falls on the 29th, the dateparm variable
is built as follows:

You can then pass the variable as an argument to the jobs that require it.

Variation

A variation of the objective for this example is to create a similar date parameter, but
instead the numbers range from the last workday of the month up to and including
the last day of the month. For example, if the last workday of the month is the 27th
and the month has only 30 days, then the date parameter is: M27282930.

Use the following JavaScript script at run time for the job. This solution uses the
“while” statement.

APPL.dateparm='M';
genTime('lwd','last workday of month');
genTime('ld','last day of month');
i=lwdDD;
while (i<=ldDD)
 {
 APPL.dateparm+=i;
 i++;
 }

dateparm='M'

dateparm='M29'

dateparm='M2930'

dateparm='M293031'

100 ESPD-5.0-EC-01

Creating a variable for the day of week number

Objective

Jobs in an Application use a one-digit day-of-week number that begins with “1” on
Wednesday and ends with “7” on Tuesday.

Solution

Use the daysFrom built-in function to define a variable that calculates the number of
days from last Tuesday until today. For example, you can use the following JavaScript
script at run time:

APPL.daynum=daysFrom('tuesday less 1 week');

You can then pass this variable as an argument to those jobs that use it.

Explanation

Although Cybermation ESP has day-of-week number variables (for example,
APPL._SDOW#), they represent the number for the day of the week as follows: 1 for
Sunday, 2 for Monday, and so on. This is independent of calendar settings.

This solution defines a variable, APPL.daynum, that represents the number of days
since the previous Tuesday. This number corresponds to the day of the week when the
week starts on Wednesday. For example:

Day APPL.daynum

Wednesday 1

Thursday 2

Friday 3

Saturday 4

Sunday 5

Monday 6

Tuesday 7

Examples Cookbook

ESPD-5.0-EC-01 101

Incrementing a cycle number

Objective

When an Application processes, it uses a four-digit cycle number. This cycle number
is used as part of the file names for two file trigger jobs, and extensively in UNIX
scripts that run after the file triggers complete. The cycle number increments each
time the Application runs, and it ranges from “0001” to “9999”.

The Application waits for two files to be created: BUS_BCnumber and
RES_BCnumber, where number represents the cycle number.

Solution

To increment a cycle number

1. The cycle number is passed to the Event using a user parameter. Define the two
file trigger jobs. Use the following JavaScript script at run time for the file triggers
to assign the value of the user parameter to a variable called APPL.cycle.

APPL.cycle = APPL._user1;

2. Use %cycle as part of the file names for these file triggers. For example:
BUS_BC%cycle and RES_BC%cycle.

3. Pass %cycle as an argument to the UNIX scripts that use the cycle number.

4. Use a Link at the end of the Application to increment the cycle number and
trigger the next occurrence of the Event with the USER1 parameter as the new
cycle number. Use the following JavaScript script at run time for the Link to
achieve this.

APPL.cycle = parseInt(APPL.cycle,10);
if (APPL.cycle == '9999') APPL.next_cycle ='0001';
 else APPL.next_cycle =APPL.cycle + 1;
APPL.next_cycle=APPL.next_cycle.toString();
while (APPL.next_cycle.length < 4)
 {
 APPL.next_cycle = '0' + APPL.next_cycle;
 }
execTrigger('%APPL._event','','','','%APPL.next_cycle');

102 ESPD-5.0-EC-01

Visually, the flow looks like this:

You will need to trigger this Event manually the first time and pass the four-digit cycle
number. After that, each new generation of the Application will be automatically
triggered when one generation completes.

Explanation

The Link at the end of the Application takes the current cycle number, adds 1, and
pads the result with leading zeroes, as necessary. After cycle “9999”, the cycle is reset
to “0001”. The Link retriggers the Event and passes this new cycle number in the
USER1 field. This enables the new cycle number to be used in the next generation of
the Application.

Z

A

CHANGE.CYCLE

File=Res_BC1234 File=Bus_BC1234

File=Res_BC1235 File=Bus_BC1235

ESPD-5.0-EC-01 103

Index

Numerics
1st Saturday of month, 10
4-5-4 periods, 93
5 Fridays in month, 7

A
abandon dependencies time, 64
abandon submission time, 64
accounting year, 95
ad hoc jobs, 38, 39
adding a relationship, 40
adjusting for holidays, 9, 15, 18, 21
advancing schedule, 70, 71
Agent name, variable, 89
Alert, 74

checking exit code, 57
job resubmission, 58
submission abandoned, 64

APPL._event variable, 89
APPL._ftfile variable, 80
APPL._gen variable, 59, 61, 63, 64, 66, 69
APPL._name variable, 59, 61, 63, 64, 66, 69, 81
APPL._S* variables, 78
APPL._SDOW# variable, 100

APPL._SHH variable, 32, 33, 34
APPL._user1 variable, 50, 102
Application

common, 90
hourly, 30
status, 41

Application name
in script path, 81
variable, 57, 59, 61, 63, 64, 66, 69, 81, 89

APPL-prefixed variables, 97
argument, passing to script, 34, 90, 99, 101
asterisk, file name mask, 79
automatic

bypass, 41, 45, 66
Event trigger, 102
resubmission of job, 58

B
between dates, 23, 24
bi-weekly job, 20, 21
built-in functions

daysBetween, 21, 96
daysFrom, 20, 24, 100
daysTo, 16, 24

104 ESPD-5.0-EC-01

execCommand, 56, 58, 64, 66, 68, 86
execTrigger, 56, 58, 91
genTime, 11, 15, 17, 18, 21, 22, 26, 95, 96, 9

8
resetResourceProperty, 47, 50, 51
today, 18

built-in variables. See variables, built-in
bypassing

conditional jobs, 41, 45, 77
job, based on time, 64
non-critical jobs, 87
request jobs, 66

C
calendar quarter, 35
calendar term, 72, 95
case sensitivity, 2
case statement, 33, 57
checking time, 66, 68
common Application

different environments, 91
test and production, 89

comparing genTime dates, 18, 26
completed job, as resource, 51
completing a job

after failure, 60
from Link, 68

completing a Task
from Alert, 56
from Task, 68

completing an Application, 56, 74
completion code, 57

checking, 55
variable, 57

completion time, 65, 67
concatenation of variables, 78, 98
concurrent

access, 46
job execution, 47

conditional jobs, 45, 77
converting

numbers and strings, 102
to lowercase, 81

copying code, 1
countdown procedure, 49
cross-Application dependency, 84
current period, 95
cutoff time, for file, 74

cycle number, 101
cyclic Application, 36

D
date range, 23, 24
date variables, 97, 98
date-qualified file name, 78
day of month number, 12
day of week number, 100
day range, 25
daysBetween function, 21, 96
daysFrom function, 20, 24, 100
daysTo function, 16, 24
delaying job, 27, 37

based on holidays, 18
random number of days, 22
relative delay, 37, 63
resubmission time, 62
submit time, 63
until next hour, 62

depletable resource, 47
different actions, based on exit code, 55
disaster recovery, 72
Do not run criteria, 25

E
early run of Application, 70
email message, 86
ending criteria, 23
environment, 89
Event

retrigger, 37, 57, 102
scheduling, 23, 28
trigger, 70, 71

Event name
substring, 89
variable, 57, 89

every 2 weeks, 20, 21
except criteria, 9, 25
execCommand function, 56, 58, 64, 66, 68, 86
execTrigger function, 56, 58, 91
existing file, 76
exit codes, 55

F
failed job

Index

ESPD-5.0-EC-01 105

file trigger, 77
resubmitting, 58

file dependency, 45, 74, 76, 78, 79, 101
file name

changing, 79
date-qualified, 78
variable, 80

file trigger job, 45, 76, 78, 101
five Fridays in month, 7
for statement, 98
future schedule, 71

G
generation number

built-in variable, 63
variable, 57

generation number, variable, 59, 61, 64, 66, 69
generic Application, 89, 91
genTime function

1st day of fiscal year, 96
1st day of this month, 11
1st sunday of this month plus 1 workday, 15
comparing dates, 18, 26
friday, 21
last day of next month, 22
last day of period, 95
last day/workday of previous month, 17
last workday of month, 98
last workday of month less 4 workdays, 13
previous date/criteria, 26
today less 1 week, 12
Wednesday of current week, 18
Wednesday plus 0 workdays, 18

groups of optional predecessors, 43

H
holiday scheduling, 9, 15, 16, 18
holiday status, 26
hourly

Application, 30, 32
jobs, 34

I
incrementing cycle number, 101
inserting

job, 38

Link, 40

J
job failure, preventing, 46
job name

based on hour, 34
built-in variable, 39, 63, 86
with variables, 89, 91

job qualifier, 29, 92
job resubmission, 58
job selection

disaster recovery, 72
replaced schedule, 70, 71
simulating, 72

K
keeping Application active, 38

L
last day of period, 95
last five workdays of month, 13
last workday of month, 98
late completion time, 86
launching common Applications, 91
leading zeroes, 102
less 0 workdays, 9, 21
less 1 day, 15
link

submit time, 38
Links

completing a job, 68
increasing cycle number, 101
launching Application, 91
requesting a job, 68
reset resource count, 47
resource requirement, 47
retrigger Event, 101
set variables, 97
setting resource, 51
time check, 68
to add relationships, 40

long-running
Application, 41
jobs, 49

looping operations, 98
lowercase, 81

106 ESPD-5.0-EC-01

M
masking file name, 79
maximum run time, 86
Mondays except holidays, 9
monthly scheduling, 6, 10, 25
multiple runs

Application, 28
job, 29

mutually exclusive groups of jobs, 47

N
next-day dependency, 84
non-critical jobs, 72, 87
non-existent file, 77
Norun criteria, 72
notification

long-running Application, 41
overdue job, 86

nth monthly, 6, 10
number

days in month, 22
random, 22
week in fiscal year, 96

O
on, or after, criteria, 6, 10
ONCE criteria, 71
one-time Event, 71
only on request, 65, 68
on-request job, 73
optional predecessors, 42, 43, 45, 77
order of jobs, based on time, 67
overdue

notification, 86

P
path to UNIX scripts, 81
plus 0 workdays, 9, 18, 26
plus 1 day, 8
predecessor

in another Application, 84
optional, 42, 43, 45

preventing job failure, 46
previous

date, 26
month, 17

run of a job, 82

Q
qualifier, 29

time-based, 36
quarterly script, 35

R
random schedule, 22
range

date, 23, 24
day, 25
time, 30

recovery
from disaster, 72
procedure, 60

recursive process, 49
relationship, adding, 40
relative time delay, 37
release count, 42, 45, 77
releasing a job

based on exit code, 53
when x predecessors remain, 43, 45, 76

renewable resource, 46
replacing

next scheduled Event, 70
scheduled Event, 71

request jobs, 68
requesting a job

by inserting, 38
from Link, 68
from Task, 65

resetResourceProperty function, 47, 50, 51
resetting

late end time, 86
submit time, 62

resource
dependency, 49, 51
depletable, 47
job completion, 51
renewable, 46
setting available count, 47

resource count, setting, 47, 50, 51
resubmitting job, with time delay, 58
RESWAIT state, 46
retriggering Event, 37, 56, 57, 102
root jobs, 39

Index

ESPD-5.0-EC-01 107

S
Saturday after special day, 14
schedule criteria, within Event, 23, 28
scheduled

resume of Event, 30
suspend of Event, 30

scheduled hour, 33, 34
scheduled hour variable, 32
script path, 35, 81
self-completing Task, 63
setting, resource count, 47, 50, 51
similar jobs, 89, 91
special day, 14, 72
special period, 95
start of month, 11
starting criteria, 23
starting today less 1 month, 17
submission time, 27, 29, 63

resetting, 62
submit

conditionally, 45, 76
substring

character string, 34
Event name, 89

success path, 54
successful exit codes, 55
system shutdown, 49

T
Tasks

resetting time, 63
self-completing, 63
time check, 66

threshold resource, 51
time

check, 65, 67
date stamp, 79
dependency, 27, 37, 64
range, 30

time-based jobs, 28, 29, 32, 33
today function, 18
trigger Event, 39, 70, 71

from Link, 91
two weeks, 20, 21

U
user parameters, 58, 61, 91, 102

USER1 field, 102

V
variable

Application-level, 97
as argument, 90, 97
based on special periods, 95
concatenation, 98
cycle number, 101
date, 98
day of week number, 100
file name, 78
job qualifier, 92
on execCommand, 66, 69, 86
padding with zeroes, 102
part of Agent name, 89
part of Application name, 89, 92
part of job name, 34, 89
part of script path, 81
script name, 35

variable for run frequency
ad hoc job, 39
based on location, 89
bi-weekly job, 20, 21
different hours, 33
monthly job, 11, 12, 15, 17, 25
weekly job, 32
weekly job within date range, 24

variable resolution
replaced schedule, 70, 71

variables, built-in
Application

name, 57, 59, 61, 63, 64, 66, 69, 81
completion code, 57
Event name, 57, 89
file name, 80
generation number, 57, 59, 61, 63, 64, 66, 69
job name, 63
job qualifier, 29
scheduled hour, 32
user parameters, 91

W
week number, 96
weekly job, 24
while statement, 98
wildcard, file name, 79

108 ESPD-5.0-EC-01

within criteria, 7
WOB._cmpc variable, 57
WOB._name variable, 39, 63, 64, 86

WOB._qualifier variable, 29
workday scheduling, 9, 13, 15, 16, 21
workday status, 17

	Contents
	Using this guide
	Instructions for copying code
	Intended audience
	Case sensitivity
	Other guides in the Cybermation ESP: dSeries library
	Installing Cybermation ESP: dSeries
	Administrator’s Guide
	Cybermation ESP System Agent Administrator’s Guide
	Getting Started with Cybermation ESP: dSeries
	User’s Guide
	Beyond Basic Scheduling: A Guide to Using Scripts

	Receiving email notifications from Cybermation

	Examples
	Scheduling a job on, or after, a criteria
	Objective
	Solution
	Explanation

	Scheduling a job within a month
	Objective
	Solution
	Explanation

	Scheduling a job relative to another criteria
	Objective
	Solution
	Explanation

	Scheduling a job to run every week and adjusting it for holidays
	Objective
	Solution
	Explanation

	Scheduling a job based on Saturday and the 1st day of the month
	Objective
	Solution
	Explanation

	Scheduling a job based on the day of week for the 1st day of month
	Objective
	Solution
	Explanation

	Scheduling a job based on day and day of month number
	Objective
	Solution
	Explanation

	Scheduling a job to run on the last five workdays of the month
	Objective
	Solution
	Explanation

	Scheduling a job relative to a special day
	Objective
	Solution
	Explanation

	Scheduling a job based on Sunday and workdays
	Objective
	Solution
	Explanation

	Scheduling a job to run based on a different day’s holiday status
	Objective
	Solution
	Explanation

	Scheduling a job to run based on the last day of the previous month
	Objective
	Solution
	Explanation

	Scheduling a job to run based on when another job was scheduled
	Objective
	Solution
	Explanation

	Scheduling a job to run every two weeks
	Objective
	Solution
	Explanation

	Scheduling a job to run every two weeks and advancing it for holidays
	Objective
	Solution
	Explanation

	Scheduling a job on a random day of the month
	Objective
	Solution
	Explanation

	Scheduling an Application to run within a date range
	Objective
	Solution
	Explanation

	Scheduling a job to run within a date range
	Objective
	Solution
	Explanation

	Scheduling a monthly job with multiple criteria
	Objective
	Solution
	Explanation

	Determining if a day in the past was a workday
	Objective
	Solution
	Explanation

	Submitting a job at a particular time
	Objective
	Solution
	Explanation

	Running an Application multiple times a day
	Objective
	Solution
	Explanation

	Running a job multiple times in an Application
	Objective
	Solution
	Explanation

	Scheduling an hourly Application within a time range
	Objective
	Solution
	Explanation

	Scheduling a job to run based on day and time
	Objective
	Solution
	Explanation

	Running different jobs based on the scheduled hour
	Objective
	Solution
	Explanation

	Scheduling a different job to run every hour
	Objective
	Solution
	Explanation

	Scheduling a different script each quarter
	Objective
	Solution
	Explanation

	Scheduling a cyclic Application
	Objective
	Solution
	Explanation

	Keeping an Application active
	Objective
	Solution
	Explanation

	Running ad hoc jobs
	Objective
	Solution
	Explanation

	Adding a relationship between two unrelated jobs
	Objective
	Solution
	Explanation

	Providing status for a long-running Application
	Objective
	Solution
	Explanation

	Setting up a job with optional predecessors
	Objective
	Solution
	Explanation

	Setting up groups of optional predecessors
	Objective
	Solution
	Explanation

	Setting up optional file trigger dependencies
	Objective
	Solution
	Explanation

	Controlling concurrent access to a system
	Objective
	Solution
	Explanation

	Running mutually exclusive groups of jobs
	Objective
	Solution
	Explanation

	Planning for system shutdown
	Objective
	Solution
	Explanation

	Using job completion as a resource
	Objective
	Solution
	Explanation

	Running different jobs based on the exit code of predecessor
	Objective
	Solution
	Explanation

	Taking different actions based on 1 of 3 successful return codes
	Objective
	Solution
	Explanation

	Resubmitting a job five minutes after it fails
	Objective
	Solution
	Explanation

	Running a recovery job after failure
	Objective
	Solution
	Explanation

	Delaying job submission until the next hour
	Objective
	Solution
	Explanation

	Bypassing a job without waiting for its predecessor
	Objective
	Solution
	Explanation

	Running different jobs based on the time a predecessor job completes
	Objective
	Solution
	Explanation

	Running jobs in a different order based on time
	Objective
	Solution
	Explanation

	Running the next scheduled Application early
	Objective
	Solution
	Explanation

	Running an Application for any future date
	Objective
	Solution
	Explanation

	Identifying critical jobs for disaster recovery planning
	Objective
	Solution
	Explanation

	Auto-triggering an Event for a reoccurring job
	Objective
	Solution
	Explanation

	Completing an Application when a file is not received by its cutoff time
	Objective
	Solution
	Explanation

	Ensuring a file exists before processing
	Objective
	Solution
	Explanation

	Using date-qualified file names
	Objective
	Solution
	Explanation

	Processing a changing file name
	Objective
	Solution
	Explanation

	Using the Application name in the script path
	Objective
	Solution
	Explanation

	Setting up a dependency with a job’s previous run
	Objective
	Solution
	Explanation

	Setting up a job with a predecessor scheduled for the next day
	Objective
	Solution
	Explanation

	Providing notification if a job exceeds its maximum execution time
	Objective
	Solution
	Explanation

	Bypassing non-critical jobs when jobs are late
	Objective
	Solution
	Explanation

	Using the same Application for test and production
	Objective
	Solution
	Explanation

	Launching common Applications
	Objective
	Solution
	Explanation

	Setting up 4-5-4 periods
	Objective
	Solution
	Explanation

	Creating a variable for the accounting year
	Objective
	Solution
	Explanation

	Calculating the week number
	Objective
	Solution
	Explanation

	Using date variables for multiple jobs
	Objective
	Solution
	Explanation

	Building a date parameter
	Objective
	Solution
	Explanation

	Creating a variable for the day of week number
	Objective
	Solution
	Explanation

	Incrementing a cycle number
	Objective
	Solution
	Explanation

	Index

