
DB2 Thread Control Series

Guide and Reference

Thread / STOPPER

and

Thread / SENTRY

Version 7.1

May 2014

Publication TTS-001-28

Relational Architects International

ii Thread/SERIES Guide and Reference

This Guide: RAI Publication TTS-001-28

This document applies to Thread/SERIES Version 7 Release 1 (May 2014), and all
subsequent releases, unless otherwise indicated in new editions or technical newsletters.
Specifications contained herein are subject to change and will be reported in subsequent
revisions or editions.

Purchase Orders for publications should be addressed to:

 Documentation Coordinator
 Relational Architects International
 Riverview Historic Plaza
 33 Newark Street
 Hoboken NJ 07030

Tel: 201 420-0400
Fax: 201 420-4080
Email sales@relarc.com
www.relarc.com

Reader comments regarding the product, its documentation, and suggested improvements
are welcome. A reader comment form for this purpose is provided at the back of this
publication.

Copyright 1995, 2014 by Relational Architects International (RAI) as an
unpublished work -- all rights reserved. The software product(s) described herein
and the documentation thereof are trade secrets and property of Relational
Architects International. All use, disclosure, duplication, electronic storage,
reproduction or transmission without specific written authorization from RAI is
strictly prohibited. These products may also be protected under the trade-secret
and copyright laws of countries other than the United States and international
agreements.

DB2, SPUFI, QMF, and ISPF are software products of International Business Machines
Corporation. Thread/SERIES, Thread/STOPPER and Thread/SENTRY are trademarks
of Relational Architects International.

Ed 14E1

 Preface iii

Preface

This manual is intended for the person(s) who will install and/or use the Thread/SERIES
program products and tailor them for the target environment. The reader is assumed to be
familiar with JCL, DB2, z/OS and REXX along with the programming and operations
standards in use at the installation site.

The Thread/SERIES Guide and Reference is organized as follows:

Chapter 1 provides an overview of the product’s components and capabilities.

Chapter 2 describes and illustrates how to use the Thread/STOPPER Dialog to

monitor and control DB2 application and utility threads. Chapter 2
illustrates the flow of panels presented during a Thread/STOPPER
Dialog session and describes the information appearing on these
displays. Subsequent sections describe and illustrate the tasks of
canceling various kinds of application and utility threads.

Chapter 3 describes the commands you can issue through both the Thread/

STOPPER Batch and Console facilities. It also describes the qualifiers
used to specify the thread(s) upon which a command will act.

Chapter 4 describes the Thread/STOPPER Batch Facility with which you can

specify Thread/STOPPER command(s) within the context of a batch
jobstep. Chapter 4 describes and illustrates how to make requests of
the Batch Facility using the commands and qualifiers common to both
the Thread/STOPPER Batch and Console Facilities. Chapter 4 also
documents the initialization parameters with which the Batch and
Console Facility programs are invoked. These initialization parameters
govern operation of both the Thread/STOPPER Batch and Console
Facilities during a particular run.

Chapter 5 focuses on the operator and authorized user interactions with the

Thread/STOPPER Console Facility. The Console Facility executes
Thread/STOPPER commands entered from an MVS console. Chapter
5 describes how to invoke the Console Facility and issue requests using
standard Thread/STOPPER commands and qualifiers.

iv Thread/SERIES Guide and Reference

Chapter 6 describes the Thread/SERIES Cancel Inactive Threads Facility, a utility
with which to cancel inactive database access threads within the
context of a batch jobstep. This functionality has been relocated to the
Thread/STOPPER Batch and Console Facilities (described in Chapters
4 and 5 respectively). As such, Chapter 6 is now obsolete, removed,
and reserved for future use.

Chapter 7 describes and illustrates the Thread/SERIES Audit View Facility used

to browse the audit trail recorded by Thread/SERIES components for
actions taken vis-a-vis DB2 threads. Chapter 7 illustrates the panels
displayed by the Audit View Facility and describes the information
appearing on these displays.

Chapters 8-9 are reserved for future use.

Chapter 10 introduces Thread/SENTRY -- an automated monitoring and enforce-

ment facility for DB2 threads. Chapter 10 describes how to define your
organization’s policies as rules that Thread/SENTRY should enforce.
Thread/SENTRY makes it unnecessary to manually identify DB2
problem threads or to explicitly cancel them. Instead, you can define
what constitutes a ‘problem thread’ in terms of threshold measurements
such as elapsed time, CPU time, number of SQL statements executed,
number of locks held, etc. Thread/SENTRY detects such problem
threads automatically based on your pre-defined criteria.

Chapter 11 discusses Thread/SENTRY operation. Chapter 11 first describes and

illustrates the JCL with which to run Thread/SENTRY as a submitted
job or started task. Subsequent sections describe the commands with
which to communicate with Thread/SENTRY from the console in order
to control its runtime operation.

Chapters 12-19 are reserved for future use.

Chapter 20 discusses Thread/SERIES installation in detail. It also briefly describes

the files supplied on the product distribution tape.

Appendix A describes the audit trail maintained for the actions taken by the various

Thread/SERIES components. Audit trail information is recorded in a
table within the same DB2 subsystem in which an effected thread was
executing. This audit trail includes many details about the thread itself
as well as information describing why a particular action was taken, by
whom, and when it was done.

Appendix B documents several topics that apply to all Thread/SERIES components.

Exceptions and information unique to a specific Thread/SERIES
component are noted as appropriate. Appendix B first discusses
eligibility criteria for thread cancellation. The next topic describes the
different mechanisms used by Thread/SERIES to cancel DB2 threads,
followed by a description of thread behavior in response to different
cancellation methods. The last topic describes and illustrates the
notification messages sent by Thread/SERIES to users whose threads
are canceled as well as the messages received by those designated as
Thread/SERIES administrators.

 Preface v

Appendix C describes how to create site written messages that will be issued when
Thread/SENTRY policies are violated. Appendix C also describes how
to customize the text of the default notification messages
Thread/SERIES components send to users and administrators.

Appendix E describes how to develop Thread/SERIES exit routines to handle non-

standard processing requirements.

Appendix F describes how to define thread(s) against which Thread/SERIES

should take no action.

Appendix G describes how to target multiple DB2 authorization IDs within a single

LIMIT or EXCLUDE Thread/SENTRY policy.

Appendix M describes the messages issued by various Thread/SERIES components.

Appendix Z describes problem determination procedures for the Thread/SERIES

components.

Notational conventions

The following notational conventions are used in this Guide:

> Uppercase commands and their operands should be entered as shown but need not be

entered in uppercase.

> Operands shown in lower case are variables; a value should be substituted for them.

> Operands shown in brackets [] are optional, with a choice indicated by vertical

bars |. One or none may be chosen; the defaults are underscored.

> Operands shown in braces { } are alternatives; one must be chosen.

> An ellipsis (. . .) indicates that the parameter shown may be repeated to specify

additional items of the same category.

vi Thread/SERIES Guide and Reference

 Table of Contents C-1

Table of Contents

Preface ... iii

What’s New in Thread/SERIES? .. A-1

Chapter 1: Thread/SERIES Overview.. 1-1
1.1 Types of DB2 threads that can be terminated ... 1-2
1.2 Thread/SERIES Benefits .. 1-2
1.3 Benefits versus native DB2 Facilities .. 1-3
1.4 Thread/SERIES Components .. 1-3

Chapter 2: Using the Thread/STOPPER Dialog 2-1
2.1 Invoking the Thread/STOPPER Dialog ... 2-1
2.2 DB2 Subsystem Displays ... 2-2

 2.2.1 Alternate Views of the DB2 Subsystem Summary ... 2-3
 2.2.2 DB2 Subsystem Commands ... 2-6
 2.2.3 DB2 Subsystem Detail Displays ... 2-7

2.3 Thread Qualification panel .. 2-10
2.4 Thread Summary Display .. 2-12
2.5 Thread Detail Display .. 2-15

 2.5.1 Scrolling the Thread Detail Display ... 2-21
2.6 Canceling Local Application Threads .. 2-21
2.7 Canceling Distributed Application Threads ... 2-23
2.8 Canceling IBM DB2 Utility Threads .. 2-26

 2.8.1 More than one Utility Thread with the same AUTH ID 2-28

C-2 Thread/SERIES Guide and Reference

Chapter 3: Batch and Console Commands ... 3-1
3.1 Thread/STOPPER commands ... 3-2

 3.1.1 CANCEL command .. 3-2
FORCE keyword of CANCEL command 3-2
TCPIP keyword of the CANCEL command 3-2
3.1.1.1 Canceling inactive DB2 threads ... 3-3

 3.1.2 DB2S command .. 3-4
 3.1.3 DISPLAY command ... 3-6

3.1.3.1 Displaying inactive threads .. 3-6
 3.1.4 DSN command .. 3-6
 3.1.5 XLOCK command .. 3-6
 3.1.6 LOCK command .. 3-7
 3.1.7 STATUS command .. 3-7
 3.1.8 STOP command ... 3-7

3.2 Specifying Thread Qualification Criteria ... 3-7
 3.2.1 ACE qualifier .. 3-8
 3.2.2 ASID qualifier ... 3-8
 3.2.3 AUTH qualifier ... 3-8
 3.2.4 CONN qualifier ... 3-8
 3.2.5 CORR qualifier .. 3-9
 3.2.6 LOCN qualifier .. 3-9
 3.2.7 LUWI qualifier .. 3-9

3.2.7.1 The NETID qualifier .. 3-9
3.2.7.2 The LUNAME qualifier ... 3-10
3.2.7.3 The UNIQ qualifier .. 3-10
3.2.7.4 The CCNT qualifier .. 3-10

 3.2.8 OPID qualifier ... 3-10
 3.2.9 PLAN qualifier .. 3-10
 3.2.10 SSID qualifier ... 3-11

3.3 LOCKS keyword and its qualifiers ... 3-11
 3.3.1 LOCKS (S | IS | X | IX) keyword ... 3-11
 3.3.2 DBNAME qualifier .. 3-12
 3.3.3 TBNAME qualifier .. 3-12
 3.3.4 TSNAME qualifier ... 3-12

3.4 Thread cancellation strategy .. 3-12
3.5 Data Sharing Group (DSG) operation .. 3-13

 Table of Contents C-3

Chapter 4: The Thread/STOPPER Batch Facility 4-1
4.1 Preparing JCL for the Thread/STOPPER Batch Facility ... 4-2
4.2 Thread/STOPPER Execution Parameters ... 4-3

 4.2.1 ACS keyword ... 4-3
 4.2.2 AUDIT keyword .. 4-4
 4.2.3 CANCEL_MULTIPLE keyword ... 4-4
 4.2.4 CAN_DUMP keyword ... 4-4
 4.2.5 CAN_RETRY keyword .. 4-4
 4.2.6 CAN_STEP keyword ... 4-4
 4.2.7 The LIMIT keyword ... 4-5

4.3 Batch Facility Examples .. 4-5

Chapter 5: The Thread/STOPPER Console Facility 5-1
5.1 Invocation Parameters unique to the Console Facility ... 5-1

 5.1.1 CANCEL_MULTIPLE parameter ... 5-1
 5.1.2 DESCRCDE parameter ... 5-2
 5.1.3 ORIGIN keyword .. 5-2

WTOR .. 5-2
QEDIT .. 5-3

 5.1.4 ROUTECDE keyword ... 5-3
5.2 Invoking the Console Facility .. 5-4
5.3 Console Facility Command Examples ... 5-4

 5.3.1 CANCEL command example .. 5-4
 5.3.2 DB2S command example ... 5-5
 5.3.3 DISPLAY command examples .. 5-5
 5.3.4 DSN command example .. 5-6
 5.3.5 XLOCK command example ... 5-7
 5.3.6 LOCK command display .. 5-7
 5.3.7 STATUS command display ... 5-8

Chapter 7: Thread Audit View Facility .. 7-1
7.1 Invoking the Thread Audit View Facility ... 7-1
7.2 Dialog flow .. 7-2
7.3 ROW Commands .. 7-5
7.4 Primary Commands ... 7-7

C-4 Thread/SERIES Guide and Reference

Chapter 10: Thread/SENTRY Overview and Policy Definition......... 10-1
10.1 Thread/SENTRY Overview .. 10-2
10.2 Thread/SENTRY Statement Summary ... 10-2

 10.2.1 Thread Selection Criteria ... 10-5
 10.2.2 Specifying Time Values .. 10-5

10.3 Thread/SENTRY Control Statements ... 10-6
10.4 MONITOR Statement .. 10-6
10.5 The DEFAULT Statement ... 10-14
10.6 The EXCLUDE Statement ... 10-15

 10.6.1 What threads are subject to EXCLUDE policies .. 10-16
 10.6.2 What threads are subject to EXCLUDE policies

 on the basis of MVS and DDF Accounting Data

 Associated with the Thread .. 10-18
 10.6.3 When to apply Exclusion Policies ... 10-23

10.7 The LIMIT Statement .. 10-24
 10.7.1 What threads are subject to LIMIT policies ... 10-25
 10.7.1.1 What threads are subject to LIMIT policies

 on the basis of MVS and DDF Accounting Data

 Associated with the Thread ... 10-27
 10.7.2 Other Operands of the LIMIT Statement ... 10-32
 10.7.3 When to apply LIMIT policies ... 10-34
 10.7.4 Life of Thread Limits ... 10-35
 10.7.5 Unit-of-Recovery LIMITS .. 10-37
 10.7.6 Interval Maximum LIMITS ... 10-40
 10.7.7 Interval Minimums and IDLE Threads .. 10-42
 10.7.8 Operands for Inactive Database Access Threads ... 10-44
 10.7.9 LIMIT Policy Examples .. 10-44
 10.7.9.1 LIMIT Policy Examples that reference ..

 MVS and DDF Accounting Data 10-46
10.8 The NOTIFY_LIST Statement .. 10-47
10.9 Thread/SENTRY Audit Trail and Log File .. 10-49

 Table of Contents C-5

Chapter 11: Operating Thread/SENTRY .. 11-1
11.1 Running Thread/SENTRY .. 11-1

 11.1.1 Edit the JCL to invoke Thread/SENTRY .. 11-1
 11.1.2 Allocating the Thread/SENTRY Control File .. 11-2
 11.1.3 Parameter Precedence ... 11-3
 11.1.4 An illustrative Thread/SENTRY Run .. 11-3

11.2 Thread/SENTRY Console Commands ... 11-4
 11.2.1 ABEND command .. 11-4
 11.2.2 FORCE command ... 11-4
 11.2.3 RULE_REFRESH command .. 11-5
 11.2.4 STOP command ... 11-5

11.3 Thread/SENTRY Debugging .. 11-5
 11.3.1 SNAP command .. 11-5
 11.3.2 TRACE_IFCID command .. 11-6

11.4 Thread/SENTRY Control File Compiler parameters ... 11-7

Chapter 20: Installing Thread/SERIES Components 20-1
20.1 Pre-installation Planning ... 20-2

 20.1.1 DB2 Considerations .. 20-2
 20.1.2 Restricting Access to Thread/SERIES Functions .. 20-3

20.2 Pre-installation Preparation ... 20-3
 20.2.1 Accounting Trace Classes .. 20-3
 20.2.2 Address Space Priorities .. 20-3
 20.2.3 Preparation for CICS DB2 threads .. 20-4
 20.2.4 TSO Command Processor Limiting ... 20-4
 20.2.5 RAI Server Address Space ... 20-4
 20.2.6 Requirements to Cancel Inactive Threads .. 20-5

20.3 Installation Summary ... 20-6
 20.3.1 Thread / SERIES Migration Summary.. 20-7

20.4 Thread/SERIES Product Libraries .. 20-8
20.5 Restore the TTS Target libraries to your Host system ... 20-9

 20.5.1 Installation from Tape .. 20-10
 20.5.2 FTP Installation from the RAI website ... 20-14
 20.5.3 Installation via E-mail ... 20-15

20.6 Define Passwords ... 20-15
20.7 APF Authorize the Thread/SERIES Load Libraries ... 20-15

C-6 Thread/SERIES Guide and Reference

20.8 Convert the record format of the TTS EXEC library to
 variable blocked format (if necessary) ... 20-16
20.9 Prepare each DB2 subsystem for Thread/SERIES Components 20-16

 20.9.1 Edit and submit the Thread/SERIES DB2 definitions jobstream 20-17
 20.9.2 GRANT required DB2 Authorizations .. 20-20

20.10 Customize the Thread/SERIES jobs and catalogued procedure 20-21
 20.10.1 Edit the TTSPROC catalogued procedure ... 20-21
 20.10.2 Edit the JCL to invoke the Thread/STOPPER Console Facility 20-24
 20.10.3 Running Thread/SENTRY and the Thread/STOPPER

 Console Facility as Started Tasks ... 20-24
 20.10.4 Edit the Job that invokes the Thread/STOPPER Audit Facility 20-26

20.11 Configuring Thread/SENTRY E-mail Notification ... 20-27
20.12 Define the VTAM application major node used by the
 Thread/SERIES Components ... 20-29
20.13 Edit the TTSPAL catalogued procedure (Optional) ... 20-30
20.14 Update vendor supplied defaults (Optional) .. 20-31
20.15 Prepare the ISPF environment for the Thread/STOPPER Dialog 20-38
20.16 Prepare the Thread/SERIES Audit View Facility (Optional) 20-41
20.17 Thread/SERIES Installation Verification Procedures ... 20-42

 20.17.1 Prepare to Run the Installation Verification Program 20-42
 20.17.2 Verify Thread/SENTRY Installation .. 20-43
 20.17.3 Verify Thread/STOPPER Installation ... 20-46
 20.17.4 Verify the Thread/SERIES Audit View Facility (Optional) 20-46

20.18 Post Installation / Deployment Procedures .. 20-46

Appendix A: The Thread_Audit Table ... A-1
A.1 Audit Trail for Actions against Threads .. A-1
A.2 Structure of the Thread_Audit Table .. A-2

 A.2.1 Thread Identification Columns.. A-4
 A.2.2 Thread/SERIES Actions Columns ... A-5
 A.2.3 When, where and by whom was an action taken... A-6
 A.2.4 Thread Statistics and Details ... A-6
 A.2.5 Columns which identify the LU 6.2 Logical Unit of Work ID A-9
 A.2.6 Other statistics and details about the Thread ... A-9
 A.2.7 MVS and DDF Accounting Data Associated with the Thread A-11

A.3 The Values of Columns in Thread_Audit table Rows .. A-13

 Table of Contents C-7

Appendix B: Thread Eligibility
 Cancel Mechanisms
 Descriptions of Cancel Responses
 Notifications ...B-1
B.1 Cancellation Eligibility Rules .. B-1
B.2 Thread Cancellation Mechanisms .. B-2

 B.2.1 The DB2 CANCEL (DDF) THREAD command ... B-2
 B.2.2 Abending a Thread Task .. B-3
 B.2.3 The FORCE command ... B-3
 B.2.4 Canceling an ISPF Logical Screen ... B-3
 B.2.5 Communications Network Cancellation ... B-4
 B.2.6 Canceling CICS Threads .. B-4
 B.2.7 Canceling DB2 Utility Threads .. B-4
 B.2.8 Canceling Threads via Exit Routines ... B-4

B.3 Description of Cancel Responses ... B-5
 B.3.1 Canceling an ISPF Logical Screen ... B-5
 B.3.2 Canceling Distributed Threads ... B-5

B.4 Thread/SERIES Notification Messages ... B-6
 B.4.1 User Notifications .. B-6
 B.4.2 Notifications sent to Administrators ... B-8

Appendix C: Composing Site Written Messages and
 Customizing Default Notification Message Text C-1
C.1 Composing Site Written Messages .. C-1

 C.1.1 Z Amper Variables .. C-1
 C.1.2 Assembly / Link Edit Instructions for Site Written Message Modules C-2

C.2 Customizing the text of the Default Notification Messages ... C-3
 C.2.1 Sets of NOTIFY Messages issued by Thread/SENTRY C-3
 C.2.2 Assembly / Link Edit Instructions for Module TTS$TNM C-4

Appendix E: Thread/SERIES Exit Routines ...E-1
E.1 Concepts and Facilities .. E-1
E.2 Exit environment ... E-2
E.3 Parameter list on entry ... E-3
E.4 The Thread/SERIES eXit Parameter Structure (XPS) ... E-4

 E.4.1 Values passed from Thread/SERIES to the Exit routine E-5

C-8 Thread/SERIES Guide and Reference

 E.4.2 Values returned by the Exit routine .. E-6
 E.4.3 Values Inserted into Thread_Audit Columns ... E-7

E.5 An Annotated Thread/SERIES Exit Routine ... E-7
 E.5.1 Assembly and Link Edit of the Thread/SERIES Exit Routine E-9

E.6 Defining Exit Routines to Thread/SERIES ... E-9
 E.6.1 The Sample Table of Thread/SERIES Exit Routines - TTS$TXR E-10
 E.6.2 The TTS#TXRx Macro Set .. E-11

E.6.2.1 TTS#TXRI ... E-11
E.6.2.2 TTS#TXR... E-11
E.6.2.3 TTS#TXRF .. E-12

 E.6.3 Building a Thread/SERIES Table of Exit Routines .. E-12
E.7 Defining Criteria for Non-Standard Processing ... E-13

E.7.1 TTS$TNS - The Sample Table of Non-Standard Processing E-13
E.7.2 The TTS#TNSx Macro Set .. E-14

E.7.2.1 The TTS#TNSI Macro ... E-14
E.7.2.2 The TTS#TNS Macro .. E-14
E.7.2.3 The TTS#TNSF Macro .. E-16

E.7.3 Building the TTS$TNSF Load Module ... E-16

Appendix F: Defining Thread/SERIES No Action Criteria F-1
F.1 TTS$TNA - The Sample Table of No Action definitions .. F-2
F.2 The TTS#TNAx Macro Set ... F-3

 F.2.1 The TTS#TNAI Macro .. F-3
 F.2.2 The TTS#TNA Macro ... F-3
 F.2.3 The TTS#TNAF Macro ... F-5

F.3 Building the TTS$TNA Load Module ... F-5

Appendix G: Defining Thread/SENTRY
 Table of Group ID Definitions ... G-1

G.1 TTS$TGI - The Sample Table of Group ID definitions .. G-2

G.2 The TTS#TGIx Macro Set .. G-3

 G.2.1 The TTS#TGIH Macro .. G-3

 G.2.2 The TTS#TGI Macro ... G-3

 G.2.3 The TTS#TGIF Macro ... G-3

G.3 Building the TTS$TGI Load Module ... G-3

G.4 Using TTS$TGI groups .. G-4

 Table of Contents C-9

Appendix M: Thread/STOPPER and Thread/SENTRY Messages M-1
Call Attach Facility related Messages ... M-1
MVS related Messages .. M-2
RFARMD Messages .. M-2
RAI Password Verification Messages ... M-2
Report Process Messages .. M-2
RAI DB2 related Messages ... M-3
RFA Messages ... M-3
Messages pertaining to the Call Attach Facility Interface component M-3
Main prolog messages... M-3
Subsystem selection messages .. M-4
Thread qualification messages .. M-4
DB2 subsystem selection messages ... M-4
DB2 thread selection messages .. M-5
DB2 thread mapping messages .. M-5
DB2 thread termination messages .. M-5
IBM DB2 utility threads, messages .. M-6
DB2 utilities, messages .. M-6
DB2 thread termination messages .. M-6
Thread Summary Primary Commands, messages ... M-6
DB2 TRACE Commands, messages ... M-7
Thread/STOPPER initialization messages ... M-7
Canceling discrete threads .. M-7
Initialization messages .. M-7
DB2 thread cancellation messages .. M-7
Terminating distributed DB2 threads .. M-8
Thread Qualification Messages ... M-8
DB2 VTAM session management messages .. M-9
Thread/STOPPER Snap Messages ... M-9
Audit Cancellation Success (TTSACS) Messages .. M-9
Tailor Audit Jobstream (TTSTAJ) Messages ... M-10
Thread/SERIES Messages set by Exit routines.. M-10
Automated Monitor Messages .. M-10
Monitor Listener Process Messages .. M-10

C-10 Thread/SERIES Guide and Reference

Automated Monitor Messages .. M-11
Listener Process Messages .. M-11
Monitor Cancellation Messages .. M-11
Thread/SENTRY Messages ... M-12
Listener Process Messages .. M-13
Batch Facility and Console Facility Messages .. M-14

Appendix Z: Problem Determination ...Z-1
Additional Information Checklist .. Z-1

 Section A: What’s New in Thread/SERIES A -1

Section A

What’s New in

Thread/SERIES

Summary of Changes to Thread/SERIES Version 7.1

• Thread/SERIES fully supports DB2 Version 11 -- Program Product 5615-DB2.

• The new ADD_ZIIP_DATA(NO|YES) operand of the LIMIT statement is

introduced to govern whether or not Thread/SENTRY should include the CPU time
consumed on an IBM specialty engine while calculating CLASS1and CLASS2 CPU
times.

• The following new LIMIT policy operands are introduced to monitor Multi-Row
Fetch SQL activity: MAX_QUERIED, MAX_FETCHED, MAX_CHANGED,
UOW_QUERIED, UOW_FETCHED, UOW_CHANGED, IMIN_QUERIED,
IMIN_FETCHED, IMIN_CHANGED, IMAX_QUERIED, IMAX_FETCHED and
IMAX_CHANGED.

• The Thread/SENTRY notify email subject now contains the target DB2 subsystem
ID to make it easier for Thread/SENTRY administrators to distinguish among
notifications pertaining to different DB2 subsystems.

A-2 What’s New in Thread/SERIES

Summary of Changes to Thread/SERIES Version 6.1.9 (B1)

• Thread/SENTRY can now optionally externalize the DB2 IFI and z/OS WLM data

associated with violations of specially-named policies. The new TTS$TSD keyword
parameter DEBUG_POLICY identifies such specially-named policies by the first
two characters of the policy name. The default DEBUG_POLICY value "__" directs
Thread/SENTRY to externalize the DB2 IFI and z/OS WLM data for any violated
policy whose name starts with "__" (P111167B).

• Thread/SENTRY can now optionally write a formatted dump of its internal control

blocks to the destination identified by the DUMPDD parameter in the TTS$TSD
module. The default DUMPDD value is TTSDUMP. For example, add
"//TTSDUMP DD SYSOUT=*" to your Thread/SENTRY execution JCL to direct
Thread/SENTRY to produce such a dump (P111167A).

• The new Thread/SENTRY Table of Group ID definitions will optionally enable you

to target multiple DB2 authorization IDs with a single LIMIT or EXCLUDE policy.
The source module within member TTS$TGI of the TTSCNTL library illustrates
how to define the Table of Group ID definitions to Thread/SENTRY. Member
TTSJTGI of the TTSCNTL library contains a jobstream with which to assemble and
link edit the Thread/SENTRY Table of Group ID definitions (P111012A).

Summary of Changes to Thread/SERIES Version 6.1.9 (A3)

• Thread/SERIES fully supports DB2 Version 10 - Program Product 5605-DB2

(P110284A).

• This release incorporates corrective maintenance for the following Thread/SENTRY

(TSN) PMRs:

P110180A TTSND NOTIFY messages externalize DB2 thread token

P110069A RFARMX +IRX0043I Error running TMC$EVM, line 18: Routine
not found

P110063B TTSND
NOTIFY_INACTIVE_{ADMIN|USER}(OFF|WARN|CANCEL|BOTH) - added

P110027A TTSQPGM Notify target TSO user upon cancel by TSN exit

 Section A: What’s New in Thread/SERIES A -3

Summary of Changes to Thread/SERIES Version 6.1.8 (B1)

• This release incorporates corrective maintenance for the following Thread/SENTRY

(TSN) PMRs:

P109221A TTSLEAQ TSN overrides ACTION(WARN) with ACTION(CANCEL)

P109173C TTSMFV Mask invalid creation date and time with N/C

Summary of Changes to Thread/SERIES Version 6.1.8

• This release incorporates corrective maintenance for the following Thread/SENTRY

(TSN) PMRs:

P109153B RFARMX TSN suffers intermittent IRX0240I errors.

P109153A RFARMD TSN suffers intermittent S201 ABENDs.

P109148A TTSQMD New TSN message TTS836I reports on the DROP TCP/IP
actions instead of the generic TTS809W message.

P109147A TTSLTS New TSN message TTS835I diagnoses the '-START
TRACE' TTSLTE and '-STOP TRACE' activities.

P109146A TTSLEACQ TSN implements the action escalation for inactive
TTSLEAP (IDLE) threads, i.e. the TSN policies can specify TTSLEAQ
ACTION(WARNING,CANCEL) for IDLE threads. TTSLIT

P109134B TTSLIT TSN suffers intermittent S138 ABENDs.

P109134A TMCB2OPV TSN Compiler ignores the Thread/SERIES MSGDISP
VERBOSE and DEBUG settings in TTS$TSD module.

P109130A TTSQCCC Drop remote threads using TCP/IP and PORT combo.

P109012A TTSMAS TSN suffers S0C4 while processing parallel threads.
S0C4 ABEND with "ILC 4 INTC 10" in TTSL.TTSMAS.+48C.

P109131A TTSQDIST TSN makes an attempt to diagnose IFI errors after
P108237B DROP TCP/IP request. This attempt fails with S0C4-04 ABEND in
TTSL.RSQDIFI.+16A.

A-4 What’s New in Thread/SERIES

Summary of Changes to Thread/SERIES Version 6.1.7

• The ACTION operand of the LIMIT statement now accepts multiple actions,

separated by comas. Thread/SENTRY performs one action per wakeup interval
while the problem DB2 thread persists. When specified, such action escalation
proceeds from WARNING, to CANCEL, to FORCE and lastly to KILL.

• The new AUTO_FORCE operand of the TTS#TSD macro specifies whether or not

Thread/SENTRY should use ACTION(FORCE) instead of ACTION(CANCEL) to
remove a local thread that is currently executing within the application rather than
DB2 (and as such, no SQL statement is being executed).

Summary of Changes to Thread/SERIES Version 6.1.6

• Now Thread/SENTRY accepts sub-second specification for any TIME based limit,

e.g. MAX_CPU(00:00:00.04) or MAX_CPU(00:00:00.123456)

• Now Thread/STOPPER Batch and Console facilities cancel all threads holding

DB/TS/TB locks.

Summary of Changes to Thread/SERIES Version 6.1.5

• The NOTIFY_ENABLED, NOTIFY_FREQUENCY and NOTIFY_MAXIMUM operands can be specified

within the NOTIFY_LIST statement. These operands are used to override the
corresponding defaults of the MONITOR statement or the Thread/SERIES table of
system defaults (defined within module TTS$TSD).

• The new NOTIFY_ON_WARNING(NO|YES) operand specified on the MONITOR statement or

defined within the Table of System Defaults (module TTS$TSD) directs
Thread/SENTRY to issue (YES) or suppress (NO) notifies for any pending warning
requests.

• Thread/SENTRY can optionally reset a pending warning request should a target

thread no longer violate the policy that triggered the original warning. Both the
RESET_WARNING and NOTIFY_ON_WARNING defaults must be set to YES in order for
Thread/SENTRY to examine pending violations and possibly reset them.

• This release incorporates corrective maintenance for the following PMRs:

PMR Object(s) Description
P107250A TTSQLCL Cancel immediately any thread not running in DB2

P107285A TTSMCT Double storage for parallel thread management

P107318B TTSFTDS The message TTS071 is issued erroneously for
any thread whose DB2 SSID matches the
datasharing group name.

 Section A: What’s New in Thread/SERIES A -5

Summary of Changes to Thread/SERIES Version 6.1.4

• E-mail notification to administrators at workstations is now supported via the

EMAIL_IDS() operand of the NOTIFY_LIST statement

• Full support for DB2 9 for z/OS

• The means to remove the communication connections (TCP/IP and/or SNA/VTAM)

that underlie a distributed thread. This mechanism is particularly suitable for
removing Database Access Threads that are inactive (also know as idle threads).

• Full support for IFCID data returned in %U (Unicode) format. Such data is

processed properly (and displayed meaningfully) whether returned by DB2 in
Unicode or standard format.

• The new "D" option (entered from the scrollable list of DB2 subsystems) displays

more detailed information about a particular DB2 subsystem or Data Sharing Group.

• New panel TTSTDSG displays DB2 subsystems from a Data Sharing Group

perspective

• New panel TTSTDSD presents a view of DB2 subsystems that displays the date and

time when the subsystems were started

• A new TTSD dialog invocation parm governs which view is presented in the DB2

subsystem display. The choices include the classic view (panel TTSTDS). the new
Data Sharing Group view (displayed via panel TTSTDSG) or the new Date/TIme
view (displayed via panel TTSTDSD).

• New panel TTSDSSS displays detailed data associated with a particular DB2

standalone subsystem (i.e. a subsystem that is not a member of a Data Sharing
Group).

• New panel TTSDDSG displays detailed data associated with a particular subsystem

member of a DB2 Data Sharing Group/

• Support for NOTIFY_LIST names that begin with the special string '_WTO'.

Ordinarily, when a thread violates a Thread/SENTRY policy, the owner of the
violating thread is notified of the action taken by Thread/SENTRY. In addition, any
administrative users specified on the NOTIFY_LIST statement to which the violated
policy makes reference are also notified. However, when the referenced
NOTIFY_LIST name starts with the special string “_WTO” (as in _WTOABC),
Thread/SENTRY writes the user notification message to the operator (via a WTO),
rather than send a notification message to the owner of the thread. Notifications
sent to administrative users specified in the NOTIFY_LIST are processed without
change (not effected by the _WTO special string).

• The new WTO_HRDCPY operand is introduced to direct whether or not WTO

notify messages should be queued for hard copy only. See the Thread/SERIES
Table of System Defaults (residing in the TTS$TSD member of the TTSCNTL
library) to alter the default setting WTO_HRDCPY=NO.

A-6 What’s New in Thread/SERIES

Summary of Changes to Thread/SERIES Version 6.1.0

• Support for data returned by DB2 in Unicode format from the catalog, control blocks

and/or IFI data

• Support for long variable names such as those for DB2 authorization ID, location,

package, collection, program, and procedure as well as for long schema / qualifier
names.

• CPU TIME CLASS 1 calculations are revised to include the CPU TIME

associated with stored procedures, UDFs, triggers and WLM enclaves

• The modules comprising the Thread/STOPPER Batch and Console facilities are

refreshed.

Summary of Changes to Thread/SERIES Version 5.3.7 Level B1

Version 5.3.7 Level B1 of Thread/SERIES supports all functions available in prior
releases of the product, plus the following enhancements:

• Support for DB2 Version 8.

• Thread/SENTRY now restarts an accidentally stopped TRACE monitor class 1 and

resumes normal processing.

Summary of Changes to Thread/SERIES Version 5.3.7

Version 5.3.7 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• Thread/SENTRY now can RESET a previously QUIESCED address space even

when it no longer maintains a DB2 thread.

• All previously QUIESCED address spaces are RESET when Thread/SENTRY shuts

down.

See the description of the Thread/SENTRY command MCS_CONSOLE in section 10.4
of the Thread/SERIES User Guide and Reference for more information about the
QUIESCE and RESET processing.

 Section A: What’s New in Thread/SERIES A -7

Summary of Changes to Thread/SERIES Version 5.3.6

Version 5.3.6 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• Thread/SENTRY now can be started before any DB2 subsystem is active, e.g. at IPL

time like any other started task.

• Thread/SENTRY listener processes suspend their execution when the DB2

subsystem they monitor terminates. A listener process resumes monitoring once its
target DB2 subsystem becomes active again.

Summary of Changes to Thread/SERIES Version 5.3.5

Version 5.3.5 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• Thread/SENTRY LIMIT policies let you limit the number of GETPAGE requests

any thread can perform against a particular DB2 buffer pool as in the following
example:

__

LIMIT

PID(POLICY1)

ACTION(CANCEL) MAX_BUFFER_POOL_ID(2) MAX_GETPAGES(10000)

__

POLICY1 above directs Thread/SENTRY to CANCEL any thread which issues
more than 10,000 GETPAGE requests against buffer pool BP02.

Summary of Changes to Thread/SERIES Version 5.3.4

Version 5.3.4 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• The operational scope of Thread/STOPPER Batch and Console facilities now

extends to DB2 threads within a DB2 data sharing group (DSG).

• Thread/SERIES can now cancel DB2 threads whose token value exceeds 99,999.

A-8 What’s New in Thread/SERIES

Summary of Changes to Thread/SERIES Version 5.3.3

Version 5.3.3 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• Thread/SENTRY LIMIT and EXCLUDE policies can now specify a DB2 stored

procedure name as in the following examples:

EXCLUDE

 PID(POLICY1) STORED_PROCEDURE(SP1)

LIMIT

 PID(POLICY2) STORED_PROCEDURE(SP2%)

POLICY1 above directs Thread/SENTRY to EXCLUDE any thread which is
CURRENTLY executing in the stored procedure named SP1.

POLICY2 above directs Thread/SENTRY to evaluate any thread which is
CURRENTLY executing in a stored procedure with a name like SP2%. The LIMITs
defined for this policy are applicable ONLY when the thread is CURRENTLY active
within a stored procedure whose name matches the pattern SP2%

NOTE: stored procedure may run in either a WLM or DB2
established Stored Procedure Address Space.

• The Table of No Actions now lets you exclude threads based on a stored procedure
name as in the following example:

 TTS#TNA STORED_PROCEDURE=RAI%, Never FORCE a stored procedure +

 ACTION_SUPPRESSED=FORCE when its name is like 'RAI%'

• The Thread/STOPPER dialog displays the name of DB2 stored procedure name (if

any).

Summary of Changes to Thread/SERIES Version 5.3.2

Version 5.3.2 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• You can issue a CANCEL command against a DB2 thread running under a DB2

system services address space.

 Section A: What’s New in Thread/SERIES A -9

Summary of Changes to Thread/SERIES Version 5.3.1

Version 5.3.1 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• Thread/SENTRY LIMIT policies let you exclude one or more threads based on NOT

criteria

LIMIT

 PID(WHATNOT)

 PLAN(\MYPLAN)

 MAX_SQL(10)

This policy directs Thread/SENTRY to cancel all threads using any DB2 plan except
MYPLAN.

The ”\“ sign (denoting NOT) may be specified ahead of any operand of the LIMIT
statement that identify the thread(s) to which the policy applies. See the
Thread/SERIES User Guide and Reference paragraphs 10.7.1 and 10.7.1.1 for the
list of such operands.

Summary of Changes to Thread/SERIES Version 5.3

Version 5.3 of Thread/SERIES supports all functions available in prior releases of the
product, plus the following enhancements:

• Support for DB2 Version 7

• Thread/SERIES now lets you to predefine criteria for which Thread/SERIES actions

should be implicitly suppressed. An action is suppressed when a thread selected by a
Thread/SERIES component matches an entry in a site defined Table of No Actions -
TTS$TNA. Thread/SERIES provides three macros for the purpose of defining
threads for which one or more actions are inappropriate.

• Enhanced support for CICS / DB2 Threads

 Thread/STOPPER support for CICS / DB2 threads has been enhanced. The standard

Thread/SERIES CANCEL and FORCE commands have been enhanced to issue a
series of DB2, MVS, CICS and communications commands to remove CICS / DB2
threads.

A-10 What’s New in Thread/SERIES

• Additional Thread Control Commands

 Users of the Thread/STOPPER dialog can now enter a "/" or "?" in the Thread

Command field to display a prompting popup window that enumerates and describes
the various Thread/STOPPER commands.

 In addition, the new P and K commands let users of the Thread/STOPPER dialog
issue CICS CEMT SET TASK(taskid) PURGE and FORCEPURGE respectively.

• An enhanced RAI Thread/SERIES Server (whose default name is RTS0) replaces

the generalized RAI server (whose default name RAI0). Customers upgrading from
a previous Thread/SERIES release MUST install this customized server (whose
default name is RTS0).

• The resource profile RAI.TTS.TCAN becomes a required profile definition to cancel

DB2 threads using Thread/SERIES.

 Chapter 1: Thread/SERIES Overview 1-1

Chapter 1

Thread/SERIES Overview

Thread/SERIES provides a set of dedicated facilities to gracefully cancel DB2 threads,
and do so with minimal impact. Thread/SERIES lets you deal with the inevitable
operational mistakes, network failures, application errors and runaway queries that create
‘problem’ DB2 threads -- without disrupting large numbers of users.

Thread/SERIES cancels a DB2 thread without terminating the thread's allied address
space. Thread cancellation via Thread/SERIES is more granular and far less drastic than
recycling an entire CICS or IMS transaction processing region’s connection to DB2 via
STOP and START commands. Thread/SERIES is also more granular in operation than
the MVS CANCEL and FORCE commands. While these commands terminate an entire
job, TSO user or started task, Thread/STOPPER cancels only the task associated with a
DB2 thread.

Moreover, Thread/SERIES works in cases where the DB2 commands CANCEL
THREAD and CANCEL DDF THREAD are ineffective. This can occur when the thread
is hung up in the application or within the communications network (TCP/IP and/or
VTAM).

DISCUSSION: The DB2 CANCEL THREAD command schedules a thread to
terminate. Cancellation is immediate for local threads. In contrast, a
distributed thread must be processing within DB2 in order for the DB2
CANCEL THREAD command to terminate the distributed thread. Otherwise
the thread does not terminate. Threads suspended in communications software
like TCP/IP or VTAM must return control to DB2 before these threads can be
terminated. In these cases, Thread/SERIES components automatically detect
such ‘suspended in communication software’ states and cancels the thread’s
communications sessions.

Thread/SERIES supports various methods of thread cancellation using DB2, MVS,
TCP/IP and/or SNA/VTAM commands -- both individually and in combination. It
automatically determines the correct method to use, based on the current state of the DB2
thread.

1-2 Thread/SERIES Guide and Reference

1.1 Types of DB2 threads that can be terminated

Thread/SERIES is an enterprise solution that supports all local and distributed DB2
applications connected through the various DB2 attachment facilities. These include
client server applications, CICS and IMS transactions, TSO and QMF sessions, and DB2
batch jobssteps connecting through either RRSAF or CAF. Moreover, Thread/SERIES
supports cancellation of DB2 utility jobsteps via an IFI interface to the DB2 TERM
UTILITY command. In addition, it

• supports termination of threads that access the local DB2 subsystem

• supports cancellation of distributed threads that utilize both system and application
directed database access

• supports cancellation of idle Database Access Threads (DBATs)

1.2 Thread/SERIES Benefits

• Improves availability of critical Transaction Processing systems

• Provides the means to cancel local (non-distributed) DB2 threads, and do so with
minimal impact

• Enables TSO users with canceled DB2 threads to remain in session

• Improves operational control of the DB2 environment

• Provides a single point of control for all DB2 application and utility threads. You
can monitor and control multiple DB2 subsystems from a single console.

• Does not adversely impact other transactions within an transaction processing region.
Thread/SERIES is more granular than the DSNC STOP and STRT commands that
recycle an entire CICS attachment or the /STOP and /START SUBSYS
commands that recycle the IMS connection to DB2

• Prevents disruptions from problem DB2 threads

• Avoids forcible cancellation of TSO sessions that hold DB2 threads

• Provides the means to cancel idle DB2 threads that hold DB2 locks and thereby
release their resources

• Lets you obtain diagnostic dumps as an option

 Chapter 1: Thread/SERIES Overview 1-3

1.3 Benefits versus native DB2 Facilities

Thread/SERIES affords greater ease of use than the DB2 CANCEL THREAD and
CANCEL DDF THREAD commands. It

• presents more information, in a much more meaningful format, than does DB2

• operates as an ISPF dialog rather than as a line mode command

• translates codes into meaningful information

• translates ASID values into jobnames

• affords granular security options -- over and above restricting the ability to cancel

threads to those with DB2 SYSOPR, SYSCTRL or SYSADM authority

1.4 Thread/SERIES Components

 Thread/STOPPER Dialog

The Thread/STOPPER Dialog provides a series of ISPF panels with which to monitor
and, if necessary, gracefully cancel DB2 threads

 Batch Facility

The Thread/STOPPER Batch Facility allows you to specify a single Thread/STOPPER
command or set of commands within the context of a batch jobstep.

 Console Facility

The Thread/STOPPER Console Facility allows MVS Console operators and other
authorized users to issue Thread/STOPPER commands from an MVS console. The
Console Facility runs as a started task or can be submitted as a conventional MVS job.

 Thread/SENTRY

Thread/SENTRY provides automated monitoring and policy enforcement for DB2
threads. Thread/SENTRY makes it unnecessary to manually identify DB2 problem
threads or to explicitly cancel them. Instead, you can define what constitutes a ‘problem
thread’ in terms of threshold measurements such as elapsed time, CPU time, number of
SQL statements executed, number of locks held, etc. Thread/SENTRY detects such
problem threads automatically based on criteria you pre-define.

1-4 Thread/SERIES Guide and Reference

Audit View Facility

The Thread/SERIES Audit View Facility provides a means to browse the audit trail that
Thread/SERIES records for each action it takes vis-a-vis DB2 threads. The audit trail is
maintained in a table named THREAD_AUDIT that resides within the same DB2
subsystem in which either the audited thread was executing or from which a
Thread/SERIES command was issued. Some columns of the Thread_Audit table provide
statistics and details about the thread while other columns document who took action
against a thread, when, and for what reason.

The Audit View Facility first presents a Query by Example panel with which you can
identify the Thread Audit records you wish to view. This QBE style dialog allows you to
select rows within the Thread_Audit table without the need to construct SQL select
statements. You can also specify an optional sort order and direction for each column.

 Chapter 2: Using the Thread/STOPPER Dialog 2-1

Chapter 2

Using the Thread/STOPPER Dialog

This chapter describes how to use the Thread/STOPPER Dialog to monitor and, if necessary, gracefully
cancel DB2 threads. Section 2.1 describes how to invoke the Thread/STOPPER Dialog once it has been
installed. Sections 2.2 though 2.5 describe and illustrate the flow of panels presented during a
Thread/STOPPER Dialog session as well as the information appearing on the subsystem summary,
subsystem detail, thread summary and thread detail displays respectively.

The last three sections of this chapter discuss how to cancel different types of DB2 threads. Sections 2.6,
2.7 and 2.8 each contain an annotated example that illustrates how to terminate local threads, distributed
threads and IBM DB2 utility threads, respectively. In each case, you simply select the thread you want to
cancel, then respond affirmatively to the thread cancellation prompt.

2.1 Invoking the Thread/STOPPER Dialog

The Thread/STOPPER Dialog can be invoked with a variety of options, modes and parameters (as
described in Chapter 20.15 of this publication). For example, the dialog can operate in either of two
modes: The first mode connects to a single DB2 subsystem while the second mode supports simultaneous
connections to multiple DB2 subsystems within the local MVS system. Section 20.15 describes and
illustrates how to configure the TTSRUN exec with which the Thread/STOPPER Dialog is invoked.

Alternatively, the Thread/STOPPER Dialog may have been setup as an ISPF selection menu option (as
described in Section 20.17.) In this case, see your Thread/SERIES product administrator for details
concerning invocation of the Thread/STOPPER Dialog.

2-2 Thread/SERIES Guide and Reference

2.2 DB2 Subsystem Displays

The DB2 Subsystem Summary panels are described and illustrated in this Section.

Figure 2.1 illustrates a scrollable summary of all the DB2 subsystems defined within the local MVS
system. Figure 2.1 presents the original or Classic view of the subsystem summary. Section 2.2.1
describes and illustrates two alternative views which present subsystem summary information from first a
“data sharing group” perspective and then from the perspective of subsystem “starting date and time”.

All the subsystem summary displays include both active and inactive subsystems. In each case, select all
subsystems you wish to monitor and control by keying an ‘S’ into the subsystem’s row selection field.
Alternatively, key a ‘D’ into the subsystem’s row selection field to display more detailed information about
a particular DB2 subsystem (as described and illustrated in Section 2.2.3).

NOTE: These displays pertain only to Thread/STOPPER’s multiple
subsystem mode of operation. In single subsystem mode, these panels
are bypassed (not displayed). Instead, the DB2 subsystem is specified
either on the Thread Qualification panel discussed in Section 2.2.2 or
as a parameter when the Thread/STOPPER Dialog program is invoked
(Section 20.15).

 V6.1 ----------- Thread/STOPPER: DB2 Subsystems on MVS: PRD1 - Row 1 to 4 of 4
 Command ===> Scroll ===> PAGE
 TTS022 - Select active DB2 subsystem(s) with "S" or press END key to exit

 DB2 Subsystem Subsystem DB2 DB2 Master DB2 System
 Subsystem Recognition Status Version Address Service
 Name Prefix Release Space ID Procedure

 . DB2A - ACTIVE 7.1 0048 DB2AMSTR
 . DB2B + ACTIVE 8.1 0018 DB2BMSTR
 . DB2C @ INACTIVE --- 0000 DB2CMSTR
 . DB2D % ACTIVE 9.1 004F DB2DMSTR

--
|Specify S - select subsystem threads, D - display subsystem detail or press |
END key to exit

Figure 2.1 DB2 Subsystem Summary- “Classic View”

The column headings in Figure 2.1 denote the following:

DB2 subsystem name name by which the subsystem is known to MVS

Subsystem recognition character used to pass commands to the subsystem

Subsystem status indicates whether the DB2 subsystem is currently

active or inactive

DB2 Version / Release the version and release level of the DB2 subsystem.

This value appears as dashes (“---”) if the
subsystem is not active

 Chapter 2: Using the Thread/STOPPER Dialog 2-3

DB2 Master Address space ID Four hexadecimal digits which appear as 0000 if

the subsystem is inactive

Procedure name Started procedure name associated with the DB2

system services (master) address space

2.2.1 Alternate Views of the DB2 Subsystem Summary

Figure 2.2 illustrates another scrollable summary of DB2 subsystems know to the local MVS system, this
time from a “data sharing group” perspective.

V6.1 -------------- Thread/STOPPER: DB2 seen from z/OS Z7L1 Row 1 to 11 of 11
Command ===> Scroll ===> HALF

 - Data Sharing Group
 DB2 Command DB2 SSID IRLM IRLM ZPARM IFCID Group Attach Mbr
 SSID Prefix Ver Status SSID Procname module Encode Name Name LPAR

. D8G DSGroup D8G D8G
. D8GB -D8GB --- Inactive D8G
. D8GC -D8GC --- Inactive D8G
. D8GD -D8GD --- Inactive D8G
. D8G -D8G --- Inactive D8G
. DSN9 -DSN9 9.1 Active IRL9 DSN9IRLM DSNZPARM U
. DB9A -DB9A 9.1 Active IR9A DB9AIRLM DSNZPARM U
. DSN8 -DSN8 8.1 Active IRL8 DSN8IRLM DSNZPARM U
. DB6B -DB6B --- Inactive
. DSN7 -DSN7 7.1 Active IRL7 IRL7PROC DSNZPARM S
. D8GA -D8GA 8.1 Active D8JA D8GAIRLM DSNZD8GA S D8G D8G Z7L1

--
|Specify S - select subsystem threads, D - display subsystem detail or press |
|END key to exit |

Figure 2.2 DB2 Subsystem Summary- Data Sharing View

2-4 Thread/SERIES Guide and Reference

The column headings described in the “Classic View” also apply to ‘Data Sharing Group’ view illustrated
in Figure 2.2. The additional column headings associated with this view denote the following:

IRLM SSID specifies the name by which the IRLM subsystem
associated with this DB2 subsystem is known to
MVS.

IRLM ProcName identifies the started procedure name associated

with the IRLM instance associated with this DB2
subsystem

ZPARM module identifies the name of the load module from which

a DB2 subsystem obtains its runtime parameters.
Note that in a data sharing group, each member has
its own subsystem parameters module.

IFCID Encoding specifies how DB2 returns IFCID data from fields

that may contain Unicode values. IBM denotes
these IFCID fields in the DB2 machine readable
materials with the %U designation. A “U”
appearing in the row for a particular DB2
subsystem indicates that %U data is returned in
Unicode format (which Thread/SERIES translates
to a viewable format)). Alternatively, when an “S”
appears in the row for a particular DB2 subsystem,
this indicates the DB2 subsystems return %U data
in standard format (which Thread/SERIES need
not translate).

The following fields apply only to DB2 Data Sharing Groups and their members. For standalone DB2
subystems, these values are blank.

Group Name identifies the name that encompasses the entire

DB2 data sharing group.

Group Attach Name identifies a “generic” attachment name to be used

by the TSO/batch attachment, the call attachment
facility (CAF), DL/I batch, utilities, and the
Resource Recovery Services attachment facility
(RRSAF).

Mbr LPAR identifies the name of the z/OS LPAR (MVS

system) on which this member was last active.

 Chapter 2: Using the Thread/STOPPER Dialog 2-5

Lastly, Figure 2.3 illustrates a scrollable summary of DB2 subsystems know to the local MVS system that
includes the date and time” each active subsystem was started.

V6.1 ------------ Thread/STOPPER: DB2 as seen from z/OS: Z7L Row 1 to 11 of 11

Command ===> Scroll ===> HALF

 DB2 Command Subsystem DB2 IRLM IRLM Starting IFCID

 SSID Prefix Status Ver SSID ProcName Date/Time Encoding

. D8G DSGroup

. D8GB -D8GB Inactive ---

. D8GC -D8GC Inactive ---

. D8GD -D8GD Inactive ---

. D8G -D8G Inactive ---

. DSN9 -DSN9 Active 9.1 IRL9 DSN9IRLM 05/31/xxxx-17:03:14 U

. DB9A -DB9A Active 9.1 IR9A DB9AIRLM 06/11/xxxx-14:50:20 U

. DSN8 -DSN8 Active 8.1 IRL8 DSN8IRLM 05/31/xxxx-16:42:41 U

. DB6B -DB6B Inactive ---

. DSN7 -DSN7 Active 7.1 IRL7 IRL7PROC 05/31/xxxx-16:42:41 S

. D8GA -D8GA Active 8.1 D8JA D8GAIRLM 06/05/xxxx-12:05:14 S

--
|Specify S - select subsystem threads, D - display subsystem detail or press |
END key to exit

Figure 2.3 DB2 Subsystem Summary – Date / Time View

The column headings described in both the “Classic” and ‘Data Sharing Group’ views also apply to the
‘Date/Time’ view illustrated in Figure 2.3. The additional column headings associated with this view
denote the following:

Starting Date/Time indicates when this active DB2 subsystem was

started. The Date appears first in mm/dd/yyyy
format followed by the subsystem’s starting time in
hh:mm:ss format.

2-6 Thread/SERIES Guide and Reference

2.2.2 DB2 Subsystem Commands

All the subsystem summary displays include both active and inactive subsystems. In each case, select all
subsystems you wish to monitor and control by keying an ‘S’ into the subsystem’s row selection field.
Alternatively, key a ‘D’ into the subsystem’s row selection field to display more detailed information about
a particular DB2 subsystem.

In Figure 2.4, the DB2 subsystems named DB2A and DB2B are selected. Thus, Thread/STOPPER will
display a Thread Qualification panel (as described in Section 2.4) from which to select threads associated
with the two selected subsystems.

---------------- Thread/STOPPER: DB2 Subsystems on MVS: PRD1 - Row 1 to 4 of 4
 Command ===> Scroll ===> PAGE
 TTS022 - Select active DB2 subsystem(s) with "S" or press END key to exit

 DB2 Subsystem Subsystem DB2 DB2 Master DB2 System
 Subsystem Command Status Version Address Service
 Name Prefix Release Space ID Procedure

 S DB2A - ACTIVE 7.1 0048 DB2AMSTR
 S DB2B + ACTIVE 8.1 0018 DB2BMSTR
 . DB2C @ INACTIVE --- 0000 DB2CMSTR
 DB2D % ACTIVE 9.1 004F DB2DMSTR

__

Figure 2.4 DB2 Subsystem Display - after Selections

You can continue to scroll and select DB2 subsystems as long as necessary. Once you have selected all the
DB2 subsystems you wish to monitor, press the Enter key to proceed to the Thread Qualification panel.
Alternatively, enter the END command without selecting any subsystems to exit the Thread/STOPPER
dialog entirely.

 Chapter 2: Using the Thread/STOPPER Dialog 2-7

2.2.3 DB2 Subsystem Detail Displays

This section illustrates the displays associated with individual DB2 subsystems and Data Sharing Groups.
The first two panels pertain to standalone DB2 subsystems (i.e. those not associated with or members of a
DB2 data sharing group) while Figures 2.7, 2.8 and 2.9 illustrate the three DB2 Data Sharing Group
displays.

__

V6.1 ----------- Thread/STOPPER: Standalone DB2 Subsystem Detail -------------

Command ===>

DB2 Subsystem Data

 DB2 Subsystem ===> DSN9

 DB2 Version:Release ===> 9.1

 Subsystem status ===> Active

 ZPARM module name ===> DSNZPARM

 Prefix scope:set ===> S S-Sysplex:startup,M-Sysplex:IPL,X-Sys:IPL

 DB2 command prefix ===> -DSN9

 DB2 starting date ===> 05/31/xxxx

 DB2 starting time ===> 17:03:14

 IFCID Data encoding ===> U (U)nicode or (S)tandard for %U data

 Local site name ===> RADSN9

 Local LU name ===> DB2DSN9

DB2 / IRLM Address Spaces

 DB2MSTR proc name ===> DSN9MSTR

 DB2MSTR ASID ===> 004B

 STOKEN for DB2MSTR ===> 0000012C

 ALET for DB2MSTR ===> 16842834

 DB2DBM1 ASID ===> 004D

 STOKEN for DB2DBM1 ===> 00000134

 ALET for DB2DBM1 ===> 16842835

 IRLM Subsystem Name ===> IRL9

 IRLM Procedure Name ===> DSN9IRLM

__

Figure 2.5 Detail of an active, standalone DB2 Subsystem

2-8 Thread/SERIES Guide and Reference

__

V6.1 ------------ Thread/STOPPER: Inactive DB2 Subsystem Detail ---------------

Command ===>

Inactive DB2 Subsystem

 DB2 Subsystem ===> DSN9

 DB2 Version:Release ===> ---

 Subsystem status ===> Inactive

 Prefix scope:set ===> S S-Sysplex:startup,M-Sysplex:IPL,X-Sys:IPL

 DB2 command prefix ===> -DSN9

 DB2MSTR proc name ===> DSN9MSTR

__

Figure 2.6 Detail of an inactive, standalone DB2 Subsystem

The next three figures illustrate the DB2 Data Sharing Group displays. Figure 2.7 below displays
information about the DB2 Data Sharing Group itself, separate and apart from the DB2 member
subsystems that comprise it. Figures 2.8 and 2.9 respectively illustrate an active, and inactive subsystem
member of a DB2 data sharing group.

V6.1 ---------------- Thread/STOPPER: DB2 Data Sharing Group -----------------

Command ===>

DB2 Data Sharing

 Group name ===> D8G

 Group attach name ===> D8G

 Number of Members ===> 00000002 in the Data Sharing Group D8G

 Group Level ID ===> 8 Data Sharing Group Level ID

 Coupling Facility ===> 14 Level (shared by the Group)

 SCA Size ===> 2560 shared by the group

__

Figure 2.7 Detail of the Data Sharing Group (as a whole)

 Chapter 2: Using the Thread/STOPPER Dialog 2-9

__

V6.1 ----------- Thread/STOPPER: Data Sharing Group Member Detail ------------

 Command ===>

 DB2 Subsystem Data

 DB2 Subsystem ===> D8GA

 DB2 Version:Release ===> 8.1

 Subsystem status ===> Active

 ZPARM module name ===> DSNZD8GA

 Prefix scope:set ===> S S-Sysplex:startup,M-Sysplex:IPL,X-Sys:IPL

 DB2 command prefix ===> -D8GA

 DB2 starting date ===> 06/05/xxxx

 DB2 starting time ===> 12:05:14

 IFCID Data encoding ===> S (U)nicode or (S)tandard for %U data

 Local site name ===> D8GLID

 Local LU name ===> DB2D8GA

 DB2 / IRLM Address Spaces

 DB2MSTR proc name ===> D8GAMSTR

 DB2MSTR ASID ===> 0056

 STOKEN for DB2MSTR ===> 00000158

 ALET for DB2MSTR ===> 16842852

 DB2DBM1 ASID ===> 0059

 STOKEN for DB2DBM1 ===> 00000164

 ALET for DB2DBM1 ===> 16842853

 IRLM Subsystem Name ===> D8JA

 IRLM Procedure Name ===> D8GAIRLM

 DB2 Data Sharing

 Group name ===> D8G

 Group attach name ===> D8G

 Number of Members ===> 00000002 in the Data Sharing Group D8G

 XCF member name ===> D8GA DB2 member name in the XCF group

 Group Level ID ===> 8 Data Sharing Group Level ID

 Member active LPAR ===> Z7L1 z/OS LPAR on which this member is active

 Member state ===> Active

 Name of the Primary ===> D8GAMSTR ASID which issued the XCF JOIN macro

__

Figure 2.8 Detail of an active member of a DB2 Data Sharing Group

2-10 Thread/SERIES Guide and Reference

__

V6.1 -------- Thread/STOPPER: Inactive Member of a Datasharing Group ---------

Command ===>

DB2 Subsystem Data

 DB2 Subsystem ===> D8GB

 DB2 Version:Release ===> ---

 Group attach name ===> D8G

 Subsystem status ===> Inactive

 Prefix scope:set ===> S S-Sysplex:startup,M-Sysplex:IPL,X-Sys:IPL

 DB2 command prefix ===> -D8GB

 DB2MSTR proc name ===> D8GBMSTR

__

Figure 2.9 Detail of an inactive member of a DB2 Data Sharing Group

2.3 Thread Qualification panel

The Thread/STOPPER Dialog lets you select which DB2 threads to monitor and display on the basis of
various criteria. The qualification panel (illustrated in Figure 2.10) lets you specify constraints on the
threads to be monitored (and possibly canceled). If you specify no qualification criteria, information is
obtained for all allied and database access threads associated with the specified subsystem(s).

The DB2 subsystem prompt (appearing in underlined type in Figure 2.10) is displayed only when
Thread/STOPPER is operating in single subsystem mode. In multiple subsystem mode, the DB2
subsystems whose threads you wish to monitor and control are selected via the DB2 Subsystem Summary
panels described in previous sections.

__

------------------- Thread/STOPPER: DB2 Thread Qualification ------------------
 Command ===>

 Select DB2 threads using full or partial qualifications (except as noted)

 DB2 plan name ===> (e.g. XYZ = all plans starting with 'XYZ')
 DB2 subsystem ===>

 Auth ID ===> (Current primary authorization ID)
 Operator ID ===> (Original operator ID)
 Connection name ===> (e.g. TSO, BATCH, DB2CALL, UTILITY)
 Correlation ID ===>
 Addr space ID ===> (4 hex digits - no partial qualifiers)
 MVS job name ===> (Thread job name - no partial qualifiers)
 Location name ===>

 Identify threads by Logical Unit of Work ID (composite of following fields)
 Network ID ===>
 LU name ===>
 Thread number ===> (Uniqueness value - 12 hex digits)

.--.
| TTS030 - Qualify which DB2 threads are of interest and press ENTER. To see |
| all threads, press ENTER without supplying any qualifications. Press the |
| END key to return to the DB2 subsystem selection display. |
.--.
__

Figure 2.10 Thread Qualification Panel

 Chapter 2: Using the Thread/STOPPER Dialog 2-11

NOTE: You can partially qualify all of these fields (except for
Address Space ID and MVS job name) with just significant characters.
Thread/ STOPPER pads the remainder of each qualification field with
binary zeros. For example, you can specify a generic plan name like
ABCD to monitor all plans whose names start with the characters
ABCD.

The set of thread qualifiers denote the following:

DB2 Subsystem denotes a 4 byte character field which identifies where the
thread(s) were established. This field is presented only in
single subsystem mode. It is not presented in multiple
subsystem mode.

DB2 Plan name denotes an 8 byte character field whose significant characters

identify the DB2 plan name(s) desired.

Auth ID identifies the 8 character primary authorization ID of the

desired thread(s).

Operator ID denotes the 8 character original authorization ID of the

thread(s).

Connection name identifies the 8 character DB2 connection type.

Correlation ID denotes a 12 byte field whose significant characters identify

the Correlation ID of the desired thread(s)

Address Space ID 4 Hex digits specify the address space identifier (ASID) of the

thread’s allied address space. The ASID qualifier does not
support generic search arguments.

MVS job name denotes the name of the job associated with the allied address

space from which one or more thread(s) originate. The job
name qualifier does not support generic search arguments.

Location Name this 16 byte character field identifies the name of the location

from which distributed agents originate.

LUW ID this 24 byte character field identifies the desired thread(s) by

their logical-unit-of-work ID.

2-12 Thread/SERIES Guide and Reference

2.4 Thread Summary Display

The next panel the user sees appears in Figure 2.11 which illustrates the scrollable summary of threads
which meet the qualification criteria. From this display, you can select a thread in order to display detailed
information about it and, if necessary, cancel it. Alternatively, you can press ENTER to refresh the display.

Key an ‘S’ into a thread’s row selection field (as in the line whose type is underlined) in order to display
the Thread Detail panel discussed in Section 2.5.

__

---------------------- Thread/STOPPER: DB2 Thread Summary ---- Row 1 to 5 of 5
 Command ===> Scroll ===> PAGE
 TTS053 - (S)elect a thread or press ENTER to refresh summary display

 Date: xx/10/25 Time: 16:08 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status
 Name HH:MM:SS H:MM:SST Requests :Where

 . DB2B RAI6 RLXPLANC RAI6 DB2CALL 00:54:04 0:00:002 118 T :PGM
 . DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:26:36 0:00:000 7 TR:PGM
 DB2B RAI009D DDFSMP1 RAI009 DB2CALL N/A 24 RA:IDL
 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:28:05 0:00:001 14 T :PGM

 . DB2B RAIC EXAMPLE RAIC DB2CALL 00:00:23 0:00:002 28 T :DB2
 S DB2A RAIC EXAMPLE RAIC DB2CALL 00:00:23 0:00:016 22 T :DB2

__

Figure 2.11 Thread Summary Display

The column headings of the Thread Summary display denote the following:

DB2 the name of the DB2 subsystem in which the thread exists

Correlation a 1 to 12 character recovery ‘correlation-id’ associated with the

thread

DB2 plan the 1 to 8 character name of the DB2 plan associated with the

thread

Auth ID The DB2 authorization ID associated with the thread

Connect Name identifies the 1 to 8 character DB2 connection type

Elapsed time represents the elapsed ‘wall clock’ time since the thread was

created in hours, minutes and seconds

TCB Time represents the amount of TCB CPU time expended so far by the

thread, both within the application and within DB2 . For database
access agents this value represents TCB time for the agent. A
value of ‘N/A’ means no timing is available

of SQL Requests represents an ‘accurate’ count of the number of SQL data

manipulation language (DML) statements issued by the

 Chapter 2: Using the Thread/STOPPER Dialog 2-13

application thread. The value displayed for ‘# of SQL Requests’ is
in contrast to the ‘wrap around’ half word counter appearing in the
output of the -DISPLAY THREAD command (whose maximum
value is 32767). Anytime the -DISPLAY THREAD counter
exceeds this value, it ‘wraps around’ or resets to 0. In contrast,
the ‘# of SQL Requests’ value is accurate beyond 2 billion

Status presents a 1 or 2 character code which describes the status of the

connection. These values correspond to the status codes reported
by the -DISPLAY THREAD command and convey the same
meanings. The particular status codes (in alphabetic order) are as
follows:

D the thread is in the process of termination

DA The database access thread slot is currently not associated
with a remote connection and is available to be assigned
to a type 2 inactive thread.

DI The thread is disconnected from an execution unit. There
is no TCB associated with the DB2 thread. This state is
only valid when ’connection name’=RRSAF.

N the thread is in either IDENTIFY or SIGNON status.

ND The thread is in either IDENTIFY or SIGNON status, and
the thread is currently not associated with any TCB.

PT A parallel task thread was established (plan allocated).

QD the thread is queued for termination

QT the CREATE THREAD request was queued

R2 A distributed thread is performing a remote access on
behalf of a request from another location. The thread is
currently an inactive connection (type 2 inactive thread)
and is waiting for an agent to become available to
process.

RA denotes remote access for a distributed thread

RK A distributed thread is performing remote access on
behalf of a request from another location. The thread is
performing an operation that invoked Kerberos services.
This status is displayed until Kerberos services returns
control to DB2.

RN denotes a remote distributed thread that is suspended

RQ a distributed thread is remotely queued

2-14 Thread/SERIES Guide and Reference

RX The distributed thread is executing an XA transaction on
behalf of a request from another location.

SA an active stored procedure

SP A thread is executing within a stored procedure. This
status is displayed until the stored procedure terminates
and returns control to DB2.

SW denotes a stored procedure waiting to be scheduled

T an allied, non-distributed thread is established and a plan
allocated

TD An allied thread was established (plan allocated), and the
thread is currently not associated with any TCB.

TN an allied, distributed thread is suspended

TR an allied thread was distributed to access data at another
location

Where denotes where the thread is currently executing.

PGM indicates the thread is currently executing within application
code

DB2 means the thread is currently active within DB2

COM indicates the thread is executing or suspended within the

communications network (TCP/IP and/or SNA/VTAM).

IDL denotes an inactive database access thread.

Thread Summary - Selection Commands

The following row selection commands are supported:

S selects the thread for detailed display
U unselects the row

 Chapter 2: Using the Thread/STOPPER Dialog 2-15

2.5 Thread Detail Display

The thread detail display shown in Figure 2.12 describes the DB2 thread. The Thread
command field accepts a single character which corresponds to one of the thread
commands described below: A "/" or “?” may also be entered in the command field to
prompt for the following commands:

Blank updates the statistics displayed for the current thread. “S” is the default

command. As a precaution, the ‘S’ command is reinstated each time the display
is refreshed.

C is used to CANCEL the current thread.

D abends the MVS task associated with the current thread and requests that a

dump be written to a SYSUDUMP dataset allocated to the jobstep of the
abended task.

F can be used to FORCE the termination of threads that are not eligible for
conventional cancellation. These include database access threads within a DDF
address space and threads which are being deleted by DB2.

The FORCE command can also be used to remove threads which do not respond
to standard cancellation commands. FORCE should be used judiciously since it
can corrupt data integrity.

With respect to CICS transactions, the FORCE command abends the DB2 thread
subtask, issues a CEMT SET TASK(taskid) PURGE against the CICS
transaction and removes the VTAM or TCP/IP connection associated with the
CICS transaction.

I is used to cancel the ISPF logical screen associated with the thread. If the target

thread is not executing within a TSO/ISPF environment, then the “I” command
is converted internally to a Cancel command.

K is used to forcibly purge a CICS transaction via a CEMT SET TASK(taskid)

FORCEPURGE command

P is used to purge a CICS transaction via a CEMT SET TASK(tasked) PURGE

command

Q is used to QUIESCE the MVS address space associated with the thread. The

thread address space effectively becomes non-dispatchable with the lowest
possible performance characteristics.

R is used to RESUME the MVS address space associated with the thread. The
thread address space resumes execution with its original (pre-quiesced)
performance characteristics.

S updates the statistics displayed for the current thread. “S” is the default

command. As a precaution, the ‘S’ command is reinstated each time the display
is refreshed.

2-16 Thread/SERIES Guide and Reference

V is used to terminate the VTAM or TCP/IP session(s) that underlie a distributed
thread. The “V” command does not apply to local or utility threads.

Dialog users can enter a "/" or “?” in the Thread Command field to display the following
prompting popup window.

| |
| Thread command ... S |
| |
| blank - Update thread statistics |
| C - Cancel thread |
| D - Cancel with Dump |
| F - Force (abend) thread |
| I - Remove ISPF logical screen |
| K - Kill (Force Purge) CICS transaction |
| P - Purge CICS transaction |
| Q - Quiesce thread's address space |
| R - Resume thread's address space |
| S - Update thread statistics |
| V - Remove thread's VTAM or TCP/IP connection |
|___|

 ------------------------ Thread/STOPPER: Thread Detail ------------------------

 Command ===>
 TTS050 - Press ENTER to update stats, enter CMD letter or ? or hit PF3 to exit
 Thread command ===> S (Stats,Cancel,Force, / for prompts)
 More: +

DB2 Thread Identification

 DB2 subsystem ===> DB2E Connection Type ===> CALL ATTACH

 Correlation ID ===> RAI007 Job name ===> RAI007

 DB2 plan name ===> RLX614E ASID ===> 004D

 Auth ID ===> RAI007 Connection name ===> DB2CALL

 Status/Literal ===> T Local (non-distributed) thread

 ACE address ===> 079BCA18 Thread token ===> 949

 Current SQL ID ===> RAI007 Original OperID ===> RAI007

 Logical Unit of Work ID

 Network ID ===> USAMSI0A LU name ===> DB2APP3

 Thread number ===> B194B98845FE Commit Count ===> 40

 Create mmddyyyy ===> 10/30/xxxx Create hh:mm:ss ===> 15:06:54

 Thread Activity (press ENTER to update statistics)

 Where executing ===> PGM Package ===> RLXSQL

 SQL statements ===> 1728 Getpage count ===> 16005

 Total elapsed ===> 24:45:23.109669 Elapsed in DB2 ===> 00:00:13.787186

 TCB (PGM & DB2) ===> 00:00:04.307939 TCB (DB2 only) ===> 00:00:04.067669

 I/O wait time ===> 00:00:00.436961 Lock wait time ===> 00:00:00.012831

 Product under which the SQL application is executing

 Product name ===> DSN Product Version ===> 05

 Product release ===> 01 Prod mod level ===> 0

 SQL applications running at a DB2 subsystem

 Location name ===> RADB2E SNA NetID ===> USAMSI0A

 Chapter 2: Using the Thread/STOPPER Dialog 2-17

 LU name ===> DB2APP3 Connection name ===> DB2CALL

 Connection type ===> BATCH Correlation ID ===> RAI007

 Auth ID ===> RAI007 Plan name ===> RLX614E

Distributed thread with 0002 hops (The last connection hop is described)

 Connection type ===> SNA/VTAM

 Remote location ===> RADSN8 SNA/VTAM location

 Connection ID ===> D3F7F45288512713 VTAM session ID

Client/Server Thread Information

 Client platform ===> Linux

 Client Appl ===> httpd

 Client AuthID ===> rai016

 Thread's Accounting String

 Char 001 - 050 ===> MVS Accounting String

 Char 051 - 100 ===>

 Char 101 - 150 ===>

 Char 151 - 200 ===>

Figure 2.12 DB2 Thread Detail

The Thread Detail display shown in Figure 2.12 describes the DB2 thread. The fields under the Thread
Activity heading are updated each time you press ENTER.

Some of the values appearing under the heading Thread Identification are:

Job Name denotes the name of the job associated with the allied address space
from which the thread originated.

Status/Literal presents the same 1 or 2 character code from the Thread Summary

which describes the status of the connection. In addition, the literal
which follows it provides a more meaningful description of the thread’s
status.

Thread token is the one to five digit decimal number that DB2 assigns to each thread.

Threads connected to DB2 subsystems at a release level prior to DB2
Version 4.1 have no thread token assigned. Their thread token value
displays as 0.

The set of prompts under the heading Logical Unit of Work serve to uniquely identify a thread within the
network.

The set of values appearing under the heading Thread Activity are recalculated each time you press
ENTER. When the following literals appear within a field, they denote the following:

N/P value is not present
N/C value cannot be calculated
N/A value is not applicable

Where Executing denotes where the thread is currently executing.

PGM indicates the thread is currently executing within
application program code

2-18 Thread/SERIES Guide and Reference

DB2 means the thread is currently active within DB2

COM means the thread is currently active within the
communications network (TCP/IP and/or SNA/VTAM).

IDLE denotes an inactive DDF thread.

Package Name identifies the name of the DB2 package that is currently executing

within the plan. If a DBRM rather than a package is currently
active, then the prompt appears as follows:

 DBRM Name ===> RLXSQL

Note that a CLASS 7 trace must be active in order for a Package or
DBRM Name to be available for display. (See the discussion of
Accounting Class Traces in Pre-installation Planning Section
20.2.1). Otherwise the following prompt appears to indicate the
current package or DBRM is either not present or cannot be
determined.

 Current Program ===> N/P

SQL statements represents an ‘accurate’ count of the number of SQL data manipu-
lation language (DML) statements issued by the application thread.

Getpage count denotes the number of GET PAGE requests issued on behalf of the

thread. This includes conditional and unconditional requests as well
as successful and unsuccessful requests. This value is an excellent
measure of thread activity in that the getpage count is reliably
updated by DB2 during thread execution.

Total Elapsed represents the elapsed ‘wall clock’ time since the thread was

created.

Elapsed in DB2 represents the total elapsed time spent by the thread within DB2.

TCB represents the amount of TCB CPU time expended so far by the
(PGM & DB2) thread, within both the application and DB2. For database access

agents this value represents TCB time for the agent. A value of
‘N/P’ means no timing is available.

TCB (DB2 only) represents accumulated home CPU time while in DB2. A value of

‘N/P’ means no timing is available.

I/O wait time represents the amount of time the thread spent waiting to perform

I/O.

Lock wait time represents the amount of time the thread spent waiting to acquire

locks.

 Chapter 2: Using the Thread/STOPPER Dialog 2-19

The set of prompts under the heading Product under which the SQL application is executing serve to
uniquely identify the product that generated the thread’s accounting string. Values are displayed for all
threads for which MVS and DDF accounting information is present.

Product identifies the product that generated the accounting string. The

product identifier may assume one the following values:

• DSN denotes DB2 for OS/390 or DB2 for MVS/ESA

• ARI denotes SQL/DS or DB2 for VM

• SQL denotes DB2 client/server

• QSQ denotes DB2/400

Product Version identifies the version of the product that generated the accounting

string.

Product Release identifies the release level of the product that generated the

accounting string.

Prod mod level identifies the modification level of the product that generated the

accounting string.

The set of prompts under the heading SQL applications running at a DB2 subsystem
refer to MVS and DDF accounting information for those threads whose Product Name
value is ‘DSN’. That is, threads whose accounting strings are generated by either DB2
for OS/390 or DB2 for MVS/ESA. When the Product Name value is other than ‘DSN’,
these fields are blanks.

Location name identifies the DB2 location name for the DB2 system that created

the accounting string.

SNA NetID identifies the SNA NETID of the DB2 system that created the

accounting string.

LU name identifies the SNA LU name of the DB2 system that created the

accounting string.

Connection Name identifies the DB2 Connection Name at the DB2 system where the

SQL application is running.

Connection Type identifies the DB2 Connection Type at the DB2 system where the

SQL application is running.

Correlation ID identifies the DB2 Correlation ID at the DB2 system where the

SQL application is running.

Auth ID identifies the DB2 authorization ID that the SQL application used,

prior to name translation and prior to driving the connection exit at
the DB2 site where the SQL application is running.

Plan name identifies the DB2 PLAN that the SQL application used at the DB2

site running the SQL application.

2-20 Thread/SERIES Guide and Reference

The set of prompts under the Distributed thread headings refer to distributed allied and
data base access threads. The last location or conversation associated with the thread is
displayed. In the case of a non-distributed thread, these value display as N/A or Not
Applicable.

Connection Type identifies the type of network connection used for this

communication ‘hop’. Either TCP/IP or SNA/VTAM.

Remote location identifies the TCP/IP address or SNA/VTAM location associated

with the remote site.

Connection ID uniquely identifies the connection. For SNA/VTAM connections,

this is the session ID. For TCP/IP connections, a 16 bit local port
and 16 bit remote port are displayed.

The set of prompts under the heading Client/Server Thread Information refers to DDF
accounting information for those threads whose Product Name value is ‘SQL’. That is,
threads whose accounting strings are created by DB2 client server products such as DB2
for Windows NT, DB2 for OS/2 and DB2 for various Unix implementations. When the
Product Name value is other than ‘SQL’, these fields are blanks.

Client Platform identifies the Client Platform where the SQL application is

running. This is a blank padded value.

Client Appl identifies the name of the Client Application. This is a blank

padded value.

Client AuthID identifies the authorization ID of the client application process.

The set of prompts under the heading Thread’s Accounting String apply to all threads
for which accounting strings are available. The accounting string value may be up to 200
bytes in length. The accounting string is displayed in its entirety on up to four lines of 50
characters each.

 Chapter 2: Using the Thread/STOPPER Dialog 2-21

2.5.1 Scrolling the Thread Detail Display

The Thread Detail Panel can be scrolled when more lines of information are present than
can be displayed at one time. The Thread Detail Panel contains a scrollable area when
the More:symbol appears below the Thread Command line (as illustrated below in
underlined type).

__

 ------------------------ Thread/STOPPER: Thread Detail ------------------------

 Command ===>

 TTS050 - Press ENTER to update stats, enter CMD letter or ? or hit PF3 to exit

 Thread command ===> S

__

More: -+

The More: scroll indicators denote the following:

• More: + You can scroll forward.
• More: - You can scroll backward.
• More: - + You can scroll both forward and backward.

2.6 Canceling Local Application Threads

This section describes and illustrates how to use the Thread/STOPPER Dialog to cancel a
local DB2 application thread. First, key an ‘S’ into the thread’s row selection field (as
highlighted and underlined in Figure 2.11) to display the Thread Detail panel shown in
Figure 2.12.

The Thread Command prompt is initialized to ‘S’ and appears in underlined type in Fig.
2.11. Just press ENTER to update activity statistics for the Thread. Alternatively, key a
‘C’ into this field and press ENTER in order to cancel the thread, enter ‘D’ to cancel the
thread with a dump or enter ‘F’ to force cancellation of the thread. You can also
explicitly request cancellation of the TCP/IP or SNA/VTAM session(s) that underlie the
conversation(s) between distributed systems through the ‘V’ command or request
cancellation of the ISPF Logical Screen associated with a thread through the ‘I’
command. You can also QUIESCE the MVS address space associated with the thread
through the Q command or RESUME the address space through the R command. Lastly,
you can press PF3 to bypass thread cancellation and return immediately to the Thread
Summary display.

2-22 Thread/SERIES Guide and Reference

---------------------- Thread/STOPPER: DB2 Thread Summary ---- Row 1 to 5 of 5
 Command ===> Scroll ===> PAGE
 TTS053 - (S)elect a thread or press ENTER to refresh summary display

 Date: xx/10/25 Time: 16:08 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status
 Name HH:MM:SS H:MM:SST Requests :Where

 . DB2B RAI6 RLXPLANC RAI6 DB2CALL 00:54:04 0:00:002 118 T :PGM
 . DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:26:36 0:00:000 7 TR:PGM
 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:28:05 0:00:001 14 T :PGM
 S DB2A RAIC EXAMPLE RAIC DB2CALL 00:00:01 0:00:016 22 T :DB2
 . DB2B RAIC EXAMPLE RAIC DB2CALL 00:00:00 0:00:000 28 T :DB2

Figure 2.13 DB2 Thread Summary

-------------------------- Thread/STOPPER: Thread Detail --------------------------
 Command ===>
 TTS050 - Press ENTER to update statistics, enter CMD letter or hit PF3 to exit
 Thread command ===> S (Stats,Cancel,Dump,Force,VTAM,ISPF)

 (Quiesce,Resume)
 DB2 Thread Identification
 DB2 subsystem ===> DB2B Connection Type ===> CALL ATTACH
 Correlation ID ===> RAI1 Job name ===> RAI1
 DB2 plan name ===> EXAMPLE ASID ID ===> 006A
 Auth ID ===> RAI1 Connection name ===> DB2CALL
 Status/Literal ===> T Local (non-distributed) thread
 ACE address ===> 047F55C8 Thread token ===> 130

Logical Unit of Work ID
 Network ID ===> ALIC LU name ===> APPLDB2B
 Thread number ===> AAF9DD7D40F5 Commit Count ===> 1
 Create mm/dd/yy ===> 04/19/xxxx Create hh:mm:ss ===> 19:43:55

 Thread Activity (press ENTER to update statistics)

 Where executing ===> PGM Package Name ===> RLXSQL

 SQL statements ===> 403 Getpage count ===> 6827

 Total elapsed ===> 02:57:44.082255 Elapsed in DB2 ===> 00:00:12.805160

 TCB (PGM & DB2) ===> N/P TCB (DB2 only) ===> 00:00:06.048142

 I/O wait time ===> 00:00:00.000000 Lock wait time ===> 00:00:00.003168

Figure 2.14 Local DB2 Thread Detail

When you request that the thread be canceled (with or without a dump), Thread/STOP-
PER displays a pop-up window while thread cancellation in is progress. Thread/
STOPPER typically waits an installation defined interval (the default is 5 seconds). If the
thread still exists at the end of this interval, then the Thread Detail panel is redisplayed
with the following message:

 TTS173 - Thread still exists. Press ENTER to check status or try another CMD

 Chapter 2: Using the Thread/STOPPER Dialog 2-23

You can recheck the status of the thread every few seconds by pressing ENTER. Once
Thread/STOPPER determines the thread is successfully canceled, it redisplays the Thread
Summary panel as illustrated in Figure 2.15. The row associated with the canceled thread
is flagged with a ‘T’ in its row selection field to denote a terminated thread. Further
information regarding the canceled thread appears in the message window at the bottom
of the display. This information (in addition to other thread and cancellation details) is
recorded in the THREAD_AUDIT table described in Appendix A.

__

---------------------- Thread/STOPPER: DB2 Thread Summary ---- Row 1 to 5 of 5

 Command ===> Scroll ===> PAGE

 TTS053 - (S)elect a thread or press ENTER to refresh summary display

 Date: xx/10/25 Time: 16:08 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status

 Name HH:MM:SS H:MM:SST Requests :Where

 . DB2B RAI6 RLXPLANC RAI6 DB2CALL 00:54:04 0:00:002 118 T :PGM

 . DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:26:36 0:00:000 7 TR:PGM

 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:28:05 0:00:001 14 T :PGM

 . DB2B RAIC EXAMPLE RAIC DB2CALL 00:00:00 0:00:000 28 T :DB2

 T DB2A RAIC EXAMPLE RAIC DB2CALL 00:00:01 0:00:016 22 T :DB2

.--.

| TTS171 - Cancel successful for the following DB2 thread. Plan: EXAMPLE, DB2 |

| Auth ID: RAIC, Job: RAIC, Address space: 0035 and Unique Value |

| AE38F536E89A. The thread task was abended with system code 222 and abend |

| reason code 00DB2000. |

'--'

__

Figure 2.15 Thread Summary reporting a canceled local DB2 thread

2.7 Canceling Distributed Application Threads

Canceling distributed DB2 application threads with Thread/STOPPER works much the
same way as for local threads. Once again, key an ‘S’ into the thread’s row selection
field (as highlighted and underlined in Figure 2.16) to display the Thread Detail panel
shown in Figure 2.17.

The same dialog flow and thread cancellation commands used in the previous section to
cancel local threads apply to distributed threads.

2-24 Thread/SERIES Guide and Reference

__

---------------------- Thread/STOPPER: DB2 Thread Summary ---- Row 1 to 8 of 8
 Command ===> Scroll ===> PAGE
 TTS053 - (S)elect a thread or press ENTER to refresh summary display

 Date: xx/10/25 Time: 19:38 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status
 Name HH:MM:SS H:MM:SST Requests :Where
 . DB2A RAI2 RLXEDIT RAI2 DB2CALL 03:00:08 0:00:001 124 RA:DB2

 . DB2B RAIA RLXEDIT2 RAIA DB2CALL 02:22:38 0:00:002 56 T :PGM
 S DB2B RAI2 RLXEDIT RAI2 DB2CALL 03:00:20 0:00:002 135 TR:PGM

 . DB2A RAI1 RLXPLANC RAI1 DB2CALL 00:01:09 0:00:000 8 RA:DB2
 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:34:19 0:00:001 90 T :PGM
 . DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:01:22 0:00:000 7 TR:PGM
 . DB2A RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2
 . DB2B RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2

__

Figure 2.16 DB2 Thread Summary

__

------------------------- Thread/STOPPER: Thread Detail ------------------------
 Command ===>
 TTS050 - Press ENTER to update statistics, enter CMD letter or hit PF3 to exit
 Thread command ===> S (Stats,Cancel,Dump,Force,VTAM,ISPF)

 (Quiesce,Resume)
 DB2 Thread Identification
 DB2 subsystem ===> DB2B Connection Type ===> CALL ATTACH
 Correlation ID ===> RAI1 Job name ===> RAI1
 DB2 plan name ===> RLXPLANC ASID ID ===> 006A
 Auth ID ===> RAI1 Connection name ===> DB2CALL
 Status/Literal ===> TR Distributed allied thread
 ACE address ===> 047F55C8 Thread token ===> 130

 Logical Unit of Work ID
 Network ID ===> ALIC LU name ===> APPLDB2B
 Thread number ===> AAF9DC0BFF3C Commit Count ===> 1
 Create mm/dd/yy ===> 10/25/xxxx Create hh:mm:ss ===> 19:37:26

 Thread Activity (press ENTER to update statistics)

 Where executing ===> PGM Package Name ===> RLXSQL

 SQL statements ===> 403 Getpage count ===> 6827

 Total elapsed ===> 02:57:44.082255 Elapsed in DB2 ===> 00:00:12.805160

 TCB (PGM & DB2) ===> N/P TCB (DB2 only) ===> 00:00:06.048142

 I/O wait time ===> 00:00:00.000000 Lock wait time ===> 00:00:00.003168

__

Figure 2.17 DB2 Thread Detail

When you request that a distributed thread be canceled (with or without a dump),
Thread/STOPPER displays a pop-up window while thread cancellation in is progress.
Thread/ STOPPER typically waits an installation defined interval (the default is 5
seconds). If the thread still exists at the end of the interval, then the Thread Detail panel
is redisplayed with the following message.

 TTS173 - Thread still exists. Press ENTER to check status or try another CMD

 Chapter 2: Using the Thread/STOPPER Dialog 2-25

You can recheck the status of the distributed thread every few seconds by pressing
ENTER. If the thread remains active, you can reissue the Cancel command or terminate
the TCP/IP and/or VTAM sessions that underlie the distributed thread via the V
command.

When Thread/STOPPER determines the thread is canceled, it redisplays the Thread
Summary panel as illustrated in Figure 2.18. The row associated with the canceled thread
is flagged with a ‘T’ in its row selection field to denote a terminated thread. Further
information regarding the canceled thread appears in the message window at the bottom
of the display. This information (in addition to other thread and cancellation details) is
recorded in the THREAD_AUDIT table described in Appendix A.

__

---------------------- Thread/STOPPER: DB2 Thread Summary ---- Row 1 to 8 of 8
 Command ===> Scroll ===> PAGE

 Date: xx/10/25 Time: 19:40 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status
 Name HH:MM:SS H:MM:SST Requests :Where

 . DB2A RAI2 RLXEDIT RAI2 DB2CALL 03:00:08 0:00:001 124 RA:DB2
 . DB2B RAI2 RLXEDIT RAI2 DB2CALL 03:00:20 0:00:002 135 TR:PGM
 . DB2B RAIA RLXEDIT2 RAIA DB2CALL 02:22:38 0:00:002 56 T :PGM
 . DB2A RAI1 RLXPLANC RAI1 DB2CALL 00:01:09 0:00:000 8 RA:DB2
 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:34:19 0:00:001 90 T :PGM

 . DB2A RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2

 T DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:03:06 0:00:001 7 TR:PGM

 . DB2B RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2

.--.
| TTS181 - The distributed threads associated with the Logical Unit of Work ID |
| (LUWID) ALIC.APPLDSX.AAF9DC0BFF3C were terminated by issuing -CANCEL DDF |
| THREAD. |
.--.

Figure 2.18 Thread Summary reporting a canceled set of distributed DB2 threads

Thread/STOPPER cancels all threads with the specified LUWID using DB2, MVS,
TCP/IP and/or VTAM facilities, as appropriate. If the distributed thread is active within
DB2, Thread/STOPPER issues a -CANCEL DDF THREAD command. As such, the
authorization ID of the user of the Thread/STOPPER dialog (i.e. the user who issues the
-CANCEL DDF THREAD request) should have one of the following DB2 system
privileges:

• SYSOPR authority

• SYSCTRL authority

• SYSADM authority

Use the ‘V’ command to terminate the TCP/IP and/or VTAM sessions that underlie the distributed thread.

2-26 Thread/SERIES Guide and Reference

2.8 Canceling IBM DB2 Utility Threads

This section describes and illustrates how to cancel an IBM DB2 utility with Thread/ STOPPER. This
discussion pertains only to DB2 utilities supplied by IBM.

__

---------------------- Thread/STOPPER: DB2 Thread Summary ---- Row 1 to 8 of 8
 Command ===> Scroll ===> PAGE
 TTS053 - (S)elect a thread or press ENTER to refresh summary display

 Date: xx/10/25 Time: 19:40 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status
 Name HH:MM:SS H:MM:SST Requests :Where

 . DB2A RAI2 RLXEDIT RAI2 DB2CALL 03:00:08 0:00:001 124 RA:DB2
 . DB2B RAI2 RLXEDIT RAI2 DB2CALL 03:00:20 0:00:002 135 TR:PGM
 . DB2B RAIA RLXEDIT2 RAIA DB2CALL 02:22:38 0:00:002 56 T :PGM

 . DB2A RAI1 RLXPLANC RAI1 DB2CALL 00:01:09 0:00:000 8 RA:DB2
 S DB2B RAI1RS DSNUTIL RAIC UTILITY 00:00:00 0:00:000 0 T :DB2

 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:34:19 0:00:001 90 T :PGM
 . DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:03:06 0:00:001 7 TR:PGM
 . DB2A RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2
 . DB2B RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2
__

Figure 2.19 DB2 Thread Summary including an IBM DB2 Utility

__

------------------------- Thread/STOPPER: Thread Detail ------------------------
 Command ===>
 TTS050 - Press ENTER to update statistics, enter CMD letter or hit PF3 to exit

 (Quiesce,Resume)

 Thread command ===> S (Stats,Cancel,Dump,Force,VTAM,ISPF)

DB2 Thread Identification
 DB2 subsystem ===> DB2B Connection Type ===> DB2 UTILITY
 Correlation ID ===> RAI1RS Job name ===> RAI1RS
 DB2 plan name ===> DSNUTIL ASID ID ===> 0046
 Auth ID ===> RAIC Connection name ===> UTILITY
 Status/Literal ===> T Local (non-distributed) thread

 ACE address ===> 047F55C8 Thread token ===> 130

 Logical Unit of Work ID
 Network ID ===> ALIC LU name ===> APPLDB2B
 Thread number ===> AAF9DD0B954B Commit Count ===> 1
 Create mm/dd/yy ===> 10/19/xxxx Create hh:mm:ss ===> 19:41:56

Thread Activity (press ENTER to update statistics)

 Where executing ===> DB2 Package Name ===> DSNUTIL

 SQL statements ===> 403 Getpage count ===> 6827

 Total elapsed ===> 02:57:44.082255 Elapsed in DB2 ===> 00:00:12.805160

 TCB (PGM & DB2) ===> N/P TCB (DB2 only) ===> 00:00:06.048142

 I/O wait time ===> 00:00:00.000000 Lock wait time ===> 00:00:00.003168

Figure 2.20 Detail panel for a DB2 Utility Thread

 Chapter 2: Using the Thread/STOPPER Dialog 2-27

Canceling DB2 utility threads with Thread/STOPPER proceeds in much the same way as for DB2
application threads. Once again, key an ‘S’ into the thread’s row selection field (as highlighted and
underlined in Figure 2.19) to display the Thread Detail panel illustrated in Figure 2.20.

The Cancel Thread prompt appears in underlined type in Figure 2.19. Key a ‘C’ into this field and press
ENTER in order to cancel the DB2 utility. Alternatively, press PF3 to bypass cancellation and return
immediately to the Thread Summary display.

If you elect to cancel the DB2 utility jobstep, Thread/STOPPER displays the Utility Termination panel
illustrated in Figure 2.21. This panel prompts you to press ENTER to confirm the -TERM utility request or
to press the END key to return immediately to the Thread Summary panel.

NOTE: There may be times when there is more than one utility thread
active with the same DB2 authorization ID. Section 2.8.1 describes
how to deal with such circumstances.

-------------------- Thread/STOPPER: Confirm -TERM UTILITY --------------------

Command ===>

TTS082 - Confirm DB2 utility termination or enter END command to bypass

DB2 Utility Identification

 MVS system ===> PRD1

 DB2 SSID ===> DSX

 Utility ID ===> RAI5.RAI1RS

 User ===> RAI5

 Statement ===> 77

 Utility ===> RUNSTATS

 Phase ===> RUNSTATS

 Count ===> 9

 Status ===> ACTIVE

Instructions:

 Press ENTER key to confirm the -TERM UTILITY request

 or

 Enter END command to bypass DB2 utility termination

Figure 2.21 IBM DB2 Utility Detail

Once the DB2 utility thread is canceled, the Thread Summary panel is redisplayed with the utility thread’s
row selection field flagged with a ‘T’ to denote terminated. Further information regarding the canceled
utility thread appears in the message window at the bottom of the display.

2-28 Thread/SERIES Guide and Reference

__

---------------------- Thread/STOPPER: DB2 Thread Summary ------ Row 1 to 8 of 8

 Command ===> Scroll ===> PAGE

 Date: xx/10/25 Time: 19:40 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status

 Name HH:MM:SS H:MM:SST Requests :Where

 . DB2A RAI2 RLXEDIT RAI2 DB2CALL 03:00:08 0:00:001 124 RA:DB2

 . DB2B RAI2 RLXEDIT RAI2 DB2CALL 03:00:20 0:00:002 135 TR:PGM

 . DB2B RAIA RLXEDIT2 RAIA DB2CALL 02:22:38 0:00:002 56 T :PGM

 . DB2A RAI1 RLXPLANC RAI1 DB2CALL 00:01:09 0:00:000 8 RA:DB2

 T DB2B RAI1RS DSNUTIL RAIC UTILITY 00:00:00 0:00:000 0 T :DB2

 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:34:19 0:00:001 90 T :PGM

 . DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:03:06 0:00:001 7 TR:PGM

 . DB2A RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2

 . DB2B RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2

.---.

| TTS076 - IBM DB2 utility RUNSTATS, ID RAIC.RAI1RS, User RAIC was |

| successfully terminated at a cleanup point |

.---.

__

Figure 2.22 Thread Summary reporting a canceled DB2 Utility thread

2.8.1 More than one Utility Thread with the same AUTH ID

This section describes and illustrates how to cancel an IBM DB2 utility via the Thread/ STOPPER Dialog
when there is more than one utility thread with the same Auth ID. As always, the process starts by keying
an ‘S’ into the thread’s row selection field -- as illustrated in Figure 2.23.

The Cancel Thread prompt appears in underlined type in Figure 2.24. Key a ‘C’ into this field and press
ENTER in order to cancel the DB2 utility. Alternatively, press PF3 to bypass cancellation and return
immediately to the Thread/Summary display.

 Chapter 2: Using the Thread/STOPPER Dialog 2-29

---------------------- Thread/STOPPER: DB2 Thread Summary ---- Row 1 to 8 of 8

 Command ===> Scroll ===> PAGE

 Date: xx/10/25 Time: 19:40 MVS system: PRD1

 DB2 Correlation DB2 Plan Auth ID Connect Elapsed TCB time # of SQL Status

 Name HH:MM:SS H:MM:SST Requests :Where

 . DB2A RAI2 RLXEDIT RAI2 DB2CALL 03:00:08 0:00:001 124 RA:DB2

 . DB2B RAI2 RLXEDIT RAI2 DB2CALL 03:00:20 0:00:002 135 TR:PGM

 . DB2B RAIA RLXEDIT2 RAIA DB2CALL 02:22:38 0:00:002 56 T :PGM

 . DB2A RAI1 RLXPLANC RAI1 DB2CALL 00:01:09 0:00:000 8 RA:DB2

 S DB2B RAI1RS DSNUTIL RAIC UTILITY 00:00:00 0:00:000 0 T :DB2

 . DB2B RAI5 RLXPLANC RAI5 DB2CALL 00:34:19 0:00:001 90 T :PGM

 . DB2B RAI1 RLXPLANC RAI1 DB2CALL 00:03:06 0:00:001 7 TR:PGM

 . DB2A RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2

 . DB2B RAIC TTSPLAN RAIC DB2CALL 00:00:00 0:00:000 0 T :DB2

Figure 2.23 DB2 Thread Detail

__

------------------------ Thread/STOPPER: Thread Detail -------------------------

 Command ===>

 TTS050 - Press ENTER to update statistics, enter CMD letter or hit PF3 to exit

 (Quiesce,Resume)

 Thread command ===> S (Stats,Cancel,Dump,Force,VTAM,ISPF)

DB2 Thread Identification

 DB2 subsystem ===> DB2B Connection Type ===> DB2 UTILITY

 Correlation ID ===> RAI1RS Job name ===> RAI1RS

 DB2 plan name ===> DSNUTIL ASID ID ===> 0046

 Auth ID ===> RAIC Connection name ===> UTILITY

 Status/Literal ===> T Local (non-distributed) thread

 ACE address ===> 047F55C8 Thread token ===> 130

 Logical Unit of Work ID

 Network ID ===> ALIC LU name ===> APPLDB2B

 Thread number ===> AAF9DD0B954B Commit Count ===> 1

 Create mm/dd/yy ===> 10/19/xxxx Create hh:mm:ss ===> 19:41:56

 Thread Activity (press ENTER to update statistics)

 Where executing ===> DB2 Package Name ===> DSNUTIL

 SQL statements ===> 403 Getpage count ===> 6827

 Total elapsed ===> 02:57:44.082255 Elapsed in DB2 ===> 00:00:12.805160

 TCB (PGM & DB2) ===> N/P TCB (DB2 only) ===> 00:00:06.048142

 I/O wait time ===> 00:00:00.000000 Lock wait time ===> 00:00:00.003168

Figure 2.24 Detail panel for a DB2 Utility Thread

2-30 Thread/SERIES Guide and Reference

When there are multiple DB2 utilities with the same Auth ID, Thread/STOPPER displays the Utility
Summary panel illustrated in Figure 2.25. Key an ‘S’ into the row selection field of the DB2 utility jobstep
you wish to cancel.

__

------------------- Thread/STOPPER: IBM DB2 Utility Summary ------- Row 1 of 1
Command ===> Scroll ===> PAGE

Local MVS System Information
 Date / Time ===> xx/10/19 19:54
 MVS system ===> PRD1

 DB2 Utility ID User Statement Utility Phase Count Status
 DB2B RAI5.UTIL1 RAI5 37 RUNSTATS RUNSTATS 9 ACTIVE
 DB2B RAI5.UTIL2 RAI5 77 RUNSTATS RUNSTATS 9 ACTIVE

 DB2B RAI5.UTIL4 RAI5 45 RUNSTATS RUNSTATS 9 ACTIVE
S DB2B RAI5.UTIL3 RAI5 67 RUNSTATS RUNSTATS 9 ACTIVE

.--.
|TTS083 - Select which DB2 utility you wish to terminate by keying an "S" in |
|its row selection field |
.--.

__

Figure 2.25 Summary of DB2 Utility threads with the same AUTH ID

Once you identify a DB2 utility for cancellation, Thread/STOPPER displays the Utility Termination panel
illustrated in Figure 2.26. You are prompted to either press ENTER to confirm the -TERM utility request,
or to press the END key to bypass termination and return to the Thread Summary immediately.

-------------------- Thread/STOPPER: Confirm -TERM UTILITY --------------------
Command ===>
TTS082 - Confirm DB2 utility termination or enter END command to bypass
DB2 Utility Identification
 MVS system ===> PRD1
 DB2 SSID ===> DB2B
 Utility ID ===> RAI5.UTIL3
 User ===> RAI5
 Statement ===> 77
 Utility ===> RUNSTATS
 Phase ===> RUNSTATS
 Count ===> 9
 Status ===> ACTIVE

Instructions:
 Press ENTER key to confirm the -TERM UTILITY request
 or
 Enter END command to bypass DB2 utility termination

Figure 2.26 IBM DB2 Utility Detail

 Chapter 3: Batch and Console Commands 3-1

Chapter 3

Batch and Console Commands

This chapter describes the commands you can issue through the Thread/STOPPER Batch and Console
facilities. It also describes the qualifiers used to specify the thread(s) upon which a command will act. The
syntax of all Thread/STOPPER commands is the command name followed by one or more keyword(value)
operands:

command keyword1(value1) keyword2(value2) ...

For example, consider the following command string:

 DISPLAY SSID(DB2T) PLAN(PLAN01)

In this example, the command is DISPLAY while SSID and PLAN are qualifiers. The SSID qualifier
identifies the DB2 subsystem in which a thread exists while the PLAN qualifier specifies the plan name
associated with a set of thread(s).

This chapter enumerates the commands and qualifiers common to both the Thread/STOPPER Batch and
Console Facilities. The next chapter (Chapter 4) describes and illustrates how to specify commands to the
Thread/STOPPER Batch Facility. (It reads them from a TTSIN file you define in your batch jobstep).
Chapter 5 provides annotated examples in which the Thread/STOPPER Console Facility reads and executes
commands entered from an MVS console.

3-2 Thread/SERIES Guide and Reference

3.1 Thread/STOPPER commands

You direct Thread/STOPPER to perform services -- like displaying and canceling threads -- through
commands. This section describes each Thread/STOPPER command in turn, in alphabetical order.

NOTE: All Thread/STOPPER commands can be abbreviated to their
first 3 characters. For example, the CANCEL command can be
abbreviated as CAN while the DISPLAY command can be abbreviated
as DIS.

3.1.1 CANCEL command

The CANCEL command causes Thread/STOPPER to terminate the DB2 thread(s) that satisfy the
qualification criteria you specify. For example, the following command string cancels a thread on DB2
subsystem DB2T whose plan name is PLAN01.

 CANCEL SSID(DB2T) PLAN(PLAN01)

As a precaution, Thread/STOPPER rejects any CANCEL command which would cancel more than a single
thread. The only exception is when the Thread/STOPPER Batch Facility is invoked with
CANCEL_MULTIPLE as an execution parameter (as described in Chapter 4).

NOTE: Be careful to use the CANCEL_MULTIPLE option judiciously
since you may inadvertently cancel many (even all) active DB2 threads.

FORCE keyword of CANCEL command

The FORCE keyword of CANCEL can be used after a conventional thread cancellation request fails.
FORCE bypasses a number of checks the CANCEL command normally makes to determine whether a
thread is eligible to be canceled. (See Section 3.3). The FORCE option of CANCEL should be used
judiciously.

 CANCEL SSID(DB2T) PLAN(PLAN01) FORCE

TCPIP keyword of the CANCEL command

The TCPIP keyword of the CANCEL command requests that a TCPIP ‘DROP connection’ command be
issued to terminate the TCPIP connection that underlies a distributed thread. The TCPIP option is useful
when a distributed thread is currently suspended in TCPIP or a previous CANCEL command directed
towards a distributed thread has failed. For example, the following command string terminates the TCPIP
session that underlies the distributed thread whose plan name is PLAN01.

 CANCEL SSID(DB2T) PLAN(PLAN01) TCPIP

 Chapter 3: Batch and Console Commands 3-3

VTAM keyword of the CANCEL command

The VTAM keyword of the CANCEL command requests that the VTAM command ‘V NET,TERM’ be
issued to terminate the VTAM session(s) that underlie a distributed thread. The VTAM option is useful
when a distributed thread is currently suspended in VTAM or a previous CANCEL command failed. For
example, the following command string terminates the VTAM session that underlies the distributed thread
whose plan name is PLAN01.

 CANCEL SSID(DB2T) PLAN(PLAN01) VTAM

3.1.1.1 Canceling inactive DB2 threads

Database Access Threads (DBAT) that are in inactive status are not tracked (nor reported) by the DB2 IFI
interface. As such, inactive Database Access Threads require special action to cancel them. A DBAT
thread is identified by the thread token or LUWID associated with it. You can display inactive threads by
issuing a DB2
-DISPLAY THREAD command which specifies TYPE(INACTIVE):

-DISPLAY THREAD(*)TYPE(INACTIVE)

The -DISPLAY THREAD command displays a report similar to the following:

DSNV401I -DB2T DISPLAY THREAD REPORT FOLLOWS -
DSNV424I -DB2T INACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER R2 0 ICMClient.ex CM@JCH DISTSERV 0044 55730
 V437-WORKSTATION=S157267, USERID=cm@jch,
 APPLICATION NAME=ICMClient.exe
 V445-GA000020.K893.070522150308=55730 ACCESSING DATA FOR 10.0.0.32
 V447--LOCATION SESSID A ST TIME
 V448--10.0.0.32 446:37704 W R2 0714210080927

You can try to cancel the DBAT thread (whose token is 55730 in the example), via the following DB2
command:

-CANCEL DDF THREAD(55730)

DB2 indicates its acceptance of the CANCEL request. However, the thread will remain (with inactive
status). Unless and until subsequent workstation action (re)activates the thread, DB2 does not terminate the
thread nor remove it.

However, the immediate removal of an inactive thread may occasionally be required, such as when a client
application is inaccessible. For these cases, the Thread/STOPPER Batch and Console facilities have
implemented the following form of the CANCEL command:

CANCEL SSID(ssid) TYPE(INACTIVE | INA) { LUWID(token | luwid) }

The TYPE(INACTIVE) keyword specifies the CANCEL should operate on inactive threads. If you omit
the LUWID parameter, then all inactive threads will be canceled, otherwise only the thread with the given
LUWID (or thread token) will be canceled.

Example 1: Cancel all inactive threads on DB2 subsystem DB2T

3-4 Thread/SERIES Guide and Reference

CANCEL SSID(DB2T) TYPE(INA)

Example 2: Cancel the inactive thread on DB2 subsystem DB2T whose thread
token is 55730:

CANCEL SSID(DB2T) TYPE(INA) LUWID(55730)

Example 3: Cancel the inactive thread on DB2 subsystem DB2T whose
concatenated LUWID value is GA000020.K893.070522150308:

CANCEL SSID(DB2T) TYPE(INA) LUWID(GA000020.K893.070522150308)

When the inactive thread is canceled successfully, the TCP/IP session associated with the inactive thread is
also terminated.

Example 4: Issue a CANCEL command via the Thread/CONSOLE facility:

@xx TTSE042 - Thread/STOPPER is waiting for work
R xx,CAN SSID(DB2T) TYPE(INA) LUWID(55730)
IEE600I REPLY TO xx IS; CAN SSID(DB2T) TYPE(INA) LUWID(55730)
+

DB2 issues a DSNL511I message to indicate the TCP/IP session underlying a DB2 thread has terminated:

DSNL511I -DB2T DSNLIENO TCP/IP CONVERSATION FAILED 714
 TO LOCATION 10.0.0.32
 IPADDR=10.0.0.32 PORT=37704
 SOCKET=RECV RETURN CODE=3448 REASON CODE=00000000
+TTSE069 - Inactive thread with LUWID= was
GA000020.K893.070522150308
 canceled

NOTE: In order to successfully execute CANCEL TYPE(INACTIVE) commands, the pre-installation
requirements described in Section 20.2.6 of this publication must be satisfied. Section 20.2.6 describes the
requirements to cancel inactive threads in detail.

3.1.2 DB2S command

The DB2S command displays all DB2 subsystems defined to the local MVS system. If a DB2 subsystem is
active then the DB2S command also displays its Version and Release level. The DB2S command requires
no operands. For example:

 DB2S

 Chapter 3: Batch and Console Commands 3-5

3.1.3 DISPLAY command

The DISPLAY command causes Thread/STOPPER to display the DB2 thread(s) that meet your
qualification criteria. For example, the following command string displays all threads on DB2 subsystems
DB2T and DB2P whose plan name is PLAN01.

 DISPLAY SSID(DB2T,DB2P) PLAN(PLAN01)

3.1.3.1 Displaying inactive threads

For a description of DB2 inactive threads and how they can be canceled, see section 3.1.1.1.

To display DB2 inactive threads via the Thread/STOPPER Batch and Console facilities, use the following
command:

DISPLAY SSID(ssid) TYPE(INACTIVE | INA)
{ LUWID(thread_token | luwid) }

The display is the same as produced by the following DB2 command:

–DIS THREAD(*) TYPE(INA) { LUWID(thread_token | luwid) }

appended to the Thread/STOPPER DISPLAY command for an active thread.

3.1.4 DSN command

The DSN command lets you execute the same DB2 command on multiple DB2 systems simultaneously.
For example, the following command string displays all in-doubt threads on DB2 subsystems DB2T and
DB2P:

 DSN SSID(DB2T,DB2P) -DISPLAY THREAD(INDOUBT)

3.1.5 XLOCK command

The XLOCK command displays all DB2 threads which hold exclusive locks. The XLOCK command is
useful in identifying threads that may cause contention. For example, the following command string
displays all exclusive locks held by threads of DB2 subsystem DB2T:

 XLOCK SSID(DB2T)

NOTE: The XLOCK command requires no qualifiers beyond SSID
(DB2 subsystem ID)

3-6 Thread/SERIES Guide and Reference

3.1.6 LOCK command

The LOCK command displays information about the DB2 locks held by the threads that meet your
qualification criteria. For example, the following command string displays the locks held by threads on
subsystem DB2T with a plan name of PLAN01:

 LOCK SSID(DB2T) PLAN(PLAN01)

3.1.7 STATUS command

The STATUS command displays the current settings of Thread/STOPPER execution parameters. The
STATUS command requires no operands so you simply issue the command as follows:

STATUS

3.1.8 STOP command

Issue the STOP command to cause the Thread/STOPPER Console Facility to terminate. The STOP
command requires no operands so you simply issue the command as follows:

STOP

3.2 Specifying Thread Qualification Criteria

Use Thread/STOPPER qualification keywords to specify the thread(s) upon which your commands will act.
The syntax for all Thread/STOPPER qualifications is the qualifier keyword followed by the qualifying
value within parentheses as in: keyword(value)

Thread/STOPPER supports the use of standard SQL wildcard characters in qualifiers. The underscore
character ‘_’ is a placeholder which matches any one character while the percent sign character ‘%’
matches any number of characters.

For example, PLAN(PLAN%) selects all threads whose plan names start with the characters ‘PLAN’. The
qualifier CORR(USER_0T%) selects all threads whose correlation IDs start with the string ‘USER’,
followed by any single character, followed by the string ‘0T’, followed by any other characters.

If you wish the qualification to be treated exactly as specified, do not use wildcard characters. For example
if you specify AUTH(TECHS1) then only authorization ID TECHS1 will be selected. In contrast, the
authorization ID TECHS1A will not be selected.

This section describes each Thread/STOPPER qualifier keyword in turn, in alphabetical order.

NOTE: The SSID keyword (which identifies the DB2 subsystem) is
always required since it has no default value. Nor may the SSID value
be partially qualified.

 Chapter 3: Batch and Console Commands 3-7

3.2.1 ACE qualifier

The ACE qualifier identifies the Agent Control Element associated with a DB2 thread. The ACE value is
an address comprised of 8 hexadecimal digits. Together with the SSID qualifier, the ACE uniquely
identifies a DB2 thread. The Thread/STOPPER DISPLAY command provides the ACE address of each
thread it monitors. You can reference these ACE addresses in CANCEL commands you subsequently
issue.

Example: CANCEL SSID(DB2T) ACE(08704808)

NOTE: Wildcard characters are not permitted in ACE specification.

3.2.2 ASID qualifier

The ASID qualifier provides the Address Space Identifier of a thread’s allied address space. ASID values
are specified as 4 hexadecimal digits.

Example: CANCEL SSID(DB2T) ASID(012A)

NOTE: Wildcard characters are not permitted in ASID specification.

3.2.3 AUTH qualifier

The AUTH keyword identifies the primary authorization ID of the desired thread(s). AUTH may be up to
8 characters long.

Example: DISPLAY SSID(DB2T) AUTH(DB2USER)

NOTE: AUTH qualifier can be specified using ‘%’ and ‘_’ pattern characters.

3.2.4 CONN qualifier

The Connection Name qualifier identifies the 8 character DB2 connection type. Possible values include
TSO, BATCH, DB2CALL and UTILITY.

Threads originating in CICS and IMS address spaces may have additional connection names -- IMS-ID (for
IMS threads) and CICS-ID (for CICS threads) while . DB2 internal threads have a CONN value of the
DB2 SSID. For distributed database access threads that employ the DB2 private protocol and for threads
using the DRDA protocol, CONN should contain the connection name of the thread at the requesting
location. For threads using the DRDA protocol from a non-DB2 requester, CONN should contain the
constant 'SERVER'.

The following example displays all threads on DB2T connected through the Call Attachment Facility:

Example: DISPLAY SSID(DB2T) CONN(DB2CALL)

NOTE: CONN qualifier can be specified using ‘%’ and ‘_’ pattern characters.

3-8 Thread/SERIES Guide and Reference

3.2.5 CORR qualifier

The CORR keyword denotes a field of up to 12 characters in length whose significant characters identify
the Correlation ID of the desired thread(s). The following example displays all threads on DB2T whose
correlation IDs start with the characters ‘RAI’.

Example: DISPLAY SSID(DB2T) CORR(RAI%)

NOTE: CORR qualifier can be specified using ‘%’ and ‘_’ pattern characters.

3.2.6 LOCN qualifier

The Location Name identifies the name of the location from which distributed agents originate. Location
name may be up to 16 characters long.

Example: DISPLAY SSID(DB2T) LOCN(LOCATIONDB2T)

NOTE: LOCN qualifier can be specified using ‘%’ and ‘_’ pattern characters.

3.2.7 LUWI qualifier

The LUWI keyword identifies a thread by its logical-unit-of-work ID. A full LUWI value is comprised of
four concatenated components: a Network ID, a LU name, a uniqueness value and a Commit count. It is
very difficult to correctly enter a LUWI as a single 64-byte hexadecimal value. Instead, RAI recommends
that you specify the value of each component of the LUWI individually as described in subsections 3.2.7.1
through 3.2.7.4.

NOTE: If the value of a LUWI component is not specified, then a value
of binary zeros is assumed. Such a value is treated as a generic
(wildcard) selector for any value.

3.2.7.1 The NETID qualifier

The NETID qualifier is the first component of the logical-unit-of-work ID. It specifies the SNA Network
ID associated with a thread. NETID can be between 1 and 8 characters.

Example: CANCEL SSID(DB2T) NETID(IBMNET)

 Chapter 3: Batch and Console Commands 3-9

3.2.7.2 The LUNAME qualifier

The LUNAME qualifier is the second component of the logical-unit-of-work ID. It specifies an SNA
Logical Unit Name between 1 and 8 characters long.

Example: CANCEL SSID(DB2T) LUNAME(LUDB2T)

3.2.7.3 The UNIQ qualifier

The UNIQ qualifier is the third component of the logical-unit-of-work ID. It specifies the Unique Value
associated with a particular thread and Logical-Unit-of-Work. UNIQ qualifiers are exactly 12 hexadecimal
digits long.

Example: DISPLAY SSID(DB2T) UNIQ(AB034568A188)

3.2.7.4 The CCNT qualifier

The fourth component of the logical-unit-of-work ID specifies a Commit Count value. Commit count
values are between 1 and 4 hexadecimal digits long.

Example: DISPLAY SSID(DB2T) CCNT(1)

3.2.8 OPID qualifier

The OPID qualifier specifies the original authorization ID associated with a set of thread(s). OPID values
are between 1 and 8 characters long.

Example: DISPLAY SSID(DB2T) OPID(SIGNON)

NOTE: OPID qualifier can be specified using ‘%’ and ‘_’ pattern characters.

3.2.9 PLAN qualifier

This keyword specifies the DB2 application plan which is used as a thread selection qualifier.

Example: DISPLAY SSID(DB2T) PLAN(PLAN01)

The Plan qualifier denotes an 8 byte character field whose significant characters identify the name of the
DB2 application plan associated with a set of threads.

NOTE: PLAN qualifier can be specified using ‘%’ and ‘_’ pattern characters.

3-10 Thread/SERIES Guide and Reference

3.2.10 SSID qualifier

The SSID qualifier is required with all Thread/STOPPER commands. It identifies the name of the DB2
Subsystem in which a set of thread(s) exist as well as where a Thread/STOPPER command is to execute.
DB2 subsystem names may be up to 4 characters long.

Example: DISPLAY SSID(DB2T,DB2P)

3.3 LOCKS keyword and its qualifiers

Use the LOCKS keyword and its associated qualifiers to specify the DB2 resources of concern, and by
inference the thread(s) upon which a Thread/STOPPER DISPLAY or CANCEL command should act.

This section first describes the LOCKS operand and then its associated qualifiers in turn, in alphabetical
order.

3.3.1 LOCKS (S | IS | X | IX) keyword

The LOCKS keyword can be used with the DISPLAY and CANCEL commands. It identifies the threads
that hold one of the following locks:

S - Thread owns a resource in shared mode
IS - Thread intends to share a resource
X - Thread owns a resource in exclusive mode
IX - Thread intends to own a resource exclusively

If the lock type parameter is omitted then all lock types will be selected.

For example, the following command string displays all exclusive locks held by threads onthe DB2
subsystems DB2T and DB2P.

Example: DISPLAY SSID(DB2T,DB2P) LOCKS(X)

NOTE: TheLOCKS keyword requires specification of one of the
qualifiers: DBNAME, or DBNAME and TSNAME, or TBNAME.

 Chapter 3: Batch and Console Commands 3-11

3.3.2 DBNAME qualifier

The DBNAME qualifier identifies all threads holding locks on a DB2 database.

Example: CANCEL SSID(DB2T) DBNAME(DSNDB04) LOCKS(X)

This command directs Thread/STOPPER to cancel all threads which hold exclusive locks on the database
DSNDB04.

3.3.3 TBNAME qualifier

The TBNAME qualifier identifies the DB2 table name and is specified as owner.table.

Example: CANCEL SSID(DB2T) TBNAME(PAYROLL.EMPLOYEE_TABLE) LOCKS

This command directs Thread/STOPPER to cancel all threads which hold any lock on the table named
PAYROLL.EMPLOYEE_TABLE

3.3.4 TSNAME qualifier

The TSNAME qualifier must always be specified together with DBNAME qualifier. It identifies all
threads holding locks on the specified DB2 table space. The TSNAME specifies 1 to 8 characters name of
a DB2 table space.

Example: CANCEL SSID(DB2P) DBNAME(PRODDB) TSNAME(EMPLOYTS) LOCKS

This command directs Thread/STOPPER to cancel all threads holding locks on the table space named
EMPLOYTS within the DB2 database named PRODDB.

3.4 Thread cancellation strategy

Thread/STOPPER Batch and Console facilities implement the following CANCEL strategy based upon the
DB2 thread type:

• If a DB2 Utility thread, then issue the –TERM UTIL DB2 command.

• If the FORCE keyword is specified, then issue an abend in the allied address space under
the thread’s Task Control Block (TCB). This cancellation mode should only be used as a
last resort when all other cancellation methods have failed and you wish to forcibly
remove the thread.

• If the TCPIP keyword is specified, then a VARY TCPIP DROP command is issued to

terminate the TCP/IP connection that underlies this DDF thread. This command should
be issued only after both –CANCEL DDF and –CANCEL THREAD commands are
issued (as described below). Issue this command when the thread is ‘hung’ in TCP/IP.

• If the VTAM keyword is specified then a V NET,TERM,SESS command is issued to

terminate the parallel VTAM session that underlies this DDF thread. This command

3-12 Thread/SERIES Guide and Reference

should be issued only after both the -CANCEL DDF and –CANCEL THREAD
commands are issued (as described below). Issue this command when the thread is
‘hung’ in VTAM.

• If the thread status is at the plan level (as opposed to having SIGNON or IDENTIFY

status) and the plan name is DISTSERV, then issue a -CANCEL DDF command.

• If the thread attachment is CICS, then identify the task ID associated with the thread and

issue the CICS command: CEMT SET TASK (taskid) FORCE

3.5 Data Sharing Group (DSG) operation

Thread/STOPPER determines if a DB2 subsystem is a member of a Data Sharing Group (DSG). If so, then
DISPLAY and CANCEL commands are executed on each of the active members of the Data Sharing
Group of which the local DB2 subsystem is a member. This means that in a DSG environment, a single
copy of Thread/STOPPER can manage all the threads of the Data Sharing Group.

The SSID keyword must specify the name of a DB2 subsystem active on the MVS image in which
Thread/STOPPER is executing. All Thread/STOPPER commands are available for all members of DB2
Data Sharing Group with the following exceptions:

• The FORCE, VTAM, TCPIP and CICS keywords only apply to members of the Data
Sharing Group that reside on the local MVS image

• CANCEL notifications are sent only to TSO User IDs active on the local MVS

image

IBM has steadily improved the DB2 CANCEL command with each new version of DB2 for z/OS. As
such, the need for special cancellation strategies beyond –CANCEL THREAD and –CANCEL DDF are
greatly reduced.

 Chapter 4: The Thread/STOPPER Batch Facility 4-1

Chapter 4

The Thread/STOPPER Batch Facility

The Thread/STOPPER Batch Facility allows you to specify a single Thread/STOPPER command or set of
commands within the context of a batch jobstep. This chapter describes and illustrates how to make
requests of the Batch Facility using the commands and qualifiers common to both the Thread/STOPPER
Batch and Console Facilities. (These common commands and qualifiers were described in Chapter 3).

This chapter also documents the initialization parameters to invoke the Batch and Console Facility
programs. These parameters govern operation of both programs during a particular run. Several
parameters unique to the Thread/STOPPER Console Facility are documented separately in the discussion
of the Console program that appears in Chapter 5.

4-2 Thread/SERIES Guide and Reference

4.1 Preparing JCL for the Thread/STOPPER Batch Facility

This first section describes the JCL needed to run the Thread/STOPPER Batch Facility as
a step of a batch jobstream. Figure 4.1 illustrates the JCL distributed as member TTSRB
of the TTSCNTL library. The numbers in parentheses to the right of the JCL statements
correspond to the numbered, annotating paragraphs which follow the figure.

__

//jobname JOB (1)
//TTSBATCH EXEC TTSPROC, (2)
// PROG=TTSB (3)
//TTSIN DD * (4)
CANCEL SSID(ssid) PLAN(someplan)

//

__

Figure 4.1 JCL to run the Thread/STOPPER Batch Facility

(1) Define a valid job statement.

(2) Invoke the Thread/SERIES catalogued procedure named TTSPROC which

defines common JCL used to run several Thread/SERIES programs. This
procedure is distributed as member TTSPROC of the TTSCNTL library and is
typically copied into one of your site’s catalogued procedure libraries during
Thread/SERIES installation. Alternatively, TTSPROC can be used as an
instream procedure. Lastly, the TTSCNTL dataset which contains TTSPROC
can be defined as a JCL procedure library (on a job basis) through a JCLLIB
statement or some functionally equivalent dynamic PROCLIB facility.

(3) Run the Thread/STOPPER Batch Facility program named TTSB.

(4) Thread/STOPPER reads your Batch Facility commands from the file named

TTSIN. Figure 4.1 illustrates how these commands may be specified instream
with your jobstep following the TTSIN DD statement. Alternatively, the TTSIN
DD statement can reference a dataset which contains Thread/STOPPER
commands.

NOTE: You can specify several Batch Facility commands in
a single TTSIN input stream

 Chapter 4: The Thread/STOPPER Batch Facility 4-3

4.2 Thread/STOPPER Execution Parameters

This section describes the execution-time parameters that govern the operation of the Thread/STOPPER
Batch and Console Facility programs. These parameters must be specified in the startup JCL that invokes
the Thread/STOPPER Batch or Console Facilities. The numbers in parentheses to the right of the JCL
statements correspond to the numbered, annotating paragraphs which follow the figure.

__

//jobname JOB

//TTSBRUN EXEC TTSPROC, (1)
// PROG=TTSB, (2)
// PARMS=‘keyword1(value1) keyword2(value2)’ (3)
__

Figure 4.2 Specifying execution time parameters

(1) Invoke the general Thread/SERIES procedure

(2) Run the Thread/STOPPER Batch Facility program named TTSB.

(3) Execution-time parameters are specified through the PARMS operand with

which the TTSPROC procedure is invoked. The syntax of these execution-time
parameters are of the following general form:

keyword1(value1) keyword2(value2) ...

 Each keyword value must be specified precisely. That is, no wildcard characters

such as ‘_’ or ‘%’ are permitted.

This section describes each Thread/STOPPER execution-time parameter in turn, in alphabetical order.

4.2.1 ACS keyword

The ACS keyword identifies the name of the member of the TTSCNTL library which
contains JCL to invoke the Thread/STOPPER Audit Facility. The Audit Facility ensures
that complete details about the cancellation of a particular thread are recorded in the
Thread_Audit table, even when cancellation takes an indefinite period of time to
complete successfully. You need specify this operand only if the member containing this
JCL has been renamed from its default value of TTSRACS.

Example: //TTSBRUN EXEC TTSPROC,
 // PROG=TTSB,
 // PARMS=‘ACS(TTSRACS)’

4-4 Thread/SERIES Guide and Reference

4.2.2 AUDIT keyword

The AUDIT keyword specifies -- (YES) or (NO) -- whether to invoke the Thread/STOPPER Audit
Facility. A THREAD_AUDIT table must have been created at installation time in order to use the Audit
Facility.

Example: // PARMS=‘AUDIT(NO)’

4.2.3 CANCEL_MULTIPLE keyword
 (Thread/STOPPER Batch Facility only)

The CANCEL_MULTIPLE parameter specifies -- (YES) or (NO) -- whether you can cancel more than
one thread with a single command in the event that more than one thread meets your qualification criteria.
The default is NO. Use this keyword sparingly since you may inadvertently cancel many (even all) DB2
threads.

Example: // PARMS= ‘CANCEL_MULTIPLE(YES)’

4.2.4 CAN_DUMP keyword

The CAN_DUMP keyword specifies -- (YES) or (NO) -- whether Thread/STOPPER should obtain a
DUMP of a canceled thread’s allied thread address space. The default is NO.

Example: // PARMS=‘ CAN_DUMP(YES)’

4.2.5 CAN_RETRY keyword

The CAN_RETRY keyword specifies -- (YES) or (NO) -- whether to allow retry processing in the MVS
task associated with a canceled thread. CAN_RETRY applies when the task associated with a thread issues
the ESTAE macro and specifies a recovery and retry routine. The default is YES. In this case, the MVS
task will be permitted to pass control to its retry routine and continue processing.

Example: // PARMS=‘ CAN_RETRY(YES)’

4.2.6 CAN_STEP keyword

The CAN_STEP keyword specifies -- (YES) or (NO) -- whether the jobstep task associated with a
canceled thread should be abnormally terminated. The default is NO. This allows a TSO user for example
to remain in session even if one of their DB2 thread tasks is canceled.

Example: // PARMS=‘ CAN_STEP(YES)’

 Chapter 4: The Thread/STOPPER Batch Facility 4-5

4.2.7 The LIMIT keyword

The LIMIT keyword defines the maximum number of output lines the DISPLAY command can produce.
The default is 9999 lines.

Example: // PARMS=‘ LIMIT(50)’

4.3 Batch Facility Examples

This section provides several annotated examples of Thread/STOPPER Batch Facility jobstreams. To
remind, the syntax of all Thread/STOPPER commands is the command name followed by one or more
qualifier keyword(value) operands:

 command qualifier1(value1) qualifier2(value2)

Example 1: Display all active threads on subsystems DB2T and DB2P whose plan
names start with the string ‘ABC’.

//jobname JOB
//TTSBATCH EXEC TTSPROC,
// PROG=TTSB
//TTSIN DD *
 DISPLAY SSID(DB2T,DB2P) PLAN(ABC%)
//

Example 2: Cancel all threads on DB2 subsystem DB2T with a plan name of ABC.

Ensure that Thread/STOPPER honors the CANCEL command if more
than one thread meets this qualification criteria by specifying
CANCEL_MULTIPLE(YES) as a parameter with which the Batch
Facility is invoked.

//jobname JOB
//TTSBATCH EXEC TTSPROC,
// PROG=TTSB,
// PARMS=‘CANCEL_MULTIPLE’
//TTSIN DD *
 CANCEL SSID(DB2A) PLAN(ABC)
//

4-6 Thread/SERIES Guide and Reference

 Chapter 5: The Thread/STOPPER Console Facility 5-1

Chapter 5

The Thread/STOPPER Console Facility

This chapter describes how Thread/STOPPER commands may be entered from an MVS console. This
chapter first describes how to invoke the Thread/STOPPER Console Facility and continues with a
discussion of the invocation parameters unique to the Console Facility. Lastly, a series of annotated
examples are presented to illustrate an operator’s interaction with the Thread/STOPPER Console Facility.

5.1 Invocation Parameters unique to the Console Facility

Section 4.2 described the common execution-time parameters that govern the operation of
Thread/STOPPER’s Batch and Console Facilities. These parameters must be specified in the startup JCL
used to invoke the Thread/STOPPER Batch and Console Facilities. This section describes the invocation
parameters unique to the Console Facility. These unique parameters are described in alphabetical order in
the subsections which follow.

5.1.1 CANCEL_MULTIPLE parameter

The Thread/STOPPER Console Facility ignores any CANCEL_MULTIPLE parameter specification you
code. In the context of the Thread/STOPPER Batch Facility, the CANCEL_MULTIPLE parameter
specifies whether you can cancel more than one thread with a single command (in the event that more than
one thread meets your qualification criteria). In contrast, the Console Facility permits you to cancel only
one thread at a time.

5-2 Thread/SERIES Guide and Reference

5.1.2 DESCRCDE parameter

The DESCRCDE keyword defines the MVS Console Message Descriptor Code(s) to be assigned to any
WTO messages issued by the Console Facility. You can specify a list of one or more of the descriptor
codes shown in Figure 5.1. The DESCRCDE is optional and has no default value.

Example:

//TTSCON EXEC TTSPROC, Invoke the Thread/SERIES procedure

// PROG=TTSCON, Run the Thread/STOPPER Console program

// PARMS=' DESCRCDE(1,2,3)'

Desc Desc

Code Description Code Description

1 System failure 9 Operator request

2 Immediate action required 10 Dynamic status display

3 Eventual action required 11 Critical eventual action

4 System status 12 Reserved

5 Immediate command response 13 Reserved

6 Job status 15 Reserved

7 Application program 14 Reserved

8 Out-of-line message 16 Reserved

Figure 5.1 MVS Descriptor Codes

5.1.3 ORIGIN keyword

The ORIGIN keyword specifies how operators and authorized users will communicate with the Console
Facility. ORIGIN refers to where commands originate.

WTOR

Coding ORIGIN(WTOR) specifies that operator communication with the Console Facility is accomplished
by responding to an outstanding WTOR reply number. For example, when activated or idle, the Console
Facility waits on a reply to a command prompt like the following:

@xx Thread/STOPPER is ready and waiting for work

where xx is any number from 0 to 99 assigned by MVS. Thread/STOPPER commands are issued by
replying to the outstanding message number. For example:

R xx,DISPLAY SSID(DB2T) PLAN(ABC%)

 Chapter 5: The Thread/STOPPER Console Facility 5-3

QEDIT

Coding ORIGIN(QEDIT) specifies that operator communication with the Console Facility is accomplished
through MVS MODIFY commands. Suppose, for example, the Console Facility is submitted as a job
named TTSCON. Then, to issue a Thread/STOPPER command, you need to enter an MVS MODIFY
command -- such as the following -- from the MVS Console:

MODIFY TTSCON, DISPLAY SSID(DB2T) PLAN(ABC%)

NOTE: In contrast to the WTOR option, there is no message number
xx displayed through the MODIFY interface.

5.1.4 ROUTECDE keyword

The ROUTECDE keyword defines the MVS Console Message Routing Codes to be assigned to WTO and
WTOR messages issued by the Console Facility. The default is ROUTECDE(11). You can specify a list
of one or more of the routing codes shown in Figure 5.2:

Example: ROUTECDE(1,2,3)

Route Route

Code Description Code Description

1 Master console action 9 System security

2 Master console information 10 System error/maintenance

3 Tape pool 11 Programmer information

4 Direct access pool 12 Emulators

5 Tape library 13 User defined

6 Disk library 15 User defined

7 Unit record pool 14 User defined

8 Teleprocessing control 16 User defined

Figure 5.2 MVS Routing Codes

5-4 Thread/SERIES Guide and Reference

5.2 Invoking the Console Facility

The Thread/STOPPER Console Facility can be executed as a job or started task. Section 20.10.2 describes
how the JCL to invoke the Console Facility is set up at installation time while Section 20.10.3 describes
DB2 Authorization ID considerations for started tasks. Thereafter, you can invoke the Thread/STOPPER
Console Facility as a started task by executing the following MVS console command:

S TTSRCON.TTS

where TTSRCON specifies the name of the started procedure for the Thread/STOPPER Console Facility.
Alternatively, you can invoke the Console Facility as a standard job by submitting JCL such as:

//job JOB

//TTSCON EXEC TTSPROC, Invoke the Thread/SERIES procedure

// PROG=TTSCON , Run the Thread/STOPPER Console program

// PARMS=‘ORIGIN(WTOR)’ Specify runtime parameters

//

5.3 Console Facility Command Examples

This section provides a series of annotated examples in which Thread/STOPPER commands are issued to
the Console Facility. In each example, the command is issued as a console reply to WTOR number 88.

NOTE: Thread/STOPPER commands can also be issued through the
MVS MODIFY interface if ORIGIN(QEDIT) is specified as an
invocation parameter on the Console Facility startup procedure. See
Section 5.1.3.

5.3.1 CANCEL command example

This example assumes you first issued a Thread/STOPPER DISPLAY command to determine the ACE
(DB2 Agent Control Element) value associated with the thread you want to cancel. Once this ACE address
is obtained, you can issue the following CANCEL command:

@88 Thread/STOPPER is ready and waiting for work

R 88,CANCEL SSID(DB2T) ACE(088B1158)

@CANCEL request for Thread SSID=DB2T,ACE=088B1158,PLAN=EXAMPLE,AUTH=RAI001 will be

terminated by asynchronous request

@Thread/STOPPER Audit Facility job submitted

@89 Thread/STOPPER is ready and waiting for work

 Chapter 5: The Thread/STOPPER Console Facility 5-5

This example cancels the application thread on DB2 subsystem DB2T (whose ACE address is 088B1158)
via the Thread/STOPPER CANCEL command. After canceling the thread, the Console Facility submits an
Audit Facility job to monitor the thread’s status and log its successful cancellation in the
THREAD_AUDIT table.

5.3.2 DB2S command example

The DB2S command displays all DB2 subsystems defined to the local MVS system. If a subsystem is
active, then its DB2 Version and Release level are also displayed:

@25 Thread/STOPPER is ready and waiting for work

R 25,DB2S

SSID Status CmdPrefix Procname Release Group

--

DB7A Active DB7A DB7AMSTR 710

DB7B Active DB7B DB7BMSTR 710

DSN8 Active DSN8 DSN8MSTR 810

DB8A Inactive DB8A DB8AMSTR ---

DB8B Inactive DB8B DB8BMSTR ---

D9GA Active D9GA D9GAMSTR 910 D9G

D9GB Inactive D9GB D9GBMSTR --- D9G

--

5.3.3 DISPLAY command examples

The DISPLAY command writes information to the MVS Console about the thread(s) that meet the
qualification criteria you specify. The output includes an ACE address (8 hexadecimal digits) which can be
used to uniquely identify a thread on a subsequent CANCEL command. For example, the following
DISPLAY command shows all threads whose authorization ID starts with the characters RAI:

@25 Thread/STOPPER is ready and waiting for work

R 25,DIS SSID(DB8B) AUTH(RAI%)

DB2 ACE DB2 Plan Primary Connect Elapsed TCB time # of SQL Status

SSID auth ID name HH:MM:SS H:MM:SST requests :Where

--

DB8B 0800B8F8 RLXvrmCS RAI024 DB2CALL 07:27:02 0:00:018 644 T :PGM

DB8B 0800B578 RLXvrmCS RAI025 DB2CALL 04:00:31 0:00:006 216 T :PGM

DB8B 0800BC78 TTSPvrm RAI025 DB2CALL 00:00:00 0:00:000 0 T :DB2

--

5-6 Thread/SERIES Guide and Reference

The following DISPLAY command shows all threads that hold locks on database DSNDB04. Subsystem
D7GA is a member of the Data Sharing group that includes subsystem D8GB.

R 25,DIS SSID(D7GA) DBNAME(DSNDB04) LOCKS

DB2 ACE DB2 Plan Primary Connect Elapsed TCB time # of SQL Status

SSID auth ID name HH:MM:SS H:MM:SST requests :Where

--

D9GA 084C03B8 RLXvrmCS RAI027 DB2CALL 00:02:41 0:00:000 13 T :PGM

D8GB 084C03B8 RLXvrmCS RAIB23 DB2CALL 00:02:41 0:00:000 13 T :PGM

D8GB 084C0578 RLXvrmCS RAIB23 DB2CALL 00:02:41 0:00:000 13 T :PGM

--

5.3.4 DSN command example

The Thread/STOPPER DSN command lets you execute any DB2 command on several DB2 subsystems
simultaneously. In the following example, the DB2 -DISPLAY THREAD(*) command is issued on the
DB2 subsystems named DB2T and DB2P.

@27 Thread/STOPPER is ready and waiting for work

R 27,DSN SSID(DB8B,D9GA) -DISPLAY THREAD(*)

DSNV401I DB8B DISPLAY THREAD REPORT FOLLOWS -

DSNV402I DB8B ACTIVE THREADS -

NAME ST A REQ ID AUTHID PLAN ASID TOKEN

DB2CALL T * 4 RAI2TTSB RAI028 TTSPvrm 0019 937

DB2CALL T 228 RAI025 RAI025 RLXvrmCS 007B 909

DB2CALL T 835 RAI024 RAI024 RLXvrmCS 0086 884

DISPLAY ACTIVE REPORT COMPLETE

DSN9022I DB7B DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

DSNV401I -D9GA DISPLAY THREAD REPORT FOLLOWS -

DSNV402I -D9GA ACTIVE THREADS -

NAME ST A REQ ID AUTHID PLAN ASID TOKEN

DB2CALL T * 5 RAI2TTSB RAI028 TTSPvrm 0019 548

DB2CALL T 15 RAI023 RAI023 RLXvrmCS 007E 536

DB2CALL T 15 RAI023 RAI023 RLXvrmCS 007E 537

DISPLAY ACTIVE REPORT COMPLETE

DSN9022I -D9GA DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

DSNV401I -D9GB DISPLAY THREAD REPORT FOLLOWS -

DSNV402I -D9GB ACTIVE THREADS -

NAME ST A REQ ID AUTHID PLAN ASID TOKEN

DB2CALL T 15 RAIB23 RAIB23 RLXvrmCS 0055 195

DB2CALL T 15 RAIB23 RAIB23 RLXvrmCS 0055 196

 Chapter 5: The Thread/STOPPER Console Facility 5-7

5.3.5 XLOCK command example

The XLOCK command displays the exclusive locks held by application threads that meet your
qualification criteria. The following example displays the resources held exclusively by threads on
subsystem DB2T whose plan name is RLXvrmCS:

@32 TTSE042 - Thread/STOPPER is waiting for work
R 32,XLOCK SSID(D9GA) PLAN(RLXvrmCS)

XLOCK SSID(D9GA)
LOCKS HELD ON DB2 SUBSYSTEM: D9GA
Ace Token Resource Stat Resource Name Duration
--
076EFA88 083BE1AC PageSet X 0107 0002 COMMIT
--

NOTE: The column labeled ‘Resource Name’ shows two hexadecimal
numbers. The first is the DBID and the second is PSID of the resource. Refer
to the DB2 catalog table SYSIBM.SYSTABLESPACE to determine the name of
the Table Space represented by these two values.

5.3.6 LOCK command display

The LOCK command displays the locks held by the application threads that meet your qualification
criteria.

@24 TTSE042 - Thread/STOPPER is waiting for work
R 24,LOCK SSID(D9GA) PLAN(RLXvrmCS)

LOCKS HELD ON DB2 SUBSYSTEM: D9GA

Ace Token Resource Stat Resource Name Duration

--

076F08C8 0814EE48 PageSet IS 0004 0002 COMMIT

076F08C8 0814EDC8 DataBase S 0004 0000 COMMIT

076F08C8 0814ED48 PageSet IS 0006 0009 COMMIT

076F08C8 0814DAC8 SkelPkgTable S RLXVRM.RLXSQL6.16E1542C0B8BCFF COMMIT

076F08C8 0814DB48 SkelCursorTable S RLXvrmCS PLAN

076F08C8 0814EE48 PageSet IS 0004 0002 COMMIT

076F08C8 0814EDC8 DataBase S 0004 0000 COMMIT

076F08C8 0814ED48 PageSet IS 0006 0009 COMMIT

076F08C8 0814DAC8 SkelPkgTable S RLXVRM.RLXSQL6.16E1542C0B8BCFF COMMIT

076F08C8 0814DB48 SkelCursorTable S RLXvrmCS PLAN

076EF1C8 0814EEC8 SkelCursorTable S TTSPvrm PLAN

--

In this example, the application thread whose plan name is RLXvrmCS is holding shared locks on Table
Space with DBID 0004 and PSID 0002 (DSNDB04), a shared lock on Database with DBID 0004
(DSNDB04), etc.

5-8 Thread/SERIES Guide and Reference

You can determine the DB2 table name associated with a pair of DBID / OBID values by querying the
catalog table SYSIBM.SYSTABLES. Use the decimal values of DBID and OBID as search criteria. The
DB2 Diagnosis Guide and Reference (Publication LY27-9536) provides an explanation of the lock types
and states that appear in LOCK command output, along with a discussion of DBID, OBID and PSID
values.

5.3.7 STATUS command display

The STATUS command displays the current values of the Thread/STOPPER run-time parameters. These
include run-time defaults as well as any explicit execution parameters specified when the Console Facility
was invoked (as described in Section 5.2). The STATUS command also displays the values of
Thread/STOPPER system parameters defined at installation time.

@88 Thread/STOPPER is ready and waiting for work

R 88,STATUS

RUN-TIME PARAMETERS

 ORIGIN............ WTOR

 CAN_STEP.......... NO

 CAN_TERM.......... YES

 CAN_DUMP.......... NO

 CAN_RETRY......... YES

 CAN_STEP.......... NO

 LIMIT............. 9999

 SYSTEM PARAMETERS

 TSDAC#............ 222

 TSDARC#........... 00DB2000

 TSDWAIT#.......... 0000005:

 TSDPLAN........... TTSPLAN

 TSDACD#........... 004E

 TSDARCD#.......... 00E50013

 TSDVAB#........... RAIAPL

 TSDOPW............ RAI

 Chapter 7: Thread Audit View Facility 7-1

Chapter 7

Thread Audit View Facility

Thread/SERIES maintains an audit trail which describes DB2 threads and actions taken
vis-a-vis those threads by various Thread/SERIES components (such as the Thread/
STOPPER dialog or the Thread/SENTRY automated monitor). The audit trail is
maintained in a table named THREAD_AUDIT that resides within the same DB2 sub-
system in which the audited thread was executing. Appendix A provides detailed
descriptions of the columns which comprise the Thread_Audit table. Some columns of
the Thread_Audit table provide statistics and details about the thread while other columns
document who took action against a thread, when and for what reason.

This chapter describes how to use the Thread Audit View Facility to browse this audit
trail. Section 7.1 describes how to invoke the Thread Audit View Facility via the
TTSRUN command while Section 7.2 describes and illustrates the dialog panels
presented by the View Facility.

7.1 Invoking the Thread Audit View Facility

Section 20.16 describes how to setup the Thread Audit View Facility so it can be invoked
as an ISPF dialog. The REXX exec TTSRUN described in Section 20.16 manages all
Thread/SERIES libraries dynamically within ISPF and invokes the Thread Audit View
Facility as well as the Thread/STOPPER Dialog.

Alternatively, the Thread Audit View Facility may have been setup as an ISPF selection
menu option (as described in Section 20.18.) In this case, see your Thread/SERIES
product administrator for details concerning invocation of the Thread Audit View
Facility.

7-2 Thread/SERIES Guide and Reference

7.2 Dialog flow

This section describes and illustrates the panels displayed by TTSVIEW. The dialog first
presents a Query by Example panel with which you can identify the Thread Audit records
you wish to view. The Query By Example (QBE) panel illustrated in Figure 7.1 allows
you to select rows from the Thread_Audit table without the need to construct SQL
SELECT statements. You can also specify an optional sort order and direction for each
column.

Host/Edit --- Query By Example: TTSvrm.THREAD_AUDIT ---------------------------
Command ===>

Use symbols % and _ to activate LIKE predicate logic. Use > and < as a first
character in numeric column types. ENTER to continue or END to exit dialog

Ord Dir Seq Column Name/Type Column Value
... . 23 Plan Name...............(C8) --------
... . 24 PGM Name................(C8) --------
... . 22 Correlation............(C12) ------------
... . 25 Auth ID.................(C8) --------
... . 26 Connection..............(C8) --------
... . 7 Policy ID...............(C8) --------
... . 8 Policy Reason..........(C24) ------------------------
... . 2 Unique Value...........(C12) ------------
... . 3 Token...................(I4) --------------
... . 5 Action Taken...........(C12) ------------
... . 10 Action Date...........(DT10) ----------
... . 11 Action Timestamp......(TS26) --------------------------

Figure 7.1 Query by Example panel presented by TTSVIEW dialog

The Column headings in Figure 7.1 have the following meaning:

Ord contains a decimal number (1,2,3...n) to specify an ordering of the rows of
the query result. This information is used to build the SQL query's ORDER BY
clause as illustrated in the example below.

Dir specifies sort direction: Ascending or Descending. Sort direction for all
columns is ASCending by default. Thus, ascending is assumed when you assign
Ord for this column and no value is entered for Dir.

Column Value specifies a value of the column to be used to select table rows.
You can use % and _ characters to select table rows using generic patterns via
the SQL LIKE predicate. Note that when the `_’ (underscore) is used, the entire
column value must be filled with `_’. For numerical column values you can use
> and < operators in the first position of the column value to create a comparison
predicate.

 Chapter 7: Thread Audit View Facility 7-3

The columns of the Thread_Audit table for which you can provide search criteria are as
follows:

Plan Name identifies the 1 to 8 character name of the DB2 application plan
associated with the thread. The TTSVIEW dialog folds whatever
characters you specify here to uppercase.

Program Name identifies the name of the DB2 package or DBRM that is currently

executing within the plan. The TTSVIEW dialog folds whatever
characters you specify for ‘program name’ to uppercase.

Correlation ID denotes a 1 to 12 character recovery ‘correlation-id’ associated with

the thread. Both upper and lower case characters are significant for
the Correlation ID pattern.

Authorization ID identifies the 8 character DB2 primary authorization associated

with the thread. The TTSVIEW dialog folds whatever characters
you specify here to uppercase.

Connection Name identifies the 8 character DB2 connection type. Possible values

include BATCH, DB2CALL, RRSAF, SERVER, TSO, and
UTILITY. Threads originating in CICS and IMS address spaces
may have additional connection names. The TTSVIEW dialog folds
whatever characters you specify for a connection name to
uppercase.

Policy ID identifies the site defined policy whose violation led

Thread/SENTRY to take an automatic action. Alternatively, enter
the value ‘MANUAL’ to select those threads against which a
Thread/SERIES action was initiated manually. Both upper and
lower case characters are significant in the pattern specified for
‘Policy ID’.

Policy Reason contains a character string which briefly describes what threshold

was violated to trigger a policy defined action. Policy reason strings
are comprised of a category prefix followed by the specific
threshold that was violated. The currently defined set of policy
categories and their corresponding prefixes include:

Life-of-thread thresholds LOT
Unit-of-work thresholds UOW
Interval based minimum thresholds IMIN
Interval based maximum thresholds IMAX
Inactive thread thresholds IDLE

Unique Value specifies a 12 digit hexadecimal value that uniquely identifies a

thread within a particular DB2 subsystem. The TTSVIEW dialog
folds whatever alphabetic characters you specify in the Unique
Value string to uppercase.

7-4 Thread/SERIES Guide and Reference

Thread Token specifies the shorthand integer value DB2 assigns to each thread.
The token is one to five decimal digits. Note that threads
connected to DB2 subsystems at releases prior to Version 4.1
have no thread token assigned. Instead, their thread token value
appears as 0.

Action identifies the action (such as cancel or warning) taken against a

thread. ‘Action’ identifies either the user requested action issued
through one of the Thread/STOPPER facilities, or the policy
defined action triggered automatically by Thread/SENTRY. The
value you enter for Action is case sensitive so enter an exact
Action value like ‘Cancel’, ‘Warn’ or ‘Force’ or an Action pattern
like ‘C%’, ‘W%’ or ‘F%’.

Action Date indicates the date when an audited action took place. Both ‘%’

and ‘_’ characters are valid in the pattern for Action Date.

Action Timestamp reflects the current timestamp when a row was inserted into the

Thread_Audit table. Both ‘%’ and ‘_’ characters are valid in the
pattern for Action Date.

Once you specify values for all search criteria, press ENTER to create and execute the
SQL query. Alternatively, press the END key to exit the dialog. Figure 7.2 illustrates a
sample summary display reflecting audited actions against threads with the plan name
‘TTSIvrm’.

Col 1 of 181 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 6
Command ===> Scroll ===> HALF

- 23 24 22 25 26 7
Rcmd Plan Name Program Name Correlation ID Authorization ID Connection Name Pol
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH MAN
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH MAN
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH POL
'''' - - - - - POL
'''' TTSIvrm TTSIVP RAI7IVPE RAI020 BATCH POL
'''' - - - - - POL

Figure 7.2 Thread Audit table Tabular Display

 Chapter 7: Thread Audit View Facility 7-5

7.3 ROW Commands

You can enter Row commands in the Rcmd field of the Summary Display panel as
illustrated in Figure 7.3 in which the Rcmd field is underlined.

Col 1 of 181 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 6
Command ===> Scroll ===> HALF

- 23 24 22 25 26 7
Rcmd Plan Name Program Name Correlation ID Authorization ID Connection Name Pol
S'''
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH MAN

 TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH MAN

'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH POL
'''' - - - - - POL
'''' TTSIvrm TTSIVP RAI7IVPE RAI020 BATCH POL
'''' - - - - - POL

Figure 7.3 Row Command entered in the Rcmd field

 S (Select)

Use the ‘S’ row command to display the columns of a particular row on a detail panel
like the one illustrated in Figure 7.4. Once a specific row is displayed, you can press the
UP (PF7) and DOWN (PF8) keys to bring additional columns of the selected
Thread_Audit row into view. Then, press the End key (typically PF3) to return to the
summary display of query result rows.

__

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 6
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 23 Plan Name (C8).............. N TTSIvrm
'' 24 Program Name (C8)........... N TTSIVP
'' 22 Correlation ID (C12)........ N RAI7IVPE
'' 25 Authorization ID (C8)....... N RAI021
'' 26 Connection Name (C8)........ N BATCH
'' 7 Policy ID (C8).............. N MANUAL
'' 8 Policy Reason (C24)......... N Manually selected thread
'' 2 Unique Value (C12).......... N B1A02DEE43B0
'' 3 Thread Token (I4)........... N 1402
'' 5 Action (C12)................ N Cancel
'' 10 Action Date (DT10).......... N 01/08/20xx
'' 11 Action Timestamp (TS26)..... N 20xx-01-08-17.50.30.153421
'' 1 SSID (C4)................... N DB2E
'' 4 ACE Address (C8)............ N 079BCA18
'' 6 Action Status (C12)......... N Pending
'' 9 Action Method (C40)......... N DB2 CANCEL THREAD issued
'' 12 Action ACEE (C8)............ N RAI021
'' 13 Action SSID (C8)............ N RAI021
'' 14 Action Grp (C8)............. N RAIGRP
'' 15 Action Term (C8)............ N RAILU021
'' 16 Action Appl (C8)............ N N/P
'' 17 Action Surr (C8)............ N N/P
'' 18 Action CPU (C12)............ N 282373882003
'' 19 Creation Date (C10)......... N 01/08/20xx

7-6 Thread/SERIES Guide and Reference

'' 20 Creation Time (C8).......... N 17:46:14
'' 21 Creation Micro (C7)......... N 6690565
'' 27 Operator (C8)............... N RAI021
'' 28 SMF ID (C8)................. N RALP
'' 29 ASID (C4)................... N 0038
'' 30 Jobname (C8)................ N RAI7IVPE
'' 31 Where (C4).................. N PGM
'' 32 Accounting Token (C22)...... N N/P
'' 33 SQL Count (S2).............. N 122
'' 34 Status Code (C2)............ N T
'' 35 Net ID (C8)................. N USAMSI0A
'' 36 LU Name (C8)................ N DB2APP3
'' 37 Commit # (I4)............... N 0
'' 38 SQL DML # (I4).............. N 122
'' 39 Getpages (I4)............... N 14
'' 40 Status Literal (C40)........ N Local (non-distributed) thread
'' 41 Connection Code (I4)........ N 1
'' 42 Connecting System (C12)..... N TSO
'' 43 TCB Addr (C8)............... N 00000000
'' 44 Elapsed Total (C15)......... N 00:04:14.055481
'' 45 Elapsed DB2 (C15)........... N 00:00:00.261288
'' 46 Class 1 Time (C15).......... N 00:00:00.033104
'' 47 Class 2 Time (C15).......... N 00:00:00.023257
'' 48 SRB Time (C15).............. N 00:00:00.000742
'' 49 IO Wait Time (C15).......... N 00:00:00.000000
'' 50 Lock Wait Time (C15)........ N 00:00:00.000000
'' 51 Distributed Location (C16).. N N/P
'' 52 APPC ID (C8)................ N N/P
'' 53 Distributed Session (C16)... N N/P
'' 65 QMDA Product (C3)........... N DSN
'' 66 QMDA Version (C2)........... N 04
'' 67 QMDA Release (C2)........... N 01
'' 68 QMDA Mod Level (C1)......... N 0
'' 69 QMDA Location (C16)......... N RADB2E
'' 70 QMDA Net ID (C8)............ N USAMSI0A
'' 71 QMDA LU Name (C8)........... N DB2APP3
'' 72 QMDA Connect Name (C8)...... N BATCH
'' 73 QMDA Connect Type (C8)...... N BATCH
'' 74 QMDA Correlation (C12)...... N RAI7IVPE
'' 75 QMDA AuthID (C8)............ N RAI021
'' 76 QMDA Plan (C8).............. N TTSIVRM
'' 77 Client Platform (C18)....... N
'' 78 Client Application (C20).... N
'' 79 Client AuthID (C8).......... N
'' 80 Account String Length (S2).. N 9
'' 81 Accounting String (V200).... N RAI0 1234
 cont(002) 00041-00080
 cont(003) 00081-00120
 cont(004) 00121-00160
 cont(005) 00161-00200

__

Figure 7.4 Selecting a Row for Display

X (Exclude)

The ‘X’ row command excludes from display the row on which the command was
entered such that it can no longer be viewed.

 Chapter 7: Thread Audit View Facility 7-7

7.4 Primary Commands

The Primary commands supported by the Thread Audit View Facility are those entered in
the Command field of either the summary or detail panels. The TTSVIEW primary
commands are presented in this section in alphabetical order and include full command
syntax and usage notes where applicable.

 ACTION

The ACTION command displays a view of the Thread_Audit table comprised of those
columns which pertain to actions taken vis-a-vis selected threads. Figure 7.5 illustrates
the Action view of the Thread_Audit table (in tabular, summary mode) while Figure 7.6
illustrates the Action detail panel.

Col 1 of 461 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 2 23 5 6 11 7
Rcmd Unique Value Plan Action>> Status Action Timestamp >> Policy
'''' B1A02DEE43B0 TTSIvrm Cancel Pending 20xx-01-08-17.50.30.15 MANUAL
'''' B1A02DEE43B0 TTSIvrm Cancel Successful 20xx-01-08-17.51.23.88 MANUAL
'''' B1A02FA6EC25 TTSIvrm Cancel Pending 20xx-01-08-17.55.05.55 POLICY1
'''' B1A02FA6EC25 - Cancel Successful 20xx-01-08-17.55.47.67 POLICY1
'''' B1A53BF777A1 TTSIvrm Force Pending 20xx-01-12-18.16.12.90 POLICY1
'''' B1A53BF777A1 - Force Successful 20xx-01-12-18.16.44.98 POLICY1
'''' B1A658A4074C TTSIvrm Force Pending 20xx-01-13-15.48.21.01 POLICY0
'''' B1A658A4074C - Force Successful 20xx-01-13-15.48.54.37 POLICY0

Figure 7.5 ACTION Summary

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 2 Unique Value (C12).......... N B1A02DEE43B0
'' 23 Plan (C8)................... N TTSIvrm
'' 5 Action (C12)................ N Cancel
'' 6 Status (C12)................ N Pending
'' 11 Action Timestamp (TS26)..... N 20xx-01-08-17.50.30.153421
'' 7 Policy ID (C8).............. N MANUAL
'' 12 Action ACEEID (C8).......... N RAI021
'' 10 Action Date (DT10).......... N 01/08/20xx
'' 13 Action DB2AUTH (C8)......... N RAI021
'' 14 Action Grp (C8)............. N RAIGRP
'' 15 Action Term (C8)............ N RAILU021

7-8 Thread/SERIES Guide and Reference

'' 16 Action Appl (C8)............ N N/P
'' 28 SMF ID (C8)................. N RALP
'' 1 SSID (C4)................... N DB2E
'' 30 Jobname (C8)................ N RAI7IVPE
'' 4 ACE Addr (C8)............... N 079BCA18
'' 3 Token (I4).................. N 1402
'' 31 Where (C4).................. N PGM
'' 27 Operator (C8)............... N RAI021
'' 26 Connection (C8)............. N BATCH
'' 25 Auth ID (C8)................ N RAI021
'' 22 Correlation (C12)........... N RAI7IVPE
'' 8 Policy Reason (C24)......... N Manually selected thread
'' 9 Action Method (C40)......... N DB2 CANCEL THREAD issued
'' 17 Action Surr (C8)............ N N/P
'' 18 Action CPU (C12)............ N 282373882003
'' 19 Creation Date (C10)......... N 01/08/20xx
'' 20 Creation Time (C8).......... N 17:46:14
'' 21 Creation MS (C7)............ N 6690565
'' 24 Pgm Name (C8)............... N TTSIVP
'' 29 ASID (C4)................... N 0038
'' 32 Accounting Token (C22)...... N N/P
'' 33 SQL Count (S2).............. N 122
'' 34 Status Code (C2)............ N T
'' 35 Net ID (C8)................. N USAMSI0A
'' 36 LU Name (C8)................ N DB2APP3
'' 37 Commit # (I4)............... N 0
'' 38 SQL DML # (I4).............. N 122

Figure 7.6 ACTION Detail

 AUDIT

The AUDIT command displays a view of the Thread_Audit table in which the ‘audit
related’ columns take precedence. Figure 7.7 illustrates the Audit Summary while Figure
7.8 shows the Audit detail display.

Col 1 of 490 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 2 5 6 11 23 26
Rcmd Unique Value Action>> Action Stat Action Timestamp >> Plan Connect
'''' B1A02DEE43B0 Cancel Pending 20xx-01-08-17.50.30.15 TTSIvrm BATCH
'''' B1A02DEE43B0 Cancel Successful 20xx-01-08-17.51.23.88 TTSIvrm BATCH
'''' B1A02FA6EC25 Cancel Pending 20xx-01-08-17.55.05.55 TTSIvrm BATCH
'''' B1A02FA6EC25 Cancel Successful 20xx-01-08-17.55.47.67 - -
'''' B1A53BF777A1 Force Pending 20xx-01-12-18.16.12.90 TTSIvrm BATCH
'''' B1A53BF777A1 Force Successful 20xx-01-12-18.16.44.98 - -
'''' B1A658A4074C Force Pending 20xx-01-13-15.48.21.01 TTSIvrm BATCH
'''' B1A658A4074C Force Successful 20xx-01-13-15.48.54.37 - -

Figure 7.7 Audit Summary

 Chapter 7: Thread Audit View Facility 7-9

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 2 Unique Value (C12).......... N B1A02DEE43B0
'' 5 Action (C12)................ N Cancel
'' 6 Action Stat (C12)........... N Pending
'' 11 Action Timestamp (TS26)..... N 20xx-01-08-17.50.30.153421
'' 23 Plan (C8)................... N TTSIvrm
'' 26 Connection (C8)............. N BATCH
'' 25 Auth ID (C8)................ N RAI021
'' 22 Correlation (C12)........... N RAI7IVPE
'' 7 Policy ID (C8).............. N MANUAL
'' 8 Policy Reason (C24)......... N Manually selected thread
'' 9 Action Method (C40)......... N DB2 CANCEL THREAD issued
'' 10 Action Date (DT10).......... N 01/08/20xx
'' 12 Action ACEE (C8)............ N RAI021
'' 13 Action DB2AUTH (C8)......... N RAI021
'' 14 Action Grp (C8)............. N RAIGRP
'' 15 Action Term (C8)............ N RAILU021
'' 16 Action Appl (C8)............ N N/P
'' 17 Action Surr (C8)............ N N/P
'' 18 Action CPU (C12)............ N 282373882003
'' 3 Token (I4).................. N 1402
'' 19 Creation Date (C10)......... N 01/08/20xx
'' 20 Creation Time (C8).......... N 17:46:14
'' 21 Creation Micro (C7)......... N 6690565
'' 24 Pgm Name (C8)............... N TTSIVP
'' 30 Jobname (C8)................ N RAI7IVPE
'' 31 Where (C4).................. N PGM
'' 27 Operator (C8)............... N RAI021
'' 28 SMF ID (C8)................. N RALP
'' 29 ASID (C4)................... N 0038
'' 32 Accounting Token (C22)...... N N/P
'' 33 SQL Count (S2).............. N 122
'' 34 Status Code (C2)............ N T
'' 35 Net ID (C8)................. N USAMSI0A
'' 36 LU Name (C8)................ N DB2APP3
'' 37 Commit # (I4)............... N 0
'' 38 SQL DML # (I4).............. N 122
'' 39 Getpages (I4)............... N 14
'' 40 Status Literal (C40)........ N Local (non-distributed) thread

Figure 7.8 Audit Detail

7-10 Thread/SERIES Guide and Reference

 DB2ACCT

The DB2ACCT command displays a view of the Thread_Audit table in which the
columns related to MVS and DDF accounting data take precedence. Figure 7.9 illustrates
the DB2ACCT Summary, while Figure 7.10 shows the DB2ACCT detail display.

NOTE: Meaningful MVS and DDF accounting information is only
provided for those threads whose PRODUCT_NAME value is ‘DSN’.
That is, threads whose accounting strings are generated by DB2 for
z/OS.

Col 1 of 241 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 3 65 66 67 68 69
Rcmd Thread Token QMDA Product QMDA Version QMDA Release QMDA Mod Level QMDA Lo
'''' 1402 DSN 04 01 0 RADB2E
'''' 1402 DSN 04 01 0 RADB2E
'''' 1405 DSN 04 01 0 RADB2E
'''' - - - - - -
'''' 148 DSN 04 01 0 RADB2E
'''' - - - - - -
'''' 201 DSN 04 01 0 RADB2E
'''' - - - - - -

Figure 7.9 DB2ACCT Summary

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 3 Thread Token (I4)........... N 1402
'' 65 QMDA Product (C3)........... N DSN
'' 66 QMDA Version (C2)........... N 04
'' 67 QMDA Release (C2)........... N 01
'' 68 QMDA Mod Level (C1)......... N 0
'' 69 QMDA Location (C16)......... N RADB2E
'' 70 QMDA NetID (C8)............. N USAMSI0A
'' 71 QMDA LU Name (C8)........... N DB2APP3
'' 72 QMDA Connect Name (C8)...... N BATCH
'' 73 QMDA Connect Type (C8)...... N BATCH
'' 74 QMDA Correlation (C12)...... N RAI7IVPE
'' 75 QMDA AuthID (C8)............ N RAI021
'' 76 QMDA Plan (C8).............. N TTSIvrm
'' 80 Account String Length (S2).. N 9
'' 81 Accounting String (V200).... N RAI0 1234
 cont(002) 00041-00080
 cont(003) 00081-00120
 cont(004) 00121-00160

Figure 7.10 DB2ACCT Detail

 Chapter 7: Thread Audit View Facility 7-11

 QBE

The QBE command produces the initial view of the Thread_Audit table that results after
you press Enter from the Query by Example panel. Figure 7.11 illustrates the QBE
Summary, while Figure 7.12 shows the QBE detail display.

Col 1 of 181 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 23 24 22 25 26 7
Rcmd Plan Name Program Name Correlation ID Authorization ID Connection Name Pol
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH MAN
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH MAN
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH POL
'''' - - - - - POL
'''' TTSIvrm TTSIVP RAI7IVPE RAI020 BATCH POL
'''' - - - - - POL
'''' TTSIvrm TTSIVP RAI7IVPE RAI021 BATCH POL
'''' - - - - - POL

Figure 7.11 QBE Summary

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 23 Plan Name (C8).............. N TTSIvrm
'' 24 Program Name (C8)........... N TTSIVP
'' 22 Correlation ID (C12)........ N RAI7IVPE
'' 25 Authorization ID (C8)....... N RAI021
'' 26 Connection Name (C8)........ N BATCH
'' 7 Policy ID (C8).............. N MANUAL
'' 8 Policy Reason (C24)......... N Manually selected thread
'' 2 Unique Value (C12).......... N B1A02DEE43B0
'' 3 Thread Token (I4)........... N 1402
'' 5 Action (C12)................ N Cancel
'' 10 Action Date (DT10).......... N 01/08/20xx
'' 11 Action Timestamp (TS26)..... N 20xx-01-08-17.50.30.153421
'' 1 SSID (C4)................... N DB2E
'' 4 ACE Address (C8)............ N 079BCA18
'' 6 Action Status (C12)......... N Pending
'' 9 Action Method (C40)......... N DB2 CANCEL THREAD issued
'' 12 Action ACEE (C8)............ N RAI021
'' 13 Action SSID (C8)............ N RAI021
'' 14 Action Grp (C8)............. N RAIGRP
'' 15 Action Term (C8)............ N RAILU021
'' 16 Action Appl (C8)............ N N/P
'' 17 Action Surr (C8)............ N N/P
'' 18 Action CPU (C12)............ N 282373882003
'' 19 Creation Date (C10)......... N 01/08/20xx
'' 20 Creation Time (C8).......... N 17:46:14

7-12 Thread/SERIES Guide and Reference

'' 21 Creation Micro (C7)......... N 6690565
'' 27 Operator (C8)............... N RAI021
'' 28 SMF ID (C8)................. N RALP
'' 29 ASID (C4)................... N 0038
'' 30 Jobname (C8)................ N RAI7IVPE
'' 31 Where (C4).................. N PGM
'' 32 Accounting Token (C22)...... N N/P
'' 33 SQL Count (S2).............. N 122
'' 34 Status Code (C2)............ N T
'' 35 Net ID (C8)................. N USAMSI0A
'' 36 LU Name (C8)................ N DB2APP3
'' 37 Commit # (I4)............... N 0
'' 38 SQL DML # (I4).............. N 122
'' 39 Getpages (I4)............... N 14
'' 40 Status Literal (C40)........ N Local (non-distributed) thread
'' 41 Connection Code (I4)........ N 1
'' 42 Connecting System (C12)..... N TSO
'' 43 TCB Addr (C8)............... N 00000000
'' 44 Elapsed Total (C15)......... N 00:04:14.055481
'' 45 Elapsed DB2 (C15)........... N 00:00:00.261288
'' 46 Class 1 Time (C15).......... N 00:00:00.033104
'' 47 Class 2 Time (C15).......... N 00:00:00.023257
'' 48 SRB Time (C15).............. N 00:00:00.000742
'' 49 IO Wait Time (C15).......... N 00:00:00.000000
'' 50 Lock Wait Time (C15)........ N 00:00:00.000000
'' 51 Distributed Location (C16).. N N/P
'' 52 APPC ID (C8)................ N N/P
'' 53 Distributed Session (C16)... N N/P
'' 65 QMDA Product (C3)........... N DSN
'' 66 QMDA Version (C2)........... N 04
'' 67 QMDA Release (C2)........... N 01
'' 68 QMDA Mod Level (C1)......... N 0
'' 69 QMDA Location (C16)......... N RADB2E
'' 70 QMDA Net ID (C8)............ N USAMSI0A
'' 71 QMDA LU Name (C8)........... N DB2APP3
'' 72 QMDA Connect Name (C8)...... N BATCH
'' 73 QMDA Connect Type (C8)...... N BATCH
'' 74 QMDA Correlation (C12)...... N RAI7IVPE
'' 75 QMDA AuthID (C8)............ N RAI021
'' 76 QMDA Plan (C8).............. N TTSIVRM
'' 77 Client Platform (C18)....... N
'' 78 Client Application (C20).... N
'' 79 Client AuthID (C8).......... N
'' 80 Account String Length (S2).. N 9
'' 81 Accounting String (V200).... N RAI0 1234
 cont(002) 00041-00080
 cont(003) 00081-00120
 cont(004) 00121-00160
 cont(005) 00161-00200

Figure 7.12 QBE Detail

 Chapter 7: Thread Audit View Facility 7-13

 QMDA

The QMDA command displays a view of the Thread_Audit table in which the columns
related to MVS and DDF accounting data take precedence. Figure 7.13 illustrates the
QMDA Summary, while Figure 7.14 shows the QMDA detail display.

Col 1 of 295 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 3 65 66 67 68 69
Rcmd Thread Token QMDA Product QMDA Version QMDA Release QMDA Mod Level QMDA Lo
'''' 1402 DSN 04 01 0 RADB2E
'''' 1402 DSN 04 01 0 RADB2E
'''' 1405 DSN 04 01 0 RADB2E
'''' - - - - - -
'''' 148 DSN 04 01 0 RADB2E
'''' - - - - - -
'''' 201 DSN 04 01 0 RADB2E
'''' - - - - - -

Figure 7.13 QMDA Summary

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 3 Thread Token (I4)........... N 1402
'' 65 QMDA Product (C3)........... N DSN
'' 66 QMDA Version (C2)........... N 04
'' 67 QMDA Release (C2)........... N 01
'' 68 QMDA Mod Level (C1)......... N 0
'' 69 QMDA Location (C16)......... N RADB2E
'' 70 QMDA NetID (C8)............. N USAMSI0A
'' 71 QMDA LU Name (C8)........... N DB2APP3
'' 72 QMDA Connect Name (C8)...... N BATCH
'' 73 QMDA Connect Type (C8)...... N BATCH
'' 74 QMDA Correlation (C12)...... N RAI7IVPE
'' 75 QMDA AuthID (C8)............ N RAI021
'' 76 QMDA Plan (C8).............. N TTSIvrm
'' 77 Client Platform (C18)....... N
'' 78 Client Application (C20).... N
'' 79 Client AuthID (C8).......... N
'' 80 Account String Length (S2).. N 9
'' 81 Accounting String (V200).... N RAI0 1234
 cont(002) 00041-00080
 cont(003) 00081-00120
 cont(004) 00121-00160
 cont(005) 00161-00200

Figure 7.14 QMDA Detail

7-14 Thread/SERIES Guide and Reference

 SQLACCT

The SQLACCT command displays a view of the Thread_Audit table in which the
columns related to MVS and DDF accounting data take precedence. Figure 7.15
illustrates the SQLACCT Summary while Figure 7.16 shows the SQLACCT detail
display.

NOTE: Meaningful MVS and DDF accounting information is only
provided for those threads whose PRODUCT_NAME value is ‘SQL’.
That is, threads whose accounting strings are created by DB2 client
server products such as DB2 for Windows NT, DB2 for OS/2 and DB2
for various Unix implementations.

Col 1 of 249 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 3 65 66 67 68 77
Rcmd Thread Token QMDA Product QMDA Version QMDA Release QMDA Mod Level Client
'''' 1402 DSN 04 01 0
'''' 1402 DSN 04 01 0
'''' 1405 DSN 04 01 0
'''' - - - - - -
'''' 148 DSN 04 01 0
'''' - - - - - -
'''' 201 DSN 04 01 0
'''' - - - - - -

Figure 7.15 SQLACCT Summary

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 3 Thread Token (I4)........... N 1402
'' 65 QMDA Product (C3)........... N DSN
'' 66 QMDA Version (C2)........... N 04
'' 67 QMDA Release (C2)........... N 01
'' 68 QMDA Mod Level (C1)......... N 0
'' 77 Client Platform (C18)....... N
'' 78 Client Application (C20).... N
'' 79 Client AuthID (C8).......... N
'' 80 Account String Length (S2).. N 9
'' 81 Accounting String (V200).... N RAI0 1234
 cont(002) 00041-00080
 cont(003) 00081-00120
 cont(004) 00121-00160
 cont(005) 00161-00200
'' 5 Action (C12)................ N Cancel
'' 6 Action Stat (C12)........... N Pending
'' 7 Policy ID (C8).............. N MANUAL
'' 8 Policy Reason (C24)......... N Manually selected thread
'' 2 Unique Value (C12).......... N B1A02DEE43B0

Figure 7.16 SQLACCT Detail

 Chapter 7: Thread Audit View Facility 7-15

 SYSTEM

The SYSTEM command displays a view of the Thread_Audit table which features the
‘System related’ columns. Figure 7.17 illustrates the System related Summary panel,
while Figure 7.18 shows the System Detail display.

Col 1 of 458 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 2 5 28 1 30 23 3 18
Rcmd Unique Value Action>> SMF ID SSID Jobname Plan Name Token Action CPU
'''' B1A02DEE43B0 Cancel RALP DB2E RAI7IVPE TTSIvrm 1402 282373882003
'''' B1A02DEE43B0 Cancel RALP DB2E RAI7IVPE TTSIvrm 1402 280373882003
'''' B1A02FA6EC25 Cancel RALP DB2E RAI7IVPE TTSIvrm 1405 282373882003
'''' B1A02FA6EC25 Cancel - - - - - -
'''' B1A53BF777A1 Force RALP DB2E RAI7IVPE TTSIvrm 148 281373882003
'''' B1A53BF777A1 Force - - - - - -
'''' B1A658A4074C Force RALP DB2E RAI7IVPE TTSIvrm 201 280373882003
'''' B1A658A4074C Force - - - - - -

Figure 7.17 System Summary

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 2 Unique Value (C12).......... N B1A02DEE43B0
'' 5 Action (C12)................ N Cancel
'' 28 SMF ID (C8)................. N RALP
'' 1 SSID (C4)................... N DB2E
'' 30 Jobname (C8)................ N RAI7IVPE
'' 23 Plan Name (C8).............. N TTSIvrm
'' 3 Token (I4).................. N 1402
'' 18 Action CPU (C12)............ N 282373882003
'' 6 Action Status (C12)......... N Pending
'' 11 Action Time (TS26).......... N 20xx-01-08-17.50.30.153421
'' 31 Where (C4).................. N PGM
'' 4 ACE Addr (C8)............... N 079BCA18
'' 27 Operator (C8)............... N RAI021
'' 26 Connection (C8)............. N BATCH
'' 25 Auth ID (C8)................ N RAI021
'' 22 Corrrelation (C12).......... N RAI7IVPE
'' 7 Policy ID (C8).............. N MANUAL
'' 8 Policy Reason (C24)......... N Manually selected thread
'' 9 Action Method (C40)......... N DB2 CANCEL THREAD issued
'' 10 Action Date (DT10).......... N 01/08/20xx
'' 12 Action ACEE (C8)............ N RAI021
'' 13 Action SSID (C8)............ N RAI021
'' 14 Action Grp (C8)............. N RAIGRP
'' 15 Action Term (C8)............ N RAILU021
'' 16 Action Appl (C8)............ N N/P
'' 17 Action Surr (C8)............ N N/P

7-16 Thread/SERIES Guide and Reference

'' 19 Creation Date (C10)......... N 01/08/20xx
'' 20 Creation Time (C8).......... N 17:46:14
'' 21 Creation MS (C7)............ N 6690565
'' 24 PGM Name (C8)............... N TTSIVP
'' 29 ASID (C4)................... N 0038
'' 32 Accounting Token (C22)...... N N/P
'' 33 SQL Count (S2).............. N 122
'' 34 Status Code (C2)............ N T
'' 35 Net ID (C8)................. N USAMSI0A
'' 36 LU Name (C8)................ N DB2APP3
'' 37 Commit (I4)................. N 0
'' 38 SQL DML # (I4).............. N 122

Figure 7.18 System Detail

 TABLE

The TABLE command displays the base view of the Thread_Audit table in which all
columns appear in the order in which they are defined to DB2. Figure 7.19 illustrates the
Table Summary, while Figures 7.20 through 7.22 show the Table detail display.

__

Col 1 of 1267 --------- Data Object: TTSvrm.THREAD_AUDIT -------- Row 1 from 8
Command ===> Scroll ===> HALF

- 1 2 3 4 5 6 7
Rcmd SSID Uniqueness Value Thread Token ACE Addr Action Taken Action Status Pol
'''' DB2E B1A02DEE43B0 1402 079BCA18 Cancel Pending MAN
'''' DB2E B1A02DEE43B0 1402 079BCA18 Cancel Successful MAN
'''' DB2E B1A02FA6EC25 1405 079BCA18 Cancel Pending POL
'''' - B1A02FA6EC25 - - Cancel Successful POL
'''' DB2E B1A53BF777A1 148 0784CA18 Force Pending POL
'''' - B1A53BF777A1 - - Force Successful POL
'''' DB2E B1A658A4074C 201 07B561A8 Force Pending POL
'''' - B1A658A4074C - - Force Successful POL

__

Figure 7.19 Table Summary

 Chapter 7: Thread Audit View Facility 7-17

__

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 1 SSID (C4)................... N DB2E
'' 2 Uniqueness Value (C12)...... N B1A02DEE43B0
'' 3 Thread Token (I4)........... N 1402
'' 4 ACE Addr (C8)............... N 079BCA18
'' 5 Action Taken (C12).......... N Cancel
'' 6 Action Status (C12)......... N Pending
'' 7 Policy ID (C8).............. N MANUAL
'' 8 Policy Reason (C24)......... N Manually selected thread
'' 9 Action Method (C40)......... N DB2 CANCEL THREAD issued
'' 10 Action Date (DT10).......... N 01/08/20xx
'' 11 Action Timestamp (TS26)..... N 20xx-01-08-17.50.30.153421
'' 12 Action ACEE ID (C8)......... N RAI021
'' 13 Action DB2AUTH ID (C8)...... N RAI021
'' 14 Action Group_Name (C8)...... N RAIGRP
'' 15 Action TERM ID (C8)......... N RAILU021
'' 16 Action APPL ID (C8)......... N N/P
'' 17 Action SURR ID (C8)......... N N/P
'' 18 Action CPU ID (C12)......... N 282373882003
'' 19 Creation Date (C10)......... N 01/08/20xx
'' 20 Creation Time (C8).......... N 17:46:14
'' 21 Creation Microsecs (C7)..... N 6690565
'' 22 Correlation Name (C12)...... N RAI7IVPE
'' 23 Plan Name (C8).............. N TTSIvrm
'' 24 Program_Name (C8)........... N TTSIVP
'' 25 Authorization ID (C8)....... N RAI021
'' 26 Connection Name (C8)........ N BATCH
'' 27 Original Operator (C8)...... N RAI021
'' 28 MVS System (C8)............. N RALP
'' 29 Address Space ID (C4)....... N 0038
'' 30 Thread Jobname (C8)......... N RAI7IVPE
'' 31 Where Executing (C4)........ N PGM
'' 32 Accounting Token (C22)...... N N/P
'' 33 Display SQL Count (S2)...... N 122
'' 34 Status Code (C2)............ N T
'' 35 Network ID (C8)............. N USAMSI0A
'' 36 LU Name (C8)................ N DB2APP3
'' 37 Commit Count (I4)........... N 0
'' 38 SQL DML Count (I4).......... N 122

Figure 7.20 Table Detail - Part I

Col 39 of 81 ----------- DB2 Table: TTSvrm.THREAD_AUDIT ----------- Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 39 Getpages Issued (I4)........ N 14
'' 40 Status Literal (C40)........ N Local (non-distributed) thread
'' 41 Connection Code (I4)........ N 1
'' 42 Connecting System (C12)..... N TSO
'' 43 TCB Address (C8)............ N 00000000

7-18 Thread/SERIES Guide and Reference

'' 44 Total Elapsed Time (C15).... N 00:04:14.055481
'' 45 DB2 Elapsed Time (C15)...... N 00:00:00.261288
'' 46 Class1 TCB Time (C15)....... N 00:00:00.033104
'' 47 Class2 TCB_Time (C15)....... N 00:00:00.023257
'' 48 Home SRB Time (C15)......... N 00:00:00.000742
'' 49 IO Wait Time (C15).......... N 00:00:00.000000
'' 50 Lock Wait Time (C15)........ N 00:00:00.000000
'' 51 Dist Location (C16)......... N N/P
'' 52 Dist_APPC ID (C8)........... N N/P
'' 53 Dist Session ID (C16)....... N N/P
'' 54 THREAD_FLAG1 (C1)........... N D
'' 55 THREAD_FLAG2 (C1)........... N
'' 56 THREAD_FLAG3 (C1)........... N
'' 57 THREAD_FLAG4 (C1)........... N T
'' 58 THREAD_FLAG5 (C1)........... N A
'' 59 THREAD_FLAG6 (C1)........... N
'' 60 THREAD_FLAG7 (C1)........... N W
'' 61 THREAD_FLAG8 (C1)........... N
'' 62 THREAD_FLAG9 (C1)........... N P
'' 63 THREAD_FLAGA (C1)........... N
'' 64 THREAD_FLAGB (C1)........... N C
'' 65 QMDA Product (C3)........... N DSN
'' 66 QMDA Version (C2)........... N 04
'' 67 QMDA Release (C2)........... N 01
'' 68 QMDA Mod Level (C1)......... N 0
'' 69 QMDA Location (C16)......... N RADB2E
'' 70 QMDA NetID (C8)............. N USAMSI0A
'' 71 QMDA LU Name (C8)........... N DB2APP3
'' 72 QMDA Connect Name (C8)...... N BATCH
'' 73 QMDA Connect Type (C8)...... N BATCH
'' 74 QMDA Correlation (C12)...... N RAI7IVPE
'' 75 QMDA AuthID (C8)............ N RAI021
'' 76 QMDA Plan (C8).............. N TTSIvrm

Figure 7.21 Table Detail – Part II

Col 48 of 81 ----------- DB2 Table: TTSvrm.THREAD_AUDIT ----------- Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 77 Client Platform (C18)....... N
'' 78 Client Application (C20).... N
'' 79 Client AuthID (C8).......... N
'' 80 Account String Length (S2).. N 9
'' 81 Accounting String (V200).... N RAI0 1234
 cont(002) 00041-00080
 cont(003) 00081-00120
 cont(004) 00121-00160
 cont(005) 00161-00200

Figure 7.22 Table Detail – Part III

 Chapter 7: Thread Audit View Facility 7-19

 TIME

The TIME command displays a view of the Thread_Audit table in which the ‘timing
related’ columns take precedence. Figure 7.23 illustrates the Timing Summary while
Figure 7.24 shows the Timing detail displayx.

Col 1 of 490 --------- Data Object: TTSvrm.THREAD_AUDIT --------- Row 1 from 8
Command ===> Scroll ===> HALF

- 2 23 44 45 46 47
Rcmd Unique Value Plan Name Total Time DB2 Time Class1 Time Cla
'''' B1A02DEE43B0 TTSIvrm 00:04:14.055481 00:00:00.261288 00:00:00.033104 00:
'''' B1A02DEE43B0 TTSIvrm 00:04:19.754915 00:00:00.261288 00:00:00.033104 00:
'''' B1A02FA6EC25 TTSIvrm 00:01:07.521893 00:00:00.040195 00:00:00.013172 00:
'''' B1A02FA6EC25 - - - - -
'''' B1A53BF777A1 TTSIvrm 00:00:30.942471 00:00:00.430579 00:00:00.008735 00:
'''' B1A53BF777A1 - - - - -
'''' B1A658A4074C TTSIvrm 00:19:03.321219 00:00:00.350691 00:00:00.129463 00:
'''' B1A658A4074C - - - - -

Figure 7.23 Time Summary

__

Col 1 of 81 ------------ DB2 Table: TTSvrm.THREAD_AUDIT ------------ Row 1 of 8
Command ===> Scroll ===> HALF

Row Cmd ===> _ Status ==>
Rc Seq Column name/Type Null Column Value
'' 2 Unique Value (C12).......... N B1A02DEE43B0
'' 23 Plan Name (C8).............. N TTSIvrm
'' 44 Total Time (C15)............ N 00:04:14.055481
'' 45 DB2 Time (C15).............. N 00:00:00.261288
'' 46 Class1 Time (C15)........... N 00:00:00.033104
'' 47 Class2 Time (C15)........... N 00:00:00.023257
'' 48 SRB Time (C15).............. N 00:00:00.000742
'' 49 IO Wait Time (C15).......... N 00:00:00.000000
'' 50 Lock Wait Time (C15)........ N 00:00:00.000000
'' 5 Action Taken (C12).......... N Cancel
'' 11 Action Timestamp (TS26)..... N 20xx-01-08-17.50.30.153421
'' 28 SMF ID (C8)................. N RALP
'' 1 SSID (C4)................... N DB2E
'' 30 Jobname (C8)................ N RAI7IVPE
'' 4 ACE Addr (C8)............... N 079BCA18
'' 3 Token (I4).................. N 1402
'' 6 Action Status (C12)......... N Pending
'' 31 Where (C4).................. N PGM
'' 27 Operator (C8)............... N RAI021
'' 26 Connection (C8)............. N BATCH
'' 25 Auth ID (C8)................ N RAI021
'' 22 Correlation (C12)........... N RAI7IVPE
'' 7 Policy ID (C8).............. N MANUAL

7-20 Thread/SERIES Guide and Reference

'' 8 Policy Reason (C24)......... N Manually selected thread
'' 9 Action Method (C40)......... N DB2 CANCEL THREAD issued
'' 10 Action Date (DT10).......... N 01/08/20xx
'' 12 Action ACEE (C8)............ N RAI021
'' 13 Action SSID (C8)............ N RAI021
'' 14 Action GRP (C8)............. N RAIGRP
'' 15 Action Term (C8)............ N RAILU021
'' 16 Action Appl (C8)............ N N/P
'' 17 Action Surr (C8)............ N N/P
'' 18 Action CPU (C12)............ N 282373882003
'' 19 Creation Date (C10)......... N 01/08/20xx
'' 20 Creation Time (C8).......... N 17:46:14
'' 21 Creation MS (C7)............ N 6690565
'' 24 PGM Name (C8)............... N TTSIVP
'' 29 ASID (C4)................... N 0038

Figure 7.24 Time Detail

 Chapter 10: Thread/SENTRY Policies 10-1

Chapter 10

Thread/SENTRY Overview

 and Policy Definition

This chapter describes the operation and use of Thread/SENTRY, a product which
provides automated monitoring and policy enforcement for DB2 threads. Thread/
SENTRY makes it unnecessary to manually identify DB2 problem threads or to explicitly
cancel them. Instead, you can define what constitutes a ‘problem thread’ in terms of
threshold measurements such as elapsed time, CPU time, number of SQL statements
executed, number of locks held, etc. Thread/SENTRY detects such problem threads
automatically based on criteria you pre-define.

Thread/SENTRY (occasionally referred to herein as “the monitor”) wakes up periodically
(at an interval you specify) to monitor DB2 thread activity. You can direct
Thread/SENTRY to issue a warning, cancel a thread or invoke a site written exit routine
whenever Thread/SENTRY detects a violation. You can also direct Thread/SENTRY to
quiesce or resume the address space associated with a DB2 thread. Thread/SENTRY
evaluates DB2 threads in real-time and enforces your site-defined policies automatically.
Moreover, Thread/SENTRY can monitor multiple DB2 subsystems (on the same MVS
image) simultaneously -- even DB2 subsystems at different version and release levels.

Section 10.1 presents an overview of Thread/SENTRY features and capabilities. Section
10.2 summarizes the statements with which to define your site policies while Section
10.3 describes and illustrates the individual Thread/SENTRY control statements in detail.
The JCL with which to run Thread/SENTRY and the console commands that control its
operation are described and illustrated in Chapter 11.

10-2 Thread/SERIES Guide and Reference

10.1 Thread/SENTRY Overview

Thread/SENTRY provides a dedicated facility to automatically detect problem DB2
threads. Thread/SENTRY can gracefully cancel these problem threads and do so with
minimal impact. Thread/SENTRY lets you deal with the inevitable operational mistakes,
network failures, application errors and runaway queries that create ‘problem’ DB2
threads -- without disrupting large numbers of users.

Thread/SENTRY terminates a DB2 thread without canceling the thread's allied address
space. Thread cancellation via Thread/SENTRY is more granular and far less drastic
than recycling an entire CICS or IMS transaction processing region’s connection to DB2
via STOP and START commands. Thread/SENTRY is also more granular in operation
than the MVS CANCEL and FORCE commands. While these commands terminate an
entire job, TSO session or started task, Thread/SENTRY cancels just the DB2 thread or at
most the MVS task associated with a DB2 thread.

Moreover, Thread/SENTRY works in cases where DB2’s own CANCEL THREAD and
CANCEL DDF THREAD commands are ineffective. This can occur when the thread is
hung up in the application or within the communications network (TCP/IP and/or
SNA/VTAM).

Thread/SENTRY supports various methods of thread cancellation using DB2, MVS
TCP/IP and/or SNA/VTAM commands -- both individually and in combination.
Thread/SENTRY automatically determines the correct method to use, based on the
current state of the DB2 thread. Thread/SENTRY utilizes the same thread cancellation
facilities as does Thread/STOPPER.

Thread/SENTRY is an enterprise solution that supports all local and distributed DB2
applications connected through the various DB2 attachment facilities. These include
CICS and IMS transactions, client/server applications connected through gateways, TSO
sessions, QMF users and DB2 batch jobs.

10.2 Thread/SENTRY Statement Summary

Your organization can define what constitutes a DB2 ‘problem thread’ in terms of
threshold values. These limits define policies that Thread/SENTRY enforces automatic-
ally. Administrators define site policies through Thread/SENTRY statements.

This section lists the Thread/SENTRY control statements and briefly describes their
function. Subsequent sections describe each Thread/SENTRY statement in turn. Each
section describes the syntax and operands of one control statement and provides one or
more annotated examples to illustrate its use.

 Chapter 10: Thread/SENTRY Policies 10-3

Thread/SENTRY processes the following statement types:

The MONITOR statement defines characteristics of the Thread/SENTRY application
itself, such as the monitoring interval and the names of the DB2 subsystems to be
monitored.

The EXCLUDE statement lets you define threads that Thread/SENTRY should ignore.
Excluded threads are neither monitored nor canceled.

Note: See note under LIMIT.

The LIMIT statement permits the specification of various minimum and maximum
thresholds for resource consumption by threads that is observed over
 (1) the life a of thread,
 (2) the period encompassing a single unit-of-recovery; or
 (3) fixed intervals of elapsed time (termed minmax intervals).

Thread activity includes such measures as elapsed time, CPU time, number of SQL
statements executed, etc. When a maximum threshold is exceeded (or a minimum
threshold is not reached), Thread/SENTRY performs the action defined on the LIMIT
statement. The ACTION operand of the LIMIT statement can direct Thread/SENTRY to
issue a warning; cancel, quiesce or resume the thread; or call a site-written exit routine
that decides what to do.

Note: The EXCLUDE and LIMIT statements are all maskable,
through the SQL wild card characters ‘%’ and ‘_’. This lets you
identify which threads are subject to evaluation on the basis of
variables such as plan name, Auth ID, correlation name, etc. For
example, you can restrict the application of a policy to CICS threads
through a specification such as: CONNECTION(CICS%). Other
operands of the EXCLUDE and LIMIT statements let you restrict
when these policies should be evaluated to specific days and/or times.

The DEFAULT statement and its operands let you specify default values for a set of
EXCLUDE and LIMIT statements that follow it. The DEFAULT statement is not
executable as such. The values defined on a DEFAULT statement remain in effect until
(1) another DEFAULT statement is encountered or (2) no additional Thread/SENTRY
control statements remain to be processed.

Whenever possible, Thread/SENTRY notifies users whose threads are subject to warning
or cancellation (unless these notifications are specifically suppressed as described in the
discussion of _WTO below). Thread/SENTRY can also alert additional administrative
user(s) whenever it issues warnings or cancellations. The NOTIFY_LIST statement lets
you define a list of administrative IDs to be notified when a policy violation takes place.
You can assign a symbolic name to this notification list which can appear in the
previously defined LIMIT statements. When Thread/SENTRY detects a policy violation,
it can notify all the IDs specified in the notification list.

However, when the referenced NOTIFY_LIST symbolic name starts with the special
string _WTO (as in _WTOABC), Thread/SENTRY writes the user notification message to the

10-4 Thread/SERIES Guide and Reference

operator (via a WTO), rather than send a notification message to the owner of the thread.
In contrast, the notifications sent to administrative users specified in the NOTIFY_LIST
are processed without change (i.e. not effected by the _WTO special string).

Structure of Control Statements

Figure 10.1 illustrates the hierarchical structure of Thread/SENTRY control statements.
(Statements are indented to better portray the statement hierarchy. This indentation is not
required.) Note that Thread/SENTRY policy statements within a category are processed
in a FIFO (first in, first out) sequence.

MONITOR
 DEFAULT
 EXCLUDE
 LIMIT
 DEFAULT
 LIMIT
 LIMIT
 LIMIT
 NOTIFY_LIST

Figure 10.1 Thread/SENTRY hierarchical statement structure

These statements are read in from a control file during Thread/SENTRY initialization.
You can also refresh this control file, dynamically during execution. (See the
RULE_REFRESH command in Section 11.2.3).

Thread/SENTRY statements and their operands will steadily evolve over time to expose
new thread variables and threshold measures to automated monitoring and governance.
Thread/SENTRY maintains your policy definitions in control file(s) rather than DB2
tables to make it unnecessary to ALTER DB2 tables and rebind the Thread/SENTRY
plans each time the syntax is enhanced.

We expect the evolution of Thread/SENTRY’s statement syntax will also tend to reduce
the number of exit programs an organization has to develop in order to implement their
site specific policies.

 Chapter 10: Thread/SENTRY Policies 10-5

10.2.1 Thread Selection Criteria

Thread/SENTRY applies AND logic to select the threads to be subject to a given policy.
For example, suppose a LIMIT policy specifies both PLAN name and AUTH ID values.
Thread/SENTRY will evaluate only those threads whose plan name and AuthID match
those defined by the policy. As another example, suppose an EXCLUDE policy specifies
both a CONNECTION name value as well as a DAYS operand which specifies the policy
should only be in force during weekdays (Monday through Friday). In such a case,
Thread/SENTRY will exclude only those threads which meet both criteria: their
CONNECTION name matches that defined by the policy and

 the thread is executing on a
weekday. A thread is subject to a given policy only if the thread matches all the WHAT
and WHEN criteria specified by the policy.

Once Thread/SENTRY selects a thread for evaluation, it employs either AND or OR
logic with respect to the threshold operands that may trigger a policy violation. (The use
of AND or OR logic for a given policy is governed by the LOGIC operand described in
Section 10.7.2.) For example, a policy might limit the CPU time a thread can consume as
well as the number of SQL calls the thread can issue. When AND logic is applied,
Thread/SENTRY takes the action specified for the policy when the thread violates both
the CPU limit and the SQL call limit. Alternatively, when OR logic is applied,
Thread/SENTRY takes action when the thread violates either the CPU limit or

 the SQL
call limit.

10.2.2 Specifying Time Values

Thread/SENTRY accepts time values either as an integer number of seconds or as
formatted values that include hours, minutes and seconds.

When just digits are specified (without colon or period separators), then the entire time
value is construed to be seconds as in TIME(5) or TIME(10) -- e.g., TIME(1800) denotes
1800 seconds or thirty minutes.

Alternatively, the presence of either the period (‘.’) or colon (‘:’) denotes a formatted
time comprised of hours, minutes and seconds. The following formats are supported:
(where hh = hours, mm = minutes and ss = seconds.)

ISO hh.mm.ss
USA hh:mm:ss
EUR hh.mm.ss
JIS hh:mm:ss

For example 2:30 denotes 2 hours and 30 minutes while 10.45.15 denotes 10 hours, 45
minutes and 15 seconds. Similarly, 19:00 denotes 19 hundred hours or 7 PM.

10-6 Thread/SERIES Guide and Reference

10.3 Thread/SENTRY Control Statements

The following sections describes the various Thread/SENTRY control statements and
their operands. The following notational conventions are used in this Chapter:

> Keywords appear in UPPERCASE (for example SSID) and should be coded exactly

as shown

> Site-dependent values are denoted by lowercase characters. For example: (userid)

> Operands shown in brackets [] are optional. You can choose from a list of values

separated by the vertical bar | . For example: MODE(CANCEL|WARN). One or
none of the values may be chosen; the default values are underscored

.

> Operands shown in braces { } are alternatives; one must be chosen.

> An ellipsis (. . .) indicates the parameter may be repeated to specify additional

items of the same category.

You can code comments within the delimiters /* and */ to document Thread/SENTRY
control statements and their operands.

10.4 MONITOR Statement

The MONITOR statement defines operational characteristics of Thread/SENTRY itself,
such as its wakeup interval and the names of the DB2 subsystems to be monitored. The
MONITOR statement can be defined in a control file, or its operands can be passed as
parameters to the Thread/SENTRY program through the JCL EXEC statement.
Alternatively, you can at installation time assemble and link-edit a set of MONITOR
statement values into a load module which defines the Thread/SENTRY defaults.
Operands of the MONITOR statement (in alphabetical order) include the following:

DESCRCDE(descriptor_code)

The DESCRCDE operand applies only if Thread/SENTRY output is directed to the
operator via OUTPUT(WTO). It denotes an MCS descriptor code for WTO requests
issued by Thread/SENTRY.

ESTAE(YES|NO)

Governs whether abend trapping and MVS task recovery are enabled for the
Thread/SENTRY main and subtasks. ESTAE(YES) is the default and should not be
changed unless you are directed to do so by vendor support personnel.

 Chapter 10: Thread/SENTRY Policies 10-7

EXIT_MODULE(load_module_name)

Identifies the name of the load module which contains the Thread/SERIES
Table of Exit Routine definitions to be used during this run. Each entry within
the Thread/SERIES Table of Exit Routines defines either a site written or
vendor supplied exit routine as defined by the TTS#TXR macro. See Appendix
E for details.

IDLE_THREAD(YES|NO)

The IDLE_THREAD operand governs whether or not Thread/SENTRY
monitors inactive DDF threads (i.e. IDLE threads) for policy violations.
Thread/SENTRY incurs significant overhead to obtain information about idle
threads so the default is IDLE_THREAD(NO).

MCS_CONSOLE(YES|NO)

The MCS_CONSOLE operand governs whether or not Thread/SENTRY
activates an MCS console and listens for selected messages. Specify
MCS_CONSOLE(YES) to enable Thread/SENTRY to automatically detect
active log full conditions in one or more monitored DB2 subsystem(s). The
default is MCS_CONSOLE(NO).

When Thread/SENTRY detects message DSNJ110E, it quiesces the DB2 batch
jobs connected to the DB2 subsystem whose active log is filling up.
Thread/SENTRY resumes these batch jobs when the log off-load completes
successfully (denoted by message DSNJ139I.)

MESSAGE_MODULE(module_name)

The MESSAGE_MODULE operand specifies the name of a load module which
contains site written messages that Thread/SENTRY will issue when selected
policies are violated. See the discussion of the MSGID operand of the LIMIT
policy statement in Section 10.7.2 for further details. Appendix C in this
publication describes how to compose site written messages and assemble / link
edit them as a load module.

MSG_DISPLAY(TERSE|VERBOSE|DEBUG)

The MSG_DISPLAY operand governs which Thread/SENTRY messages
should be printed as well as what messages should be suppressed. A specifi-
cation of TERSE directs Thread/SENTRY to print just essential messages while
VERBOSE requests that all messages related to standard processing (including
warnings and informational messages) should appear. The DEBUG
specification causes all TERSE and VERBOSE messages to be externalized
along with additional messages that may be useful for debugging purposes.
MSG_DISPLAY(TERSE) is the default.

10-8 Thread/SERIES Guide and Reference

MINMAX_INTERVAL(time)

Specifies the default time duration (in wall clock terms) used to determine the
level of thread activity during some observation period. Thread/SENTRY
accumulates thread activity during this observation interval and takes action
whenever it detects a violation. When this MINMAX interval completes, all
activity counters are reset to initialize a new observation period. The categories
of activity monitored are requested via LIMIT statement operands prefixed with
IMAX or IMIN (interval maximum and interval minimum). The default
MINMAX_INTERVAL defined here applies to any LIMIT statement that does
not explicitly specify a MINMAX_INTERVAL. The MINMAX_INTERVAL
is ignored for any LIMIT policy that contains neither IMAX nor IMIN operands.

NOTE: The MINMAX_INTERVAL should specify a
duration at least double the value of the
WAKEUP_INTERVAL. For example, a
WAKEUP_INTERVAL of 60 seconds can support MINMAX_
INTERVAL values of 120 seconds or more.

MODE(CANCEL|WARN)

The MODE operand governs whether Thread/SENTRY actually cancels threads
for which violations are detected or merely issues a warning. Warn mode can be
used to audit all violations but stops short of thread cancellation. When
MODE(WARN) is specified, it overrides any LIMIT statements (or other
policies) which specify ACTION(CANCEL). The default operational mode is
CANCEL.

MONITOR_PLAN(planname)

The MONITOR_PLAN operand specifies the name of the Thread/SENTRY
application plan. The default plan name in Version 3.1 is TTSM310.

NONSTD_MODULE(load_module_name)

Identifies the name of the load module which contains the Thread/SERIES
Table of Non-Standard Processing definitions to be used during this run. Each
entry within this table defines a thread or set of threads for which non-standard
processing is required. Each entry also identifies the exit routine to be called
when such a thread is encountered. See Appendix E for details.

NOTIFY_ENABLED(scope_option,(enable_list))

The NOTIFY_ENABLED operand identifies the Thread/SENTRY actions for
which notification messages should be sent. It also identifies the users and/or
administrators who will receive these notification messages.

 Chapter 10: Thread/SENTRY Policies 10-9

scope_option specifies the global criterion to be applied to any list of users,
administrators and policy actions which appear in any enable_list which follows.

ALL Both administrators and affected users will receive notification

messages whenever Thread/SENTRY detects a policy violation.

NONE No notification messages will be sent to either administrators or

users, regardless of which policy is violated or the action defined
for a policy.

ONLY Thread/SENTRY will only send notification messages to the

action/recipient pairs whose names explicitly appear in the
enable_list which follows.

EXCEPT Thread/SENTRY will send notification messages to both

administrators and affected users for all actions except the
action/recipient pairs whose names explicitly appear in the
enable_list which follows

enable_list (CANCEL_USER,CANCEL_ADMIN,WARNING_USER,
 WARNING_ADMIN,PENDING_USER,PENDING_ADMIN)

CANCEL_USER Thread/SENTRY should send notification messages to

canceled users.

CANCEL_ADMIN Thread/SENTRY should send notification messages to the

set of administrative IDs associated with a NOTIFY_LIST
in the event a thread is canceled.

WARN_USER Thread/SENTRY should send notification messages to a

user whose thread violates a policy which specifies an
action of WARN.

WARN_ADMIN Thread/SENTRY should send notification messages to the

set of administrative IDs associated with a NOTIFY_LIST
in the event a thread violates a policy which specifies an
action of WARN.

PENDING_USER Thread/SENTRY should send notification messages to

users for whom thread cancellation has been pending longer
than the PENDING_INTERVAL described below.

PENDING_ADMIN Thread/SENTRY should send notification messages to the

set of administrative IDs associated with a NOTIFY_LIST
in the event a cancellation is pending longer than the
PENDING_INTERVAL defined below. This can occur for
threads which violate a policy which specifies an action of
CANCEL.

10-10 Thread/SERIES Guide and Reference

NOTIFY_ENABLED(ALL) is the default.

Example 1

Direct Thread/SENTRY to send notification messages to administrators and affected
users for all policy violations, whenever Thread/SENTRY detects a policy violation.

MONITOR
 NOTIFY_ENABLED(ALL)

Example 2

Direct Thread/SENTRY to only send notification messages under the following
circumstances: Whenever a thread is canceled, notify both administrators and affected
users. When a policy is violated for which an action of WARN is specified, notify just
the list of administrator IDs defined (or defaulted) for the violated policy.

MONITOR
 NOTIFY_ENABLED(ONLY,(CANCEL_USER,CANCEL_ADMIN,WARN_ADMIN))

NOTIFY_FREQUENCY(integer)

The integer value specified by the NOTIFY_FREQUENCY operand governs
how often logical requests to send notifications and/or insert rows into the
Thread_Audit table will be physically honored. Thread/SENTRY accumulates
logical requests until the total is equal to the value specified by
NOTIFY_FREQUENCY. At that point, Thread/SENTRY actually sends
notifications to users and administrators and inserts a row into the Thread_Audit
table. For example, to direct Thread/SENTRY to physically honor one
notification request for every 10 requests received, set the
NOTIFY_FREQUENCY to 10.

Thread/SENTRY always honors the first request. NOTIFY_FREQUENCY is
applied to requests associated with pending actions (which are triggered by the
PENDING_INTERVAL operand described below). The default frequency is 10.

NOTIFY_INACTIVE_ADMIN(BOTH|OFF|WARN|CANCEL)

The NOTIFY_INACTIVE_ADMIN operand identifies the Thread/SENTRY
actions for which notification messages should be sent to the set of
administrative IDs associated with a NOTIFY_LIST in the event a thread
violates a policy, even to those IDs that are not logged in to z/OS system at the
time of violation.

BOTH Thread/SENTRY should send notification messages to any logged off
administrative ID in the event a thread is canceled, or a thread violates a policy
which specifies an action of WARN.

OFF No notification messages will be sent to any logged off administrator,
regardless of which policy is violated or the action defined for a policy.

 Chapter 10: Thread/SENTRY Policies 10-11

WARN Thread/SENTRY should send notification messages to any logged off
administrative ID in the event a thread violates a policy which specifies an action of
WARN.

CANCEL Thread/SENTRY should send notification messages to any logged off
administrative ID in the event a thread is canceled.

NOTIFY_INACTIVE_USER(BOTH|OFF|WARN|CANCEL)

The NOTIFY_INACTIVE_USER operand identifies the Thread/SENTRY actions for
which notification messages should be sent to any user ID whose thread violates a policy,
even to those IDs that are not logged in to z/OS system at the time of violation.

BOTH Thread/SENTRY should send notification messages to any logged off user ID
whose thread is canceled, or a thread violates a policy which specifies an action of
WARN.

OFF No notification messages will be sent to any logged off user ID, regardless of which
policy is violated or the action defined for a policy.

WARN Thread/SENTRY should send notification messages to any logged off user ID
whose thread violates a policy which specifies an action of WARN.

CANCEL Thread/SENTRY should send notification messages to any logged off user ID
whose thread is canceled.

NOTIFY_LIST(listname)

The NOTIFY_LIST operand specifies the symbolic name of a list of administrative IDs
to be notified when Thread/SENTRY detects a policy violation.

Ordinarily the owner of the violating thread is notified of the action taken by
Thread/SENTRY. However, when listname starts with the special string _WTO (as in
_WTOABC), Thread/SENTRY writes the user notification message to the operator (via a
WTO), rather than send a notification message to the owner of the thread. Notifications
sent to administrative users specified in the NOTIFY_LIST are not effected by the _WTO
special string.

NOTIFY_MAXIMUM(integer)

The NOTIFY_MAXIMUM operand limits the number of notifications that
Thread/SENTRY will send to users and administrators for a particular thread. Once the
specified maximum is reached, Thread/SENTRY disables further notifications for that
thread.

Only physically honored notification requests increment the count limited by the
NOTIFY_MAXIMUM value. The default NOTIFY_MAXIMUM is 3.

NOTIFY_ON_WARNING(YES|NO)

The NOTIFY_ON_WARNING operand directs Thread/SENTRY to issue (YES) or
suppress (NO) notifications for any pending warning request.

10-12 Thread/SERIES Guide and Reference

OUTDD(WTO|ddname)

The OUTDD operand specifies where Thread/SENTRY should direct its
informational, warning and error messages. The report destination can reference
the DDname of a file or specify the keyword WTO that denotes Write to the
Operator. By default, Thread/SENTRY routes this output to a file named
TTSOUT. This default DDname should not be overridden.

PENDING_INTERVAL(time)

The PENDING_INTERVAL operand specifies how long (in seconds)
Thread/SENTRY should wait for a thread to terminate normally or abnormally.
When the pending interval expires without Thread/SENTRY confirming that the
thread no longer exists, Thread/SENTRY logically requests that additional
notifications be sent to the affected user and those administrators specified to
receive notification messages (as described by the NOTIFY_ENABLED operand).
In addition, Thread/SENTRY logically requests the insertion of a row into the
Thread_Audit table. Logical requests are honored in accordance with the
NOTIFY_FREQUENCY operand described above. These actions reflect the fact
that thread termination is pending but not yet complete. The default
PENDING_INTERVAL is 60 seconds.

Example: Direct Thread/SENTRY to send notification messages to

administrators and affected users if thread cancellation is not
confirmed within 30 seconds.

MONITOR
 PENDING_INTERVAL(30)

RESET_WARNING(YES|NO)

The RESET_WARNING operand directs Thread/SENTRY to reset (YES) or
maintain (NO) a pending warning request when a target thread no longer
violates the policy that triggered the original warning. Both the
RESET_WARNING and NOTIFY_ON_WARNING operands must be set to
YES in order for Thread/SENTRY to examine pending violations and possibly
reset them.

ROUTECDE(routing_code)

The ROUTECDE operand applies only if Thread/SENTRY output is directed to
the operator via an output specification of OUTPUT(WTO). It denotes an MCS
routing code for the WTO macros issued by Thread/SENTRY.

SNAPDD(ddname)

The SNAPDD operand specifies where Thread/SENTRY should direct output
from the SNAP command. By default, Thread/SENTRY routes this output to a
file named TTSTRACE.

 Chapter 10: Thread/SENTRY Policies 10-13

SSID(ssid_list)

The SSID operand identifies the DB2 subsystem or list of DB2 subsystems to be
monitored.

SUM_PARALLEL_ELAPSED(YES|NO)

The SUM_PARALLEL_ELAPSED operand governs whether Thread/SENTRY
will summarize elapsed wall clock time as well as elapsed time within DB2 for a
set of parallel threads. By specifying NO (or accepting the default), neither
elapsed wall clock time nor elapsed time within DB2 are summarized. Rather,
these two elapsed time values are those from the originating, coordinator thread.

To direct Thread/SENTRY to summarize elapsed wall clock time and elapsed
time within DB2 for an originating thread and the 1 to N parallel threads it
coordinates, specify
 SUM_PARALLEL_ELAPSED(YES).

WAKEUP_INTERVAL(time)

The WAKEUP_INTERVAL operand specifies the monitoring interval in seconds
(i.e. how much time elapses before Thread/SENTRY wakes up to monitor DB2
threads and enforce your policies). The default wakeup_interval is 60 seconds.

Example: Monitor the DB2 subsystems named DB2A, DB2B and

DB2C. Thread/SENTRY should ‘wake up’ every 60
seconds to evaluate thread activity:

MONITOR
 SSID(DB2A,DB2B,DB2C)
 WAKEUP_INTERVAL(60)

WTO_HRDCPY(NO|YES)

The WTO_HRDCPY parameter specifies whether Thread/SENTRY should
write WTO messages to hard copy only. The WTO_HRDCPY command option
can be specified in the form WTO_HRDCPY(option) where option is either
YES or NO. The value YES directs Thread/SENTRY to write WTO messages
to hard copy only while an option of NO causes WTO messages to be written to
the console as well as to hard copy.

10-14 Thread/SERIES Guide and Reference

10.5 The DEFAULT Statement

The DEFAULT statement and its operands let you specify default values for a set of
EXCLUDE and LIMIT statements that follow it. These default values remain in effect
until (1) another DEFAULT statement is encountered or (2) no more Thread/SENTRY
statements remain to be processed.

SSID(name)

The SSID operand identifies the name of the default DB2 subsystem to be
associated with any EXCLUDE or LIMIT statements that follow, which do not
specify a subsystem ID explicitly.

LOGIC(AND|OR)

The LOGIC operand specifies whether a single threshold or set of thresholds
must be violated before Thread/SENTRY performs the action associated with
any LIMIT statements that follow, which do not specify a LOGIC operand
explicitly.

 AND The policy action is triggered only when all thresholds specified by

the policy are violated. For example, both threshold 1 and
threshold 2 must be exceeded before Thread/SENTRY takes
action.

 OR The policy action is triggered if any threshold specified by the

policy is violated. For example, Thread/SENTRY takes action
when either threshold 1 or threshold 2 are exceeded.

NOTIFY_LIST(listname)

The NOTIFY_LIST operand specifies the symbolic name of a list of
administrative IDs to be notified when Thread/SENTRY detects a policy
violation.

Ordinarily, the owner of the violating thread is notified of the action taken by
Thread/SENTRY. However, when listname starts with the special string _WTO
(as in _WTOABC), Thread/SENTRY writes the user notification message to the
operator (via a WTO), rather than send a notification message to the owner of
the thread. Notifications sent to administrative users specified in the
NOTIFY_LIST are not effected by the _WTO special string.

START(time)

The START operand specifies the default starting time for the application of a
policy. If starting and ending times are neither defaulted nor explicitly
specified, Thread/SENTRY evaluates the policy regardless of the time of day.

 Chapter 10: Thread/SENTRY Policies 10-15

END(time)

The END operand specifies the default ending time for the application of a
policy. If starting and ending times are neither defaulted nor explicitly
specified, Thread/SENTRY evaluates the policy regardless of the time of day.

DAYS(1,2,3,4,5,6,7,ALL,WEEKDAYS)

The DAYS operand specifies the default day(s) of the week when a policy is
effective. If a DAYS value is neither defaulted nor explicitly specified,
Thread/SENTRY evaluates the policy regardless of the day of the week.

MINMAX_INTERVAL(time)

Specifies the default time duration (in wall clock terms) used to determine the
level of thread activity during some observation period. The monitor accumul-
ates thread activity during this observation interval and takes action whenever it
detects a violation. When this MINMAX interval completes, all activity
counters are reset to initialize a new observation period. The categories of
activity monitored are requested via LIMIT statement operands prefixed with
IMAX or IMIN (interval maximum and interval minimum). The default
MINMAX_INTERVAL defined here applies to any LIMIT statement that does
not explicitly specify a MINMAX_INTERVAL. The MINMAX_INTERVAL
is ignored for any LIMIT policy that contains neither IMAX nor IMIN operands.

NOTE: The MINMAX_INTERVAL should specify a
duration at least double the value of the
WAKEUP_INTERVAL. The default WAKEUP_INTERVAL is
set to 60 seconds (see the MONITOR statement above) which
supports MINMAX_INTERVAL values of 120 seconds or
more.

10.6 The EXCLUDE Statement

The EXCLUDE statement defines threads that are not subject to evaluation and
cancellation by Thread/SENTRY. The following operands of the EXCLUDE statement
identify the thread(s) to which an exclusion policy applies.

NOTE: Values for the operands identified as maskable can
specify the SQL wild card characters % and _ for pattern
matching purposes. For example CONNECTION(CICS%)

POLICY_ID(pid)

The POLICY_ID operand specifies a symbolic name (of one to eight characters
in length) for this exclusion policy. This operand must be specified.

10-16 Thread/SERIES Guide and Reference

10.6.1 What threads are subject to EXCLUDE policies

SSID(ssids)

The SSID operand specifies the name of one or more DB2 subsystems in which
this exclusion policy is to be effective. The list of subsystem names should be
separated by commas.

PLAN(name)

The PLAN operand identifies the names of the DB2 application plans that
should be ignored by Thread/SENTRY (provided all other WHAT and WHEN
criteria are meet). PLAN name is maskable.

PROGRAM(pgmname)

The PROGRAM operand denotes a field of up to 8 bytes long whose significant
characters identify the name of a currently executing DB2 package or DBRM.
Thread/SENTRY should ignore such a program (provided all other WHAT and
WHEN criteria are meet). A Class 7 trace must be continuously active in order
for Thread/SENTRY to exclude threads on the basis of the currently active
package or DBRM name. The PROGRAM value is maskable.

AUTHID(name)

The AUTHID operand specifies the primary authorization IDs of thread(s) that
Thread/SENTRY should ignore (provided all other WHAT and WHEN criteria
are meet). AUTHID name is maskable.

JOBNAME(jobname)

The JOBNAME operand denotes the names of the jobs associated with the allied
address spaces from which one or more thread(s) originate. Thread/ SENTRY
ignores any threads that originate in an address space that is subject to exclusion
(provided all other WHAT and WHEN criteria are meet). The JOBNAME
value is maskable.

CORRELATION(name)

The CORRELATION operand denotes a field up to 12 bytes long whose
significant characters identify the Correlation ID of the thread(s) to be ignored
by Thread/SENTRY (provided all other WHAT and WHEN criteria are meet).
The CORRELATION value is maskable.

 Chapter 10: Thread/SENTRY Policies 10-17

CONNECTION(name)

The CONNECTION operand denotes a field up to 8 bytes long whose
significant characters specify the connection name associated with a thread.
Thread/SENTRY ignores any threads which match this connection name
(provided all other WHAT and WHEN criteria are meet). CONNECTION is a
maskable value.

CONNECTION_TYPE(type)

The CONNECTION_TYPE operand denotes a field up to 8 bytes long whose
significant characters specify a thread’s connection type. Thread/SENTRY
ignores any threads which match this connection type (provided all other
WHAT and WHEN criteria are meet). CONNECTION_TYPE is not a
maskable value. Rather, CONNECTION_TYPE must specify one of the values
in the left hand column below (derived from the mapping macro DSNDQWHC
supplied with DB2). Each QWHCxxxx value denotes the connection type
described in the corresponding right hand column:

QWHCTSO TSO foreground and background
QWHCDB2C DB2 call attach
QWHCDLIB DL/I batch
QWHCCICS CICS attach
QWHCIMSB IMS attach BMP
QWHCIMSM IMS attach MPP
QWHCDUW System directed access
QWHCRUW Application directed access
QWHCICTL IMS control region
QWHCTBMP IMS transaction BMP
QWHCUTIL DB2 Utilities
QWHCTRRS RRSAF Attach
TSOFORE TSO foreground
TSOBATCH TSO batch

10-18 Thread/SERIES Guide and Reference

10.6.2 What threads are subject to EXCLUDE policies on the basis of

MVS and DDF Accounting Data Associated with the Thread

NOTE: The following operands are applicable to all threads for which MVS and DDF
accounting information is present.

PRODUCT_NAME(name)

The PRODUCT_NAME operand identifies the product that generated the
accounting string. Thread/SENTRY ignores any threads which match this
product name value (provided all other WHAT and WHEN criteria are meet).
The product identifier may assume one the following three character values:

DSN denotes DB2 for z/OS
ARI denotes SQL/DS or DB2 for VM
SQL denotes DB2 client/server
QSQ denotes DB2/400

PRODUCT_VERSION(vv)

The PRODUCT_VERSION operand is a two character value which identifies
the version of the product that generated the accounting string. Thread/SENTRY
ignores any threads which match this version value (provided all other WHAT
and WHEN criteria are meet).

PRODUCT_RELEASE(rr)

The PRODUCT_RELEASE operand is a two character value which identifies
the release level of the product that generated the accounting string.
Thread/SENTRY ignores any threads which match this release value (provided
all other WHAT and WHEN criteria are meet).

PRODUCT_MOD(m)

The PRODUCT_MOD operand is a single character value which identifies the
modification level of the product that generated the accounting string.
Thread/SENTRY ignores any threads which match this modification level value
(provided all other WHAT and WHEN criteria are meet).

 Chapter 10: Thread/SENTRY Policies 10-19

NOTE: The following operands refer to MVS and DDF accounting information for those threads whose
PRODUCT_NAME value is ‘DSN’. That is, threads whose accounting strings are generated by either DB2
for OS/390 or DB2 for MVS/ESA.

QMDA_LOCATION(name)

The QMDA_LOCATION operand identifies the DB2 location name for the
DB2 system that created the accounting string. A name of up to 16 characters in
length may be specified. Thread/SENTRY ignores any threads which match this
maskable location name value (provided all other WHAT and WHEN criteria
are meet).

QMDA_NETID(name)

The QMDA_NETID operand identifies the SNA NETID of the DB2 system that
created the accounting string. A name of up to 8 characters in length may be
specified. Thread/SENTRY ignores any threads which match this maskable
SNA Net ID value (provided all other WHAT and WHEN criteria are meet).

QMDA_LUNAME(name)

The QMDA_LUNAME operand identifies the SNA LU name of the DB2
system that created the accounting string. A name of up to 8 characters in length
may be specified. Thread/SENTRY ignores any threads which match this LU
name (provided all other WHAT and WHEN criteria are meet).
QMDA_LUNAME is a maskable value.

QMDA_CONNECTION(name)

The QMDA_CONNECTION operand identifies the DB2 Connection Name at
the DB2 system where the SQL application is running. A name of up to 8
characters in length may be specified. Thread/SENTRY ignores any threads
which match this maskable QMDA_CONNECTION value (provided all other
WHAT and WHEN criteria are meet).

QMDA_CONNECTION_TYPE(name)

The QMDA_CONNECTION_TYPE operand identifies the DB2 Connection
Type at the DB2 system where the SQL application is running. A name of up to
8 characters in length may be specified. Thread/SENTRY ignores any threads
which match this QMDA_CONNECTION_TYPE (provided all other WHAT
and WHEN criteria are meet). This operand accepts a maskable value.

QMDA_CORRELATION(name)

The QMDA_CORRELATION operand identifies the DB2 Correlation ID at the
DB2 system where the SQL application is running. A name of up to 12
characters in length may be specified. Thread/SENTRY ignores any threads
which match this correlation name (provided all other WHAT and WHEN
criteria are meet). QMDA_CORRELATION is a maskable value.

10-20 Thread/SERIES Guide and Reference

QMDA_AUTHID(name)

The QMDA_AUTHID operand identifies the DB2 authorization ID that the
SQL application used, prior to name translation and prior to driving the
connection exit at the DB2 site where the SQL application is running. A name
of up to 8 characters in length may be specified. Thread/SENTRY ignores any
threads which match this Authorization ID (provided all other WHAT and
WHEN criteria are meet). QMDA_AUTHID is a maskable value.

QMDA_PLAN(name)

The QMDA_PLAN operand identifies the DB2 PLAN that the SQL application
used at the DB2 site running the SQL application. A name of up to 8 characters
in length may be specified. Thread/SENTRY ignores any threads which match
this plan name (provided all other WHAT and WHEN criteria are meet).
QMDA_PLAN is a maskable value.

NOTE: The following operands refer to MVS and DDF accounting information for
those threads whose PRODUCT_NAME value is ‘SQL’. That is, threads whose
accounting strings are created by DB2 client server products such as DB2 for Windows
NT, DB2 for OS/2 and DB2 for various Unix implementations.

CLIENT_PLATFORM(name)

The CLIENT_PLATFORM operand identifies the Client Platform where the
SQL application is running. A name of up to 18 characters in length may be
specified. Some example values are ‘NT’, ‘AIX’ and ‘OS/2’. Thread/SENTRY
ignores any threads which match this platform name (provided all other WHAT
and WHEN criteria are meet). CLIENT_PLATFORM is a maskable value.

CLIENT_APPLICATION(name)

The CLIENT_APPLICATION operand identifies the name of the client SQL
application. A name of up to 20 characters in length (such as ‘PAYROLL’) may
be specified. Thread/SENTRY ignores any threads which match this client
application name (provided all other WHAT and WHEN criteria are meet).
CLIENT_APPLICATION is a maskable value.

CLIENT_AUTHID(name)

The CLIENT_AUTHID operand identifies the authorization ID of the client
application process. A name of up to 8 characters in length may be specified.
Thread/SENTRY ignores any threads which match this client Authorization ID
(provided all other WHAT and WHEN criteria are meet). CLIENT_AUTHID is
a maskable value.

 Chapter 10: Thread/SENTRY Policies 10-21

NOTE: The following operands apply to all threads for which accounting strings are
available. See Section 10.7.9.1 for examples of LIMIT policies which make use of these
accounting string operands.

ACCOUNT_SUBSTRING1(pattern string)

The ACCOUNT_SUBSTRING1 operand specifies a pattern substring that may
occur within the accounting string associated with a thread. A maskable pattern
of up to 200 characters in length may be specified. Thread/SENTRY ignores
threads whose accounting string (or portion thereof) matches the pattern
specified by ACCOUNTG_SUBSTRING1 (provided all other WHAT and
WHEN criteria are meet).

ACCOUNT_START1(integer)

ACCOUNT_START1 specifies the starting character position within the
thread’s accounting string where pattern matching with the value specified by
ACCOUNT_SUBSTRING1 should begin. If omitted, the default starting
position is 1.

ACCOUNT_LENGTH1(integer)

The ACCOUNT_LENGTH1 operand specifies an explicit length for the
comparison between the pattern string and the accounting substring. If omitted,
the length of the pattern specified by ACCOUNT_SUBSTRING1 is implicitly
derived in a manner consistent with the SQL LIKE predicate as follows:

• The underscore sign (_) represents a single arbitrary character
• The percent sign (%) represents a string of zero or more arbitrary characters
• Any other character represents a single occurrence of itself

ACCOUNT_SUBSTRING2(pattern string)

The ACCOUNT_SUBSTRING2 operand specifies a second pattern substring
that may occur within the accounting string associated with a thread. A
maskable pattern of up to 200 characters in length may be specified.
Thread/SENTRY ignores any threads whose accounting string (or portion
thereof) matches the pattern specified by ACCOUNT_SUBSTRING2 (provided
all other WHAT and WHEN criteria are meet).

ACCOUNT_START2(integer)

ACCOUNT_START2 specifies the starting character position within the
thread’s accounting string where pattern matching with the value specified by
ACCOUNT_SUBSTRING2 should begin. If omitted, the default starting
position is 1.

10-22 Thread/SERIES Guide and Reference

ACCOUNT_LENGTH2(integer)

The ACCOUNT_LENGTH2 operand specifies an explicit length for the
comparison between the second pattern string and the accounting substring. If
omitted, the length of the pattern specified by ACCOUNT_SUBSTRING2 is
implicitly derived as described in the documentation for the
ACCOUNT_LENGTH1 operand.

ACCOUNT_SUBSTRING3(pattern string)

The ACCOUNT_SUBSTRING3 operand specifies a third pattern substring that
may occur within the accounting string associated with a thread. A maskable
pattern of up to 200 characters in length may be specified. Thread/SENTRY
ignores any threads whose accounting string (or portion thereof) matches the
pattern specified by ACCOUNT_SUBSTRING3 (provided all other WHAT and
WHEN criteria are meet).

ACCOUNT_START3(integer)

ACCOUNT_START3 specifies the starting character position within the
thread’s accounting string where pattern matching with the value specified by
ACCOUNT_SUBSTRING3 should begin. If omitted, the default starting
position is 1.

ACCOUNT_LENGTH3(integer)

The ACCOUNT_LENGTH3 operand specifies an explicit length for the
comparison between the third pattern string and the accounting substring. If
omitted, the length of the pattern specified by ACCOUNT_SUBSTRING3 is
implicitly derived as described in the documentation for the
ACCOUNT_LENGTH1 operand.

 Chapter 10: Thread/SENTRY Policies 10-23

10.6.3 When to apply Exclusion Policies

The following operands specify when to apply an exclusion policy.

START(time)

The START operand specifies the starting time for the application of this
exclusion policy. If starting and ending times are neither defaulted nor
explicitly specified, Thread/SENTRY applies this exclusion policy regardless of
the time of day.

END(time)

The END operand specifies an explicit ending time for the application of this
policy. If starting and ending times are neither defaulted nor explicitly
specified, Thread/SENTRY evaluates this policy regardless of the time of day.

DAYS(1,2,3,4,5,6,7,ALL,WEEKDAYS)

The DAYS operand specifies the day(s) of the week for which this exclusion
policy is effective. If a DAYS value is neither defaulted nor explicitly specified,
Thread/SENTRY evaluates this policy regardless of the day of the week.

10-24 Thread/SERIES Guide and Reference

10.7 The LIMIT Statement

The LIMIT statement enables you to specify resource consumption thresholds for thread activity. You can
define various minimum and maximum levels that apply over

 (1) the life a of thread,
 (2) the period encompassing a single unit-of-recovery; or
 (3) some period of elapsed time (termed a MINMAX interval).

Thread activity includes such measures as elapsed time, CPU time, number of SQL
statements executed, etc. When a maximum threshold is exceeded (or a minimum
threshold is not reached), Thread/SENTRY performs the action defined on the LIMIT
statement. The ACTION operand of the LIMIT statement can direct Thread/SENTRY to
issue a warning, cancel the thread or call a site-written or vendor supplied exit routine to
decide what to do. Operands of the LIMIT statement identify which limits are to be
evaluated and enforced.

 Parallel Thread Support

When Thread/SENTRY detects a set of parallel threads (i.e. an originating thread and the 1 - n parallel
threads it coordinates), Thread/SENTRY creates a fictitious composite thread that contains summarized
statistics for the originating thread and its associated parallel threads. Thread/SENTRY automatically
applies LIMIT policies to the summary statistics maintained in this composite thread. The identity of the
composite thread is the same as that of the originating, coordinator thread with respect to values such as
plan name, authid, etc.

In the following example, the LIMIT policy name POLICY1 will cancel a thread whose plan name is
PAYROLL in either of the following cases: 1 - PAYROLL runs as a non parallel thread and issues more
than 10,000 GETPAGE requests or 2 - PAYROLL runs in parallel and the sum of the GETPAGE requests
issued by the originating thread and the parallel threads it coordinates exceed 10,000.

LIMIT
 POLICY_ID(POLICY1)
 PLAN(PAYROLL) <- same plan name for originator and composite
 MAX_GETPAGES(10000) <- maximum GETPAGES for coordinator + parallel

NOTE: By default, elapsed wall clock time for the application as well as elapsed time within DB2 are not
summarized. Rather, these two elapsed time values are those from the originating, coordinator thread. To
summarize elapsed wall clock time and elapsed time within DB2, you can specify
SUM_PARALLEL_ELAPSED(YES) as an operand of the MONITOR statement as described in Section
10.4.

 Chapter 10: Thread/SENTRY Policies 10-25

10.7.1 What threads are subject to LIMIT policies

The following operands of the LIMIT statement identify the thread(s) to which the policy applies. If these
qualifiers are omitted, Thread/SENTRY will apply this LIMIT policy to all threads except those explicitly
excluded through EXCLUDE policy statements.

NOTE: Values for the operands identified as maskable can specify
the SQL wild card characters % and _ for pattern matching purposes.
For example CONNECTION(CICS%)

POLICY_ID(pid)

The POLICY_ID operand specifies a symbolic name (of one to eight characters
in length) for this LIMIT policy. This operand must be specified.

SSID(ssids)

The SSID operand specifies the name of one or more DB2 subsystems in which
this LIMIT policy is to be effective.

PLAN(name)

The PLAN operand identifies the names of the DB2 application plan(s) to which
this LIMIT policy is applied (provided all other WHAT and WHEN criteria are
meet). PLAN name is maskable.

PROGRAM(pgmname)

The PROGRAM operand identifies the name of a currently executing DB2
package or DBRM to which this LIMIT policy is applied (provided all other
WHAT and WHEN criteria are meet). A Class 7 trace must be continuously
active in order for Thread/SENTRY to select threads on the basis of program
name. PROGRAM name is maskable.

AUTHID(name)

The AUTHID operand specifies the primary authorization IDs of thread(s) to
which this LIMIT policy will be applied (provided all other WHAT and WHEN
criteria are meet). AUTHID is maskable.

JOBNAME(jobname)

The JOBNAME operand denotes the names of the jobs associated with the allied
address spaces from which one or more thread(s) originate. Thread/ SENTRY
will apply this LIMIT policy to any thread that originates in an address space
whose jobname matches the jobname pattern (provided all other WHAT and
WHEN criteria are meet). The JOBNAME value is maskable.

10-26 Thread/SERIES Guide and Reference

CORRELATION(name)

The CORRELATION operand denotes a field up to 12 bytes in length whose
significant characters identify the Correlation ID of the thread(s) to which this
LIMIT policy will be applied (provided all other WHAT and WHEN criteria are
meet). The CORRELATION value is maskable.

CONNECTION(name)

The CONNECTION operand denotes a field up to 8 bytes long whose
significant characters specify the connection name associated with a thread.
Thread/SENTRY will apply this LIMIT policy to any threads which match this
connection name (provided all other WHAT and WHEN criteria are meet).
CONNECTION is a maskable value.

CONNECTION_TYPE(type)

The CONNECTION_TYPE operand denotes a field up to 8 bytes long whose
significant characters specify a thread’s connection type. Thread/SENTRY will
apply this LIMIT policy to any threads which match this connection type
(provided all other WHAT and WHEN criteria are meet).
CONNECTION_TYPE is not a maskable value. Rather, it must specify one of
the values in the left hand column below (derived from the mapping macro
DSNDQWHC supplied with DB2). Each QWHCxxxx value denotes the
connection type described in the corresponding right hand column:

QWHCTSO TSO foreground and background
QWHCDB2C DB2 call attach
QWHCDLIB DL/I batch
QWHCCICS CICS attach
QWHCIMSB IMS attach BMP
QWHCIMSM IMS attach MPP
QWHCDUW System directed access
QWHCRUW Application directed access
QWHCICTL IMS control region
QWHCTBMP IMS transaction BMP
QWHCUTIL DB2 Utitlities
QWHCTRRS RRSAF Attach
TSOFORE TSO foreground
TSOBATCH TSO batch

 Chapter 10: Thread/SENTRY Policies 10-27

10.7.1.1 What threads are subject to LIMIT policies on the
basis of MVS and DDF Accounting Data
Associated with the Thread

NOTE: The following operands are applicable to all threads for which MVS and DDF
accounting information is present.

PRODUCT_NAME(name)

The PRODUCT_NAME operand identifies the product that generated the
accounting string. Thread/SENTRY will apply this LIMIT policy to any threads
which match this product name value (provided all other WHAT and WHEN
criteria are meet). The product identifier may assume one the following three
character values:

DSN denotes DB2 for z/OS
ARI denotes SQL/DS or DB2 for VM
SQL denotes DB2 client/server
QSQ denotes DB2/400

PRODUCT_VERSION(vv)

The PRODUCT_VERSION operand is a two character value which identifies
the version of the product that generated the accounting string.
Thread/SENTRY will apply this LIMIT policy to any threads which match this
version value (provided all other WHAT and WHEN criteria are meet).

PRODUCT_RELEASE(rr)

The PRODUCT_RELEASE operand is a two character value which identifies
the release level of the product that generated the accounting string.
Thread/SENTRY will apply this LIMIT policy to any threads which match this
release value (provided all other WHAT and WHEN criteria are meet).

PRODUCT_MOD(m)

The PRODUCT_MOD operand is a single character value which identifies the
modification level of the product that generated the accounting string.
Thread/SENTRY will apply this LIMIT policy to any threads which match this
modification level value (provided all other WHAT and WHEN criteria are
meet).

10-28 Thread/SERIES Guide and Reference

NOTE: The following operands refer to MVS and DDF accounting information for
those threads whose PRODUCT_NAME value is ‘DSN’. That is, threads whose
accounting strings are generated by either DB2 for OS/390 or DB2 for MVS/ESA.

QMDA_LOCATION(name)

The QMDA_LOCATION operand identifies the DB2 location name for the
DB2 system that created the accounting string. A name of up to 16 characters in
length may be specified. Thread/SENTRY will apply this LIMIT policy to any
threads which match this maskable location name value (provided all other
WHAT and WHEN criteria are meet).

QMDA_NETID(name)

The QMDA_NETID operand identifies the SNA NETID of the DB2 system that
created the accounting string. A name of up to 8 characters in length may be
specified. Thread/SENTRY will apply this LIMIT policy to any threads which
match this maskable SNA Net ID value (provided all other WHAT and WHEN
criteria are meet).

QMDA_LUNAME(name)

The QMDA_LUNAME operand identifies the SNA LU name of the DB2
system that created the accounting string. A name of up to 8 characters in length
may be specified. Thread/SENTRY will apply this LIMIT policy to any threads
which match this LU name (provided all other WHAT and WHEN criteria are
meet). QMDA_LUNAME is a maskable value.

QMDA_CONNECTION(name)

The QMDA_CONNECTION operand identifies the DB2 Connection Name at
the DB2 system where the SQL application is running. A name of up to 8
characters in length may be specified. Thread/SENTRY will apply this LIMIT
policy to any threads which match this maskable QMDA_CONNECTION value
(provided all other WHAT and WHEN criteria are meet).

QMDA_CONNECTION_TYPE(name)

The QMDA_CONNECTION_TYPE operand identifies the DB2 Connection
Type at the DB2 system where the SQL application is running. A name of up to
8 characters in length may be specified. Thread/SENTRY will apply this LIMIT
policy to any threads which match this QMDA_CONNECTION_TYPE
(provided all other WHAT and WHEN criteria are meet). This operand accepts
a maskable value.

QMDA_CORRELATION(name)

The QMDA_CORRELATION operand identifies the DB2 Correlation ID at the
DB2 system where the SQL application is running. A name of up to 12 charac-
ters in length may be specified. Thread/SENTRY will apply this LIMIT policy
to any threads which match this correlation name (provided all other WHAT and
WHEN criteria are meet). QMDA_CORRELATION is a maskable value.

 Chapter 10: Thread/SENTRY Policies 10-29

QMDA_AUTHID(name)

The QMDA_AUTHID operand identifies the DB2 authorization ID that the
SQL application used, prior to name translation and prior to driving the
connection exit at the DB2 site where the SQL application is running. A name
of up to 8 characters in length may be specified. Thread/SENTRY will apply
this LIMIT policy to any threads which match this Authorization ID (provided
all other WHAT and WHEN criteria are meet). QMDA_AUTHID is a maskable
value.

QMDA_PLAN(name)

The QMDA_PLAN operand identifies the DB2 PLAN that the SQL application
used at the DB2 site running the SQL application. A name of up to 8 characters
in length may be specified. Thread/SENTRY will apply this LIMIT policy to
any threads which match this plan name (provided all other WHAT and WHEN
criteria are meet). QMDA_PLAN is a maskable value.

NOTE: The following operands refer to MVS and DDF accounting information for
those threads whose PRODUCT_NAME value is ‘SQL’. That is, threads whose
accounting strings are created by DB2 client server products such as DB2 for Windows
NT, DB2 for OS/2 and DB2 for various Unix implementations.

CLIENT_PLATFORM(name)

The CLIENT_PLATFORM operand identifies the Client Platform where the
SQL application is running. A name of up to 18 characters in length may be
specified. Some example values are ‘NT’, ‘AIX’ and ‘OS/2’. Thread/SENTRY
will apply this LIMIT policy to any threads which match this platform name
(provided all other WHAT and WHEN criteria are meet).
CLIENT_PLATFORM is a maskable value.

CLIENT_APPLICATION(name)

The CLIENT_APPLICATION operand identifies the name of the client SQL
application. A name of up to 20 characters in length (such as ‘PAYROLL’) may
be specified. Thread/SENTRY will apply this LIMIT policy to any threads
which match this client application name (provided all other WHAT and WHEN
criteria are meet). CLIENT_APPLICATION is a maskable value.

CLIENT_AUTHID(name)

The CLIENT_AUTHID operand identifies the authorization ID of the client
application process. A name of up to 8 characters in length may be specified.
Thread/SENTRY will apply this LIMIT policy to any threads which match this
client Authorization ID (provided all other WHAT and WHEN criteria are
meet). CLIENT_AUTHID is a maskable value.

10-30 Thread/SERIES Guide and Reference

NOTE: The following operands apply to all threads for which accounting strings are
available. See Section 10.7.9.1 for examples of LIMIT policies which make use of these
accounting string operands.

ACCOUNT_SUBSTRING1(pattern string)

The ACCOUNT_SUBSTRING1 operand specifies a pattern substring that may
occur within the accounting string associated with a thread. A maskable pattern
of up to 200 characters in length may be specified. Thread/SENTRY will apply
this LIMIT policy to any threads whose accounting string (or portion thereof)
matches the pattern specified by ACCOUNT_SUBSTRING1 (provided all other
WHAT and WHEN criteria are meet).

ACCOUNT_START1(integer)

ACCOUNT_START1 specifies the starting character position within the
thread’s accounting string where pattern matching with the value specified by
ACCOUNT_SUBSTRING1 should begin. If omitted, the default starting
position is 1.

ACCOUNT_LENGTH1(integer)

The ACCOUNT_LENGTH1 operand specifies an explicit length for the
comparison between the pattern string and the accounting substring. If omitted,
the length of the pattern specified by ACCOUNT_SUBSTRING1 is implicitly
derived in a manner consistent with the SQL LIKE predicate as follows:

• The underscore sign (_) represents a single arbitrary character
• The percent sign (%) represents a string of zero or more arbitrary characters
• Any other character represents a single occurrence of itself

ACCOUNT_SUBSTRING2(pattern string)

The ACCOUNT_SUBSTRING2 operand specifies a second pattern substring
that may occur within the accounting string associated with a thread. A
maskable pattern of up to 200 characters in length may be specified. Thread/
SENTRY will apply this LIMIT policy to any threads whose accounting string
(or portion thereof) matches the pattern specified by ACCOUNT_SUB-
STRING2 (provided all other WHAT and WHEN criteria are meet).

ACCOUNT_START2(integer)

ACCOUNT_START2 specifies the starting character position within the
thread’s accounting string where pattern matching with the value specified by
ACCOUNT_SUBSTRING2 should begin. If omitted, the default starting
position is 1.

 Chapter 10: Thread/SENTRY Policies 10-31

ACCOUNT_LENGTH2(integer)

The ACCOUNT_LENGTH2 operand specifies an explicit length for the
comparison between the second pattern string and the accounting substring. If
omitted, the length of the pattern specified by ACCOUNT_SUBSTRING2 is
implicitly derived as described in the documentation for the
ACCOUNT_LENGTH1 operand.

ACCOUNT_SUBSTRING3(pattern string)

The ACCOUNT_SUBSTRING3 operand specifies a third pattern substring that
may occur within the accounting string associated with a thread. A maskable
pattern of up to 200 characters in length may be specified. Thread/SENTRY
will apply this LIMIT policy to any threads whose accounting string (or portion
thereof) matches the pattern specified by ACCOUNT_SUBSTRING3 (provided
all other WHAT and WHEN criteria are meet).

ACCOUNT_START3(integer)

ACCOUNT_START3 specifies the starting character position within the
thread’s accounting string where pattern matching with the value specified by
ACCOUNT_SUBSTRING3 should begin. If omitted, the default starting
position is 1.

ACCOUNT_LENGTH3(integer)

The ACCOUNT_LENGTH3 operand specifies an explicit length for the
comparison between the third pattern string and the accounting substring. If
omitted, the length of the pattern specified by ACCOUNT_SUBSTRING3 is
implicitly derived as described in the documentation for the
ACCOUNT_LENGTH1 operand.

10-32 Thread/SERIES Guide and Reference

10.7.2 Other Operands of the LIMIT Statement

ACTION(WARN

|CANCEL|DUMP|FORCE|KILL|QUIESCE|RESUME|VTAM|PGM(program))

The ACTION operand specifies what Thread/SENTRY should do if this LIMIT policy is
violated. Thread/SENTRY supports the following actions:

CANCEL the thread

DUMP cancel the thread with a dump

FORCE the thread to terminate. This is the most drastic action and should

be used very judiciously.

KILL FORCE PURGE the CICS transaction (applicable to CICS

transactions only)

PGM invoke a vendor supplied or installation-written exit program and

pass it information about the thread for which a violation was
detected. See Appendix E for a discussion of Exit routines.

QUIESCE the MVS address space associated with the thread. The thread

address space effectively becomes non-dispatchable with the
lowest possible performance characteristics.

RESUME the MVS address space associated with the thread. The thread

address space resumes execution with its original (pre-quiesced)
performance characteristics.

WARN issue a warning. This is the default.

The ACTION operand of the LIMIT statement accepts multiple actions, separated by
comas. Thread/SENTRY performs one action per wakeup interval so long as the
problem DB2 thread persists. When specified, such action escalates from WARNING, to
CANCEL, to FORCE and lastly to KILL.

Examples:

ACTION(WARNING,FORCE) Thread/SENTRY will issue warnings up to
the number of notifications limited by the
NOTIFY_FREQUENCY and NOTIFY_MAXIMUM operands.
Then, if the target thread still violates the current policy,
Thread/SENTRY will FORCE the thread to terminate.

ACTION(WARNING,CANCEL,FORCE) Thread/SENTRY will issue warnings up to

the number of notifications limited by the
NOTIFY_FREQUENCY and NOTIFY_MAXIMUM operands.
Then, if the target thread still violates the current policy,
Thread/SENTRY will CANCEL the thread using the DB2 -
CANCEL THREAD command. If the thread still exists at the next
wakeup interval, Thread/SENTRY will FORCE the thread to
terminate.

 Chapter 10: Thread/SENTRY Policies 10-33

ADD_ZIIP_DATA(NO|YES)

The ADD_ZIIP_DATA operand specifies whether the CPU time consumed on
an IBM specialty engine should be included in CLASS1 and CLASS2 CPU
times thresholds calculations.

AUDIT(YES|NO)

The AUDIT operand specifies whether the event associated with the ACTION
operand should be recorded in the THREAD_AUDIT table. The default value is
YES.

LOGIC(AND|OR)

The LOGIC operand specifies whether a single threshold or set of thresholds
must be violated before Thread/SENTRY performs the action defined by the
LIMIT policy. The default is OR.

AND The policy action is triggered only when all thresholds specified by

the LIMIT policy are violated. For example, both threshold 1 and
threshold 2 must be exceeded before Thread/SENTRY takes
action.

OR The policy action is triggered if any threshold specified by the

LIMIT policy is violated. For example, Thread/SENTRY takes
action when either threshold 1 or threshold 2 are exceeded.

MSGID(message_ID)

The MSGID operand specifies the name of a site written message that
Thread/SENTRY should issue when this policy is violated. The site written
message must be link-edited within the load module specified via the
MESSAGE_MODULE operand of the MONITOR statement as described in
Section 10.4. Appendix C in this publication describes how to compose site
written messages and assemble / link edit them as a load module.

MINMAX_INTERVAL(time)

Specifies the duration (in wall clock terms) used to determine the level of thread
activity during some observation period. The monitor accumulates thread
activity during this observation interval and takes action whenever it detects a
violation. When this MINMAX interval completes, all activity counters are
reset to initialize a new observation period. The categories of activity monitored
are requested via LIMIT statement operands prefixed with IMAX or IMIN
(interval maximum and interval minimum). The MINMAX_INTERVAL is
ignored for any LIMIT policy that contains neither IMAX nor IMIN operands.

10-34 Thread/SERIES Guide and Reference

NOTE: The MINMAX_INTERVAL should specify a duration at least
double the value of the WAKEUP_INTERVAL. The default
WAKEUP_INTERVAL is set to 60 seconds (see the MONITOR
statement above) which supports MINMAX_INTERVAL values of
120 seconds or more.

NOTIFY_LIST(listname)

The NOTIFY_LIST operand specifies the symbolic name of a list of
administrative IDs to be notified when Thread/SENTRY detects a policy
violation.

Ordinarily, the owner of the violating thread is notified of the action taken by
Thread/SENTRY. However, when listname starts with the special string _WTO
(as in _WTOABC), Thread/SENTRY writes the user notification message to the
operator (via a WTO), rather than send a notification message to the owner of
the thread. Notifications sent to administrative users specified in the
NOTIFY_LIST are not effected by the _WTO special string.

10.7.3 When to apply LIMIT policies

The following operands specify when to apply this LIMIT policy:

START(time)

The START operand specifies the starting time for the application of this LIMIT
policy. If starting and ending times are neither defaulted nor explicitly
specified, Thread/SENTRY applies this LIMIT policy regardless of the time of
day.

END(time)

The END operand specifies an explicit ending time for the application of this
policy. If starting and ending times are neither defaulted nor explicitly
specified, Thread/SENTRY evaluates this policy regardless of the time of day.

DAYS(1,2,3,4,5,6,7,ALL,WEEKDAYS)

The DAYS operand specifies the day(s) of the week when this exclusion policy
is effective. If a DAYS value is neither defaulted nor explicitly specified,
Thread/SENTRY evaluates this policy regardless of the day of the week.

 Chapter 10: Thread/SENTRY Policies 10-35

10.7.4 Life of Thread Limits

The following operands define limits for the life of a thread. Each LIMIT policy can
define a single threshold measurement such as MAX_ELAPSED(time) or specify several
operands and their limit values. You do not have to specify every operand for each
policy.

 Once thresholds are exceeded for a given policy, Thread/SENTRY performs the
action defined by the ACTION operand. All life-of-thread related operands are prefixed
by the character string ‘MAX’.

MAX_BUFFER_POOL_ID(integer)

Specifies a DB2 buffer pool ID. Thread/SENTRY LIMIT policies let you limit
the number of GETPAGE requests any thread can perform against a particular
DB2 buffer pool.

MAX_ELAPSED(time)

Specifies maximum elapsed time for the thread in wall clock terms.

MAX_CPU(time)

Specifies the maximum CPU time the thread may consume, both within DB2 as
well as within the application program. IBM documentation sometimes refers to
this as Class 1 TCB CPU time.

MAX_SRB(time)

Specifies the maximum SRB time that can be charged to the allied address space
associated with a thread.

MAX_DB2_ELAPSED(time) Requires Class 2 Accounting trace

Specifies the maximum wall clock time that may elapse within DB2 during the
execution of a thread.

MAX_DB2_CPU(time) Requires Class 2 Accounting trace

Specifies the maximum CPU time that may be consumed by a thread while it
processes within DB2. IBM documentation sometimes refers to this as Class 2
TCB CPU time.

MAX_IO_WAIT(time) Requires Class 3 Accounting trace

Specifies the maximum elapsed time spent waiting to perform synchronous I/O
under this thread.

MAX_LOCK_WAIT(time) Requires Class 3 Accounting trace

Specifies the maximum elapsed time spent waiting for DB2 locks and latches.

10-36 Thread/SERIES Guide and Reference

MAX_GETPAGES(integer)

Specifies the maximum number of getpage requests the thread can issue during
its lifetime. Both successful and unsuccessful requests of an unconditional
nature as well as successful conditional requests count towards this limit. The
getpage count is an excellent raw measure of thread activity.

MAX_SQL(integer)

Specifies the maximum number of SQL data manipulation language (DML)
statements of all types a thread can execute during its lifetime.

MAX_QUERY(integer)

Specifies the maximum number of SQL query type statements a thread can
execute during its lifetime. Thread/SENTRY counts SELECT, OPEN, FETCH
and CLOSE statements towards this limit.

MAX_FETCH(integer)

Specifies the maximum number of SQL FETCH statements a thread can execute
during its lifetime.

MAX_CHANGES(integer)

Specifies the maximum number of SQL statements a thread can execute during
its lifetime that result in changes to data. Thread/SENTRY counts DELETE,
INSERT and UPDATE statements towards this limit.

MAX_QUERIED(integer)

Specifies the maximum number of SQL query type statements a thread can
execute during its lifetime. Thread/SENTRY counts SELECT, OPEN, multiple-
rows FETCH and CLOSE statements towards this limit.

MAX_FETCHED(integer)

Specifies the maximum number of SQL multiple-row FETCH statements a
thread can execute during its lifetime. Thread/SENTRY uses the
QXRWSFETCHD field of the DB2 DSNDQXST structure to compare the
number of multiple-rows fetched against the MAX_FETCHED specified limit.

MAX_CHANGED(integer)

Specifies the maximum number of SQL statements a thread can execute during
its lifetime that result in changes to data. Thread/SENTRY counts the number of
multiple-rows inserted, updated and deleted towards this limit. Thread/SENTRY
uses the QXRWSINSRTD, QXRWSUPDTD and QXRWSDELETD fields of
the DB2 DSNDQXST structure to compare the number of rows inserted,
updated and deleted respectively, against the MAX_CHANGED specified limit.

 Chapter 10: Thread/SENTRY Policies 10-37

MAX_DEADLOCKS(integer)

Specifies the maximum number of deadlocks detected during the life of a thread.

MAX_SUSPENDS(integer)

Specifies the maximum number of times during its life a thread is suspended due
to lock conflicts. This count is incremented every time DB2 cannot obtain a
lock and has to suspend the thread’s unit-of-recovery.

MAX_TIMEOUTS(integer)

Specifies the maximum number of times during its life a thread is suspended for
a duration that exceeds the timeout value defined for the DB2 subsystem in
which the thread executes.

MAX_ESCALATIONS_SHARED(integer)

Specifies the maximum number of times during its life that DB2 escalates a
thread’s locks to shared mode.

MAX_ESCALATIONS_EXCLUSIVE(integer)

Specifies the maximum number of times during its life that DB2 escalates a
thread’s locks to exclusive mode.

MAX_PAGE_LOCKS(integer)

Specifies the maximum number of page locks a thread can hold concurrently
during its execution.

10.7.5 Unit-of-Recovery LIMITS

The following operands define limits for a thread during a single unit-of-recovery. Once
this unit-of-work threshold is exceeded, Thread/SENTRY performs the action defined by
the ACTION operand. Note that Unit-of-recovery limits are considerably more
expensive to monitor and enforce than the cumulative life-of-thread limits defined by the
MAX_ operands described above. All unit-of-recovery related operands are prefixed by
the character string ‘UOW’ denoting unit-of-work.

UOW_ELAPSED(time)

Specifies the maximum elapsed time for the thread during a single unit-of-
recovery.

UOW_CPU(time) Requires Class 2 Accounting trace

Specifies the maximum CPU time a thread can consume, both within DB2 as
well as in the application program, during a single unit-of-recovery.

10-38 Thread/SERIES Guide and Reference

UOW_SRB(time)

Specifies the maximum SRB time that can be charged to the allied address space
associated with a thread during a single unit-of-recovery.

UOW_DB2_ELAPSED(time) Requires Class 2 Accounting trace

Specifies the maximum wall clock time that may elapse within DB2 during a
single unit-of-recovery.

UOW_DB2_CPU(time) Requires Class 2 Accounting trace

Specifies the maximum CPU time a thread may consume within DB2 during a
single unit-of-recovery.

UOW_IO_WAIT(time) Requires Class 3 Accounting trace

Specifies the maximum duration a thread may wait to perform synchronous I/O
during a single unit-of-recovery.

UOW_LOCK_WAIT(time) Requires Class 3 Accounting trace

Specifies the maximum duration a thread may wait to acquire locks and latches
during a single unit-of-recovery.

UOW_GETPAGES(integer)

Specifies the maximum number of getpage requests a thread can issue during a
single unit-of-recovery.

UOW_SQL(integer)

Specifies the maximum number of SQL data manipulation language (DML)
statements of all types a thread can execute during a single unit-of-recovery.

UOW_QUERY(integer)

Specifies the maximum number of SQL query type statements a thread can
execute during a single unit-of-recovery. Thread/SENTRY counts SELECT,
OPEN, FETCH and CLOSE statements towards this limit.

UOW_FETCH(integer)

Specifies the maximum number of SQL FETCH statements a thread can execute
during a single unit-of-recovery.

UOW_CHANGES(integer)

Specifies the maximum number of SQL statements a thread can execute during a
single unit-of-recovery that result in changes to data. Thread/SENTRY counts
DELETE, INSERT and UPDATE statements towards this limit.

 Chapter 10: Thread/SENTRY Policies 10-39

UOW_QUERIED(integer)

Specifies the maximum number of SQL query type statements a thread can
execute during a single unit-of-recovery. Thread/SENTRY counts SELECT,
OPEN, multiple-rows FETCH and CLOSE statements towards this limit.

UOW_FETCHED(integer)

Specifies the maximum number of SQL multiple-row FETCH statements a
thread can execute during a single unit-of-recovery. Thread/SENTRY uses the
QXRWSFETCHD field of the DB2 DSNDQXST structure to compare the
number of multiple-rows fetched against the UOW_FETCHED specified limit.

UOW_CHANGED(integer)

Specifies the maximum number of SQL statements a thread can execute during a
single unit-of-recovery that result in changes to data. Thread/SENTRY counts
the number of multiple-rows inserted, updated and deleted towards this limit.
Thread/SENTRY uses the QXRWSINSRTD, QXRWSUPDTD and
QXRWSDELETD fields of the DB2 DSNDQXST structure to compare the
number of rows inserted, updated and deleted respectively, against the
UOW_CHANGED specified limit

UOW_DEADLOCKS(integer)

Specifies the maximum number of deadlocks detected during a single unit-of-
recovery.

UOW_SUSPENDS(integer)

Specifies the maximum number of times (during a single unit-of-recovery) a
thread is suspended due to lock conflicts. This count is incremented every time
DB2 cannot obtain a lock and has to suspend the thread’s unit-of-recovery.

UOW_TIMEOUTS(integer)

Specifies the maximum number of times during a single unit-of-recovery that a
thread is suspended for a duration that exceeds the timeout value defined for the
DB2 subsystem in which the thread executes.

UOW_ESCALATIONS_SHARED(integer)

Specifies the maximum number of times during a single unit-of-recovery that
DB2 escalates a thread’s locks to shared mode.

UOW_ESCALATIONS_EXCLUSIVE(integer)

Specifies the maximum number of times during a single unit-of-recovery that
DB2 escalates a thread’s locks to exclusive mode.

UOW_PAGE_LOCKS(integer)

Specifies the maximum number of page locks a thread can concurrently hold
during a single unit-of-recovery.

10-40 Thread/SERIES Guide and Reference

10.7.6 Interval Maximum LIMITS

The following operands define upper and lower limits for thread activity as observed
within a user specified period of time termed a MINMAX interval. All of these operands
start with the character string ‘IMAX’ or ‘IMIN’. The minmax interval is defined
explicitly for the current LIMIT statement via the MINMAX_INTERVAL operand or
can be defaulted on the MONITOR or DEFAULT statements. Thread/SENTRY acts in
accordance with the ACTION operand of the LIMIT statement when it detects an IMIN
or IMAX violation. Alternatively, when a minmax interval expires without a violation,
Thread/SENTRY resets the activity counters associated with the minmax interval to zero
and begins recording activity statistics for a new minmax interval.

Note that minmax interval related limits are considerably more expensive to monitor and
enforce than the cumulative life-of-thread limits defined by the MAX_ operands
described above. In addition, ensure that the value of the minmax interval is at least
double the monitor wake up interval.

IMAX_ELAPSED(time)

Specifies the maximum elapsed time for the thread during a single minmax
interval.

IMAX_CPU(time) Requires Class 2 Accounting trace

Specifies the maximum CPU time a thread can consume, both within DB2 as
well as in the application program, during a single minmax interval.

IMAX_SRB(time)

Specifies the maximum SRB time that can be charged to the allied address space
associated with a thread during a single minmax interval.

IMAX_DB2_ELAPSED(time) Requires Class 2 Accounting trace

Specifies the maximum wall clock time that may elapse within DB2 during a
single minmax interval.

IMAX_DB2_CPU(time) Requires Class 2 Accounting trace

Specifies the maximum CPU time a thread may consume within DB2 during a
single minmax interval.

IMAX_IO_WAIT(time) Requires Class 3 Accounting trace

Specifies the maximum duration that a thread may wait to perform synchronous
I/O during a single minmax interval.

IMAX_LOCK_WAIT(time) Requires Class 3 Accounting trace

Specifies the maximum duration that a thread may wait to acquire locks and
latches during a single minmax interval.

 Chapter 10: Thread/SENTRY Policies 10-41

IMAX_GETPAGES(integer)

Specifies the maximum number of getpage requests a thread may issue during a
single minmax interval.

IMAX_SQL(integer)

Specifies the maximum number of SQL data manipulation language (DML)
statements of all types a thread can execute during a single minmax interval.

IMAX_QUERY(integer)

Specifies the maximum number of SQL query type statements a thread can
execute during a single minmax interval. Thread/SENTRY counts SELECT,
OPEN, FETCH and CLOSE statements towards this limit.

IMAX_FETCH(integer)

Specifies the maximum number of SQL FETCH statements a thread can execute
during a single minmax interval.

IMAX_CHANGES(integer)

Specifies the maximum number of SQL statements that result in changes to data
that a thread can execute during a single minmax interval. Thread/SENTRY
counts DELETE, INSERT and UPDATE statements towards this limit.

IMAX_QUERIED(integer)

Specifies the maximum number of SQL query type statements a thread can
execute during a single minmax interval. Thread/SENTRY counts SELECT,
OPEN, multiple-rows FETCH and CLOSE statements towards this limit.

IMAX_FETCHED(integer)

Specifies the maximum number of SQL multiple-row FETCH statements a
thread can execute during a single minmax interval. Thread/SENTRY uses the
QXRWSFETCHD field of the DB2 DSNDQXST structure to compare the
number of multiple-rows fetched against the IMAX_FETCHED specified limit.

IMAX_CHANGED(integer)

Specifies the maximum number of SQL statements that result in changes to data
that a thread can execute during a single minmax interval. Thread/SENTRY
counts the number of multiple-rows inserted, updated and deleted towards this
limit. Thread/SENTRY uses the QXRWSINSRTD, QXRWSUPDTD and
QXRWSDELETD fields of the DB2 DSNDQXST structure to compare the
number of rows inserted, updated and deleted respectively, against the
IMAX_CHANGED specified limit.

10-42 Thread/SERIES Guide and Reference

IMAX_DEADLOCKS(integer)

Specifies the maximum number of deadlocks tolerated during a single minmax
interval.

IMAX_SUSPENDS(integer)

Specifies the maximum number of times (during a single minmax interval) that a
thread can be suspended due to lock conflicts. This count is incremented every
time DB2 cannot obtain a lock and has to suspend the thread’s unit-of-recovery.

IMAX_TIMEOUTS(integer)

Specifies the maximum number of times (during a single minmax interval) that a
thread can be suspended for a duration that exceeds the timeout value defined
for the DB2 subsystem in which the thread executes.

IMAX_ESCALATIONS_SHARED(integer)

Specifies the maximum number of times (during a single minmax interval) that
DB2 may escalate a thread’s locks to shared mode before Thread/SENTRY
takes the action specified by the ACTION operand.

IMAX_ESCALATIONS_EXCLUSIVE(integer)

Specifies the maximum number of times (during a single minmax interval) that
DB2 may escalate a thread’s locks to exclusive mode before Thread/SENTRY
takes the action specified by the ACTION operand.

IMAX_PAGE_LOCKS(integer)

Specifies the maximum number of page locks a thread may concurrently hold
during a single minmax interval.

10.7.7 Interval Minimums and IDLE Threads

The following operands describe minimum levels of activity for threads during a minmax
observation interval. If a thread does not exhibit the minimum level(s) of activity
described by these operands (because a thread is idle as an example), the thread is
considered to be in violation of the LIMIT policy with which these IMIN operand(s) are
associated.

IMIN_CPU(time) Requires Class 2 Accounting trace

Specifies the minimum CPU time a thread must consume, both within DB2 as
well as in the application program, during a single minmax interval.

 Chapter 10: Thread/SENTRY Policies 10-43

IMIN_SRB(time)

Specifies the minimum SRB time that must be charged to the allied address
space associated with a thread during a single minmax interval.

IMIN_DB2_ELAPSED(time) Requires Class 2 Accounting trace

Specifies the minimum wall clock time that must elapse within DB2 during a
single minmax interval.

IMIN_DB2_CPU(time) Requires Class 2 Accounting trace

Specifies the minimum CPU time a thread must consume within DB2 during a
single minmax interval.

IMIN_GETPAGES(integer)

Specifies the minimum number of getpage requests a thread must issue during a
single minmax interval.

IMIN_COMMIT(integer)

Specifies the minimum number of SQL COMMIT statements a thread must
execute during a single minmax interval.

IMIN_SQL(integer)

Specifies the minimum number of SQL data manipulation language (DML)
statements of all types a thread must execute during a single minmax interval.

IMIN_QUERY(integer)

Specifies the minimum number of SQL query type statements a thread must
execute during a single minmax interval. Thread/SENTRY counts SELECT,
OPEN, FETCH and CLOSE statements towards this limit.

IMIN_FETCH(integer)

Specifies the minimum number of SQL FETCH statements a thread must
execute during a single minmax interval.

IMIN_CHANGES(integer)

Specifies the minimum number of SQL statements that result in changes to data
that a thread must execute during a single minmax interval. Thread/SENTRY
counts DELETE, INSERT and UPDATE statements towards this limit.

IMIN_QUERIED(integer)

Specifies the minimum number of SQL query type statements a thread must
execute during a single minmax interval. Thread/SENTRY counts SELECT,
OPEN, multiple-rows FETCH and CLOSE statements towards this limit.

10-44 Thread/SERIES Guide and Reference

IMIN_FETCHED(integer)

Specifies the minimum number of SQL multiple-row FETCH statements a
thread must execute during a single minmax interval. Thread/SENTRY uses the
QXRWSFETCHD field of the DB2 DSNDQXST structure to compare the
number of multiple-rows fetched against the IMIN_FETCHED specified limit.

IMIN_CHANGED(integer)

Specifies the minimum number of SQL statements that result in changes to data
that a thread must execute during a single minmax interval. Thread/SENTRY
counts the number of multiple-rows inserted, updated and deleted towards this
limit. Thread/SENTRY uses the QXRWSINSRTD, QXRWSUPDTD and
QXRWSDELETD fields of the DB2 DSNDQXST structure to compare the
number of rows inserted, updated and deleted respectively, against the
IMIN_CHANGED specified limit.

10.7.8 Operands for Inactive Database Access Threads

The following operands provide a means to govern inactive database access threads
defined as a database access thread which holds no cursors, locks or database resources.
DB2 permits such threads to remain idle indefinitely.

IDLE_LASTMSG(time)

Specifies how much time can elapse without an inactive database access thread
either sending or receiving a message.

10.7.9 LIMIT Policy Examples

Example 1

Define a thread LIMIT policy (named POLICY1) to apply to all Human Resources appli-
cations whose plan names start with the characters ‘HR’. Cancel any thread that
consumes more than 10 seconds of CPU time or issues more than 30,000 GETPAGE
requests from the time it begins to execute. Record any cancellations in the
THREAD_AUDIT table and cite POLICY1 as the rule that was violated.

LIMIT
 POLICY_ID(POLICY1)
 PLAN(HR%)
 MAX_CPU(10)
 MAX_GETPAGES(30000)
 ACTION(CANCEL)
 AUDIT(YES)

Example 2

 Chapter 10: Thread/SENTRY Policies 10-45

Define a thread LIMIT policy (named POLICY2) that will issue a warning when any
thread issues more than ten thousand FETCH statements. These warnings need not be
recorded in Thread/SENTRY’s THREAD_AUDIT table.

LIMIT
 POLICY_ID(POLICY2)
 MAX_FETCH(10000)
 ACTION(WARN)
 AUDIT(NO)

Example 3

Define a thread LIMIT policy (named POLICY3) to apply to all Human Resources appli-
cations whose plan names start with the characters ‘HR’. Cancel any thread that fails to
issue a single SQL COMMIT within a 2 minute (120 second) interval. Record any
cancellations in the THREAD_AUDIT table and cite POLICY3 as the rule that was
violated. Note that a 2 minute minmax period may only be specified when the
WAKEUP_INTERVAL operand of the MONITOR statement (see above) is less than or
equal to 1 minute.

LIMIT
 POLICY_ID(POLICY3)
 PLAN(HR%)
 MINMAX_INTERVAL(120)
 IMIN_COMMIT(1)
 ACTION(CANCEL)
 AUDIT(YES)

Example 4

Define a thread LIMIT policy (named POLICY4) that will issue a warning when any
thread fails to issue a getpage request for 30 minutes (1800 seconds). These warnings
need not be recorded in Thread/SENTRY’s THREAD_AUDIT table. This request is
compatible with a WAKEUP_INTERVAL specification of 15 minutes or less.

LIMIT
 POLICY_ID(POLICY4)
 MINMAX_INTERVAL(1800)
 IMIN_GETPAGES(1)
 ACTION(WARN)
 AUDIT(NO)

10-46 Thread/SERIES Guide and Reference

10.7.9.1 LIMIT Policy Examples that reference

 MVS and DDF Accounting Data

Example 5

Define a thread LIMIT policy (named POLICY5) to apply to client SQL applications
running on a Windows NT platform where the application name is ‘PAYROLL’. Cancel
any thread that consumes more than 10 seconds of CPU time or issues more than 30,000
GETPAGE requests from the time it begins to execute. Record any cancellations in the
THREAD_AUDIT table and cite POLICY5 as the rule that was violated.

LIMIT

 POLICY_ID(POLICY5)

 CLIENT_PLATFORM(NT)

 CLIENT_APPLICATION(PAYROLL)

 MAX_CPU(10)

 MAX_GETPAGES(30000)

 ACTION(CANCEL)

 AUDIT(YES)

Example 6

Define a LIMIT policy (named POLICY6) to apply to threads whose accounting string
has the characters ‘Low Priority’ embedded in it starting at character 10. Cancel any
thread that consumes more than 5 seconds of CPU time from the time it begins to
execute. Record any cancellations in the THREAD_AUDIT table and cite POLICY6 as
the rule that was violated.

LIMIT

 POLICY_ID(POLICY6)

 ACCOUNT_SUBSTRING1(Low Priority)

 ACCOUNT_START1(10)

 MAX_CPU(5)

 ACTION(CANCEL)

 AUDIT(YES)

Example 7

Define a LIMIT policy (named POLICY7) to apply to DB2 for OS/390 threads
originating at the location named ‘REGION1’ and has the following patterns embedded
in its accounting string:

The characters ‘Group2’ embedded in the accounting string starting at position 5
Any substring starting at position 15 which matches the pattern ‘Priority__5’.

Cancel any thread meeting the above criteria which in addition consumes more than 15
seconds of CPU time or issues more than 20,000 GETPAGE requests from the time it
begins to execute. Record any cancellations in the THREAD_AUDIT table and cite
POLICY7 as the rule that was violated.

 Chapter 10: Thread/SENTRY Policies 10-47

LIMIT

 POLICY_ID(POLICY6)

 PRODUCT_NAME(DSN)

 QMDA_LOCATION(REGION1)

 ACCOUNT_SUBSTRING1(Group2)

 ACCOUNT_START1(5)

 ACCOUNT_SUBSTRING2(Priority__5)

 ACCOUNT_START2(15)

 MAX_CPU(15)

 MAX_GETPAGES(20000)

 ACTION(CANCEL)

 AUDIT(YES)

10.8 The NOTIFY_LIST Statement

The NOTIFY_LIST statement lets you define a list of administrative IDs to be notified
when Thread/SENTRY detects a policy violation. The notices these IDs receive are in
addition to the automatic notification Thread/SENTRY sends to the owners of effected
threads when user notification is enabled (see the NOTIFY_ENABLED operand of the
NOTIFY_LIST or MONITOR statement). The list may include any mix of
administrators logged on to terminals connected through local TSO, CICS or IMS
systems.

NAME(name)

The NAME operand specifies the symbolic name by which this list of
administrative IDs is known. Any number of LIMIT policies can explicitly refer
to this list of user IDs by name. You can also define (on the MONITOR and
DEFAULT statements) a default list of administrator IDs to be notified.

NOTE: When this symbolic name starts with the special string _WTO
(as in _WTOABC), Thread/SENTRY writes notification messages that
would ordinarily be directed to the owner of the thread to the operator
instead (via a WTO). rather than send a notification message. In
contrast, the notifications sent to administrative users specified in the
NOTIFY_LIST are processed without change (i.e. not effected by the
_WTO special string).

NOTIFY_ENABLED(scope_option,(enable_list))
NOTIFY_FREQUENCY(integer)
NOTIFY_MAXIMUM(integer)

The NOTIFY_ENABLED, NOTIFY_FREQUENCY and
NOTIFY_MAXIMUM operands within the NOTIFY_LIST statement are used
to override the corresponding defaults of the MONITOR statement or the
Thread/SERIES table of system defaults (defined within module TTS$TSD).
See Section 10.4 MONITOR statement of this publication for the detailed syntax
and description of these operands.

10-48 Thread/SERIES Guide and Reference

SSID(ssid_list)

The SSID operand identifies the DB2 subsystem or list of DB2 subsystems to be
associated with this notification list.

TSO_IDS(tsoid1,tsoid2,...)

You can specify a list of one or more TSO IDs via the TSO_IDS operand. The
individual IDs should be coded within parentheses and separated by commas or
blanks. Notification messages are sent immediately to TSO administrators if
they are currently logged on. Otherwise, the administrative notification is saved
in the broadcast data set until that administrator logs on to TSO.

EMAIL_IDS(name1@domain1.com,name2@domain2.com,...)

You can specify a list of one or more Email addresses via the EMAIL_IDS
operand. The entire list must be coded within parentheses. The individual
Email addresses should be separated by semi colons, commas or blanks.

CICS_IDS((TERMINAL(tname1),CICSJOB(jobname1)),
 (TERMINAL(tname2),CICSJOB(jobname2)),...)

You can specify a list of one or more CICS administrative ID descriptor pairs.
Each pair consists of the CICS terminal name for the recipient along with the
associated (owning) CICS system’s MVS jobname or started task name. The
TERMINAL parameter defines the administrator’s terminal name and the
CICSJOB parameter defines the CICS system jobname or started task name.
Each administrative ID pair should be coded within parentheses and separated
by commas or blanks. The entire list must also be coded within parentheses.

IMS_IDS((LTERM(ltname1),IMSID(imsname1)),
 (LTERM(ltname2),IMSID(imsname2)),...)

You can specify a list of one or more IMS administrator ID descriptor pairs.
Each pair consists of the IMS logical terminal name for the recipient along with
the associated (owning) IMS system name. The LTERM parameter defines the
logical terminal name and the IMSID parameter defines the IMS system name.
Each administrative ID pair should be coded within parentheses and separated
by commas or blanks. The entire list must also be coded within parentheses.

Example:

Define a NOTIFY_LIST for a set of Human Resource administrators who
should be notified when Thread/SENTRY detects a violation by a thread
associated with a Human Resource application. Assign the name HRLIST to the
notification list. The IDs of the TSO administrators to be notified when a policy
violation takes place are HRADM1 and HRADM2. In addition, notification E-
mails should be sent to two administrators In addition, three IMS
administrators are to be notified. Logical terminals IMADM1 and IMADM2 are
logged onto the IMS system named IMST while IMADM3 is logged onto the

 Chapter 10: Thread/SENTRY Policies 10-49

IMS system named IMSP. Finally, one CICS based administrator at terminal
CIADM1 on system CICSPROD is to be notified.

NOTIFY_LIST
 NAME(HRLIST)
 TSO_IDS(HRADM1,HRADM2)
 EMAIL_IDS(name1@domain.com;name2@domain.com)
 IMS_IDS((LTERM(IMADM1),IMSID(IMST)),
 (LTERM(IMADM2),IMSID(IMST)),
 (LTERM(IMADM3),IMSID(IMSP)))
 CICS_IDS((TERMINAL(CIADM1),(CICSJOB(CICSPROD)))

10.9 Thread/SENTRY Audit Trail and Log File

Thread/SENTRY maintains an audit trail of its actions and reasons for action along with
many available details on the threads that violate Thread/SENTRY policies.
Thread/SENTRY records audit trail information in a table named THREAD_AUDIT that
resides within the same DB2 subsystem in which the thread which violated a
Thread/SENTRY policy is executing. The Thread_Audit table is described and illus-
trated in Appendix A. Thread/SENTRY inserts a row into this table when AUDIT(YES)
is specified (or defaulted) for the policy which was violated.

NOTE: Ask your Thread/SERIES product administrator for the authorization ID of the
owner of the THREAD_AUDIT table used by Thread/SENTRY on a particular DB2
subsystem.

In addition, Thread/SENTRY maintains a discrete output file -- to which it writes all its
actions -- for each DB2 subsystem it monitors. Note however, that this logged
information is just a small subset of the data recorded in the Thread_Audit table.
Thread/SENTRY also writes subsystem specific diagnostics, trace data and debugging
messages to these files. The names of these output files are formed by concatenating the
literal string 'TTSL' with the name of the DB2 subsystem being monitored. These log
datasets are typically pre-allocated in the standard Thread/SERIES procedure as
described in Chapter 20.10.1.

10-50 Thread/SERIES Guide and Reference

 Chapter 11: Thread/SENTRY Operations 11-1

Chapter 11

Operating Thread/SENTRY

This chapter deals with Thread/SENTRY operation. Section 11.1 describes the JCL to
run Thread/SENTRY as a submitted job or started task, while Section 11.2 describes the
console commands operators use to control Thread/SENTRY’s run-time operation.
Section. 11.3 describes debugging facilities to diagnose problems with Thread/SENTRY
itself.

11.1 Running Thread/SENTRY

Thread/SENTRY can be submitted as a job or run as a started task. Both methods make
use of the catalogued procedure named TTSPROC that is described in Chapter 20.10.
Thread/SENTRY records all auditable events (warnings, cancellations, etc.) in the
THREAD_AUDIT table that resides within each monitored DB2 subsystem.

11.1.1 Edit the JCL to invoke Thread/SENTRY

Member TTSRMON of the TTSCNTL library contains JCL to invoke Thread/SENTRY.
Add a valid JOB statement in order to submit Thread/SENTRY as a standard jobstream.
Alternatively, place member TTSRMON in one of your installation’s catalogued
procedure libraries in order to run Thread/SENTRY as a started task. Section 20.10.3
discusses special considerations for running Thread/SENTRY as a started task.

The numbers in parentheses to the right of the JCL statements correspond to the
numbered, annotating paragraphs which follow Figure 11.1. Be sure to edit member
TTSRMON with CAPS ON since it contains comments in lowercase.

11-2 Thread/SERIES Guide and Reference

//jobname JOB (1)
//TTSMON EXEC TTSPROC, Invoke the general Thread/SERIES procedure

// PROG=TTSMON, Run the Thread/SENTRY monitor program

// PARMS='MODE(CANCEL),WTOR(YES)' Specify optional parameters (2)
//TTSIN DD DSN=Thread.Monitor.Control.Dataset,DISP=SHR (3)

(1) Define a valid job statement if Thread/SENTRY is to be submitted as a standard

job. Alternatively, Thread/SENTRY can run as a STARTed task. In this case,
no job statement is needed but this procedure (TTSRMON) and its companion
TTSPROC must reside in one of your site's catalogued procedure libraries.

(2) Specify optional parameters for Thread/SENTRY through the PARMS

parameter. The MODE operand governs whether Thread/SENTRY actually
cancels threads for which violations are detected or merely issues a warning.
The operational mode specified in the distribution tape is CANCEL. The
WTOR operand governs whether or not Thread/SENTRY issues a WTOR to
which an operator can reply in order to control Thread/SENTRY operation. If
WTOR(NO) is specified the operator must issue MVS MODIFY or STOP com-
mands to communicate with Thread/SENTRY. The default is WTOR(YES).

(3) Allocate the dataset which contains Thread/SENTRY control statements to the

file named TTSIN.

Figure 11.1 Submitting Thread/SENTRY as a job

11.1.2 Allocating the Thread/SENTRY Control File

Thread/SENTRY reads control statements from the dataset allocated to the DDname
TTSIN. Control statements may be specified instream following the TTSIN DD
statement as in the following example:

TTSIN DD *
 MONITOR
 SSID(DB2A,DB2B,DB2C)
 INTERVAL(60)

In this example, the TTSIN dataset defines the MONITOR statement instream with the
JCL. The MONITOR statement identifies DB2A, DB2B and DB2C as the DB2
subsystems to be monitored and specifies a monitoring interval of 60 seconds.

Alternatively, the TTSIN file can reference a dataset which contains Thread/SENTRY
control statements as in the following example.

 //TTSIN DD DSN=thread.monitor.control(member),DISP=SHR

 Chapter 11: Thread/SENTRY Operations 11-3

11.1.3 Parameter Precedence

Thread/SENTRY run-time operands are derived from the following sources, in the
sequence specified:

• parameters specified through the PARM operand of the JCL EXEC statement
• operands specified through the TTSPARMS file
• operands of the MONITOR statement specified through the TTSIN control file

If this scheme, operands specified through the TTSPARMS file take precedence over
values specified through the TTSIN control file, while parameters specified through the
PARM operand of the JCL EXEC statement take precedence over both.

11.1.4 An illustrative Thread/SENTRY Run

Figure 11.2 illustrates a Thread/SENTRY run that monitors three DB2 subsystems
concurrently. Thread/SENTRY creates what is termed a ‘Listener’ process (an MVS
subtask) for each DB2 subsystem it monitors. In this illustrative run, a STOP command
was issued soon after initialization to quiesce Thread/SENTRY.

17.12.48 JOB01798 $HASP373 RAI6TINS STARTED - INIT DR - CLASS K - SYS CPUX

17.12.49 JOB01798 IEF403I RAI6TINS - STARTED - TIME=17.12.49

17.12.49 JOB01798 +TTS700 - TTSJMC - Thread / SENTRY is starting

17.12.50 JOB01798 +RAI500I - Report process for TTSR is starting

17.13.07 JOB01798 +TTS701 - Thread / SENTRY start normal completion

17.13.07 JOB01798 +TTS704 - Thread / SENTRY operating in CANCEL mode

17.13.07 JOB01798 @22 TTS705 - THREAD/SENTRY JOB RAI6TINS WAITING FOR WORK

17.13.07 JOB01798 +TTS750 - Listener process for DB2 subsystem DB2A is starting

17.13.07 JOB01798 +TTS750 - Listener process for DB2 subsystem DB2B is starting

17.13.07 JOB01798 +TTS750 - Listener process for DB2 subsystem DB2C is starting

17.13.07 JOB01798 +TTS751 - Listener process start completed for DB2 subsystem DB2A

17.13.08 JOB01798 +TTS751 - Listener process start completed for DB2 subsystem DB2B

17.13.08 JOB01798 +TTS751 - Listener process start completed for DB2 subsystem DB2C

17.14.17 JOB01798 +TTS756 - TTSJCMD received the following command

17.14.17 JOB01798 +STOP

17.14.17 JOB01798 +TTS757 - TTSJCMD STOP command received

17.14.17 JOB01798 +TTS702 - Thread / SENTRY is stopping

17.14.17 JOB01798 +TTS752 - Listener process for DB2 subsystem DB2A is stopping

17.14.17 JOB01798 +TTS752 - Listener process for DB2 subsystem DB2B is stopping

17.14.17 JOB01798 +TTS752 - Listener process for DB2 subsystem DB2C is stopping

17.14.18 JOB01798 +RAI502I - Report process for TTSR is stopping

17.14.18 JOB01798 +TTS703 - Thread / SENTRY stop complete

17.14.19 JOB01798 - --TIMINGS (MINS.)--

17.14.19 JOB01798 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB CLOCK

__

Figure 11.2 Illustrative Thread/SENTRY Run

11-4 Thread/SERIES Guide and Reference

11.2 Thread/SENTRY Console Commands

Operators can control Thread/SENTRY while it is active using the console commands
described in this section. Thread/SENTRY commands can be issued through an MVS
MODIFY command or by replying to an outstanding WTOR. For example, to trigger
normal shutdown, you can issue the Thread/SENTRY STOP command through the MVS
MODIFY interface as follows:

F sentry_jobname,STOP

Alternatively, provided WTOR(YES) is specified or defaulted, the operator can reply to
Thread/SENTRY’s outstanding WTOR as follows:

@22 TTS705 - THREAD/SENTRY JOB RAI6TINS WAITING FOR WORK

22,STOP

With either method, Thread/SENTRY acknowledges your command by issuing message
TTS756 and echoing the text of the command back to the console.

17.14.17 JOB01798 +TTS756 - TTSJCMD received the following command

17.14.17 JOB01798 +STOP

Thread/SENTRY then executes your command.

11.2.1 ABEND command

Upon receipt of the ABEND command, Thread/SENTRY immediately issues a User
2001 ABEND with Reason code 00DB2000 that abnormally terminates the
Thread/SENTRY jobstep. A dump is produced if a SYSDUMP file is allocated.

11.2.2 FORCE command

Upon receipt of the FORCE command, Thread/SENTRY immediately issues a User 2001
ABEND with Reason code 00DB2000 that abnormally terminates the Thread/SENTRY
jobstep. No dump is produced.

 Chapter 11: Thread/SENTRY Operations 11-5

11.2.3 RULE_REFRESH command

Upon receipt of the RULE_REFRESH command, Thread/SENTRY replaces its list of
active policy statements with new ones. RULE_REFRESH lets you completely refresh
the policies Thread/SENTRY will enforce. The syntax of the RULE_REFRESH
command is:

RULE_REFRESH {MEMBER(member_name)}

where member_name specifies an optional, alternative member of the partitioned
dataset (PDS) allocated to the DDname TTSCNTL in the Thread/SENTRY JCL. If
member is not specified, then Thread/SENTRY simply re-reads control statements from
the original dataset or instream source allocated to file TTSIN.

11.2.4 STOP command

Upon receipt of the STOP command, Thread/SENTRY begins to shutdown normally.
The various Thread/SENTRY subtasks are quiesced one by one, after which the
Thread/SENTRY main task terminates normally.

You can also signal Thread/SENTRY to stop by issuing the MVS STOP command as
follows:

STOP Thread_sentry_jobname

11.3 Thread/SENTRY Debugging

This section describes the debugging facilities used to diagnose problems with
Thread/SENTRY itself. Support staff from Relational Architects will assist you in
issuing these commands and interpreting the diagnostic information they produce.

11.3.1 SNAP command

The SNAP command can be entered from the console to produce a formatted listing of
Thread/SENTRY internal control blocks. This output is written to the dataset allocated
to the DDname TTSTRACE.

11-6 Thread/SERIES Guide and Reference

11.3.2 TRACE_IFCID command

The TRACE_IFCID command can be used to write DB2 Instrumentation Facility records
to a trace dataset. These IFCIDs contain the data that Thread/SENTRY evaluates to
identify ‘problem’ DB2 threads that violate your organization’s policies.

The TRACE_IFCID command has no operands. The command acts as a switch that can
be toggled on and off. Issue the command once to activate IFCID tracing. Issue it again
to deactivate tracing.

Each Thread/SENTRY ‘listener’ process produces IFCID trace output unique to the DB2
subsystem being monitored. Thread/SENTRY writes this output to a discrete trace file
that is owned by the ‘listener’ subtask. Thread/SENTRY builds the name(s) of these
trace files by concatenating the literal string 'TTSL' with the name of each DB2
subsystem being monitored.

To use the TRACE_IFCID command, these trace datasets must be pre-allocated to the
jobstep with a record format of FBA , a logical record length of 121 and a block size of
1210. The following example illustrates the JCL used to allocate trace datasets for DB2
subsystems named DB2A, DB2B and DB2C.

//TTSLDB2A DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)

//TTSLDB2B DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)

//TTSLDB2C DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)

See the discussion in Chapter 20.10.1 of the catalogued procedure used by
Thread/SENTRY for further information.

 Chapter 11: Thread/SENTRY Operations 11-7

11.4 Thread/SENTRY Control File Compiler parameters

The operation of the Thread/SENTRY Control File Compiler is controlled by options
specified (or defaulted) when the compiler is invoked. To simplify documentation, the
Thread/SENTRY Control File Compiler will be referred to in the rest of this chapter as
simply the Compiler.

Options direct the Compiler’s function. For example, certain compiler options specify
how input from one or more Thread/SENTRY Control Files should be processed while
other options govern what outputs the compiler should produce and how these outputs
should be formatted. Explicit compiler options can be specified through a TTSPARM
DD statement, as illustrated in the following example. Alternatively, you can omit the
TTSPARM specification entirely and simply use the vendor supplied defaults.

//TTSPARM DD DSN=thread.sentry.control.file.compiler.options,DISP=SHR

If duplicate or conflicting compiler options are specified, the first value specified takes
effect. The TTSPARM dataset should be defined with DCB attributes of RECFM F or
FB, and an LRECL of 80. Alternatively, you can code Compiler options instream -- as
in the following example, .

//TTSPARM DD *

source(yes)

options(yes)

* this is a comment

//*

The Compiler treats any line beginning with an asterisk (*) as a comment. Also, the
compiler allows to you to split comments into several lines, as in the following example:

source(yes)

options(yes)

/* this is also a

 comment

 */

Compiler options are enumerated below in alphabetical order. A vertical bar (|) separates
mutually exclusive values for the various compiler options.

COMPILE(policy_scope_option, (policy list))

The COMPILE operand identifies what types of Thread/SENTRY policy
statements should be compiled.

The Policy_scope_option denotes one of the following global criteria:

ALL All types of Thread/SENTRY policy statements should be

compiled.

NONE None of the Thread/SENTRY policy statement types should
be compiled.

11-8 Thread/SERIES Guide and Reference

ONLY Only the policy statement types whose names appear within
the parenthesized policy list should be compiled.

EXCEPT All policy statement types except those which appear within
the parenthesized policy list should be compiled.

The Policy_List operand specifies a parenthesized list of one or more of the
following Thread/SENTRY policy statement types: See Chapter 10 for a dis-
cussion of the various policy statements supported by Thread/SENTRY.

policy_list {EXCLUDE}{,LIMIT}{,NOTIFY_LIST}

COMPILE(ALL) is the default.

DEBUG(YES|NO)

The DEBUG parameter directs the Compiler to print the values to be mapped
into Thread/SENTRY internal control blocks as they exist at the time the
Compiler parses them from Thread/SENTRY control statements.

The Compiler directs DEBUG output to the file whose name is specified by the
value of the SNAPDD operand of the TTS#TSD macro. The default DDname
for snap output is TTSTRACE. This SNAP dataset should be defined with DCB
attributes of RECFM F or FB, with an LRECL of 133.

DESCRCDE(descriptor_code)

The DESCRCDE operand applies only if Compiler output is directed to the
operator via an output specification of WTOMSG(YES). The DESCRCDE
value denotes an MCS descriptor code for the WTO messages issued by the
Compiler.

DUMP(YES|NO)

The DUMP parameter is used to diagnose problems or errors in the Compiler
itself. DUMP(YES) requests that all Compiler variables and their corresponding
values should be printed when the Compiler completes its processing.
DUMP(NO) is the default.

The Compiler directs DUMP output to the file whose name is specified by the
value of the SNAPDD operand of the TTS#TSD macro. The default DDname
for snap output is TTSTRACE. This SNAP dataset should be defined with DCB
attributes of RECFM F or FB, with an LRECL of 133.

INSOURCE(YES|NO)

The INSOURCE parameter governs whether or not the Compiler should print all
Thread/SENTRY source statements exactly as they are coded in one or more
Thread/SENTRY Control File(s). INSOURCE(NO) is the default.

 Chapter 11: Thread/SENTRY Operations 11-9

MAP(YES|NO)

The MAP parameter governs whether or not the Compiler should print the
Thread/SENTRY object maps read from the file named TTSMAPS. The
Compiler directs MAP output to the file whose name is specified by the value of
the SNAPDD operand of the TTS#TSD macro. The default DDname for snap
output is TTSTRACE. This SNAP dataset should be defined with DCB
attributes of RECFM F or FB, with an LRECL of 133.

MSG_DISPLAY(TERSE|VERBOSE|DEBUG)

The MSG_DISPLAY operand governs which Thread/SENTRY messages
should be printed as well as what messages should be suppressed. A
specification of TERSE directs Thread/SENTRY to print just essential messages
while VERBOSE requests that all messages related to standard processing
(including warnings and informational messages) should appear. The DEBUG
specification causes all TERSE and VERBOSE messages to be externalized
along with additional messages that may be useful for debugging purposes.
MSG_DISPLAY(TERSE) is the default.

OPTIONS(YES|NO)

The OPTIONS parameter directs the Compiler to print a list of both explicit and
default compiler options. OPTIONS(YES) is the default.

PAUSE(seconds)

The PAUSE parameter directs the Compiler to wait for the specified number of
seconds after compile processing is complete before returning control to the
calling routine within Thread/SENTRY. PAUSE(0) is the default. This value
should not be changed unless your are directed to do so by vendor support
personnel.

RETCODE(return_code_value)

The RETCODE parameter directs the Compiler to return the specified
completion code to Thread/SENTRY, regardless of the results of compile
processing. RETCODE(0) signals the compiler to not override the compile
return code. RETCODE(0) is the default and should not be changed unless you
are directed to do so by vendor support personnel.

ROUTECDE(routing_code)

The ROUTECDE operand applies only if Compiler output is directed to the
operator via an output specification of WTOMSG(YES). The ROUTECDE
value denotes an MCS routing code for the WTO messages issued by the
Compiler.

11-10 Thread/SERIES Guide and Reference

SNAP(YES|NO)

The SNAP operand directs the Compiler to produce a formatted listing of
Thread/SENTRY internal control blocks as they exist at the time the Compiler
terminates.

The Compiler directs SNAP output to the file whose name is specified by the
value of the SNAPDD operand of the TTS#TSD macro. The default DDname
for snap output is TTSTRACE. This SNAP dataset should be defined with DCB
attributes of RECFM F or FB, with an LRECL of 133.

SOURCE(YES|NO)

The SOURCE parameter directs the Compiler to print a formatted representation
of Thread/SENTRY control statements read from one or more Thread/SENTRY
control files. SOURCE(YES) is the default.

TRACE(YES|NO)

The TRACE parameter is used to diagnose problems or errors in the Compiler
itself. Specify ‘YES’ if you wish all Compiler procedure labels to be traced
before execution. Trace output is written to the file defined by the SYSTSPRT
DDname. TRACE(NO) is the default and should not be changed unless you are
directed to do so by vendor support personnel.

TTSIN(ddname)

The TTSIN parameter allows you to override the name of the file from which
the Compiler reads Thread/SENTRY control statements. The default name of
this file is TTSIN.

UPPERCASE(YES|NO)

The UPPERCASE parameter governs whether Thread/SENTRY control
statements should be translated automatically to uppercase before they are
processed. The default is NO.

When UPPERCASE(YES) is specified (or defaulted), Thread/SENTRY control
statements are case insensitive since both keywords and operand values are
folded to uppercase.

In contrast, UPPERCASE(NO) supports the specification of case sensitive
values for such keywords as PLAN(name) and CORRELATION(name).
Although keyword values can be specified in mixed or lower case while
UPPERCASE(NO) is in effect, Thread/SENTRY keywords (such as PLAN and
CORRELATION) must be coded in UPPERCASE. Otherwise, they will not be
recognized.

WTOMSG(YES|NO)

The WTOMSG parameter governs whether Compiler output is routed to the
operator or to the file named TTSOUT. WTOMSG(NO) is the default.

 Chapter 20: Thread/SERIES Installation 20-1

Chapter 20

Installing Thread/SERIES Components

This chapter documents the installation of the DB2 Thread Control Series
(Thread/SERIES) and briefly describes the contents of the distribution libraries.
References to the Thread/SERIES in this chapter pertain to all components in the Series
(namely the Thread/STOPPER ISPF dialog, Thread/STOPPER Batch Facility,
Thread/STOPPER Console Facility, Audit View Facility and Thread/SENTRY) unless a
specific component is explicitly identified.

The batch jobs described and illustrated in this chapter will have to be modified in
keeping with your installation's conventions regarding dataset names, device names, etc.
Installation dependent JCL parameters appear in this chapter as values specified within
question marks – such as ?value? in lower or mixed case type to make them easier to
recognize. You should modify these parameters before the jobstreams are submitted.

See the $TTSREAD member of the restored TTSCNTL library for the
values you should substitute for the ?variables? in this chapter. The
$TTSREAD member will identify which variables should be replaced
with literal values exactly as defined in $TTSREAD and which
symbolic variables should be replaced with site specific values that
you designate.

Once Thread/SERIES components are installed and verified, they can be made generally
available to your installation's users. Deployment issues are discussed in the last section
of this chapter.

20-2 Thread/SERIES Guide and Reference

20.1 Pre-installation Planning

__

Software Version / Release
--------------------- ---------------------
z/OS Any supported release
DB2 Universal Database for z/OS Any supported release
ISPF/PDF Any supported release
TSO/E Any supported release
__

The above table enumerates the minimum release levels of IBM system software
required to operate Thread/SERIES components. Subsequent releases may also be used.

Please identify the High Level Qualifier (HLQ) used to name the
Thread/SERIES library datasets before you begin the installation
process.

Since most Thread/SERIES load modules, control blocks and buffers reside above the
16MB line, standard TSO/ISPF region sizes should provide adequate virtual storage for
most Thread/STOPPER Dialog users. We recommend a minimum region size of 4MB
for the catalogued procedure used to run Thread/SERIES components in batch or as
started tasks.

Most Thread/SERIES load modules distributed in the TTSLOAD dataset are reenterable
and refreshable. The libraries containing the load modules for Thread/SERIES should be
defined as APF authorized -- as described in Section 20.7.

20.1.1 DB2 Considerations

The installer requires the following DB2 authorizations on each DB2 subsystem to be
monitored and controlled by the various Thread/SERIES components:

• authority to BIND packages and plans

• authority to CREATE the audit table In addition, the installer may need

authority to create a storage group, database and tablespace in which the
Thread/SERIES audit table(s) will be defined.

 Chapter 20: Thread/SERIES Installation 20-3

20.1.2 Restricting Access to Thread/SERIES Functions

Access to authorized Thread/SERIES functions is controlled through the security product
(such as RACF, ACF2, or Top Secret) installed at your site. The Thread/SERIES
authorization mechanism makes use of the MVS SAF interface to verify whether a user
can perform an authorized function. For example, you can let all users access the
Thread/STOPPER displays but restrict the use of the CANCEL command to explicitly
authorized users. Appendix R describes the RAI Authorization procedure in detail.

20.2 Pre-installation Preparation

20.2.1 Accounting Trace Classes

DB2 accounting traces should also be active in order to make optimal use of
Thread/SERIES components. In addition to the default Class 1 trace, accounting class 2
provides useful TCB, SRB and elapsed time information. Class 3 tracing makes avail-
able additional wait times within DB2. If these traces are not active, Thread/SERIES
components display the unavailable values as N/P (not present).

Relational Architects strongly recommends that Accounting trace classes 1 and 3 be
active continuously in all environments. Trace classes 2 and 7 are also recommended to
collect TCB, SRB, and elapsed time information for plans and packages, respectively.
Note that Class 2 trace overhead is modest while trace Class 7 has minimal performance
impact if trace class 2 is active.

You can start these accounting traces automatically during DB2 initialization by enabling
SMF ACCOUNTING through the DB2 Tracing Panel (DSNTIPN). Alternatively,
accounting traces can be started explicitly through the following DB2 command:

START TRACE(ACCTG) CLASS(1,2,3,7)

20.2.2 Address Space Priorities

The WLM performance goal appropriate for the Thread/SENTRY address space should
be at least as high as that for any DB2 thread they will be expected to monitor and
control. The performance goals associated with a CICS address space or IMS dependent
region should be suitable for both address spaces.

Performance characteristics for the Thread/SERIES started tasks can be specified through
Work Load Manager.

20-4 Thread/SERIES Guide and Reference

20.2.3 Preparation for CICS DB2 threads

In order to cancel CICS/DB2 threads and send notifications to affected users, the
Thread/SERIES components need the LU6.2 Unit-of-Work ID generated by CICS. This
is true for both terminal and non terminal driven CICS tasks. To ensure that the
necessary accounting information is available, the TYPE=INIT statement of the
DSNCRCT macro should specify TOKENI=YES as the default. Alternatively, the
TYPE=POOL or TYPE=ENTRY statements associated with particular CICS transactions
should specify TOKENE=YES. See the description of the CICS attachment facility
macro (DSNCRCT) in the DB2 Installation Guide for further information.

The Thread/SERIES components also need authorization to issue CICS commands
through the MVS MODIFY interface. See the CICS/RACF Security Guide and other
volumes of the CICS product library for further details.

20.2.4 TSO Command Processor Limiting

Sites that utilize the command limiting feature of ACF2 (or an analogous site developed
facility) may need to add TTSD, RLXS and RCXFE to the list of TSO command
processors available to individual users and/or the entire site. For ACF2, this entails
coding $TSOCMD macro statements like the following in the ACF source module that
contains the list of valid TSO commands:

 $TSOCMD TTSD
 $TSOCMD RLXS
 $TSOCMD RCXFE

See the ACF$CMDS source module in the SYS1.ACFMAC library for a sample list.

NOTE: If ACF2 command limiting is in effect and RCXFE, RLXS or
TTSD are not defined as valid, the problem may manifest itself as
COMMAND NOT FOUND or INVALID SYNTAX even though these
command processors are in the standard MVS search order.

20.2.5 RAI Server Address Space

RAI Server is an authorized address space that is a prerequisite for the operation of all
Thread/SERIES components. RAI Server software at release V4R4M0 or later must be
installed and active in order for Thread/SERIES components to run. Refer to the “RAI
Server Installation and Operations Guide” (RAI publication RSV-001) for details.

RAI Server must be configured with Thread/SERIES passwords (as described in Section
20.6 of this chapter). In addition, the Thread/SENTRY Email notification feature also
requires RAI Server configuration as described in Chapter 6 of the “RAI Server
Installation and Operations Guide”.

 Chapter 20: Thread/SERIES Installation 20-5

Please note, that the default RAI Server name is RAI0. Should you need to run the RAI
Server with a different name, be sure to customize and submit JCL in member TTSJRSN
of the TTSCNTL library. This job updates the various Thread/SERIES components with
the new RAI Server name.

20.2.6 Requirements to Cancel Inactive Threads

NOTE: In order to successfully execute CANCEL TYPE(INACTIVE) commands, the
following installation requirements must be satisfied: .

• Version 4 Release 4 Modification level 0 or later of the RAI server must be installed.
Examine the PARMS member of the RSVCNTL dataset allocated in the JCL for the
RAI Server. started task and ensure the MCS(YES)parameter is specified. The
RAI Server address space must be restarted if this parameter is changed from
MCS(NO) to MCS(YES).

• The following RACF definitions must be implemented (via the following RACF

commands):

SETROPTS CLASSACT(OPERCMDS)
RDEFINE OPERCMDS (MVS.VARY.TCPIP.DROP) UACC(NONE)
PE MVS.VARY.TCPIP.DROP CLASS(OPERCMDS) ID(userid) ACCESS(CONTROL)
SETROPTS RACLIST(OPERCMDS) REFRESH

where: userid is the RACF ID of any user who submits a job that invokes the
Thread/STOPPER Batch facility. In addition, any ID associated with the
Thread/CONSOLE job or started task must be similarly enabled.

20-6 Thread/SERIES Guide and Reference

20.3 Installation Summary

This section summarizes the steps involved in installing Thread/SERIES components.
Detailed descriptions of these steps begin in Section 20.5. In this discussion, ?ttshlq?
refers to the target libraries created at your site during installation, and ?ttsvrm?

1. Create and restore the Thread/SERIES target libraries on your host system using one
of the methods described in Section 20.5.

 refers to
the version, release and modification level of the Thread/SERIES software supplied on
the distribution tape.

2. APF authorize the Thread/SERIES load libraries (Section 20.7)

3. The Thread/SERIES exec library is distributed in fixed blocked record format. If
necessary, convert this Thread/STOPPER target library to variable blocked format.
(Section 20.8)

4. Define the Thread/SERIES table, packages and plans on each DB2 subsystem whose
operation you wish to monitor and control. GRANT the DB2 authorizations required
by the various Thread/SERIES components. (Section 20.9)

5. Edit the Thread/SERIES catalogued procedure and the various jobstreams that
invoke it. (Section 20.10)

6. Define the resource profile named RAI.TTS.TCAN as described in Chapter 4 of the
RAI Server Installation and Operations Guide (publication RSV-001). This required
profile definition enables authorized users and processes to cancel DB2 threads using
Thread/SERIES.

7. Review and implement the configuration requirements for the Thread/SENTRY
Email notification feature as discussed in Section 20.11 of this chapter.

8. Define the VTAM application major node used by Thread/SERIES components
(Section 20.12).

9. Optionally edit the TTSPAL catalogued procedure (Section 20.13).

10. Optionally update the vendor supplied defaults for Thread/SERIES components
(Section 20.14).

11. Prepare the ISPF environment to run the Thread/STOPPER dialogs in a TSO/ISPF
environment. (Section 20.15).

12. Optionally, install the Thread/SERIES Audit View Facility (Section 20.16).

13. Verify installation of Thread/SERIES components by deliberately canceling the DB2
thread associated with the Thread/SERIES Installation Verification Procedure.
(Section 20.17)

14. Conduct post-installation and deployment procedures that include granting execute
plan privileges to those authorized to use Thread/SERIES components. (Section
20.18)

NOTE: Should you experience difficulty installing or using Thread
/SERIES components, RAI's support staff stands ready to help.
Outside North America call your local RAI representative.

 Chapter 20: Thread/SERIES Installation 20-7

20.3.1 Thread / SERIES Migration Summary

You may skip this section if you are conducting an initial Thread/SERIES installation.
This section summarizes the steps involved in migrating to the current Thread/SERIES
release from a prior release. You may run the current release and a prior release in
parallel during a test period or immediately replace the old release if you prefer.
Detailed descriptions of these steps begin in Section 20.5.

1. Create and restore the Thread/SERIES target libraries on your host system using one
of the methods described in Section 20.5.

2. APF authorize the Thread/SERIES load libraries (Section 20.7)

3. The Thread/SERIES exec library is distributed in fixed blocked record format. If
necessary, convert this Thread/STOPPER target library to variable blocked format.
(Section 20.8)

4. Define Thread/SERIES components to each DB2 subsystem whose operation you
wish to monitor and control, as described in Section 20.9. The column structure of
the THREAD_AUDIT table may change from one Thread/SERIES release to
another. To replace the THREAD_AUDIT table for the current release, simply
DROP and recreate the THREAD_AUDIT table and re-bind the Thread/SERIES
application plans (TTSP?ttsvrm?, TTSM?ttsvrm? and TTSI?ttsvrm?). GRANT the
DB2 authorizations required by the various Thread/SERIES components.

Alternatively, to run the current Thread/SERIES release in parallel with a prior
release, we recommend you create a new THREAD_AUDIT table whose owner is
TTS?ttsvrm?. Then bind new application plans named TTSP?ttsvrm?,
TTSM?ttsvrm? and TTSI?ttsvrm?, respectively and specify a qualifier (for tables,
views and aliases) of TTS?ttsvrm?.

5. Revise the Thread/SERIES catalogued procedure and the Thread/STOPPER and
Thread/SENTRY jobstreams that invoke it. (Section 20.10)

6. Define the resource profile named RAI.TTS.TCAN as described in Chapter 4 of the
RAI Server Installation and Operations Guide (publication RSV-001) if it is not
already defined. This profile definition is now required to enable authorized users
and processes to cancel DB2 threads using Thread/SERIES.

7. There is no need

8. Optionally, update the vendor supplied defaults for Thread/SERIES components
(Section 20.14).

 to redefine the VTAM application major node used by Thread/
STOPPER and Thread/SENTRY. (Section 20.12).

9. Prepare the ISPF environment to run the Thread/STOPPER dialogs as described in
Section 20.15.

10. The $TTSREAD member of the TTSCNTL library will state whether reinstallation
of the Thread/SERIES Audit View Facility (Section 20.16) is necessary.

11. Verify installation of Thread/SERIES components by deliberately canceling the DB2

20-8 Thread/SERIES Guide and Reference

thread associated with the Thread/SERIES Installation Verification Procedure.
(Section 20.17)

12. Conduct post-installation and deployment procedures that include granting execute
plan privileges to those authorized to use Thread/SERIES components. (Section
20.18)

20.4 Thread/SERIES Product Libraries

Figure 20.1 briefly describes the Thread/SERIES distribution files. Figure 20.2 describes
the DCB attributes and DASD space requirements for each of the distribution files.
Please note that storage estimates are based on the IBM 3390 Direct Access Storage
Device. Thread/SERIES target libraries are allotted as many PDS directory blocks as
will fit on a full track.

Thread/SERIES distribution datasets can be reblocked to a larger blocksize if necessary.
In addition, the panel and message libraries may be copied into libraries with a variable
record format.

Please Note: If you want to concatenate datasets having unequal
record lengths, their record format must be variable.

Of particular note are the $PGMDIR and $TTSREAD members of the TTSCNTL library.
The $PGMDIR member is a program directory which describes the contents of the TTS
product libraries while the $TTSREAD file contains the most current release notes for
Thread/SERIES.

Tape

File Dataset Contents

---- ----------- ---

1 TTSINST JCL and REXX exec to receive the TTSXMIT file

2 TTSXMIT Complete Thread/SERIES products in TSO/E XMIT format

TTSXMIT Dataset Contents

Library Contents

-------- ---
TTSCAF91 Thread/SERIES CAF modules for DB2 Version 9.1
TTSCAF10 Thread/SERIES CAF modules for DB2 Version 10.1
TTSCAF11 Thread/SERIES CAF modules for DB2 Version 11.1
TTSCNTL JCL, DDL, control statements and README files

TTSDBRM Thread/SERIES database request module library

TTSEXEC Thread/SERIES exec library (RECFM=FB)

TTSLOAD Thread/SERIES load module library

TTSMACS Thread/SERIES macro library

TTSMAPS Thread/SERIES compiled control block maps

TTSMLIB Thread/SERIES ISPF message library

TTSPLIB Thread/SERIES ISPF panel library

TTSREPOS RAI Repository in unloaded, sequential format

Figure 20.1 Thread/SERIES Distribution Datasets
__

 Chapter 20: Thread/SERIES Installation 20-9

Dataset Record Lrecl Block Space 3390 PDS Dir

Type Format Size Unit DASD Blocks

-------- ------ ----- ----- ---- ----- -------

TTSCNTL FB 80 6160 Trks (7,1) 43

TTSCAF91 U 0 6233 Trks (6,1) 1

TTSCAF10 U 0 6233 Trks (6,1) 1

TTSCAF11 U 0 6233 Trks (6,1) 1

TTSDBRM FB 80 6160 Trks (9,1) 43

TTSEXEC FB 80 6160 Trks (3,5) 43

TTSINST FB 80 6160 Trks (2,1) 43

TTSLOAD U 0 6233 Trks (123,5) 43

TTSMACS FB 80 6160 Trks (15,5) 43

TTSMAPS FB 80 6160 Trks (2,5) 43

TTSMLIB FB 80 6160 Trks (9,5) 43

TTSPLIB FB 80 6160 Trks (17,5) 43

TTSREPOS VB 32000 32004 Trks (6,1) 0

__

Figure 20.2 Thread/SERIES distribution datasets

20.5 Restore the TTS Target libraries to your Host system

The first step is to create and restore the Thread/SERIES target libraries on your host
z/OS system using one of the following methods:

• Load from tape (Section 20.5.1)

• Download z/OS files from the Relational Architects FTP site (Section 20.5.2)

• Obtain zipped PC files via E-mail attachments (Section 20.5.3) or download
them from www.relarc.com.

Once the Thread/SERIES target libraries are restored, continue with the batch installation
steps described in Section 20.6.

The restore process edits numerous members of the TTSCNTL and TTSEXEC library to
aid in product installation. This edit process replaces the following symbolic variables
(as they appear in TTSCNTL and TTSEXEC library members) with their default or
specified values as follows:

Variable
Name

Value Description

?ttshlq? The high level qualifier for the Thread/SERIES product libraries.
?ttsvrm? 710 Thread/SERIES version, release and modification level.
?volume? The name of the DASD volume on which the distribution libraries

of the Thread/SERIES reside

Table 20.1 Automatically assigned symbolic variables, values and descriptions.

20-10 Thread/SERIES Guide and Reference

20.5.1 Installation from Tape

Installation from tape entails restoring the TTSINST dataset from distribution tape file 1
to direct access storage. Figure 20.3 illustrates an IEBCOPY job you can use to restore
the TTSINST library. The most current instructions are embedded as comments within
the JCL.

//jobname JOB
// SET RAIHLQ=?ttshlq?, High level qualifiers of the RAI
//* product target libraries
// TUNIT=?tape?, Unit name for the tape device
// TVOLUME=?vvvvvv? Tape/Cartridge Volume Serial #
//*
//* SET DASDATTR='VOL=SER=?volume?,UNIT=SYSALLDA,' Non-SMS environment
//* SET DASDATTR='STORCLAS=?storclas?,' Use SMS explicitly
//* SET DASDATTR='' Use SMS by default
//*
//*--
//*
//* This job performs the following functions:
//*
//* 1 - Restores the Thread/SERIES installation library
//* (TTS.TTSINST) from a 3480 tape cartridge to DASD.
//*
//* Status = Version v Release r Modification level m
//*
//* (c) Copyright Relational Architects Intl - 2001. 2007.
//* Licensed Material - Program property Relational Architects Intl
//*
//*
//* Edit this jobstream as follows:
//* ===============================
//*
//* 1. Add a valid job card
//*
//* 2. GLOBALLY change all occurences of the following
//* parameter strings as described below:
//*
//* a. Change ?ttshlq? to the high level qualifiers of the
//* Thread/SERIES libraries to be created at your site.
//* The recommended value is TTS.V6R1M0
//*
//* b. Change ?tape? to the unit name of the tape device
//*
//* c. Change ?vvvvvv? to the Volume Serial Number of the
//* distribution tape or cartridge from the vendor
//*
//* 3. Uncomment ONE of the 'SET DASDATTR' JCL statements above:
//* ===
//*
//* a. For non-SMS environments, uncomment the statement:
//*
//* SET DASDATTR='VOL=SER=?volume?,UNIT=?unit?,'
//*
//* Change ?volume? to the name of the DASD volume on
//* which the distribution libraries of the Thread/SERIES
//* should be allocated. The default is blank to
//* receive the distribution libraries to a work pack. If
//* you specify a volume parameter, make sure the volume is
//* eligible, i.e. defined in VATLSTxx as private. Note:
//* the VOLUME and UNIT parameters are mutually exclusive
//* with the STORCLAS parameter.
//*
//* b. When you wish to use SMS explicitly, (that is
//* SMS is active but does not manage all DASD allocations
//* by default) uncomment the statement:
//*
//* SET DASDATTR='STORCLAS=?storclas?,'

 Chapter 20: Thread/SERIES Installation 20-11

//*
//* and change ?storclas? to the name of a valid
//* SMS storage management class defined at your site.
//* Note: the STORCLAS(storclas) operand is mutually
//* exclusive with the UNIT and VOLUME parameters.
//*
//* c. When SMS, by default, manages ALL dataset allocations
//* at your site, uncomment the statement:
//*
//* SET DASDATTR=
//*
//* 4. Submit this job. This job should complete with a return
//* code 0.
//*
//* Once this job completes successfully, the Thread/SERIES
//* installation library will reside on your host system.
//* You should then proceed as follows:
//*
//* Edit and submit the JCL in member TTSJRPT of the TTSINST library
//* to restore the complete Thread/SERIES product.
//*
//*---
//*
//* Restore the TTSINST library from file 1 of the
//* Thread/SERIES distribution tape
//*
//*--
//RESTORE EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=TTS.TTSINST,LABEL=(1,SL),
// UNIT=&TUNIT,VOL=SER=&TVOLUME,DISP=(OLD,PASS)
//SYSUT2 DD DSN=&RAIHLQ..TTSINST,DISP=(NEW,CATLG,DELETE),
// &DASDATTR.SPACE=(TRK,(15,1,43),RLSE),DCB=(*.SYSUT1)
//*

Figure 20.3 Restore the TTSINST library to disk

Once the TTSINST library is restored, edit the TTSJRPT member shown in Figure 20.4
below. The most current instructions are embedded as comments within the JCL.

NOTE: Be sure to edit the TTSJRPT job with CAPS ON since it
contains lower case text.

20-12 Thread/SERIES Guide and Reference

//jobname JOB
// SET RAIHLQ=?ttshlq?, High level qualifiers of the RAI
//* product target libraries
// DUNIT=?tape?, Unit name for the tape device
// DVOLUME=?volume? Tape/Cartridge Volume Serial #
//*
//* SET DASDATTR='VOL=SER=?volume?,UNIT=?unit?,' Non-SMS environment
//* SET DASDATTR='STORCLAS=?storclas?,' Use SMS explicitly
//* SET DASDATTR='' Use SMS by default
//*
//*--
//*
//* This job performs the following functions:
//*
//* 1 - Restores the Thread/SERIES product (in TSO/E TRANSMIT
//* format) to a new dataset allocated on DASD.
//*
//* 2 - Issues TSO/E RECEIVE commands to create and restore the
//* Thread/SERIES distribution libraries to your z/OS or
//* OS/390 host system.
//*
//* Status = Version v Release r Modification level m
//*
//* (c) Copyright Relational Architects Intl - 1999, 2005.
//* Licensed Material - Program property Relational Architects Intl
//*
//*
//* Edit this jobstream as follows:
//* ===============================
//*
//* 1. Add a valid job card
//*
//* 2. GLOBALLY change all occurences of the following
//* parameter strings as described below:
//*
//* a. Change ?ttshlq? to the high level qualifiers of the
//* Thread/SERIES libraries to be created at your site.
//* The recommended value is TTS.V6R1M0
//*
//* b. Change ?tape? to the unit name of the tape device
//*
//* c. Change ?volume? to the Volume Serial Number of the
//* distribution tape or cartridge from the vendor
//*
//* 3. Uncomment ONE of the 'SET DASDATTR' JCL statements above:
//* ===
//*
//* a. For non-SMS environments, uncomment the statement:
//*
//* SET DASDATTR='VOL=SER=?volume?,UNIT=?unit?,'
//*
//* Change ?volume? to the name of the DASD volume on which
//* the distribution libraries of the Thread/SERIES should
//* be allocated. The default is blank to receive the
//* distribution libraries to a work pack. If you specify
//* a volume parameter, make sure the volume is eligible,
//* i.e. defined in VATLSTxx as private. Note: the VOLUME
//* and UNIT parameters are mutually exclusive with the
//* STORCLAS parameter.
//*
//* Then change ?unit? to the UNIT name for the target
//* DASD volume on which the Thread/SERIES distribution
//* libraries will be allocated. For example specify 3380,
//* 3390 or SYSDA.
//*
//* b. When you wish to use SMS explicitly, (that is
//* SMS is active but does not manage all DASD allocations
//* by default) uncomment the statement:
//*
//* SET DASDATTR='STORCLAS=?storclas?,'
//*
//* and change ?storclas? to the name of a valid

 Chapter 20: Thread/SERIES Installation 20-13

//* SMS storage management class defined at your site.
//* Note: the STORCLAS(storclas) operand is mutually
//* exclusive with the UNIT and VOLUME parameters.
//*
//* c. When SMS, by default, manages ALL dataset allocations
//* at your site, uncomment the statement:
//*
//* SET DASDATTR=
//*
//* 4. Submit this job. All steps should execute with completion
//* code 0
//*
//* Once this job completes successfully, the Thread/SERIES
//* distribution libraries will reside on your host system.
//* You should then proceed as follows:
//*
//* 1. Edit and submit the JCL in member RAIJPSWD of the TTSCNTL
//* library to define temporary product passwords for the trial
//* period. Be sure to use the product names and password
//* strings EXACTLY as supplied in the vendor's cover letter
//* or E-mail.
//*
//*---
//COMMON SET DHLQ=TTS.TTS,
// THLQ=&RAIHLQ..TTS,
// TDD='DISP=(NEW,CATLG,DELETE),DCB=(*.SYSUT1)'
//*---
//*
//* Restore the file containing the Thread/SERIES product to
//* DASD. This dataset is in TSO/E TRANSMIT format.
//*
//*---
//XMIT EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=&DHLQ.XMIT,LABEL=(2,SL),
// UNIT=&DUNIT,VOL=SER=&DVOLUME,DISP=(OLD,KEEP)
//SYSUT2 DD &TDD,SPACE=(TRK,(500,10),RLSE),&DASDATTR.DSN=&THLQ.XMIT
//*---
//*
//* RECEIVE (create and restore) the Thread/SERIES
//* distribution libraries
//*
//*---
//RECEIVE EXEC PGM=IKJEFT01,DYNAMNBR=10,REGION=0M,
// PARM='TTSERP &RAIHLQ &DASDATTR'
//SYSEXEC DD DISP=SHR,DSN=&THLQ.INST
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY

Figure 20.4 Run the TTSJRPT Job

Submit this job and check that all steps execute with completion code 0. Once this job
completes successfully, the Thread/SERIES libraries will reside on your host system.
You should then proceed to Section 20.6.

20-14 Thread/SERIES Guide and Reference

20.5.2 FTP Installation from the RAI website

The Customer Support section of the Relational Architects website (www.relarc.com)
contains the most current information about installing the Thread/SERIES products via
FTP download. You must obtain a User ID and password from Relational Architects (or
your local RAI representative) in order to access this section of the Relational Architects
website.

The Relational Architects FTP site contains the following Thread/SERIES files:

FTP File Format z/OS

Dataset

Member

of PDS

Description

tts?TTSVRM?.readm

e.txt

ASCII TTSCNTL $TTSREAD Release Notes

tts?TTSVRM?.xmi binary TTSXMIT N/A Thread/SERIES products

in TSO/E XMIT format

tts?TTSVRM?.zip ZIP N/A N/A Contains the following

format in ZIP format:

tts?TTSVRM?.readme.txt

tts?TTSVRM?.tmp

tts?TTSVRM?.xmi

tts?TTSVRM?at.jcl

tts?TTSVRM?.tmp binary TTSINST TTSERP Installation REXX EXEC

tts?TTSVRM?at.jcl TTSJRPA JCL with which to create

and restore the

distribution libraries

of the Thread/SERIES to

your z/OS host system.

tts?TTSVRM?at.txt ASCII

tts?TTSVRM?ft.jcl binary TTSJRPF JCL allocates a pair of

datasets, runs the FTP

to download the

Thread/SERIES software

from the RAI FTP site,

and issues TSO/E RECEIVE

commands to create and

restore the distribution

libraries of the

Thread/SERIES to your

z/OS host system.

tts?TTSVRM?ft.txt ASCII

tts?TTSVRM?ta.txt ASCII TTSJRPTI Restores the

Thread/SERIES

installation library

(TTS.TTSINST) from a

3480 tape cartridge to

DASD.

http://www.relarc.com/�

 Chapter 20: Thread/SERIES Installation 20-15

20.5.3 Installation via E-mail

The E-mail you receive from Relational Architects or your local RAI representative will
contain both the instructions and attached files with which to install the Thread/SERIES
product.

20.6 Define Passwords

Specify product passwords for Thread/STOPPER and/or Thread/SENTRY in the RAI
Server password file. Be sure to specify the product name and password strings exactly
as supplied in the vendor cover letter, fax or E-mail. Chapter 3 of the “RAI Server
Installation and Operations Guide” (publication RSV-001) describes this procedure in
detail.

NOTE: This method of password definition via the RAI Server is
introduced with V6.1 of Thread/SERIES and supersedes the method
used in prior versions and releases of Thread/SERIES.

20.7 APF Authorize the Thread/SERIES Load Libraries

The program libraries for Thread/SERIES must be defined as APF authorized in either an
IEAAPFxx or PROGxx member of SYS1.PARMLIB. The following program libraries
were restored by one of the methods described in the previous Section.)

?ttshlq?.TTSCAF91
?ttshlq?.TTSCAF10
?ttshlq?.TTSCAF11
?ttshlq?.TTSLOAD

Alternatively, you can dynamically define these datasets as APF authorized libraries
with MVS system commands like the following:

SETPROG APF,FORMAT=DYNAMIC
SETPROG APF,ADD,DSNAME=?ttshlq?.TTSCAF91,SMS|VOLUME=volser
SETPROG APF,ADD,DSNAME=?ttshlq?.TTSCAF10,SMS|VOLUME=volser
SETPROG APF,ADD,DSNAME=?ttshlq?.TTSCAF11,SMS|VOLUME=volser
SETPROG APF,ADD,DSNAME=?ttshlq?.TTSLOAD,SMS|VOLUME=volser

Any libraries concatenated with the Thread/SERIES program libraries via JCL STEPLIB
or JOBLIB statements must be APF authorized. Alternatively, when running the
Thread/STOPPER dialog application under ISPF (an unauthorized program), the
Thread/SERIES program libraries may be freely concatenated with unauthorized
libraries. This is true both for libraries pre-allocated to the ISPLLIB DDname (before
ISPF is invoked) as well as dynamic program libraries defined via the ISPF LIBDEF
service.

20-16 Thread/SERIES Guide and Reference

20.8 Convert the record format of the TTS EXEC library

 to variable blocked format (If necessary)

This step applies only if you allocate REXX exec libraries with a variable blocked record
format (RECFM=VB). The Thread/SERIES exec library (dataset ?ttshlq?.TTSEXEC) is
distributed in fixed blocked record format with a logical record length of 80 and a
blocksize of 6160. This dataset was restored to disk in the previous step with these same
attributes. If the other libraries with which it will be concatenated have a variable
blocked record format, you need to allocate a new REXX exec library whose record
format is also variable blocked. This is because datasets must have like characteristics in
order to be concatenated. Should your site make use of exec libraries in variable blocked
format, we recommend you proceed as follows:

• Rename the TTSEXEC dataset just restored from tape to TTSEXECF.

• Allocate a new TTSEXEC dataset with variable blocked attributes via PDF Option

3.2, the TSO ALLOCATE command or via JCL. When choosing a record length
and blocksize for this variable blocked library, consider the characteristics of the
target DASD volume, as well as the block size of other exec libraries with which it
will be concatenated.

• Use PDF option 3.3 to copy all members of the fixed blocked library into the new

variable blocked dataset. (Thread/SERIES source execs have no line numbers so
they can be copied directly, without source changes.)

• Delete the TTSEXECF library which contains fixed blocked records.

20.9 Prepare each DB2 subsystem for

 Thread/SERIES Components

This step defines Thread/SERIES components to those DB2 subsystems you wish to
monitor and control with Thread/SERIES. Defining Thread/SERIES to DB2 entails the
following steps:

 Create the Thread/SERIES DB2 Audit table named ?ttsvrm?.THREAD_AUDIT.

Make sure to specify an existing tablespace and database in which the
THREAD_AUDIT table will reside, or create new ones.

 BIND the Thread/SERIES packages and plans.

 Installing the run-time only version of RLX for DB2 to power the Thread/SERIES
VIEW facility with which to browse the THREAD_AUDIT table.

A single copy of Thread/SERIES can be installed for any or all of the DB2 subsystems
defined within a single MVS system. However, a separate copy of Thread/SERIES is
required for each MVS system image.

 Chapter 20: Thread/SERIES Installation 20-17

20.9.1 Edit and submit the Thread/SERIES DB2 definitions jobstream

Edit and submit the job in member TTSJDB2 of the TTSCNTL library to define
Thread/SERIES to the target DB2 subsystem. A separate job must be edited and
submitted for each additional DB2 subsystem into which Thread/SERIES is being
installed. The numbers in parentheses to the right of the JCL statements correspond to
the numbered, annotating paragraphs which follow the figure. You should review and
update the values that are specified within question marks (such as ?value?). However,
you need not specify values for the symbolic variables ?ttshlq? , ?ttsvrm?, and
?volume?. Updating values for these variables were substituted as part of the processing
described in Section 20.5.
__

//jobname JOB . . .
// SET AUTHID=?authid?, (1a)
// DB2EXIT='?db2hlq?.SDSNEXIT', (2a)
// DB2LOAD='?db2hlq?.SDSNLOAD', (2b)
// DB2SN=?dsn?, (3a)
// TTSHLQ='?ttshlq?'
//*
//PROCLIB JCLLIB ORDER=&TTSHLQ..TTSCNTL
//*__
//* Invoke TTSPDB2 procedure to install Thread/SERIES on DB2
//* SSID=?dsn?
//*__
//?dsn? EXEC TTSPDB2,
// AUTHID=&AUTHID,
// DB2=&DB2SN,
// DB2EXIT=&DB2EXIT,
// DB2LOAD=&DB2LOAD,
// PLAN=TTS?ttsvrm?C,
// TTSHLQ=&TTSHLQ
//CREATE.SYSIN DD *
 create table TTS?ttsvrm?.thread_audit
 (db2_subsystem char(4),
 uniqueness_value char(12),
 thread_token integer,
 ace_address char(8),
 action_taken char(12),
 action_status char(12),
 policy_id char(8),
 policy_reason char(24),
 action_method char(40),
 action_date date,
 action_timestamp timestamp,
 action_acee_id char(8),
 action_db2auth_id varchar(128),
 action_group_name char(8),
 action_term_id char(8),
 action_appl_id char(8),
 action_surr_id char(8),
 action_cpu_id char(12),
 creation_date char(10),
 creation_time char(8),
 creation_microsecs char(7),
 correlation_name char(12),
 plan_name char(8),
 program_name varchar(128),
 authorization_id varchar(128),
 connection_name char(8),
 original_operator varchar(128),
 mvs_system char(8),
 address_space_id char(4),
 thread_jobname char(8),
 where_executing char(4),
 accounting_token char(22),
 display_sql_count smallint,
 status_code char(2),
 network_id char(8),
 lu_name char(8),

20-18 Thread/SERIES Guide and Reference

 commit_count integer,
 sql_dml_count integer,
 getpages_issued integer,
 status_literal char(40),
 connection_code integer,
 connecting_system char(12),
 tcb_address char(8),
 total_elapsed_time char(15),
 db2_elapsed_time char(15),
 class1_tcb_time char(15),
 class2_tcb_time char(15),
 home_srb_time char(15),
 io_wait_time char(15),
 lock_wait_time char(15),
 dist_location varchar(128),
 dist_appc_id char(8),
 dist_session_id char(16),
 thread_flag1 char(1),
 thread_flag2 char(1),
 thread_flag3 char(1),
 thread_flag4 char(1),
 thread_flag5 char(1),
 thread_flag6 char(1),
 thread_flag7 char(1),
 thread_flag8 char(1),
 thread_flag9 char(1),
 thread_flaga char(1),
 thread_flagb char(1),
 qmda_product char(3),
 qmda_version char(2),
 qmda_release char(2),
 qmda_mod char(1),
 qmda_location char(16),
 qmda_netid char(8),
 qmda_luname char(8),
 qmda_connect_name char(8),
 qmda_connect_type char(8),
 qmda_correlation char(12),
 qmda_authid char(8),
 qmda_plan char(8),
 client_platform char(18),
 client_application char(20),
 client_authid char(8),
 account_string# smallint,
 account_string varchar(200)
)
 IN TTSD?ttsvrm?.TTST?ttsvrm?; (4)
/*
//CREATE.SYSTSIN DD *
 DSN SYSTEM(?dsn?) (3b)
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA?dv?) - (5)
 LIBRARY('?db2hlq?.RUNLIB.LOAD') (2c)
 BIND PACKAGE(TTS?ttsvrm?) QUALIFIER(TTS?ttsvrm?) -
 MEMBER(TTSCAUD) -
 LIBRARY('?ttshlq?.TTSDBRM') -
 ISOLATION(CS) RELEASE(COMMIT) -
 ACTION(REPLACE)
 BIND PACKAGE(TTS?ttsvrm?) QUALIFIER(?sysibm?) - (6a)
 MEMBER(TTSLOBJS) -
 LIBRARY('?ttshlq?.TTSDBRM') -
 ISOLATION(CS) RELEASE(COMMIT) -
 ACTION(REPLACE)
 BIND PACKAGE(TTS?ttsvrm?) QUALIFIER(?sysibm?) - (6b)
 MEMBER(TTSIVP) -
 LIBRARY('?ttshlq?.TTSDBRM') -
 ISOLATION(CS) RELEASE(COMMIT) -
 ACTION(REPLACE)
 BIND PLAN(TTSM?ttsvrm?) QUALIFIER(TTS?ttsvrm?) -
 PKLIST(TTS?ttsvrm?.*) -
 VALIDATE(BIND) -
 ISOLATION(CS) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 ACTION(REPLACE) RETAIN

 Chapter 20: Thread/SERIES Installation 20-19

BIND PLAN(TTSP?ttsvrm?) ACTION(REPLACE) -
 PKLIST(TTS?ttsvrm?.TTSCAUD, TTSRLX?ttsvrm?.*) -
 ISOLATION(CS) QUALIFIER(TTS?ttsvrm?)
 BIND PLAN(TTSI?ttsvrm?) ACTION(REPLACE) -
 PKLIST(TTS?ttsvrm?.TTSIVP) -
 ISOLATION(CS)
 END
/*
//BIND.SYSTSIN DD *
TSOLIB ACT DA('?ttshlq?.TTSLOAD')
TTSIBIND DB2(?dsn?) TTSVRM(?ttsvrm?) OWNER(?authid?) (3c) (1b)
/*
__

Figure 20.7 Defining the Thread/SERIES to a DB2 subsystem

(1a) and (1b) Specify the authorization ID used to GRANT DB2 authorizations

for EXECUTE ON PLAN TTS?ttsvrm?C TO PUBLIC
for use with the Thread/SERIES VIEW Facility.

Also, the DB2 BIND PACKAGE and PLAN OWNER parameter
is set to authorization ID.

(2a), (2b) and (2c) Define the names of the system load libraries associated with the

target DB2 subsystem. These may include the SDSNEXIT, SDSNLOAD
and RUNLIB.LOAD datasets.

(3a), (3b) and (3c) Specify the name of the target DB2 subsystem in which the

Thread/SERIES packages and plans will be bound and in which
it’s THREAD_AUDIT table will be created.

(4) Verify the name of the database and tablespace in which the

THREAD_AUDIT table will reside.

(5) Specify the two digits of the version and release level of the target

DB2 subsystem. DSNTIA?dv? (4) identifies the plan name
assigned for the IBM supplied source module DSNTIAD that was
preprocessed, assembled, link edited and bound as part of DB2
subsystem installation.

(6a) and (6b) Specify the owner of the SYSCOLUMNS table that the

Thread/SERIES IVP should reference. This can be either the real
catalog table owned by AuthID SYSIBM or some shadow copy.
Executable code for the Thread/SERIES IVP uses unqualified
SQL -- so this parameter must

 be specified.

20-20 Thread/SERIES Guide and Reference

20.9.2 GRANT required DB2 Authorizations

The various Thread/SERIES components require the following DB2 authorizations:

• All users of the Thread/STOPPER Dialog as well as users of the Thread/STOPPER

Batch and Console Facilities must be GRANTed execute authority on the
Thread/STOPPER DB2 application plan named TTSP?ttsvrm?. AuthIDs that will
submit the Thread/SENTRY jobstream should possess execute authority on the
Thread/SENTRY plan named TTSM?ttsvrm?

. Section 20.10.3 discusses special
considerations for running the Thread/STOPPER Console Facility and/or
Thread/SENTRY as started tasks.

• All AuthIDs that run either Thread/STOPPER or Thread/SENTRY must possess
MONITOR2 authority.

• Those AuthIDs which may issue the -TERM UTILITY, -CANCEL DDF THREAD

and/or -CANCEL THREAD commands through any Thread/SERIES component
require either SYSOPR, SYSCTRL or SYSADM authority.

• AuthIDs authorized to examine the audit trail of canceled threads maintained by

Thread/SERIES components must be GRANTed the SELECT privilege on the DB2
table named owner.THREAD_AUDIT, where owner is the table owner specified in
the DDL, as described in Section 20.9.1.

 Chapter 20: Thread/SERIES Installation 20-21

20.10 Customize the Thread/SERIES jobs

 and catalogued procedure

This step prepares the jobs that invoke Thread/SENTRY, as well as the
Thread/STOPPER Batch, Console and Audit Facilities. In addition, you customize a
generalized Thread/SERIES catalogued procedure in this step that Thread/SENTRY as
well as the various Thread/STOPPER facility jobstreams will invoke to run their
respective programs.

Setup for the Thread/SERIES catalogued procedure -- along with the JCL for the
Thread/STOPPER Console and Audit Facilities -- is performed once in this step as part
of installation. In contrast, JCL for the Thread/STOPPER Batch Facilities is described
and illustrated separately in Chapter 4 since each Batch Facility request requires a job.
Lastly, the JCL with which to run Thread/SENTRY (as a batch job or started task) is
described in Chapter 11.1.1.

20.10.1 Edit the TTSPROC catalogued procedure

The TTSPROC procedure defines common JCL used to run several Thread/SERIES
programs. It is distributed as member TTSPROC of the TTSCNTL library (the
Thread/SERIES dataset whose low level qualifier is TTSCNTL). Once customized, we
recommend that you copy TTSPROC into one of your site’s catalogued procedure
libraries. Alternatively, TTSPROC can be used as an instream procedure. Lastly, the
TTSCNTL dataset can be defined as a JCL procedure library (on a job basis) through a
JCLLIB statement or some functionally equivalent dynamic PROCLIB facility.

The various Thread/SERIES programs can maintain connections to multiple DB2
subsystems simultaneously -- even DB2 subsystems at different version and release
levels. To support concurrent connections to multiple DB2 subsystems, each DB2
subsystem requires its own file allocation which must include a special library of CAF
load modules that are supplied with Thread/SERIES.

 These CAF load modules must be
concatenated ahead of their respective DB2 system libraries -- as described and
illustrated in Figure 20.8. In addition, each DB2 subsystem being monitored should be
allocated a discrete file to which Thread/SENTRY can write trace and diagnostic
information pertaining to that subsystem.

The numbers in parentheses to the right of the JCL statements in Figure 20.8 correspond
to the numbered, annotating paragraphs which follow the figure. Be sure to edit member
TTSPROC with CAPS ON since it contains comments in lowercase.

20-22 Thread/SERIES Guide and Reference

__

//TTSPROC PROC TTSHLQ='?ttshlq?', (1)
// SOUT=*, SYSOUT class (2)
// ROUT=*, Internal reader class (2)
// PROG=, Thread/SERIES program name (3)
// PARMS= program parameters
//TTSPROC EXEC PGM=&PROG,REGION=0M,PARM='&PARMS'
//STEPLIB DD DISP=SHR,DSN=&TTSHLQ..TTSLOAD
//TTSCNTL DD DISP=SHR,DSN=&TTSHLQ..TTSCNTL
//TTSMAPS DD DISP=SHR,DSN=&TTSHLQ..TTSMAPS
//TTSPARM DD DISP=SHR,DSN=&TTSHLQ..TTSCNTL(TTSPARM)
//TTSRDR DD SYSOUT=(&ROUT,INTRDR),DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//TTSOUT DD SYSOUT=&SOUT
//TTSTRACE DD SYSOUT=&SOUT /* Snaps and traces
//*
//ISPMLIB DD DISP=SHR,DSN=&TTSHLQ..TTSMLIB
//ISPPLIB DD DISP=SHR,DSN=&TTSHLQ..TTSPLIB
//SYSTSPRT DD SYSOUT=&SOUT,DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)
//SYSTSIN DD DUMMY,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//*--
//*
//* Define a concatenated set of load module libraries for
//* each DB2 subsystem that is to be monitored and controlled
//* by a Thread/SERIES program.
//*
//* In each case, the DDname is derived by appending the suffix
//* LOAD to the DB2 subsystem name. For example, the DDname
//* for a DB2 subystem named DB2T becomes DB2TLOAD. Be sure
//* to specify the Thread/SERIES library of CAF load modules
//* intended for use with a particular version and release of
//* DB2 as the first dataset in the concatenation sequence.
//* =====
//*
//* For example, if the DB2 subystem named DB2T is at
//* Version 9.1 of DB2, then specify the Thread/SERIES
//* library of CAF load modules from the dataset whose
//* low level qualifier is TTSCAF91. Similarly, if DB2T
//* is at V10.1 of DB2, then use the dataset named TTSCAF10.
//*
//*--
//db91LOAD DD DISP=SHR,DSN=&TTSHLQ..TTSCAF91 /* DB2 V9.1 (4)
// DD DISP=SHR,DSN=db91.sdsnexit
// DD DISP=SHR,DSN=db91.sdsnload
//db10LOAD DD DISP=SHR,DSN=&TTSHLQ..TTSCAF10 /* DB2 V10 (5)
// DD DISP=SHR,DSN=db10.sdsnexit
// DD DISP=SHR,DSN=db10.sdsnload
//db11LOAD DD DISP=SHR,DSN=&TTSHLQ..TTSCAF11 /* DB2 V11 (6)
// DD DISP=SHR,DSN=db11.sdsnexit
// DD DISP=SHR,DSN=db11.sdsnload
//*--
//* Define discrete log/diagnostic files for each DB2 subsystem
//* Concatenate 'TTSL' with the DB2 SSID to form the DDname
//*--
//TTSLdb91 DD SYSOUT=&SOUT,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210) (7)
//TTSLdb10 DD SYSOUT=&SOUT,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210) (8)
//TTSLdb11 DD SYSOUT=&SOUT,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210) (9)

//*---
//* Uncomment these DD names when instructed by the vendor
//* to gather diagnostic information
//*---
//*RAINPUT DD DISP=SHR,DSN=&TTSHLQ..TTSCNTL(TTSTRACE)
//*RFATRACE DD SYSOUT=&SOUT
//*SYSUDUMP DD SYSOUT=&SOUT
//*TTSDUMP DD SYSOUT=&SOUT

__
Figure 20.8 TTSPROC procedure

(1) Specify the Thread/SERIES libraries installed at your site.

(2) Update the output classes for SYSOUT and Internal Reader files as appropriate.

 Chapter 20: Thread/SERIES Installation 20-23

(3) The PROG keyword governs which Thread/SERIES component is executed
through the TTSPROC procedure. The following programs are supported:

TTSMON The Thread/SENTRY monitor program
TTSAUDIT The Thread/STOPPER Audit Cancellation Success program
TTSB The Thread/STOPPER Batch Facility program
TTSCON The Thread/STOPPER Console Facility program

(4) The TTSPROC procedure must be modified to define a concatenated set of load

module libraries for each DB2 subsystem that may be referenced by Thread/
SERIES components. Each DB2 subsystem you intend to monitor and control
must have its own DD name in the TTSPROC procedure and its own set of load
libraries.

 In each case, the DD name is derived by appending the suffix LOAD to the DB2

subsystem name. For example, the DD name for a DB2 subsystem named DB2T
becomes DB2TLOAD.

Figure 20.8 illustrates how the DD name DB91LOAD defines the set of load
module libraries associated with a DB2 Version 9.1 subsystem named DB91. In
addition, the Thread/SERIES library of CAF load modules intended for use with
DB2 Version 9.1 subsystems (dataset ?ttshlq?.TTSCAF91 in this example) must
be the first dataset in the concatenation sequence.

 (5) Allocate the load libraries associated with the DB2 Version 10 subsystem named

DB10 to the DD name DB10LOAD. The DD name is derived by appending the
suffix LOAD to the DB2 subsystem name (DB10). In addition, the
Thread/SERIES library of CAF load modules intended for use with DB2 Version
10 subsystems (dataset ?ttshlq?.TTSCAF10 in this example) must be the first
dataset in the concatenation sequence.

 (6) Allocate the load libraries associated with the DB2 Version 11 subsystem named

DB11 to the DD name DB11LOAD. The DD name is derived by appending the
suffix LOAD to the DB2 subsystem name (DB11). In addition, the
Thread/SERIES library of CAF load modules intended for use with DB2 Version
11 subsystems (dataset ?ttshlq?.TTSCAF11 in this example) must be the first
dataset in the concatenation sequence.

 (7) Allocate a discrete output file for the DB2 subsystem named DB91 to which

Thread/SENTRY can write trace and diagnostic data. The DD name TTSLDB91 is
derived by concatenating the literal string 'TTSL' with the name of the DB2
subsystem being monitored (DB91). These trace datasets must be allocated with a
record format of FBA, a logical record length of 121 and a block size of 1210.

 (8) Allocate a discrete output file for the DB2 subsystem named DB10 to which

Thread/SENTRY can write trace and diagnostic data. The DD name TTSLDB10 is
derived by concatenating the literal string 'TTSL' with the name of the DB2
subsystem being monitored (DB10). These trace datasets must be allocated with a
record format of FBA, a logical record length of 121 and a block size of 1210.

 (9) Allocate a discrete output file for the DB2 subsystem named DB11 to which

Thread/SENTRY can write trace and diagnostic data. The DD name TTSLDB11 is
derived by concatenating the literal string 'TTSL' with the name of the DB2
subsystem being monitored (DB11). These trace datasets must be allocated with a
record format of FBA, a logical record length of 121 and a block size of 1210.

20-24 Thread/SERIES Guide and Reference

20.10.2 Edit the JCL to invoke the Thread/STOPPER Console Facility

Member TTSRCON of the TTSCNTL library contains JCL to invoke the Thread/
STOPPER Console Facility. Add a valid JOB statement in order to submit the
Thread/STOPPER Console Facility as a standard jobstream. Alternatively, place member
TTSRCON in one of your installation’s catalogued procedure libraries in order to run the
Console Facility as a started task.

The numbers in parentheses to the right of the JCL statements correspond to the
numbered, annotating paragraphs which follow Figure 20.9. Be sure to edit member
TTSRCON with CAPS ON since it contains comments in lowercase.

__

//jobname JOB (1)
//TTSCON EXEC TTSPROC, Invoke the general Thread/SERIES procedure

// PROG=TTSCON, Run the Thread/STOPPER Console Facility pgm

// PARMS='ORIGIN(WTOR)' Specify optional parameters (2)
__
Figure 20.9 TTSRCON procedure

(1) Define a valid job statement if the Thread/STOPPER Console Facility is to be

submitted as a batch job. Alternatively, the Console Facility can run as a started
task. In this case, no JOB statement is needed but this procedure (TTSRCON)
and its companion TTSPROC must reside in one of your site's catalogued
procedure libraries.

(2) Specify optional parameters for the Console Facility through the PARMS

parameter. Chapter 3 describes the run-time parameters common to both the
Thread/STOPPER Batch and Console Facilities. In contrast, Chapter 4 describes
several additional parameters unique to the Batch Facility while Chapter 5
describes several additional parameters unique to the Console Facility.

20.10.3 Running Thread/SENTRY and the

 Thread/STOPPER Console Facility as Started Tasks

The DB2 authorization ID associated with the started tasks for Thread/SENTRY and the
Thread/STOPPER Console Facility must have the privilege to execute their respective
DB2 application plans. Thread/SENTRY makes use of plan TTSM?ttsvrm? while the
various Thread/STOPPER components make use of plan TTSP?ttsvrm?

. Since a started
task has no JOB statement, you have no opportunity to define the DB2 primary
authorization ID for the started task address space through the USER and GROUP
parameters of the JOB statement. The DB2 authorization ID for a started task is
established through different means.

 Chapter 20: Thread/SERIES Installation 20-25

The DB2 primary authorization ID for the two started tasks defaults to the unknown
AUTHID defined on the DB2 installation panel DSNTIPP. You can GRANT this default
user ID the EXECUTE PLAN privilege for the Thread/STOPPER and Thread/SENTRY
plans. Alternatively, you can grant EXECUTE PLAN authority for plans TTSP?ttsvrm?
and TTSM?ttsvrm?

 to PUBLIC.

A more granular approach, however, is to explicitly define a RACF User ID and Group
Name for the Thread/STOPPER and Thread/SENTRY started task address spaces. To do
so, you need to add the Thread/STOPPER and Thread/SENTRY started procedures to the
RACF started procedures table ICHRIN03 as illustrated below in Figure 20.10. Then,
assemble and link edit the ICHRIN03 load module. Lastly, perform an IPL with the
CLPA option (or an MLPA that specifies the ICHRIN03 load module) so these changes
take effect.

DC CL8’TTSRCON’ name of the Thread/STOPPER Console
 Facility procedure
DC CL8’ttsrcon_i
 DB2 primary authorization ID

d’ This RACF userid becomes the initial

DC CL8’groupname’ RACF Group name
DC X’00’ No privileged attribute
DC XL7 Reserved bytes

DC CL8’TTSRMON’ name of the Thread/SENTRY procedure
DC CL8’ttsrmon_id
 DB2 primary authorization ID

’ This RACF userid becomes the initial

DC CL8’groupname’ RACF Group name
DC X’00’ No privileged attribute
DC XL7 Reserved bytes

Figure 20.10 Adding entries to module ICHRIN03

The RACF user ID you specify above as ttsrcon_id for the Thread/STOPPER
Console Facility procedure must be granted EXECUTE PLAN authority on application
plan TTSP?ttsvrm?. Similarly, the user ID ttsrmon_id you define for the Thread/
SENTRY started task must be authorized to execute plan TTSM?ttsvrm? as illustrated
below:

 GRANT EXECUTE ON PLAN TTSP?ttsvrm?

 GRANT EXECUTE ON PLAN TTSM

 TO ttsrcon_id

?ttsvrm?

 TO ttsrmon_id

The RACF IDs associated with the two started tasks also require the MONITOR and
DB2 command authorities described in Section 20.9.3.

20-26 Thread/SERIES Guide and Reference

20.10.4 Edit the Job that invokes the Thread/STOPPER Audit Facility

Member TTSRACS of the TTSCNTL library contains JCL to invoke the Thread/
STOPPER Audit Facility. The Audit Facility ensures that complete details about the
cancellation of a particular thread are recorded in the Thread_Audit table, even when
cancellation takes an indefinite period of time to complete successfully.

The numbers in parentheses to the right of the JCL statements correspond to the
numbered, annotating paragraphs which follow Figure 20.11. Be sure to edit member
TTSRACS with CAPS ON since it contains comments in lowercase.

__

//&zuser.T JOB (1)
//TTSRACS EXEC TTSPROC, Invoke the general Thread/SERIES procedure

// PROG=TTSAUDIT Run the Audit Cancellation Success program

//TTSIN DD * Input stream built dynamically at run-time (2)
__
Figure 20.11 TTSRACS procedure

(1) Define a valid JOB statement. The Thread/SERIES routines that tailor and
submit this job substitute a value from the amper variable &ZUSER. For
example, suppose the Thread/STOPPER Dialog is run by a TSO user whose ID
is RAI006. In this case, Thread/SERIES converts the jobname &ZUSER.T into
the jobname RAI006T.

(2) No input need be specified for the TTSIN DD statement. The various

Thread/STOPPER programs that invoke the Audit Facility (i.e. the
Thread/STOPPER Dialog as well as the Thread/STOPPER Batch and Console
facilities) build this input stream for the Audit Facility dynamically.

 Chapter 20: Thread/SERIES Installation 20-27

20.11 Configuring Thread/SENTRY E-mail Notification

This section describes the steps necessary to enable the Thread/SENTRY e-mail
notification feature.

We start by defining some concepts and terminology applicable to e-mail systems.
Thread/SENTRY e-mail notification uses the Simple Mail Transport Protocol (SMTP)
and Post Office Protocol Version 3 (POP3). Both protocols are implemented in what we
term the Mail Server. The term Mail Client refers to a software component that requests
outbound message delivery from the Mail Server (because it cannot send messages
itself).

Figure 20.12 Thread/SENTRY e-mail notification environment

In Figure 20.12, TTSMON is the name of the Thread/SENTRY started task and the RAI
Server started task (at Version 4.3.3 or later) acts as a Mail Client. The following
describes the e-mail delivery sequence:

• TTSMON determines that an e-mail notification must take place

• TTSMON prepares an e-mail message to be sent to the list of recipients specified by

the NOTIFY_LIST directive and sends the message text and recipient list to the
RAI Server.

• The RAI Server is configured with SMTP and POP3 parameters that allow it to

establish a TCP/IP connection with the Mail Server. These SMTP and POP3
parameters are described in the RAI Server Installation and Operation Guide (RAI
Publication RSV-001). The RAI Server sends message text for ultimate delivery to a
target e-mail address. If the specified mailbox resides within the domain of the Mail
Server, then the message is delivered directly. Otherwise, the Mail Server further
relays the message towards the target domain.

TTSMON

Thread/SENTRY
Started Task

MAIL
Server

 File
System

Other
SMTP

Servers
SMTP and POP3
Command/Reply

RAI
Server

20-28 Thread/SERIES Guide and Reference

In order to configure Thread/SENTRY e-mail notification, the following requirements
must all be satisfied:

• TCP/IP must be active on the system where both Thread/SENTRY and the RAI

Server are running

• The RAI Server started task must be active and must have an OMVS segment

defined in accordance with your installation's security software standards, as in the
following RACF example:

AU RAI0 DFLTGRP(gggggggg) OWNER(nnnnnnnn) PASSWORD(pppppppp) -

OMVS(UID(0) HOME(/))

• Access to an SMTP server must be available. The SMTP Server may reside within a

z/OS, Windows or UNIX systems, so long as it conforms to the minimal
implementation standard specified in the following documents:

RFC 2821 - Simple Mail Transfer Protocol
RFC 1939 - Post Office Protocol - Version 3 (POP3)

• The SMTP Server must support e-mail domain routing if e-mail notifications are to

be sent to users that reside in domains other than those adjacent to the SMTP server.

• Presently the RAI Server acting as a Mail Client does not support TCP/IP Secure

Sockets Layer (SSL). As such, the designated Mail Server must allow non-SSL
connections.

• A good solution is to use the Mail Server that resides within the same private sub-

network as the z/OS system. This ensures the privacy of an unsecured SMTP
connection established between the RAI Server (Mail Client) and the designated
Mail Server.

Some SMTP servers only allow connections to 'trusted' users, such as connections that
originate from the same Internet sub-network where SMTP server is installed, or by some
other private protocol criteria. Examples of such SMTP servers include: cable modem
and DSL providers, yahoo.com, etc. Thread/SENTRY e-mail notification will not
operate with such servers.

To complete the RAI server configuration for electronic mail delivery, the following
information is required:

SMTP Server IP Address e.g. 243.150.20.247
SMTP Server name e.g. smtp.domain.com
POP3 user ID and password e.g. ttsadmin / secret123
SMTP TCP/IP port number 25 (default)
POP3 TCP/IP port number 110 (default)
e-mail return address an Internet address to which undelivered e-mail

notifications will be sent (e.g.
ttsadmin@domain.com)

e-mail CC: address This is an optional e-mail address to which all
Thread/SENTRY notifications will be sent
(e.g. john_manager@domain.com)

 Chapter 20: Thread/SERIES Installation 20-29

20.12 Define the VTAM application major node used by

 the Thread/SERIES Components

__

 VBUILD TYPE=APPL APPLICATION MAJOR NODE
*
* DEFINE VTAM APPLICATIONS AS SECONDARY PROGRAMMABLE OPERATORS
* TO BE USED BY RAI (RELATIONAL ARCHITECTS INTL) PRODUCTS
*
RAIAPL01 APPL AUTH=(NVPACE,SPO,ACQ),PRTCT=RAI
RAIAPL02 APPL AUTH=(NVPACE,SPO,ACQ),PRTCT=RAI
RAIAPL03 APPL AUTH=(NVPACE,SPO,ACQ),PRTCT=RAI
__

Figure 20.13 VTAM APPL definition

This step defines the application major node through which Thread/SERIES
communicates with VTAM. These definitions enable Thread/SERIES components to
execute VTAM commands and obtain solicited command responses. Thus, if a DB2
thread is executing (or is suspended) in VTAM, Thread/SERIES programs can cancel the
thread’s VTAM sessions and permit the thread to terminate.

Figure 20.13 defines a pool of VTAM applications with secondary programmable
operator authority and the ability to acquire nodes. A pool of 3 VTAM APPLs
guarantees that up to 3 users can use the VTAM facilities provided by Thread/SERIES --
simultaneously. The underlined operands described here should be reviewed and revised
as necessary.

RAIAPL01

 defines an 8 character name for the VTAM APPL. Any name you specify
should consist of a pool name of 6 characters (such as RAIAPL) suffixed by
two numeric digits (for example 01, 02 and 03). The total length of each
name must be 8.

PRTCT defines a password which protects use of the VTAM application. The
password value illustrated in Figure 20.13 is RAI

.

The definitions illustrated in Figure 20.13 are distributed with Thread/SERIES in member
TTSDVTAM of the TTSCNTL library. This member should be copied into one of the
datasets allocated to VTAMLST which define network definitions and VTAM start
options.

If you change the password or specify a pool name other than RAIAPL, be sure to gene-
rate an updated set of Thread/SERIES system defaults as described in Section 20.14.

Lastly, these VTAM application names should be included in the ATCSTRxx member of
your VTAMLST library so they will be activated automatically when VTAM is started.
Alternatively, you can use VTAM commands like the following to manually activate the
VTAM applications used by the Thread/SERIES components:

V NET,ACT,ID=RAIAPL01
V NET,ACT,ID=RAIAPL02
V NET,ACT,ID=RAIAPL03

20-30 Thread/SERIES Guide and Reference

20.13 Edit the TTSPAL catalogued procedure (Optional)

The TTSPAL procedure described in this section defines a common JCL procedure used
to assemble and link edit various Thread/SERIES source modules that include the
following:

Member name of the
TTSCNTL library

Description

Source
module

JCL used to
build the
source module

TTS$TGI TTSJTGI Thread/SENTRY Table of Group ID definitions
(described in AppendixG)

TTS$TNA TTSJTNA Thread/SERIES Table of No Action criteria
(described in Appendix F)

TTS$TNM TTSJTNM Thread/SERIES Table of Notify Messages (described
in Appendix C)

TTS$TNS TTSJTNS Thread/SERIES Table of Non Standard processing
(described in Appendix E)

TTS$TSD TTSJTSD Thread/SERIES Table of System Defaults (described
in Section 20.14)

TTS$TSM TTSJTSM Thread/SERIES Table of site Written Messages
(described in Appendix C)

TTS$TXR TTSJTXR Thread/SERIES Table of Exit Routines (described in
Appendix E)

 Additional, site written exit routines (discussed in
Appendix E)

The TTSPAL procedure is distributed as a member of the TTSCNTL library (the
Thread/SERIES dataset whose low level qualifier is TTSCNTL). The aforementioned
TTSJxxx members of the TTSCNTL library define the TTSCNTL dataset as a JCL
procedure library through a JCLLIB statement. The TTSPAL symbolic parameters are
specified via JCL in each TTSJxxx member which invokes it.

The TTSPAL procedure, illustrated in Figure 20.14, assembles and link edits the
Assembler Language source module identified by the MEMBER parameter to produce a
load module with reusable, reenterable and refreshable attributes. (For example, Section
20.14 describes the jobstream to assemble and link edit member TTS$TSD to produce a
customized Table of System Defaults).

 Chapter 20: Thread/SERIES Installation 20-31

The numbers in parentheses to the right of the JCL statements correspond to the
numbered, annotating paragraphs which follow Figure 20.14. Be sure to edit member
TTSPAL with CAPS ON since it contains comments in lowercase.

//TTSPAL PROC HLQ=&HLQ, <--- 1st level dataset qualifier(s)

// UNIT=SYSDA, <--- Unit name for DASD data sets

// ASMPGM=ASMA90, <--- Name of the system assembler (1)
// PRODUCT=TTS, <--- Thread/SERIES component code

// MEMBER=&MEMBER <--- Source module to assemble

. . .

(1) Review, and if necessary revise, the name of the system assembler installed at

your site. Typically, this will be IEV90 or ASMA90.

Figure 20.14 Thread/SERIES Assembly Link Edit Procedure

20.14 Update vendor supplied defaults (Optional)

This step lets you update the Thread/SERIES defaults supplied by Relational Architects.
This step is not required unless you changed the VTAM application names and
passwords described in Section 20.12. However, if you do perform this step, then you
must first customize the procedures named TTSPAL and RAIAL, as described in Section
20.13.

To assemble and link edit a new Thread/SERIES Table of System Defaults (load module
TTS$TSD), first review and revise the values supplied in member TTS$TSD of the
TTSCNTL library (the source input to the assembler). Operands of the TTS#TSD macro
(which resides in the TTSMACS dataset) define defaults for the various Thread/SERIES
components.

Next, edit and submit the JCL in member TTSJTSD of the TTSCNTL library as
illustrated in Figure 20.16 Part 1. The numbers in parentheses in the right margin
correspond to the numbered, annotating paragraphs which follow the second part of the
figure.

20-32 Thread/SERIES Guide and Reference

//JOBNAME JOB (ACCOUNT),. (1)
// SET TTSHLQ='?ttshlq?' (2)
//*

//PROCLIB JCLLIB ORDER=&TTSHLQ..TTSCNTL

//*

//TTS$TSD EXEC TTSPAL, <- Invoke the procedure TTSPAL

// MEMBER=TTS$TSD, <- Table of system defaults (3)
// HLQ=&TTSHLQ

Figure 20.16 - Part I Assemble and linkedit Thread/SERIES Defaults

(1) Provide a valid JOB statement.

(2) the value of ?ttshlq? was replaced during the library restore process with the

high level qualifier for the Thread/SERIES product libraries (as described in the
Section 20.5).

(3) Member TTS$TSD of the TTSCNTL dataset supplies input to the assembler.

 Chapter 20: Thread/SERIES Installation 20-33

Figure 20.16 - Part II illustrates member TTS$TSD of the TTSCNTL dataset. Operands
of the TTS#TSD macro define defaults for the Thread/SERIES components.

TTS$TSD TTS#TSD ABEND=0222, ABEND CODE - 4 HEX DIGITS +(1)
 AUDIT_DATA_WHEN=ACTION, AUDIT IFI DATA DURING ACTION +

 AUTO_FORCE=YES, FORCE ANY LOCAL THREAD IN APPL. +

 CCSID=37, EBCDIC US ENGLISH NO EURO SUPPORT +
 CONSOLE=NO, ACTIVATE AN MCS CONSOLE PROCESS +

 DEBUG_POLICY='__', THREAD/SENTRY Debug policy ID prefix+

 DESCDE=00, THREAD/SENTRY DESCRIPTOR CODE +

 DUMPDD=TTSDUMP, DUMP DDname for Thread/SENTRY +

 ESTAE=YES, TRAP ABENDS +

 EXITS=TTS$TXR, EXIT ROUTINE DEFINITIONS +
 IDLETHD=NO, DO NOT MONITOR IDLE THREADS +

 INTERVAL=00010000, THREAD/SENTRY WAKEUP INTERVAL +

 MAX_UNEXPECTED_IFCIDS=20, # UNEXPECTED IFCIDS TO REPORT +

 MESSAGE_MODULE=NONE, NO TABLE OF SITE WRITTEN MESSAGES +

 MMINT=00020000, MINIMUM / MAXIMUM INTERVAL +

 MONPLAN=TTSM?ttsvrm?, THREAD/SENTRY PLAN NAME +
 MSGDISP=TERSE, BE TERSE IN ISSUING MESSAGES +

 NONSTD=TTS$TNS, NON_STANDARD THREAD DEFINITIONS +

 NOTENBL=ALL, NOTIFY_ENABLED(ALL) +

 NOTIFY_INACTIVE_ADMIN=BOTH, Notify inactive admin and +

 NOTIFY_INACTIVE_USER=BOTH, user of WARNING and CANCEL +

 NOTIFY_ON_WARNING=NO, NO NOTIFY IF WARNING IS PENDING +
 NOTFREQ=10, NOTIFY_FREQUENCY VALUE +

 NOTLIST=, DEFAULT NOTIFY_LIST ID +

 NOTMAX=3, NOTIFY_MAXIMUM VALUE +

 OPMODE=CANCEL, THREAD/SENTRY OPERATIONAL MODE +

 OPW=RAI, OPERATOR PASSWORD +

 OUTDD=TTSOUT, THREAD/SENTRY OUTPUT DDNAME +
 PENDING=00010000, PENDING_INTERVAL(60) +

 POOL=RAIAPL, BASE FOR POOL OF VTAM ACB'S +

 POLWORK=250, LENGTH OF POLICY WORK AREA +

 REASON=00DB2000, REASON CODE - 8 HEX DIGITS +

 RESET_WARNING=NO, NO RESET WARNING IF VIOL IS NO MORE +

 ROUTCDE=11, THREAD/SENTRY ROUTING CODE +
 RPTDD=TTSRPT, DDNAME FOR THE REPORTING FUNCTION +

 SNAPDD=TTSTRACE, SNAP/TRACE DDNAME FOR THREAD/SENTRY +

 STOPPLAN=TTSP?ttsvrm?, DB2 PLAN NAME FOR THREAD/STOPPER +

 SUM_PARALLEL_ELAPSED=NO, DON'T COMBINE ELAPSED TIME +

 SYSTEM_ABEND=YES, SYSTEM ABEND UPON FORCE +

 TIME_INTERVAL=NEW, PERMIT START_TIME > END_TIME +
 VIOLWORK=50, LENGTH OF VIOLATION WORK AREA +

 WAIT=00000500, WAIT TIME EXPRESSED AS HHMMSSTH +

 WTOR=YES, ISSUE WTOR (YES OR NO) +

 WTO_HRDCPY=NO, QUEUE WTO FOR HARD COPY ONLY? Y/N +

 DOC=NO PRINT NO MACRO DOCUMENTATION

PUNCH ' IDENTIFY TTS$TSD(''TTS$TSD - TTS?ttsvrm?'')'
 END

Figure 20.16 - Part II Assemble and linkedit Thread/SERIES Defaults

20-34 Thread/SERIES Guide and Reference

(1) The operands of the TTS#TSD macro define the individual Thread/SERIES

defaults. These operands, their corresponding vendor supplied defaults, and
their meanings are described below:

ABEND=0222 4 Hex digits that define the abend code with which
Thread/SERIES components deliberately abend the
MVS task associated with a DB2 thread. The first
digit must be zero. Please note, that the parameter
SYSTEM_ABEND defines whether or not to terminate
these tasks with a system or user abend. The default
is to issue a System 222 abend.

CCSID=37 Identifies the Unicode conversion CCSID with which
to convert DB2 IFI data into EBCDIC format.

EXITS=TTS$TXR specifies the name of the Thread/SERIES Table of
Exit Routine definitions.

NONSTD=TTS$TNS specifies the name of the Thread/SERIES Table of
Non_Standard thread definitions.

OPW=RAI Password for the VTAM applications used by Thread
/SERIES components.

POOL=RAIAPL Base name for the pool of VTAM ACB's. This value
must be six characters long

REASON=00DB2000 8 Hex digits that define the reason code associated
with the system abend.

STOPPLAN=TTSP?ttsvrm? The name of the DB2 application plan used by the
various Thread/STOPPER components.

SUM_PARALLEL_ELAPSED=NO governs whether or not Thread/SERIES components
should summarize elapsed times associated with
parallel threads. Section 10.4 of this publication
describes this parameter in detail.

SYSTEM_ABEND=YES directs Thread/SERIES components to deliberately
abend the MVS task associated with a DB2 thread via
a system abend. Specify SYSTEM_ABEND=NO to terminate
these tasks via a user abend. The actual abend code
is defined by the ABEND parameter.

WAIT=00000500 defines how long the Thread/STOPPER Dialog
should wait after a thread termination request before
determining whether the thread is gone or the cancel-
lation method needs to be escalated. Wait time is
expressed as HHMMSSTH.

 The following operands of the TTS#TSD macro define defaults for
Thread/SENTRY. Chapter 10 describes these operands in greater detail and
describes how they may be overridden. The set of Thread/SENTRY operands,

 Chapter 20: Thread/SERIES Installation 20-35

their corresponding vendor supplied defaults, and their meanings are described
below:

AUDIT_DATA_WHEN=ACTION Thread/SENTRY processes site defined policy
statements (e.g. LIMIT) in two-phases. The first
phase identifies the DB2 threads that violate one or
more site policies. Thread/SENTRY acts upon these
violations during the second phase. Thread/SENTRY
obtains IFI data during both phases independently.
The parameter AUDIT_DATA_WHEN governs which IFI
data should be recorded in the THREAD_AUDIT
table. AUDIT_DATA_WHEN=VIOLATION directs
Thread/SENTRY to record the IFI data collected
during the first pass (VIOLATION) phase of processing.
Alternatively, AUDIT_DATA_WHEN=ACTION directs
Thread/SENTRY to record the IFI data collected
during the second ACTION phase of processing into
the Thread_AUDIT table. The valid setting for this
parameter is VIOLATION or ACTION.

AUTO_FORCE=YES specifies whether or not Thread/SENTRY should use
ACTION(FORCE) instead of ACTION(CANCEL) to
remove a local thread that is currently executing
within the application rather than DB2 (and as such,
no SQL statement is being executed). AUTO_FORCE=NO
directs Thread/SENTRY to CANCEL such threads
using the DB2 –CANCEL THREAD command.
AUTO_FORCE=YES directs Thread/SENTRY to FORCE
such threads to terminate.

CONSOLE=NO governs whether or not Thread/SENTRY should
activate an MCS console and listen for selected
messages. Specify MCS_CONSOLE(YES) to enable
Thread/SENTRY to automatically detect active log
full conditions in one or more monitored DB2
subsystem(s). The default is MCS_CONSOLE(NO).

DEBUG_POLICY='__' directs Thread/SENTRY to externalize the DB2 IFI
and z/OS WLM data for any violated policy whose
name starts with the characters '__'.

DESCDE=00 Thread/STOPPER descriptor CODE

DUMPDD=TTSDUMP specifies the destination of an optional
Thread/SENTRY formatted dump. For example, add
"//TTSDUMP DD SYSOUT=*" to your
Thread/SENTRY execution JCL to direct
Thread/SENTRY to write a formatted dump of its
internal control blocks to the TTSDUMP file.

20-36 Thread/SERIES Guide and Reference

ESTAE=YES By default -- TRAP abends

IDLETHD=NO governs whether on not Thread/SENTRY monitors
inactive DDF threads (i.e. IDLE threads) for policy
violations. Thread/SENTRY incurs significant
overhead to obtain information about idle threads
so the default is IDLE_THREAD(NO).

INTERVAL=00010000, Thread/SENTRY wakeup interval

MAX_UNEXPECTED_IFCIDS=20, Thread/SENTRY issues IFI READS requests for
IFCIDs 0148 and 0150 only. However, DB2
occasionally returns IFCIDs records other than
those requested. The parameter
MAX_UNEXPECTED_IFCIDS specifies the maximum
number of unexpected IFCIDs Thread/SENTRY
should report before turning this diagnostic off.

MESSAGE_MODULE=NONE, Specifies that no Thread/SENTRY table of site
written messages is defined. Chapter 10 of this
publication manual describes the
MESSAGE_MODULE operand of the
Thread/SENTRY MONITOR statement with
which this setting can be overriden.

MMINT=00020000 Minimum / maximum interval

MONPLAN=TTSM?ttsvrm? Thread/SENTRY monitor plan name

MSGDISP=TERSE Be terse in issuing messages

NOTENBL=ALL Notifications are enabled for all actions and recipi-
ents. This default value should not be changed.

NOTFREQ=10 how often logical requests to send notifications
and/or insert rows into the Thread_Audit table will
be physically honored.

NOTIFY_INACTIVE_ADMIN=BOTH, Any inactive (logged off) administrator is notified
of any action. The other valid settings are OFF,
WARN and CANCEL. OFF - Notifications are
disabled for any inactive administrator; WARN -
Notifications are enabled for any inactive
administrator for ACTION(WARNING);
CANCEL - Notifications are enabled for any
inactive administrator for ACTION(CANCEL).

NOTIFY_INACTIVE_USER=BOTH, Any inactive (logged off) user is notified of any
action. The other valid settings are OFF, WARN
and CANCEL. OFF - Notifications are disabled for
any inactive user; WARN - Notifications are
enabled for any inactive user for
ACTION(WARNING); CANCEL - Notifications
are enabled for any inactive user for
ACTION(CANCEL).

 Chapter 20: Thread/SERIES Installation 20-37

NOTIFY_ON_WARNING=NO Notifications are suppressed for any pending
warning request.

NOTLIST= Default name of NOTIFY_LIST

NOTMAX=3 limits the number of notifications that
Thread/SENTRY will send to users and
administrators for a particular thread. Once the
specified maximum is reached, Thread/SENTRY
disables further notifications for that thread.

OPMODE=WARN Thread/SENTRY operational mode

OUTDD=TTSOUT Thread/SENTRY output DDname

PENDING=00010000 Cancel Pending interval

POLWORK=250 default length of policy work area.

RESET_WARNING=NO Maintain a pending warning condition even when a
target thread no longer violates the policy that trig-
gered the original warning. Both the RESET_WARNING
and NOTIFY_ON_WARNING defaults must be set to YES in
order for Thread/SENTRY to examine pending
violations and possibly reset them.

ROUTCDE=11 Thread/SERIES routing code

RPTDD=TTSRPT DDname for the Thread/SENTRY reporting
function

SNAPDD=TTSTRACE Snap/trace DDname for Thread/SENTRY

TIME_INTERVAL=NEW allows the specification of START and END times
for a Thread/SENTRY policy that can span a single
day Midnight boundary. For example the operands
START(11:00) and END(06:00) define an interval
which starts at 11 o’clock in the morning of one
day and remains in force until 6 o’clock in the
morning of the following day.

VIOLWORK=50 default length of violation work area

WTO_HRDCPY=NO governs whether or not any WTO’s issued by
Thread/SENTRY should be queued to hardcopy
only.

WTOR=YES governs whether or not Thread/SENTRY should
issue a WTOR to which an operator can reply. If
the WTOR is suppressed, then the operator must
issue MVS MODIFY and STOP commands to
communicate with Thread/SENTRY.

Both the assembly and link edit steps of this job should complete with a return code of 0.

20-38 Thread/SERIES Guide and Reference

20.15 Prepare the ISPF environment for the

 Thread/STOPPER Dialog

This step prepares the ISPF environment for the Thread/STOPPER Dialog.

The REXX exec TTSRUN manages all Thread/SERIES libraries dynamically within
ISPF and invokes both the Thread/STOPPER Dialog and Thread Audit View Facility.
The TTSRUN exec implements the following functions:

 Allocates the SDSNLOAD and SDSNEXIT libraries associated with each DB2

subsystem to be monitored by the Thread/STOPPER Dialog.

 Dynamically defines the REXX exec and ISPF dialog libraries that the
Thread/STOPPER Dialog requires.

 Constructs the Thread/STOPPER parameter list.

 Invokes the Thread/STOPPER Dialog or Audit View Facility.

 Frees the REXX exec and ISPF dialog libraries upon the exit from the

Thread/STOPPER dialog or Audit View Facility.

Figure 20.17 illustrates the modifiable section of the TTSRUN exec. You should edit the
TTSRUN exec only between the lines =START OF CONFIGURATION= and =END OF

CONFIGURATION=. The embedded comments within the modifiable section describe the
edits required before it can be executed by Thread/STOPPER Dialog users. The numbers
in parentheses in the right margin correspond to the numbered, annotating paragraphs
which follow the figure.

=========================START OF CONFIGURATION=========================
* Make the necessary changes within this configuration section as
* described below. The configuration section is delineated by the
* lines which read "START OF CONFIGURATION" and "END OF CONFIGURATION".
*
* Note: You can comment out any line within this section be placing
* an asterisk '*' in column 1.
*
* Identify the DB2 subsystems to be monitored by Thread/STOPPER
* using the following pattern:
*
* DB2 word1 word2 word3 word4
*
* where:
* ____________________________Word1: DB2 subsystem name
* | _______________________Word2: DB2 version and release,
* | | two digits, e.g. 11, 10 or 91
* | | ____________________Word3: SDSNEXIT library name used
* | | | with the specified subsystem
* | | | ____Word4: SDSNLOAD library name used
* | | | | with the specified subsystem
* v v v v

DB2 DB2P 11 DB2P.SDSNEXIT DSN1110.SDSNLOAD (1a)
DB2 DB2T 11 DB2T.SDSNEXIT DSN1110.SDSNLOAD (1b)

* Use Thread/STOPPER keyword SUBSYSTEM_MODE to specify the
* Thread/STOPPER subsystem mode:
*
* S denotes single subsystem mode, in which Thread/STOPPER connects
* to only one DB2 subsystem at a time.
* M denotes multiple subsystem mode, in which Thread/STOPPER can

 Chapter 20: Thread/SERIES Installation 20-39

* maintain connections to multiple DB2 subsystems simultaneously.

*SUBSYSTEM_MODE S (2a)
SUBSYSTEM_MODE M (2b)

* Use Thread/STOPPER keyword ISPF_SPLIT_SCREEN to specify the
* Thread/STOPPER ISPF split screen mode:
*
* E enables ISPF split screen operation
* D disablesISPF split screen operation

*ISPF_SPLIT_SCREEN E (2c)
ISPF_SPLIT_SCREEN D (2d)

* Use Thread/STOPPER keyword SUBSYSTEM_VIEW to specify
* the perspective from which the scrollable display of DB2 subsystems
* should be viewed.
* C denotes the "classic" subsystem view (from prior releases of
* Thread/STOPPER) using the TBDISPL panel named TTSTDS (from the
* TTSPLIB library).
* D denotes a starting Date and Time view of DB2 subsystems using the
* TBDISPL panel named TTSTDSD (from the TTSPLIB library).
* G denotes a Data Sharing Group view of DB2 subsystems using the
* TBDISPL panel named TTSTDSG (from the TTSPLIB library).

*SUBSYSTEM_VIEW C (2e)
SUBSYSTEM_VIEW G (2f)

* Use Thread/STOPPER keyword TTSHLQ to specify the high level
* qualifiers of the Thread/SERIES target libraries:
*

TTSHLQ ?ttshlq? (3)

* Use Thread/STOPPER keyword TTSQUAL to specify the owner ID of the
* Thread/SERIES audit DB2 table (named THREAD_AUDIT). This DB2 table
* was created by JCL in member TTSJDB2 of the TTSCNTL library.

TTSQUAL TTS?ttsvrm? (4)

*
* Use Thread/STOPPER keyword TTSREPO to specify the dataset name of
* the Thread/SERIES repository KSDS file.

TTSREPO ?ttshlq?.TTSREPO (5)

* Use Thread/STOPPER keyword RLXEDIT to specify the RLX plan to use
* with the THREAD_AUDIT VIEW facility. This DB2 plan was bound by
* JCL in the TTSJDB2 member of the TTSCNTL library.

RLXEDIT TTS?ttsvrm?E (6)
==========================END OF CONFIGURATION=========================

__

(1a) and (1b) These two sample configuration statements declare two DB2
subsystems (named DB2P and DB2T) to Thread/STOPPER. Replace
these two lines with one line for each DB2 subsystem to be monitored
by Thread/STOPPER and into which Thread/STOPPER was installed.
As such, make sure the job in the TTSJDB2 member of the
TTSCNTL library ran successfully for any DB2 subsystem defined in
this section.

(2a) through (2f) You can accept the vendor supplied defaults for these optional

parameters so there is no need to modify them. The embedded notes
describe how to modify these optional parameters. In addition, please
male note of the following:

NOTE: The Thread/STbOPPER Dialog can operate in either of two
modes: The first mode (3a) connects to a single DB2 subsystem while
the second mode (3b) supports simultaneous connections to multiple

20-40 Thread/SERIES Guide and Reference

DB2 subsystems within the local MVS system. When you use
Thread/STOPPER in multiple subsystem mode, we strongly
recommend you avoid ISPF split screen mode (3d). This will
prevent the use of other DB2 applications (such as QMF or SPUFI)
whose attachment mechanisms do not support concurrent connections
to multiple DB2 subsystems. The use of conflicting DB2 attachment
mechanisms can cause unpredictable results and system failures.

The following symbolic variables defined with the Configuration section were
automatically preset to site specific values you designated during the installation step that
was described in the Section 20.5of this manual. The names of these automatically
assigned symbolic variables, along with their values and descriptions appear in Table
20.1 (which is also in Section 20.5).

(3) Do not alter the TTSHLQ parameter.

(4) Do not alter the TTSQUAL parameter unless you changed the default

value for TTSQUAL within the job in member TTSJDB2 of the
TTSCNTL library.

(5) Do not alter the TTSREPO parameter unless you created an alternate

KSDS file for the THREAD_AUDIT VIEW repository (via the JCL
in member TTSJRDL of the TTSCNTL library or some other
method).

(6) Do not alter the RLXEDIT parameter unless you changed the default

value RLXEDIT within the job in member TTSJDB2 of the TTSCNTL
library.

__

Figure 20.17 TTSRUN EXEC CONFIGURATION section

Once the CONFIGURATION section of the TTSRUN exec is edited, the
Thread/STOPPER Dialog can be invoked from within ISPF as illustrated below. Be sure
to substitute the high level qualifier of the Thread/SERIES product libraries for the
variable ?ttshlq?:

 TSO EX '?ttshlq?.TTSEXEC(TTSRUN)’ EX

 Chapter 20: Thread/SERIES Installation 20-41

20.16 Prepare the Thread/SERIES Audit View Facility (Optional)

You can also invoke the Thread/SERIES Audit View Facility, once the
CONFIGURATION section of TTSRUN exec is edited (as described in Section 20.15).
The Audit View Facility can be invoked from within ISPF as illustrated below. Be sure
to substitute the high level qualifier of the Thread/SERIES product libraries for the
variable ?ttshlq?:

 TSO EX 'ttshlq.TTSEXEC(TTSRUN)’ ‘VIEW,DB2P’ EX

 (1) (2) (3)

(1) The TSO prefix is not required within ISPF Option 6.

(2) The VIEW keyword directs the TTSRUN exec to invoke the Thread/SERIES

Audit View Facility, rather than the Thread/STOPPER dialog.

(3) The DB2P value following the VIEW keyword and comma identifies which

DB2 subsystem (and THREAD_AUDIT table) should be accessed by the Audit
View Facility. Be sure any DB2 subsystem specified here was defined to the
TTSRUN exec as described in (1a) and (1b) of Figure 20.17.

NOTE: The Thread/SERIES Audit View Facility is a dialog
application which makes use of the RLX run-time engine. The
Audit View Facility also utilizes an application definition
which resides in the Relational Architects Repository. This
repository dataset is defined and loaded as part of the
installation procedure described in Section 20.5 of this
chapter. See Appendix Y of this manual if you need to re-
create the repository dataset.

20-42 Thread/SERIES Guide and Reference

20.17 Thread/SERIES Installation Verification Procedures

This step describes how to verify that Thread/SERIES components are properly installed
on one or more DB2 subsystems. The verification procedure involves creating a set of
DB2 threads that will be canceled deliberately.

The DB2 threads associated with the Thread/SERIES installation verification program
(IVP) generate a modest level of read-only SQL activity. As such, the IVP serves as a
convenient cancellation target for both Thread/STOPPER and Thread/SENTRY. Section
20.17.1 describes how to run the IVP in both batch and foreground modes. Section
20.17.2 describes the installation verification procedure for Thread/SENTRY. Section
20.17.3 discusses the verification procedure for the Thread/STOPPER Dialog.

20.17.1 Prepare to Run the Installation Verification Program

The Installation Verification Program named TTSIVP resides in the TTSLOAD library.
Its associated plan (TTSI?ttsvrm?) was bound as part of job TTSJDB2 (described in
Section 20.9.2). TTSIVP can run in both foreground and background modes.

To run the IVP in batch, the JCL in member TTSRIVP of the TTSCNTL dataset must be
updated as illustrated in Figure 20.22.1. As shipped, member TTSRIVP is a single job-
step. A separate jobstep should be created for each additional DB2 subsystem into
which Thread/SERIES components have been installed. Figure 20.22.1 illustrates a
single step job that runs the IVP. Review and update the values that appear in lowercase,
underlined type.

//JOBNAME JOB (ACCOUNT)
//TTSJIVP EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DISP=SHR,DSN=?db2hlq?.SDSNLOAD
//SYSTSPRT DD SYSOUT=*

 (1)

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(?dsn?
 RUN PROGRAM(TTSIVP) PLAN(TTSI?ttsvrm?) - (3)

) (2)

 LIBRARY('?ttshlq?.TTSLOAD'
 END

) (4)

//

where

(1) The STEPLIB dataset must specify the names of the DB2 system load libraries
associated with the target DB2 subsystem.

(2) The string ?dsn? must be replaced by the name of the target DB2 subsystem.

(3) Set to the plan name for the Thread/SERIES Installation Verification Procedure

(as described in Section 20.5 of this manual).

(4) Set to the name of the TTSLOAD library as described in Section 20.5 of this
manual.

Figure 20.22.1

 Chapter 20: Thread/SERIES Installation 20-43

In batch mode, the TTSIVP job externalizes a small SQL query result and then enters a
wait state for 1 minute before it resumes execution. This precaution avoids unnecessary
system activity in case the job is inadvertently left running for an extended period of
time.

The TTSIVP program also runs in the TSO foreground which may be convenient when
you conduct the verification procedure for the Thread/STOPPER Dialog (as described in
Section 20.15.3). From the DB2I primary option menu, select the RUN option (item 6)
to display the DB2I RUN time panel, illustrated in Figure 20.22.2. Specify the three
underlined items. The dataset name should specify the fully qualified name of the
TTSLOAD library and TTSIVP member. Specify TTSI?ttsvrm? as a plan name and
request to run the program in the TSO foreground.

__
_

Enter the name of the program you want to run:
 1 DATA SET NAME ===>
 2 PASSWORD ===> (Required if data set is password protected)

'?ttshlq?.TTSLOAD(TTSIVP)’

Enter the following as desired:
 3 PARAMETERS .. ===>
 4 PLAN NAME ... ===> TTSI?ttsvrm?
 5 WHERE TO RUN ===>

 (Required if different from program name)
FOREGROUND

 (FOREGROUND, BACKGROUND, or EDITJCL)

 NOTE : Information for running command processors is on the HELP panel.
 PRESS: ENTER to process END to exit HELP for information
__

Figure 20.22.2

When operating in the foreground, the IVP issues the following prompt:

Thread/SERIES Installation Verification Program Starting
Thread/SERIES IVP Foreground Execution
TTSIVP - Enter X to exit or anything else to continue

In both batch and foreground modes, the IVP writes out a small answer set in each cycle.
When the IVP runs in the foreground, your TSO session receives a thread cancellation
message when you use Thread/STOPPER or Thread/SENTRY to cancel its DB2 thread.
Your TSO session remains active after thread cancellation.

20.17.2 Verify Thread/SENTRY Installation

To verify installation of Thread/SENTRY, first tailor the statements within member
TTSIN of the TTSCNTL library. These statements appear in Figure 20.22.3. Member
TTSIN defines the policies to be enforced by Thread/SENTRY. The predefined policy is
designed to cancel the thread associated with the IVP plan named TTSI?ttsvrm? as soon
as it issues more than 10 SQL statements, a limit the IVP application exceeds on every
cycle.

The topic of defining Thread/SENTRY policies is discussed at length in Chapter 10. For
now, simply replace the underlined items illustrated in Figure 20.21.3 with the names of
the DB2 subsystems in which Thread/SENTRY has been installed.

20-44 Thread/SERIES Guide and Reference

MONITOR
 SSID(dsn1,dsn2,dsn3
 WAKEUP_INTERVAL(30)

) (1)

 MINMAX_INTERVAL(60)

LIMIT
 PID(POLICY1)
 SSID(dsn1,dsn2,dsn3)
 PLAN(TTSI?ttsvrm?)

 (2)

 MAX_SQL(10)
 ACTION(CANCEL)
//

where

(1) Specify the list of DB2 subsystems in which Thread/SENTRY was installed in

previous steps. This list identifies the one or more DB2 subsystems that will be
concurrently monitored.

(2) Specify the same list of DB2 subsystems defined in (1).

Figure 20.22.3

Prepare the Thread/SENTRY Job

Next, prepare the Thread/SENTRY jobstream in member TTSRMON of the TTSCNTL
dataset, as illustrated in Figure 20.22.4.

//jobname JOB (1)
// SET TTSHLQ='?ttshlq?' (2)
//*
//PROCLIB JCLLIB ORDER=&TTSHLQ..TTSCNTL
//*
//TTSMON EXEC TTSPROC, Invoke the general Thread/SERIES procedure
// PROG=TTSMON, Run the Thread/SENTRY monitor program
// PARMS='MODE(CANCEL)' Specify optional parameters
//TTSIN DD DISP=SHR,DSN=&TTSHLQ..TTSCNTL(TTSIN)

where

(1) Define a valid job statement in order to submit Thread/SENTRY as a standard

job. Chapter 11 describes how to run Thread/SENTRY as a started task.

(2) Set to the high level qualifier of the Thread/SERIES libraries as described in

Section 20.5 of this manual.

Figure 20.22.4 Submitting Thread/SENTRY as a job

 Chapter 20: Thread/SERIES Installation 20-45

Submit the Thread/SENTRY and IVP Jobs

Next, submit the job in member TTSRMON to start Thread/SENTRY. Then submit the
IVP batch job in member TTSRIVP. Thread/SENTRY will enforce the policy defined in
member TTSIN. Since that policy limits the IVP thread to 10 SQL statements,
Thread/SENTRY should soon cancel the threads associated with the TTSIVP application
on each DB2 subsystem in which it executes. Each IVP jobstep that executes TSO in
batch (program IKJEFTxx) should terminate with a completion code of 12. See the
SYSTSPRT dataset allocated to the jobstep to view the IKJ56641I system abend
associated with the canceled thread on a particular DB2 subsystem. Thread cancellation
will result from an 04E abend. Once you observe the IVP jobstep(s) are canceled, you
can stop Thread/ SENTRY by issuing the following MVS STOP command:

STOP thread_sentry_jobname

NOTE: Thread/SENTRY Console Commands are described in
detail in Chapter 11.

You can review the audit trail maintained in the DB2 table whose default name is
TTS?ttsvrm?.Thread_Audit on each DB2 subsystem in which an IVP thread was created
and canceled. The Thread_Audit table maintains detailed statistics relating to the
canceled thread and the reason it was canceled. (Appendix A describes the columns
comprising the Thread_Audit table). In addition, you can review the log of thread
violations and actions that Thread/SENTRY maintains for each concurrently monitored
DB2 subsystem. Log files are defined in the TTSPROC procedure with DDnames in the
form TTSLxxxx, where xxxx is the 4 character DB2 subsystem name.

NOTE: When viewing the contents of the TTSLxxxx files with
IBM’s SDSF product, buffered messages may not be visible
immediately. Thus, Thread/SENTRY messages may appear to be
subject to a time delay when they are, in fact, present in a JES
SYSOUT buffer.

Thread/SENTRY can be considered operational once this Installation Verification
Procedure is complete. Problems should be reported immediately to RAI technical
support. Once installed and verified, you have the option to run Thread/SENTRY in
WARN mode until you are more familiar (and comfortable) with its operation.
Thread/SENTRY’s warn and cancel modes of operation are described in Section 10.3.1.

20-46 Thread/SERIES Guide and Reference

20.17.3 Verify Thread/STOPPER Installation

Chapter 2 describes the Thread/STOPPER Dialog in detail. To verify its installation, run
the ISPF dialog as described in Chapter 2. Once again, the threads associated with the
TTSRIVP application (run in either batch or foreground modes) represent a convenient
set of cancellation targets.

20.17.4 Verify the Thread/SERIES Audit View Facility (Optional)

Chapter 7 describes the Thread/SERIES Audit View Facility in detail. To verify its
installation, run the ISPF dialog as described in Chapter 7. Once again, the threads
associated with the TTSRIVP application (run in either batch or foreground modes)
represent a convenient set of threads whose audit trail rows can be viewed.

20.18 Post Installation / Deployment Procedures

Figures 20.23 and 20.24 below illustrate how to set up the Thread/STOPPER Dialog and
Thread Audit View Facility as options ‘T’ and ‘V’ respectively on the DB2I Primary
Option Menu.

 DB2I PRIMARY OPTION MENU
 COMMAND ===>

 Select one of the following DB2 functions and press ENTER.

 1 SPUFI (Process SQL statements)
 2 DCLGEN (Generate SQL and source language declarations)
 3 PROGRAM PREPARATION (Prepare a DB2 application program to run)
 4 PRECOMPILE (Invoke DB2 precompiler)
 5 BIND/REBIND/FREE (BIND, REBIND, or FREE plans or packages)
 6 RUN (RUN an SQL program)
 7 DB2 COMMANDS (Issue DB2 commands)
 8 UTILITIES (Invoke DB2 utilities)
 D DB2I DEFAULTS (Set global parameters)

 T Thread/STOPPER (Monitor and control DB2 threads)

 V TTSVIEW (Thread Audit View Facility)

 X EXIT (Leave DB2I)

 PRESS: END to exit HELP for more information

__

Figure 20.23 Adding Thread/SERIES dialogs to the DB2I menu

 Chapter 20: Thread/SERIES Installation 20-47

__

&SEL = TRANS(TRUNC(&OPT,'.')
 0,'CMD(%DSNEAC01)' /* Service aids (debugging)*/
 1,'CMD(%DSNESC01 FUNC(SPUFI))' /* SPUFI */
 2,'CMD(%DSNEDC01)' /* DCLGEN */
 3,'CMD(%DSNEPC01)' /* Program preparation */
 4,'CMD(%DSNETC01)' /* Precompile */
 5,'PANEL(DSNEBP01)' /* BIND primary option */
 6,'CMD(%DSNERC01)' /* RUN */
 7,'CMD(%DSNEKC01)' /* DB2 commands */
 8,'CMD(%DSNEUC01)' /* Utilities */
 D,'CMD(%DSNEOC01)' /* Defaults */

 T,'CMD(%TTSRUN)' /* Thread/STOPPER Dialog */

 X,'EXIT' /* Leave DB2I */

 V,'CMD(%TTSRUN) PARM(VIEW,&SSID)' /* Audit View Facility*/

 *,'?')
 &ZTRAIL = .TRAIL /* Allow selection chaining*/
)END
__

Figure 20.24 Adding Thread/SERIES dialogs to the DB2I menu

20-48 Thread/SERIES Guide and Reference

 Appendix A: The Thread_Audit Table A- 1

Appendix A

The Thread_Audit Table

A.1 Audit Trail for Actions against Threads

Thread/SERIES maintains an audit trail which describes DB2 threads and Thread/SE-
RIES actions. The audit trail is maintained in a table named THREAD_AUDIT that
resides within the same DB2 subsystem in which the audited thread was executing.
Section A.2 describes the columns which comprise the Thread_Audit table. Some
columns provide statistics and details about the thread while other columns document
who took action against a thread, when and for what reason.

Thread/SENTRY (the automated facility that enforces your site’s predefined policies)
inserts rows into the Thread_Audit table whenever AUDIT(YES) is specified (or
defaulted) for a policy which was violated. In contrast, the various Thread/STOPPER
Facilities unconditionally insert rows into the Thread_Audit table.

The Thread_Audit table can be shared between Thread/SENTRY and the various
Thread/STOPPER components. Alternatively, Thread/SENTRY and Thread/STOPPER
can access discrete THREAD_AUDIT tables as described in Section 20.9.2. The
Thread_Audit table referenced by Thread/STOPPER and Thread/SENTRY are governed
by the value of the QUALIFIER operand specified when their respective plans are bound.
Ask your Thread/SERIES product administrator for the authorization ID of the owner of
the THREAD_AUDIT table on a particular DB2 subsystem. Auditors needing access to
one or more of these THREAD_AUDIT table(s) through the Thread Audit View Facility,
QMF, SPUFI or another SQL application will require the SELECT privilege in order to
view them.

A-2 Thread/SERIES Guide and Reference

A.2 Structure of the Thread_Audit Table

Figure A.1 illustrates the SQL DDL with which the Thread_Audit table is created and
shows the columns which comprise the Thread_Audit table. The numbers in parentheses
to the right of each Thread_Audit column correspond to the numbered, annotating
paragraphs which follow the figure.

CREATE TABLE ttsqual.THREAD_AUDIT (0)

The following columns identify the thread against which some action was
taken

 (DB2_SUBSYSTEM CHAR(4), (1)
 UNIQUENESS_VALUE CHAR(12), (2)
 THREAD_TOKEN INTEGER, (3)
 ACE_ADDRESS CHAR(8), (4)

The following columns describe what action was taken, for what reason,
and the action’s outcome

 ACTION_TAKEN CHAR(12), (5)
 ACTION_STATUS CHAR(12), (6)
 POLICY_ID CHAR(8), (7)
 POLICY_REASON CHAR(24), (8)
 ACTION_METHOD CHAR(40), (9)

The following columns describe when, where and by whom a Thread related
action was taken

 ACTION_DATE DATE, (10)
 ACTION_TIMESTAMP TIMESTAMP, (11)
 ACTION_ACEE_ID CHAR(8), (12)
 ACTION_DB2AUTH_ID CHAR(8), (13)
 ACTION_GROUP_NAME CHAR(8), (14)
 ACTION_TERM_ID CHAR(8), (15)
 ACTION_APPL_ID CHAR(8), (16)
 ACTION_SURR_ID CHAR(8), (17)
 ACTION_CPU_ID CHAR(12), (18)

The following columns of the Thread_Audit table provide statistics and other
details about the thread against which Thread/SERIES took action

 CREATION_DATE CHAR(10), (19)
 CREATION_TIME CHAR(8), (20)
 CREATION_MICROSECS CHAR(7), (21)

 Appendix A: The Thread_Audit Table A- 3

 CORRELATION_NAME CHAR(12), (22)
 PLAN_NAME CHAR(8), (23)
 PROGRAM_NAME CHAR(8), (24)
 AUTHORIZATION_ID CHAR(8), (25)
 CONNECTION_NAME CHAR(8), (26)
 ORIGINAL_OPERATOR CHAR(8), (27)
 MVS_SYSTEM CHAR(8), (28)
 ADDRESS_SPACE_ID CHAR(4), (29)
 THREAD_JOBNAME CHAR(8), (30)
 WHERE_EXECUTING CHAR(4), (31)
 ACCOUNTING_TOKEN CHAR(22), (32)
 DISPLAY_SQL_COUNT SMALLINT, (33)
 STATUS_CODE CHAR(2), (34)
 NETWORK_ID CHAR(8), (35)
 LU_NAME CHAR(8), (36)
 COMMIT_COUNT INTEGER, (37)
 SQL_DML_COUNT INTEGER, (38)
 GETPAGES_ISSUED INTEGER, (39)
 STATUS_LITERAL CHAR(40), (40)
 CONNECTION_CODE INTEGER, (41)
 CONNECTING_SYSTEM CHAR(12), (42)
 TCB_ADDRESS CHAR(8), (43)
 TOTAL_ELAPSED_TIME CHAR(15), (44)
 DB2_ELAPSED_TIME CHAR(15), (45)
 CLASS1_TCB_TIME CHAR(15), (46)
 CLASS2_TCB_TIME CHAR(15), (47)
 HOME_SRB_TIME CHAR(15), (48)
 IO_WAIT_TIME CHAR(15), (49)
 LOCK_WAIT_TIME CHAR(15), (50)
 DIST_LOCATION CHAR(16), (51)
 DIST_APPC_ID CHAR(8), (52)
 DIST_SESSION_ID CHAR(16), (53)

The following columns provide serviceability information about
Thread/SERIES internal processing.
These fields are not further described in this appendix.

 THREAD_FLAG1 CHAR(1),

 THREAD_FLAG2 CHAR(1),

 THREAD_FLAG3 CHAR(1),

 THREAD_FLAG4 CHAR(1),

 THREAD_FLAG5 CHAR(1),

 THREAD_FLAG6 CHAR(1),

 THREAD_FLAG7 CHAR(1),

 THREAD_FLAG8 CHAR(1),

 THREAD_FLAG9 CHAR(1),

 THREAD_FLAGA CHAR(1),

 THREAD_FLAGB CHAR(1)

A-4 Thread/SERIES Guide and Reference

The following columns of the Thread_Audit table contain MVS and DDF
accounting data whose values further describe and identify the thread
against which Thread/SERIES took action

 QMDA_PRODUCT CHAR(3), (54)
 QMDA_VERSION CHAR(2), (55)
 QMDA_RELEASE CHAR(2), (56)
 QMDA_MOD CHAR(1), (57)
 QMDA_LOCATION CHAR(16), (58)
 QMDA_NETID CHAR(8), (59)
 QMDA_LUNAME CHAR(8), (60)
 QMDA_CONNECT_NAME CHAR(8), (61)
 QMDA_CONNECT_TYPE CHAR(8), (62)
 QMDA_CORRELATION CHAR(12), (63)
 QMDA_AUTHID CHAR(8), (64)
 QMDA_PLAN CHAR(8), (65)
 CLIENT_PLATFORM CHAR(18), (66)
 CLIENT_APPLICATION CHAR(20), (67)
 CLIENT_AUTHID CHAR(8), (68)
 ACCOUNT_STRING# SMALLINT, (69)
 ACCOUNT_STRING VARCHAR(200) (70)
)

Figure A.1 Column structure of the Thread_Audit table

A.2.1 Thread Identification Columns

(0) The symbolic variable ‘owner’ denotes the authorization ID of the owner of the
THREAD_AUDIT table

(1) The DB2 subsystem column identifies the DB2 subsystem name in which the

thread was executing.

(2) The column named UNIQUENESS_VALUE specifies a 12 digit hexadecimal

value that uniquely identifies a thread within a particular DB2 subsystem. This
uniqueness value or instance number is the third component of a four part DB2
logical-unit-of-work ID which includes:

• the NETWORK_ID as the first component, described in (35)

• the LU_NAME qualifier as the second component, described in (36)

• the Uniqueness_Value (described above) as the third component

• the Commit count as the fourth and last component described in (37)

(3) The THREAD_TOKEN column specifies the shorthand number DB2 assigns to

each thread. The token is one to five decimal digits. Threads connected to DB2
subsystems at releases prior to Version 4.1 have no thread token assigned.
Their thread token value appears as 0.

 Appendix A: The Thread_Audit Table A- 5

(4) The column named ACE_ADDRESS identifies the Agent Control Element
associated with a DB2 thread. The ACE value is an address comprised of 8
hexadecimal digits. Together with the DB2 subsystem name, the ACE uniquely
identifies a DB2 thread while it exists. Once the thread is terminated, the Agent
Control Element can become associated with a subsequent thread.

A.2.2 Thread/SERIES Actions Columns

(5) The ACTION_TAKEN column identifies the action (such as cancel or warning)

taken against a thread. Action_Taken identifies either the user requested action
issued through one of the Thread/STOPPER facilities, or the policy defined
action triggered automatically by Thread/SENTRY.

(6) The column named ACTION_STATUS identifies the current status of

processing the action described by ACTION_TAKEN.

(7) POLICY_ID identifies the site defined policy whose violation led Thread/SEN-

TRY to take action automatically. Alternatively, Policy_ID contains the value
‘Manual’ to denote an action that was manually initiated by a user.

(8) The column named POLICY_REASON contains a character string which

briefly describes what threshold was violated to trigger a policy defined action.
Policy reason strings are comprised of a category prefix followed by the specific
threshold that was violated. The currently defined set of policy categories and
their corresponding prefixes include:

Life-of-thread thresholds LOT
Unit-of-work thresholds UOW
Interval based minimum thresholds IMIN
Interval based maximum thresholds IMAX
Inactive thread thresholds IDLE

(9) The ACTION_METHOD column describes the means by which a

Thread/SERIES component took action. Thread/SERIES cancellation
mechanisms are described in detail in Appendix B.

A-6 Thread/SERIES Guide and Reference

A.2.3 When, where and by whom was an action taken

(10) The ACTION_DATE column indicates the date when this audited action took

place.

(11) The column named ACTION_TIMESTAMP reflects the current timestamp

when this row was inserted into the Thread_Audit table.

(12) The ACTION_ACEE_ID column identifies what RACF ID took action against

the thread.

(13) The column named ACTION_DB2AUTH_ID identifies the primary

authorization ID of the process which issued this action.

(14) The ACTION_GROUP_NAME column represents the name of the RACF Valid

Connect Group.

(15) The column named ACTION_TERM_ID identifies the ID of the terminal from

which the audited action was issued. This field may be blank when for example
the Port of Entry (POE) is not specified or the POE class is not ‘terminal’.

(16) The ACTION_APPL_ID column identifies the name of the VTAM application

to which the Action requester was connected. ACTION_Appl_ID appears as
blanks if no application is specified.

(17) The column named ACTION_SURR_ID identifies the RACF surrogate userid

associated with the audited action.

(18) The ACTION_CPU_ID identifies the serial number of the CPU from which the

audited action was issued.

A.2.4 Thread Statistics and Details

(19) The column named Creation_Date represents the date on which the thread was

created. The Creation_Date value appears in MM/DD/YYYYY format.

(20) The Creation_time column indicates when the thread was created. The
Creation_Time column is recorded in hh.mm.ss format.

(21) The column named Creation_microseconds contains 6 decimal digits which

further qualify (with microsecond precision) when the thread was created.

(22) The Correlation_Name denotes a 1 to 12 character recovery ‘correlation-id’

associated with the thread.

(23) The Plan_Name denotes the 1 to 8 character name of the DB2 application plan

associated with the thread.

 Appendix A: The Thread_Audit Table A- 7

(24) Program_name identifies the name of the DB2 package or DBRM that is
currently executing within the plan. The value of program_name appears as
“N/P” if the current package or DBRM is either not present or cannot be
determined.

(25) The column named Authorization_ID identifies the 8 character DB2 primary

authorization associated with the thread.

(26) Connection name identifies the 8 character DB2 connection type. Possible

values include TSO, BATCH, DB2CALL and UTILITY. Threads originating in
CICS and IMS address spaces may have additional connection names.

(27) The column named Original_Operator ID denotes the original value of the

primary authorization ID associated with the thread before it could be changed
by any authorization exit.

(28) The MVS_System column denotes the 4 character MVS system identifier.

(29) The column named Address_Space_ID specifies the four hexadecimal digits

which represent the ASID of the thread’s allied address space.

(30) Thread_Jobname denotes the name of the job associated with the allied address

space from which the thread originated.

(31) Where_Executing denotes where the thread was executing when this row was

inserted. PGM indicates the thread is currently executing within application
program code, while the value ‘DB2’ denotes a thread that is currently active
within DB2. The value ‘VTAM’ indicates the thread is currently executing or
suspended within VTAM. Lastly, ‘IDLE’ denotes an inactive database access
thread.

(32) The column named Accounting_Token represents an Accounting correlation

token. This value can be used when present to correlate DB2 IFC records to
CICS records for a CICS transaction.

(33) Display_SQL_Count denotes the application request count as reported by the

DB2 -DISPLAY THREAD command. This is a small integer value that resets
to 0 once it reaches its maximum value of 32,767. In contrast, the column
named SQL_DML_COUNT (38) is an integer value accurate beyond 2 billion.

(34) The column named Status_code contains a 1 or 2 character code which des-

cribes the status of the connection. These values correspond to the status codes
reported by the -DISPLAY THREAD command and convey the same meanings.
The particular status codes (in alphabetic order) are as follows:

D the thread is in the process of termination

DA The database access thread slot is currently not associated with a
remote connection and is available to be assigned to a type 2 inactive
thread.

DI The thread is disconnected from an execution unit. There is no TCB
associated with the DB2 thread. This state is only valid when
’connection name’=RRSAF.

A-8 Thread/SERIES Guide and Reference

N the thread is in either IDENTIFY or SIGNON status. No plan is
allocated.

ND The thread is in either IDENTIFY or SIGNON status, and the thread is
currently not associated with any TCB.

PT A parallel task thread was established (plan allocated).

QD the thread is queued for termination

QT the CREATE THREAD request is queued

RA denotes remote access for a distributed thread

R2 A distributed thread is performing a remote access on behalf of a
request from another location. The thread is currently an inactive
connection (type 2 inactive thread) and is waiting for an agent to
become available to process.

RK A distributed thread is performing remote access on behalf of a request
from another location. The thread is performing an operation that
invoked Kerberos services. This status is displayed until Kerberos
services returns control to DB2.

RN denotes a remote distributed thread that is suspended

RQ denotes a distributed thread which is remotely queued

RX The distributed thread is executing an XA transaction on behalf of a
request from another location.

SA denotes an active stored procedure

SP A thread is executing within a stored procedure. This status is
displayed until the stored procedure terminates and returns control to
DB2.

SW denotes a stored procedure waiting to be scheduled

T denotes an allied, non-distributed thread for which a DB2 application
plan is allocated

TD An allied thread was established (plan allocated), and the thread is
currently not associated with any TCB.

TN denotes an allied, distributed thread which is suspended

TR indicates an allied thread was distributed to access data at another
location

 Appendix A: The Thread_Audit Table A- 9

A.2.5 Columns which identify the LU 6.2 Logical Unit of Work ID

The DB2 logical-unit-of-work ID uniquely identifies a logical unit of work associated
with a thread within the network. It consists of four concatenated components:

• the NETWORK_ID is the first component and is described in (35)

• the LU_NAME is the second component and is described in (36)

• the Uniqueness_Value is the third component and is described in (2)

• the Commit_Count is the fourth and last component and is described in (37)

(35) The NETWORK_ID qualifier is the first component of the logical-unit-of-work

ID. It specifies the SNA Network ID associated with a thread. Network_ID can
be between 1 and 8 characters long.

(36) The LU_NAME qualifier represents the second component of the logical-unit-

of-work ID. It specifies an SNA Logical Unit Name between 1 and 8 characters
long.

(37) The column named Commit_Count is the fourth component of the logical-unit-

of-work ID.

A.2.6 Other statistics and details about the Thread

(38) The column named SQL_DML_COUNT represents an ‘accurate’ count of the

number of SQL data manipulation language (DML) statements issued by the
thread. This value is in contrast to the ‘wrap around’ half word counter
appearing in the output of the -DISPLAY THREAD command (whose
maximum value is 32767). Anytime the -DISPLAY THREAD counter exceeds
this value, it ‘wraps around’ or resets to 0. In contrast, the
SQL_DML_COUNT is accurate beyond 2 billion.

(39) Getpages_issued denotes the number of GETPAGE requests issued on behalf of

the thread. This includes conditional and unconditional requests as well as
successful and unsuccessful requests. This value is an excellent measure of
thread activity in that the getpage count is reliably updated by DB2 during
thread execution.

(40) The column named Status_Literal provides a more meaningful description of

the 1 or 2 character Status_Code described in (34).

(41) The Connection_Code column contains a hexadecimal code denoting the type
of system connecting to DB2.

A-10 Thread/SERIES Guide and Reference

Hex Code Connection Type

 1 TSO foreground and background
 2 DB2 call attach
 3 DL/I batch
 4 CICS attach
 5 IMS attach BMP
 6 IMS attach MPP
 7 System-directed access
 8 Application-directed access
 9 IMS control region
 A IMS transaction bmp

The Connection_Code column can also have a null value. For example, utilities
do not have a connecting system type.

(42) The column named Connecting_System contains a literal value which

corresponds to the Connection_Code in (41). The hexadecimal
Connection_Codes and their corresponding Connecting_System literal strings
are as follows:

Hex Code Connecting_System Literal

 1 TSO
 2 CALL ATTACH
 3 DL/1 BATCH
 4 CICS ATTACH
 5 IMS BMP
 6 IMS MPP
 7 DISTRIBUTED UOW
 8 REMOTE UOW
 9 IMS CONTROL RGN
 A IMS TRX BMP

(43) TCB_Address represents a task control block address when a thread is canceled

by abnormally terminating its associated task or possibly its parent task. The
TCB_Address column contains zeros when mechanisms other than abending the
task are used to cancel the thread.

(44) The column named Total_Elapsed_time represents the elapsed ‘wall clock’ time

since the thread was created. This value is reported in hours, minutes and
seconds.

 Appendix A: The Thread_Audit Table A- 11

(45) DB2_Elapsed_Time represents the total elapsed time spent by the thread within
DB2. This value is reported in hours, minutes and seconds.

(46) The column named Class1_TCB_Time represents the amount of TCB CPU time

expended so far by the thread, both within the application and within DB2. For
database access agents this value represents TCB time for the agent. A value of
‘N/P’ means no timing is available.

(47) Class2_TCB_Time represents accumulated home CPU time expended by the
thread while processing within DB2. A value of ‘N/P’ means no timing is
available.

(48) The column named Home_SRB_Time represents accumulated SRB time

charged to the allied address space associated with a thread. Note that SRB
times reflect the SRB time for the entire address space. For example, a single
CICS address space can support multiple threads. As such, the SRB times for
CICS threads reflect the SRB time of the entire CICS address space rather than
just a specific thread.

(49) IO_wait_time represents the amount of time the thread spent waiting to perform

I/O.

(50) The column named Lock_wait_time represents the amount of time the thread

spent waiting to acquire locks.

(51) The Dist_Location column identifies the name of the location from which a
distributed thread originates. Location name may be up to 16 characters long.

(52) The column named Dist_APPC_ID represents the VTAM APPC conversation

ID. This 32-bit APPC conversation ID is used to identify a particular APPC
conversation.

(53) Dist_Session_ID identifies the VTAM session which underlies the APPC
conversation associated with the distributed DB2 thread.

A.2.7 MVS and DDF Accounting Data Associated with the Thread

(54) QMDA_Product identifies the product that generated the accounting string. The
product identifier may assume one the following values:

DSN denotes DB2 for OS/390 or DB2 for MVS/ESA
ARI denotes SQL/DS or DB2 for VM
SQL denotes DB2 client/server
QSQ denotes DB2/400

(55) QMDA_Version identifies the version of the product that generated the

accounting string.

(56) QMDA_Release identifies the release level of the product that generated the
accounting string.

A-12 Thread/SERIES Guide and Reference

(57) QMDA_Mod identifies the modification level of the product that generated the
accounting string.

The following columns of the Thread_Audit table apply only to threads whose
accounting strings were generated by either DB2 for OS/390 or DB2 for MVS/ESA, i.e.
threads whose QMDA_Product value is ‘DSN’.

(58) QMDA_Location identifies the DB2 location name of the DB2 system that

created the accounting string.

(59) QMDA_NetID identifies the SNA NETID of the DB2 system that created the

accounting string.

(60) QMDA_LUName identifies the SNA LU name of the DB2 system that created

the accounting string.

(61) QMDA_Connect_Name identifies the DB2 Connection Name at the DB2

system where the SQL application is running.

(62) QMDA_Connect_Type identifies the DB2 Connection Type at the DB2 system

where the SQL application is running.

(63) QMDA_Correlation identifies the DB2 Correlation ID at the DB2 system where

the SQL application is running.

(64) QMDA_AuthID identifies the DB2 authorization ID that the SQL application
used, prior to name translation and prior to driving the connection exit at the
DB2 site where the SQL application is running.

(65) QMDA_Plan identifies the DB2 PLAN that the SQL application used at the
DB2 site running the SQL application.

The following columns of the Thread_Audit table apply only to threads whose
accounting strings were created by DB2 client server products such as DB2 for
Windows NT, DB2 for OS/2 and DB2 for various Unix implementations

(66) Client_Platform identifies the Client Platform where the SQL application is
running. This is a blank padded value.

(67) Client_Application identifies the name of the Client Application. This is a
blank padded value.

(68) Client_AuthID identifies the authorization ID of the client application process.

The following columns of the Thread_Audit table apply to all threads for
which accounting strings are available

(69) Account_String# specifies the length (i.e. number of characters) in the
accounting string.

(70) Account_String contains the significant data present in the accounting string.
The accounting string value may be up to 200 bytes in length.

 Appendix A: The Thread_Audit Table A- 13

A.3 The Values of Columns in Thread_Audit table Rows

Thread/SERIES components perform two types of inserts to the Thread_Audit table. A
full insert of all columns takes place when most (or all) details about the thread are
available. In contrast, a partial row insert provides values for just a few columns. The
remaining, omitted columns contain nulls (typically denoted by the hyphen ‘-’ character.)

For example, a full insert takes place when a Thread/SERIES component initially takes
action (and marks the Action_Status as pending.) Later, when the thread no longer
exists, Thread/SERIES inserts just a subset of columns in the row to indicate the action is
complete. The omitted columns assume null values.

Sometimes column values are simply not available to be recorded in the Thread_Audit
table. In these cases, Thread/SERIES makes use of the following codes to denote
missing values:

Code Meaning

N/P not present
N/C cannot be calculated
N/A not applicable

A-14 Thread/SERIES Guide and Reference

 Appendix B: Common Cancellation Topics B-1

Appendix B

Thread Eligibility

Cancel Mechanisms

Descriptions of Cancel Responses

Notifications

This Appendix documents several topics that are applicable to all Thread/SERIES
components. Exceptions and information unique to a specific Thread/SERIES
component are noted as appropriate.

B.1 Cancellation Eligibility Rules

When any Thread/SERIES component receives a CANCEL command, it performs a
series of checks to determine whether a particular thread is eligible to be canceled, and if
eligible, the best means to cancel it. The thread cancellation mechanisms employed by
Thread/SERIES are described in Section B.2. The rules that govern a thread’s eligibility
for CANCEL and FORCE processing are as follows:

1. A thread that is already being deleted (denoted by a status code of D) or a thread that

is queued for deletion by DB2 (denoted by a status code of QD) are not eligible for
conventional cancellation. We recommend you be patient with such threads since
they are in the process of being gracefully terminated by DB2. If absolutely
essential, you can issue the FORCE command against such threads.

2. Threads in IDENTIFY or SIGNON status (i.e. threads without a plan name) may not

be canceled. Although not recommended, you may issue the FORCE command
against such threads.

B-2 Thread/SERIES Guide and Reference

3. If the ASID associated with a thread at the time a cancel request is issued is that of
the DB2 System Services address space, then Thread/SERIES rejects all CANCEL
and FORCE requests. To do otherwise might jeopardize the availability of DB2
itself. In such cases, requesters should simply wait until the ASID associated with a
thread again references the client address space. At that time, the thread may be
canceled through one of the standard mechanisms supported by Thread/SERIES.

4. The threads associated with the various Thread/SERIES DB2 applications cannot be

canceled. Instead, use the documented means to stop the Thread/SERIES component
as described in this manual. If essential, you can issue the FORCE command against
the DB2 thread(s) associated with a Thread/SERIES component.

As a precaution, Thread/SERIES rejects any CANCEL command which would cancel
more than a single thread. The only exception is when the Thread/STOPPER Batch
Facility is invoked with CANCEL_MULTIPLE as an execution parameter (as described
in Chapter 4). Be careful to use the CANCEL_MULTIPLE option judiciously since you
may inadvertently cancel many (even all) active DB2 threads.

B.2 Thread Cancellation Mechanisms

Once Thread/SERIES determines that a particular thread is eligible to be canceled, it
chooses the best means to cancel it. This section describes the various mechanisms used
by Thread/SERIES to cancel DB2 threads,

Thread/SERIES employs a principle of minimum force to cancel DB2 threads in the least
disruptive way possible. Thread/SERIES uses native DB2 thread cancellation commands
whenever circumstances permit. Thread/SERIES utilizes other thread cancellation
mechanisms only when DB2 facilities will not work. These include situations such as the
following:

• a thread is looping within application code
• a distributed thread is currently executing or suspended in the communications

network (TCP/IP and/or SNA/VTAM)
• a thread is idle (an inactive Database Access Thread)

B.2.1 The DB2 CANCEL (DDF) THREAD command

The -CANCEL THREAD command was introduced with DB2 V4.1 to cancel both local
and distributed threads. The -CANCEL DDF THREAD command has been available
since Version 2.3 of DB2 to cancel distributed threads. These native DB2 facilities
provide the most graceful, well behaved means to cancel a thread provided the thread
passes control to DB2 at some point.

 Appendix B: Common Cancellation Topics B-3

B.2.2 Abending a Thread Task

Thread/SERIES provides a means to abend the MVS task associated with a DB2 thread.
Thread/SERIES causes the thread task within the allied address space (such as a batch
jobstep, QMF user or CICS thread subtask) to be abnormally terminated. DB2 ‘listens’
for such abnormal end of task events and proceeds to delete the thread and backout any
uncommitted changes to DB2 resources. This Thread/SERIES cancel mechanism also
lets you obtain a diagnostic dump if an appropriate SYSUDUMP dataset is allocated to
the jobstep of the abended task.

B.2.3 The FORCE command

The FORCE command is designed for persistent threads that are particularly difficult to
remove. The FORCE command can also be used to terminate threads that are not eligible
for conventional cancellation. These include database access threads within a DDF
address space and threads which are being deleted by DB2. Basically, FORCE bypasses
a number of checks the CANCEL command normally makes to determine whether a
thread is eligible to be canceled.

The FORCE command should be used judiciously since its effects may be broader than
just abending the thread you wish to cancel. For example, the CICS/DB2 Attachment
may need to be recycled through the DSNC STRT command or the DDF address space
may need to be restarted.

However, the Thread/SERIES FORCE command should not be confused with the MVS
FORCE command. While the Thread/SERIES FORCE command unconditionally abends
the MVS task associated with a DB2 thread, it remains far less drastic than the MVS
FORCE command with removes an entire address space and can make it necessary to
reIPL MVS.

B.2.4 Canceling an ISPF Logical Screen

Thread/SERIES can cause the ISPF logical screen associated with a DB2 thread to abend.
This allows threads associated with DB2 editors such as File-AID for DB2TM to be
canceled gracefully -- without placing the user’s TSO session in a wait state. The
TSO/ISPF user can continue with other work once Thread/SERIES cancels their DB2
editor session.

If the target thread is not executing within a TSO/ISPF environment, then a request to
cancel an ISPF logical screen is converted internally to a more appropriate Cancel
command.

B-4 Thread/SERIES Guide and Reference

B.2.5 Communications Network Cancellation

When a distributed thread is currently active or suspended within the communications
network (TCP/IP or SNA/VTAM), Thread/SERIES can issue TCP/IP or SNA/VTAM
commands to terminate the communication connections that underlie the distributed
thread. These communication canceling mechanisms do not apply to local or utility
threads.

B.2.6 Canceling CICS Threads

Thread/SERIES issues the CICS command SET TASK(taskid) PURGE when the
CICS/DB2 thread cannot be canceled via the DB2 -CANCEL command. The SET
TASK(taskid) PURGE command gracefully cancels the CICS transaction -- without
effecting the CICS/DB2 Attachment. Should it be necessary to abend the CICS/DB2
thread subtask, the CICS/DB2 Attachment may terminate. In this case you will have to
restart the CICS/DB2 Attachment through the DSNC STRT command.

B.2.7 Canceling DB2 Utility Threads

Thread/SERIES issues the DB2 -TERM UTIL command to cancel DB2 utility threads.
Thread/SERIES can also abend the DB2 utility jobstep but in this case the DB2 utility
cannot be restarted.

B.2.8 Canceling Threads via Exit Routines

Thread/SERIES can invoke vendor supplied or site written exit routines that get control
when installation specified criteria are met. These exit routines receive all available
information about the selected thread and can perform non standard and/or site specific
processing as appropriate (For example, an exit routine might be designed to issue
commands to a DB2 gateway product.) In addition, site written exit routines can request
standard cancellation, auditing and notification services from Thread/SERIES.

The RAI supplied module named TTS3CLS is an example of an exit routine which
cancels the ISPF logical screen associated with a DB2 thread. Appendix E discusses how
to develop exit routines to perform non standard processing as well as how to specify the
criteria that govern when these routines are invoked.

 Appendix B: Common Cancellation Topics B-5

B.3 Description of Cancel Responses

B.3.1 Canceling an ISPF Logical Screen

User’s whose ISPF logical screens are canceled can observe two different behaviors,
depending on the way in which ISPF is invoked.

A normally invoked ISPF session exhibits the most graceful behavior when a
Thread/SERIES component cancels an ISPF logical screen. The user sees an ISPF abend
panel which displays register contents and ISPF Version / Release information. After
pressing ENTER, the ISPF Primary Option Menu is displayed from which the user can
continue with other work.

In contrast, when ISPF is invoked with the TEST option, cancellation of an ISPF logical
screen proceeds less gracefully. Instead of displaying an abend panel, ISPF issues line
mode messages that indicate abends within the ISPF subtask as well as the ISPF Main
task. The user may have to press ENTER several times to clear the screen of mini dump
information. Eventually, the TSO READY prompt should appear at which point the user
can reenter ISPF.

B.3.2 Canceling Distributed Threads

Cancellation of distributed threads proceeds more gracefully, safely and surely if the
allied distributed thread (the client requester) is canceled rather than the Database Access
Thread active at the server. Moreover, the Database Access Thread at the server will
terminate automatically when the allied requester thread is canceled.

Should it be necessary to cancel a database access thread directly, the conversation
between the local Database Access Thread and the remote requester will be canceled.
However, both threads may continue to exist on their respective subsystems until the
allied distributed thread issues another SQL request. Although not recommended, you
can issue a FORCE command to terminate the Database Access Thread immediately.

B-6 Thread/SERIES Guide and Reference

B.4 Thread/SERIES Notification Messages

Whenever possible, the various Thread/SERIES components send notification messages
to users whose threads are effected. In addition, it sends notifications to a list of
designated administrators when Thread/SENTRY detects a policy violation.

B.4.1 User Notifications

When a DB2 thread originating in a TSO foreground address space is canceled through
one of the Thread/STOPPER Facilities, the following multi-line message is sent to the
terminal of the effected TSO user:

TTS110 - Your DB2 thread (Plan: PPPPPPPP, DB2 auth ID: AAAAAAAA)

is being deliberately terminated. Your DB2 application will abend

with a system abend code CCC and an abend reason code of RRRRRRRR.

where

PPPPPPPP denotes the name of the DB2 application plan whose thread was

terminated

AAAAAAAA identifies the thread’s DB2 authorization ID

CCC denotes the system abend code with which the MVS task (associated

with the canceled thread) terminates abnormally. By default, Thread/
STOPPER uses system code ‘222’ to abend a task while tasks termina-
ted by DB2 typically abend with an 04E system completion code.

RRRRRRRR identifies the abend reason code with which the thread’s MVS task

terminates abnormally. By default, Thread/STOPPER uses abend
reason code 00DB2000 to denote tasks it cancels directly. In contrast,
threads canceled through such DB2 mechanisms as CANCEL
THREAD and CANCEL DDF THREAD often terminate with a reason
code of 00E50013 to indicate the DB2 execution unit has abended.

When Thread/SENTRY cancels a thread due to a policy violation, it sends a similar
message to the effected TSO, CICS or IMS terminal -- as follows:

TTS570- SSSS thread (Plan: PPPPPPPP Auth ID: AAAAAAAA Jobname: JJJJJJJJ)
violated policy XXXXXXX. It is being canceled at TTTTTTTT on DDDDDDDD
with system abend code CCC and an abend reason code of RRRRRRRR

where

SSSS denotes the name of the DB2 subsystem in which the canceled thread

was executing.

 Appendix B: Common Cancellation Topics B-7

PPPPPPPP denotes the name of the DB2 application plan whose thread was
terminated

AAAAAAAA identifies the thread’s DB2 authorization ID

JJJJJJJJ identifies the name of the job associated with the allied address space

from which the thread originated.

XXXXXXXX identifies the name of the site defined policy whose violation led

Thread/SENTRY to cancel the thread.

TTTTTTTT indicates the time when the thread was canceled. This value is

displayed in hh.mm.ss format.

DDDDDDDD identifies the date on which the thread was canceled. This value

appears in MM/DD/YY format.

CCC denotes the system abend code with which the MVS task (associated

with the canceled thread) terminates abnormally. By default,
Thread/SENTRY uses system code ‘222’ to abend a task while tasks
terminated by DB2 typically abend with an 04E system completion
code.

RRRRRRRR identifies the abend reason code with which the thread’s MVS task

terminates abnormally. By default, Thread/SENTRY uses abend
reason code 00DB2000 to denote tasks it cancels directly. In contrast,
threads canceled through such DB2 mechanisms as CANCEL
THREAD and CANCEL DDF THREAD often terminate with a reason
code of 00E50013 to indicate the DB2 execution unit has abended.

In contrast, when Thread/SENTRY issues a warning, it sends the following message to
the effected TSO, CICS or IMS terminal.

TTS570- SSSS thread (Plan: PPPPPPPP Auth ID: AAAAAAAA Jobname: JJJJJJJJ)
has violated policy XXXXXXXX and receives this warning.
Your DB2 application will NOT be abended.

where

SSSS denotes the name of the DB2 subsystem in which the thread was

executing.

PPPPPPPP denotes the name of the DB2 application plan whose thread is receiving

this warning

AAAAAAAA identifies the thread’s DB2 authorization ID

JJJJJJJJ identifies the name of the job associated with the allied address space

from which the thread originated.

XXXXXXXX identifies the name of the site defined policy whose violation led

Thread/SENTRY to issue a warning.

B-8 Thread/SERIES Guide and Reference

B.4.2 Notifications sent to Administrators

Thread/SENTRY can send notifications to a list of designated administrators whenever it
detects a policy violation. (Chapter 10 describes the Thread/SENTRY NOTIFY_LIST
statement in detail). Administrator’s receive a cancel notification like the following:

TTS575- SSSS thread (Plan: PPPPPPPP Auth ID: AAAAAAAA Jobname: JJJJJJJJ)
violated policy XXXXXXXX and was terminated on DDDDDDDD at TTTTTTTT
with system abend code CCC and an abend reason code of RRRRRRRR

where

SSSS denotes the name of the DB2 subsystem in which the canceled thread

was executing.

PPPPPPPP denotes the name of the DB2 application plan whose thread was

terminated

AAAAAAAA identifies the thread’s DB2 authorization ID

JJJJJJJJ identifies the name of the job associated with the allied address space

from which the thread originated.

XXXXXXXX identifies the name of the site defined policy whose violation led

Thread/SENTRY to cancel the thread.

DDDDDDDD identifies the date on which the thread was canceled. This value

appears in MM/DD/YY format.

TTTTTTTT indicates the time when the thread was canceled. This value is

displayed in hh.mm.ss format.

CCC denotes the system abend code with which the MVS task (associated

with the canceled thread) terminates abnormally. By default,
Thread/SENTRY uses system code ‘222’ to abend a task while tasks
terminated by DB2 typically abend with an 04E system completion
code.

RRRRRRRR identifies the abend reason code with which the thread’s MVS task

terminates abnormally. By default, Thread/SENTRY uses abend
reason code 00DB2000 to denote tasks it cancels directly. In contrast,
threads canceled through such DB2 mechanisms as CANCEL
THREAD and CANCEL DDF THREAD often terminate with a reason
code of 00E50013 to indicate the DB2 execution unit has abended.

 Appendix B: Common Cancellation Topics B-9

The warning notification that Thread/SENTRY sends to administrators appears as
follows:

TTS575- SSSS thread (Plan: PPPPPPPP Auth ID: AAAAAAAA Jobname: JJJJJJJJ)
has violated policy XXXXXXXX and receives this warning.

where

SSSS denotes the name of the DB2 subsystem in which the thread was

executing.

PPPPPPPP denotes the name of the DB2 application plan whose thread is receiving

this warning

AAAAAAAA identifies the thread’s DB2 authorization ID

JJJJJJJJ identifies the name of the job associated with the allied address space

from which the thread originated.

XXXXXXXX identifies the name of the site defined policy whose violation led

Thread/SENTRY to issue a warning.

B-10 Thread/SERIES Guide and Reference

 Appendix C: Message Customization C-1

Appendix C

Composing Site Written Messages

and

Customizing Default Notification

 Message Text

This Appendix describes how to create site written messages that will be issued when
Thread/SENTRY policies are violated. This Appendix also describes how to customize
the text of the default notification messages Thread/SERIES components send both to
users and administrators.

C.1 Composing Site Written Messages

Member TTS$TSM of the TTSCNTL library provides an example of a site written
messages module. Message IDs and message text can be composed subject to the
guidelines and restrictions appearing in the #MSG macro within the TTSMACS library.
Please read the documentation within the #MSG macro before composing any messages.
Your site written messages may contain references to the Z amper variables described in
the next Section.

C.1.1 Z Amper Variables

Z amper variables all pertain to the current thread for which Thread/SERIES is issuing a
message. At execution time, Thread/SERIES performs variable substitution in which
each reference to a Z amper variable in the prototype message text is replaced with its
current value. The Z amper variables currently supported by Thread/SERIES are as
follows:

C-2 Thread/SERIES Guide and Reference

ZAUTH Authorization ID

ZCAUSE The character string which briefly describes what threshold was

violated to trigger a policy defined action. Policy reason strings are
comprised of a category prefix followed by the specific threshold that
was violated. The currently defined set of policy categories and their
corresponding prefixes include:

Life-of-thread thresholds LOT
Unit-of-work threshold UOW
Interval based minimum thresholds IMIN
Interval based maximum thresholds IMAX
Inactive thread thresholds IDLE

ZCODE The user or system code with which the target thread abends

ZDATE Current date

ZDSN Current DB2 Subsystem ID

ZJOBNAME Jobname associated with the current thread

ZMSGID Message ID appearing in the text of the message labeled TTS570

ZPLAN DB2 application plan name

ZPOLICY Thread/SENTRY Policy ID

ZREASON The reason code associated with the user or system abend code

identified by ZCODE

ZTIME Current time

NOTE: When composing a prototype message, always

 follow a Z
amper variable with a blank. For example, '&&ZAUTH ' is allowed
but variable substitution will not occur for &&ZAUTH.'

C.1.2 Assembly / Link Edit Instructions for Site Written Message Modules

The job in member TTSJTSM of the TTSCNTL library may be used to assemble and link
edit your site written messages module. Before using job TTSJTSM, you must first edit
the TTSPAL and RAIAL procedures (also in the TTSCNTL library) as described in
Section 20.13 of the Thread/SERIES Guide and Reference.

Alternatively, you can use any assembly/link edit jobstream that includes the TTSMACS
library in the SYSLIB concatenation for the Assembler.

We recommend your site written message module be link edited with the following
attributes:

 AMODE(31),RMODE(ANY),RENT,REUS,REFR

 Appendix C: Message Customization C-3

C.2 Customizing the text of the Default Notification Messages

Member TTS$TNM of the TTSCNTL library is an Assembler language source module
which contains the text of the default notification messages Thread/SERIES sends to both
users and administrators.

Your site can customize the text of these default notification messages -- subject to the
following guidelines and restrictions.

• Both the CSECT and the link edited load module must be named TTS$TNM.

• Do not change the message numbers, either in the label field in column 1 or within

the message text.

• Do not change the names of the Z amper variables (such as &&ZAUTH or
&&ZPLAN) which appear embedded in the message text. The Z amper variables
are described in Section C.1.1.

C.2.1 Sets of NOTIFY Messages issued by Thread/SENTRY

The following are the ID's of messages sent to users whose thread is cancelled. For this
set of messages, Thread/SENTRY assigns a value 'TTS570' to the ZMSGID variable in
the message labeled TTS570.

 TTS570
 TTS571
 TTS572

The following are the ID's of messages sent to users when a thread warning is issued.
For this set of messages, Thread/SENTRY assigns a value 'TTS570' to the ZMSGID
variable in the message labeled TTS570.

 TTS570
 TTS577
 TTS578

The following are the ID's of messages sent to USERs when an action on a thread is
'pending'. For this set of messages, Thread/SENTRY assigns a value 'TTS580' to the
ZMSGID variable in the message labeled TTS570.

 TTS570
 TTS581
 TTS582

The following are the ID's of messages sent to ADMINISTRATORs when a thread is
cancelled. For this set of messages, Thread/SENTRY assigns a value 'TTS575' to the
ZMSGID variable in the message labeled TTS570.

 TTS575
 TTS570
 TTS576
 TTS572

C-4 Thread/SERIES Guide and Reference

The following are the ID's of messages sent to ADMINISTRATORs when a warning is
issued for a thread. For this set of messages, Thread/SENTRY assigns a value 'TTS575'
to the ZMSGID variable in the message labeled TTS570.

 TTS575
 TTS570
 TTS579

The following are the ID's of messages sent to ADMINISTRATORs when an action on a
thread is 'pending'. For this set of messages, Thread/SENTRY assigns a value 'TTS583'
to the ZMSGID variable in the message labeled TTS570.

 TTS583
 TTS570
 TTS584
 TTS585

C.2.2 Assembly / Link Edit Instructions for Module TTS$TNM

The job in member TTSJTNM of the TTSCNTL library may be used to assemble and
link edit your customized version of the Thread/SERIES Notification Messages module
(TTS$TNM). Before using job TTSJTNM, you must first edit the TTSPAL and RAIAL
procedures (also in the TTSCNTL library) as described in Section 20.13 of the
Thread/SERIES Guide and Reference.

Alternatively, you can use any assembly/link edit jobstream, provided you link edit load
module TTS$TNM with the following attributes:

 AMODE(31),RMODE(ANY),RENT,REUS,REFR

 Appendix E: Exit Routines E-1

Appendix E

Thread/SERIES

Exit Routines

E.1 Concepts and Facilities

Thread/SERIES can be customized and extended through vendor supplied and/or site
written exit routines that get control when installation specified criteria are met. Exit
routines receive all available information about the selected thread and can perform non-
standard and/or site specific processing as appropriate. For example, one exit routine
supplied by Relational Architects cancels the ISPF logical screen associated with a DB2
thread while a site written routine might be designed to issue commands to a DB2
gateway product.

This Appendix describes:

• How to develop Thread/SERIES exit routines to handle non-standard processing

requirements. Sections E.2 to E.5 describe how Thread/SERIES exit routines are
designed and coded. They also discuss how site written exit routines can request
standard cancellation, auditing and notification services from Thread/SERIES.

• How to define exit routines (both site written and vendor supplied) to Thread/SE-

RIES. (Section E.6)

• How to define the criteria and circumstances under which Thread/SERIES will

implicitly invoke an exit routine to perform non-standard processing. (Section E.7).

E-2 Thread/SERIES Guide and Reference

E.2 Exit environment

Thread/SERIES exit routines are invoked via standard CALL statements under the
following circumstances:

• An exit routine is called explicitly when a Thread/SENTRY policy statement

specifies an action of PGM. (See Chapter 10 for details). For example:

LIMIT
 ACTION(PGM,exitrtn)

• An exit routine is called implicitly when a thread selected by any Thread/SERIES

component matches the identification pattern specified by an entry in the currently
active non-standard processing table. (Section E.7).

Any exit routines you develop must conform to these rules:

• It must be written in assembler.

• It must be written to be reentrant and must restore registers before return.

• It must be link-edited with the REENTRANT parameter.

• It must not issue DB2 commands, SQL statements and/or IFI requests.

• It must reside in an authorized program library.

• The names of site written exit routines should not start with the letters ‘TTS’ so as to
not conflict with the names of Thread/SERIES modules.

An exit routine runs as an extension of Thread/SERIES and has all its privileges. It can
therefore impact your DB2 subsystems as well as the operating system. Exit routines
should not be changed nor modified while Thread/SERIES is running. Although Thread
/SERIES has its own recovery facilities, your exit routines can establish supplemental
recovery routines of their own.

The execution environment for Thread/SERIES exit routines is as follows:

• problem state

• Authorized

• 24 or 31 bit addressing mode

• Enabled for interrupts

• PSW key 8

• No MVS locks held

• Non Cross-memory mode

 Appendix E: Exit Routines E-3

E.3 Parameter list on entry

When Thread/SERIES passes control to an exit routine, the registers are set as follows:

Register Contents
---------- ---
R1 Address of the parameter list passed to the exit routine

R13 Address of the register save area

R14 Return address

R15 Entry point address of the exit routine

Register 1 points to a three word parameter list as follows:

Register 1-> +---+

 | Address of Instrumentation Facility Record. |

 | The QWIW structure is mapped by macro DSNDQWIW |

 |---|

 | Address of QWT0, the IFC Self Defining Section. |

 | The QWT0 structure is mapped by macro DSNDQWT0 |

 |---|

 | Address of XPS, the eXit Parameter Structure. |

 | The XPS structure is mapped by macro TTS@XPS |

 +---+

Figure E.1: Parameter List passed to Thread/SERIES Exit Routines

NOTE: The annotated example in Section E.5 illustrates the coding
necessary to address the discrete parameters passed in the parameter list.

Thread/SERIES exit routines receive the three parameters described above for active
threads for which IFC 0148 records are available. Exit routines receive the same
parameters for inactive database access threads -- even though no IFC 0148 records are
available. Thread/SERIES maps the limited information available for an inactive
database access thread into the same IFC 0148 record format applicable to active threads.

E-4 Thread/SERIES Guide and Reference

E.4 The Thread/SERIES eXit Parameter Structure (XPS)

Thread/SERIES passes the Exit Parameter Structure (XPS) illustrated in Figure E.2 to
both site written and vendor supplied exit routines. The XPS is mapped by macro
TTS@XPS in the TTSMACS library. The XPS provides the exit routine with input
values and a work area for its own use. Additional fields in the XPS allow the exit
routine to communicate, in turn, with Thread/SERIES.

Figure E.2 illustrates the field structure of the XPS. Individual fields are described in the
subsections which follow:

Field Hex offset Data Type Description
-------- ---------- ------------ ------------------------------------

e(X)it (P)arameter (S)tructure
*

Values passed from Thread/SERIES to the Exit routine
*
XPSPVS 0 Structure Passed values structure
XPSID 0 Character 4 Eye catcher = 'XPS'
XPSTAC 4 Hex 2 Thread/SERIES abend code (12 bits)
XPSTRC 6 Hex 4 Thread/SERIES reason code (32 bits)
XPSWORK@ C Pointer 2 -> Exit's persistent work area
XPSWORK# 10 Integer 4 Length of exit's work area
XPSTCB@ 14 Pointer 4 TCB address of the target thread
* (QW0148MT is the jobstep TCB addr)
* 0 for an inactive DDF thread
XPSJOBNM 18 Character 8 Jobname of the target thread
XPSFLAG1 20 Bit Flag 1 Invocation circumstances
XPS1ACT EQU B'10000000' Bit 0 on: An active Thread
* Bit 0 off: An inactive DDF thread
XPS1MAN EQU B'01000000' Bit 1 on: Exception triggered
* manually
* Bit 1 off: Violation detected
* automatically
 21 Character 3 Reserved
*
*

Values returned by the Exit routine
*
XPSRVS 24 Structure Returned values structure
XPSRC1 24 Integer 4 Exit return code
XPSRC2 28 Integer 4 Exit reason code
 2C Character 8 reserved
*
*

The exit routine can set (or change) bits in the field named XPSFLAG2 to
indicate what further processing Thread/SERIES should perform -- after the
exit routine returns control.

Thread/SERIES sets these bits ON before calling the exit.
*
XPSFLAG2 34 Bit Flag 1 Actions after exit completes
XPS2AUD EQU B'10000000' Bit 0 on: Audit this action
* Bit 0 off: Do not audit action

 Appendix E: Exit Routines E-5

XPS2POP EQU B'01000000' Bit 1 on: Display POPUP window
* (applies to Thread/STOPPER dialog)
* Bit 1 off: No POPUP window
XPS2UNOT EQU B'00100000' Bit 2 on: Notify user
* Bit 2 off: No user notification
XPS2ANOT EQU B'00010000' Bit 3 on: Notify administrators
* Bit 3 off: No administrator notify
*
*

The following values are inserted as columns of a row in the Thread_Audit
table when the XPS2AUD bit is set to 1. The line following each field name
identifies its corresponding column within the Thread_Audit table. Thread/
SERIES initializes these fields with appropriate values before calling the exit.
*
XPSACT 35 Char 12 Action taken (e.g. Cancel)
* Thread_Audit.Action_Taken
XPSSTAT 41 Char 12 Action status (e.g. Pending)
* Thread_Audit.Action_Status
XPSMETH 4D Char 40 Method used to take action
* Thread_Audit.Cancel_Method
XPSPID 75 Char 8 ID of violated policy
* Thread_Audit.Policy_ID
XPSREAS 7D Char 24 Reason action was taken
* Thread_Audit.Policy_Reason

Figure E.2: Fields comprising the eXit Parameter Structure

E.4.1 Values passed from Thread/SERIES to the Exit routine

Thread/SERIES passes values to your exit routine via the following fields whose names
begin with the letters “XPS”.

XPSID contains the eyecatcher ‘XPS ‘.

XPSTAC is a binary halfword whose low order 12 bits contains the system abend

code defined in the Thread/SERIES Table of System Defaults.

XPSTRC is a binary fullword which contains the 32 bit abend reason code

defined in the Thread/SERIES Table of System Defaults..

XPSWORK@ points to a persistent work area provided for the exclusive use of this

exit routine. Thread/SERIES initializes this work area to binary zeros
before invoking the exit routine for the first time. Thereafter,
Thread/SERIES does not alter the contents of this area.

XPSWORK# is a fullword binary integer containing the length of the work area

provided to the exit routine.

XPSTCB@ contains the address of the TCB associated with the target thread. This

value is set to 0 for an inactive database access thread. Note that field
QW0148MT contains the address of the jobstep TCB, not the TCB of
the task which actually established the thread.

E-6 Thread/SERIES Guide and Reference

E.4.2 Values returned by the Exit routine

XPSRC1 is a fullword binary integer which contains the return code set by the

exit routine. The conventions for return codes set by Thread/SERIES
exit routines are as follows:

• 0 means the exit routine processed the violation itself. Thread/

SERIES should perform any actions identified by flag bits set
within the XPSFLAG2 field once control returns from the exit
routine.

• A non zero return code signals Thread/SERIES to process the

violation in standard fashion, as if no exit routine were invoked.

XPSRC2 is a fullword binary integer which contains the reason code returned by

the exit routine.

XPSFLAG2 defines a set of flag bits. Your exit routine can set (or change) bits in

the XPSFLAG2 field to indicate what further processing Thread/SE-
RIES should perform -- after the exit routine returns control. Thread/
SERIES sets these bits ON before calling the EXIT.

When the XPS2AUD flag bit is on (value 1), Thread/SERIES should
insert a row into the Thread_Audit table to audit this action.
If the bit is off (value 0), this action need not be audited.

When the XPS2POP flag bit is on (value 1), the Thread/STOPPER
Dialog should display a POPUP window for a period of time to permit
any action taken by the exit routine to complete. If the bit is off (value
0), no POPUP window is displayed. (Note: The POPUP duration is
defined in the Table of System Defaults.)

Your exit routine can set the XPS2UNOT flag bit on (value 1) to direct
Thread/SERIES to send a notification to the user of the thread in
violation. If the bit is off (value 0), no user notification is sent.

Your exit routine can set the XPS2ANOT flag bit on (value 1) to direct
Thread/SERIES to send notifications to the list of IDs defined as
Thread/SERIES administrators. If the bit is off (value 0), no adminis-
trative notifications are sent.

 Appendix E: Exit Routines E-7

E.4.3 Values Inserted into Thread_Audit Columns

When the XPS2AUD bit is set to 1, the following fields supply column values for the row
inserted into the Thread_Audit table. Thread/SERIES initializes these fields with
appropriate values before calling the exit routine.

XPSACT is a twelve byte character field which identifies the action taken by the

exit routine (e.g. Cancel). Field XPSACT corresponds to the column
within the Thread_Audit table named Action_Taken.

XPSSTAT is a twelve byte character field which describes the status of the action

taken by the exit routine (e.g. Pending). XPSSTAT corresponds to the
column within the Thread_Audit table named Action_Status.

XPSMETH is a forty byte character field which describes the method used by the

exit routine to take action. (e.g. ‘Cancel ISPF Screen’). XPSMETH
corresponds to the column within the Thread_Audit table named
Cancel_Method.

XPSPID is an eight byte character field which identifies the policy whose

violation caused the exit routine to be invoked. XPSPID corresponds
to the column within the Thread_Audit table named Policy_ID.
XPSPID contains the literal ‘Manual’ when an action and exit routine
are triggered manually.

XPSREAS contains a 24 character description of the reason an action was taken

against a thread. XPSREAS corresponds to the column within the
Thread_Audit table named Policy_Reason.

E.5 An Annotated Thread/SERIES Exit Routine

A sample Thread/SERIES exit routine is provided in source form as member TTS3SXR
of the TTSCNTL library. TTS3SXR (shown in Figure E.3) illustrates coding conven-
tions for Thread/SERIES exit routines. TTS3SXR simply locates its parameters and then
returns to its Thread/SERIES caller with a return code of 4.

E-8 Thread/SERIES Guide and Reference

 TITLE 'TTS3SXR - THREAD/SERIES SAMPLE EXIT ROUTINE'
*--
*
* Entry Assumptions
* =================
*
* R15 ---> TTS3SXR entry point address
* R14 ---> caller's return address
* R13 ---> caller's save area
* R1 ---> 3 word parameter list
* Word 0 ---> QWIW: a structure mapped by DSNDQWIW
* Word 1 ---> QWT0: a structure mapped by DSNDQWT0
* Word 2 ---> XPS: a structure mapped by TTS@XPS
*
* Exit Conditions
* ===============
*
* R15 = Return code
*
* R15 = 0 means the exit processed the
* violation. Thread/SERIES should
* perform the post exit actions (if
* any) identified by flag bits set
* within the XPSFLAG2 field.
*
* R15 > 0. A non zero exit return code
* signals Thread/SERIES to process
* the violation in standard fashion,
* as if no exit routine were invoked.
*
* Register Usage
* ==============
*
* R12 ---> program base
* R11 ---> XPS
* R10 ---> QWT0
* R9 ---> QWIW:IFC record base
*
* Mapping Macros
* ==============
*
* TTS@XPS TTS exit parameter structure
* DSNDQWIW IFC record header
* DSNDQWT0 self defining section
* DSNDQW02 includes the IFC 0148 DSECT
*
*--
TTS3SXR CSECT ,
 LM R9,R11,0(R1) Locate parameters
 USING XPS,R11 map e(X)it (P)arameter (S)tructure
 USING QWT0,R10 map IFC self defining section
 USING QWIW,R9 map IFC record header
 LA R15,4 Thread/SERIES should process thread
 BR R14 Return to Thread/SERIES caller
*--
*
* Data Declarations
*
*--
 #REGEQU Set register equates
 TTS@XPS , TTS exit parameter structure
 DSNDQWIW , IFC record header
 DSNDQWT0 , Self defining section
 DSNDQW02 , Includes IFC 0148 DSECT
 END TTS3SXR

Figure E.3 Thread/SERIES Sample Exit Routine TTS3SXR

 Appendix E: Exit Routines E-9

E.5.1 Assembly and Link Edit of the Thread/SERIES Exit Routine

Member TTSJSXR of the TTSCNTL library contains the jobstream illustrated in Figure
E.4. This job invokes the TTSPAL procedure to assemble and link edit the Thread/
SERIES sample exit routine named TTS3SXR. Be sure to edit JCL member TTSJSXR
with CAPS ON since it contains comments in lowercase.

//jobname JOB (account) (1)
//* <optional JCLLIB statement> (2)
//TTS3SXR EXEC TTSPAL, <- Invoke the procedure TTSPAL

// MEMBER=TTS3SXR <- Thread/SERIES Sample Exit routine

where

(1) Provide a valid JOB statement.

(2) Add a JCLLIB statement to identify the TTSCNTL dataset if the

procedures TTSPAL and RAIAL do not reside within one of your site's
catalogued procedure libraries.

Figure E.4 Assemble and Link Edit the Thread/SERIES sample exit routine

E.6 Defining Exit Routines to Thread/SERIES

Both vendor-supplied and site-written exit routines must be defined to Thread/SERIES
before they can be used. This is true both for routines that are implicitly invoked by
Thread/SERIES as well as exit routines that are explicitly invoked through the ACTION
operand of a Thread/SENTRY policy.

Thread/SERIES provides three macros for the purpose of defining your site written exit
routines (to add to those provided by Relational Architects). All three macros reside in
the macro library whose low level qualifier is TTSMACS. Section E.6.1 provides an
annotated example of coding a Thread/SERIES Table of Exit Routines using these
macros. Section E.6.2 documents the Thread/SERIES exit definition macros themselves
and Section E.6.3 illustrates a job with which to assemble and link edit a Thread/ SERIES
Table of Exit Routines.

E-10 Thread/SERIES Guide and Reference

E.6.1 The Sample Table of Thread/SERIES Exit Routines - TTS$TXR

The source module within member TTS$TXR of the TTSCNTL library illustrates how
to define exit routines to Thread/SERIES. The numbers in parentheses to the right of the
Assembler language source statements correspond to the numbered, annotating
paragraphs which follow.

 TITLE 'TTS$TXR - THREAD/SERIES TABLE OF EXIT ROUTINES'

TTS$TXR TTS#TXRI (1)
 TTS#TXR EXIT=TTS3SXR,WORKLEN=1000 (2)
 TTS#TXR EXIT=TTS3CLS,WORKLEN=100 (3)
 TTS#TXRF (4)
 END (5)

where

(1) The label field of the TTS#TXRI macro provides the name of the CSECT. The

TTS#TXRI macro, the initial macro of the TTS#TXRx macro set, is described in
Section E.6.2.1.

(2) The TTS#TXR macro (described in Section E.6.2) defines a single exit routine

to Thread/SERIES. This instance of the TTS#TXR macro defines the sample
exit routine named TTS3SXR.

(3) This instance of the TTS#TXR macro defines load module TTS3CLS as a

Thread/SERIES exit routine. Relational Architects supplies the TTS3CLS exit
routine to cancel the ISPF logical screen associated with a DB2 thread

(4) The TTS#TXRF macro (described in Section E.6.2) must be coded last to

generate the Thread/SERIES exit routine table.

(5) The END instruction, as the last source statement, terminates the assembly of

the program.

Figure E.6 The Sample TTS$TXR Source Module

 Appendix E: Exit Routines E-11

E.6.2 The TTS#TXRx Macro Set

E.6.2.1 TTS#TXRI

TTS#TXR is the initial macro of the TTS#TXRx macro set. The TTS$TXRI macro
must be specified first, before any other TTS#TXRx macros are coded. TTS#TXRI
generates the CSECT header for a Table of Thread/SERIES Exit Routine definitions.
The label field of the TTS#TXRI macro provides the name of the CSECT. The default
CSECT name (if a label is omitted) is TTS$TXR. This macro has no other operands.

E.6.2.2 TTS#TXR

Each instance of the TTS#TXR macro defines a single exit routine to Thread/SERIES.
These exit routines are referenced:

• explicitly by Thread/SENTRY policies whose ACTION operands name the exit

routine (See Chapter 10).

• implicitly when a thread selected by any Thread/SERIES component matches the

identification pattern specified by an entry in the currently active non-standard
processing table. (See Section E.7).

TTS#TXR macros must be specified after the TTS#TXRI macro. Figure E.7 illustrates
the TTS#TXR macro and its operands.

 TTS#TXR &EXIT=, exit name +
 &WORKLEN=, length of persistent work area +
 &DOC=NO

where

EXIT specifies the name of the exit routine load module. This name may be up to 8

characters long.

WORKLEN specifies the length of a persistent work area acquired by Thread/SERIES for

the exclusive use of this exit routine. Thread/SERIES initializes this work area
to binary zeros. Thereafter, data saved in this work area is available to the
exit routine across multiple invocations.

Figure E.7 The TTS$TXR Macro and its Operands

E-12 Thread/SERIES Guide and Reference

E.6.2.3 TTS#TXRF

TTS#TXRF is the final macro of the TTS#TXRx macro set. The TTS#TXRF macro
must be coded last to generate the Thread/SERIES exit routine table. The TTS#TXRF
macro has no operands.

E.6.3 Building a Thread/SERIES Table of Exit Routines

Member TTSJTXR of the TTSCNTL library contains the jobstream illustrated in Figure
E.8. This job invokes the TTSPAL procedure to assemble and link edit the Thread/
SERIES Table of Exit routines (Load module TTS$TXR). Be sure to edit JCL member
TTSJTXR with CAPS ON since it contains comments in lowercase.

__

//jobname JOB (account) (1)
//* <optional JCLLIB statement> (2)
//TTS$TXR EXEC TTSPAL, <- Invoke the procedure TTSPAL

// MEMBER=TTS$TXR <- Thread/SERIES Table of Exit Routines

where

(1) Provide a valid JOB statement.

(2) Add a JCLLIB statement to identify the TTSCNTL dataset if the

procedures TTSPAL and RAIAL do not reside within one of your
site's catalogued procedure libraries.

__

Figure E.8 Assemble and Link Edit the Sample Table of Exit Routines

One or more load modules can be created, each of which defines a discrete Thread/SE-
RIES Table of Exit Routines. The default name is TTS$TXR. This default may be
overridden by rebuilding the Thread/SERIES Table of System Defaults (load module
TTS$TSD) as described in Section 20.14. Alternatively, you can specify use of another
Exit Routine Table through the Thread/SENTRY MONITOR statement (described in
Chapter 10).

 Appendix E: Exit Routines E-13

E.7 Defining Criteria for Non-Standard Processing

Thread/SERIES allows you to define criteria under which a Thread/SERIES exit routine
should be implicitly invoked. An exit routine is called implicitly when a thread selected
by any Thread/SERIES component matches the identification pattern specified by an
entry in the currently active non-standard processing table described in this section.

Thread/SERIES provides three macros for the purpose of defining threads for which non-
standard processing is appropriate. All three macros reside in the macro library whose
low level qualifier is TTSMACS. Section E.7.1 provides an annotated example of coding
a Thread/SERIES Table of Non-Standard Processing definitions using these macros.
Section E.7.2 provides detailed documentation of the Thread/SERIES macro set with
which to define non-standard processing criteria, while Section E.7.3 illustrates a job to
assemble and link edit a Table of Non-Standard Processing as a Thread/SERIES load
module.

E.7.1 TTS$TNS - The Sample Table of Non-Standard Processing

The source module within member TTS$TNS of the TTSCNTL library illustrates how to
define threads for which non-standard processing is required. It further illustrates how to
specify the exit routine to be invoked when Thread/SERIES identifies a thread which
meets the non-standard processing criteria.

 TITLE 'TTS$TNS - THREAD/SERIES NON-STANDARD PROCESSING TABLE'

TTS$TNS TTS#TNSI (1)
 TTS#TNS PLAN=TTSIVPS,EXIT=TTS3SXR (2)
 TTS#TNS PLAN=TTSIVPI,EXIT=TTS3CLS (3)
 TTS#TNS PLAN=F2PLN361,EXIT=TTS3CLS (4)
 TTS#TNS DSN=DSN, DB2 subsystem name (5) +
 PLAN=PPPP_PPPP, Plan name for thread +
 PGM=YYY%YYY, program name (package or dbrm) +
 AUTHID=AAAA_A_A, DB2 authorization id +
 JOBNAME=JJJJ%JJJ, jobname +
 CORR=12346789012, correlation id +
 CONNAME=CICS_XXX, connection name +
 CONTYPE=6, connection type +
 EXIT=XXXXXXXXX exit name

 TTS#TNSF (6)
 END TTS$TNS (7)

where

(1) The label field of the TTS#TNSI macro provides the name of the CSECT. TTS#TNSI,
the initial macro of the TTS#TNSx macro set, is described in Section E.7.2.1.

(2) The TTS#TNS macro (described in Section E.7.2.2) provides a single non-standard
processing specification. This instance of the TTS#TNS macro specifies that when a
violation occurs with a thread whose plan name is TTSIVPS, Thread/SERIES should
invoke the sample exit routine named TTS3SXR.

E-14 Thread/SERIES Guide and Reference

(3) This instance of the TTS#TNS macro specifies that when a violation occurs with a
thread whose plan name is TTSIVPI, Thread/SERIES should invoke the exit routine
named TTS3CLS. This RAI supplied exit routine cancels the ISPF logical screen
associated with a DB2 thread.

(4) This instance of the TTS#TNS macro directs Thread/SERIES to invoke the exit
routine named TTS3CLS when any thread whose plan name is F2PLN361 incurs a
violation.

(5) This instance of the TTS#TNS macro illustrates TTS#TNS coding using the SQL
wild card characters _ and %. The operands of the TTS#TNS macro are described
in detail in Section E.7.2.2.

(6) The TTS#TNSF macro (described in Section E.7.2.3) must be coded last to generate
the Thread/SERIES Table of Non-Standard Processing.

(7) The END instruction, as the last source statement, terminates the assembly of the
program.

Figure E.9 The Sample Table of Non-Standard Processing

E.7.2 The TTS#TNSx Macro Set

E.7.2.1 The TTS#TNSI Macro

TTS#TNSI is the initial macro of the TTS#TNSx macro set. The TTS$TNSI macro must
be specified first, before any other TTS#TNSx macros are coded. TTS#TNSI generates
the CSECT header for a Thread/SERIES Table of Non-Standard Processing definitions.
The label field of the TTS#TNSI macro provides the name of the CSECT. The default
CSECT name (if a label is omitted) is TTS$TNS. The TTS#TNSI macro has no other
operands.

E.7.2.2 The TTS#TNS Macro

The TTS#TNS macro defines a thread or set of threads for which Thread/SERIES should
perform non-standard processing. The TTS#TNS macro also identifies the exit routine to
be called when such a thread is encountered. TTS#TNS macros must be specified after
the TTS#TNSI macro. Figure E.10 illustrates the TTS#TNS macro and its operands.

 Appendix E: Exit Routines E-15

 TTS#TNS &DSN=, DB2 Subsystem Name +
 &PLAN=, plan name (may specify pattern) +
 &PGM=, program name (package or dbrm) +
 &AUTHID=, DB2 authorization id +
 &JOBNAME=, jobname +
 &CORR=, correlation id +
 &CONNAME=, connection name +
 &CONTYPE=, connection type +
 &EXIT=, exit name +
 &DOC=NO

Figure E.10 The TTS#TNS Macro and its Operands

Except for the EXIT operand which is required, all the other thread selection operands of
the TTS#TNS macro are optional.

DSN specifies the name of the DB2 subsystem in which the thread may run. If the

DSN operand is blank or omitted, then a thread running on any DB2
subsystem is eligible for selection on the basis of the remaining criteria. If
DSN is specified, then only threads executing on that particular DB2
subsystem are eligible for selection.

PLAN specifies the name of the DB2 application plan associated with the thread.

Plan name may be up to 8 characters long and may specify a pattern using the
SQL wild card characters _ and %.

PGM specifies the name of the program (corresponding to a DB2 package or

DBRM) that is currently associated with the thread. PGM may be up to 8
characters long and may specify a pattern using the SQL wild card characters
_ and %.

AUTHID specifies the DB2 authorization ID associated with the thread. AUTHID may

be up to 8 characters long and may specify a pattern using the SQL wild card
characters _ and %.

JOBNAME specifies the name of the job associated with the thread. JOBNAME may be

up to 8 characters long and may specify a pattern using the SQL wild card
characters _ and %.

CORR specifies the DB2 Correlation ID associated with the thread. CORR may be

up to 12 characters long and may specify a pattern using the SQL wild card
characters _ and %.

CONNAME specifies the DB2 connection name associated with the thread. CONN may

be up to 8 characters long and may specify a pattern using the SQL wild card
characters _ and %.

CONTYPE specifies the DB2 connection type associated with the thread. CONTYPE, if

specified, must correspond to one of the allowable values for the field labeled
QWHCATYP in mapping macro DSNDQWHC in the SDSNMACS library.

E-16 Thread/SERIES Guide and Reference

For example, a value of X'1' denotes TSO attach while X'2' indicates
DB2 call attach. No pattern may be specified for CONTYPE.

EXIT is the only required operand. It identifies the exit routine to be called when a

thread meeting the selection criteria specified by the other operands is
encountered. The named EXIT must in turn be defined in a Thread/SERIES
Exit routine table.

E.7.2.3 The TTS#TNSF Macro

TTS#TNSF is the final macro of the TTS#TNSx macro set. The TTS#TNSF macro
must be coded last to generate the Thread/SERIES Table of Non-Standard Processing
definitions. The TTS#TNSF macro has no operands.

E.7.3 Building the TTS$TNSF Load Module

Member TTSJTNS of the TTSCNTL library contains the jobstream illustrated in Figure
E.11. This job invokes the TTSPAL procedure to assemble and link edit the Thread/
SERIES Table of Non-Standard Processing definitions (Load module TTS$TNS). Be
sure to edit JCL member TTSJTNS with CAPS ON since it contains comments in
lowercase.

//jobname JOB (account) (1)
//* <optional JCLLIB statement> (2)
//TTS$TNS EXEC TTSPAL, <- Invoke the procedure TTSPAL

// MEMBER=TTS$TNS <- Thread/SERIES tbl of non std processing

where

(1) Provide a valid JOB statement.

(2) Add a JCLLIB statement to identify the TTSCNTL dataset if the procedures

TTSPAL and RAIAL do not reside within one of your site's catalogued
procedure libraries.

Figure E.11 Assemble and Link Edit the Sample Table of Non-Standard Processing

One or more load modules can be created, each of which defines a discrete Thread/
SERIES Table of Non-Standard Processing. The default name is TTS$TNS. This
default may be overridden by rebuilding the Thread/SERIES Table of System Defaults
(load module TTS$TSD) as described in Section 20.14. Alternatively, you can specify
use of another Non-Standard Processing table through the Thread/SENTRY MONITOR
statement (described in Chapter 10).

 Appendix F: Defining Thread/SERIES No Action Criteria F-1

Appendix F

Defining Thread/SERIES

No Action Criteria

Thread/SERIES allows you to predefine criteria for which Thread/SERIES actions should
be implicitly suppressed. An action is suppressed when a thread selected by
Thread/SENTRY or the Thread/STOPPER ISPF dialog matches an entry in the currently
active No Action table described below.

Thread/SERIES provides three macros for the purpose of defining threads for which one
or more actions are inappropriate. All macros reside in the macro library whose low level
qualifier is TTSMACS. Section F.1 provides an annotated example of coding a
Thread/SERIES Table of No Action definitions using these macros. Section F.2 provides
detailed documentation of the Thread/SERIES macro set with which to define No Action
processing criteria, while Section F.3 illustrates a job to assemble and link edit a Table of
No Action definitions as a Thread/SERIES load module.

F-2 Thread/SERIES Guide and Reference

F.1 TTS$TNA - The Sample Table of No Action definitions

A sample Thread/SERIES Table of No Action definitions appears in Figure F.1.

__

 TITLE 'TTS$TNA - Thread/SERIES No Action definitions'
TTS$TNA TTS#TNAI (1)
 TTS#TNA JOBNAME=BACKUP, No actions are allowed against (2)+
 ACTION_SUPPRESSED=ANY job BACKUP
 TTS#TNA JOBNAME=RTS%, Never Cancel, Force or Quiesce (3)+
 ACTION_SUPPRESSED=(CANCEL,FORCE,QUIESCE) any RTS jobs
 TTS#TNA PLAN=SRS%, Never quiesce address spaces (4)+
 JOBNAME=RJS%, when job name is like 'RJS%' and +
 ACTION_SUPPRESSED=QUIESCE plan name is like 'SRS%'
*
* The following illustrates TTS#TNA coding using
* the SQL wild card characters _ and %.
* (5)
 TTS#TNA DSN=DSN, DB2 subsystem name +
 PLAN=PPPP_PPP, Plan name for thread +
 PGM=YYY%YYY, program name (package or DBRM) +
 AUTHID=AAAA_A_A, DB2 authorization id +
 JOBNAME=JJJJ%JJJ, jobname +
 CORR=12346789012, correlation id +
 CONNAME=CICS_XXX, connection name +
 CONTYPE=6, connection type +
 ACTION_SUPPRESSED=KILL Never KILL such CICS thread
*
 TTS#TNAF (6)
 END TTS$TNA (7)

where

(1) The label field of the TTS#TNAI macro provides the name of the CSECT.
TTS#TNAI, the initial macro of the TTS#TNAx macro set, is described in Section
F.2.1.

(2) The TTS#TNA macro (described in Section F.2.2) provides a single No Action
specification. This instance of the TTS#TNA macro invalidates any action against a
thread whose job name is BACKUP.

(3) This instance of the TTS#TNA macro suppresses the multiple actions CANCEL,
FORCE and QUIESCE against any thread whose job name matches the pattern
'RTS%'.

(4) This instance of the TTS#TNA macro suppresses the QUIESCE action against any
thread whose job name is like 'RJS%' and whose plan name is like 'SRS%'.

(5) This instance of the TTS#TNA macro illustrates TTS#TNA coding using the SQL
wild characters _ and %. The operands of the TTS#TNA macro are described in
detail in Section F.2.2.

 Appendix F: Defining Thread/SERIES No Action Criteria F-3

(6) The TTS#TNAF macro (described in Section F.2.3) must be coded last to generate
the Thread/SERIES Table of No Action definitions.

(7) The END instruction, as the last source statement, terminates the assembly of the
program.

__

Figure F.1 The Sample Table of No Action definitions

F.2 The TTS#TNAx Macro Set

F.2.1 The TTS#TNAI Macro

TTS#TNAI is the initial macro of the TTS#TNAx macro set. The TTS#TNAI macro
must be specified first, before any other TTS#TNAx macros are coded. TTS#TNAI
generates the CSECT header for a Thread/SERIES Table of No Action definitions. The
label field of the TTS#TNAI macro provides the name of the CSECT. The default
CSECT name (if a label is omitted) is TTS$TNA. The TTS#TNAI macro has no other
operands.

F.2.2 The TTS#TNA Macro

The TTS#TNA macro defines a thread or set of threads for which Thread/SENTRY and
the Thread/STOPPER ISPF dialog should suppress one or more predefined actions.
TTS#TNA macros must be specified after the TTS#TNAI macro. The following figure
illustrates the TTS#TNA macro and its operands.

__

 TTS#TNA &DSN=, DB2 Subsystem Name +

 &PLAN=, Plan name +

 &PGM=, Program name (package or DBRM) +

 &AUTHID=, DB2 authorization id +

 &JOBNAME=, Jobname +

 &CORR=, Correlation ID +

 &CONNAME=, Connection name +

 &CONTYPE=, Connection type +

 &ACTION_SUPPRESSED=, One or more actions to suppress +

 &DOC=NO

__

Figure F.2 The TTS#TNA Macro and its Operands

F-4 Thread/SERIES Guide and Reference

All the thread selection operands of the TTS#TNA macro are optional but the
ACTION_SUPPRESSED operand is required.

DSN specifies the name of the DB2 subsystem in which the thread may run. If the

DSN operand is blank or omitted, then a thread running on any DB2
subsystem is eligible for selection on the basis of the remaining criteria. If
DSN is specified, then only threads executing on that particular DB2
subsystem are eligible for selection.

PLAN specifies the name of the DB2 application plan associated with the thread.

Plan name may be up to 8 characters long and may specify a pattern using the
SQL wild card characters _ and %.

PGM specifies the name of the program (corresponding to a DB2 package or

DBRM) that is currently associated with the thread. PGM may be up to 8
characters long and may specify a pattern using the SQL wild card characters
_ and %.

AUTHID specifies the DB2 authorization ID associated with the thread. AUTHID may

be up to 8 characters long and may specify a pattern using the SQL wild card
characters _ and %.

JOBNAME specifies the name of the job associated with the thread. JOBNAME may be

up to 8 characters long and may specify a pattern using the SQL wild card
characters _ and %.

CORR specifies the DB2 Correlation ID associated with the thread. CORR may be

up to 12 characters long and may specify a pattern using the SQL wild card
characters _ and %.

CONNAME specifies the DB2 connection name associated with the thread. CONN may

be up to 8 characters long and may specify a pattern using the SQL wild card
characters _ and %.

CONTYPE specifies the DB2 connection type associated with the thread. CONTYPE, if

specified, must correspond to one of the allowable values for the field labeled
QWHCATYP in mapping macro DSNDQWHC in the SDSNMACS library.
For example, a value of X'1' denotes TSO attach while X'2' indicates
DB2 call attach. Additionally, you may use the following RAI extensions to
distinguish between TSO batch and foreground threads:

CONTYPE=254 TSO foreground
CONTYPE=255 TSO batch

No pattern may be specified for CONTYPE.

ACITION_SUPPRESSED

is the only required operand. It identifies one or more actions that are
inappropriate and will be suppressed when a thread meeting the selection
criteria specified by the other operands is encountered.

 Appendix F: Defining Thread/SERIES No Action Criteria F-5

Valid settings are

CANCEL Cancel thread
DUMP Cancel with Dump
FORCE Force (abend thread)
KILL Kill (Force Purge) CICS transaction
PGM Call site written program

QUIESCE Quiesce thread’s address space. This action suppresses
action RESUME as well.

VTAM Remove thread’s VTAM or TCP/IP connection
WARN Issue a warning message
ANY All of the above

F.2.3 The TTS#TNAF Macro

TTS#TNAF is the final macro of the TTS#TNAx macro set. The TTS#TNAF macro
must be coded last to generate the Thread/SERIES Table of No Action definitions. The
TTS#TNAF macro has no operands.

F.3 Building the TTS$TNA Load Module

Member TTSJTNA of the TTSCNTL library contains the jobstream illustrated in the following figure.
This job invokes the TTSPAL procedure to assemble and link edit the Thread/SERIES Table of No Action
definitions (Load module TTS$TNA). Be sure to edit JCL member TTSJTNA with CAPS ON since it
contains comments in lowercase.

__

//jobname JOB (account) (1)
//* <optional JCLLIB statement> (2)
//TTS$TNA EXEC TTSPAL, <- Invoke the procedure TTSPAL

// MEMBER=TTS$TNA <- Thread/SERIES table of No Actions

where

(1) Provide a valid JOB statement.

(2) Add a JCLLIB statement to identify the TTSCNTL dataset if the procedures

TTSPAL and RAIAL do not reside within one of your site's catalogued
procedure libraries.

__

Figure F.3 Assemble and Link Edit the Sample Table of No Action definitions

F-6 Thread/SERIES Guide and Reference

 Appendix G: Defining Thread/SENTRY Table of Group ID definitions G-1

Appendix G

Defining Thread/SENTRY

Table of Group ID

Definitions

The Thread/SENTRY Table of Group ID definitions enable you to target multiple DB2
authorization IDs with a single LIMIT or EXCLUDE policy. Thread/SENTRY provides
three macros to aggregate numerous authorization IDs into groups. All macros reside in
the macro library whose low level qualifier is TTSMACS. Section G.1 provides an
annotated example of coding a Thread/SENTRY Table of Group ID definitions using
these macros. Section G.2 provides detailed documentation of the Thread/SENTRY
macro set with which to define said groups, while Section G.3 illustrates a job to
assemble and link edit a Table of Group ID definitions as a Thread/SENTRY load
module. Finally, Section G.4 provides an example of how to reference the defined
groups in the LIMIT policy.

G-2 Thread/SERIES Guide and Reference

G.1 TTS$TGI - The Sample Table of Group ID definitions

A sample Thread/SENTRY Table of Group ID definitions appears in Figure G.1.

__

 TITLE 'TTS$TGI - Thread/SENTRY Table of Group ID definitions'

TTS$TGI TTS#TGIH (1)
*
RAIG1 TTS#TGI AUTHID=(RAI016,RAI021,RAI039,RAI042) (2)
*
RAIG2 TTS#TGI AUTHID=(RAI01%,RAI05%,R_I99%) (3)
*
TEST TTS#TGI AUTHID=(IBMUSER, (4)+
 'This is a quite long primary authorization string ID')
*
 TTS#TGIF (5)
 END TTS$TGI (6)

where

(1) The label field of the TTS#TGIH macro provides the name of the CSECT.
TTS#TGIH, the initial macro of the TTS#TGIx macro set, is described in Section
G.2.1.

(2) The TTS#TGI macro (described in Section G.2.2) provides a single group
specification named RAIG1. This instance of the TTS#TGI macro combines four
distinct authorization IDs into one group whose name is RAIG1.

(3) This instance of the TTS#TGI macro illustrates TTS#TGI coding using the SQL wild
characters _ and %, and targets any DB2 authorization ID like ‘RAI01%’, ‘RAI05%’
or ‘R_I99%’. The group name is RAIG2.

(4) This instance of the TTS#TGI macro illustrates TTS#TGI coding when a DB2
authorization ID contains one or more blanks.

(5) The TTS#TGIF macro (described in Section G.2.3) must be coded last to generate
the Thread/SENTRY Table of Group ID definitions.

(6) The END instruction, as the last source statement, terminates the assembly of the
source module.

__

Figure G.1 The Sample Table of Group ID definitions

 Appendix G: Defining Thread/SENTRY Table of Group ID definitions G-3

G.2 The TTS#TGIx Macro Set

G.2.1 The TTS#TGIH Macro

TTS#TGIH is the initial macro of the TTS#TGIx macro set. The TTS#TGIH macro must
be specified first, before any other TTS#TGIx macros are coded. TTS#TGIH generates
the CSECT header for a Thread/SENTRY Table of Group ID definitions. The label field
of the TTS#TGIH macro provides the name of the CSECT. The required CSECT name
is TTS$TGI. The TTS#TGIH macro has no other operands.

G.2.2 The TTS#TGI Macro

The TTS#TGI macro combines one or more DB2 authorization IDs into a single group
and must follow the header macro TTS#TGIH. (see figure G.1). The label field of the
TTS#TGI macro must be specified. It identifies the group name and may be up to 32
characters long. The AUTHID operand specifies one or more DB2 authorization IDs
separated by comas. AUTHID may be up to 128 characters long and may specify a
pattern using the SQL wild card characters _ and %. The TTS#TGI macro has no other
operands.

G.2.3 The TTS#TGIF Macro

TTS#TGIF is the final macro of the TTS#TGIx macro set. The TTS#TGIF macro must
be coded last to generate the Thread/SENTRY Table of Group ID definitions. The
TTS#TGIF macro has no operands.

G.3 Building the TTS$TGI Load Module

Member TTSJTGI of the TTSCNTL library contains the jobstream illustrated in the
following figure. This job invokes the TTSPAL procedure to assemble and link edit the
Thread/SENTRY Table of Group ID definitions (Load module TTS$TGI). Be sure to
edit JCL member TTSJTGI with CAPS ON since it contains comments in lowercase.

__

//jobname JOB (account) (1)
// SET TTSHLQ='?ttshlq?' (2)
//PROCLIB JCLLIB ORDER=&TTSHLQ..TTSCNTL

//TTS$TGI EXEC TTSPAL, <- Invoke the procedure TTSPAL

// MEMBER=TTS$TGI, <- Thread/SENTRY Table of Group IDs

// HLQ=&TTSHLQ

where

G-4 Thread/SERIES Guide and Reference

(1) Provide a valid JOB statement.

(2) Replace ?ttshlq? with the high level qualifier of Thread/SERIES product libraries

restored onto DASD at your site.

Figure G.2 Assemble and Link Edit the Sample Table of Group ID definitions

G.4 Using TTS$TGI groups

In the following example, the LIMIT policy named POLICY1 will cancel a thread whose
primary authorization ID is defined within the sample RAIG1 group (see figure G.1) and
issues more than 10,000 GETPAGE requests.

LIMIT
 PID(POLICY1)
 GROUPID(RAIG1)
 MAX_GETPAGES(10000)
 ACTION(CANCEL)

The sample RAIG1 group includes the following DB2 authorization IDs: RAI016,
RAI021, RAI039 and RAI042.

GROUPID may specify a pattern using the SQL wild card characters _ and %. E.g.
specifying GROUPID(RAIG%) would target the authorization IDs associated with both
the RAIG1 and RAIG2 groups defined in the sample Table of Group ID definitions
appearing above in figure G.1.

The GROUPID operand can be specified in both LIMIT and EXCLUDE policies.

 Appendix M: Thread/SERIES Messages M-1

Appendix M

Thread/STOPPER and

Thread/SENTRY Messages

Messages appear in alphabetical order.

Call Attach Facility related Messages

CAF010 - Required parameter <ssid> or :HV is missing. Identify DB2 subsystem.

CAF011 - Open failed - DSN=&THRDSN Plan=&THRPLAN RC=&ALIRC CD=&ALIRRC

CAF012 - Open failed - DSN=&THRDSN Plan=&THRPLAN RC=&ALIRC CD=&ALIRRC

CAF013 - Failed to identify DB2 application thread - CAF stmt syntax error

CAF201 - CAF CLOSE issued when there was no successful Multi/CAF OPEN

CAF202 - CAF DISCONNECT issued when there was no successful Multi/CAF CONNECT

CAF203 - Multi/CAF control blocks reset successful - ready to re-CONNECT'

CAF204 - DB2 subsystem &THRDSN is not active

CAF205 - DB2 subsystem &THRDSN is not defined

CAF206 - DB2 connection type parameter is in error

CAF207 - User ID is not authorized to use DB2

CAF208 - Task Control Block not connected to DB2

CAF209 - Connection failed - DB2=&&THRDSN is terminating

CAF210 - Application plan=&&THRPLAN is not valid

CAF212 - Maximum connections reached, attempt DB2 connection later

CAF213 - Release level mismatch between CAF modules and DB2 subsystem &THRDSN

CAF214 - User ID not authorized to use DB2 application plan &THRPLAN

CAF215 - Resource unavailable

CAF216 - CONNECT to DB2 subsystem failed - critical error - no retries will be

attempted

CAF217 - Failed to CONNECT to DB2 subsystem, holt connection retries

CAF218 - Multi/CAF DISCONNECT command failed

CAF219 - Multi/CAF OPEN plan failed - TRANSLATE was issued

CAF220 - Multi/CAF CLOSE application plan failed

CAF221 - Multi/CAF OPEN application plan failed - TRANSLATE was not issued

CAF901 - CAF error: RC = &ALIRC REASON Code = &ALIRRC

CAF902 - Thread = &THRUID DB2 Subsystem &THRDSN Plan &THRPLAN

M-2 Thread/SERIES Guide and Reference

MVS related Messages

PMV000 - Allocation error. r15 = &PMVRC, error code = &PMVEC, reason code = &PMVIC

PMV001 - &ZUSER lacks authority to access &LMDFQDSN

PMV002 - Abend &PMVAC Reason &PMVARC occurred during open processing

PMV003 - File is not open after return from Open SVC

PMV004 - CAMLST/LOCATE system service failed to retrieve DS volume serial #

PMV005 - Dataset not cataloged

PMV006 - Failed to acquire a buffer for the open file

PMV007 - Camlst/obtain system service failed to retrieve dataset label

PMV009 - Try LISTA STatus command

PMV011 - Invalid project - Reenter Project name

PMV012 - Invalid library - Reenter library name

PMV013 - Enter Type Qualifier

PMV014 - Enter closing parenthesis after member name

PMV015 - Member name must be between 1 and 8 characters long

PMV016 - No System Diagnostic Work Area available

PMV017 - Abend profile formatted from MVS System Diagnostic Work Area

PMV050 - Link to module &PMVMOD failed. Abend = &PMVAC Reason = &PMVARC

PMV051 - Attach of module &PMVMOD failed. Abend = &PMVAC Reason = &PMVARC

PMV052 - Load of module &PMVMOD failed. Abend = &PMVAC Reason = &PMVARC

PMV053 - A severe error occurred in attempting to invoke exec &PMVEXEC

PMV054 - Recursive abend detected - PMVRTM1 will NOT attempt retry

RFARMD Messages

RAI000 - Report process unable to match issuing macro name &RFAMACRO

RAI Password Verification Messages

RAI002E - First specify &RAIPROD / &RAIVRM CPU passwords

RAI003E - &RAIPROD / &RAIVRM usage has expired on CPU &RAICPU using passwords

RAIPSWD1 / &RAIPSWD2 - contact vendor

RAI004W - &RAIPROD / &RAIVRM usage has &RAIDAYS days remaining on CPU &RAICPU using

passwords &RAIPSWD1 / &RAIPSWD2 - contact vendor

RAI005E - &RAIPROD Version &RAIVRM not authorized on CPU &RAICPU using passwords

&RAIPSWD1 / &RAIPSWD2 - contact vendor

RAI006E - CPU serial &RAICPU not authorized to run &RAIPROD Release &RAIVRM using

passwords &RAIPSWD1 / &RAIPSWD2 - contact vendor

Report Process Messages

RAI500I - Report process for &&PVTNAME is starting

RAI501I - Report process start completed for &&PVTNAME

RAI502I - Report process for &&PVTNAME is stopping

RAI503E - RFARMX diagnostic process ended prematurely or was never attached at all

RAI504E - jobstep will abend with U2001 and reason code 00DB2000

 Appendix M: Thread/SERIES Messages M-3

RAI DB2 related Messages

RDB000 - Failed to acquire storage for DB2 related control block

RDB001 - Process failed to acquire a large IFI return area

RFA Messages

RFA010E - process &&PVTNAME did not complete after being signaled to stop

RFA011E - process &&PVTNAME is being forcibly detached

Messages pertaining to the Call Attach Facility Interface component

RSQ010 - Call attach facility error: Return code &CAFRC1 Reason code &CAFRC2

RSQ011 - CAF CLOSE issued when there was no active OPEN

RSQ012 - CAF DISCONNECT issued when there was no active CONNECT

RSQ013 - CAF control blocks reset successfully - Ready to reconnect. This is NOT an

error!

RSQ014 - The referenced DB2 subsystem named &CAFDSN is not active

RSQ015 - The referenced DB2 subsystem named &CAFDSN does not exist

RSQ016 - DB2 connection type parameter is in error

RSQ017 - ID &ZUSER is not authorized to use DB2

RSQ018 - Task control block not connected to DB2

RSQ020 - Application plan named &CAFPLAN is not valid

RSQ021 - Either your DB2 connection ID is not authorized to use the plan named

&CAFPLAN or this plan does not exist.

RSQ022 - Resources are unavailable for plan &CAFPLAN as described by message

DSNT500I. The plan is probably not bound on subsystem &CAFDSN

RSQ023 - Maximum connections reached. Attempt DB2 connection later.

RSQ024 - Release level mismatch between CAF routines and the DB2 subsystem named

&CAFDSN

Main prolog messages

TSN010 - Thread/SENTRY requires a password load module named TSN$TPV in order to

operate but this module was not found. Please ensure this module is in the

standard MVS search order. If module TSN$TPV does not exist, call

Relational Architects or your local representative for passwords.

TSN011 - Thread/SENTRY password load module TSN$TPV is invalid. Refer to the Write

to Programmer message(s) in the JES listing that describe WHY the passwords

are invalid.

TTS010 - Thread/SENTRY failed to acquire a large block of non lifo storage

TTS011 - Thread/SENTRY main prolog failed to #GMAIN a control block

TTS012 - Thread/STOPPER failed to acquire a large IFI return area

TTS013 - Thread/STOPPER failed to create an ISPF table of DB2 subsystems

TTS014 - Thread/STOPPER failed to create an ISPF table of DB2 threads

TTS015 - Thread/STOPPER failed to start the RAI Call Attach Facility

TTS016 - As a precaution, ISPF split screen mode has been DISABLED so the

Thread/STOPPER may be connect to multiple DB2 subsystems simultaneously.

This prevents the use of a different DB2 attachment mechanism in another

M-4 Thread/SERIES Guide and Reference

ISPF logical screen whose use in such a multiple connection context can

cause severe problems.

TTS017 - Thread/STOPPER requires a password load module named TTS$TPV in order to

operate but this module was not found. Please ensure this module is in the

standard MVS search order. If module TTS$TPV does not exist, call

Relational Architects or your local representative for passwords.

TTS018 - Thread/STOPPER password load module is invalid. The previously issued line

mode (Write to Programmer) message(s) describe WHY the passwords are

invalid.

TTS019 - Thread/STOPPER failed to acquire a token scan table for its use

Subsystem selection messages

TTS020 - No DB2 subsystems are currently active

TTS021 - No DB2 subsystems are defined (none are active or even inactive)

TTS022 - Select active DB2 subsystem(s) with "S" or press END key to exit

TTS023 - A DB2 subsystem name must be specified in single subsystem mode

TTS024 - DB2 subsystem &wqaldsn is not currently active in MVS system &zsysid

TTS025 - DB2 subsystem &wqaldsn is not defined within MVS system &zsysid

TTS026 - Select one or more active DB2 subsystems with the "S" row command. Enter

the END command to process DB2 subsystem selections. Alternatively, enter

the END command without selecting any subsystems to exit immediately.

TTS027 - #LISTADD error within TTSCMDSN - contact vendor

TTS028 - ALESERV request failed within TTSCMDSN - contact vendor

Thread qualification messages

TTS030 - Qualify which DB2 threads are of interest and press ENTER. To see all

threads, press ENTER without supplying any qualifications. Press the END

key to return to the DB2 subsystem selection display.

TTS031 - Thread/STOPPER terminated since no DB2 subsystems were selected

TTS032 - Load module libraries for DB2 subsystem &TDSDSN must be allocated to the

DDname &TDSDSN.LOAD

TTS033 - Internal error - CR_THREAD request for DB2 subsystem &tdsdsn failed

TTS034 - Internal error - Failed to connect to DB2 subsystem &tdsdsn

TTS035 - IFI error: Return code = &IFCARC1, Reason code = &IFCARC2

TTS036 - No threads match the qualifications specified. Please respecify or simply

provide NO qualifications to view all current threads.

TTS037 - TTS internal error - failed to remove thread &tdsthr@

TTS038 - TTS internal error - what should this text say?

TTS039 - Internal error - failed to close MONITOR plan for subsystem &tdsdsn

DB2 subsystem selection messages

TTS040 - DB2 subsystem(s) selected. Continue to scroll or ENTER to process

TTS041 - DB2 subsystem &tdsdsn is not active

TTS042 - The only valid row command is S

TTS043 - Qualify which DB2 threads are of interest and press ENTER. To see all

threads, press ENTER without supplying any qualifications. Press the END

key to exit Thread/STOPPER altogether.

 Appendix M: Thread/SERIES Messages M-5

DB2 thread selection messages

TTS050 - Press ENTER to update statistics, enter CMD letter or hit PF3 to exit

TTS051 - Local thread (DB2 SSID: &tdtdsn, Plan: &tdtplan, Correlation ID: &tdtcorr,

DB2 auth ID: &tdtauth) terminated successfully

TTS052 - Thread &tdtcorr &tdtplan &tdtconn already terminated

TTS053 - (S)elect a thread for inspection and possible cancellation

TTS054 - Job &tdtjobnm / Address Space &tdtasid is no longer active

TTS055 - DB2 thread for Plan: &tdtplan, DB2 Auth ID: &tdtauth, Job: &tdtjobnm,

Address space: &tdtasid, TCB address &tdttcb@ is no longer active

TTS056 - Internal error on #CALLRTM service for TCB &tdttcb@ / address space &tdtasid

/ jobname &tdtjobnm

TTS057 - DB2 thread for Plan: &tdtplan, DB2 Auth ID: &tdtauth, Job: &tdtjobnm,

Address space: &tdtasid, TCB address &tdttcb@ was abended with system code

&tmvac# and abend reason code &tmvarc#'

TTS058 - The combination of thread type and thread status make the thread ineligible

for cancellation

TTS059 - No action taken for the DB2 thread associated with Plan: &tdtplan, DB2 Auth

ID: &tdtauth, Job: &tdtjobnm and Address space: &tdtasid

DB2 thread mapping messages

TTS060 - TTS internal error - not processing IFCID 0148'

TTS061 - TTS internal error - not processing an IFI Correlation Header

TTS062 - The two megabyte buffer supplied by Thread/STOPPER on a IFI READS request

exceeds the maximum length supported by this maintenance level of DB2 V2.3.

Ask your DB2 systems programmer to apply fixes for DB2 APARs PN28197 and

PN34186 that will enable Thread/STOPPER to operate.

TTS063 - IFI READS error: Return code = &IFCARC1, Reason code = &IFCARC2

TTS064 - The only valid selection command is "S"

TTS065 - The only valid selection command is "S"

TTS066 - A TTS IFI record SNAP request has failed

TTS067 - READS request for 0148 record qualified by WQALUNIQ not found in IFI return

area. Notify vendor.

DB2 thread termination messages

TTS070 - The selected thread is not eligible to be canceled because it is already

being deleted by DB2. If essential, use the FORCE command.

TTS071 - TTS internal error - failed to find matching DB2 subsystem row

TTS072 - TTS internal error - cross memory move failed

TTS073 - Failed to switch to the thread for DB2 subsystem &TDSDSN

TTS074 - DB2 subsystem &tdsdsn has accepted the request to terminate IBM DB2 utility

&tduutil, ID &tduuid, User &tduuser at its next cleanup point

TTS075 - Thread/STOPPER does not support BMC DB2 utilities at this time. Use the

BMCDSN command processor instead

TTS076 - IBM DB2 utility &tduutil, ID &tduuid, User &tduuser was successfully

terminated at a cleanup point

TTS077 - IBM DB2 utility &tduutil, ID &tduuid, User &tduuser is NOT yet canceled.

Press ENTER to track cancellation progress or issue a (F)orce command.

M-6 Thread/SERIES Guide and Reference

TTS078 - The selected thread is not eligible to be canceled or forced right now

because it is running under a task within the DB2 system services address

space for &tdsdsn (ASID &tdsasid). If the jobname changes back from

&tdsproc, you can try the (C)ancel command again. Otherwise, DB2 may be

recognizing End-of-Task or End-of-Memory for the thread.

TTS079 - Thread/STOPPER should not be canceled. Simply exit the dialog.

IBM DB2 utility threads, messages

TTS080 - Internal -DISPLAY UTILITY error: Return code = &IFCARC1 Reason code =

&IFCARC2

TTS081 - The DB2 utility thread you selected to terminate Jobname &tdtjobnm,

Correlation ID &tdtcorr and DB2 Auth ID &tdtauth is not presently known to

DB2 subsystem &tdsdsn. If the thread 'exists, wait a few moments and try the

(C)ancel command again. By then the thread may be registered as an active

UTILITY.

TTS082 - Confirm DB2 utility termination or enter the END command to bypass

TTS083 - Select which DB2 utility you wish to terminate by keying an "S" in its row

selection field. Enter the END command to bypass

TTS084 - TERM UTILITY command error: Return code = &IFCARC1 Reason code = &IFCARC2

TTS085 - Specify Y to cancel DB2 utility thread or N to bypass

TTS090 - Failed to create an ISPF table for DB2 utility threads

TTS091 - &tmvtext

DB2 utilities, messages

TTS100 - DB2 utility thread selected. Press END key to continue

TTS101 - Select just one DB2 utility job from among the candidates displayed below

that corresponds to DB2 thread &tdtcorr, &tdtjobnm, &tdtauth

TTS102 - The only valid row command is "S"

DB2 thread termination messages

TTS110 - Your DB2 thread (Plan: &tdtplan, DB2 auth ID: &tdtauth)

TTS111 - is being deliberately terminated. Your DB2 application will abend

TTS112 - with system abend code &tmvac# and an abend reason code of &tmvarc#.

TTS113 - The selected thread no longer exists. No action taken.

TTS114 - The TSO user failed to receive &tmvlml# (of 3) lines of abend notification

text (because no terminal buffers were available).

TTS115 - No change in inactive DDF thread statistics

TTS116 - Inactive (IDLE) threads list could not be obtained

TTS117 - Failed to acquire pseudo QWIW and QWT0 - notify vendor

TTS118 - Error occured during non standard processing initialization

Thread Summary Primary Commands, messages

TTS120 - No primary commands are supported from this display at this time

TTS121 - Threads sorted in plan name order

 Appendix M: Thread/SERIES Messages M-7

DB2 TRACE Commands, messages

TTS130 - You lack the authority to issue a -START TRACE command (through the

Thread/STOPPER) on DB2 subsystem &tdsdsn..

Ask your DB2 security administrator to grant you at least MONITOR1 and

preferably MONITOR2 authority. Otherwise, you cannot utilize the

Thread/STOPPER.

TTS131 - STOP TRACE request on DB2 subsystem &tdsdsn failed

TTS133 - START TRACE request on DB2 subsystem &tdsdsn failed

TTS134 - DB2 command on subsystem &tdsdsn failed

Thread/STOPPER initialization messages

TTS140 - The Relational Architects extended SVC is not properly installed.

Thread/STOPPER requires this SVC to operate. Check with your Thread/STOPPER

installer and/or MVS systems programmer to ensure the RAI extended SVC is

link edited into SYS1.LPALIB or one of its extensions. Futher, the SVC must

become part of the live LPA through an IPL with the CLPA option. See the

Thread/STOPPER installation chapter for details.

Canceling discrete threads

TTS150 - The selected thread (ACE token &tdtace@, plan &tdtplan, auth ID &tdtauth) no

longer exists on subsystem &tdtdsn

TTS151 - START TRACE request on DB2 subsystem &tdsdsn failed

TTS152 - STOP TRACE request on DB2 subsystem &tdsdsn failed

TTS153 - SQL INSERT to Thread/STOPPER audit table failed with SQLCODE = &sqlcode

TTS154 - DB2 has queued thread (plan &tdtplan, auth ID &tdtauth) for deletion on

subsystem &tdtdsn as a consequence of cancellation method: "&tcpmeth"

TTS155 - Cancellation method: "&tcpmeth" did not work for (plan &tdtplan, auth ID

&tdtauth) on subsystem &tdtdsn

TTS156 - The thread you selected to cancel (Plan &tdtplan, Auth ID &tdtauth Subsystem

&tdtdsn) terminated BEFORE Thread/STOPPER took action to halt it

TTS157 - You requested VTAM session cancellation for a thread that is not distributed

TTS158 - Thread for plan &tdtplan and auth ID &tdtauth is being deleted on subsystem

&tdtdsn as a consequence of cancellation method: "&tcpmeth"

Initialization messages

TTS160 - The load module containing Thread/STOPPER systems defaults (module name

TTS$TSD) could not be found in the standard MVS search order. Contact your

Thread/STOPPER product administrator

DB2 thread cancellation messages

TTS170 - Cancellation in progress for the DB2 thread associated with Plan: &tdtplan,

DB2 Auth ID: &tdtauth, Job: &tdtjobnm, Address space: &tdtasid and TCB

address &tdttcb@. Thread/STOPPER waiting &tmvsec# seconds before checking

thread status

M-8 Thread/SERIES Guide and Reference

TTS171 - DB2 thread for Plan: &tdtplan, DB2 Auth ID: &tdtauth, Job: &tdtjobnm,

Address space: &tdtasid and TCB address &tdttcb@ was cancelled successfully.

The thread task was abended with system code &tmvac# and abend reason code

&tmvarc#

TTS172 - The thread for Plan: &tdtplan, DB2 Auth ID: &tdtauth, Job: &tdtjobnm,

Address space: &tdtasid and TCB address &tdttcb@ is currently being deleted

by DB2. Thread/STOPPER will recheck status in &tmvsec# seconds.

TTS173 - Thread still exists. Press ENTER to check status or try another CMD

Terminating distributed DB2 threads

TTS180 - CANCEL successful for the distributed threads associated with the Logical

Unit of Work ID

TTS181 - The distributed threads associated with the Logical Unit of Work ID' (LUWID)

&tdtnetid..&tdtlun..&tdtuv were terminated by issuing ' -CANCEL DDF THREAD

in combination with causing the allied agent TCB to abend

TTS182 - The distributed threads associated with the Logical Unit of Work ID (LUWID)

&tdtnetid..&tdtlun..&tdtuv were terminated by cancelling its VTAM sessions,

abending its application tasks and issuing the -CANCEL DDF THREAD command

TTS183 - The conversation between the local Database Acces thread and the remote

requestor is canceled. However, both threads may still exist on their

respective subsystems. The next SQL request issued by the allied distributed

thread will fail with one of several possible error conditions. If

necessary, you can cancel the distributed allied thread to remove both

threads. As a last resort, you can FORCE this Database Access Thread.

TTS184 - There are no active conversations associated with the distributed thread

defined by Logical Unit of Work ID (LUWID) &tdtnetid..&tdtlun..&tdtuv.

Thus, cancelling the VTAM session on which the conversation was executing

serves no purpose.

TTS185 - Thread/STOPPER tried to terminate the VTAM session(s) underlying the

distributed DB2 thread defined by LUW ID &tdtnetid..&tdtlun..&tdtuv. This

attempt failed for the following reason: &tmvtext

TTS186 - The distributed thread defined by Logical Unit of Work ID (LUWID)

&tdtnetid..&tdtlun..&tdtuv still exists. However, the following VTAM

commands issued by Thread/STOPPER were successful: &tmvtext

Thread Qualification Messages

TTS190 - There is no active job right now named &wqaljobn

TTS191 - Threads in IDENTIFY or SIGNON status should not be cancelled. Use the FORCE

command if it is essential to terminate this thread.

TTS192 - Invalid TDTFLAG7 value. Report this internal error to RAI

TTS193 - Unknown TDTFLAG2 value. Report this internal error to RAI

TTS194 - Unknown TDTFLAG2 value for a thread queued for delete. Please report this

internal error to RAI.

TTS195 - Unknown TDTFLAG2 value for a thread being deleted. Please report this

internal error to RAI.

TTS196 - Thread in IDENTIFY or SIGNON status (not at the PLAN level) is being deleted

on subsystem &tdtdsn as a consequence of cancellation method: "&tcpmeth"

TTS197 - Cancel successful for the following DB2 thread that was in IDENTIFY or

SIGNON status: AuthID: &tdtauth Job: &tdtjobnm, Address space: &tdtasid and

 Appendix M: Thread/SERIES Messages M-9

TCB address &tdttcb@. The thread task was abended with system code &tmvac#

and abend reason code &tmvarc#.. &tmvmta

TTS198 - Unknown TDTFLAG2 value for a thread that was cancelled. Please report this

internal error to RAI.

DB2 VTAM session management messages

TTS201 - Required parameter &p1 was omitted

TTS202 - Error received from TTSVTAM. RC= &p1

TTS203 - DB subsystem &p1 has no active sessions

TTS204 - Specified SID = &p1 is not valid for DB2 subsystem &p2

TTS205 - Session ID &p1 between &p2 and &p3 was terminated successfully

TTS206 - The Password &p2 supplied for VTAM application &p1 is invalid

TTS207 - The VTAM application (APPLID &p1 / Password &p2) used by Thread/STOPPER to

issue VTAM commands is either not installed, not installed properly or needs

to be activated

Thread/STOPPER Snap Messages

TTS210 - An RFASNAP file must be allocated to use the SNAP facility

TTS211 - Thread/STOPPER failed to acquire DCB and TFD for RFASNAP file

TTS212 - SNAP failed to obtain ACE control block through cross memory move

TTS213 - SNAP failed to obtain currently active execution block

TTS214 - SNAP failed to obtain DB2 address space control element

Audit Cancellation Success (TTSACS) Messages

TTS220 - Failed to acquire a thread audit entry

TTS221 - A thread audit jobstream was submitted in the background

TTS222 - Failed to create an ISPF table for audit cancellation entries

TTS300I - Thread/STOPPER Cancellation Auditor started on DATE() 'at' TIME()

TTS301E - A DB2 ssid and Thread argument pair must be supplied

TTS302E - Failed to define an IFI host command environment. Halting.

TTS303I - Thread' p1 'on DB2 subsystem' p2 'was cancelled successfully

TTS304E - Thread/STOPPER cancellation audit processing halted due to severe error.

RC = 12

TTS305I - Thread/STOPPER confirmed that all auditable thread(s) were cancelled

successfully:

TTS306I - Thread' p1 'on DB2 subsystem' p2 is currently being deleted by DB2

TTS307I - Thread' p1 'on DB2 subsystem' p2 is currently queued for deletion by DB2

TTS308I - Thread/STOPPER audit processing complete on DATE() 'at' TIME()||'. '

'Completion code =' p1

TTS309E - Thread/STOPPER unable to load defaults module TTS$TSD. Terminating.

TTS310E - Invalid parameter syntax beginning ='p1

TTS311E - Parameter='kword 'invalid or value is missing

TTS312E - Invalid / Unknown keyword:' p1

TTS313I - Thread/STOPPER Audit Options

TTS314I - Processing will confirm the following thread(s) were cancelled

successfully:

TTS315I - Thread/STOPPER will record these confirmation(s) in the THREAD_AUDIT table

M-10 Thread/SERIES Guide and Reference

TTS316I - maintained on the same DB2 subsystem(s) in which the cancelled thread(s)

existed

TTS317I - Unable to load Thread/STOPPER system defaults module

TTS$TSD.- Thread Audit cancellation job must abort.

TTS319E - Invalid message number:' msgid

Tailor Audit Jobstream (TTSTAJ) Messages

TTS320E - Read failed from TTSCNTL file

TTS321E - A DB2 ssid and Thread argument pair must be supplied

TTS322E - Failed to define an IFI host command environment. Halting.

TTS324E - Thread/STOPPER cancellation audit processing halted due to severe error.

RC = 12

TTS325I - Batch job' p1 'submitted to audit thread cancellation outcome(s)

TTS329E - Invalid message number:' msgid

Thread/SERIES Messages set by Exit routines

TTS400 - ISPF logical screen canceled successfully

TTS401 - ISPF logical screen already terminated

TTS402 - ISPF logical screen scheduled for termination

Automated Monitor Messages

TTS500 - Failed to attach Monitor process DB2 ssid &tvldsn

TTS501 - File TTSIN (which defines DB2 subsystems to be monitored) is not allocated.

Execution impossible.

TTS502 - Failed to open file TTSIN

TTS503 - Failed to parse input record from file TTSIN

TTS504 - Failed to acquire TVL control block through #LISTADD

TTS505 - DB2 subsystem &wqaldsn is not currently active in MVS system &zsysid..

Monitoring of &wqaldsn will be deferred until the subsystem starts up.

TTS506 - Internal error - #LISTNEW for TVL chain failed

TTS507 - Failed to create TTS Report process

TTS508 - No TVLs (DB2 subystems) selected to monitor

TTS509 - Internal error - #LISTNEW for TDS chain failed

Monitor Listener Process Messages

TTS510 - Failed to START a MONITOR trace on DB2 subsystem &cafdsn

TTS511 - Failed to acquire a global chain for DB2 subsystem &cafdsn

TTS512 - Failed to acquire storage for a list resource name for DB2 subsystem &cafdsn

TTS517 - #AREA failed for the monitor process for DB2 subsystem &cafdsn

TTS518 - DB2 subsystem &cafdsn is not currently active in MVS system &cafmvs

TTS519 - DB2 subsystem &cafdsn is not defined within MVS system &cafmvs

TTS521 - #LISTNEW for an ETD chain failed within DB2 subsystem &TVLDSN

TTS522 - Load module libraries for DB2 subsystem &cafdsn must be allocated to the

DDname &cafdsn.LOAD

TTS523 - #LISTADD for a new EAP failed within DB2 subsystem &cafdsn

TTS524 - DB2 subsystem &cafdsn failed to acquire storage for an EAP structure map

 Appendix M: Thread/SERIES Messages M-11

TTS525 - #LISTNEW for an EAQ chain failed within DB2 subsystem &TVLDSN

TTS526 - #RVMAP failed for Thread/SENTRY system defaults

TTS527 - Invalid action flag calculation in calcindx routine.

Automated Monitor Messages

TTS530 - Failed to open the load module library for the DB2 subsystem named &CAFDSN

TTS531 - Load module &CAFLMOD not found in the set of libraries concatenated to file

&CAFDSN.LOAD for DB2 subsystem &CAFDSN

TTS532 - Failed to load the module named &caflmod from the set of libraries

concatenated to file &cafdsn.LOAD for DB2 subsystem &cafdsn

TTS533 - Thread/SENTRY failed to create a REXX language processor environment

TTS534 - Thread/SENTRY failed to dynamically create a REXX host command environment

named TTS

Listener Process Messages

TTS540 - Thread/SENTRY failed to acquire a non lifo storage area

TTS541 - Thread/SENTRY main prolog failed to #GMAIN a control block

TTS542 - Thread/SENTRY main prolog failed to #GETMAIN a control block

TTS543 - Thread/SENTRY failed to acquire a large IFI return area

TTS544 - #LISTNEW for an ETD chain failed within DB2 subsystem &tvdowner

TTS545 - #LISTNEW for an EAQ chain failed within DB2 subsystem &tvdowner

TTS546 - #LISTNEW for an EIT chain failed within DB2 subsystem &tvdowner

Monitor Cancellation Messages

TTS550 - Failed to lock the EAC chain for DB2 subsystem &cafdsn

TTS551 - Failed to acquire an EAC for DB2 subsystem &cafdsn

TTS552 - Failed to unlock the EAC chain for DB2 subsystem &cafdsn

TTS553 - Failed to delete an EAC for DB2 subsystem &cafdsn

TTS560 - Thread/SENTRY module TTSJMAR failed to attach the common REPORT process

TTS561 - Thread/SENTRY failed to load its table of system defaults (TTS$TSD)

TTS570 - &&ZMSGID - &&ZDSN thread (Plan: &&EACPLAN Auth ID: &&EACAUTH Jobname:

&&EACJOBNM)

TTS571 - violated policy &&POLID It is being cancelled at &&ZTIME on &&ZDATE

TTS572 - with system abend code &&TMVAC# and an abend reason code of &&TMVARC#'

TTS574 - The TSO user failed to receive &&TMVLML# (of 3) lines of abend notification

text (because noterminal buffers were available).

TTS575 - The DB2 thread associated with

TTS576 - Authorization ID &&TDTAUTH

TTS577 - was deliberately terminated by Thread/SENTRY

TTS578 - Your DB2 application will NOT be abended.

TTS579 - has violated Policy &&POLID and receives this warning.

M-12 Thread/SERIES Guide and Reference

Thread/SENTRY Messages

TTS580 - -CANCEL (DDF) THREAD command failed on DB2 ssid &cafdsn

TTS581 - violated the &&POLID policy. It was cancelled but remains active.

Monitoring

TTS582 - will continue until the thread terminates.

TTS583 - The DB2 thread associated with Authorization ID &&EACAUTH

TTS584 - violated the &&POLID policy. Thread cancellation

TTS585 - is still in progress.

TTS590 - DB2 utility thread selected. Press END key to continue

TTS600 - Failure during Unit of Work limit checking of thread for Plan &&PLANID using

Policy &&POLID

TTS601E - Failure during Interval based limit checking of thread for Plan &&PLANID

using Policy &&POLID

TTS602I - Thread for Plan &&PLANID has violated limits imposed through Policy

&&POLID

TTS603W - TSO user &&TSOID is on cancellation notification list but is not logged

on.

TTS604I - Thread for Plan &&PLANID has violated limits imposed through Policy

&&POLID but will continue.

TTS605E - Deletion of ETD failed during action processing for policy &&POLID

TTS606I - Thread for Plan &&PLANID within job &&JOBNAME scheduled for action --

policy &&POLID - AC = &&ACCDE

TTS607I - Thread action was taken due to an &&ACSTRING limit violation within policy

&&POLID

TTS608W - IFCID record trace has been disabled due to processing failure.

TTS609E - Unable to establish required level of APF authorization.

TTS610E - Unable to reset APF authority.

TTS611E - Error sensing current APF authoriation level.

TTS612E - Invalid CICS jobname encountered during TTSNCICS notification processing.

TTS613E - Unsuccessful attempt to notify a CICS based Thread/SENTRY administrator.

TTS614E - Invalid CICS terminal encountered during TTSNCICS notification processing.

TTS615I - Thread violated policy &&POLID but will continue due to WARN setting.

TTS616I - An attempt to notify terminal &<ERM on IMS system &&IMSID has failed.

TTS617W - CICS job &&CICSID is on the notification list but is not active.

TTS618E - #LOCCTRM error attempting to locate CICS Teminal Name &&LUNAME

TTS619W - IMS ID &&IMSID is on the notification but is not active.

TTS620W - VTAM Terminal &&LUNAME may not be logged on

TTS621I - Thread agent was a batch TSO address space. No notify was issued.

TTS622E - Error during TSO address space analysis

TTS623E - TSO NOTIFY processing has been bypassed

TTS624I - Notifies disabled for Plan &&PLANID / Jobname &&JOBNAME / Policy &&POLID

Reason &&ACSTRING

TTS625W - ASID for TSO user &&TSOID not located. Notify will be bypassed.

TTS630I - Job &&JOBNAME being deliberately swapped out due to shortage of active log

space

TTS700 - TTSJMC - Thread/SENTRY is starting

TTS701 - Thread/SENTRY start normal completion

TTS702 - Thread/SENTRY is stopping

TTS703 - Thread/SENTRY stop complete

TTS704 - Thread/SENTRY operating in &&TTSMODE mode

 Appendix M: Thread/SERIES Messages M-13

TTS705 - Thread/SENTRY job &&TTSJOB waiting for work

TTS706 - removing completed TTSL process for DB2 subsystem &&CAFDSN

TTS707 - all monitor processes completed

TTS708 - &&JOBNAME waiting for work

TTS709 - &&JOBNAME waiting for work

TTS710 - MVS START command received

TTS711 - MVS STOP command received

TTS712 - MVS START command received

TTS711 - null LU name supplied for CICS DB2 thread

TTS712 - VTAM LUname for CICS DB2 thread not found

TTS713 - multiple instances of same Transaction ID

TTS714 - target ASID not a CICS address space

TTS715 - target ASID not active

TTS716 - Processing error during DB2 / CICS Task identification

TTS717 - CICS / DB2 thread canceled via CICS SET TASK(taskid) PURGE. Thread no

longer has a plan associated with it. It is in SIGNON status.

Listener Process Messages

TTS750 - Listener process for DB2 subsystem &&CAFDSN is starting

TTS751 - Listener process start completed for DB2 subsystem &&CAFDSN

TTS752 - Listener process for DB2 subsystem &&CAFDSN is stopping

TTS756 - TTSJCMD received the following command

TTS757 - TTSJCMD STOP command received

TTS758 - TTSJCMD ABEND command received

TTS759 - TTSJCMD FORCE command received

TTS760 - File &&PVTNAME not available to receive TRACE_IFCID output

TTS761 - Thread/SENTRY deliberately abending

TTS762 - Issuing user Abend 2001 reason code 00DB2000

TTS763 - Thread/SENTRY jobstep will abend

TTS764 - TTSJCMD received no command text within MVS START or MODIFY.

TTS770I - TTSJRR RULE_REFRESH process starting

TTS771E - Purging of &&MSGVAR LAB failed during RULE_REFRESH processing

TTS772I - TTSJRR completed RULE_REFRESH process

TTS773E - Thread/SENTRY Compiler failed to insert new rules

TTS774I - TTSJRR inserted new Thread/SENTRY rules

TTS775I - TTSJRR removed current Thread/SENTRY rules

TTS776W - User &&TSOID had no TSO logon buffer available. Notify via MVS SEND.

TTS777W - TPUT for notify of user &&TSOID failed. Notify suppressed.

TTS800 - Thread/SENTRY BETA 1 does not support DB2 utilities at this time

TTS801 - Escalated cancel not supported at this time - PLAN &&PLANID, Unique Value

&&THRUV is still active

TTS802I - thread for Plan &&PLANID has violated limits defined by Policy &&POLID

TTS803I - Thread for Plan &&PLANID within job &&JOBNAME scheduled for action - policy

&&POLID - AC = &&ACCDE

TTS804I - Thread action taken due to &&ACSTRING limit violation defined by policy

&&POLID '

TTS805I - Thread for Plan &&PLANID has violated limits defined by multiple policies.

TTS806I - Invalid QWHC correlation header - cannot determine PLAN name.

TTS807E - Invalid pseudo QWXX structures - cannot map EIT.

M-14 Thread/SERIES Guide and Reference

Batch Facility and Console Facility Messages

TTSE001 - Invalid parameter keyword

TTSE002 - Output lines limit of exceeded. Use the LIMIT(nnnn) parameter to increase

the limit or restrict the qualifications of your request.

TTSE003 - SSID(...) is a required parameter

TTSE004 - The DSN command allows only the SSID(...) parameter

TTSE005 - Failed to connect to DB2 subsystem= Plan= RC= ALIRC= Reason=

TTSE006 - Error on READS request: RC= IFCARC1= IFCARC2=

TTSE007 - Invalid command= -- Commands are: DB2S, DISPLAY, CANCEL, STATUS, LOCK,

ELOCK and STOP

TTSE008 - Unable to define REXX IFI Host command environment -- RC=

TTSE009 - The requested DB2 subsystem is not defined

TTSE010 - The requested DB2 subsystem is not active

TTSE011 - Specified thread: SSID= ACE= is not active

TTSE012 - Parameter keyword is not allowed on the CANCEL command

TTSE013 - You cannot cancel the Thread/STOPPER thread and plan

TTSE014 - Thread: SSID= ACE= is in the process of termination

TTSE015 - Thread: SSID= ACE= is scheduled to terminate

TTSE016 - Unable to load Thread/STOPPER parameters. RC=

TTSE017 - Command: -- IFCARC1= IFCARC2=

TTSE018 - The CANCEL command requires both SSID and ACE parameters

TTSE019 - The Syntax of the DSN command is: DSN SSID(ssn1,ssn2,...) <db2 cmd>

TTSE020 - The CANCEL command failed since the thread is not at the plan level.

 The FORCE command modifier must be specified

TTSE022 - Thread: SSID= ACE= was canceled via command, RC=, Reason=.

TTSE023 - Specified thread: SSID= ACE= already was FORCED

TTSE024 - The LIMIT parameter must have a numeric value. 9999 is assumed

TTSE025 - Parameter can only have YES or NO values.

TTSE026 - The ORIGIN parameter supports only WTOR, QEDIT or TSO values

TTSE027 - Parameter allows no value. Found

TTSE028 - The thread with plan name DSNUTIL was not shown on -DIS UTIL(*)

TTSE029 - Failed to insert a row in the Thread_Audit table, SQLCODE=

TTSE030 - Multiple Threads were selected for CANCEL processing but

CANCEL_MULTIPLE(NO) is either specified or defaulted

TTSE031 - More than one utility job is presently active. Issue the -TERM UTIL command

manually.

TTSE032 - No threads were found that satisfy your qualification criteria

TTSE033 - Failed to read input parameters from file TTSIN, RC=

TTSE034 - Failed to read JCL from the TTSCNTL DD name, RC=

TTSE035 - Failed to submit JCL to the internal reader TTSRDR, RC=

TTSE036 - Selected threads. You must uniquely identify a single thread (through its

ACE address).

TTSE037 - ROUTECDE and DESCRCDE parameter values must be within the range 1-16. You

specified a value of

TTSE038 - Specify a list of codes delimited by commas. E.g. 1,2,...

TTSE039 - Invalid JOBNAME parameter - job not found

TTSE040 - CANCEL request for Thread SSID='ssid ACE='ace',PLAN='plan ',AUTH='auth will

be terminated asynchronously

TTSE041 - Thread/STOPPER Audit Facility job submitted

TTSE042 - Thread/STOPPER is waiting for work

TTSE043 - The VTAM LUNAME was not found in the target CICS

TTSE044 - Target Address Space is not CICS

TTSE045 - Target Address Space is not active

 Appendix M: Thread/SERIES Messages M-15

TTSE046 - Functional error in CICS cancel interface

TTSE047 - Invalid character found in string

TTSE048 - Instead of LUWID parameter, use any or combination of NETID(), LUNAME(),

UNIQ() and CCNT()

TTSE049 - Commit count (CCNT) must be a decimal number, value ignored

TTSE050 - Error on -START TRACE(MON) command: RC= IFCARC1= IFCARC2=

TTSE051 - Thread/STOPPER: Version : .

TTSE052 - The CANCEL LOCKS command requires a DBNAME, TBNAME or TSNAME qualifier

TTSE053 - The Thread/STOPPER task is not authorized for profile - Contact the

Thread/SERIES security administrator

TTSE054 - The TBNAME and TSNAME qualifiers are mutually exclusive. Specify either

TBNAME or TSNAME

TTSE055 - The DBNAME, TBNAME and TSNAME qualifiers require the LOCKS operand

TTSE056 - TTSIN DD name must be specified and must contain valid TTSB commands

TTSE057 - A NULL LUNAME was passed to the CICS cancel interface

M-16 Thread/SERIES Guide and Reference

 Appendix Z: Problem Determination Checklist Z-1

Appendix Z

Problem Determination

Additional Information Checklist

Although every effort has been made to develop defect-free software, you may still
encounter problems. You can assist in the diagnosis and correction of problems by
furnishing us with the proper documentation. The following list enumerates the
information we typically require. Your Relational Architects support representative will
assist you in collecting these item(s).

1. A brief description of the application and operating environment. For example:

"The application is a REXX dialog using RLX/REXX to
access a DB2 table. It executes within ISPF and is
invoked from PDF option 6. The EXEC usually runs
successfully but sporadically abends with a System 0C4.
RLX/REXX displays a panel which shows the abend occurred
within module PMVRVA at offset X'150'. Listings for the
RFASNAP and RFATRACE datasets were obtained.

2. A listing of the application in which the problem occurred.

3. JCL of the job or TSO session.

4. If running under TSO, print the output from the TSO command:
 "LISTALOC ST H" with a brief explanation of the allocated user libraries.

5. Refer to the appropriate appendices in your product's Installation and Customization

Guide for guidance in allocating the RFASNAP, RFATRACE, and SYSUDUMP
data sets.

6. When running in an ISPF environment and abnormal termination occurs, the

"Abnormal Termination Diagnostic Information" panel is displayed. Print this
panel. Also, change the selection in the "Produce a dump?" field to "Y". Specify
"N" in the "Attempt to retry?" field and type "DUMP" in the panel's COMMAND
field. Lastly, press the ENTER key.

 Several dumps will be obtained. This may take some time so please be patient.

After the dumps are written, the MVS message "IEA995I SYMPTOM DUMP
OUTPUT" will appear on the screen signifying abnormal termination. Please print
this screen and save the trace, snap and dump dataset(s) obtained thus far.

7. In extreme cases, RAI may also request a GTF trace, SLIP TRAP or system

dump.

Z-2 RAI Installation Reference

Reader Comment Form
__

Manual : DB2 Thread Control Series -- Installation and Customization Guide
Edition: Version 7.1 -- May 2014
__

Please assist us in improving this manual and in developing future enhancements to this product.
We would appreciate your comments about the content and organization of this manual and the
product it documents. Please refer to specific page numbers when applicable.

Please forward your comments to us on this Reader's Comment Form with the understanding
that all comments become the property of Relational Architects Intl, Inc. We may use or distribute
whatever information you supply in any way we believe appropriate without incurring any
obligation to you.

Outside the United States, your local Relational Architects product representative will be glad to
forward this form on to us.

Name _________________________________ Company _____________________________

Title _________________________________ Address _____________________________

Department _________________________________ City _____________________________

Telephone _________________________________ State ___________ Zip __________

- --- ---

Comments:

	Preface
	Table of Contents
	Section A What’s New in Thread/SERIES
	Summary of Changes to Thread/SERIES Version 7.1
	Summary of Changes to Thread/SERIES Version 6.1.9 (B1)
	Summary of Changes to Thread/SERIES Version 6.1.9 (A3)
	Summary of Changes to Thread/SERIES Version 6.1.8 (B1)
	Summary of Changes to Thread/SERIES Version 6.1.8
	Summary of Changes to Thread/SERIES Version 6.1.7
	Summary of Changes to Thread/SERIES Version 6.1.6
	Summary of Changes to Thread/SERIES Version 6.1.5
	Summary of Changes to Thread/SERIES Version 6.1.4
	Summary of Changes to Thread/SERIES Version 6.1.0

	Chapter 1 Thread/SERIES Overview
	1.1 Types of DB2 threads that can be terminated
	1.2 Thread/SERIES Benefits
	1.3 Benefits versus native DB2 Facilities
	1.4 Thread/SERIES Components

	Chapter 2 Using the Thread/STOPPER Dialog
	2.1 Invoking the Thread/STOPPER Dialog
	2.2 DB2 Subsystem Displays
	2.2.1 Alternate Views of the DB2 Subsystem Summary
	2.2.2 DB2 Subsystem Commands
	2.2.3 DB2 Subsystem Detail Displays

	2.3 Thread Qualification panel
	2.4 Thread Summary Display
	2.5 Thread Detail Display
	2.5.1 Scrolling the Thread Detail Display

	2.6 Canceling Local Application Threads
	2.7 Canceling Distributed Application Threads
	2.8 Canceling IBM DB2 Utility Threads
	2.8.1 More than one Utility Thread with the same AUTH ID

	Chapter 3 Batch and Console Commands
	3.1 Thread/STOPPER commands
	3.1.1 CANCEL command
	FORCE keyword of CANCEL command
	TCPIP keyword of the CANCEL command
	3.1.1.1 Canceling inactive DB2 threads

	3.1.2 DB2S command
	3.1.3 DISPLAY command
	3.1.3.1 Displaying inactive threads

	3.1.4 DSN command
	3.1.5 XLOCK command
	3.1.6 LOCK command
	3.1.7 STATUS command
	3.1.8 STOP command

	3.2 Specifying Thread Qualification Criteria
	3.2.1 ACE qualifier
	3.2.2 ASID qualifier
	3.2.3 AUTH qualifier
	3.2.4 CONN qualifier
	3.2.5 CORR qualifier
	3.2.6 LOCN qualifier
	3.2.7 LUWI qualifier
	3.2.7.1 The NETID qualifier
	3.2.7.2 The LUNAME qualifier
	3.2.7.3 The UNIQ qualifier
	3.2.7.4 The CCNT qualifier

	3.2.8 OPID qualifier
	3.2.9 PLAN qualifier
	3.2.10 SSID qualifier

	3.3 LOCKS keyword and its qualifiers
	3.3.1 LOCKS (S | IS | X | IX) keyword
	3.3.2 DBNAME qualifier
	3.3.3 TBNAME qualifier
	3.3.4 TSNAME qualifier

	3.4 Thread cancellation strategy
	3.5 Data Sharing Group (DSG) operation

	Chapter 4 The Thread/STOPPER Batch Facility
	4.1 Preparing JCL for the Thread/STOPPER Batch Facility
	4.2 Thread/STOPPER Execution Parameters
	4.2.1 ACS keyword
	4.2.2 AUDIT keyword
	4.2.3 CANCEL_MULTIPLE keyword (Thread/STOPPER Batch Facility only)
	4.2.4 CAN_DUMP keyword
	4.2.5 CAN_RETRY keyword
	4.2.6 CAN_STEP keyword
	4.2.7 The LIMIT keyword

	4.3 Batch Facility Examples

	Chapter 5 The Thread/STOPPER Console Facility
	5.1 Invocation Parameters unique to the Console Facility
	5.1.1 CANCEL_MULTIPLE parameter
	5.1.2 DESCRCDE parameter
	5.1.3 ORIGIN keyword
	WTOR
	QEDIT

	5.1.4 ROUTECDE keyword

	5.2 Invoking the Console Facility
	5.3 Console Facility Command Examples
	5.3.1 CANCEL command example
	5.3.2 DB2S command example
	5.3.3 DISPLAY command examples
	5.3.4 DSN command example
	5.3.5 XLOCK command example
	5.3.6 LOCK command display
	5.3.7 STATUS command display

	Chapter 7 Thread Audit View Facility
	7.1 Invoking the Thread Audit View Facility
	7.2 Dialog flow
	7.3 ROW Commands
	7.4 Primary Commands

	Chapter 10 Thread/SENTRY Overview and Policy Definition
	10.1 Thread/SENTRY Overview
	10.2 Thread/SENTRY Statement Summary
	10.2.1 Thread Selection Criteria
	10.2.2 Specifying Time Values

	10.3 Thread/SENTRY Control Statements
	10.4 MONITOR Statement
	10.5 The DEFAULT Statement
	10.6 The EXCLUDE Statement
	10.6.1 What threads are subject to EXCLUDE policies
	10.6.2 What threads are subject to EXCLUDE policies on the basis of MVS and DDF Accounting Data Associated with the Thread
	10.6.3 When to apply Exclusion Policies

	10.7 The LIMIT Statement
	10.7.1 What threads are subject to LIMIT policies
	10.7.1.1 What threads are subject to LIMIT policies on the basis of MVS and DDF Accounting Data Associated with the Thread

	10.7.2 Other Operands of the LIMIT Statement
	10.7.3 When to apply LIMIT policies
	10.7.4 Life of Thread Limits
	10.7.5 Unit-of-Recovery LIMITS
	10.7.6 Interval Maximum LIMITS
	10.7.7 Interval Minimums and IDLE Threads
	10.7.8 Operands for Inactive Database Access Threads
	10.7.9 LIMIT Policy Examples
	10.7.9.1 LIMIT Policy Examples that reference MVS and DDF Accounting Data

	10.8 The NOTIFY_LIST Statement
	10.9 Thread/SENTRY Audit Trail and Log File

	Chapter 11 Operating Thread/SENTRY
	11.1 Running Thread/SENTRY
	11.1.1 Edit the JCL to invoke Thread/SENTRY
	11.1.2 Allocating the Thread/SENTRY Control File
	11.1.3 Parameter Precedence
	11.1.4 An illustrative Thread/SENTRY Run

	11.2 Thread/SENTRY Console Commands
	11.2.1 ABEND command
	11.2.2 FORCE command
	11.2.3 RULE_REFRESH command
	11.2.4 STOP command

	11.3 Thread/SENTRY Debugging
	11.3.1 SNAP command
	11.3.2 TRACE_IFCID command

	11.4 Thread/SENTRY Control File Compiler parameters

	Chapter 20 Installing Thread/SERIES Components
	20.1 Pre-installation Planning
	20.1.1 DB2 Considerations
	20.1.2 Restricting Access to Thread/SERIES Functions

	20.2 Pre-installation Preparation
	20.2.1 Accounting Trace Classes
	20.2.2 Address Space Priorities
	20.2.3 Preparation for CICS DB2 threads
	20.2.4 TSO Command Processor Limiting
	20.2.5 RAI Server Address Space
	20.2.6 Requirements to Cancel Inactive Threads

	20.3 Installation Summary
	20.3.1 Thread / SERIES Migration Summary

	20.4 Thread/SERIES Product Libraries
	20.5 Restore the TTS Target libraries to your Host system
	20.5.1 Installation from Tape
	20.5.2 FTP Installation from the RAI website
	20.5.3 Installation via E-mail

	20.6 Define Passwords
	20.7 APF Authorize the Thread/SERIES Load Libraries
	20.8 Convert the record format of the TTS EXEC library to variable blocked format (If necessary)
	20.9 Prepare each DB2 subsystem for Thread/SERIES Components
	20.9.1 Edit and submit the Thread/SERIES DB2 definitions jobstream
	20.9.2 GRANT required DB2 Authorizations

	20.10 Customize the Thread/SERIES jobs and catalogued procedure
	20.10.1 Edit the TTSPROC catalogued procedure
	20.10.2 Edit the JCL to invoke the Thread/STOPPER Console Facility
	20.10.3 Running Thread/SENTRY and the Thread/STOPPER Console Facility as Started Tasks
	20.10.4 Edit the Job that invokes the Thread/STOPPER Audit Facility

	20.11 Configuring Thread/SENTRY E-mail Notification
	20.12 Define the VTAM application major node used by the Thread/SERIES Components
	20.13 Edit the TTSPAL catalogued procedure (Optional)
	20.14 Update vendor supplied defaults (Optional)
	20.15 Prepare the ISPF environment for the Thread/STOPPER Dialog
	20.16 Prepare the Thread/SERIES Audit View Facility (Optional)
	20.17 Thread/SERIES Installation Verification Procedures
	20.17.1 Prepare to Run the Installation Verification Program
	20.17.2 Verify Thread/SENTRY Installation
	20.17.3 Verify Thread/STOPPER Installation
	20.17.4 Verify the Thread/SERIES Audit View Facility (Optional)

	20.18 Post Installation / Deployment Procedures

	Appendix A The Thread_Audit Table
	A.1 Audit Trail for Actions against Threads
	A.2 Structure of the Thread_Audit Table
	A.2.1 Thread Identification Columns
	A.2.2 Thread/SERIES Actions Columns
	A.2.3 When, where and by whom was an action taken
	A.2.4 Thread Statistics and Details
	A.2.5 Columns which identify the LU 6.2 Logical Unit of Work ID
	A.2.6 Other statistics and details about the Thread
	A.2.7 MVS and DDF Accounting Data Associated with the Thread

	A.3 The Values of Columns in Thread_Audit table Rows

	Appendix B Thread Eligibility Cancel Mechanisms Descriptions of Cancel Responses Notifications
	B.1 Cancellation Eligibility Rules
	B.2 Thread Cancellation Mechanisms
	B.2.1 The DB2 CANCEL (DDF) THREAD command
	B.2.2 Abending a Thread Task
	B.2.3 The FORCE command
	B.2.4 Canceling an ISPF Logical Screen
	B.2.5 Communications Network Cancellation
	B.2.6 Canceling CICS Threads
	B.2.7 Canceling DB2 Utility Threads
	B.2.8 Canceling Threads via Exit Routines

	B.3 Description of Cancel Responses
	B.3.1 Canceling an ISPF Logical Screen
	B.3.2 Canceling Distributed Threads

	B.4 Thread/SERIES Notification Messages
	B.4.1 User Notifications
	B.4.2 Notifications sent to Administrators

	Appendix C Composing Site Written Messages and Customizing Default Notification Message Text
	C.1 Composing Site Written Messages
	C.1.1 Z Amper Variables
	C.1.2 Assembly / Link Edit Instructions for Site Written Message Modules

	C.2 Customizing the text of the Default Notification Messages
	C.2.1 Sets of NOTIFY Messages issued by Thread/SENTRY
	C.2.2 Assembly / Link Edit Instructions for Module TTS$TNM

	Appendix E Thread/SERIES Exit Routines
	E.1 Concepts and Facilities
	E.2 Exit environment
	E.3 Parameter list on entry
	E.4 The Thread/SERIES eXit Parameter Structure (XPS)
	E.4.1 Values passed from Thread/SERIES to the Exit routine
	E.4.2 Values returned by the Exit routine
	E.4.3 Values Inserted into Thread_Audit Columns

	E.5 An Annotated Thread/SERIES Exit Routine
	E.5.1 Assembly and Link Edit of the Thread/SERIES Exit Routine

	E.6 Defining Exit Routines to Thread/SERIES
	E.6.1 The Sample Table of Thread/SERIES Exit Routines - TTS$TXR
	E.6.2 The TTS#TXRx Macro Set
	E.6.2.1 TTS#TXRI
	E.6.2.2 TTS#TXR
	E.6.2.3 TTS#TXRF

	E.6.3 Building a Thread/SERIES Table of Exit Routines

	E.7 Defining Criteria for Non-Standard Processing
	E.7.1 TTS$TNS - The Sample Table of Non-Standard Processing
	E.7.2 The TTS#TNSx Macro Set
	E.7.2.1 The TTS#TNSI Macro
	E.7.2.2 The TTS#TNS Macro
	E.7.2.3 The TTS#TNSF Macro

	E.7.3 Building the TTS$TNSF Load Module

	Appendix F Defining Thread/SERIES No Action Criteria
	F.1 TTS$TNA - The Sample Table of No Action definitions
	F.2 The TTS#TNAx Macro Set
	F.2.1 The TTS#TNAI Macro
	F.2.2 The TTS#TNA Macro
	F.2.3 The TTS#TNAF Macro

	F.3 Building the TTS$TNA Load Module

	Appendix G Defining Thread/SENTRY Table of Group ID Definitions
	G.1 TTS$TGI - The Sample Table of Group ID definitions
	G.2 The TTS#TGIx Macro Set
	G.2.1 The TTS#TGIH Macro
	G.2.2 The TTS#TGI Macro
	G.2.3 The TTS#TGIF Macro

	G.3 Building the TTS$TGI Load Module
	G.4 Using TTS$TGI groups

	Appendix M Thread/STOPPER and Thread/SENTRY Messages
	Call Attach Facility related Messages
	MVS related Messages
	RFARMD Messages
	RAI Password Verification Messages
	Report Process Messages
	RAI DB2 related Messages
	RFA Messages
	Messages pertaining to the Call Attach Facility Interface component
	Main prolog messages
	Subsystem selection messages
	Thread qualification messages
	DB2 subsystem selection messages
	DB2 thread selection messages
	DB2 thread mapping messages
	DB2 thread termination messages
	IBM DB2 utility threads, messages
	DB2 utilities, messages
	DB2 thread termination messages
	Thread Summary Primary Commands, messages
	DB2 TRACE Commands, messages
	Thread/STOPPER initialization messages
	Canceling discrete threads
	Initialization messages
	DB2 thread cancellation messages
	Terminating distributed DB2 threads
	Thread Qualification Messages
	DB2 VTAM session management messages
	Thread/STOPPER Snap Messages
	Audit Cancellation Success (TTSACS) Messages
	Tailor Audit Jobstream (TTSTAJ) Messages
	Thread/SERIES Messages set by Exit routines
	Automated Monitor Messages
	Monitor Listener Process Messages
	Automated Monitor Messages
	Listener Process Messages
	Monitor Cancellation Messages
	Thread/SENTRY Messages
	Listener Process Messages
	Batch Facility and Console Facility Messages

	Appendix Z
	Problem Determination
	Additional Information Checklist

	Reader Comment Form

