
455 West Maude Avenue, Sunnyvale, CA 94085

Arcot WebFort VAS®
Java Developer’s Guide
Version 6.0

ii Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Arcot WebFort VAS Java Developer’s Guide
Version 6.0
August 2009
Part Number: AWF01-004DC-06000

Copyright © 2009 Arcot Systems, Inc. All rights reserved.

This guide, as well as the software described herein, is furnished under license and may
be used or copied only in accordance with the terms of the license. The content of this
guide is furnished for informational purposes only. It is subject to change without notice
and must not be construed as a commitment by Arcot Systems.

Arcot Systems makes no warranty of any kind with regard to this guide. This includes,
but is not limited to the implied warranties of merchantability, fitness for a particular
purpose or non-infringement. Arcot Systems shall not be liable for errors contained
herein or direct, indirect, special, incidental or consequential damages in connection with
the furnishing, performance, or use of this material.

Except as permitted by the software license, no part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means
without the prior written permission of Arcot Systems, Inc.

Trademarks
Arcot®, ArcotID®, WebFort, and WebFort VAS® are registered trademarks of Arcot
Systems, Inc. The Arcot logo™, the Authentication Authority tagline, ArcotID
Client™, RegFort™, RiskFort™, SignFort™, TransFort™, and Arcot Adapter™ are
all trademarks of Arcot Systems, Inc.

All other product or company names may be trademarks of their respective owners.

Patents
This software is protected by United States Patent No. 6,170,058, 6,209,102 and other
patents pending.

Arcot Systems, Inc., 455 West Maude Avenue, Sunnyvale, CA 94085

Third-Party Software
All third-party software used by Arcot WebFort and related components are listed in the
appendix “Third-Party Software Licenses” in the Arcot WebFort 6.0 Installation and
Deployment Guide.

Contents

Preface . vii
Intended Audience . viii
Information Included in this Guide . viii
Related Publications . ix
Conventions Used in This Book . x
Contacting Support . x

Chapter 1 Getting Started . 1
Introduction to the WebFort Java SDK . 2
WebFort SDK Features . 3
Before You Begin . 4

Chapter 2 Understanding WebFort WorkFlows . 5
Migrating Existing Users . 6

Migrating All Users . 6
Migrating Selected Users . 7

ArcotID Authentication Workflow . 9
ArcotID Roaming Download Workflow . 11
Forgot Your Password Workflow . 13
Workflow Summary . 15

Chapter 3 Before You Use the SDK . 17
Accessing WebFort SDK Javadocs . 18
Adding Authentication Files in CLASSPATH . 19
Adding Issuance Files in CLASSPATH . 21
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 iii

Chapter 4 Performing Issuance Operations . 23
Initializing the Issuance SDK . 24
User Operations . 26

Preparing the User Input . 26
Preparing Additional Input . 27
Creating Users . 28
Disabling User Accounts . 29
Enabling the User . 29
Reading User Details . 30
Updating User Details . 31
User Operations Summary . 33

Credential Operations . 34
Preparing the Input . 35

Common Input . 35
Credential-Specific Input . 36

Checking the User Status . 37
Creating Credentials . 38
Disabling Credentials . 39
Enabling Credentials . 40
Resetting Credential . 41
Fetching Credential Details . 42
Reissuing Credentials . 43
Resetting Credential Validity . 44
Resetting Credential Notes . 45
Fetching Number of Questions . 46
Deleting Credentials . 47
Setting Unsigned Attributes . 47
Deleting Unsigned Attributes . 48
Reading the Output . 49
Checking the Credential Status . 51

State Transition . 51
Credential Operations and State . 52

Credential Operations Summary . 52
ArcotID Operations . 53
Username-Password Operations . 55
Question and Answer Operations . 57
One-Time Password Operations . 59

Chapter 5 Integrating ArcotID Client with Application . 61
ArcotID Client Overview . 62

Flash Client . 62
Signed Java Applet . 62

Copying ArcotID Client Files . 63
iv Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

For Flash Client . 63
For Java Signed Applet . 64

ArcotID Client APIs . 65
Downloading ArcotID . 65
Signing the Challenge . 65

Chapter 6 Authenticating Users . 67
Initializing the Authentication SDK . 68
Preparing Additional Input . 70
ArcotID Authentication . 71
Questions and Answers Authentication . 73
Username-Password Authentication . 75
One-Time Password Authentication . 76
Authentication Tokens . 77
Verifying the Authentication Tokens . 78
Fetching the PAM . 79
Authentication Operations Summary . 80

Chapter 7 Using Custom APIs . 83
Issuance Operations . 84

Creating Credential . 84
Disabling Credential . 84
Enabling Credential . 85
Resetting Credential . 85
Reissuing Credential . 86
Resetting Credential Validity . 86
Fetching Credential Details . 86
Deleting Credentials . 87

Authentication Operations . 88
Password-Based Authentication . 88
Challenge-Response-Based Authentication . 88

Appendix A Input Data Validations . 91

Appendix B WebFort Logging . 95
About the Log Files . 96
Format of the WebFort Log Files . 98
Supported Severity Levels . 99

Appendix C Additional Settings . 103
Configuring Multiple WebFort Server Instances . 104
Setting up SSL . 105
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 v

Appendix D SDK Exceptions . 107
Common Exceptions . 108
Issuance Exceptions . 110
Authentication Exceptions . 111

Appendix E WebFort Error Codes . 113
SDK Codes . 114
Server Codes . 117

Appendix F WebFort Sample Application . 127
Configuring Sample Application . 128
Selecting ArcotID Client . 129
Demonstrating User Operations . 130

Creating Users . 130
Updating User Information . 130
Fetching User Information . 131

Demonstrating ArcotID Operations . 132
Creating ArcotID . 132
Downloading the ArcotID . 132
Authenticating Using the ArcotID . 133
Fetching the ArcotID Details . 133

Demonstrating QnA Operations . 135
Creating QnA . 135
Authenticating Using QnA . 136
Fetching the QnA Details . 136

Demonstrating OTP Operations . 137
Creating OTP . 137
Authenticating Using the OTP . 137
Fetching the OTP Details . 138

Demonstrating User-Password Operations . 139
Creating User-Password . 139
Authenticating Using User-Password . 139
Fetching User-Password Details . 140

Appendix G Glossary . 141

Index . 145
vi Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

 Preface
Preface

This guide provides information on how to develop Web applications that use strong
and versatile modes of authentication provided by Arcot WebFort VAS. This guide
discusses Java classes and methods that you can use to programmatically integrate with
WebFort SDK.

See the following JSP files shipped as a part of the Sample Application to understand the
WebFort APIs for:

• User Operations

• ArWFCreateUser.jsp - This page is used to create the user.

• ArWFUpdateUser.jsp - This page is used to update the user information.

• ArWFFetchUser.jsp - This page is used to fetch the user details.

• Credential Operations

• ArWFCreate<Credential>.jsp - This page is used to create credential.

• ArWF<Credential>Authenticate.jsp - This page is used to authenticate
the user with the credential.

• ArWFFetch<Credential>.jsp - This page is used to fetch the credential
details.

• (Only ArcotID) ArWFSelectArcotIDClient.jsp - This page is used to
select the ArcotID Client.

• (Only ArcotID) ArWFDownloadArcotID.jsp - This page is used to
download the ArcotID Client.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 vii

 Preface
NOTE: For the operations not covered by the Sample Application, see
relevant Javadocs.

Intended Audience
This guide is targeted at Java application programmers who need to use the APIs and
functions provided with Arcot WebFort to implement issuance and authentication
features provided by WebFort.

Readers should be familiar with:

• Java programming

• Database architecture and concepts

• Security management concepts

• Authentication and authorization concepts

• Internet protocols, including HTTP, HTTPS, and TCP/IP

• Secure Sockets Layer (SSL) communications and the related concepts (public and
private key exchange, digital certificates and signatures, and certificate authorities)

• Security Assertion Markup Language (SAML) basics

Information Included in this Guide
This guide is organized as follows:

• Chapter 1, “Getting Started”, introduces you to the WebFort Java SDK and walks
you through the prerequisites before you start programming.

• Chapter 2, “Understanding WebFort WorkFlows”, covers the typical workflows
that you can implement by using WebFort SDKs.

• Chapter 3, “Before You Use the SDK”, describes what API-specific JAR files and
Properties files to include in CLASSPATH.

• Chapter 4, “Performing Issuance Operations”, describes how to create and manage
users and their credentials by using the Issuance APIs.

• Chapter 5, “Integrating ArcotID Client with Application”, describes how to
implement the required ArcotID type (Flash or Signed Java Applet) for ArcotID
authentication.
viii Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

 Preface
• Chapter 6, “Authenticating Users”, describes how to authenticate users by using
one of the authentication mechanisms provided by the Authentication API.

• Chapter 7, “Using Custom APIs”, describes how to create custom credential and
authenticate using them.

• Appendix A, “Input Data Validations”, lists the criteria that is used to check the
SDK input parameters.

• Appendix B, “WebFort Logging”, provides the details of different log files and
supported log levels that you can use for debugging purposes.

• Appendix C, “Additional Settings”, provides the details on how to set up multiple
WebFort Server instances, and SSL between Java SDKs and WebFort Server.

• Appendix D, “SDK Exceptions”, lists all exceptions that are returned by the
Issuance and Authentication SDKs.

• Appendix E, “WebFort Error Codes”, lists WebFort SDK and Server error codes.

• Appendix F, “WebFort Sample Application”, describes the WebFort workflows
demonstrated by the Sample Application that is shipped with WebFort.

• Appendix G, “Glossary”, lists the key terms used in the guide.

Related Publications
Other related publications are as follows:

Arcot WebFort 6.0 Installation and
Deployment Guide

This guide provides the information to install and configure
WebFort.

Arcot WebFort 6.0 Administration
Guide

This guide includes the information to administer and
configure WebFort.

Arcot WebFort 6.0 Business Logic
Extension Guide

This guide provides information about how to write a plug-in
or Callout to extend the existing authentication and issuance
processes.

ArcotID Client 6.0 Reference Guide This guide describes ArcotID Client types provided by the
client.

ArcotID Flash Client 6.0 API Guide This guide explains the ArcotID Flash client APIs provided
by the client.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 ix

 Preface
Conventions Used in This Book
The following typographical conventions are used in this guide.

Contacting Support
If you need help, contact Arcot Support at:

Type Usage Example

Bold Screen Items Click the Install button to install the product.

Italic Key Words First time log in to the Administration Console
must be done using Master Admin credentials.

Names of Publications For more information, see the Arcot WebFort 6.0
Administration Guide.

Emphasis Never give anyone your password.

Cross reference Links in the guide Refer to the section Deployment Overview for
more information.

Fixed-width Command-line input or
output

cd /opt/arcot

Code Samples var walletname = "GuestUser";

Text File Content [arcot/db/primarydb]
The name of the data source as
defined in ODBC.
Datasource.1=ArcotWebFortDatabase

File names arcotcommon.ini

Email support@arcot.com

Web site http://support.arcot.com
x Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

http://support.arcot.com
http://support.arcot.com
mailto:support@arcot.com
mailto:support@arcot.com

Chapter 1 Getting Started
Chapter 1

Getting Started

This chapter discusses the APIs provided by WebFort Java SDK and the checks that you
must perform before using the Java SDK:

• Introduction to the WebFort Java SDK

• WebFort SDK Features

• Before You Begin
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 1

Chapter 1 Getting Started Introduction to the WebFort Java SDK
Introduction to the WebFort Java SDK

The WebFort Software Development Kit (SDK) provides a programmatic interface that
includes a set of APIs to integrate with your application. It has two types of SDKs:

Authentication SDK
The WebFort Authentication SDK provides the APIs that can be used to authenticate
the credentials supported by WebFort.

Issuance SDK
The WebFort Issuance SDK interacts with the WebFort Server to create, read, and
update user and credential information in the WebFort database. You can perform the
following operations by using the Issuance SDK:

• Create users

• Create credentials for the users

• Fetch user information

• Update user information

• Perform credential lifecycle management operations, such as enabling, disabling,
resetting, resetting validity, and deleting.
2 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

WebFort SDK Features Chapter 1 Getting Started
WebFort SDK Features

This section discusses the salient features of the Authentication and Issuance SDKs.

• SSL Support

You can secure the connection between the Java SDK and WebFort Server by using
Secure Socket Layer (SSL). To set up SSL between SDK and WebFort Server, you
must edit the WebFort properties files, see “Setting up SSL” for more information
on how to do this.

• Failover

Java SDKs support failover mechanism, if an instance of WebFort Server is not
operational, then the SDKs automatically connect to any of the additional
configured instances. See “Configuring Multiple WebFort Server Instances” for
more information on how to do this.

• Multiple Ways to Initialize SDK

You can initialize Authentication or Issuance SDKs by using either the properties
file or with a map. See “Initializing the Issuance SDK” or “Initializing the
Authentication SDK” for more information on how to do this.

• Handling Multiple Operations Using Single Function

You can perform credential lifecycle operations on different credentials
simultaneously. For example, you can create ArcotID, Question and Answer, and
One-Time Password credentials simultaneously using a single create() function.

• Support for Additional Parameters

In addition to the mandatory inputs, the APIs also accepts additional input that can
be passed as name-value pair. This input can include information, such as locale,
calling application details, or profile.

• Support for Custom APIs

The Custom APIs enables you to support additional authentication methods by
parallely supporting any of the WebFort native authentication methods. See
Chapter 7, “Using Custom APIs” for more information on Custom APIs.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 3

Chapter 1 Getting Started Before You Begin
Before You Begin

Before you start writing your code using the WebFort APIs to integrate your application
with WebFort, ensure that:

• WebFort VAS® is installed and running on the required operating system.

Refer to Arcot WebFort 6.0 Installation and Deployment Guide for the installation
and configuration details.

• You have installed the correct version of the JDK required for using the WebFort
Java SDK.

See Arcot WebFort 6.0 Installation and Deployment Guide for this information.
4 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Chapter 2 Understanding WebFort WorkFlows
Chapter 2

Understanding WebFort WorkFlows

WebFort enables you to design different workflows that can be built using the
Authentication and Issuance SDKs. Based on your organization’s requirements, you can
design these workflows without significantly changing the existing online experience for
your users in most cases.

NOTE: The tasks that are listed in this chapter can be customized in
multiple ways. The workflows depicted here are examples of the typical
workflows. Arcot does not mandate you to follow the exact steps for each
procedure mentioned in this chapter.

This chapter describes the sample workflows and provides an overview of each:

• Migrating Existing Users

• ArcotID Authentication Workflow

• ArcotID Roaming Download Workflow

• Forgot Your Password Workflow

• Workflow Summary
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 5

Chapter 2 Understanding WebFort WorkFlows Migrating Existing Users
Migrating Existing Users

WebFort enables you to easily migrate the users from your existing authentication
method to ArcotID authentication.

NOTE: If you are using a Directory Service (LDAP), then WebFort must be
connected to the LDAP and you must map the LDAP attributes to the
attributes supported by WebFort. See Arcot WebFort 6.0 Administration Guide
for more information on this.

• Migrating All Users

• Migrating Selected Users

Migrating All Users
The typical steps to migrate all users are:

1. User logs in to your application.

The users log in to your application by using your existing authentication method.

2. Your application collects the information from user required to create the
credential.

Your application can either display the appropriate pages to the user. For example,
you can prompt the user to set the password for ArcotID or you can set the existing
password as the ArcotID password, and collect questions and answers if Question
and Answer (QnA) is used for secondary authentication.

3. Your application invokes the create() method in the ArcotIDIssuance class.

Your application invokes the create() method in the ArcotIDIssuance class
to create ArcotID for the user.

4. WebFort returns the result.

WebFort posts the result of the create operation to the application.

5. Application downloads the ArcotID on the user’s system.

If the create() function was successful, then the application downloads the
ArcotID to the enduser’s system without any user interaction.

Figure 2-1 illustrates the workflow for migrating individual user.
6 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Migrating Existing Users Chapter 2 Understanding WebFort WorkFlows
Figure 2-1 Migrating All Users

Migrating Selected Users
The typical steps to migrate selected users are:

1. User logs in to your application.

The users log in to your application by using your existing authentication method.

2. Application gets the user status.

Application retrieves user information and identifies whether the user account is
marked for migration.

3. Application redirects user.

Upon successful authentication, the user is redirected to migration page.

4. Your application collects the information from user required to create the
credential.

Your application can either display the appropriate pages to the user. For example,
you can prompt the user to set the password for ArcotID or you can set the existing
password as the ArcotID password, and collect questions and answers if QnA is used
for secondary authentication.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 7

Chapter 2 Understanding WebFort WorkFlows Migrating Existing Users
5. Your application invokes the create() method in the ArcotIDIssuance class.

Your application invokes the create() method in the ArcotIDIssuance class
to create ArcotID for the user.

6. WebFort returns the result.

WebFort posts the result of the create operation to the application.

7. Application downloads the ArcotID on the user’s system.

If the create() function was successful, then the application downloads the
ArcotID to the enduser’s system without any user interaction.

Figure 2-2 illustrates the workflow for migrating the users to ArcotID authentication in
bulk.

Figure 2-2 Migrating Selected Users
8 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

ArcotID Authentication Workflow Chapter 2 Understanding WebFort WorkFlows
ArcotID Authentication Workflow

During authentication, when a user specifies the credential in the authentication page,
the credential is first verified by WebFort Server, after which the user is authenticated.

Username-password, QnA, and OTP are simple password-based authentication
methods, while ArcotID is a challenge-response type of authentication. The following
workflow lists the steps for ArcotID authentication:

NOTE: In case of other credentials, refer to Chapter 6, “Authenticating
Users” for details of methods to invoke.

1. Application calls the WebFort’s ArcotIDAuth.getChallenge() function.

Your application loads the ArcotID Client and makes an explicit call to the
getChallenge() function in ArcotIDAuth interface. See “ArcotID
Authentication” on page 72 for more information on the API.

2. User provides the credentials.

User specifies the user name and ArcotID password to log in.

3. Your application invokes the ArcotID Client.

The ArcotID Client signs the challenge.

4. WebFort verifies the signed challenge.

Your application invokes the verifySignedChallenge() function to verify the
challenge that is signed by using the ArcotID password.

5. WebFort authenticates the user.

If the verifySignedChallenge() call was successful, then the authentication
token is generated and the user is authenticated successfully.

See “Initializing the Authentication SDK” for more information on the different
tokens supported by WebFort.

Figure 2-3 illustrates the workflow for ArcotID authentication process.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 9

Chapter 2 Understanding WebFort WorkFlows ArcotID Authentication Workflow
Figure 2-3 ArcotID Authentication
10 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

ArcotID Roaming Download Workflow Chapter 2 Understanding WebFort WorkFlows
ArcotID Roaming Download Workflow

To perform ArcotID authentication, the ArcotID of the user must be present on the
user’s system that is used for the current authentication session. If the user is travelling or
does not have access to the primary system, where their ArcotID is stored, then the user
has to download the ArcotID from the WebFort Server and then perform the
authentication. This process of downloading the ArcotID to different system is called
Roaming Download.

The typical steps for roaming download of the ArcotID are:

1. User logs into your online application.

Your application authenticates the user.

2. User chooses to download the ArcotID.

Your application displays the appropriate page to the user to download their
ArcotID.

3. WebFort performs secondary authentication.

Based on the secondary authentication mechanism that you are using, your
application displays appropriate pages to the user. For example, you can prompt the
user to:

• Answer the security questions that they selected while enrolling with your
application.

• Enter the One-Time Password (OTP), which is sent to the user by email, SMS,
or other customized method.

4. Your application calls WebFort’s ArcotIDAuth.getArcotID() function.

If the secondary authentication was successful, only then your application should
call the getArcotID() function in the ArcotIDAuth interface. This call
downloads the corresponding ArcotID (encoded in the base-64 format) to the
application.

5. Download the ArcotID to user’s system.

Invoke the ImportArcotID() client-side API to download the ArcotID to the
enduser’s system without any user interaction.

Figure 2-4 illustrates the workflow for roaming download of ArcotID.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 11

Chapter 2 Understanding WebFort WorkFlows ArcotID Roaming Download Workflow
Figure 2-4 Roaming Download of ArcotID
12 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Forgot Your Password Workflow Chapter 2 Understanding WebFort WorkFlows
Forgot Your Password Workflow

If a user forgets their ArcotID password, then Forgot Your Password (FYP) workflow can
be used to reset the password.

In this method, the user is prompted to answer the questions, which they had set during
enrollment or you can use any other customized method of your choice.

The typical steps for FYP workflow are:

1. User provides the user name.

User specifies the user name to log in.

2. User clicks the FYP link.

Because the user does not remember their password, they click the FYP link.

3. WebFort performs secondary authentication.

Based on the secondary authentication mechanism that you are using, the
appropriate pages are displayed to the user. For example, the user can be prompted
to:

• Answer the security questions that they selected while enrolling with your
application.

• Enter the One-Time Password (OTP), which is sent to them by email, SMS, or
other customized method.

4. Your application calls WebFort’s resetCredential() function in the
CredentialIssuance interface.

If the secondary authentication was successful, then your application must invoke
the resetCredential() function in the CredentialIssuance interface.
Your application prompts the user for new password and pass this as input for
resetCredential() function.

See “Resetting Password” for more information on the APIs used to reset the
credential.

Figure 2-5 illustrates the Forgot Your Password workflow.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 13

Chapter 2 Understanding WebFort WorkFlows Forgot Your Password Workflow
Figure 2-5 FYP WorkFlow
14 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Workflow Summary Chapter 2 Understanding WebFort WorkFlows
Workflow Summary

Table 2-1 provides a brief summary of the workflows that can be implemented by using
the WebFort APIs.

Table 2-1 Summary of WebFort Workflows

Workflow Description Dependant
Workflows

Enrollment Creates a new user in the WebFort database,
when you call create() function in the
UserIssuance() class.

None

Creating the Credentials Create the credentials for the user. • Enrollment

Authentication Authenticates the user by using the
credentials provided by the user.

• Enrollment

• Creating the
Credentials

ArcotID Download Downloads the ArcotID of the user to the
system.

• Enrollment

• Creating the
Credentials

Migration Migrates the user to ArcotID authentication. None

FYP Resets the password. • Enrollment

• Creating the
Credentials
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 15

Chapter 2 Understanding WebFort WorkFlows Workflow Summary
16 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Chapter 3 Before You Use the SDK
Chapter 3

Before You Use the SDK

The Authentication and Issuance SDKs constitutes a set of APIs that provide a way for
your online application to programmatically integrate with WebFort. The WebFort Java
SDK consists of the following components:

• The Authentication Java classes

• The Issuance Java classes

• Javadoc for the associated Java classes and methods

NOTE: The Sample Application shipped with WebFort demonstrates the
usage of the Java classes and methods. See Appendix F, “WebFort Sample
Application” for more information on WebFort Sample Application.

Before you use the Issuance or Authentication SDK, you must include the related JAR
files in the CLASSPATH. If you are using Properties files in your application, then you
must also include them in the CLASSPATH.

This chapter walks you through the steps that you must perform before you call the
Issuance and Authentication API methods from your application:

• Accessing WebFort SDK Javadocs

• Adding Authentication Files in CLASSPATH

• Adding Issuance Files in CLASSPATH
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 17

Chapter 3 Before You Use the SDK Accessing WebFort SDK Javadocs
Accessing WebFort SDK Javadocs

You can use the Javadoc provided with the WebFort SDK to integrate authentication
and issuance services to new or existing Java applications.

If you are updating an application that is already integrated with WebFort, then you
must refer to the Release Notes for deprecated Java APIs before making changes.

The Authentication SDK Javadoc
(Arcot-WebFort-6.0-authentication-sdk-javadocs.zip) and the Issuance
SDK Javadoc (Arcot-WebFort-6.0-issuance-sdk-javadocs.zip) are present
in the following location:

For Windows: <install_location>\Arcot Systems\docs\webfort

For Unix
Platforms:

<install_location>/arcot/docs/webfort
18 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Adding Authentication Files in CLASSPATH Chapter 3 Before You Use the SDK
Adding Authentication Files in CLASSPATH

To use the Authentication APIs, you must add its JAR files and the
webfort.authentication.properties file in the CLASSPATH, and also ensure
that the properties file is present in CLASSPATH/properties folder.

JAR Files
The JAR files that are required for the Authentication SDK are available in the following
location:

For Windows: <install_location>\Arcot Systems\sdk\java\lib

For Unix
Platforms:

<install_location>/arcot/sdk/java/lib

Table 3-1 Authentication SDK JARs

File Name Description

arcot/arcot-poo
l.jar

Used to implement connection pooling using commons pooling.

arcot/arcot-web
fort-common.jar

The proprietary Java Archive (JAR) file containing the set of shared
components used by Authentication SDK.

arcot/arcot-web
fort-authentica
tion.jar

Contains the Authentication APIs.

external/bcprov
-jdk14-139.jar

Used for cryptographic functions. For example, reading server PEM
certificate.

external/common
s-httpclient-3.
1.jar

Used for HTTP-based communication.

external/common
s-lang-2.0.jar

Contains the utilities for string and exception handling that are used by
Authentication SDK.

external/common
s-pool-1.4.jar

Used for connection pooling.

external/log4j-
1.2.14.jar

The Apache package for controlling run-time logging behavior of
applications.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 19

Chapter 3 Before You Use the SDK Adding Authentication Files in CLASSPATH
Properties File
The webfort.authentication.properties file containing the WebFort Server
connectivity is used to initialize the Authentication SDK. You can also initialize the
Authentication API through the init (see “Initializing the Authentication SDK”)
API, which accepts the name-value pairs as input parameters.

NOTE: You can also copy the WebFort Server connectivity parameters from
webfort.authentication.properties to some other file and use
that file for initializing the SDK.

The properties file is available at the following location:

For Windows: <install_location>\Arcot Systems\sdk\java\properties

For Unix
Platforms:

<install_location>/arcot/sdk/java/properties

NOTE: If you want to edit the properties file to configure more WebFort
Server instances and for SSL, then refer to Appendix C, “Additional
Settings” for more information.
20 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Adding Issuance Files in CLASSPATH Chapter 3 Before You Use the SDK
Adding Issuance Files in CLASSPATH

To use the Issuance APIs, you must add its JAR files and the
webfort.issuance.properties file in the CLASSPATH, and also ensure that the
properties file is present in CLASSPATH/properties folder.

JAR Files
The JAR files that are required for the Issuance SDK are available in the following
location:

For Windows: <install_location>\Arcot Systems\sdk\java\lib

For Unix
Platforms:

<install_location>/arcot/sdk/java/lib

Table 3-2 Issuance SDK JARs

File Name Description

arcot/arcot-pool.jar Used to implement connection pooling using
commons pooling.

arcot/arcot-webfort-common.jar The proprietary Java Archive (JAR) file
containing the set of shared components used
by Issuance SDK.

arcot/arcot-webfort-issuance.jar The JAR file containing the Issuance APIs.

external/activation-1.1.jar

external/axiom-api-1.2.7.jar

external/axiom-impl-1.2.7.jar

external/axis2-adb-1.4.jar

external/axis2-java2wsdl-1.4.jar

external/axis2-kernel-1.4.jar

external/backport-util-concurren
t-2.2.jar

external/bcprov-jdk14-139.jar

external/commons-codec-1.3.jar

external/commons-collections-3.1
.jar

external/commons-httpclient-3.1.
jar

Used by Axis JAR files.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 21

Chapter 3 Before You Use the SDK Adding Issuance Files in CLASSPATH
Properties File
The webfort.issuance.properties file containing the WebFort Server
connectivity is used to initialize the Issuance SDK. You can also initialize the Issuance
API through the init API (see “Initializing the Issuance SDK”), which accepts the
name-value pairs as input parameters.

NOTE: You can also copy the WebFort Server connectivity parameters from
webfort.issuance.properties to some other file and use that file
for initializing the SDK.

The properties file is available at the following location:

For Windows: <install_location>\Arcot Systems\sdk\java\properties

For Unix
Platforms:

<install_location>/arcot/sdk/java/properties

NOTE: If you want to edit the properties file to configure more WebFort
Server instances and for SSL, then refer to Appendix C, “Additional
Settings” for more information.

external/commons-lang-2.0.jar

external/commons-logging-1.1.jar

external/commons-pool-1.4.jar

external/geronimo-spec-jms-1.1-r
c4.jar

external/log4j-1.2.14.jar

external/neethi-2.0.jar

external/stax-api-1.0.1.jar

external/wsdl4j-1.6.2.jar

external/wstx-asl-3.2.0.jar

external/XmlSchema-1.2.jar

Used by AXIS JAR files.

Table 3-2 Issuance SDK JARs

File Name Description
22 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Chapter 4 Performing Issuance Operations
Chapter 4

Performing Issuance Operations

For WebFort to authenticate users, an account for each user has to be created in the
database, which is a one-time process. The user can either be created in the Arcot
database or WebFort can be configured to connect to LDAP for user information.

IMPORTANT: If your WebFort deployment is accessing the user
information from the LDAP, then you can only use the APIs that reads the
user details.

This chapter provides description of the APIs that are used for user and credential
operations that include:

• Initializing the Issuance SDK

• User Operations

• Credential Operations
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 23

Chapter 4 Performing Issuance Operations Initializing the Issuance SDK
Initializing the Issuance SDK

Initialize the Issuance SDK by using the Issuance class in the
com.arcot.webfort.issuance.api package. After initialization, it returns an
appropriate message to the calling application.

The Issuance class provides two methods to initialize the Issuance SDK.

Method 1: Initializing the SDK by Using the Map

This method initializes the Issuance Application based on the map provided. The
following table provides the details of the init() method.

Method 2: Initializing the SDK by Using the Properties File

This method initializes the Issuance SDK by using the parameters listed in the properties
file. If you pass NULL, then the parameters are read from the
webfort.issuance.properties file. If you provide a different file name containing
these configuration parameters, then that file is read instead.

Table 4-1 SDK Initialization by Using Map

Description Input Values Output Value

Initializes the Issuance
SDK by using the
provided map.

• map
The key-value pair specifying the
configuration information. The
supported keys are:

1. issuance.host.1
The IP address of the system where
WebFort Server is available.

2. issuance.port.1
The port on which the Transaction
Web Services protocol is listening.
Default value is 9744.

• locale
The locale of the API. The default value
is set to en_US.

Returns an exception if
the SDK is not initialized
successfully.
24 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Initializing the Issuance SDK Chapter 4 Performing Issuance Operations
The parameters (transport, host, and port) in the
webfort.issuance.properties file are same as that of map. The following table
provides the details of the init() method.

Releasing the Issuance SDK Resources
The Issuance class also provides a method to release the resources such as sockets that
are used by Issuance SDK.

IMPORTANT:This method must be invoked before re-initializing the
SDK.

The following table provides the details of the release() method.

Table 4-2 SDK Initialization by Using Properties File

Description Input Values Output Value

Initializes the Issuance
SDK by using the
properties file.

• location
The absolute path of the
properties file.

• locale
The locale of the API. The
default value is set to en_US.

Returns an exception if the SDK
is not initialized successfully.

Table 4-3 Releasing the API

Description Input Values Output Value

Releases the Issuance
SDK.

The locale of the API. Returns an exception if
the API is not released
successfully.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 25

Chapter 4 Performing Issuance Operations User Operations
User Operations

This section covers the following user operations:

• Preparing the User Input

• Preparing Additional Input

• Creating Users

• Disabling User Accounts

• Enabling the User

• Reading User Details

• Updating User Details

• User Operations Summary

Preparing the User Input
All issuance requests that are presented to the WebFort Server must be prepared, so that
they are in a format that WebFort Server can process. To prepare the data prior to any
user operations, you must use UserInput class. This class enables you to set the
information used during user operations.

Depending on the operation that you are performing, input data preparation might
include:

• Setting the First Name

• Setting the Last Name

• Setting the Middle Name

• Setting the Email ID

• Setting the Telephone Number

• Setting PAM

• Adding Custom Attributes

Setting the First Name
To set the first name of the user, invoke the setFirstName() method of the
UserInput class.
26 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

User Operations Chapter 4 Performing Issuance Operations
Setting the Last Name
To set the last name of the user, invoke the setLastName()method of the UserInput
class.

Setting the Middle Name
To set the middle name of the user, invoke the setMiddleName() method of the
UserInput class.

Setting the Email ID
To set the email ID of the user, invoke the setEmailId() method of the UserInput
class.

Setting the Telephone Number
To set the telephone number of the user, invoke the setTelephoneNumber()
method of the UserInput class.

Setting PAM
To set the Personal Assurance Message (PAM) of the user in the WebFort database,
invoke the setPAM() method of the UserInput class.

The PAM verifies the server to the client, and is displayed when the user tries to access
the WebFort-protected resource.

Adding Custom Attributes
The setCustomAttribute() method is used to define any custom attribute for the
user.

These attributes are used in addition to the standard attributes provided by the
UserInput class.

NOTE:WebFort Server validates all input data that you send to it. See
Appendix A, “Input Data Validations” for more information on the
criteria that the WebFort Server uses to validate this input data.

Preparing Additional Input
You need to prepare additional inputs if:

• You plan to augment WebFort’s standard user issuance capability by implementing
callouts or plug-ins.

• You plan to write completely new custom user issuance methods.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 27

Chapter 4 Performing Issuance Operations User Operations
In all of these cases, you need to set the extra information that must be sent to WebFort
Server in name-value pairs. WebFort’s com.arcot.webfort.common.api
package provides you the AdditionalInput class, which enables you to set this
additional information that you plan to use.

Some of the pre-defined additional input parameters supported by the
AdditionalInput class include:

• AR_WF_LOCALE_ID

Specifies the locale that WebFort will use while returning the messages back to your
calling application.

• AR_WF_CALLER_ID

This is useful in tracking transactions. You can use session ID or transaction ID for
specifying this information.

Creating Users
To create a user in WebFort database, you need to use the UserIssuance interface, as
follows:

1. Use the UserInput class to obtain the methods that set the information of the
user.

2. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the create() method of the UserIssuance interface to create the user
account.

This method returns an instance of the UserResponse interface, which specifies
the user and the transaction details.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.
28 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

User Operations Chapter 4 Performing Issuance Operations
Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Disabling User Accounts
The user account can be disabled for a specified period. For example, if in an
organization an employee goes for long vacation, then their account can be disabled to
prevent any unauthorized access during the specified period. The user, whose account is
disabled cannot perform any credential operations.

To disable a user account:

1. Use the UserInput class to obtain the methods that set the information of the
user.

2. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the disable() method of the UserIssuance interface to disable the user
account.

This method returns an instance of the UserResponse interface, which specifies
the user and the transaction details.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Enabling the User
The enable() method is used to activate a user account that was disabled earlier.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 29

Chapter 4 Performing Issuance Operations User Operations
NOTE:You can only enable the user accounts that are disabled.

To enable a user:

1. Use the UserInput class to obtain the methods that set the information of the
user.

2. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the enable() method of the UserIssuance interface to enable the user
account.

This method returns an instance of the UserResponse interface, which specifies
user and the transaction details.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Reading User Details
To retrieve the details of a user from the WebFort database, you need to use the
UserIssuance interface.

To read the user details:

1. Use the UserInput class to obtain the methods that set the information of the
user.

2. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.
30 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

User Operations Chapter 4 Performing Issuance Operations
3. Invoke the fetch() method of the UserIssuance interface to read the user
details.

This method returns an instance of the UserResponse interface, which specifies
the user and the transaction details.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Updating User Details
The Issuance API provides update() method to change the user account details in the
database. For example, these details include user’s email address or contact number.

NOTE:You cannot change the user name or the name of the organization to
which the user belongs.

To update a user’s details:

1. Use the UserInput class to obtain the methods that set the information of the
user.

2. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the update() method of the UserIssuance interface to update the user
details.

This method returns an instance of the UserResponse interface, which specifies
the user and the transaction details.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 31

Chapter 4 Performing Issuance Operations User Operations
Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.
32 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

User Operations Chapter 4 Performing Issuance Operations
User Operations Summary
The following table provides a summary of the input parameters required for performing
all user operations discussed in this chapter.

Table 4-4 User Operations

Operation Input Required Expected Output

Create • User name (userName)

• (Optional) Organization name (orgName)

NOTE: If the organization name is
not provided, then the user is
assumed to belong to default
organization.

• (Optional) Additional Input
(AdditionalInput)

• (Optional) Personal Assurance Message (PAM)

• (Optional) User attributes (firstName,
lastName, middleName,
telephoneNumber, and emailId)

• (Optional) Custom attributes defined

• UserResponse

Update

Disable • User name (userName)

• (Optional) Organization name (orgName)

NOTE:If the organization name is
not provided, then the user is
assumed to belong to default
organization.

• (Optional) Additional Input
(AdditionalInput)

Enable

Fetch
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 33

Chapter 4 Performing Issuance Operations Credential Operations
Credential Operations

This section describes the credential lifecycle operations that are supported by the
Issuance API. The operations listed in this chapter can be performed on all credentials
that are supported by WebFort, and can be performed by using any of the following
method:

• By using WebFort SDKs

This mode enables you to automate the credential management operations
programmatically.

• By using WebFort Administration Console

Administration Console is a Web-based application and is typically suitable for
Customer Support Representatives (CSRs), who handle the user requests (such as,
disabling the credential, enabling the credential, or resetting the credential validity.)

Refer to Arcot WebFort 6.0 Administration Guide for more information on using the
Administration Console.

This section covers the following credential lifecycle operations:

• Preparing the Input

• Checking the User Status

• Creating Credentials

• Disabling Credentials

• Enabling Credentials

• Resetting Credential

• Fetching Credential Details

• Reissuing Credentials

• Resetting Credential Validity

• Resetting Credential Notes

• Deleting Credentials

• Setting Unsigned Attributes

• Deleting Unsigned Attributes

• Reading the Output
34 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
• User Operations Summary

• Credential Operations Summary

NOTE: Each operation discussed in this chapter can be performed
simultaneously on different credentials. If the operation fails for a single
credential, then the operations for other credentials are also considered
invalid. For example, if you are creating ArcotID, QnA, and OTP, and the
ArcotID and OTP creation was successful, while the QnA creation failed,
then all the three credentials have to be created again.

Preparing the Input
Preparing the input for this interface and sub-interface includes preparing:

• Common Input

• Credential-Specific Input

• Preparing Additional Input

Common Input
The CredentialInput interface provides the common configurations to all the
credential types. The following information is set by using this interface:

• Validity

• Notes

• Profile Name

Validity
When creating the credential, the Issuance API enables you to set a period for which the
credential will be valid. Invoke the setValidity() method of the
CredentialInput class to set validity for the credential. This is taken as input by
create() or resetValidity() methods.

Notes
The Issuance API enables you to add notes for each credential type. This feature helps
you to maintain any additional credential information. For example, if you do not want
the user to download their ArcotID on more than five systems, then you can create a
note with this information. This is taken as input by create() or resetNotes()
methods.

To add notes, invoke the setNote() method of the CredentialInput class.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 35

Chapter 4 Performing Issuance Operations Credential Operations
Profile Name
Typically, same set of credential information could well be applied to many users. In
such cases, to avoid the cumbersome task of entering the credentials for each user
individually, you can create a profile with all common information and share this profile
among multiple users. Each profile is identified by a unique Profile Name.

The Issuance API enables you to set the profile name for the credential. To set the profile
name, invoke the setProfileName() method of the CredentialInput class.

NOTE: If the profile is not set, then the default profile for the credential is
used.

Credential-Specific Input
The com.arcot.webfort.issuance.api package provides the interface that you
can use to set the credential-specific information.

Preparing ArcotID Input
The following ArcotID inputs can be set by using the ArcotIDInput class:

• Unsigned Attributes

• Password

• ArcotID Attributes

Unsigned Attributes
You can define ArcotID attributes after creating an ArcotID for the user. Such attributes
are called unsigned attributes because these attributes (name-value pairs) are set in the
unsigned portion of the ArcotID.

NOTE:If you add an attribute that already exists, then the current attributes
will be overwritten by the new value.

To set unsigned attributes:

1. Use the ArcotIDInput class to obtain the methods that set the information of the
ArcotID.

2. Use ArcotIDAttribute class to define the unsigned attributes to set in the
ArcotID.

3. Invoke the setUnsignedAttributes method in the ArcotIDInput class.

Password
To set the password for the ArcotID or change the current ArcotID password, you must
use the setPassword method.
36 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
To set the ArcotID password:

1. Use the ArcotIDInput class to obtain the methods that set the information of the
ArcotID.

2. Invoke the setPassword method in the ArcotIDInput class.

ArcotID Attributes
To fetch ArcotID attributes in ArcotIDResponse, you must enable the
setFetchAttributeFlag() flag.

To fetch ArcotID attributes:

1. Use the ArcotIDInput class to obtain the methods that set the information of the
ArcotID.

2. Invoke the setFetchAttribute method in the ArcotIDInput class.

Preparing QnA Input
The questions and answers for the QnA authentication must be set by using the
QnAInput class.

To add the questions and answers:

1. Use the QnAInput class to obtain the methods that set the information of QnA.

2. Invoke the setQuestionAnswer method in the QnAInput class.

Preparing Username-Password Input
The password for the username-password authentication is set by using the UPInput
class.

To set the password:

1. Use the UPInput class to obtain the methods that set the information of QnA.

2. Invoke the setPassword method in the UPInput class.

Checking the User Status
WebFort uses the user status information before performing some of the credential
operations. A user’s status in the database can be either ACTIVE or DISABLED.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 37

Chapter 4 Performing Issuance Operations Credential Operations
For Issuance SDK to perform these checks, you must enable this option through
credential profile configuration page in the Administration Console. The following table
lists all the credential operations and the user checks that are performed depending on
the type of operation.

Creating Credentials
The com.arcot.webfort.issuance.api package provides the
CredentialIssuance interface that contains the methods to create the credentials for
the user.

To create credential:

1. Depending on the type of credential you want to create, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.

Table 4-5 User Status Check

State
Operation

User Existence User Status User Attribute

Create Yes Yes Yes

Delete No No No

Disable No No No

Enable Yes Yes No

Fetch No No No

Reissue Yes Yes No

Reset Yes Yes No

Reset Validity Yes Yes No

Delete Unsigned
Attributes

No No No

Set Unsigned
Attributes

No No No
38 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.

3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the create() method of the CredentialIssuance interface to create
the credentials.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Disabling Credentials
User credentials can be disabled for a specified time interval. For example, if an employee
goes for long vacation, then the credentials of this user can be disabled to prevent any
unauthorized access during their absence.

To disable credential:

1. Depending on the type of credential you want to disable, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 39

Chapter 4 Performing Issuance Operations Credential Operations
2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.

3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the disable() method of the CredentialIssuance interface to disable
the credentials.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Enabling Credentials
The enable method is used to activate the disabled or locked credential of a user. For
example, a credential can be disabled or locked if a user tries to authenticate by using the
wrong credential or exceeds the configured maximum number of allowed attempts.

To enable a credential:

1. Depending on the type of credential you want to enable, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE: See “Credential Operations Summary” for the input details
required by different credentials.
40 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.

3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the enable() method of the CredentialIssuance interface to enable
the credentials.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Resetting Credential
The Issuance APIs enables you to reset the credential. For example, you can reset the
ArcotID password or questions and answers.

To reset the credential:

1. Depending on the type of credential you want to reset, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 41

Chapter 4 Performing Issuance Operations Credential Operations
3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the resetCredential() method of the CredentialIssuance
interface to reset the credential.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Fetching Credential Details
To read the details of the user credentials, you need to implement the get() method.

To read a user’s credential information:

1. Depending on the type of credential whose details have to be fetched, use the
respective <CredentialName>Input class to obtain an object that implements
the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.
42 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the fetch() method of the CredentialIssuance interface to read the
credential details.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Reissuing Credentials
The Issuance API enables you to re-create the credentials for the user. If the credential
has been reissued for the user, then the user cannot log in by using their old credential.

To reissue credential:

1. Depending on the type of credential you want to reissue, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 43

Chapter 4 Performing Issuance Operations Credential Operations
3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the reissue() method of the CredentialIssuance interface to
recreate the credential.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Resetting Credential Validity
Issued credentials are valid for the period that is specified at the time they are created.
The CredentialIssuance interface provides resetValidity() method, which
helps to reset the validity period of the credential before it expires. This method is used to
either extend or reduce the validity period of the credential, but it does not reset the
password or any other credential attributes.

To reset the validity of the credential:

1. Depending on the type of credential that has to be reset, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.
44 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the resetValidity() method of the CredentialIssuance interface
to reset the validity of the credential.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Resetting Credential Notes
The notes associated with the credentials can be reset. The CredentialIssuance
interface provides resetNotes() method, which helps to reset the notes of the
credential.

To reset the credential notes:

1. Depending on the type of credential that has to be reset, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 45

Chapter 4 Performing Issuance Operations Credential Operations
3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the resetNotes() method of the CredentialIssuance interface to
reset the credential notes.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Fetching Number of Questions
The number of questions that the user must set for QnA authentication might vary for
every organization. To fetch the number of questions that must be set by the user:

1. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

2. Invoke the fetchQnAConfiguration() method of the CredentialIssuance
interface to fetch the number of questions.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.
46 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
Deleting Credentials
To delete the credentials of a user:

1. Depending on the type of credential you want to delete, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for username-password as well as ArcotID, while questions and corresponding
answers are required for QnA credentials.

NOTE:See “Credential Operations Summary” for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the
common information of the credential.

3. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

4. Invoke the delete() method of the CredentialIssuance interface to delete
the credential.

This method returns an instance of the ConfigurationResponse interface,
which specifies the QnA configuration details.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Setting Unsigned Attributes
To set the unsigned attributes for the ArcotID of user, you need to implement the
setArcotIDUnsignedAttributes() method:
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 47

Chapter 4 Performing Issuance Operations Credential Operations
NOTE: This operation is applicable only for ArcotID credential.

1. Use the ArcotIDAttributes class to set the ArcotID unsigned attributes.

2. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the setArcotIDUnsignedAttributes() method of the
CredentialIssuance interface to set the ArcotID unsigned attributes.

This method returns an instance of the TransactionDetails interface, which
specifies the transaction ID, message, response code, and reason code.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Deleting Unsigned Attributes
To delete the unsigned attributes for the ArcotID of an user, you need to implement the
deleteArcotIDUnsignedAttributes() method:

NOTE: This operation is only applicable for ArcotID credential.

Perform the following steps to delete the unsigned attributes of the ArcotID:

1. (Optional) If you are implementing a callout, plug-in, or any other custom method
for issuance operations, then invoke the setAdditionalInput() method in the
AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.
48 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
2. Invoke the deleteArcotIDUnsignedAttributes() method of the
CredentialIssuance interface to delete the ArcotID unsigned attributes.

This method returns an instance of the TransactionDetails interface, which
specifies the transaction ID, message, response code, and reason code.

Handling Errors
Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions.
See “Issuance Exceptions” and “Common Exceptions” for more information on
exception classes.

Note that if no exception is thrown, then processing was successful and the return object
can be referenced for processing results. The lack of an error does not necessarily mean
that the request was successful.

Reading the Output
The following table lists the methods that fetch the credential and user details.

NOTE: Most of the methods listed in the following table can also return
NULL.

Table 4-6 Output Methods

Method Description

Common Output Methods

getCreateTime() Fetches the time when the credential was created.

getLastFailedAuth
AttemptTime()

Fetches the time when the last authentication attempt failed.

getLastSuccessAut
hAttemptTime()

Fetches the time when the last authentication attempt succeeded.

getLastUpdatedTim
e()

Fetches the time when the credential was updated last time.

getNotes() Fetches the notes that are set for the credential.

getNumberOfFailed
AuthAttempts()

Fetches the total number of failed authentication attempts for the user.

getOrgName() Fetches the organization name to which the user belongs.

getProfileName() Fetches the profile name with which the credential was created.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 49

Chapter 4 Performing Issuance Operations Credential Operations
getProfileVersion
()

Fetches the version number of the profile.

getStatus() Fetches the status of the credential.

getUserName() Fetches the name of the authenticating user.

getValidityEndTim
e()

Fetches the date after which the credential expires.

getValidityStartT
ime()

Fetches the date from when the credential is valid.

ArcotID Output Method

getUnsignedAttrib
utes()

Fetches the unsigned attributes of the ArcotID that the user has set.

QnA Output Method

getQuestions() Fetches the questions set for the user.

User-Name Password Output Method

Output methods are not available for this authentication method.

One-Time Password Output Methods

getOTP() Fetches the One-Time Password (OTP) for the user.

getUsageCount() Fetches the number of times the OTP can be used.

User Output Methods

getCustomAttribut
e

Fetches the value of the specified user attribute.

getCustomAttribut
eMap()

Fetches the user attributes in a map, where the keys are the attribute
names and the values are the corresponding attribute values.

getEmailId() Fetches the email ID of the user.

getFirstName() Fetches the first name of the user.

getLastName() Fetches the last name of the user.

getMiddleName() Fetches the middle name of the user.

getOrgName() Fetches the name of the organization to which the user belongs.

getPAM() Fetches the Personal Assurance Message (PAM) of the user.

getStatus() Fetches the state of the user.

getTelephoneNumbe
r()

Fetches the telephone number of the user.

Table 4-6 Output Methods

Method Description
50 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
Checking the Credential Status
To check the status of the credential, use the com.arcot.webfort.common.api
package. The following table lists the different credential status.

State Transition
The following table lists the credential states and the transitions allowed between the
states.

getUserName() Fetches the name of the user.

Table 4-7 Credential Status

Status Description

ACTIVE The credential is active and can be used for authentication.

DISABLED The credential is disabled by the administrator.

LOCKED The credential is locked when the user consecutively fails to
authenticate for the maximum number of negative attempts configured.
For example if the maximum attempts configured is 3, then the third
attempt with wrong credential will lock the credential.

VERIFIED The credential is verified when the OTP submitted by the user is
authenticated by the WebFort Server successfully.

NOTE: This status is applicable only for OTP.

DELETED The credential of the user is deleted from the database.

Table 4-8 Credential State Transition

To
From

Enabled Locked Disabled Revoked Verified

Enabled Yes Yes Yes Yes Yes

Locked Yes Yes Yes Yes No

Disabled Yes No Yes Yes No

Revoked No No No Yes No

Verified Yes No Yes Yes No

Table 4-6 Output Methods

Method Description
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 51

Chapter 4 Performing Issuance Operations Credential Operations
Credential Operations and State
The following table lists all credential operations and whether each operation is allowed
on a specific state of the credential or not. If the state of the credential changes after an
operation, then the table also provides the next state of the credential.

NOTE: The Allowed state indicates that the operation can be performed, but
the state of the credential will not change after the operation.

Credential Operations Summary
This section provides the input parameters required for performing lifecycle management
operations for each credential and the expected output for:

• ArcotID Operations

• Username-Password Operations

• Question and Answer Operations

• One-Time Password Operations

Table 4-9 Credential Operation and States

State
Operation

Enabled Locked Disabled Deleted Verified (for
OTP only)

Create Not allowed Not allowed Not allowed Enabled Not allowed

Enable Enabled Enabled Enabled Not allowed Not allowed

Disable Disabled Disabled Disabled Not allowed Not allowed

Fetch Allowed Allowed Allowed Allowed Allowed

Reset Enabled Enabled Enabled Not allowed Enabled

Reset Validity Allowed Allowed Allowed Not allowed Allowed

Reissue Enabled Enabled Enabled Not allowed Enabled

Delete Deleted Deleted Deleted Deleted Deleted

Delete Unsigned
Attributes (for
ArcotID only)

Allowed Allowed Allowed Not allowed Allowed

Set Unsigned
Attributes (for
ArcotID only)

Allowed Allowed Allowed Not allowed Allowed
52 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
ArcotID Operations
The following table provides the input and output information for ArcotID operations.

Table 4-10 ArcotID Operations

Operation Input Required Expected Output

Create • User name (userName).

• (Optional) Organization name (orgName).

• ArcotID password (password).

• (Optional) ArcotID attributes
(signedAttributes and
unsignedAttributes).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization.

• (Optional) Notes that you have maintained for each
credential in your application (noteName,
noteValue).

• CredentialOutp
ut

• TransactionDet
ails

Reset • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential.

• CredentialOutp
ut

• TransactionDet
ails

Fetch • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialOutp
ut

• TransactionDet
ails
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 53

Chapter 4 Performing Issuance Operations Credential Operations
Reissue • User name (userName).

• (Optional) Organization name (orgName).

• ArcotID password (password).

• (Optional) ArcotID attributes
(signedAttributes and
unsignedAttributes).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential.

• CredentialOutp
ut

• TransactionDet
ails

Reset
Validity

• User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Time when the validity of the credential ends
(validityEndTime).

• CredentialOutp
ut

• TransactionDet
ails

Reset Notes • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Notes that you have maintained in your application
(noteName, noteValue).

• CredentialOutp
ut

• TransactionDet
ails

Disable • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialOutp
ut

• TransactionDet
ails

Enable

Delete

Set unsigned
attribute

• User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• ArcotID attributes (signedAttributes and
unsignedAttributes).

• TransactionDet
ails

Table 4-10 ArcotID Operations

Operation Input Required Expected Output
54 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
Username-Password Operations
The following table provides the input and output information for username-password
operations.

Delete
unsigned
attribute

• User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Array of ArcotID unsigned attributes.

• TransactionDet
ails

Table 4-11 Username-Password Operations

Operation Input Required Expected Output

Create • User name (userName).

• (Optional) Organization name (orgName).

• Password (password).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization.

• (Optional) Notes that you have maintained for each
credential in your application (noteName,
noteValue).

• CredentialResp
onse

Reset • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential.

• CredentialResp
onse

Fetch • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

Table 4-10 ArcotID Operations

Operation Input Required Expected Output
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 55

Chapter 4 Performing Issuance Operations Credential Operations
Reissue • User name (userName).

• (Optional) Organization name (orgName).

• Password (password).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

Reset
Validity

• User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Time when the validity of the credential ends
(validityEndTime).

• CredentialResp
onse

Reset Notes • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Notes that you have maintained in your application
(noteName, noteValue).

• CredentialResp
onse

Disable • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

Enable

Delete

Table 4-11 Username-Password Operations

Operation Input Required Expected Output
56 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
Question and Answer Operations
The following table provides the input and output information for QnA operations.

Table 4-12 QnA Operations

Operation Input Required Expected Output

Create • User name (userName).

• (Optional) Organization name (orgName).

• List of questions and answers (question and
answer).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization.

• (Optional) Notes that you have maintained for each
credential in your application (noteName,
noteValue).

• CredentialResp
onse

Reset • User name (userName).

• (Optional) Organization name (orgName).

• List of questions and answers (question and
answer).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization.

• CredentialResp
onse

Fetch • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

• questions
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 57

Chapter 4 Performing Issuance Operations Credential Operations
Reissue • User name (userName).

• (Optional) Organization name (orgName).

• List of questions and answers (question and
answer).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

Reset
Validity

• User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Time when the validity of the credential ends
(validityEndTime).

• CredentialResp
onse

Reset Notes • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Notes that you have maintained in your application
(noteName, noteValue).

• CredentialResp
onse

Disable • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

Enable

Delete

Table 4-12 QnA Operations

Operation Input Required Expected Output
58 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Credential Operations Chapter 4 Performing Issuance Operations
One-Time Password Operations
The following table provides the input and output information for OTP operations.

Table 4-13 One-Time Password Operations

Operation Input Required Expected Output

Create • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• (Optional) Profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization.

• (Optional) Notes that you have maintained for each
credential in your application. (noteName,
noteValue).

• CredentialResp
onse

• Password

Fetch • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

Reset • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

• Password

Reset
Validity

• User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Time when the validity of the credential ends
(validityEndTime).

• CredentialResp
onse

Reset Notes • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• Notes that you have maintained in your application
(noteName, noteValue).

• CredentialResp
onse
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 59

Chapter 4 Performing Issuance Operations Credential Operations
Disable • User name (userName).

• (Optional) Organization name (orgName).

• (Optional) Additional Input
(AdditionalInput).

• CredentialResp
onse

Enable

Delete

Table 4-13 One-Time Password Operations

Operation Input Required Expected Output
60 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Chapter 5 Integrating ArcotID Client with Application
Chapter 5

Integrating ArcotID Client with Application

The ArcotID Client is a software that is used by the end user to sign the challenge
provided by the WebFort Server. If you are planning to implement ArcotID-based
authentication, then you must integrate ArcotID Client with application before you call
ArcotID authentication APIs. This chapter provides information on different client
types, details on how to integrate them with application, and lists the APIs provided by
ArcotID Client. It covers the following topics:

• ArcotID Client Overview

• Copying ArcotID Client Files

• ArcotID Client APIs
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 61

Chapter 5 Integrating ArcotID Client with Application ArcotID Client Overview
ArcotID Client Overview

The ArcotID Client is used for signing the WebFort-issued challenge at the user end, but
it also facilitates the download of the user’s ArcotID. To support a wide variety of end
user environments, the ArcotID Client is available as a Flash client and as a signed Java
applet. Each client type offers different levels of convenience and capabilities. The degree
of user interaction and administration rights required for configuration vary depending
on the client selected.

Flash Client
This implementation of ArcotID Client runs in any Web browser that has Adobe Flash
Player (version 9 or higher) installed.

NOTE: If you are using ArcotID Flash Client for ArcotID operations, then
the application serving the Flash client must be enabled for HTTPS.

Signed Java Applet
This implementation of the ArcotID Client can run in any Web browser that has Sun
Java Runtime Environment (JRE) installed.

NOTE: When using the Arcot signed Java applet, the user will be presented
with a security message that requires the user to accept the signed applet
before it is invoked.
62 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Copying ArcotID Client Files Chapter 5 Integrating ArcotID Client with Application
Copying ArcotID Client Files

ArcotID Client is an end-user system component. Therefore based on the client type that
you are planning to use, you must package the relevant files to the correct locations on
the system where the application is running.

This section discusses the files that needs to be packaged with the application:

• For Flash Client

• For Java Signed Applet

For Flash Client
The Flash client package contains the following files:

• arcotclient.js

Contains the ArcotID Flash Client APIs.

• ArcotIDClient.swf

Contains the ArcotID Flash Client implementation.

To configure a Flash Client:

1. Copy arcotclient.js and ArcotIDClient.swf files to an appropriate
directory within your application home.

2. Include the following JavaScript code in the Web page of your application from
where the APIs will be invoked:

<script type="text/javascript"
src="location_to_arcotclient.js"></script>

In the preceding code snippet, replace location_to_arcotclient.js with the
path to arcotclient.js.

3. Ensure that in the all application pages, ArcotIDClient.swf is referred with
same URL.

NOTE: Refer to ArcotID Flash Client 6.0 API Guide for more information
on the Flash client configuration.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 63

Chapter 5 Integrating ArcotID Client with Application Copying ArcotID Client Files
For Java Signed Applet
The Java Signed Applet client package contains the following files:

• arcotclient.js

Contains the Java Signed Applet client APIs.

• ArcotApplet.jar (for Sun JRE)

Contains the Java Signed Applet client implementation.

To configure the Java Signed Applet Client:

1. Copy arcotclient.js and ArcotApplet.jar to an appropriate directory
within your application home.

2. Include the following JavaScript code in the relevant Web page of your application:

<script type="text/javascript"
src="location_to_arcotclient.js"></script>

In the preceding code snippet, replace location_to_arcotclient.js with the
path to arcotclient.js.

3. Ensure that in the all application pages, the Java Applet is referred with same URL.
64 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

ArcotID Client APIs Chapter 5 Integrating ArcotID Client with Application
ArcotID Client APIs

If you are implementing ArcotID authentication, then your application must integrate
with ArcotID Client APIs for:

• Downloading ArcotID

• Signing the Challenge

Downloading ArcotID
To download the ArcotID from the application to the end-user system, you must use the
ImportArcotID() function. This function takes the base-64 encoded string of the
ArcotID that has to be downloaded and the storage mode as the input parameters.

The ArcotID can be temporarily downloaded for the current session or can be
downloaded permanently. This storage mode is specified by the storage medium selected
for storing the ArcotID. An ArcotID can be stored in any of the following:

• Hard Disk

• Universal Serial Bus (USB)

• Memory

The downloaded ArcotID is saved with the .aid extension. The name of the ArcotID
file is derived from the hash value of user name, organization name, and domain name.

Signing the Challenge
The challenge from the WebFort Server must be signed by using the
SignChallengeEx() function of the client API.

NOTE: Refer to ArcotID Client 6.0 Reference Guide for more information on
the API details.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 65

Chapter 5 Integrating ArcotID Client with Application ArcotID Client APIs
66 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Chapter 6 Authenticating Users
Chapter 6

Authenticating Users

This chapter introduces you to the APIs that are used for different authentication
methods supported by WebFort. This chapter covers the following topics:

• Initializing the Authentication SDK

• Preparing Additional Input

• ArcotID Authentication

• Questions and Answers Authentication

• Username-Password Authentication

• One-Time Password Authentication

• Authentication Tokens

• Verifying the Authentication Tokens

• Fetching the PAM

• Authentication Operations Summary
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 67

Chapter 6 Authenticating Users Initializing the Authentication SDK
Initializing the Authentication SDK

Initialize the Authentication SDK by using the Authentication class in the
com.arcot.webfort.authentication.api package. The initialization process
caches all the database tables, creates the database pool, and loggers. After initialization, it
returns an appropriate message to the calling application.

NOTE: You cannot apply any configuration changes after you initialize the
API. To enable the configuration changes, you must re-initialize the API.

The Authentication class provides two methods to initialize the Authentication
SDK.

Method 1: Initializing the SDK by Using the Map

This method initializes the Authentication SDK based on the map provided. The
following table provides the details of the init() method.

Method 2: Initializing the SDK by Using the Properties File

This method initializes the Authentication SDK by using the parameters listed in the
properties file. If you pass NULL, then the parameters are read from the
webfort.authentication.properties file. If you provide a different file name
containing these configuration parameters, then that file is read instead.

Table 6-1 SDK Initialization by Using Map

Description Input Values Output Value

Initializes the
Authentication SDK by
using the provided map.

• map
Key-value pair specifying the
configuration information. The
supported keys are:

1. authentication.host.1
The IP address of the system where
WebFort Server is available.

2. authentication.port.1
The port on which the Authentication
Native protocol is listening. Default
value is 9742.

• locale
The locale of the API. The default value
is set to en_US.

Returns an exception if
the SDK is not initialized
successfully.
68 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Initializing the Authentication SDK Chapter 6 Authenticating Users
The parameters (transport, host, and port) in the
webfort.authentication.properties file are same as that of map. The
following table provides the details of the init() method.

Releasing the Authentication API Resources
The Authentication class also provides a method to release the resources such as
sockets that are used by Authentication SDK.

IMPORTANT: This method must be invoked before re-initializing the
SDK.

The following table provides the details of the release() method.

Table 6-2 SDK Initialization by Using Properties File

Description Input Values Output Value

Initializes the
Authentication SDK by
using the properties file.

• location
The absolute path of the
properties file.

• locale
The locale of the API. The
default value is set to en_US.

Returns an exception if the SDK
is not initialized successfully.

Table 6-3 Releasing the API

Description Input Values Output Value

Releases the
Authentication SDK.

The locale of the API. Returns an exception if
the API is not released
successfully.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 69

Chapter 6 Authenticating Users Preparing Additional Input
Preparing Additional Input

You need to prepare additional inputs if:

• You plan to augment WebFort’s standard authentication capability by
implementing callouts or plug-ins.

• You plan to write completely new custom authentication methods.

In all of these cases, you need to set the extra information that must be sent to WebFort
Server in name-value pairs. WebFort’s com.arcot.webfort.common.api
provides you the AdditionalInput class, which enables you to set this additional
information that you plan to use.

Some of the pre-defined additional input parameters supported by the
AdditionalInput class are:

• AR_WF_LOCALE_ID

Specifies the locale that WebFort will use in returning the messages back to the
calling application.

• AR_WF_CALLER_ID

This is useful in tracking transactions. You can use session ID or transaction ID for
specifying this information.
70 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

ArcotID Authentication Chapter 6 Authenticating Users
ArcotID Authentication

ArcotID is a challenge-response type of authentication, where WebFort Server provides a
challenge. The signed challenge is sent by the ArcotID Client to the WebFort Server
through the application. The following topics are explained in this section:

1. ArcotID Download

2. ArcotID Authentication

For successful ArcotID authentication, you must ensure that you have integrated
ArcotID Client with application, as discussed in Chapter 5, “Integrating ArcotID Client
with Application,” on page 61.

NOTE: The ArcotID download and authentication can be in multiple ways,
see Chapter 2, “Understanding WebFort WorkFlows” for more
information. This section focuses on the APIs that are used for these
operations.

ArcotID Download
To perform ArcotID authentication, the ArcotID of the user has to be present on the
system from where the authentication request is originating. If the ArcotID is not
present, then it needs to be downloaded to the system. In such a case the user must
perform a secondary authentication before the ArcotID is downloaded.

To download the ArcotID:

1. (Optional) If you are implementing a callout or plug-in, then invoke the
setAdditionalInput() method in the AdditionalInput class to obtain an
object that implements the class.

See “Preparing Additional Input” for more information.

2. Invoke the getArcotID() method of the ArcotIDAuth interface to fetch the
ArcotID of the user to your application.

This method returns an instance of the ArcotIDResponse interface, which will
have the ArcotID of the user.

3. The user’s ArcotID is set in the HTML or Java Server Page (JSP).

4. Invoke the ImportArcotID() client-side API to download the ArcotID from
your application to the end user’s system.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 71

Chapter 6 Authenticating Users ArcotID Authentication
ArcotID Authentication
To perform ArcotID authentication:

1. (Optional) If you are implementing a callout or plug-in, then invoke the
setAdditionalInput() method in the AdditionalInput class to obtain an
object that implements the class.

See “Preparing Additional Input” for more information.

2. Invoke the getChallenge() method of the ArcotIDAuth interface to retrieve
the challenge form the WebFort Server.

This method returns an instance of the ArcotIDChallengeResponse, which has
the transaction details and also the challenge from the server.

3. The challenge is sent to the end user through HTML Page.

4. Invoke the ArcotID Client-side method, SignChallengeEx() to sign the
challenge.

The application collects the ArcotID password and the challenge is signed by the
ArcotID Client using the ArcotID password.

5. Invoke the verifySignedChallenge() method of the ArcotIDAuth interface
to verify the signed challenge. Optionally, you can also specify the token type that
must be returned to the user after successful authentication by using the
AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides
the transaction details, credential details, and token information.
72 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Questions and Answers Authentication Chapter 6 Authenticating Users
Questions and Answers Authentication

The Question and Answer (QnA) authentication mechanism can either be used as a
secondary authentication method for ArcotID Download, or Forgot Your Password
(FYP) authentication, or can be used as an independent authentication type.

In this mechanism, the user can either set their own set of questions and answers during
the QnA creation stage, or your application can choose to ask pre-defined questions to
the user. The maximum number of questions to be set, the number of questions to be
asked to the user, and the minimum correct answers to be collected during
authentication are all configurable parameters and can be set by using the WebFort
Administration Console.

To perform the QnA authentication:

1. Invoke the getQuestions() method of the QnAAuth interface to retrieve the
user’s questions from the WebFort Server.

This method returns an instance of the QnAResponse interface, which includes the
questions to be asked, transaction ID, message, response code, and reason code.

2. Prepare an object to hold the questions and answers of the user. For this, you must
invoke the methods of AuthQnAInfo interface in the following order:

a. getNumberofQuestions

Invoke this method to know the number of questions that are set for the user.

b. getQuestion

Invoke this method to get the questions that are set for the user. The number of
questions fetched by this method depends on the number returned by the
getNumberofQuestions() method.

c. Implement the logic to collect the answers from the user for the questions
retrieved from WebFort Server.

d. answerQuestion

Invoke this method to set the answer collected by the application.

3. (Optional) If you are implementing a callout or plug-in, then invoke the
setAdditionalInput() method in the AdditionalInput class to obtain an
object that implements the class.

See “Preparing Additional Input” for more information.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 73

Chapter 6 Authenticating Users Questions and Answers Authentication
4. Invoke the verifyAnswers() method of the QnAAuth interface by passing the
AuthQnAInfo object created in Step 2 on page 73 to verify the answers provided
by the user. Optionally, you can also specify the token type that must be returned to
the user after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides
the transaction details, credential details, and token information.
74 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Username-Password Authentication Chapter 6 Authenticating Users
Username-Password Authentication

The authentication API provides the PasswordAuth interface to perform the
traditional username-password authentication. In this authentication mechanism, the user
specifies the user name and the corresponding password for authentication. The
password entered by the user is then verified.

To perform username-password authentication:

1. Implement the logic to collect the user’s password.

2. (Optional) If you are implementing a callout or plug-in, then invoke the
setAdditionalInput() method in the AdditionalInput class to obtain an
object that implements the class.

See “Preparing Additional Input” for more information.

3. Invoke the verifyPassword() method of the PasswordAuth interface to verify
the password provided by the user. Optionally, you can also specify the token type
that must be returned to the user after successful authentication by using the
AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides
the transaction details, credential details, and token information.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 75

Chapter 6 Authenticating Users One-Time Password Authentication
One-Time Password Authentication

One-Time Password (OTP) is a numeric or an alpha-numeric string that is generated by
the WebFort Server. WebFort supports OTPs that can be reused pre-configured number
of times. You can specify this setting by using the Administration Console. The OTP
lifetime depends on the duration for which it is valid and number of times it can be used.

To perform OTP authentication:

1. Implement the logic to collect the OTP from the user.

2. (Optional) If you are implementing a callout or plug-in, then invoke the
setAdditionalInput() method in the AdditionalInput class to obtain an
object that implements the class.

See “Preparing Additional Input” for more information.

3. Invoke the verifyOTP() method of the OTPAuth interface to verify the OTP of
the user. Optionally, you can also specify the token type that must be returned to
the user after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides
the transaction details, credential details, and token information.
76 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Authentication Tokens Chapter 6 Authenticating Users
Authentication Tokens

The WebFort Authentication API provides an appropriate token to the end user after
they authenticate successfully. The token is then presented to the WebFort Server,
indicating that the user is authenticated and can be provided access to the protected
resources.

By using the Authentication API, you can specify whether the token has to be returned
after authentication or not. In addition, you can also specify the type of the token that
must be returned after authentication. The AuthTokenType class specifies the return
token type and supports the following types of tokens:

• Native Tokens

Specify this type when Arcot-proprietary (or Native) token is required after
successful authentication. This token can be used multiple times before it expires.

• One-Time Tokens

Specify this type when one-time token is required after successful authentication.
This token can be used only one time before it expires.

• SAML Tokens

Secure Assertion Markup Language (SAML) is an open standard, which specifies the
format of the authentication data exchanged between security domains. The Native,
Default, and One-Time tokens issued by WebFort can only be interpreted by the
WebFort Server, but the SAML tokens issued by the WebFort Server can be
interpreted by any other authentication system. WebFort supports 1.1 and 2.0
versions of SAML:

• SAML 1.1 Tokens

Specify this type of token when you are using custom (non-WebFort)
authentication mechanism that needs SAML 1.1 tokens after successful
authentication.

• SAML 2.0 Tokens

Specify this type of token when you are using custom (non-WebFort)
authentication mechanism that needs SAML 2.0 tokens after successful
authentication.

• Default Tokens

Specify this type of token when the default token configured at the server is to be
requested after successful authentication.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 77

Chapter 6 Authenticating Users Verifying the Authentication Tokens
Verifying the Authentication Tokens

WebFort Server can verify only the Native and One-Time tokens that are issued to the
users. The authentication token must be verified in cases when you use these token for
Single Sign-On, wherein you authenticate the user once and allow them to use multiple
resources using the authentication token.

To verify if a token is valid or not:

1. (Optional) If you are implementing a callout or plug-in, then invoke the
setAdditionalInput() method in the AdditionalInput class to obtain an
object that implements the class.

See “Preparing Additional Input” for more information.

2. Invoke the verifyAuthToken() method in Authentication class to verify the
token of the user.

This methods returns an instance of the AuthTokenResponse interface, which
provides the credential and transaction details.
78 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Fetching the PAM Chapter 6 Authenticating Users
Fetching the PAM

Personal Assurance Message (PAM) is a security feature that reassures the end users that
they are accessing the genuine site of your organization, and not a phished site.

To obtain the PAM of a user:

1. (Optional) If you are implementing a callout or plug-in, then invoke the
setAdditionalInput() method in the AdditionalInput class to obtain an
object that implements the class.

See “Preparing Additional Input” for more information.

2. Invoke the getPAM() method in Authentication class to fetch the PAM of the
user.

This methods returns an instance of the PAMResponse interface, which provides
the user details, PAM, and transaction details.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 79

Chapter 6 Authenticating Users Authentication Operations Summary
Authentication Operations Summary

The following table provides a summary of the input parameters required for performing
authentication operations discussed in this chapter.

Table 6-4 Authentication Operations

Operation Input Required Expected Output

ArcotID • User name (userName)

• (Optional) Organization name (orgName)

NOTE: If the organization name is
not provided, then the user is
assumed to belong to default
organization.

• Signed challenge (signedResponse)

• (Optional) Additional Input
(AdditionalInput)

• (Optional) Authentication token type
(AuthTokenType)

• AuthResponse

QnA • User name (userName)

• (Optional) Organization name (orgName)

NOTE: If the organization name is
not provided, then the user is
assumed to belong to default
organization.

• Question and Answers for authentication
(qnaInfo)

• (Optional) Additional Input
(AdditionalInput)

• (Optional) Authentication token type
(AuthTokenType)
80 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Authentication Operations Summary Chapter 6 Authenticating Users
Username-P
assword

• User name (userName)

• (Optional) Organization name (orgName)

NOTE: If the organization name is
not provided, then the user is
assumed to belong to default
organization.

• User password for authentication (password)

• (Optional) Additional Input
(AdditionalInput)

• (Optional) Authentication token type
(AuthTokenType)

• AuthResponse

OTP • User name (userName)

• (Optional) Organization name (orgName)

NOTE: If the organization name is
not provided, then the user is
assumed to belong to default
organization.

• One-time password for authentication (otp)

• (Optional) Additional Input
(AdditionalInput)

• (Optional) Authentication token type
(AuthTokenType)

Table 6-4 Authentication Operations

Operation Input Required Expected Output
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 81

Chapter 6 Authenticating Users Authentication Operations Summary
82 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Chapter 7 Using Custom APIs
Chapter 7

Using Custom APIs

WebFort provides Custom APIs to enable you to add new credentials. You can use these
APIs to create and manage these credentials and also use them for authentication. The
Custom APIs can either be used to:

• Add completely new authentication methods, for example, certificate-based or
hardware-based.

• Support WebFort authentication methods along with the method that is derived
based on the WebFort authentication methods. For example, you can use WebFort
OTP in parallel with the authentication method that is based on WebFort OTP.

NOTE: For WebFort to support the Custom APIs and perform the
operations mentioned in this chapter, you must configure the plug-in or
callout that provides these functions. Refer Arcot WebFort 6.0 Business Logic
Extension Guide to for more information on this.

This chapter discusses both Issuance and Authentication APIs for custom credentials. It
covers the following topics:

• Issuance Operations

• Authentication Operations
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 83

Chapter 7 Using Custom APIs Issuance Operations
Issuance Operations

The following issuance operations are supported for the custom credential:

• Creating Credential

• Enabling Credential

• Disabling Credential

• Resetting Credential

• Reissuing Credential

• Resetting Credential Validity

• Fetching Credential Details

• Deleting Credentials

Creating Credential
The com.arcot.webfort.issuance.api package provides the CustomIssuance
interface that contains the method to create the credential

Perform the following steps to create credential:

1. Use the CustomInput class that encapsulates credential information.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the create() method of the CustomIssuance interface to create the
credentials.

This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.

Disabling Credential
Perform the following steps to disable credential:
84 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Issuance Operations Chapter 7 Using Custom APIs
1. Use the CustomInput class that encapsulates credential information.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the disable() method of the CustomIssuance interface to disable the
credentials.

This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.

Enabling Credential
Perform the following steps to enable credential:

1. Use the CustomInput class that encapsulates credential information.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the enable() method of the CustomIssuance interface to enable the
credentials.

This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.

Resetting Credential
Perform the following steps to reset the credential:

1. Use the CustomInput class that encapsulates credential information.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the resetCredential() method of the CustomIssuance interface to
reset the custom credential.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 85

Chapter 7 Using Custom APIs Issuance Operations
This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.

Reissuing Credential
Perform the following steps to reissue the credential:

1. Use the CustomInput class that encapsulates credential information.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the reissue() method of the CustomIssuance interface to reissue the
custom credential.

This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.

Resetting Credential Validity
Perform the following steps to reset the validity of the credential:

1. Use the CustomInput class that encapsulates credential information.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the resetValidity() method of the CustomIssuance interface to reset
the validity of the custom credential.

This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.

Fetching Credential Details
Perform the following steps to fetch the credential details:

1. Use the CustomInput class that encapsulates credential information.
86 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Issuance Operations Chapter 7 Using Custom APIs
2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the fetch() method of the CustomIssuance interface to fetch the
custom credential details.

This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.

Deleting Credentials
Perform the following steps to delete the credential:

1. Use the CustomInput class that encapsulates credential information.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the delete() method of the CustomIssuance interface to delete the
custom credential.

This method returns an instance of the CustomResponse interface, which specifies
the credential and transaction details.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 87

Chapter 7 Using Custom APIs Authentication Operations
Authentication Operations

The com.arcot.webfort.authentication.api package provides the
CustomAuth interface that contains the methods to authenticate password-based and
challenge-response-based authentication methods.

Password-Based Authentication
To perform the password-based authentication:

1. You must collect the user password.

2. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

3. Invoke the verifyCredential() method of the CustomAuth interface to verify
the password provided by the user. Optionally, you can also specify the token type
that must be returned to the user after successful authentication by using the
AuthTokenType class.

This method returns an instance of the CustomAuthResponse interface, which
provides the transaction details, user details, and token information.

Challenge-Response-Based Authentication
To perform the challenge-response-based authentication:

1. Invoke the setAdditionalInput() method in the AdditionalInput class to
obtain an object that implements the class.

This class provides the additional information that is set as a name-value pair. See
“Preparing Additional Input” for more information.

2. Invoke the getChallenge() method of the CustomAuth interface to receive the
challenge.

This method returns an instance of the CustomChallengeResponse interface,
which specifies the transaction details and also gets the challenge from the server.
88 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Authentication Operations Chapter 7 Using Custom APIs
3. Perform the authentication depending on the type of credential used. For example,
if it is challenge-response authentication, then the user will sign a challenge, or if it is
a question and answers authentication, then the user will provide answers for
authentication.

4. Invoke the verifyCredential() method of the CustomAuth interface to verify
the credential. Optionally, you can also specify the token type that must be returned
to the user after successful authentication by using the AuthTokenType class.

This method returns an instance of the CustomAuthResponse interface, which
provides the transaction details, user details, and token information.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 89

Chapter 7 Using Custom APIs Authentication Operations
90 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix A Input Data Validations
Appendix A

Input Data Validations

To ensure that the system does not process invalid data, to enforce business rules, and to
ensure that user input is compatible with internal structures and schemas, WebFort
Server validates the data that it receives from the APIs. Table A-1 explains the criteria
that the WebFort Server uses to validate this input data.

NOTE: Attribute length mentioned in the following table corresponds to
the character length.

NOTE: Attribute ID is referred to as paramName in the Java APIs.

Table A-1 Attribute Validation Checks

Attribute Attribute ID Validation Criteria

User name USER_NAME User name is non-empty.

User name length is between 1 and 256
characters.

User status USER_STATUS Check whether the user status is active or not:

• Active state -> USER_STATUS_ACTIVE

• Disabled state -> USER_STATUS_DISABLED
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 91

Appendix A Input Data Validations
Email ID EMAIL_ID Email ID is non-empty.

Email ID length is between 1 and 128 characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Check the following:

• @ should come before period (.)

• It should contain one @ character

• It should contain at least one period (.)

First name FIRST_NAME First name is non-empty.

First name length is between 1 and 32 characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Last name LAST_NAME Last name is non-empty.

Last name length is between 1 and 32 characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Personal
Assurance
Message

PAM PAM is non-empty.

PAM length is between 1 and 128 characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Start time START_TIME Check for the valid date format.

End time END_TIME Check for the valid date format.

Organizatio
n name

ORG_NAME Organization name is non-empty.

Organization name length is between 1 and 64
characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Locale name LOCALE_NAME Locale name is non-empty.

Check whether the locale name is according to
ISO set of locales.

Table A-1 Attribute Validation Checks

Attribute Attribute ID Validation Criteria
92 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix A Input Data Validations
Authenticat
ion user
password

AUTH_USER_PASSWOR
D

User password is non-empty.

User password length is between 1 and 64
characters.

Check user password against a set of strings.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Password
maximum
length

PWD_MAX_LENGTH Minimum value of password maximum length > 4
characters.

Maximum value of password maximum length <
64 characters.

Password
minimum
length

PWD_MIN_LENGTH Minimum value of password minimum length > 4
characters.

Maximum value of password minimum length <
64 characters.

Question AUTH_QUESTIONS Question is non-empty.

Question length is between 1 and 64 characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Answer AUTH_ANSWERS Answer is non-empty.

Answer length is between 1 and 64 characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

Duplicate
Question
and answers

DUPLICATE_QUESTIO
N_AND_ANSWER

Questions are not duplicate.

Answers are not duplicate.

Question is not same as answer.

Token type AUTH_TOKEN_TYPE Checks for the following values:

• DEFAULT_TOKEN

• NATIVE_TOKEN

• OTP_TOKEN

• SAML11_TOKEN

• SAML20_TOKEN

• NO_TOKEN

Table A-1 Attribute Validation Checks

Attribute Attribute ID Validation Criteria
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 93

Appendix A Input Data Validations
Password Password Password is non-empty.

Password length is between 1 and 64 characters.

Does not contain whitespace characters except
SPACE (ASCII 0-31).

OTP maximum
length

OTP_MAX_LENGTH OTP length is between 4 and 64 characters.

Table A-1 Attribute Validation Checks

Attribute Attribute ID Validation Criteria
94 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix B WebFort Logging
Appendix B

WebFort Logging

WebFort server logs contain transaction data and flow details for various types of
operations. These logs can be used to debug various types of issues, such as incorrect
configurations, incorrect transaction data, and other failures. This appendix describes
how to understand WebFort Server startup and transaction logs.

For few operations you might not receive an error message, for example, during server
startup. Even if you receive an error message, you may have to use the log file as one of
your tools to determine the issue.

The following topics are discussed in this appendix:

• About the Log Files

• Format of the WebFort Log Files

• Supported Severity Levels
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 95

Appendix B WebFort Logging About the Log Files
About the Log Files

WebFort allows you to change the logging parameters as well as logging location and
directory information for the log files. The typical logging configuration options that you
can change in these files include:

• Specifying log file name and path: WebFort enables you to specify the directory for
writing the log files and storing the backup log files. In addition to these, you can
also control whether you want to enable trace logging.

• Log file size: The maximum number of bytes the log file can contain. When the log
files reach this size, a new file with the specified name is created and the old file is
moved to the backup directory.

• Using log file archiving: WebFort lets you specify the configuration option to
control the size of diagnostic logging files. This lets you determine a maximum size
for the log files. When the maximum size is reached, older log information is moved
to the backup file before the newer log information is saved.

• Setting logging levels: WebFort also allows you to configure logging levels. By
configuring logging levels, the number of messages saved to diagnostic log files can
be reduced. For example, you can set the logging level so that the system only
reports and saves critical messages. See “Supported Severity Levels” for more
information on the supported log levels.

• Specifying time zone information: WebFort enables you to either use the local time
zone for time stamping the logged information or use GMT for the same.

The WebFort log files can be categorized as startup log and transaction logs. The default
location of these file is:

Windows: <install_location>\Arcot Systems\logs\

UNIX-Based: <install_location>/arcot/logs/

The following table explains the WebFort log files.

Table B-1 Log Files

Log File
Type

Log File Name Description

Startup Log arcotwebfortstartup.log

(Startup Log)

When you start the WebFort Server, it
records all start-up (or boot) actions in this
file. The information in this file is very useful
in identifying the source of the problems if
the WebFort service does not start up.
96 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

About the Log Files Appendix B WebFort Logging
Transaction
Logs

arcotwebfort.log

(Server Log)

WebFort records all requests processed by the
server in the arcotwebfort.log file.
The parameters that control logging in this
file can be configured by using the
Administration Console. To do so, you must
use the instance-specific configuration
sub-screen that you can access by clicking the
required instance in the Instance
Management screen.

arcotwebfortstas.log

(Statistics Log)

WebFort uses this file for logging statistics.

arcotwebfort.log

(Trace Log)

WebFort also provides trace logging, which
contains the flow details. The trace logs are
logged in the arcotwebfort.log file.
The entries for the trace messages start with
TRACE:.

Table B-1 Log Files

Log File
Type

Log File Name Description
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 97

Appendix B WebFort Logging Format of the WebFort Log Files
Format of the WebFort Log Files

Table B-2 describes the format of the entries in the WebFort loggers:

Table B-2 WebFort Logging Format

Column Description

Time Stamp The time when the entry was logged, translated to the time zone you con-
figured. The format of logging this information is:

mm/dd/yy HH:MM:SS.mis

Here, mis represents milliseconds.

Log Level (LEVEL)

(or Severity)

The severity level of the logged entry.

See “Supported Severity Levels” on page 99 for more information.

Protocol Name

(PROTOCOLNAME)

The protocol used for the transaction. Possible values are:

• AUTH_NATIVE

• ADMIN_WS

• ASSP_WS

• RADIUS

• SVRMGMT_WS

• TXN_WS

In case the server is starting up, shutting down, or is in the monitoring
mode, then no protocol is used and the following values are displayed, re-
spectively:

• STARTUP

• SHUTDOWN

• MONITOR

Thread ID
(THREADID)

The ID of the thread that logged the entry.

Transaction ID
(000TXNID)

The ID of the transaction that logged the entry.

Message The message logged by the Server in the log file in the free-flowing for-
mat.

NOTE: The granularity of the message depends on the Log Level that
you set in the log file.
98 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Supported Severity Levels Appendix B WebFort Logging
Supported Severity Levels

A log level (or severity level) enables you to specify the level of detail of the information
stored in the WebFort logs. This also enables you to control the rate at which the log file
will grow.

Table B-3 describes the log levels in the decreasing order of severity.

NOTE: When you specify a log level, messages from all other levels of higher
significance are reported as well. For example if the LogLevel is specified as
INFO, then messages with log levels of FATAL, WARNING level are also
captured.

The following subsections show a few sample entries (based on the Log Level) in the
WebFort log file.

FATAL
08/13/09 14:32:51.889 FATAL STARTUP 00003820 00WFMAIN - Arcot WebFort
Authentication Service SHUTDOWN due to initialization failure!

Table B-3 WebFort Log Levels (in Decreasing Order of Severity)

 Log Level Description

0 FATAL Use this log level for serious, non-recoverable errors that can cause the
abrupt termination of the WebFort service.

1 WARNING Use this log level for undesirable run-time exceptions, potentially harm-
ful situations, and recoverable problems that are not yet FATAL.

2 INFO Use this log level for capturing information on run-time events.

In other words, this information highlights the progress of the applica-
tion, which might include:

• Server state, such as start, stop, and restart.

• Server properties.

• State of services.

• State of a processes on the Server.

• Requested transaction.

• Operation involved.

• Result of the transaction.

3 DEBUG Use this log level for logging detailed information for debugging pur-
poses. This might include changes in Server states.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 99

Appendix B WebFort Logging Supported Severity Levels
08/13/09 14:33:58.154 FATAL STARTUP 00003612 00WFMAIN - [7]: Database
password could not be obtained from securestore.enc for [wf-60-st1-mssql-test]

08/13/09 14:33:58.154 FATAL STARTUP 00003612 00WFMAIN - Arcot WebFort
Authentication Service SHUTDOWN due to initialization failure!

WARNING
08/13/09 14:13:31.451 WARN SVRMGMT_WS 00005808 00055503 -
ArDBConnection::GetDBDiagnosis: SQL State:01000, Native Code: 2746, ODBC code:
[Arcot Systems][ODBC SQL Server Driver][DBNETLIB]ConnectionWrite (send()).

08/13/09 14:13:31.451 WARN SVRMGMT_WS 00005808 00055503 -
ArDBConnection::GetDBDiagnosis: SQL State:01000, Native Code: 2746, ODBC code:
[Arcot Systems][ODBC SQL Server Driver][DBNETLIB]ConnectionWrite (send()).SQL
State:08S01, Native Code: B, ODBC code: [Arcot Systems][ODBC SQL Server
Driver][DBNETLIB]General network error. Check your network documentation.

08/13/09 14:13:31.451 WARN SVRMGMT_WS 00005808 00055503 -
ArDBPoolManagerImpl::isKnownFailure: Error state [08S01] is detected as known
failure(type:0)!

08/13/09 14:13:31.451 WARN SVRMGMT_WS 00005808 00055503 -
ArDBPoolManagerImpl::reportQueryFailure: Query failure is detected as DBFO for
primary DSN [wf-60-st1-mssql] and context [70]. Marking it bad.

08/13/09 14:13:31.451 WARN MONITOR 00004984 0MONITOR -
ArDBPoolManagerImpl::recoverPool: [primary] pool [wf-60-st1-mssql] is marked bad.
Will try to clean and connect...

08/13/09 14:13:31.467 WARN SVRMGMT_WS 00005808 00055503 - ArDBM::Caught
ArcotException in _DbOp!. err : [Arcot Exception,Error: All database pools are
inactive]

INFO
08/13/09 11:52:17.493 INFO STARTUP 00003504 00WFMAIN -

08/13/09 11:52:17.493 INFO STARTUP 00003504 00WFMAIN - Listing : [Server
startup]
08/13/09 11:52:17.493 INFO STARTUP 00003504 00WFMAIN -

08/13/09 11:52:17.493 INFO STARTUP 00003504 00WFMAIN - Timezone
information.........................: [08/13/09 11:52:17 India Standard Time]
08/13/09 11:52:17.493 INFO STARTUP 00003504 00WFMAIN -
ARCOT_HOME...................................: [D:\ArcotInstalls2\Arcot Systems]
08/13/09 11:52:17.493 INFO STARTUP 00003504 00WFMAIN - Server
ProcessID.............................: [4316]
08/13/09 11:52:17.493 INFO STARTUP 00003504 00WFMAIN -

DEBUG
08/12/09 21:31:48.236 DEBUG SVRMGMT_WS 00004052 00050516 -
ArDBPoolManagerImpl::getLockedDBConnection: Returning DBPool [01E11FF0]

08/12/09 21:31:48.236 DEBUG SVRMGMT_WS 00004052 00050516 - TRACE: Releasing
Cache read lock on [01E2C8D8]

08/12/09 21:31:48.236 DEBUG SVRMGMT_WS 00004052 00050516 - TRACE: Released Cache
read lock on [01E2C8D8]

08/12/09 21:31:48.236 DEBUG SVRMGMT_WS 00004052 00050516 - TRACE:
CallTrace::Leaving : [ArDBPoolManagerImpl::selectAnActivePool]. time : 0
100 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Supported Severity Levels Appendix B WebFort Logging
08/12/09 21:31:48.236 DEBUG SVRMGMT_WS 00004052 00050516 - TRACE:
CallTrace::Entering : [ArDBPool::getLockedDBConnectionConst]

08/12/09 21:31:48.236 DEBUG SVRMGMT_WS 00004052 00050516 - TRACE:
ArDBPool::getLockedDBConnection [(primary)] : GotContext [86], [127] more
connections available
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 101

Appendix B WebFort Logging Supported Severity Levels
102 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix C Additional Settings
Appendix C

Additional Settings

This appendix discusses the following topics:

• Configuring Multiple WebFort Server Instances

• Setting up SSL
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 103

Appendix C Additional Settings Configuring Multiple WebFort Server Instances
Configuring Multiple WebFort Server Instances

To configure Java SDKs with multiple WebFort Server instances, you must edit the
properties file. By default, the file provides entries to configure 1 WebFort Server
instance. These entries are appended with 1, indicating that only 1 server is configured.
Depending on the number of instances you want to configure, you must duplicate these
entries and append the instance number accordingly.

Perform the following steps to configure WebFort Server instance:

1. Depending on the SDK you are configuring, open the respective properties file
available in the following folder:

Windows: <install_location>\Arcot Systems\sdk\java\properties

Unix-Based
Platforms:

<install_location>/arcot/sdk/java/properties

2. Set the value of the transport.<n> parameter to the required communication
mode. By default, it is set to TCP, see “Setting up SSL” if you want to change the
communication mode.

3. Set the value of host.<n> parameter to the host name or the IP address of the
WebFort Server.

4. Set the value of port.<n> parameter to the port number on which the
Authentication Native or the Transaction Web Services protocol is listening
104 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Setting up SSL Appendix C Additional Settings
Setting up SSL

To ensure integrity and confidentiality of the data being exchanged during a session,
WebFort supports Secure Socket Layer (SSL) communication between Java SDKs and
WebFort Server. By default, the communication mode between all the components is
through Transmission Control Protocol (TCP).

Figure C-1 WebFort Communication Modes

Before you enable SSL communication between Java SDKs and WebFort Server, you
must,

1. Obtain a digital certificate from a trusted Certificate Authority.

2. Expose your application over an HTTPS-enabled server port.

To set up SSL between Java SDK and WebFort Server:

1. Depending on the SDK you are configuring, open the respective properties file
available in the following folder:

Windows: <install_location>\Arcot Systems\sdk\java\properties

Unix-Based
Platforms:

<install_location>/arcot/sdk/java/properties

2. Set the value of <SDK name>.transport.<n> parameter to ssl.

3. Set the value of <SDK name>.serverCACertPEMPath parameter to the path of
server CA certificate file. The file must be in .PEM format.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 105

Appendix C Additional Settings Setting up SSL
4. Set the value of <SDK name>.clientCertKeyP12Path parameter to the path of
client certificate file. The file must be in .p12 format.

5. Set the value of <SDK name>.clientCertKeyPassword parameter to the
password of p12 store.

6. Save and close the file.
106 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix D SDK Exceptions
Appendix D

SDK Exceptions

This chapter lists all exceptions that are returned by the WebFort 6.0 SDKs. These
exceptions have been categorized as:

• Common Exceptions

• Issuance Exceptions

• Authentication Exceptions
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 107

Appendix D SDK Exceptions Common Exceptions
Common Exceptions

The com.arcot.webfort.common.api.exception package provides the
exceptions that are returned by WebFort Server and SDKs. The following table lists the
exceptions of this package.

Table D-1 Common Exception Classes of
com.arcot.webfort.common.api.exception

Classes Exception
Returned By

Description

CredentialNotFoundExce
ption

Server This exception is returned if the credential with
which the user is trying to authenticate was not
found.

InvalidParamException Server This exception is returned if any of the
parameter used in the operation has invalid
value.

InvalidSDKConfiguratio
nException

SDK This exception is returned if the configuration
file, whose absolute path is provided as the API
input for initializing the API cannot be read.

SDKAlreadyInitializedE
xception

SDK This exception is returned if the SDK is already
initialized.

SDKException SDK This exception is the base class for all client-side
exceptions.

SDKInternalErrorExcept
ion

SDK This exception occurs if:

• The request is not valid.

• The SDK failed to release connections.

• The SDK generated an unclassified error.

SDKNotInitializedExcep
tion

SDK This exception is returned if you are using the
function before initializing the SDK.

ServerException Server Server Base class for all server-side exceptions.

ServerUnreachableExcep
tion SDK

SDK This exception is returned if the SDK was not
able to connect to the WebFort Server.

TransactionException Server This exception is returned if there is internal
error while executing the transactions. For
example, UDS is not running or the databases
are down.
108 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Common Exceptions Appendix D SDK Exceptions
UserNotFoundException Server This exception is returned if the user trying to
perform the operation is not enrolled in
WebFort.

Table D-1 Common Exception Classes of
com.arcot.webfort.common.api.exception

Classes Exception
Returned By

Description
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 109

Appendix D SDK Exceptions Issuance Exceptions
Issuance Exceptions

The com.arcot.webfort.issuance.api.exception package provides the
exception classes that are returned based on user and credential status. The following
table lists the issuance exceptions returned by WebFort Server.

Table D-2 Issuance Exception Classes of
com.arcot.webfort.issuance.api.exception

Classes Description

CredentialAlreadyExistsExc
eption

This exception is returned if you try to create the credential
type that the user already has. The user cannot have
multiple credentials of same type.

UserAlreadyExistsException This exception is returned if you try to create a user with a
user name that already exists.
110 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Authentication Exceptions Appendix D SDK Exceptions
Authentication Exceptions

The com.arcot.webfort.authentication.api.exception package provides
the exception classes that are returned based on user authentication and credential status.
The following table lists the authentication exceptions returned by WebFort Server.

Table D-3 Authentication Exception Classes of
com.arcot.webfort.authentication.api.exception

Classes Description

AttemptsExhaustedExceptio
n

This exception is returned if the user tried to authenticate
with the wrong credential for the maximum allowed
authentication attempts.

CredReissuedException This exception is returned if the credential with which the
user is trying to authenticate has been reissued.

InactiveAccountException This exception is returned if the user trying to authenticate
with the credential that is in one of the following states:

• Disabled

• Locked

• Deleted

• Verified (for OTP only)

InvalidCredException This exception is returned if the credential provided by the
user is not valid.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 111

Appendix D SDK Exceptions Authentication Exceptions
112 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix E WebFort Error Codes
Appendix E

WebFort Error Codes

This appendix categorizes WebFort error codes as:

• SDK Codes

• Server Codes
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 113

Appendix E WebFort Error Codes SDK Codes
SDK Codes

Table E-1 lists the SDK response codes, cause for failure, and solution wherever
applicable.

Table E-1 SDK Response Codes and Cause for Failure

SDK Response Code Description Possible Cause for Failure

0 The SDK has successfully sent
the request and has received the
response from the server or
vice-versa.

NOTE: This
does not imply
that the
transaction was
successful.

N/A

1 Internal error occurred in SDK
due to some unexpected reason.

Possible Cause:
Unexpected behavior by the SDK.

2

(Returned by
SDKNotInitializedE
xception)

SDK not initialized
successfully.

Possible Cause:
Returned when API is called
without initializing.

Solution:
Check if the function to initialize
the SDK has completed
successfully

3

(Returned by
SDKAlreadyInitiali
zedException)

SDK is already initialized. Possible Cause:
User is trying to initialize the SDK
that has already been initialized.
114 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

SDK Codes Appendix E WebFort Error Codes
4 The configuration file, whose
absolute path is provided as the
input to the initialization API
cannot be read.

Possible Cause:
The configuration file path might
be incorrect.

Solution:
Provide the correct configuration
file path.

Possible Cause:
Permissions to read the
configuration file are not set.

Solution:
Provide Read permission to the
configuration file.

5

(Returned by
ServerUnreachableE
xception)

The SDK is not able to send
requests to the configured
server.

Possible Cause:
Server host or port, or both might
not be configured correctly.

Solution:
Provide correct host and port
number.

Possible Cause:
Server might not be running.

Solution:
Start the server.

Possible Cause:
If SSL is configured, then
certificates might not be
configured correctly.

Solution:
Configure the TLS certificates
correctly.

6 Buffer sent through the output
structure is not sufficient.

Possible Cause:
The buffer passed in the output
structure(s) is not sufficient for the
data to be filled.

Solution:
Send sufficient buffer to store all
the data.

Table E-1 SDK Response Codes and Cause for Failure

SDK Response Code Description Possible Cause for Failure
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 115

Appendix E WebFort Error Codes SDK Codes
7

(Returned by
InvalidSDKConfigur
ationException)

The SDK configuration is
incorrect.

Possible Cause:
Server host or port, or both might
not be configured correctly.

Solution:
Provide correct host and port
number.

Possible Cause:
If SSL is configured, then
certificates might not be correct.

Solution:
Configure a valid client PKCS#12
file and server root CA certificate.

999

(Returned by
SDKInternalErrorEx
ception)

Internal error. Possible Cause:
Unexpected SDK internal error.

Table E-1 SDK Response Codes and Cause for Failure

SDK Response Code Description Possible Cause for Failure
116 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Server Codes Appendix E WebFort Error Codes
Server Codes

The following table lists the response codes, reason codes, the cause for failure, and
solution wherever applicable.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure

0 0 Operation completed
successfully.

N/A

6100 Authentication succeeded, but
the credential is in grace
period.

Action to Take:
Credential has already expired.
Notify the user to get the
credential reissued.

6101 Authentication succeeded, but
the credential is in warning
period.

Action to Take:
Credential is about to expire.
Notify the user to get the
credential reissued.

1000 0 Internal error. Possible Cause:
Unexpected internal error.

2000 Database is not running. Possible Cause:
Database is not running.

Solution:
Start the database.

Possible Cause:
Connection between the server
and database is not complete.

Solution:
Establish the connection between
server and database again.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 117

Appendix E WebFort Error Codes Server Codes
1000 2001 Configuration is missing. Possible Cause:
Configuration required for
processing the transaction is
missing.

Solution:
Check the server transaction logs
for details and ensure the
required configuration is created
and assigned.

Possible Cause:
Configuration required for
processing the transaction is
created but not available in server
cache.

Solution:
Refresh server cache.

2002 Transaction ID generation
failed.

Possible Cause:
Transaction ID generation failed
due to internal error in the server.

Solution:
Most likely cause might be
because of database failure. Check
the server transaction logs for
details and ensure appropriate
action is taken based on the server
logs.

1050 2050 Value of one of the
parameters used in the
operation is empty.

Possible Cause:
The parameter passed to the API
is empty.

Solution:
Provide a non-empty value for
the parameter. See “Input Data
Validations” for the supported
parameter values.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
118 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Server Codes Appendix E WebFort Error Codes
1050 2051 Length of one of the
parameters used in the
operation has exceeded the
maximum allowed value.

Tip LENGTH
HERE REFERS
TO LENGTH OF
THE
PARAMETER,
FOR EXAMPLE
PASSWORD
LENGTH.

Possible Cause:
The length of the parameter
passed to the API has exceeded
the maximum value.

Solution:
Provide the parameter such that
its length is less than or equal to
the maximum allowed value. See
“Input Data Validations” for the
supported parameter values.

2052 Length of one of the
parameters used in the
operation is less than
minimum allowed value.

Possible Cause:
The length of the parameter
passed to the API is less than
minimum value.

Solution:
Provide the parameter such that
the length of the parameter is
greater than or equal to the
minimum allowed value. See
“Input Data Validations” for the
supported parameter values.

2053 Value of one of the
parameters used in the
operation exceeded the
maximum allowed value.

Tip VALUE
HERE REFERS
TO VALUE OF
THE
PARAMETER,
FOR EXAMPLE
ARCOTID PLAIN
KEY LENGTH.

Possible Cause:
The value of the parameter passed
to the API has exceeded the
maximum allowed value.

Solution:
Provide the parameter such that
the value of the parameter is less
than or equal to the maximum
allowed value. See “Input Data
Validations” for the supported
parameter values.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 119

Appendix E WebFort Error Codes Server Codes
1050 2054 Value of one of the
parameters used in the
operation is less than the
minimum allowed value.

Possible Cause:
The value of the parameter passed
to the API is less than the
minimum allowed value.

Solution:
Provide the parameter such that
the value of the parameter is
greater than or equal to the
minimum allowed value. See
“Input Data Validations” for the
supported parameter values.

2055 Value of one of the
parameters used in the
operation is invalid.

Possible Cause:
The value of the parameter passed
to the API is invalid.

For example, the allowed values
for user status are 0 and 1. If you
set the value of this as 5, then you
will get this error.

Solution:
Provide valid value for the
parameter. See “Input Data
Validations” for the supported
parameter values.

2056 Value of one of the
parameters used in the
operation contains invalid
characters.

Possible Cause:
The parameter specified by
ParameterKey contains invalid
characters.

Solution:
Provide valid characters for the
parameter that is specified by
ParameterKey.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
120 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Server Codes Appendix E WebFort Error Codes
1050 2057 One of the parameters used in
the operation does not meet
the formatting requirements.

Possible Cause:
The parameter specified by
ParameterKey has invalid
format.

Solution:
Provide valid format for the
parameter that is specified by
ParameterKey.

2058 The password has less number
of alphabets than the
minimum allowed value.

Possible Cause:
The password provided contains
lesser number of alphabets than
the password strength policy
allows.

Solution:
Refer to the relevant password
policy and ensure that the
password strength is set correctly.

2059 The password has less number
of numeric characters than the
minimum allowed value.

Possible Cause:
The password provided contains
lesser number of numeric
characters than the password
strength policy allows.

Solution:
Refer to the relevant password
policy and ensure that the
password strength is set correctly.

2060 The password has less number
of ASCII special characters
than the minimum allowed
value.

Possible Cause:
The password provided contains
lesser number of ASCII special
characters than the password
strength policy allows.

Solution:
Refer to the relevant password
policy and ensure that the
password strength is set correctly.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 121

Appendix E WebFort Error Codes Server Codes
1050 6000 Duplicate questions are not
supported.

Possible Cause:
Two or more questions are same.

Solution:
Provide distinct questions.

6001 Duplicate answers are not
supported.

Possible Cause:
Two or more answers are same.

Solution:
Provide distinct answers.

6002 The question cannot be same
as any of the answers.

Possible Cause:
Question might be same as any of
the answers.

Solution:
Provide distinct question and
answer.

1051 0 Invalid request. Possible Cause:
The packet received is invalid.

Solution:

1. Ensure correct SDK is
pointing to the server.

2. Ensure the port configured
on the client-side refers to the
appropriate server protocol.

1100 0 Organization is not found. Possible Cause:
Organization specified is not
present.

Solution:

1. Check if the organization
with the given name is
created.

2. After creating the
organization, the server
might need cache refresh.
Refresh the server cache.

3. Check if the name of the
organization passed is correct.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
122 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Server Codes Appendix E WebFort Error Codes
1101 0 Credential configuration not
found for the organization.

Possible Cause:
The configuration for the
specified credential is not present.

Solution:

1. Check if the configuration is
created for this organization.

2. Check if the configuration is
assigned to this organization.

3. Creating and assigning
configuration might need
cache refresh. Refresh the
server cache.

1102 0 User not found. Possible Cause:
User is not present.

Solution:
Create the user or provide the
user information correctly.

1103 0 Organization is not active. Possible Cause:
Organization is not active.

Solution:
Activate the organization using
Administration Console.

1150 0 User status is not active. Possible Cause:
User status is not active.

Solution:
Activate the user.

1151 0 User already exists. Possible Cause:
User already present in the
system.

Solution:
Create the user with different
user name or provide the user
details correctly.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 123

Appendix E WebFort Error Codes Server Codes
1152 0 Credential is invalid. Possible Cause:
Credential already present for the
user.

Solution:
Do not create a credential that
already exists for the user.

5500 0 Processor is invalid.

Note that processor refers to
authentication mechanism.

Possible Cause:
The mechanism requested is not
supported by the system.

Solution:
Use mechanisms supported by
the systems.

5604 0 Organization is invalid. Possible Cause:
The provided organization name
is not valid.

Solution:
You must provide a valid
organization name.

5605 0 SSL trust store organization
name is invalid.

Possible Cause:
The provided organization name
is not valid.

Solution:
You must provide a valid
organization name.

5700 0 Number of authentication
attempts exceeded.

Possible Cause:
Number of authentication
attempts for the credential
exceeded the allowed limit.

Solution:
The administrator must change
the status of the credential from
locked to active.

5701 0 Authentication token has
expired.

Possible Cause:
Authentication token submitted
by the user is expired.

Solution:
Authenticate again.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
124 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Server Codes Appendix E WebFort Error Codes
5702 0 Challenge has expired. Possible Cause:
Challenge is expired.

Solution:
Request for the challenge again.

5704 0 Credential has expired. Possible Cause:
The credential, which is provided
by the user is expired.

Solution:
Get the new credential.

5705 0 Credential is not active. Possible Cause:
The credential, which is provided
by the user is not active.

Solution:
The administrator must activate
the credential.

5706 0 Credential is reissued. Possible Cause:
Credential is reissued.

5707 0 Provided credential details are
incorrect.

Possible Cause:
The credential details provided
by the user are incorrect.

Solution:
Provide the credential details
correctly.

5800 0 Credential not found for the
user.

Possible Cause:
The credential does not exist for
the user.

Solution:
Create the credential.

Possible Cause:
The details provided by the user
might be incorrect.

Solution:
Provide the correct details.

5801 0 Credential already present for
the user.

Possible Cause:
Credential already exists for the
user.

Table E-2 Response and Reason Codes

Response
Code

Reason
Code

Description Possible Cause for Failure
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 125

Appendix E WebFort Error Codes Server Codes
126 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix F WebFort Sample Application
Appendix F

WebFort Sample Application

WebFort is shipped with a Sample Application, which demonstrates how to use the Java
APIs.

IMPORTANT: Sample Application must only be used as a code-reference
and not for production.

Before you use the Sample Application, you must first configure it to communicate with
WebFort Server. See section, “Configuring Sample Application,” for information on
how to do this.

The following sections then walk you through the sample tasks that you can perform by
using the Sample Application:

• Selecting ArcotID Client

• Demonstrating User Operations

• Demonstrating ArcotID Operations

• Demonstrating QnA Operations

• Demonstrating OTP Operations

• Demonstrating User-Password Operations
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 127

Appendix F WebFort Sample Application Configuring Sample Application
Configuring Sample Application

The Setup page enables you to set the WebFort server host name or IP address, port at
which the authentication and issuance service is available, and the Sample Application
log file name and location. Perform the following steps to do so:

1. Launch Sample Application in a Web browser window. The default URL for
Sample Application is:

http://<host>:<port>/webfort-6.0-sample-application

The WebFort 6.0 Sample Application page appears.

2. From the sidebar, click the Setup link to display the WebFort Server Connectivity
page.

3. Specify the values for the configuration parameters listed in Table F-1.

4. Click Set Up to configure the connection.

To configure the Sample Application to communicate with an additional WebFort
Server instance:

1. Click the [+] sign preceding Additional Server Configuration.

2. Specify the IP Address and Port connection parameters.

3. Click Set Up to configure the connection.

Table F-1 Configuration Parameters

Field Default Value Description

Logger Configuration

Log File Path ./arcotwebfortsample
app.log

The absolute path to the Sample
Application log file.

Server Configuration

IP Address localhost The host name or the IP address where
the WebFort Server is available.

Port Authentication Service: 9742

Issuance Service: 9744

The port at which the Authentication
or the Issuance service is available.

Maximum Active
Connections

64 The maximum number of connections
maintained between the Sample
Application and WebFort Server.
128 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Selecting ArcotID Client Appendix F WebFort Sample Application
Selecting ArcotID Client

Before you perform any ArcotID-related operations, as discussed in “Demonstrating
ArcotID Operations” on page 132, you must choose the appropriate type of ArcotID
Client that you want to use, along with the required storage medium where you want to
store the downloaded ArcotID.

NOTE:The ArcotID Client type and the download type that you select on
this page will persist for your current browser session.

To select the ArcotID Client:

1. From the sidebar, click the Select Client link.

The Select ArcotID Client page appears.

2. Select the type of ArcotID Client that you want to use from Choose ArcotID Client
section.

NOTE: If you choose the Flash client, then the Sample Application must be
enabled for HTTPS.

3. Select the type of medium where you want to store the ArcotID from the Choose
ArcotID Download Type section.

See section, “Downloading ArcotID” on page 65 for more information on the
supported download types.

4. Click Select to store the settings.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 129

Appendix F WebFort Sample Application Demonstrating User Operations
Demonstrating User Operations

The Sample Application demonstrates how the APIs are used for user operations. You
can do the following by using the Sample Application:

• Creating Users

• Updating User Information

• Fetching User Information

Creating Users
To create a user:

1. Under the User sidebar menu, click the Create link.

The Create User page appears.

2. Specify the user information in the first section to create the user.

3. Specify the Custom Attributes that you want to maintain for the user.

This section enables you to specify additional attributes for the UserInput class.

4. Set the Additional Inputs, such as locale information, that you want to maintain for
the user.

5. Click Create.

Updating User Information
To update the user information:

1. Under the User sidebar menu, click the Update link.

The Update User page appears.

2. Enter the user information in this page.

3. Click Update to update the user.
130 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Demonstrating User Operations Appendix F WebFort Sample Application
Fetching User Information
To fetch the details for the user:

1. Under the User sidebar menu, click the Fetch link.

The Fetch User page appears.

2. Specify the information based on which you want to fetch the user details.

3. Click Fetch.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 131

Appendix F WebFort Sample Application Demonstrating ArcotID Operations
Demonstrating ArcotID Operations

Sample Application demonstrates how the WebFort SDKs are used to create, download,
and authenticate ArcotID. You can do the following user operations using the Sample
Application:

• Creating ArcotID

• Downloading the ArcotID

• Authenticating Using the ArcotID

• Fetching the ArcotID Details

Creating ArcotID
To create the ArcotID for a user:

1. Under the ArcotID sidebar menu, click the Create link.

The Create ArcotID page appears.

2. Enter the user details, such as User Name, Organization Name, ArcotID Password,
and the Profile Name.

NOTE: Profile name is optional, if you use this, then ensure it is already
created and assigned to the organization.

3. Specify the Unsigned Attributes that you want to set for the ArcotID.

These attributes enable you to specify additional information for the ArcotID.

4. Enter the Notes that you want to maintain for the ArcotID.

For example, you can use this section to note that the user cannot download
ArcotID on more than two systems.

5. Set the Additional Inputs, such as locale information for the current transaction.

6. Click Create.

Downloading the ArcotID
To download the ArcotID from the WebFort Server:
132 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Demonstrating ArcotID Operations Appendix F WebFort Sample Application
1. Under the ArcotID sidebar menu, click the Download link.

The Download ArcotID Client page appears.

2. Specify the User Name and the Organization to which the user belongs.

3. Set the Additional Inputs, such as locale information for the current transaction.

4. Click Download to download the ArcotID.

Authenticating Using the ArcotID
To authenticate to WebFort using the ArcotID:

1. Under the ArcotID sidebar menu, click the Authenticate link.

The ArcotID Authentication page appears.

2. Specify relevant information in the User Name, Organization, and the ArcotID
Password fields.

3. Optionally, select the Token Type that has to be returned after successful
authentication.

4. Optionally, enter the authentication and the SAML policy names, in the
Authentication Policy Name and SAML Policy Name fields, respectively.

NOTE: If you are using these fields, then ensure the policies are already
created and assigned to the organization.

5. Set the Additional Inputs, such as locale information for the current transaction.

6. Click Authenticate to authenticate to the configured WebFort Server.

After successful authentication, the Sample Application returns credential details,
transaction ID, notes, and authentication token.

Fetching the ArcotID Details
To fetch the ArcotID details for the specified user:

1. Under the ArcotID sidebar menu, click the Fetch link.

The Fetch ArcotID page appears.

2. Specify relevant information in the User Name, Organization, and the ArcotID
Password fields.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 133

Appendix F WebFort Sample Application Demonstrating ArcotID Operations
3. Enter the ArcotID Additional Inputs, if required.

4. Click Fetch to retrieve the ArcotID details.

The Sample Application returns the unsigned attributes and notes for the credential.
134 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Demonstrating QnA Operations Appendix F WebFort Sample Application
Demonstrating QnA Operations

Sample Application demonstrates how the WebFort SDKs are used to create,
authenticate, and fetch QnA for users. You can do the following user operations using
the Sample Application:

• Creating QnA

• Authenticating Using QnA

• Fetching the QnA Details

Creating QnA
To create the QnA for a user:

1. Under the QnA sidebar menu, click the Create link.

The Create Questions & Answers (QnA) page appears.

2. Optionally, specify the Organization Name and the Profile Name for the user.

NOTE: Profile name is optional, if you use this, then ensure it is already
created and assigned to the organization.

3. Enter the User Name for whom you want to create the QnA.

4. Click the Fetch button against the Number Of Questions Configured For
Organization field.

The Specify Question & Answers section appears. The rows displayed in this section
depends on the QnA profile configured for the organization.

5. Depending on the QnA configuration, specify minimum unique questions and their
corresponding answers in the Question and Answer fields, respectively.

6. Enter the Notes that you want to maintain for the QnA.

7. Set the Additional Inputs, such as locale information for the current transaction.

8. Click Create.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 135

Appendix F WebFort Sample Application Demonstrating QnA Operations
Authenticating Using QnA
To authenticate to WebFort using QnA:

1. Under the QnA sidebar menu, click the Authenticate link.

The QnA Authentication page appears.

2. Enter the User Name who you want to authenticate using QnA.

3. Optionally, specify the Organization for the user.

4. Click the Fetch Questions button to retrieve the user’s questions.

The Specify Question & Answers section appears.

5. Specify the answers for the corresponding questions in the Answer fields.

6. Specify the Additional Inputs, such as locale information for the current
transaction.

7. Click Authenticate to authenticate to the configured WebFort Server.

After successful authentication, the Sample Application returns credential details,
transaction ID, notes, and authentication token.

Fetching the QnA Details
To fetch the QnA details for the specified user:

1. Under the QnA sidebar menu, click the Fetch link.

The Fetch QnA page appears.

2. Enter the User Name whom you want to authenticate using QnA.

3. Optionally, specify the Organization for the user.

4. Specify the Additional Inputs, such as locale information for the current
transaction.

5. Click Fetch to retrieve the QnA details.
136 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Demonstrating OTP Operations Appendix F WebFort Sample Application
Demonstrating OTP Operations

Sample Application demonstrates how the WebFort SDKs are used to create,
authenticate, and fetch OTP for users. You can do the following user operations using
the Sample Application:

• Creating OTP

• Authenticating Using the OTP

• Fetching the OTP Details

Creating OTP
To create the OTP for a user:

1. Under the OTP sidebar menu, click the Create link.

The Create OTP page appears.

2. Enter the User Name for whom you want to create the OTP.

3. Optionally, specify the Organization and the Profile Name for the user.

NOTE: Profile name is optional, if you use this, then ensure it is already
created and assigned to the organization.

4. Enter any Notes that you might want to maintain for the OTP.

5. Set the Additional Inputs, such as locale information for the current transaction.

6. Click Create.

The Sample Application returns the OTP for the user.

Authenticating Using the OTP
To authenticate to WebFort using OTP:

1. Under the OTP sidebar menu, click the Authenticate link.

The OTP Authentication page appears.

2. Enter the User Name who you want to authenticate using OTP.

3. Optionally, specify the Organization for the user.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 137

Appendix F WebFort Sample Application Demonstrating OTP Operations
4. Enter the OTP issued to the specified user, see “Creating OTP”.

5. Optionally, select the Token Type that has to be returned after successful
authentication and enter the authentication and the SAML policy names, in the
Authentication Policy Name and SAML Policy Name fields, respectively.

NOTE: If you are using these fields, then ensure the policies are already
created and assigned to the organization.

6. Specify the Additional Inputs, such as locale information for the current
transaction.

7. Click Authenticate to authenticate to the configured WebFort Server.

After successful authentication, the Sample Application returns credential details,
transaction ID, notes, and authentication token.

Fetching the OTP Details
To fetch the OTP details for the specified user:

1. Under the OTP sidebar menu, click the Authenticate link.

The Fetch OTP page appears.

2. Enter the User Name whom you want to authenticate using QnA.

3. Optionally, specify the Organization for the user.

4. Specify the Additional Inputs, such as locale information for the current
transaction.

5. Click Fetch to retrieve the OTP details.
138 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Demonstrating User-Password Operations Appendix F WebFort Sample Application
Demonstrating User-Password Operations

Sample Application demonstrates how the Authentication SDK is used to create,
authenticate, and fetch User-Password for users. You can do the following user
operations using the Sample Application:

• Creating User-Password

• Authenticating Using User-Password

• Fetching User-Password Details

Creating User-Password
To create the Password for a user:

1. Under the User Password sidebar menu, click the Create link.

The Create User-Password page appears.

2. Enter the User Name and Password for whom you want to create the
User-Password.

3. Optionally, specify the Organization and the Profile Name for the user.

NOTE: Profile name is optional, if you use this, then ensure it is already
created and assigned to the organization.

4. Enter any Notes that you might want to maintain for the User-Password.

5. Set the Additional Inputs, such as locale information for the current transaction.

6. Click Create.

Authenticating Using User-Password
To authenticate to WebFort using User-Password mechanism:

1. Under the User Password sidebar menu, click the Authenticate link.

The User-Password Authentication page appears.

2. Enter the User Name who you want to authenticate using OTP.

3. Optionally, specify the Organization for the user.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 139

Appendix F WebFort Sample Application Demonstrating User-Password Operations
4. Enter the Password issued to the specified user.

5. Optionally, select the Token Type that has to be returned after successful
authentication and enter the authentication and the SAML policy names, in the
Authentication Policy Name and SAML Policy Name fields, respectively.

NOTE: If you are using these fields, then ensure the policies are already
created and assigned to the organization.

6. Set the Additional Inputs, such as locale information for the current transaction.

7. Click Authenticate to authenticate to the configured WebFort Server.

After successful authentication, the Sample Application returns credential details,
transaction ID, notes, and authentication token.

Fetching User-Password Details
To fetch the User-Password details for the specified user:

1. Under the User Password sidebar menu, click the Fetch link.

The Fetch User-Password page appears.

2. Enter the User Name who you want to authenticate using the User-Password
mechanism.

3. Optionally, specify the Organization for the user.

4. Set the Additional Inputs, such as locale information for the current transaction.

5. Click Fetch to retrieve the User-Password details.
140 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix G

Glossary

Adobe Signature
Service Protocol

See ASSP.

Administration
Console

Web-based console for configuring communication mode between
WebFort Server and its components and for performing administrative
tasks.

ArcotID Is a secure software credential that allows hardware level authentication
in software form.

ASSP Allows Acrobat and Reader users to access their roaming credentials for
digital signatures. ASSP passes the hash to an ASSP-enabled server for
signature and then after signing, embeds it into the end user’s document.

Authentication Is a process by which an entity proves that it is who it claims to be.

Authentication
Policy

Set of rules that control the authentication process.

Authentication SDK APIs that can be invoked by your application to forward authentication
requests to WebFort Server.

Authentication
Token

A token is an object that an authorized user of computer services is given
to aid in authentication.

Credential A proof of user identity. Digital credentials might be stored on hardware
such as smart cards or USB tokens or on the server. They are verified
during authentication.

Credential Profile Common, ready-to-use credential configuration that can be shared
among multiple organizations and multiple users.

Cryptographic Hash
Function

A cryptographic hash function is a hash function with additional security
properties, used in security-related applications such as authentication.

Default
Organization

The Organization created by default when you deploy the
Administration Console.

Digest-MD5 Is a widely used cryptographic hash function with a 128-bit hash value.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 141

Appendix G Glossary
Digital Certificates A certificate is a digital document that vouches for the identity and key
ownership of an individual, a computer system, or an organization. This
authentication method is based on the PKI cryptography method.

Encryption The process of scrambling information in a way that disguises its
meaning.

Error Message Message returned by application to report to the user agent regarding any
erroneous situations.

Forgot Your
Password (FYP)

If the user forgets his ArcotID password, then a QnA session is carried
out between the User and WebFort. On answering a minimal set of
questions, the user is asked for a new ArcotID password and a new
ArcotID is issued.

Instance A system where WebFort Server is available at a specified port.

Issuance SDK APIs that can be invoked by your application to forward issuance
requests to WebFort Server for enrolling users and for creating their
credentials in WebFort.

N-Strikes The maximum number of failed authentication attempts that can be
made by the user before locking out.

One-Time Password Password credential valid for a single session. WebFort provides
multi-use OTPs.

One-Time Token Token returned by WebFort Server after successful authentications.

Organization A WebFort unit that can either map to a complete enterprise (or a
company) or a specific division, department, or other entities within the
enterprise.

OTP See One-Time Password.

OTT See One-Time Token.

PKCS PKCS refers to a group of Public Key Cryptography Standards devised
and published by RSA. See Public-key Cryptography for more details.

PKCS#12 Defines a file format commonly used to store private keys with
accompanying Public key certificates protected with a password-based
symmetric key.

Private Key One of a pair of keys used in public-key cryptography. The private key is
kept secret and can be used to decrypt/encrypt data.

Public Key One of a pair of keys used in public-key cryptography. The public key is
distributed freely and published as part of a certificate. It is typically used
to encrypt data sent to the public key’s owner, who then decrypts the
data using the corresponding private key.

Public Key
Infrastructure (PKI)

The standards and services that facilitate the use of public-key
cryptography and certificates in a networked environment.
142 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Appendix G Glossary
Public-key
Cryptography

Public-key cryptography is a form of modern cryptography which allows
users to communicate securely without previously agreeing on a shared
secret. Unlike symmetric cryptography, it uses two keys -- a public key
known to everyone and a private or secret key known only to the owner
of the public and private key pair. Public key cryptography is also called
asymmetric cryptography.

QnA A challenge-response authentication mechanism, QnA allows for a back
and forth dialog between the user agent and server, where the server asks
arbitrary number of questions, and the user supplies correct answers.

Questions and
Answers

See QnA.

RADIUS

Remote
Authentication Dial
In User Service

Protocol for centralized Authentication, Authorization, and Accounting
(AAA).

SAML XML standard for exchanging authentication data between an identity
provider (provides assertions) and a service provider (uses assertions).

Sample Application Demonstrates the usage of WebFort Java APIs and how your application
can be integrated with WebFort. It can also be used to verify if WebFort
was installed successfully, and if is able to perform issuance and
authentication operations.

Secure Hash
Algorithm (SHA)

Secure Hash Algorithm (SHA) family is a set of cryptographic hash
functions.

Security Assertion
Markup Language

See SAML

Single Sign-On
(SSO)

SSO refers to a single identity that is shared across multiple systems. SSO
lets a user logon once to a computer or network and access multiple
applications and systems using a single credential.

Secure Sockets
Layer

(SSL)

SSL is a protocol intended to secure and authenticate communications
across public networks by using data encryption.

User
Name-Password

One of the credentials issued to the user during enrollment.

WebFort Strong authentication system for authenticating end users.

WebFort Server Server component that communicates with and accepts issuance and
authentication requests from your application through WebFort SDKs.
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 143

Appendix G Glossary
144 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

Index
A
additional input 27
ArcotID

authentication 72
authentication workflow 9
download 71
migrating users 6
roaming download 11
unsigned attributes 36

ArcotID Client 61
Authentication SDK

initializing
using map 68
using properties file 68

releasing 69

C
CLASSPATH

authentication files 19
issuance files 21

codes 113
creating credentials 38
creating users 28
credential

creating 38
deleting 47
disabling 39
enabling 40
fetching details 42
notes 35
operations 52
profile name 36
reissuing 43
reset notes 45
reset validity 44

resetting 41
state transition 51
states 52
status 51

Custom APIs 83

D
data checks 91
database reference 113
deleting credentials 47
disabling credentials 39
disabling users 29
downloading ArcotID 71

E
enabling credentials 40
enabling users 29
error codes 113
Exceptions 107

F
failover 3
Forgot Your Password 13

I
initializing

Issuance SDK 24
Intended Audience viii
Issuance SDK

initializing 24
using map 24
using properties file 24

releasing 25
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 145

 Index
J
Javadocs 18

L
log

files 95
severity level 99

log level 99

M
Migrating users 6
multiple instances 104

N
notes 35

O
One-Time Password 76
organization questions 46
OTP 76

P
PAM 79
Personal Assurance Message 79
profile name 36

Q
QnA 73

R
reading user details 30
reissuing credentials 43
resetting credentials 41
Roaming download 11

S
Sample application 127
SDK features 3

failover 3
SSL 3

SSL 3
summary

authentication operations 80
credential operations 52
user operations 33

T
tokens

authentication tokens 77

U
unsigned attributes 36
updating user details 31
user

creating 28
disabling 29
enabling 29
reading details 30
updating details 31

user name-password 75
user operations 33
user status 37

W
WebFort SDK 2

Authentication SDK
JARs 19
properties file 20

features 3
initializing 3
Issuance SDK

JARs 21
properties file 22

Javadocs 18
146 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

 Index
SSL 105
AWF01-004DC-06000 Arcot WebFort VAS Java Developer’s Guide • August 2009 147

 Index
148 Arcot WebFort VAS Java Developer’s Guide • August 2009 AWF01-004DC-06000

	Contents
	Preface
	Intended Audience
	Information Included in this Guide
	Related Publications
	Conventions Used in This Book
	Contacting Support

	Getting Started
	Introduction to the WebFort Java SDK
	WebFort SDK Features
	Before You Begin

	Understanding WebFort WorkFlows
	Migrating Existing Users
	Migrating All Users
	Migrating Selected Users

	ArcotID Authentication Workflow
	ArcotID Roaming Download Workflow
	Forgot Your Password Workflow
	Workflow Summary

	Before You Use the SDK
	Accessing WebFort SDK Javadocs
	Adding Authentication Files in CLASSPATH
	Adding Issuance Files in CLASSPATH

	Performing Issuance Operations
	Initializing the Issuance SDK
	User Operations
	Preparing the User Input
	Preparing Additional Input
	Creating Users
	Disabling User Accounts
	Enabling the User
	Reading User Details
	Updating User Details
	User Operations Summary

	Credential Operations
	Preparing the Input
	Common Input
	Credential-Specific Input

	Checking the User Status
	Creating Credentials
	Disabling Credentials
	Enabling Credentials
	Resetting Credential
	Fetching Credential Details
	Reissuing Credentials
	Resetting Credential Validity
	Resetting Credential Notes
	Fetching Number of Questions
	Deleting Credentials
	Setting Unsigned Attributes
	Deleting Unsigned Attributes
	Reading the Output
	Checking the Credential Status
	State Transition
	Credential Operations and State

	Credential Operations Summary
	ArcotID Operations
	Username-Password Operations
	Question and Answer Operations
	One-Time Password Operations

	Integrating ArcotID Client with Application
	ArcotID Client Overview
	Flash Client
	Signed Java Applet

	Copying ArcotID Client Files
	For Flash Client
	For Java Signed Applet

	ArcotID Client APIs
	Downloading ArcotID
	Signing the Challenge

	Authenticating Users
	Initializing the Authentication SDK
	Preparing Additional Input
	ArcotID Authentication
	Questions and Answers Authentication
	Username-Password Authentication
	One-Time Password Authentication
	Authentication Tokens
	Verifying the Authentication Tokens
	Fetching the PAM
	Authentication Operations Summary

	Using Custom APIs
	Issuance Operations
	Creating Credential
	Disabling Credential
	Enabling Credential
	Resetting Credential
	Reissuing Credential
	Resetting Credential Validity
	Fetching Credential Details
	Deleting Credentials

	Authentication Operations
	Password-Based Authentication
	Challenge-Response-Based Authentication

	Input Data Validations
	WebFort Logging
	About the Log Files
	Format of the WebFort Log Files
	Supported Severity Levels

	Additional Settings
	Configuring Multiple WebFort Server Instances
	Setting up SSL

	SDK Exceptions
	Common Exceptions
	Issuance Exceptions
	Authentication Exceptions

	WebFort Error Codes
	SDK Codes
	Server Codes

	WebFort Sample Application
	Configuring Sample Application
	Selecting ArcotID Client
	Demonstrating User Operations
	Creating Users
	Updating User Information
	Fetching User Information

	Demonstrating ArcotID Operations
	Creating ArcotID
	Downloading the ArcotID
	Authenticating Using the ArcotID
	Fetching the ArcotID Details

	Demonstrating QnA Operations
	Creating QnA
	Authenticating Using QnA
	Fetching the QnA Details

	Demonstrating OTP Operations
	Creating OTP
	Authenticating Using the OTP
	Fetching the OTP Details

	Demonstrating User-Password Operations
	Creating User-Password
	Authenticating Using User-Password
	Fetching User-Password Details

	Glossary
	Index
	A
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

