CA Access Gontrol

Endnoint Administration Guide for UNIX
2.5 SP1

This documentation and any related computer software help programs (hereinafter referred to as the
"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,
without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may
not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,
you may print a reasonable number of copies of the Documentation for internal use by you and your employees in
connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such
software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify
in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER
OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and
is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section
252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2009 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Third-Party Notices

CONTAINS IBM(R) 32-bit Runtime Environment for AIX(TM), Java(TM) 2
Technology Edition, Version 1.4 Modules

(c) Copyright IBM Corporation 1999, 2002

All Rights Reserved

CA Product References

This document references the following CA products:
m CA Access Control Premium Edition

m CA Access Control

m CA Single Sign-On (CA SSO)

m CA Top Secret®

m CAACF2™

m CA Audit

m CA Network and Systems Management (CA NSM, formerly Unicenter NSM
and Unicenter TNG)

m CA Software Delivery (formerly Unicenter Software Delivery)
m CA Service Desk Manager (formerly Unicenter Service Desk)
m CA Enterprise Log Manager

m CA Identity Manager

Documentation Conventions

The CA Access Control documentation uses the following conventions:

Format Meaning

Mono-spaced font Code or program output

Italic Emphasis or a new term

Bold Text that you must type exactly as shown

A forward slash (/) Platform independent directory separator used

to describe UNIX and Windows paths

The documentation also uses the following special conventions when explaining
command syntax and user input (in @ mono-spaced font):

Format Meaning
Italic Information that you must supply
Between square brackets Optional operands

(I

Format

Meaning

Between braces ({})

Set of mandatory operands

Choices separated by pipe
(.

Separates alternative operands (choose one).

For example, the following means either a user
name or a group name:

{username|groupname}

Indicates that the preceding item or group of
items can be repeated

Underline

Default values

A backslash at end of line
preceded by a space (\)

Sometimes a command does not fit on a single
line in this guide. In these cases, a space
followed by a backslash ('\) at the end of a line
indicates that the command continues on the
following line.

Note: Avoid copying the backslash character
and omit the line break. These are not part of
the actual command syntax.

Example: Command Notation Conventions

The following code illustrates how command conventions are used in this guide:

ruler className [props({all{propertyName1l[,propertyName2]...})]

In this example:

m The command name (ruler) is shown in regular mono-spaced font as it must

be typed as shown.

m The className option is in italic as it is a placeholder for a class name (for

example, USER).

® You can run the command without the second part enclosed in square
brackets, which signifies optional operands.

® When using the optional parameter (props), you can choose the keyword al/

or, specify one or more property names separated by a comma.

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the information
you need for your Home Office, Small Business, and Enterprise CA products. At
http://ca.com/support, you can access the following:

m Online and telephone contact information for technical assistance and
customer services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Provide Feedback

If you have comments or questions about CA product documentation, you can
send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, complete
our short customer survey, which is also available on the CA Support website,
found at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes
The following documentation updates have been made since the r12.5 release of
this documentation:

m Transferring User Names (see page 217)—Updated topic corrects the name
of the S50CREATE_Ldap_u.sh script.

m S50CREATE Ldap u (see page 217)—Updated topic corrects the name of
the S50CREATE_Ldap_u.sh script.

The following chapters have been removed from this release:

m Password Synchronization with Mainframes—The information in this chapter
is obsolete.

m Integrating CA Audit—The information in this chapter is obsolete.
Information about how to integrate CA Access Control with CA Enterprise Log
Manager is available in the Implementation Guide.

Contents

Chapter 1: Introduction 17
AboUL this GUILE e e e e 17
Who Should Use this GUIEot e e et et ettt ettt et 17
Chapter 2: Managing Endpoints 19
What Is CA AcCeSS CONtrOl? ... e e et et et 19
Why Does UNIX Need Protecting? i e e 19
How Does This WOk ? ... e ettt et 20
What Is Protected? e 20
HOW IS It Protected? e et et et e e 23
Expanding Native SeCUNItY i e et et et ettt 24
Endpoint Management e 26
Chapter 3: Managing Users and Groups 27
USEIrS @Nd GrOUPDS . . oottt ittt et et e e e e e e e e e e e e e e e e 27
Where Information about Accessors Is Stored i e 28
How CA Access Control Finds a User Recordttt i 28
Integration with the Enterprise User Stores i 29
Guidelines for Managing Accessors in Enterprise Stores 29
Users and Groups that Must be Defined in the Database 29
Restrictions on the Use of Enterprise Users i i 29
Restrictions on the Use of Enterprise GroUpsSiiiii i e e 30
Enable or Disable the Use of Enterprise Users and Groupsoiiiiiiiiinennnnennn. 30
Enable or Disable the Creation of XUSER Records at Enterprise User Login..................... 31
Enable or Disable Checking Enterprise Store before Creating XUSER Records on UNIX 32
Recycled Enterprise Store Accounts on Windows 32
Resolve Recycled Enterprise Accounts on WIiNdOWS ittt 33
Database ACCESSOIS . .ttt ittt ettt et e et e e e e e e e e 34
Predefined USers e e e 35
Predefined GroUPSot e et e 35
Profile GroUPS 36
How CA Access Control Uses Profile Groups to Determine User Properties...................... 37
ACCESSOr ManagemIENt e 37
Manage UsSErs OF GIrOUPSttt ettt e e et e e et e e e e et e ettt et 37
User Management Using Selangt e ettt 40
Group Management UsSiNg Selangt e e e e e 40

Contents 9

Chapter 4: Managing Resources

RESOUICES . .ttt e e e
RESOUINCE GrOUPS . oottt et e ettt e et ettt
(O F= 1= =Pt
Default Record for Class ...t e
User-Defined Classesooiiiii et

Chapter 5: Managing Authorization

Access Authorities oo i e
Setting Access Authority - Examples
Access Control Lists oo
Conditional Access Control Lists........ ..o,
defaccess—The Default Access Field,
How Access Authority to a Resource Is Determined
Interaction Between User and Group Access Authorities
Accumulative Group Rights (ACCGRR)
Security Levels, Categories, and Labels
Security Levels.
Security Categories
Security Labels. e

Chapter 6: Protecting Accounts

Why Protect ACCoUNtS? ...
Safe User Substitution
Set User ID Substitution Rules i
How to Set Up sesu for User Substitution
Setting Up the Surrogate DO Facility
Defining SUDO ReCOrdsot e
Preventing Password Attacks
7= o=V
9= 0 0 T =TT L= A
Restrictions and Limitations i
Checking User Inactivity

Chapter 7: Managing User Passwords

Password Control ... i e
Defining Password Policies. it e
Configure Password Quality Checking
Changing Passwordsouiiiiiiiii ettt
Password Expiration and Grace Logins

43

43
43
43
44
49

51

51
51
52
53
53
54
55
56
56
57
57
57

59

59
59
60
60
64
66
69
69
69
71
71

10 Endpoint Administration Guide for UNIX

Specify the Password Interval i e 75

Set Individual User or Group Password Intervals. 76
(€ r= ol 1o T 110 =P 77
Track GracCe LOgiNSt e e e e e e e e 77
Chapter 8: Protecting Files and Programs 79
Restricting Access to Files and Directories i 79
How File Protection WoOrKSo e e e et et et 82
ProteCt FileS ..o 83
Wildcards in FILE ReSOUICE NamMEsttt et ettt ettt ettt 84
ReStriCtiNg File ACCESS . ..o\ttt e e e e 84
Blocking Trojan Horses with the _abspath Group 88
Synchronization with Native UNIX SeCUIitYttt e et 88
Example: Synchronization e 89
HP-UX Limitationso e et e et et e e e e e e 90
Sun Solaris Limitations e 90
MoNItoring Sensitive Files e e e e e 90
Protecting setuid and setgid Programs it e e e e 91
Define setuid/setgid Programs Automatically i 93
CoNdItiONal ACCESS . .ttt ettt e e e e e e e e e 93
Protecting the Login Command ittt e e ettt 94
Protecting Regular Programs e e e e 94
Kernel Modules Load and Unload Protection i et 94
Protect @ Kernel Module e e 95
Enable and Disable Kernel Module Protectionttt 96
Enable and Disable File Path Checking on Kernel Module Loads 96
Protecting Binary Files from the kill Command 97
Chapter 9: Controlling Login Commands 99
Controlling the LOgIn PrOCESSottt ettt e et et e et e ettt et et 99
Examples: LOGINAPPL 99
Controlling Generic Login Applications i e e 100
Defining a Generic Login Application 100
Generic Login Program Interception i e 101
Defining User Authority to Use Terminals i e e 101
Restricting Terminals for ROOt USers o it e e e et 103
Recommended Restrictions e e 104
Password Checking and Login Restrictions o it i 105
Logon CheCKSo e e 105
Defining Time and Day Login RUIES i e ettt 106
Disabling Concurrent LOgins i e e e e e e 107

Contents 11

Limiting Concurrent Logins for @ UsSerttt ettt 107

Limiting Concurrent Logins Globally i e et 108
Limiting Concurrent Logins Individually i e 108
Recognizing a Login EVent. o e 108
Chapter 10: Protecting TCP/IP Services 111
ReStricting TCP/IP SeIVICESttt it et e e e e e e ettt ettt e 111
UsSiNg Tthe TCP Classo e e e e e e e e e e 113
Streams Module for Network Interception i 115
Chapter 11: Managing Policy Models 121
The Policy Model Database 121
PMDB Location 0N DiskK e e e e 121
Managing Local PMDBS e 122
Managing Remote PMDBS e e e e e e e 122
Architecture DepPeNAeNCY . ..ot e e e e e e 123
Methods for Centrally Managing Policies i e et 125
Automatic Rule-based Policy Updates e 125
How Automatic Rule-based Policy Updates Work i, 126
How You Use a PMDB to Propagate Configuration Settings 126
How You Can Set Up a Hierarchy e, 127
UID/GID Synchronization e e et 134
How the Policy Model Updates Subscribers 135
DUal CoNErOl ..o e e 147
Using the seagent and sepmdd DaemoONS.ttt et 151
Mainframe Password Synchronization i 152
Chapter 12: General Security Features 153
Protection of Idle Stations i e e e e 153
Protection MOdes oo 154
Set Stations to Lock when Idle. i 156
Change the Screen LoCK IC0ON o e e e et et e et 156
Protecting Resources Using APIso i e e e e e e et 157
Protecting Against Stack Overflow: STOP i e e 157
Starting and Stopping STOP 158
Defining Day and Time Access Rules for RESOUICESoiiiiiiii i i et i i 158
B1 Security Level Certification i 159
SECUNItY LeVEIS . .. 159
SeCUNtY Calegories ... e 160
Security Labels. o 162

12 Endpoint Administration Guide for UNIX

Chapter 13: Auditing Events 165

Setling AUt RUIES e e e e 165
Define the Audit Events That CA Access Control Writes to the AuditLog 166
How CA Access Control Determines the Audit Mode foraUser, 167
Default Audit Modes for Users and Enterprise Users. i, 169
Warning MOde e 169
Put @ Resource into Warning Mode e 170
Put a Class into Warning Mode e 171
Find Out Which Resources Are in Warning Mode it 171
Find Out Which Classes Are in Warning Mode e 172
AUAIE LOGS .ttt e e e 172
The System Auditor 173
LOg ROULING . .ot e e e e e e e e 175
Log Routing Configuration 175
Audit Log Route ENCryplion e 176
Send Audit Log Records via Email 177
CoNfIGUIE SNMP TraD S . . .ottt et ittt et e et e e e e e e e e e e e 178
Migrate User Trace Fillers i e e e e e e e e i 180
Chapter 14: Scope of Administration Authority 181
Global Authorization Attributes 181
ADMIN AttribULe ... e 181
AUDITOR AttribUte ..o 182
OPERATOR AttribuULe ... i e e 182
PWMANAGER Attribute e 182
SERVER AttribUte ... 183
IGN _HOL AttribULe . . e e e e 183
Group AUTNOMIZatioN e 183
PareN g .. 184
Group Authorization Attributes. 184
OWNEISNID .« .o 186
File OWNEIShID ..o e e e e e 188
Authorization EXamples 188
Single Group Authorization e 188
Parent and Child Groups e e e 189
SUb AdMINIStratioN 190
How to Grant Specific Administrative Privileges to Regular Users 190
LI A 1 1 1 = 73 190
Environmental Considerations it e 192
Remote Administration Restrictions i it e et 192
UNDX ENVIFONMENt . ottt et et e et e e et e 193

Contents 13

WiINdoWS ENVIrONMENt o e e 193

Chapter 15: Improving Performance 195
Using Global Access CheCk e e et e et et et 195
HOW DS GAC WOrK? ..o et et et et e e ettt et et ettt 196
Implementing GACo 196
GAC RESEIICEIONS .ot e e e e e e e e 198
Troubleshooting GAC 199
Using the Resource Cache e e et 199
Tuning Recommendations i e 200
Using the Network Cache. e e e 200
Using the Real Path Cache e 201
Using FOrk SynChronization e e e e et 201
Using High Priority e e et e e 201
Bypassing the Process File System 201
Bypassing Real Paths. 202
Bypassing Trusted Process Authorization i et 202
Bypass Ports for Network Activity e 203
Reducing Audit and Trace Loadsttt e et et e et et e 204
Reducing Database Loads i e e e e e e 204
Improving PMDB Updates e e et e 204
Improving Watchdog Performance i e e e 205
Improving Class Parameters ettt 205
Class ACKiVatioN o 205
Class AULhOrizZationo e e 206
RESOIVING NaMIES . . . oo e e 206
Chapter 16: Using UNIX Exits 209
UN DX EXIES .« .ttt ittt et ettt e e e e ettt e e e e e e 209
User or Group Record Update EXits i i e e 210
How the Provided selang Exit Script Works 210
Arguments You Can Pass to selang EXits i i 212
Specify selang Exit Programs to RUN 212
Time Out and Other Failures e et et e 213
Sselang EXit Samples o 213
CA Access Control Kernel Loader EXItSot e e et et nn 213
How the Kernel Loading EXits WOrK e e e 214
How the Kernel Unloading Exits Work i et 215
Chapter 17: Interacting with LDAP 217
Transferring User Namiesottt e e e et et e e e 217

14 Endpoint Administration Guide for UNIX

SO0 CREATE AP U oo 217

Chapter 18: Unicenter Security Migration and Integration 219
Unicenter Security Integration Tools i e e 219
Unicenter Security Integration Features. i e 219
SSF/EMSEC APL SUP POt .« .ottt ettt et ettt e e e e e 219
CA Access Control to Unicenter Security Synchronization Utility 220
Unicenter Security Data Migration Features i i 223
Unicenter Security Options Migration e e e 223
Unicenter Security Database Migration 224
Unicenter TNG User EXit SUPPOIt et ettt e et e i 227
Use a PMDB to Secure Unicenter Security Objects 228
Unicenter TNG Calendar e e ettt 228
Certification with Unicenter TNG and Unicenter NSM it i 231
Audit Events Integration 231
Chapter 19: Configuring Settings 233
Configuration Settings i 233
Change Configuration Settings. oot e e et et e 234
Change Audit Configuration Settings i e 234
Appendix A: NIS Configuration 237
Installation NOtES e e e e 237
NameE RESOIUTIONttt e et e e et e e e 237
Name Resolution on an NIS/DNS Client e 238
Name Resolution on a Server: Deadlock. i e 238
Name Resolution on Sun Solaris: DeadlockK i i i 239
Avoiding Deadlocks: The Lookaside Database i i i 240
Storing Resolution Tables on Disk 240
Setting Up the Lookaside Database i e e 240
How the Lookaside Database WOrks.t e e e 241
Implementing the Lookaside Database i et 242
Updating the Hosts Lookaside Table. e 242

Contents 15

Chapter 1: Infroduction

This section contains the following topics:

About this Guide (see page 17)
Who Should Use this Guide (see page 17)

About this Guide

This guide describes the concepts used by CA Access Control for UNIX—a product
that provides a total security solution for open systems. The guide describes
UNIX endpoint management tasks and concepts.

This guide is also provided with CA Access Control Premium Edition, which offers
enterprise management and reporting capabilities, and advanced policy

management features.

To simplify terminology, we refer to the product as CA Access Control throughout
this guide.

Who Should Use this Guide

This guide was written for security and system administrators who are
implementing and maintaining a CA Access Control-protected environment.

Chapter 1: Infroduction 17

Chapter 2: Managing Endpoints

CA Access Control is a software product that is an active, comprehensive security
software solution for Open Systems, tied dynamically to the operating system.
Each time a user requests a security-sensitive operation-such as opening a file,
substituting a user ID, or obtaining a network service-CA Access Control can
intercept the event in real time and evaluate its validity before passing control to
the standard operating system (OS) functions.

This section contains the following topics:

What Is CA Access Control? (see page 19)
Endpoint Management (see page 26)

What Is CA Access Control?

CA Access Control provides you with a powerful tool for managing security for
your native platforms, making it possible to implement a security policy that can
be customized entirely to an enterprise's security requirements. CA Access
Control lets you provide security for users, groups, and resources beyond what is
available in native operating systems. It lets you centrally manage security
across the organization and integrate your Windows and UNIX security policies in
a heterogeneous environment.

Why Does UNIX Need Protecting?

Many operating systems have built-in access control, using one technique or
another. IBM's z/0S, a well-established and mature mainframe operating
system, includes the System Authorization Facility (SAF)—a set of calls issued by
the operating system itself to verify a user's authorization.

Access control software in an z/OS environment sets a return code for the SAF
call and z/0OS grants or denies access according to the code. The decision of what
return code to set is based on the access rules and policies defined in the security
database by the security administrator.

Other operating systems, such as 0S/2, provide similar techniques for access
control. The OS/2 access control module, called Security Enabling Services
(SES), is based on the same concept as z/OS SAF.

Chapter 2: Managing Endpoints 19

What Is CA Access Control?2

Unfortunately, UNIX-based operating systems were not designed this way.
Authorization decisions are made mainly for file accesses and are performed by
the operating system itself using the nine bits (rwx-rwx-rwx) in the file's inode
entry. Unlike SAF, no exit point for event interception is provided. Therefore,
further security is necessary to perform functions that are more complex than
those of mainframe-type security packages.

How Does This Work?

In addition to supplying the regular security functions-such as an access rule
database, an audit log, and administration tools-CA Access Control intercepts the
operating system events that are to be protected. Since CA Access Control has to
work with many different operating systems, it intercepts events in memory. No
changes are made to system files, and the operating system is not modified at
all.

What Is Protected?

CA Access Control protects the following entities:
= Files
Is a user authorized to access a particular file?

CA Access Control restricts a user's ability to access a file. You can give a user
one or more types of access, such as READ, WRITE, EXECUTE, DELETE, and
RENAME. The access can be specified regarding an individual file or to a set
of similarly named files.

= Terminals
Is a user authorized to use a particular terminal?

This check is done during the login process. Individual terminals and groups
of terminals can be defined in the CA Access Control database, with access
rules that state which users, or groups of users, are allowed to use the
terminal or terminal group. Terminal protection ensures that no
unauthorized terminal or station can be used to log into the accounts of
powerfully authorized users.

m Signon time
Is a user authorized to log on at a particular time on a particular day?

Most users use their stations only on weekdays and only during work hours;
the time-of-day and day-of-week login restrictions, as well as holiday
restrictions, provide protection from hackers and from other unauthorized
accessors.

20 Endpoint Administration Guide for UNIX

What Is CA Access Confrol?2

TCP/IP

Is another station authorized to receive TCP/IP services from the local
computer? Is another station authorized to supply TCP/IP services to the
local computer? Is another station permitted to receive services from every
user of the local station?

The advantage of an open system-a system in which both the computers and
the networks are open-is also a disadvantage. Once a computer is connected
to the outside world, one can never be sure who enters the system and what
damage an alien user may do, whether intentionally or by mistake. CA
Access Control includes “firewalls” that prevent local stations and servers
from providing services to unknown stations.

Multiple login privileges

Is the user permitted to log in from a second terminal?

The term concurrent logins refers to a user's ability to be logged onto the
system from more than one terminal. CA Access Control can prevent a user

from logging in more than once. This prevents intruders from logging into the
accounts of users who are already logged in.

User-defined entities

You can define and protect both regular entities (such as TCP/IP services and
terminals) and functional entities (known as abstract objects; such as
performing a transaction and accessing a record in a database).

Aspects of administrator authority

CA Access Control provides the means to both delegate superuser authorities
to operators and restrict the privilege of the superuser account.

Substitute-user
Are users authorized to substitute their user IDs?

The UNIX setuid system call, one of the most sensitive services provided by
the operating system, is intercepted by CA Access Control to check whether
the user is authorized to perform the substitution. The substitute-user
authority check includes program pathing-users are permitted to substitute
their user IDs only through specific programs. This is especially important in
controlling who can substitute to root and thereby gain root access.

Chapter 2: Managing Endpoints 21

What Is CA Access Control?2

Substitute-group

Is a user authorized to issue the newgrp (substitute-group) command?
Substitute-group protection is similar to substitute-user protection.
Setuid and setgid programs

Can a particular setuid or setgid program be trusted? Is the user authorized
to invoke it?

The security administrator can test programs that are marked as setuid or
setgid executables to ensure that they do not contain any security loopholes
that can be used to gain unauthorized access. Programs that pass the test
and are considered safe are defined as trusted programs. The CA Access
Control Self-Protection Module (also referred to as the CA Access Control
watchdog) knows which program is in control at a particular time and checks
whether the program has been modified or moved since it was classified as
trusted. If a trusted program is modified or moved, the program is no longer
considered trusted and CA Access Control does not allow it to run.

In addition, CA Access Control protects against various deliberate and accidental
threats, including:

Kill attempts

CA Access Control can be used to protect critical servers and services or
daemons against kill attempts.

Password Attack

CA Access Control protects against various types of password attacks,
enforces the password-definition policies of your site, and detects break-in
attempts.

Password Delinquency

CA Access Control policies delineate rules that force users to create and use
passwords of sufficient quality. To ensure that users create and use
acceptable passwords, CA Access Control can set maximum and minimum
lifetimes for passwords, restrict certain words, prohibit repetitive characters,
and enforce other restrictions. Passwords are not permitted to last too long.

Account Management

CA Access Control policies ensure that dormant accounts are dealt with
appropriately.

Domain Management

CA Access Control can implement password protection and enforce security
across NIS and non-NIS domains.

22 Endpoint Administration Guide for UNIX

What Is CA Access Confrol?2

How Is It Protected?

Class Activation

Accessor Elements

CA Access Control starts immediately after the operating system finishes its
initialization. CA Access Control places hooks in system services that must be
protected. In this way, control is passed to CA Access Control before the service
is performed. CA Access Control decides whether the service should be granted
to the user.

For example, a user may attempt to access a resource protected by CA Access
Control. This access request generates a system call to the kernel to open the
resource. CA Access Control intercepts that system call and decides whether to
grant access. If permission is granted, CA Access Control passes control to the
regular system service; if CA Access Control denies permission, it returns the
standard permission-denied error code to the program that activated the system
call, and the system call ends.

The decision is based on access rules and policies that are defined in the
database. The database describes two types of objects: accessors and resources.
Accessors are users and groups. Resources are objects to be protected, such as
files and services. Each record in the database describes an accessor or a
resource.

Each object belongs to a class-a collection of objects of the same type. For
example, TERMINAL is a class containing objects that are terminals
(workstations) protected by CA Access Control.

CA Access Control stores information about whether a CLASS is active or inactive
in the database. When CA Access Control starts, it passes a list of active classes
to SEOS_syscall, so CA Access Control does not have to constantly intercept
these classes. The only time CA Access Control intercepts a class is when a user
changes the activity status of a class. If a class is inactive, access to the resource
is not intercepted.

You can use the inactive class bypass with the following classes: FILE, HOST,
TCP, CONNECT, and PROCESS.

Each user is represented by an accessor element (ACEE)-an in-memory
reflection of the user's record in the database. CA Access Control builds the
accessor element during the login process. The accessor element is associated
with the user's process. Whenever the process requests a system service that is
protected by CA Access Control, or issues an implicit request to access a
resource, CA Access Control accesses the resource's record. It then determines
whether the information in the previously created accessor element-such as the
user's security level, mode, and group-lets the user access the resource.

Chapter 2: Managing Endpoints 23

What Is CA Access Control?2

Expanding Native Security
The following CA Access Control features expand native security.
Superuser Account Limitations

Users who administer and manage the operating systems are typically members
of predefined accounts that are automatically created during system setup, such
as the root account on UNIX systems, and the Administrator account on Windows
systems. Each of the predefined accounts exists to perform a certain set of
system functions.

Users acting as root or Administrator can perform a wide range of tasks, from
creating, deleting, and modifying users to locking, reconfiguring, and shutting
down servers.

One of the major security risks in these operating systems is that an
unauthorized user can gain control of these accounts. If this happens, the user
can cause enormous damage to the system.

CA Access Control lets you limit the rights granted to these accounts and to limit
the rights of users who are members of the user groups that have these accounts
as members. This reduces the vulnerability of your operating system.

CA Access Control Administrators

When you installed CA Access Control, you were asked to name one or more CA
Access Control administrators. CA Access Control administrators have the
authority to modify all or part of the rules database. You should have at least one
full-authority administrator. This administrator can modify or create access rules
freely and can designate other levels of administrators.

Once you have defined users for your system, you can assign administrative
authority to other users by assigning the ADMIN attribute to them.

Note: A user with the ADMIN attribute possesses powerful authority.
Consequently, the number of ADMIN users should be strictly limited. It is also a
good policy to separate the roles of the native superuser and ADMIN, removing
the ADMIN attribute from the superuser after you have set up one or more CA
Access Control security administrators.

Because you always need at least one user with authority to manage the
database, CA Access Control does not let you delete the last user that has the
ADMIN attribute.

If you expect any of the CA Access Control administrators to be administering
other hosts from this workstation, be sure that a rule in the database on that host
gives them READ and WRITE access from this workstation.

24 Endpoint Administration Guide for UNIX

What Is CA Access Confrol?2

Sub Administration

CA Access Control contains a sub administration feature. This lets administrators
grant specific privileges that enable regular users to manage specific classes.
These users are then called sub administrators.

For example, you can allow a specific user to manage users and groups only.

You can also specify a higher level of sub administration by granting access not
only for specific classes, but for specified records in these classes.

Administration Rights for Regular Users

Program Pathing

CA Access Control lets you grant ordinary users (that is, non-administrators) the
necessary rights and privileges so that these users can perform administrative
tasks without being members of the Administrators group. The ability to delegate
tasks by granting administrative privileges in this granular way is a significant
advantage of CA Access Control.

m Arecord in the SUDO class stores a command script to allow users to run the
script with borrowed permissions.

m The data property value is the command script. This value can be modified by
adding to it optional script parameter values.

m Each record in the SUDO class identifies a command for which a user can
borrow permissions from another user.

m The key of the SUDO class record is the name of the SUDO record. This name
is used instead of the command name when a user executes the commands
in the SUDO record.

Program pathing is an access rule associated with a file that requires that the file
is accessed only through a specific program. Program pathing greatly increases
the security of sensitive files. CA Access Control lets you use program pathing to
provide additional protection for the files in your system.

B1 Security Level Certification

CA Access Control includes the following B1 “Orange Book” features: security
levels, security categories, and security labels.

m Accessors and resources in the database can be assigned a security level.
The security level is an integer between 1 and 255. An accessor can gain
access to a resource only if the accessor has a security level equal to or
greater than the security level assigned to the resource.

m Accessors and resources in the database can belong to one or more security
categories. An accessor can access a resource only if the accessor belongs to
all of the security categories assigned to the resource.

Chapter 2: Managing Endpoints 25

Endpoint Management

m A security label is a name that associates a particular security level with a set
of zero or more security categories. Assigning a user to a security label gives
the user both the security level and any security categories associated with
the security label.

Note: For more information about B1 Orange Book features, see the
Implementation Guide.

Endpoint Management

CA Access Control provides two ways to let you manage the resources in your
enterprise and control who has access to them:

m selang—the CA Access Control command language.

The selang command language lets you make definitions in the CA Access
Control database. The selang command language is the command definition
language.

Note: For more information about using selang, see the selang Reference
Guide.

m CA Access Control Endpoint Management—the endpoint administration
interface.

The web-based interface lets you administer remote endpoints through a
central administration server.

Note: For more information about installing CA Access Control Endpoint
Management, see the Implementation Guide.

26 Endpoint Administration Guide for UNIX

Chapter 3: Managing Users and Groups

This section contains the following topics:

Users and Groups (see page 27)

Where Information about Accessors Is Stored (see page 28)
Guidelines for Managing Accessors in Enterprise Stores (see page 29)
Database Accessors (see page 34)

Accessor Management (see page 37)

Users and Groups

In CA Access Control, every action and access attempt is performed on behalf of
a user, who is held responsible for submitting the request. Every process in the
system is therefore associated with a certain user name. The user name
identifies the user to CA Access Control.

A user is a person who can log on, or can be the owner of a batch or daemon
program. In CA Access Control, every access attempt is performed by a user. CA
Access Control can use user information from the CA Access Control database
and from enterprise user stores. It stores user information in its database, in
either a USER record or an XUSER record.

Note: An enterprise user store is a store in the operating system that stores
users or groups, for example, /etc/passwd and /etc/groups on UNIX systems, or
Active Directory on Windows.

A group is a collection of users. A group defines common access rules for users in
the group. Groups can be nested (belong to other groups). CA Access Control can
use group information from the CA Access Control database and from the
enterprise user stores. Typically, you create groups and assign users to them,
based on a role, for example, database_administrators.

The user records are the key accessor records. The main purpose for using
groups in CA Access Control is to assign access authorities to all users in group at
one time. Assigning access authorities at one time is easier and less error prone
than assigning them separately to each user.

Chapter 3: Managing Users and Groups 27

Where Information about Accessors Is Stored

Where Information about Accessors Is Stored

The information that CA Access Control uses about users and groups is stored
both in the CA Access Control database and in the host operating system. The
host operating system information stores are called enterprise user stores, or
just enterprise stores. By default, CA Access Control is configured so that it does
not use the enterprise stores. You can, however configure CA Access Control so
that if it cannot find a user or group defined in its database, it looks for, and uses
the information from, the users and the group memberships defined in the
enterprise stores.

Note: CA Access Control uses information from the enterprise stores but only
writes to them if you use selang command in the native environment.

When checking for authorization, CA Access Control always checks for accessors
defined in its own database before it checks the enterprise store: if you have an
enterprise user with the same name as a user defined in the CA Access Control
database, the enterprise user is ignored by CA Access Control.

How CA Access Control Finds a User Record
When a user logs in, CA Access Control conducts the search in the following
order, until it finds a record associated with the user:
1. CA Access Control searches for a user defined in its database.
2. CA Access Control searches its cache for an enterprise user of that name.

When the network is down, the operating system (OS) lets users log in using
the OS cached credentials. The purpose of the CA Access Control cache is to
let CA Access Control also use enterprise users' records in these cases.

3. CA Access Control uses the operating system to search the enterprise user
stores for a user of that name.

4. If CA Access Control does not find a record associated with the user in its
database or in the enterprise stores, CA Access Control assigns the user the
attributes in the _undefined USER record.

28 Endpoint Administration Guide for UNIX

Guidelines for Managing Accessors in Enterprise Stores

Integration with the Enterprise User Stores

Typically, you configure CA Access Control to use the groups and users that are
defined in the enterprise user stores.

If you do configure CA Access Control like this, by default, when an access rule
that references an enterprise user or group is created, or when a user logs in to
the operating system, CA Access Control creates a record in its database for that
user or group, if one did not exist before. These records have the class XUSER
(for enterprise users) or XGROUP (for enterprise groups). They hold the
properties that CA Access Control requires to enforce access rules. You do not
need to manage them, because CA Access Control creates them as required.

The only properties of an enterprise user or group that CA Access Control fetches
from the enterprise user stores are the names and the group membership
properties.

Guidelines for Managing Accessors in Enterprise Stores
If you decide to manage your accessors in enterprise user stores, you should
consider the guidelines in the following sections.

Users and Groups that Must be Defined in the Database

CA Access Control needs some users and groups to be defined in its database,
rather than in the enterprise user stores. These include:

m Predefined users (see page 35)

m Predefined groups (see page 35)

m A CA Access Control administrator
m Profile groups

m Logical users

Restrictions on the Use of Enterprise Users
CA Access Control imposes the following restrictions on the use of enterprise
users:

m You cannot create, or refer to, an enterprise user in CA Access Control if it
has the same name as a user defined in the database.

®m You cannot create, delete or modify an enterprise user using the selang AC
environment.

Chapter 3: Managing Users and Groups 29

Guidelines for Managing Accessors in Enterprise Stores

You cannot use an enterprise user as a logical user.

By default, you cannot create an enterprise user in CA Access Control unless
the user is already defined in the enterprise user store. However, you can
enable or disable this behavior on UNIX systems.

More information:

Enable or Disable Checking Enterprise Store before Creating XUSER Records on

UNIX (see page 32)

Restrictions on the Use of Enterprise Groups

CA Access Control imposes the following restrictions on the use of enterprise
groups:

You cannot create or delete an enterprise group within the selang AC
environment.

You cannot change the membership of an enterprise group within the selang
AC environment.

You cannot use an enterprise group as a Profile Group (see page 36).

Enable or Disable the Use of Enterprise Users and Groups

By default, CA Access Control cannot use the groups and users defined in the
enterprise user stores, but you can enable CA Access Control to do so. We
recommend that you enable this feature unless you need compatibility with
previous versions of CA Access Control.

To let CA Access Control use enterprise users and groups, set the configuration
setting osuser_enabled to 1 (one). To disable this behavior, set the value of
osuser_enabled to 0 (zero).

Example: Enable the Use of Enterprise Users and Groups on Windows

The following registry setting enables the use of enterprise users and groups on

Windows:

m Key: HKLM\ComputerAssociates\AccessControl\OS_user
m Name: osuser_enabled

m Type: REG_DWORD

m Value: 1

30 Endpoint Administration Guide for UNIX

Guidelines for Managing Accessors in Enterprise Stores

Example: Enable the Use of Enterprise Users and Groups on UNIX

The following commands stop CA Access Control, enable the use of enterprise
users and groups on UNIX, and restart CA Access Control:

secons -s
seini -s OS_User.osuser_enabled 1
seload

Enable or Disable the Creation of XUSER Records at Enterprise User Login

If CA Access Control is enabled to use enterprise users, by default it creates a
record (in the XUSER class) for a user when that user logs in. Sometimes you do
not want this, for example, if thousands of users log on at the same time each
day.

To prevent CA Access Control creating XUSER records when users log in, change
the value of the configuration setting create_user_in_db to 0 (zero). To
re-enable this behavior set the value to 1 (one).

Example: Disable the Automatic Creation of XUSER Records on
Enterprise User Login on Windows

The following registry setting disables the automatic creation of an enterprise
user record in CA Access Control on Windows:

m Key: HKLM\Software\ComputerAssociates\AccessControl\OS_user

m Name: create_user_in_db

m Type: REG_DWORD

= Value: O

Example: Disable the Automatic Creation of XUSER Records on
Enterprise User Login on UNIX

The following commands stop CA Access Control, disable the automatic creation
of a XUSER record on UNIX, and restart CA Access Control:

Secons -s
seini -s OS_User.create_user_in_db 0
seload

Chapter 3: Managing Users and Groups 31

Guidelines for Managing Accessors in Enterprise Stores

Enable or Disable Checking Enterprise Store before Creating XUSER Records on
UNIX

Sometimes you may want to create an enterprise user in CA Access Control when
the user is not defined in the enterprise user store. On Windows you cannot
create an enterprise user in CA Access Control unless the user exists in the
Windows user store. On UNIX, the default behavior is the opposite to Windows.
However, on UNIX, you can enable or disable this default behavior.

To disable checking (and therefore allow CA Access Control to create XUSER
records when there is no enterprise user equivalent), change the value of the
configuration setting verify_osuser to 0. To enforce checking, set the value to 1.

Example: Enable Creation of XUSER Records without Checking the
Enterprise User Store

The following set of commands stops CA Access Control, enables the creation of
XUSER records with no enterprise store equivalents, and restarts CA Access
Control:

Secons -s
seini -s OS_User.verify_osuser 0
seload

Recycled Enterprise Store Accounts on Windows

Recycled accounts are enterprise store users or groups that have been deleted
and then recreated (using the same name). This is likely to happen when you
remove a user from the user store (for example, when the user resigns) and then
create a new account for a new user that has the same name as the old removed
user.

Recycled accounts are a security concern because you do not necessarily want
new accessors to have the same access permissions as those that were granted
to the old account with the same name. To solve this problem, CA Access Control
authorization is based on the SID. This means that when you create a new
accessor, with the same name as a deleted accessor with existing access
permissions, the new accessor does not automatically receive the old
permissions of the old accessor.

Important! Recycled account accessors do not inherit the old access
permissions. However, database access rules, which mention the accessor's
name (not SID), may make it seem like these rules still apply. Use the secons
-checkSID command to resolve this.

32 Endpoint Administration Guide for UNIX

Guidelines for Managing Accessors in Enterprise Stores

Resolve Recycled Enterprise Accounts on Windows

If an enterprise account (user or group) has associated database rules is then
recycled (deleted and created with the same name), it may look like the old
database rules still apply to the new account. However, as CA Access Control
authorization is based on SID, these rules no longer apply and you need to create
new rules for the new group. Before you can create the new rules, you have to
resolve recycled accounts.

To resolve recycled enterprise accounts open a command prompt and run the
following commands:

secons -checkSID -users
secons -checkSID -groups

CA Access Control works through all the enterprise user accounts it has (XUSER
records) and then all the group accounts (XGROUP records) and identifies
accounts with an SID that differs from the SID of the enterprise account. It
renames these accounts in CA Access Control using the following naming
convention: SID (accountName)

You can now create the new rules for the recycled account.
Note: Recycled user accounts are resolved in this way when the user logs in or

tries to access a resource. We recommend that when you create an enterprise
account, run the secons -checkSID command as a scheduled task.

Chapter 3: Managing Users and Groups 33

Database Accessors

Example: A Recycled Group Account

Company ABCD has a group called interns in its enterprise store. The group has
nine members and they are working on productA. The administrator makes the
group known to CA Access Control and assigns it with access permissions to the
files group members need to access, as follows:

nxg interns owner(msmith)
auth file c:\products\productA\materials* xgid(interns) access(all)
auth file c:\HR\interns* xgid(interns) access(read)

When the interns complete their tenure with ABCD, the enterprise store
administrator deletes the group. Three months later, a new group of interns with
six members is created in the enterprise store, with the same name. The old
rules in the CA Access Control database still exist so it seems like the new interns
group inherited the permissions of the old group. However, these rules apply to
the old interns group and the CA Access Control administrator needs to create
new rules for the new group.

To do this, the administrator has to identify and resolve the recycled interns
account, as follows:

secons -checkSID -groups interns

This renames the XGROUP resource, and any access rules references to it, to
"SID (domain\interns)". Now, the administrator can create new rules for the new
interns group that works on productB:

nxg interns owner(msmith)
auth file c:\products\productB\materials* xgid(interns) access(all)
auth file c:\HR\interns* xgid(interns) access(read)

Note: For more information on the secons utility, see the Reference Guide.

Database Accessors

Regardless of how you decide to manage your users, some accessors must be
defined in the CA Access Control database, as described in the following sections.

34 Endpoint Administration Guide for UNIX

Database Accessors

Predefined Users

CA Access Control predefines the following users, which you cannot delete:
dms

Installed on the advanced policy management server components'
databases (DMS, DH reader, and DH writer), the _dms user is used by
policyfetcher and devcalc to communicate with the DH and DMS.

_seagent

_seagent is the user name under which CA Access Control runs some internal
processes, such as:

m The PMDB process, sepmdd

m (UNIX) The deviation calculation process, devcalc

m The user and group record update exit processes

The _seagent user has the SERVER attribute.
_undefined

_undefined represents all users that are undefined in CA Access Control. You
can use _undefined to include undefined users in ACLs.

+devcalc

(Windows) The user name under which CA Access Control runs the deviation
calculation process, devcalc.

+reportagent
The user name under which CA Access Control runs the Report Agent.
nobody

The nobody user is a user record that cannot correspond to a real user. Use
this record to create rules that do not give any user the associated
permissions. For example, you can set nobody as the owner of resources,
meaning that no user will get the permissions associated with owning that
record.

Predefined Groups

CA Access Control comes with predefined groups. Except for the _interactive and
_network groups, you add users to these groups in the same way as you do for
any other group.

_abspath

If a user is in the _abspath group when logging in, that user must use
absolute path names to invoke programs.

Chapter 3: Managing Users and Groups 35

Database Accessors

Profile Groups

_interactive

A user is a member of the _interactive group only for the purposes of an
access attempt. Users are members of the _interactive group if they are
logged into the same host as the resource they are trying to access. CA
Access Control dynamically and automatically manages the membership of
the _interactive group—you cannot change the membership.

_network

This is the complementary group to _interactive. A user is a member of the
_network group for the purposes of access only. Users are members of the
_network group if they are trying to access a resource from a different host
than the resource belongs to. CA Access Control dynamically and
automatically manages the membership of the _network group—you cannot
change the membership.

_restricted

For users in the _restricted group, all files, and on Windows registry keys too,
are protected by CA Access Control. If a file or a Windows registry key does
not have an access rule explicitly defined, access permissions are covered by
the _default record for that class (FILE or REGKEY).

Note: Users in the _restricted group may not have sufficient authorization to
do their work. If you plan to add users to the _restricted group, consider
using Warning mode initially.

_surrogate

When a user uses a member of the _surrogate group as a surrogate, CA
Access Control writes a full trace in the audit trail of the surrogate's actions,
tagged with the original user's name.

Example: Adding a User to the _restricted Group Using selang

The following selang command adds the enterprise user john_smith to the
_restricted group:

joinx john_smith group(_restricted)

A profile group is a group defined in the CA Access Control database that contains
default values for user properties. When you assign a user to a profile group, the
profile group provides those values to the user unless they have already been set
for the user.

You can specify a profile group for a user when you create the user, or you can
assign the user to the profile group afterwards.

36 Endpoint Administration Guide for UNIX

Accessor Management

Profile groups let administrators efficiently create a standard setup with specific
permissions for any new user assigned to that group. This setup can specify such
things as the home directory of the user, the audit properties, the PMDB that
defines the access authorities, and various password rules affecting a user who is
associated with a profile group.

How CA Access Control Uses Profile Groups to Determine User Properties
The following process describes how CA Access Control uses profile groups to
determine user properties:

1. CA Access Control checks if the user's record in the USER or XUSER class has
a value for the property.

If the user's record has a value for the property, CA Access Control uses that
value.

2. CA Access Control checks if the user is assigned to a profile group.

If the user is assigned to a profile group, the process continues. If the user is
not assigned to a profile group, CA Access Control assigns the default
property value to the user.

3. CA Access Control checks if the profile group has a value for that property.

If the profile group has a value for the property, CA Access Control assigns
that value to the user. If the profile group does not have a value for the
property, CA Access Control assigns the default property value to the user.

Note: If the audit property of a user or profile group is not set, the audit
property of a group can affect the audit property of a user.

More information:

How CA Access Control Determines the Audit Mode for a User (see page 167)

Accessor Management
You can create, modify, and delete database or enterprise user or group records
by using CA Access Control Endpoint Management or by using selang.
Manage Users or Groups

If you want to view or modify the properties of a particular accessor, or if you
want to delete an accessor, you must first find that accessor.

Chapter 3: Managing Users and Groups 37

Accessor Management

To manage users or groups
1. In CA Access Control Endpoint Management, do as follows:

a. Click Users.

b. Click either the Users or Groups subtab.

Depending on your selection, the Users or the Groups page appears.
2. Complete the following fields in the Search section:

User/Group Name

Defines a mask for the accessors you want to find. You can enter the full
name of the accessor you are after or you can use a mask. For example,
use *admin* to list accessors whose name contains "admin".

Use an * (asterisk) to list all accessors and a ? (question mark) to replace
a single character.

User/Group Repository

Specifies the source from which you want to fetch a list of accessors. The
source can be either:

- Internal Accounts—accessors defined in the CA Access Control
database.

- Enterprise Accounts—accessors defined in specific enterprise user
stores.

Show only AC accounts/profiles

Specifies whether to list only those accounts that have records in the CA
Access Control database as follows:

- If you chose Internal Accounts, the application lists only those
accounts that exist in the CA Access Control database (no native
accounts).

- If you chose Enterprise Accounts, the application lists only those
accounts that have a CA Access Control enterprise profile (XUSER or
XGROUP records).

Click Go.
A list of accessors that exist in the repository you chose appears.
3. Do one of the following:
m Click “* in the View column to view the properties of the accessor.
» Click O in the Delete column to delete the accessor.
m Click the name of the accessor to modify the properties of the accessor.
m Select the accessors you want to delete and click Delete.

m Click Create User or Create Group to create a user or group record in the
CA Access Control database.

38 Endpoint Administration Guide for UNIX

Accessor Management

Example: Search for Enterprise Users in a Repository

The following graphic shows you the result of looking for all users in the ABC-DM1
enterprise user store.

Search
+= Required
User Name: | User Emdaronment

User [aBC-DM1 (*) ~||Go

Repository:

For multiple entities please use the wildcard
* - With AC Profile

- ithout AC Profile

Options: [chow only AC accounts/profiles

Users list for: COMPOD1

@ Here are the results for XUSER with name: * at 08/07/09 00:22

Select and: Delete I L-100f12 x| > »
™ select| < Env. S Name £ Comment Yiew Delete
r @ ABC-DM1hac_ent_pers ﬂ
r @3 ABC-DM1%Administrator a
r @ ABC-DM1Mvalice El
r @ ABC-DMINASPNET a
r @ ABC-DM1Nbob L
r @3 ABC-DM1%entramt [

r @3 ABC-DM1VGuest o
r @ ABC-DMIMUSR_IIS_SWR1 [

r @ ABC-DMINWAM_IIS_SWYR1 a
I @ ABC-DM1Yrand [

1-10of12 =| » »

Tatal of 12 abjects,

Chapter 3: Managing Users and Groups 39

Accessor Management

User Management Using selang

Use the following selang commands for records of enterprise users:
® newxusr and editxusr—define a new enterprise user record

m chxusr and editxusr—change the CA Access Control properties of an
enterprise user

m find xuser—list enterprise users that have a CA Access Control record
= rmxusr—delete a user

= show xuser—display the CA Access Control properties of an enterprise user

Use the following selang commands for CA Access Control database user
records:

m newusr and editusr—define a new user record
m chusr and editusr—change the properties of a user
= rmusr—delete a user

m find user—list database users

m show user—display the properties of a user
Example: Define a User in the Database Using selang

The following selang command defines a new user in the CA Access Control
database with security level 100:

newusr internalUser level(100)
Example: Change a Property of an Enterprise User Using selang

The following selang command gives the AUDITOR property to an enterprise user
Terry:

chxusr Terry auditor

Group Management Using selang

You can change any property of any group, except that you cannot change the
name or the membership of enterprise groups (from within CA Access Control).

40 Endpoint Administration Guide for UNIX

Accessor Management

To change group properties or to assign access rights associated with groups,
you can use CA Access Control Endpoint Management or the following selang
commands:

® join[-] and joinx[-]
Change the membership of an internal group

Use join to add internal accessors to the group. Use joinx to add enterprise
groups and users to an internal group. Use the - (minus) form of the
commands to remove accessors.

m editgrp, newgrp, chgrp

Change the non-membership properties of an internal group
m editxgrp, newxgrp, chxgrp

Change the non-membership properties of an enterprise group
= rmgrp, rmxgrp

Remove a user group
Example: Define a Group in the Database Using selang

The following selang command defines a new group “sales” in the database. The
full name of the group is “Sales Department”:

newgrp sales name('Sales Department)

Example: Change a Property of a Group Defined in the Database Using
selang

The following selang command makes CA Access Control audit all events for
members of the group AC_admins:

chgrp AC_admins audit(all)
Example: Add an Enterprise Group to an ACL Using selang

The following selang command adds the enterprise group mygroup to the ACL of
the myfile:

Authorize FILE (myfile) xgid(mygroup)

Chapter 3: Managing Users and Groups 41

Accessor Management

Example: Add an Enterprise User to a Group Defined in the Database
Using selang

The following selang command adds the enterprise user
mydomain\administrator to the group AC_admins which is defined in the
database:

joinx mydomain\administrator group(AC_admins)

Example: Add an Enterprise Group to a Group Defined in the Database
Using selang

The following selang command adds the enterprise group Guests to the
_restricted group:

joinx Guests group(_restricted)

42 Endpoint Administration Guide for UNIX

Chapter 4: Managing Resources

Resources

Resource Groups

Classes

This section contains the following topics:

Resources (see page 43)
Classes (see page 43)

A resource is an entity that can be accessed by an accessor and protected by an
access rule, or the CA Access Control database record that corresponds to that
entity. Examples of resources are files, programs, hosts, and terminals.

The main purpose of creating resource records in CA Access Control is to define
access permissions for the resource that corresponds to the resource record. The
access permissions that are required to access a resource are specified in the
resource record's access control lists.

A resource group is a resource that contains a list of other resources. A resource
group is a member of one of the following classes: CONTAINER, GFILE, GSUDO,
GTERMINAL, or GHOST.

Because a resource group is itself a resource, it has the same properties as its
member resources. Therefore the advantage of using resources groups is that it
simplifies administration. You can change the properties of all the member
resources by changing the properties of the resource group.

In CA Access Control, the class of a record defines the properties that the record
can have. All records in a class have the same properties, though different values
for these properties.

Examples of classes are:

m TERMINAL class. This contains records for terminals, such as tty1, tty.

m FILE class. This contains records for files.

m PROGRAM class. This contains records of programs.

Chapter 4: Managing Resources 43

Classes

Each record contains values for the properties appropriate to the record class.
For example, a record in the XUSER class includes such properties as the
enterprise user's location and working hours, while a record in the HOSTNET
class includes such properties as net services and IP address data.

CA Access Control includes predefined classes. You can also define new classes,
called user-defined classes.

Default Record for Class

Most classes can include a default record (_default) specifying access types for
resources of that class that are not defined in database records of their own.

Like other resource records, the _default record can include an ACL and a
defaccess field. You can create a _default record for all classes except USER,
GROUP, CATEGORY, SECLABEL, and SEOS.

UACC Class (Deprecated)

The UACC class is no longer recommended. To specify the default values for
records in a class, use the _default record.

Some earlier versions of CA Access Control used a separate class, called UACC,
for records resembling the _default records of other classes. The UACC class is no
longer recommended, and if you use a _default record, the equivalent record in
the UACC class is not checked. In future versions, the UACC class may no longer
be supported.

For example, suppose user Henderson tries to kill process store_log. CA Access
Control checks for authorization in the following order. The primary question is
this: Is the process store_log defined in the database? CA Access Control
searches the database for a record named store_log in the PROCESS class.

m If no such record can be found, the process is not defined to CA Access
Control. In that case, CA Access Control therefore uses either the _default
record of class PROCESS, or the PROCESS record in the UACC class, to
determine whether Henderson is allowed to kill store_log.

— If user Henderson appears in the _default record's ACL, the authority
specified in it is applied.

- If Henderson does not appear in the _default record's ACL, the authority
specified in the defaccess property of the _default record is applied. This
authority is applied to all users who do not appear explicitly in the
_default ACL.

44 Endpoint Administration Guide for UNIX

Classes

m If process store_log is defined in the database, then the question is whether
user Henderson appears in the ACL for process store_log in the database.

- If user Henderson appears in the ACL for process store_log, the authority
specified there is applied.

- If Henderson does not appear in the ACL, CA Access Control applies the
authority specified in the default access property of the store_log
resource. This authority is called the resource's default access.

Note: If the default access (defaccess) of _default is set to NONE, or if _default
is not specified and the default of the corresponding resource in the UACC class
is NONE, then any accessor attempting to access a resource not defined in the
class is denied access to the resource.

If the default access of _default (or UACC) is set to the highest authority (ALL, or
in some cases READ or EXECUTE), then any resource that is not explicitly
protected is accessible to everyone.

Predefined Classes

The predefined classes can be categorized into the following types:

Class Type Purpose
Accessor Defines objects that access resources, such as users and groups
Definition Defines objects that define security entities, such as security labels and categories
Installation Defines objects that control the behavior of CA Access Control
Resource Defines objects that are protected by access rules
The following table contains a list of all predefined classes.
Class Class Description
Type
ADMIN Definition Lets you delegate administrative responsibilities to users who do
not have the ADMIN attribute. You give these users global
authorization attributes and limit their administration authority
scope.
AGENT Resource Not applicable to CA Access Control
AGENT_TYPE Resource Not applicable to CA Access Control
APPL Resource Not applicable to CA Access Control

Chapter 4: Managing Resources 45

Classes

Class Class Description
Type

AUTHHOST Accessor Not applicable to CA Access Control

CALENDAR Resource Lets you define a Unicenter TNG calendar object for user, group,
and resource enforced time restrictions.

CATEGORY Definition Lets you define a security category.

CONNECT Resource Lets you protect outgoing connections. The records in this class
define which users can access which Internet hosts.

Before you activate the CONNECT class, be sure that the streams
module is active.

CONTAINER Resource Lets you define a group of objects from other resource classes, thus
simplifying the job of defining access rules when a rule applies to
several different classes of objects.

FILE Resource Lets you protect a file, a directory, or a file hame mask.

GAPPL Resource Not applicable to CA Access Control

GAUTHHOST Definition Not applicable to CA Access Control

GFILE Resource Each record in this class defines a group of files or directories.
Grouping is accomplished by explicitly connecting files or
directories (resources of the FILE class) to the GFILE resource in
the same way users are connected to groups.

GHOST Resource Each record in this class defines a group of hosts. Grouping is
accomplished by explicitly connecting hosts (resources of the HOST
class) to the GHOST resource in the same way users are connected
to groups.

GROUP Accessor Each record in this class defines an internal group.

GSUDO Resource Each record in this class defines a group of commands that one
user can execute as if another user were executing it. The sesudo
command uses this class.

GTERMINAL Resource Each record in this class defines a group of terminals.

HNODE Definition The HNODE class contains information about the organization's CA
Access Control hosts. Each record in the class represents a node in
the enterprise.

HOLIDAY Definition Each record in this class defines one or more periods when users

need extra permission to log in.

46 Endpoint Administration Guide for UNIX

Classes

Class Class Description
Type
HOST Resource Each record in this class defines a host. The host is identified by

either its name or its IP address. The object contains access rules
that determine whether the local host can receive services from
this host.

Before you activate the HOST class, be sure that the streams
module is active.

HOSTNET Resource Each record in this class is identified by an IP address mask and
contains access rules.

HOSTNP Resource Each record in this class defines a group of hosts, where the hosts
belonging to the group all have the same name pattern. Each
HOSTNP object's name contains a wildcard.

LOGINAPPL Definition Each record in the LOGINAPPL class defines a login application,
identifies who can use the program to log in, and controls the way
the login program is used.

MFTERMINAL Definition Each record in the MFTERMINAL class defines a Mainframe CA
Access Control administration computer.

POLICY Resource Each record in the POLICY class defines the information required to
deploy and remove a policy. It includes a link to the RULESET
objects that contain a list of the selang commands for deploying
and removing the policy.

PROCESS Resource Each record in this class defines an executable file.

PROGRAM Resource Each record in this class defines a trusted program that can be used
with conditional access rules. Trusted programs are setuid/setgid
programs that are monitored by the Watchdog to ensure they are
not tampered with.

PWPOLICY Definition Each record in the PWPOLICY class defines a password policy.

RESOURCE_DESC Definition Not applicable to CA Access Control

RESPONSE_TAB Definition Not applicable to CA Access Control

RULESET Resource Each record in the RULESET class represents a set of rules which
define a policy.

SECFILE Definition Each record in this class defines a file that must not be altered.
SECLABEL Definition Each record in this class defines a security label.
SEOS Installation The one record in this class specifies your active classes and

password rules.

Chapter 4: Managing Resources 47

Classes

Class Class Description
Type

SPECIALPGM Installation Each record in the SPECIALPGM class registers backup, DCM, PBF
and PBN functions in Windows or xdm, backup, mail, DCM, PBF,
and PBN programs in UNIX or associates an application that needs
special authorization protection with a logical user ID. This allows
you to set access permissions according to what is being done
rather than who is doing it.

SUDO Resource This class, used by the sesudo command, defines commands that
one user (such as a regular user) can execute as if another user
(such as root) were executing them.

SURROGATE Resource Each record in this class contains access rules for an accessor that
define who can use that accessor as a surrogate.

TCP Resource Each record in this class defines a TCP/IP service, for example, mail
or http or ftp.

TERMINAL Resource Each record in this class defines a terminal-a device from which a
user can log in.

UACC Resource Defines default access rules for each resource class.

USER Accessor Each record in this class defines an internal user.

USER_ATTR Definition Not applicable to CA Access Control

USER_DIR Resource Not applicable to CA Access Control

XGROUP Resource Each record in this class defines an enterprise group to CA Access
Control.

XUSER Resource Each record in this class defines an enterprise user to CA Access

Control.

Note: For more information about CA Access Control classes, see the selang
Reference Guide.

48 Endpoint Administration Guide for UNIX

Classes

User-Defined Classes

CA Access Control enables you to define new classes, so that you can protect
abstract objects by creating appropriate records for them.

Example: User-Defined Class for a Database View
A site may use a database to store and display proprietary data.

You can define a user-defined class DATABASE_VIEWS, and define each
database view to be a resource member of that class. Give the resource an ACL
that defines the access authority required to create that database view. When a
user attempts to create a database view, CA Access Control checks the access
authority of the user, and permits or disallows the creation based on the ACL.

Wildcards in User-defined Classes Resources

By using wildcards in the name of a resource in a user-defined class, you can
create a resource record that corresponds to multiple physical resources: any
physical resource with a name that matches the wildcard pattern is protected by
the access authorities associated with the resource record.

The wildcards you can use are:

m * for any number of any characters

m ? for any one character

If a physical resource nhame matches more than one resource record name, the
longest non-wildcard match is used for that resource.

CA Access Control does not accept the following wildcard patterns as resource

names:

m *

m /¥

m /tmp/*
m /etc/*

Chapter 4: Managing Resources 49

Classes

User-Defined Class—Example

Suppose that your system serves a bank and you want to protect transfers of
large amounts between accounts. You can use the following outline to set up this
security.

1.

Define a class to contain the records that describe transfers, called, for
example, TRANSFERS.

For each monetary level transfer that you might want to protect, define a
record in the TRANSFERS class.

For example, you might define records named Upto.$1K, Upto.$1M,
Upto.$10M, and Over.$10M.

Define any other resources that you need to control transfers as members of
the TRANSFERS class.

To give different users permission to perform different maximum transfers,
grant or deny them access to the various records in the TRANSFERS class.

In addition, to handle programmatic transfers, insert in the bank's
money-transfer program a call to the CA Access Control API, so that it checks
the user's permission before it allows a transfer to proceed.

50 Endpoint Administration Guide for UNIX

Chapter 5: Managing Authorization

This section contains the following topics:

Access Authorities (see page 51)

Setting Access Authority - Examples (see page 51)

Access Control Lists (see page 52)

How Access Authority to a Resource Is Determined (see page 54)
Interaction Between User and Group Access Authorities (see page 55)
Security Levels, Categories, and Labels (see page 56)

Access Authorities

The main purpose of CA Access Control is to assign and enforce access
authorities, also known as access rights.

An access authority always has the following components:

m The resource that the access applies to, for example, a file, host, or terminal
m The type of access, for example read, write, delete, log in, run

m The accessor, which is either a user or a group

A user has the authority to access a resource in a certain way because one or
more of the following are true:

m The user has the access authority, as granted by the resource ACL
m The user is a member of a group that has access authority.

m The user is running a program that has the access authority. For example the
user has the authority to run a program in the SPECIALPGM class, or to run
a command in the SUDO class.

Note: For more information about access authority by class, see the selang
Reference Guide.

Setting Access Authority - Examples

Example: Give an internal User Read Access

The following selang command adds the internal user internal_user to the ACL of
terminal tty30, to give read access to the terminal:

authorize TERMINAL tty30 access(READ) uid(internal_user)

Chapter 5: Managing Authorization 51

Access Conftrol Lists

Example: Give an Enterprise User Read Access

The following selang command adds the enterprise user Terry to the ACL of
terminal tty30, to give read access to the terminal:

authorize TERMINAL tty30 access(READ) xuid(Terry)

Example: Change an Access Authority of an Enterprise User to a
Resource

The following selang command sets Terry's access to terminal tty30 to none, and
so denies Terry access:

authorize TERMINAL tty30 access(NONE) xuid(Terry)

Example: Remove the Access Authority of an Enterprise User from a
Resource

The following selang command removes Terry from the ACL in the terminal
tty30:

authorize- TERMINAL tty30 xuid(Terry) access-
Terry now has the default access to the terminal.
Example: Give an Enterprise User Sub-administrator Access

The following selang commands set up the enterprise user Terry as a
sub-administrator with the authority to manage users and files:

authorize ADMIN USER xuid(Terry)
authorize ADMIN FILE xuid(Terry)

Access Control Lists

The access authorities to a resource are specified in an access control list. Every
resource record has at least two access control lists:

ACL

Specifies the accessors that are granted access to the resource, together
with the type of access that they are granted.

NACL
Specifies the accessors that are denied authorization to the resource,

together with the type of access that they are denied.

The access authority can also depend on the circumstances around the access,
such as whether the user is logged in locally or not.

52 Endpoint Administration Guide for UNIX

Access Control Lists

Conditional Access Control Lists

Conditional Access Control Lists (CACLs) provide an extension to ACLs. When an
accessor attempts to access a resource, if the resource's ACL and NACL do not
define an access authority for the user, CA Access Control examines the
conditional access control lists.

The conditional access control lists specify access to resource where the access is
by a particular method, for example by using a specified program.

For example you can use a conditional access control list to define a program
pathing rule.

CA Access Control allows the following conditional access control lists:

® Program Access Control Lists (PACLs)

m TCP class access control lists

m CALENDAR class access control lists

To define an entry in a conditional access control list entry, you can use the via
option of the selang authorize command.

In common with other access control lists, each entry in a conditional access
control list specifies the accessors that are granted access to the resource,
together with the type of access that they are granted. In addition, an entry in a
conditional access control list specifies the condition under which the authority is
assigned. For a PACL, the condition is the name of a program which the accessor
needs to run to have the access.

Example: Using a PACL
To allow the enterprise user sysadm1 to become superuser only by running the

program secured_su, you can specify the corresponding conditional access rule
using the following selang command:

authorize SURROGATE user.root xuid(sysadm1) via(pgm(secured_su))

defaccess—The Default Access Field

The record for a resource can include a default access field, defaccess. The value
of the defaccess field specifies the access authority that is allowed to accessors
who are not covered by any of the resource access control lists.

Chapter 5: Managing Authorization 53

How Access Authority to a Resource Is Determined

How Access Authority to a Resource Is Determined

When an accessor attempts to access a resource, CA Access Control checks the
access authority by running through one or more checks in a pre-determined
order, until it gets a result. If any check produces an access result (deny or allow
access), CA Access Control does not check any further, but instead returns the
result.

The order in which it runs through these checks is important. For each resource,
CA Access Control checks the access records in the following order by default:
The resource's time based restrictions

The resource's ownership (owners are allowed access)

B1 checks

The resource's NACL

The resource's ACL

The resource's PACL

No ok w N

The resource's defaccess field

The order of the last two checks is determined by the setting of the accpacl
option. You can disable the use of resource PACL by using the selang command
setoptions setpacl-.

One access control list can contain more than one entry that affects a user. For
example, it can contain an entry that mentions a user explicitly, and also entries
for each of the groups to which the user belongs. CA Access Control checks all the
possible entries at each level before it goes to the next level. For more
information about how it resolves conflicting rules at each level, see Interaction
Between User and Group Access Authorities (see page 55).

Example: The Resultant Permission on a File

For the following table, assume that an accessor named userl attempts to read
the resource filel.

In the following table CA Access Control is following the default setting of the
accpacl option to use the PACL.

Entry in NACL Entryin Entry in Entry in Resulting

for userl ACL for PACL for defaccess Permission
userl userl

Read (Any) (Any) (Any) Read denied

(Not defined) None (Any) (Any) Read denied

54 Endpoint Administration Guide for UNIX

Interaction Between User and Group Access Authorities

Entry in NACL Entryin Entry in Entry in Resulting
for userl ACL for PACL for defaccess Permission
userl userl
(Not defined) Read (Any) (Any) Read granted
(Not defined) (Not via pgm (Any) Read allowed
defined) securereade through the
r securereader
program
(Not defined) (Not (Not Read Read granted
defined) defined)

Where an entry is shown as (Not defined), this means that no entry for userl
exists in that access control list.

Where an entry is shown as (Any), this means that the entry in that access
control list does not matter, because CA Access Control does not check it.

The order that CA Access Control checks is from left to right. Notice that for all
rows, the cells to the right of a cell with a defined access have the value (any).
Conversely all the cells to the left of a cell that contains a defined access have the
value (not defined).

Interaction Between User and Group Access Authorities

You can explicitly grant or deny access authorities to a user, and also to groups
to which the user belongs. Sometimes these can conflict. The following example
shows what results if conflicting access authorities are assigned to the same
resource when a user is a member of two groups (Group 1 and Group 2).

It assumes that the accumulative group rights (see page 56) option is set (the
default setting).

Access Authority Access Access Resulting
for User Authority for Authority for Access

Group 1 Group 2 Authority
Access denied (Any) (Any) Access denied
Access granted (Any) (Any) Access granted
(Not defined) Access granted (Not defined) Access granted
(Not defined) (Not defined) Access granted Access granted
(Not defined) Access granted Access granted Access granted

(Not defined)

Access denied

(Any)

Access denied

Chapter 5: Managing Authorization 55

Security Levels, Categories, and Labels

Access Authority Access Access Resulting

for User Authority for Authority for Access
Group 1 Group 2 Authority

(Not defined) (Any) Access denied Access denied

Where an entry is shown as (Not defined), this means that no entry for the user
or group is defined.

Where an entry is shown as (Any), this means that the access authority does not
matter, because CA Access Control does not check it.

Accumulative Group Rights (ACCGRR)

The accumulative group rights option (ACCGRR) affects how CA Access Control
checks a resource's ACL. If ACCGRR is enabled, CA Access Control checks the
ACL for the authorities granted from all the groups to which the user belongs. If
ACCGRR is disabled, CA Access Control checks the ACL to see if any of the
applicable entries contain the value none. If so, access is denied. Otherwise CA
Access Control ignores all group entries except the first applicable one in the
access control list. By default the option is enabled.

To enable the ACCGRR option, you can use the following selang command:

setoptions accgrr

To disable the ACCGRR option, you can use the following selang command:

setoptions accgrr-

Security Levels, Categories, and Labels

Security levels and security categories provide additional ways to restrict access
to a resource, complementary to the use of access control lists.

Security labels are a means to bundle security levels and categories together, to
manage them more easily.

56 Endpoint Administration Guide for UNIX

Security Levels, Categories, and Labels

Security Levels

A security level is an integer between 0 and 255 that you can assign to accessors
and resources. An accessor cannot access a resource if the accessor has a
security level less than the security level assigned to the resource, even if the
user is granted access authority in the resource's access control list. If a resource
has a zero security level, security level checking is not checked for that resource.

An accessor with a security level of zero cannot access any resource that has a
non-zero security level.

Security Categories

Security Labels

A security category is the name of record in the CATEGORY class. You can assign
a security category to accessors and to resources. An accessor can access a
resource only if the accessor is assigned to all of the security categories assigned
to the resource.

A security label is the name of a record in the SECLABEL class. A security label
bundles together a security level and a set of security categories. Assigning a
security label to an accessor or a resource gives the accessor or resource the
combined security level and security categories associated with the security
label. A security label overrides any specific security level and category
assignments in an accessor or resource.

Example: Use of a Security Label High_Security

Assume High_Security is a security label that contains a security level 255 and
the security categories MANAGEMENT and CONFIDENTIAL.

if you assign a user userl to the security label High_Security, userl has a
security level of 255 and also has the security categories MANAGEMENT and
CONFIDENTIAL.

Chapter 5: Managing Authorization 57

Chapter é: Protecting Accounts

This section contains the following topics:

Why Protect Accounts? (see page 59)

Safe User Substitution (see page 59)

Setting Up the Surrogate DO Facility (see page 64)
Defining SUDO Records (see page 66)

Preventing Password Attacks (see page 69)
Checking User Inactivity (see page 71)

Why Protect Accounts?

User accounts are often the object of password attacks. Root account protection
involves monitoring substitute user (su) requests and using the Surrogate DO
(SUDO) facility, which solves the dilemma of superuser privileges. CA Access
Control provides a two-level password protection system: serevu (revoke user
daemon) and PAM (Pluggable Authentication Module). You can also protect
accounts by specifying automatic lockouts after a period of user inactivity.

Safe User Substitution

The UNIX su command lets a user switch to another user using the target user's
password. A user who wants to switch a user ID must memorize the target user's
password, write it down, or ask the target user to use a trivial password. This
violates several password policies. Also, the su command does not record who
invoked the command so a user pretending to be the owner of an account is
indistinguishable from the actual owner.

CA Access Control includes the sesu utility, which is an enhanced version of the
UNIX su command. You can configure sesu to prompt the user for their password
as a means of authentication, rather than prompting for the target user's
password. The authorization process is based on the access rules defined in the
SURROGATE class and, optionally, on the password of the user executing the
command.

Unlike permission to su, permission to sesu does not depend on knowing the
target user's password. Instead, it depends on permissions specified in the
database; users remain accountable for their actions because their login
identities are remembered.

Chapter 6: Protecting Accounts 59

Safe User Substitution

If a user is a surrogate to one of the users in the _surrogate group, CA Access
Control sends a full trace of the user's actions as the new user to the audit trail.

To protect against inadvertent use, sesu is marked in the file system so that no
one can run it. The security administrator must mark the program as executable
and setuid to root before you can use it.

Important! Before you use the sesu utility, define all users to the CA Access
Control database and set sesu prerequisites. This prevents you from opening up
the entire system to users who are not defined to CA Access Control.

Set User ID Substitution Rules

To prevent or let users substitute other users you need to set user ID substitution
rules. These rules are governed through SURROGATE class resources. To define
any user substitution rules you need to create SURROGATE records.

To set user ID substitution rules

1. In CA Access Control Endpoint Management click the Users tab, then click the
Authorization and Delegation subtab.

The Authorization and Delegation menu options appear on the left.
2. Click Users ID Substitution.

The Users ID Substitution page appears.
3. Click Create User ID Substitution.

The Create User ID Substitution page appears.
4. Complete the fields in the tabbed pages, then click Save.

Note: For more information on SURROGATE class properties, see the selang
Reference Guide.

How to Set Up sesu for User Substitution

By default, the sesu utility is marked in the file system so that no one can run it.
Before you make sesu available to your users, you must set database rules to
ensure it is used safely. You then need to lock the system's su utility so that users
are forced to use the CA Access Control sesu utility instead.

60 Endpoint Administration Guide for UNIX

Safe User Substitution

To set up sesu, do the following:

1.
2.

3.

Set basic user substitution rules (see page 61).

Replace the system's su utility with the CA Access Control sesu utility (see

page 61).

Prevent users from running the system's su utility (see page 64).

Note: After you complete this setup, when CA Access Control is running the
system's su utility will not execute and users will be forced to use the secured
sesu utility. When CA Access Control is not running, the system's su utility will
work.

Set Basic User Substitution Rules

Before you start using the sesu utility, you should set up some common user
substitution rules in the database. These rules prevent unknown users
undesirably substituting privileged user accounts, but permit specific users and
processes to perform necessary user substitution activities.

To set basic user substitution rules

1.

Create a surrogate resource for the root user (USER.root) with the following
attributes:

m nobody as owner
m Default access none
m All administrators should have full control

This prevents all users from substituting root, unless explicitly authorized. All
administrators are explicitly authorized to substitute root.

Note: You can authorize individual administrators separately or authorize all
administrators using the administrator's group.

Create a surrogate resource for root's group (GROUP.other) with the
following attributes:

m nobody as owner
m default access of none
m All administrators should have full control

This prevents all users from substituting root's group, unless explicitly
authorized. All administrators are explicitly authorized to substitute root's
group.

Note: On most UNIX systems root's group is either other or sys.

Chapter 6: Protecting Accounts 61

Safe User Substitution

3. Change the user substitution rules for USER._default as follows:
m nobody as owner
m Default access none
m Authorize root to substitute to any undefined user
m Authorize the administrators' group to substitute to any undefined user

This prevents all users from substituting any group, unless explicitly
authorized, and authorizes root and root's group to substitute any user,
unless explicitly denied.

Note: You need to specifically authorize root to permit programs such as
dtlogin to switch session ownership from root, the default X window owner
(uid=0), to anyone else. If you do not do this, login attempts will fail because
CA Access Control is blocking any user substitution activity that has not been
explicitly authorized.

4. Change the group substitution rules for GROUP._default as follows:
m nobody as owner
m Default access none
m Authorize root to substitute any undefined groups
m Authorize the administrators' group to substitute to any undefined group

This prevent all users from substituting any group, unless explicitly
authorized, and authorizes root and root's group to substitute any group,
unless explicitly denied.

Example: Set Basic User Substitution Rules in selang

Use the following selang commands to set basic user substitution rules in your
environment:

nr surrogate USER.root defacc(n) own(nobody)

auth surrogate USER.root gid(sys_admin_GID) acc(a)

nr surrogate GROUP.other defacc(n) own(nobody)

auth surrogate GROUP.other gid(sys_admin_GID) acc(a)

cr surrogate USER._default defacc(n) own(nobody)

cr surrogate GROUP._default defacc(n) own(nobody)

auth surrogate USER._default uid(root) acc(a)

auth surrogate GROUP._default uid(root) acc(a)

auth surrogate USER._default gid(sys_admin_GID) acc(a)
auth surrogate GROUP._default gid(sys_admin_GID) acc(a)

62 Endpoint Administration Guide for UNIX

Safe User Substitution

Replace the System's su Utility with the CA Access Control sesu Utility

By default, the sesu utility is marked in the file system so that no one can run it.
To let users substitute other users by using the sesu utility, you must enable sesu
and replace the system su with this utility.

To replace the system's su utility with the CA Access Control sesu utility

Note: You need to be root or another authorized user to perform the following
steps.

1.

Permit users to run the sesu utility using the following command:

chmod +s /opt/CA/AccessControlbin/sesu

Find out the location of the system's su utility using the following command:
which su

Rename the system's su utility using the following command:

mv su_dir/su su_dir/su.ORIG

where su_dir is the directory where su resides.

Link the sesu utility to the su command:

In-s Jopt/CA/AccessControl/bin/sesu su_dir/su

This lets users continue to use the su command, although it now runs the
sesu utility.

Stop CA Access Control using the following command:

Secons -s

Modify CA Access Control configuration settings using the following
commands:

seini -s sesu.SystemSu su_dir/su.ORIG
seini -s sesu.UselnvokerPassword yes

The token SystemSu is set so that sesu can call the original system su utility
if CA Access Control is not running.

The token UselnvokerPassword is set to tell CA Access Control to prompt the
user for their original password instead of root's password or another user's
password. The user needs to re-authenticate before the user substitution is
permitted.

Reload CA Access Control using the following command:
seload

Chapter 6: Protecting Accounts 63

Setting Up the Surrogate DO Facility

Prevent Users from Running the System's su Utility

Although the sesu utility is configured, anyone can run su.ORIG (the renamed
system su utility), as before, with root's or a user's password. To prevent this,
use the PROGRAM class to explicitly prevent su.ORIG execution when CA Access
Control is running.

Note: If you used seuidpgm during CA Access Control installation and
configuration, you do not need to follow this procedure. su will not run as it has
been modified (renamed to su.ORIG).

To prevent users from running the system's su utility

1. In selang, set CA Access Control to monitor the renamed su utility, using the
following command:

nr program su_dir/su.ORIG defacc(x) own(nobody)

2. Logged in as root, change file access and modification time, using the
following command:

touch su_dir/su.ORIG

CA Access Control is watching su.ORIG and, because the file has been
touched, will prevent it from being executed.

Setting Up the Surrogate DO Facility

Operators, production personnel, and end users often need to perform tasks that
only the superuser can perform. These tasks include the following:

® Mounting a CD-ROM

m Using backup scripts

m Setting up a printer

The traditional solution is to supply all these users with the superuser's
password, which compromises the security of the site. The secure

alternative-keeping the password secret-results in the system administrator
being overloaded with legitimate requests from users to perform routine tasks.

The Surrogate DO (sesudo) utility solves this dilemma. It allows users to perform
actions that are defined in the SUDO class, where each record contains a script,
specifies which users and groups can run the script, and lends them the
necessary permissions for the purpose.

For example, to define a SUDO resource that mounts a CD-ROM as if the user
were root, enter the following command:

newres SUDO MountCd data('mount /usr/dev/cdrom /cdr') targuid(root)

64 Endpoint Administration Guide for UNIX

Setting Up the Surrogate DO Facility

This newres command defines MountCd as a protected action that some users
may receive root authority to perform. This example uses the targuid(root)
parameter to show that root is the ID of the target user-the user whose
permissions are borrowed. In practice, the parameter would be unnecessary for
this example because root is the default target ID for a SUDO record

Important! In the data property, use a full absolute path name. A relative path
name could accidentally execute a Trojan horse program planted in an
unprotected directory.

In addition, users can be authorized to perform the MountCd action by using the
authorize command. For example, to allow the user operatorl to mount the
CD-ROM, enter the following command:

authorize SUDO MountCd uid(operatorl)

You can also explicitly prevent a user from performing the protected action by
using the authorize command. For example, to prevent the user operator2 from
mounting the CD-ROM, enter the command:

authorize SUDO MountCd uid(operator2) access(None)

Executing the sesudo utility performs the protected action. For example, the user
operatorl would mount the CD-ROM using the following command:

sesudo MountCd

The sesudo utility first checks whether the user is authorized to perform the
SUDO action and then, provided the user is authorized to the resource, executes
the command script defined in the resource. In the case of our example, sesudo
checks whether operatorl is authorized to perform the MountCd action and then
invokes the command mount /usr/dev/cdrom /cdr.

If you would like sesudo to request the user's password before executing, define
or modify the SUDO record with a command that includes the PASSWORD
parameter. If you do not use that parameter, the user's ability to execute the
command is based solely on the access rules for the SUDO object.

Note: For more information about the sesudo utility and managing SUDO
records (editres command), see the Reference Guide.

Chapter 6: Protecting Accounts 65

Defining SUDO Records

Defining SUDO Records

A record in the SUDO class stores a command script so that users can run the
script with borrowed permissions. The ability to borrow permissions is tightly
controlled by the SUDO record, as well as by the sesudo command that executes

the scripts.

In a SUDO record, the comment property is used for a special purpose, and often

it is known by its alternate name: the data property.

The data property's value is the command script, with the optional addition of
one or more script parameter values that are to be prohibited or permitted. The
entire data property value must be enclosed in single quotes, and executables
should be referenced by their complete path names to prevent Trojan horses

from taking their place.

This is the format for the data property:

data('cmd];[prohibited-values][;permitted-values]]')

Because the lists of prohibited and permitted values are optional, a simple data

property value could be the following:

newres SUDO MountCd data('mount /dev/cdrom /cdr’)

The simple value in the command means that the command sesudo MountCd
executes the script mount /dev/cdrom /cdr. No particular script parameter

values are prohibited; all are permitted.

Wildcards and powerful variables give you flexibility in specifying prohibited and
permitted parameters. The wildcards you can use are the standard UNIX

wildcards. The variables are these:

Variable Description

$A Alphabetic value

$G Existing CA Access Control group name
$H Home path pattern of the user

$N Numeric value

$0 Executor's user name

$U Existing CA Access Control user name
$e SUDO commands with no parameters
$f Existing file name

$g Existing UNIX group name

66 Endpoint Administration Guide for UNIX

Defining SUDO Records

Variable Description

$h Existing host name

$r Existing UNIX file name with UNIX read permission
$u Existing UNIX user name

$w Existing UNIX file name with UNIX write permission
$x Existing UNIX file name with UNIX exec permission

If you append a list of prohibited parameter values to the script:

Separate the script from the prohibited parameter values with a semicolon,
but keep them all inside the single quotes. For example, if you want to
prevent the user from using -9 but you permit the user to use all other
parameters, enter the following command:

newres SUDO scriptname data('cmd;-9")
where cmd represents your script.

Alternatively, if you do not allow any parameter values, but rather want all
parameters defaulted, define the SUDO record as follows:

newres SUDO scriptname data(cmd;*')

If a script parameter has more than one prohibited value, use the space
character as a separator. For example, if you want to prevent the user from
using -9 and -HUP but you permit the user to use all other parameters, enter
the following command:

newres SUDO scriptname data('cmd;-9 -HUP")

If more than one script parameter has prohibited values, use the pipe
character (|) as a separator between sets of prohibited values. For example,
if you want to prevent the user from using -9 and -HUP for the script's first
parameter and from using any existing UNIX user name for the second
parameter (see the previous list of variables), enter the following command:

newres SUDO scriptname data('cmd;-9 -HUP | $u’)

If the script has more parameters than you list, then your last set of
prohibited parameters applies to all the remaining parameters.

Chapter 6: Protecting Accounts 67

Defining SUDO Records

If you append a list of permitted parameter values to the script:

m The sesudo utility enforces two checks: Not only must the parameter values
not match any of the corresponding prohibited values; they must also match
at least one of the corresponding permitted values.

m Separate the list of permitted values from the list of prohibited values with a
semicolon, but keep them all inside the single quotes. Even if you have no list
of prohibited values, you still need the semicolon; otherwise what you intend
to permit is prohibited. For example, if you want to allow only the value
NAME as a parameter value for the script, enter the following command:

newres SUDO scriptname data(cmd;;NAME')
m Just as in the other list:

- If a script parameter has more than one permitted value, use the space
character as a separator.

- If more than one script parameter has permitted values, use the pipe
character (|) as a separator between sets of permitted values.

For example, if you have two parameters, and the first must be numeric but
must not be a UNIX user name, and the second must be alphabetic but must
not be a UNIX group name, enter the following command:

newres SUDO scriptname data(cmd; $u | $g ; $N | $A)

If the script has more parameters than you list, then your last set of
permitted parameters applies to all the remaining parameters.

Thus, the overall format for the data property is this: first the script; then the
prohibited values, parameter by parameter; then the permitted values,
parameter by parameter:

data('cmd;
param1_prohibl param1_prohib2 ... param1_prohibN |\
param?2_prohibl param2_prohib2 ... param2_prohibN |\

paramN_prohibl paramN_prohib2 ... paramN_prohibN ; \
paraml_pemitl paraml_permit2 ... param1_permitN |\

param?2_permitl param2_permit2 ... param2_permitN |

paramN_permitl paramN_permit2 ... paramN_permitN’)

68 Endpoint Administration Guide for UNIX

Preventing Password Attacks

Preventing Password Attacks

serevu

pam_seos

The most common type of unauthorized access is that of hackers who guess
passwords. CA Access Control provides two tools that detect and protect against
password attacks: serevu and pam_seos.

Another method of protecting against password attacks is controlling passwords
used in your environment by setting password policy rules.

The serevu daemon locks the accounts of users who performed more than a
specified number of login attempts. This prevents potential password attacks by
rejecting further attempts to enter the account; it also prevents “dictionary
attacks”.

Normally, the danger in using the user lockout utility is that it opens the system
to denial of service denial attacks. One common type of denial of service attack
is an attempt to break into the system administrator's account. After a few
attempts, the system administrator account is revoked and the system
administrator can no longer log in. If similar attacks are performed on all critical
user accounts, the system may be rendered unusable, with no way of recovering.
To prevent this, the serevu daemon provides the following two modes of
operation:

m The account is revoked for a specified period of time, after which it is
automatically restored.

m The account is permanently revoked.
serevu never revokes root, so the system is never locked out.
Note: For more information about the serevu daemon, see the Reference Guide.

Note: Take special care regarding the root user's password to prevent successful
dictionary attacks on root.

pam_seos is a Pluggable Authentication Module (PAM) that CA Access Control
uses for advanced account management functions. CA Access Control calls
pam_seos during the login procedure of any login program. The module is a
shared object that can be dynamically loaded to provide the necessary
functionality upon demand.

Chapter 6: Protecting Accounts 69

Preventing Password Attacks

You can configure pam_seos to perform three actions:
m Detect login failures

The Account Management Component detects any failed login attempt and
logs it to both the audit file and a special failed logins file. This module
detects UNIX failures, not cases in which CA Access Control denies access.

CA Access Control writes the failed login attempts to a special file. The serevu
utility reads this file and uses the information to determine if and when user
access should be revoked.

m Provides debug mode

When CA Access Control denies a login, it usually does not show the reason
for denial during the login session. If the pam_seos module's debug mode is
set, CA Access Control gives a short description of the reason for login denial.
For example, “grace logins” means that the user has no remaining logins.

m Checks for expired passwords and grace logins

The Password Management Component invokes the segrace utility, which
checks for a user's password expiration and the number of grace logins. If a
user's password expires, and the user has no grace logins left, segrace
invokes the sepass utility to allow the user to change the password.

Note: CA Access Control invokes segrace only when a password change is
needed.

The installation program adds the relevant lines to the pam.conf configuration
file, and stores the old configuration file as /etc/pam.conf.bak.

Configuration of the pam_seos modules is performed through the seos.ini file.
Set the following tokens, located in the [pam_seos] section, according to the
required functionality:

To use the Password Expiration and Grace Logins check, set the following token
in the seos.ini file:

call_segrace = Yes
To use Login Debug Mode, set the following token in the seos.ini file:

debug_mode_for_user = Yes

To make serevu use pam_seos login failure detection, set the following token in
the seos.ini file:

serevu_use_pam_seos = Yes

70 Endpoint Administration Guide for UNIX

Checking User Inactivity

Restrictions and Limitations

The protection techniques described in this section have the following restrictions
and limitations:

m On Sun Solaris, after five failed login attempts, serevu is notified.

m The pam_seos module is only implemented in the versions of Sun Solaris,
HP-UX, and Linux that support PAM.

Checking User Inactivity

The inactivity feature protects the system from unauthorized access through
accounts whose owners are away or no longer employed by the organization. An
inactive day is a day in which the user does not log in. You can specify the
number of inactive days that must pass before the user account is suspended and
cannot log in. Once an account is suspended, you must manually reactivate it.

Note: Password changes count as activities, in terms of inactivity checks. If a
user's password changes, that user cannot become suspended due to inactivity.

You can set the number of inactive days with the inactive property of a USER
class record or a GROUP class record. The latter affects only users that have that
group as a profile group. You can also set inactivity for all users systemwide with
the INACT property of the SEOS class.

In selang, use the following command to specify inactivity globally:

setoptions inactive (numdays)

To set the number of days for a group (which overrides the systemwide inactive
setting for that group), use the following command:

editgrp groupName inactive (numdays)

To set the number of days for a user (which overrides group and systemwide
settings for that user), use the following command:

editusr userName inactive (numdays)

To reactivate a suspended user account, use the following command:

editusr userName resume

To reactivate a suspended profile group, use the following command:

editgrp userName resume

Chapter 6: Protecting Accounts 71

Checking User Inactivity

To disable inactive login checking at the systemwide level, use the following
command:

setoptions inactive-

To disable inactive login checking for a group, use the following command:

editgrp groupName inactive-

To disable inactive login checking for a user, use the following command:

editusr userName inactive-

72 Endpoint Administration Guide for UNIX

Chapter 7: Managing User Passwords

This section contains the following topics:

Password Control (see page 73)

Defining Password Policies (see page 73)

Password Expiration and Grace Logins (see page 75)

Password Control

Passwords are the most popular device for authentication, but password
protection has well-known problems:

Trivial passwords are easy to guess.
Passwords that last for years and cyclic passwords are eventually broken.

Listeners can trap passwords that are sent in clear text over the network.

Defining Password Policies

The most important password rule is that users must not give out their
passwords explicitly or indirectly (by using trivial passwords). The only way to
achieve acceptable password security is by training and education. CA Access
Control cannot replace education, but it can enforce rules and policies that force
users to use passwords of a minimum quality. The rules that you can specify
include the following:

The new password cannot match previous passwords.

The new password cannot contain the user name.

The new password cannot contain the password that it is replacing.

The new password cannot be contained by the password that it is replacing.

The new password cannot match the password that it is replacing, regardless
of case sensitivity.

The new password must have at least the minimum number of alphanumeric
characters, special characters, digits, lowercase characters, and uppercase
characters.

The new password must not have more repetitive characters.

The new password cannot be one of the restricted words in the dictionary to
which the Dictionary token in the seos.ini file points.

Chapter 7: Managing User Passwords 73

Defining Password Policies

m Each password must have a maximum lifetime; that is, it must expire,
forcing the user to choose a new password after a certain interval.

m Each password must have a minimum lifetime. (By specifying a minimum
lifetime, you can prevent users from quickly and repeatedly changing
passwords. By quickly changing passwords, they could overflow the
password history list and then re-use a previous password.)

Important! Password rules only affect sepass and not native password tools.
Make sure you replace passwd with a link to sepass.

Configure Password Quality Checking

To configure password quality checking

1. In CA Access Control Endpoint Management click the Configuration tab.
The configuration menu options appear on the left.

2. Click Class Activation in the Miscellaneous section options.
The Class Activation page appears.

3. Select PASSWORD in the User Identity Control section, and click Save.
This activates password quality checking.

4. Click User Password Policy in the Policies section options.
The User Password Policy page appears.

5. Define the rules to be used for the password checks, and click Save.

The rules you define for password checks are now enforced when passwords
are changed.

6. (UNIX only) Update the new passwords by using the sepass utility.

Note: For more information about sepass utility, see the Reference Guide.
Example: Define Password Checking Rules
The following selang commands activate password quality checking and define
password rules that enforce a minimum of:
m Six alphanumeric characters

m Three lowercase characters

®m Two numeric characters

setoptions class+ (PASSWORD)
setoptions password(rules(alpha('6") lowercase("3") numeric('2")))

Note: For more information about the format of the setoptions command, see
the Reference Guide.

74 Endpoint Administration Guide for UNIX

Password Expiration and Grace Logins

Changing Passwords

CA Access Control includes the executable ACInstallDir/bin/sepass (where
ACInstallDir is the installation directory for CA Access Control, by default
/opt/CA/AccessControl), with which most users should change their passwords
(instead of with /bin/passwd).

m Only sepass ensures that the new password matches CA Access Control
password policies. And only sepass updates the database with the new
password and the date on which the password was changed. In addition,
sepass performs the same functions as /bin/passwd.

m The original /bin/passwd executable should not be used unless you choose to
discard the password quality checks performed by CA Access Control. In this
case, you can continue to use the original /bin/passwd, and CA Access
Control accepts the system's password without performing any quality
checks on passwords.

You can also change passwords using selang. Enter the following command to
assign a password to a user:

chusr userName password(string)

Note: If you change another user's password (as an administrator) and
password checking is enabled, the user must change the password at the next
login.

Password Expiration and Grace Logins

The interval parameter sets the maximum number of days a password can be
used. When the specified number of days passes, CA Access Control informs the
user that the current password has expired. The user can then renew the
password immediately, or continue using the old password until the number of
grace logins is reached. In the latter case, the user cannot access the system and
must contact the system administrator to select a new password.

Specify the Password Interval

At the systemwide level, you use the setoptions command to specify the interval
before the system prompts all users for a new password. If the segrace utility is
part of the user's login script or if you configure PAM to call segrace (if your native
operating system supports PAM), CA Access Control informs the users that the
current password has expired when the specified number of days is reached. The
users can then immediately renew the password, or continue using the old
password until the number of grace logins is reached. After reaching the number
of grace logins, the users are denied access to the system and must contact the
system administrator to select a new password.

Chapter 7: Managing User Passwords 75

Password Expiration and Grace Logins

To set or cancel the password interval at the systemwide level, use the following
command:

setoptions password({interval(NumDays)|interval-})

The value of NumDays must be zero or a positive integer. An interval of zero
disables password interval checking for users. Set the interval to zero if you do
not want passwords to expire. An interval of zero should only be used for users
with low security requirements.

The interval- parameter cancels the password interval setting. If the user has a
profile group with a value for this parameter, that value is used. Otherwise, the
default set by the setoptions command is used. Only use this parameter with the
chusr or editusr command.

Set Individual User or Group Password Intervals

You can also set the interval for specific users or profile groups. These settings
override the systemwide interval for those users or groups. When the specified
number of days is reached, CA Access Control informs the users that the current
password has expired. The users can then immediately renew the password, or
continue using the old password until the number of grace logins is reached.
After reaching the number of grace logins, the users are denied access to the
system and must contact the system administrator to select a new password.

To set or cancel the password interval for a user:

editusr {interval(NumDays) | interval-}

To set or cancel the password interval for a group:

editgrp password{(interval(NumDays)) | (interval-)}

The value of NumDays must be zero or a positive integer. An interval of zero
disables password interval checking. Set the interval to zero if you do not want a
password to expire. An interval of zero should only be used for users with low
security requirements.

The interval- parameter cancels the password interval setting. If it is canceled
and a value for interval is set in the user record, the value in the user record is
used. Otherwise, the default set by the setoptions command is used. Use this
parameter with the setoptions, chgrp, or editgrp commands only.

76 Endpoint Administration Guide for UNIX

Password Expiration and Grace Logins

Grace Logins

With password checking enabled, CA Access Control checks whether the user's
password has expired each time a user attempts to log in. After the password
expires, the user can be “graced” with the opportunity to log in a few more times,
after which the user can no longer log in.

The grace login option sets the maximum number of logins that are permitted
after password expiration before the user is suspended. The nhumber of grace
logins must be between 0 and 255. After the number of grace logins is reached,
the user is denied access to the system and must contact the system
administrator to select a new password. If grace is set to zero, the user cannot
log in. The default number of grace logins is five.

You can use this method to force a user to change their password. Reset the
user's password and give them one grace login whence they can change their
password.

Track Grace Logins

To allow the end user to keep track of grace logins after the expiration, insert a
call to the segrace utility in the user's .login, .profile, or .cshrc file. The segrace
utility then displays a message to the user stating the number of remaining grace
logins. You can also check whether a user's password has expired graphically
with the segracex utility.

Note: For more information about the segrace and segracex utilities, see the
Reference Guide.

To set the systemwide default value for the number of grace logins, enter the
following command:

setoptions password(rules(grace(nLogins)))

To set or cancel grace logins for a specific user, enter the following command:

chusr userName {grace(nLogins) | grace-}

To set or cancel grace logins for a profile group, enter the following command:

chgrp groupName {grace(nLogins) | grace-}

Chapter 7: Managing User Passwords 77

Password Expiration and Grace Logins

The value set by the chusr or chgrp command overrides the system value for the
users specified in that command.

Note: The grace property for a GROUP class and also the global grace login
setting set the number of grace logins for a user after the user's password
expires. However, the grace property in the USER class sets the password to
expire immediately; the grace logins are automatically set up (using the GROUP
record or the system default) after the user's password expires. You cannot set
password expirations for a group, only for users.

78 Endpoint Administration Guide for UNIX

Chapter 8: Protecting Files and Programs

This section contains the following topics:

Restricting Access to Files and Directories (see page 79)
Blocking Trojan Horses with the abspath Group (see page 88)
Synchronization with Native UNIX Security (see page 88)
Monitoring Sensitive Files (see page 90)

Protecting setuid and setgid Programs (see page 91)
Protecting Regular Programs (see page 94)

Kernel Modules Load and Unload Protection (see page 94)
Protecting Binary Files from the kill Command (see page 97)

Restricting Access to Files and Directories

CA Access Control leaves the UNIX system of permissions intact but adds a layer
of enhanced access control to it.

CA Access Control intercepts each of the following file access operations and
verifies that the user has authorization for the specific operation before returning
control to UNIX. The access type is in parentheses.

m File create (create)
m File open for read (read)

Note: If you want read privileges to control whether users can perform
operations that obtain information about the file (such as Is -1), set the
STAT_intercept configuration setting to 1. For more information, see the
Reference Guide.

m File open for write (write)

m File execute (execute)

m File delete (delete)

m File rename (delete, rename)

m Change permission bits (chmod)
m Change owner (chown)

m Change timestamp—for example, as a result of executing the touch
command (utime)

m Edit native ACL—using the acledit command—for systems that support ACLs
(sec)

m Change directory (chdir)

Chapter 8: Protecting Files and Programs 79

Restricting Access to Files and Directories

CA Access Control access checking differs from the native UNIX authorization in
the following ways:

CA Access Control bases its authorization checks on the original user ID of

the user who logged in, not on the effective user ID (euid). For example, if
userA invokes the su command to surrogate to another user, userA still only
has access to those files to which userA is permitted. Surrogating to another
user does not automatically give the original user access to the target user's
files as it does in UNIX.

CA Access Control does not give the superuser (root) automatic access to
every file on the system. The superuser is subject to authorization checking
like all other users of the system.

Authorization checking is based on the CA Access Control normal and
conditional access lists, day and time restrictions, security levels, security
categories, and security labels.

If you do not specifically authorize a user to access a file, CA Access Control
checks whether that user belongs to any group authorized to access the file.

Each file access is audited trough the normal CA Access Control audit
procedures.

When deleting a file, CA Access Control requires the user to have DELETE
access authority to the specified file, whereas UNIX requires the user to have
WRITE authority for the parent directory.

To rename a file, the user must have DELETE access authority to the source
file and RENAME access authority to the target file. UNIX also requires that
they user have WRITE access authority for the parent directory.

All users are given permanent READ access (as a minimum) to the files
/etc/passwd and/etc/group, regardless of the default setting of these files.
This prevents the possible hanging of the system.

The owner of a FILE object in the CA Access Control database always has full
access to the file protected by the object.

The chdir access type controls the chdir command specifically, and does not
execute, as UNIX does.

The following are the limits of the File Protection System:

With respect to users who are not members of the special _restricted group,
CA Access Control protects only those files and directories that:

- Are defined by their individual names in the database

- Match a name pattern (for example, /etc/*) that is defined in the
database

For users that belong to the group _restricted, all system files are protected
by CA Access Control. For files that are not defined in the database,
authorization is based on the _default record of the FILE class.

80 Endpoint Administration Guide for UNIX

Restricting Access to Files and Directories

m CA Access Control maintains a table of all file names and directory names
(including patterns using wildcards) that indicate resources that need
protection. The amount of memory available for this table is limited.
Normally, the maximum number of files and directories you can define by
individual names in the database is 4096, and the maximum number of name
patterns is 512.

m Some files receive protection even if no explicit access rules exist for them.
These include the CA Access Control database files, audit logs, and
configuration files.

Note: For more information, see the FILE class in the Reference Guide.

CA Access Control supports the following access types for files.

m ALL

= CHDIR

= CHMOD
= CHOWN
= CONTROL
m CREATE
m DELETE
s EXECUTE
= NONE

s READ

= RENAME
= SEC

= UPDATE
= UTIME

= WRITE

The File Protection System is useful for protecting selected sets of files that
contain sensitive data. For example, you can use CA Access Control to protect the
following files:

m /etc/passwd
m /etc/group
m /etc/hosts

m /etc/shadow

Chapter 8: Protecting Files and Programs 81

Restricting Access to Files and Directories

You should use CA Access Control to protect databases (access should be
granted only to the server daemon) and all other sensitive files at your site.

Some files that always need access control are governed by rules even without
you specifying them.

How File Protection Works

When the seosd daemon starts, it performs the UNIX stat command for each
discrete file object defined in the database. It then builds a table in memory that
contains an entry for each file object. In addition, for each discrete file, the table
contains the file's inode and device; with this information, CA Access Control can
also protect the hard links to the files because the protection is according to
device and inode. The database does not keep information about a file's inode
and device.

When creating a new file rule through CA Access Control:

m If the file exists in UNIX, CA Access Control first performs a stat command for
the file and then adds a new entry to the file table with the file's inode and
device information.

m If the file does not exist in UNIX, CA Access Control adds a new entry of the
file's name to the file table (without inode and device information). This entry
is the same as the entry for a generic file object. At the same time, the kernel
keeps an indication in its internal tables that this file must be checked during
creation for inode and device information. When the file is subsequently
created, the kernel intercepts its creation and informs seosd of the file's
inode and device information so that seosd can update the file's entry in the
file table.

When you delete a file, CA Access Control deletes its entry in the seosd file table,
but the entry remains in the CA Access Control database in case you create it
again.

82 Endpoint Administration Guide for UNIX

Restricting Access to Files and Directories

Protect Files

To define a protected file in selang, enter the following command:

newres FILE filename

For example, to register a file named/tmp/binary.bkup, enter the following
command:

newres FILE /tmp/binary.bkup

Note: When you define a file rule without specifying its access type, the default
access of NONE is assigned. In this case, the file's owner is the only one who can
access the file.

Most protected files should be protected from access by the superuser.
Otherwise, any user who knows the superuser's password gains automatic
access to the files. At the same time, you can prevent all other users except the
file's owner from accessing the file.

To protect several similarly named files, use a file name pattern that includes a
wildcard. The wildcards are * (which indicates zero or more characters) and ?
(which indicates any one character, other than /).

The pattern that you specify is matched against the file's full path name so that
the pattern /tmp/x* matches files named /tmp/x1, /tmp/xxx, and even
/tmp/xdir/a.

Patterns that CA Access Control does not let you specify are: /*, /tmp/*, and
/etc/*.

Important! Because file name patterns are such a powerful tool, you should not
experiment freely with them.

For example, the following command defines as protected every file in the /tmp
directory that has a name starting with a, and ending with b (this would include
a file like /tmp/axyz/axyzb):

newres FILE /tmp/a*b

Chapter 8: Protecting Files and Programs 83

Restricting Access to Files and Directories

Wildcards in FILE Resource Names

By using wildcards in a file resource name, you can create a file record that
corresponds to multiple files: any file with a name that matches the wildcard
pattern is protected by the access authorities associated with the record.

The wildcards you can use are:
= * for any number of any characters

m ? for any one character

If a physical resource name matches more than one resource record name, the
longest non-wildcard match is used for that resource.

CA Access Control does not accept the following patterns in names of FILE

resources:
] 3

m /%

® /tmp/*
m /etc/*

Example: Use of Wildcards in a FILE Resource

The FILE resource /usr/lpp/bin/* protects all files and sub-directories under
Jusr/lpp/bin (however deeply nested).

Restricting File Access

To restrict a file from access by the superuser in selang, use a longer version of
the newres command. For example, to prevent the file /tmp/binary.bkup from
being accessed by the superuser, as well as any other user except the user
myuser, you can use the following selang command:

newres FILE /tmp/binary.bkup owner(myuser) defaccess(N)

84 Endpoint Administration Guide for UNIX

Restricting Access to Files and Directories

This command does the following:
1. Defines /tmp/binary.bkup as a protected file.

2. Sets the user myuser as the owner of the file, granting myuser access to the
file.

3. Sets the default access of the file to NONE, preventing any other user from
accessing the file. To permit other users access to the file, you must explicitly
define access rules for that file.

Important! If you invoke the selang command under root authority and then
define FILE records without explicitly specifying another user as their owner, root
becomes the owner of those files. As the owner, root (or any user who logs in as
root) has complete and free access to the files.

Note: You can set the token use_unix_file_owner in the seos.ini file to yes. This
permits regular UNIX users to define access rules for the files they own.

Preventing File Access

Sometimes it is convenient to define a FILE record that has no owner. To define
a FILE record that does not have an owner in selang, use the special owner
“nobody.”

For example, to define the file /tmp/binary.bkup as a protected file and prevent
all users from accessing the file, enter the following selang command:

newres FILE /tmp/binary.bkup owner(nobody) defaccess(N)

This newres command ensures that even the user who defined the command,
whether root or otherwise, cannot access the file. After preventing all users from
accessing a file, you must usually grant one or more users access to that file
explicitly.

To explicitly permit a user access to a protected file, use the authorize command.
For example, to grant the user “userjo” update access to all files in the /tmp
directory beginning with Jo, enter the selang command:

authorize FILE /tmp/Jo* uid(userJo) acc(Update)

Note: CA Access Control protects only those files defined in its database.

Chapter 8: Protecting Files and Programs 85

Restricting Access to Files and Directories

Restrict Users from Getting File Information

If you do not provide users with read access permissions to a file or directory, by
default, they can still use the stat function to get information about the file. For
example, a user without read access permissions to file /tmp/abc can perform
the following operation:

Is -I tmplabc

To prevent users who do not have read access permissions from getting file
information, set the STAT_intercept configuration setting to 1.

Note: For more information about the STAT_intercept configuration setting, see
the Reference Guide.

Viewing Default Access Authority

To view the default access of users in the _restricted group (when no matching
records are found), use the selang showres command with the _default record of
the class.

For example, to view the default access that users in the _restricted group have
for files that are not in the CA Access Control database, use the showres selang
command to display the _default resource of FILE class:

showres FILE _default

Note: All other users have the access defined by specific CA Access Control
database rules.

Using Conditional Access Control Lists

You can make access to a file conditional on the program used to access the file.
To make file access conditional in this way is called program pathing.

Note: If the program specified to access the file is a shell script, the shell script
must have #!/bin/sh as its first line.

The following code is an example, allowing any process to update the file
/etc/passwd under the control of the password change program /bin/passwd. All
access attempts to the /etc/passwd file that do not originate from /bin/passwd
are blocked.

newres FILE /etc/passwd owner(nobody) defaccess(R)
authorize FILE /etc/passwd gid(users) access(U) via(pgm(/bin/passwd))

86 Endpoint Administration Guide for UNIX

Restricting Access to Files and Directories

The newres command defines the file /etc/passwd to CA Access Control and
allows any user, including the file's owner, to read the file. The authorize
command allows all users to access the file when the access is made under the
program /bin/passwd. Once the password file is protected in this manner, any
Trojan horse that inserts entries into the /etc/passwd file or any update to the
password file by a user of the group “users” is blocked if the user is not using the
/bin/passwd program.

Conditional access lists are also useful for controlling access to the files of a
database management system (DBMS). Usually, you should permit users to
access such files only through the programs and utilities supplied by the
database vendor. Consider the following commands:

authorize FILE /usr/dbms/xyz uid(*) via(pgm(/usr/dbms/bin/jpgm1)) access(U)
authorize FILE /usr/dbms/xyz uid(*) via(pgm(/usr/dbms/bin/pgm2)) access(U)

This set of authorize commands allows all CA Access Control users to access the
file xyz of the DBMS system provided the access is made by either program pgm1
or program pgm2, which belong to the DBMS binaries directory. Note the use of
the asterisk in the user operand. The asterisk specifies all users who are defined
to CA Access Control. The use of the asterisk is similar in concept to the default
access, except that default access also applies to users who are not defined to CA
Access Control. Note that you can use the _undefined group for users not defined
in the CA Access Control database.

You can also use the Unicenter TNG calendar ACL property to permit or deny
access to specific users and groups for the current resource according to the
Unicenter TNG calendar status. There are two types of ACL properties for
Unicenter TNG calendars: regular and restrictive.

For example, the following command adds a user named george to a conditional
access control list for a regular calendar named basecalendar:

authfile filel uid(george) calendar(basecalendar) access(rw)

And the following command removes a user named george from the Unicenter
TNG calendar:

auth-file file2 uid(george) calendar(basecalendar)
Using Negative Access Control Lists

You can deny a user or group specific access types using a Negative Access
Control List (NACL).

With the CA Access Control language (selang), use the following command to
deny access:

auth className resourceName [gid(group-name...)] \
[uid({user-name...|*})] [deniedaccess(accessvalue)]

Chapter 8: Protecting Files and Programs 87

Blocking Trojan Horses with the _abspath Group

Blocking Trojan Horses with the _abspath Group

Any relative path names in the $PATH variable, but particularly the dot (.) path
name meaning “current directory,” is a security weakness. Consider the following
scenario:

m At the top of the PATH variable for root is the current (.) directory.

m A malicious user creates a destructive program-a Trojan horse-and stores it
as /tmp/Is.

m In time, as the malicious user expects, root issues the Is command in the
/tmp directory. Instead of running the usual Is command, root actually
runs-with full administrative privileges-the Trojan horse that had been
stored in the /tmp directory.

To eliminate this security weakness, CA Access Control provides a user group
named _abspath. All members of the _abspath group are forbidden to use
relative path names in invoking programs.

You can add a user to the _abspath group just as you add one to any other group.
Effective at the next login, the user is forbidden to use relative path names when
accessing programs.

Synchronization with Native UNIX Security

Although CA Access Control permissions are more complex than native UNIX
permissions, you can synchronize your native UNIX permissions to your CA
Access Control permissions. That is, you can make the permissions coincide.
However, the synchronization is subject to some limitations:

m Synchronization is not retroactive. Once it is in effect, it can govern all newly
issued CA Access Control authorization commands, but it does not govern
pre-existing access rules.

m Permissions that you grant in CA Access Control can be passed to UNIX, but
permissions granted in UNIX are not passed to CA Access Control.

m Because of limitations in its own system of permissions, UNIX may be unable
to adopt more than a simplified form of the CA Access Control permissions.
Even UNIX versions that feature access control lists (ACLs) may be unable to
reflect all the complexity of the CA Access Control ACLs.

UNIX platforms with ACLs that can be synchronized to CA Access Control are Sun
Solaris, HP-UX, and Tru64.

Without such ACLs, you can still synchronize the traditional UNIX rwx
permissions to the CA Access Control permissions, to the extent possible.

88 Endpoint Administration Guide for UNIX

Synchronization with Native UNIX Security

Synchronization is controlled by the combination of the authorize command's
UNIX option and the seos.ini file's SyncUnixFilePerms token:

By including the UNIX option, the authorize command calls for
implementation in UNIX as well as in CA Access Control. The command can
even grant UNIX permission where permission did not exist before.

(When the UNIX option is not used, selang commands have no effect on
UNIX security. Moreover, where UNIX retains a prohibition, a CA Access
Control permission is not effective. So the only way that selang can
overcome a UNIX prohibition is with the UNIX option of the authorize
command.)

In the authorize command, the UNIX option works only when the
SyncUnixFilePerms token is appropriately set in the [seos] section of the
seos.ini file. The token has several permitted values:

- no specifies not to synchronize ACL permissions. This is the default
value.

— warn specifies not to synchronize ACL permissions, but to issue a
warning if the CA Access Control and native UNIX permissions conflict.

- traditional specifies to adjust the rwx permissions for the group
according to the CA Access Control ACL (and permissions for individual
users are not copied to UNIX).

- acl specifies to adjust the UNIX ACL according to the CA Access Control
ACL.

- force specifies to adjust the UNIX world access attribute according to the
CA Access Control defaccess permissions.

Any change in the SyncUnixFilePerms token value takes effect only after you
restart the seosd daemon.

Example: Synchronization

The following example involves a file named /var/temp/newdata and a user
named fowler, and assumes that a record in the FILE class already represents the

file.

1.

Shut down the seosd daemon, so you can edit the seos.ini file:
secons -s

Logged in as a user with permission to edit the seos.ini file, edit the seos.ini
file to make the SyncUnixFilePerms line, in the [seos] section, look like this:

SyncUnixFilePerms = acl

Remember, acl means that the UNIX option adjusts the UNIX ACL according
to the CA Access Control ACL. The UNIX option will have this function as long
as the token remains set to acl.

Chapter 8: Protecting Files and Programs 89

Monitoring Sensitive Files

HP-UX Limitations

Restart the seosd daemon:

seosd

Invoke selang, then issue the following selang command:
authorize FILE Aarftmp/newdata uid(fowler) access(r w) unix

The command gives fowler Read and Write access to the new data file and,
by specifying the UNIX option, it grants the corresponding native UNIX
permissions.

The ACL of HP-UX is limited in how it can reflect the ACL of CA Access Control.

Sun Solaris Limitations

In HP-UX, the ACL assigns access per user and group combination. That is,
the assigned access applies to the specified user only when the user's
primary group is also specified.

CA Access Control, on the other hand, assigns access per user or per group,
but not per combination.

Accordingly, CA Access Control permissions are mapped to HP-UX
user/group combinations in which either the user or the group is set to the
equivalent of “*” or “any.”

HP-UX does not support ACLs on file-systems that are under control of the
volume manager (LVM). Thus, some important HP-UX machines are likely to
allow ACL synchronization only on the “root” file-system.

The ACL of HP-UX is limited to 16 entries. CA Access Control synchronization
uses the available entries as efficiently as possible, but 16 entries may not be
enough to reflect every CA Access Control ACL completely.

Under Sun Solaris, native UNIX ACLs are not implemented in the /tmp directory.

Monitoring Sensitive Files

The Watchdog can protect the binaries of your setuid/setgid programs, as well as
any other files you specify. The seoswd utility (the Watchdog daemon)
continually checks two issues:

Whether the seosd daemon is alive and responding. (If necessary, the
watchdog daemon restarts the seosd daemon.)

Whether a user has modified any trusted programs or files. (If so, seoswd
prevents these files from executing.)

90 Endpoint Administration Guide for UNIX

Protecting setuid and setgid Programs

When the seosd daemon forks, it automatically executes the seoswd program to
start the Watchdog.

Note: For more information about seoswd, see the Reference Guide.

The seos.ini file contains several tokens that control the scanning and time-out
values of the watchdog. It also contains the most up-to-date documentation on
these values.

Note: For a description of the seos.ini file, see the Reference Guide.

You can use the Watchdog to perform the same background checks as those
made for the setuid and setgid programs on ordinary files, including generating
audit records when these files are altered.

For example, consider a configuration where only the security administrator is
allowed to modify the file /etc/inittab. To make CA Access Control monitor the file
and generate an alert in any case of modification, use the following command in
selang:

newres SECFILE /etc/inittab

The file /etc/inittab is now constantly monitored for modifications.

Protecting setuid and setgid Programs

Set user ID (setuid) programs are among the most frequently used programs at
a UNIX site. A process that invokes a setuid program automatically acquires the
identity of the owner of the setuid program. If the owner of a setuid program is
root, then any regular user automatically becomes superuser by invoking the
setuid program. When the setuid program starts, the process can do anything a
superuser can do, so it is extremely important to make sure that setuid programs
do exactly what they are supposed to do and nothing else. Back doors or shells
within a setuid program grant the user access to everything on the system.

CA Access Control uses the PROGRAM class to protect setuid and setgid
programs. Upon installation, CA Access Control permits any program execution
by default. After defining trusted programs in the database, you can change the
behavior of CA Access Control so that execution of a setuid or setgid program is
prohibited unless the program is defined as a trusted program. For example, to
allow /bin/ps (the process status program) to run as a setgid program (as it is
supposed to), use the following selang command:

newres PROGRAM /bin/ps defaccess(EXEC)

Chapter 8: Protecting Files and Programs 91

Protecting setfuid and setgid Programs

CA Access Control registers the program /bin/ps as a trusted program. It then
calculates and stores its CRC, inode number, size, device number, owner, group,
permission bits, last modification time, and, optionally, other digital signatures in
a record in the PROGRAM class of the database.

The Watchdog periodically checks the program's CRC, size, inode, and the rest of
the characteristics. If any of these values have changed, the Watchdog
automatically asks seosd to remove the program from the trusted programs list
and deny access to it. This ensures that no one can misuse the program by
modifying or moving setuid programs. Note that the permission in the example
newres command allows all users, including those not defined in the database, to
run the /bin/ps command.

Untrusted setuid programs are possibly the most dangerous security loophole of
UNIX-based operating systems. By using trusted programs' access rules, the
security administrator can restrict the use of setuid to certain trusted programs
that were tested and checked to ensure their integrity. However, any user cannot
automatically start a trusted executable; the access rule must specify explicit
users and groups that are granted access to that setuid program. For example,
the following set of selang commands grants the execution of /bin/su only to the
System Department users (group sysdept):

newres PROGRAM /bin/su defaccess(NONE)
authorize PROGRAM /bin/su gid(sysdept) access (EXEC)

Use an asterisk (*) to specify all users who are defined in the database. For
example, to permit all users who are defined to CA Access Control to perform the
su command, enter the following command:

authorize PROGRAM /bin/su uid(*) access(EXEC)

This description is also true for setgid executables.

You can use the nr and er commands to register the setuid and setgid programs
in the PROGRAM class. Important non setuid and setgid programs can be
registered in the PROGRAM class similarly. Define a FILE rule for these programs
to prevent unauthorized users from upgrading them. If you want to allow the
program execution when it is untrusted (after upgrade, the program is executed
without being retrusted), set the blockrun property to no.

m If the blockrun property is set to yes, the program is not executed until it is
re-trusted and is not allowed to access any file that the relevant PACL would
allow. The PACL is effectively disabled until the program is re-trusted.

m If the blockrun property is set to no, the program is executed. However, the
program cannot access any resources the relevant PACL would allow.

To set the value of the blockrun property to yes, use the following editres/newres
command:

er program /bin/p blockrun

92 Endpoint Administration Guide for UNIX

Protecting setuid and setgid Programs

To set the value of the blockrun property to no, use the following editres/newres
command:

er program /bin/p blockrun-

By default, for all the programs registered in the PROGRAM class, the blockrun
property is set to yes. You can change this using the SetBlockRun token in the
seos.ini file. Refer to the seos.ini file description for details.

Define setuid/setgid Programs Automatically

CA Access Control provides a way to define all your setuid and setgid programs
automatically. Use the utility program /bin/seuidpgm to build the set of
commands to define all the setuid programs and their permissions.

For example, to scan the entire file system for setuid and setgid programs and
write the generated selang commands to the file /tmp/pgm_script, enter the
following selang command:

seuidpgm -gIn / -x /home > ftmp/pgm_script

You can edit and modify the output file generated by seuidpgm according to your
needs before submission.

Note: For more information about the seuidpgm utility, see the Reference Guide.
To learn how to give similar protection to programs that are neither setuid nor
setgid programs, see the SECFILE class in the Reference Guide.

Conditional Access

Another sophisticated permissions technique is the conditional access rule. For
example, suppose you have a very secure version of the su command called
securedSU that uses a fingerprint reader to verify the user's identity before
allowing the user to become a superuser.

One way to ensure that UserX can become superuser only under that program is
to set a conditional access rule as follows: (Before setting the rule, you must also
set defaccess(none) for USER.root.)

authorize SURROGATE USER:.root uid(UserX) via(pgm(securedSU))

Chapter 8: Protecting Files and Programs 93

Protecting Regular Programs

Protecting the Login Command

We strongly recommend that you limit the use of /bin/login to the superuser
only. Otherwise, any user who knows another user's password can log in as
another user and supply the other user's password to bypass all surrogate and
terminal restrictions.

To change the /bin/login permissions in selang, use the following command:

chres LOGINAPPL /birvlogin defaccess(N) owner(root)

Protecting Regular Programs

CA Access Control can also protect regular programs in the same way it protects
setuid and setgid programs. To do this, set the blockrun property in the
PROGRAM class to the value you choose.

Note: For more information about possible options, see the Reference Guide.

Kernel Modules Load and Unload Protection

A kernel module is a component of the UNIX operating system that you can load
to extend the running kernel, and unload when no longer required. This adds
flexibility, letting you load functionality as required, without wasting memory
resources that would otherwise be required to cover all possible expected
functionality in the base kernel.

You can disable and enable kernel module protection in CA Access Control. If you
enable kernel module protection, CA Access Control intercepts the system calls
that load and unload a kernel module, and then checks the requested access
against the associated record in the database, which is a record of class
KMODULE. When access is requested for a kernel module record, CA Access
Control, the requested access is either "load" or "unload".

On all non-Linux systems, the name of the KMODULE record must match the
name of the kernel module file (not the full path). This is because the name of the
module is the same as the name of the file. On Linux, the name of KMODULE
record needs to match only the name of the kernel module, which, may be
different from the actual file name. Changing the file name on Linux does not
change the module name which Linux uses and the KMODULE record remains
valid.

94 Endpoint Administration Guide for UNIX

Kernel Modules Load and Unload Protection

If you enable file path checking on kernel module loads and the requested access
is load, CA Access Control performs the following additional checks:

The filepath property in the KMODULE record holds only valid absolute file
paths.

The files in the path name filepath have modules that match the KMODULE
record name.

The kernel module matches the KMODULE properties (filepath for non-Linux
systems, signature for Linux systems).

Note: CA Access Control produces a unique signature for kernel module file
on Linux systems, and inserts this as the value of the signature property in
the kernel module record. CA Access Control checks the signature on each

access. You do not need to enter the signature yourself, because CA Access
Control calculates and inserts it automatically. However you can do so using
the seretrust utility.

More information:

Enable and Disable File Path Checking on Kernel Module Loads (see page 96)

Protect a Kernel Module

You can protect the loading and unloading of kernel modules, and so help protect
the operating system.

To protect a kernel module

1.
2.

Ensure you have enabled kernel module protection.
Create a KMODULE record in CA Access Control.

To create a kernel module, you need to define:

m The name of the kernel module

On all non-Linux systems, the name of the KMODULE record must match
the name of the kernel module file (not the full path). This is because the
name of the module is the same as the name of the file. On Linux, the
name of KMODULE record needs to match only the name of the kernel
module, which, may be different from the actual file name.

m The owner of the record (defaults to the user creating the module)

m (Optional) The absolute file path to the kernel module file, or a list of file
paths if there is more than one version of the module.

Note: On HP and Solaris systems, you can define the special kernel module

_ALL_MODULES to protect the unloading of all kernel modules.

Define the users or groups that are authorized to load and unload the
module.

Chapter 8: Protecting Files and Programs 95

Kernel Modules Load and Unload Protection

Example: Protect a Kernel Module Using selang Commands

The following selang commands define and authorize a kernel module serial.o to
CA Access Control and authorizes the enterprise user kadmin to load and unload
it:

newres kmodule serial.o owner(kadmin) defaccess(none) \
filepath(/lib/modules/2.2.19/serial.o:/ib/modules/2.2.20/serial.o)
authorize kmodule serial.o access(load, unload) xuid(kadmin)

Enable and Disable Kernel Module Protection
When kernel module protection is enabled, CA Access Control checks the loading
and unloading of the kernel modules that are defined in the CA Access Control
database.

By default, CA Access Control enables protection of kernel modules.

To enable or disable kernel mode protection, enable or disable the KMODULE
class, for example by using the setoptions command.

Example: Enable Kernel Mode Protection Using selang
The following selang command enables kernel mode protection:
setoptions class+(kmodule)

Example: Disable Kernel Mode Protection Using selang

The following selang command disables kernel mode protection:

setoptions class-(KMODULE)

Enable and Disable File Path Checking on Kernel Module Loads

If kernel module protection is enabled, you can also enable file path checking on
kernel module loading. When this is enabled, CA Access Control checks that the
kernel module to be loaded matches the filepath property of the KMODULE record
(for non-Linux systems), or matches the signature of the KMODULE record (for
Linux systems).

To enable file path checking, in the seosd section of the configuration file seos.in,
set the special_check token to yes (the default is no).

CA Access Control does file path checking only if file path checking and kernel
mode protection are both enabled.

96 Endpoint Administration Guide for UNIX

Protecting Binary Files from the kil Command

Example: Enable File Path Checking for Kernel Module Loads Using the
seini Utility

To enable file path checking for kernel module loads, you can use the seini and
secons utilities as follows:

seini -s seosd.special checkyes
secons -rl

Protecting Binary Files from the kill Command

You must protect mission-critical processes, such as database servers or
application daemons, against denial of service attacks. The native UNIX security
system bases its process protection on the process user ID. This implies that
under native UNIX, root can do anything to any process. CA Access Control adds
to UNIX process protection by defining rules based on the executable file running
in the process. CA Access Control process protection is independent of the user
ID of the process. A record in the PROCESS class must define every process that
CA Access Control will protect.

For example, to protect the ASCII viewer /bin/more from being killed, follow this
procedure:

1. Start selang.
2. Enter the following selang command:
newres PROCESS /biymore defaccess(N) owner(nobody)

This command defines /bin/more as a process to be protected from kill
attempts; therefore the default access is none (N). The owner(nobody)
setting ensures that even the user who defined this rule cannot kill the
/bin/more process.

3. Exit selang.
4. Test the rules that Step 2 defined:
a. Enter the command:
/birymore /tmp/seosd.trace

b. Assuming the file /tmp/seosd.trace is large enough to keep /bin/more
from exiting immediately, press Ctrl+Z to suspend the /bin/more
process.

c. Try to kill the suspended job by entering the command:
kill %61

Your attempt should fail, with CA Access Control displaying the
“Permission denied” message.

Chapter 8: Protecting Files and Programs 97

Protecting Binary Files from the kill Command

To make an exception that permits a specific user to kill the /bin/more processes,
enter the selang command:

authorize PROCESS /binfmore uid(username)

Note: Use the same procedure to protect other binary executables on your
system from being killed.

CA Access Control protects regular kill signals (SIGTERM) and the kill signals that
an application cannot mask (SIGKILL and SIGSTOP). It passes other signals,
such as SIGHUP or SIGUSR1, to the process to determine whether to ignore or
react to the kill signal.

98 Endpoint Administration Guide for UNIX

Chapter 9: Conirolling Login Commands

This section contains the following topics:

Controlling the Login Process (see page 99)

Controlling Generic Login Applications (see page 100)
Defining User Authority to Use Terminals (see page 101)
Password Checking and Login Restrictions (see page 105)
Defining Time and Day Login Rules (see page 106)
Disabling Concurrent Logins (see page 107)

Limiting Concurrent Logins for a User (see page 107)
Recognizing a Login Event (see page 108)

Controlling the Login Process

CA Access Control provides two types of login protection: by terminal, and by
application. Using the TERMINAL class, you can establish which users can log in
from which terminals or hosts.

Note: For more information about the TERMINAL class, see the Reference Guide.

You can also control which user or group can log in using a certain login
application (such as telnet, ftp, and rlogin) with the LOGINAPPL class. By
establishing the access rules of the class, you define specific rules for each login
application. For instance, you can define rules that permit all users to ftp to your
host, a limited number of users to telnet to your system, and no one to rlogin to
the system. Each record in the LOGINAPPL class defines access rules for a
specific login application.

Examples: LOGINAPPL
For example, to permit only an anonymous user to use the ftp application, use
the following procedure:
1. Change the ftp default access to none with the following selang command:
cr LOGINAPPL FTP defaccess(NONE) owner(nobody)
2. Permit the user anonymous to use ftp with the following selang command:

auth LOGINAPPL FTP uid(anonymous) access(X)

Chapter 9: Controlling Login Commands 99

Conftrolling Generic Login Applications

To restrict users from the group named account to use only telnet:
1. Block the use of rlogin and rsh with the following selang command:
auth LOGINAPPL(RLOGIN RSH) gid(account) access(N)

2. Permit the group named account to use telnet with the following selang
command:

auth LOGINAPPL TELNET gid(account) acc(X)

Note: The previous example shows RLOGIN and RSH restrictions, but other login
programs should be included as well.

Whenever you add or use a new login program, you must add a new LOGINAPPL
record.

The login interception sequence always starts with setgid or setgroup events,
which are called triggers. The sequence ends with a setuid event that changes
the user's identity to the real user who logged in.

Login applications issue a variety of system calls, which CA Access Control uses
to monitor login activity. These login sequences are preset for standard login
applications. You can see them by studying the CA Access Control trace file.

Note: For more information about the LOGINAPPL class and setting a sequence,
see the selang Reference Guide.

Controlling Generic Login Applications

CA Access Control can also control and protect generic login applications; this
means that you can protect groups of login applications that match a certain rule
with a generic pattern. To define a generic login application, use the LOGINAPPL
class.

Defining a Generic Login Application

To define a generic login application with selang, use the same commands as
setting regular login restrictions, except for the LOGINPATH parameter, which
should include a generic path composed of a regular expression using one or
more of the following characters: [,], *, ?. For example, to define a generic
telnet application, issue the following command:

er LOGINAPPL GENERIC_TELNET loginpath(/usr/sbirvin.tef*)

100 Endpoint Administration Guide for UNIX

Defining User Authority to Use Terminals

Generic Login Program Interception

With regular login restrictions, the activated rules are obvious; if a LOGINAPPL
object that has the intercepted login program specified for the loginpath property
exists in the database, the rules for that object would apply.

However, for generic LOGINAPPL objects, CA Access Control does the following:

1. seosd searches for an exact match for the intercepted login application. (A
matching login path for the LOGINAPPL object.) If found, the rules for that
object apply.

2. If not found, the search continues for a LOGINAPPL object with a generic
login path that matches.

3. If there is more than one match, the rules for the object with the more
specific match apply.

Defining User Authority to Use Terminals

One of the most effective ways to block intruders from accessing the system is by
terminal protection, that is, the source of the login. The source can be the host or
the terminal (such as an X terminal or a console) from which the user logs in.

In today's modern architecture, a terminal is no longer the teletype machine
UNIX was developed for. On most sites, a “pseudo terminal” is allocated through
the pseudo terminal server (PTS) or by the X window manager, and the
terminal's name is meaningless symbol for the security system. CA Access
Control protects what we understand as a terminal. CA Access Control
implements terminal protection during the login stage, when CA Access Control
defines a terminal in one of three ways:

m When the user logs in from an X terminal using the XDM login window, CA
Access Control takes the IP address of the X terminal translated to host name
(from /etc/hosts, NIS, or DNS) to be the terminal used for the login request.
CA Access Control can also protect using the IP addresses if the translation to
the host name fails or if you prefer to use IP addresses.

m When the user logs in from a dumb terminal, the TTY name identifies the
terminal.

m When the user logs in from the network (through telnet, rlogin, rsh, and so
on), the requesting IP address translated to the host name (through
/etc/hosts, NIS, or DNS) is taken to be the terminal name.

Chapter 9: Controlling Login Commands 101

Defining User Authority to Use Terminals

You can define login rules for a specific host by defining this host in the TERMINAL
class and adding the appropriate users and groups to the object's access list. For
each login source, you can also limit the days and hours in which login from this
host or terminal is allowed by setting the day and time restrictions for the
TERMINAL object. You can also use wildcards in the TERMINAL class to define
hosts that match a pattern (host name or IP address).

In most cases, highly authorized users such as the superuser or system
administrators must be restricted to terminals that are located in secure places.
Intruders and hackers who wish to enter the system as superuser are not able to
do it from their own remote stations; they have to work from one of the
authorized terminals, which should be in a secured location.

When logging in from the network, you cannot be certain that the user is indeed
sitting in front of the host console. The user could be sitting in front of any
terminal attached to that host or communicating from any other node in the
network authorized to receive services from the requesting host. Permitting a
user to log in from another host implies that we permit login to that user not only
from that specific station but also from any other terminal authorized by that
station. To ensure isolation between departments, define terminal groups and
allow users of each department to work only from the terminal group of their
department.

Unlike other resources, in terminal authorizations the more the user is authorized
to access information, the lower the user's terminal authorization should be. The
superuser must be the most restricted user in terminal access to ensure that
nobody can log in as root from remote unsafe terminals.

When defining terminals, CA Access Control requires you to explicitly specify the
owner of the terminal definition. The reason is that if root, as the security
administrator, becomes the owner of the terminal by default, it makes the
terminal eligible for superuser login. In most cases, this is not wanted. To guard
you from making such mistakes that may unintentionally cause loopholes, CA
Access Control makes you define an owner when defining the terminal.

To define the terminal tty34, use the following command:

newres TERMINAL tty34 defaccess(none) owner(userA)

This command creates a record for the terminal tty34, sets its default access to
NONE, and defines userA as its owner. Note that userA, as the owner of the
terminal, is automatically allowed to enter the system through terminal tty34.

To prevent all users from logging in from the terminal tty34, specify “nobody” as
the owner:

newres TERMINAL tty34 defaccess(none) owner(nobody)

102 Endpoint Administration Guide for UNIX

Defining User Authority to Use Terminals

To permit a user to log in from a particular terminal, enter the following
command:

authorize TERMINAL tty34 id(USR1)
This command permits USR1 to log in from terminal tty34.

Permission to use a terminal can also be granted to a group. For example, the
following command permits members of the group DEPT1 to use the terminal
tty34:

authorize TERMINAL tty34 gid(DEPT1)

To define a group of terminals (known as a terminal group), enter the following
command:

newres GTERMINAL TERM.DEPT1 owner(ADM1)

To add member terminals to terminal group TERM.DEPT1, enter the following
command:

chres GTERMINAL TERM.DEPT1 mem(tty34, tty35)

To authorize USR1 to use this terminal group, enter the following command:

authorize GTERMINAL TERM.DEPT1 uid(USR1)

This grants USR1 the authority to use both tty34 and tty35.

Restricting Terminals for Root Users

Another issue to consider is the default rule of the TERMINAL class. At the initial
implementation stages, the default is set to permit anything that is not defined.
In the case of a TERMINAL, this could be a shortcoming.

Consider the following situation: A site has a few hundred terminals, and you
want most users to be able to log in from any terminal, but you want root to be
able to log in only from two predefined terminals.

First we consider that setting the default of the TERMINAL class to READ enables
anyone-including root-to log in from any terminal that does not have a specific
TERMINAL record in the database. You do not want the superuser to be able to
log in from any terminal. But, we also consider that setting the default of the
TERMINAL class to NONE forces you to define each terminal in the database,
which may be impractical.

Chapter 9: Controlling Login Commands 103

Defining User Authority fo Use Terminals

To solve this problem, CA Access Control supports the definition of an access
control list within the _default record of the TERMINAL class. The following
commands show you how to restrict root to two terminals with minimum effort:

newres TERMINAL term1 defaccess(N) owner(root)
newres TERMINAL term2 defaccess(N) owner(root)
newres TERMINAL _default defaccess(R)

authorize TERMINAL _defauit uid(root) access(N)

The first two commands define term1 and term2 as terminals owned by root, so
they are eligible for superuser login. The newres TERMINAL _default and chres
commands set the default access to READ, so that any terminal not defined in the
database is accessible to anyone. The authorize command explicitly denies
access of the superuser to undefined terminals.

Note: The UACC class still exists; you can use it to specify the default access of
a resource. However, using _default records to specify the default access of a
resource is much easier.

Recommended Restrictions

You should restrict the use of the loopback terminals, local host terminals, and

station host names if the default access for the TERMINAL class is READ. Allowing
users to use these terminals permits all other users to substitute their own user
IDs if they know the target user's password. For example, consider the following
scenario:

m User U is allowed to work from terminal T.

m Terminal T is not allowed for superuser login.

m User U is not authorized to substitute user ID to root.

m User U managed to get the superuser password.

m All users are permitted to log in from terminal loopback.

User U can bypass this set of access rules by simply performing the command
telnet loopback, specifying the user ID root, and supplying the password. Now a
superuser session has started from terminal T, which is not supposed to allow

superuser login. A user can similarly bypass access rules by exploiting the local
host or the station's host name.

To restrict these three vulnerabilities, use the following definitions:

newres TERMINAL loopback defaccess(N) owner(nobody)
newres TERMINAL localhost defaccess(N) owner(nobody)
chres TERMINAL hostname defacc(N) owner(nobody)

104 Endpoint Administration Guide for UNIX

Password Checking and Login Restrictions

An alternative approach to preventing this security breach is to limit the TCP
requests for telnet, ftp, and so forth from local host.

Yet another option is to set default access for the TERMINAL group to NONE, then
specify TERMINAL and GTERMINAL rules.

Password Checking and Login Restrictions

Logon Checks

CA Access Control does not replace the /bin/login executable. Even when CA
Access Control is running, passwords continue to be checked against
/etc/passwd, the shadow password file, or the NIS passwd map. But CA Access
Control also performs additional checks, described in the following section.

After the login process passes the authentication stage, CA Access Control
intercepts the process and checks the following points:

Has the password expired?

If it has, the user receives a humber of grace logins accompanied by
warnings before being denied access. Following access denial, the security
administrator must reassign the user's password. The number of grace logins
is determined by the user password policy, which you can specify either
globally with the setoptions command, or for a profile group with the chgrp
command.

Note: For more information about the setoptions command, see the
Reference Guide.

You can use the segrace utility to view the number of grace logins left for a
user, the number of days remaining until the user's existing password
expires, or the date and time the user last logged on and from which
terminal.

Note: For more information about the segrace command, see the Reference
Guide.

Is the user logging on from an authorized terminal?

If so, login proceeds normally to the next check; if not, the user cannot log
in.

Chapter 9: Controlling Login Commands 105

Defining Time and Day Login Rules

m Do the current time-of-day and day-of-week allow login (per the predefined
restrictions)?

If they do, login proceeds normally to the next check; otherwise, the user
cannot log in.

m Was this user name unused for more than a predefined humber of days?

If it was, access is denied. (The default is 90 days; use the setoptions
command to change it.)

Defining Time and Day Login Rules

Information security is most vulnerable in times of low activity. Late hours of the
night and weekends are ideal times for breaking in, because fewer people are
available to monitor the audit records. Setting up appropriate terminal authority
rules forces an intruder to use a terminal that is in a protected location. Setting
up days-of-week (DOW) and time-of-day (TOD) access rules forces the intruder
to make break-in attempts during work hours when offices are open and active.
This combination severely restricts alien break-ins.

Limiting the days and hours in which a user can log in is done on a user-by-user
basis. To define the DOW and TOD login restrictions for a user, use the following
command:

chusr USR1 restrictions(days(Mon, T ue,Wed)time(800:1700))

This command permits user USR1 to log in only between 8:00 and 17:00 on
Mondays, Tuesdays, and Wednesdays. USR1 cannot log in outside the specified
time on the specified days, or on days other than those specified.

The days parameter also accepts the values ANYDAY (allow logins on all seven
days of the week) and WEEKDAYS (allow logins Monday through Friday). The
time parameter also accepts the value ANYTIME (allow logins at any time of the
day).

Note: You can apply the DOW and TOD restrictions to many resources defined in
the database. This feature is particularly useful for giving terminals and terminal
groups limited periods of usability.

106 Endpoint Administration Guide for UNIX

Disabling Concurrent Logins

Disabling Concurrent Logins

Most UNIX-based operating systems allow concurrent logins. But if a user is
permitted to log in from more than one terminal, there is a danger that while the
user is logged in, other users can log in from elsewhere and masquerade as that
user.

After you log in, CA Access Control allows you to disable your own concurrent
login permission so that no one else can log in as you from another terminal.
However, you can still log in repeatedly from the particular terminal that you are
using. Use the secons command with the following switches:

secons -d- (disables concurrent login)
secons -d+ (enables concurrent login)

Any user can issue the -d option. (All other options are only allowed for users

with the ADMIN or OPERATOR attribute). Users who want to disable concurrent
logins can use this command in their initial scripts. Although they are then able to
open as many windows as they want, they cannot log in from a second terminal.

Note: If you use the secons -d- command to prevent concurrent logins, you
must remember to use secons -d+ before logging out, to avoid being locked out
of the system. If you forget to reinstate concurrent logins and try to log in again,
CA Access Control allows you to log in provided no process with the same user ID
is running.

Limiting Concurrent Logins for a User

CA Access Control can control the number of concurrent logins in two ways:
Administrator Level

Set a systemwide definition in the database of the number of concurrent
sessions a user can have. You can set this value globally, for a profile group,
or for individual users.

User Level

Users individually control the number of concurrent logins allowed for them.
This way, when logging in, users can block the option of more login sessions
with their names, thus protecting themselves.

Note: The number of concurrent logins is independent of the number of sessions
the user is running on a particular terminal. Multiple sessions on one terminal are
considered as a single login. The concurrent-logins limit restricts the number of
terminals a user can concurrently log in from, not the number of logins from each
terminal.

Chapter 9: Controlling Login Commands 107

Recognizing a Login Event

Limiting Concurrent Logins Globally

In selang, enter the following command:

setoptions maxlogins(NumLogins)

Limiting Concurrent Logins Individually

In selang, enter the following command:

chusr username maxlogins(NumLogins)

The concurrent logins limit set for a user overrides the systemwide limit. To
prevent CA Access Control from enforcing the concurrent logins limit for a
specific user, set the user's concurrent logins limit to zero. (Note that you cannot
use selang if you set the maximum number of concurrent logins to one.)

Recognizing a Login Event

CA Access Control does not treat all attempts to change the user ID of a process
as login events. Usually a program attempts to change its user ID with a setuid
system call. The SURROGATE class controls these events, which are not
necessarily considered login events, and do not necessarily change the user
identity from the point of view of CA Access Control.

CA Access Control always preserves the original user identity-the identity with
which the user logged in initially. Ordinary setuid system calls do not cause CA
Access Control to register a change in user identity.

For CA Access Control to recognize the identity change, it must recognize this
event as a login event. It recognizes login events using the following rules:

m The program that attempts to change the identity is defined as a /ogin
program. All programs in the LOGINAPPL class are login programs.

m The program executes a series of system calls corresponding to its definition
in the LOGINAPPL class.

When you begin an administration session (in selang or CA Access Control
Endpoint Management), CA Access Control performs a dummy login event. This
is not a true login; rather, CA Access Control performs certain internal checks,
which are similar to login checks.

Note: For more information, see the SEQUENCE property for the LOGINAPPL
class in the selang Reference Guide.

108 Endpoint Administration Guide for UNIX

Recognizing a Login Event

At the start of an administration session, the user name is checked in the
machine to be administered. You get access to this machine for administration
only if you have WRITE access for the terminal from which you perform the
session.

For example, if you are logged in to host Minerva and would like to administer CA
Access Control on host Artemis, two conditions are necessary:

m A TERMINAL object called Minerva (or the relevant fully qualified name) is in
the database record for Artemis.

®m You are listed in the ACL of this object with WRITE permission.

These conditions are checked prior to any other user authority check. Note that
you also need administrative authority in the database.

Chapter 9: Controlling Login Commands 109

Chapter 10: Protecting TCP/IP Services

Protecting TCP/IP services is most important for file servers that contain
sensitive data. These servers must provide certain services only to trusted
stations, and not to intruders or computers that are unknown to the host.

This section contains the following topics:

Restricting TCP/IP Services (see page 111)
Using the TCP Class (see page 113)

Restricting TCP/IP Services

In an open network, any station can request services from other computers on
the network. The TCP/IP protocol can be used to supply many services. Some of
these services, such as rlogin, rcp, rsh, ftp, telnet, and rexec, are common to all
UNIX-based operating systems. Others are provided by in-house and third-party
software.

CA Access Control intercepts the accept processes of TCP/IP at the host
computer and determines whether the accept program should continue normally
or be overridden. CA Access Control bases its decision on access rules governing
hosts and services that you define. You can create TCP/IP access rules in the
database to specify the computers and networks that are allowed to receive
services such as file transfers, remote login, and remote shell from a specific
computer.

The following examples show how TCP/IP access rules can be defined and set to
efficiently block unwanted outsiders. If you have not yet had time to develop a
complete database, you may want to let any station that is not defined in the
database receive any service. If so, set the HOST record in the UACC class as
follows:

chres UACC HOST defaccess(READ)

A station that is to have access rules for TCP/IP services from the local host is
defined in a record in the database under the HOST class. For each of these
stations, the services allowed are listed in the record. For example, the following
command sequence defines a record for station ws5 and denies it from receiving
any TCP/IP service from the local host:

newres HOST ws5
authorize HOST ws5 service(*) access(NONE)

Chapter 10: Protecting TCP/IP Services 111

Restricting TCP/IP Services

The following command allows ws5 to perform telnet to the local computer:

authorize HOST ws5 service(telnet)

These settings allow users to telnet to the local computer, which means that the
remote user must specify a user name and password before using the local
system. To allow a station to receive all TCP/IP services from the local computer,
you can use an asterisk in the service keyword. For example, the following
command allows ws5 to invoke any TCP/IP service from the local computer:

authorize HOST ws5 service(*)

The service can be specified in several ways, some of which involve the port
number. The port number is an identification number for a service. All services
have port numbers, and the port numbers are mapped to the services in the file
/etc/services. You can specify a service in the following ways:

m By its name as defined in the file /etc/services

m By its port number

m As a range of port numbers

m As an RPC port that is listed in the /etc/rpc system file

For example, the following command permits ws5 to receive any TCP/IP service
whose port number falls between 7045 and 7050:

authorize HOST ws5 service(7045-7050)

In many cases, it is more economical to define a group of hosts and set its
permissions once, instead of making permissions for each individual computer.
CA Access Control provides the GHOST class, where each GHOST record defines
a group of hosts. To define a GHOST record and add hosts to its member list,
enter the following commands:

newres GHOST ghl mem(ws2, ws3, wsb)
authorize GHOST gh1 service(ftp)

The newres command defines a group of hosts called ghl that contain the
members ws2, ws3, and ws5. The authorize command allows all three stations to
receive ftp (file transfer) services.

112 Endpoint Administration Guide for UNIX

Using the TCP Class

Using the TCP

Managing host groups is easier than managing individual stations, but to supply
more flexibility, CA Access Control also supports the definition of network access
rules. Networks are defined in the HOSTNET class. For example, consider the
following set of commands:

newres HOSTNET hnl mask(255.555.0.0) match(192.168.0.0)
authorize HOSTNET hn1 service(*) access(NONE)
authorize HOSTNET hn1 service(ftp)

m In the first line, the newres command, defines a network called hnl. With its
mask and match values, it specifies that any computer with an IP address
whose first two qualifiers are 192.168 is considered as coming from the hn1l
network.

m The combination of the second and third lines permits any station from the
hn1l network to perform ftp, but not any other service, in the host computer.

Another method CA Access Control provides for defining TCP/IP access rules is
name-pattern access rules. CA Access Control supports the definition of generic
records in the HOSTNP class (host name pattern) with wildcards.

Note: For information on how CA Access Control performs string matching, see
the selang Reference Guide.

For example, the following command sequence permits all hosts whose names
start with the characters “lin” and end with the characters “.org.com” to receive
all TCP/IP services on the local host:

newres HOSTNP lin*.org.com
authorize HOSTNP lin*.org.com service(*).

Note: Hosts that are managed by NIS must be identified by their official names

that appear in a NIS map and not by their aliases. The chart in the following
section summarizes the TCP/IP check flow.

Class

Alternatively, you can specify protection by service instead of by host, by using
the TCP class.

Note: For more information about the TCP class, see the Reference Guide.

Use the TCP class to control incoming and outgoing services.

Chapter 10: Protecting TCP/IP Services 113

Using the TCP Class

For example, the following commands create a record for the ftp service, with
READ (meaning the service can be used) as default access type, but prevent
hosts that match the name pattern PUBLIC* from receiving the service.

newres TCP ftp defaccess(READ)
authorize- TCP ftp hostnp(PUBLIC*) access(N)

You can also specify that a particular user or group be only permitted to receive
a particular service. For example, to allow all users to ftp to a host called hermes,
but to specify that only members of the group called acctng can access hermes
with telnet, enter the following commands:

newres HOST hermes

newres TCP ftp owner(nobody) defaccess(read)

newres TCP telnet owner(nobody) defaccess(read)
authorize TCP ftp uid(*) host(hermes) access(write)
authorize TCP telnet gid(acctng) host(hermes) access(write)

Note: defaccess(read) disables outgoing services. defaccess(write) disables
incoming services.

If the HOST class is active (that is, if it is used as a criterion for access), then the
TCP class cannot effectively be active. You can use the command setoptions
class- HOST to deactivate the HOST class; then use the command setoptions
class+ TCP (if necessary) to activate the TCP class. Deactivating the HOST class
automatically deactivates GHOST, HOSTNET, and HOSTNP as well.

Also, if the TCP class is active, use the setoptions command class- CONNECT to
deactivate the CONNECT class.

114 Endpoint Administration Guide for UNIX

Using the TCP Class

Streams Module for Network Interception

By default, the TCP class is not active. Before you activate the TCP class, the
CONNECT class, or the HOST class, be sure that the streams module is enabled.

To load the CA Access Control streams module on Solaris, complete the following
steps:
1. Stop CA Access Control. Enter the following command:
secons -s
2. Enter the following command:
SEOS load -s
3. Start CA Access Control. Enter the following command:
seload

Note: If you attempt to activate the TCP class when the streams module is not
loaded, an error appears:

ERROR: className class cannot be activated when streams are not loaded.
Please use SEOS _load -s to load the streams.

Chapter 10: Protecting TCP/IP Services 115

Using the TCP Class

The algorithm for incoming authorizations is:

start INET check
on IP address
and service

Request
to service
granted

Is

Y
Diagram yes specified in service
A ACL for allowed
HOST 2 »

Request

Request
tfo service

granted

Is
service
allowed
?

specifiedin
ACL for
GHOST

no
Request
fo service

denied

Request
to service
granted

specifiedin
ACL for

Isthere a
HOSTNET yes
record for which

IP&MASK=MATCH?.

Request
to service
granted

Is
service
allowed
“

service
specifiedin

Does the
host name
rmatch o HOSTNP
record?

by the TCP's
record
defacces:

Request
to service
denied

116 Endpoint Administration Guide for UNIX

Using the TCP Class

Diagram
A

Use
senvice
record
ACL

Does
service TCP
record
exist?

Use
_default
record
CACL

Does
HOST

record
exist?

See the
previous
diagram

Chapter 10: Protecting TCP/IP Services 117

Using the TCP Class

The algorithm for outgoing authorizations is:

start INET check
on IP address
and service

Y

Does
service TCP
record
exist ?

no

Use
_default
record
CACL

A\ 4
Is user yes Does user Use diagram B for
_deﬁned appear CACLs in which
in Se08? in CACL? user appears
no

Do any of the
groups which the user
belongs to appear
in the CACL?

Use diagram B for
CACLs in which
groups appear

Use diagram B for
CACLs in which
user* appears

118 Endpoint Administration Guide for UNIX

Using the TCP Class

Diagram
B

Request

to service
granted

Is
service
allowed
?

service
specified in
CACLfor
HOST ?

Does
HOST

record
exist?

Is
service
allowed
?

no

service
specified in
CACL for

GHOST

of GHOST
record
?

no

Request
to service
granted

yes

Is
service
allowed
?

yes

Isthere a

HOSTNET yes
record for which
IP&MASK=MATCH?

noe
Is
service

allowed
?

service
specifiedin
CACL for
HOSTNP,

Does the
host name
match a HOSTNP
record?

See the
previous
diagram

Chapter 10: Protecting TCP/IP Services 119

Chapter 11: Managing Policy Models

This section contains the following topics:

The Policy Model Database (see page 121)
Architecture Dependency (see page 123)

Methods for Centrally Managing Policies (see page 125)
Automatic Rule-based Policy Updates (see page 125)
Mainframe Password Synchronization (see page 152)

The Policy Model Database

PMDB Location on

Managing tens or hundreds of databases individually is not practical. CA Access
Control supplies the Policy Model service, a component that lets you manage
many databases from one central database. Using the Policy Model service is
optional, but it greatly simplifies administration at large sites.

The Policy Model (PMD) service uses a Policy Model database (PMDB). Like other
CA Access Control databases, the PMDB contains users, groups, protected
resources, and rules governing access to the resources. In addition, the PMDB
contains a list of subscriber databases. Each subscriber is a CA Access Control
database that resides on a separate computer, or another PMDB that resides on
the same or another computer. A PMDB that updates a subscriber is the
subscriber's parent.

The PMDB is a useful tool for managing many databases that have similar
authority restrictions and access rules.

Note: For information about administrating a PMDB (sepmd utility), see the
Reference Guide. For information about managing PMDBs remotely using selang,
see the selang Reference Guide.

Disk

All PMDBs reside in a common directory (one per computer). The name of the
directory is specified by the _pmd_directory_ token in the [pmd] section of the
seos.ini file. The default value of _pmd_directory_ is ACInstallDir/policies, where
ACInstallDir is the installation directory for CA Access Control (by default
/opt/CA/AccessControl).

Each PMDB occupies a subdirectory in the common directory. The name of the
subdirectory is the name of the Policy Model. The files in the subdirectory contain
all the data required to define the Policy Model including the pmd.ini file.

Chapter 11: Managing Policy Models 121

The Policy Model Database

Managing Local PMDBs

CA Access Control offers several utilities for administrating local PMDBs:

sepmd

A PMDB administration utility that lets you:

Administer subscribers
Truncate the update file
Administer Dual Control
Manage the Policy Model log file

Perform other administrative tasks

sepmdadm

Creates PMDBs and configures them with the necessary settings for setting
up your hierarchy.

Note: For a comprehensive discussion of the Policy Model utilities, see the
Reference Guide.

Managing Remote PMDBs

CA Access Control also offers you a range of selang commands that you can use
in the pmd environment. These commands let you manage PMDBs remotely:

backuppmd

Backs up a PMDB.

createpmd

Creates a PMDB.

deletepmd
Deletes a PMDB.

findpmd

Displays the names of all PMDBs on the computer.

listpmd

Lists the following information about a PMDB:

Subscribers and their status

PMDB description and its status

Commands in the update file and their offsets

Contents of the error log

122 Endpoint Administration Guide for UNIX

Architecture Dependency

pmd
A PMDB administration command that lets you:
m Remove a subscriber from the list of unavailable subscribers
m Clear the Policy Model error log
m Lock and unlock the Policy Model
m Start and stop the Policy Model daemon
m Truncate the update file
m Reload the initialization files
restorepmd
Restores a PMDB from its backup files.
subs
A PMDB subscription command that lets you:
m Add an existing subscriber to a parent PMDB
m Add a new subscriber to a parent PMDB

m Assign a parent PMDB to a database (CA Access Control or another
PMDB)

subspmd

Assigns a parent PMDB to the local database.
unsubs

Removes a subscriber from the PMDB.

Note: For a comprehensive discussion of selang commands you can use in the
pmd environment, see the selang Reference Guide.

Architecture Dependency

When deploying CA Access Control, you should consider the hierarchy of your
environment. At many sites, the network includes a variety of architectures.
Some policy rules, such as the list of trusted programs, are
architecture-dependent. On the other hand, most rules are independent of the
system's architecture.

Chapter 11: Managing Policy Models 123

Architecture Dependency

You can cover both kinds of rules by using a hierarchy. You can define a global
database for architecture-independent rules, and give it subscriber PMDBs that
define architecture-dependent rules.

Note: The root PMDB and all of its subscribers can reside on the same computer
or on separate computers, depending on the physical needs of your
environment.

Example: A Two-tiered Deployment Hierarchy

The following UNIX example also applies to a Windows architecture with small
modifications.

In the example, the site consists of IBM AIX and Sun Solaris systems. Since the
list of trusted programs on IBM AIX differs from the one on Sun Solaris, the
PMDBs need to consider architecture dependency.

To set up a multiple-architecture PMDB, set up your PMDBs as follows:

1. Define a PMDB named whole_world, to contain the users, groups, and all
other architecture independent policies.

2. Define a PMDB named pm_aix, to contain all the IBM AIX specific rules.

3. Define the PMDB pm_sol, to contain all the Sun Solaris specific rules.

The PMDBs pm_aix and pm_solaris are subscribers of the PMDB
whole_world. All IBM AIX computers at the site are subscribers of pm_aix. All
Sun Solaris computers at the site are subscribers of pm_sol. The concept is
illustrated in the following chart.

Policy Model Computer
whole_world
Global
PMDB
ﬁ
AlX Solaris
PMDB PMDB

i

=] (= s s =
IBM 1BM Sun Sun Sun
Al Al Solaris Solaris Solaris

124 Endpoint Administration Guide for UNIX

Methods for Centrally Managing Policies

4. When you enter platform-independent commands in whole_world, such as
adding a user or setting a SURROGATE rule, all databases at the site are
automatically updated.

5. When you add a trusted program to pm_aix, only IBM AIX computers are
updated, without affecting the Sun Solaris systems.

Methods for Centrally Managing Policies

CA Access Control lets you manage several databases from a single computer in
the following ways:

= Automatic rule-based policy updatesa€”Regular rules you define in a
central database (PMDB) are automatically propagated to databases in a
configured hierarchy.

Note: Dual control (see page 147) is only available with this method and on
UNIX only. Information about dual control for automatic rule-based policy
updates is found in the Endpoint Administration Guide for UNIX. Information
about automatic rule-based policy updates can also be found in the Endpoint
Administration Guide for Windows.

= Advanced policy managementa€”Policies (groups of rules) you deploy are
propagated to all databases based on host or host group assignment. You
can also undeploy (remove) policies and view deployment status and
deployment deviation. You need to install and configure additional
components to use this functionality.

Note: Information about advanced policy management is found in the
Enterprise Administration Guide.

Avutomatic Rule-based Policy Updates

Single-rule policy updates (regular selang rules) you make in a central database
are automatically propagated to the subscriber databases. By subscribing
several computers to the same database, and by subscribing one database to
another, you can create a hierarchy. You configure your environment for
automatic rule-based policy updates after installation.

Note: This method of managing policies is limited to letting you make single-rule
policy updates across your hierarchy. Other functionality is only available
through implementing advanced policy management and reporting.

Chapter 11: Managing Policy Models 125

Automatic Rule-based Policy Updates

How Automatic Rule-based Policy Updates Work

When you configure your environment for automatic rule-based policy updates,
each rule you define in the central database is automatically propagated to all of
its subscribers in the following way:

1. A rule is defined for any PMDB with at least one subscriber.
2. The PMDB sends the command to all subscriber databases.
3. The subscriber database applies the propagated command.

a. If the subscriber database does not respond, the PMDB sends the
command at a regular interval (by default, every 30 minutes) until the
subscriber database has been updated.

Alternatively, you can update subscriber databases as soon as they
become available, by setting the pull_option token to yes in the [pmd]
section of the seos.ini file on the subscriber computer.

b. If a subscriber database is responding, but refuses to apply the
command, the PMDB places the command in the Policy Model error log
(see page 141).

4. 1If the subscriber database is a parent to other subscribers, it then sends the
command to its subscribers.

Example: Removing a user from all computers in a hierarchy

If a user is deleted from a PMDB using the rmusr command, the same rmusr
command is sent to all the subscriber databases. In this way, a single rmusr
command can remove a user from many databases on a variety of computers.

How You Use a PMDB to Propagate Configuration Settings

When you edit a Policy Model's configuration, the new configuration values are
propagated to the Policy Model's subscribers.

The following process describes how configuration updates are propagated to a
Policy Model's subscribers:
1. You edit one or more of the Policy Model's configuration values.

2. The Policy Model writes the new configuration values to the virtual
configuration file.

Note: The virtual configuration file does not contain values for the audit.cfg
file. The Policy Model does not write any changes you make to this file to the
virtual configuration file.

The Policy Model sends the new configuration values to its subscribers.

4. selang commands update each subscriber with the new configuration values.

126 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Virtual Configuration File

Each Policy Model has a virtual configuration file that contains the configuration
values for its subscribers. The virtual configuration file is located in the PMD
directory, and is named cfg_configname, where configname is the name of the
Policy Model configuration.

The virtual configuration file does not contain the configuration values held in the
audit.cfg file.

How New Subscribers Are Configured

The Policy Model configures each new subscriber with the existing configuration
values. The existing configuration values are stored in the virtual configuration
file.

Note: The virtual configuration file does not store configuration values from the
audit.cfg file. Any changes you make to the audit.cfg file prior to creating a new
subscriber are not propagated to the new subscriber.

The following process describes how a Policy Model configures new subscribers:
1. You create a new subscriber to the Policy Model.

2. The Policy Model reads the values in its virtual configuration file.

3. The Policy Model adds the configuration values from its virtual configuration
file to the updates.dat file. The updates.dat file also contains the access rules
for the Policy.

4. The Policy Model sends the updates.dat file to the new subscriber.

5. selang commands configure the new subscriber with the values in the
updates.dat file.

How You Can Set Up a Hierarchy

CA Access Control uses the Policy Model service to propagate rule-based policy
updates across the configured hierarchy. By subscribing several CA Access
Control computers to the same PMDB, and by subscribing one PMDB to another,
you create a hierarchy.

Chapter 11: Managing Policy Models 127

Automatic Rule-based Policy Updates

To enable automatic rule-based policy updates, do the following:

1. Create and configure the master PMDB (see page 128).

2. (Optional) Create and configure subscriber PMDBs (see page 130).

3. Define parent PMDBs for the subscribing computers (see page 132), called
endpoints.

Note: The following sections show how you set up a PMDB hierarchy. There are
other ways of creating PMDBs and then setting their hierarchy. For a
comprehensive discussion of the Policy Model utilities, see the Reference Guide.

Create and Configure the Master PMDB

To let you manage policies from a central location, you first need to create and
configure a master PMDB. To do this on a local host, you can use the sepmdadm
command.

Note: The following procedure shows the interactive form of the sepmdadm
command. For information about using the command-line parameters for all
input, see the Reference Guide.
To create and configure the master PMDB
1. In a command line, enter the following command:

sepmdadm -i

CA Access Control starts the Policy Model database administration script
(sepmdadm) and displays a menu with options for you to choose from.

2. Enter 1, to select the first option (create a master PMDB and define its
subscribers).

The script is configured to ask you the relevant questions.
3. Press Enter to continue.
The script continues to ask you the first question.

Note: If CA Access Control is not running, the script issues a warning and
lets you start CA Access Control before the script is rerun.

4. Enter a name for the Policy Model you want to create.
The script registers the Policy Model hame and continues.
5. Enter the name of the first subscriber computer you want to specify.

The script registers the name of the first subscriber and then asks you to
enter the name of the next subscriber.

128 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

8.

Continue to enter subscriber names as necessary, then press Enter without
entering a subscriber name.

The script registers all subscriber names and continues.

Note: You still must point each subscriber computer to its parent PMDB.

If you are running NIS, NIS+, or DNS, choose whether you want to update
the NIS/DNS tables with PMDB changes.

Updates are made to users and groups in the PMDB. The tables provide
information on users and their characteristics. If you choose yes, a UNIX user
or UNIX group updated through the Policy Model is also updated in the NIS
passwd and group files.

a.

b.

Enter y if you want to update the NIS/DNS tables.

The script now asks you for the location of the NIS passwd and group

files.
a. Enter the full path of the NIS password file.
The script registers the full path and continues.
b. Enter the full path of the NIS group file.
The script registers the full path and continues.
Enter n or press Enter if you want to update the NIS/DNS tables.

The script registers your answer and continues.

Enter the users you want to give special attributes for the PMDB:

a.

Enter CA Access Control administrator names as necessary, then press
Enter without entering an administrator's name.

Administrators are authorized to change the properties of the PMDB.

Note: At least one administrator must be defined in a PMDB (root is the
default).

Enter enterprise user administrator names as necessary, then press
Enter without entering an administrator's name.

Enter CA Access Control auditor names as necessary, then press Enter
without entering an auditor's name.

Auditors are authorized to view the PMDB's audit log files.

Enter enterprise user auditor names as necessary, then press Enter
without entering an auditor's name.

Chapter 11: Managing Policy Models 129

Automatic Rule-based Policy Updates

10.

e. Enter CA Access Control password manager names as necessary, then
press Enter without entering a password manager's name.

f. Enter enterprise user password manager names as necessary, then
press Enter without entering a password manager's name.

Password managers are authorized to change passwords in the PMDB.
The script registers your answer and continues.

Enter administration terminals as necessary, then press Enter without
entering an administration terminal.

The script registers all administration terminals and then reports the
selections you have made and asks you to confirm them.

Press Enter to confirm the selections you have made, or enter n to rerun the
script with new inputs.

If you confirm your selections, a new PMDB is created using the answers you
supplied.

More information:

Create and Configure Subscriber PMDBs (see page 130)

Define Parent PMDBs for Subscribing Computers (see page 132)

Create and Configure Subscriber PMDBs

Once you have a master PMDB configured, if you want to extend your hierarchy,
you need to create and configure subscriber PMDBs. To do this on a local host,
you can use the sepmdadm command.

Note: The following procedure shows the interactive form of the sepmdadm
command. For information about using the command-line parameters for all
input, see the Reference Guide.

To create and configure subscriber PMDBs

1.

In a command line, enter the following command:
sepmdadm -i

CA Access Control starts the Policy Model database administration script
(sepmdadm) and displays a menu with options for you to choose from.

Enter 2, to select the second option (create a subsidiary PMDB and define its
subscribers and parent.).

The script is configured to ask you the relevant questions.

130 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Press Enter to continue.
The script continues to ask you the first question.

Note: If CA Access Control is not running, the script issues a warning and
lets you start CA Access Control before the script is rerun.

Enter a name for the Policy Model you want to create.
The script registers the Policy Model nhame and continues.
Enter the name of the first subscriber computer you want to specify.

The script registers the name of the first subscriber and then asks you to
enter the name of the next subscriber.

Continue to enter subscriber names as necessary, then press Enter without
entering a subscriber name.

The script registers all subscriber names and continues.

Note: You still must point each subscriber computer to its parent PMDB (see
page 132).

Enter the name of the parent PMDB.
The script registers the parent PMDB name and continues.

Note: sepmdadm only lets you enter one parent for each subscribing
database. You can, however, define multiple parents for each database. To
do this, modify the parent_pmd token of the pmd.ini configuration file. For
more information about using this token, see the Reference Guide.

If you are running NIS, NIS+, or DNS, choose whether you want to update
the NIS/DNS tables with PMDB changes.

Updates are made to users and groups in the PMDB. The tables provide
information on users and their characteristics. If you choose yes, a UNIX user
or UNIX group updated through the Policy Model is also updated in the NIS
passwd and group files.

a. Enter y if you want to update the NIS/DNS tables.

The script now asks you for the location of the NIS passwd and group
files.

a. Enter the full path of the NIS password file.
The script registers the full path and continues.
b. Enter the full path of the NIS group file.
The script registers the full path and continues.
b. Enter n or press Enter if you want to update the NIS/DNS tables.

The script registers your answer and continues.

Chapter 11: Managing Policy Models 131

Automatic Rule-based Policy Updates

9. Enter the users you want to give special attributes for the PMDB:

a.

Enter CA Access Control administrator names as necessary, then press
Enter without entering an administrator's name.

Administrators are authorized to change the properties of the PMDB.

Note: At least one administrator must be defined in a PMDB (root is the
default).

Enter enterprise administrator names as necessary, then press Enter
without entering an administrator's name.

Enter CA Access Control auditor names as necessary, then press Enter
without entering an auditor's name.

Auditors are authorized to view the PMDB's audit log files.

Enter enterprise user auditor names as necessary, then press Enter
without entering an auditor's name.

Enter CA Access Control password manager names as necessary, then
press Enter without entering a password manager's name.

Password managers are authorized to change passwords in the PMDB.

Enter enterprise user password manager names as necessary, then
press Enter without entering a password manager's name.

The script registers your answer and continues.

10. Enter administration terminals as necessary, then press Enter without
entering an administration terminal.

The script registers all administration terminals and then reports the
selections you have made and asks you to confirm them.

11. Press Enter to confirm the selections you have made, or enter n to rerun the
script with new inputs.

If you confirm your selections, a new PMDB is created using the answers you
supplied.

Define Parent PMDBs for Subscribing Computers

To establish an endpoint computer as a subscriber to a PMDB, you must do more
than register the subscriber's name in the PMDB. You also need to complete a
procedure at the subscriber computer.

132 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

To define parent PMDBs for subscribing computers

1.

In a command line on the subscriber computer, start sepmdadm in
interactive mode:

sepmdadm -i

CA Access Control starts the Policy Model database administration script
(sepmdadm) and displays a menu with options for you to choose from.

Enter 3, to select the third option (define the parent and password PMDBs of
the local host).

The script is configured to ask you the relevant questions.
Press Enter to continue.
The interactive script continues to ask you the first question.

Note: If CA Access Control is running, the script issues a warning and lets
you stop CA Access Control before the script is rerun.

Enter the name of the parent PMDB.
The script registers the name of the parent PMDB name and continues.
Enter the name of the parent password PMDB.

The script registers the name of the parent password PMDB name and then
reports the selections you have made and asks you to confirm them.

Press Enter to confirm the selections you have made, or enter n to rerun the
script with new inputs.

If you confirm your selections, the subscriber computer is set up with these
inputs.

Note: sepmdadm only lets you enter one parent for each subscribing database.
You can, however, define multiple parents for each database. To do this, modify
the parent_pmd token of the seos.ini configuration file. For more information
about using this token, see the Reference Guide.

Chapter 11: Managing Policy Models 133

Automatic Rule-based Policy Updates

UID/GID Synchronization

As an administrator, you may receive messages that refer to users by UID and to
groups by GID. You need to make sure that the UIDs and GIDs have the same
meaning everywhere.

By default, the PMDB attempts to use the same UIDs and GIDs for new users and
groups everywhere, but you can help by providing the necessary conditions from
the start. Start with identical passwd files and identical group files, making sure
that the synch_uid token in the pmd.ini file is set to yes. If your local database is
a subscriber to your PMDB, and the PMDB is the only source of new users and
new groups for your subscriber databases, then you can depend on compatibility
between the UIDs and between the GIDs of your local database, your PMDB, and
your PMDB subscribers.

If you create a new user with a UID that is already in use in the PMDB or in some
other subscriber computer, the subscriber's individual update fails; but in all
other subscriber computers where no such conflict exists, the update succeeds.

An alternative to synchronizing your passwd and group files is to explicitly specify
the UID of each new user and the GID of each new group.

Synchronize Users and Groups

To ensure the lists of users and groups in your various databases correspond
correctly at all times, you need an initial set of identical lists. Because the
password and group files are so important, synchronize them before they begin
accumulating local user and group information.

To synchronize users and groups

1. Copy your /etc/passwd file and /etc/group file to your Policy Model directory.

This is a one-time procedure that destroys any previous passwd and group
files in your Policy Model directory (see page 121).

Note: If you are using a shadow file and want to synchronize passwords, we
recommend using the secrepsw utility. For more information, see the
Reference Guide.

2. Copy the /etc/passwd file and /etc/group file to each subscriber computer so
that they are identical to the ones on your own computer.

3. On the computer where the PMDB resides, ensure that the synch_uid token
in your pmd.ini file is set to yes.

By default, the value of the token synch_uid is yes. If you ever want a
subscriber database to have independent default UIDs and default GIDs
(that is, not necessarily attempting to match those of the PMDB), you can set
synch_uid to no.

134 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Specify UIDs Explicitly

Another way to send an identical UID or GID to the PMDB and to all its
subscribers is to explicitly set it when you create a new user.

To specify UIDs explicitly use the userid or groupid parameter with each newusr
command.

Example: Create a new user with a specified UID

If you want to establish 1234 explicitly as the UID of new user terry_jones (and
assuming that no one else in the database has that UID yet), enter the
command:

newusr terry_jones unix (userid(1234))

If the specified UID is already being used in the PMDB, then the PMDB will not
itself be updated, but the command will still propagate to the other subscriber
databases. Among the other databases, wherever the particular UID is already in
use, the subscriber's individual update will fail; but where no such conflict exists,
the update succeeds.

How the Policy Model Updates Subscribers

When updating subscribers, the Policy Model performs the following actions:

1. The Policy Model tries to fully qualify subscriber names as they are added or
deleted from the Policy Model.

2. The PMDB daemon, sepmdd, attempts to update a subscriber database for
the amount of time defined by the token _QD_timeout_.

3. If the maximum time elapses and the daemon does not succeed in updating
a subscriber, it skips that particular subscriber and tries to update the
remainder of the subscribers on its list.

4. After it completes its first scan of the subscriber list, sepmdd then performs
a second scan, in which it tries to update the subscribers that it did not
succeed in updating during its first scan. During the second scan, it tries to
update a subscriber until the connect system call times out (approximately
90 seconds).

Note: The token _QD_timeout_ may be found in both the seos.ini and pmd.ini
files. If the token exists in both files, sepmdd uses the value in the pmd.ini file.

Note: Whenever a PMDB encounters an error while propagating updates to
subscribers, the sepmdd daemon creates an entry in the Policy Model error log
file (see page 141). This file, ERROR_LOG by default, is located in the PMDB
directory (see page 121).

Chapter 11: Managing Policy Models 135

Automatic Rule-based Policy Updates

Update a Policy Model Database

Working at the computer where the PMDB resides does not automatically update
the PMDB itself. To update a PMDB, you need to specify it as your target
database.

To specify a target database, use the hosts command in the selang command
shell:

hosts pmd_name@pmd_host

All selang commands now update the policy model database specified. The
commands then automatically propagate to the active databases on this
computer and of all subscriber computers.

Example: Specify a target PMDB

To set the target database to policyl on myPMD_host, use the following
command:

hosts policyl@myPMD_host
If you now enter the newusr command, the new user is added to the policyl

database as well as the active databases on this computer and of all subscriber
computers.

Clean Up the Update File
The sepmd utility automatically writes each update it receives in the updates.dat
file. To prevent the file from growing too large, we recommend that you delete

processed updates from the file periodically.

To clean up the update file, use the following command:

sepmd -t pmdbName auto

sepmd calculates the offset of the first update entry that has not been
propagated and deletes all the update entries before it.

Note: For more information about sepmd utility, see the Reference Guide.

136 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Encrypt the Update File

Exclude Subscribers

Propagate Passwords

After you create a PMDB, but before you start sepmdd, you can specify that
information saved to the updates.dat file be encrypted.

To encrypt the update file, set the UseEncryption token to yes in the [pmd]
section of the pmd.ini file.

To decrypt the updates.dat file, use the sepmd utility with the -de switch.

Note: For more information about sepmd, see the Reference Guide.

You can skip subscribers so that they do not receive updates from parent PMDBs.

To exclude the local host, set the token exclude_localhost to yes in the pmd.ini
file.

To add additional subscribers to the excluded list, set the token exclude_file
(name-of-file).

To make a subscriber receive updates, remove the subscriber from the excluded
list.

When a user changes a password using the sepass utility, the new password is
normally sent to the computer's parent PMDB. The parent PMDB is defined in the
parent_pmd or the passwd_pmd token in the [seos] section of the seos.ini file or
in both. However, if the user changes the password with the utility sepass, you
can also specify that the user's new password should be sent to and propagated
by a separate PMDB.

To send a new user's password to a separate PMDB, use the pmdb parameter
with the newusr, chusr, or editusr command.

Example: Specifying a separate PMDB for password propagation
To specify that the new passwords created with sepass for the user Tony should

be sent to and propagated by a separate PMDB pw_pmdb@namel.yourorg.com,
enter the following command:

editusr tony pmdb(pw_pmdb@namel.yourorg.com)

Chapter 11: Managing Policy Models 137

Automatic Rule-based Policy Updates

Remove a Subscriber

If you no longer want to propagate updates to a particular subscriber, you should
remove it. Alternatively, you can exclude a subscriber from receiving updates
(see page 137).

To remove a subscriber

1.

Remove the computer from the subscription list:
sepmd -u PMDB_name computer_name
The computer is removed from the Policy Model subscription list.

Shut down seosd on the computer that you removed from the subscription
list:

Secons -s

The daemon seosd is shut down.

Delete the value of the parent_pmd token in the [seos] section of the seos.ini
file on the computer you removed from the subscription list.

The computer will stop accepting updates from the parent PMDB.
Restart seosd.

The active database on the computer that you removed from the
subscription list is no longer a subscriber of the specified PMDB.

Note: Once the database is unsubscribed from the PMDB, the PMDB no longer
sends commands.

138 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Filter Updates

Policy Model Filter File

If you want your PMDB to update different subsets of data at different subscriber
databases, you need to define which records are sent to subscriber databases.
To filter updates

1. Configure PMDBs to serve as parents to subsets of subscribers (see
page 132).

2. Modify the filter token in the pmd.ini file of the parent PMDB, to point to a
filter file you set up on the same computer.

Updates to the subscriber databases are then limited to the records that pass
the filter.

Note: When you execute a join or join- selang command in the native UNIX
environment, CA Access Control changes the command to change group (cg). To
filter join or join- commands in the native UNIX environment, use the following
line in the filter file:

MODIFY UNIX GROUP GroupName USERS NOPASS

You cannot filter join or join- commands by user name in the native UNIX
environment. This rule does not apply to join or join- commands in any other
environment.

A filter file consists of lines, each with six fields. The fields contain information
on:

m The form of access permitted or denied.
For example, READ or MODIFY
m The environment affected:
For example, AC or native
m The class of the record.
For example, USER or TERMINAL
m The objects, within the class, that the rule covers.

For example, Userl, AuditGroup, or TTY1

Chapter 11: Managing Policy Models 139

Automatic Rule-based Policy Updates

m The properties that the record grants or cancels.

For example, OWNER and FULL_NAME in the filter line means that any
command having those properties is filtered. You must enter each property
exactly as it appears in the Reference Guide.

m Whether such records should be forwarded to the subscriber database or
not:

PASS or NOPASS

The following rules apply to each line in the filter file:
®m You can use an asterisk (*) to denote all possible values in any field.

m If more than one line covers the same records, the first applicable line is
used.

m Spaces separate the fields.
m In fields with more than one value, semicolons separate the values.

m Lines beginning with # are considered a comment line.

m Empty lines are not allowed.
Example: Filter file

The following example describes a line from a filter file:

CREATE AC USER * FULL_NAME;OBJ_TYPE NOPASS

form of access environment class record name properties treatment
X —
=all)

In this example, if we name the file with this line TTY1_FILTER and edit the
pmd.ini file for PMDB TTY1 so that filter=/opt/CA/AccessControl/TTY1_FILTER,
then PMDB TTY1 will not propagate to its subscribers any records that create new
users with the FULL_NAME and OBJ_TYPE property.

140 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Policy Model Error Log File

The Policy Model error log, which is organized chronologically, looks similar to

this:
Error Text Error Category
20 Nov 03 11:56:07 (pmdb1): fargo nu u5 0 Retry Configuration Errors

ERROR: Login procedure failed (10068)
ERROR: Cannot accept update from a non-parent PMDB
(pmdbl@name.company.com) (10104)

20 Nov 03 19:53:17 (pmdb1): fargo nu u5 0 Retry Connection Errors
ERROR: Connection failed (10071)
Host is unreachable (12296)

20 Nov 03 11:57:06 (pmdb1): fargo nu u5 560 Cont Database Update
ERROR: Failed to create USER u5 (10028) Errors
Already exists (-9)

20 Nov 03 11:57:06 (pmdb1l): fargo nu u5 1120 Cont
ERROR: Failed to create USER u5 (10028)
Already exists (-9)

The Policy Model error log is in binary format; you can view it only by entering the
following command:

AClInstallDir/bin sepmd -e pmdname

Note: Do not manually delete an error log (for example, with the UNIX rm
command). To delete the log, only use the following command:

AClInstallDir/bin sepmd -c pmdname

Important! The error log in CA Access Control r5.1 and later versions has a
format that is not compatible with the format of earlier versions. sepmd cannot
handle error logs from these earlier versions. When you upgrade to a version that
has this format, the old error log is copied to ERROR_LOG.bak; a new log file is
created when you start sepmdd.

Chapter 11: Managing Policy Models 141

Automatic Rule-based Policy Updates

Example: PMDB Update Error Message

The following example shows a typical error message:

date tirne pmdb name subscriber command offset flag

NN OO\ S TS

20 MNow 03 12:53:17 (pmdbl): fargo nu ui 0 Retry
ERRCR: Connection failed (10071) «— major evel fype of ermor)
Host is unreachable {(1ZZ9&) «— mnor kvel (Cause of error)

return code

m The top line always consists of the date, time, and subscriber. The command
that generated the error appears next, followed by the offset (in decimal
format), which indicates the location of the failed update inside the updates
file. Lastly, the flag indicates whether the PMDB retries the update
automatically or continues without it.

m The second line shows an example of a major level message (what type of
error occurred) and its return code.

m The third line displays an example of a minor level message (why the error
occurred), and its return code.

Example: Error Message

A command may generate and display more than one error. Also, an error may
consist of a major level message, a minor level message, or both.

The following error has only one message level:

Fri Dec 29 10:30:43 2003 CIMV_PROD:Release failed. Return code = 9241

This message occurs when sepmd pull attempts to release a subscriber that is
already available.

142 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Policy Model Backup

When you back up a PMDB, you copy the data in the Policy Model database to
another directory. This includes:

policy information

the list of the Policy Model's subscribers
configuration settings

registry entries

the updates.dat file

You cannot restore a PMDB from backup files that use another platform,
operating system, or version of CA Access Control. Ensure you back up the Policy
Model to a host running the same platform, operating system, and version of CA
Access Control.

Chapter 11: Managing Policy Models 143

Automatic Rule-based Policy Updates

Back Up a PMDB Using sepmd

When you back up the PMDB, you copy the data from the Policy Model database
to a specified directory. You should store the backed up PMDB files in a secure
location, preferably protected by CA Access Control access rules.

You can use the sepmd utility to back up a PMDB on a local host. You can also use
selang commands to back up a PMDB on a remote host.

Note: You can back up a PMDB recursively. A recursive backup backs up all the
PMDBs in a hierarchy to the host you specify, and modifies the PMDB subscribers
so that the subscription still works when the backup is moved to the host. You
can only use a recursive backup if the master and child PMDBs are deployed on
the same host.
To back up a PMDB using sepmd
1. Lock the PMDB using the following command:

sepmd -bl pmdb_name

The PMDB is locked and cannot send commands to its subscribers.
2. Do one of the following:

m Back up the PMDB using the following command:

sepmd -bh pmdb_name [destination_directory]
m Back up the PMDB recursively using the following command:

sepmd -bh pmdb_name [destination_directory] [backup_host_name]

Note: If you do not specify a destination directory, the backup is saved to the
following directory:

AClInstallDir/data/policies_backup/pmdb_name
3. Unlock the PMDB using the following command:
sepmd -ul pmdb_name

The PMDB is unlocked and can send commands to its subscribers.

144 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Back Up a PMDB Using selang

When you back up the PMDB, you copy the data from the Policy Model database
to a specified directory. You should store the backed up PMDB files in a secure
location, preferably protected by CA Access Control access rules.

You can use selang commands to back up a PMDB on a local or remote host. You
can also use the sepmd utility to back up a PMDB on a local host.

Note: You can back up a PMDB recursively. A recursive backup backs up all the
PMDBs in a hierarchy to the host you specify, and modifies the PMDB subscribers
so that the subscription still works when the backup is moved to the host. You
can only use a recursive backup if the master and child PMDBs are deployed on
the same host.

To back up a PMDB using selang

1. (Optional) If you are using selang to connect to the PMDB from a remote
host, connect to the PMDB host using the following command:

host pmdb_host_name
2. Move to the PMD environment using the following command:
env pmd
3. Lock the DMS using the following command:
pmd pmdb_name lock
The PMDB is locked and cannot send commands to its subscribers.
4. Back up the DMS database using the following command:
backuppmd pmdb_name [destination(destination_directory)] [hir_host(host_name)]

Note: If you do not specify a destination directory, the backup is saved to the
following directory:

AClInstallDir/data/policies_backup/pmdbName
5. Unlock the PMDB using the following command:
pmd pmdb_name unlock

The PMDB is unlocked and can send commands to its subscribers.

Chapter 11: Managing Policy Models 145

Automatic Rule-based Policy Updates

Policy Model Restoration

Restore a PMDB

When a Policy Model is restored, CA Access Control copies the backup PMDB files
into the specified directory. Everything that is in the original PMDB files is copied
to the new PMDB directory, including:

m policy information

m the list of the Policy Model's subscribers
m configuration settings

m registry entries

m the updates.dat file

If there is an existing PMBD in the destination directory, CA Access Control
deletes the existing files before copying the restoration files into that directory.

You cannot restore a PMDB from backup files that use another platform,
operating system, or version of CA Access Control. Ensure you back up the Policy
Model to a host running the same platform, operating system, and version of CA
Access Control.

When you restore a PMDB, CA Access Control copies the data from the PMDB
backup files into the directory you specify. CA Access Control must be running on
the terminal you do the restoration on.

Note: If you back up and restore the PMDB on different terminals, the PMDB
does not automatically update the terminal resource in the restored PMDB
database. You must add the new terminal resource to the restored PMDB. To add
the new terminal resource, stop the restored PMDB, run the selang -p pmdb
command, then start the restored PMDB.

To restore a PMDB, run one of the following on the terminal that you want to
restore the PMDB on:

m sepmd -restore utility

m selang restore pmd command

Note: For more information about the sepmd utility, see the Reference Guide.
For more information about selang commands, see the selang Reference Guide.

146 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Dual Control

Dual Control is a way of operation that divides the process of updating the PMDB
into two stages:

m Creating a transaction which consists of one or more commands.

The maker - any user with the ADMIN attribute - enters one or more
commands that update the PMDB. The transaction is given a unique ID
number and placed in a file, where it waits to be processed before execution.

m Authorizing the transaction for execution.

The checker - not the same user, but any other user with the ADMIN attribute
- locks the commands in the transaction, checks the commands, and
authorizes or rejects them. If the transaction is authorized, then the
commands are executed in the PMDB. If the transaction is rejected, then the
transaction is deleted and the PMDB is not updated. The checker cannot
authorize some of the commands in a transaction and reject others; the
transaction must be processed as a whole.

Note: Only the find and show commands do not need the authorization of a
checker.

Using the parameters in the sepmd utility, makers can list, retrieve and edit, or
delete unprocessed transactions; checkers can lock transactions in order to
authorize or reject them, and they can unlock transactions for processing at a
later time or by a different checker.

When the sepmdd daemon receives the start_transaction command, it sends the
child process a unique number. The child process tags any further commands
with this identifying number, and the number is added to the new transaction
and kept in the memory of the sepmdd daemon. When sepmdd receives the
end_transaction command, the authorization algorithm is invoked. The
authorization algorithm checks that none of the commands in the transaction
pertain to the maker of the transaction, and none of the objects in the commands
are already locked by another transaction that is waiting to be processed prior to
execution.

You cannot use the same objects in different transactions before they are
processed. If the check passes, then the relevant objects are locked, the
transaction is assigned a unique sequential number, and the data is saved in a
file. Each transaction is saved in a different file.

Note: For more information about the sepmd utility or the sepmdd daemon, see
the Reference Guide.

Chapter 11: Managing Policy Models 147

Automatic Rule-based Policy Updates

Activate Dual Control

Dual Control lets you divide the duty of updating PMDBs between two people: a
maker and a checker.

To activate Dual Control, set the is_maker_checker token, in the pmd.ini file and
in the [pmd] section of the seos.ini file, to yes:

is_maker_checker=yes

Note: Create the Policy Model maker before setting these token values.

Create or Edit Transactions

When Dual Control is activated, the maker needs to create transactions before
these are processed by a checker.

To create a transaction

1.

Make sure the following is true:
m You (as a maker) have the ADMIN authority.

m None of the commands pertain to you. (You cannot enter commands that
change yourself.)

m None of the objects in the commands are already part of another
transaction that has not been processed by a checker yet.

m All the objects in the commands exist.

m You are not editing an existing transaction that another maker invoked.
(You can only edit your own transactions.)

Connect to the maker PMDB:
hosts maker@

The hosts command connects you to the PMDB (maker). When Dual Control
is activated, the name of the PMDB is always “"maker.” After you enter the
hosts command, a message reports whether the connection to the host is
successful or not.

Start the transaction:
start_transaction transactionName

Use start_transaction command as the first step when entering or updating a
transaction. You can describe the transaction or give it any name you want,
up to 256 alphanumeric characters.

148 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

Enter your transaction.
This is a list of commands. For example:

newusr mary owner(bob) audit(failure, loginfailure)
chres TERMINAL tty30 defaccess(read) \
restrictions(days(weekdays)time(0800:1800))

End the transaction:
end_transaction

The transaction is complete; you are presented with the unique ID number
assigned to your transaction. The commands are placed in a file, where you
can still access and change them until a checker, in preparation for
processing, locks them.

Note: Make sure you record the transaction ID number if you want to be able
to edit the transaction later.

To edit a transaction

When you enter the end_transaction command, an ID number displays. This
is a unique number that identifies the transaction. If you want to overwrite
your transaction later, then the process is the same as creating a new
transaction, except that you add to the file the transaction's ID number after
the name. You can enter to the file any changes you want to make. For
example:

hosts maker@
start_transaction transactionName transactionld

You can then enter the appropriate commands to update the transaction:

chusr mary category (FINANCIAL)
end_transaction

View specific unprocessed transactions with the following parameters.

Make sure you are in the ACInstallDir/bin path (where ACInstallDir is the
installation directory for CA Access Control, by default
/opt/CA/AccessControl).

Command with Description
Parameter
sepmd -m | Lists the unprocessed transactions of the user

who invoked the parameter.

sepmd -m la Lists all the transactions of all the makers that are
waiting to be processed.

sepmd -m lo Lists the transactions of all the makers except
those of the user who invoked the parameter

Each transaction in the list includes the name of
the maker, the ID number of the transaction, and

Chapter 11: Managing Policy Models 149

Automatic Rule-based Policy Updates

Command with Description
Parameter

a description of the transaction, if the maker
entered one.

Retrieve a specific transaction to the standard output with the following
command:

sepmd -m r transactionld
Delete a specific transaction with this command:

sepmd -m d transactionld

Checking and Processing Transactions

When Dual Control is activated, the checker needs process transactions created
by a maker.

To check a transaction

1.

Make sure the following is true:
m You (as the checker) have ADMIN authority.
m Another Checker does not lock the transaction.

m None of the commands pertain to you. (You cannot process commands
that involve yourself.)

Navigate to the ACInstallDir/bin path

where ACInstallDir is the installation directory for CA Access Control, by
default /opt/CA/AccessControl

View the transactions that are waiting to be processed before execution:
sepmd -m la

Or, view all the transactions except the transactions that you yourself
created:
sepmd -m lo

Each transaction includes the name of the maker, the ID number of the
transaction, and the name or description of the transaction.

Lock the transactions before processing them:
sepmd -m r transactionld

Note: A locked transaction cannot be changed.

150 Endpoint Administration Guide for UNIX

Automatic Rule-based Policy Updates

5. Process the transaction:
sepmd -m p transactionld code
code
Can be one of the following:
m 0—The transaction is rejected.

In this case, all the commands in the transaction are deleted and no
changes are implemented in the PMDB.

m 1—The transaction is authorized.

The commands in the transaction are immediately implemented in
the PMDB.

m 2—The transaction is unlocked.

The transaction returns to the queue of waiting transactions and can
be processed later, perhaps by a different checker.

A message appears stating which commands were successful and which
failed.

Note: For more information on makers and checkers, see the sepmd utility in the
Reference Guide and the start_transaction command in the selang Reference
Guide.

Using the seagent and sepmdd Daemons

The seagent Daemon

The seagent daemon is responsible for accepting requests from remote
computers and applying them to PMDBs; the seagent daemon also sends
requests to seosd. The sepmdd daemon is the PMDB daemon. This section
describes how these daemons work together in the PMDB environment.

The seagent daemon waits for connections on the seoslang and seoslang2 TCP
services (whose default values are 8890 and 8891, respectively). When a
connection request arrives, seagent forks a child process to handle the
communication on the connection and then continues waiting for new
connections.

When a user enters the hosts command in selang, seagent forks a child process
on the machine that the user is connected to. The child process then receives
commands from the command language interface and passes them on to the
sepmdd daemon.

Chapter 11: Managing Policy Models 151

Mainframe Password Synchronization

The sepmdd Daemon

Using a Shadow File

The sepmdd daemon performs the following functions:
m Administers the PMDB
m Administers the subscriber databases

® Propagates changes from the PMDB to the subscriber databases

The sepmdd daemon is automatically started by seagent when seagent has to
access the PMDB. Normally you do not need to run sepmdd explicitly.

Note: sepmdd runs under the logical user _seagent (not under root) in the AC
environment. To permit or restrict access to resources by sepmdd (for example,
to restrict access to the PMDB directory), create the relevant rules for _seagent.

Usually, sepmdd does not use a shadow file when updating a native
environment. You can, however, set up a shadow file. To do this, set the
UseShadow token in the [pmd] section of the pmd.ini file to yes.

If the UseShadow token is set to yes, sepmdd uses a default shadow file in the
same directory as the PMDB. If you want to change the location of the shadow
file, specify the new location with the YpServerSecure token in the [pmd] section
of the pmd.ini.

If you change the location of the shadow file (with the YpServerSecure), to the
local host's shadow file (for example, /etc/shadow), sepmdd sets a token,
UseSystempFiles, to yes.

Important! Do not change the UseSystemFiles token yourself. The sepmdd or
seagent daemons change it automatically.

Note: For more information about the seagent or sepmdd daemons, see the
seagent and sepmdd utilities in the Reference Guide.

Mainframe Password Synchronization

CA Access Control supports password synchronization among mainframes
running CA Top Secret, CA ACF2, or RACF security products (and CA Common
Services CAICCI package) and Windows or UNIX computers running CA Access
Control. Synchronization is accomplished using the standard CA Access Control
password Policy Model method.

Any password change a mainframe user makes is propagated to all the machines
in the password Policy Model hierarchy.

152 Endpoint Administration Guide for UNIX

Chapter 12: General Security Features

This section contains the following topics:

Protection of Idle Stations (see page 153)

Protecting Resources Using APIs (see page 157)

Protecting Against Stack Overflow: STOP (see page 157)

Defining Day and Time Access Rules for Resources (see page 158)
B1 Security Level Certification (see page 159)

Protection of Idle Stations

Information is extremely vulnerable when terminals are left open and active. An
intruder who happens upon such a terminal (for example, during a lunch break)
need not try to break passwords or have complicated equipment to sniff the
network lines, since all terminals at the site are already logged in and ready for
work. Although screen savers that prompt for the password before restoring the
desktop are useful, the security administrator cannot make sure that all users
are using secured screen savers.

CA Access Control provides selock, a screen-locking utility that guards all
terminals and stations by locking them whenever they are idle for more than a
specified period of time. When returning to work, the user is prompted to specify
the password. If the correct password is not specified within one minute, the
terminal remains locked. The selock utility can find the password of users who
can unlock a screen even if those users change their passwords while selock is
active.

Note: For more information about the screen lock utility selock, see the
Reference Guide.

Chapter 12: General Security Features 153

Protection of Idle Stations

You should choose to use selock options that suit your requirements:
m |ess security, more convenience

Use the -timeout option to set the timeout to a large value, such as 10
minutes, and the -lock-timeout option to set the lock timeout to an even
larger value, such as 60 minutes. This prevents selock from excessively
interrupting your work by switching to the saver mode. Also, this setting
locks your screen only in cases when your terminal is left inactive for
extended periods.

m More security, less convenience

Use the -timeout option to set the timeout to a small value, such as 1 minute,
and -lock-timeout option to set the lock timeout to a small value, between 0
and 2 minutes. This always hides your work soon after you stop accessing
your terminal, and requires a password for restoring access. To ensure that
selock always requires password-entry to reactivate your terminal after the
saver mode starts, use the -lock-timeout option to set the lock timeout to
zero.

m The selock command can be part of the X startup shell, so that it starts
automatically every time the user logs in to the system. The script must be
run under the user ID, not under the root ID. The way you integrate the
selock command into the startup script depends on the specific environment
of the site.

Note: For more information on startup scripts, see the documentation for
your UNIX system.

Protection Modes

selock offers three modes of operation:
Monitor Mode

The monitor mode is the initial mode of selock. In this mode, selock monitors
keyboard and mouse activity. If selock detects no keyboard or mouse activity
during the time-out period-and the transparent parameter is off-selock
automatically switches to the saver mode. No password entry is required for
the transition from the monitor mode to the saver mode.

154 Endpoint Administration Guide for UNIX

Protection of Idle Stations

Saver Mode

In the saver mode selock blanks the entire screen and displays a system icon
that shifts position. The blank screen and shifting icon provide two
operational advantages:

m Reduced risk of screen viewing by unauthorized people
m Reduced screen burn-in

You can manipulate the appearance and repositioning of the icon using
selock options. When selock detects any keyboard or mouse activity, it
immediately returns from the saver mode to the monitor mode, restoring the
screen display to what it was before it switched to saver mode. No password
entry is required for the transition from the monitor mode to the saver mode.

If selock remains in the saver mode for the period specified by the
lock-timeout parameter, it automatically switches to the lock mode. selock
does not give any visual indication of the transition from the saver mode to
the lock mode.

Lock Mode

In lock mode with the default settings, selock continues to display a moving
icon on a black background. When selock detects any keyboard or mouse
activity, a dialog containing a prompt for the user's password appears.

When the user enters the correct password, selock switches back to monitor
mode. If the user enters an incorrect password, the password-entry dialog
closes and selock remains in the lock mode.

If you set the -transparent option to on, selock locks the screen but displays
the contents and updates the on-going processes. The background of the
screen changes to indicate that the screen is locked. When you use the lock
mode, saver mode is never invoked.

Chapter 12: General Security Features 155

Protection of Idle Stations

Set Stations to Lock when Idle

The selock utility lets you lock idle stations to prevent unauthorized access to
these stations when they are left idle.

To set stations to lock when idle

1. (Optional) Set the DISPLAY environment variable.

For the selock command to work, you must set the DISPLAY environment
variable. However, you can specify the target display directly in the selock
command instead.

2. Place the selock command in the user's login script (the .login file).

Alternatively, you can place the selock command in the /etc/login or
/etc/cshrc file.

Note: Two users can always unlock a locked screen. By default, these users are
the current user and root. However, you can replace root with any other user if
you specify the other user's name in the unlocking_user token, located in the
[selock] section of the seos.ini file. You can replace the current user with any
other user by using the -user option when executing selock.

Example: Idle station lockup command in a startup file

The following is a typical startup command, suitable to be placed in X startup
files:

selock -display $DISPLAY -timeout 5
This command activates selock after five minutes of terminal inactivity.

We recommend that you place the following line in the global xstartup script. The
xstartup script usually resides in the directory /usr/lib/X11/xdm/Xstartup.

selock -display $DISPLAY -user $USER -timeout 3 &

This statement enforces use of the terminal locking program for all users who are
using X terminals.

Change the Screen Lock Icon

The default system icon that selock uses is the CA Access Control logo and is
located in the file ACInstallDir/data/admin/Selogo.xpm

To select an icon of your own choice, replace this file.

Note: The icon file must be in XPM version 3.3 format.

156 Endpoint Administration Guide for UNIX

Protecting Resources Using APIls

Protecting Resources Using APIs

If you have defined resources that are not part of CA Access Control (that is,
in-house resources), you can protect them by using CA Access Control APIs. Each
API has two layers:

The function library

Enables programmers to use the CA Access Control authorization engine.
The user exits

Enable the system administrator to tailor CA Access Control behavior to the

requirements of the site.

Note: For more information about CA Access Control APIs, see the SDK Guide.

Protecting Against Stack Overflow: STOP

Stack overflow enables hackers to execute arbitrary commands on remote or
local systems, many times as the root user (the superuser). They do this by
exploiting bugs in the operating system or other programs. These bugs allow
users to overwrite the program stack, changing the next command to be
executed.

Stack overflow is not simply a bug; it is possible to create a block that overwrites
the return address with a meaningful address, resulting in transferred control to
unauthorized code (usually in the same block).

Stack Overflow Protection (STOP) is a feature that prevents hackers from
creating and exploiting stack overflow to break into systems.

Chapter 12: General Security Features 157

Defining Day and Time Access Rules for Resources

Starting and Stopping STOP

When STOP is first installed, stack overflow protection is activated by default. To
deactivate it, you must change a token in the [seos_syscall] section of the
seos.ini file and restart CA Access Control. To do this, use the seini command as
follows:

seini -s SEOS_syscal.STOP_enabled 0
You could manually change the seos.ini file instead.

To re-enable STOP, change the value of the token to 1 and restart CA Access
Control.

Note: When STOP is active on Sun Solaris 7 systems, the dbx program cannot
work properly. If you need to use dbx on a system that is protected by STOP, you
must first disable STOP.

Defining Day and Time Access Rules for Resources

You can use CA Access Control to specify day-of-week and time-of-day
restrictions for resource access. This feature can be exploited for TERMINAL
access, SURROGATE requests, and user-defined resources. For example, the
following rule completely disables the terminal ws3 on weekends and outside the
08:00-19:00 time period every day:

chres TERMINAL ws3 restrictions(days (weekdays) time(0800:1900))
No login request from that station is accepted outside these periods.

You can use CA Access Control to protect against substitution requests to highly
authorized users outside work hours. Suppose user AcctMgr is the Accounting
Manager, who is allowed to perform financial transactions, and you have
restricted AcctMgr login to work hours and weekdays only. Intruders or
unauthorized personnel may try to access the account of AcctMgr by invoking the
command su AcctMgr. Use the following command to make it impossible to
substitute the user name to AcctMgr outside the specified period:

chres SURROGATE USER.AcctMgr restrictions(days(weekdays) time(0800:1900))

The same technique can be implemented for any protected resource, including
user-defined abstract classes that are used for implementing in-house
applications.

158 Endpoint Administration Guide for UNIX

B1 Security Level Certification

B1 Security Level Certification

Security Levels

CA Access Control includes the following B1 “Orange Book” features:
m Security categories
m Security labels

m Security levels

When security level checking is enabled, CA Access Control performs security
level checking in addition to its other authorization checking. A security level is a
positive integer between 1 and 255 that can be assigned to users and resources.
When a user requests access to a resource that has a security level assigned to
it, CA Access Control compares the security level of the resource with the security
level of the user. If the user's security level is equal to or greater than the
security level of the resource, CA Access Control continues with other
authorization checking; otherwise, the user is denied access to the resource.

If the SECLABEL class is active, CA Access Control uses the security level
associated with the security labels of the resource and user; the security level
that is explicitly set in the resource and user records is ignored.

To protect a resource with security level checking, assign a security level to the
resource's record. The level parameter of the newres or chres command assigns
a security level to a resource.

To allow a user access to resources protected by security level checking, assign
a security level to the user's record. The level parameter of the newusr or chusr
command assigns a security level to a user.

Enabling Security Level Checking

The following setoptions command enables security level checking:

setoptions class+ (SECLEVEL)

Disabling Security Level Checking

The following setoptions command disables security level checking:

setoptions class- (SECLEVEL)

Chapter 12: General Security Features 159

B1 Security Level Cerfification

Security Categories

When security category checking is enabled, CA Access Control performs security
category checking in addition to its other authorization checking. When a user
requests access to a resource that has one or more security categories assigned
to it, CA Access Control compares the list of security categories in the resource
record with the category list in the user record. If every category assigned to the
resource appears in the user's category list, CA Access Control continues with
other authorization checking; otherwise, the user is denied access to the
resource.

If the SECLABEL class is active, CA Access Control uses the list of security
categories associated with the security labels of the resource and user; the lists
of categories in the user and resource records are ignored.

To protect a resource by security category checking, assign one or more security
categories to the resource's record. The category parameter of the newres or
chres command assigns security categories to a resource.

To allow a user access to resources protected by security category checking,
assign one or more security categories to the user's record. The category

parameter of the newusr or chusr command assigns security categories to a
user.

Enabling Security Category Checking

The following setoptions command enables security category checking:

setoptions class+ (CATEGORY)
Disabling Security Category Checking

The following setoptions command disables security category checking:

setoptions class-(CATEGORY)

160 Endpoint Administration Guide for UNIX

B1 Security Level Certification

Defining a Security Category

Define a security category by defining a resource in the CATEGORY class. The
following newres command defines a security category:

newres CATEGORY name

where name is the name of the security category.

To define the security category “Sales,” enter the following command:
newres CATEGORY Sales

To define the security categories “Sales” and “Accounts,” enter the following
command:

newres CATEGORY (Sales,Accounts)
Listing Security Categories

To display a list of all the security categories that are defined in the database, use
the show command as follows:

find CATEGORY
The list of security categories displays on the screen.

Deleting a Security Category

Delete a security category by removing its record from the CATEGORY class. The
following rmres command removes a security category:

rmres CATEGORY name
where name is the name of the security category.

To remove the security category “Sales,” enter the following command:

rmres CATEGORY Sales

Chapter 12: General Security Features 161

B1 Security Level Certification

Security Labels

A security label represents an association between a particular security level and
zero or more security categories.

When security label checking is enabled, CA Access Control performs security
label checking in addition to other authorization checks. When a user requests
access to a resource that has a security label assigned to it, CA Access Control
compares the list of security categories specified in the resource record's security
label with the list of security categories specified in the user record's security
label. If every category assigned to the resource's security label appears in the
user's security label, CA Access Control continues with the security level check;
otherwise, the user is denied access to the resource. CA Access Control compares
the security level specified in the resource record's security label with the
security level specified in the user record's security label. If the security level
assigned in the user's security label is equal to or greater than the security level
assigned in the resource's security label, CA Access Control continues with other
authorization checking; otherwise, the user is denied access to the resource.

When security label checking is enabled, the security categories and security
level specified in the user and resource records are ignored; only the security
level and categories specified in the security label definitions are used.

To protect a resource by security label checking, assignh a security label to the
resource's record. The label parameter of the newres or chres command assigns
a security label to a resource.

To allow a user access to resources protected by security label checking, assign
a security label to the user's record. The label parameter of the newusr or chusr
command assigns security labels to a user.

Enabling Security Label Checking

The following setoptions command enables security label checking:

setoptions class+(SECLABEL)

Disabling Security Label Checking

The following setoptions command disables security label checking:

setoptions class-(SECLABEL)

162 Endpoint Administration Guide for UNIX

B1 Security Level Certification

Defining a Security Label

Define a security label by defining a resource in the SECLABEL class. The
following newres command defines a security label:

newres SECLABEL name category(securityCategories) level(securityLevel)
where:
name

Specifies the name of the security label.

securityCategories

Specifies the list of security categories. To specify more than one, separate
the security category names with a space or a comma.

securityLevel

Specifies the security level. Use an integer between 1 and 255.

To define the security label Managers to contain the security categories Sales and
Accounts and a security level of 95, enter the following command:

newres SECLABEL Manager category(Sales,Accounts) level(95)
Listing the Security Labels

To display a list of all the security labels that are defined in the database, use the
show command as follows:

find SECLABEL

The list of security labels appears on the screen.

Deleting a Security Label

A security label is deleted by removing its record from the SECLABEL class. The
following rmres command removes a security label:

rmres SECLABEL name
where name is the name of the security label.

To remove the security category "Manager” enter the following command:

rmres SECLABEL Manager

Chapter 12: General Security Features 163

Chapter 13: Auditing Events

This section contains the following topics:

Setting Audit Rules (see page 165)

Define the Audit Events That CA Access Control Writes to the Audit Log (see page
166)

How CA Access Control Determines the Audit Mode for a User (see page 167)
Warning Mode (see page 169)

Audit Logs (see page 172)

Log Routing (see page 175)

Migrate User Trace Filters (see page 180)

Setting Audit Rules

For security auditing, CA Access Control keeps audit records for events of access
denial or access grants according to the audit rules defined in the database.

Every accessor and resource has an AUDIT property that can be set to one or
more of the following values:

FAIL

Logs access failures by the accessor to the resource.
SUCCESS

Logs successful accesses by the accessor to the resource.
LOGINFAIL

Logs every logon failure by the accessor. (This value does not apply to
resources.)

LOGINSUCCESS

Logs every successful logon by the accessor. (This value does not apply to
resources.)

ALL

Logs the same information as FAIL, SUCCESS, LOGINFAIL, and
LOGINSUCCESS for accessors or FAIL and SUCCESS for resources.

NONE
Logs nothing concerning the accessor or resource.

TRACE

Logs the same information as ALL and all system events. (This value does not
apply to resources.)

Chapter 13: Auditing Events 165

Define the Audit Events That CA Access Confrol Writes to the Audit Log

Whenever you create or update an accessor or resource record in the database,

you can specify the AUDIT property. You can also specify whether email
notification of logged events should be sent and to whom.

The records in the audit log accumulate according to these audit rules. The

decision whether to log an event is based on the following:

m If the resource or accessor has AUDIT(ALL), all login events for the accessor
and all events concerning resources protected by CA Access Control are

logged, regardless of whether access failed or succeeded.

m If access to a resource protected by CA Access Control is successful and the

accessor or resource has AUDIT(SUCCESS), the event is logged.

m If access to a resource protected by CA Access Control fails and the accessor

or resource has AUDIT(FAIL), the event is logged.

In addition, if you set a user to be traceable, each time a trace record is written

for that user, a corresponding audit record is written to the audit log.

Define the Audit Events That CA Access Control Writes to the

Audit Log

CA Access Control writes access success and failures to the audit log. To define
which access events CA Access Control writes to the audit log, change the value
of the AUDIT property for the resource or accessor that you want to audit. You

can also use this method to specify that CA Access Control logs every trace event

to the audit log.

You use the AUDIT property to specify the audit events that CA Access Control
writes to the audit log. Use selang or CA Access Control Endpoint Management to

set the AUDIT property for resources and accessors as follows:

Value of AUDIT

What CA Access Control
Logs

Applicable Objects

FAIL Access failures Users and resources
SUCCESS Access successes Users and resources
LOGINFAIL Login failures Users
LOGINSUCCESS Login successes Users
ALL Equivalent to FAIL, SUCCESS, Users and resources
LOGINFAIL and
LOGINSUCCESS
TRACE Equivalent to ALL plus all Users

system events

166 Endpoint Administration Guide for UNIX

How CA Access Confrol Determines the Audit Mode for a User

Value of AUDIT What CA Access Control Applicable Objects
Logs
NONE No logging Users and resources

Note: If the audit property of a user is not set, the AUDIT value of a group or
profile group can affect the audit mode CA Access Control uses for the user.

How CA Access Control Determines the Audit Mode for a

User

The audit mode for a user specifies which audit events CA Access Control sends
to the audit log for that user. The following process describes how CA Access
Control determines the audit mode for a user:

1. CA Access Control checks if the user's record in the USER or XUSER class has
a value for the AUDIT property.

If the user's record has a value for the AUDIT property, CA Access Control
uses that value as the audit mode for the user.

2. CA Access Control checks if the user is assigned to a profile group. If the user
is assigned to a profile group, CA Access Control checks if the profile group's
record in the GROUP class has a value for the AUDIT property.

If the user is assigned to a profile group and the profile group's record has a
value for the AUDIT property, CA Access Control uses that value as the audit
mode for the user.

3. CA Access Control checks if the user is a member of a group. If the user is a
group member, CA Access Control checks if the group's record in the GROUP
or XGROUP class has a value for the AUDIT property.

If the user is group member and the group's record has a value for the AUDIT
property, CA Access Control uses that value as the audit mode for the user.
If the user is not a member of a group, or if the group's record does not have
a value for the AUDIT property, CA Access Control assigns the systemwide
audit mode to the user.

Note: The user's audit mode accumulates if a user is a member of more than
one group and the groups have different audit modes. The audit mode for the
user is the sum of all the audit modes for the groups of which they are
members.

Note: If CA Access Control uses the value of a group's AUDIT property to
determine the audit mode for a user, and you change the group's audit mode
while the user is logged in, the audit mode for the logged-in user also changes.
The user does not have to log off for the change in group audit mode to take
effect.

Chapter 13: Auditing Events 167

How CA Access Control Determines the Audit Mode for a User

The following diagram shows how CA Access Control determines the audit mode

for a user:

Does the user have an
audit mode?

Yes

No

Is the user assigned
to a profile group?

No

v

Accumulate the audit

which the user is a

member

mode from the groups of |

Yes

Does the profile
group have an audit

mode?

A

The audit mode
for the user is the
accumulated
group audit mode

The audit mode
for the user is the
user’s audit mode

The audit mode
for the user is the
systemwide audit

mode

A

The audit mode
for the user is the
profile audit mode

End

Example: Audit by Groups

User Jan is a member of Group A and Group B. Group A has an audit mode of FAIL
and Group B has an audit mode of SUCCESS. Because Jan is a member of both
groups, Jan has the accumulated audit mode of FAIL and SUCCESS.

More information:

How CA Access Control Uses Profile Groups to Determine User Properties (see

page 37)

168 Endpoint Administration Guide for UNIX

Warning Mode

Default Audit Modes for Users and Enterprise Users

When you create a user (USER object), CA Access Control assigns the default
AUDIT_MODE to the object. The default value of the AUDIT_MODE property is
Failure, SuccesslLogin, SuccessFailure.

When you create an enterprise user (XUSER object), by default CA Access
Control does not assign a default AUDIT_MODE value to the object.

Note: (UNIX) To change the default value of the AUDIT_MODE property for
USER objects, edit the value of DefaultAudit in the [newusr] section of the
lang.ini file.

Warning Mode

Warning Mode is a property that you can apply to a resource, and an option that
you can apply to a class. If Warning mode is applied to a resource or a class and
an access violates an access rule, CA Access Control writes an audit log entry
with the return code W, but permits the access to the resource. If a class is in
Warning mode, all the resources in that class are in Warning mode.

Warning Mode only has an effect if CA Access Control is in Full Enforcement
mode.

Note: Full Enforcement mode is the only mode CA Access Control for UNIX
supports. CA Access Control for Windows also supports Audit Only mode.

You can use Warning mode when you introduce or modify an access policy. If you
do this, you can examine the audit log to preview the results of your intended
policy before you put that policy into effect. You can display the audit log by using
the seaudit command.

If a class has the property warning, you can put the class into Warning mode. If
a resource group or class is in Warning mode, when an access rule is violated, CA
Access Control allows the access and writes an entry in the audit log that
references the resource (not the resource group or class).

The Warning mode settings on a resource and on a class are independent: if you
put a resource into Warning mode, it remains in Warning mode, even if it belongs
to a class and you remove Warning mode from that class.

Note: You can only put resources or classes into Warning mode if they have the
property warning; not all resources or classes have this property.

Chapter 13: Auditing Events 169

Warning Mode

Put a Resource into Warning Mode

You put a resource into Warning mode to monitor the effects of access rules,
without needing to enforce these rules.

Note: As well as putting individual resources into Warning mode, you can put a
class into Warning mode (see page 171).

To put a resource into Warning mode

1. In CA Access Control Endpoint Management edit the resource you want to
put into Warning mode.

The appropriate Modify page appears.
2. Click the Audit tab.

The Audit Modes page for the resource appears.
3. Select Warning Mode, and click Save.

The resource you modified is now in Warning mode.
Note: In Warning mode, CA Access Control always writes warning records to the
audit log when access is permitted but access rules are violated: you do not need

to set the audit property on the resource for this to happen.

Use the sereport utility (report number 6) to see all resources in Warning mode.
Example: Put a File into Warning Mode

The following selang example puts the file c:\myfile into Warning mode:

chres FIIE c:\myfile warning

Example: Clear Warning Mode from a File

The following selang example takes the file c:\myfile out of Warning mode:
chres FIIE c:\myfile warning-

Warning mode is now not active for the myfile, so CA Access Control enforces the
access rules for myfile.

Example: Put a Terminal into Warning Mode

The following selang example puts the terminal myterminal into warning mode:
chres terminal myterminal warning

CA Access Control permits access by any authorized user from the terminal

myterminal, but logs an audit record for any user that normally would be denied
access from that terminal.

170 Endpoint Administration Guide for UNIX

Warning Mode

Put a Class into Warning Mode

Rather than putting individual records into Warning mode, you can put all records
in a class into Warning mode. You might use Warning mode to monitor the effects
of access rules, without needing to enforce these rules.
To put a class into Warning mode
1. In CA Access Control Endpoint Management, do as follows:

a. Click Configuration.

b. Click Class Activation.

The Class Activation page appears.

2. Select the check box in the Warning column for the class you want to put into
Warning mode.

3. Click Save.

A confirmation message appears, letting you know that CA Access Control
options have been successfully updated.

Find Out Which Resources Are in Warning Mode
You should use Warning mode as a temporary measure when implementing CA
Access Control. Once you are comfortable that users have the required access to
the resources they require, you should turn off Warning mode and CA Access
Control will start enforcing the associated rules.

To find out which resources are in Warning mode, you can create a report that
shows all resources with Warning mode.

To create a report, enter the following command:

sereport-r 6
CA Access Control creates the report.

Note: For more information about the sereport utility, see the Reference Guide.

Chapter 13: Auditing Events 171

Audit Logs

Find Out Which Classes Are in Warning Mode

Audit Logs

You should use Warning mode as a temporary measure when implementing CA
Access Control. Once you are comfortable that users have the required access to
the resources they require, you should turn off Warning mode and CA Access
Control will start enforcing the associated rules.

To find out which classes are in Warning mode, you can get CA Access Control to
display this data.

To display this data, enter the following selang command:

setoptions cwarnlist
CA Access Control displays a table showing the classes that are in Warning mode.

Note: For more information about setoptions, see the selang Reference Guide.

The audit records are stored in a file called the audit log. The location for the
audit log is specified in the seos.ini file. The seaudit utility or CA Access Control
Endpoint Management can be used to list recorded events in the audit log, filter
events by time restrictions or event type, and so on.

Note: For more information about seaudit, see the Reference Guide.

The audit logs are stored locally, but you can use CA Access Control to distribute
the auditing information by using the log routing facility. Consider archiving old
audit logs to tape, to allow you to scan the events later.

By default, the authorization daemon seosd creates the audit logs with root
ownership, since the seosd program is executed by the user root. For the same
reason, the audit logs are created with read/write permissions granted only to
root.

172 Endpoint Administration Guide for UNIX

Audit Logs

To enable other users to read the audit logs without having to su (substitute
user) to root, CA Access Control includes two entries in the seos.ini file that
specify which group ownership is assigned to the log files.

® One entry is for the audit log.

Suppose the auditors at your site are all members of a group named
auditforce. You want these users to be able to browse through the local audit
log files. Edit the seos.ini file so that the audit_group token in the [logmgr]
section is set to auditforce. CA Access Control then gives the auditforce group
read permission to your local audit logs. From this point, any local audit logs
created at your station have the auditforce group as their owner.

The log routing daemons consult the same token to see who should have
access rights to the audit logs that the daemons produce and collect. Note
that the audit logs are subject to access control like any other files, and CA
Access Control rules can keep users from accessing them.

m The other entry is for the error log, and it is used in the same way to specify
group ownership for that file.

The System Auditor

A system auditor is a user to whom the AUDITOR attribute is assigned. Users
defined as system auditors are permitted to perform auditing tasks such as
changing the auditing attribute that is assigned to users and resources.

Auditing tasks can be carried out from central locations. To collect auditing
information from the various stations on the network in a single host, the auditor
can use the log routing facility.

Chapter 13: Auditing Events 173

Audit Logs

Set Up the Log Routing Facility

File Noftifications

To set up the log routing

1.

Create a log routing configuration file.

Unless you specify otherwise with the RouteFile token in the seos.ini file, CA
Access Control expects your log routing configuration file to be named
AClInstallDir/log/selogrd.cfg

where ACInstallDir is the installation directory for CA Access Control, by
default /opt/CA/AccessControl.

You can find sample log routing configuration files in the directory
AClInstallDir/samples/selogrd.init. Alternatively, as a very simple log routing
configuration file, you can create a file consisting of the following three lines:

Rule
host destination

For destination, enter the name of the host that should receive the audit
records. All classes, resources, accessors, and results are logged.

Note: For more information about the syntax of the configuration file, see
the selogrd utility in the Utilities Guide.

Start the emitter daemon (selogrd) on all hosts that are to route auditing
information, and execute the collector daemon (selogrcd) on all hosts that
are to collect auditing information.

Note: For more information about using these daemons, see the Reference
Guide.

Besides compiling the log, the log routing facility can also send notifications to

the host's display screen, to an email address, or to other destinations. You can
base notifications on information from your station's own audit log or from logs
that the collector daemon has brought to your station.

174 Endpoint Administration Guide for UNIX

Log Routing

To set up such notifications, you need to use the log routing configuration file and
a selang command. For example, suppose you want to notify the user John
whenever a setuid request to user root is successfully made.

1. Issue the following selang command:
chres SURROGATE USER .root notify(John)

This chres command specifies that each time someone surrogates user to
root, a special audit log record is created, and the seosd daemon is to notify
the user named John. The daemon also creates a special kind of audit record
called a notification record.

2. Once you have specified notification for one or more resources, you can add
the following three lines to the log routing configuration file.

Rule2
notify default

This line causes the log routing emitter to create a mail message for the
notification audit record.

Note: For more information about the configuration file format and setting
up the log routing daemons, see the Reference Guide.

Log Routing

CA Access Control uses the log routing daemon, selogrd, to distribute selected
local audit log records to specific hosts; reformat audit log records into email
messages, ASCII files, or user windows; and transmit notification messages
based on audited events.

To determine audit record routing, selogrd uses a configuration file, selogrd.cfg.
This file is a list of which audit log records to route-or not to route-and to where.
For a complete description of this file, see the Reference Guide.

Log Routing Configuration

To start selogrd or selogrcd automatically when seosd starts, set the seos.ini
tokens selogrd or selogrcd in the [daemons] sections to yes. Then when you run
seload, seload starts the daemons for you.

For example, the appropriate tokens in the [daemons] section of the soes.ini
should look as follows:

selogrd = yes
selogred = yes

Chapter 13: Auditing Events 175

Log Routing

Since the log-routing facility uses RPC to route audit records, placing a log audit
collector behind a firewall does not allow simple blocking of UDP ports because
there is no way to know which port the portmapper assigns to the server
daemon. To solve this problem, you can use the token ServicePort to assign a
predefined port to the server daemon.

If the firewall allows port 111 from outside the network (portmapper port), you
should only change the seos.ini file in the server. If the firewall does not allow
communication to portmapper in the protected network, both clients and server
must agree on a specific port.

You can ensure this by setting the same value in the ServicePort token in the
seos.ini files of both clients and the server. You can specify a number-which
means that the daemons bind to the specified port-or a service name. If you
specify a service name, both clients and the server must have the same service
resolution. For example, if you specify the service name seoslogr, then add the
following to the /etc/services file of the clients and the server:

seoslogr 2022/udp # Audit log-routing

If the clients or the server are using NIS to resolve services, you must update the
NIS services map.

Audit Log Route Encryption

You can encrypt audit log records. When you use encryption, the selogrd daemon
encrypts audit log record before sending it to the collector (selogrcd or audit log
router). The collector in turn decrypts the received records.

CA Access Control provides two encryption styles for selogrd: CA Access Control
standard encryption, and audit log encryption through adcipher. For encryption,
selogrd uses functions from shared library objects, as specified in the [selogrd]
section of the seos.ini file.

Standard encryption uses the shared library libcrypt; Audit encryption uses
functions from a file specified by the CipherName token. By default, the file name
is adcipher, which is a symbolic link to the desired shared library. The CA Access
Control installation process places four shared libraries in the CA Access
Control/lib directory: libldes, lib3des, libIDEA, and libblowfish.

CA Access Control maintains the standard encryption key in the shared library,
while the audit encryption uses a separate file as specified by the KeyFile token
(default value: adcipher.bin).

176 Endpoint Administration Guide for UNIX

Log Routing

Use the UseEncryption token to determine the type of encryption:
m To use CA Access Control standard encryption, specify UseEncryption=native

m To use audit log encryption through adcipher, specify UseEncryption=eTrust,
and enter the appropriate values for the CipherName and KeyFile tokens.

m To disable selogrd encryption, specify UseEncryption=no.
Use the RefuseUnencrypted token to accept or deny unencrypted audit. It is used

in conjunction with the UseEncryption token and is redundant if the
UseEncryption is set to no:

m To refuse unencrypted audit, specify RefuseUnencrypted=yes
m To accept both encrypted and unencrypted audit, specify
RefuseUnencrypted=no

Note: The selogrcd daemon uses the same tokens in the seos.ini file.
To change the encryption key, use the sechkey utility, described in this chapter.

Important! If you send records to the audit collector, be sure that both selogrd
and the collector use the same shared encryption file and encryption key.

Send Audit Log Records via Email

selogrd can send records to email targets directly. You can direct email messages
through a mailer utility (the old method), or directly to the mail exchange server
using SMTP.

To send audit log records directly to the mail exchange server, set the
UseSmtpMail token in the [selogrd] section of the seos.ini file.
You can also specify the following:

m Atime-out in case the mail server does not answer, using the SmtpTimeLimit
token

m The “From:” mail header field, using the SmtpMailFrom token

m The mail server host address, using the SmtpMailServer token

Note: This method does not use UNIX mail utility; rather, it establishes a direct
connection with mail server, and uses SMTP protocol to send mail.

Chapter 13: Auditing Events 177

Log Routing

Configure SNMP Traps

For systems that use the Internet network management protocol SNMP (Simple
Network Management Protocol), you can configure selogrd to create SNMP traps
using CA Access Control audit records.

To implement the SNMP traps, first locate the SNMP shared objects provided in
the CA Access Control libraries, and then configure selogrd correctly using these
shared objects.

The shared objects-usually found in the directory ACInstallDir/lib- are called
snmp.xx and libsnmp.xx, where the xx extension varies according to the
platform. The possible extensions are:

m ,0—AIX platform

m ,sl—HP platform

= ,so—All other platforms

If you want to use the SNMP extension of selogrd, and CA Access Control is not

installed in the default location, you must set the following environment variables
before running selogrd:

m In AIX, set LIBPATH to ACInstallDir/lib

m In Solaris, set LD_LIBRARY_PATH to ACInstallDir/lib
m In Linux, set LD_LIBRARY_PATH to ACInstallDir/lib
m In HP, set SHLIB_PATH to ACInstallDir/lib

where ACInstallDir is the directory where you installed CA Access Control.

To configure selogrd to use the shared objects
1. Create a file called ACInstallDir/etc/selogrd.ext.

2. Define where the SNMP shared objects are by adding a single line to the file
AClInstallDir/etc/selogrd.ext with the appropriate path for the snmp.so. (It is
enough to specify this shared object for the other to automatically be linked.)
For example:

snmp /opt/CA/AccessControllib/snmp.so

178 Endpoint Administration Guide for UNIX

Log Routing

3. Finally, you must configure the selogrd.cfg file to specify what type of action
should trigger SNMP traps, and which location should be notified when SNMP
traps are triggered. Configuration is very similar to that for other auditing
notification, with the delivery system specified as snmp.

For example, suppose you want to have SNMP traps activated when CA
Access Control starts and shuts down, and have notification of these SNMP
traps sent to AuditPC. You can do this by adding the following section to the
selogrd.cfg configuration file:

snmpRule

snmp AuditPC

include Class(START).
include Class(SHUTDOWN).

Similarly, you can activate the SNMP traps by other actions or types of access, or
have them sent to other locations.

Chapter 13: Auditing Events 179

Migrate User Trace Filters

Migrate User Trace Filters

If you set a user to be traceable, each time a trace record is written for that user,
a matching audit record is written to the seos.audit file. In previous releases of
CA Access Control, these audit records were filtered by the trcfilter.init file. In CA
Access Control r12.0 SP1 and later, the audit records generated by user trace
records are filtered by the audit.cfg file, which filters all other audit records.

You must manually migrate the audit record filters from trcfilter.init to audit.cfg.
If you do not migrate the filters, the audit records generated by user traces will
not be filtered.

Note: Trace records are still filtered by trcfilter.init. Do not migrate trace filters
from trcfilter.init to audit.cfg.

To migrate the user trace filter

1. In trcfilter.init, find the user trace filter that you need to migrate.

The trace_filter setting in the seosd section of the seos.ini file determines the
location of this file.

2. In audit.cfg, type the following, where usertracefilter is the user trace filter
from trcfilter.init:

3. (Optional) Repeat Steps 1-2 for each user trace filter that you need to
migrate.
Example: Migrate User Trace Filter

In this example, the following user trace filter is in the trcfilter.init file:

*ExampleFilter

To migrate this user trace filter, type the following on a new line in the audit.cfg
file:

180 Endpoint Administration Guide for UNIX

Chapter 14: Scope of Administration
Authority

This section contains the following topics:

Global Authorization Attributes (see page 181)
Group Authorization (see page 183)
Ownership (see page 186)

Authorization Examples (see page 188)

Sub Administration (see page 190)
Environmental Considerations (see page 192)

Global Avuthorization Attributes

Global authorization attributes are set in the user record. Each global
authorization attribute permits the user to perform certain types of functions.
This section describes the functions and the limits of each global authorization
attribute.

ADMIN Attribute

The ADMIN attribute lets a user execute almost all commands in CA Access
Control. Users who are defined in the database with the ADMIN attribute can
define and update users, groups, and resources in the database. This is the most
powerful attribute in CA Access Control, but it does have limitations:

= If only one user in the database has the ADMIN attribute, that user cannot be
deleted, and the ADMIN attribute cannot be removed from the record.

m Users with the ADMIN attribute but without the AUDITOR attribute cannot
change the type of auditing that is done on a user, group, or resource (audit
mode). If you have the ADMIN attribute and need to change the auditing
characteristics of a user, group, or resource, assign yourself the AUDITOR
attribute.

m Users with the ADMIN attribute cannot delete superuser (the root account on
UNIX or the Administrator account on Windows), but they can set root to be
a non-ADMIN user.

Chapter 14: Scope of Administration Authority 181

Global Authorization Attributes

AUDITOR Attribute
Users with the AUDITOR attribute can monitor system usage. Explicit privileges
of a user with the AUDITOR attribute include the following:
m Users can display information in the database.

Auditors can execute the selang commands showusr, showgrp, showres, and
showfile.

m Users can set the audit mode for existing records.

Auditors can execute the selang commands chusr, chgrp, chres, and chfile.

OPERATOR Attribute

Users with the OPERATOR attribute have READ access to all files. With this
access, they can list everything in the database, and they can run backup jobs.
To list database records, operators use the showusr, showgrp, showres,
showfile, and find commands. The OPERATOR attribute also lets a user use the
secons utility.

Note: For more information about the secons utility, see the Reference Guide.

PWMANAGER Attribute

The PWMANAGER attribute gives a regular user the authority to use the chusr or
sepass command to change the passwords of other users.

Note: To let the PWMANAGER change the ADMIN user's password, set the
cng_adminpwd option of the setoptions command. For more information, see the
selang Reference Guide.

The PWMANAGER attribute does not include authority to change the number of
grace logins, the password interval of another user, or general password rules.

The PWMANAGER's authority also includes use of the showusr and find
commands.

Note: If a user has the nochngpass property set to yes, a PWMANAGER cannot
change the password for that user.

182 Endpoint Administration Guide for UNIX

Group Authorization

SERVER Attribute

IGN_HOL Attribute

CA Access Control, like many other security models, does not permit a regular

user to ask: “"Can user A access resource X?” The only question a regular user can
ask is: “"Can I access resource X?” However, a process that supplies services to
many users, such as a database server service or an in-house application, should
be permitted to ask for authorization on behalf of other users.

The SERVER attribute allows a process to ask for authorization for users. Users
with the SERVER attribute set can issue the SEOSROUTE_VerifyCreate API.

Note: For more information about the server attribute and CA Access Control
APIs, see the SDK Guide.

The IGN_HOL attribute allows users to log in during any period defined in a
holiday record. Each record in the HOLIDAY class defines one or more periods
when users need extra permission to log in. With the IGN_HOL attribute, users
can log in at any time, regardless of the periods defined in holiday records.

Note: For more information about the HOLIDAY class, see the Reference Guide.

Group Authorization

It is necessary to understand the concept of parentage before discussing group
authorization attributes.

Chapter 14: Scope of Administration Authority 183

Group Authorization

Parentage

The concept of subordinate and superior groups, also known as parentage, is
important when discussing group administration privileges. One group can be
the parent-superior-of one or more groups. A child or subordinate group can

have only one parent. Assigning a parent to a group is optional. Consider the
following diagram:

Group 1
[

I I |
Group 20 Group 20 Group 40
I]
Group Group Group
B0 GO0 F00

Group 1 is the parent of the three Groups 20, 30, and 40. Group 30 is also the
parent of three groups-500, 600, and 700. Group 600 has only one parent-Group
30. Group 1 has no parent.

Group Avuthorization Attributes

All records, including resource records and accessor records alike, have owners.
Owning a record means having authorization to view, edit, and remove it.

A group can own its own records. However, within a group that owns records,
only certain privileged users can manage the records. These special users have a
group authorization attribute set in their own user records. The group
authorization attributes are the following:

= GROUP-ADMIN

= GROUP-AUDITOR

= GROUP-OPERATOR

= GROUP-PWMANAGER

The join command-which only a properly authorized user can issue-sets these

attributes. The join command serves the purpose of both putting a user into a
group, and specifying the user's group authorization attribute (if any).

The privileged members of the group may or may not be authorized to manage
the user records that define the members of the group, depending on who owns
those records.

184 Endpoint Administration Guide for UNIX

Group Authorization

More information:

Ownership (see page 186)

GROUP-ADMIN Attribute

Users with a group administration authorization attribute can create a certain set
of records. In order to create a record, the group administrator has to specify the

owner of the record.

The owner of the records must be the group in which the user has a group
authorization attribute. If that group is the parent of other groups, the owner can
also be from one of the sub groups. The whole set of records is called the group
scope. The authorization examples provided illustrate the concept of group

scope.

Users with the GROUP-ADMIN attribute have the following access authority for

the records within their group scope:

Access Description

Commands

Read Show the properties of the record. showusr, showgrp,
showres, showfile
Create Create new records in the database. newusr, newgrp,

You must specify the owner.

newres, newfile

Modify Change the properties of the record.

chusr, chgrp, chres,
chfile

Delete Remove records from the database.

rmusr, rmgrp, rmres,
rmfile

Connect Join a user to a group or separate a
user from a group.

join, join-

The GROUP-ADMIN attribute also has limits:

m GROUP-ADMIN users cannot make resources inaccessible to themselves, so:

- GROUP-ADMIN users cannot assign a security level that is higher than

their own security level.

- GROUP-ADMIN users cannot assign a security category or security label

that they do not have.

m GROUP-ADMIN users cannot delete the user superuser (the root account on
UNIX or the Administrator account on Windows) from the database.

Chapter 14: Scope of Administration Authority 185

Ownership

m Several limitations concern the global authorization attributes described in
Global Authorization Attributes in this chapter:

- A GROUP-ADMIN user cannot delete the only ADMIN user record in the
database.

- A GROUP-ADMIN user cannot remove the ADMIN attribute from the
record of the last ADMIN user in the database.

- GROUP-ADMIN users without the AUDITOR attribute cannot update the
audit mode. Only a GROUP-ADMIN user with the AUDITOR attribute can
update the audit mode.

- GROUP-ADMIN users cannot set the global authorization
attributes-ADMIN, AUDITOR, OPERATOR, PWMANAGER, and SERVER-for
any user.

GROUP-AUDITOR Affribute

A user with the GROUP-AUDITOR attribute can list the properties of any record
within the group scope. The group auditor can also set the audit mode for any
record within the group scope.

GROUP-OPERATOR Attribute

A user with the GROUP-OPERATOR attribute can list the properties of any record
within the group scope.

GROUP-PWMANAGER Atffribute

A user with the GROUP-PWMANAGER attribute can change the password of any
user whose record is within the group scope.

Ownership

Every record in the database-including both accessor records and resource
records-has an owner. When you add a record to the database, you can either
explicitly assign its owner by using the owner parameter or let CA Access Control
assign the user who defines the record as the owner of the record.

Accessors own a record if any of the following are true:

m They are defined as the owner of the record.

m They are members of a group that is defined as the owner of the record and
they have joined the group with the GROUP-ADMIN property.

m They are owners of a resource group record that the resource is a member of.

If you remove a user or group that owns records from the database, the records
no longer have an owner.

186 Endpoint Administration Guide for UNIX

Ownership

Users who own records have the following access authority for the records they

own:
Access Description Commands
Read Show the properties of the record. showusr, showgrp,

showres, showfile

Modify Change the properties of the record. chusr, chgrp, chres,

chfile

Delete Remove the record from the database. rmusr, rmgrp, rmres,
rmfile

Connect Join a user to a group or separate a join, join-

user from a group.

If you do not want a user or group to have ownership authority over a particular
record, assign the owner nobody to the record and to any resource group record
that the record is a member of.

The limits of the ownership privileges are as follows:

The owner of the last ADMIN user in the database cannot delete that user
record.

Owners who do not have the AUDITOR attribute cannot update the audit
mode. Only an owner with the AUDITOR attribute can update the audit
mode.

The owner of a superuser (the root account on UNIX or the Administrator
account on Windows) cannot delete root from the database.

Owners cannot set the global authorization attributes-ADMIN, AUDITOR,
OPERATOR, and PWMANAGER-for the users they own.

Owners cannot make resources inaccessible to themselves, so:

- Owners cannot assign a security level that is higher than their own
security level.

- Owners cannot assign a security category or security label that they do
not have.

Chapter 14: Scope of Administration Authority 187

Authorization Examples

File Ownership

CA Access Control allows the owner of a file to protect the file by defining a record
in the FILE class. The owner of the file has full authority over the record of that
file, so the owner can use the newfile, chfile, showfile, authorize, and
authorize- commands with all parameters for the record that protect the file.

On UNIX, when a user creates a file, UNIX assigns the user as the owner of the
file. CA Access Control allows UNIX file owners to define FILE records, unless this
feature is explicitly disabled. If you do not want file owners to define FILE
records, make sure that the use_unix_file_owner token in the [seos] section of
the seos.ini file to no. (This is the default setting.)

Avuthorization Examples

Following are diagrams that illustrate the concepts of group authorization
attributes, parentage, ownership, membership, and group scope. These
diagrams only contain users and groups, but the concept of ownership also
applies to resource and file records.

Single Group Authorization

In the following diagram, four users are members of Group 1: MU1, MU2, MU3,
and MU4. Group 1 also owns three users-OU5, OU6, and OU7. The member MU4
has the GROUP-ADMIN attribute.

@
@@M@\ ‘ I IIILIEZ':

Group 1 et

The ellipse indicates the group scope of the commands executed by user MU4. It
includes all the users owned by Group 1-OU5, OU6, and OU?7.

188 Endpoint Administration Guide for UNIX

Authorization Examples

Parent and Child Groups

In the following diagram, four users are members of Group 1: MU1, MU2, MU3,
and MU4. Group 1 also owns three users-OU5, OU6, and OU7. The member MU4
has the GROUP-ADMIN attribute set in its record.

@% @Of
@ ™ / I IIILI5.1':

Group 1 Tl
| |
@‘ Group 20 Group 30 Group 40 ;'
NI o .- e I

N [=]
=
=
e

Group 1 is also the parent of three groups-20, 30, and 40. Each of these
subordinate groups has two users who are members of the group and two users
who are owned by the group.

The four ellipses indicate the group scope of the commands executed by user
MU4. It includes all the users owned by Group 1, as well as the users owned by
the groups subordinate to Group 1. The users in the group scope of MU4 are OUS5,
Ou6, OU7, OU23, OU24, OU33, OU34, 0U43, and OU44.

If there were groups subordinate to Groups 20, 30, or 40 that owned users,
groups, or resources, the records owned by these groups would also be in the
group scope of commands executed by user MU4.

Chapter 14: Scope of Administration Authority 189

Sub Administration

Sub Administration

Security administrators (users with the ADMIN attribute) can grant specific
administrative privileges to regular users. These regular users are then called
sub administrators. Sub-administrators have privileges to manage only specified
CA Access Control classes or objects. For example, a sub administrator can be
authorized to manage only user and group objects. You can set a higher level of
sub administration by authorizing the sub admin user the administrative
privileges for specific objects in a class.

Sub administrators of users, groups and resources can use selang to perform
administrative tasks related to these resources.

How to Grant Specific Administrative Privileges to Regular Users

The ADMIN Class

Because administrators—users with the ADMIN attribute—can execute almost all
actions in CA Access Control, you may want to delegate specific administrative
tasks to sub administrators. To do this, you need to grant those users with
privileges to classes in the CA Access Control database that control the specific
administrative tasks the user needs to perform as follows:

1. Identify one or more classes that control the tasks you want to delegate.

For example, CA Access Control uses the USER and GROUP classes to create
accessor resources. If you want to delegate accessor management, you then
need to use the USER and GROUP records of the ADMIN class.

2. Authorize one or more sub administrator to the applicable resource of the
ADMIN class.

For example, to let a sub administrator view and modify user records, grant
the user with read and modify access to the USER record of the ADMIN class.

Sub administrators—users listed in the access control list (ACL) of records in the
class ADMIN—have privileges similar to users with the ADMIN attribute.
However, the privileges of users in the ACL for records in the class ADMIN are
limited to the particular class represented by the record. For example, the
SURROGATE record in the ADMIN class determines which users can administer
records of the SURROGATE class.

Note: For more information about CA Access Control classes, see the Reference
Guide.

190 Endpoint Administration Guide for UNIX

Sub Administration

A user in the ACL for a particular record in class ADMIN can execute the following

commands:

Access Description Commands

Read Show the properties of the record in the showusr, showgrp,
class. showres, showfile, find

Create Create new database records in the newusr, newgrp,
class. newres, newfile

Modify Change properties in the class. chusr, chgrp, chres,

chfile

Delete Remove existing class records from the rmusr, rmgrp, rmres,
database. rmfile

Connect Add users to and remove users from join, join-
groups. This access is valid only in the
ACL of the GROUP record.

Password Control the password of all users within chusr

the database, and their password
attributes. This access grants the same

authority as the access permitted a user

with the PWMANAGER attribute. This is
valid only in the ACL for record USER.

Users with ADMIN class privileges have the following limitations:

Users defined in the ACL of the USER record in class ADMIN cannot delete the
last ADMIN user in the database.

ADMIN class users cannot set the global authorization attributes-ADMIN,
AUDITOR, OPERATOR, and PWMANAGER-for the users they own.

ADMIN class users cannot necessarily update the audit mode. Only an ADMIN
class user with the AUDITOR attribute can update the audit mode.

ADMIN class users cannot delete superuser (the root account on UNIX or the
Administrator account on Windows), but they can set root to be NOADMIN.

ADMIN class users cannot make resources inaccessible to themselves, so:

ADMIN class users cannot assigh a security level to a resource that is
higher than their own security level.

ADMIN class users cannot assigh a security category or security label
that they do not have.

These limitations are part of the B1 security level certification.

Chapter 14: Scope of Administration Authority 191

Environmental Considerations

Environmental Considerations

One of the factors governing whether you can update information in your
database is the position you occupy in the environment.

Remote Administration Restrictions

You may access a remote station over a network and update the database on the
remote station. To update the database on the remote station, both you and your
terminal need permission.

® You must be explicitly defined as a user in the database of the remote
station. For whatever commands you want to execute, the appropriate
attribute must be set in your user record in the database of the remote
station.

® You must explicitly mention your local terminal's needs in a rule granting it
WRITE permission for accessing the remote station; otherwise, you cannot
perform CA Access Control administration there.

With WRITE permission through a default access field (_default), or through
the UACC class, you can enter the selang command shell at the remote
station. However, you cannot execute any selang commands or otherwise
access to the remote database. With READ permission, you can log in to the
remote station but you cannot perform CA Access Control administration
there.

Here is an example of this distinction between WRITE and READ permission:

1. To specify a new terminal with READ as default access, where
administrators can log in from the terminal but cannot manipulate the
database from it, issue the following command:

newres TERMINAL tty13 defacc(read)

2. To grant user ADMIN1 permission to manipulate the database from the
new terminal (that is, grant WRITE permission as well as READ
permission), issue the following command:

authorize TERMINAL tty13 uid(ADMINZ1) access(r,w)

192 Endpoint Administration Guide for UNIX

Environmental Considerations

UNIX Environment

For managing users and groups in UNIX, users in CA Access Control with global
or group authorization attributes have the same privileges and limits for UNIX as
they do for CA Access Control.

If you use selang while the seosd daemon is not running (for example, at
installation time), you must follow these rules:
® You must include the -l option in the selang command.

m The user of selang must be root. (This exclusive root privilege complies with
regular UNIX restrictions.)

Windows Environment

For managing users and groups in Windows, users in CA Access Control with
global or group authorization attributes have the same privileges and limits for
Windows as they do for CA Access Control.

If you use selang while the seosd daemon is not running (for example, at
installation time), you must follow these rules:
® You must include the -l option in the selang command.

m The user of selang must be Administrator or belong to the Administrators
group.

Chapter 14: Scope of Administration Authority 193

Chapter 15: Improving Performance

This section contains the following topics:

Using Global Access Check (see page 195)

Using the Resource Cache (see page 199)

Using the Network Cache (see page 200)

Using the Real Path Cache (see page 201)

Using Fork Synchronization (see page 201)

Using High Priority (see page 201)

Bypassing the Process File System (see page 201)
Bypassing Real Paths (see page 202)

Bypassing Trusted Process Authorization (see page 202)
Bypass Ports for Network Activity (see page 203)
Reducing Audit and Trace Loads (see page 204)
Reducing Database Loads (see page 204)
Improving PMDB Updates (see page 204)
Improving Watchdog Performance (see page 205)
Improving Class Parameters (see page 205)
Resolving Names (see page 206)

Using Global Access Check

The Global Access Check feature (GAC) lets you access protected, frequently
opened files-whose access rules are unlikely to change-much faster than
otherwise possible.

GAC allows a CA Access Control administrator to cache rules for read, write,
chown, chmod, rename, unlink, utimes, chattr, link, chdir, create, and all, so that
appropriate access to files is granted without passing control to seosd. The
default is all. Execute requests, however, are not eligible for GAC because they
could pose a security loophole.

Without GAC, CA Access Control runs thorough security checks whenever a user
or program attempts to access protected files. Frequently accessed files need
repeated in-depth checks to confirm access permissions.

GAC allows an administrator for CA Access Control to take for granted that
certain frequently accessed protected files require shorter security checks. An
administrator for CA Access Control can select files suitable for a shorter check.
Before CA Access Control allows a shorter security check, the file must first
undergo a full security check based on the set rule. The rule itself consists of a
generic file name and a list of accesses. Rules are cached according to users.

Chapter 15: Improving Performance 195

Using Global Access Check

Selecting certain files for a shorter check is reliable because, with the GAC
feature in place, if a change is actually made to rules regarding the protected
files, the shorter security check table is flushed, and an initial full security check
is instituted.

Note: GAC restrictions mean that this feature works for every user except root.

How Does GAC Work?

CA Access Control monitors access to specified files and builds a table of
permitted accesses during execution time. These are the files you specify in
advance in order to set up GAC rules.

Whenever CA Access Control concludes that a user should be granted a certain
level of access to a certain file, it checks whether the following two additional
conditions are met:

m The granted access is unconditional (that is, not dependent on time, day,
program from which executed, or other like conditions).

m The file matches one of its preselected sets of file masks.

Note: File rules define permissions for access to files.

If these conditions are met, CA Access Control generates a UID-file rule-access
triplet and stores it in a table composed of such triplets. This table is examined
before any database access rule interpretation takes place. Whenever a user
attempts to access a file, this table is consulted as a filtering mechanism.

The table is best described as a do-not-call-me table because it contains a list of
file masks that, once recognized, no longer need to undergo access permission
checks. It is also described as an always-grant table because access is always
granted to files specified within its list of file masks.

Whenever a user attempts to access a file, the table is consulted. If the file
matches one of the triplets found in the table, the appropriate access is granted
without passing control to seosd. This bypasses the access rules analysis.
Subsequently, all access to files that match this pattern is granted, based on the
triplet stored in the table, without consulting the access rule database.

Whenever a new access rule is added to the database, the entire table is flushed,
and the learning process starts from the beginning.
Implementing GAC

To set up GAC, you must choose masks for sets of files that are accessed often,
set up a GAC file containing these file masks, and then start the caching process.

196 Endpoint Administration Guide for UNIX

Using Global Access Check

Sefting Up GAC Rules

Starting GAC

Note: File rules in the database are created using the class FILE parameter and
file masks. Rules apply to all files matching the file masks. FILE access types
include: all, chdir, control, create, delete, execute, none, read, rename, sec,
update, utime, write.

From the file rules defined in the database, choose the file masks that you want
to cache. Enter a list of file masks into the ACInstallDir/etc/GAC.init file (where
AClInstallDir is the installation directory for CA Access Control, by default
/opt/CA/AccessControl), in exactly the same form as they appear in the
database.

Each such mask should be specified on a separate line. For example, if the
database contains a file mask for /tmp/mydir/* and you want it to be cached, add
the following line to the ACInstallDir/etc/GAC.init file:

ftmp/mydir/*

Note: Specific file names cannot be specified in the GAC.init file. Only file masks
are used.

To turn your current version of CA Access Control into a GAC compatible version,
prepare the file ACInstallDir/etc/GAC.init with the file masks that are eligible for
caching. Only file masks can be used.

An example is a file named GAC.init in ACInstallDir/etc/ with only one line:

/IBBS/REL63/*

Chapter 15: Improving Performance 197

Using Global Access Check

GAC Restrictions

GAC implementation has proved to be very efficient, especially in cases where
there are hundreds of file accesses in a second, but it has the following
restrictions:

m By default, GAC rules are not applicable for the root user (usually ADMIN). To
make the rules applicable to root, set the following token in the
[SEOS_syscall] section of the seos.ini file:

GAC_root=1

The default value of the token is 0. To restore the default, set the token to 0,
or remove the token.

® You must not include a file rule that is protected conditionally (for example
with day or time restrictions, program pathing, and so on) in the table. If you
do specify such a file rule in the GAC.init file, the day or time restrictions and
other restrictions no longer apply.

m A file rule that has audit(ALL) or audit(success) attributes must not be
included in the GAC.init file. If such file rule is specified in the GAC.init file,
audits of successful accesses are not recorded.

m The filtering process uses the real (current) UID (that is, the UID that is
associated with the process at the time of execution). This provides a
loophole to the CA Access Control tracking of the original UID (the one with
which the user has originally logged in) and not the current UID. (CA Access
Control implements tracking of UID usage to provide the security of more
accountability.)

Let us examine an example of how someone might try to take advantage of
this loophole. User Tony is not authorized to access the file Accounts/tmp. So
Tony surrogates (through /bin/su) to user Sandra, who is authorized to
access Accounts/tmp. If Sandra has already accessed the Accounts/tmp file,
the file appears in the do-not-call-me table with her UID. Tony, using
Sandra's UID, is then permitted to access the file. This is because the kernel
code does not maintain the history of UIDs.

However, if Sandra has not previously accessed the file, the access
permissions are checked in the regular manner using seosd, and Tony is
denied access to the file. To close this loophole, the ADMIN user must protect
the SURROGATE objects in the database. For this example, the ADMIN could
add the following rule to the database:

newres SURROGATE USER.Sandra default(N) owner(nobody)

This command ensures that Tony cannot use the su command to gain
Sandra's access privileges.

m The caching system does not have any impact if the accessor is root. The
reason is that no access is granted to root without consulting the database.

198 Endpoint Administration Guide for UNIX

Using the Resource Cache

Troubleshooting GAC

You can test GAC as follows to see if it is working:
1. Enable the trace (secons -t+).

2. Access a file that corresponds to one of the file masks specified in GAC.init.
The first access should be reported in the trace.

3. Try to access the file again. The second file access should not be recorded in
the trace.

If it is, GAC is not working. Check the GAC.init to see that it contains the
correct format.

Using the Resource Cache

Another performance improvement tool that CA Access Control offers is resource
caching (file cache).

The cache “remembers” the previous answer to an authorization request (permit
or deny) for resources in the FILE class. The result is saved with the file name,
user name, and authorization response (access mode, program name, and
result). When an identical authorization is requested, the request is answered
with the last response that was stored in the cache memory tables. This saves
time because CA Access Control does not have to reevaluate the request; CA
Access Control can return the answer immediately. When rules are changed, the
cache is automatically and immediately synchronized.

The cache is a runtime table. An administrator can configure it in two ways:
m Set initialization parameters in the seos.ini file.
m Switch caching to ON or OFF and change parameters at runtime.

The security administrator can define table size, intervals between cleaning
tables, and other internal table parameters with tokens in the seos.ini file.

A user with administrative privileges can switch cache tables ON or OFF, change
cache parameters, and write cache tables to standard output.

Note: For more information about the secons utility or the [seosd] section of the
seos.ini initialization file, see the Reference Guide.

Chapter 15: Improving Performance 199

Using the Network Cache

Tuning Recommendations

Use these recommendations to improve performance even more:

m If one of the three tables (pools) has the maximum number of records and
another table does not, expand the size of the full table.

Note: The three tables are: file, user, and authorization.
If a pool has low settings, increase them to expand the pool.

m Do not set the maximum size tokens unless you must. Larger tables take
more time when scanning for records.

Using the Network Cache

The network or IP caching feature stores accepted, incoming TCP requests, so
they are not sent to the database; instead, they are permitted automatically with
the syscall function. This feature improves performance for hosts, which launch
many incoming TCP connections.

To activate the IP caching feature, change the following tokens in the [seosd]
section of the seos.ini file and restart CA Access Control:
network_cache_timeout

Defines how often to clean the cache table. This token is important if you
want to set time limits for the accept requests.

UseNetworkCache

Set this token to yes to activate IP caching.

When caching is enabled, all accepted TCP connections are saved in the kernel
table. The records consist of a peer IP address, peer port, and local port. Every
new connection is searched in this cache. If a matching set of data for IP address,
IP port, and local port is located, the connection is immediately permitted. The
time to establish connection is reduced.

200 Endpoint Administration Guide for UNIX

Using the Real Path Cache

Using the Real Path Cache

File name resolution is a long process because CA Access Control uses
information from file system. The kernel of CA Access Control translates node
numbers to full file names when it intercepts appropriate events. Real path
caching saves file names within an internal table.

To enable this feature, set the token cache_enabled to 1 in the [SEQOS_syscall]
section of the seos.ini file. File names are cached in the table with a data pair:
inode number and device humber.

Note: For more information about the seos.ini initialization file, see the
Reference Guide.

Using Fork Synchronization

The fork synchronization token (synchronize_fork) in the [SEOS_syscall] section
of the seos.ini file manages fork event behavior when new processes are created.
Lowering the value of this token improves performance because fork events are
frequent.

Note: For more information about seos.ini initialization file, see the Reference
Guide.

Using High Priority

CA Access Control contains an option to set a real-time priority for the seosd
daemon on some platforms. To activate this feature, set the rt_priority token in
the [seosd] section of the seos.ini file to yes. Running in real time improves
system performance.

Note: For more information about the seos.ini initialization file, see the
Reference Guide.

Bypassing the Process File System

To reduce system load, you can specify whether CA Access Control should check
file access when the file belongs to a process file system (/proc).

To activate this feature, use the proc_bypass token in the [SEOS_syscall] section
of the seos.ini file. The token stores access information to be bypassed whenever

CA Access Control must access the process file system.

Note: For more information about seos.ini file tokens, see the Reference Guide.

Chapter 15: Improving Performance 201

Bypassing Real Paths

You can set this token as a sum of accesses. Access values are as follows:
= 1-read

m 2-write

® 4-chown

= 8-chmod

® 16-rename
m 32-unlink

m 64-utimes

m 128-chattr
m 256-link

m 512-chdir

m 1024-create

For example, proc_bypass=513 specifies that all read(1) and chdir (512) access
attempts should not be verified (1+512=513).

Bypassing Real Paths

Searching for files with absolute file paths (instead of relative paths) creates
heavier system loads; bypassing this search accelerates file events.

To activate this bypass, set the bypass_realpath token to 1 in the [SEOS_syscall]
section of the seos.ini file. If you enable this token, CA Access Control does not
obtain real file names, which, for example, could be a symbolic link.

Note: For more information about seos.ini file tokens, see the Reference Guide.

Important! This feature should be used with extreme care because it impacts
security-generic rules do not work when files are accessed with a relative path.

Bypassing Trusted Process Authorization

CA Access Control allows you to define programs as trusted. CA Access Control
stores the trusted programs and their children programs in a table. All events

(inbound and outbound) related to trusted processes (and their corresponding
ports) are permitted without authorization as part of a full network bypass.

202 Endpoint Administration Guide for UNIX

Bypass Ports for Network Activity

To specify these programs, use the SPECIALPGM class:

m To bypass file and network events for the specified program, use the
property PGMTYPE with values pbf and pbn.

m To bypass setuid and setgid events for a specified program, use the property
PGMTYPE with the value surrogate.

m To propagate bypasses to all programs that are called from the specified
program, use the property PGMTYPE with the value propagate.

Note: Security privilege propagation works with PBF, PBN, DCM, and
SURROGATE privileges only.

Bypass Ports for Network Activity

To specify that all connection events (inbound and outbound) related to specific
TCP/IP ports can be established without CA Access Control authorization, you can
define a bypass for these ports. Bypassing these ports reduces system load and
speeds event processing. Bypassed connection events are not logged in the audit
and trace files.

Note: CA Access Control lets you bypass the network connection event only; not

any subsequent events that use the network connection (for example, opening a
file).

Trusted inbound connections are specified separately from outbound
connections:

m To bypass incoming connections, modify the bypass_TCPIP configuration
setting in the [seosd] section of the seos.ini file.

m To bypass outgoing connections, modify the bypass outgoing_TCPIP
configuration setting in the [seosd] section of the seos.ini file.

Note: For more information about the seos.ini initialization file, updating tokens,
and affecting changes, see the Reference Guide.

Example: Bypass incoming Telnet events

If you set the bypass_TCPIP configuration setting to 23 (the Telnet port), the
audit and trace files no longer log the network event when you Telnet to that
workstation. Events related to other services, such as ssh, login, and FTP, and
subsequent events that use the network connection (for example, opening a
file), will still be logged.

Chapter 15: Improving Performance 203

Reducing Audit and Trace Loads

Example: Bypass outgoing FTP events

If you set the bypass_outgoing_TCPIP configuration setting to 21 (the FTP port),
the audit and trace files no longer log the network event when you FTP from that
workstation. Events related to other services, such as ssh, login, and Telnet, and
subsequent events that use the network connection (for example, opening a
file), will still be logged.

Reducing Audit and Trace Loads

CA Access Control uses a file system to keep audit data and trace data. Most
processes in the system could be blocked while CA Access Control writes to this
file system. To reduce access time to the file system, do the following:

m Set the audit mode only for resources and accesses you need.
m Open the trace only when you need to.

m Store audit file, trace file, and CA Access Control database files on the fastest
available file system.

m Store the lookaside database directory on a fast file system.

Reducing Database Loads

How you define rules to the database affects system performance:

m Generic rules for commonly used directories produce many verifications,
resulting in a greater system load.

For example, protecting /usr/lib/* causes every action in the system to be
checked by CA Access Control. To improve performance, avoid using generic
rules for frequently used files.

m Deep hierarchies of users and resources require system loads to obtain and
check all dependencies. To improve performance, avoid deep hierarchies in
the database.

Improving PMDB Updates

Policy Models send commands to their subscribers one by one in a loop. To
control the maximum number of commands that the Policy Models sends to each
subscriber during each loop, use the updates_in_chunk token, which is described
in the [pmd] section of the appendix “"The pmd.ini File.”

If you increase the value of this token, the Policy Model uses fewer cycles to send
commands. After each loop, the Policy Model checks for new requests. If the
token is set higher, the Policy Model does not check for new requests as often.

204 Endpoint Administration Guide for UNIX

Improving Watchdog Performance

For example, when you add a new subscriber to the Policy Model (using the
sepmd -n option), increase the token value because other subscribers have
already received the commands that the Policy Model is sending. The Policy
Model spends less time sending commands to the other subscribers and spends
more time sending commands to the new subscriber, shortening the time it takes
to add the subscriber.

Note: Do not set this token value to more than 100.

Improving Watchdog Performance

To reduce system load, set the Watchdog daemon (seoswd) to periodically scan
secured files instead of constantly scanning. You can specify the Watchdog to
scan at times when the system is less loaded.

To activate this feature, use the IgnoreScanlnterval token in the [seoswd]
section of the seos.ini file, and set additional tokens for intervals and start times.

Note: For more information about these tokens, see the seos.ini initialization file
in the Reference Guide.

Improving Class Parameters

Class Activation

Use the class activation and class authorization features for CA Access Control to
improve performance further.

CA Access Control stores information about whether a CLASS is active or inactive
in the database. When CA Access Control starts, it passes a list of active classes
to SEOS_syscall, so CA Access Control does not have to constantly intercept
these classes. The only time CA Access Control intercepts a class is when a user
changes the activity status of a class. If a class is inactive, access to the resource
is not intercepted.

You can use the inactive class bypass with the following classes: FILE, HOST,
TCP, CONNECT, and PROCESS.

Chapter 15: Improving Performance 205

Resolving Names

Class Authorization

The resource class SEOS controls the behavior of the CA Access Control
authorization system. The SEOS class has modifiable properties that specify
whether a class is active. You can disable unused classes (using the setoptions
command) to reduce authorization time.

Resolving Names

Several tokens in the [seosd] section of the seos.ini file (including
GroupidResolution, HostResolution, ServiceResolution, and UseridResolution)
control how CA Access Control performs name resolution. Setting these tokens
appropriately improves performance.

Alternatively, you can create a lookaside database (instead of using system
name resolution). To improve performance, select the lookaside database
option. Tokens for this feature include the lookaside_path and use_lookaside.

Note: For more information about these tokens, see the seos.ini initialization file
in the Reference Guide.

Whenever CA Access Control must perform UID to username, GID to groupname,
ipaddr to host name, and port to service translations, it may impact CA Access
Control performance. How CA Access Control performs these translations
depends on the value of certain tokens in the seos.ini file-in particular, the
under_NIS_server, use_lookaside, GroupidResolution, HostResolution,
ServiceResolution, UseridResolution, and resolve_timeout tokens.

When native operating system mechanisms perform the resolution, the impact
on system performance is relatively small. When translating ipaddr to host
name, an external mechanism such as DNS must perform the translation. This
may result in significant degradation of system performance. This degradation
occurs because, while seosd is waiting to receive the host name, all other
processes that CA Access Control has intercepted must also wait until seosd
completes its processing.

m If you set the value of the under_NIS_server token to no, seosd allows UNIX
to translate UID, GID, IP addresses, and port numbers by taking data from
the following sources:

Type of Station Source

Stand-alone Seosd uses the following files for translations;
m /etc/passwd for UID to user name
m /etc/group for GID to group name

m /etc/hosts for IP address to host name

206 Endpoint Administration Guide for UNIX

Resolving Names

Type of Station

Source

m_ /etc/services for service ports to service names

The source of the information varies, depending on
the operating system and its version number. The
information is usually taken from /etc files and the
NIS server. However, in some systems, the /etc
files are not the source and the order in which
translation is made is changed during system
configuration. For instance, in the Solaris 2.x
system the file /etc/nsswitch.conf determines the
translation order.

DNS client

Translation for users, groups, and services is
performed using /etc files. Host names are
translated by calls to the DNS server and, on some
systems, the /etc/hosts file is also read.

NIS and DNS clients

The ipaddr to host name translation is performed
by DNS. For user, group, and service translations,
the translations are performed in the same way as
NIS client translations.

If you set the value of the under_NIS_server token to yes, seosd performs its
own translations. If seosd caches data for its translations, the sources of its

data are as follows:

Type of Station

Source

NIS server

The server machine usually behaves as both server
and client, and consults the NIS server daemon for
any type of translation. The files which contain the
sources of the NIS resolution maps are usually
located in /var/yp, but the location may vary,
depending on the site configuration, and the type
and version of the operating system.

DNS server

The source of the information used for translation
depends on the configuration of the site. DNS does
not have an option to scan its resolution database;
therefore, CA Access Control cannot use caching,
and must use a lookaside database. You must
configure the lookaside database so that the utility
sebuildla uses a host list file. For more information,
see sebuildla in this chapter.

all others

Same as DNS server.

Chapter 15: Improving Performance 207

Resolving Names

In versions 2 and higher of CA Access Control, seosd can also use the tokens
GroupidResolution, HostResolution, ServiceResolution, UseridResolution,
and resolve_timeout to control the translation process. For more information
on these tokens, see the Reference Guide.

208 Endpoint Administration Guide for UNIX

Chapter 16: Using UNIX Exits

UNIX Exits

This section contains the following topics:

UNIX Exits (see page 209)
User or Group Record Update Exits (see page 210)

CA Access Control Kernel Loader Exits (see page 213)

A UNIX exit is a specified program-a shell script or an executable-that runs
automatically as a result of another defined CA Access Control activity taking
place. CA Access Control supports UNIX exits when loading or unloading the CA
Access Control kernel module, or when issuing specific selang commands. For
example, you can run an initialization process for each new user that you add.

A UNIX exit can run on one or more of the following occasions:

As a pre-update exit, before each selang command that updates a user or
group record

As a post-update exit, after each selang command that updates a user or
group record

As a pre-load exit, before SEOS_load loads the CA Access Control kernel
As a post-load exit, after SEOS_load loads the CA Access Control kernel

As a pre-unload exit, before SEOS_Jload -u unloads the CA Access Control
kernel

As a post-unload exit, after SEOS_load -u unloads the CA Access Control
kernel

Chapter 16: Using UNIX Exits 209

User or Group Record Update Exifs

User or Group Record Update Exits

UNIX exits are called whenever a selang command that updates user or group

records is executed in the UNIX environment, regardless of whether the tool is a
command-line interface (selang) or a GUI (such as CA Access Control Endpoint
Management).

The term update refers to creating, modifying, or deleting a user or group record.
Querying a user or a group does not cause any UNIX exit to run. These are the
commands that can cause a UNIX exit to run:

® newusr
= newgrp
m chusr
m chgrp
= editusr
m editgrp
® rmusr
= rmgrp

From the UNIX point of view, each exit processes runs as a root process, but from
the CA Access Control point of view, it runs under the agent identity _seagent.

How the Provided selang Exit Script Works

CA Access Control provides a script that you can use as a master script to call
other programs according to the nature and status of the current selang
command. The exit script that is supplied as part of CA Access Control is
AClInstallDir/exits/lang_exit.sh (where ACInstallDir is the CA Access Control
installation directory.) Here is how it works:

1. CA Access Control automatically gives values to three parameters of the

script.

Parameter Possible Values

CLASS USER | GROUP

ACTION CREATE | MODIFY | DELETE
STAGE PRE | POST

210 Endpoint Administration Guide for UNIX

User or Group Record Update Exits

The parameters indicate whether CA Access Control is dealing with a user or
a group; whether the user or group is being created, deleted, or modified;
and whether the selang command is about to be executed (PRE) or has just
been executed (POST).

The script can pass the parameter values to programs that it calls.

Parameter Possible Values

EXEC_RV Receives the return value of a UNIX command that
you use to determine whether the exit command
succeeded or failed.

For PRE commands, the value is always zero. For
POST commands, you can use the value to decide
whether to run or skip an exit.

For an example of how to use this parameter,
locate ACInstallDir/samples/exits_src

2. Using the CLASS and STAGE parameters, CA Access Control looks for
programs in the appropriate directory:

ACInstalDir/exits/tUSER_PRE/
ACInstallDir/exits/lUSER_POST/
ACInstallDir/exitstGROUP_PRE/
AClInstallDir/exitsstGROUP_POST/

3. In the appropriate directory, CA Access Control selects all the programs that
have file names that begin with a capital S, refer to the appropriate action,
and have the following format:

Snnaction_string

Where nn is a two-digit decimal number defining the order of the program in
the execution sequence, action is one of CREATE, MODIFY, or DELETE, and
string is a descriptive string.

4. CA Access Control runs all the appropriate programs according to the
numerical order of the second and third characters of their names.

Example: UNIX Exit Script

You are going to delete a user, and the directory ACInstallDir/exits/USER_PRE/

includes the following files:

m S10CREATE_precustom.sh

m S10DELETE_precustom.sh

m S99DELETE_prermusrdir.sh

When you issue the command to delete the user, the first program is not run

because you are deleting and not creating a user. The second and then the third
programs are run in that order based on the two digits after the initial S.

Chapter 16: Using UNIX Exits 211

User or Group Record Update Exifs

Arguments You Can Pass to selang Exits

When writing exits you can take advantage of the three parameters mentioned
previously (CLASS, ACTION, and STAGE), and all the standard CA Access Control
data such as names and permissions. You can also designate extra user or group
data especially for use by the exit scripts. To store such additional data for a user
or group, define it within single quotes as the value of the user's or group's UNIX
APPL property in a newusr, chusr, newgrp, or chgrp command. For example:

chusr JONESY unix APPL(HIRED=MAY93,CLEARANCE=2)

Your exit program must be able to handle whatever is between the single quotes.

Specify selang Exit Programs to Run

To tell CA Access Control which exit programs to run, modify the [lang] section of
the seos.ini file. CA Access Control provides the lang_exit.sh script for pre-user,
post-user, pre-group, and post-group exits. You can also specify no exit or create
your own exit.

To specify your own selang exits set any or all of the settings in the [lang] section
of seos.ini as required.

Note: An exit is called only if its full pathname appears as the value of an exit
token.

Example: Specify selang Exits

In the following example, the seos.ini file tokens are set so that the program
groupcheck runs before group operations, the program flag_exceptions runs
after group operations, the program lang_exit.sh runs after user operations, and
no exit program runs before user operations. The seos.ini file tokens are set as
follows:

[lang]
pre_group_exit = Jopt/CA/AccessControl/exits/groupcheck

post_group_exit = Jopt/CA/AccessControl/exits/flag_exceptions
post_user_exit = fopt/CA/AccessControl/exits/lang_exit.sh

212 Endpoint Administration Guide for UNIX

CA Access Control Kernel Loader Exits

Time Out and Other Failures

Exit execution times out after 15 seconds, unless the exit_timeout variable in the
seos.ini file specifies otherwise. A nonzero return value indicates failure.

m If a pre-update exit times out or returns a return code of greater than or
equal to 16, then CA Access Control kills the exit process, displays an error
message, and aborts execution of the CA Access Control update command.
Any other positive return code does not abort the execution of the command.

m If a post-update exit times out or returns a nonzero value, then CA Access
Control kills the exit process and displays an error message. Having already
been executed, the CA Access Control update command remains in force.

selang Exit Samples

By examining the scripts in the following directories, you can familiarize yourself
with recommended scriptwriting techniques.

AClInstallDir'samples/exits-src
AClInstallDir'samples/sample_exits

CA Access Control Kernel Loader Exits

UNIX exits are called whenever the CA Access Control kernel is being loaded or
unloaded (SEOS_load). This lets you define how you want to handle operating
system and third-party programs when loading or unloading the CA Access
Control kernel. For example, you can use kernel-unloading UNIX exits to
automatically stop, and later restart, processes that prevent CA Access Control
from unloading when running SEOS_Jload -u.

For some operating systems, CA Access Control comes with some kernel load
exits, kernel unload exits, or both out of the box.

Note: For more information about identifying processes that prevent CA Access
Control kernel from unloading, see the secons utility in the Reference Guide.

Chapter 16: Using UNIX Exits 213

CA Access Control Kernel Loader Exits

How the Kernel Loading Exits Work

To let you control operating system and third-party processes, CA Access Control
lets you automatically make calls to UNIX exits when loading the CA Access
Control kernel extension.
When you run SEOS_load, CA Access Control performs the following actions:
1. Looks for programs in the following directory:

AClInstallDir/exits/LOAD
2. Selects all the programs that have file hames of the following format:

SEOS _load_string.always

Where string can be any descriptive strings.

3. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS load_string.always -pre

Each file is executed with the -pre parameter so that you can write your exits
to detect the parameter and perform the actions required before the kernel is
loaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit
process, displays an error message, and aborts the kernel loading.

4. Loads the kernel (SEOS_syscall).

5. Executes, in lexicographical order, each file it found in the directory
AClInstallDir/exits/LOAD:

SEOS load_string.always -post

Each file is executed with the -post parameter so that you can write your
exits to detect the parameter and perform the actions required after the
kernel is loaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit
process and displays an error message. Having already been loaded, the CA
Access Control kernel remains loaded.

214 Endpoint Administration Guide for UNIX

CA Access Control Kernel Loader Exits

How the Kernel Unloading Exits Work

To let you control operating system and third-party processes, CA Access Control
lets you automatically make calls to UNIX exits when unloading the CA Access
Control kernel extension.

When you run SEOS_load -u, CA Access Control performs the following actions:

1.

Looks for programs in the following directory:

ACInstallDir/exits/LOAD

Selects all the programs that have file hames of the following format:
SEOS_unload_string.always

Where string can be any descriptive strings.

Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS load_string.always -pre

Each file is executed with the -pre parameter so that you can write your exits
to detect the parameter and perform the actions required before the kernel is
unloaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit
process, displays an error message, and aborts the kernel unloading.

Tries to unload the kernel.

If the kernel does not unload:

a. Selects all the programs that have file names of the following format:
SEOS_unload_string.opt

b. Executes, in lexicographical order, each file it found in the directory
AClInstallDir/exits/LOAD:

SEOS_unload_string.opt -pre

Each file is executed with the -pre parameter so that you can write your
conditional exits to detect the parameter and perform the additional
optional actions required before the kernel is unloaded.

Note: If the exit returns a nonzero value, CA Access Control Kills the exit
process, displays an error message, and aborts the kernel unloading.

Chapter 16: Using UNIX Exits 215

CA Access Control Kernel Loader Exits

c. Unloads the kernel.

d. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS_unload_string.opt -post

Each file is executed with the -post parameter so that you can write your
conditional exits to detect the parameter and perform the additional
optional actions required before the kernel is unloaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit
process and displays an error message. Having already been unloaded,
the CA Access Control kernel remains unloaded.

5. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS_unload_string.always -post

Each file is executed with the -post parameter so that you can write your
exits to detect the parameter and perform the actions required after the
kernel is loaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit
process and displays an error message. Having already been unloaded, the
CA Access Control kernel remains not loaded.

216 Endpoint Administration Guide for UNIX

Chapter 17: Interacting with LDAP

This section contains the following topics:

Transferring User Names (see page 217)
S50CREATE_Ldap_u (see page 217)

Transferring User Names

If you are using both CA Access Control and LDAP, you can transfer user names
between them using scripts of your own design; three sample scripts are
provided.

Important! To set up sebuildla and the required LDAP configuration settings you
must to be familiar with LDAP and be able to execute the Idapsearch command.
We recommend that you read the man pages for Idap(1), Idapsearch(1) and the
information about setting up in the documentation for your LDAP client.

Two of the provided scripts-ldap2seos and seos2ldap-export whole sets of users
from CA Access Control to an LDAP server and imports them from an LDAP server

to CA Access Control.

A third sample script, SSOCREATE_Ldap_u.sh, automatically transfers new UNIX
user names from CA Access Control to LDAP as they are created.

The sample scripts require access to a TCL shell environment; they use the
Language Client API (LCA) library extension, tcllca.so.

Note: For more information about LCA and the TCL extension, see the Language
Client API and the appendix the LCA Extension respectively in the SDK Guide.

If you do not have TCL, consult the FAQ posted monthly to comp.lang.t_c_|I by
Larry Virden, which is available on the MIT web site and the Terafirm website.

You can also refer to the Sun web site for TCL news, documentation, and
resources.

S50CREATE_Ldap_u
S50CREATE_Ldap_u.sh uploads new UNIX users to LDAP as they are created.

CA Access Control supplies a sample shell script to import new UNIX users
automatically to an LDAP server. The script you need can vary from the sample.

Chapter 17: Interacting with LDAP 217

S50CREATE_Ldap_u

To employ the sample shell script, assuming that you are already using the
provided exit script, do the following:

1. Copy the S50CREATE_Ldap_u.sh file to the directory
AClInstallDir/exits/USER_POST. In this directory, the script becomes a
post-user exit.

2. In the seos.ini file in the [Idap], set the base_entry token to the LDAP base
entry.

For example, for an organization named ServerWorld, located in Canada, the
base entry might be: o=ServerWorld, c=CA.

3. In the same section, set the host name to the host name of the LDAP server.
Set the path to the LDAP base directory. (The sample script looks for the line
command utilities in the bin directory under that directory.)

Common Names (cn) are derived from the user's full name. If the CA Access
Control database contains, for example, only the user name and surname, these
will comprise the Common Name. You are essentially locked into the Common
Name, so we recommend that you do not base it on a user name.

Each user subsequently added to UNIX with selang is automatically uploaded to
the LDAP server. If the user already exists in LDAP, an error message results.

When you add users with this script, the relevant LDAP replies and warnings, if
any exist, are collected in the /tmp/add_User2Ldap.tcl.log file. You can examine
this file, using vi or any other standard UNIX editor, to check for errors. The file
is overwritten with the new set of replies and warnings each time you add new
users.

218 Endpoint Administration Guide for UNIX

Chapter 18: Unicenter Security Migration
and Integration

This section contains the following topics:

Unicenter Security Integration Tools (see page 219)

Unicenter Security Integration Features (see page 219)

Unicenter Security Data Migration Features (see page 223)
Unicenter TNG Calendar (see page 228)

Certification with Unicenter TNG and Unicenter NSM (see page 231)
Audit Events Integration (see page 231)

Unicenter Security Integration Tools

CA Access Control is fully integrated into the Unicenter Enterprise Management
environment.

Important! To have Unicenter TNG integration with CA Access Control, you
must have Unicenter TNG installed on the same machine as CA Access Control.

Note: For complete installation instructions, see the Implementation Guide.

Unicenter Security Integration Features

The following sections describe how CA Access Control integrates with Unicenter
TNG.

SSF/EMSec API Support

The security APIs on UNIX all channel into a message queue. A new utility now
processes the API requests sent through the message queue and routes these
reformatted and rerouted requests to CA Access Control. The utility then

translates the return codes of CA Access Control to Unicenter TNG equivalents.

This approach protects the integrity of existing applications that are currently
using the EMSec API.

Chapter 18: Unicenter Security Migratfion and Integration 219

Unicenter Security Integration Features

In UNIX the utility is called sessfgate. The gateway is active after the Unicenter
Integration setup procedure completes. In fact, if Unicenter NSM Event
Notification Facility (ENF) is running, the gateway is automatically started or
stopped whenever the CA Access Control services are started (using seload) or
stopped. If ENF is not running, the CA Access Control seload program will not
start the sessfgate daemon. The Unicenter Integration setup installs the
sessfgate program in the ACInstallDir/tng/bin directory. After Unicenter Security
is shut down and CA Access Control is started, sessfgate can accept API requests
instead of SSF.

Run sessfgate as follows:
sessfgate [-|-s|-]] -t
-I
Specifies to start the gateway.
-S

Specifies to stop the gateway.

Specifies the status.

Toggles the tracing file (log file = ACInstallDir/log/sessftrace.log).

Note: If you run seload before running Unicenter TNG, you must start sessfagte
manually with the following command:

ACInstallDir/tng/bin/sessfagte -1

where ACInstallDir is the directory in which you installed CA Access Control.

CA Access Control to Unicenter Security Synchronization Utility

Unicenter Security and CA Access Control manage the administration of your
enterprise IT environment before total migration occurs.

To reduce the complexity of using different product tools to perform
administrative tasks, CA Access Control provides a synchronization daemon. The
daemon is called seostngd. CA Access Control sends Policy Model database
(PMDB) updates through CA Common Communication Interface (CAICCI) to
seostngd. The daemon listens for updates on CAICCI and then translates the
messages into equivalent cautil commands to update the Unicenter Security
database with this global data.

220 Endpoint Administration Guide for UNIX

Unicenter Security Infegration Features

Current Unicenter TNG processing can still update other Unicenter TNG client
installations. You must run seostngd on the same machine as the Unicenter
Security database (normally referred to as a Unicenter TNG master machine.) CA
Access Control should also be running on the same machine.

Note: The daemon should only be used during the migration process. Once the
migration process has been completed, the daemon should not be used. This
daemon is not a long-term solution for your IT environment.

The major task of seostngd is to take changes you make on CA Access Control
(using either a graphical interface or selang commands) and apply them to the
Unicenter Security database. If the changes can be applied to the Unicenter
Security database successfully, you should see the same behaviors as you did on
CA Access Control.

For example, when you create a USER object with CA Access Control, you should
see the same USER object being created in Unicenter TNG (as long as the
required fields are present).

Starting and Stopping the Subscription Daemon

To start the subscriber daemon, enter:

seostngd

To stop the daemon, enter one of the following:

seostngd -shut

or

seostngd -stop

Important! Do not use selang -c during migration if you are listing more than
one command. Instead, use selang -f input_file_name.

Notes:

m In order to start the daemon, you must be user root in the Unicenter TNG
SSF_AUTH user list.

m The subscriber daemon should be manipulated manually. For example, if you
reboot the machine, restart this utility with the seostngd command because
this is not controlled by the CA Access Control startup program.

m You cannot use this before performing the Unicenter TNG integration
installation procedure. During the setup procedure, a configuration file,
AClInstallDir/data/tng/assettypes.txt, is generated. This file is required to
run this utility.

Chapter 18: Unicenter Security Migration and Infegration 221

Unicenter Security Integration Features

SEOSTNGD Limitations

Be sure that $CAIGLBL0000/bin is in the PATH environment, so you can run
the Unicenter command line utility, cautil. To do this, run the script file (from
ksh or sh #) $CAIGLBL0000/scripts/envset.

The Unicenter Security daemon (sdm) must be running, otherwise, the
Unicenter TNG subscriber daemon cannot apply changes to the Unicenter
Security database.

Different maximum field lengths between CA Access Control and Unicenter
Security can cause truncation of data values. The following table lists the
significant differences in supported field lengths.

Unicenter TNG CA Access Control
User ID 20 characters 256 characters
Password 8 characters 14 characters
User group ID 8 characters 254 characters
Asset group ID 8 characters 255 characters

Unicenter TNG does not support renaming a user or asset object, so the
seostngd daemon ignores CA Access Control rename commands for users
and assets.

Unicenter TNG user groups and asset groups must have at least one
member. If no member is specified in the CA Access Control command for
creating user groups or asset groups, the corresponding Unicenter TNG user
group or asset group is not created until at least one member is added.

If the last member is removed from a CA Access Control User group or asset
group, that user group or asset group is removed from Unicenter TNG.

Unicenter TNG assets require at least one defined accessor, so a new
Unicenter TNG asset cannot be created until at least one CA Access Control
“authorize” command is executed for the asset.

CA Access Control removes any associated rules for an object when it is
deleted. However, Unicenter Security does not.

CA Access Control users have an ADMIN attribute that has a similar meaning
as when a Unicenter TNG user is a member of the SSF_AUTH user list in the
Security Options. However, Unicenter TNG does not provide any automatic
way for manipulating remote Security Options, so manual modifications to

SSF_AUTH user list are required.

222 Endpoint Administration Guide for UNIX

Unicenter Security Data Migratfion Features

m In order to force the creation of a new Unicenter TNG user, the new CA
Access Control user must be created in the Native environment with a value
supplied for the CA Access Control password field. Unicenter TNG has default
password restrictions that require a minimum length of six characters-two
alphabetic and one numeric.

m The CA Access Control authorize command supports the asterisk (*) as an
accessor ID, but this is not supported in Unicenter TNG. The seostngd
daemon ignores CA Access Control authorize commands like this.

m The CA Access Control authorize command supports conditional access rules
using the via parameter, but this is not supported in Unicenter TNG. The
seostngd daemon ignores CA Access Control authorize commands like this.

m If the access parameter is not specified on a CA Access Control authorize
command, the seostngd daemon grants READ permission for any UNIX-FILE
or Unicenter TNG asset group, and grants all permissions for any other
Unicenter TNG predefined asset type.

Unicenter Security Data Migration Features

The following sections describe how to migrate Unicenter Security data to CA
Access Control.

Unicenter Security Options Migration

CA Access Control features a program called migopts that extracts selected
Unicenter Security options and customizes the targeted CA Access Control
database according to these options. To activate this feature, you must run the
Unicenter Integration with Unicenter Security Data Migration setup procedure.
This setup procedure automatically runs migopts.

Important! This feature is part of Unicenter Security Data Migration and is
intended for users who use Unicenter Security only for its integration with the
cautil command processor, Event Management, and Workload Management.
Because of differences between Unicenter Security and CA Access Control
architecture, Unicenter Security data migration is not intended for people who
use Unicenter Security to protect their file systems.

Note: The following Unicenter Security options can be migrated completely into
the CA Access Control environment.

= CREDAUTHEXIT

= DEFSESID

m PASSWORD_ALPHA

m PSWDVALEXIT

Chapter 18: Unicenter Security Migration and Integration 223

Unicenter Security Data Migration Features

= PWDQUEUESIZE

m SSF_MAXPWDVIO

= SSF_MINPWDLEN

= SSF_NUMSUBP

m SSF_SECPWEXCL

. SSO_APPLNAME

m USER_PWDCHANGE

= USER_PWDCHGMAXDAYS

m USER_PWDCHGMINDAYS

Additionally, exporttngdb migrates Unicenter TNG users who are members of the

SSF_AUTH Unicenter Security Option into the CA Access Control environment
by setting the Users' “admin” attribute before adding them to CA Access Control.

Note: The migopts utility is run by the migration scripts
ACInstallDir/tng/bin/uni_migrate_master.sh and ACInstallDir/tng/bin/
uni_migrate_node.sh. For more information, see the Reference Guide.

Unicenter Security Database Migration

CA Access Control features a program called exporttngdb that extracts data from
the Unicenter Security database and translates it into CA Access Control
commands to populate the CA Access Control database. exporttngdb migrates
the following:

® Unicenter Security Users
® Unicenter Security User Groups

m Unicenter Security Rules

Notes:

1. We do not recommend running Unicenter TNG login intercepts after running
the Unicenter Integration and Migration Installation. Once the Unicenter
Integration and Migration Installation is successfully completed, you should
verify that Unicenter TNG login intercepts are disabled.

2. Unicenter TNG Data Scoping and Keyword Scoping rules (rules that target
Unicenter TNG asset types with a -DT or -KW suffix) are not supported by the
CA Access Control Migration process. Rules of this type are ignored during
the migration process.

224 Endpoint Administration Guide for UNIX

Unicenter Security Data Migratfion Features

3. Unicenter Security rules that have been implemented against any of the
following Unicenter Security asset types are obsolete because Unicenter
Security is no longer used: CA-USER, CA-ACCESS, CA-USERGROUP,
CA-ASSETGROUP, CA-ASSETTYPE, and CA-UPSNODE. Rules that target any
of these asset types, or any of their derivatives, are ignored during the
migration process.

4. The exporttngdb utility is run by the migration scripts
ACInstallDir/tng/bin/uni_migrate_master.sh and ACInstallDir/tng/bin/
uni_migrate_node.sh.

Note: For more information about the exporttngdb utility, see the Utilities
Guide.

To activate exporttngdb, you must run the Unicenter Integration with Unicenter
Security Data Migration setup procedure. This setup procedure automatically
performs the Unicenter Security Data Migration process.

Important! This feature is part of Unicenter Security Data Migration and is
intended for users who use Unicenter Security only for its integration with the
cautil command processor, Event Management, and Workload Management. Due
to the dramatic differences between Unicenter Security and CA Access Control
architecture, Unicenter Security Data Migration is not intended for people who
use Unicenter Security to protect their file systems.

Note: Creation and modification statistics of all Unicenter TNG objects are lost in
the migration process.

Due to Unicenter TNG and CA Access Control product differences, the following
attributes of Unicenter Security users cannot be migrated to CA Access Control:
Statistics

The following User statistics are not supported by CA Access Control:

m Last login statistics (date and time, node of last login)

m Password change statistics (date and time, node, user who changed last
password, and expiration date of the password)

m Password violation statistics (date and time, node of last unsuccessful
login, and number of unsuccessful logins since last successful login)

m Access violation statistics (date and time, node of last access violation,
and number of access violations)

m Suspension statistics (date and time of suspension)
PWDCHANGE VALUE (RANDOM)

Random password generation
UPSSTATGROUP

UPS station group. It is not supported by CA Access Control.

Chapter 18: Unicenter Security Migrafion and Integration 225

Unicenter Security Data Migration Features

VIOLMODE

Violation mode (FAIL, MONITOR, WARN, QUIET). CA Access Control supports
FAIL mode only.

VIOLACTION

Violation action (CANUSER, CANU&LOG, CANU&LOG&SUS). CA Access
Control supports CANUSER action only.
Due to Unicenter TNG and CA Access Control product differences, the following
attributes of Unicenter Security Rules cannot be migrated to CA Access Control:
EXPIRES

Rule expiration date is not supported by CA Access Control.

226 Endpoint Administration Guide for UNIX

Unicenter Security Data Migration Features

Unicenter TNG User Exit Support

To help current Unicenter TNG users who are migrating to CA Access Control, CA
Access Control lets you run existing Unicenter Security user exits unchanged in
the CA Access Control environment. You do not have to rewrite all user exits as
part of the migration.

Using only the existing user exit interfaces in Unicenter Security and CA Access
Control, each installed component is registered as a standard CA Access Control
user exit, which then brings up the corresponding Unicenter Security exit.

In order to initiate this feature, you must run the Unicenter Integration with
Unicenter Security Data Migration setup procedure. Once the setup procedure is
completed, this functionality is active.

Important! This feature is part of Unicenter Security Data Migration and is
intended for users who use Unicenter Security only for its integration with the
cautil command processor, Event Management, and Workload Management. Due
to the dramatic differences between Unicenter Security and CA Access Control
architecture, Unicenter Security Data Migration is not intended for people who
use Unicenter Security to protect their file systems.

Note: Because Unicenter TNG and CA Access Control use different architectures,
only the exit points and data items that are comparable between Unicenter
Security and CA Access Control are supported. The following Unicenter Security
exit points are supported:

EmSec_CredExit()

The input to the Unicenter Credential Authentication exit, EmSec_CredExit(),
is mapped by EMSECSIGNON. With CA Access Control, only the user and
node members within this structure have meaningful data. The user member
is set to the user name being authenticated, and the node member is set to
the current local node name. All other members of the EMSECSIGNON
structure are set to binary zeros. The other parameters, the detailed return
code, and the message passed back from the Unicenter Resource Check Exit
are ignored.

EmSec_PwEXxit()
The Password Validation exit, EmSec_PwEXxit(), is fully supported.

Note: The exits are contained in libemsec2.xx which is located at:
Jusr/local/Calib/ or ACInstallDir/Calib/ (where ACInstallDir is the installation
directory for CA Access Control, by default /opt/CA/AccessControl).

Once the Unicenter Integration setup completes, this functionality is active.

Chapter 18: Unicenter Security Migratfion and Integration 227

Unicenter TNG Calendar

Use a PMDB to Sec

ure Unicenter Security Objects

CA Access Control PMDBs can be used with Unicenter TNG objects to create rules
that secure Unicenter TNG objects from being manipulated by the various
Unicenter TNG components (such as the cautil command processor, Event
Management, and Workload Management). You must perform the integration
manually.

To use a PMDB for Unicenter TNG objects:

1. Create the PMDB.

2. Migrate Unicenter Security options into the PMDB with the following
command:

migopts -d pmdb-name
where pmdb-name is the name of your PMDB.

Important! This step is required only if you used Unicenter Security and ran
the Unicenter Integration installation script for Security Data Migration
(uni_migrate_master.sh and uni_migrate_node.sh). If you did not use
Unicenter Security, then you never established any security options and
there is nothing to migrate into your PMDB.

Note: Migration and integration are two separate procedures.

3. Create classes for any user-defined Unicenter TNG asset types with the
following command:

defclass.sh.pmdb-name
where pmdb-name is the name of your PMDB

Important! This step is only required if you used Unicenter Security and
created user-defined asset types. Unicenter TNG asset types are
automatically defined in every new PMDB if you selected Unicenter
Integration during the CA Access Control installation.

Unicenter TING Calendar

Unicenter TNG provides a calendar facility, with which you can set time
restrictions for users, groups, and resources. The calendar contains time
intervals of 15 minutes that you can set to ON or OFF. A calendar time interval
set to OFF prevents access to resource; a calendar time interval set to ON
continues resource authorization.

In UNIX, an administrator can set calendar usage before security startup only.

228 Endpoint Administra

tion Guide for UNIX

Unicenter TNG Calendar

To use Unicenter TNG calendars in CA Access Control, complete the following
steps:

Note: Unicenter TNG must be installed on the local machine. CA Access Control
uses local Unicenter TNG services to retrieve calendar settings.
1. Stop CA Access Control security. Enter:
Secons -s
2. Set the TNG_calendars token in the [seauxd] section of seos.ini to yes.
TNG_calendars=yes
3. Start CA Access Control security. Enter:
seosd
4. Check that the auxiliary daemon seauxd is running. Enter:

issec

You can also modify the following tokens in the seos.ini file:
TNG_refresh_interval

Specifies the time interval in minutes to refresh CA Access Control calendars.
The default is 10 minutes.

TNG_lib_path

Specifies the full path to Unicenter TNG libraries. The default is
/usr/local/Calib.

TNG_cal_lib

Specifies the name of the Unicenter TNG calendar library. The default is
libcalendar.

To link a CA Access Control resource with the calendar, you must issue the
following database commands:

Note: The issued calendar name must be identical to the case-sensitive
Unicenter TNG calendar name.

nr CALENDAR calendar_name
nr file imp/test calendar (calendar_name) defaccess (a)

The Unicenter TNG calendar Access Control List (ACL) is an additional security
constraint feature. The regular Unicenter TNG calendar property restricts the
current resource according to the appropriate Unicenter TNG calendar status.
The Unicenter TNG calendar ACL property restricts access for (or gives access to)
specific users and groups for the current resource according to the Unicenter TNG
calendar status.

Chapter 18: Unicenter Security Migration and Integration 229

Unicenter TNG Calendar

Two types of ACL Unicenter TNG calendar properties are regular and restrictive:

m The regular calendar ACL property permits user or group access to the
resource accordingly to ACL access.

m The restrictive (denied) calendar ACL property denies user or group access to
the resource accordingly to ACL.

To add a user or group to the regular calendar ACL (CALACL), enter the following
command in selang:

auth resource_class_name object_name \
uid_or_gid_name calendar(calendar_name) access(access_value)

For example:

authfile filel uid(george) calendar(basecalendar) access(rw)

To add a user or group to the denied calendar ACL, enter the following command
in selang:

auth resource_class_name object_name uid_or_gid_name\
calendar(Unicenter_calendar_name) deniedaccess(access_value)

For example:

authfile file2 uid(george) calendar(holidays) deniedaccess(rw)

You can use both regular and restrictive properties for the same resource (such
as calendar and uid). The following command adds a user named George with
read access to the denied calendar ACL for filel.

authfile filel uid(george) calendar(holidays) deniedaccess(r)

To remove a user or group from a Unicenter TNG calendar ACL property, use
auth- :

auth-file file2 uid(george) calendar(holidays)

Use the Show Resource (sr) command to see all Unicenter TNG calendar ACLs
assigned to a specific resource:

sr file filel

230 Endpoint Administration Guide for UNIX

Certification with Unicenter TNG and Unicenter NSM

Certification with Unicenter TNG and Unicenter NSM

The following features comply with Unicenter TNG 2.2 SP1, Unicenter TNG 2.4,

and Unicenter NSM 3.0:

Sending “events”
Synchronizing mainframe passwords

Using the Unicenter TNG calendar

Audit Events Integration

Integration with Unicenter TNG is set up at installation.

You can choose to send audit data to Unicenter TNG. Audit events that are
passed to Unicenter TNG appear in the Console logs in the Unicenter Enterprise
Management\Enterprise Managers\Windows NT\Event window.

Audit Event Display Color Severity
Success Blue S

Denied Orange F

Fail Orange F
Warning Blue w

CA Access Control stopped (audit down) Blue I

CA Access Control started (audit start) Blue I

The second option permits launching CA Access Control from the Unicenter
WorldView menu by pointing to the icon representing the TCP/IP Network in the
Managed Objects window and selecting CA Access Control from the right-click
menu.

CA Access Control also sends following information about events:

Product name (CA Access Control + version humber)

User name
Terminal name
Class name
Resource name

Process name

Chapter 18: Unicenter Security Migrafion and Integration 231

Audit Events Integration

m Event's time

m Full audit message in the format of CA Access Control auditing

The fields User name, Terminal name, Class name, Resource name, and Process
name are not always sent, depending on event type.

232 Endpoint Administration Guide for UNIX

Chapter 19: Configuring Settings

CA Access Control lets you manage CA Access Control endpoint configuration
settings remotely. To do this you can use CA Access Control Endpoint
Management or the selang config environment.

This section contains the following topics:

Configuration Settings (see page 233)
Change Configuration Settings (see page 234)
Change Audit Configuration Settings (see page 234)

Configuration Settings
CA Access Control stores endpoint and Policy Model configuration settings it uses
in:
m The Windows registry on Windows computers

m Initialization files (.ini) on UNIX computers

Note: For information about the configuration settings you can make and what
they mean, see the Reference Guide.

Chapter 19: Configuring Settings 233

Change Configuration Settings

Change Configuration Settings

To affect how CA Access Control and any Policy Models work, you need to make
changes to the configuration settings.
To change configuration settings
1. In CA Access Control Endpoint Management, do as follows:
a. Click Configuration.
b. Click Remote Configuration.
The Remote Configuration page appears.

2. In the Remote Configuration Sections pane on the left, expand the
configuration tree as required to reveal the section that contains the
configuration setting you want modify, then click that section.

The Section: sectionName System Tokens page appears, displaying all the
configuration settings in it.

3. Locate and edit the configuration settings as required, then click Save
Tokens.

The changed configuration setting is saved.

Change Audit Configuration Settings

To affect how CA Access Control generates and stores audit records, you need to
make changes to the settings in the audit configuration files. You use selang
commands to change the settings in the audit configuration files.

To change audit configuration settings

1. (Optional) If you are using selang to connect to a remote host, connect to the
host using the following command:

host host_name
2. Move to the config environment using the following command:
env config

3. Use the editres config command to modify the configuration settings as
required.

The audit configuration settings are changed.

234 Endpoint Administration Guide for UNIX

Change Audit Configuration Settings

Example: Modify Audit Configuration File

The following example adds a line to the audit configuration file:

er CONFIG audit.cfg line+("FILE;*;Administrator;*;R;P")

Chapter 19: Configuring Settings 235

Appendix A: NIS Configuration

This section contains the following topics:

Installation Notes (see page 237)
Name Resolution (see page 237)
Avoiding Deadlocks: The Lookaside Database (see page 240)

Installation Notes

Note: This section supplements material covered by the installation script. This
appendix assumes you are familiar with Network Information Systems (NIS),
Domain Name Services (DNS), and UNIX name resolution concepts.

During installations of CA Access Control, you can use one of two options to
resolve user ID to user name, group ID to group name, host IP address to host
name, and service port to service name:

m Use the system functions, which define a bypass for the net cashing daemon
on your system.

- If you use Digital DEC UNIX and it is not an NIS server, the default uses
the system functions for name resolution.

- If you use Digital DEC UNIX and it is an NIS server, the installation
prompts you to choose one of two options: use a lookaside database or
use system functions, which define a bypass for the net caching daemon.

m Use a lookaside database, which is created by the sebuildla utility.

— If you are using CA Access Control configured to run on an NIS server,
use the lookaside database.

- The installation default uses the lookaside database on the following
platforms: HP-UX 11.0 and higher, Sun Solaris 2.6 and higher, IBM AIX
5.1L and higher, and all supported Linux platforms.

Note: On IBM AIX platforms, you must use the lookaside database; there is no
option to use the system functions.

Name Resolution

CA Access Control intercepts requests to access system resources and decides
whether to permit or deny these requests. The decision is based on access rules
and policies that are defined in the database. The interception of requests to
access system resources takes place at the kernel level.

Appendix A: NIS Configuration 237

Name Resolution

To control hosts, groups, users, and services, the kernel and the relevant system
calls use codes or numbers (that is, IP addresses, group IDs, user IDs, and
service numbers) instead of names. CA Access Control defines access rules
based on names. CA Access Control translates names into codes recognizable by
the kernel. This process is called name resolution.

On stand-alone stations, except for stations running Sun Solaris 2.5 or higher,
name resolution is completed directly through the local user, group, and host
files (/etc/passwd, /etc/group, and /etc/hosts). When CA Access Control needs
to resolve a name, it simply calls a system function that in turn reads the relevant
file.

On larger networks, however, this information is seldom stored locally. When you
use NIS, DNS, or both, there are no local files that you can consult during name
resolution. The information is requested and received from a server over the
network.

Name Resolution on an NIS/DNS Client
CA Access Control performs name resolution on a client-only NIS or DNS station
(which is not its own server) as follows:

1. CA Access Control generates a network request to connect to the relevant
server.

2. The CA Access Control kernel extension intercepts the request.

3. The CA Access Control kernel extension permits the request because it
knows that the request was made internally by the CA Access Control
process.

4. A connection to the NIS or the DNS server is established and the information
necessary for name resolution is retrieved.

5. Once the name is resolved, CA Access Control continues the process of
deciding whether to permit or deny the original access request.

A standard CA Access Control configuration is sufficient for CA Access Control to
easily handle name resolution on a client server.

Name Resolution on a Server: Deadlock
CA Access Control performs name resolution on a server that includes itself as a
client as follows:

1. CA Access Control generates a network request to connect to the relevant
server.

2. The kernel extension intercepts this request.

238 Endpoint Administration Guide for UNIX

Name Resolution

The kernel extension permits the request because it knows that the request
was made internally by the CA Access Control process.

The NIS or DNS server (which is located on the same station) generates a
request to accept the network connection.

The kernel extension intercepts this request.

The kernel extension knows that a CA Access Control process did not make
this request. It places this request on the queue of requests awaiting seosd
decision.

The seosd daemon is now caught in a deadlock. It is waiting for the reply
necessary to complete name resolution, but the process that should provide
this reply cannot proceed until seosd gives it permission to accept the
network connection. The first request generates the second, and creates a
deadlock.

Name Resolution on Sun Solaris;: Deadlock

Name resolution on Sun Solaris entails accessing the nscd cache. The nscd is a
process that provides a cache for the most common name service requests. nscd
furnishes caching for the passwd, group, and hosts databases.

The cache is not permanent. It becomes invalid as changes are made to the
passwd, group, and hosts databases, or as the time-to-live stamp expires.

The Sun Solaris setup can create a deadlock like the one described in the
previous section. Here, the interaction between CA Access Control and the nscd
process causes the deadlock.

1.
2.

During name resolution, CA Access Control accesses the nscd cache.

The nscd process can decide that the cache is too old. In this case, it
attempts to refresh the information by accessing the passwd, group, and
hosts databases (locally or on a server).

The request to access these databases is intercepted by the kernel
extension. Since a CA Access Control process is hot making the request, it is
placed on a queue awaiting seosd decision. But no such decision is possible
because seosd is still engaged in the previous request. The first request
generates the second, and creates a deadlock.

Appendix A: NIS Configuration 239

Avoiding Deadlocks: The Lookaside Database

Avoiding Deadlocks: The Lookaside Database

The setting of the under_NIS_server token in the seos.ini configuration file has a
default setting of yes to avoid deadlocks. The token tells CA Access Control to use
its own internal name resolution tables instead of NIS, DNS, or the nscd cache.
Unless otherwise specified, these tables reside in memory.

CA Access Control internal name resolution is much faster than NIS name
resolution and even faster than using files; using CA Access Control internal
name resolution improves performance even in an environment where there is
no danger of deadlocks.

Note: There is no cache for the internal name resolution tables in the lookaside
database. CA Access Control uses an open file handle to read data from the
tables.

Storing Resolution Tables on Disk

CA Access Control name resolution tables are generated while CA Access Control
is starting up. The tables should be maintained on disk, not in memory because
storage in memory can lead to memory overload. Also, when the information is
read into memory, it is static. Because of this, CA Access Control would not know
of any changes made to user, group, or host information. The only way to update
the tables in memory is to restart CA Access Control.

To keep data current, CA Access Control provides a lookaside database that
makes sure internal name resolution tables are stored on disk.

Note: To implement the lookaside database you need to use seos.ini
configuration settings. For more information about seos.ini configuration
settings, see the Reference Guide.

Setting Up the Lookaside Database

The four tables in the lookaside database are userdb.la, groupdb.la, hostdb.la,
and servdb.la. These four tables handle user, group, host, and service name
resolution requests. The tables are located in the directory specified by the
lookaside_path token in the seos.ini file, which by default is
/opt/CA/AccessControl/ladb.

240 Endpoint Administration Guide for UNIX

Avoiding Deadlocks: The Lookaside Database

Lookaside Database with Four Tables

To set up the lookaside database with the four tables, do one of the following:

m If you are installing CA Access Control, answer yes when asked if you want to
create the lookaside database.

m If you already installed CA Access Control:
a. In the [seosd] section of seos.ini change the following tokens to yes:
- under_NIS_server
- use_lookaside

b. Run sebuildla -a to create all four tables.
Lookaside Database with Less Than Four Tables
You can also create one, two, or three tables. For example, if you want to use the

lookaside database to resolve hosts only, complete the following steps:

1. After you install CA Access Control, change the following tokens in the
[seosd] section of the seos.ini file:

m Set under_NIS_ server to blank.
m Set HostResolution to ladb.

2. Run sebuildla -h to create a table of all hosts, including local and DNS hosts.
or

Run sebuildla -e to create a table of local hosts only (defined in /etc/hosts).

To create a lookaside database with other tables, use the appropriate tokens in
the seos.ini file and then run the appropriate option with sebuildla.

Note: For descriptions of these tokens, see the seos.ini initialization file in the
Reference Guide. For more information about sebuildla, see the Utilities Guide.

Important! Run sebuildla whenever you add a host.

How the Lookaside Database Works

The four tables in the lookaside database (groupdb.la, hostdb.la, servdb.la, and
userdb.la) contain resolution information for groups, hosts, services, and host
names. The tables are located in the directory specified by the lookaside_path
token in the seos.ini file, which by default is /opt/CA/AccessControl/ ladb.

CA Access Control internal name resolution is much faster than NIS name
resolution and even faster than looking up th files.

Appendix A: NIS Configuration 241

Avoiding Deadlocks: The Lookaside Database

Implementing the Lookaside Database

Note: The problems and solutions outlined here are for informational purposes
only. Actual settings are correct upon installation and most users need not take
any action.

Here is a broad overview of how CA Access Control implements the lookaside
database:
® The relevant tokens in the seos.ini file are set.

m The relevant symbolic links in the /opt/CA/AccessControl/exits directory are
defined.

m The command /opt/CA/AccessControl/bin/sebuildla -a was issued to build
the lookaside database.

The sebuildla utility taps into the native resolution mechanisms such as th files
and NIS to build the lookaside database.

No security-sensitive information (such as password, location of the home
directory, or gecos) is kept in the lookaside tables. The lookaside database tables
contain only a numeric ID number and a name.

Once the lookaside database is created, update it using the sebuildla utility. You
do not need to restart CA Access Control.

Updating the Hosts Lookaside Table

You must update the hosts lookaside table. To do so, execute sebuildla -h at
regular intervals (site-specific). Use cron jobs to do this.

Every time you change the UNIX user or group databases utilizing selang, you
must run the sebuildla utility. CA Access Control provides exit scripts for this
purpose, which runs sebuildla with the appropriate parameters.

242 Endpoint Administration Guide for UNIX

	CA Access Control Endpoint Administration Guide for UNIX
	Contents
	1: Introduction
	About this Guide
	Who Should Use this Guide

	2: Managing Endpoints
	What Is CA Access Control?
	Why Does UNIX Need Protecting?
	How Does This Work?
	What Is Protected?
	How Is It Protected?
	Class Activation
	Accessor Elements

	Expanding Native Security
	Superuser Account Limitations
	CA Access Control Administrators
	Sub Administration
	Administration Rights for Regular Users
	Program Pathing
	B1 Security Level Certification

	Endpoint Management

	3: Managing Users and Groups
	Users and Groups
	Where Information about Accessors Is Stored
	How CA Access Control Finds a User Record
	Integration with the Enterprise User Stores

	Guidelines for Managing Accessors in Enterprise Stores
	Users and Groups that Must be Defined in the Database
	Restrictions on the Use of Enterprise Users
	Restrictions on the Use of Enterprise Groups
	Enable or Disable the Use of Enterprise Users and Groups
	Enable or Disable the Creation of XUSER Records at Enterprise User Login
	Enable or Disable Checking Enterprise Store before Creating XUSER Records on UNIX
	Recycled Enterprise Store Accounts on Windows
	Resolve Recycled Enterprise Accounts on Windows

	Database Accessors
	Predefined Users
	Predefined Groups
	Profile Groups
	How CA Access Control Uses Profile Groups to Determine User Properties

	Accessor Management
	Manage Users or Groups
	User Management Using selang
	Group Management Using selang

	4: Managing Resources
	Resources
	Resource Groups

	Classes
	Default Record for Class
	UACC Class (Deprecated)
	Predefined Classes

	User-Defined Classes
	Wildcards in User-defined Classes Resources
	User-Defined Class--Example

	5: Managing Authorization
	Access Authorities
	Setting Access Authority - Examples
	Access Control Lists
	Conditional Access Control Lists
	defaccess--The Default Access Field

	How Access Authority to a Resource Is Determined
	Interaction Between User and Group Access Authorities
	Accumulative Group Rights (ACCGRR)

	Security Levels, Categories, and Labels
	Security Levels
	Security Categories
	Security Labels

	6: Protecting Accounts
	Why Protect Accounts?
	Safe User Substitution
	Set User ID Substitution Rules
	How to Set Up sesu for User Substitution
	Set Basic User Substitution Rules
	Replace the System's su Utility with the CA Access Control sesu Utility
	Prevent Users from Running the System's su Utility

	Setting Up the Surrogate DO Facility
	Defining SUDO Records
	Preventing Password Attacks
	serevu
	pam_seos
	Restrictions and Limitations

	Checking User Inactivity

	7: Managing User Passwords
	Password Control
	Defining Password Policies
	Configure Password Quality Checking
	Changing Passwords

	Password Expiration and Grace Logins
	Specify the Password Interval
	Set Individual User or Group Password Intervals
	Grace Logins
	Track Grace Logins

	8: Protecting Files and Programs
	Restricting Access to Files and Directories
	How File Protection Works
	Protect Files
	Wildcards in FILE Resource Names
	Restricting File Access
	Preventing File Access
	Restrict Users from Getting File Information
	Viewing Default Access Authority
	Using Conditional Access Control Lists
	Using Negative Access Control Lists

	Blocking Trojan Horses with the _abspath Group
	Synchronization with Native UNIX Security
	Example: Synchronization
	HP-UX Limitations
	Sun Solaris Limitations

	Monitoring Sensitive Files
	Protecting setuid and setgid Programs
	Define setuid/setgid Programs Automatically
	Conditional Access
	Protecting the Login Command

	Protecting Regular Programs
	Kernel Modules Load and Unload Protection
	Protect a Kernel Module
	Enable and Disable Kernel Module Protection
	Enable and Disable File Path Checking on Kernel Module Loads

	Protecting Binary Files from the kill Command

	9: Controlling Login Commands
	Controlling the Login Process
	Examples: LOGINAPPL

	Controlling Generic Login Applications
	Defining a Generic Login Application
	Generic Login Program Interception

	Defining User Authority to Use Terminals
	Restricting Terminals for Root Users
	Recommended Restrictions

	Password Checking and Login Restrictions
	Logon Checks

	Defining Time and Day Login Rules
	Disabling Concurrent Logins
	Limiting Concurrent Logins for a User
	Limiting Concurrent Logins Globally
	Limiting Concurrent Logins Individually

	Recognizing a Login Event

	10: Protecting TCP/IP Services
	Restricting TCP/IP Services
	Using the TCP Class
	Streams Module for Network Interception

	11: Managing Policy Models
	The Policy Model Database
	PMDB Location on Disk
	Managing Local PMDBs
	Managing Remote PMDBs

	Architecture Dependency
	Methods for Centrally Managing Policies
	Automatic Rule-based Policy Updates
	How Automatic Rule-based Policy Updates Work
	How You Use a PMDB to Propagate Configuration Settings
	Virtual Configuration File
	How New Subscribers Are Configured

	How You Can Set Up a Hierarchy
	Create and Configure the Master PMDB
	Create and Configure Subscriber PMDBs
	Define Parent PMDBs for Subscribing Computers

	UID/GID Synchronization
	Synchronize Users and Groups
	Specify UIDs Explicitly

	How the Policy Model Updates Subscribers
	Update a Policy Model Database
	Clean Up the Update File
	Encrypt the Update File
	Exclude Subscribers
	Propagate Passwords
	Remove a Subscriber
	Filter Updates
	Policy Model Filter File
	Policy Model Error Log File
	Policy Model Backup
	Back Up a PMDB Using sepmd
	Back Up a PMDB Using selang

	Policy Model Restoration
	Restore a PMDB

	Dual Control
	Activate Dual Control
	Create or Edit Transactions
	Checking and Processing Transactions

	Using the seagent and sepmdd Daemons
	The seagent Daemon
	The sepmdd Daemon
	Using a Shadow File

	Mainframe Password Synchronization

	12: General Security Features
	Protection of Idle Stations
	Protection Modes
	Set Stations to Lock when Idle
	Change the Screen Lock Icon

	Protecting Resources Using APIs
	Protecting Against Stack Overflow: STOP
	Starting and Stopping STOP

	Defining Day and Time Access Rules for Resources
	B1 Security Level Certification
	Security Levels
	Enabling Security Level Checking
	Disabling Security Level Checking

	Security Categories
	Enabling Security Category Checking
	Disabling Security Category Checking
	Defining a Security Category
	Listing Security Categories
	Deleting a Security Category

	Security Labels
	Enabling Security Label Checking
	Disabling Security Label Checking
	Defining a Security Label
	Listing the Security Labels
	Deleting a Security Label

	13: Auditing Events
	Setting Audit Rules
	Define the Audit Events That CA Access Control Writes to the Audit Log
	How CA Access Control Determines the Audit Mode for a User
	Default Audit Modes for Users and Enterprise Users

	Warning Mode
	Put a Resource into Warning Mode
	Put a Class into Warning Mode
	Find Out Which Resources Are in Warning Mode
	Find Out Which Classes Are in Warning Mode

	Audit Logs
	The System Auditor
	Set Up the Log Routing Facility
	File Notifications

	Log Routing
	Log Routing Configuration
	Audit Log Route Encryption
	Send Audit Log Records via Email
	Configure SNMP Traps

	Migrate User Trace Filters

	14: Scope of Administration Authority
	Global Authorization Attributes
	ADMIN Attribute
	AUDITOR Attribute
	OPERATOR Attribute
	PWMANAGER Attribute
	SERVER Attribute
	IGN_HOL Attribute

	Group Authorization
	Parentage
	Group Authorization Attributes
	GROUP-ADMIN Attribute
	GROUP-AUDITOR Attribute
	GROUP-OPERATOR Attribute
	GROUP-PWMANAGER Attribute

	Ownership
	File Ownership

	Authorization Examples
	Single Group Authorization
	Parent and Child Groups

	Sub Administration
	How to Grant Specific Administrative Privileges to Regular Users
	The ADMIN Class

	Environmental Considerations
	Remote Administration Restrictions
	UNIX Environment
	Windows Environment

	15: Improving Performance
	Using Global Access Check
	How Does GAC Work?
	Implementing GAC
	Setting Up GAC Rules
	Starting GAC

	GAC Restrictions
	Troubleshooting GAC

	Using the Resource Cache
	Tuning Recommendations

	Using the Network Cache
	Using the Real Path Cache
	Using Fork Synchronization
	Using High Priority
	Bypassing the Process File System
	Bypassing Real Paths
	Bypassing Trusted Process Authorization
	Bypass Ports for Network Activity
	Reducing Audit and Trace Loads
	Reducing Database Loads
	Improving PMDB Updates
	Improving Watchdog Performance
	Improving Class Parameters
	Class Activation
	Class Authorization

	Resolving Names

	16: Using UNIX Exits
	UNIX Exits
	User or Group Record Update Exits
	How the Provided selang Exit Script Works
	Arguments You Can Pass to selang Exits
	Specify selang Exit Programs to Run
	Time Out and Other Failures
	selang Exit Samples

	CA Access Control Kernel Loader Exits
	How the Kernel Loading Exits Work
	How the Kernel Unloading Exits Work

	17: Interacting with LDAP
	Transferring User Names
	S50CREATE_Ldap_u

	18: Unicenter Security Migration and Integration
	Unicenter Security Integration Tools
	Unicenter Security Integration Features
	SSF/EMSec API Support
	CA Access Control to Unicenter Security Synchronization Utility
	Starting and Stopping the Subscription Daemon
	SEOSTNGD Limitations

	Unicenter Security Data Migration Features
	Unicenter Security Options Migration
	Unicenter Security Database Migration
	Unicenter TNG User Exit Support
	Use a PMDB to Secure Unicenter Security Objects

	Unicenter TNG Calendar
	Certification with Unicenter TNG and Unicenter NSM
	Audit Events Integration

	19: Configuring Settings
	Configuration Settings
	Change Configuration Settings
	Change Audit Configuration Settings

	A: NIS Configuration
	Installation Notes
	Name Resolution
	Name Resolution on an NIS/DNS Client
	Name Resolution on a Server: Deadlock
	Name Resolution on Sun Solaris: Deadlock

	Avoiding Deadlocks: The Lookaside Database
	Storing Resolution Tables on Disk
	Setting Up the Lookaside Database
	Lookaside Database with Four Tables
	Lookaside Database with Less Than Four Tables

	How the Lookaside Database Works
	Implementing the Lookaside Database
	Updating the Hosts Lookaside Table

