
WANSync ® Control Library API™
WANSync Control Library API Reference Guide

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) is for the end user’s informational purposes only and is subject to change or withdrawal by CA at
any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,
without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and
protected by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the Documentation for their
own internal use, and may make one copy of the related software as reasonably required for back-up and disaster
recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the provisions of the license for the
product are permitted to have access to such copies.

The right to print copies of the Documentation and to make a copy of the related software is limited to the period
during which the applicable license for the product remains in full force and effect. Should the license terminate for
any reason, it shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the
Documentation have been returned to CA or destroyed.

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED BY
APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY LOSS
OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION,
LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF
SUCH LOSS OR DAMAGE.

The use of any product referenced in the Documentation is governed by the end user’s applicable license agreement.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section
252.227-7014(b)(3), as applicable, or their successors.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Copyright © 2007 CA. All rights reserved.

Change History

6/10/05

– Added information regarding Suspend/Resume Replica to the
appropriate sections of the guide.

– Revised Source files.

– Added two new methods to Class methods for class ws_statistics_c.

8/31/05

– Added new note format.

– Added date column to Revision History table.

7/15/06

– Editorial changes.

10/15/06
New software release.

11/18/06

– New software release.
Change History 1

Change History
 2 WANSync Control Library API Reference Guide

Contents
Chapter 1: Getting Started
Source Files . 1
Classes and Data Structures . 2

Chapter 2: Using the Library
Connect to a Master Scenario . 3
Traverse the Master Scenario List . 3
Monitor and Manage a Master Scenario . 4
Disconnect from a Master Scenario . 4
Collect Statistical Information. 4
Other Uses for ws_control_c Object . 4

Chapter 3: Using the Library
XO Error Codes. 5
XO Events . 7

Event Types. 7
Event IDs . 8
enum ws_sync_method_e . 9

enum ws_report_type_e . 9
struct ws_directory_statistics_s . 10
class ws_statistics_c . 11

Class Methods for class ws_statistics_c. 11
class ws_scenario_c . 14

Class Methods for class ws_scenario_c . 14
class ws_control_c . 22

Class methods for class ws_control_c . 22

Index
Contents v

Contents
 vi WANSync Control Library API Reference Guide

Chapter 1: Getting Started

The WANSync Control Library provides an easy to use API that allows you to
monitor and manage the replication process. Through the WANSync Control
Library, an application can connect to the XOsoft Engine running on a given host:

To collect statistical information of all existing scenarios (master and replica)

To retrieve the list of existing master scenarios -- the application can then
traverse this list and control each of these scenarios

Controlling individual master scenarios is enabled by the following procedures:

Start and stop the replication scenario

Initiate the synchronization process

Enable/disable logging, and retrieve log files

Collect scenario and root directory statistics

Create and retrieve a difference report

Collect synchronization/replication report files

Receive scenario events

Suspend/Resume replica

Source Files
The source files included with the installation are:

xo_base.h - Declaration of base types and error codes

ws_control.h - Declaration of WANSync Control Library classes and
structures

sample.h - Sample of using WANSync Control Library

sample.cpp- Sample of using WANSync Control Library
Getting Started 1

Classes and Data Structures
Classes and Data Structures
The classes and data structures are:

class ws_control_c - Used for:

– Collecting statistical information of all existing scenarios

– Retrieving the list of existing master scenarios on XOsoftEngines

class ws_scenario_c - Manages a specific master scenario

class ws_statistics_c - Holds scenario statistics

struct ws_directory_statistics_s - Holds root directory statistics

enum ws_sync_method_e - Defines the synchronization method

enum ws_report_type_e - Defines the various types of WANSync system
reports
 2 WANSync Control Library API Reference Guide

Chapter 2: Using the Library

The following sections provide an overview of the library’s main objects, their
uses, and their related methods.

Connect to a Master Scenario

To establish a connection to an XOsoftEngine service, create an instance of
ws_control_c and invoke ws_control_c::attach_to_scenarios(), with the
required host and port pair.

If the connection succeeds, a list of ws_scenario_c objects is created, one for
each existing master scenario. This list is internally stored and shared by all
ws_control_c objects. Invoking additional calls to
ws_control_c::attach_to_scenarios() with different host and port pair will
append new ws_scenario_c objects to the original list.

Traverse the Master Scenario List
In order to traverse the master scenario objects, use the
ws_control_c::first_scenario() and ws_control_c::next_scenario() methods.
Each of these methods returns a pointer to a ws_scenario_c object. Use this
pointer to manage the corresponding master scenario.
Using the Library 3

Monitor and Manage a Master Scenario
Monitor and Manage a Master Scenario
To monitor and manage a master scenario, use the ws_scenario_c object
methods which allow the following:

Start and stop the replication scenario

Initiate the synchronization process

Enable/disable logging, and retrieve log files

Collect scenario and root directory statistics

Create and retrieve a difference report

Collect synchronization/replication report files

Receive scenario events

Disconnect from a Master Scenario
Disposal of the ws_scenario_c objects is done by calling the
ws_control_c::detach_from_scenarios() method, and not by deleting the
ws_scenario_c object directly.

Note, that since the list of ws_scenario_c objects is shared by all ws_control_c
objects, the disposal of the ws_scenario_c objects is done only after calling
ws_control_c:: detach_from_scenarios() from all created ws_control_c objects.

Collect Statistical Information
To collect statistical information of all existing scenarios (master and replica) on
a running XOsoft Engine service, create an instance of ws_control_c and invoke
ws_control_c::get_host_statistics(), with the required host and port pair. If this
function succeeds, it initializes an array of ws_statistics_c objects, each for an
existing scenario (master or replica) on the XOsoft Engine running on a given
host.

Other Uses for ws_control_c Object
The ws_control_c object is also used for registering a new license key and setting
the WANSync Super User group. In order to invoke each of the latter methods,
it is mandatory to first dispose of the ws_scenario_c objects by calling
ws_control_c::detach_from_scenarios().
 4 WANSync Control Library API Reference Guide

Chapter 3: Using the Library

This chapter describes the library codes and class methods in detail.

XO Error Codes
The following table provides a list of possible XOSTATUS codes returned by many
of the library's methods.

Code Description Name

0 The operation completed successfully. XO_ERROR_OK

1 Incorrect library object is used. XO_ERROR_INVALID_OBJECT

2 The parameter is incorrect. XO_ERROR_INVALID_PARAMETER

3 The data area passed to a library call is too
small.

XO_ERROR_INSUFFICIENT_BUFFER

4 No more data is available. XO_ERROR_NO_MORE_DATA

5 The library cannot uncompress the file. XO_ERROR_UNCOMPRESS_FILE_FAILED

6 There is a mismatch between the library
version and the version of the
XOsoftEngine to which it tries to connect.

XO_ERROR_VERSION_MISMATCHING

7 Unable to connect to master host. XO_ERROR_CONNECTION_FAILED

8 The connection was seized by another host. XO_ERROR_CONNECTION_SEIZED

9 Connection with master host is lost. XO_ERROR_CONNECTION_CLOSED

10 User is not authorized to manage the
scenario.

XO_ERROR_NOT_AUTHORIZED

11 License is inappropriate. Use
ws_control_c::register_license() to reset
the license.

XO_ERROR_INAPPROPRIATE_LICENSE
Using the Library 5

XO Error Codes
12 No license. Use
ws_control_c::register_license() to set the
license.

XO_ERROR_NO_LICENSE

13 License expired. Use
ws_control_c::register_license() to reset
the license.

XO_ERROR_LICENSE_EXPIRED

14 Unable to read scenario's XML
configuration file.

XO_ERROR_READ_CONFIGURATION_FAILED

15 The XML configuration file of the scenario
was not changed by the WANSync editor.

XO_ERROR_CONFIGURATION_CHANGED_
MANUALLY

16 Unable to check if the scenario
configuration has changed.

XO_ERROR_VERIFY_CONFIGURATION _FAILED

17 Detected change in scenario configuration
and trying to download new configuration.

XO_ERROR_DOWNLOAD_SCENARIO_IN_
PROGRESS

18 If this is a return value from
ws_control_c::attach_to_scenarios(), the
scenarios from the specific XosoftEngine
could not be downloaded; otherwise, this
means that a change in the scenario
configuration has been detected, and an
attempt to download it failed. When the
application sends a new command, the
download is retried.

XO_ERROR_DOWNLOAD_SCENARIO_FAILED

19 The command timeout period has expired. XO_ERROR_TIMEOUT

20 Unable to send the command to the specific
scenario.

XO_ERROR_SEND_CMD_FAILED

21 Unable to send the file to the specific
scenario. (Enterprise Rewinder only).

XO_ERROR_SEND_FILE_FAILED

22 Unable to perform the requested operation.
Check operation's pre-conditions.

XO_ERROR_OPERATION_FAILED

23 Illegal operation. Check pre-conditions. XO_ERROR_OPERATION_ABORTED

24 Unable to complete the requested
operation because the scenario has
stopped.

XO_ERROR_SCENARIO_STOPPED

25 Unable to get the scenario state. XO_ERROR_GET_SCENARIO_STATE_FAILED

26 Previous synchronization/verification
process is still in progress.

XO_ERROR_SYNC_OR_DIFF_IN_PROGRESS

27 WANSync Super User Group not detected.
Specify the Super User Group by invoking
ws_control_c::set_su_group().

XO_ERROR_SU_GROUP_NOT_SPECIFIED

Code Description Name
 6 WANSync Control Library API Reference Guide

XO Events
XO Events
The following subsections describe XO events.

Event Types

The following table presents the various types of XO system events.

28 WANSync Super User Group has been
manually modified. Contact support team.

XO_ERROR_SU_GROUP_VIOLATED

29 No mapping between WANSync Super User
Group Name and security ID was done.
Make sure that you are logged into the
domain in which the Super User Group is
defined.

XO_ERROR_SU_GROUP_NOT_MAPPED

30 Unable to read WANSync Super User
Group. Contact support team.

XO_ERROR_READ_SU_GROUP_FAILED

31 Invalid WANSync Super User Group was
specified.

XO_ERROR_INAPPROPRIATE_SU_GROUP

32 Unable to manually resume replica which is
in scheduled suspend.

XO_ERROR_SCHEDULED_SUSPEND

33 Unable to manually resume replica which is
in scheduled offline processing.

XO_ERROR_SCHEDULED_OFFLINE_
PROCESSING

34 Unable to manually resume replica which is
in scheduled DB verification.

XO_ERROR_SCHEDULED_DB_VERIFY

35 Unable to suspend replica because there is
a suspended replica in this scenario.

XO_ERROR_SUSPEND_IN_PROGRESS

36 Unable to suspend replica because there is
a replica in offline processing in this
scenario. Unable to resume replica in offline
processing.

XO_ERROR_OFFLINE_PROCESSING_IN_
PROGRESS

37 Unable to suspend replica because there is
a replica in DB verification in this scenario.
Unable to resume replica in DB verification.

XO_ERROR_DB_VERIFY_IN_PROGRESS

Code Description Name
Using the Library 7

XO Events
Note: The XO event type is provided as a parameter to
ws_scenario_c::on_new_event().

Event IDs

The following table presents the various event IDs of the XO system events.

Note: The XO event ID is provided as a parameter to
ws_scenario_c::on_new_event().

Code Description Name

0 Informational XO_INFO

1 Error conditions XO_ERR

2 Action must be taken immediately XO_ALERT

3 Critical conditions XO_CRIT

4 Warning conditions XO_WARNING

5 Normal but significant condition XO_SIGNF_INFO

6 Debug-level events XO_DEBUG

Code Description Name

0 Informational XO_EVENTID_INFO

1 Error conditions XO_EVENTID_ERROR

2 Connection lost XO_EVENTID_LOST_CONNECTION

3 Reestablish connection XO_EVENTID_REESTABLISH_CONNECTION

4 XOFS queue overflow due to excessive
number of changes

XO_EVENTID_XOFS_QUEUE_OVERFLOW

5 XOFS queue normalized XO_EVENTID_XOFS_QUEUE_OK

6 Unable to apply file change XO_EVENTID_APPLY_FILE_CHANGE_FAILED

7 Synchronization/verification finished XO_EVENTID_SYNC_FINISHED

8 All modifications during synchronization
period are replicated

XO_EVENTID_SYNC_JOURNALS_FINISH

9 Previous synchronization/verification in
progress

XO_EVENTID_SYNC_IN_PROG
 8 WANSync Control Library API Reference Guide

enum ws_report_type_e
enum ws_sync_method_e

Defines the synchronization method:

enum ws_sync_method_e

{

initial_synchronization_t,

file_synchronization_t,

block_data_synchronization_t

};

Note: The enum type is provided as a parameter to the following methods:
- ws_scenario_c::sync()
- ws_scenario_c::generate_difference_report()

enum ws_report_type_e
Defines the various types of WANSync system reports.

Value Description

initial_synchronization_t Initial Synchronization — This type of
synchronization transfers all master
directories without checking data on
replicas.

file_synchronization_t File Synchronization — This type of
synchronization is used to synchronize
entire files. This option is recommended
when most of the changes are file
replacements or creations of new files and
not file editing.

block_data_synchronization_t Block/Data Synchronization (Continual) —
This type of synchronization transfers only
differences. This method reduces
synchronization time in case of a slow
network, because it avoids sending
redundant information (the same algorithm
used in the rsync package).

enum ws_report_type_e

{
report_sync_t, /* Synchronization report */
report_sync_t, /* Replication report */
report_difference_t /* Difference report */
report_t /* Generic report */
};
Using the Library 9

struct ws_directory_statistics_s
Note: The enum type is provided as a parameter to
ws_scenario_c::on_received_report_file().

struct ws_directory_statistics_s
Describes statistical information per root directory.

Note: Use the ws_statistics_c::dir_statistics() method in order to retrieve root
directory statistics.

You can collect the following data:

Online file changes (Kbytes transferred, files changed/removed/renamed,
last modification time)

File changes due to synchronization (Kbytes transferred, files
changed/removed)

Number of possible errors

Value Description

report_sync_t Synchronization report

report_replication_t Replication report

report_difference_t Difference report

report_t Generic report

struct ws_directory_statistics_s

{
const char* dir_full_path;
/* Online file changes */
__uint64 num_replicated_bytes;
unsigned int num_updated_files;
unsigned int num_removed_files;
unsigned int num_renamed_files;
time_t last_change; /* Time in seconds since 1/1/70 */
/* File changes due to Sync */
__uint64 num_sync_bytes;
unsigned int num_sync_changed_files;
unsigned int num_sync_removed_files;
/* Others */
unsigned intnum_errors;
};
 10 WANSync Control Library API Reference Guide

class ws_statistics_c
class ws_statistics_c
Describes statistical information of a scenario. You can collect the following data:

Start time of the replication process

State information (spool size, registry changes)

Statistics per root directory

Scenario name

Note: Use the ws_scenario_c::get_statistics() method in order to retrieve
statistics.

Class Methods for class ws_statistics_c

Class methods for class ws_statistics_c are:

Method ws_statistics_c::ws_statistics_c()

Description Use this member function to construct a ws_statistics_c
object.

Arguments

Method bool ws_statistics_c::is_running() const

Description Returns the scenario status.

Arguments

Method bool ws_statistics_c::is_scenario_master() const

Description Returns an indicator if the statistics belong to a scenario's
master node.

Arguments

Method time_t ws_statistics_c::replication_start_time() const

Description Returns the start time of the replication process.
Time is in number of seconds, since January 1, 1970.

Arguments

Method const char* ws_statistics_c::master_host_name() const
Using the Library 11

class ws_statistics_c
Description Returns a pointer to a null terminated string holding the host
name of the master host of the scenario, which is the DNS
name or the IP address.

Arguments

Method unsigned short ws_statistics_c::master_port() const

Description Returns the incoming port used for TCP/IP communications of
the master host of the scenario.

Arguments

Method uint64 ws_statistics_c::spool_size() const

Description Returns the spool size in bytes.

Arguments

Method uint64 ws_statistics_c::bytes_received() const

Description Returns the number of bytes coming in to the specific scenario
from its parent, or from the application by which it is managed,
if the current host is a master host. It includes all replication
and synchronization data.

Arguments

Method uint64 ws_statistics_c::bytes_sent() const

Description Returns the number of bytes sent from the specific scenario to
its immediate children. It includes all replication and
synchronization data.

Arguments

Method unsigned int
ws_statistics_c::num_of_online_registry_changes() const

Description Returns the number of online changes in the registry.

Arguments

Method unsigned int num_of_sync_registry_changes() const

Description Returns the number of changes in the registry due to the
synchronization process.
 12 WANSync Control Library API Reference Guide

class ws_statistics_c
Arguments

Method const char* ws_statistics_c::scenario_name() const

Description Returns the scenario name.

Arguments

Method unsigned int ws_statistics_c::num_of_directories() const

Description Returns the number of root directories. Use this number as a
maximum index value passed to
ws_statistics_c::dir_statistics().

Arguments

Method XOSTATUS ws_statistics_c::dir_statistics(unsigned int
dir_index,
ws_directory_statistics_s* dir_statistics) const

Description Fills the ws_directory_statistics_s structure with the statistics
of the desired root-directory identified by dir_index.

Arguments

dir_index [in] Specifies the index of the root directory. An application can
call the ws_statistics_c::num_of_directories() function to
discover the range of acceptable root directory indexes.

dir_statistics
[out]

Pointer to a ws_directory_statistics_s buffer that the function
fills with the requested information.
Using the Library 13

class ws_scenario_c
class ws_scenario_c
Represents a replication scenario.

Note: Do not try to create a scenario object manually. Only use the method:
ws_control_c::attach_to_scenarios(host_name,ip)). Also, do not try to clear
(delete) a scenario object. Only use the method:
ws_control_c::detach_from_scenarios() to clear all allocated memory.

The ws_scenario_c class methods allow you to send the following commands to
a scenario:

Start and stop the replication scenario

Initiate the synchronization process

Enable/disable logging, and retrieve log files

Collect scenario and root directory statistics

Create and retrieve a difference report

Collect synchronization/replication report files

Receive scenario events

Suspend/Resume replica

Class Methods for class ws_scenario_c

The class methods for class ws_scenario_c are:

Method virtual void ws_scenario_c::on_new_event(

unsigned int event_type,

unsigned int event_id,

const char* host_name,

time_t time,

const char *msg);

Description This virtual function is called asynchronously upon receipt
of a WANSync event from the hosts participating in the
scenario.
The application can use this function to handle the events.

Arguments

event_type [in] XO event type (see Event Types).

event_id [in] XO event ID (see Event IDs).
 14 WANSync Control Library API Reference Guide

class ws_scenario_c
host_name [in] A null-terminated string that contains the DNS-name of
the host that generated the event.

time [in] The time the event occurred.

msg [in] A null-terminated string that contains a brief explanation
of the event.

Method XOSTATUS ws_scenario_c::is_running(bool *result) const

Description Checks if scenario is running. Returns the scenario status
in the result argument.

Arguments

result [out] Boolean value. Specifies the scenario status.

Method XOSTATUS ws_scenario_c::scenario_name(char* buf,
unsigned int buf_len) const

Description Retrieves the scenario name.

Arguments

buf [out] Pointer to a buffer that receives a null-terminated string
containing the scenario name.

len [in] Specifies the maximum size, in characters, of the buffer.

Method unsigned int ws_scenario_c::scenario_id()

Description Retrieves the scenario unique ID

Arguments

Method XOSTATUS ws_scenario_c::run().

Description Sends a Run command to the scenario.

Arguments

Method XOSTATUS ws_scenario_c::number_of_hosts_in_scenario

(unsigned int* num_of_hosts) const

Description Retrieves the number of hosts in the scenarios. Use this
number to decide the length of the buffer passed to
ws_scenario_c::generate_difference_report().
Using the Library 15

class ws_scenario_c
Arguments

num_of_hosts
[out]

Pointer to a variable that receives the number of hosts in the
scenarios.

Method XOSTATUS ws_scenario_c::stop().

Description Sends a Stop command to the scenario, Including HA forward
scenario.

Arguments

Method XOSTATUS ws_scenario_c::sync(ws_sync_method_e
sync_type,
bool exclude_same_files = true, unsigned int timeout=0).

Description Sends a Synchronize command to the scenario.

This command can be sent only if the scenario is running.

Arguments

sync_type [in] Enumerated value that specifies the synchronize method.

exclude_same
_files [in]

Boolean value. If false, checks files with the same size and
modification time during synchronization; If true, skips them.

timeout [in] Specifies the time to wait, in seconds, for the synchronization
of all the hosts to finish.

If timeout is zero, sync() sends the Synchronize command
and returns immediately.

If timeout is not zero, sync() waits until the synchronization
of all the hosts has finished, or the timeout interval has
elapsed.

Use XO_INFINITE to specify an infinite timeout.
 16 WANSync Control Library API Reference Guide

class ws_scenario_c
Method XOSTATUS
ws_scenario_c::generate_difference_report(

ws_sync_method_e comparison_type,

bool exclude_same_files = true,

unsigned int timeout=0,

char* reports_names_buf=NULL,

unsigned int buf_len=0)

Description Sends a Difference report command, and will
asynchronously receive a report of type
report_difference_t by the ws_scenario_c::
on_received_report_file().

WANSync will compare each replica with the master
and generate a difference report per replica.

Report files are stored in the
[library-working-directory]/[scenario-name]
directory.

No synchronization data is transferred.

This command can be sent only if the scenario is
running.

Arguments

comparison_type [in] Enumerated value that specifies the comparison
method.

exclude_same_files
[in]

Boolean value. If false, checks files with the same
size and modification time during comparison; If
true, skips them.

timeout [in] Specifies the timeout in seconds for receiving the
difference report of all hosts.

If timeout is zero, generate_difference_report()
sends the Difference report command, and returns
immediately.

If timeout is not zero, generate_difference_report()
waits until the difference report of all hosts is
received, or the timeout interval has elapsed.

Use XO_INFINITE to specify an infinite timeout.
Using the Library 17

class ws_scenario_c
reports_names_buf
[out]

Pointer to a buffer that receives a series of
null-terminated strings (one for each report’s
full-path name). This buffer ends with a second null
character.

buf_len [in] Specifies the maximum size, in characters, of the
buffer pointed to by reports_names_buf. This size
includes the terminating null character.

If this parameter is zero, reports_names_buf is not
used.

This value should be set to at least

((MAX_PATH+1) *
[number-of-hosts-in-the-scenario]) + 1

to allow sufficient space for the data and the null
terminator. Use
ws_scenario_c::number_of_hosts_in_scenario() to
determine the number of hosts in the scenario.

Method Virtual void
ws_scenario_c::on_received_report_file(
ws_report_type_e type,

const char *report_file_name)

Description This virtual function is called asynchronously on
receipt of a WANSync report file from the hosts
participating in the scenario.

The application can use this function to handle the
incoming reports. The application is responsible for
deleting the report file.

Report files are stored in the
[library-working-directory]/[scenario-name]
directory.

The function receives an enum type that indicates
the type of the received report file, and the full path
name of the report.

Arguments

type [in] Enumerated value that specifies the report type

report_file_name [in] The full path name of the report.
 18 WANSync Control Library API Reference Guide

class ws_scenario_c
Method XOSTATUS ws_scenario_c::get_replication_report
(char* filename, unsigned int filename_len,
unsigned int timeout).

Description Sends a Replication Report command, to receive the
replication report, without waiting for the scheduled
replication report. The application is responsible for
deleting this file.

Report files are stored in the
[library-working-directory]/[scenario-name]
directory.

This command is sent only if the scenario is running.

Arguments

filename [out] Pointer to a buffer that receives a null-terminated
string containing the path.

filename_len [in] Specifies the maximum size of the buffer, in
characters.

This value should be set to at least MAX_PATH+1 to
allow sufficient space for the path and the null
terminator.

timeout [in] Specifies the time-out interval, in seconds, to wait
for receiving the replication report file.

The function returns if the interval elapses, even if
the operation was not finished. If timeout is
XO_INFINITE, the function's timeout interval never
elapses.

Method XOSTATUS ws_scenario_c::start_stop_logging(bool
start)
Using the Library 19

class ws_scenario_c
Description Sends a Start/Stop command to start or stop logging
WANSync messages.

The logging facility is an important part of the
internal WANSync debugging mechanism. It allows
you to trace the replication process of the scenario.

When logging is activated, the XOsoftEngine records
all of its activities in detail, every file received, and
every replication event that has executed. WANSync
message logging may downgrade replication
performance.

Note: This command can be sent only if the scenario
is running.

Arguments

start [in] Indicates whether to start or stop logging.

Method XOSTATUS ws_scenario_c::get_log_file(char*
filename, unsigned int filename_len, unsigned int
timeout)

Description Once the application has instructed a scenario to
start logging using the start_stop_logging(true) , it
can start retrieving the log files.

The application is responsible for deleting this file.

Log files are stored in the
[library-working-directory]/[scenario-name]
directory.

Note: This command can be sent only if the scenario
is running.

Arguments

filename [out] Pointer to a buffer that receives a null-terminated
string containing the path.

filename_len [in] Specifies the maximum size of the buffer, in
characters.

This value should be set to at least MAX_PATH+1 to
allow sufficient space for the path and the null
terminator.
 20 WANSync Control Library API Reference Guide

class ws_scenario_c
timeout [in] Specifies the time-out interval, in seconds, to wait
for receiving the log file.

The function returns if the interval elapses, even if
the operation was not finished. If timeout is
XO_INFINITE, the function's timeout interval never
elapses.

Method XOSTATUS ws_scenario_c::get_statistics
(ws_statistics_c *statistics) const

Description Retrieves scenario statistical information. The
following data is available:

- Time at which replication has started.

- State information and various process statistics:

Kbytes transferred, files changed/removed/renamed
per root directory.

Arguments

statistics [out] Pointer to a ws_statistics_c class buffer that the
function fills with the requested information. If a
NULL pointer is passed, the function fails.

Method XOSTATUS ws_scenario_c::suspend_replica(const
char* host_name, unsigned int
port=DEFAULT_PORT).

Description Suspend the replica running on: (host_name, port).

Arguments

host_name [in] Pointer to a null terminated string holding the host
name, which is the DNS name or the IP address.

port [in] The incoming port used for TCP/IP communications.

DEFAULT_PORT specifies the XOsoftEngine default
port.

Method XOSTATUS ws_scenario_c::resume_replica().

Description Resume the manually suspended replica.

Arguments

statistics [out]
Using the Library 21

class ws_control_c
class ws_control_c
This class manages master scenarios and/or to collect statistical information
from the XOsoft Engine running on a given host.

Class methods for class ws_control_c

Class methods are:

Method ws_control_c::ws_control_c(const char*
working_directory=NULL);

Description Use this member function to construct a ws_ control_c
object.

Arguments

working_directory
 [in]

A pointer to a null-terminated string specifies a
directory to be used for storing the .xmc scenario files,
reports and logs.

The default directory is
[application-working-directory]/ws_control.

Note: The library working-directory is set only once by
the first created ws_control_c object.

Method virtual ws_scenario_c*
ws_control_c::on_create_new_scenario()

Description This function returns the newly created ws_scenario_c
object.

Since ws_control_c creates the required scenario
objects internally, an application that implements the
derived class for ws_scenario_c, should override this
function and return the derived object allocation.

Arguments

Method Virtual bool on_authentication(const char* hostname,

char* domainname,

char* username,

char* paswd)

Important! Currently, this method is not in use.
 22 WANSync Control Library API Reference Guide

class ws_control_c
Description Every connection between the WANSync Control Library
and XOsoftEngine is authorized individually with a
read/write privilege.

In determining the ws_control_c object's rights to a
scenario, the ws_control_c first uses the current process
user rights.

If the ws_control_c does not have the correct
authorization level, then this virtual function will be called
asynchronously and will ask for a username and password
for the XOsoftEngine on the given hostname.

This is applicable according to the appropriate license.

Regular Windows domain users and the NTLM security
provider are used for authentication and authorization.

In Windows XP/2003, WANSync uses the Kerberos
Authentication Protocol.

This function is called repeatedly, whenever a given
host’s username and password is needed.

The function continues to be called until the connection is
authorized, or the on_authentication() function returns a
value of false.

Arguments

hostname [in] Pointer to a const null-terminated ASCII string specifying
the name of the XOsoftEngine server that needs to be
authenticated.

domainname [out] Pointer to a null-terminated ASCII string buffer to be
filled with the domain-name of the user. The length
cannot exceed MAX_COMPUTERNAME_LENGTH bytes.

username [out] Pointer to a null-terminated ASCII string buffer to be
filled with the user-name. The length cannot exceed
UNLEN bytes.

paswd [out] Pointer to a null-terminated ASCII string buffer to be
filled with the password of the user. The length cannot
exceed PWLEN bytes.

Method XOSTATUS ws_control_c::attach_to_scenarios(const char
*host_name, unsigned short port=DEFAULT_PORT).

Description Connects to all existing master scenarios on the XOsoftEngine
running on: (host_name, port).
Using the Library 23

class ws_control_c
Arguments

host_name
[in]

Pointer to a null terminated string holding the host name,
which is the DNS name or the IP address.

port [in] The incoming port used for TCP/IP communications.

DEFAULT_PORT specifies the XOsoftEngine default port.

Method void ws_control_c::detach_from_scenarios().

Description Disconnects all scenarios and clears all the memory allocated
by calls to attach_to_scenarios() .

Since the list of ws_scenario_c objects is shared by all
ws_control_c objects, the disposal of the ws_scenario_c
objects is done only after calling
ws_control_c::detach_from_scenarios() from all created
ws_control_c objects.

Arguments

Method ws_scenario_c* ws_control_c::first_scenario() const

Description Returns the first scenario object. The application should first
call the attach_to_scenarios() method, in order to create
scenarios.

Do not try to directly delete this object, use
detach_from_scenarios() instead.

The list of scenarios is shared by all ws_control_c objects.

Therefore the first ws_control_c object that attaches
scenarios makes these scenarios available to all other
ws_control_c objects.

Arguments

Method ws_scenario_c* ws_control_c::next_scenario (const
ws_scenario_c* current_scenario) const

Description Enables retrieving the next scenario object in the scenario list.
(Use the first_scenario() method in order to retrieve the first
scenario object in the scenario list.)

Do not try to directly delete this object, use
detach_from_scenarios() instead.

Arguments
 24 WANSync Control Library API Reference Guide

class ws_control_c
current_
scenario
[in]

Pointer to the current scenario.

Method XOSTATUS ws_control_c::get_host_statistics(

const char* host_name,

unsigned short port,

ws_statistics_c** statistics_list,

unsigned int* num_of_statistics) const

Description Collect statistical information of all existing
scenarios (master and replica) on the XOsoftEngine
running on, (host_name, port).

Arguments

host_name [in] Pointer to a null terminated string holding the host
name, which is the DNS name or the IP address.

port [in] The incoming port used for TCP/IP communications.

statistics_list [out] Pointer to a variable that receives a pointer to an
array of ws_statistics_c objects. If the function
succeeds, you must call the delete function to free
the returned buffer.

num_of_
statistics [out]

Pointer to a variable that receives the number of
ws_statistics_c objects returned in the statistics_list
array.

Method XOSTATUS ws_control_c::register_license(const char*
key_str)

Description Register a new license key. Note that before registering a new
key call detach_from_scenarios(), otherwise operation aborts.

Arguments

key_str [in] A pointer to a null-terminated string that specifies a key.

Method XOSTATUS ws_control_c::set_su_group(const char*
group_name)
Using the Library 25

class ws_control_c
Description Set WANSync Super User group.

Before setting the WANSync Super User group, call
detach_from_scenarios(), otherwise the operation aborts.

This is applicable only to the ACL-based license.

Arguments

group_name
[in]

A pointer to a null-terminated string that specifies the
Domain\Super User group name.

Method const char*ws_control_c::get_working_directory() const

Description Returns the library working directory, which is used for storing
the .xmc scenario files, reports and logs. The default directory
is [application working-directory]/ws_control.

This directory can be set in the ws_control_c constructor.

Arguments
 26 WANSync Control Library API Reference Guide

Index
Symbols

(unsigned int* num_of_hosts) const • 15

A

API • 1

Arguments • 11, 12, 13, 14, 15, 16, 18, 19, 20,
21, 22, 23, 24, 25, 26

B

Block/Data Synchronization (Continual) • 9

block_data_synchronization_t • 9

bool ws_statistics_c

is_running() const • 11
is_scenario_master() const • 11

Boolean value • 15, 16

buffer size
max • 19

C

change in scenario configuration • 6

char *msg)
const • 14

class
ws_control_c • 2, 22
ws_scenario_c • 2, 14
ws_statistics_c • 2, 11

Class methods
ws_scenario_c • 14
ws_statistics_c • 11

class methods • 5

Class methods for class
ws_control_c • 22

Classes
and data structures • 2
structures • 2

codes

library • 5

Collect
replication report files • 14
root directory statistics • 4, 14
scenario and root directory statistics • 4, 14
scenario statistics • 1, 14
synchronization files • 14
synchronization/replication report files • 4, 14

collect • 4
statistical information • 1

Collecting statistical information • 4

const
char *msg) • 14

const char* ws_control_c

get_working_directory() const • 26

const char* ws_statistics_c

master_host_name() const • 11
scenario_name() const • 13

Contact us • 2

Control Library
WANSync • 1

Create difference report • 1

Critical conditions • 8

D

data structures • 2

Debug-level events • 8

DEFAULT_PORT • 21, 24

Defines the synchronization method • 2

Description • 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26

detaching • 4

Difference report • 10, 17

difference report • 4, 14, 17
retrieve • 1

directory • 19

disable logging • 1, 4
Index 27

Index
DomainSuper User group name • 26

E

Enable logging • 1, 4

enum
ws_report_type_e • 2, 9
ws_sync_method_e • 2, 8, 9

Enumerated value • 16, 18

error codes
XO • 5

Error conditions • 8

Event
IDs • 8
types • 7

event id (see Event IDs).
XO • 14

event IDs • 8

events
XO • 7

expired
License • 6

F

File changes • 10

File Synchronization • 9

file_synchronization_t • 9

G

Generic report • 10

Getting Started • 1

H

Holds
root directory statistics • 2
scenario statistics • 2

I

IDs
Event • 8

Illegal operation • 6

buf_len • 18

current_scenario • 25

dir_index • 13

event_id • 14

event_type • 14

exclude_same_files • 16

filename_len • 19, 20

group_name • 26

host_name • 15, 21, 24, 25

hostname • 23

key_str • 25

len • 15

msg • 15

port • 21, 24, 25

report_file_name • 18

start • 20

sync_type • 16

time • 15

timeout • 16, 17, 19, 21

type • 18

working_directory • 22

Incorrect library object • 5

index
root directory • 13

information
State • 21
state • 21

Informational • 8

Initial Synchronization • 9

initial_synchronization_t • 9

Initiate the synchronization process • 4

int event_id
unsigned • 14

int event_type
unsigned • 14

int num_of_sync_registry_changes() const
unsigned • 12

Invalid WANSync Super User Group • 7
 28 WANSync Control Library API Reference Guide

Index
L

library • 3
codes • 5
working-directory • 22

library call • 5

library working directory • 26

License
expired • 6
is inappropriate • 5

Log files • 20

logging • 14, 20

M

managing a master scenario • 4

mapping
No • 7

master
scenario • 4
scenarios • 1

master scenario • 2

Master scenarios • 1

max
buffer size • 19
size buffer • 15

maximum buffer • 20

Method • 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26

Monitoring a master scenario • 4

monitoring a master scenario • 4

N

No
mapping • 7

No license • 6

Normal condition • 8

O

object
ws_control_c • 4
ws_scenario_c • 4
ws_statistics_c • 11

objects
ws_scenario_c • 4

Online file changes • 10

buf • 15

dir_statistics • 13

domainname • 23

filename • 19, 20

num_of_hosts • 16

num_of_statistics • 25

paswd • 23

reports_names_buf • 18

result • 15

statistics • 21

statistics_list • 25

username • 23

P

Pointer current scenario • 25

R

Receive scenario events • 1, 4, 14

Register a new license key • 25

Replica
resume • 1, 14
suspend • 1, 14

Replication
Report • 19
report • 10

replication • 1, 21

replication process
Start • 11

replication report files
collect • 1, 4, 14

replication scenario • 14
start • 4

Report
Replication • 19

report
Replication • 10

Report files • 17, 18, 19

report_difference_t • 10
Index 29

Index
report_replication_t • 10

report_sync_t • 10

report_t • 10

Resume • 21

Resume replica • 1, 14

retrieve log files • 1, 4

Retrieves the scenario name. • 15

root directories • 13

root directory • 10
index • 13

root directory statistics • 4
collect • 14
Holds • 2

Run • 15

S

sample.cpp • 1

sample.h • 1

scenario
master • 4

scenario configuration • 6

Scenario name • 11

scenario name • 13

scenario state • 6

scenario statistics
Collect • 1
collect • 4, 14
Holds • 2

scenario status • 11

scenarios
master • 1

Set WANSync Super User group • 26

size buffer
max • 15

spool size • 12

Start
replication scenario • 4
time

replication process • 11

start replication scenario • 4

start time • 11

Start/Stop • 20

State information • 11, 21

statistical information • 4
collect • 1

Statistics per root directory • 11

Stop • 16

stop replication scenario • 4

struct ws_directory_statistics_s • 2, 10

structures
Classes • 2

Super User Group.
WANSync • 7

Suspend replica • 1, 14

Suspend the replica • 21

synchronization • 14

synchronization files
Collect • 14

synchronization process • 1

Synchronization report • 10

synchronization report files
Collect • 4
collect • 1

synchronization/verification • 6

Synchronize • 16

Synchronize command • 16

T

TCP/IP communications • 24, 25

The operation completed successfully. • 5

time to wait • 16

time_t time • 14

time_t ws_statistics_c

replication_start_time() const • 11

timeout • 17

timeout period • 6

traverse master scenario objects • 3

Traversing master scenario list • 3

types
Event • 7
 30 WANSync Control Library API Reference Guide

Index
U

uint64 ws_statistics_c

bytes_received() const • 12
bytes_sent() const • 12
spool_size() const • 12

uncompress file • 5

unsigned
int event_id • 14
int event_type • 14
int num_of_sync_registry_changes() const •
12

unsigned int ws_statistics_c

num_of_directories() const • 13
num_of_online_registry_changes()
const • 12

unsigned short ws_statistics_c

master_port() const • 12

User not authorized • 5

V

Virtual bool • 22

Virtual void • 18

virtual void • 14

virtual ws_scenario_c* ws_control_c

on_create_new_scenario() • 22

void ws_control_c

detach_from_scenarios () • 24

W

WANSync
Control Library • 1
Super User Group • 7

WANSync event • 14

WANSync Super User Group • 6, 7

WANSync system reports • 2

Warning conditions • 8

working-directory
library • 22

ws_ control_c object • 22

ws_control.h • 1

ws_control_c • 4, 22, 23

detach_from_scenarios() • 4
ws_control_c(const char*
working_directory=NULL) • 22

class • 2, 22
Class methods for class • 22
object • 4

ws_control_c constructor. • 26

ws_directory_statistics_s • 13

ws_report_type_e
enum • 2, 9

ws_scenario_c • 14, 24
class • 2, 14
Class methods • 14
object • 4
objects • 4

ws_scenario_c* ws_control_c

first_scenario() const • 24
next_scenario (const ws_scenario_c*
current_scenario) const • 24

ws_statistics_c • 11

ws_statistics_c() • 11
class • 2, 11
Class methods • 11
object • 11

ws_sync_method_e
enum • 2, 8, 9

X

XML configuration file • 6

XO
error codes • 5
event id (see Event IDs). • 14
events • 7

XO event type (see Event types). • 14

XO_ALERT • 8

xo_base.h • 1

XO_CRIT • 8

XO_DEBUG • 8

XO_ERR • 8
Index 31

Index
XO_ERROR_CONFIGURATION_CHANGED_MANUA
LLY • 6

XO_ERROR_CONNECTION_CLOSED • 5

XO_ERROR_CONNECTION_FAILED • 5

XO_ERROR_CONNECTION_SEIZED • 5

XO_ERROR_DB_VERIFY_IN_PROGRESS • 7

XO_ERROR_DOWNLOAD_SCENARIO_FAILED • 6

XO_ERROR_DOWNLOAD_SCENARIO_IN_PROGRE
SS • 6

XO_ERROR_GET_SCENARIO_STATE_FAILED • 6

XO_ERROR_INAPPROPRIATE_LICENSE • 5

XO_ERROR_INAPPROPRIATE_SU_GROUP • 7

XO_ERROR_INSUFFICIENT_BUFFER • 5

XO_ERROR_INVALID_OBJECT • 5

XO_ERROR_INVALID_PARAMETER • 5

XO_ERROR_LICENSE_EXPIRED • 6

XO_ERROR_NO_LICENSE • 6

XO_ERROR_NO_MORE_DATA • 5

XO_ERROR_NOT_AUTHORIZED • 5

XO_ERROR_OFFLINE_PROCESSING_IN_PROGRE
SS • 7

XO_ERROR_OK • 5

XO_ERROR_OPERATION_ABORTED • 6

XO_ERROR_OPERATION_FAILED • 6

XO_ERROR_READ_CONFIGURATION_FAILED • 6

XO_ERROR_READ_SU_GROUP_FAILED • 7

XO_ERROR_SCENARIO_STOPPED • 6

XO_ERROR_SCHEDULED_DB_VERIFY • 7

XO_ERROR_SCHEDULED_OFFLINE_PROCESSING
 • 7

XO_ERROR_SCHEDULED_SUSPEND • 7

XO_ERROR_SEND_CMD_FAILED • 6

XO_ERROR_SEND_FILE_FAILED • 6

XO_ERROR_SU_GROUP_NOT_MAPPED • 7

XO_ERROR_SU_GROUP_NOT_SPECIFIED • 6

XO_ERROR_SU_GROUP_VIOLATED • 7

XO_ERROR_SUSPEND_IN_PROGRESS • 7

XO_ERROR_SYNC_OR_DIFF_IN_PROGRESS • 6

XO_ERROR_TIMEOUT • 6

XO_ERROR_UNCOMPRESS_FILE_FAILED • 5

XO_ERROR_VERIFY_CONFIGURATION _FAILED •

6

XO_ERROR_VERSION_MISMATCHING • 5

XO_INFINITE • 16, 17

XO_INFO • 8

XO_SIGNF_INFO • 8

XO_WARNING • 8

XOsoft Engine • 1

XOSTATUS • 13, 19, 23

XOSTATUS ws_control_c

get_host_statistics(• 25
register_license(const char* key_str) • 25
set_su_group(const char* group_name) •
25

XOSTATUS ws_scenario_c

generate_difference_report(• 17
get_log_file(char* filename, unsigned int
filename_len, unsigned int timeout) • 20
get_statistics (ws_statistics_c *statistics)
const • 21
number_of_hosts_in_scenario • 15
resume_replica() • 21
run(). • 15
scenario_name(char* buf, unsigned int
buf_len) const • 15
start_stop_logging(bool start) • 19
stop(). • 16
suspend_replica(const char* host_name,
unsigned int port=DEFAULT_PORT). • 21
 32 WANSync Control Library API Reference Guide

	WANSync Control Library API Reference Guide
	Contents
	Chapter 1: Getting Started
	Source Files
	Classes and Data Structures

	Chapter 2: Using the Library
	Connect to a Master Scenario
	Traverse the Master Scenario List
	Monitor and Manage a Master Scenario
	Disconnect from a Master Scenario
	Collect Statistical Information
	Other Uses for ws_control_c Object

	Chapter 3: Using the Library
	XO Error Codes
	XO Events
	Event Types
	Event IDs
	enum ws_sync_method_e

	enum ws_report_type_e
	struct ws_directory_statistics_s
	class ws_statistics_c
	Class Methods for class ws_statistics_c

	class ws_scenario_c
	Class Methods for class ws_scenario_c

	class ws_control_c
	Class methods for class ws_control_c

	Index

