eTrust® Access Control

SDK Guide
r8 SP1

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) is for the end user’s informational purposes only and is subject to change or withdrawal by CA at
any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in
part, without the prior written consent of CA. This Documentation is confidential and proprietary information of CA
and protected by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the documentation for
their own internal use, and may make one copy of the related software as reasonably required for back-up and
disaster recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the provisions of the license for
the product are permitted to have access to such copies.

The right to print copies of the documentation and to make a copy of the related software is limited to the period
during which the applicable license for the Product remains in full force and effect. Should the license terminate for
any reason, it shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the
Documentation have been returned to CA or destroyed.

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED BY
APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS 1S” WITHOUT WARRANTY OF ANY KIND, INCLUDING
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT
LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY
ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in the Documentation is governed by the end user’s applicable license
agreement.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-
7014(b)(3), as applicable, or their successors.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Copyright © 2006 CA. All rights reserved.

CA Product References

This document references the following CA products:

® eTrust® Access Control (eTrust AC)

® eTrust® Single Sign-On (eTrust SSO)

® eTrust® Web Access Control (eTrust Web AC)

® eTrust® CA-Top Secret®

® eTrust® CA-ACF2®

® eTrust® Audit

® Unicenter® TNG

® Unicenter® Network and Systems Management (Unicenter NSM)

® Unicenter® Software Delivery

Contact Technical Support

For online technical assistance and a complete list of locations, primary service
hours, and telephone numbers, contact Technical Support at
http://ca.com/support.

Contents

Chapter 1: Introduction 13
ADoUL this GUIe 13
APIs for UNIX and WINOOWS e e e e e e e e e e e e e e e e 14
APIs for UNIX ONly ... e e 14
Chapter 2: Authorization and Authentication API 15
Programming GUIe 16
Checking the Access Authority for a User Process 18
ApPPliCatiON SEIVEIS . .. 20
ACCESS AULNONIZAtION e 22
User AULNENTICAtiONttt 23
Managing Error MESSAQESttt et 23
Compiling and Linking with the Library e 23
Remote Authorization APl 25
Authorization and Authentication APl FUNCtioNs 28
SEOSROUTE_ParseApiError FUNCLION e e e 28
SEOSROUTE_RequestAuth FUNCHION e 29
SEOSROUTE_RequestAUthAzZN FUNCLION e e 33
SEOSROUTE_CreateRequestAzn FUNCLION e e 35
SEOSROUTE_CloseRequestAzn FUNCHION e e e 36
API_AZN_USERATTR StrUCTUIe e e e e e e e e e e e e e 36
SEOSROUTE_VerifyCreate FUNCLION e e 37
SEOSROUTE_VerifyDelete FUNCLION e 40
Structures and Data Ty PeS 41
API_AUTH_RES SUrUCTUINE . . . o e e e e e e e e e e e e e e e 42
API_AZN _RES StrUCTUINE e e e e e e e e e e e e e e e e 43
SEOS ACCESS StrUCTUIEo e 44
SEOS_ACCS SHrUCTUINE . .. e e e e e e e e e e e e e e 45
SEOS_OID Data TY P . . .t i et ettt e e e et e e e e e e 46
Chapter 3: Exits API 47
Programming GUITE 48
Creating a New EXit FUNCLION e e e 49
ETrUSE AC EVENES . . oo e 54
User INformation 57
Compiling and LiNKING 57

Contents v

System Design and Limits 59

EXItS APl EXamMPIeS . .. 63
Exits APl Functions for UNDX ... 76

General FUNCHIONS e e e 76

Database Interface FUNCLIONS e e e 77

Shared Library FUNCHIONS e e 77
authxapi_RegisterExitFunction FUNCHION 77
authxapi_UnregisterExitFunction FUNCLION e 80
authxapi_IsThereExitFunction FUNCHION. e 81
authxapi_GetObjectProperty FUNCHIONt 82
authxapi_GetObjectListValue FUNCLION e e 85
authxapi_FreelistValues e 89
authxapi_GetUserInfo FUNCLION e e e e 89
Exits APl Functions for WINdOWS 91
UserDefinedFunction FUNCLION e e e e e e 92
UserDefinedPrefix_RegisterExit FUNCHION e 93
Structure and Data TYPESottt e 95
SEOS _EXITLOGIN .o 96
SEOS_EXITGENR . .ot e e e e e 97
SEOS EXITINET . .ottt e e e e e e e e e e 98
SEOS EX T P ASS . 99
SEOS EXITRES . . .o 101
SEOSDB _ODF . .ottt 102
SEOS DB PO .. 103
PESEOSEXITFUNCo 104
SEOS _CID ..ot 105
SEOS Ol .. 105
SEOS PID .. 105
Chapter 4: LogRoute API 107
Programming GUIe 108

Customizing Selogrd 109

Notification Audit LOg ReCOrdS e e e e e e 117
LogRoute APL FUNCHION e e e e e e e e e e e e 118
driver_Register FUNCHION e 119
driver_UnRegister FUNCHION e e e e e e 119
driver_RegisterDestination FUNCLION e e 120
driver_UnregisterDestination FUNCLION e 121
lograpi_InterpretRecord FUNCLION e e e 122
lograpi_RegisterTargetType FUNCHION e e e et e 123
lograpi_UnregisterTargetType FUNCLION e e 124
lograpi_MakeStringMessage FUNCLION e e et 125

vi SDK Guide

LogrApiSenseFuNnC FUNCHION e e e e e e 125

LogrApiSendFunc FUNCLION e e e e e e e e e 126
LogrApIiFreeFuUNC FUNCHION e e e e e e 127
servliog_IsThereEXit FUNCLION e e e e e e 127
servlog_RegisterEXit FUNCLION 128
serviog_UnRegisterEXit FUNCLION e e e e 128
Structures and Data TYPeSot 129

Audit Log Record STrUCLUIES e e e e e e e 130

Notification Audit LOg ReCOrdS i e e e e e 131
SEOS_AUDITLOGIN . . ottt e e e e e e e e e 132

Login EVENnt COOES 133
SEOS _AUDITGENR .. 134
SEOS_AUDITWDWARN . . . o e e e e e e e e e 136
SEOS_AUDITINWARN . . e e e e e e e e e 137
SEOS _AUDITADMIN . L 138
SEOS AUD I T ST AR T . .ottt e e e e e e e 139
SEOS_AUDITDOWN . . ottt e e e e e e e e e e e e e 139
SEOS _AUDITUSER . . . 140
LOGRECHDR . . .ottt e e e e e e e e e e e e e e e e e e 141
LOGRECORD . . .ttt et e e e e e e e e e e e e e e e e e 142
SEOS _ROUTENT RY . e e e e e e e e e e e e e e e 143
LOGRAPI _FUNCS . ..ot e e e e e e e e e e e 144
Chapter 5: Language Client API 145
Programming GUIe 146

LCA FUNCHION Ty PES . . oottt e e e e e e e e e e e e e e e e e e 146

The eTrust AC Database e e e e 147

SaAMPlE PrOgram 149
Language Client APl FUNCHIONS e e e e e e e e 155

EXecution Operationst 155

Password Operations 155

Error Handling Operations e 156

Query: Entity Handling Operations e 157

Query: Property Handling Operationst 158

Remote Authorization Operations e 159
Ica _INit FUNCHION e e e 159
Ica_Terminate FUNCLION e e e e e e e 159
Ica _Parseline FUNCHION e e e e e e e e e 160
Ica_ParseMBLINe FUNCLION e e e e e e e 161
Ica_CheckPasswordQuality FUNCELION e e e 161
Ica_ErrsGetNUmM FUNCHION e e e e e e e e 162
Ica_ErrGetByldX FUNCLION e e e e e e e 162

Contents vii

lca _ErrGetFirst FUNCLION e e e e e e e 163

Ica_ErrGetNext FUNCLION e e e e e e e 163
Ica_ErrSeverity FUNCHION e e e 164
Ica_ErrStage FUNCHION e e e e e 165
Ica _Err2Str FUNCHION e e e e e e 166
Ica_QENtSGetNUM FUNCHION. e e e e e e e e e e 166
Ica_ QENtGetByldX FUNCLION e e e e e e 167
Ica_QENtGetFirst FUNCHION e e e e 167
Ica_QENtGetNexXt FUNCHION e e e e e e e e e 168
Ica_ QEntGetByName FUNCHION e e e e e e e e 168
Ica_ QENtObjName FUNCLION e e 169
Ica_QENtClassName FUNCLION e e e e e e e e 169
Ica_QPropsGetNUmM FUNCLION e e e e e e e e e e 170
Ica_QPropGetByldX FUNCLION e e e e e 171
Ica_QPropGetFirst FUNCLION e e e e e e 171
Ica_QPropGetNext FUNCLION e e e e e e e e e e e 172
Ica_QPropGetByName FUNCLION e e e e e 172
Ica_QPropName FUNCHION e e e e e e e 173
Ica_QPropSize FUNCLION e e e e e e e e e e e 173
Ica_QPropType FUNCHION. e e e e e e e e e e 174
Ica_QPropValsNum FUNCLION e e e e e e e e 174
Ica_QPropValList FUNCLION e e e e e e e 175
Ica_QPropValGetByldx FUNCLION e e e 175
Ica_QPropValGetFirst FUNCHION e e e e e e 176
Ica_QPropValGetNexXt FUNCHION e e e e e e 176
Ica_QPropVal2Str FUNCLION e e e e e e e e 177
Ica_rmtauth_INit FUNCHION e e 178
Ica_rmtauth_CheckACCeSS FUNCHION e e e e e 179
Chapter 6: Administration API 181
Programming GUIe 181

Database Organization 182

Database LayoUt 183

Database ListS 184

Understanding ACEE 186

Scope Limitations of the APl 187

CONVENTIONS . . .ottt e et e e e e e e e e 187

Header Files e 187

LiDraries .. 188

Compiling and Linking with seadmapi i e 188

Programming NOTeS 188
FUNCHION Library 189

viii SDK Guide

Class Operations FUNCLIONS e e e e e e e e 189

Property Operations 189

ObjeCt OpPeratioNS. 190

Value Operations e 190

QUENY OPEratioNSt 191

Log Files Interface 192

CoNSole OpPeratioNS 194

Miscellaneous Operations 195
seadmapi_ClassGet FUNCHIONS e e e e e 196
seadmapi_PropGet FUNCLIONS e e e e e e 198
seadmapi_ObjGet FUNCLIONS e e 202
seadmapi_ODbjInClassList FUNCLION e e et e 206
seadmapi_FreeODbjList FUNCHION e 207
seadmapi_FetchListPropVal FUNCLION 207
seadmapi_FetchSinglePropVal FUNCtion e 212
seadmapi_FreeListPropVal FUNCLION e 219
seadmapi_SetSinglePropVal FUNCLiON 220
seadmapi_MakePDFLISt FUNCLION e e 221
seadmapi_Entity FUNCHIONS e 222
seadmapi_GetGracelnfo FUNCLION 226
seadmapi_OidToName FUNCLION e e e e e 230
seadmapi_WhoAMI FUNCLION 231
seadmapi_WhoIs FUNCLION e e 233
seadmapi_ACEE FUNCHION e e e 234
seadmapi_GetMessage FUNCLION e e e e e e 235
seadmapi_GetObjType FUNCLION e e e e 236
seadmapi_init FUNCHION e 238
seadmapi_IlsSeOSSyscallLoaded FUNCLION e 238
seadmapi_SendAuditRecord FUNCLION 239
seadmapi_SendAudit FUNCLIONS e 240
seadmapi_SendNotificationAudit FUNCLIONS e 242
seadmapi_SendErrorLog FUNCHION e e e e 243
seadmapi_ProcessControl FUNCLION e 244
seadmapi_consTrace FUNCHIONS e e e e e 245
seadmapi_consUidLogin FUNCLIONS e e e e 246
seadmapi_consAllLogin FUNCLIONS e e e e 247
seadmapi_consRefreshlPAdAresses 247
seadmapi_consRunTimeStatisticsGet FUNCLION i 248
seadmapi_consMessageSend FUNCLION i e 249
seadmapi_consShutdown FUNCLION e e et et 250
seadmapi_Reloadlni FUNCLION. 250
sepass_ReplacePassword FUNCLION e e e e 251

Contents ix

Structures and Data Types: eTrust AC Database Data Structures. 253

DS CIIPION . . . e 256
LOg File STrUCTUINES e e e e e e e e e 257
Data SUrUCTUNES e e e e e e e e e 258
CLIENT _ACEE StrUCTUIe e e e e e e e e e e e e e e e e e e e 259
SEADMAPI _RTSTAT STrUCTUIE . .. e e e e e e e e e e e et e 260
SEGRACE_RES StrUCTUIE e e e e e e e e e e e e e e e e e 261
SEOS _ACL StrUCTUNEo e e e e e e e e e e e e e e e e e e 262
SEOS_GCONN StrUCTUINE . . .o e e e e e e e e e e e e e e e e e et 262
SEOS PACL StrUCTUIE e e e e e e e e e e e e e 263
SEOS_REQ_ERRORDESCP STrUCLUIEttt ettt e e e e e e e 263
SEOS X ACL StrUCTUIE .. e e e e e e e e e e e e e 264
SEOS_X GCONN StrUCTUIe e e e e e e e e e e e e e e 264
SEOS_X _PACL SErUCTUIEo e 265
SEOSDB_CDF StrUCTUINEo e e e e e e e e e e e e e e e 266
SEOSDB_ENTDAT STrUCTUIEottt e e e e e e e e e e e e 267
SEOS_X_OID StrUCTUIE e 268
Chapter 7: IR API 269
ThE IR AP 269
SHTUCTUN S . .o e e e e e e e e e e e 269
Data POSItION 269
UTF8 Interpreted Audit ReCord e e 270
FUNCHIONS . e 270
int eaclRApi_LoglInit(IRApiDataPosition *POS);ot e 270
int eaclRApi_LogGetNext(IRApiDataPosition *pos, SEOS_UTFSAUDLOGINTERP **ppUtfMsg, int
e (o To T 17/ 6.3 TS 271
int eaclRApI_LogTerminate(Void); 271
int eaclRApi_LogReset(void *buff, int size); 272
void eaclRApi_LogFreelnterpretRecord(void); 272
char *eaclR_LogGetVersion(Void); 272
int eaclRApi_CopyDataPosition(Void **p0OS) 273
size_t eaclRApi_GetDataPositionSize(Void) 273
int eaclRApi_GetLastError(SEOS_UTFSAUDLOGINTERP **pUtfMsg) 273

int eaclRApi_ConvertOldData(void *oldbuff, size_t oldsize, void **newbuff, size_t *newsize) . 274

Appendix A: tcllca: The LCA Extension 275
The tcllca.so Library 275
Programming GUIe 276

SaAMPlE Program 277
tellca FUNCHIONS e e e 277

X SDK Guide

se_class _list FUNCHION e e e e 277

se_get_resources FUNCLION e e e e 277
segetstat FUNCHION e e e 278
SE_grP_USKS FUNCHION e e e 278
Se_iS_running FUNCHION e e e e 278
selang FUNCHION 279
Se_0bjs_IN_grp FUNCHION 279
Se_SCaNn_Props FUNCLION e e 279
SeWhoami FUNCHIONt e e e e e e e e e 279
Appendix B: Obsolete API 281
The €AC IR APl . .o 281
SUIUCTUNES . . e 281
Data POSItION 281
UT8 Interpreted Audit ReCOrd e e 281
Possible Return Values 282
FUNCHIONS . e 282
int eaclR_LogInit(IRDataPoSIition *POS); oot e 282
int eaclR_LogReset(IRDataPosSIition *P0OS);ttt e 282
int eaclR_LogGetNext(IRDataPosition *pos, SEOS_UTFSAUDLOGINTERP **ppUtfMsg, int
o (o To T 17/ 6.3 TS 283
int eaclR_LogTerminate(Void); e 283
void eaclR_LogFreelnterpretRecord(Void);ottt 283
char *eaclR_LogGetVersion(Void); 284
Index 285

Contents xi

Chapter 1: Introduction

This section contains the following topics:

About this Guide (see page 13)
APIs for UNIX and Windows (see page 14)
APls for UNIX Only (see page 14)

About this Guide

This guide introduces you to the Application Program Interfaces (APIs)
provided with eTrust AC.

eTrust AC offers several APIs for programmers who want to develop in-house
eTrust AC-secured applications and to customize eTrust AC functions for
specific user needs:

® For developers, the APIs supply a simple, portable interface to eTrust AC.

B For system administrators, the APIs supply a single security interface for
both applications and operating systems.

® For end users, the APIs supply additional protection for their data.
eTrust AC provides sample programs. Additional examples are in the
subdirectory of the directory in which eTrust AC is installed.

® For UNIX, the default directory is
/opt/CA/eTrustAccessControl/apisamples.

® For Windows, the default directory is \Program
Files\CA\eTrustAccessControl\SDK\samples.

Introduction 13

APIs for UNIX and Windows

APIs for UNIX and Windows

For UNIX and Windows, this version of eTrust AC includes the following APlIs:

Authorization and Authentication API

The Authorization and Authentication API lets client applications request
authorization for predefined or site-defined abstract resource classes using
the authorization and auditing mechanisms provided by eTrust AC. Use
this API to call the eTrust AC authorization daemon from within your
application to check whether a user has authorization to perform the
requested action.

For a detailed description, see the chapter “Authorization and
Authentication API.”

Administration API

The Administration API extracts information from the eTrust AC database.
This API also permits applications to perform administrative tasks such as
shutting down seosd or to modify the ability to perform activities such as
concurrent logins. For a detailed description, see the

chapter “Administration API.”

ExitsAPI

The Exits API lets you customize the eTrust AC authorization mechanisms
by complementing eTrust AC authorization routines with your own
authorization routines. You can also add a special notification function to
eTrust AC activities. For example, you can use this API to add a
site-specific encryption algorithm to eTrust AC.

Note: (Windows only). Because eTrust AC is a certified product, you must
format all object names and object property names in the UTF8 format.

APIs for UNIX Only

For UNIX alone, this version of eTrust AC includes the following API:

LogRouteAPI

The LogRoute API lets you add your own alerts to the standard eTrust AC
audit log functions. You can also use the log routing daemon to add a
guaranteed delivery of audit data or third-party alert systems to other
programs.

14 SDK Guide

Chapter 2: Authorization and
Authentication API

This section contains the following topics:

Programming Guide (see page 16)

Authorization and Authentication APl Functions (see page 28)
SEOSROUTE_ParseApiError Function (see page 28)
SEOSROUTE_RequestAuth Function (see page 29)
SEOSROUTE_RequestAuthAzn Function (see page 33)
SEOSROUTE_CreateRequestAzn Function (see page 35)
SEOSROUTE_CloseRequestAzn Function (see page 36)
API_AZN_USERATTR Structure (see page 36)
SEOSROUTE_VerifyCreate Function (see page 37)
SEOSROUTE_VerifyDelete Function (see page 40)
Structures and Data Types (see page 41)
API_AUTH_RES Structure (see page 42)

API_AZN_RES Structure (see page 43)

SEOS_ACCESS Structure (see page 44)

SEOS_ACCS Structure (see page 45)

SEOS_OID Data Type (see page 46)

Authorization and Authentication APl 15

Programming Guide

Programming Guide

eTrust AC governs the user's access to a resource. Each resource belongs to a
class that identifies the type of the resource. For example, records or objects
of the TERMINAL class govern the user's ability to log in from a terminal. A
user can access a specific resource only if the user has the permissions
required to access the resource in the requested manner. For example, a user
can log in from a terminal only if a rule (record) assigning the user read access
to the terminal exists in the eTrust AC database. Note that the rule does not
have to be an explicit assignment-you can also assign the authority using
group membership or default access settings.

To learn more about eTrust AC classes and objects, and about adding
user-defined resources, see the Reference Guide (for Windows or UNIX) and
the UNIX Utilities Guide.

The eTrust AC function calls within the Authorization and Authentication API
communicate with seosd on the local station. eTrust AC supports the following
types of processes:

® Multi-user Servicing Address Space (MUSAS) applications that request
authorization on behalf of other users. You normally use these applications
for servers that provide services to other processes.

Note: The terms MUSAS and server are synonymous. We use server
throughout this guide.

® Stand-alone applications (that is, non-server applications) that request
authorizations for the user currently using the application.
To use eTrust AC to protect the resources of an application, do this:

1. Add a resource class to the database. Use this resource class to protect
the objects of your application.

Note: For more information about adding a new resource class to eTrust
AC, see the seclassadm utility in the UNIX Utilities Guide.

2. Add records to the application's class in the database. These records
define rules for protecting your application's objects.

3. Place eTrust AC Authorization and Authentication API calls in your
program.

4. Link the program with the eTrust AC library.
Both server and ordinary applications use the same library.

To use any of the eTrust AC functions, you must include the following line in
your C code:

#include <api_auth.h>

16 SDK Guide

Programming Guide

The names of all the functions in the Authorization and Authentication API take
the form SEOSROUTE_functionName.

This section includes sample code that demonstrates how to use some of the
Authorization and Authentication API functions. Additional examples are provided
in the following directories on your system drive:

® For UNIX: eTrustACDir/apisamples (where eTrustACDir is the directory you
installed eTrust AC in, by default /opt/CA/eTrustAccessControl)

® For Windows: eTrustACDIir\SDK\Samples (where eTrustACDir is the
directory you installed eTrust AC in, by default Program
Files\CA\eTrustAccessControl)

Authorization and Authentication APl 17

Programming Guide

Checking the Access Authority for a User Process

Any application can use the eTrust AC Authorization and Authentication API to
check whether the user can access a resource. You decide whether to perform
resource access checks in your application. To write an application that uses
the eTrust AC authorization mechanism, all you have to do is call a single API
function called SEOSROUTE_RequestAuth with the appropriate parameters and
check the return values.

The following program demonstrates how to check whether a user can access
a resource:

UNIX Example

To test if eTrust AC allows you to surrogate to root by using the su root
command, type the following command:

>upexamp SURROGATE USER.root
#include <stdio.h>
#include <string.h>
#include <memory.h>

#include “api_auth.h”

int ShowUsage(void)

{
fprintf(stderr, “Usage:\n”
“ upexamp Class-Name Resource-Name\n");
return 1;
}
int main(int argc, char *argv[])
{ int rv;
char buff[SEOSAPI_AUTH MSGLEN];
SEOS ACCESS access;
API AUTH RES result; /* The result of request structure */
if (argc != 3)

return ShowUsage();
memset (&access, 0, sizeof(access));
access.accs = SEOS ACCS READ;

rv = SEOSROUTE RequestAuth(argv[1], /* Class Name */
argv[2], /* Resource Name */
SEOSAPI_AUTH CURRACEE, /*Myself*/
&access,
SEOSAPI AUTH_ LOGNONE,
&result,
buff);

printf(“Result %s (0x%X)\n”, buff, rv);
return 0;

18 SDK Guide

Programming Guide

In UNIX

In Windows

After compiling and linking this example, you can check whether you have
authorization to access a specific resource.

Windows Example

To test if eTrust AC lets you access a file that you were explicitly denied access
to, type the following commands:

newfile D:\Winnt\system32\notepad.exe defaccess(all)
authorize file D:\Winnt\system32\notepad.exe \
uid(your UID) access(none)

>upexamp FILE D:\Winnt\system32\notepad.exe

The following sections describe the files used by the program.

The program uses the following files:

® eTrustACDir/apisamples/api_auth/upexamp.c
® eTrustACDir/apisamples/api_auth/Makefile

B eTrustACDir/include/api_auth.h

B eTrustACDir/lib/seadmapi.a

where eTrustACDir is the directory you installed eTrust AC in, by default
/opt/CA/eTrustAccessControl

If you installed eTrust AC on your system, the program uses the following
files:

B eTrustACDir\SDK\Samples\api_auth\upexamp upexamp.c

B eTrustACDIr\SDK\Samples\api_auth\upexamp upexamp.mak
B eTrustACDIr\SDK\Include\api_auth.h

B eTrustACDIir\SDK\Lib\seadmapi.lib

where eTrustACDir is the directory you installed eTrust AC in, by default
Program Files\CA\eTrustAccessControl

Authorization and Authentication APl 19

Programming Guide

Application Servers

The Authorization and Authentication API includes an interface for application
servers. The server application is assumed to provide service to many users.
Only server applications can perform authorization checks on behalf of users,
including the user associated with the process.

The server application must perform a “pseudo-login” for each new connected
client. Perform the pseudo-login by calling the SEOSROUTE_ VerifyCreate
function. The SEOSROUTE_ VerifyCreate function provides the application with
an Accessor's Entry Element (ACEE) handle for the client.

From now on, the ACEE handle returned by the SEOSROUTE_VerifyCreate
function makes each call to the eTrust AC authorization check module for the
client. The application should carefully maintain these handles.

The application must perform a “pseudo-logout” to release ACEE handles when
a client disconnects from it or when it finishes providing service to the client.
To perform the pseudo-logout, call the SEOSROUTE_ VerifyDelete function. If
handles are not released, both system resources and eTrust AC internal
resources remain allocated to the ACEE handle. If these resources remain
allocated, the unnecessary allocations can cause the system to slow down and
may result in the inability to log into the system.

Only processes running under effective UID O (root) or users with the SERVER
attribute may issue SEOSROUTE_VerifyCreate, SEOSROUTE_ VerifyDelete, and
SEOSROUTE_RequestAuth calls with a handle other than
SEOSAPI_AUTH_CURRACEE.

Example

The following program demonstrates how to use eTrust AC to manage the
security aspects of a multi-user process:

#include <stdio.h>
#include <string.h>
#include <memory.h>

#include “api_auth.h”

int ShowUsage(void)

{
fprintf(stderr, “Usage:\n”
“ musexamp Class-Name Resource-Name
User-Name\n") ;
return 1;
}

int main(int argc, char *argv[])
{ int rv;

20 SDK Guide

Programming Guide

int

char
SEOS_ACCESS
API AUTH RES result;
/* The result of request structure */

usr_acee;
msg_buff[SEOSAPT AUTH MSGL
access,

if (argc != 4)
return ShowUsage();

memset (&ccess, 0, sizeof(access));
access.accs

rv = SEOSROUTE VerifyCreate(argv[3],

ENT;

SEOS ACCS READ | SEOS ACCS WRITE | SEOS ACCS EXEC;

NULL, NULL, O, NULL,

SEOSAPI AUTH LOG, &usr acee,
&result, msg buff);

if (rv)

{ printf(“Return Value: 0x%08x\n”
“Msg: '%s'\n”, rv, msg buff);

return 1;

}

else

printf(“Got ACEE handle for user '%s': %d\n”, argv[3],

usr_acee);

rv = SEOSROUTE RequestAuth(argv[1],
argv[2],
usr_acee,
Saccess,
o,
&result,
msg_buff);

if (rv)

/* Class Name */
/* Resource Name */
/* User's ACEE Handle */

printf(“Return Value: 0x%08x\n”
“Msg: '%s'\n”, rv, msg buff);

else
printf(“Pass !!!!\n”);

rv = SEOSROUTE VerifyDelete(&usr acee, 1, msg buff);

if (rv)

{ printf(“Return Value: 0x%08x\n”
“Msg: '%s'\n”, rv, msg buff);

return 1;

}

else

printf(“Released ACEE handle for user '%s': %d\n”,

argv[3], usr_acee);

Authorization and Authentication APl 21

Programming Guide

In UNIX

In Windows

Access Authorization

return 0;

The program uses the following files:

eTrustACDir/apisamples/api_auth/musexamp.c
eTrustACDir/apisamples/api_auth/Makefile
eTrustACDir/include/api_auth.h
eTrustACDir/lib/seadmapi.a

where eTrustACDir is the directory you installed eTrust AC in, by default
/opt/CA/eTrustAccessControl

Assuming that you installed eTrust AC on your system, the program uses the
following files:

eTrustACDIr\SDK\Samples\api_auth\ musexamp musexamp.c
eTrustACDIr\SDK\Samples\api_auth\ musexamp musexamp.mak
eTrustACDIr\SDK\Include\api_auth.h
eTrustACDIr\SDK\Lib\seadmapi.lib

where eTrustACDir is the directory you installed eTrust AC in, by default
Program Files\CA\eTrustAccessControl

The eTrust AC Authorization and Authentication API contains a single function
for managing access authorizations. Use the SEOSROUTE_RequestAuth
function to check whether a user has authorization to access a resource in the
requested manner. For a description of how eTrust AC decides whether to
grant a user access to a specific resource, see the Administrator Guide (for
Windows or UNIX).

22 SDK Guide

Programming Guide

User Authentication

The SEOSROUTE_ VerifyCreate function in the eTrust AC Authorization and
Authentication APl can authenticate a user. To do so, pass the existing
password. In UNIX, you can also pass the new password to the API function.
eTrust AC verifies that the password matches the password of the user stored
in the eTrust AC database. For users defined to eTrust AC and the native
operating system, eTrust AC can also use standard user accounts in the native
environment to verify user passwords.

To use the SEOSROUTE_ VerifyCreate function to authenticate a user, you
must configure eTrust AC to enable password control and maintenance. To do
this, set the PASSWORD property in the SEOS class. For example, using the
selang command language, you would enter the following command:

setoptions class+ (PASSWORD)
For more information, see the setoptions command in the Reference Guide.

Note: When password control is enabled, the system administrator can take
advantage of its format restrictions, aging, and history maintenance.

Because eTrust AC does not use the native operating system password, you
can create user accounts that can use only servers protected by eTrust AC.
These accounts are not valid UNIX or Windows accounts. In UNIX, these users
do not have direct access to stations that enable UNIX shell sessions. In
Windows, they cannot log in through a terminal. Therefore, these users are
not able to log in interactively in either environment.

Managing Error Messages

The Authorization and Authentication API includes a function that helps you
manage error messages. When an eTrust AC function fails, it returns an error
code. The function also writes the error message describing the reason for the
failure in the szMsg parameter. The error message (szMsg) is listed for each
API.

Note: The SEOSROUTE_ParseApiError function analyzes the error message
stored in the szMsg parameter and returns the integer representing the error
code. This function is included to provide more information (the real error code
from seosd) in case SEOSAPI_AUTH_REMOTE_ERR is returned. This would
indicate some error in seosd.

Compiling and Linking with the Library

The procedures for compiling and linking in UNIX and in Windows are
described in the following sections.

Authorization and Authentication APl 23

Programming Guide

Compiling an Application in UNIX

To compile your application with the eTrust AC library, include the api_auth.h
header file in the C source code that calls the library. You can use any ANSI-C
compliant compiler.

Linking Your Application in UNIX with the AuthAPI Library

The method used to link your application to the AuthAPI library depends on
the operating system you are using, as shown in the following table. Use these
lines together with the rest of the command used by your operating system for
linking an application.

The examples in the following table assume that eTrust AC was installed in the
/opt/CA/eTrustAccessControl directory. The libraries are therefore assumed to
be located in the/opt/CA/eTrustAccessControl/lib directory and the header files
in the /opt/CA/eTrustAccessControl/include/API directory.

Platform Command

IBM AIX cc sample.c -I/opt/CA/eTrustAccessControl/include \
-bI:/opt/CA/eTrustAccessControl/1lib/SEQOS binder.exp \
/opt/CA/eTrustAccessControl/lib/seadmapi.a -o sample

All other cc sample.c -I/opt/CA/eTrustAccessControl/include \
platforms /opt/CA/eTrustAccessControl/lib/seadmapi.a -0 sample

Note: The examples shown in this table are shipped with a makefile that you
can use to set the various flags required by each environment.

24 SDK Guide

Programming Guide

Compiling and Linking an Application in Windows

Each sample has a Microsoft makefile. To compile the programs, enter one of
the following commands:

NMAKE /f “makefile name" CFG="source C code - Win32 Release”

or

NMAKE /f “makefile name“

For example, to build the sample_FetchList sample, change to the
sample_FetchList subdirectory:

(..Program Files\CA\eTrustAccessControl\SDK\Samples\seadmapi\
sample FetchList)

Then type:

NMAKE /f “sample FetchList.mak”

Note: Before running the nmake command, run the VCVARS32.BAT file from
the Visual C++ BIN directory to set the compiler environment variables, and
ensure that the nmake.exe is in your system variable path.

Remote Authorization API

The Remote Authorization API lets a client application perform an authorization
check against a remote authorization server. This is useful for a site that has
an eTrust AC authorization server and clients-not necessarily running eTrust
AC-running applications that require an authorization check from the server.
This is done in three phases.

1. Login phase. The remote authorization APl invokes the Ica_rmtauth_Init
function that performs a login to the remote server. It does this by
supplying the password of the user for whom the client application runs,
and checking it against the user's password on the remote server.

2. Authorization request phase. In this phase, the API invokes the
Ica_rmtauth_CheckAccess function that sends the server all the
information needed to check authorization. This includes the user name,
the class, the object, and the access type. The function returns a structure
of type API_AUTH_RES that includes the request result. This function is a
remote version of the SEOSROUTE_RequestAuth function.

3. Termination phase. Here the API calls the Ica_Terminate function that
closes the connection to the server and frees any allocated memory.

Authorization and Authentication APl 25

Programming Guide

Files

The remote authorization API uses the following files:
® eTrustACDir/apisamples/api_auth/rmt_auth.c

® eTrustACDir/apisamples/api_auth/Makefile

® eTrustACDir/include/api_auth.h

® eTrustACDir/include/langapi.h

where eTrustACDir is the directory you installed eTrust AC in, by default
/opt/CA/eTrustAccessControl

For details on the remote authorization API functions, see the chapter
“Language Client API.”

Example

The following program demonstrates how a client application can perform a
remote authorization check:

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <unistd.h>

#include “api auth.h”
#include “langapi.h”

int ShowUsage(void)
{
fprintf(stderr, “Usage:\n”
“ rmt_auth User-Name Class-Name Resource-Name*
“Access"
return 1;

int main(int argc, char *argv[])
{

char *output;

int rv;

API AUTH RES result;

char input[200];

char *Passwd = NULL;

if (argc '=6)
return ShowUsage();

26 SDK Guide

Programming Guide

Passwd = getpass(“Please enter your password:”);
if (Passwd == NULL)

{
printf(“Illegal password!!\n");
return 1;
}
/*
* Initialization. get the host name and password from the
* command line parameters
*/
rv = lca rmtauth Init(“rmt auth”, &output, argv[5], Passwd);
if (rv)
{
printf(“Return value: 0x%08x\n”
“%s\n”, rv, (output) ? output : “Initialization failed”);
return 1;
}
Passwd = NULL;
/*
* Send the request to the server and get the result
*/
rv = lca rmtauth CheckAccess(argv[1l], argv[2], argv[3], argv[4], &result);
if (rv)
{
printf(“Return value: 0x%08x\n”
“Remote Access Check failed\n”, rv);
return 1;
}
/*
* Print the results.
* Further analysis as for the reasons for granting/denying
* access can be made at this stage
*/
printf(“%s's access %s to %s %s at %s is %s!!\n”,
argv[1l], argv[4], argv[2], argv[3], argv[5],
((char) result.result == 'P') ? “Permitted” : “Denied”);
lca Terminate();
}

After compiling and linking this example, you can check whether a user is
authorized to access a specific resource. For example, to see whether user Joe
has read access to file /etc/passwd, type the following command:

rmt_auth Joe FILE /etc/passwd Read authorization-server-name

You are prompted for your password, after which you receive the reply.

Authorization and Authentication APl 27

Authorization and Authentication APl Functions

Authorization and Authentication APl Functions

The Authorization and Authentication API consists of the following functions:
SEOSROUTE_ParseApiError

Converts an error string into the integer representing the error code.
SEOSROUTE_RequestAuth

Checks whether a user is authorized to access a resource using the
specified access type.

SEOSROUTE_ VerifyCreate
Creates an ACEE handle for a user.
SEOSROUTE_ VerifyDelete

Deletes a user's ACEE handle.

SEOSROUTE_ParseApiError Function

The SEOSROUTE_ParseApiError function parses the error string returned by
the verification and authentication functions and returns the integer value
associated with it.

Notes:

B Any user can call the SEOSROUTE_ParseApiError function.

® This function is included so you can get the real error code from seosd if
the value returned by SEOSROUTE_RequestAuth,
SEOSROUTE_ VerifyCreate, or SEOSROUTE_ VerifyDelete is
SEOSAPI_AUTH_REMOTE_ERR.

int SEOSROUTE ParseApiError(const char *szErrMsg);
szErrMsg

The error string returned by eTrust AC in the *szMsg parameter

28 SDK Guide

SEOSROUTE_RequestAuth Function

SEOSROUTE_RequestAuth Function

The SEOSROUTE_RequestAuth function asks seosd whether the specified user
is allowed to access the specified resource using the specified access type.

The SEOSROUTE_RequestAuth function sends the request to seosd, which first
checks whether the parameters are valid. If they are, seosd performs its
standard resource authorization check: Is the specified user authorized to
access the specified resource in the specified way?

The first five parameters must be supplied by the application; the last two
parameters are returned by eTrust AC and can be used by the application to
make decisions and provide the user with status information.
The function returns an integer that takes on one of the following values:
SEOSAPI_AUTH_OK

The user is allowed to access the resource as requested.
SEOSAPI_AUTH_BADACCESS_ERR

An invalid access authority was specified.
SEOSAPI_AUTH_DENY

The request was denied.
SEOSAPI_AUTH_NORESPONSE_ERR

The seosd daemon is not responding.
SEOSAPI_AUTH_NOTROOT_ERR

The user ID of the calling process is not O (root), and the user executing
the calling process does not have the SERVER attribute.

SEOSAPI_AUTH_REMOTE_ERR

The daemon or service returned an error described in szMsg.
Notes:

A server application normally calls SEOSROUTE_VerifyCreate before calling
SEOSROUTE_RequestAuth, to get an ACEE handle for the user whose
authorization is being checked.

= When SEOSROUTE_RequestAuth is called with the hACEE parameter set to
SEOSAPI_AUTH_CURRACEE, authorization is requested for the user
executing the calling process. eTrust AC does not check whether the user
has the SERVER attribute. In UNIX, eTrust AC does not check whether the
process is running under the effective user ID of root.

® All users can use the SEOSROUTE_RequestAuth function. Only a server
process can use the query for an ACEE other than its own.

Authorization and Authentication APl 29

SEOSROUTE_RequestAuth Function

int SEOSROUTE RequestAuth(const char *szClass,
const char *szEntity,

int hACEE,
SEOS ACCESS *pAccess,
int LogOpt,
API AUTH RES *pRes,
char *szMsq) ;

szClass
The name of the class to which the resource belongs.
szEntity

The name of the record, or object, representing the resource being
accessed.

Note: The case of the szEntity parameter is important when the szClass
supports case-sensitive objects.

hACEE

The ACEE handle of the accessor. To specify the ACEE of the user
associated with current process, specify SEOSAPI_AUTH_CURRACEE.
Specifying an ACEE handle other than SEOSAPI_AUTH_CURRACEE requires
the user associated with the calling process to have the SERVER attribute
or the calling process to be running under the effective user ID of O (root).

pAccess

A pointer to a structure containing the requested access. The structure
contains the single data member access of type SEOS_ACCS. Valid values
for this member are:

» SEOS_ACCS_ALL
= SEOS_ACCS_CHMOD

= SEOS_ACCS_CHOWN
= SEOS_ACCS_DELETE

» SEOS_ACCS_EXECUTE
= SEOS_ACCS_NONE

» SEOS_ACCS_READ

= SEOS_ACCS_RENAME
= SEOS_ACCS_SEC

= SEOS_ACCS_UPDATE
= SEOS_ACCS_UTIME

= SEOS_ACCS_WRITE.

30 SDK Guide

SEOSROUTE_RequestAuth Function

LogOpt

A flag that determines whether an audit log entry must be made. Valid
values are:

SEOSAPI_AUTH_LOGNONE

For regular users, which are not root, if the authorization request
succeeds, do not create an audit record. If the authorization request
fails, create an audit record if the current rules in the database require
auditing.

For server applications and for root users, do not create an audit
record, regardless of whether the authorization request succeeds or
fails (value = 0).

SEOSAPI_AUTH_LOG

If the current rules in the database require it, create an audit record
(value = 1).

SEOSAPI_AUTH_LOGALL

For regular users, this is an invalid option and is mapped to
SEOSAPI_AUTH_LOG.

For server applications, always create an audit record regardless of the
database rules (value = 2).

SEOSAPI_AUTH_LOGFAIL

For regular users, this is an invalid option and is mapped to
SEOSAPI_AUTH_LOG.

For server applications, create an audit record only if the authorization
request fails and the database rules require it (value = 3).

SEOSAPI_AUTH_LOGNONE_USER

For regular users (including root), if the authorization request
succeeds, do not create an audit record. If the authorization request
fails, create an audit record if the current rules in the database require
auditing.

For server applications, do not create an audit record, regardless of
whether the authorization request succeeds or fails (value = 4).

SEOSAPI_AUTH_LOGNEVER
Do not create an audit record (value = 5).

pRes

A pointer to the API_AUTH_RES structure containing the authorization
result. For more information about the API_AUTH_RES structure, see
API_AUTH_RES in this chapter.

szMsg

Authorization and Authentication APl 31

SEOSROUTE_RequestAuth Function

A pointer to a buffer SEOSAPI_AUTH_MSGLEN into which eTrust AC
returns a status message.

More information:

SEOSROUTE_VerifyCreate Function (see page 37)

32 SDK Guide

SEOSROUTE_RequestAuthAzn Function

SEOSROUTE_RequestAuthAzn Function

The SEOSROUTE_RequestAuthAzn function sends seosd an authorization
request. eTrust AC first checks whether the parameters are valid. If they are,
eTrust AC performs its standard resource authorization check realized in
function SEOSROUTE_RequestAuth. It also processes eTrust Web AC with user
attributes.

If the function succeeds, the return value is zero. Otherwise, the return value
is an error code.

int SEOSROUTE_RequestAzn (
LPCSTR szClass,
LPCSTR szEntity,
LPCSTR szAccess,
HANDLE *phUserAttributes,
int hACEE,
int LogOpt,
API_AZN RES *pres,
API_RESP_TAB **response,
LPCSTR szMsg

)i

hACEE

The ACEE handle of the accessor. For more information, see
SEOSROUTE_RequestAUTH in this chapter.

LogOpt

A flag that determines whether an audit log entry must be made. For more
information, see SEOSROUTE_RequestAUTH in this chapter.

phUserAttributes

A pointer to a hash table created by the function SEOSROUTE_Create
RequestAzn. This pointer is related only to the SEOSD process.

pPRes

A pointer to the API_AZN_RES structure containing the authorization
result. For more information about the API_AZN_RES structure, see
API_AZN_RES in this chapter.

response
A pointer to the buffer containing the response list.
SzAccess

A pointer to a null terminated string that specifies the access name
corresponding to the object described by szEntity.

Authorization and Authentication APl 33

SEOSROUTE_RequestAuthAzn Function

SzClass

A pointer to a null terminated string containing the name of the resource
class.

SzEntity

A pointer to a null terminated string containing the name of the object
representing the resource being accessed.

Note: The case of the szEntity parameter is important when the szClass
supports case-sensitive objects.

szMsg
A pointer to a buffer SEOSAPI_AUTH_MSGLEN bytes long into which eTrust
AC returns a status message.

More information:

API_AZN_USERATTR Structure (see page 36)
SEOSROUTE_CloseRequestAzn Function (see page 36)

34 SDK Guide

SEOSROUTE_CreateRequestAzn Function

SEOSROUTE_CreateRequestAzn Function

The SEOSROUTE_CreateRequestAzn function sends seosd an array of the user
attributes relating to same user and receives pointers specifying a hash table
created on the user attributes base.

This handle is used in other eTrust WebAC API functions.

Note: It is important to call the SEOSROUTE_CloseRequestAzn function after
processing a user.

If the function succeeds, the return value is zero. Otherwise, the return value
is an error code.

INT SEOSROUTE CreateRequestAzn(

LPCSTR szUserDir,
DWORD cEntries,
LPAPI AZN USERATTR pUserAttr,
PHANDLE phUserAttributes,
LPSTR szMsg

)i

SzUserDir in
Pointer to a null terminated string specifying the user directory.
CEntries

Value specifying the number of the API_AZN_USERATTR structures in
array pointed to by pUserAttr. Cannot be zero (0).

PUserAttr in
Pointer to an array containing user attributes.
PhUserAttributes out

If the function succeeds, the parameter specifies a pointer to a hash table
calculated using user attributes.

If the function fails, the value is INVALID_HANDLE_VALUE.

SzMsg out
A pointer to a buffer SEOSAPI_AUTH_MSGLEN bytes long into which eTrust
AC returns a status message.

More information:

API_AZN_USERATTR Structure (see page 36)
SEOSROUTE_CloseRequestAzn Function (see page 36)
SEOSROUTE RequestAuthAzn Function (see page 33)

Authorization and Authentication APl 35

SEOSROUTE_CloseRequestAzn Function

SEOSROUTE_CloseRequestAzn Function

The SEOSROUTE_CloseRequestAzn function removes the hash table pointer by
hUserAttributes. After calling this function, SEOSD cannot process
authorization requests for the specified user unless
SEOSROUTE_CreateRequestAzn() is processed again.

If the function succeeds, the return value is zero. Otherwise, the return value
is an error code.

INT SEOSROUTE CloseRequestAzn(
HANDLE hUserAttributes,
LPSTR szMsg

)i

HUserAttributes in
A pointer to a hash table calculated using user attributes.

SzMsg out
A pointer to a buffer SEOSAPI_AUTH_MSGLEN bytes long into which eTrust
AC returns a status message.

More information:

API_AZN_USERATTR Structure (see page 36)
SEOSROUTE_ CreateRequestAzn Function (see page 35)
SEOSROUTE_RequestAuthAzn Function (see page 33)

API_AZN_USERATTR Structure

The API_AZN_USERATTR structure specifies attribute information.

typedef struct tagAPI AZN USERATTR {
char szAttName[ONAME SIZE];
char szAttVal[ONAME SIZE];
}API AZN USERATTR, *PAPI AZN USERATTR, FAR *LPAPI AZN USERATTR;

szAttName
Null terminated string containing the attribute name.
szAttVal

Null terminated string containing the attribute value.
More information:

SEOSROUTE_CloseRequestAzn Function (see page 36)
SEOSROUTE_RequestAuthAzn Function (see page 33)

36 SDK Guide

SEOSROUTE_VerifyCreate Function

SEOSROUTE_VerifyCreate Function

The SEOSROUTE_ VerifyCreate function performs a pseudo-login to eTrust AC
and returns the ACEE handle that is created.

The first six parameters must be supplied by the application; the last three are
returned by eTrust AC and can be used by the application to make decisions
and provide the user with status information.
The function returns an unsigned integer that is one of the following values:
SEOSAPI_AUTH_OK

The user is allowed to access the resource as requested.
SEOSAPI_AUTH_BADPASSWD_ERR

The password does not match the expected password.
SEOSAPI_AUTH_DENY

The request was denied.
SEOSAPI_AUTH_NORESPONSE_ERR

Seosd is not responding.
SEOSAPI_AUTH_NOTROOT_ERR

The user ID of the calling process is not 0 (root), and the user executing
the calling process does not have the SERVER attribute.

SEOSAPI_AUTH_NOUSERID_ERR

A user name was not supplied.
SEOSAPI_AUTH_NULLACEE_ERR

The phACEE parameter is a null pointer.
SEOSAPI_AUTH_REMOTE_ERR

The eTrust AC daemon returned an error described in szMsg.

Notes:

® The SEOSROUTE_VerifyCreate function should be used only by a
multi-user (server) process that performs services on behalf of other
users. A single-user process can call the SEOSROUTE_RequestAuth
function without first calling the SEOSROUTE_ VerifyCreate function.

B To execute the SEOSROUTE_VerifyCreate function, the calling process
must have an effective user ID of O or the user associated with the calling
process must have the SERVER attribute.

int SEOSROUTE VerifyCreate(const char *szUserld,

const char *szPwd,

Authorization and Authentication APl 37

SEOSROUTE VerifyCreate Function

const char *szNewPwd,

int bPwdChk,
const char *szTerm,
int LogOpt,
int *phACEE,
API AUTH RES *pRes,
char *szMsqg) ;

szUserld

The name of the user for whom the ACEE is created. This parameter must
be supplied.

szPwd

The password of the user identified by szUserld. If a NULL pointer is
specified, eTrust AC skips the password check.

szNewPwd

The new password, should your application be changing the user's
password in the eTrust AC database. Specify a NULL pointer if you are not
specifying a new password or if a NULL pointer is specified for szPwd.

bPwdChk

A flag that determines whether the password is to be checked or not. You
can combine the following flag values (using bitwise OR):

VERCRE_CHECK_CUR
Check that the current password is valid.
VERCRE_CHECK_NEW

In UNIX, check that the new password is valid according to active
password policy rules.

VERCRE_CHECK_QUICKLOGIN
Simulate login without checking for time restrictions.
szTerm

The name of the terminal from which the user logged onto the
system.

LogOpt

A flag that determines whether an audit log entry must be made. Valid
values are:

SEOSAPI_AUTH_LOGNONE

For server applications, do not create an audit record, regardless of
whether the authorization request succeeds or fails (value = 0).

38 SDK Guide

SEOSROUTE_VerifyCreate Function

SEOSAPI_AUTH_LOG

If the current rules in the database require it, create an audit record
(value = 1).

SEOSAPI_AUTH_LOGALL

For server applications, always create an audit record regardless of the
database rules (value = 2).

SEOSAPI_AUTH_LOGFAIL

For server applications, create an audit record only if the authorization
request fails and the database rules require it (value = 3).

PhACEE

The ACEE handle returned by eTrust AC. This value is used by eTrust AC in
subsequent authorization checks for the currently verified user.

pRes

A pointer to the API_AUTH_RES structure containing the authorization
result. For more information, see API_AUTH_RES in this chapter.

szMsg

A pointer to a buffer SEOSAPI_AUTH_MSGLEN bytes long into which eTrust
AC returns a status message.

More information:

SEOSROUTE_ VerifyDelete Function (see page 40)

Authorization and Authentication APl 39

SEOSROUTE_VerifyDelete Function

SEOSROUTE_VerifyDelete Function

The SEOSROUTE_ VerifyDelete function releases an ACEE. Use this function to
release ACEEs created using the SEOSROUTE_ VerifyCreate function. Your
application should release ACEEs once they are no longer required, because
each allocated handle uses system resources and eTrust AC internal resources.
These resources are limited.

The first two parameters must be supplied by the program; the last parameter
is returned by eTrust AC and can be used by the program to make decisions
and provide the user with status information.
The function returns an integer that is one of the following values:
SEOSAPI_AUTH_OK

The ACEE was released.
SEOSAPI_AUTH_NOACEE_ERR

The ACEE handle was not found.
SEOSAPI_AUTH_NORESPONSE_ERR

Seosd is not responding.
SEOSAPI_AUTH_NOTROOT_ERR

The user ID of the calling process is not O (root), and the user executing
the calling process does not have the SERVER attribute.

SEOSAPI_AUTH_NULLACEE_ERR

The phACEE parameter is a NULL pointer.
SEOSAPI_AUTH_REMOTE_ERR

The eTrust AC daemon returned an error described in szMsg.
Note: To execute the SEOSROUTE_VerifyDelete function, the calling process

must have an effective user ID of O or the user associated with the calling
process must have the SERVER attribute.

int SEOSROUTE VerifyDelete(int *phACEE,
int blog,

char *szMsg)
phACEE
A pointer to the handle of the ACEE to be released.
bLog

A flag that determines whether an audit log entry is created. It can have a
value of 0 or 1. To create a log entry, set the bLog parameter to 1.

40 SDK Guide

Structures and Data Types

szMsg

A pointer to a buffer SEOSAPI_AUTH_MSGLEN bytes long into which eTrust
AC returns a status message.

More information:

SEOSROUTE_VerifyCreate Function (see page 37)

Structures and Data Types

This section describes the data structures used by the Authorization and
Authentication API functions to pass information back and forth between the
functions and the eTrust AC daemons (in UNIX) and services (in Windows).
Every field of each data structure is described.

The Authorization and Authentication API functions use the following
structures:
API_AUTH_RES

Holds the result of an authorization check.
SEOS_ACCESS

Encapsulates a single member of type SEOS_ACCS.
SEOS_ACCS

Holds a list of access flags.
SEOS_OID

Holds an object identification descriptor.

Authorization and Authentication API 41

APl AUTH RES Structure

API_AUTH_RES Structure

The API_AUTH_RES structure holds the results of an authorization check.
int result
A code indicating the result of the authorization check. Valid values are:
m P-Requested access to resource was granted.
m D-Requested access to resource was denied.
s C-The access request check was incomplete.
int last_stage

The authorization stage at which the information in the structure was
written. This information is useful if access was granted but the
authorization failed later for some reason.

int grant_stage
The authorization stage at which the permit or deny decision was made.
SEOS_ACCS accs

An unsigned long integer representing the type of access requested. For a
list of possible values, see SEOS_ACCS in this chapter.

SEOS_OID oidRes
The object ID of the resource for which authorization was checked.
SEOS_OID oidGroup

If accumulated group rights are being checked and if access is allowed or
denied by a group, this member stores the object ID of the last group
checked.

If accumulated group rights are not being checked and if access is allowed
or denied by a group, this member stores the object ID of the group.

42 SDK Guide

API_AZN_RES Structure

API_AZN RES Structure

The API_AZN_RES structure holds the results of an authorization check.
int result
A code indicating the result of the authorization check. Valid values are:
s P-Permission to access the resource was granted.
s D-The requested access was denied.
s C-The database has been corrupted.
int last_stage

The authorization stage at which the information in the structure was
written. This information is useful if access was granted but the
authorization failed later for some reason.

int grant_stage
The authorization stage at which the permit or deny decision was made.
SEOS_ACCS accs

An unsigned long integer representing the type of access requested. For a
list of possible values, see SEOS_ACCS in this chapter.

SEOS_OID oidRes
The object ID of the resource for which authorization was checked.
SEOS_OID oidGroup

If accumulated group rights are being checked and if access is allowed or
denied by a group, this member stores the object ID of the last group
checked.

If accumulated group rights are not being checked and if access is allowed
or denied by a group, this member stores the object ID of the group.

SEOSDB_CDF dfRespTab

Structure representing the class definition of a record in the database.
SEOSDB_PDF pdfRespTab

Structure representing the property definition of a record in the database.
SEOSDB_ODF odfRespTab

Structure representing the object definition of a record in the database.

Authorization and Authentication APl 43

SEOS ACCESS Structure

SEOS_ACCESS Structure

The SEOS_ACCESS structure encapsulates a single member of the type
SEOS_ACCS.

SEOS_ACCS accs

An unsigned long integer representing the type of access requested. A list
of possible values is detailed for the SEOS_ACCS structure (see page 45).

44 SDK Guide

SEOS_ACCS Structure

SEOS_ACCS Structure

The SEOS_ACCS data type is an unsigned long integer representing the type
of access requested.

Access types currently defined for the APIs include the following:

For All Requests
SEOS_ACCS_ANY

Everything is allowed.
SEOS_ACCS_AUTHORIZE

Changing ACLs is allowed.
SEOS_ACCS_CREATE

Creating new files in class FILE and new objects in class ADMIN is allowed.
SEOS_ACCS_DELETE

Deleting is allowed (same as SEOS_ACCS_ERASE).
SEOS_ACCS_ERASE

Deleting is allowed.
SEOS_ACCS_EXEC

Executing programs is allowed.
SEOS_ACCS_FILESCAN

Scanning files is allowed.
SEOS_ACCS_JOIN

Adding users to groups or removing users from groups is allowed.
SEOS_ACCS_MODIFY

Renaming is allowed.
SEOS_ACCS_NONE

Nothing is allowed.
SEOS_ACCS_PASSWD

Changing password attributes is allowed.
SEOS_ACCS_READ

Read access is allowed.
SEOS_ACCS_RENAME

Renaming files is allowed.

Authorization and Authentication API 45

SEOS OID Data Type

SEOS_ACCS_WRITE
Write access is allowed.
SEOS_ACCS_reserved

Not used.

For UNIX Requests Only
SEOS_ACCS_CHOWN

Changing ownership is allowed.
SEOS_ACCS_CHGRP

Changing group setting is allowed.
SEOS_ACCS_CHMOD

Changing file mode is allowed.
SEOS_ACCS_UTIMES

Changing modification time of files is allowed.

Generic Attributes
SEOS_ACCS_SEC

Changing ACLs of files is allowed.

Macros for Multiple Access Requests
SEOS_ACCS_CHOG

CHOWN + CHGRP
SEOS_ACCS_UPDATE

READ + WRITE + EXEC
SEOS_ACCS_CONTROL

CHOG + CHMOD + UTIMES + SEC + UPDATE

Note: For possible additional values for this field, see the file
eTrustACDir/include/seostype.h.

SEOS_OID Data Type

The SEOS_OID data type is an unsigned long integer representing the object
ID of a record in the database.

Each object in the database has a unique object ID. If you know the object ID,
you can use seadmapi to retrieve information about the object.

46 SDK Guide

Chapter 3: Exits API

This section contains the following topics:

Programming Guide (see page 48)

Exits API

Functions for UNIX (see page 76)

authxapi

authxapi

RegisterExitFunction Function (see page 77)
UnregisterExitFunction Function (see page 80)

authxapi

IsThereExitFunction Function (see page 81)

authxapi

GetObjectProperty Function (see page 82)

authxapi

GetObjectListValue Function (see page 85)

authxapi

FreelListValues (see page 89)

authxapi

GetUserlnfo Function (see page 89)

Exits API

Functions for Windows (see page 91)

UserDefinedFunction Function (see page 92)

UserDefinedPrefix_RegisterExit Function (see page 93)

Structure and Data Types (see page 95)

SEOS_EXITLOGIN (see page 96)

SEOS_EXITGENR (see page 97)

SEOS_EXITINET (see page 98)

SEOS_EXITPASS (see page 99)

SEOS_EXITRES (see page 101)
SEOSDB_ODE

SEOSDB_PDF

PESeosExitFunc (see page 104)
SEOS_CID (see page 105)
SEOS_OID (see page 105)
SEOS_PID (see page 105)

ODEF (see page 102)
PDF (see page 103)

Exits APl 47

Programming Guide

Programming Guide

The Exits API lets you insert your own functions to be executed just before or
after eTrust AC authorizes a requested activity. The seosd daemon/service
monitors all system, program, and user activities. It intercepts every activity
and decides whether to authorize the requested action. You can insert your
own registered functions just before (pre) or after (post) eTrust AC makes
these decisions.

For example, you can register a pre-exit function for execution before eTrust
AC considers each login request. Your exit function gains control just before
eTrust AC starts to authorize a login request. After completing its task, your
exit function returns control to eTrust AC with a return code indicating your
function's authorization decision. Your function must return one of the
following return codes:

SEOS_EXITR_CHECK
Instructs eTrust AC to perform its own standard authorization check.
SEOS_EXITR_PASS

Instructs eTrust AC to grant the request. eTrust AC does not perform its
own standard authorization check.

SEOS_EXITR_DENY
Instructs eTrust AC to deny the request. eTrust AC does not perform its

own standard authorization check.

If the decision is SEOS_EXITR_PASS or SEOS_EXITR_DENY, eTrust AC grants
or denies the request immediately. If it is SEOS_EXITR_CHECK, eTrust AC
continues with its own standard authorization check. System, program, and
user activities that require authorization by eTrust AC are called events. eTrust
AC authorizes five categories of events:

® | ogin

®m General resource check

® TCP/IP request (available in UNIX only)
® Password quality check

® Password change

These events are described in eTrust AC Events in this chapter. Compiling and
linking procedures are described in Compiling and Linking in this chapter.

48 SDK Guide

Programming Guide

Creating a New Exit Function
In UNIX

New exit functions are added to the seosd and sepass programs by writing
C-language functions that can be compiled and linked to a shared library. The
seos.ext and sepass.ext files must be changed to include this new, shared
library.

An Exits API function has three parts:

® Registration

= Implementation

B Termination

The registration function initializes your Exits API function and registers it with
the eTrust AC programs. The implementation function adds your tasks to the
standard eTrust AC processing. The termination function unregisters and shuts

your program down properly when the eTrust AC programs themselves
terminate.

Exits APl 49

Programming Guide

The following diagram illustrates the flow of the Exits API initialization,
implementation, and termination functions in UNIX.

Start up
Access Control

¥

Initialize and register
the AR

P

¥
Get an

Access Control
event

!

Perform
pre-exit
processing

Continue
Access Control
processing?

yes
no * no
Perform standard
Access Control
evant processing

!

Perform
post-exit
processing

-

¥

Shut down?

yes
¥

Shut down
Access Control

!

Terminate
the AR

50 SDK Guide

Programming Guide

In UNIX for Utilities

In Windows

Your Exits API exit functions take advantage of functions and header files
provided by eTrust AC. You use the same registration, initialization, and
termination functions for all your exit functions, whether they link to seosd or
sepass. For more information about the predefined functions used in an exit
function, see Exits APl Functions in this chapter.

When your Exits API function is ready, you must link your new API to the
eTrust AC daemons. For information about compiling and linking procedures,
see Compiling and Linking.

You add new exit functions to the sesudo and sesu programs by writing
C-language functions that can be compiled and linked to a shared library. You
must change the *.ext files to include this new, shared library.

An Exits API function has three parts:

® Registration

® Implementation

® Termination

The registration function initializes your Exits APl function and registers it with
the utilities. The implementation function adds your tasks to the standard

utilities' regular activities. The termination function unregisters and shuts your
program down properly when the utilities themselves terminate.

Note: Examples for utility exits APIs are available in the following directory:

eTrustACDir/apisamples

You add new exit functions to the seosd service and to pwdchange.dll by
writing C-language functions that can be compiled and linked to a dynamic link
library (dll). To install new exits, you must add new sub-keys under the
following registry key:

HKEY_LOCAL_MACHINE\Software\ComputerAssociates\eTrustAccessConrtrol\Exits\Engine

Exit APIs can fall into one of the following categories:

® Registration callback functions

B Implementation callback functions

The registration function initializes your Exits APl function and registers it with

eTrust AC programs. The implementation function adds your tasks to the
standard eTrust AC processing.

Exits APl 51

Programming Guide

The following diagram illustrates the flow of the Exits API initialization and
implementation.

Start up
Access Control

¥

Initialize and register
the AP

¥
Get an

Access Control
event

¥

Perfarm
pre-exit
processing

Continue
Access Control
pracessing?

| =3
no V* o
Petform standard
Access Control
event processing

¥
Petfarm
post-exit

pracessing

-

¥

Shut down?

YEE

¥

Shut down
Access Control

52 SDK Guide

Programming Guide

Data Structures

Your Exits API exit functions take advantage of functions and header files
provided by eTrust AC. You use the same registration and implementation
functions for all your exit functions, whether they link to seosd or pwdchange.

When your Exits API function is ready, you must link your new API to the
eTrust AC services. For information about compiling and linking procedures,
see Compiling and Linking.

All Exits API functions use special data structures provided by eTrust AC to
pass information back and forth between functions. Programmers must know
the specific formats and data types used by these structures to access them
correctly in their own programs. For information about these formats and data
types, see Structure and Data Types in this chapter. The input data structure
used by your exit function depends on the event being intercepted by the
function. All functions use the same output data structure. The following table
lists the data structures used by the Exits API functions.

Event Data Structure Type
Login SEOS_EXITLOGIN Input
General resource check SEOS_EXITGENR Input
TCP/IP request (for UNIX only) SEOS_EXITINET Input
Password quality check SEOS_EXITPASS Input

Password change

All events SEOS_EXITRES Output

Exits APl 53

Programming Guide

eTrust AC Events

If your Exits API function is successful, it should fill in the SEOS_EXITRES
structure and return 0. When eTrust AC receives a return code of O, eTrust AC
checks the result field in the SEOS_EXITRES structure. If the SEOS_EXITRES
value is Pass or Deny, it is acted on immediately, and eTrust AC does not
execute its own authorization check. If the result is Check, eTrust AC
continues with its own authorization check.

If your Exits API function fails, it should fill in the SEOS_EXITRES structure
and return a nonzero error code. When eTrust AC receives a nonzero return
code, it adds an entry to the error log file with the source file name and line
number as they appear in the SEOS_EXITRES structure. The other values set
in SEOS_EXITRES are ignored. eTrust AC then continues with its own
authorization check.

This chapter provides two sample Exits API functions. These examples can
help you get started with your own programs. The first example is a simple
counter that intercepts every eTrust AC authorization call and keeps statistics
on how often such calls are made. The second example adds a new restriction
to the password authorization algorithm of eTrust AC. This exit function stops
users from choosing the word password as their new password.

See System Design and Limits in this chapter for more information about:

® The modular design used by eTrust AC that your functions should maintain

® The limits imposed by eTrust AC on Exits API functions

® How to avoid compile and run-time errors

System, program, and user activities that require authorization by eTrust AC
are called events. Events are grouped into five categories:

® | ogin

® General resource check

® TCP/IP request (UNIX only)

® Password quality check

® Password change

Exit functions for password quality check and password change events are
linked to the password utility sepass in UNIX and the password dll pwdchange

in Windows. Exit functions for login, general resource check, and TCP/IP
request events are linked to seosd.

54 SDK Guide

Programming Guide

Events Linked to seosd

The following events are registered with seosd:

® | ogin

® General resource check

® TCP/IP request (UNIX only)

A login event occurs whenever a user attempts to log in to the system. All

information relevant to the login attempt is passed to the API function. This
information includes:

B The user name and user ID of the user involved
® The terminal from which the user is trying to log in

® The device and inode numbers, and the name of the program attempting
to perform the login

This information is passed to the Exits function in the SEOS_EXITLOGIN
structure.

Note: Part of the login authorization process involves a check of whether the
user is allowed to log in from the terminal from which the login request is
received. If a general resource exit function is registered, that exit function is
called as part of the login check.

A general resource check event occurs whenever eTrust AC checks the
authorization for any system request except login and TCP/IP requests. All
information relevant to the system request is passed to the API function. This
information includes:

® The class and resource name of the object involved

® The user ID, user handle, and user name of the user involved

® The device and inode numbers, and the name of the program involved
® The terminal from which the user is submitting the request

® The type of access requested
This information is passed to the function in the SEOS_EXITGENR structure.

In UNIX, a TCP/IP request event occurs whenever a remote host attempts to
connect to the local host. In this case, no information is available on the
specific user. All information relevant to the connection attempt is passed to
the API function. This information includes the host address and name, the
type of access requested, the name of the program involved, the port number,
and the protocol code. The information is passed to the function in the
structure SEOS_EXITINET.

Exits APl 55

Programming Guide

Events Linked to sepass in UNIX

The password quality check and password change events are registered with
the password utility sepass. The Exits APl data structure SEOS_EXITPASS is
used to pass information about these events between functions. For more
information about the SEOS_EXITPASS data structure, see Structure and Data
Types in this chapter.

A password quality check event occurs whenever a user attempts to enter a
new user password. eTrust AC always calls the verify exits (both pre- and
post-). eTrust AC verifies the password using its built-in features only when
users replace their own passwords. All information relevant to the attempt to
enter a new password is passed to the API function. This information includes
the name of the user invoking the password utility; the name of the user
whose password is being changed; the user's old password, if it exists; the
user's new password; and the eTrust AC result. Results may be 0 (Okay) or 1
(Error). All the information is passed to the function in the structure
SEOS_EXITPASS.

A password change event occurs whenever a user attempts to update an
existing user password. All information relevant to the update attempt is
passed to the API function. This information includes the name of the user
invoking the password utility; the name of the user whose password is being
changed; the user's new password; and both the eTrust AC and the system
results. The information is passed to the function in the structure
SEOS_EXITPASS.

Events Linked to pwdchange.dll in Windows

The password quality check and password change events are registered with
the password dll pwdchange. After installing these events in the registry, you
must reboot in order to have proper registration. The Exits APl data structure
SEOS_EXITPASS is used to pass information about these events between
functions. For more information about the SEOS EXITPASS data structure, see
Structure and Data Types in this chapter.

56 SDK Guide

Programming Guide

User Information

(For UNIX only) eTrust AC passes as much information about the user
requesting authorization as possible to the Exits API functions. Depending on
what eTrust AC knows about the user, the Exits APl function may be given the
user name, the UNIX user ID number, and the user ACEE handle.

Users may or may not be defined in the eTrust AC database. If the user is
defined in the database, eTrust AC has an entry in the Accessor Environment
Entry (ACEE) table for that user. All entries in the ACEE table have an ACEE
handle that points to the information about that entry. A user not defined in
the database is assigned an ACEE handle of -1. An ACEE handle of -1 informs
the Exits API functions that the request did not come from an eTrust
AC-defined user.

Compiling and Linking

Compiling and Linking in UNIX with the api_authx Library

This section provides the instructions for compiling and linking your Exits API
functions with the seosd daemon or the sepass utility. These are general
instructions that describe the most common system configurations. Each
system has its own specific requirements. It is impossible to provide detailed
requirements for every possible system configuration. Consult your system
guides for the details of your particular system's compiler and linker options.

You must include the header files authxapi.h and seostype.h in your Exits API
functions. These files are located in the include subdirectory. Put the following
two lines near the top of an Exits API function source file:

#include authxapi.h
#include seostype.h

We recommend using an ANSI-C compliant compiler.

Exits APl 57

Programming Guide

Compiling and Linking the Callback Exits Dynamic Link Library in Windows

This section provides the instructions for compiling and linking your Exits API
functions with the seosd service or the pwdchange.dll. These are general
instructions that describe the most common system configurations. Each
system has its own specific requirements. It is impossible to provide detailed
requirements for every possible system configuration. Consult your system
guides for the details of your particular system's compiler and linker options.

You must include the header file authxapi.h in your Exits API functions. This
file is located in the include subdirectory. Put the following line near the top of
an Exits API function source file:

#include authxapi.h

We recommend using an ANSI-C compliant compiler.

Linking Your Application with eTrust AC

Because the target of your code is either a shared library (for UNIX) or a
dynamic link library (for Windows), you may need to use compiler flags to
determine the correct code generation method. The examples provided in the
samples subdirectory should help you find the appropriate flag for your
operating system.

58 SDK Guide

Programming Guide

System Design and Limits
Modular Design

eTrust AC is completely modular in design and implementation. Management
of resources is also completely modular. Most of the system objects that
eTrust AC protects are considered general resources. A class is a family of
resources that share the same attributes. For example, an attempt to open a
file is considered an access request to a resource of class FILE. In UNIX, an
attempt to substitute (su) to another user is considered an access request to a
resource of class SURROGATE. Grouping resources in this manner allows
eTrust AC to use one general authorization algorithm.

Your Exits APl functions must maintain the same modular approach as the
eTrust AC functions. The Exits API functions are called whenever there is an
attempt to access a specified resource. Your functions must use a modular
algorithm that works consistently for an entire class and does not interfere
with or generate errors for other classes. For more information about classes,
properties, and resources, see the Administrator Guide (for Windows or UNIX).

Important! eTrust AC constantly receives authorization requests from system
events and user programs. These requests may be redirected to your exit
function. Ensure that your function is optimized and terminates as quickly as
possible, so as to minimize system overhead. Special care must be taken when
writing exit functions. You cannot write an exit function and leave debugging
for runtime. A trivial bug can bring down your system.

Exits APl 59

Programming Guide

Configuration

For UNIX

After you compile your code, generate a shared library that contains the
compiled version of your code. The apisamples directory contains sample
functions and a makefile that demonstrate the process. Note that compilation
for shared libraries usually requires additional compiler parameters to create
position-independent code. Consult your compiler or linker documentation to
learn how to create shared libraries in your particular system.

After you have written your code and created a shared library, add your
shared library to the “on-demand” shared libraries configuration file relevant
to the program to which your code should link.

If you have written a shared library for one of the following daemons or
programs, add your shared library to the relevant file (you may need to create
these .ext files using the examples in the apisamples directory):

® For selogrd, add your shared library to eTrustACDir/etc/selogrd.ext.

® For selogrcd, add your shared library to eTrustACDir/etc/selogrcd.ext.

® For seosd, add your shared library to eTrustACDir/etc/seosd.ext.

® For sepass, add your shared library to eTrustACDir/etc/sepass.ext.

Each file contains two columns: the driver name and the shared library path.

By convention, the driver name is a string that has the same name as your
target type; however, it can be any valid C language symbol.

For example, if you have written code to implement a pager, your target name
should be pager and the complete file entry would be:

pager /usr/local/lib/libseospager.so

This file entry means that the daemon seosd loads the shared library at startup
and calls your function:

/usr/local/lib/libseospager.so

Although some systems support a predefined function called _init, we
recommend that you use the functiondriver_RegisterDestination instead. This
is really the first function called from the shared library. The function
driver_RegisterDestination registers your new target type.

On daemon shutdown, we recommend that you use the function
driver_UnregisterDestination instead of the predefined function _fini.

Note: Using the eTrust AC functions instead of the predefined system
functions gives your code greater portability.

60 SDK Guide

Programming Guide

For Windows

The daemon seosd uses the same file configuration format as sepass.

After you compile your code, generate a dynamic link library that contains the
compiled version of your code. The SDK directory contains sample functions
and a makefile to demonstrate the process. Note that compilation for dynamic
link libraries usually requires additional compiler parameters. Consult your
compiler or linker documentation to learn how to create dynamic link libraries
in your particular system.

After you have written your code and created a dynamic link library, you
should install it in the eTrust AC registry tree as follows:

1. Create a new key with any name you choose under the following existing
key:

HKEY LOCAL MACHINE\Software\ComuterAssociates\eTrustccessControl\Exits\Engine
2. Under the newly created sub-key create two values:

» A REG_SZ value with the name Path. The value should be the full path
of your exits dynamic link library. This value is used by the seosd
service and the pwdchange dll in loading the new exits dynamic link
library.

» A REG_SZ value with the name Prefix. The value should be any valid C
language symbol, which will be the prefix of the registration function in
your dynamic link library code. For example, if the value is “TEMP”
then the registration function name in the dynamic link library should
be TEMP_RegisterExit. This value is used by the seosd service and the
pwdchange dll in loading the registration function address.

Exits APl 61

Programming Guide

System Calls

For UNIX

Since eTrust AC intercepts operating system calls, not all system activities can
be allowed while you are in the midst of an authorization action. The following
functions cannot be called from an Exits API function of seosd:

In This Environment: Do Not Use These Functions:

NIS or DNS servers running eTrust AC; getgrent

Solaris 2.5.x and later getgrgid

etgrnam
gethostbyaddr
gethostbyname
gethostent
getnetbyaddr
getnetbyname
getnetent
getprotobyname
getprotobynumber
getprotoent
getpwent
getpwnam
getpwuid
getservbyname
getservbyport
getservent

Any station running eTrust AC getrpcbyname

getrpcbynumber
getrpcent

Error Codes

eTrust AC uses an error code defined as an integer, composed of two bytes.
The MSB contains a layer code and the LSB contains an error code specific to
that layer. This allows up to 256 different layers with 256 different error codes
each. To simplify error code management, eTrust AC uses the macro
_SEOS_RC. The Exits API also uses the macro AUTHXAPI_MODULE to define
the layer code. Do not use these macros yourself in your code or you may
have compilation problems.

Return Codes

eTrust AC uses the following convention for return codes: a return value of
zero indicates success; any other value indicates an error.

62 SDK Guide

Programming Guide

Exits APl Examples

The eTrust AC package includes the following two sample programs
demonstrating use of the Exits API.

Exits APl 63

Programming Guide

eTrust AC Daemon Exits for UNIX

The apisamples directory contains the APl header files (in the include
subdirectory) and the library functions (in the lib subdirectory).

The following program calls a special user-defined exit function upon any
action by the seosd daemon. The function keeps statistics on the number of
times each action is executed. When the function senses a login for user root,
it simply prints the information gathered. A more detailed explanation of the
main points of this function follows the source code.

/%
Project : eTrust
Module : eTrust
Version : 8.0

File 1 seosdexits.c

Purpose : eTrust daemon exits sample.

Copyright :
Copyright 2004 Computer Associates International, Inc.
*/
#define SEOSEXIT C
/* System headers :
* sys/types.h : we cust using uid t
* stdio.h : printf
* string.h & memory.h 1 memcpy
*/

#include sys/types.h
#include stdio.h
#include string.h
#include memory.h

/* authx API header file */
#include authxapi.h

/* This a sample program for making an exit module
for Access Control.

The module only 'printf' the information and

gathers statistics on the # of events.

When the 'root' user logs in the statistics

are printed.

¥ ¥ X ¥ *

*/

typedef struct

{ int nPreRes;
int nPostRes;
int nPrelLogin;
int nPostlLogin;
int nPrelnet;

64 SDK Guide

Programming Guide

int nPostInet;
} EXIT CALLS COUNTERS;

static EXIT CALLS COUNTERS counters;

static void print my statistics(void)

{
printf(“General Resource ... Pre %6d Post %6d\n”

“Login Pre %6d Post %6d\n”
“Internet TCP Pre %6d Post %6d\n”,
counters.nPreRes, counters.nPostRes,
counters.nPreLogin, counters.nPostLogin,
counters.nPrelnet, counters.nPostInet);

}

static int ExitFunc PreResource(void *data, SEOS EXITRES *p sexr)

{
SEOS_EXITGENR *ptr;

ptr = (SEOS EXITGENR *)data;

counters.nPreRes++;

printf(“Pre General Resource Class %s\n”, ptr->szClass);
return 0;

static int ExitFunc PostResource(void *data, SEOS EXITRES *p sexr)

{
SEOS_EXITGENR *ptr;

ptr = (SEOS_EXITGENR *)data;

counters.nPostRes++;

printf(“Post General Resource Class %s\n”, ptr->szClass);
return 0;

static int ExitFunc PrelLogin(void *data, SEOS EXITRES *p sexr)
{

SEOS EXITLOGIN *p sexl;

char buff[20];

char const *p;

p_sexl = (SEOS EXITLOGIN *)data;

counters.nPreLogin++;

if (p_sexl->szUname == NULL)

{p = buff; sprintf(buff, “UID=Su”, p_sexl->luid);}
else

p = p_sexl->szUname;
printf(“Pre Login For %s\n”, p);

Exits APl 65

Programming Guide

/* For ROOT print some statistics */
if (p_sexl->luid == (uid t)0)
print my statistics();

return 0;
}
static int ExitFunc PostlLogin(void *data, SEQOS EXITRES *p sexr)
{
SEOS EXITLOGIN *p sexl;
char buff[20];
char const *p;
p_sexl = (SEOS EXITLOGIN *)data;
counters.nPostLogin++;
if (p_sexl->szUname == NULL)
{p = buff; sprintf(buff, “UID=%u”, p_sexl->luid);}
else
p = p_sexl->szUname;
printf(“Post Login For %s\n”, p);
/* For ROOT print some statistics */
if (p_sexl->luid == (uid t)0)
print my statistics();
return 0;
}
static int ExitFunc PreInet(void *data, SEOS EXITRES *p sexr)
{
/* Don't do too much work on TCP */
counters.nPrelnet++;
return 0;
}
static int ExitFunc PostInet(void *data, SEOS EXITRES *p sexr)
{
/* Don't do too much work on TCP */
counters.nPostInet++;
return 0;
}
int sample RegisterExit(void)
{
int rc;

memset (&counters, 0, sizeof(counters));

rc = authxapi RegisterExitFunction(AUTHXAPI_EV_PREGNRES,
ExitFunc_PreResource);

if (rc) return rc;

rc = authxapi RegisterExitFunction(AUTHXAPI_EV POSTGNRES,
ExitFunc_PostResource) ;

if (rc) return rc;

rc = authxapi RegisterExitFunction(AUTHXAPI_EV_PRELOGIN,
ExitFunc Prelogin);

if (rc) return rc;

rc = authxapi RegisterExitFunction(AUTHXAPI_EV POSTLOGIN,
ExitFunc PostlLogin);

66 SDK Guide

Programming Guide

if (rc) return rc;

rc = authxapi RegisterExitFunction(AUTHXAPI EV PREINET,
ExitFunc Prelnet);

if (rc) return rc;

rc = authxapi RegisterExitFunction(AUTHXAPI EV POSTINET,
ExitFunc PostInet);

return rc;
}
void sample UnregisterExit(void)
{
/* We don't have anything to do in this example */
}

The authxapi.h header file contains the prototypes and definitions required to
use the API. The code declares a new type EXIT_CALLS_COUNTER. This
structure consists of counters for each event the API registers. A static
variable of this new local type is declared. The general resource check and
TCP/IP request functions listed are simple counters. The login functions have
the same counters and also compare the user ID of the logged-in user to O.
The login functions take advantage of the fact that the UNIX user ID for root is
0 to avoid fetching the real user information from system databases.

Note: This example prints to the screen. eTrust AC daemons should not use
screen output as it causes a significant decline in performance.

Exits APl 67

Programming Guide

eTrust AC SeOS Engine Exits for Windows

The SDK directory contains the APl header files (in the include subdirectory)
and the library functions (in the lib subdirectory).

The following program calls a special user-defined exit function upon any
action by the seosd service. The function keeps statistics on the number of
times each action is executed. When the function senses a login for user
Administrator, it simply prints the information gathered. A more detailed
explanation of the main points of this function follows the source code.

68 SDK Guide

Programming Guide

/%
Project: eTrust Access Control 8.0 for Windows NT/2000
Module: eTrust Engine Exits sample.
File: main.c
Purpose: Sample for eTrust Engine Exits DLL to demonstrate how user
can use eTrust Engine authorization in Pre and Post checks.
Usage: Build ExitsExample.dll and use eTrust Access Control 8.0 for

Windows NT/2000 documentation to config your registry and file
system.

Copyright 2004 Computer Associates International, Inc.

*/

#include <stdio.h>
#include <authxapi.h>

typedef struct

{

int nPreRes;
int nPostRes;
int nPrelLogin;
int nPostlLogin;
} EXIT CALLS COUNTERS;

EXIT CALLS COUNTERS counters = { 0 };

static void print my statistics(void)

{
//
// print statistic check counters
//
printf("General Resource ... Pre %6d Post %6d \n"
"Login..........out. Pre %b6d Post %6d \n",
counters.nPreRes, counters.nPostRes,
counters.nPreLogin, counters.nPostLogin);
}

static int ExitFunc PreResource(void* data, SEOS EXITRES *p sexr)

{

SEOS_EXITGENR *ptr;

ptr =

(SEOS_EXITGENR *) data;

counters.nPreRes++;

//

// Pre check: Print eTrust Class name of the resource

//

printf("Pre General Resource %s of Class %s\n", ptr->szRes, ptr->szClass);

Exits APl 69

Programming Guide

return 0;

static int ExitFunc PostResource(void* data, SEOS EXITRES *p sexr)

{
SEOS_EXITGENR *ptr;

ptr = (SEOS EXITGENR *) data;
counters.nPostRes++;

//
// Post check: Print eTrust Class name of the resource
//

printf("Post General Resource %s of Class %s\n", ptr->szRes, ptr->szClass);

return 0;

static int ExitFunc PrelLogin(void* data, SEOS EXITRES *p sexr)

{
SEOS EXITLOGIN *p sexl;
char buff[20];
char const *p;

p_sexl = (SEOS EXITLOGIN*) data;
counters.nPreLogin++;
if(p_sexl->szUname == NULL)
{

p = buff;

sprintf(buff, "UID = %u", p_sexl->luid);
}
else

p = p_sexl->szUname;

//

// For Pre Login check: print the Login User name

//

printf("Pre Login For %s from terminal %s\n", p, p_sexl->szTerm);

if(strstr(p sexl->szUname, "Administrator") != NULL)

{

print_my statistics();

return 0;

static int ExitFunc PostlLogin(void* data, SEOS EXITRES *p sexr)

70 SDK Guide

Programming Guide

SEOS_EXITLOGIN *p sexl;
char buff[20];
char const *p;

p_sexl = (SEOS EXITLOGIN*) data;
counters.nPostLogin++;

if(p_sexl->szUname == NULL)
{
p = buff;
sprintf(buff, "UID = %u", p_sexl->luid);
}
else
p = p_sexl->szUname;

//

// For Post Login check: print the Login User name

//

printf("Post Login For %s from terminal %s\n", p, p_sexl->szTerm);

if(strstr(p _sexl->szUname, "Administrator") != NULL)

{

print my statistics();

return 0;

typedef int(*PFNEXIT) (void);

// Function name: SM RegisterExit

// Description: Export exits function

// Return type: int 0

// Argument: IN/OUT PFNEXIT pfnExit[] - array of user defined functions

// Argument: IN/OUT DWORD *pdwType - array of Engine events
_declspec(dllexport) int stdcall SM RegisterExit(PFNEXIT pfnExit[], PDWORD

pdwType)

{
pfnExit[0] = (PFNEXIT)ExitFunc Prelogin;
pfnExit[1] = (PFNEXIT)ExitFunc PostLogin;
pfnExit[2] = (PFNEXIT)ExitFunc_PreResource;
pfnExit[3] = (PFNEXIT)ExitFunc PostResource;
pdwType[0] = AUTHXAPI EV PRELOGIN;

pdwType[1] = AUTHXAPI_EV POSTLOGIN;
pdwType[2] = AUTHXAPI_EV PREGNRES;
pdwType[3] = AUTHXAPI_EV POSTGNRES;

Exits API

71

Programming Guide

return 0;

Additionally you will need another .def file in the project that contains:
® | IBRARY-ExitsExample

® DESCRIPTION-ExitsExample Windows Dynamic Link Library

m EXPORTS-SM_RegisterExit

The authxapi.h header file contains the prototypes and definitions required to
use the API. The code declares a new type EXIT_CALLS_COUNTER. This
structure consists of counters for each event the API registers. A static
variable of this new local type is declared. The general resource check
functions listed are simple counters. The login functions have the same
counters and also compare the user name of the logged-in user to
Administrator.

Note: This example prints to the screen. eTrust AC services should not use
screen output because it is not a console application.

72 SDK Guide

Programming Guide

Password Utilities Exits
For UNIX
The following code demonstrates a simple user exit function for password

verification. This code compares the potential password to the string password
and denies permission to choose the password if a match is found.

/%
Project : eTrust

Module 1 eTrust

Version : 8.0

File : exit.c

Purpose : Example of exit function for passwords utilities
Copyright :

Copyright 2004 Computer Associates International, Inc.

*/

/* Example for using password library to extend password rules*/
/* This function verifies the password before Access Control */
/* does. To override Access Control checks, use result */

/* SEOS_EXITR PASS. */

/* Look at Makefile.exits for compilation options. */

#include API/authxapi.h

/* This function does not allow user to use the word “password”*/

/* as the new password. */
int ExitFunc_PreVerify(void *sexp, SEOS EXITRES *sexr)
{
if (strcmp(((SEOS_EXITPASS *) sexp)->szPass,”password”) == 0)
{
printf(“new password is refused by exit function\n”);
sexr->result = SEOS EXITR DENY;
/* Do not allow that password */
}
else
sexr->result = SEQS EXITR CHECK;
/* Continue with Access Control checks */
return 0;

}
/* must register the above exit function */
int sample RegisterExit(void)

{
int rc;
rc = authxapi RegisterExitFunction(AUTHXAPI EV PREVERPWD,
ExitFunc PreVerify);
if (rc) return rc;
}

void sample UnregisterExit(void)

Exits APl 73

Programming Guide

/* Nothing to do really in this case */

74 SDK Guide

Programming Guide

For Windows

The following code demonstrates a simple user exit function for password
verification. This code compares the potential password to the string password
and denies permission to choose the password if a match is found.

/*

Project: eTrust Access Control 8.0 for Windows NT/2000

Module: eTrust Password Exits sample.

File: main.c

Purpose: Sample for eTrust Password Exits DLL to demonstrate how user
an

use eTrust Password authorization in Pre and Post checks.

Usage: Build PasswordExitsExample.dll and use eTrust Access Control

.0 for

Windows NT/2000 documentation to config your registry and file
system.

Copyright 2004 Computer Associates International, Inc.

*/

#include <stdio.h>
#include <authxapi.h>

static int ExitFunc PreVerifyPassword(void* data, SEOS EXITRES *p sexr)

{
SE0S EXITPASS *ptr;
ptr = (SEOS EXITPASS *) data;
if (strcmp(ptr->szPass, "password") == 0)
{
p_sexr->result = SEOS EXITR DENY;
/* Do not allow that password */
}
else
{
/* Continue with Access Control checks */
p_sexr->result = SEQS EXITR CHECK;
}
return 0;
}

typedef int(*PFNEXIT) (void);

// Function name: PWD RegisterExit

Exits APl 75

Exits APl Functions for UNIX

// Description: Export exits function

// Return type: int ©

// Argument: IN/OUT PFNEXIT pfnExit[] - array of user defined functions
// Argument: IN/OUT DWORD *pdwType - array of Engine events
_declspec(dllexport) int stdcall PWD RegisterExit(PFNEXIT pfnExit[],
DWORD pdwType)

{
pfnExit[0] = (PFNEXIT)ExitFunc_PreVerifyPassword;
pdwType[0] = AUTHXAPI EV PREVERPWD;
return 0;

}

Note: In order to use password-related exits, after installing the exits dynamic
link library in the registry, you must reboot the machine. This is mandatory
because the pwdchange dynamic link library that handles eTrust AC password
verification is loaded only when the machine starts up.

Exits APl Functions for UNIX

The Exits API functions provided by eTrust AC are grouped according to the
following categories:

B General functions are used by all Exits APl functions, whether they are
linked to the seosd daemon or the password utility sepass. The tasks
performed by these functions include registration, removal of registration,
initialization, and termination.

® Database interface functions are applicable only to Exits API functions
linked to seosd.

® Shared library functions are functions provided by eTrust AC.

General Functions
authxapi_ IsThereExitFunction

Checks if an Exits API function for a specific event has been registered
with eTrust AC.

authxapi_RegisterExitFunction
Registers your new Exits API function with eTrust AC.
authxapi_UnregisterExitFunction

Removes an Exits API function that was previously registered with eTrust
AC.

76 SDK Guide

authxapi_RegisterExitFunction Function

Database Interface Functions
authxapi_FreeListValues

Frees the memory allocated during a previous call to the function
authxapi_GetObjectListValue.

authxapi_GetObjectListValue

Retrieves the values of a list value property from a database object.
authxapi_GetObjectProperty

Retrieves the value of a single value property from a database object.
authxapi_GetUserInfo

Retrieves user name when given a user handle from an Exits APl function.

Shared Library Functions
driver_RegisterExit
Provided by the extension and called on program startup.
driver_UnregisterExit

Provided by the extension and called on program termination.

authxapi_RegisterExitFunction Function

Valid on UNIX only.

The authxapi_RegisterExitFunction function registers an exit function for a
specific event. Registration should be handled during program startup and
shutdown, although it can be performed at any stage.

If the function succeeds, it returns 0. If it fails, it sets the global variable errno
and returns one of the following error codes:

Return Value ERRNO Meaning
AUTHXAPI_E_OCCUPIED EEXIST Event already registered.
AUTHXAPI_E_NOEVENT EINVAL Invalid event code.

Exits APl 77

authxapi_RegisterExitFunction Function

int authxapi RegisterExitFunction (int event, PFSeosExitFunc user func);
event

Code of the event to which your Exits API function is registered. Password
events are available only when linked to the password utility. General
system events are available only when linked to the seosd daemon.

Valid event values are:
AUTHXAPI_EV_PRELOGIN
Pre-login event
AUTHXAPI_EV_POSTLOGIN
Post-login event
AUTHXAPI_EV_PREGNRES
Pre-general resource event
AUTHXAPI_EV_POSTGNRES
Post-general resource event
AUTHXAPI_EV_PREINET
Pre-TCP/IP request event
AUTHXAPI_EV_POSTINET
Post-TCP/IP request event
AUTHXAPI_EV_PREVERPWD
Pre-password quality check event
AUTHXAPI_EV_POSTVERPWD
Post-password quality check event
AUTHXAPI_EV_PRESETPWD
Pre-password change event
AUTHXAPI_EV_POSTSETPWD
Post-password change event
user_func
Pointer to the user function that eTrust AC should call when the specified
event occurs.

Example: Registering a User's Exit Function.

This example illustrates how you use the authxapi_RegisterExitFunction
function to deny all login attempts for the user ismith.

/* Sample function to deny all login attempts of user 'jsmith' */
int MyExitFunc(void *exit data, SEOS EXITRES *res)

78 SDK Guide

authxapi_RegisterExitFunction Function

SEOS_EXITLOGIN *login_data;

login data = (SEOS EXITLOGIN *)exit data;
if (login data->szUname != NULL)
{
if (strcmp(login data->szUname, “jsmith”))
return 0;
res->result = SEOS EXITR DENY;
}

return 0;

/* The function Access Control looks for on initialization */
/* of extension. */
int sample RegisterExit(void)
{
return authxapi RegisterExitFunction(AUTHXAPI EV PRELOGIN,
MyExitFunc);

More information:

authxapi_UnregisterExitFunction Function (see page 80)

Exits APl 79

authxapi_UnregisterExitrunction Function

authxapi_UnregisterExitFunction Function

Valid on UNIX only.

The authxapi_UnregisterExitFunction function unregisters your exit function
from eTrust AC.

If the function succeeds, it returns 0. If it fails, it sets the global variable errno
to EINVAL and returns AUTHXAPI_E_NOEVENT, meaning that the event code
passed was invalid.

int authxapi UnregisterExitFunction (int event);

event
Integer code of the event (see page 77) to which your Exits API function is
registered.

Example: Unregistering User's Exit Function

This example illustrates how you use the authxapi_UnregisterExitFunction to
unregister a user's exit function.

rc = authxapi_UnregisterExitFunction(AUTHXAPI EV PRELOGIN);
if (rc)
{

syslog(LOG ERR,

“Unexpected error unregistering exit function [%m]”);

More information:

authxapi_RegisterExitFunction Function (see page 77)

80 SDK Guide

authxapi_lsThereExitFunction Function

authxapi_IsThereExitFunction Function

Valid on UNIX only.

The authxapi_IsThereExitFunction function determines whether an exit
function has been registered for a specific event.

If the exit function exists, this function returns TRUE (1). If it does not exist,
this function returns FALSE (0).

int authxapi_IsThereExitFunction (int event);
event

Integer code of the event (see page 77) being checked.
Example: Checking If Exit Function Exists.

This example illustrates how you use the authxapi_lsThereExitFunction
function to check if there is a pre-login exit function.

{
int rc;
rc = authxapi IsThereExitFunction(AUTHXAPI EV PRELOGIN);
if (rc)
printf(“There is a pre-login exit function\n”);
else
printf(“There is no pre-login exit function.\n”);
}

More information:

authxapi_RegisterExitFunction Function (see page 77)
authxapi_UnregisterExitFunction Function (see page 80)

Exits APl 81

authxapi_GetObjectProperty Function

authxapi_GetObjectProperty Function

Valid on UNIX only.

The authxapi_GetObjectProperty function retrieves the value of a single-value
property of an object stored in the database. Properties that have multiple
values, such as lists, cannot be retrieved with this function. You retrieve
property lists with the authxapi_GetObjectListValue function. All parameter
strings must be NULL terminated.

If the function succeeds, it returns 0. If it fails, it sets the global variable errno
and returns one of the following error codes:

Return Value ERRNO Meaning

AUTHXAPI_E_EINVAL EINVAL Invalid (NULL) pointers
AUTHXAPI_E_INVOBJ EINVAL Invalid object descriptor
AUTHXAPI_E_INVPROP EINVAL Invalid property descriptor
AUTHXAPI_E_NOCLASS ENOENT Required class not found
AUTHXAPI_E_NOOBJ ENOENT Required object not found
AUTHXAPI_E_NOPROP ENOENT Required property not found
AUTHXAPI_E_PTYPE EINVAL Property type is a list
AUTHXAPI_E_DBERROR EIO Suspect corruption of database
AUTHXAPI_E_NOVAL ENOENT No value for property associated

with this object

82 SDK Guide

authxapi_GetObjectProperty Function

int authxapi GetObjectProperty (const char *szClass,
const char *szObj,
SEOSDB_ODF *p_odf,
const char *sz Prop,
SEOSDB PDF *p pdf,
void *val,
int *size);

szClass
The name of the class to which the resource belongs.
szObj

The name of the object (record) whose property value you want to
retrieve.

p_odf

Points to an object descriptor fetched by this function or provided by the
caller from a previous call to an Exits API get function.

szProp

The name of the property whose value you want to retrieve.

p_pdf

A pointer to a property descriptor fetched by this function or provided by
the caller from a previous call to an Exits API get function.

val

A pointer to a variable that is filled with the value of the property. The
caller should provide a pointer to a variable that is of the same type as the
property's data type.

size

A pointer to the size, in bytes, of the region in memory to which the val
parameter is pointing.

Example: Fetching a Value from the Database.

This example, part of an exit function for a general resource, retrieves a value
stored in the database. The exit function checks that the request is for the
correct resource class. Other classes are ignored. The
authxapi_GetObjectProperty function is called to retrieve the value for the
COMMENT property. If the retrieval was successful, the function tests if the
string contains the substring “ NO ” (note the spaces before and after the
word). If so, the request is denied. Otherwise the function returns control to
eTrust AC to perform its standard checks.

#include stdio.h
#include authxapi.h
#include seostype.h

Exits APl 83

authxapi_GetObjectProperty Function

int MyExitFunction(void *exit data, SEOS EXITRES *result)

{
SEOS EXITGENR *genr data;
SEOSDB ODF odf;
SEOSDB_PDF pdf;
SEOS COMMENT comment;
int rc;
genr data = (SEOS EXITGENR *)exit data;
/* Ignore any class that is not of interest */
if (strcmp(genr data->szClass, “MyClass”))
return 0;
/* Fetch the information for the COMMENT property of the */
/* resource to which access is verified. */
rc = authxapi GetObjectProperty(“MyClass”, genr data->szRes,
&odf, “COMMENT”, &pdf, comment, sizeof(comment));
if (rc == 0)
{
/* We have now the comment string. Does it contain “NQ"?*/
if (strstr(comment, “ NO “) != NULL)
{
result->result = SEOS EXITR DENY;
}
}
return 0;
}

Note: To update the COMMENT field from the selang command interpreter,
you should use the comment argument. For example:

newres MyClass anobject \
comment(*This object has “ NO “ in the comment property")

84 SDK Guide

authxapi_GetObjectListValue Function

authxapi_GetObjectListValue Function

Valid on UNIX only.

The authxapi_GetObjectListValue function retrieves a list of values assigned to
a property of an object stored in the database. Properties that have single
values cannot be retrieved with this function. You retrieve single value
properties with authxapi_GetObjectProperty.

If the function succeeds, it returns 0. If it fails, it sets the global variable errno
and returns one of the following error codes:

Return Value ERRNO Meaning

AUTHXAPI_E_EINVAL EINVAL Invalid (NULL) pointers
AUTHXAPI_E_INVOBJ EINVAL Invalid object descriptor
AUTHXAPI_E_INVPROP EINVAL Invalid property descriptor
AUTHXAPI_E_NOCLASS ENOENT Required class not found
AUTHXAPI_E_NOOBJ ENOENT Required object not found
AUTHXAPI_E_NOPROP ENOENT Required property not found
AUTHXAPI_E_PTYPE EINVAL Property type is a list
AUTHXAPI_E_DBERROR EIO Suspect corruption of database
AUTHXAPI_E_NOVAL ENOENT No value for property associated

with this object

Exits APl 85

authxapi_GetObjectlListValue Function

int authxapi GetObjectListValue (const char *sz(Class,
const char *sz0bj,
SEOSDB ODF *p odf,
const char *szProp,
SEOSDB PDF *p pdf,
void ***kyval,
unsigned int *psize,
unsigned int *count);

szClass

The name of the class to which the resource belongs.
szObj

The name of the object whose property value you want to retrieve.
p_odf

A pointer to an object descriptor fetched by this function or provided by
the caller from a previous call to an Exits API get function.

szProp
The name of the property whose values you want to retrieve.

p_pdf

A pointer to a property descriptor fetched by this function or provided by
the caller from a previous call to an Exits API get function.

val

A pointer to a variable that is assigned the memory address of an array of
pointers. The array of pointers point to the data values being retrieved.
The authxapi_GetObjectListValue function allocates the memory used
here.

psize
Size in bytes of the region in memory allocated to each element in the
value list.

count

The number of elements in the value list. May be O if no elements are
found.

Notes:

® If the szObj parameter is NULL, the function assumes p_odf is pointing to
a valid object descriptor obtained from a previous call to one of the get
functions provided by the Exits API. This speeds up processing when you
are dealing with a series of objects that share the same object descriptor,
since you do not spend time repeatedly fetching the same object
descriptor.

86 SDK Guide

authxapi_GetObjectListValue Function

Although it is faster to use an object descriptor than an object name, it is
not safe to store the object descriptors in global variables and to use them
in subsequent calls to this function. This is because updates to the
database may delete these objects.

® If the szProp parameter is NULL, the function assumes p_pdf is pointing to
a valid property descriptor obtained from a previous call to one of the get
functions provided by the Exits API. This speeds up processing when you
are dealing with a series of objects that share the same property
descriptor, since you do not spend time repeatedly fetching the same
property descriptor.

It is safe to store property descriptors in global variables and use them in
subsequent calls to this function, as property definitions are not subject to
change while the seosd daemon is active.

The authxapi_GetObjectListValue function allocates a vector of void pointers,
each pointing to an allocated buffer that holds a single element in the list of
values. You must declare a list variable of any type as a pointer to a pointer,
such as int **. A pointer to this list variable is then passed into
authxapi_GetObjectListValue, typecast as a (void ***). For example:

{
int **list;
unsigned int psize, count;
int rc;

rc = authxapi GetObjectlListValue(szClass,
sz0bj, &odf, szProp, &pdf,
(void ***)&§list, &psize, &count);

When authxapi_GetObjectListValue returns, the list variable points to a newly
allocated area of memory containing the pointers, stored sequentially from O
to count, pointing to each list item. Each list item is stored in yet another
newly allocated memory area. Be sure to use authxapi_FreeListValues to free
all the memory allocated by authxapi_GetObjectListValue.

For example, when you have a list of N data elements, your memory is
allocated as follows:

Argument Description

[elemO] 1st data element

[elem1] 2nd data element
[elemN] N+1 data element

Exits APl 87

authxapi_GetObjectlListValue Function

Example: Retrieve List of Values of a Property Resource

The following Exits API function retrieves a list of values from a list-type
property of a resource from the database, and then loops through the list of
values. The code that actually uses the information retrieved is not shown.

#include stdio.h
#include authxapi.h
#include seostype.h

int MyExitFunction(void *exit data, SEOS EXITRES *result)
{
SEOS EXITGENR *genr data;
SEOSDB ODF odf;
SEOSDB_PDF pdf;
SEOS ACL **access list, *acl element;
int rc;
unsigned int psize, count, counter;
genr data = (SEOS EXITGENR *)exit data;
/* Ignore any class that is not of interest */
if (strcmp(genr data->szClass, “MyResClass”))
return 0;
/* Fetch the information for the ACL property of the */
/* resource being accessed. */
rc = authxapi GetObjectListValue(“MyResClass”, genr data->szRes
&odf, “ACL”, &pdf, (void ***)access list, &psize, &count);
if (rc == 0)

/* We have the ACL now. Lets just see a demonstration */
/* of looping through the list. */
for (counter = 0; counter < count; counter++)

{
acl element = access list[counter];
/*
* > > > User Code Here < < <
*/
}
authxapi FreelListValues((void ***) &access list, &count);
}

return 0;
More information:

authxapi_FreeListValues (see page 89)
authxapi_GetObjectProperty Function (see page 82)

88 SDK Guide

authxapi_FreelistValues

authxapi_FreelistValues

Valid on UNIX only.

The authxapi_FreeListValues function frees the memory allocated when a list
of values was retrieved during a previous call to the
authxapi_GetObjectListValue function.

If the function succeeds, it returns 0. If it fails, it sets the global variable errno
to EINVAL and returns an error code AUTHXAPI_E_EINVAL, indicating that one
of the pointers passed in was NULL.

int authxapi FreelListValues (void ***value, unsigned int *count);
value

A pointer to the list of values held in the memory. Set to NULL when
memory is successfully freed.

count

Number of elements in the value list. May be O if no elements are found.
Set to 0 when memory is successfully freed.

More information:

authxapi_GetObjectListValue Function (see page 85)

authxapi_GetUserInfo Function

Valid for UNIX only.

The authxapi_GetUserInfo function retrieves a user name when given an
eTrust AC user's ACEE handle.

If the function succeeds, it returns 0. If it fails, it sets the global variable errno
and returns one of the following error codes:

Return Value ERRNO Meaning
AUTHXAPI_E_EINVAL EINVAL Invalid (NULL) pointers
AUTHXAPI_E_INVOBJ EINVAL Invalid object descriptor
AUTHXAPI_E_INVPROP EINVAL Invalid property descriptor
AUTHXAPI_E_NOCLASS ENOENT Required class not found
AUTHXAPI_E_NOOBJ ENOENT Required object not found

Exits APl 89

authxapi_GetUserlnfo Function

Return Value ERRNO Meaning
AUTHXAPI_E_NOPROP ENOENT Required property not found
AUTHXAPI_E_PTYPE EINVAL Property type is a list
AUTHXAPI_E_DBERROR EIO Suspect corruption of database
AUTHXAPI_E_NOVAL ENOENT No value for property associated

with this object

int authxapi GetUserInfo (int seos handle,
char *uname,
int *size);

seos__handle
The handle of the user whose user name you are requesting.
uname

Buffer large enough to contain the user name being returned. Some UNIX
systems allow no more than 8 characters per name; others allow more.
eTrust AC treats users as any other object and allows up to 255 bytes per
name.

size

On entry, the size in bytes of the memory area pointed to by uname. On
return, the length of the user name string.

Example: Getting User Name String

This example illustrates how you get the user name string.

{

int rc;

char name[256];

int size;

size = sizeof (name)

rc = authxapi GetUserInfo(seos handle, name, &size);
}

90 SDK Guide

Exits APl Functions for Windows

Exits APl Functions for Windows

The API exit functions provided by eTrust AC are actually classified as
callbacks. They are grouped into two categories:

® User-defined Functions-User-defined functions are called during eTrust AC
execution, each function according to its registered type.

® Registration and Initialization Functions-This function is called once during
seosd service and pwdchange.dll start up. Its purpose is to initialize any
internal data and to register user-defined functions.

Exits APl 91

UserDefinedFunction Function

UserDefinedFunction Function

Valid for Windows only.

The UserDefinedFunction function is registered with a specific event type when
the seosd service and the pwdchange.dll start. It is called according to the
event type.

If the function succeeds, it returns 0. Any other numbers indicate a failure; the
execution continues as usual-as if no callback function was called.

int UserDefinedFunction(void* data, SEOS EXITRES * pExitResult);
data

A structure corresponding to the event type with which this function was
registered. The data is cast into the following structures:

s SEOS_EXITGENR-For the following event types:
AUTHXAPI_EV_PREGNRES, AUTHXAPI_EV_POSTGNRES.

s SEOS_EXITLOGIN-For the following event types:
AUTHXAPI_EV_PRELOGIN, AUTHXAPI_EV_POSTLOGIN.

s SEOS_EXITPASS-For the following event types:
AUTHXAPI_EV_PREVERPWD, AUTHXAPI_EV_POSTVERPWD,
AUTHXAPI_EV_PRESETPWD, AUTHXAPI_EV_POSTSETPWD.

pEXitResult

A pointer for the result structure which the exit function fills with
information.

Example

Defining a user's exit function.

/* Sample function to deny all login attempts of user 'jsmith' */
int MyExitFunc(void *exit data, SEOS EXITRES *res)
{
SEOS EXITLOGIN *login data;
login data = (SEOS EXITLOGIN *)exit data;
If (login data->szUname != NULL)

{
if (strcmp(login data->szUname, “jsmith”))
return 0;
res->result = SEOS EXITR DENY;
}
return 0;

92 SDK Guide

UserDefinedPrefix_RegisterExit Function

UserDefinedPrefix_RegisterExit Function

Valid for Windows only.

The UserDefinedPrefix_RegisterExit function registers exit functions for some
events. The registration in seosd service and pwdchange.dll is handled during
startup.

If the function succeeds, it returns 0. Any other numbers indicate a failure; the
execution continues as usual-as if no callback function was called.

Note: The UserDefinedPrefix is read from the registry (see Configuration
requirements in this chapter) by the seosd service and pwdchange.dll prior to
calling this function.

declspec(dllexport) int _ stdcall UserDefinedPrefix RegisterExit (PFNEXIT
pFunctionsExit[], unsigned long* pEventsType).

where PFNEXIT is defined as a pointer to a function that receives void as an
argument and returns int.

int UserDefinedFunction(void* data, SEOS EXITRES * pExitResult);
pFunctionsExit

An array of user-defined functions that are to be registered in the seosd
service and in pwdchange.dll.

pEventsType

An array of event types corresponding to the function in the same entry in
the pFunctionsExit argument.

Valid event types are:

s AUTHXAPI_EV_PRELOGIN-Pre-login event

s AUTHXAPI_EV_POSTLOGIN-Post-login event

s AUTHXAPI_EV_PREGNRES-Pre-general resource event

s AUTHXAPI_EV_POSTGNRES-Post-general resource event

s AUTHXAPI_EV_PREVERPWD-Pre-password quality check event

s AUTHXAPI_EV_POSTVERPWD-Post-password quality check event
s AUTHXAPI_EV_PRESETPWD-Pre-password change event

s AUTHXAPI_EV_POSTSETPWD-Post-password change event

Example

Registering a user's exit function.

/* Sample of registering a user defined function that will be called prior

Exits APl 93

UserDefinedPrefix_RegisterExit Function

to eTrust AC password verification. (The user has configured in the registry the
prefix PWD */

typedef int(*PFNEXIT) (void);

declspec(dllexport) int stdcall PWD RegisterExit(PFNEXIT
pFunctionExit[],unsigned long* pEventTypes)

{
pFunctionExit[0] = (PFNEXIT)MyExitFunc;
pEventTypes[0] = AUTHXAPI EV PREVERPWD;
return 0;

}

94 SDK Guide

Structure and Data Types

Structure and Data Types

This section describes the data structures used by Exits API functions to pass
information back and forth between the functions and the eTrust AC
daemons/services. Which structure you use depends on the event being
intercepted by your exit function.
The following describes each field of these data structures:
SEOS_EXITLOGIN

Data structure for login events
SEOS_EXITGENR

Data structure for general resource check events
SEOS_EXITINET

Data structure for TCP/IP request events (UNIX only)
SEOS_EXITPASS

Data structure for password quality check and password change events
SEOS_EXITRES

Data structure for results being returned to eTrust AC after any event
SEOSDB_ODF

Data structure for definition of an object in the database (UNIX only)
SEOSDB_PDF

Data structure for definition of a property in the database (UNIX only)
PFSeosExitFunc

Pointer to a function
SEOS_ACCESS

Encapsulates a single member of type SEOS_ACCS
SEOS_ACCS

Holds a list of access flags
SEOS_CID

Contains the class identification descriptor (UNIX only)
SEOS_OID

Contains the object identification descriptor (UNIX only)
SEOS_PID

Contains the property identification descriptor (UNIX only)

Exits APl 95

SEOS_EXITLOGIN

SEOS_EXITLOGIN

The first parameter passed to exit functions linked to attempted login events is
a pointer to the SEOS_EXITLOGIN structure. This structure contains
information about the attempted login. The SEOS_EXITLOGIN structure can be
found in the authxapi.h file.

uid_t luid

User ID of the user trying to log in.
char const *szUname

Name of the user trying to log in.
char const *szTerm

Name of the terminal from which the user is trying to log in. Set to NULL
when eTrust AC starts up.

dev_t device

Device number of the program trying to log in.
ino_t inode

Inode number of the program trying to log in.
char const *szProg

Name of the program trying to log in. Set to NULL when not applicable.

96 SDK Guide

SEOS_EXITGENR

SEOS_EXITGENR

The first parameter passed to exit functions linked to attempted general
resource check events is a pointer to the SEOS_EXITGENR structure. This
structure contains information about the user and resource being verified. The
SEOS_EXITGENR structure can be found in the authxapi.h file.

char const *szClass

Name of the general resource class being accessed. Check only the classes
you explicitly decide to verify, and ignore the others.

char const *szRes
Name of the resource being accessed.
uid_t uid

The UNIX or Windows user ID of the user attempting access. Set to -1
when not applicable.

int seos_handle

ACEE handle associated with the user attempting access. Negative if the
user is not defined in eTrust AC; O or positive otherwise.

char const *szUserName
Name of the user attempting access.
dev_t device

Device number of the program attempting access. Set to 0 when not
applicable.

ino_t inode

Inode number of the program attempting access. Set to O when not
applicable.

char const *szTerm

Name of the terminal from which user is attempting access. If user is not
at a local terminal, this is set to the remote host name.

SEOS_ACCESS access_info

An unsigned long integer representing the type of access requested. For a
list of possible values, see the SEOS_ACCS data type in the chapter
“Authorization and Authentication API.”

char const *szProg

Name of the program attempting access. Set to NULL when not applicable.

Exits APl 97

SEOS_EXITINET

SEOS_EXITINET

Valid for UNIX only. The first parameter passed to exit functions linked to
attempted TCP/IP request events is a pointer to the SEOS_EXITINET structure.
This structure contains information about the connection being requested. The
SEOS_EXITINET structure can be found in the authxapi.h file.

char const *ClientAddr

IP address of the host requesting the connection.
char const *szHostName

Name of the host requesting the connection.
int Port

Number of the port to which connection is requested.
int Protocol

Protocol code used for the connection request. Currently, only TCP is
supported.

SEOS_ACCESS accs_info

The exact level of connection access requested. For a list of possible
values, see the SEOS_ACCS data type in the chapter “Authorization and
Authentication APL.” Currently, only read access is available for TCP/IP
requests.

char const *szProg

Name of the program requesting a connection. Set to NULL when not
applicable.

98 SDK Guide

SEOS_EXITPASS

SEOS_EXITPASS

The first parameter passed to exit functions linked to attempted password
quality check events is a pointer to the SEOS_EXITPASS structure. This
structure contains information about the password being validated. The
SEOS_EXITPASS structure can be found in the authxapi.h file.

char const *szlname

Name of the user starting the program to validate or set the password.
This can be the user or an administrator (such as root, in UNIX).

char const *szUname

Name of the user whose password is being validated.
char const *szPass

New user password in clear text.
char const *szOldPass

Old user password. Defined only when users without the ADMIN attribute
are changing their own current passwords. Set to NULL when undefined,
such as when the administrator (root, in UNIX) is modifying another user's
password.

int se_result

Result of the eTrust AC password verification mechanism. This field is not
defined in pre-verification functions. In post-verification functions, this
field holds the result of the eTrust AC password quality check. When used
with the post set exit function, se_result holds a mask containing one of
the following integer values:

O VERIFYPASS_OK

Password is OK
1 VERIFYPASS_ LEN

Password is too short
2 VERIFYPASS_ NAME

Password contains the user's name
3 VERIFYPASS_MINS

Password contains too few lowercase characters
4 VERIFYPASS_MINC

Password contains too few uppercase characters
5 VERIFYPASS_MINN

Password contains too few numeric characters arguments

Exits APl 99

SEOS_EXITPASS

6 VERIFYPASS_MINO
Password contains too few special characters
7 VERIFYPASS_REP
Password contains too many repetitions of the same character
8 VERIFYPASS_SAME
New password is the same as the old one
9 VERIFYPASS_ASOLD

New password is the same as one of the values stored in the password
history list

10 VERIFYPASS_ALFA

Password contains too few alphabetic characters
11 VERIFYPASS_ALFAN

Password contains too few alphanumeric characters
12 VERIFYPASS_TIME

Not enough time has passed since the last time the password was
changed

13 VERIFYPASS_PREVCONTAIN
The old password is contained in the new one or vice versa
100 VERIFYPASS_BADARGB
The old password is bad
sys_result

Result of eTrust AC password-setting mechanism. Not defined in password
pre-setting function. In post-setting function, this field holds the result of
the eTrust AC attempt to change the password. This parameter is not
currently used.

100 SDK Guide

SEOS_EXITRES

SEOS_EXITRES

Each Exits API function is passed a pointer to the SEOS_EXITRES structure as
its second parameter. Pre-exit functions receive an empty structure that the
functions fill with their results before returning control to the seosd daemon in
UNIX or seosd service in Windows. Post-exit functions receive a structure filled
with the results of the eTrust AC authorization. The functions then refill the
structure with their own results before returning control to the seosd daemon
in UNIX or seosd service in Windows. The SEOS_EXITRES structure can be
found in the authxapi.h file.

int result

Final result of this exit function. Valid values are one of the following
functions:

SEOS_EXITR_PASS
Instructs eTrust AC to permit the request.
SEOS_EXITR_DENY
Instructs eTrust AC to deny the request.
SEOS_EXITR_CHECK
Instructs eTrust AC to make the decision.
int stage

Stage at which the authorization process made the decision to grant or
deny the request. These stages are listed in the Reference Guide (for
Windows or UNIX), and the UNIX Utilities Guide, as well as in the header
file seauthstages.h.

int gstage

Stage at which the authorization process was granted. You may define
your own stages. They must be greater than SEOS_EXITR_MINSTAGE.
gstage is undefined when authorization is not granted.

int ShouldLog

Flag indicating whether eTrust AC should record this event in the log file. A
value of 0 (FALSE) indicates that logging is not required. A value of 1
(TRUE) indicates that logging is required.

int logreason

Flag indicating reason logging is required. You may define your own
reasons. They must be greater than SEOS_EXITR_EXLOGMIN.

char fnamel[]

Name of source file reporting an error to the error log (__FILE__ macro in
ANSI-C). This value is not used if the function returns O.

Exits APl 101

SEOSDB_ODF

int Inum

Line number in source file at which an error being logged in the log file
occurred (__LINE__ macro in ANSI-C). This value is not used if the
function returns 0.

SEOSDB_ODF

Valid for UNIX only. The SEOSDB_ODF structure contains the definition of a
specific object in the database.

SEOS_CID sClId
The class ID of the object's class.
SEOS_OID Iold
The ID of the object.
char *xzOName
The name of the object.
char reserved

Reserved for future use.

102 SDK Guide

SEOSDB_PDF

SEOSDB_PDF

Valid for UNIX only. The SEOSDB_PDF structure contains the definition of a

specific property in the database.

SEOS_CID sCld

The class ID of the class to which the object containing this property

belongs.
SEOS_PID sPId

The ID of the property.
char *szPName

The name of the property.
unsigned long IPFlags

The flags of the property.
unsigned short sPVsize

The size in bytes of the property value.
unsigned char cPType

The type of the property value.
unsigned char cPRLevel

Not used.
unsigned char cPWLevel

Not used.
unsigned char cSegment

Not used.
char reserved

Reserved for future use.

Exits APl 103

PFSeosExitFunc

PFSeosExitFunc

The PFSeosExitFunc data type is a pointer to a function.
void *data_buffer

Contains information about a specific event for which the exit function was
called.

SEOS_EXITRES *p_sexr
Contains the results of the exit function.
int
The value returned by the authxapi function. Values for UNIX include the
following:
1 AUTHXAPI_E_EINVAL
Invalid (NULL) pointers
2 AUTHXAPI_E_NOCLASS
Required class not found
3 AUTHXAPI_E_NOOBJ
Required object not found
4 AUTHXAPI_E_DBERROR
Suspect corruption of database
5 AUTHXAPI_E_INVOBJ
Invalid object descriptor
6 AUTHXAPI_E_INVPROP
Invalid property descriptor
7 AUTHXAPI_E_NOPROP
Required property not found
8 AUTHXAPI_E_PTYPE
Property type is not a list
9 AUTHXAPI_E_NOVAL
No value for property associated with this object
10 AUTHXAPI_E_NOHANDLE
Invalid eTrust AC handle
11 AUTHXAPI_E_NOACEE
No ACEE for this handle

104 SDK Guide

SEOS_CID

SEOS_CID

SEOS_OID

SEOS_PID

12 AUTHXAPI_E_OCCUPIED
Exit function already installed
13 AUTHXAPI_E_NOEVENT

No such event

Valid for UNIX only.

SEOS_CID is an unsigned integer that represents the class ID. Each class in
the database has a unique class ID.

Valid for UNIX only.

The SEOS_OID data type is an unsigned long integer representing the object
ID of a record in the database.

Each object in the database has a unique object ID. If you know the object ID,
you can use seadmapi to retrieve information about the object.

Valid for UNIX only.

SEOS_PID is an unsigned short integer representing a property ID. Each
property in the database has a unique property ID.

Exits APl 105

Chapter 4: LogRoute API

This section contains the following topics:

Programming Guide (see page 108)

LogRoute API Function (see page 118)
driver_Register Function (see page 119)
driver_UnRegister Function (see page 119)
driver_ReqgisterDestination Function (see page 120)
driver_UnregisterDestination Function (see page 121)
lograpi_InterpretRecord Function (see page 122)
lograpi_RegisterTargetType Function (see page 123)
lograpi_UnregisterTargetType Function (see page 124)
lograpi_MakeStringMessage Function (see page 125)
LogrApiSenseFunc Function (see page 125)
LogrApiSendFunc Function (see page 126)
LogrApiFreeFunc Function (see page 127)
servlog_IsThereExit Function (see page 127)
servlog_RegisterExit Function (see page 128)
servlog_UnRegisterExit Function (see page 128)
Structures and Data Types (see page 129)

SEOS _AUDITLOGIN (see page 132)

SEOS _AUDITGENR (see page 134)
SEOS_AUDITWDWARN (see page 136)
SEOS_AUDITINWARN (see page 137)

SEOS _AUDITADMIN (see page 138)

SEOS _AUDITSTART (see page 139)
SEOS_AUDITDOWN (see page 139)

SEOS _AUDITUSER (see page 140)

LOGRECHDR (see page 141)

LOGRECORD (see page 142)

SEOS ROUTENTRY (see page 143)

LOGRAPI_FUNCS (see page 144)

LogRoute APl 107

Programming Guide

Programming Guide

The LogRoute API lets you add your own alerts to the standard audit log
functions. You can also use the log routing daemon to add a
guaranteed-delivery feature to your other programs. This chapter provides
details of the configuration file read by selogrd, the structures and functions
used when writing a new LogRoute API, the compile and link procedures used
under most operating systems, and a sample LogRoute API function.

The LogRoute API lets you insert your own alerts in the audit log file. The
seosd daemon generates audit information and stores it in the audit log file.
The log routing daemon selogrd polls the audit log file and sends selected local
audit log records to the destination targets listed in the eTrust AC
configuration file. Destination targets may be screen or mail messages to an
individual user, a local system file, or files located on remote host systems on
the network.

The LogRoute API lets you customize the log routing daemon selogrd. You can
incorporate your own user-defined options into selogrd to support in-house
requirements not provided by the standard log routing functions. You can add
new target types to the configuration file read by selogrd. Add your new
LogRoute API functions to the eTrust AC system by creating your own shared
library that uses the eTrust AC API. You can also use the log routing daemon
to add a guaranteed-delivery feature to your other programs.

The LogRoute API saves you a tremendous amount of work by letting you take
advantage of all the services that the log routing daemons already provide.
Regardless of the target type, whether built-in or user-defined, the log routing
daemons automatically read the audit files, filter the entries to capture the
records requested by the user, and store or distribute that selected
information appropriately. You can also designate different targets for the
configuration file and use selogrd to provide a guaranteed-delivery service to
those targets for your own programs.

eTrust AC also provides an API for the daemon that collects the data from
multiple stations and maintains the central audit log file.

108 SDK Guide

Programming Guide

Customizing selogrd

You add user-defined features to the log routing daemons by writing
C-language programs that can be compiled and linked into a shared library. A
LogRoute API function has three parts:

® Registration
= Implementation

B Termination

Registration initializes your LogRoute API function and registers it with the
eTrust AC daemons. Implementation adds your tasks to the standard log
routing daemon process. Termination unregisters and shuts your program
down properly when the daemons themselves terminate.

Your LogRoute API function takes advantage of functions and header files
provided by eTrust AC. See LogRoute APl Functions in this chapter for a
description of the predefined functions used in a log routing function. You use
the same registration, implementation, and termination functions for all your
log routing functions.

Once your LogRoute API function is ready, you can add your shared library to
the log routing daemon configuration file. For more information about
compiling and linking procedures, see Compiling and Linking with the
LogRoute Library in this chapter.

The log routing daemons use a configuration file to determine which audit log
records to select and where to send those records. You can edit the
configuration file to route specific audit information to a variety of selected
targets supported by the log routing daemon. For more information about the
syntax of the configuration file, see the selogrd utility in the UNIX Utilities
Guide.

LogRoute API 109

Programming Guide

LogRoute API Functions

Your LogRoute API function uses built-in functions and header files provided by
eTrust AC, which provides the following predefined selogrd functions:

® driver_RegisterDestination

® driver_UnregisterDestination
® |ograpi_lInterpretRecord

® |ograpi_MakeStringMessage

® |ograpi_RegisterTargetType

® |ograpi_UnregisterTargetType

eTrust AC provides the following predefined selogrcd functions:

®m driver_Register

® driver_UnRegister

® servlog_lIsThereExit

® servlog_RegisterExit

® servlog_UnRegisterExit

All LogRoute API functions must also include the following destination
functions for each destination type implemented:

® | ogrApiSenseFunc

® | ogrApiSendFunc

® | ogrApiFreeFunc

These three functions, which are grouped together in the LOGRAPI_FUNCS
structure, are accessed using the pfSend, pfFree, and pfSense pointers. The

API programmer must provide the code used for each of these functions,
because each one is completely task-dependent.

Compiling and Linking with the LogRoute Library

This section provides instructions for compiling and linking your LogRoute API
function with the eTrust AC daemons. These are general instructions that
describe the most common system configurations. Each system has its own
specific requirements. Consult your system guides for the exact details of your
particular system's compiler and linker.

110 SDK Guide

Programming Guide

Compiling an Application

You must include the header files lograpi.h and selogtype.h in your LogRoute
API functions. These files are located in the APl subdirectory. Put the following
two lines near the top of the file:

#include <lograpi.h>
#include <selogtype.h>

You can use any ANSI-C compliant compiler.

LogRoute API 111

Programming Guide

Linking Applications with the LogRoute Library

After you compile your code, generate a shared library that contains the
compiled version of your function. The apisamples directory contains sample
log routing functions and a makefile demonstrating the process. Note that
compilation for shared libraries usually requires additional compiler parameters
to create position-independent code. See the documentation for your compiler
or linker for information on creating shared libraries in your particular system.

After you have written your code and created a shared library, add your
shared library to the “on-demand” shared libraries configuration file relevant
to the daemon your code should link to.

If you have written a shared library for selogrd, add your shared library to the
file eTrustACDir/etc/selogrd.ext. If you have written a shared library for
selogrcd, add your shared library to the file eTrustACDir/etc/selogrcd.ext.

Each file contains two columns: the driver name and the shared library path.
By convention, the driver name is a string that has the same name as your
target type; however, it can be any valid C language symbol.

For example, if you have written code to implement a pager, your target name
should be pager and the complete file entry would be:

pager /usr/local/lib/libseospager.so

This file entry means that the daemon selogrd loads the shared library
/usr/local/lib/libseospager.so at startup and calls your function.

Although some systems support a predefined function called _init, we
recommend that you use the function driver_RegisterDestination. This is the
first function called from the shared library.

The function driver_RegisterDestination registers your new target type. On
daemon shutdown, we recommend that you use the function
driver_UnregisterDestination instead of the predefined _fini.

Note: Using the eTrust AC functions instead of the predefined system
functions gives your code greater portability

The daemon selogrcd uses the same file configuration format as selogrd.
However, selogrcd searches for the driver_Register and driver_UnRegister
functions. If the function driver_UnRegister is not required, it can be omitted.

112 SDK Guide

Programming Guide

Format of the Log File

The format in which eTrust AC writes the auditing log is not publicly available.
However, it is essential that programmers who use this APl understand the
basics of the audit log file format. The information programmers must know is
provided in this section.

The audit log file is composed of a file header followed by records sequentially
written to the file. Each record is composed of a record header followed by
information specific to the record. The header of each record includes
information about the time that the record was placed in the file, the record
type (a code known only by the application), and the size of the record that
follows the header. The data itself is written in a compressed format; the
record size specified in the record header is the size in bytes of the
compressed data. The format of the file is shown schematically in the following
diagram.

Record n bytes of ES;SS Data
File header compressed i
Header type=code data of . .
size=n type code . .

The programmer using this APl does not need to know the compression
algorithm or the exact format of the file. Information passed to a user
application is placed in structures in uncompressed format. Your application
simply retrieves the information from the structure. For more information
about the LogRoute API structures, see Structures and Data Types in this
chapter.

LogRoute API 113

Programming Guide

LogRoute API Example

The API subdirectory under the local eTrust AC directory contains the API
header files and the library functions. The eTrust AC package also includes the
following sample program demonstrating LogRoute APl use-adding the
destination target syslog to eTrust AC to send audit information to UNIX
system logs.

114 SDK Guide

Programming Guide

/%

Project . eTrust

Module : eTrust

Version : 8.0

File : audit2syslog.c

Purpose : Provide sample usage of the selogrd API to place
audit log records in UNIX syslog.

Copyright :

Copyright 2004 Computer Associates International, Inc.

*/
#define = LOGRSAMPLE C

#include <syslog.h>

#include <lograpi.h>

/* Include the .h file required by API */

/* Prototypes for our local functions */

static int sample Sense(SEOS ROUTENTRY *pre);

static void sample Free(SEOS ROUTENTRY *pre);

static int sample Send(LOGRECORD *plr, SEOS ROUTENTRY *pre,

int notify, void *data);

/*
* We don't use the code of the new route type target, but
* if we wanted more than one target type, we could use
* it to distinguish between the two.

*/

static int our dest type code;

/*
* We preserve here the syslog priority required by
* the configuration file.
* This of course means that by storing it in global
* variable we provide only one route line in the
* configuration file for syslog. Other lines will just
* overwrite this variable.

*/

static int syslog priority;

/*

* This like our 'main'. This function is the one called by
* the selogrd.
*/
int lograpi RegisterDestinations(void)
{
static LOGRAPI FUNCS funs =
{sample Send, sample Free, sample Sense};
/¥.00%/
return lograpi RegisterTargetType(“syslog”, &funs,
&our dest type code);
}
static int sample Sense(SEOS ROUTENTRY *pre)

LogRoute API 115

Programming Guide

/* Actually we have nothing to do, since syslog
* should be there.
* Anyway, just to demonstrate what to do we will look
* at the destination name in this type of function,
* we will check that the destination is one of the
* known syslog priorities.
*/
typedef struct tagAllowedDestNames

{
char const *name;
int code;
} ALLOWED DEST NAMES;
static ALLOWED DEST NAMES allowed names[] =
{
{“LOG_EMERG”, LOG_EMERG},
{“LOG_ALERT”, LOG_ALERT},
{“LOG_CRIT”, LOG CRIT},
{“LOG_ERR”, LOG_ERR},
{“LOG_WARNING"”, LOG WARNING},
{“LOG_NOTICE”, LOG NOTICE},
{“LOG_INFO”, LOG INFO},
{“LOG_DEBUG”, LOG DEBUG},
{NULL, 0O}
I
register int i;
for (1 = 0; allowed names[i].name != NULL; i++) {
if (strcmp(allowed names[i].name, pre->out) == 0) {
/* Preserve the method we should use in syslog */
syslog priority = allowed names[i].code;
return 0;

}
return 1;
}
/* */
static void sample Free(SEOS ROUTENTRY * pre)
{

/¥.000%/ /* Now really nothing to be done */

/* */
static int sample Send(LOGRECORD * plr, SEOS ROUTENTRY * pre,
int notify, void *data)

char *as_string;

if (notify) /* Ignore any NOTIFY messages */

116 SDK Guide

Programming Guide

return 0;
as_string = lograpi MakeStringMessage(plr, data);
if (as_string != NULL)

syslog(syslog priority, as string);
return 0;

Notification Audit Log Records

eTrust AC lets you store notification information in the database as a string
associated with a user or resource record. The administrator can specify mail
addresses to be notified each time an attempt is made to access the resource.
A notification request is stored as a special audit log record in the audit log
file. selogrd routes the notification request to the mail or the screen address of
the destination specified in the audit log record.

Notification records for a given event are identical to the standard audit log
records associated with that event, except that notification records also have
their targets stored at the beginning of the audit log record. The log codes for
the notification records are simply the log codes of regular audit log records,
offset by 2048. For example, a normal login audit log record has a log type
code of 1. The notification log type code would be 2049. Note that an audit log
record can appear in the audit log file followed by the notification record of the
same event.

The format of the structure name a notification record is SEOSNF_AUDIT*. The
exact names correspond to the matching audit log record name:

Notification Record Audit Log Record
SEOSNF_AUDITADMIN SEOS_AUDITADMIN
SEOSNF_AUDITGENR SEOS_AUDITGENR
SEOSNF_AUDITINWARN SEOS_AUDITINWARN
SEOSNF_AUDITLOGIN SEOS_AUDITLOGIN
SEOSNF_AUDITWDWARN SEOS_AUDITWDWARN

In each structure, the first field is SEOS_NOTIFYSTR, a buffer of up to 30
bytes to hold the destination string pulled from the database. The second field
is the audit log record corresponding to this notification record.

LogRoute API 117

LogRoute API Function

LogRoute API Function

eTrust AC provides the following functions:
driver_Register

Must be in your shared library and is called when selogrcd starts.
driver_UnRegister

Must be in your shared library and is called when selogrcd shuts down.
driver_RegisterDestination

Must be in your shared library and is called when selogrd starts.
driver_UnregisterDestination

Must be in your shared library and is called when selogrd shuts down.
lograpi_Interpret_Record

Converts an audit log record to the vector of text string pairs.
lograpi__MakeStringMessage

Converts an audit log record structure to the one-line text format used by
seaudit and seauditx.

lograpi_RegisterTargetType

Informs eTrust AC of the exact implementation details of the new target
types being registered.

lograpi_UnregisterTargetType

Removes a destination type that was previously registered with the log
routing daemon.

servlog_ IsThereExit
Tests whether an exit function exists.
servlog_RegisterExit
Registers an exit function.
servlog_UnRegisterExit
Unregisters an exit function.
Your LogRoute API functions that implement a new destination type must
supply code for the following tasks:
LogrApiFreeFunc

Frees any memory allocated by the user code for storage, sockets, and so
on, and closes all network connections.

LogrApiSendFunc

Sends the selected audit log record to the user-specified target.

118 SDK Guide

driver_Register Function

LogrApiSenseFunc

Tests the target addresses in each configuration file line for correctness.

driver_Register Function

The driver_Register function is a predefined function called by the selogrcd
daemon when it starts. You insert your own code into driver_Register to
register all your new customized destination types. The function should
register the exit functions needed for each audit record type.

Replace driver with the destination type as it appears in both the route
configuration file and extension configuration file of selogrcd.

int driver Register (void);

If the function succeeds, it should return 0. If it fails, it returns a nonzero
integer error code. This return code can be seen in syslog. If selogrcd is using
debug mode, the return code can also be seen on the screen.

More information:

driver_UnRegister Function (see page 119)
lograpi_ReqgisterTargetType Function (see page 123)

driver_UnRegister Function

The driver_UnRegister function is a predefined function called by the selogrcd
daemon when it shuts down. You insert your own code into driver_UnRegister
to unregister all the destination types you registered.

Replace driver with the destination type as it appears in both the route
configuration file and extension configuration file of selogrcd.

int driver UnRegister (void);

If the function succeeds, it should return O. If it fails, it returns a nonzero
integer error code. This return code can be seen in syslog. If selogrcd is using
debug mode, the return code can also be seen on the screen.

More information:

driver_Register Function (see page 119)

LogRoute API 119

driver_RegisterDestination Function

driver_RegisterDestination Function

The driver_RegisterDestination function is a predefined function called by the
selogrd daemon when the daemon starts. You insert your own code into
driver_RegisterDestination to register all your new customized destination
types.

Replace driver with the destination type as it appears in both the route
configuration file and extension configuration file of selogrd.

The function is called when the shared library is loaded. The function should
initialize the library and register the new target type by calling the function
lograpi_RegisterTargetType.

int driver RegisterDestination (void);

If the function succeeds, it should return 0. If it fails, it returns a nonzero
integer error code. This return code can be seen in syslog. If selogrd is using
debug mode, the return code can also be seen on the screen.

More information:

driver_UnregisterDestination Function (see page 121)

lograpi_ReqgisterTargetType Function (see page 123)

120 SDK Guide

driver_UnregisterDestination Function

driver_UnregisterDestination Function

The driver_UnregisterDestination function is a predefined function called by
the selogrd daemon at system termination. You insert your own code into
driver_UnregisterDestination to unregister all the destination types you
registered.

Important! Once you unregister a destination type, it cannot be registered
again during the current session. However, all subsequent records are marked
as if the send to that destination was successful. Therefore, do not unregister
a target type unless you definitely will not be working with that target type
again during the current session.

Replace driver with the destination type as it appears in both the route
configuration file and extension configuration file of selogrd.

The function is called when the shared library is loaded. The function should
initialize the library and register the new target type by calling the function
lograpi_RegisterTargetType.

int driver_UnregisterDestination (void);

If the function succeeds, it should return 0. If it fails, it returns a nonzero
integer error code. This return code can be seen in syslog. If selogrd is using
debug mode, the return code can also be seen on the screen.

More information:

driver_RegisterDestination Function (see page 120)

LogRoute API 121

lograpi_InterpretRecord Function

lograpi_InterpretRecord Function

The lograpi_InterpretRecord function converts an audit log record to a vector
of text string pairs. Each pair consists of the label of the field in the record and
the text for that field. The vector itself ends when both members-label and
value-are NULL pointers. The value can be a NULL pointer when a specific field
has no value in the audit record.

If the function succeeds, it returns a pointer to the vector of structures. Each
element in the vector is a structure that contains two members: a label and a
value. The pointers Label and Value point to a static memory region that is
overwritten by any call to the function. The vector itself ends when both
members are NULL pointers.

The seauditx utility displays audit records in a format similar to this when the
user requests more detail about displayed records.

SEOS AUDLOGINTERP * lograpi InterpretRecord P(LOGRECORD *plr, void *unc_buff);

plr

A pointer to the audit log record structure passed to the LogrApiSendFunc
function.

unc_buff

A pointer to the uncompressed audit log record information passed to the
LogApiSendFunc function.

More information:

lograpi_MakeStringMessage Function (see page 125)

122 SDK Guide

lograpi_RegisterTargetType Function

lograpi_RegisterTargetType Function

The lograpi_RegisterTargetType function registers a new target or destination
type with the log routing daemon. lograpi_RegisterTargetType provides the
LOGRAPI_FUNCS structure with pointers to the three user functions used to
sense a valid configuration file entry, send the record, and free the allocated
memory space. lograpi_RegisterTargetType is normally called by the
driver_RegisterDestination function, to register your functions with the log
router.

If the function succeeds, it returns 0. If it fails, it returns an unsigned integer
error code and assigns a value to the global variable errno according to the
following table of values:

Return Value ERRNO Meaning

LOGRAPI_E DESTFULL ENOMEM Destination table is full;
maximum table size is 10
elements.

LOGRAPI_E_NULLPARAM EINVAL One of the parameters is NULL.

LOGRAPI_E_NOSENDFUNC EINVAL No send function specified.

int lograpi RegisterTargetType (const char *name, LOGRAPI FUNCS *funcs, int
*code) ;

name
The name of the newly added destination type.
funcs

A pointer to a LOGRAPI_FUNCS structure containing the three destination
type functions, LogrApiSendFunc, LogrApiFreeFunc, and
LogrApiSenseFunc.

code
The code assigned to this target destination. The code is the value stored
in the destination data member of the SEOS_ROUTENTRY structure.

More information:

driver_RegisterDestination Function (see page 120)
lograpi_UnreqisterTargetType Function (see page 124)

LogRoute API 123

lograpi_UnregisterTargetType Function

lograpi_UnregisterTargetType Function

The lograpi_UnregisterTargetType function unregisters a target or destination
type previously registered with the log routing daemon.

If the function succeeds, it returns 0. If it fails, it returns an unsigned integer
error code and assigns a value to the global variable errno according to the
following table of values:

Return Value ERRNO Meaning
LOGRAPI_E NULLPARM EINVAL The code parameter is NULL.
LOGRAPI_E_NODEST ENOENT No such destination type.

IMPORTANT! Once a destination type is unregistered, it cannot be registered
again during the current session. However, all subsequent records are marked
as if the send to that destination was successful. Do not unregister a target
type unless you definitely will not be working with that target type any more.

int lograpi UnregisterTargetType (const char *name);

name

The name of the target or destination type to be unregistered.
More information:

driver_UnregisterDestination Function (see page 121)

lograpi_ReqgisterTargetType Function (see page 123)

124 SDK Guide

lograpi_MakeStringMessage Function

lograpi_MakeStringMessage Function

The lograpi_MakeStringMessage function converts an audit log record to a
one-line text string in the standard format used by the seaudit and seauditx
utilities.

If the function succeeds, it returns a char pointer to the audit log data string.
This string is held in an area of static memory that is overwritten when a
subsequent call is made to the function.

If the function fails, it returns NULL. Check the return value of errno for more
information. Passing a NULL pointer as an input parameter generates an error.
Possible errors are:

Return Value Meaning

EINVA Data on pointer parameters are NULL.

char * lograpi MakeStringMessage (LOGRECORD *plr, void *data);

plr

A pointer to the audit log record structure passed to the LogrApiSendFunc
function.

data

A pointer to the uncompressed audit log record information passed to the
LogrApiSendFunc function.

More information:

lograpi_InterpretRecord Function (see page 122)

LogrApiSenseFunc Function

LogrApiSenseFunc is a function pointer type that specifies a user-defined sense
function to be called while the selogrd daemon is initializing and restarting.
The sense function determines (senses) if the configuration file route entry is
valid. The sense function tests the target field entries in each configuration file
line for validity. For example, if the destination name is user jsmith, then
LogrApiSenseFunc should check that there is, in fact, a user by that name.

If the function succeeds, it should return O. If it fails, it returns an error code.
typedef int (*LogrApiSenseFunc) (SEOS ROUTENTRY *pre);
pre

Configuration file entry to check for validity.

LogRoute API 125

LogrApiSendFunc Function

LogrApiSendFunc Function

LogrApiSendFunc is a function pointer type that specifies a user-defined send
function. When an audit log record is found that matches the user's selection
criteria, the send function transmits (sends) the selected audit log record to
the user-specified destination.

If the send action succeeds, the function should return 0. An audit log record
successfully sent is never submitted again to LogrApiSendFunc.

If the send action fails, eTrust AC enters an error notice into the syslog file and
returns a nonzero integer as an error flag. The same audit log record may be
resubmitted an unlimited number of times.

typedef int (*LogrApiSendFunc) (LOGRECORD *plr, SEOS ROUTENTRY *pre, \
int notify, void *data);

plr
The audit log description file.
pre
Information about the audit target destination for the audit log record.
notify
Flag indicating if this audit log record is a notification record as follows:
1 (TRUE)
Audit log record is a notification record.
0 (FALSE)
Audit log record is not a notification record.
data

A pointer to the audit log record.
More information:

LogrApiFreeFunc Function (see page 127)

126 SDK Guide

LogrApiFreeFunc Function

LogrApiFreeFunc Function

LogrApiFreeFunc is a function pointer type that specifies a user-defined free
function. When selogrd shuts down or restarts, it calls the free function to free
the memory allocated to a previously registered function. The SendData
member of the SEOS_ROUTENTRY structure is used as a placeholder for the
allocated memory for a target, such as a FILE * or a CLIENT *. The pointer
may be NULL, if the registered function uses no allocated resources.

The selogrd daemon shuts down and restarts every time seosd switches log
files. This happens often; for example, whenever the log files exceed a
specified maximum size. Be sure that your free function reliably frees all
allocated memory or you may create problems on your system.

There is no return value.

If you do not need a free operation, set this function pointer to NULL.

typedef void (*LogrApiFreeFunc) (SEOS ROUTENTRY *pre);
pre

The target entry to free or close.

servlog_IsThereExit Function

The serviog_IsThereExit function tests if an exit function is registered for the
given type of audit record. Each audit record is defined as a particular record
type, such as login, audit, or general resource. The values for rectype are
defined in the header file selogtype.h, which is supplied with the eTrust AC
API. The format of the rectype is AUDIT_rectype.

The function returns 1 if an exit function for the specified record type exists;
otherwise, it returns O.

int servlog IsThere Exit (int rectype);
rectype

Is an exit function registered for the record type represented by this
particular code?

LogRoute API 127

serviog_RegisterExit Function

servlog_RegisterExit Function

The servliog_RegisterExit function registers an exit function to be called by the
selogrcd daemon when a particular type of audit record is received. Each audit
record in eTrust AC is identified as a particular record type, such as login,
audit, or general resource. The values for rectype are defined in the header file
selogtype.h, which is supplied with the eTrust AC API. The format of the
rectype is AUDIT_rectype.

It is possible to register more than one exit function for each type of record;
eTrust AC allows a maximum of 16 exit functions for each type of record.
When a function is registered, it is assigned a sequence number in the list of
exit functions for its particular type.

This function should be called during exit initialization to register the exit
functions. This function is normally called from the driver_Register function.

The function returns a 0 on success and an error code on failure.

int servlog RegisterExit (int rectype, collectexitf func, int *chain);
rectype

The code of the record type for which the exit function must be called.
func

A pointer to the user function that should gain control when an audit
record of rectype is received.

chain

The number in the chain of exit functions of the specified record type.

servlog_UnRegisterExit Function

The servlog_UnRegisterExit function unregisters an exit function previously
registered by a call to servlog_RegisterExit. After unregistering an exit
function, it can no longer be called.

The function returns a 0 on success and an error code on failure.

int servlog UnRegisterExit (int rectype, int *chain);
rectype

The code of the audit record type.
chain

The number (from the chain of exit functions for the specified record type)
of the exit function to be unregistered. The number was assigned to the
function when it was registered.

128 SDK Guide

Structures and Data Types

Structures and Data Types

This section describes the data structures used by LogRoute API functions to
pass information back and forth between the functions and the eTrust AC

daemons (in UNIX) and services (in Windows). Every field of each data
structure is described.

The LogRoute API functions access two types of data structures: audit log
record structures and information-passing structures.

LogRoute APl 129

Structures and Data Types

Audit Log Record Structures

There are eight types of audit log records, each with its own structure format.
The structures can be found in the source file selogtype.h. The following audit
log record structures are included in the LogRoute API:

SEOS_AUDITADMIN
Used for database update events
SEOS_AUDITDOWN
Used for daemon shutdown events
SEOS_AUDITGENR
Used for general resource check events
SEOS_AUDITINWARN
Used for TCP/IP request events
SEOS_AUDITLOGIN
Used for login events
SEOS_AUDITSTART
Used for daemon startup events
SEOS_AUDITUSER
Used for user trace events
SEOS_AUDITWDWARN
Used for Watchdog events
The LogRoute API includes data structures used to pass audit log records,
configuration file information, and LogRoute API function pointers between the
eTrust AC daemons and your LogRoute API functions. Details of the four data
structures used to pass information between functions are given in the second

half of this section. The structures themselves can be found in the source file
lograpi.h. The four information-passing structures are as follows:

LOGRECHDR

Stores the audit log record header
LOGRECORD

Stores the audit log record data
SEOS_ROUTENTRY

Stores the configuration file entry
LOGRAPI_FUNCS

Contains LogRoute APl implementation functions

130 SDK Guide

Structures and Data Types

Notification Audit Log Records

eTrust AC lets you store notification information in the database as a string
associated with a user or resource record. The administrator can specify mail
addresses to be notified each time that an attempt is made to access the
resource. A notification request is stored as a special audit log record in the
audit log file. selogrd routes the notification request to the mail or the screen
address of the destination specified in the audit log record.

Notification records for a given event are identical to the standard audit log
records associated with that event, except that notification records also have
their targets stored at the beginning of the audit log record. The log codes for
the notification records are simply the log codes of regular audit log records,
offset by 2048. For example, a normal login audit log record has a log type
code of 1. The notification log type code would be 2049. Note that an audit log
record can appear in the audit log file followed by the notification record of the
same event.

Notification record structure names begin with SEOSNF_AUDIT. The exact
names correspond to the matching audit log record name:
SEOSNF_AUDITADMIN
SEOS_AUDITADMIN
SEOSNF_AUDITDOWN
SEOS_AUDITDOWN
SEOSNF_AUDITGENR
SEOS_AUDITGENR
SEOSNF_AUDITINWARN
SEOS_AUDITINWARN
SEOSNF_AUDITLOGIN
SEOS_AUDITLOGIN
SEOSNF_AUDITSTART
SEOS_AUDITSTART
SEOSNF_AUDITUSER
SEOS_AUDITUSER
SEOSNF_AUDITWDWARN
SEOS_AUDITWDWARN
In each structure, the first field is SEOS_NOTIFYSTR, a buffer of up to 30

bytes to hold the destination string pulled from the database. The second field
is the audit log record corresponding to this notification record.

LogRoute API 131

SEOS_AUDITLOGIN

SEOS_AUDITLOGIN

The SEOS_AUDITLOGIN record may be submitted to the audit log file when:

® A user logs in, attempts to log in, or logs out

®m serevu disables or enables a user

® A user fails to log in after a certain number of attempts

®m seosd detects an attack on the network

If the access and use of a resource are being monitored, audit records are also

submitted to the audit log. Logout audit records are submitted to the log file
only if a login record was also submitted.

char szUserName[]
Name of user logging in (ASCII-Z string).
char szTerminal[]

Name of terminal or network host from which user is logging in (ASCII-Z
string).

int LogCode

Reason this audit log record was added to the file. There are several
possible reasons for eTrust AC to record a login attempt. See Login Event
Codes in this chapter for more information.

int stage

Stage in the authorization algorithm when the decision was made to grant
or deny access. The LogRoute API includes a listing of these stage codes in
the header file seauthstages.h.

uid_t uid
User's UNIX or Windows user ID.
char szProg[]

Name of the program attempting to perform the login.

132 SDK Guide

SEOS_AUDITLOGIN

Login Event Codes

The SEOS_AUDITLOGIN record is used to audit login attempts, logouts,
auditing and serevu login attempts, and NAP detection by seosd. Login audit
records are submitted to the log for the following reasons:

SEOS_AUTH_PASS

The user was allowed to log in.
SEOS_AUTH_DENY

The user was denied login access.
SEOS_AUTH_CHECK

An error in the database was found.
Logout audit records are submitted to the log file only if a login record was
also submitted. That is, the user's audit mode includes the auditing of
successful logins, or the terminal from which the user logged in has an audit
mode that includes the auditing of successful accesses. Logout records are
assigned the stage code SEOS_LOGOUT_RES.
When serevu detects attempts to log in, the following reason codes apply:
SEOS_LOGATP_RES

Detected attempt to break password.
SEOS_LOGDIS_RES

The specified user account was disabled by serevu because of too many
login attempts.

SEOS_LOGENA_RES
The specified user account was reactivated by serevu after being disabled

for the configured time period.

In all cases, the stage code assigned to login records written by serevu is
SEOS_LOG_SEREVU.

LogRoute API 133

SEOS_AUDITGENR

SEOS_AUDITGENR

The SEOS_AUDITGENR record can be submitted to the audit log file when a
user accesses, or attempts to access, a general resource.

char szUserName[]
Name of user attempting to gain access (ASCII-Z string).
char szResClass|[]
Class of resource being accessed (ASCII-Z string).
char szResource[]
Name of resource being accessed (ASCII-Z string).
int logReason

Reason this audit log record was added to the file. Either the user or the
resource involved has been flagged for auditing. Possible reasons are listed
in the table in Return Codes in this chapter. In UNIX, the LogRoute API
also includes a listing of these reasons in the header file seauthstages.h.

In Windows, you can find this information in the following directory of your
system drive:

eTrustACDir\include
int stage

Stage in the authorization algorithm when the decision was made to grant
or deny access. The LogRoute API includes a listing of these stage codes in
the header file seauthstages.h.

SEOS_ACCS access

User's level of access to the resource. For a list of available access types,
see the file seostype.h or the SEOS_ACCS data type in the chapter
“Authorization and Authentication API.”

uid_t uid
User's UNIX or Windows user ID.
char szProg[]

Name of the program that attempted to gain access to the resource
(ASCII-Z string).

char szTerm[1]

Name of terminal or network host from which user logged in (ASCII-Z

string).
Integer
Reason Code Value Meaning
WDWARN_ERROR 0 An error occurred

134 SDK Guide

SEOS_AUDITGENR

Reason Code

Integer
Value

Meaning

WDWARN_STATCHANGED 1 Stat was changed

WDWARN_AIXEXIT 2 HP-UX/AIX extended information
changed

WDWARN_AIXACL 3 HP-UX/AIX ACL changed

WDWARN_CRC 4 CRC check failed

WDWARN_STAT 5 Cannot obtain information about
the trusted file

WDWARN_MD5 6 MD5 signatures do not match

LogRoute API 135

SEOS_AUDITWDWARN

SEOS_AUDITWDWARN

The SEOS_AUDITWDWARN record can be submitted to the audit log file when
the Watchdog (seoswd) finds an integrity problem in a trusted program or a
secured file.

char szClass|[]

Class name of resource being audited (ASCII-Z string). This can be
PROGRAM or SECFILE.

char szPath[]

Full path name of the program or secure file being audited (ASCII-Z
string).

int errno
System errno value that may have triggered this audit.
int logReason

Reason this audit log record was added to the file. Possible reasons are
listed in the table in Return Codes in this chapter. In UNIX, the LogRoute
API also includes a listing of these reasons in the header file
seauthstages.h. In Windows, you can find this information in the following
directory of your system drive:

eTrustACDir\include
int stage

Stage in the authorization algorithm when the decision was made to grant
or deny access. The LogRoute API includes a listing of these stage codes in
the header file seauthstages.h.

Integer
Reason Code Value Meaning
WDWARN_ERROR 0 An error occurred
WDWARN_STATCHANGED 1 Stat was changed
WDWARN_AIXEXIT 2 HPUX/AIX extended information

changed

WDWARN_AIXACL 3 HPUX/AIX ACL changed
WDWARN_CRC 4 CRC check failed
WDWARN_STAT 5 Cannot obtain information about

the trusted file

WDWARN_MD5 6 MD5 signatures do not match

136 SDK Guide

SEOS_AUDITINWARN

SEOS_AUDITINWARN

The SEOS_AUDITINWARN record can be submitted to the audit log file when a
remote host attempts access to the local host and that remote host has been
flagged for auditing.

char address[20]

Internet address of the remote host attempting access. This is currently
the 4-byte address of TCP.

char af_type

AF number. Currently, only AF_INET (2).
long port

Port number to which access was attempted.
long proto

Protocol code. Currently O.
char szProg[]

Name of the program in the local host that was trying to accept the access
request.

int logReason

Reason this audit log record was added to the file. Possible reasons are
listed in the table in Return Codes in this chapter. In UNIX, the LogRoute
API also includes a listing of these reasons in the header file
seauthstages.h. In Windows, you can find this information in the following
directory of your system drive:

eTrustACDir\include
int stage

Stage in the authorization algorithm when the decision was made to grant
or deny access. The LogRoute API includes a listing of these stage codes in
the header file seauthstages.h.

Integer
Reason Code Value Meaning
WDWARN_ERROR 0 An error occurred
WDWARN_STATCHANGED 1 Stat was changed
WDWARN_AIXEXIT 2 HPUX/AIX extended information

changed

WDWARN_AIXACL 3 HPUX/AIX ACL changed
WDWARN_CRC 4 CRC check failed

LogRoute API 137

SEOS_AUDITADMIN

Integer
Reason Code Value Meaning

WDWARN_STAT 5 Cannot obtain information about
the trusted file

WDWARN_MD5 6 MD5 signatures do not match

SEOS_AUDITADMIN

The SEOS_AUDITADMIN record can be submitted to the audit log file when a
selang command updates the database.

char szClass [AUDITADMIN_MAXCLASSLEN]
Class on which the operation was performed.
char objname [ONAME_SIZE+1]
Object on which the operation was performed.
char user [ONAME_SIZE+1]
Administrator who issued the command.
int reason

Reason this audit log record was added to the file. Possible reasons are
listed in the table in Return Codes in this chapter. The LogRoute API also
includes a listing of these reasons in the header file seauthstages.h.

int stage

The stage in the authorization algorithm when the decision was made to
grant or deny the request. The LogRoute API includes a listing of the
eTrust AC stage codes in the header file seauthstages.h.

char terminal [AUDITADMIN_MAXTERMLEN]
The terminal from which the operation was performed.
char command [AUDITADMIN_MAXCMDLEN]

The selang command used.

Integer
Reason Code Value Meaning
wpw O An error occurred
ARN_
ERRO
R
WDWARN_STATCHANGED 1 Stat was changed

138 SDK Guide

SEOS_AUDITSTART

Reason Code

Integer
Value

Meaning

WDWARN_AIXEXIT 2 HPUX/AIX extended information
changed

WDWARN_AIXACL 3 HPUX/AIX ACL changed

WDWARN_CRC 4 CRC check failed

WDWARN_STAT 5 Cannot obtain information about
the trusted file

WDWARN_MD5 6 MD5 signatures do not match

SEOS_AUDITSTART

The SEOS_AUDITSTART record is submitted to the audit log file when an
eTrust AC daemon (in UNIX) or service (in Windows) starts.

char servname

The name of the daemon or service that was started.

SEOS_AUDITDOWN

The SEOS_AUDITDOWN record is submitted to the audit log file when an
eTrust AC daemon (in UNIX) or service (in Windows) is shut down.

char szUser

The name of the user who brought the daemon or service down.

char servname

The name of the daemon or service that was shut down.

int stage

The stage in the authorization algorithm when the decision was made to
grant or deny the request. The LogRoute API includes a listing of the
eTrust AC stage codes in the header file seauthstages.h.

LogRoute API 139

SEOS_AUDITUSER

SEOS_AUDITUSER

The SEOS_AUDITUSER record is submitted to the audit log file when a trace
record is written for a user whose trace actions are being audited.

char szResClass
The name of the resource class that was accessed.
char szResource
The name of the specific resource object-record-that was accessed.
int code
The trace message code.
int stage

The stage in the authorization algorithm when the decision was made to
grant or deny the request. The LogRoute API includes a listing of the
eTrust AC stage codes in the header file seauthstages.h.

uid_t uid
User's UNIX or Windows user ID.
uid_t euid
User's effective UID.
uid_t ruid
The ID the user used to log in-the real user ID.
char parm_buff

The parameters in the trace message.

140 SDK Guide

LOGRECHDR

LOGRECHDR

There are many different types of audit log records, each with its own
structure format. eTrust AC has to know what type of record structure to
expect for the next record; therefore, each record stored in the audit log file
has a header structure common to all audit log records.

LOGRECHDR is the header structure common to all audit log records.
unsigned long nBytes

The size, in bytes, of the record in the compressed log file, not including
the header.

time_t tLog
The time the record was placed in the file.
unsigned long positor

A code for the module that wrote the record. Normally, it has a value of
zero.

unsigned long rectype

The record type. Valid record type codes are:

= AUDIT_LOGIN

= AUDIT_GENR

= AUDIT_WDWARN

= AUDIT_INWARN

= AUDIT_ADMIN

= AUDIT_DOWN

= AUDIT_START

= AUDIT_USER

= AUDIT_CWS

These codes are described in the selogtype.h file.
unsigned long rv

Return code that caused the record to be written to log. Possible reasons
are listed in the table in Return Codes in this chapter.

Code Value Audit Description
Record
Types
SEOS _AUTH_CHECK C All An error occurred in eTrust AC.

LogRoute API 141

LOGRECORD

Code Value Audit Description
Record
Types
SEOS_AUTH_DENY D Login eTrust AC denied access to a resource, did not permit a
General login, or did not permit an update to the database
Resource because the accessor did not have sufficient
Admin authorization.
Inet
SEOS_AUTH_PASS P Login eTrust AC permitted access to a resource or permitted a
General login.
Resource
Inet
SEOS_DOWN_RES M Down The eTrust AC daemons started up or shut down.
Start
SEOS_LANG_DENY D Admin An attempt to update the database was denied.
SEOS_LANG_FAIL F Admin An attempt to update the database failed.
SEOS_LANG_SUCC S Admin The database was successfully updated.
SEOS _LOGATP_RES A Login An attempt to log in failed because an invalid password
was entered more than once.
SEOS LOGDIS_RES | Login The serevu daemon disabled a user.
SEOS LOGENA_RES E Login The serevu daemon enabled a disabled user.
SEOS LOGOUT_RES O Login A user logged out.
SEOS_USER_RES T User An audit record written because all actions of the user
are being traced.
SEOS_WATCHDOG_ W Watchdog The seoswd or seosd daemon set a program in the
RES PROGRAM class or a file in the SECFILE class as

untrusted.

LOGRECORD

The LOGRECORD structure contains the complete audit log record. The generic
void *data points to any of the data structures used to hold the record data.

LOGRECHDR Irh
Log record header.
void *data

The compressed data record. Note that the user function receives this data
after it is uncompressed.

142 SDK Guide

SEOS_ROUTENTRY

SEOS_ROUTENTRY

The SEOS_ROUTENTRY structure contains the filtering and target information
from each rule in the configuration file. This information is parsed by selogrd.
Note that in this structure, all elements in lowercase are read-only, while
elements in mixed case are read-write.

char szClass

The class name.
char obj

The object or resource name.
char accr

The accessor user name.
char code

The access result code:

(Pass) Success

(Deny) Failure

(Untrust) Untrusted action was attempted on a trusted program checked
by the Watchdog.

Additional values are documented in the file selogtype.h.

int dest

The destination type code. The codes are dynamically allocated as the
destination types are registered.

char out
The target routing path.
void *SendData

A placeholder for information to be stored by the routing functions, such
as open file handles.

int in_error

Boolean flag set if this route entry has previously failed to transmit
information. selogrd calls the destination send function repeatedly to
resend the audit records that failed to be transmitted.

LogRoute API 143

LOGRAPI_FUNCS

LOGRAPI_FUNCS

The LOGRAPI_FUNCS structure contains pointers to the user-defined functions
for each of the tasks to be performed by a destination type. This structure is
used only during target type registration.

LogrApiSendFunc pfSend

A pointer to the user's send function.
LogrApiFreeFunc pfFree

A pointer to the user's free function.
LogrApiSenseFunc pfSense

A pointer to the user's sense function.

144 SDK Guide

Chapter 5: Language Client API

This section contains the following topics:

Programming Guide (see page 146)

Language Client API Functions (see page 155)
Ica_Init Function (see page 159)
Ica_Terminate Function (see page 159)
Ica_ParseLine Function (see page 160)
Ica_ParseMBLine Function (see page 161)
Ica_CheckPasswordQuality Function (see page 161)
Ica_ErrsGetNum Function (see page 162)
Ica_ErrGetByldx Function (see page 162)
Ica_ErrGetFirst Function (see page 163)
Ica_ErrGetNext Function (see page 163)
Ica_ErrSeverity Function (see page 164)
Ica_ErrStage Function (see page 165)
Ica_Err2Str Function (see page 166)
Ica_QEntsGetNum Function (see page 166)
Ica_QEntGetByldx Function (see page 167)
Ica_QEntGetFirst Function (see page 167)
Ica_QEntGetNext Function (see page 168)
Ica_QEntGetByName Function (see page 168)
Ica_QEntObjName Function (see page 169)
Ica_QEntClassName Function (see page 169)
Ica_QPropsGetNum Function (see page 170)
Ica_QPropGetByldx Function (see page 171)
Ica_QPropGetFirst Function (see page 171)
Ica_QPropGetNext Function (see page 172)
Ica_QPropGetByName Function (see page 172)
Ica_QPropName Function (see page 173)
Ica_QPropSize Function (see page 173)
Ica_QPropType Function (see page 174)
Ica_QPropValsNum Function (see page 174)
Ica_QPropVallList Function (see page 175)
Ica_QPropValGetByldx Function (see page 175)
Ica_QPropValGetFirst Function (see page 176)
Ica_QPropValGetNext Function (see page 176)
Ica_QPropVal2Str Function (see page 177)
Ica_rmtauth_Init Function (see page 178)
Ica_rmtauth_CheckAccess Function (see page 179)

Language Client APl 145

Programming Guide

Programming Guide

The Language Client APl (LCA) lets you add your own functions on top of the
eTrust AC authorization and authentication functions. It also lets you add a
special notification function to the seosd daemon.

The LCA provides a high-level programming interface that you can use to
administer local and remote eTrust AC databases, as well as Policy Model
Databases (PMDBs). The LCA includes functions that can read and modify the
values of properties stored in all these databases. It can also control the
behavior of the seosd and seagent daemons.

The LCA is based on, and uses the functions of, the eTrust AC Administration
API (see the chapter “Administration API”). The LCA functions use the
Administration API functions to access and update the various eTrust AC
databases. However, the two APIs have significant differences:

® The LCA can administer several local, remote, and PMDBs simultaneously;
the Administration APl can administer the database only at the local
station.

® The LCA can manage features of the native operating system security (for
example, passwords, group memberships, and file permissions); the
Administration APl manages only the eTrust AC database.

To supply detailed error information (for example, which keyword or
subcommand failed), the LCA include lists of error code structures.

Note: You can execute LCA commands from the TCL shell. This lets you obtain
more information about eTrust AC objects. For more information, see the
appendix “tclica: The LCA Extension.”

LCA Function Types

The LCA includes the following function types:
® |nitializing and terminating functions, including Ica_Init and Ica_Terminate

® eTrust AC service request. Currently, the only function in this category is
Ica_ParselLine.

® Returned information analysis. Most of the LCA functions are in this
category.

146 SDK Guide

Programming Guide

The eTrust AC Database

Frograms at
Yoursite

Administraion
AP

Local

Access Control
Database

ueries Queries and

sers at
Your Site

Access Control
GlUls and selang

The LCA can update and query an eTrust AC local, remote, or PMDB. The
Administration APl can only query the database at the local station.

Frograms at
Your Site

Language Client
AP

\/

Updates

Remote
Access Control
Database

Language Client
Functions

Local
Access Control
Database

Faolicy MModel
Database

Language Client API 147

Programming Guide

The following diagram shows the layout of an eTrust AC database:

seos_cdf dat :\

/,2, Object a
< = Object b |
sens_odf dat :
L Object m

-

< s
Ed
L
seos_pdfdat 7
H\.
s

<= 7 | Value
o Walue 2
sens_pvfdat KD
- Walue N
.

Class A

Class B

Class K

Froperty s

Froperty t

Fropery z

There are many classes
in Access Control.

There are many objects in Class K,
such as object a, object b, and
object m.

In Class k., object m contains many
properties, such as property s,
property t, and property 7.

Froperty 7 in object m of class K
containg many property values,

such as value 1, value 2, and valug M.

148 SDK Guide

Programming Guide

Sample Program

The following sample program receives a command and, optionally, a list of
property names as command line arguments. The program assumes that the
command is a selang command, and that the property names should appear in
the same format as displayed by the dbmgr -d -r p ClassName command (in
older versions of eTrust AC, as displayed by the rdbdump p command).

The program invokes the Ica_ParseLine function to execute the command.
After execution, the results are analyzed.

If the command succeeds, the API routines that handle the query data are
called, and the results of the queries are displayed. (No query information
displays if the command was not a query.) If a list of properties was supplied,
only data for those properties appear. If the command fails, the API routines
that analyze the error are called.

For a complete description of each function in this sample program, see
Language Client APl Functions in this chapter.

Language Client APl 149

Programming Guide

#include <stdio.h>
#include <string.h>
#include <memory.h>
#include <seostype.h>
#include <langapi.h>

static void scan entities(void);

static void print entity info(LCA QENT H entity handle);

static void scan props(LCA QENT H entity handle);

static void print prop info(LCA QPROP H prop handle);

static void scan values(LCA QPROP H prop handle);

static void print prop value(LCA QPROP_H prop handle,void *prop value);

static char *Command = NULL;
static char **Properties = NULL;
static int NProps = 0;

static void put commands(int argc,char **argv);

int ShowUsage(void)
{
fprintf(stderr, “Usage:\n
lca_examp Command [{List-of-property-names}]\n”);

return 1;
}
int main(int argc,char **argv)
{

char *output = NULL;

int rv;

int n_ents;
char buff [1025];
JRERRkkoRksckkokkkck - Titiglization FRkekkssksolksskokkkskoRkkkokk /

JHRHRRRAAAAAAAAAAA A A AFAAFAAAAAAAAAAAAAAAAAAAFFAFAAAAAAAAAAK |

if (argc <2)
return ShowUsage();

rv = lca Init(“langapi”,&output);
if (rv)
{
printf(“Return value: 0x%08x\n”
“Msg: '%s'\n”, rv, output);
return 1;

put commands(--argc,++argv);

150 SDK Guide

Programming Guide

/************** EXeCUtiOn Of Command **********************/

/**/

rv = lca ParselLine(Command, &output);
/* print the command output */
printf(“Command's output\n%s\n”, output);

if (rv == 0)
{

/************ sSuccess - get the results *******************/
/**/

/** Get number of entities (objects) that were returned ***/
/**/

n_ents = lca QEntsGetNum();
printf(“number of entities returned: %d\n”,n ents);

/¥F¥RREx Get the names of the entities (objects) *¥x¥xkxkx/
/**/

scan _entities();

}

else

{

JRRRsssspssRRRRRRoRk The command Failed *xxxkssssssk /
J R AR ARAAAAAAAAAAAAFAAAFAAAAAAAAAAAAK |

LCA ERR H error_handle = NULL;

/***
* For further analysis of the error, review all errors
* (usually there is only one, but if there are warnings as

* well as errors, there could be more than one in the list).
***/

printf(“Numbers of errors: %d\n\n”,lca ErrsGetNum());
while ((error_handle = lca ErrGetNext(error handle))
= 0)

printf(“Severity: %d, Stage:%d\n”,

Language Client APl 151

Programming Guide

lca _ErrSeverity(error_handle),
lca ErrStage (error_handle));

rv = lca Err2Str (error _handle, buff, sizeof (buff)-1);
if (rv)
printf (“Error message: '%s'\n”, buff);

/************** Terminate the use Of 'Lca API **************/
/**/

lca Terminate();
return 0;

static void put commands(int argc,char **argv)
{

Command = argv[0];

Properties = ++argv;

NProps = --argc;

}

static void scan entities(void)

{
LCA QENT H entity handle = NULL;

while ((entity handle = lca QEntGetNext(entity handle)) != 0)
print _entity info(entity handle);

JHRRRRRRRRRRR R ROk R R R R KRR KRR KRR

Print the information for one entity, including its name, class name, and
information about its properties.
If the entity is a class, the “name” will be empty, and the “class name” full.

If the entity is an object, the “name” will be full, and the “class name” empty.
AR AR KA KA KA AR AA AR AR AARKAARKAAAKAARKAAAAAFRAAFAKAK |

static void print _entity info(LCA QENT_H entity handle)
{

char *name;

if (entity handle == 0)
return;

name = lca QEntObjName(entity handle);
if (name !=0)
printf(“\nName: %s\t"”,name);

152 SDK Guide

Programming Guide

name = lca QEntClassName(entity handle);
if (name !=0)
printf(“Class name: %s\n”,name);

scan_props(entity handle);

static void scan props(LCA QENT H entity handle)
{

LCA QPROP H prop handle = NULL;

register int i;

if (NProps == 0)
while ((prop handle = lca QPropGetNext(entity handle,prop handle)) != 0)
print prop info(prop handle);
else
for (1 =0; i < NProps; i++)
{
prop_handle = lca QPropGetByName(entity handle,Properties([i]);
if (prop _handle == 0)
{
printf(“Property %s does not exist for this entity.\n”,
Properties[i]);
continue;
}
print prop info(prop handle);

JHRRRRRRRRRRRR R RRRRR R KRR R KRR KRR KRR KRR

This function gets a property handle, and:
1. Gets its name and prints it.

2. Gets its value, translates it to a string, and prints it.
HASKK A KA KA KA AR AAA KA AR AR A AR KAAAKAARKAAA KA AKAARAKAK |

static void print prop info(LCA QPROP H prop handle)
{

char *prop name = NULL;

char prop_type;

unsigned short prop size;

unsigned int n vals;

if (prop handle == 0)
return;

prop _name = lca_QPropName(prop handle);
if (prop name == 0)
printf(“Cannot get name of property. Handle: %d\n”,

Language Client APl 153

Programming Guide

prop_handle);
printf(“\nPropname: %s.”,prop _name);

prop type = lca QPropType(prop handle);
printf(“Property type: %d; “,prop_type);

prop size = lca QPropSize(prop handle);
printf(“Property size: %d; “,prop size);

n vals = lca QPropValsNum(prop handle);
printf(“Number of values: %d.\n”,n vals);

/* Loop over the property values, because there could be more
than one value for a property.

This happens if properties are of type list (ACLs, PACLs, User
list, Member list and so on).

*/

scan_values(prop handle);

}
static void scan values(LCA QPROP H prop handle)
{
void *prop value;
int i;
int n vals;
n_vals = lca QPropValsNum(prop handle);
for (i=0; i<n vals; i++)
{
prop_value = lca QPropValGetByIdx(prop handle,i);
print prop value(prop handle,prop value);
}
}

static void print prop value(LCA QPROP H prop handle,void
*prop_value)
{
char buff[1024];
int n_vals;

if (prop handle == 0 || prop value ==0)

return;
n_vals= lca QPropVal2Str(prop handle,prop value,buff,sizeof(buff));
if (n_vals >0)

154 SDK Guide

Language Client API Functions

printf(“Value: %s\n”,buff);

Language Client API Functions

The LCA includes functions in the following categories:

® Execution operations. Perform general operations, such as initializing the
LCA, terminating the LCA, and executing eTrust AC commands (queries).

® Password operations. Return password rule information.

® Error handling operations. Return command error handles, and provides
information about errors.

B Query operations: entity handling. Return entity handles, and provides
information about found entities (objects).

® Query operations: property handling. Return property handles, and
provides information about properties of found entities.

® Remote authorization operations. Perform login and query operations with
the remote authorization server.

Execution Operations

The following functions control LCA operations.
Ica_Init
Initializes the LCA.
Ica_Terminate
Terminates the LCA.
Ica_ParseLine

Performs query commands.

Password Operations

The following functions control LCA passwords.
lca_CheckPasswordQuality

Checks new passwords for adherence to password rules.

Language Client APl 155

Language Client API Functions

Error Handling Operations

The following functions operate on errors.
Ica_ErrsGetNum

Returns the number of messages produced by the last query command.
Ica_ErrGetByldx

Returns an indexed error handle.
Ica_ErrGetFirst

Returns the handle for the first error in a command.
Ica_ErrGetNext

Returns the handle for the next error in a command.
Ica_ErrSeverity

Returns the severity level of an error.
Ica_ErrStage

Returns information about when the error occurred.
Ilca_Err2Str

Converts an error record to string format and copies it to a buffer.

156 SDK Guide

Language Client API Functions

Query: Entity Handling Operations

The following functions operate on entities.
Ilca_QEntsGetNum

Returns the number of entities found by the last query command.
Ica_QEntGetByldx

Returns an entity handle for the indexed entity.
Ica_QEntGetFirst

Returns an entity handle for the first entity in a list.
Ica_QEntGetNext

Returns an entity handle for the next entity in a list.
Ilca_QEntGetByName

Returns an entity handle for the specified object in the entity list.
Ilca_QEntObjName

Returns the name of the object pointed to by an entity handle.
Ica_QEntClassName

Returns the name of the class of the object pointed to by an entity handle.

Language Client APl 157

Language Client API Functions

Query: Property Handling Operations

The following functions operate on properties.
Ica_QPropsGetNum

Returns the number of properties available for an entity.
Ica_QPropGetByldx

Returns a property handle for the indexed property of an entity.
Ica_QPropGetFirst

Returns a property handle for the first property of an entity.
Ica_QPropGetNext

Returns a property handle for the next property of an entity.
Ica_QPropGetByName

Returns a property handle for the specified property of an entity.
Ilca_QPropName

Returns the name of a property.
Ica_QPropSize

Returns the size (in bytes) of a property.
Ilca_QPropType

Returns the type of a property.
Ilca_QPropValsNum

Returns the number of values of a property.
Ica_QPropValList

Returns the property value list of a property.
Ica_QPropValGetByldx

Returns an indexed property value for a single property.
Ica_QPropValGetFirst

Returns the first value in a list of property values.
Ica_QPropValGetNext

Returns the next value in a list of property values.
Ilca_QPropVal2Str

Converts a property value to string format and copies it to a buffer.

158 SDK Guide

Ica_Init Function

Remote Authorization Operations

The following functions control remote authorization operations.
Ica_rmtauth__Init

Logs in the remote authorization server.
Ica_rmtauth_CheckAccess

Determines whether a user is allowed access to a resource.

lca_Init Function

The Ica_Init function initializes the LCA. You must call Ica_Init before using any
other LCA function. This function also assigns a global variable with the value
specified in the szModuleName parameter, a character string that identifies the
calling module.

This function returns zero on success and nonzero on failure. If a failure
occurs, ppOutput generally points to an error message.

int lca Init (const char *szModuleName, char **ppOutput);
szModuleName

A string that identifies the module using this API. This parameter cannot
be null or an empty string.

ppOutput

In case of failure, a pointer to a string that contains an error message.

lca_Terminate Function

The Ica_Terminate function exits the LCA. It closes any open file descriptors,
frees allocated buffers, resets the module name that was set by the Ica_Init
function, and unloads dynamically linked libraries.

This function does not return a value.

void lca Terminate (void);

Note: Use this function only after processing the database with the
Ica_ParseLine function (see its description in this chapter).

Language Client APl 159

Ica ParseLine Function

lca_Parseline Function

The Ica_ParseLine function executes the command specified by the szLine
parameter. After executing the command, the Ica_ParseLine function sets the
ppOutput parameter to point to a character string buffer returned by eTrust
AC. The caller does not need to allocate any memory. This buffer is handled
internally by the LCA and freed when you call the Ica_Terminate function (see
its description in this chapter).

This function performs the following sequence of actions:
1. Accepts any command that you can issue from the selang command shell.

2. Builds a request block for each connected target host.

3. Accepts a set of structures with the error codes and information returned
from each host.

4. Converts the values returned from the target hosts to a character string
array, which it then returns through the ppOutput argument.

The Ica_ParselLine function is state-sensitive; that is, it changes the behavior
of the commands that follow. For example, the following sequence lists the
properties of user jan from host a:

lca ParseLine(“hosts a”, output);
lca ParselLine(“showusr jan”, output);

A simple application that issues commands and displays the output may not
need any function except Ica_ParseLine. A more complex application may need
more information, and, therefore, will probably need to use the other LCA
functions.

This function returns zero on success and a nonzero value on error.

int lca ParselLine (char *szLine, char **ppOutput);
szLine

A null-terminated character string containing the command to be
executed.

ppOutput

A pointer to a null-terminated string containing the result returned by
eTrust AC after it executes the command.

160 SDK Guide

Ica_ParseMBLine Function

lca_ParseMBLine Function

The Ica_ParseMBLine function works in the same way as the Ica_ParseLine
function (see page 160) except that it:

® Converts the input string from a multibyte format to UTF8 format.
® Converts the output from UTF8 format back to multibyte format.

This additional functionality support product localization and lets you input
multibyte format strings.

lca_CheckPasswordQuality Function

The Ica_CheckPasswordQuality function checks new passwords for users
without changing them in the eTrust AC database or the native operating
system through the sepass utility (for UNIX), selang, or Policy Manager. You
can check passwords for adherence to eTrust AC password rules. A password
is accepted or rejected based on the rules.

If the password is acceptable the function returns zero. If the password is
denied, the function returns that the password is denied and gives the rule it
failed.

int 1lca CheckPasswordQuality (char *szUNAME, char *szPassword, CHECK RSULT **res,
int domain);

szUName

The user requesting the password change.
szPassword

The password that the user wants to change to.
res

Specifies the handle for the result of the access request.
domain

Specifies the domain to check the password in.

Note: This variable is for future use. It is implemented only in
SEOS_DOMAIN.

Language Client APl 161

lca ErrsGetNum Function

lca_ErrsGetNum Function

The Ica_ErrsGetNum function returns the number of errors, warnings, and
information messages returned by eTrust AC after executing the last command
sent to it by the Ica_ParselLine function (see its description in this chapter).

If there are no errors, warnings, or information messages, the function returns
zero. Otherwise, it returns the total number of errors, warnings, and
information messages returned.

int lca_ErrsGetNum (void);

lca_ErrGetByldx Function

The Ica_ErrGetByldx function returns an error handle of type LCA_ERR_H for
the error with index idx. The idx parameter is the index in the list of errors and
messages returned by eTrust AC after it executes the last command sent by
the Ica_ParseLine function (see its description in this chapter).

The index ranges from O for the first error, to n_errors-1 for the last error.

You can extract information about the error or message later with this handle,
by using the Ica_ErrSeverity and Ica_ErrStage functions. See their descriptions
in this chapter.

This function returns an error handle of type LCA_ERR_H on success, and
returns NULL on failure.

LCA ERR H lca ErrGetByIdx (int idx);
idx

The index of the error in the error list of the last command.

162 SDK Guide

Ica_ErrGetFirst Function

lca_ErrGetFirst Function

The Ica_ErrGetFirst function returns an error handle of type LCA_ERR_H for
the first error that occurred in the last command sent to the Ica_ParseLine
function (see its description in this chapter).

You can extract information about the error or message later with this handle,
by using the Ica_ErrSeverity and Ica_ErrStage functions. See their descriptions
in this chapter.

Note: This function acts like the Ica_ErrGetNext function when you invoke the
latter with a NULL handle.

This function returns an error handle of type LCA_ERR_H for the first error
record and returns NULL on failure.

LCA ERR H lca_ErrGetFirst (void);

lca_ErrGetNext Function

The Ica_ErrGetNext function returns an error handle of type LCA_ERR_H for
the next error that occurred in the last command sent to the Ica_ParselLine
function (see its description in this chapter).

You can extract information about the error or message later with this handle,
by using the Ica_ErrSeverity and Ica_ErrStage functions. See their descriptions
in this chapter.

This function returns an error handle of type LCA_ERR_H for the next error
record and returns NULL on failure.

LCA ERR H lca ErrGetNext (const LCA ERR H errhPrev);
errhPrev

The handle of the previously returned error. If the value is NULL, the first
error is returned.

Language Client APl 163

Ica_ErrSeverity Function

lca_ErrSeverity Function

The Ica_ErrSeverity function returns the severity of an error, as represented
by the error handle errh. The possible severity values are:

LCA_ESEV_FATAL

A fatal OS internal error (for example, memory allocation) occurred.
LCA_ESEV_ERROR

An error in the execution of a command occurred.
LCA_ESEV_WARNING

A command executed successfully, but a non-fatal error occurred.
LCA_ESEV_INFO

Not an error-the error string contains an information message or a

warning.

This function returns the severity of the error and -1 on failure.

int lca_ErrSeverity (const LCA ERR H errh);
errh

The handle of the error returned by the Ica_ErrsGetNum, Ica_ErrGetByldx,
Ica_ErrGetNext, or Ica_ErrGetFirst function.

164 SDK Guide

Ilca_ErrStage Function

lca_ErrStage Function

The Ica_ErrStage function returns the stage in which an error, represented by
the error handle errh, occurred. The possible stage values are:

LCA_ERRUPD

An error occurred while updating the database, such as an attempt to add
an existing object, or an attempt to delete a nonexistent object.

LCA_ERRAUTH

The authorization process prevented the execution of the command; for
example, the user did not have the authority to execute the command.

LCA_ERRCOMM

An error occurred in communication. This usually indicates that
communication with the seagent or seosd daemon failed.

LCA_ERRCONNECT
The connection to the remote host failed.
LCA_ERROTHER

An error occurred that does not belong to any of the preceding categories.
Usually this indicates a syntax error or an error in the command attributes.

LCA_NOTERR
Not an error-the error string contains an information message or a

warning.

This function returns the stage of the error and -1 on failure.

int lca_ErrStage (const LCA ERR H errh);
errh

The handle of the error returned by the Ica_ErrsGetNum, Ica_ErrGetByldx,
Ica_ErrGetNext, or Ica_ErrGetFirst function.

Language Client APl 165

Ica Err2Str Function

lca_Err2Str Function

The lca_Err2Str function translates an error record into a string, and copies
the string into szBuff. If the string is longer than iBuffLen, the Ica_Err2Str
function truncates it.

This function returns the number of printed characters on success and -1 on
failure.

int lca Err2Str (const LCA ERR H errh, char *szBuff, int iBuffLen);
errh

The handle of the error returned by the Ica_ErrsGetNum, Ica_ErrGetByldx,
Ica_ErrGetNext, or Ica_ErrGetFirst function.

szBuff
A buffer into which the function copies the output string.
iBuffLen

The size of szBuff.

lca_QEntsGetNum Function

The lca_QEntsGetNum function returns the number of entities (objects) that
were found by the last command sent to the Ica_ParseLine function (see its
description in this chapter). If the last command was not a query,
Ica_QEntsGetNum returns zero. Otherwise, it returns the number of entities
found that match the query criteria.

This function returns the number of entities (objects) fetched by the last
query. If an error occurs, the function returns -1.

int lca_QEntsGetNum (void);

166 SDK Guide

lca_QEntGetByldx Function

lca_QEntGetByldx Function

The lca_QEntGetByldx function returns an entity handle for the entity with the
index idx. The idx parameter is the index in the list of entities for the last
command sent to the Ica_ParseLine function (see its description in this
chapter).

The index ranges from zero for the first entity to n_entities-1 for the last
entity. For example, if the query returned three entities, idx can have a value
of 0, 1, or 2. You can use this handle later to extract information about the
entity.

For a query on a single object, such as showusr jan, the function returns an
entity handle only if idx = 0; otherwise, it returns NULL. For a query on
multiple objects, such as showusr jan*, it returns the entity handle specified
by the idx parameter.

This function returns an entity handle of type LCA_QENT_H and returns a
NULL on failure.

LCA QENT H lca QEntGetByIdx (int idx);

idx
The index of the entity in the list of entities (objects) returned by the last
command.

lca_ QEntGetFirst Function

The lca_QEntGetFirst function returns an entity handle of type LCA_QENT_H
for the first entity in the list of entities returned by the last command sent to
the Ica_ParseLine function (see its description in this chapter).

If you call the Ica_QEntGetNext function with an attribute of NULL, you get the
same results.

You can use this handle later to extract information about the entity.

This function returns only the first entity handle, regardless of how many
entities the query returned. To return subsequent entity handles sequentially,
use the Ica_QEntGetNext function (see its description in this chapter); to
return a specific entity handle, use the Ica_QEntGetByldx function (see its
description in this chapter).

This function returns an entity handle of type LCA_QENT_H on success, and
returns a NULL on failure.

LCA QENT H lca QEntGetFirst (void);

Language Client APl 167

Ica QEntGetNext Function

lca_ QEntGetNext Function

The Ica_QEntGetNext function returns an entity handle of type LCA_QENT_H
for the next entity in the list of entities for the last command sent to the
Ica_ParseLine function (see its description in this chapter).

If the genthPrev parameter is NULL, the function returns the first entity in the
list. You can use this handle later to extract information about the entity.

This function returns an entity handle of type LCA_QENT_H on success and a
NULL on failure.

LCA QENT_H lca_QEntGetNext (const LCA QENT H genthPrev);
genthPrev

The handle of the previous entity in the query's entity list.

lca_QEntGetByName Function

The lca_QEntGetByName function returns an entity handle of type
LCA_QENT_H for one entity in the list of entities for the last command sent to
the Ica_ParseLine function (see its description in this chapter).

The function searches the entity list for an entity with a class name identical to
szCName and an object name identical to szOName. (If szCName is empty, it
searches only for a matching object name.) The function returns an entity
handle for the matching entity. You can use the returned handle later to
extract information about the entity.

This function returns an entity handle of type LCA_QENT_H on success and a
NULL on failure.

LCA QENT H lca QEntGetByName (const char *szCName, const char *szOName);
szCName

A character string with the entity's class name.
SzOName

A character string with the entity's object name.

168 SDK Guide

lca_QEntObjName Function

lca_QEntObjName Function

The Ica_QEntObjName function returns the name of the object to which the
entity handle genth points. The return value of the object name is empty
(NULL) if the result of the query does not contain object names. For example,
after executing the find command, which lists all the classes in the database,
the returned string is empty because the query's result is class names and not
object names. In this case, use the function Ica_QEntClassName (see its
description in this chapter).

This function returns a pointer to a character string that contains the object
name or NULL if the object name is empty.

char *lca QEntObjName (const LCA QENT H genth);
genth

An entity handle.

lca_QEntClassName Function

The lca_QEntClassName function returns the name of the class of the entity to
which the handle genth points. The return value of the class name is empty
(NULL) if the result of the query does not contain class names. For example,
the find classname command returns only the object name for the specified
class.

This function returns a pointer to a character string that contains the class
name on success, or NULL on failure.

char *lca QEntClassName (const LCA QENT H genth);
genth

An entity handle.

Language Client APl 169

Ica_QPropsGetNum Function

lca_QPropsGetNum Function

The Ica_QPropsGetNum function retrieves the number of queried properties for
the entity to which the handle genth points. The assumption is that the entity
was retrieved by the last command executed by the function Ica_ParseLine
(see its description in this chapter).

The number of properties available for an object depends on the query.
Exception: If the query was a find command, no properties are available
because only object or class names are returned.

If the query was a showusr, showgrp , or showres command, this function
counts all the properties that are set for the entity pointed to by genth, and
that can be displayed.

Note: The number of properties returned by this function is not necessarily
the same as the total number of properties that exist in the database for the
entity. Instead, the returned number represents the results of the last query
for the entity. The entity handle is a handle that points to the data of the
entity in the query, used only to access the query data using this API.

This function returns the number of properties available for the entity on
success and -1 on failure.

int lca_QPropsGetNum (const LCA QENT_H genth);
genth

An entity handle returned by the Ica_QEntGetByldx, Ica_QEntGetNext,
Ica_QEntGetFirst, and Ica_QEntGetByName functions.

170 SDK Guide

lca_QPropGetByldx Function

lca_QPropGetByldx Function

The Ica_QPropGetByldx function returns the property handle for the property
whose index idx is in the property list of this entity. The index ranges from 0
for the first property, to n_props-1 for the last one.

You can use the returned handle later to extract data about the property,
when using the Ica_QPropVal2Str, Ica_QPropValGetFirst, Ica_QPropValGetNext,
and Ica_QPropValList functions.

This function returns a property handle for the requested property. If no
property with the specified index exists for this entity, the function returns
NULL.

LCA QPROP_H lca_QPropGetByIdx (const LCA QENT H genth, int idx);
genth

An entity handle that identifies an entity in the query.
idx

The index of the requested property in the entity's property list.

lca_QPropGetFirst Function

The lca_QPropGetFirst function returns a property handle for the first property
of the entity pointed to by the genth parameter. You can use the returned
handle later to extract data about the property, when using the
Ica_QPropVal2Str, Ica_QPropValGetFirst, Ica_QPropValGetNext, and
Ica_QPropValList functions.

This function returns a property handle. If there are no properties available in
the query result of this entity, the function returns NULL.

LCA QPROP_H lca QPropGetFirst (const LCA QENT H genth);
genth

An entity handle that identifies an entity in the query.

Language Client APl 171

Ica_QPropGetNext Function

lca_QPropGetNext Function

The Ica_QPropGetNext function returns the property handle of the property
after the one in the gprophPrev parameter, for the entity pointed to by the
genth parameter. If the gprophPrev function is NULL, it returns the first
property in the list.

You can use the returned handle later to extract data about the property,
when using the Ica_QPropVal2Str, Ica_QPropValGetFirst, Ica_QPropValGetNext,
and Ica_QPropValList functions.

This function returns a property handle. If there are no more properties
available in the query result of this entity, the function returns NULL.

LCA QPROP_H 1lca QPropGetNext (const LCA QENT H genth, \
const LCA QPROP_H gprophPrev);

genth
An entity handle that identifies an entity in the query.
gprophPrev

Property handle of the last retrieved property.

lca_QPropGetByName Function

The Ica_QPropGetByName function returns a property handle-for the property
whose name is in the szPName parameter-of the entity to which the genth
parameter points. You can use the returned handle later to extract data about
the property, when using the Ica_QPropVal2Str, Ica_QPropValGetFirst,
Ica_QPropValGetNext, and Ica_QPropValList functions.

This function returns a property handle. If there are no properties with this
name, the function returns NULL.

LCA QPROP_H 1lca QPropGetByName (const LCA QENT H genth const char szPName);
genth

An entity handle that identifies an entity in the query.
szPName

A character string representing a property name.

172 SDK Guide

lca_QPropName Function

lca_QPropName Function

The Ica_QPropName function receives a property handle that identifies one
property of an entity, and returns the property's name. This function belongs
to a group of functions that retrieve information about a single property. The
property name is the name defined in the database or, for UNIX queries, the
symbolic name eTrust AC gives to UNIX properties.

This function returns a character string representing the property name on
success and NULL on failure.

char *lca QPropName (const LCA QPROP_H gproph);

gproph
A property handle.

lca_QPropSize Function

The Ica_QPropSize function receives a property handle that identifies one
property of an entity, and returns the property’s size in bytes. This function
belongs to a group of functions that retrieve information about a single
property. The size is returned for a single value of the property. If it is a list
property-such as an access control list (ACL)-the size of a single element is
returned. To determine the size of the whole list, multiply the size of a single
value by the number of values in the list. You can retrieve the number of
values in the list by using the Ica_QPropValsNum function.

This function returns the size of the property on success and -1 on failure.

unsigned short lca QPropSize (const LCA QPROP_H gproph);

gproph
A property handle.

Language Client APl 173

Ica_QPropType Function

lca_QPropType Function

The Ica_QPropType function receives a property handle that identifies one
property of an entity and returns the property's type. This function belongs to
a group of functions that retrieve information about a single property. The
possible property types are listed in the seostype.h header file.

This function returns a single character representing the property type on
success and -1 on failure.

char lca QPropType (const LCA QPROP_H gproph);

gproph
A property handle.

lca_QPropValsNum Function

The lca_QPropValsNum function receives a property handle identifying one
property of an entity and returns the number of values for the property. This
function belongs to a group of functions that retrieve information about a
single property. For most properties, the number is always one. However,
there are properties composed of lists that may have more than one value.
Some examples of properties composed of lists are ACL, PACL, INetACL,
UserList, and GrouplList.

This function returns the number of values for the property on success. If the
function fails, it returns -I. If the fetch from the database failed, the function
returns no value for the property.

unsigned int lca QPropValsNum (const LCA QPROP_H gproph);

gproph
A property handle.

174 SDK Guide

Ica_QPropValList Function

lca_QPropValList Function

The Ica_QPropValList function returns the property value list for a single
property identified by the qproph parameter. The returned value is an array of
pointers to the values. If the property has a single value, only the first pointer
is valid. To determine the number of valid pointers in the list, call the
Ica_QPropValsNum function (see its description in this chapter).

Note: You can find the format of the property values, according to each
value's type, in the seadmapi APl documentation (see the chapter
“Administration API™).

This function returns a pointer to an array of pointers to the property values
on success and NULL on failure.

void **1ca QPropVallList (const LCA QPROP_H gproph);

gproph
A property handle.

lca_QPropValGetByldx Function

The lca_QPropValGetByldx function returns a single property value for a single
property identified by the qproph parameter. This function identifies the value
by its index in the value list for the property. The index ranges from 0 to one
less than the value returned by the Ica_QPropValsNum function (see its
description in this chapter).

To determine the number of values in the list, call Ica_QPropValsNum. If
necessary, use the Ica_QPropVal2Str function to convert this value to a string.

Note: You can find the format of the property values, according to each
value's type, in the seadmapi APl documentation (see the chapter
“Administration API”).

This function returns a pointer to a single property value on success and NULL
on failure.

void *lca QPropValGetByIdx (const LCA QPROP H gproph, int idx);
gproph

A property handle.
idx

An index to a value in the property (in case of a list property).

Language Client APl 175

Ica_QPropValGetFirst Function

lca_QPropValGetFirst Function

The Ica_QPropValGetFirst function returns the first value in the list of values
for the property identified by the parameter gproph. If necessary, use the
Ica_QPropVal2Str function to convert the value to a string.

Note: You can find the format of the property values, according to each
value's type, in the seadmapi APl documentation (see the chapter
“Administration API™).

This function returns a pointer to a single property value on success and a
NULL on failure.

void *Llca QPropValGetFirst (const LCA QPROP_H gproph);
gproph
A property handle.

lca_QPropValGetNext Function

The lca_QPropValGetNext function returns the next property value in the list of
values for the property identified by the parameter gproph. The pPrevVal
parameter identifies the previous value in the list. The function returns the
value following pPrevVal. If pPrevVal is NULL, the function returns the first
value in the list.

You can convert the value returned to a string later, using the function
Ica_QPropVal2Str.

Note: You can find the format of the property values, according to each
value's type, in the seadmapi APl documentation (see chapter “Administration
API”).

This function returns a pointer to a single property value on success and a
NULL on failure.

void *lca QPropValGetNext (const LCA QPROP_H gproph, const void *pPrevVal);
gproph

A property handle.
pPrevVval

The previous value in the list.

176 SDK Guide

lca_QPropVal2Str Function

lca_QPropVal2Str Function

The lIca_QPropVal2Str function translates a property value into a string and
copies the string into szBuff. If the string is longer than iBuffLen, the
Ica_QPRopVal2Str function truncates it.

The property handle is needed to analyze the value in the pVal parameter
correctly, based on its type and size.

The function translates a single value each time it is called. You must call the
function Ica_QPRopVal2Str separately for each property value in a property list
such as ACL.

This function returns the number of printed characters on success and -1 on
failure.

int lca QPropVal2Str (const LCA QPROP_H gproph, \
const void *pVal, char *szBuff, int iBufflLen);

gproph
A property handle.
pVval
A pointer to the property value to be translated.
szBuff
A buffer into which the function copies the output string.
iBuffLen

The size of szBuff.

Language Client APl 177

lca rmtauth Init Function

lca_rmtauth_Init Function

The Ica_rmtauth_Init function attempts to log in to the remote authorization
server specified by the szHost parameter. This establishes a connection to the
server checks whether the password passed by the szPasswd parameter
matches the password of the user running the application. If it matches, the
login process continues.

This function returns zero if login is successful, and a nonzero on failure. If
login fails, the ppOutput parameter points to an error message.

Note: For a complete discussion of the Remote Authorization API, see the
chapter “Authorization and Authentication API.”

int lca_rmtauth_Init (const char *szModuleName, \
char **ppOutput, char *szHost, char *szPasswd);

szModuleName

The name of the application. This parameter cannot be null or an empty
string.

ppOutput

In case of failure, a pointer to an error message string.
szHost

The name of the server to connect to.
szPasswd

The password of the user accessing the server.

178 SDK Guide

lca_rmtauth_CheckAccess Function

lca_rmtauth_CheckAccess Function

The Ica_rmtauth_CheckAccess function queries the eTrust AC remote
authorization server to determine whether the user-specified by szAccessor-is
permitted to access the specified resource (szOName) when using the
specified access type (szAccs). The function sends the request to the remote
authorization server, which then performs the check using the
SEOSROUTE_RequestAuth function.

This function returns zero if login is successful and a nonzero value on failure.

Note: For a complete discussion of the Remote Authorization API, see the
chapter “Authorization and Authentication API.”

int lca_rmtauth_CheckAccess (const char *szAccessor, \
char *szClass, char *szOName, char *szAccs, API_AUTH RES *result);

szAccessor

The name of the accessor (user) requesting authorization.
szClass

The resource whose access authorization is to be checked.
szOName

The resource object to which the user is requesting access.
szAccs

The type of access requested. The valid access types are listed in the
seostype.h header file.

result

The server's result of the access request.

Language Client APl 179

Chapter 6: Administration API

Programming Guide

eTrust AC uses an object-oriented database. The database includes definitions
for classes, objects, and specific class definition of data members. It is
essential to understand the database architecture before using the
Administration API, because the API includes functions for reading and
modifying the information in the database.

The Administrator Guide explains some of the details about the database
layout. We recommend reading that guide in addition to this chapter.

Administration API 181

Programming Guide

Database Organization

The information in the database is organized into classes. A class's definition
includes information that is common to all records, or objects, of that class.
Records that belong to the same class have a similar meaning. For example,
every record in the USER class represents a user; every record in the GROUP
class represents a group of users; and every record in the TERMINAL class
represents a terminal from which users can access the current host. Every
class contains a properties definition table that includes a list of properties that
you can assign to records belonging to the class.

A record is a single entity that represents an instance of its class. For example,
a record in the USER class represents an individual user. Each class contains
properties, or fields, that are specific to the class. Information is stored in a
record by assigning values to its properties. The definition of a property
includes information on the layout of the data and attributes that define how
the data is stored in the database. You can assign values to every property of
a record. The definition of the record's class determines which properties you
can assign to the record and what values you can assign to each property.

The structure of the database is best described by an example. Consider the
USER class. Every record in the USER class represents a user of the system.
The properties definition table of the USER class contains a list of properties
that you can assign to user records. Some of the properties in the list are
FULL_NAME, ORGANIZATION, and GROUPS. You can assign values for these
properties to every user represented by a record in the database. For
example, the FULL_NAME property stores the user’s full name; the
ORGANIZATION property stores information about the organization the user
belongs to; and the GROUPS property contains a list of the groups to which
the user belongs. The properties of a record are similar to fields in a database
record. The format of a property can vary depending on the property
definition. In this example, the FULL_NAME and ORGANIZATION properties
have only a single value, whereas the GROUPS property is a list that consists
of a variable number of repetitive elements. A user can belong to an unlimited
number of groups.

Each class in the database has a name and an ID associated with the name.
The database engine uses the class ID internally to achieve better
performance and smaller database file sizes. The class IDs do not have any
meaning beyond their internal use and may differ between different
databases. Use class names; do not use class IDs.

Each property of a class in the database has a name and an ID associated with
the property name. The database engine uses the property ID internally to
achieve better performance and smaller database file sizes. Note that every
class has its own properties definition table; thus, a property name can appear
in more than one class and the property may have different attributes in
different classes. A property is identified either by its name and the name of
the class in which it resides or by its unique property ID.

182 SDK Guide

Programming Guide

Database Layout

Class Description File

Every record in the database has a name and belongs to a class. Records in
different classes can have the same name. Each record in the database is
associated with a record ID. The record ID is a 32-bit number that is unique to
each record in the database. eTrust AC uses the record ID internally. When
referring to a record, you can use the record name or the record ID.

Every record in the database can have values assigned to its properties. eTrust
AC sets some properties automatically, and the user sets others explicitly. The
security administrator or a delegated responsible person sets most properties
by using the tools included with eTrust AC.

For detailed information about the properties supported by each class, see the
Reference Guide.

The database consists of the following data files:
seos_cdf.dat

The class description file contains the class definition table.
seos_odf.dat

The objects description file contains the records definition table.
seos_pdf.dat

The properties description file contains the properties definition table.
seos_pvf.dat

The properties value file contains the values assigned to every eTrust AC

property.

The data files also have indexing files that are not mentioned here because
they are transparent to the Administration API.

The class description file stores information on all classes defined to eTrust AC.
The information stored therein includes the name of the class, the class ID,
and other flags used internally by eTrust AC. The class information is stored in
a structure called SEOSDB_CDF.

Administration API 183

Programming Guide

Properties Description File

The properties description file stores information on each property defined to
eTrust AC. The property information includes:

= Property ID

® Name of the property

® Class ID of the class in which the property is defined

® The property’s data type-string, integer, structure, and so forth

® The size, in bytes, required to store a single value of the property

Some properties are defined as single value, and others are defined as a list

value. The properties description information is stored in a structure called
SEOSDB_PDF.

Objects Description File

Properties Values File

Database Lists

The objects description file stores basic information on each record defined to
eTrust AC. The following data is stored in the objects description file:

® Class ID of the class in which the record is defined
= Name of the record
® The record's unique internal database ID, also known as the object ID

The objects description information is stored in a structure called
SEOSDB_ODF.

The properties values file contains the values assigned to every property of
every record defined in the database. Each entry consists of:

m Class ID

" Property ID

® Record ID

B The data assigned to the property

Information used for integrity checking is also stored in the properties values

file; however, this information cannot be accessed using the Administration
API.

This section describes the various types of lists that exist in the database.

184 SDK Guide

Programming Guide

User to Group Connections

Both user records and group records contain data that define the connections
of users to groups.

The user record contains a list of groups to which the user belongs. The
following information is stored in the user record:

® The date on which the connection was created
® The user or group that owns the connection

® Group attributes, if any, assigned to the user

The group record contains a list of users who are connected to the group. The
list contains only the record IDs of the users.

When connecting a user to a group, the list of groups connected to the user,
and the list of users connected to the group, must be updated. When a user is
connected to a group, eTrust AC automatically updates both lists. If a user is
subsequently deleted from the database, the user cannot be deleted from
every group record containing the user's ID. Thus, some group records may
contain user IDs of users who no longer exist in the database. eTrust AC
generates new object IDs in a manner that ensures that an ID cannot be
assigned to an object more than once in the lifetime of the database. The
unused user IDs in the group records do not pose a security threat.

Connections of Resources to Resource Groups

Like a user-group connection, the connection of a resource to a resource group
is stored in both the resource record and the resource group record. The
resource record contains a list of record IDs that identifies the resource groups
to which the resource is connected. The resource group record contains a list
of resource IDs that identifies the resources that are connected to the resource
group. The resource and resource group records are automatically updated
whenever a resource is connected to a resource group.

Administration APl 185

Programming Guide

ACL Entries

The access control list (ACL) is a list of zero or more entries in a resource
record. Each entry in the ACL defines the access an accessor object in the
database has to the resource. Each ACL entry consists of:

® Record ID of the accessor-usually a user ID or a group ID

® Access authority assigned to the accessor

This entry determines what the accessor is allowed to do to the resource
represented by the resource record.

eTrust AC also provides program access control lists (PACLs), also known as
conditional ACLs, which are similar to regular ACLs. In addition to the record
ID of the accessor and the accessor's level of authority, PACL entries consist of
a PROGRAM record ID.

By convention, eTrust AC does not assign the object ID of zero to any object.
In ACLs and PACLs, an object ID of zero represents user (*)-that is, all eTrust
AC defined users.

Note: For more information about ACLs, see the authorize command in the
Reference Guide.

Understanding ACEE

eTrust AC assigns an accessor environment element (ACEE) to each user when
the user logs into the system. The ACEE is a data structure containing the
user's credentials and definitions of various security parameters. Every process
created by the login process inherits the parent process's ACEE. The ACEE is
maintained even if the process substitutes user by executing the system's su
utility or the sesu utility.

Each ACEE has a handle that uniquely describes the process's credentials and
other information at any point in time. The ACEE and its associated handle
exist until the login session that created them terminates.

The Administration APl and all eTrust AC authorization processes use the ACEE
handle to identify and describe the user making the request.

The Administration API includes functions that fetch a user's ACEE or ACEE
handle. In UNIX, the information obtained by these functions can be viewed
using the sewhoami utility with the appropriate options. For more information,
see the sewhoami utility in the Utilities Guide.

186 SDK Guide

Programming Guide

Scope Limitations of the API

Conventions

Header Files

The Administration API uses a simpler security scope method than the eTrust
AC language interpreter, so as not to adversely affect performance.

The Administration APl uses the attributes set in the users' USER records, but
ignores other privileges that use ownership, group attributes, and the ADMIN
class. This means that users cannot perform some operations using the
Administration API that they can perform by using selang, selangx, the eTrust
AC Administrator (seadm), or Policy Manager. For example, in selang a user
can display or update an object that the user owns. The Administration API,
however, does not allow an owner of an object to update it unless the owner
also has the ADMIN attribute.

The Administration API uses the following conventions:
® All function names start with seadmapi_.

® Unless otherwise documented, all functions return an int value
representing the result code.

® A return code of zero always denotes a successful operation.

®m Variables are always required. If a variable is a pointer, a pointer must be
supplied. A pointer can be NULL only where specified.

® The library functions assign values to the C global variable errno, which is
also used to return error codes.

® The names of parameters that are NULL character terminated strings
(ASCII-Z or C-Style strings) are preceded by the letters sz.

® Many functions use pre-fetched information, such as class descriptions,
property descriptions, and object descriptions, to speed up the operation.
Use these pre-fetched descriptions wherever possible to reduce the load
on the station.

To use this API, you are required to include in your source code the header
files with prototypes and structure definitions. All prototypes are in the
seadmapi.h file, while most of the data types are in other headers. The
seostype.h header file provides structure definitions of all data stored in the
database. The structure definitions of auditing and error logging records are
located in the header file selogtype.h.

Administration APl 187

Programming Guide

Libraries

In UNIX

In Windows

This section discusses the libraries that must be used with this API.

seadmapi consists of a single library file, seadmapi.a, that you should link with
every compiled source file that uses this API.

eTrust AC includes a shared library version of this APl called libseadmapi.xx,
where xx is the standard operating system convention (usually so or sl) for
shared library names. Before executing programs that use the shared library,
such as sample_TermOwn.c, check that an environment variable points to the
path of the shared library. To point an environment to the shared path, enter:

setenv LD LIBRARY PATH /opt/CA/eTrustAccessControl/lib

To compile and link your program with seadmapi functions, make sure you
include the static library seadmapi.lib in your link path. This library is usually
found in eTrustACDir\lib (where eTrustACDir is the directory you installed
eTrust AC in, by deafult Program Files\CA\eTrustAccessControl).

Before executing programs that use this library, check that an environment
variable points to the path of the library.

Compiling and Linking with seadmapi

There are no special flags required to compile with seadmapi. Linking, on the
other hand, may require additional settings. Unfortunately, these flags are
machine and operating system dependent. Use the makefiles provided by the
samples of this API, and look at those samples for up-to-date information.

Programming Notes

All functions provided by this API are thread-safe. If a function is not
thread-safe, then the Notes section of the function specifies that fact.

Note: You must call the seadmapi_init or seadmapi_IlsSeOSSyscallLoaded
function before calling any other function in the seadmapi library.

188 SDK Guide

Function Library

Function Library

The Administration API includes functions that are categorized as follows:

® Class operations. Retrieve list of classes and get class characteristics
information.

B Properties operations. Retrieve properties of a class and get properties
characteristics.

® Objects operations. Retrieve objects and get object characteristics.

B Values operations. Retrieve values, set values, or update values in the
database.

B Query operations. Perform functions connected to queries.
® | og files interface. Provide means to add audit and error log records.
B Console operations. Perform functions connected to console operations.

® Miscellaneous operations. Some generic operations, such as getting
commonly required information from seosd or setting process-specific
data.

Class Operations Functions

The following functions operate on the eTrust AC classes:
seadmapi_ClassGetEqual

Retrieves a specific class from the database.
seadmapi_ClassGetFirst

Retrieves first class from the database.
seadmapi_ClassGetNext

Retrieves next class from the database.

Property Operations

The following functions operate on properties:
seadmapi_PropGetEqual

Retrieves description of a specific property.
seadmapi_PropGetFirstInClass

Retrieves first property description of a class.
seadmapi_PropGetNextInClass

Retrieves next property description of a class.

Administration APl 189

Function Library

Object Operations

The following functions operate on objects:
seadmapi_FreeObjList

Frees the list of objects retrieved by ObjInClassList.
seadmapi_ObjGetEqual

Retrieves information on a specific object.
seadmapi_ObjGetFirstInClass

Retrieves information of the first object in a class.
seadmapi_ObjGetGreaterEqual

Retrieves information on an object whose object ID is greater than or
equal to the specified object ID.

seadmapi_ObjGetNextInClass
Retrieves information on next object in a class.
seadmapi_ObjInClassList

Retrieves a list of objects in a specified class.

Value Operations

The following functions operate on values:
seadmapi_FetchListPropVal

Gets the values for a list type property.
seadmapi_FetchSinglePropVval

Gets the values for a single value property.
seadmapi_FreelListPropVal

Free the list of values from FetchListPropVal.
seadmapi_SetSinglePropVal

Sets the value of one property value type.

190 SDK Guide

Function Library

Query Operations

The following functions perform queries:
seadmapi_GetEntity

Retrieves an entire object and its properties values, using the previously
initialized entity ruler.

seadmapi_GetExXEntity

Retrieves an entire object and its properties values, including the object
and class names, using the previously initialized entity ruler.

seadmapi_GetGracelnfo
Retrieves grace information about the user.
seadmapi_ InitEntityRuler

Initializes an entity query buffer used for GetEntity and GetExEntity
operations.

seadmapi_KIillEXEntityMem

Frees memory allocated for entity style query by the InitEntityRuler
function.

seadmapi_KillPDFList

Frees the list of properties descriptors allocated by the MakePDFList
function.

seadmapi__MakePDFList
Creates a property descriptors list from a list of properties names.
seadmapi_OidToName

Translates an object ID to object name.

Administration APl 191

Function Library

Log Files Interface

The following functions operate on the log files:
seadmapi_SendAdminAudit

Submits an ADMIN audit record.
seadmapi_SendAuditRecord

Provides interface to submit audit record.
seadmapi_SendCwsAudit

Submits a connect-with-service resource audit record.
seadmapi_SendErrorLog

Submits a note to the error log.
seadmapi_SendGenrAudit

Submits a general-resource audit record.
seadmapi_SendlnetAudit

Submits a TCP/IP audit record.
seadmapi_SendLoginAudit

Submits a login audit record.
seadmapi_SendShutdownAudit

Submits an audit record of shutdown.
seadmapi_SendStartupAudit

Submits an audit record of startup.
seadmapi_SendUserAudit

Submits a user audit record.
seadmapi_SendWatchdogAudit

Submits a watchdog audit record.
seadmapi_SendNfAdminAudit

Submits an ADMIN notification record.
seadmapi_SendNfCwsAudit

Submits a connect-with-service resource notification record.
seadmapi_SendNfGenrAudit

Submits a general-resource notification record.
seadmapi_SendNflnetAudit

Submits a TCP/IP notification record.

seadmapi_SendNfLoginAudit

192 SDK Guide

Function Library

Submits a login notification record.
seadmapi_SendNfShutdownAudit

Submits a notification record of shutdown.
seadmapi_SendNfStartupAudit

Submits a notification record of startup.
seadmapi_SendNfUserAudit

Submits a user notification record.
seadmapi_SendNfWatchdogAudit

Submits a watchdog notification record.

Administration APl 193

Function Library

Console Operations

The following functions provide console operations:
seadmapi_consAllLoginDisable

Disables all login to system.
seadmapi_consAllLoginEnable

Enables all login to system.
seadmapi_consAllLoginGetStatus

Gets status of global-login control.
seadmapi_consMessageSend

Sends a message to eTrust AC trace.
seadmapi_consRefreshlPAddresses

Refreshes host name to IP address resolution.
seadmapi_consRunTimeStatisticsGet

Gets runtime statistics information.
seadmapi_consShutdown

Shuts down eTrust AC.
seadmapi_consTraceClear

Clears the trace file.
seadmapi_consTraceDisable

Disables eTrust AC trace.
seadmapi_consTraceEnable

Enables eTrust AC trace.
seadmapi_consTraceGetStatus

Returns status of eTrust AC trace.
seadmapi_consTraceToggle

Toggles eTrust AC trace.
seadmapi_consUidLoginDisable

Disables login for user ID.
seadmapi_consUidLoginEnable

Enables login for user ID.
seadmapi_consUidLoginGetStatus

Gets UID concurrent login status.

194 SDK Guide

Function Library

Miscellaneous Operations

The following functions perform functions that do not fall into any of the
previous categories:
seadmapi_FreeAceeMemory

Frees memory allocated by the seadmapi_GetACEE function.
seadmapi_GetACEE

Retrieves the current process user's ACEE.
seadmapi_GetMessage

Retrieves an error string from a given error code, using the eTrust AC
message file.

seadmapi_GetObjType

Retrieves information on the user type of the current process.
seadmapi_init

Initializes the communication channel with eTrust AC.
seadmapi_IsSeOSSyscallLoaded

Determines if eTrust AC system call is loaded.
seadmapi_ProcessControl

Provides control over current process.
seadmapi_WhoAml

Retrieves information on current process
seadmapi_Whols

Retrieves attribute information about the user.
sepass_ReplacePassword

Replaces the user password with a new password.

Administration APl 195

seadmapi_ClassGet Functions

seadmapi_ClassGet Functions

These functions retrieve information on a class that is defined in the database.

B The seadmapi_ClassGetFirst function retrieves information on the first
class defined in the database.

® The seadmapi_ClassGetNext function retrieves information on the next
class that is defined in the database. This function uses the class ID from
the previous call to the seadmapi_ClassGetNext function or, if this is the
first time the seadmapi_ClassGetNext function is being called, the class ID
is obtained from the seadmapi_ClassGetFirst function. The classes are
scanned in the order of their class names.

B The seadmapi_ClassGetEqual function retrieves information about a
specific class. The class is identified by its class name or class ID.

To scan all the classes in the database, first call the seadmapi_ClassGetFirst
function, and then call the seadmapi_ClassGetNext function for each
subsequent class.

These functions can be called by processes executed by users who have any of
the following attributes:

= AUDITOR

® SERVER

The Watchdog and the agent are also allowed to use these functions.

If the function succeeds, it returns zero; if it fails, it returns an error code.

int seadmapi ClassGetEqual(const char *szClass, \
SEOS CID cid, \
SEOSDB_CDF *p seclass);
int seadmapi ClassGetFirst(SEOSDB CDF *p seclass);
int seadmapi ClassGetNext(SEOSDB CDF *p seclass);

szClass

The name of the class whose information is to be retrieved. If a class ID is
specified in the cid parameter, set this parameter to NULL.

cid
The class ID of the class whose information is to be retrieved. If a class
name is specified for the szClass parameter, set this parameter to -1.

p_seclass

A pointer to the structure that is to hold the information retrieved by the
function. For seadmapi_ClassGetNext, the data structure must contain the
values from a previous call to the ClassGetNext function or the
ClassGetFirst function.

196 SDK Guide

seadmapi_ClassGet Functions

Example

/%

Project : eTrust

Module : eTrust Version: 8.0
File : sample ListClass.c

Purpose : Sample seadmapi: List class names.

Copyright :

Copyright 2004 Computer Associates International, Inc.

*/

#include <ctype.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <seadmapi.h>
int main (void)
{ SEOSDB_CDF cdf;

int rv;
/* ___ */
/* Get the first class from the database. */
/* ___ */

rv = seadmapi ClassGetFirst(&cdf);

if ((rv)

{ printf("seadmapi ClassGetFirst returned 0x%04x\n", rv);
return 1;
}

/* ___ */
/* If successful, continue looping for all the classes. */
/* ___ */

while (!'rv)

{ printf("%s\n", cdf.szCName);
rv = seadmapi ClassGetNext (&cdf);
}

return 0;

Administration APl 197

seadmapi PropGet Functions

seadmapi_PropGet Functions

These functions retrieve information on one or more properties defined in the
database.

® The seadmapi_PropGetFirstinClass function retrieves information about
the first property defined for the specified class.

® The seadmapi_PropGetNextInClass function retrieves information about
the next property that is defined in the database for the class. This
function uses the property ID from the previous call to the
seadmapi_PropGetNextInClass function or, if this is the first time the
seadmapi_PropGetNextInClass function is called, the property ID is
obtained from the seadmapi_PropGetFirstinClass function. The properties
are scanned alphabetically by their property names.

B The seadmapi_PropGetEqual function retrieves information about a specific
property, identified by its property name or property ID.

To scan all the properties in a specific class, first call the
seadmapi_PropGetFirstinClass function, and then call the
seadmapi_PropGetNextInClass function for each subsequent property.

These functions can be called by processes executed by users who have any of
the following attributes:

= AUDITOR
= SERVER

The Watchdog and the agent are also allowed to use these functions. Any
process can issue a seadmapi_PropGetEqual request on any property.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi PropGetEqual(const char *szClass,
SEOSDB_CDF *p seclass,
const char *szProp,
SEOS PID pid,
SEOSDB_PDF *p seprop);

int seadmapi PropGetFirstInClass(const char *szClass,
SEOSDB CDF *p seclass,
SEOSDB_PDF *p seprop);

int seadmapi PropGetNextInClass(SEOSDB PDF *p seprop);

szClass

The class name. When specifying a class description instead of a class
name, set this parameter to NULL.

198 SDK Guide

seadmapi_PropGet Functions

p_seclass

The class description. When specifying a class name instead of a class
descriptor, set this parameter to NULL. Note that when this parameter is
NULL, szClass must not be NULL.

szProp

The property name. When specifying a property ID instead of a property
name, set this parameter to NULL.

pid
The property ID. When specifying a property name instead of a property
ID, set this parameter to -1.

p_seprop
A pointer to the data structure that is to hold the information retrieved by
the function.

Example

The following example demonstrates the use of seadmapi_PropGetFirstinClass
and seadmapi_PropGetNextInClass to retrieve the values of a property in a
class.

Administration APl 199

seadmapi PropGet Functions

/%
Project : eTrust

Module : eTrust Version: 8.0
File : sample ListProp.c

Purpose : List properties of a specific class.

Copyright :
Copyright 2004 Computer Associates International, Inc.
*/

#include <ctype.h>

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <unistd.h>

#include <seadmapi.h>

static int ErrorMessage(int rv);

int main(int argc, char *argv[])

{ SEOSDB_CDF cdf; /* Class Description */
SEOSDB_PDF prop; /* Property Description */
char Class[CNAME SIZE+1];
unsigned props cnt = 0;
int rv;
if (argc<2)

{ fprintf(stderr, "Required parameter (class name) is
missing.\n");
return 1;

/* ___ */

/* Set class name by specified parameter. x/
/* ___ */
strcpy(Class, argv[l]);

/* ___ */

/* Clear property descriptor. */
/* ___ */
memset(&prop, 0, sizeof(prop));

/* ___ */

/* Check if class exists by getting the class descriptor. */
/* ___ */

rv = seadmapi ClassGetEqual(Class, 0, &cdf);

if (rv) return ErrorMessage(rv);

/* ___ */

/* Set the class ID in the property descriptor. */
/* ___ */
prop.sCId = cdf.sCId;

/* ___ */

/* Loop for all the properties in the class.

*/

/* Check for rv 0 or 1 to find all */
/* the properties that are equal to or greater than */

200 SDK Guide

seadmapi_PropGet Functions

/* the supplied property, which is 0. */
/* ___ */
rv = seadmapi PropGetFirstInClass(NULL, &cdf, &prop);
while ((rv =10) || (rv==1))
{ if (prop.sCId == cdf.sCId)
{ props_cnt++;
printf("%s %s\n", Class, prop.szPName);

}
rv = seadmapi PropGetNextInClass(&prop);
}
if (props cnt == 0)
printf("Class %s, does not contain this property.\n",
Class);
return 0;
}
/* __ */
/* Display error message. */
/* __ */
static int ErrorMessage(int rv)
{

char msg buff[1024];

seadmapi GetMessage(rv, sizeof(msg buff), msg buff);
fprintf(stderr, "%s.\n", msg buff);

return rv;

Administration APl 201

seadmapi_ObjGet Functions

seadmapi_ObjGet Functions

These functions retrieve information on an object (record) in the database.

The seadmapi_ObjGetFirstinClass function retrieves information about the
first object defined to a class.

The seadmapi_ObjGetNextInClass function retrieves information about the
next object defined in the class. The class ID is obtained by incrementing
the current class ID in the p_seobj structure by 1. The p_seobj structure
must have been set by a previous call to seadmapi_ObjGetFirstinClass or
seadmapi_ObjGetNextInClass.

To scan all the objects in a class sequentially, first call
seadmapi_ObjGetFirstinClass and then seadmapi_ObjGetNextInClass for
each subsequent object.

The seadmapi_ObjGetEqual function retrieves information about a specific
object. The object is identified by its object name or object ID.

The seadmapi_ObjGetGreaterEqual function retrieves information about
the object whose object ID or object name is greater than or equal to the
specified value.

These functions can be called by processes executed by users who have any of
the following attributes:

AUDITOR
SERVER

The Watchdog and the agent are also allowed to use these functions.

The seadmapi_ObjGetGreaterEqual function returns one of the following
values:

o

The function retrieved information on the object whose object ID is equal
to the object ID of the specified object.

1
The function retrieved information on the object whose object ID is greater
than the object ID of the specified object.

other

The function failed.

The remaining functions return O on success and an error code on failure.

202 SDK Guide

seadmapi_ObjGet Functions

int seadmapi ObjGetEqual(const char *szClass,
SEOSDB_CDF *p_seclass,
const char *sz0bj,
SEOS 0ID
oid,
SEOSDB_ODF *p _seobj);
int seadmapi ObjGetFirstInClass(const char *szClass,
SEOSDB_CDF *p seclass,
SEOSDB ODF *p seobj);
int seadmapi ObjGetNextInClass(SEOSDB ODF *p seobj);
int seadmapi ObjGetGreaterEqual(const char *szClass,
SEOSDB_CDF *p seclass,
const char *sz0bj,
SEOS 0ID oid,
EOSDB_ODF *p seobj);

szClass

The name of the class to which the object belongs. If the class is specified
using the p_seclass parameter, set this parameter to NULL.

p_seclass

A pointer to a structure containing the class descriptor. If the szClass
parameter is specified, set this parameter to NULL.

szObj

The name of the object whose value is to be fetched. If an object ID is
specified instead of an object name, set this parameter to NULL.

oid
The object ID of the object whose information is to be retrieved. When

specifying an object name instead of an object ID, set this parameter to
-2.

p_seobj

A pointer to the structure that is to hold the information retrieved by the
function.

Example

The following example demonstrates the use of seadmi_ObjGetFirstInClass
and seadmi_ObjGetNextInClass to retrieve all the objects in a specific class.

Administration APl 203

seadmapi_ObjGet Functions

/*
Project
Module
File
Purpose

1 eTrust
: eTrust Version: 8.0
: sample ListObjs.c
: Display the objects in a class.

Copyright :

Copyright

2004 Computer Associates International, Inc.
*/

#include
#include
#include
#include
#include
#include
static in
int main(
{ SEOSDB
SEOSDB
char

<ctype.h>

<stdio.h>

<string.h>

<sys/types.h>

<unistd.h>

<seadmapi.h>

t ErrorMessage(int rv);

int argc, char *argv([])

ODF odf; /* Current ODF in loop */

CDF cdf; /* Class Description */
Class[CNAME SIZE+1];

unsigned ents = 0;

int

rv;

if (argc<2)
{ fprintf(stderr, "Required parameter missing.\n");
fprintf(stderr, "Usage: 'Ss CLASS NAME'\n", argv[0]);
return 1;

/* _—_———
/* Set
/* _—_———
strepy (
/* _—_———
/* Clea
/* _—_———
memset (
/* _—_——
/* Chec
/* _—_———

class name by specified parameter. */

Class, argv[l]);

r object descriptor. */

&odf, 0, sizeof(odf));

k if class exists by getting the class descriptor. */

rv = seadmapi ClassGetEqual(Class, 0, &cdf);

if (rv)

/* ————
/* Set
/* _————
odf.sCI
/* _————

return ErrorMessage(rv);

the class ID in the object descriptor. */

d = cdf.sCId;

/* Loop for all the objects in the class. */

/* _———

rv = seadmapi ObjGetFirstInClass(NULL, &cdf, &odf);

204 SDK Guide

seadmapi_ObjGet Functions

while ((rv =10) || (rv==1))
{ if (odf.sCId == cdf.sCId)
{ ents++;
printf("%s %s\n", Class, odf.szOName);

rv = seadmapi ObjGetNextInClass(&odf);

}
if (ents >0)
printf("Total of %d objects found in Class=%s\n", ents,

Class);

else

printf("Class %s, does not have any object.\n", Class);

return 0;
}
/* __ */
/* Display error message from security daemon. */
/* __ */

static int ErrorMessage(int rv)

{ char msg buff[1024];
seadmapi GetMessage(rv, sizeof(msg buff), msg buff);
fprintf(stderr, "%s.\n", msg buff);
return rv;

More information:

seadmapi_ObjInClassList Function (see page 206)

Administration API 205

seadmapi_ObjlinClassList Function

seadmapi_ObjInClassList Function

The seadmapi_ObjInClassList function retrieves a list of objects in a specified
class.

The field SEADMAPI_MAXOBJSLIST specifies the limit on the number of entries
that can be retrieved in a single call.

After calling this function, you should call the seadmapi_FreeObijList function
to free the memory allocated for the query. Use the ptr argument returned
from this function.

If the function succeeds, it returns 0; if it fails, it returns an error code.

int seadmapi ObjInClassList (SEOSDB CDF *pcdf,

char *start,
void **ptr,
char **names,
int *count) ;

pcdf

A pointer to the class description.
start

A string representing the object name that should start the list.
ptr

A pointer to a "void *" that is used to free memory allocated for the list
query.
names

A pointer to a vector of char pointers. Each element points to an object
name.

count
On entry, the size of the names vector. On return, the number of entries in

the vector.

More information:

seadmapi_FreeObjList Function (see page 207)
seadmapi_ObjGet Functions (see page 202)

206 SDK Guide

seadmapi_FreeObijList Function

seadmapi_FreeODbijList Function

The seadmapi_FreeObijList function frees the memory allocated by the
seadmapi_ObjInClassList function.

The function assigns NULL to *ptr.

There is no return value.

int seadmapi FreeObjList (void **ptr);
ptr

The pointer as obtained by the most recent call to the
seadmapi_ObjInClassList function.

More information:

seadmapi_ObjInClassList Function (see page 206)

seadmapi_FetchListPropVal Function

The seadmapi_FetchListPropVal function retrieves the values of a property that
contains a list. The function cannot retrieve the value of a single-value
property; use the seadmapi_FetchSinglePropVal function instead.

The function allocates a vector of void pointers, each pointing to an allocated
buffer that holds a single element in the list. The caller has to define a variable
of type void ** or any other type that is a pointer to a pointer (that is, int **).
The caller sends a pointer to this variable, as shown in the following example.

{ int **1ist;
unsigned int psize, count;
int re;

rc = seadmapi_ FetchListPropVal(..,
(void ***)§list, &psize, &count);

Memory layout after call:

Argument Description
[elemO] 1st data element
[elem1] 2nd data element
[elemN] N+1 data element

Administration APl 207

seadmapi FetchListPropVal Function

where elemN is stored in the variable count.

All data fetched by this function is allocated and must be freed. To free the
data, call the seadmapi_FreeListPropVal function.

The function can be called by processes executed by users who have any of
the following attributes:

= AUDITOR

® SERVER

The Watchdog and the agent are also allowed to use this function.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi FetchListPropVal(const char *sz(Class,
SEOSDB_CDF *p_seclass,
const char *sz0bj,
SEOSDB_ODF *p_seobj,
const char *szProp,
SEOSDB_PDF *p_seprop,
void ***kyal,
unsigned int *psize,
unsigned int *count);

szClass

The name of the class to which the object belongs. If the class is identified
by the p_seclass parameter, set this parameter to NULL.

p_seclass

A pointer to a structure containing the class description. If the class is
identified by the szClass parameter, set this parameter to NULL.

szObj

The name of the record whose property value is to be fetched. If the
object is identified by the p_seobj parameter, set this parameter to NULL.

p_seobj

A pointer to the structure containing the object description. If the object is
identified by the szObj parameter, set this parameter to NULL.

szProp

The name of the property whose value is to be fetched. If the property is
identified by the p_seprop parameter, set this parameter to NULL.

p_seprop

A pointer to the structure containing the property description. If the
property is identified by the szProp parameter, set this parameter to NULL.

208 SDK Guide

seadmapi_FetchListPropVal Function

val

A pointer to a pointer to a pointer of the type of value fetched. For more
information, see the description following this list.

psize
The size of the fetched value.
count

The number of elements in the allocated vector.

Example

The following example demonstrates using the seadmapi_FetchListPropVal
function to retrieve the values of a property that contains a list. This example
also demonstrates the use of the seadmapi_gconn structure to display all the
groups to which a user is linked.

Administration APl 209

seadmapi FetchListPropVal Function

/*
Project : eTrust
Module . eTrust Version: 8.0
File : sample FetchList.c
Purpose : Sample for seadmapi, Display a property that
contains a list. Display list of groups user is
connected to.
Copyright :
Copyright 2004 Computer Associates International, Inc.
*/
#include <stdio.h>
#include <string.h>
#include <seadmapi.h>
static int ErrorMessage(int rv);
int main(int argc, char *argv[])
{ SEOSDB_ODF odf;
SEOS_GCONN **list;
char Object[ONAME SIZE+1];
unsigned int elem size;
unsigned int list cnt;
int rv;
int cnt;
if (argc<2)
{ fprintf(stderr, "Required parameter (User Name)
missing.\n");
return 1;
}
/* ___ */
/* Set object name by specified parameter. */
/* ___ */
strcpy(Object, argv[1]);
/* __ */
/* Get the list for class=USER, property=GROUPS, */
/* object=Specified Parm */
/* __ */
rv = seadmapi FetchListPropVal("USER", NULL,
Object, NULL,
"GROUPS", NULL,
(void ***)&list,
&elem size, &list cnt);
/* ___ */
/* Exit with error message in case we fail to get the list. */
/* ___ */
if (rv != 0) return ErrorMessage(rv);
/* ___ */
/* Display all groups from the list in a loop. */
/* ___ */

for(cnt=0; cnt<list cnt; cnt++)

210 SDK Guide

seadmapi_FetchListPropVal Function

{ rv = seadmapi ObjGetEqual("GROUP", NULL, NULL,
list[cnt]->0idGroup, &odf);
if (rv=0)
{ printf("Group Name: %-10s (id=%61d)", odf.szOName,
list[cnt]->0idGroup);
if (list[cnt]->ugmUserMode
{ printf(", Group");
if (list[cnt]->ugmUserMode & SEOS UGMODE AUDITOR)
printf(" auditor");
if (list[cnt]->ugmUserMode & SEOS UGMODE PWMANAGER)
printf(" pwmanager");
if (list[cnt]->ugmUserMode & SEOS UGMODE ADMIN)
printf(" administrator");
}
else
printf(", Regular")
printf(".\n");
}
else
printf("Group id: %ld, no longer exits in database.\n",
list[cnt]->0idGroup);

}
/* __ */
/* Free the list. */
/* ___ */
seadmapi FreeListPropVal((void ***)&list, &list cnt);
return 0;
}
/* __ */
/* Display an error message from the security daemon. */
/* __ */

static int ErrorMessage(int rv)

{ char msg buff[1024];
seadmapi_GetMessage(rv, sizeof(msg buff), msg buff);
fprintf(stderr, "%s.\n", msg buff);
return rv;

More information:

seadmapi_FetchSinglePropVal Function (see page 212)
seadmapi_FreeListPropVal Function (see page 219)

Administration APl 211

seadmapi FetchSinglePropVal Function

seadmapi_FetchSinglePropVal Function

The seadmapi_FetchSinglePropVal function retrieves the value of a property
that contains a single value. The function cannot be used to retrieve lists; for
properties that contain lists, use the function seadmapi_FetchListPropVal. To
store the property's data, the calling program must allocate the space in
memory pointed to by the val variable. To determine the size required, use the
property descriptor sPVSize member or some other means.

The seadmapi_FetchSinglePropVal function can be called by processes
executed by users who have any of the following attributes:

= AUDITOR

® SERVER

The Watchdog and the agent are allowed to use this function.

This function can be used by any user who wants to view private data. The
values are set to those of the user's own record.

This function can be used by any user to retrieve values for records of the
SUDO class or the SEOS class.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi FetchSinglePropVal(const char *szClass,
SEOSDB_CDF *p seclass,
const char *szObj,
SEOSDB ODF *p seobj,
const char *szProp,
SEOSDB_PDF *p seprop,
void *val,
int *size);
szClass

The name of the class to which the object belongs. If the class is identified
by the p_seclass parameter, set this parameter to NULL.

p_seclass

A pointer to a structure containing the class description. If the class is
identified by the szClass parameter, set this parameter to NULL.

szObj

The name of the record whose property value is to be fetched. If the
record is identified by the p_seobj parameter, set this parameter to NULL.

p_seobj

A pointer to the structure containing the object description. If the object is
identified by the szObj parameter, set this variable to NULL.

212 SDK Guide

seadmapi_FetchSinglePropVal Function

szProp

The name of the property that is to be fetched. If the property is identified
by the p_seprop parameter, set this variable to NULL.

p_seprop

A pointer to the structure containing the property description. If the
property is identified by the sz_Prop parameter, set this variable to NULL.

val
A pointer to a location in memory where the result is to be stored.
size

On entry, this value is the size of the memory area pointed to by the
parameter val. On return, this value is the size of the data stored in the
memory area.

UNIX Example

In UNIX, the following example demonstrates the use of
seadmapi_FetchSinglePropVal to retrieve the value of a single property.

Administration APl 213

seadmapi FetchSinglePropVal Function

/%
Project : eTrust
Module : eTrust Version: 8.0
File : sample FetchSingle.c
Purpose : Sample for seadmapi, List the value for a given
property in a specific object in a specific class
in a UNIX system.

Copyright :
Copyright 2004 Computer Associates International, Inc.

*/
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <seadmapi.h>
static int ErrorMessage(int rv);
int main(int argc, char *argv[])
{ SEOSDB PDF prop; /* Property Description */
char Class[CNAME SIZE+1];
char Object[ONAME SIZE+1];
char Property[PNAME SIZE+1];
char *prop_val;
int data size;
int rv;
/* ___ */
/* Check if Se0S syscall is loaded. */
/* __ */
rv = seadmapi IsSe0SSyscalllLoaded();
if (rv 1=0)
fprintf(stderr, "Database server is not running.\n");
return 1;

~ o~

/* __ */
/* Check if the user supplied all required parameters. */
/* __ */
if (argc < 4)
{ fprintf(stderr, "Required parameter(s) missing.\n");
fprintf(stderr, "Usage: 'Ss CLASS NAME PROPERTY NAME
OBJECT NAME'\n", argv[0]);
return 1;

/* __ */
/* Set the class, property, and object fields. */
/* __ */
strecpy(Class, argv[1]);

214 SDK Guide

seadmapi_FetchSinglePropVal Function

strcpy(Property, argv[2]);

strcpy(Object, argv[3]);

/* ___ */

/* Clear the property and object fields. */
/* __ */
memset(&prop, 0, sizeof(prop));

/* __ */

/* Get the property descriptor. */
/* __ */

rv = seadmapi PropGetEqual(Class, NULL, Property, 0, &prop);

if (rv) return ErrorMessage(rv);

/* ___ */
/* Check for string type. */
/* ___ */

if (prop.cPType != SEOSDB PTYPE STR)
{ fprintf(stderr, "This sample can display only character
values.\n");

return 1;
}
/* __ */
/* Allocate memory for the value's data according to the */
/* property size *)
/* __ */

prop val = (char *)malloc((size t)prop.sPVSize);
if (prop val == NULL)
{ fprintf(stderr, "Failed to allocate required memory for
property value.\n");
return 1;
}
data size = prop.sPVSize;
/* __ */
/* Get the requested property value. */
/* __ */
rv = seadmapi FetchSinglePropVal(Class, NULL,
Object, NULL,
NULL, &prop,
prop val, &data size);
if (rv)
{ free(prop val);
return ErrorMessage(rv);
}
printf("%ss\n", prop val);
free(prop val);
return 0;

/* ___ */
/* Display error message from security daemon. */

/* __ */
static int ErrorMessage(int rv)

Administration APl 215

seadmapi FetchSinglePropVal Function

{ char msg buff[1024];
seadmapi_GetMessage(rv, sizeof(msg buff), msg buff);
fprintf(stderr, "%s.\n", msg buff);
return rv;

Windows Example

In Windows, the following example demonstrates the use of
seadmapi_FetchSinglePropVal to retrieve the value of a single property.

216 SDK Guide

seadmapi_FetchSinglePropVal Function

/*
Project : eTrust
Module : eTrust Version: 4.10
File : sample FetchSingle.c
Purpose : Sample for seadmapi, List the value for a given
property in a specific object in a specific class.
Copyright :
Copyright 2004 Computer Associates International, Inc.
*/
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <seadmapi.h>
static int ErrorMessage(int rv);
int main(int argc, char *argv[])
{ SEOSDB PDF prop; /* Property Description */
char Class[CNAME SIZE+1];
char Object[ONAME SIZE+1];
char Property[PNAME SIZE+1];
char *prop_val;
int data size;
int rv;
/* __ */
/* Check if the user supplied all required parameters. */
/* __ */

if (argc < 4)

{ fprintf(stderr, "Required parameter(s) missing.\n");
fprintf(stderr, "Usage: 'S%s CLASS NAME PROPERTY_NAME

OBJECT_NAME'\n", argv[0]);
return 1;

/* __
/* Set the class, property, and object fields.

/* __
strcpy(Class, argv[1]);

strcpy(Property, argv[2]);

strcpy(Object, argv[3]);

/* __
/* Clear the property and object fields.

/* __
memset(&prop, 0, sizeof(prop));

/* __
/* Get the property descriptor.

/* __

rv = seadmapi PropGetEqual(Class, NULL, Property, 0, &prop);

Administration APl 217

seadmapi FetchSinglePropVal Function

if (rv) return ErrorMessage(rv);

/* ___ */
/* Check for string type. */
/* ___ */

if (prop.cPType != SEOSDB PTYPE STR)
{ fprintf(stderr, "This sample can display only character
values.\n");

return 1;
}
/* __ */
/* Allocate memory for the value's data according to the */
/* property size %
/* ___ */

prop val = (char *)malloc((size t)prop.sPVSize);
if (prop_val == NULL)
{ fprintf(stderr, "Failed to allocate required memory for
property value.\n");
return 1;
}
data size = prop.sPVSize;
/* __ */
/* Get the requested property value. */
/* __ */
rv = seadmapi FetchSinglePropVal(Class, NULL,
Object, NULL,
NULL, &prop,
prop val, &data size);
if (rv)
{ free(prop val);
return ErrorMessage(rv);
}
printf("%s\n", prop val);
free(prop_val);

return 0;
/* ___ */
/* Display error message from security daemon. */
/* __ */

static int ErrorMessage(int rv)
{ char msg buff[1024];

seadmapi GetMessage(rv, sizeof(msg buff), msg buff);
fprintf(stderr, "%s.\n", msg buff);
return rv;

218 SDK Guide

seadmapi_FreelistPropVal Function

seadmapi_FreelistPropVal Function

The seadmapi_FreeListPropVal function must be used after fetching the list
values using the seadmapi_FetchListPropVal function to free the memory
allocated for the values. The parameters supplied to this function must be the
same as those supplied to the seadmapi_FetchListPropVal function.

Any process can call this function.

There is no return value.

void seadmapi FreeListPropVal(void ***1ist, unsigned int *count);
list

A pointer to the vector allocated by the seadmapi_FetchListPropVal
function.

count

A pointer to the number of elements in the allocated vector.
More information:

seadmapi_FetchListPropVal Function (see page 207)

Administration APl 219

seadmapi_SetSinglePropVal Function

seadmapi_SetSinglePropVal Function

The seadmapi_SetSinglePropVal function sets the value of a single-value
property. The function is used by the Watchdog and the agent. To prevent
damage to the database, no other process is permitted to use this function.

The seadmapi_SetSinglePropVal function can be used only by the Watchdog
and the agent.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi SetSinglePropVal(const char *szClass,
const char *sz0Obj,
const char *szProp,

void *val,
int size);
szClass

The name of the class to which the record belongs.
szObj

The name of the record whose property is to be set.
szProp

The name of the property whose value is to be set.
val

The value to be assigned to the property.
size

The size, in bytes, of the value.

220 SDK Guide

seadmapi_MakePDFList Function

seadmapi_MakePDFList Function

The seadmapi_MakePDFList function retrieves the entire list of properties of a
given class. The function allocates memory for the properties vector.

After using the seadmapi_MakePDFList function, free the allocated memory
using the seadmapi_KillPDFList function.

These functions can be called by processes executed by users who have any of
the following attributes:
= AUDITOR

® SERVER
The Watchdog and the agent are also allowed to use these functions.

If the seadmapi_MakePDFList function succeeds, it returns O; if it fails, it
returns an error code.

void seadmapi KillPDFList(SEOSDB PDF **ppPdf,
unsigned int nCount);

int seadmapi_MakePDFList(const char *szClass,

SEOSDB_PDF **ppPdf,

unsigned int *nCount) ;
szClass

The class name.
ppPdf

A pointer to the SEOSDB_PDF pointer that points to the allocated region of
memory that holds the properties vector.

nCount

The number of properties in the vector.

Administration APl 221

seadmapi_Entity Functions

seadmapi_Entity Functions

The seadmapi_GetEntity and seadmapi_GetExXEntity functions retrieve into the
ObjPVs vector all the values for the properties of a database object.

These functions are used by eTrust AC utilities and provide a convenient
method to fetch the information from the database. For more information, see
the rdbdump utility in the UNIX Utilities Guide.

To use these functions, first call the seadmapi_InitEntityRuler function to
initialize the list of properties that are of interest to the caller. Next, call the
seadmapi_GetEntity or seadmapi_GetExEntity function to fetch the information
on a single object.

When you use the seadmapi_GetEntity function, the vector receives all the
information about the property (the property description) and the property
values. All properties are retrieved and stored as if they were list property
values. Single-value properties are also stored as lists, with one entry.

When you use the seadmapi_GetExEntity function, the vector receives the
same information, except that all property values that contain IDs of other
objects are expanded. For example, instead of receiving an owner's ID, the
function retrieves the expanded OID that contains the ID and the owner's class
and name.

After using the information, call the seadmapi_KillEntityMem or
seadmapi_KillExEntityMem function to free all memory required for the
operation.

A user can initialize the ObjPVs vector from a previous call to the
seadmapi_MakePDFList function. The vector pointed to by the ObjPVs
parameter should contain the last element with the property name set to
NULL. The functions use this method to determine the size of the vector.

The SEOSDB_ENTDAT, SEOS_X_OID, SEOS_X_GCONN, SEOS_X_ACL, and
SEOS_X_PACL structures are defined in the seostypes.h header file.

To see the way data is fetched, see the notes for the
seadmapi_FetchListPropVal function in this chapter.

After each call to seadmapi_GetEntity or seadmapi_GetExEntity, make sure
you call seadmapi_KillEntityMem or seadmapi_KIillEXEntityMem, respectively,
to free the memory allocated by the seadmapi_GetEntity or
seadmapi_GetExXEntity function.

These functions can be called by processes executed by users who have any of
the following attributes:

= AUDITOR

222 SDK Guide

seadmapi_Entity Functions

® SERVER
The Watchdog and the agent are also allowed to use these functions.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi GetEntity(const char *szCName,
const char *sz0Name,
SEOSDB_ODF *podf,
SEOSDB_ENTDAT *Q0bjPVs);
int seadmapi GetExEntity(const char *szCName,
const char *sz0OName,
SEOSDB_ODF *podf,
SEOSDB_ENTDAT *Q0bjPVs);

int seadmapi InitEntityRuler(const char *szCName, SEOSDB ENTDAT *ObjPvs);
void seadmapi KillEntityMem(SEOSDB ENTDAT *ObjPVs);

void seadmapi KillExEntityMem(SEOSDB ENTDAT *QObjPVs);
szCName
The class name.
szOName
The object name.
podf
A pointer to a memory area to be filled with the object description.
ObjPVs

A pointer to a vector with both property description and value list.
Example

The following example demonstrates the use of the seadmapi_InitEntityRuler
and seadmapi_GetExEntity functions.

Administration APl 223

seadmapi_Entity Functions

/\k

Project : eTrust

Module 1 eTrust Version: 8.0
File : sample TermOwn.c

Purpose : Display terminal's owner.

Copyright :

Copyright 2004 Computer Associates International, Inc.

When working in UNIX, remember to point an environment
variable to the shared library path by entering the command
setenv LD LIBRARY PATH/opt/CA/eTrustAccessControl/lib/

__ */

#include <ctype.h>

#include <stdio.h>

#include <sys/types.h>

#include <memory.h>

#include <seadmapi.h>

static int ErrorMessage(int rv);

int main(int argc, char *argv[])

{ SEOSDB ODF odf; /* Object definition */
SEOSDB_ENTDAT entdat[2]; /* Entity data */
SEOS X 0ID *owner;
int rv;

/* __ */

/* Check if user specified the terminal name.

*/

/* __ */
if (argc=1)

{ printf("Usage: '%s terminal name'\n", argv[0]);
return 1;
}

/* __ */

/* Initialize entity data.

*/

/* __ */
memset (entdat, 0, sizeof(entdat));

/* __ */

/* Set the ruler for the database request.

*/

/* __ */
entdat[0].szPName = "OWNER"; /* Owner */
entdat[1].szPName = NULL; /* Null terminator */
rv = seadmapi InitEntityRuler("TERMINAL", entdat);

/* __ */

/* Exit with error message in case we fail to set the ruler.*/

/* __ */

224 SDK Guide

seadmapi_Entity Functions

if (rv =0) return ErrorMessage(rv);

/* __ */
/* Get all data.
*/
/* __ */
rv = seadmapi GetExEntity("TERMINAL", /* Class name */
argv[1], /* Terminal name */
&odf, /* Object definition */
entdat); /* Entity data */
/* __ */
/* Exit with error message in case we fail to get the data */
/* __ */
if (rv =0) return ErrorMessage(rv);
/* ___ */
/* Display OWNER information.
*/
/* __ */

if (entdat[0].nPVQty != 0)
{ owner = (SEOS X OID *)entdat[0@].pPVList[O];
if (owner->pCName != NULL)
printf("OWNER = %s %s, id=%d\n", owner->pCName,
owner->pOName, owner->0id);

else
printf("OWNER = (id=%d)\n", entdat[0].pPVList);
}
else
printf("OWNER = \n");
return 0;
}
/* __ */
/* Display error message. */
/* __ */

static int ErrorMessage(int rv)

{ char msg buff[1024];
seadmapi GetMessage(rv, sizeof(msg buff), msg buff);
fprintf(stderr, "%s.\n", msg buff);
return rv;

More information:

seadmapi_MakePDFList Function (see page 221)

Administration APl 225

seadmapi_GetGracelnfo Function

seadmapi_GetGracelnfo Function

This function retrieves information regarding a user's password, date of last
login, and the number of grace logins that the user still has.

The function can be called by processes executed by users who have the
ADMIN attribute.

All users can execute this function for themselves.
int seadmapi GetGraceInfo(SEGRACE RES *p sgr);

p_sgr

A pointer to the structure that contains the information regarding user
logins and grace days.

UNIX Example

The following example demonstrates the use of the seadmapi_GetGracelnfo
function in a UNIX system.

226 SDK Guide

seadmapi_GetGracelnfo Function

/*

Project : eTrust

Module . eTrust Version: 4.10

File : sample grace.c

Purpose : Sample for seadmapi: Display information from the

Access Control database about the user's grace
logins.

Copyright :

Copyright 2004 Computer Associates International, Inc.

*/

#include <ctype.h>

#include <stdio.h>

#include <sys/types.h>

#include <seadmapi.h>

int main(void)

{ SEGRACE_RES sgr; /*Grace information structure */
int rv; /*Return value */
/* __ */

/* Quit if the kernel extension is not running. */
/* __ */
rv = seossfr IsSe0SSyscalllLoaded();
if (rv)

{ fprintf(stderr, "The kernel extension is not loaded.\n");

return rv;

}
/* __ */
/* Quit if the security daemon is not running. */
/* __ */
rv = seadmapi IsServerRunning();
if (rv)

{fprintf(stderr, "Security daemon is not running.\n");

return rv;

}
/* __ */
/* Set username to 'Q' to get current user's */
/* grace information */
/* __ */
sgr.uname[0] = 0;
/* __ */
/* Get grace information from the database. */
/* __ */
rv = seadmapi GetGraceInfo(&sgr);
/* __ */
/* If rv is not zero, display an error message and quit. */
/* __ */
if (rv)

{ if (sgr.step)
{ if (sgr.msg[0] !'= 0)

Administration APl 227

seadmapi_GetGracelnfo Function

fprintf(stderr, "%s\n", sgr.msg);

return 1;

}
}
/* ___ */
/* Display the number of grace logins. */
/* ___ */
printf("User %s has %d grace logins.\n", sgr.uname, sgr.grace);
return 0;

Windows Example

The following example demonstrates the use of the seadmapi_GetGracelnfo
function in the Windows environment.

228 SDK Guide

seadmapi_GetGracelnfo Function

/*

Project : eTrust

Module . eTrust Version: 4.10

File : sample grace.c

Purpose : Sample for seadmapi: Display information from the

Access Control database about the user's grace
logins.

Copyright :

Copyright 2004 Computer Associates International, Inc.

*/

#include <ctype.h>

#include <stdio.h>

#include <sys/types.h>

#include <seadmapi.h>

int main(void)

{ SEGRACE_RES sgr; /*Grace information structure */
int rv; /*Return value */
/* __ */

/* Quit if the kernel extension is not running */
/* __ */
rv = seossfr IsSe0SSyscalllLoaded();
if (rv)
{ fprintf(stderr, "The kernel extension is not loaded.\n");
return rv;
}
/* __ */
/* Set username to '0Q' to get current user's grace information*/
/* __ */
sgr.uname[0] = 0;
/* __ */
/* Get grace information from the database. */
/* __ */
rv = seadmapi GetGraceInfo(&sgr);
/* __ */
/* If rv is not zero, display an error message and quit. */
/* __ */
if (rv)
{ if (sgr.step)
{ if (sgr.msg[0] !'= 0)
fprintf(stderr, "%s\n", sgr.msg);
return 1;
}
}
/* ___ */
/* Display the number of grace logins. */
/* ___ */

printf("User %s has %d grace logins.\n", sgr.uname, sgr.grace);

Administration APl 229

seadmapi_OidToName Function

return 0;

}

seadmapi_OidToName Function

This function provides a convenient way of translating an object ID to a string
containing the object name. If the object does not exist in the database-for
instance, if the object has been deleted-the string returned by this function is
NULL.

The pointer returned by this function is a pointer to a static area, overwritten
by each subsequent call. This makes the function unsafe when using
multi-threads.

The function can be called by processes executed by users who have any of
the following attributes:

= AUDITOR
® SERVER

The Watchdog and the agent are also allowed to use these functions.

If the function succeeds, it returns the name of an object; if it fails, it returns
NULL.

char *seadmapi OidToName(SEOS OID oid);
oid
The object ID of the record.

More information:

seadmapi_ObjGet Functions (see page 202)

230 SDK Guide

seadmapi_WhoAml Function

seadmapi_WhoAml Function

This function provides information about the current process to the Engine.
The information returned by the function may be used to fetch other
information from the database or from the Authorization Engine.

Things you should know about this function include:

B Each parameter is a pointer to a user variable that is assigned a value by
the function. Any parameter may be NULL, in which case, it is not assigned
a value.

® The handle returned by the function is an ACEE handle associated with the
current process. Note that there may be more than one process with the
same ACEE; in fact, this is usually the case, because each user has more
than one process running in the system.

® The memory area pointed to by the szUName parameter must be large
enough to accommodate 255 characters.

® The function is used by the sewhoami utility.

® The header file seadmapi.h contains several macros that operate on the
objtype variable data to determine whether a user has a specific attribute.
These macros have the command notation of SEOS_UMODE_is_attribute.

B Every process in the system can call this function.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi WhoAmI(uid t *uid, int *handle, char *szUName, SEOS UMODE *objtype);
uid
The UID associated with the current process. In UNIX, this is equivalent to

and safer than using the getlogin UNIX function.

handle

The ACEE handle associated with the current process. See the Notes in this
section.

szUName
The user name associated with the current process.

objtype
The user type as saved in the database. This specifies the attributes
assigned to the user.

Example

The following example demonstrates the use of the seadmapi_WhoAml
function.

Administration APl 231

seadmapi WhoAml Function

/*
Project : eTrust
Module : eTrust Version:
Purpose : Display information about the user from the
Access Control database.
Copyright :
Copyright 2004 Computer Associates International, Inc.
*/

#include <ctype.h>
#include <stdio.h>
#include <sys/types.h>
#include <seadmapi.h>
int main(void)
{ SEOS_UMODE objtype; /* Object type */

uid t
ulD; /* User ID */

char uName[256]; /* User name */

int handle;

/* Handle */

int regular = 1; /* Mode flag */

int rv;
/* __ */
/* Get user information from the database.
*/
/* __ */

rv = seadmapi WhoAmI(&uID, &handle, uName, &objtype);
/* __ */
/* If failed, display message and quit.
*/
/* __ */

if ((rv !=0) || (uName[0] = '?'))

{ fprintf(stderr, "Can't find current user name.\n",
uName, rv);
return 1;
}

/* __ */
/* Display the user information:
*/
/* __ */

printf("User Name : %s\n", uName) ;

printf("User ID : %ld\n", ulD);

printf("User Handle : %ld\n", handle);
/* __ */
/* Display user authorization attributes by using the
*/
/* SEOS UMODE_is macro.

*/

232 SDK Guide

seadmapi_Whols Function

printf("User Mode :");
if (SEOS UMODE is auditor(objtype))
{ printf(" AUDITOR");
regular = 0;

}

if (SEOS UMODE is operator(objtype))
{ printf(" OPERATOR");
regular = 0;

if (SEOS UMODE is admin(objtype))
{ printf(" ADMIN");
regular = 0;

if (SEOS UMODE is pwmanager(objtype))
{ printf(" PWMANAGER");
regular = 0;

if (regular)

printf(" REGULAR\n");
else

printf("\n");
return 0;

seadmapi_Whols Function

The seadmapi_Whols function supplies information about the specified user.
The function gets the user type-attribute-from the database. The memory area
pointed to by the szUName parameter must be large enough to accommodate
255 characters.

The seadmapi.h header file contains several macros that operate on the
objtype variable data to determine whether a user has a specific attribute.
These macros have the common notation of SEOS_UMODE_is_attribute. Any
process in the system can all this function.

If the function succeeds, it returns O; if it fails, it returns an error code.
int seadmapi WhoIs(char *szUName, SEOS UMODE *objtype);
szUName
The user name associated with the current process.
objtype

The user type as saved in the database. This specifies the attributes
assigned to the user.

Administration APl 233

seadmapi ACEE Function

seadmapi_ACEE Function

When given a handle, seadmapi_GetACEE retrieves the relevant ACEE
information. The function is also capable of scanning all ACEEs currently
allocated for users in eTrust AC. The information is loaded into a memory area
allocated by the function itself. The information filled in the CLIENT_ACEE
structure contains all the credentials for a given ACEE.

Things you should know about this function include:

B Processes are scanned by the ACEE handle number. It is possible that
scanning the ACEE handles will not return information on all allocated
ACEEs because of logins or logouts that have occurred since the scan
began.

® Every process in the system can use these functions. If a process wants to
query information on a handle other than the current ACEE, it must have
the ADMIN, SERVER, or AUDITOR attribute.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi GetACEE(int hAcee, CLIENT ACEE **ppAcee);
void seadmapi FreeAceeMemory(CLIENT ACEE **ppAcee);

ppAcee

A pointer to a pointer that is assigned to point to the memory area
allocated by seadmapi_GetACEE. The function seadmapi_FreeAceeMemory
receives this same address to free the allocated memory.

More information:

seadmapi_WhoAml Function (see page 231)

234 SDK Guide

seadmapi_GetMessage Function

seadmapi_GetMessage Function

This function retrieves an error description from the message file and places it
in the buffer pointed to by the buff parameter.

Every process in the system can use this function.

If the function succeeds, it returns O; if it fails, it returns an error code.
int seadmapi GetMessage(int err code, int size, char *buff);
err_code

The error code as returned by one of the eTrust AC functions.
size

The size of the buffer in bytes. Normally a 2 KB buffer is sufficient.
buff

A pointer to a buffer that contains the text describing the error.
Example

For examples that use this function, see seadmapi_FetchListPropVal and
seadmapi_FetchSinglePropVal in this chapter.

Administration API 235

seadmapi_GetObjType Function

seadmapi_GetObjType Function

This function retrieves the object type stored in the current process's ACEE.
This information can be used with several macros to determine whether the
current process belongs to a user with one of the special attributes that can be
assigned to a user-ADMIN, AUDITOR, PWMANAGER, and so forth.

The seadmapi.h header file contains several macros that operate on this
variable data to determine whether a user has a specific attribute. These
macros have the common notation of SEOS_UMODE_is_attribute.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi GetObjType(SEOS UMODE *objtype);
objtype

A pointer to a SEOS_UMODE type variable that is filled from the current
process's ACEE.

Example

The following example shows how to use the seadmapi_GetObjType.

236 SDK Guide

seadmapi_GetObjType Function

/*
Project : eTrust
Module . eTrust Version: 8.0
File : mymode.c
Purpose : Sample for seadmapi GetObjType
Display user's mode:
REGULAR AUDITOR ADMIN OPERATOR SERVER or PWMANAGER.
Copyright :
Copyright 2004 Computer Associates International, Inc.
*/
#include <stdio.h>
#include <seostype.h>
#include <seadmapi.h>
int main(void)
{ int rv;
SEOS UMODE umode;
if ((rv = seadmapi GetObjType(&umode)) == 0)
{
printf("My mode is Ox%x : ", umode);
if (umode !'= 0)
{
if (umode & SEOS UMODE AUDITOR)
printf("Auditor ");
if (umode & SEOS UMODE OPERATOR)
printf("Operator ");
if (umode & SEOS UMODE ADMIN)
printf("Admin ");
if (umode & SEOS UMODE SERVER)
printf("Server ");
if (umode & SEOS UMODE PWMANAGER)
printf("PwManager ");
}
else
printf("Regular ");
printf("\n");
return 0;
}
fprintf(stderr, "Error 0x%X for seadmapi GetObjType.\n", rv);
return 1;

More information:

seadmapi_WhoAml Function (see page 231)

Administration APl 237

seadmapi_init Function

seadmapi_init Function

This function initializes the communication channel with eTrust AC.

Every process in the system can use this function. The function is not used in
the Windows environment.

You must call the seadmapi_init or seadmapi_IlsSeOSSyscallLoaded function
before calling any other function in the seadmapi library. However, if you use
both functions, seadmapi_init must precede seadmapi_IlsSeOSSyscallLoaded.

This function returns O if initialization is successful or an error code on failure.
It verifies the exact eTrust AC system call loaded on the computer.

int seadmapi init(void)

seadmapi_IsSeOSSyscallLoaded Function

This function checks whether the eTrust AC system call is loaded. For Solaris,
HP-UX, and Linux systems, it resolves the dynamic eTrust AC system call
number.

This function can be used by every process in the system. It is not used in the
Windows environment.

For all UNIX systems except AlX, if the function succeeds, it returns O; if it
fails, it returns an error code.

On AIX systems, the function always returns O because the AIX system loader
cannot load any process that requires the eTrust AC system call to be loaded
unless the system call actually is loaded.

int seadmapi IsSe0SSyscalllLoaded(void)
Example

For an example that uses this function, see seadmapi_FetchSinglePropVal in
this chapter.

Note: You must call the seadmapi_init or seadmapi_IlsSeOSSyscallLoaded
function before calling any other function in the seadmapi library.

238 SDK Guide

seadmapi_SendAuditRecord Function

seadmapi_SendAuditRecord Function

The seadmapi_SendAuditRecord function sends any type of audit information
to the audit log. This function is used internally by other functions provided
with this API to submit specific types of audit log records to the log file. We
recommend that you use the specific functions for each audit record type
rather than using this function, although in several cases, the use of this one
may be easier.

Things you should know about this function include:

® Whenever possible, use the specific audit function rather than the
seadmapi_SendAuditRecord function.

® The function can be called by processes executed by users who have any
of the following attributes:

— ADMIN
— AUDITOR
— SERVER

The Watchdog and the agent are also allowed to use these functions.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi SendAuditRecord(int type, int result, void *data);

type

The type of the audit record. For a list of valid values, see the selogtype.h
header file.

result

One of the valid result codes supported by eTrust AC. For valid values, see
the selogtype.h header file.

data

A pointer to the audit record data. This pointer must point to valid data
according to the type of record being submitted.

Administration APl 239

seadmapi_SendAudit Functions

seadmapi_SendAudit Functions

These functions send audit records to the audit log. The functions use the
seadmapi_SendAuditRecord function (see page 239). We recommend that you
use these functions rather than directly calling the seadmapi_SendAuditRecord
function.

Following are the seadmapi_SendAudit functions:

int seadmapi_SendAdminAudit(SEOS_AUDITADMIN *rec, int result);

Sends audit records to the audit log in the format of administrative
records.

int seadmapi_SendCwsAudit(SEOS_AUDITCWS *rec, int result);

Sends audit records to the audit log in the format of connect-with-service
records.

int seadmapi_SendGenrAudit(SEOS_AUDITGENR *rec, int result);

Sends audit records to the audit log in the format of general resource
records.

int seadmapi_SendlnetAudit(SEOS_AUDITINWARN *rec, int result);
Sends audit records to the audit log in the format of TCP/IP records.

int seadmapi_SendLoginAudit(SEOS_AUDITLOGIN *rec, int result);
Sends audit records to the audit log in the format of login event records.

int seadmapi_SendShutdownAudit(SEOS_AUDITDOWN *rec, int
result);

Sends audit records to the audit log in the format of shutdown records.
int seadmapi_SendStartupAudit(SEOS_AUDITSTART *rec, int result);
Sends audit records to the audit log in the format of startup records.
int seadmapi_SendUserAudit(SEOS_AUDITUSER *rec, int result);

Valid on UNIX only
Sends audit records to the audit log in the format of user records.

int seadmapi_SendWatchdogAudit(SEOS_AUDITWDWARN *rec, int
result);

Sends audit records to the audit log in the format of Watchdog records.

eTrust AC uses a compression algorithm on the auditing information.
Therefore, you should initialize the structure with Os before filling in the
information. The structure can be initialized by calling the memset function
provided by the standard C library of every system.

240 SDK Guide

seadmapi_SendAudit Functions

The function can be called by processes executed by users who have any of
the following attributes:

= AUDITOR
= SERVER

The Watchdog and the agent are also allowed to use these functions.

If the function succeeds, it returns O; if it fails, it returns an error code.
rec

A pointer to the structure containing event-specific data.
result

One of the valid result codes supported by eTrust AC. For a list of valid
result codes, see the selogtype.h header file.

Administration API 241

seadmapi_SendNotificationAudit Functions

seadmapi_SendNotificationAudit Functions

These functions send notification records to the audit log. The functions use
the seadmapi_SendAuditRecord function (see page 239). We recommend that
you use these functions rather than directly calling the
seadmapi_SendAuditRecord function. Notification records are generated for
resources that have an associated user to notify for the event (NOTIFY
property).

Following are the seadmapi_SendNotificationAudit functions:

int seadmapi_SendNfAdminAudit(SEOS_AUDITADMIN *rec, int result);

Sends notification records to the audit log in the format of administrative
records.

int seadmapi_SendNfCwsAudit(SEOS_AUDITCWS *rec, int result);

Sends notification records to the audit log in the format of connect-with-
service records.

int seadmapi_SendNfGenrAudit(SEOS_AUDITGENR *rec, int result);

Sends notification records to the audit log in the format of general
resource records.

int seadmapi_SendNflnetAudit(SEOS_AUDITINWARN *rec, int result);
Sends notification records to the audit log in the format of TCP/IP records.
int seadmapi_SendNfLoginAudit(SEOS_AUDITLOGIN *rec, int result);

Sends notification records to the audit log in the format of login event
records.

int seadmapi_SendNfShutdownAudit(SEOS_AUDITDOWN *rec, int
result);

Sends notification records to the audit log in the format of shutdown
records.

int seadmapi_SendNfStartupAudit(SEOS_AUDITSTART *rec, int
result);

Sends notification records to the audit log in the format of startup records.
int seadmapi_SendNfUserAudit(SEOS_AUDITUSER *rec, int result);

Valid on UNIX only

Sends notification records to the audit log in the format of user records.

int seadmapi_SendNfWatchdogAudit(SEOS_AUDITWDWARN *rec, int
result);

Sends notification records to the audit log in the format of Watchdog
records.

242 SDK Guide

seadmapi_SendErrorLog Function

eTrust AC uses a compression algorithm on the auditing information.
Therefore, you should initialize the structure with Os before filling in the
information. The structure can be initialized by calling the memset function
provided by the standard C library of every system.

The function can be called by processes executed by users who have any of
the following attributes:

= AUDITOR

= SERVER

The Watchdog and the agent are also allowed to use these functions.

If the function succeeds, it returns O; if it fails, it returns an error code.
rec

A pointer to the structure containing event-specific data.
result

One of the valid result codes supported by eTrust AC. For a list of valid
result codes, see the selogtype.h header file.

seadmapi_SendErrorLog Function

This function is used by the Watchdog and the agent to place a trace-back to
note a possible error or malfunction. The error description is common for all
error records in the error log file.

® eTrust AC uses a compression algorithm on the error information.
Therefore, you should initialize the structure with '0's before filling in the
information. The structure can be initialized by calling the memset function
provided by the standard C library of every system.

® The seadmapi_SendErrorLog function can be used only by the Watchdog
and the agent.

If the function succeeds, it returns O; if it fails, it returns an error code.
int seadmapi SendErrorLog(SEOS REQ ERRORDESCP *rec);
rec

A pointer to the structure containing a description of the error and the
trace-back data.

Administration APl 243

seadmapi ProcessControl Function

seadmapi_ProcessControl Function

This function is used by a process to control its auditing level and security. Any
process can call this function to turn on auditing for all operations or to delete
the credentials associated with the process. Using the flags parameter, a
process can control these values. The flags parameter can contain any of the
values described in the following table or a bit-wise OR value of them.

The following flags are currently supported:
SEADMAPI_PROCCNTL_NOACEE

A request by a process to remove its ACEE and use the credentials of a
user who is not defined to eTrust AC. The new NULL credentials are
assigned to the process and any child processes.

SEADMAPI_PROCCNTL_LOGALL

A request to audit every request made by the process and its child
processes.

The senone utility uses this function; every process in the system can call it.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi ProcessControl(unsigned long flags);
flags

One or more bit-wise values.

244 SDK Guide

seadmapi_consTrace Functions

seadmapi_consTrace Functions

These functions control the trace logging. The trace function is used to help
diagnose problems and to help understand how eTrust AC behaves.

All functions return the trace status after the call. A value of 1 means the trace
is enabled, while O means the trace is disabled. If the CurrStatus parameter
specified to any of these functions is NULL, the function does not fill in current
status of the trace.

These functions and the -t option of the secons utility provide the same

functionality.

Things you should know about this function include:

B Trace status is not maintained across seosd sessions.

® These functions can be called by users who have the ADMIN or OPERATOR
attribute.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi_consTraceClear(int *CurrStatus);
int seadmapi_consTraceDisable(int *CurrStatus);
int seadmapi_consTraceEnable(int *CurrStatus);
int seadmapi_consTraceGetStatus(int *CurrStatus);
int seadmapi consTraceToggle(int *CurrStatus);

CurrStatus

Status of the trace after the call.

Administration API 245

seadmapi_consUidLogin Functions

seadmapi_consuidLogin Functions

These functions operate on a user's concurrent login setting. The functions do
the following:

® Disable concurrent logins for the user
® Enable concurrent logins for the user

® Retrieve the current concurrent logins setting for the user
The user is identified by the uid parameter.

These functions and the -d and -u options of the secons utility provide the
same functionality.

The seadmapi_consUidLoginDisable function disables concurrent logins for the
specified user ID. The seadmapi_consUidLoginEnable function reenables
concurrent logins for the specified user ID.

The seadmapi_consUidLoginGetStatus function retrieves the status of the
user's concurrent logins setting as provided by the authorization daemon.
Things you should know about this function include:

® Enabling or disabling concurrent logins is not maintained across seosd
sessions.

® eTrust AC provides an enforced concurrent logins mechanism that may be
more suitable for most sites. Use the maxlogins parameter of the
setoptions command to set the maximum number of currently logged-in
terminals for every user on the system. (If you give maxlogins a zero
value, setoptions does not enforce a maximum.)

® Users can disable or enable concurrent logins for themselves.

® Users with the ADMIN attribute can disable concurrent logins for any user.

If the function succeeds, it returns 0; if it fails, it returns an error code.

int seadmapi_consUidLoginDisable(int uid);
int seadmapi_consUidLoginEnable(int uid);
int seadmapi consUidLoginGetStatus(int uid, nt *CurrStatus);

uid
The user ID on which the function is to operate.
CurrStatus

The current status of the user's concurrent logins setting.

246 SDK Guide

seadmapi_consAllLogin Functions

seadmapi_consAllLogin Functions

These functions control users' ability to log into the system. If login is
disabled, no user is permitted to log into the system while eTrust AC is
running.

These functions and secons -L option provide the same functionality.

Things you should know about this function include:

® The root user is always allowed to log in and is not subject to disabling by
this global flag.

® Enabling or disabling login ability is not maintained across seosd sessions.
® These functions can be called only by users who have the ADMIN or
OPERATOR attribute.

If the function succeeds, it returns 0; if it fails, it returns an error code.

int seadmapi_consAllLoginDisable(void);
int seadmapi_consAllLoginEnable(void);
int seadmapi consAllLoginGetStatus(int *CurrStatus);

CurrStatus

The current status of the system-wide disable login flag.

seadmapi_consRefreshlIPAddresses

This function refreshes the host name to IP address resolution at the kernel
run time tables.

If the function succeeds, it returns O; if it fails, it returns an error code.

Note: This function can only be called by users who have the ADMIN attribute.

int seadmapi ReloadIni(unsigned int* puiNumberOfRefreshedResources);
puiNumberOfRefreshedResources

When the function completes successfully, holds the number of resources
that have been refreshed.

Administration APl 247

seadmapi_consRunTimesStatisticsGet Function

seadmapi_consRunTimeStatisticsGet Function

This function retrieves runtime statistics on the seosd. This information can be
viewed using the secons utility. The information is placed in the structure
pointed to by the rtsStat parameter. The structure contains the following
information:

inet_deny

The number of TCP/IP requests that were denied.
inet_grant

The number of TCP/IP requests that were granted.
inet_error

The number of TCP/IP requests that could not be resolved because of an
error.

audit_log_qg

The number of unwritten audit records in the queue.
error_log_q

The number of unwritten error records in the queue.
oidLast

Last used object ID.
pidLast

Last used property ID.
cidLast

Last used class ID.
classRecCount

Number of classes in the database.
propRecCount

Number of properties in the database.
objRecCount

Number of objects (records) in the database.
pvRecCount

Number of records in the properties-values database.
nAceeHandles

Number of ACEE entries currently used.
nClients

Number of protected clients. (This field is reserved for future use.)

248 SDK Guide

seadmapi_consMessageSend Function

nTrusted
Number of trusted programs loaded into the cache.
nUntrusted
Number of programs marked as non-trusted in the cache.
This function and the -i option of the secons utility provide the same
information.
Things you should know about this function include:

® The information retrieved by this function may be extended in future
versions of eTrust AC; however, backward compatibility will always be
maintained. The client program, therefore, gets only that information that
is required. The size of the structure is an indication of the version of
eTrust AC in use. Any additional information is added at the end of this
buffer.

® This function can only be called by users who have the ADMIN or
OPERATOR attribute.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi consRunTimeStatisticsGet SEADMAPI RTSTAT *rtsStat);
rtsStat

A structure containing the run-time statistics, as discussed in the
description.

seadmapi_consMessageSend Function

This function submits a message to the eTrust AC trace.

This function and the -m option of the secons utility provide the same
functionality.

Any process can call this function.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi_consMessageSend(const char *szMessage);
szMessage

String of the message to place in the trace log.

Administration APl 249

seadmapi_consShutdown Function

seadmapi_consShutdown Function

This function causes eTrust AC to exit and disables the three daemons that
compose the eTrust AC basic configuration-seosd, seoswd, and seagent.
(seagent is also known as the agent.) After shutting down the eTrust AC UNIX
daemons (Windows services), the kernel extension remains loaded but is not
active until seosd is executed again. This disables all protection provided by
eTrust AC.

In UNIX, other daemons that are part of eTrust AC, such as serevu, selogrd,
and selogrcd are not affected by this function. These processes can be killed
explicitly.

The seadmapi_consShutdown function and the -s option of the secons utility
provide the same functionality.

This function can only be called by users who have the ADMIN or OPERATOR
attribute.

If the function succeeds, it returns 0; if it fails, it returns an error code.

int seadmapi consShutdown(void);

seadmapi_Reloadlni Function

This function reloads the configuration tokens of the seosd daemon. The
tokens are in the seos.ini file. The daemon actually uses only part of the newly
reloaded tokens.

This function can only be called by users who have the ADMIN or OPERATOR
attribute.

If the function succeeds, it returns O; if it fails, it returns an error code.

int seadmapi ReloadIni(void);

250 SDK Guide

sepass_ReplacePassword Function

sepass_ReplacePassword Function

The sepass_ReplacePassword function replaces the user password with a new
password.

Assuming the user is defined locally, and SEPASS_API_DOMAIN_PMD is not
given in the domainCode arguments, sepass_ReplacePassword replaces the
user's password in the local UNIX file.

The password can be replaced according to these criteria:

In the local security database, assuming that SEPASS_API_DOMAIN_PMD
is not given in the domainCode arguments

If the Policy Model confirms the password file

If a Policy Model is given

If a Policy Model is defined in the seos.ini file

If a Policy Model is specified for the user or its profile group and the
SEPASS_API_DOMAIN_LOCAL is not specified

If the PMDB is given

If the PMDB is defined in the seos.ini file or specified for the user or its
profile group, and the SEPASS_API_DOMAIN_LOCAL is not specified

If the NIS+ table and the nis_env token is set to niplus

int sepass ReplacePassword (char *userName,
char *oldPasswd,

char *newPasswd,

char *szPmd,

char* szMsg,

int
int
int
int
int
int
int
int

userName

msglLen,
domainCodes,
debug,
ignoreRules,
keep grace,
do as user,
onlySe0S,
ChangeGrace) ;

A NULL-terminated string containing the name of the user whose password

is to be replaced.

oldPasswd

A NULL-terminated string containing the current (old) password of the
named user or the administrator invoking the function.

Administration APl 251

sepass_ReplacePassword Function

newPasswd
A NULL-terminated string containing the new (desired) password.
szPmd

A NULL-terminated string containing the name of the Policy Model on
which to change the password model (if any).

szMsg

A pointer to the buffer in which the success for failure messages will be
stored.

msglLen

The size of the message buffer.
domainCodes

One of these values:

m #define SEPASS_API_DOMAIN_LOCAL

» #define SEPASS_API_DOMAIN_PMD

s #define SEPASS_API_DOMAIN_ALL

s debug

A flag indicating the detailed description that should be printed.
ignoreRules

This argument can have one of three values:

= IGNORE_NEVER-never ignore password policy rules.

= IGNORE_ALWAYS-always ignore password policy rules.

= IGNORE_ADMIN-ignore password policy rules only in administrative
change.

keep_grace
Reset the grace attribute for the user after passwords.
do_as_user

Change the password as if the named user is changing it, and not as an
administrative change.

onlySeOS

This argument can have one of the following two values:

1 - Change password only in eTrust AC environment;

0 - Change password in UNIX and eTrust AC environments.
ChangeGrace

Set the users' grace period for login to the specified number of days.

252 SDK Guide

sepass_ReplacePassword Function

-1 => use the default (1).

Structures and Data Types: eTrust AC Database Data Structures

In the database, each property has its data type. Some data types defined in
the database are simple, such as strings or integer values; others are
structures with several fields.

The following section describes the major data structures and data types.

Each of the data types eTrust AC defines and saves in the database has a
symbolic constant defined using the following naming convention:

SEOSDB_PTYPE_Access_Control_data_type

For example, the type SEOS_OID has a symbolic constant of
SEOSDB_PTYPE_OID.

Administration APl 253

sepass_ReplacePassword Function

C Data type or PTYPE

SEOSDB_PTYPE_STR

An ASCII-Z string. Size of property determined by the maximum length of
the string.

SEOSDB_PTYPE_OID

An object ID in the database.
SEOSDB_PTYPE_TIME

A date and time. (The format is time_t.)
SEOSDB_PTYPE_INT

An integer, with 1, 2, or 4 bytes. The property size determines the actual
type.

SEOSDB_PTYPE_UINT

An unsigned integer, with 1, 2, or 4 bytes. The property size determines
the actual type.

SEOSDB_PTYPE_UMODE

User mode, that is, whether a user is ADMIN, AUDITOR, and so on. The
value is stored in an integer as a bit field.

SEOSDB_PTYPE_GCONN

The connection information of a user to group.
SEOSDB_PTYPE_ACCS

The access type allowed. The access is a 32-bit field value.
SEOSDB_PTYPE_ACL

An ACL entry.
SEOSDB_PTYPE_PACL

A program conditional ACL entry.
SEOSDB_PTYPE_UAUDITM

The audit triggers for a user account. It is a bit field value.
SEOSDB_PTYPE_DAYTIME

A day and time restriction on access to a resource.
SEOSDB_PTYPE_TRPINFO

A trusted program information of the file characteristics.
SEOSDB_PTYPE_INETACL

An ACL entry for HOST and other internet classes.

254 SDK Guide

sepass_ReplacePassword Function

SEOSDB_PTYPE_RAUDITM

The audit triggers for a resource. It is a 16-bit field value.
SEOSDB_PTYPE_BOOL

An unsigned char that represents a Boolean value.
SEOSDB_PTYPE_IPMSKMTCH

A combination of a mask and match values for IP addresses.
SEOSDB_PTYPE_INSRACL

A TCP/IP services range ACL entry.

Administration APl 255

sepass_ReplacePassword Function

Description

The information stored in each and every data member of these structures and
the values are listed in the seostypes.h file. In some of the cases, the
structure is only a single value or a list of entries each of the same type. For
example, an ACL is a list of O or more ACL entries. The list of groups a user is
connected to is a list of SEOS_GCONN structures. The latter case also
represents a case in which entities are pointing one to another. The user
object has the list of groups to which it is connected. The group has the list of
users connected to it.

For a complete description of each property in every class, see the Reference
Guide.

The following database structures and data types are described in this and
other chapters as indicated:
CLIENT_ACEE

Contains the information for a given ACEE?
SEADMAPI_RTSTAT

Contains the runtime statistics®
SEGRACE_RES

Contains the grace login information®*
SEOS_ACCS

Contains a list of access flags?
SEOS_ACL

Contains a list of ACLs*
SEOS_CID

Contains the class identification descriptor®
SEOS_GCONN

Contains a list of groups to which a user is connected and the attributes
the user has, if any, with respect to each group*

SEOS_OID

Contains the object identification descriptor®
SEOS_PID

Contains the property identification descriptor®
SEOS_X_ACL

Contains a list of ACLs with more information that SEOS_ACL?*

256 SDK Guide

sepass_ReplacePassword Function

Log File Structures

SEOS_X_GCONN

Similar to SEOS_GCONN but contains more information®
SEOS_X_OID

Holds an expanded object identification descriptor®
SEOS_X_PACL

Contains an expanded list of PACLs!
SEOSDB_CDF

Contains the definition of a specific class in the database®
SEOSDB_ENTDAT

Contains information about a property in the database®
SEOSDB_ODF

Contains the definition of a specific object in the database®
SEOSDB_PDF

Contains the definition of a specific property in the database®
1 Described in this chapter
2 Described in the chapter "Authorization and Authentication API”

% Described in the chapter “Exits API”

eTrust AC uses a binary compressed file to store audit and error log records.
The log files consist of a fixed portion and a variable-length portion for every
record. The fixed portion contains some commonly used data (like time of
record submission) and the size and type of the variable-length portion. eTrust
AC defines several structures for different auditing records. The current
version of eTrust AC provides the following audit records.

Administration API 257

sepass_ReplacePassword Function

Data Structures

The following structures are described in the chapter “Language Client API."
SEOS_AUDITADMIN

eTrust AC updates and language parser interface requests
SEOS_AUDITDOWN

eTrust AC daemon and service shutdown events
SEOS_AUDITGENR

General resource audit events
SEOS_AUDITINWARN

eTrust AC TCP/IP events auditing information
SEOS_AUDITLOGIN

Login events and password events audit record
SEOS_AUDITSTART

eTrust AC daemon and service startup events
SEOS_AUDITUSER

Trace records for audited users
SEOS_AUDITWDWARN

Watchdog audit records for marking trusted programs as untrusted
SEOS_REQ_ERRORDESCP

eTrust AC error trace-back information

All these structures are defined in the header file selogtype.h.

258 SDK Guide

CLIENT_ACEE Structure

CLIENT_ACEE Structure

The CLIENT_ACEE structure contains information for a given ACEE. The fields

are:
long hAcee

The handle of the ACEE.
long nGroups

The number of group connections.
CLIENT_ACEE_GCONN *Groups

The group connection array.
long nCategories

The number of categories.
char *pszCategories

The array of category names.
char *szSecLabel

The security label.
char *szUsername

The user's name.
SEOS_UAUDIT_MODE AuditMode

The user's audit mode.
unsigned char SeclLevel

The user's security level.
char *szTerminal

The source terminal.
int count

The process count for the ACEE.
SEOS_UMODE user_mode

The user’'s mode.
time_t create_time

The creation time for the ACEE.

Administration APl 259

SEADMAPI_RTSTAT Structure

SEADMAPI_RTSTAT Structure

The SEADMAPI_RTSTAT structure contains information retrieved from the
seadmapi_consRunTimeStatisticsGet function.
The fields are:
unsigned int inet_deny

The number of inet requests that were denied.
unsigned int inet_grant

The number of inet requests that were granted.
unsigned int inet_errors

The number of inet requests that contained errors.
long audit_log_q

The audit log queue size.
long error_log_q

The error log queue size.
SEOS_OID oidLast

The first free object ID in the database.
SEOS_PID pidLast

The first free property ID in the database.
SEOS_CID cidLast

The first free class ID in the database.
long classRecCount

The number of classes in the database.
long propRecCount

The number of properties in the database.
long objRecCount

The number of objects in the database.
long pvRecCount

The number of property values in the database.
long nAceeHandles

The number of ACEE handles currently in the system.
long nClients

The number of protected clients.

260 SDK Guide

SEGRACE_RES Structure

long nTrusted

The number of trusted programs currently in the database.

long nUnTrusted

The number of untrusted programs currently in the database.

SEGRACE_RES Structure

The SEGRACE_RES structure contains information retrieved by the
seadmapi_GetGracelnfo function.

The fields are:

int step

An integer that represents the type of information contained in the
structure. Values include:

SEGRACE_STEP_NONE
No data is available to display.
SEGRACE_STEP_WARN

Display a warning to the user such as the number of grace days the
user has left or the number of days until the user's password expires.

SEGRACE_STEP_MUST
The user's password has expired; it must be replaced now.

char msg[]

The message that appears for the user.
char last_log[]

A message containing information regarding the user's last login.
int grace

The number of grace logins left to the user.
int days

The number of days until the user must replace the password.
char uname[]

The name of the user for whom the inquiry is done.

Administration APl 261

SEOS ACL Structure

SEOS_ACL Structure

The SEOS_ACL structure describes the access permitted to the accessor.

The fields are:
SEOS_OID oidAccessor

The object ID of the accessor.
SEOS_ACCS Accs

The user's level of access to the resource. For a list of available access
types, see the SEOS_ACCS data type in the chapter "Authorization and
Authentication APIL.”

SEOS_GCONN Structure

The SEOS_GCONN structure contains the list of groups to which the user is
connected and the special attributes, if any, that the user has with respect to
those groups.
The fields are:
SEOS_OID oidGroup
The object ID of the group.
SEOS_OID oidAuthor
The owner of the connection.
SEOS_TIME tConn
The date and time the connection was established.
SEOS_UGMODE ugmUserMode

The attributes of the user in the group.

262 SDK Guide

SEOS_PACL Structure

SEOS_PACL Structure

The SEOS_PACL structure contains a list of conditional access control lists.

The fields are:
SEOS_OID oidAccessor

The object ID of the accessor.
SEOS_OID oidProg

The object ID of the trusted program.
SEOS_ACCS Accs

The user's level of access to the resource. For a list of available access
types, see the SEOS_ACCS data type in the chapter “Authorization and
Authentication APIL.”

SEOS_REQ_ERRORDESCP Structure

The SEOS_REQ_ERRORDESCP structure contains information sent to the audit
log.
The fields are:
int module

The number of the module that sent the error record.
int code

The error code.
char name[]

The name of the module that sent the error record.
char sourcel[]

The source file of the error.
int stage

The stage in which the error was noticed.
int severity

The severity of the error.

Administration APl 263

SEOS X ACL Structure

SEOS X ACL Structure

The SEOS_X_ACL structure is an expanded version of the SEOS_ACL
structure.
The fields are:
SEOS_OID oidAccessor
The object ID of the accessor.
SEOS_ACCS Accs

The user's level of access to the resource. For a list of available access
types, see the SEOS_ACCS data type in the chapter “Authorization and
Authentication APL.”

char *pAccessorCName
The class to which the accessor belongs.
char *pAccessorOName

The accessor's name.

SEOS_X_GCONN Structure

The SEOS_X_GCONN structure is an expanded version of the SEOS_GCONN
structure.
The fields are:
SEOS_OID oidGroup
The object ID of the group.
SEOS_OID oidAuthor
The owner of the connection.
SEOS_TIME tConn
The date and time the connection was established.
SEOS_UGMODE ugmUserMode
The attributes of the user in the group.
char *pGName
The group's name.
char *pAuName

The author's name.

264 SDK Guide

SEOS_X_PACL Structure

SEOS X PACL Structure

The SEOS_X_PACL structure is an expanded version of the SEOS_PACL
structure.
The fields are:
SEOS_OID oidAccessor
The object ID of the accessor.
SEOS_OID oidProg
The object ID of the trusted program.
SEOS_ACCS Accs

The user's level of access to the resource. For a list of available access
types, see the SEOS_ACCS data type in the chapter “Authorization and
Authentication APL.”

char *pAccessorCName
The class name.

char *pAccessorOName
The object name.

char *pProgName

The name of the program through which access is allowed.

Administration APl 265

SEOSDB_CDF Structure

SEOSDB_CDF Structure

The SEOSDB_CDF structure contains the definition of a specific class in the
database.
The fields are:
SEOS_CID sCId
The ID of the class.
char szCName[]
The name of the class.
unsigned long ICFlags
The flags of the class.
unsigned char cCRLevel
Reserved for future use.
unsigned char cCWLevel
Reserved for future use.
char reserved[]

Reserved for future use.

266 SDK Guide

SEOSDB_ENTDAT Structure

SEOSDB_ENTDAT Structure

The SEOSDB_ENTDAT structure contains the information returned by the
seadmapi_GetEntity and seadmapi_GetExXEntity functions.
The fields are:
char *szPName

The property name.
SEOS_CID sCId

The class ID of the object's class.
SEOS_PID sPId

The property ID of the object.
unsigned long int IPFlags

The property's flags.
unsigned short int sPVSize

The property's size.
unsigned char int cPType

Reserved for future use.
unsigned char cPRLevel

Reserved for future use.
unsigned char cPWLevel

Reserved for future use.
unsigned int NnPVQty

The number of values in pPVList.
void **pPVList

The value list.
unsigned int nErrorCode

The error code if the function was not able to return the requested data.

Administration API 267

SEOS X OID Structure

SEOS_X OID Structure

The SEOS_X_OID data type is an expanded version of the SEOS_OID data
type.
The fields are:
SEOS_OID oid
The object ID of the record as an unsigned long integer.
char *pCName
The object’s class.
char *pOName

The object's name.

268 SDK Guide

Chapter 7: IR API

This section contains the following topics:

The IR APl (see page 269)
Structures (see page 269)
Functions (see page 270)

The IR API

This library supplies an interface to eTrust AC log files - seos.audit and
seos.audit.bak. You can set whether the IR API library routes audit events of
existing PMDs in addition to the local security events by setting the
irecorder_audit token in the Windows registry or the UNIX seos.ini file.

This APl enables an external application to view audit records in chronological
order.

Note: The library only supports PMD audit events that are created on the
same computer where eTrust AC is installed.

Important! The IR APl is not safe for multi-threading.

Structures

Data Position

A void handle that an API function operates according to its value.

typedef struct

{
int ir_ver; eTrust AC IRecorder version
int ent_cnt; Number of audit hosts
int curr_idx; Current audit host
void *ents; Pointer to host entries
} IRApiDataPosition; Interpreted audit record

IR API 269

Functions

UTF8 Interpreted Audit Record

Functions

Contains two string fields that describe an eTrust AC audit record field. A null
terminated list of SEOS_UTF8AUDLOGINTERP structures represents one eTrust
AC audit event record.

typedef struct tagSeosUTF8LogInterpreted

{

char *Label; Label of an audit field in the record

char *Value; Value assigned in the audit record to the field
} SEOS UTF8AUDLOGINTERP; Interpreted audit record

int eaclRApiI_Loglnit(IRApiDataPosition *pos);

This function:
1. Gets the audit file names (from the eTrust AC or PMD settings).

2. Resets the offset in order to get the oldest log file, and opens it to read the
audit record.

3. Initializes the IRApiDataPosition pointer for calling eaclRApi_LogGetNext().

4. Initializes threads and events for IR APl and PMD synchronization.

Possible return values are:

Value Meaning
IR_EAC_SUCCESS Success
IR_EAC_PART_FAIL Partial failure (an audit file could not be initialized)

IR_EAC_GENERAL_FAIL General failure - IR API should be initialized

*pos

(OUT) A pointer to IRApiDataPosition structure.

270 SDK Guide

Functions

int eaclRApi_LogGetNext(IRApiDataPosition *pos, SEOS_UTFSAUDLOGINTERP
**ppUtfMsg, int *log_type);

Returns the next log record and its type according to a given data position.

Possible return values are:

Value Meaning
IR_EAC_SUCCESS Success
IR_EAC_NO_MORE_DATA No more data in all audit files (PMD and
localhost)
IR_EAC_DATA LOST Data lost
IR_EAC_PSBLY_DATA_LOS Possibly data lost
T
IR_EAC_GENERAL_FAIL Failure in current audit file
*pos
(IN) A pointer to IRApiDataPosition - represents the position to get the
next log record from (eTrust AC or PMD audit file and offset).
**ppUtfMsg
(OUT) A pointer to (UTF8 strings) interpreted record.
*log_type

(OUT) A pointer to an integer representing the next log record type.

int eaclRApi_LogTerminate(void);
Closes all log files for read, terminates all threads and reset events.
Call this function when you are finished working with the API.

Possible return values are:

Value Meaning

IR_EAC_SUCCESS Success

IR_EAC_PART_FAIL Partial failure (some audit files could not be
closed)

IR_EAC_GENERAL_FAIL General failure

IR API 271

Functions

int eaclRApi_LogReset(void *buff, int size);

Opens log file (if it still exists) according to a given data position. It enables
you to go back to an old (saved) state and continue from there.

Note: To create the data for using parameter 1 (void *buff), use the function
eaclRApi_CopyDataPosition (see page 273).

Possible return values are:

Value Meaning
IR_EAC_SUCCESS Success
IR_EAC_PART_FAIL One or more audit files could not be initialized

IR_EAC_GENERAL_FAIL Library should be terminated

*buff

(IN) A pointer to the buffer that contains the data needed for resetting the
new data position.

size

(IN) An integer representing the data size.

void eaclRApi_LogFreelnterpretRecord(void);

This function frees the last interpreted record.
There are no return values for this function.
Note: eaclRApi_LogGetNext (see page 271) calls the same internal function

each time it runs, so you do not need to use eaclRApi_LogFreelnterpretRecord
before calling for next log record.

char *eaclR_LogGetVersion(void);

Returns the API version (according to the eTrust AC build number) as a string.

The return value is the version number as a string.

272 SDK Guide

Functions

int eaclRApi_CopyDataPosition(void **pos)
Copies the current audit position to the allocated memory position specified.
You need to use eaclRApi_GetDataPositionSize (see page 273) to return the

size of the memory that should be allocated to the position specified.

Possible return values are:

Value Meaning

IR_EAC_SUCCESS Success

IR_EAC_GENERAL_FAIL Library should be terminated

(OUT) The address of the buffer pointer where the copied data is located.

size_t eaclRApi_GetDataPositionSize(void)

Returns the size of the allocated memory needed for copying the current data
position.

int eaclRApi_GetLastError(SEOS_UTFSAUDLOGINTERP **pUtfMsQ)

Returns the last error description. You should call this function whenever
another function returns IR_EAC_GENERAL_FAIL. A description of the last
error is allocated in an array of SEOS_UTFBAUDLOGINTERP structures (in the
same way the audit record is allocated for the eaclRApi_LogGetNext function).

Possible return values are:

Value Meaning

IR_EAC_SUCCESS Success

IR_EAC_GENERAL_FAIL Library should be terminated

**pUtfMsg

(OUT) A pointer to a UTF8 strings last error description.

IR API 273

Functions

int eaclRApi_ConvertOldData(void *oldbuff, size_t oldsize, void *newbulff, size t

*newsize)

Converts old data position, saved with the obsolete IR API (see page 281), so
that it is suitable for the new IR APl (when upgrading IRecorder).

Possible return values are:

Value Meaning

IR_EAC_SUCCESS Success

IR_EAC_GENERAL_FAIL Library should be terminated

*oldbuff

(IN) A pointer to the old buffer.
oldsize

(IN) The size of the old buffer.
**newbuff

(OUT) A pointer to the new buffer.
*newsize

(OUT) The size of the new buffer.

274 SDK Guide

Appendix A: tclica: The LCA Extension

This section contains the following topics:

The tclica.so Library (see page 275)
Programming Guide (see page 276)
tcllca Functions (see page 277)

The tclica.so Library

This appendix describes the tcllca.so library, an LCA extension that adds LCA
commands to the TCL environment.

Note: This information is valid for UNIX only.

tcllca: The LCA Extension 275

Programming Guide

Programming Guide

More flexible than the selang command language, tclica imitates selang from
the TCL shell environment while adding new commands to return information
about eTrust AC objects-users, resources, classes, and properties-from the
TCL environment, without using a selang command and parsing the result.

The extension is in shared library format, loaded by the TCL load command.
You may need to set the LD_LIBRARY_PATH to the lib subdirectory in the
eTrust AC directory. To successfully load the extension, you must have the
eTrust AC admin flag and access to the local terminal, and be running eTrust
AC.

The extension loads the following shared libraries:

® |iblangapi

® Jibseadmapi

® Jibselang

To load the tclica extension:

1. If necessary, set the library path with the following command where
eTrustACDir is the directory where eTrust AC is installed:

setenv LD LIBRARY PATH ${LD LIBRARY PATH}:eTrustACDir/lib
2. Load the TCL shell with the command:

tclsh

The % prompt appears.

Load the tcllca library with the command:

load eTrustACDir/tcllca.so

276 SDK Guide

tclica Functions

Sample Program

The following sample program first loads the tcllica.so extension library, and
then finds all the users owned by the root user.

>setenv LD LIBRARY PATH ${LD LIBRARY PATH}:/opt/CA/eTrustAccessControl/lib
>tclsh

%load /opt/CA/eTrustAccessControl/lib/tcllca.so
%set user list [se get resources user]
%foreach user $user list {
if {[se _scan props user $user OWNER] == “OWNER root”} {
lappend root owned $user
}
}
%if [info exists root owned] {
puts “users owned by root : $root owned”
} else {
puts “no users owned by root”

}

[
“©

tcllca Functions

The LCA TCL extension includes the following functions:

se_class_list Function

The se_class_list function prints all the classes in the database.

se class_list

se_get_resources Function

The se_get_resources function prints the names of all the objects in the
specified class. If you specify an object, the function searches for it in the
database and, if the object does not exist, returns an error. If the object does
exist, the function prints the name of the object. If the object contains
wildcards, the function returns the object list.

For example, the following command returns a list of all the users in the
database:

se get_resources user
se get resources class [object];

tcllca: The LCA Extension 277

tcllca Functions

segetstat Function

The segetstat function tells you the status returned by the last command:

OK
The last command was successfully processed.

ERROR

The last command was not successfully processed.

DUP

Relevant only for the newfile, newgrp, newres, and newusr commands.
The object already exists inside the database.

NOTICE
The information message was returned from a selang command.
The last two (DUP and NOTICE) can return only from a selang command.

segetstat

se_grp_usrs Function

The se_grp_usrs function prints a list of all the users in the group. This is valid
only for a group of users not for groups of other classes (for example, GFILE
and GHOST).

For example, the following command prints all the users in the group called
“system”:

se _grp_usrs system
Se_grp_usrs group_name

se_is_running Function

The se_is_running function tells you whether the seosd daemon is currently
running. The function returns “yes” if seosd is currently running; otherwise, it
returns “no.”

se is running

278 SDK Guide

tclica Functions

selang Function

The selang function executes eTrust AC commands. The parameters are
transferred as they are to the selang utility. The selang output is returned as
the result. This is the only command valid for changing data inside the
database.

Note: This function does not actually invoke selang. It uses an API to contact
the database or agent, using the same syntax as selang.

For example, the following command returns the properties of the file inside
the database if it exists; otherwise, it returns the selang error message:

selang sr file /opt/CA/eTrustAccessControl/bin/selang
selang parameters

se_objs_in_grp Function

The se_objs_in_grp function prints all the members of a group of resources
that belong to the same class (GHOST, GTERMINAL, GFILE, and GSUDO).

For example, the following command prints all the hosts inside the group
DevTerms:

se objs in grp GHOST DevTerms
se objs in grp class object list

se_scan_props Function

The se_scan_props function prints the properties of an object inside the
database. If you do not specify a property, the function returns a list of all the
object's properties. You can specify a list of properties by separating them with
spaces.

For example, the following command returns the root user audit mode:

se scan_props user root AUDIT MODE
se scan _props class object [properties]

sewhoami Function

The sewhoami function tells you under what current eTrust AC user name you
are running (note that this can be different from the current UNIX user).

Sewhoami

tcllca: The LCA Extension 279

Appendix B: Obsolete API

This section contains the following topics:

The eAC IR API (see page 281)
Structures (see page 281)

Possible Return Values (see page 282)
Functions (see page 282)

The eAC IR API

Structures

Data Position

This library supplies an interface to eTrust AC log files - seos.audit and
seos.audit.bak.

This APl enables an external application to view audit records in chronological
order.

Important! The API described in this appendix is obsolete and is available for
backward comparability purposes only. Refer to the current IR API (see
page 269) described earlier in this guide.

typedef struct

{
char filename[MAX PATH]; current log file
off_t offset; offset
unsigned char md5 1[16]; md5 signature of current log file
unsigned char md5 2[16]; md5 signature of next log file

} IRDataPosition;

UT8 Interpreted Audit Record

typedef struct tagSeosUTF8LogInterpreted
{
char *Label; Label of an audit field in the record

char *Value; Value assigned in the audit record to the field
} SEOS UTF8AUDLOGINTERP;

Obsolete APl 281

Possible Return Values

Possible Return Values

Functions

Integer
Reason Code Value Meaning
IR_EAC_SUCCESS 0 success
IR_EAC_NO_MORE_DATA 1 no more data
IR_EAC_DATA LOST 2 data lost
IR_EAC_GENERAL_FAIL 3 general failure
IR_EAC_PSBLY_DATA_LOST 4 possibly lost data

int eaclR_Loglnit(IRDataPosition *pos);

Gets the audit filenames (from the eTrust AC settings);

Resets the offset in order to get the oldest log file, and opens it for read - the
audit record.

Initializes the IRDataPosition pointer for calling eaclR_LogGetNext().
If the function succeeds, it returns IR_EAC_ SUCCESS.

If the function fails, it returns IR_EAC_GENERAL_FAIL
IRDataPosition

(OUT) pointer to IRDataPosition structure.

int eaclR_LogReset(IRDataPosition *pos);

Opens log file (if still exists) according to a given (argument) data position.
Enables you to go back to an old (saved) state and continue from there.
If the function succeeds, it returns IR_EAC_SUCCESS.

If the function fails, it returns IR_EAC_GENERAL_FAIL
IRDataPosition

(IN) pointer to IRDataPosition structure.

282 SDK Guide

Functions

int eaclR_LogGetNext(IRDataPosition *pos, SEOS_UTFSAUDLOGINTERP **ppUtfMsg,
int *log_type);

Returns the next log record and its type according to a given data position.

Possible return values are:

Condition Value

Success IR_EAC_SUCCESS

No more data IR_EAC_NO_MORE_DATA
data lost IR_EAC_DATA LOST
general failure IR_EAC_GENERAL_FAIL
possibly data lost IR_EAC_PSBLY_DATA_LOST

IRDataPosition

(IN) pointer to IRDataPosition - represents the position to get the next log
record from.

UTF8 strings
(OUT) pointer to (UTF8 strings) interpreted record.
int

(OUT) pointer to int - represents the next log record type.

int eaclR_LogTerminate(void);
Closes log file for read. Call it when finished working with API.
If the function succeeds, it returns IR_EAC_SUCCESS.

If the function fails, it returns IR_EAC_GENERAL_FAIL

void eaclR_LogFreelnterpretRecord(void);
This function frees the last interpreted record.
There are no return values for this function.

Note: eaclR_LogGetNext() API calls the same internal function each time it
runs, so you do not need to use this APl before calling for next log record.

Obsolete APl 283

Functions

char *eaclR_LogGetVersion(void);
Returns the API version as a string.

The return value is the version number as a string.

284 SDK Guide

Index

A

access authority = 186
checking = 18
access authorization = 22, 29
access control list » 186
accessor environment element « 186
ACEE

handle used by administration APl = 186

releasing handle = 20
ACEE handle
definition of < 20
obtaining = 20
specifying = 29
ACL - 186
administration APl < 181
audit log file table = 257

class operation functions table = 189

console operations table = 194
data types table = 256
limitations = 187

miscellaneous functions table « 195

object functions table = 190
property functions table = 189
query functions table = 191
structures table « 256

value functions table « 190

alerts, adding with logroute API = 108

API_AUTH_RES structure = 29, 37
API_AZN_RES structure = 43
API_AZN_USERATTR structure = 36
application servers = 20

applications, protecting resources of = 16

audit log file « 113

entries = 29
authenticating users = 23
authentication APl = 16
authorization

access * 22

checks = 43

request = 18, 29
authorization APl = 16

authorizations and authentication APl « 16

compiling functions « 23
functions table = 28
include = 16

linking functions = 23

structures table = 41
authxapi_FreelListValues function « 89
authxapi_GetObjectListValue function « 85
authxapi_GetObjectProperty function = 82
authxapi_GetUserInfo function « 89
authxapi_IsThereExitFunction function « 81
authxapi_RegisterExitFunction function « 77
authxapi_UnregisterExitFunction function < 80

C

CACL -~ 186

checking user access authority = 18, 22
class description file « 183

class ID » 102, 182

CLIENT_ACEE structure = 259
conditional access control list « 186
contacting technical support « 3
creating audit records = 29

customer support, contacting = 3

D

data types

PFSeosExitFunc = 104

SEOS_ACCS » 29, 45

SEOS_CID = 105

SEOS_OID ~ 46, 105

SEOS_PID = 105

SEOS_X_OID = 268
database

lists = 184

organization = 182
driver_Register function = 119
driver_RegisterDestination function « 60, 120
driver_UnRegister function = 119
driver_UnregisterDestination function = 60,

121

E

error codes, exits APl « 62
error messages
managing = 23
retrieving = 235
events
access control = 54

Index 285

definition of « 48

general resource check « 48, 55
login = 48, 55

password change = 48, 56
password quality check « 48, 56
seosd = 55

sepass « 56

TCP/IP requests = 48, 55

exits API

F

compiling functions = 57, 58

data types table = 95

error codes « 62

implementation functions = 49, 51
linking functions = 57, 58

modular approach to functions = 59
registration functions = 49, 51
return codes = 62

structurestable « 95

termination functions < 49, 51

functions

authxapi_FreelListValues = 89
authxapi_GetObjectListValue « 85
authxapi_GetObjectProperty = 82
authxapi_GetUserInfo = 89
authxapi_IlsThereExitFunction = 81
authxapi_RegisterExitFunction « 77
authxapi_UnregisterExitFunction « 80
compiling = 23

driver_Register « 119
driver_RegisterDestination « 60, 120
driver_UnRegister = 119
driver_UnregisterDestination = 60, 121
Ica_Err2Str « 166

Ica_ErrGetByldx = 162
Ica_ErrGetFirst =« 163
Ica_ErrGetNext « 163
Ica_ErrSeverity = 164

Ica_ErrStage = 165

Ica_ParselLine « 160
Ica_QEntClassName « 169
Ica_QEntGetByldx = 167
Ica_QEntGetByName = 168
Ica_QEntGetFirst « 167
Ica_QEntGetNext = 168
Ica_QEntObjName « 169
Ica_QEntsGetNum = 166
Ica_QPropGetByldx =« 171

Ica_QPropGetByName « 172
Ica_QPropGetFirst = 171
Ica_QPropGetNext = 172
Ica_QPropName = 173
Ica_QPropsGetNum = 170
Ica_QPropSize = 173
Ica_QPropType = 174
Ica_QPropVal2Str = 177
Ica_QPropValGetByldx =« 175
Ica_QPropValGetFirst = 176
Ica_QPropValGetNext « 176
Ica_QPropVallList = 175
Ica_QPropValsNum « 174
Ica_rmtauth_CheckAccess = 179
Ica_rmtauth_Init = 178
Ica_Terminate « 159

linking = 23

LogrApiFreeFunc = 127
post-exit = 48

pre-exit « 48
seadmapi_ClassGet « 196
seadmapi_ClassGetEqual = 196
seadmapi_ClassGetFirst « 196
seadmapi_ClassGetNext = 196
seadmapi_consMessageSend = 249

seadmapi_consRunTimeStatisticsGet « 248,

260
seadmapi_consShutdown « 250
seadmapi_consTraceClear « 245
seadmapi_consTraceDisable « 245
seadmapi_consTraceEnable « 245
seadmapi_consTraceGetStatus « 245
seadmapi_consTraceToggle = 245
seadmapi_consUidLoginDisable = 246
seadmapi_consUidLoginEnable « 246
seadmapi_consUidLoginGetStatus = 246
seadmapi_FetchListPropVal « 207
seadmapi_FetchSinglePropVal « 212
seadmapi_FreeAceeMemory = 234
seadmapi_FreeListPropVal = 219
seadmapi_FreeObijList = 207
seadmapi_GetACEE « 234
seadmapi_GetEntity « 222, 267
seadmapi_GetExEntity « 222, 267
seadmapi_GetGracelnfo = 226, 261
seadmapi_GetMessage = 235
seadmapi_GetObjType = 236
seadmapi_Init « 238
seadmapi_InitEntityRuler « 222

286 SDK Guide

seadmapi_lsSeOSSyscallLoaded = 238
seadmapi_KillEntityMem < 222
seadmapi_KillExEntityMem « 222
seadmapi_KillPDFList « 221
seadmapi_MakePDFList = 221
seadmapi_ObjGet « 202
seadmapi_ObjGetEqual = 202
seadmapi_ObjGetFirstIinClass = 202
seadmapi_ObjGetGreaterEqual = 202
seadmapi_ObjGetNextInClass = 202
seadmapi_ObjInClassList = 206
seadmapi_OidToName « 230
seadmapi_ProcessControl = 244
seadmapi_PropGet = 198
seadmapi_PropGetEqual = 198
seadmapi_PropGetFirstinClass = 198
seadmapi_PropGetNextInClass = 198
seadmapi_SendErrorLog = 243
seadmapi_SetSinglePropVal = 220
seadmapi_WhoAml = 231
seadmapi_Whols = 233
SEOSROUTE_CloseRequestAzn = 36
SEOSROUTE_CreateRequestAzn « 35
SEOSROUTE_ParseApiError = 23

SEOSROUTE_RequestAuth = 18, 22, 28, 29,

37
SEOSROUTE_RequestAuthAzn = 33

SEOSROUTE_ VerifyCreate = 20, 23, 28, 29,

37
SEOSROUTE_ VerifyDelete = 20, 28, 40
sepass_ReplacePassword = 251
servlog_RegisterExit « 128

G

general resource check events « 48, 55

grace logins, retrieving information about «
226

group attributes « 185

|
include functions » 16

L

language client APl = 146
LCA = 146

extension = 276
Ica_Err2Str function = 166
Ica_ErrGetByldx function = 162
Ica_ErrGetFirst function « 163

Ica_ErrGetNext function = 163
Ica_ErrSeverity = 164
Ica_ErrStage function = 165
Ica_ParseLine function = 160
Ica_QEntClassName function « 169
Ica_QentGetByldx function = 167
Ica_QEntGetByName function = 168
Ica_QEntGetFirst function = 167
Ica_QEntGetNext function = 168
Ica_QEntObjName function = 169
Ica_QEntsGetNum function = 166
Ica_QPropGetByldx function = 171
Ica_QPropGetByName function « 172
Ica_QPropGetFirst function = 171
Ica_QPropGetNext function = 172
Ica_QPropName function = 173
Ica_QPropPropValsNum function = 174
Ica_QPropsGetNum function = 170
Ica_QPropSize function = 173
Ica_QPropType function = 174
Ica_QPropVal2Str function = 177
Ica_QPropValGetByldx function = 175
Ica_QPropValGetFirst function « 176
Ica_QPropValGetNext function = 176
Ica_QPropValList function « 175
Ica_rmtauth_CheckAccess function = 179
Ica_rmtauth_Init function = 178
Ica_Terminate function « 159
log routing, customizing = 108, 109
login events « 48, 55
LOGRAPI_FUNCS structure = 144
LogrApiFreeFunc function = 127
LOGRECHDR structure = 141
LOGRECORD structure = 142
logroute API
audit log record structures table « 130
compiling functions « 110
functions table « 118
implementation functions « 109
linking functions = 110
notification audit log records table = 131
registration functions = 109
shared library for « 112
termination functions = 109

N

notification records = 117

Index 287

@)

object ID = 46, 102
objects description file = 184

P

PACL - 186
password
authentication = 23
change events « 48
quality check events = 48, 56
PFSeosExitFunc data type = 104
post-exit function = 48
pre-exit function « 48
program access control list « 186
programs, sample
checking user authorization « 18
managing server applications = 20
properties
definition table = 182
description file = 184
retrieving database object « 222
retrieving information « 198
retrieving list of for class = 221
retrieving list values of « 207
retrieving single value of « 212
setting single value « 220
values file = 184
property ID « 182
protecting application resources « 16

R

record ID = 182

remote authorization APl = 25
resource group = 185

return codes, exits APl = 62

S

sample programs

checking user authorization « 18

exit function for login = 64, 68

managing server applications « 20

seadmapi_ClassGet function « 196
seadmapi_ClassGetEqual function = 196
seadmapi_ClassGetFirst function « 196
seadmapi_ClassGetNext function « 196
seadmapi_consMessageSend function = 249
seadmapi_consRunTimeStatisticsGet function <

248, 260

seadmapi_consShutdown function = 250
seadmapi_consTraceClear function = 245
seadmapi_consTraceDisable function = 245
seadmapi_consTraceEnable function = 245
seadmapi_consTraceGetStatus function = 245
seadmapi_consTraceToggle function = 245
seadmapi_consUidLoginDisable function = 246
seadmapi_consUidLoginEnable function = 246
seadmapi_consUidLoginGetStatus function =
246
seadmapi_FetchListPropVal function = 207
seadmapi_FetchSinglePropVal function = 212
seadmapi_FreeAceeMemory function = 234
seadmapi_FreeListPropVal function = 219
seadmapi_FreeObijList function = 207
seadmapi_GetACEE function = 234
seadmapi_GetEntity function = 222, 267
seadmapi_GetExEntity function = 222, 267
seadmapi_GetGracelnfo function = 226, 261
seadmapi_GetMessage function = 235
seadmapi_GetObjType function = 236
seadmapi_Ini functiont =« 238
seadmapi_InitEntityRuler function = 222
seadmapi_IlsSeOSSyscallLoaded function = 238
seadmapi_KillEntityMem function = 222
seadmapi_KiIillEXEntityMem function = 222
seadmapi_KillPDFList function = 221
seadmapi_MakePDFList function = 221
seadmapi_ObjGet function « 202
seadmapi_ObjlnClassList function « 206
seadmapi_OidToName function « 230
seadmapi_ProcessControl function = 244
seadmapi_PropGet function = 198
seadmapi_PropGetEqual function « 198
seadmapi_PropGetFirstinClass function =« 198
seadmapi_PropGetNextInClass function « 198
SEADMAPI_RTSTAT structure = 260
seadmapi_SendErrorLog function = 243
seadmapi_SetSinglePropVal function = 220
seadmapi_WhoAml function « 231
seadmapi_Whols function = 233
secons utility 245
SEGRACE_RES structure = 261
SEOS_ACCESS structure = 44
SEOS_ACCS data type = 29, 45
SEOS_ACL structure = 262, 264
SEOS_AUDITADMIN structure = 138
SEOS_AUDITDOWN structure = 139
SEOS_AUDITGENR structure = 134

288 SDK Guide

SEOS_AUDITINWARN structure = 137
SEOS_AUDITLOGIN structure = 132
SEOS_AUDITSTART structure = 139
SEOS_AUDITUSER structure = 140
SEOS_AUDITWDWARN structure = 136

SEOS_CID data type = 105
SEOS_EXITGENR structure = 97
SEOS_EXITINET structure = 98
SEOS_EXITLOGIN structure = 96
SEOS_EXITPASS structure « 99
SEOS_EXITRES structure « 101
SEOS_GCONN structure = 262

SEOS_NOTIFYSTR parameter « 117
SEOS_OID data type = 46, 105, 268

SEOS_PACL structure = 263, 265
SEOS_PID data type = 105

SEOS_REQ_ERRORDESCP structure = 263
SEOS_ROUTENTRY structure = 143

SEOS_X_GCONN structure = 264
SEOS_X_OID data type = 268
SEOS_X_PACL structure = 265
SEOSDB_ENTDAT structure = 267
SEOSDB_ODF structure = 102
SEOSDB_PDF structure = 103

SEOSROUTE_CloseRequestAzn function « 36
SEOSROUTE_CreateRequestAzn function = 35
SEOSROUTE_ParseApiError function = 23
SEOSROUTE_RequestAuth function = 18, 22,

28, 29, 37

SEOSROUTE_RequestAuthAzn function < 33
SEOSROUTE_ VerifyCreate function = 20, 23,

28, 29, 37

SEOSROUTE_ VerifyDelete function < 20, 28, 40

seostype.h header file = 45

sepass_ReplacePassword function = 251

server applications « 20
SERVER attribute « 20, 37

servlog_RegisterExit function = 128

sewhoami utility « 231

stand-alone applications = 16

structures
CLIENT_ACEE « 259
LOGRAPI_FUNCS » 144
LOGRECHDR = 141
LOGRECORD e« 142
SEADMAPI_RTSTAT = 260
SEGRACE_RES » 261
SEOS_ACL = 262, 264
SEOS_AUDITADMIN = 138

SEOS_AUDITDOWN = 139
SEOS_AUDITGENR = 134
SEOS_AUDITINWARN = 137
SEOS_AUDITLOGIN = 132
SEOS_AUDITSTART = 139
SEOS_AUDITUSER = 140
SEOS_AUDITWDWARN < 136
SEOS_EXITGENR = 97
SEOS_EXITINET = 98
SEOS_EXITLOGIN = 96
SEOS_EXITPASS = 99
SEOS_EXITRES »« 101
SEOS_GCONN e« 262
SEOS_PACL = 263, 265
SEOS _REQ ERRORDESCP = 263
SEOS_ROUTENTRY = 143
SEOS_X GCONN = 264
SEOS_X_PACL = 265
SEOSDB_ENTDAT = 267
SEOSDB_ODF = 102
SEOSDB_PDF = 103
support, contacting = 3

T

tclica = 276

TCP/IP request events « 48, 55
technical support, contacting = 3
trace logging = 245

u

user authentication = 23

Index 289

	eTrust Access Control SDK Guide
	Contents
	1: Introduction
	About this Guide
	APIs for UNIX and Windows
	APIs for UNIX Only

	2: Authorization and Authentication API
	Programming Guide
	Checking the Access Authority for a User Process
	Application Servers
	Access Authorization
	User Authentication
	Managing Error Messages
	Compiling and Linking with the Library
	Remote Authorization API

	Authorization and Authentication API Functions
	SEOSROUTE_ParseApiError Function
	SEOSROUTE_RequestAuth Function
	SEOSROUTE_RequestAuthAzn Function
	SEOSROUTE_CreateRequestAzn Function
	SEOSROUTE_CloseRequestAzn Function
	API_AZN_USERATTR Structure
	SEOSROUTE_VerifyCreate Function
	SEOSROUTE_VerifyDelete Function
	Structures and Data Types
	API_AUTH_RES Structure
	API_AZN_RES Structure
	SEOS_ACCESS Structure
	SEOS_ACCS Structure
	SEOS_OID Data Type

	3: Exits API
	Programming Guide
	Creating a New Exit Function
	eTrust AC Events
	User Information
	Compiling and Linking
	System Design and Limits
	Exits API Examples

	Exits API Functions for UNIX
	General Functions
	Database Interface Functions
	Shared Library Functions

	authxapi_RegisterExitFunction Function
	authxapi_UnregisterExitFunction Function
	authxapi_IsThereExitFunction Function
	authxapi_GetObjectProperty Function
	authxapi_GetObjectListValue Function
	authxapi_FreeListValues
	authxapi_GetUserInfo Function
	Exits API Functions for Windows
	UserDefinedFunction Function
	UserDefinedPrefix_RegisterExit Function
	Structure and Data Types
	SEOS_EXITLOGIN
	SEOS_EXITGENR
	SEOS_EXITINET
	SEOS_EXITPASS
	SEOS_EXITRES
	SEOSDB_ODF
	SEOSDB_PDF
	PFSeosExitFunc
	SEOS_CID
	SEOS_OID
	SEOS_PID

	4: LogRoute API
	Programming Guide
	Customizing selogrd
	Notification Audit Log Records

	LogRoute API Function
	driver_Register Function
	driver_UnRegister Function
	driver_RegisterDestination Function
	driver_UnregisterDestination Function
	lograpi_InterpretRecord Function
	lograpi_RegisterTargetType Function
	lograpi_UnregisterTargetType Function
	lograpi_MakeStringMessage Function
	LogrApiSenseFunc Function
	LogrApiSendFunc Function
	LogrApiFreeFunc Function
	servlog_IsThereExit Function
	servlog_RegisterExit Function
	servlog_UnRegisterExit Function
	Structures and Data Types
	Audit Log Record Structures
	Notification Audit Log Records

	SEOS_AUDITLOGIN
	Login Event Codes

	SEOS_AUDITGENR
	SEOS_AUDITWDWARN
	SEOS_AUDITINWARN
	SEOS_AUDITADMIN
	SEOS_AUDITSTART
	SEOS_AUDITDOWN
	SEOS_AUDITUSER
	LOGRECHDR
	LOGRECORD
	SEOS_ROUTENTRY
	LOGRAPI_FUNCS

	5: Language Client API
	Programming Guide
	LCA Function Types
	The eTrust AC Database
	Sample Program

	Language Client API Functions
	Execution Operations
	Password Operations
	Error Handling Operations
	Query: Entity Handling Operations
	Query: Property Handling Operations
	Remote Authorization Operations

	lca_Init Function
	lca_Terminate Function
	lca_ParseLine Function
	lca_ParseMBLine Function
	lca_CheckPasswordQuality Function
	lca_ErrsGetNum Function
	lca_ErrGetByIdx Function
	lca_ErrGetFirst Function
	lca_ErrGetNext Function
	lca_ErrSeverity Function
	lca_ErrStage Function
	lca_Err2Str Function
	lca_QEntsGetNum Function
	lca_QEntGetByIdx Function
	lca_QEntGetFirst Function
	lca_QEntGetNext Function
	lca_QEntGetByName Function
	lca_QEntObjName Function
	lca_QEntClassName Function
	lca_QPropsGetNum Function
	lca_QPropGetByIdx Function
	lca_QPropGetFirst Function
	lca_QPropGetNext Function
	lca_QPropGetByName Function
	lca_QPropName Function
	lca_QPropSize Function
	lca_QPropType Function
	lca_QPropValsNum Function
	lca_QPropValList Function
	lca_QPropValGetByIdx Function
	lca_QPropValGetFirst Function
	lca_QPropValGetNext Function
	lca_QPropVal2Str Function
	lca_rmtauth_Init Function
	lca_rmtauth_CheckAccess Function

	6: Administration API
	Programming Guide
	Database Organization
	Database Layout
	Database Lists
	Understanding ACEE
	Scope Limitations of the API
	Conventions
	Header Files
	Libraries
	Compiling and Linking with seadmapi
	Programming Notes

	Function Library
	Class Operations Functions
	Property Operations
	Object Operations
	Value Operations
	Query Operations
	Log Files Interface
	Console Operations
	Miscellaneous Operations

	seadmapi_ClassGet Functions
	seadmapi_PropGet Functions
	seadmapi_ObjGet Functions
	seadmapi_ObjInClassList Function
	seadmapi_FreeObjList Function
	seadmapi_FetchListPropVal Function
	seadmapi_FetchSinglePropVal Function
	seadmapi_FreeListPropVal Function
	seadmapi_SetSinglePropVal Function
	seadmapi_MakePDFList Function
	seadmapi_Entity Functions
	seadmapi_GetGraceInfo Function
	seadmapi_OidToName Function
	seadmapi_WhoAmI Function
	seadmapi_WhoIs Function
	seadmapi_ACEE Function
	seadmapi_GetMessage Function
	seadmapi_GetObjType Function
	seadmapi_init Function
	seadmapi_IsSeOSSyscallLoaded Function
	seadmapi_SendAuditRecord Function
	seadmapi_SendAudit Functions
	seadmapi_SendNotificationAudit Functions
	seadmapi_SendErrorLog Function
	seadmapi_ProcessControl Function
	seadmapi_consTrace Functions
	seadmapi_consUidLogin Functions
	seadmapi_consAllLogin Functions
	seadmapi_consRefreshIPAddresses
	seadmapi_consRunTimeStatisticsGet Function
	seadmapi_consMessageSend Function
	seadmapi_consShutdown Function
	seadmapi_ReloadIni Function
	sepass_ReplacePassword Function
	Structures and Data Types: eTrust AC Database Data Structures
	Description
	Log File Structures
	Data Structures

	CLIENT_ACEE Structure
	SEADMAPI_RTSTAT Structure
	SEGRACE_RES Structure
	SEOS_ACL Structure
	SEOS_GCONN Structure
	SEOS_PACL Structure
	SEOS_REQ_ERRORDESCP Structure
	SEOS_X_ACL Structure
	SEOS_X_GCONN Structure
	SEOS_X_PACL Structure
	SEOSDB_CDF Structure
	SEOSDB_ENTDAT Structure
	SEOS_X_OID Structure

	7: IR API
	The IR API
	Structures
	Data Position
	UTF8 Interpreted Audit Record

	Functions
	int eacIRApi_LogInit(IRApiDataPosition *pos);
	int eacIRApi_LogGetNext(IRApiDataPosition *pos, SEOS_UTF8AUDLOGINTERP **ppUtfMsg, int *log_type);
	int eacIRApi_LogTerminate(void);
	int eacIRApi_LogReset(void *buff, int size);
	void eacIRApi_LogFreeInterpretRecord(void);
	char *eacIR_LogGetVersion(void);
	int eacIRApi_CopyDataPosition(void **pos)
	size_t eacIRApi_GetDataPositionSize(void)
	int eacIRApi_GetLastError(SEOS_UTF8AUDLOGINTERP **pUtfMsg)
	int eacIRApi_ConvertOldData(void *oldbuff, size_t oldsize, void **newbuff, size_t *newsize)

	A: tcllca: The LCA Extension
	The tcllca.so Library
	Programming Guide
	Sample Program

	tcllca Functions
	se_class_list Function
	se_get_resources Function
	segetstat Function
	se_grp_usrs Function
	se_is_running Function
	selang Function
	se_objs_in_grp Function
	se_scan_props Function
	sewhoami Function

	B: Obsolete API
	The eAC IR API
	Structures
	Data Position
	UT8 Interpreted Audit Record

	Possible Return Values
	Functions
	int eacIR_LogInit(IRDataPosition *pos);
	int eacIR_LogReset(IRDataPosition *pos);
	int eacIR_LogGetNext(IRDataPosition *pos, SEOS_UTF8AUDLOGINTERP **ppUtfMsg, int *log_type);
	int eacIR_LogTerminate(void);
	void eacIR_LogFreeInterpretRecord(void);
	char *eacIR_LogGetVersion(void);

	Index

