

Advantage™ IngresEmbedded
Edition

Administrator's Guide

2.6

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Overview of Ingres
Ingres Installation ...1-1
Ingres Architecture ..1-2

Ingres Querying and Reporting Tools..1-3
DBMS Server ..1-3
How Ingres Executes a Query...1-3
DBMS Server Facilities ...1-4
Ingres Visual Tools...1-5
Logging and Locking Systems ..1-6
General Communication Facility (GCF) ...1-14
JDBC Connectivity..1-15

Chapter 2: Managing Your System and Monitoring
Performance

Ingres Visual Manager ...2-1
Using Ingres Visual Manager ...2-1
Ingres Visual Manager Window...2-2
Configuring Parameters ..2-3
Defining Message Categories and Notification Levels ...2-3
Setting Preferences...2-3
Monitoring Components ...2-4

Visual DBA ...2-5
Using the Performance Monitor ...2-6
Performance Monitor Window ..2-6
Working with Performance Monitor Components...2-7
Monitoring Components ...2-7

Contents iii

Chapter 3: Maintaining Databases
Viewing Database Objects ... 3-2
Deleting Database Objects ... 3-2
Routine Maintenance Tips ... 3-3
Operating System Maintenance Tips .. 3-4
Verifying Databases ... 3-5
Avoiding User Errors.. 3-6
Translating File Names into Table Names ... 3-6
Retaining Templates of Important Tables.. 3-7

Chapter 4: Maintaining Storage Structures
Storage Structures and Performance .. 4-1

Limitations of Heap Structure .. 4-2
Modifying Storage Structures .. 4-4

Modify Cautions .. 4-5
Modify Options ... 4-5
Shrinking a B-tree Index .. 4-16
Extending a Table or Index .. 4-17
Modifying Secondary Indexes ... 4-17
When to Remodify B-tree Tables ... 4-19
Common Errors During the Modify Procedure.. 4-20

Overflow.. 4-20
Measuring the Amount of Overflow ... 4-20
Repetitive Key Overflow.. 4-21
Poorly Distributed Overflow .. 4-22
Overflow and Storage Structures... 4-23

Chapter 5: Backup and Recovery

The Logging System... 5-1
The Logging Facility... 5-2
Log Space Reservation ... 5-2
The Recovery Process.. 5-3
The Archiver Process .. 5-3
The Cluster Server Process ... 5-3

Verifying Data Accessibility Before Backup.. 5-4
Backing Up a Database with Checkpoints ... 5-5

Checkpointing a Database.. 5-5

iv Administrator Guide

Checkpointing Tables ..5-6
Online and Offline Checkpoints ...5-7
Locking During a Checkpoint ...5-7
Cleaning Up Outdated Checkpoints ...5-8
Deleting the Oldest Checkpoint ...5-9
Checkpoints and Destroyed Databases...5-9
Parallel Checkpointing in UNIX...5-9
Putting Checkpoints on Tape in Windows...5-10
Putting Checkpoints on Tape in UNIX ..5-10
Putting Checkpoints on Tape in VMS ...5-14

Using the Journaling System...5-15
Starting Journaling..5-15
Disabling Journaling ..5-16
Stopping Journaling...5-17
Altering Database Characteristics ..5-19
Resizing the Journal File...5-19
Producing Audit Trails with Journals ...5-22

Copying a Database ..5-26
Creating Copy Scripts ...5-26
Copying a Database...5-26

Unloading a Database...5-27
Recovering Databases...5-27

Recovering Databases from Checkpoints and Journals..5-28
Recovering from the Loss of the Transaction Log File...5-33

Altering the Checkpoint Template File..5-33
Checkpoint Template Codes ...5-34
Substitution Parameters ...5-35
Valid Code Combinations ...5-36
Format of the Checkpoint Template File in Windows...5-37
Format of the Checkpoint Template File in UNIX ..5-38
Format of the Checkpoint Template File in VMS ...5-39
An Alternate Checkpoint Template File in UNIX...5-39

Backup and Recovery of the Master Database (iidbdb) ...5-40
Tracing with Set Log_Trace..5-40

Chapter 6: Improving Database and Query Performance

Locking and Concurrency Issues ..6-1
Identifying Lock Waits ...6-2
Multi-Query Transactions (MQTs)...6-2
Managing Overflow..6-3
Set Statements ...6-4

Contents v

Database Maintenance... 6-4
Design Issues ... 6-6

Diagnostic Hierarchy .. 6-6
Storage Structures and Index Design .. 6-6
Keys ... 6-7
Query Design ... 6-9

Before Calling Technical Support ... 6-9
Isolate and Analyze the Suspect Query ... 6-10
Create a Test Case .. 6-11

Appendix A: Ingres Commands
Audience...A-1
Special Considerations...A-1

Command Syntax ...A-2
Standard Command Line Flags and Parameters ..A-2
Uppercase Flags...A-5
Using Schemas for Owner Qualification ...A-5
Delimited Identifiers on the Command Line ...A-6

abf...A-9
Syntax..A-9
Description ...A-9

accessdb ... A-10
Syntax.. A-10
Description ... A-10

alterdb ... A-10
Syntax.. A-10
Description ... A-11

arcclean .. A-12
Syntax.. A-12
Description ... A-13
Examples... A-14

auditdb .. A-15
Syntax.. A-15
Description ... A-15
Examples... A-18

ckpdb.. A-20
Syntax.. A-20
Description ... A-20
Examples... A-22

convrep .. A-23
Syntax.. A-23

vi Administrator Guide

copyapp .. A-23
Syntax .. A-23
Description.. A-23
Examples ... A-26

copydb ... A-26
Syntax .. A-26
Description.. A-26
Examples ... A-30

createdb .. A-32
Syntax .. A-32
Description.. A-32
Examples ... A-35

dereplic... A-35
Syntax .. A-35

destroydb... A-35
Syntax .. A-36
Description.. A-36
Examples ... A-36

esqla (ESQL Preprocessor).. A-37
Syntax .. A-37
Description.. A-37

extenddb ... A-42
Syntax .. A-42
Description.. A-42
Examples ... A-43

fastload... A-43
Syntax .. A-43
Description.. A-43
Examples ... A-44

genxml ... A-45
Syntax .. A-45
Description.. A-45
Examples ... A-47

infodb .. A-47
Syntax .. A-48
Description.. A-48
Example .. A-48

ingmenu.. A-57
Syntax .. A-57
Description.. A-58

Contents vii

ingprenv ... A-58

Syntax.. A-58
Description ... A-59

ingsetenv... A-60
Syntax.. A-60
Description ... A-60

ingunset.. A-60
Syntax.. A-60
Description ... A-61

ipm.. A-61
Syntax.. A-61
Description ... A-61

isql .. A-62
Syntax.. A-62
Description ... A-62
Example.. A-63

modifyfe ... A-63
Syntax.. A-63
Description ... A-63

netutil ... A-64
Syntax.. A-64
Description ... A-65
Examples... A-65

optimizedb ... A-66
Syntax.. A-66
Description ... A-66
Examples... A-70

qbf... A-71
Syntax.. A-72
Description ... A-72

query .. A-73
Syntax.. A-73
Description ... A-74

reconcil .. A-74
Syntax.. A-74
Description ... A-76
Example.. A-76

viii Administrator Guide

relocatedb .. A-78
Syntax .. A-78
Description.. A-78
Examples ... A-79

repcat .. A-81
Syntax .. A-81
Description.. A-82
Examples ... A-82

repcfg .. A-82
Syntax .. A-82
Examples ... A-83

repdbcfg.. A-83
Syntax .. A-83
Description.. A-85
Examples ... A-85

repinst.. A-85
Syntax .. A-85
Description.. A-86
Examples ... A-86

repmgr ... A-86
Syntax .. A-86
Description.. A-87
Example .. A-87

repmod... A-88
Syntax .. A-88
Description.. A-88

report .. A-88
Syntax .. A-88
Description.. A-88

repstat.. A-92
Syntax .. A-92
Description.. A-92

rollforwarddb ... A-92
Syntax .. A-92
Description.. A-92
Examples ... A-97

rpserver .. A-98
Syntax .. A-98
Description.. A-98

rsstatd.. A-98
Syntax .. A-98

Contents ix

sql... A-98
Syntax.. A-98
Description ... A-99
Examples.. A-102

starview... A-103
Syntax... A-103
Description .. A-103
Example... A-104

statdump.. A-104
Syntax... A-104
Description .. A-104
Examples.. A-106

sysmod ... A-107
Syntax... A-107
Description .. A-107

tables ... A-108
Syntax... A-108
Description .. A-108
Example... A-109

unloaddb.. A-109
Syntax... A-109
Description .. A-109
Examples.. A-112

upgradedb .. A-113
Syntax... A-113
Description .. A-113

upgradefe ... A-115
Syntax... A-115
Description .. A-115
Examples.. A-116

usermod .. A-116
Syntax... A-116
Description .. A-116

verifydb... A-117
Syntax... A-117
Description .. A-117
Examples.. A-122

xmlimport... A-123
Syntax... A-123
Description .. A-123
Example... A-124

x Administrator Guide

Appendix B: Ingres Utilities
cacheutil... B-1

Syntax ... B-1
Description... B-1

catalogdb .. B-2
Syntax ... B-2
Description... B-2
Examples .. B-3

cbf .. B-3
Syntax ... B-4
Description... B-4

cscleanup .. B-4
Syntax ... B-5
Description... B-5

csreport.. B-5
Syntax ... B-5
Description... B-5
Examples .. B-6

deregdocs.. B-6
Syntax ... B-6
Description... B-6

ICETranslate ... B-7
Syntax ... B-7
Description... B-7
Example ... B-8

iigenres.. B-8
Syntax ... B-8
Description... B-8
Example ... B-8

iigetres .. B-9
Syntax ... B-9
Description... B-9

iimklog .. B-9
Syntax ... B-9
Description... B-9

iiremres ... B-9
Syntax .. B-10
Example .. B-10

iisetres.. B-10
Syntax .. B-10
Example .. B-10

Contents xi

iivalres..B-11
Syntax...B-11
Example...B-11

iimonitor ..B-11
Syntax...B-11
Description ..B-12

iinamu ..B-15
Syntax...B-15
Description ..B-15
Examples..B-17

iishowres..B-19
Syntax...B-19
Description ..B-19

iizic...B-19
Syntax...B-19
Description ..B-19

iizck ..B-20
Syntax...B-20
Description ..B-20

ingbuild (UNIX) or vmsinstal (OpenVMS)..B-21
Syntax...B-21
Description ..B-21
ingnet ...B-21

Syntax ..B-21
Description ..B-22

ingstart ...B-22
Syntax...B-22
Description ..B-22
Examples..B-23

ingstop..B-24
Syntax...B-24
Description ..B-24

ivm ...B-25
Syntax...B-25
Description ..B-25

lockstat ...B-26
Syntax...B-26
Description ..B-26
Example...B-27

xii Administrator Guide

logstat.. B-33
Syntax .. B-34
Description.. B-34
Example .. B-45

mkrawarea.. B-48
Syntax .. B-48
Description.. B-48

mkrawlog... B-48
Syntax .. B-48
Description.. B-48

rcpconfig ... B-49
Syntax .. B-49
Description.. B-49

rcpstat.. B-50
Syntax .. B-50
Description.. B-51

regdocs... B-51
Syntax .. B-52
Description.. B-52

rmcmdgen .. B-53
Description.. B-53

rmcmdrmv ... B-54
Description.. B-54

rmcmdstp... B-54
Description.. B-54

syscheck.. B-54
Syntax .. B-54
Description.. B-54

vcbf .. B-55
Syntax .. B-55
Description.. B-55

vdba ... B-56
Syntax .. B-56
Description.. B-56
Examples ... B-59

Contents xiii

Chapter

1
Overview of Ingres

The Ingres system administrator has all privileges and holds the primary
responsibility for installing and maintaining Ingres. Logging in as the Ingres
system administrator provides the permissions needed for an embedded
installation and subsequent maintenance.

The Ingres system administrator has the following responsibilities:

■ Authorize users to access Ingres

■ Install Ingres files

■ Define Ingres variables such as II_DATABASE and II_INSTALLATION

■ Start, stop, configure, and monitor server(s)

■ Disconnect or suspend a session connected to a server

■ Shut down the Ingres installation (or parts of it)

Ingres Installation

The Ingres system administrator installs and maintains the following principal
components or associated family of compatible components:

■ DBMS Servers (including distributed servers)

■ Internet Communication

■ General Communications (including Name server, Networking, and JDBC
connectivity)

■ Ingres Visual Tools (including Visual DBA, Configuration Manager, Ingres
Visual Manager, Ingres Journal Analyzer, Ingres Network Utility, and the
Remote Command server)

■ Logging and locking systems

Overview of Ingres 1–1

Ingres Architecture

An Ingres installation also has:

■ Library files and utilities, provided on your release media

■ Configuration files and error log files, created during installation and at
runtime by Ingres

■ Databases and their associated files: the checkpoint, journal, dump, and
work files, also created by Ingres during installation and at runtime

The locations of these files are selected at installation time, together with the
configuration of the DBMS server(s) and the logging and locking systems. For
the initial installation, default settings are provided by the system whenever
possible.

After the installation is running, you should monitor all of your Ingres servers
(DBMS, Name, Star, Net communications, Bridge, and Ice) to ensure that they
are running and that they are configured for top performance. If necessary, you
can reconfigure selected Ingres parameters as described later in this guide.

Ingres Architecture

The following list contains elements of the Ingres architecture with which you
should be familiar:

■ DBMS servers (including distributed servers)

■ Internet communication

■ General communications (including Name server, Networking, and JDBC
connectivity)

■ Ingres Visual Tools (including Visual DBA, Configuration Manager, Ingres
Visual Manager, Ingres Journal Analyzer, Ingres Network Utility, and the
Remote Command server)

■ Logging and locking systems

If your installation uses Net, it will include one or more Net communications
servers (also referred to simply as communications servers). The communications
server is discussed in the General Communication Facility section in this
chapter. For more information, refer to the “Establishing Communications”
chapter of this guide.

1–2 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

Ingres Querying and Reporting Tools

Users can employ Ingres querying and reporting tools (such as Report Writer,
Query-By-Forms (QBF), and Vision) to access databases.

Whenever a user accesses a database through one of these Ingres tools, a
process is created and communication is initiated with the database through a
DBMS server. The information about how the user may connect to the server is
provided by the Name server, which is part of the General Communication
Facility.

DBMS Server

The Ingres client-server architecture allows multiple users access to databases
through connections to one or more DBMS server processes. The DBMS server
(iidbms) is a multi-threaded daemon process that performs asynchronous disk
input/output. The number of users connected to a server is in practice limited
by hardware constraints or operating system limits.

Ingres DBMS servers can be configured to fit specific needs. For example, you
can:

■ Designate one server to access a particular database, denying other servers
access to that database.

■ Configure a server as a “fast commit” server to achieve higher levels of
performance.

■ Specify that two or more servers share a common memory buffer cache.

■ Specify private buffer cache with distributed multi-cache protocol.

Some of the elements of the DBMS server are described as facilities. The
following section contains a list of facilities, their acronyms, and brief
descriptions.

How Ingres Executes a Query

Typically, your interaction with Ingres consists of at least two processes: an
Ingres tool or application of some kind and the DBMS server process. The
Ingres tool program handles screen display and prompts, takes user input and
then issues a query that is sent to the DBMS server, where it is formatted,
optimized and then executed on behalf of the user. The DBMS server then
returns the data to the Ingres tool program.

Overview of Ingres 1–3

Ingres Architecture

The DBMS server can execute queries for a large number of users, each running
an Ingres tool. To accomplish this, the DBMS server is a multi-threaded process.
Even though it is a single process, it can execute queries on behalf of multiple
users. These queries execute as multiple “sessions” inside the DBMS. Visual
DBA permits you to view those sessions that are running in the DBMS server at
any moment. See the Visual DBA procedural help for detailed steps about
viewing DBMS sessions.

Query Environment

When a thread or session executes a query inside the DBMS, it does so in a query
environment. The query environment consists of:

■ A quantity of resources available from the operating system for use by the
session

■ The rules under which the query is executed

These rules have to do with which query language is used, what locking
strategy is employed, what diagnostic information is also returned, what default
behavior Ingres adopts for various query language statements, and so on.

DBMS Server Facilities

The following are DBMS server facilities. Some of the configuration parameters
configure DBMS server facilities. You may find this section helpful to use with
the “Configuring Ingres” chapter and the troubleshooting information in the
“Basic Troubleshooting” chapter.

The server consists of these components:

■ Abstract Data Type Facility (ADF)—ADF does all the work that involves
data types. It manipulates floating point numbers, character strings,
integers, all the conversions and comparisons between them, and so on. This
facility can be executed independently from the server so that Ingres tools
also use ADF.

This abstract data type facility is also compiled into the Ingres tools, such as
QBF and the Terminal Monitor. It is used to manipulate Ingres data types in
the front-end process before sending them to the DBMS.

■ Data Manipulation Facility (DMF)—The Data Manipulation Facility (DMF)
manages the DBMS interface to disk storage. In addition to managing all
storage structures (hash, heap, ISAM, B-tree, BLOBs, and so on), DMF uses
the logging and locking systems to control transaction processing and to
handle concurrency issues. Included within DMF is a “buffer manager” that
controls access to a cache (possibly shared) of database pages.

1–4 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

■ Optimizer Facility (OPF)—The optimizer, OPF, selects the optimal plan for
implementing queries. It also converts the query tree that comes out of the
parser into the query execution plan (QEP). OPF uses a memory pool for its
operations.

■ Parser Facility (PSF)—The parser, PSF, converts queries from text form to
internal format. The parser adds data from the system catalogs to the query,
such as information about the table structure and keys that the optimizer
needs to make a useful query plan.

■ Query Execution Facility (QEF)—QEF executes query plans and database
utilities. It provides internal query services that other facilities use. QEF
manages repeat queries, transactions, and cursors.

■ Query Storage Facility (QSF)—QSF provides shared memory facilities with
a temporary or permanent place to store query trees and query plans.

■ Relation Description Facility (RDF)—RDF is a central caching point for
information about tables. It is used by Star, PSF, and OPF.

■ System Control Facility (SCF)—SCF is the central controlling facility that
manages sessions on behalf of user (client) requests. It coordinates the
actions among the various facilities involved in processing a query,
including thread monitoring and switching. SCF is also responsible for
managing server-wide access to shared resources, such as operating system
semaphores and memory.

Ingres Visual Tools

The following are GUI tools for use in visually starting, stopping, managing,
and monitoring your Ingres installation.

Ingres Visual Manager Ingres Visual Manager provides a global view into your Ingres installation. It
serves as a system console from which you can manage Ingres components and
access other utilities. This utility captures events that are occurring in the system
and allows them to be filtered for emphasis, according to the system
administrator’s preferences. For information on command line tasks, see the
appendices, "Ingres Commands" and "Ingres Utilities" in this guide.

Visual DBA Visual DBA provides an alternative set of system administration tools. It allows
you to perform system administrator functions—including configuring,
performance monitoring, backup and recovery, and remote database
optimization—using a GUI interface. For information on command line tasks,
see the appendices, "Ingres Commands" and "Ingres Utilities" in this guide.

Remote Command

Server

The remote command server (RMCMD) must be started in installations where
an Ingres DBMS server is running in order for certain DBA tasks to be
accessible remotely with Visual DBA. The remote command server is started
on the server side, not on the Visual DBA client.

Overview of Ingres 1–5

Ingres Architecture

The DBA tasks are primarily those that would not have an equivalent through
an SQL statement, for example, creating or dropping a database, displaying
selected portions of the journal for a database, or starting a replication server
remotely. By default, only the ingres system administrator is authorized to
perform such tasks remotely through Visual DBA.

To allow a user other than the ingres system administrator to execute the
remote commands, issue the following SQL statements while connected to the
iidbdb as the ingress system administrator:

��������	�
���������
��������	�������������
�����������������

��������	�
���������
��������	�������������
���
��������������

��������	�
���������
��������	�������������
���������������

���������

���������
��
���	�
�
�������
�����������

���������

���������
��
���������
�����
����������

�����������������������������������
��
��������������

�����������������������������������
�����
�����������

�����������������������������������
��������
�	������������

�����������������������������������
������
��
�	������������

�����������������������������������
��������������

Note: No grants should be made directly to the underlying tables.

Configuration Manager The Configuration Manager utility provides a GUI interface for configuring
your Ingres installation. For more information, see the appendices, "Ingres
Commands" and "Ingres Utilities" in this guide.

Ingres Network Utility The Ingres Network Utility is a stand-alone tool that permits you to view and
define Ingres/Net node definitions, which then allows you to connect to remote
Ingres installation through Ingres/Net. In addition, Ingres Network Utility
allows you to launch the stand-alone Database Object Manager, Monitor, and
SQL/Test windows for such installations.

Ingres Import Assistant The Ingres Import Assistant assists you with importing an external text file into
an Ingres or gateway table. It can be run as a stand-alone utility or from within
Visual DBA.

Ingres Journal Analyzer The Ingres Journal Analyzer utility allows you to view and analyze journaled
transactions and individual underlying statements. It also enables you to create,
recover, and redo SQL scripts, which are used to recover or redo individual row
operations without redoing or rolling back the whole database or table.

Logging and Locking Systems

The logging and locking systems coordinate the locking, recovery, and
journaling of databases. The system is composed of the following components:

■ The Lock Manager

■ The Logging Facility

■ Recovery process

■ Archiver process

1–6 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

■ Primary and dual transaction log files

■ Other log files

Lock Manager

The locking component controls concurrent access to a database.

In UNIX, this component makes use of the shared memory segments and
semaphore resources that you install when you configure the UNIX kernel.

Shared memory is allocated to components initially during the installation
procedure. The amount of shared memory that your installation requires
depends on the logging and DBMS server parameters that you select during the
procedure.

Logging Facility

The logging facility implements a circular “write-ahead” transaction log file for
the management of transactions within the installation. It ensures that log
records are written in a way that makes them accessible to the recovery and
archiver processes. The recovery and archiver processes manipulate the data in
the transaction log file when certain events occur. For example, after a
transaction is committed, the logging facility moves the log buffer, which
resides in shared memory, to the transaction log file.

The logging facility is shared by all servers in the installation, as well as the
recovery and archiver processes. Log records written by different servers, or
written by several threads in the same server, may be combined with log
records written by other servers or threads.

Log records are first copied to in-memory log buffers, which are written to the
log file as they fill. Memory log buffers and disk log file blocks are the same
length. The number of log buffers is configurable, set according to the
performance requirements of the system. The logging system manages multiple
asynchronous writes of log buffers to the log file. Once written, a log file block is
never rewritten until the file wraps around.

The number of log file blocks corresponds to the size of the log file, and is
specified when the log file is created.

In a properly tuned system, most log file buffers are completely full of log
records when they are written to the log file. However, as all log records
associated with a transaction must be forced to the log file at certain times,
principally at end transaction time, a small percentage of log file blocks may
contain unused space. Server group commit logic is designed to minimize the
frequency of log force operations and increase log file space utilization.

Overview of Ingres 1–7

Ingres Architecture

Recovery Process

Each installation has a dmfrcp (data manipulation facility recovery process) that
is assigned recovery responsibilities. In normal circumstances, transaction
commit and rollback processing are handled within each DBMS server. In the
event of a server or system failure, however, the recovery process performs the
required recovery, including backing out uncommitted transactions and
ensuring that committed transactions are properly reflected on disk.

The recovery process operates in both online and offline modes:

■ Online recovery is performed when a server stops abnormally. In this case,
users connected to other servers are generally unaffected by the recovery.

■ Offline recovery is performed when the installation is brought back up after
it has stopped abnormally. In this case, the installation remains unavailable
until the recovery process completes all required recovery.

The recovery process maintains a history of important actions in its own
message log file, named iircp.log. See the Recovery Log section for details.

Archiver Process

Each installation has a single archiver process called the dmfacp (data
manipulation facility archiver process). The archiver process is responsible for
copying the history of operations performed on journaled databases from the
transaction log file to the journal files. Journal files contain the subset of
transaction log file information associated with a specific database.

Journal files are created (and optionally destroyed) during a checkpoint
operation. In the event of a disaster, the database can be rebuilt by restoring the
latest checkpoint and then applying journal file information. Disaster recovery
operations are coordinated by the rollforwarddb command. It can be accessed
through the Visual DBA Database menu, DOM window.

The archiver process maintains a history of important actions in its own
message log file, iiacp.log. See the Archiver Log section for details.

Transaction Recovery

Transaction recovery involves the transaction log file (see the Transaction Log
File section for details) that is used as a write-ahead log, plus journal files
maintained on a per-database basis. Log files contain short-term recovery
information regarding active databases, while the journal files contain long-term
information used for auditing and disaster recovery. While the log file is circular
and wraps around, journal files are of configurable length and are retained
indefinitely.

1–8 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

Ingres employs a page-oriented recovery scheme, where changes to pages are
reflected in the transaction log file. Recovery information is divided into two
types: undo (or rollback) operations and redo (or cache restore) operations.

Undo or transaction backout recovery is performed by the DBMS server. For
example, when a transaction is aborted, transaction log file information is used
to roll back all related updates. The DBMS server writes the Compensation Log
Records (CLRs) to record a history of the actions taken during undo operations.

While undo recovery is transaction-oriented, redo recovery is database-
oriented. Redo recovery is performed after a server or an installation fails. Its
main purpose is to recover the contents of the DMF cached data pages that are
lost when a fast-commit server fails. Redo recovery is performed (in a non-
clustered installation) by the recovery process. Redo recovery precedes undo
recovery.

Ingres performs both online and offline recovery, as described in the Recovery
Process section.

Ingres Log Files

Ingres maintains log files to which it writes information about the installation
activities.

Transaction Log File

Each installation has a transaction log file, and an optional dual log file. The log
file holds information about all open transactions and is used to recover active
databases after a system failure. You have the option to change its size and
number of partitions at startup.

The UNIX log file can be created as a raw partition, or as a number of raw
partitions if you choose.

Error Log

The main error log is a readable text file that you can use for troubleshooting.
The error log is maintained in the following file:

%II_SYSTEM%\INGRES\FILES\ERRLOG.LOG

$II_SYSTEM/ingres/files/errlog.log

Overview of Ingres 1–9

Ingres Architecture

II_SYSTEM:[INGRES.FILES]ERRLOG.LOG

Messages about the installation are appended to this log with the date and time
at which the error occurred. This is generally the first place to look when
troubleshooting a problem.

The error log contains the following information:

■ Error messages

■ Warning messages

■ Server start up and shutdown messages

The Ingres system administrator maintains the error log file. The file continues
to grow until manually truncated. The installation should be shut down before
truncating or removing the errlog.log file.

Archiver Log

The archiver log contains information about the current archiver process in the
following file:

%II_SYSTEM%\INGRES\FILES\IIACP.LOG

$II_SYSTEM/ingres/files/iiacp.log

II_SYSTEM:[INGRES.FILES]IIACP.LOG

This file is appended to when the archiver process starts. The log contains the
following information:

■ Archiver start up

■ Archiver error messages

■ Archiver warning messages

1–10 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

Recovery Log

The recovery (dmfrcp) log contains information about the current recovery
process in the following file:

%II_SYSTEM%\INGRES\FILES\IIRCP.LOG

$II_SYSTEM/ingres/files/iircp.log

II_SYSTEM:[INGRES.FILES]IIRCP.LOG

This file is appended to when the recovery process starts. The log contains the
following information:

■ Current logging and locking parameter values

■ Recovery process error messages

■ Recovery process warning messages

■ Recovery operations information

The recovery log should be monitored if you are unable to connect to Ingres and
suspect that the DBMS server is in recovery mode. You can determine the
recovery state by looking at the log file header information. To view log file
header information in Visual DBA, select the Log Information branch in a
Performance Monitor window and click the Header tab.

VMS Cluster Service Process Log

The cluster service process (on VMS clustered installations only) log maintains
information about the cluster service process (CSP). A new version of this file
is written each time the CSP is started.

The CSP log file contains information on the following:

■ Archiving and recovery messages

■ Node information

You should monitor the CSP log if problems arise with node logging or locking.

Overview of Ingres 1–11

Ingres Architecture

Primary Configuration Log Files

Ingres maintains transcripts of various configuration operations. Configuration
log files that you may find useful are given in the table below. These files are in
the directory indicated by II_CONFIG:

Log File Name Description

config.log Contains a log of the changes made with the
configuration utility (cbf).

rcpconfig.log Contains log and error information of the last time
rcpconfig was run. This might have been for
reconfiguration, shutdown, or initial installation.

Optional Configuration Log Files

Configuration log files that are optionally maintained are given in the table
below. These files, if present, are in the II_CONFIG directory (in UNIX, the
setting should always be $II_SYSTEM/ingres/files):

Log File Name Description

iilink.log The file contains a log of the last time the iilink command
was run. For details on the iilink command, see the
appendices, "Ingres Commands," and "Ingres Utilities," in
this guide.

iivdb.log Contains a transcript of the last time verifydb was used to
diagnose or attempt recovery of a damaged or
inconsistent database. This file is created the first time
verifydb is run.

lartool.log Contains a transcript, with any errors, of the last time
lartool was used to manually abort or commit a running
transaction. This file is created the first time lartool is run.

Other Optional Log Files

The following types of optional log files may be present on your installation:

■ Individual process logs. For the following processes you can set up a
separate log file to isolate the error messages relating to that process:

− DBMS

− GCC

1–12 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

You would normally do this for a specific troubleshooting purpose. These
messages go to the errlog.log by default. If you define one of these separate
error logs, all messages will go to both that file and errlog.log.

■ Trace log for tracking messages at a greater level of detail

■ Log for an optional Ingres facility

These optional log and trace log files can be established by setting the associated
Ingres variables:

Log File Name Description

DBMS error log The DBMS error log, optionally defined as a separate file.

This log file is established by setting the Ingres variable
II_DBMS_LOG to a user file name. All DBMS errors and
messages go to errlog.log by default.

GCC error log The GCC error log, for installations using Net. This is in a
user-defined file.

This log file is established by setting II_GCC_LOG to the
full name of a file. The error logging level is specified by
II_GCC_LOG_LVL.

GCC trace log The GCC trace log is set up for specific troubleshooting
efforts. You set II_GC_LOG to a user file name. The
associated Ingres variable II_GC_TRACE defines the level
of tracing.

Star error log The Star error log, optionally defined as a separate file.

This log file is established by setting the Ingres variable
II_STAR_LOG to a user file name. All STAR errors and
messages go to errlog.log by default.

General Communication Facility (GCF)

GCF manages communication among all the components of Ingres. GCF has
four elements whose acronyms you will encounter:

■ Name server—The Name server (iigcn) keeps track of all DBMS, Star, JDBC,
Bridge, ICE, and communications (Net) servers associated within an
installation. There is one Name server process per installation. The Name
server provides information to user processes that allows the user to
connect to a local DBMS server. When a user process wants to connect to a
remote DBMS server, the Name server provides information that allows the
user to connect to a communications server. The communications server
establishes communication with the remote DBMS server.

Overview of Ingres 1–13

Ingres Architecture

The Name server checks regularly (the default is every five minutes) to
ensure that all DBMS servers on its list are functioning. If a server has shut
down, the Name server automatically deletes its registration.

As part of the General Communication Facility services, Ingres provides a
Name Server Maintenance Utility, iinamu. This utility allows the Ingres
system administrator to manually add servers to or delete servers from the
list maintained by the Name server or to stop and restart the Name server
itself. For more information about this utility, see the online Command
Reference Guide.

■ Communications server—The communications server (iigcc) is a daemon
process that provides the network communication element of the Net
product. It monitors outgoing communication from local applications to
remote DBMS servers and incoming communication from remote
applications to local DBMS servers. An installation can have multiple
communications server processes. For additional information about the
communications server, see the “Establishing Connections” chapter and the
“Using Netutil” appendix of this guide.

■ Bridge server—Bridge enables a client application running on one type of
local area network to access an Ingres server running on a different type of
network. Bridge will “bridge” a client using one network protocol to a
server using another. For more information on the Bridge server, see the
“Establishing Communications” chapter and “Bridge Server Configuration”
appendix of this guide.

■ General Communications Architecture (GCA)—This is the lowest level
GCF Application Program Interface. The GCA maintains communication
connections between processes on the same local Ingres installation. The
GCA is a subroutine library that is a part of all Ingres tools, DBMS servers,
Star servers, and the libraries associated with embedded SQL and EQUEL.

JDBC Connectivity

The Ingres JDBC driver is a pure Java implementation of the JDBC 2.1 interface.
The driver supports application, applet, and servlet access to Ingres data
sources via a middle-ware JDBC server. The driver supports the full JDBC 2.1
API and the JDBC 2.0 Standard Extension API interfaces DataSource,
ConnectionPoolDataSource, and XADataSource.

The following features are available with the JDBC server/driver:

■ Driver properties autocommit_mode and select_loop. All properties may be
specified using URL attributes.

■ Autocommit transaction extensions

■ Select loop support

■ Extensions for Ingres ‘empty’ dates and date intervals

■ Support for Native Character Set (nchar, nvarchar) columns

1–14 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

■ Database procedure support using CallableStatement interface

■ JDBC 2.1 API support

■ JDBC 2.0 Standard Extension API interfaces DataSource,
ConnectionPoolDataSource, and XADataSource

JDBC Components

The JDBC product is composed of two units: an installation server and a Java
client driver. The JDBC server runs as a part of a standard Ingres installation. It
may be configured using cbf and started using ingstart. The server translates
JDBC requests from the driver into Ingres internal format and forwards the
request to the appropriate DBMS server. Through the JDBC server, a JDBC
client has full access to Ingres, Star, and EDBC databases. The JDBC server can
also access servers on other platforms via Ingres/Net.

The JDBC driver is delivered as a Java archive, named edbc.jar, located in the lib
directory of the Ingres installation. In addition, the class files for a Java utility
program, EdbcInfo, which displays the driver version information, are also
located in the same directory. Access to the Ingres driver may require,
depending on the Java environment used, adding the Java archive to the
CLASSPATH environment setting or as a resource in the appropriate utility. For
browser/applet access, the Java archive may need to be copied to the web
server directories.

JDBC 2.1 API Features

The JDBC driver is compliant with the JDBC 2.1 API specification. JDBC 2.1 API
interfaces are fully supported with the following exceptions:

■ Calendars

Ingres stores date/time values in GMT (same as Java). With an Ingres
DBMS, the JDBC driver handles all date/time values in GMT, so calendars
provided in setXXX() and getXXX() methods may be ignored. EDBC servers
do not reference date/time values to a particular timezone. The JDBC driver
uses the local timezone when accessing a non-Ingres DBMS, and will use
calendars if provided. Calendars may also be used when converting values
(getDate() of a CHAR column, or getTimestamp() of a DATE column with
no time component).

■ Batch updates

Batched execution for Statements, PreparedStatements, and
CallableStatements is supported by individual execution of each batched
request. The driver implementation for batch updates is only as efficient as
an application making individual update requests.

Overview of Ingres 1–15

Ingres Architecture

■ Data types

 The new SQL data types BLOB, CLOB, ARRAY, REF, DISTINCT, STRUCT,
and JAVA_OBJECT are not supported. Neither is the storage, nor mapping,
of Java objects (SQLInput, SQLOutput, and SQLData).

■ Result sets

Result sets generated by executeQuery() requests will always be
TYPE_FORWARD_ONLY (non-scrollable) and CONCUR_READ_ONLY
(non-updateable). Methods associated with scrolling and updating will
throw SQLExceptions. The row query methods (isFirst(), isBeforeFirst(),
isAfterLast(), and getRow()) are supported with the exception of isLast(),
which always returns false.

JDBC 2.0 Standard Extensions

The following classes are provided by the JDBC driver, and implement
interfaces defined by the JDBC 2.0 Standard Extension API:

JDBC Driver Class Implemented JDBC 2.0 Interface

ca.edbc.jdbcx.EdbcDataSource javax.sql.DataSource

ca.edbc.jdbcx.EdbcCPDataSource javax.sql.ConnectionPoolDataSource

ca.edbc.jdbcx.EdbcXADataSource javax.sql.XADataSource

The DataSource classes support the following properties and associated
getter/setter methods:

DS Property Driver Property Description

DataSourceName Data source name

Description Data source description

ServerName Server host name (required)

PortNumber Numeric port ID (required). A port
ID must be provided either
numerically or symbolically.

DatabaseName Database name (required)

User user User name (required)

Password password User’s password (required)

RoleName role Role identifier

GroupName group Group identifier

DbmsUser dbms_user User name for DBMS session

1–16 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

DS Property Driver Property Description

DbmsPassword dbms_password User’s DBMS password

ConnectionPool connect_pool Server connection pooling

AutocommitMode autocommit_mode Autocommit cursor handling

SelectLoops select_loop Select loop vs. cursor queries

The DataSourceName and Description properties are for the use of the deployer
of the DataSource. The required properties correspond to the information
contained in a connection URL (see Accessing the Driver section). The
remaining DataSource properties correspond to driver properties defined in the
Driver Properties section.

Running the JDBC Server

The JDBC server is started and stopped via the standard installation startup and
shutdown commands. The server may also be stopped using the following
command:

iigcstop addr

The server address may be obtained using the iinamu utility and issuing the
following:

show jdbc

Loading the Driver

The following Java source line should be added to an application or applet prior
to attempting to establish a connection using the JDBC driver:

Class.forName("ca.edbc.jdbc.EdbcDriver").newInstance();

Depending upon the Java environment, calling the forName() method may be
sufficient to load and initialize the driver classes. Some environments, most
notably Microsoft Internet Explorer, require the instantiation of an EdbcDriver
object to fully initialize the driver.

Accessing the Driver

The JDBC driver can be accessed using a DriverManager getConnection()
method with a URL in the following format:

jdbc:edbc://host:port/db;attr=value

Overview of Ingres 1–17

Ingres Architecture

The parameters are described as follows:

host—the network name or address of the host on which the target JDBC server
is running.

port—the network port used by the JDBC server. This may be a numeric port
number or an Ingres symbol port address such as II7.

db—the target database specification. Any valid Ingres database designation
may be used, including vnode and server class (that is, vnode::database/class).

attr=value—optional attribute name and value pair. Multiple attribute pairs are
separated by a semi-colon.

Attributes represent driver properties that are implementation-specific and may
be used to configure the new connection. Driver properties are discussed in the
following section.

Driver Properties

Driver properties allow applications to establish connection parameters that are
driver-dependent. JDBC driver properties may be specified as connection URL
attributes or as a properties set in a DriverManager getConnection() method.

A user name and associated password are required when making a connection.
They may be provided as attributes, properties, or as parameters to a
DriverManager getConnection() method.

The following properties are supported by the JDBC driver:

Property Attribute Description

user UID The user ID on the DBMS machine
(required).

password PWD The user’s operating system password
(required).

role ROLE The desired role identifier. If a role
password is required, include it with the
role name as follows: name/password.

group GRP The user’s group identifier.

dbms_user DBUSR The user name to be associated with the
DBMS session (Ingres -u flag, may
require admin privileges).

dbms_password DBPWD The user’s DBMS password (Ingres -P
flag).

1–18 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

Property Attribute Description

connect_pool POOL Server connection pool control.
Available options are:

■ off—requests a non-pooled
connection when server pooling is
enabled.

■ on—requests a pooled connection
when server pooling is optional.

autocommit_mode AUTO Autocommit cursor handling mode.
Available options are:

■ dbms (default)—autocommit
processing is done by the DBMS
server.

■ single—JDBC server enforces single
cursor operation during
autocommit.

■ multi—JDBC server simulates
autocommit operations when more
than one cursor is open.

See the Autocommit Transactions
section for further details.

select_loop LOOP Select loop vs. cursor queries. Available
options are:

■ on—uses select loops to retrieve
query results.

■ off—uses cursors (default).

See the Cursors and Select Loops section
for further details.

Attributes may also be specified using the property name as the attribute name.
Thus ‘UID=user1’ and ‘user=user1’ are semantically the same. When provided
both as properties and attributes, the property value takes precedence.

Autocommiting Transactions

Application writers should be aware that the Ingres DBMS imposes severe
limits on the operations that may be performed when autocommit is enabled
(the JDBC default transaction mode) and a cursor is opened. In general, only
one cursor at a time may be open during autocommit, and only cursor-related
operations (cursor delete, cursor update) can be performed. Violating this
restriction will result in an exception being thrown with the message text ‘No
MST is currently in progress, cannot declare another cursor’.

Overview of Ingres 1–19

Ingres Architecture

Cursors are opened by the Statement and PreparedStatement executeQuery()
methods and remain open until the associated ResultSet is closed. The driver
may close a cursor automatically when the end of the result set is reached, but
applications should not rely on this behavior. JDBC applications can avoid
many problems by calling the close() method of each JDBC object when the
object is no longer needed.

The JDBC driver provides alternative autocommit processing modes that may
help overcome the restriction of autocommit transactions or handle problems
applications have with closing result sets. The autocommit processing modes
may be selected by setting the connection property ‘autocommit_mode’ (see the
Driver Properties section) to one of the following values:

Value Mode Description

dbms DBMS (default) Autocommit processing is done by the DBMS and
is subject to the restrictions mentioned above.

single Single-cursor The JDBC Server allows only a single cursor to be
open during autocommit. If a query or non-cursor
operation is requested while a cursor is open, the
JDBC server will close the open cursor. Any
future attempts to access the cursor will fail with
an unknown cursor exception. This mode is
useful for applications that fail to close result sets,
but does not perform other queries or non-cursor
related operations while the result set is being
used.

multi Multi-cursor Autocommit processing is done by the DBMS
when no cursors are open. The JDBC server
disables autocommit and begins a standard
transaction when a cursor is opened. Since
autocommit processing is disabled, multiple
cursors may be open at the same time and non-
cursor operations are permitted. When a cursor is
closed, and no other cursor is open, the JDBC
server commits the standard transaction and re-
enables autocommit in the DBMS. This mode
overcomes the restrictions imposed by the DBMS
during autocommit, but requires the application
to be very careful in closing result sets. Since the
JDBC server will not commit the transaction until
all cursors are closed, a cursor left open
inadvertently will eventually run into log-file full
problems and transaction aborts.

1–20 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

Cursors and Select Loops

By default, the JDBC driver uses a cursor to issue SQL select queries. Cursors
permit other SQL operations, such as deletes or updates, to be performed while
the cursor is open (operations may be restricted during autocommit, see the
Autocommit Transactions section). Cursors also permit multiple queries to be
active at the same time. These capabilities are possible because only a limited
number of result rows, frequently only a single row, are returned by the DBMS
for each cursor fetch request. The low ratio of driver requests to returned rows
results in low performance compared to other access methods.

The JDBC driver does use cursor pre-fetch capabilities when possible. For
READONLY queries, as many rows as fit in one communications block are
retrieved on each fetch request. Depending on row size, this can greatly increase
efficiency of the data access. Updateable cursors, however, only retrieve a single
row with each fetch request.

The JDBC driver also permits the JDBC application to use a data access method
called a select loop. In a select loop request, the DBMS returns all the result
rows in a single data stream to the driver. Since select loops use the connection
while the result set is open, no other operation or query may be performed until
the result set is closed. The statement cancel() method can be used to interrupt a
select loop data stream when a result set needs to be closed before the last row
is processed. Since the DBMS does not wait for fetch requests from the driver,
this access method is the most efficient available.

Select loops may be enabled in the JDBC driver by setting the driver connection
property select_loop to a value of ‘on’ (see the Driver Properties section). With
select loops enabled, the driver avoids using cursors for select queries unless
explicitly indicated by the application. An application can request a cursor be
used for a query by assigning a cursor name to the statement (setCursorName()
method) or by using the JDBC syntax select for update ... to request an
updateable cursor.

Date/Time Columns and Values

Ingres date literal formats are not supported by the JDBC driver. JDBC specifies
the format for date, time, and timestamp literals, using the following escape
clause syntax:

Literal Syntax

date {d 'yyyy-mm-dd'}

time {t 'hh:mm:ss'}

timestamp {ts 'yyyy-mm-dd hh:mm:ss.f...'}

Note: Fractional seconds are ignored by the driver.

Overview of Ingres 1–21

Ingres Architecture

These escape clauses must be used to include date, time, and timestamp literals
in SQL text. Applications may use other date/time formats by using the classes
java.sql.Date, java.sql.Time, java.sql.Timestamp, and java.util.date with an
appropriately configured date formatter (java.text.DateFormat).

The JDBC driver supports Ingres empty dates ('') by returning the JDBC
date/time epoch values ('1970-01-01','00:00:00'). A DataTruncation warning is
created by the driver when an empty date is returned by the methods
getString(), getDate(), getTime(), and getTimestamp(). An application may check
for the warning by calling the getWarnings() method after calling one of the
previously mentioned methods. An Ingres empty date is different than a NULL
value, and cannot be detected using the wasNull() method.

Ingres interval values are not supported by the methods getDate(), getTime(),
and getTimestamp(). An exception will be thrown if an Ingres date column
containing an interval value is accessed using these methods. Ingres interval
values may be retrieved using the getString() method. Since the output of
getString() for an interval value is not in a standard JDBC date/time format, the
JDBC driver creates a warning which may be checked by calling the
getWarnings() method following the call to getString().

National Character Set Columns

The JDBC driver supports the new Ingres DBMS data types of nchar, nvarchar,
and long nvarchar. Retrieval of National Character Set values is done
transparently through the existing getXXX() ResultSet methods.

Tracing

The JDBC driver supports both DriverManager and DataSource tracing. Trace
information consists of JDBC method entrance and exit points with
corresponding parameter and return values.

Internal JDBC driver tracing may be enabled by defining system properties on
the java command line (-D flag). The following properties are supported:

Property Value Description

edbc.trace.log log Log file path and name

edbc.trace.id level Numeric tracing level

1–22 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Architecture

Internal driver tracing permits separate tracing level settings for the following
trace IDs (id):

Trace ID Description

IO Communication I/O modules

EDBC Standard JDBC interface

EDBCX Extension JDBC interface

The tracing level determines the type of information that is logged. The
following levels are currently defined:

Level Description

1 Errors

2 High level method invocation

3 High level method details

4 Low level method invocation

5 Low level method details

Overview of Ingres 1–23

Chapter

2
Managing Your System and
Monitoring Performance

Ingres provides two visual tools for managing your system and monitoring
performance: Ingres Visual Manager and Visual DBA. Each is described in the
following sections.

Ingres Visual Manager

Ingres Visual Manager provides a global view into your Ingres installation. It
serves as a system console from which you can manage Ingres components and
access other utilities. This utility captures events that are occurring in the system
and allows them to be filtered for emphasis, according to the system
administrator’s preferences.

Ingres Visual Manager is an Ingres-specific utility that allows you to monitor
(and start/stop) the different servers in the installation (Bridge, DBMS, JDBC,
Net, Star, Internet Communication, Name, Recovery) as well as Remote
Command, the Logging and Locking systems, and the Primary Transaction Log
and Archiver Process. It shows events occurring in the system both at the
installation level and the level of each server. Using Ingres Visual Manager, you
can also edit all the Ingres system and user environment variable settings.

Using Ingres Visual Manager

Using Ingres Visual Manager, you can do the following:

■ View the started and stopped components and servers in the installation as
well as the history of start/stop events

■ Start or stop the entire installation or individual components

■ View and filter events that occurred both at the installation level and the
component or server level

■ View statistics on these events

■ View and edit Ingres system and user parameters

For more information about each of these functions, see the online help for
Ingres Visual Manager.

Managing Your System and Monitoring Performance 2–1

Ingres Visual Manager

Ingres Visual Manager Window

The Ingres Visual Manager window contains a list of Ingres components. By
selecting any branch of the corresponding tree, you can access information
related to the branch, which may correspond either to the entire Ingres
installation (the root branch), an individual component configuration, or an
individual instance of a given configuration. For example, on the Status page,
shown in the following illustration, the Ingres Installation branch is selected,
allowing you to view the summary startup status of the components of the
installation, the start/stop history of any component in the configuration, and
related information such as the output of the last start or stop operation.

On the Parameters page, which appears in the Ingres Visual Manager window
when Ingres Installation is selected in the left pane, you can set system, user, or
extra parameters.

On the Logged Events page, you can view and acknowledge events.

The Events Statistics page presents statistics on events that have occurred for
the selected component, grouped per event ID, and presented as a numerical
count and in graph form.

For more information, see the online help for Ingres Visual Manager.

2–2 Advantage Ingres Embedded Edition Administrator's Guide

Ingres Visual Manager

Configuring Parameters

Ingres Visual Manager provides a straightforward way to set parameters.

System and User Parameters

The Parameters page contains lists of parameters for system, user, and extra
parameters, along with their values and descriptions. You can add or unset a
parameter and edit its value. You can choose whether you want to view unset
Ingres parameters that are not currently set.

For more information, see the online help topic, Parameters Page, Ingres
Installation branch (Ingres Visual Manager window).

Server Parameters

To configure parameters for each component, select the desired component in
the left pane of the Ingres Visual Manager window and click the Configuration
Manager toolbar button, or choose File, Configure. For more information, see
the online help topic, Configure command (File menu, Ingres Visual Manager).

Defining Message Categories and Notification Levels

Using Ingres Visual Manager, you can define message categories and
notification levels. To access the Define Message Categories and Notification
Levels dialog, click the Categories and Notification Levels toolbar button, or
choose File, Categories and Notification Levels. This dialog allows you to
specify which messages in the errlog.log you would like to discard, which you
would like to be displayed normally in Ingres Visual Manager, and which you
would like to receive a special alert for.

For more information, see online help for Ingres Visual Manager.

Setting Preferences

The Ingres Visual Manager allows you to set various preferences for monitoring
events. To access the Preferences dialog, click the Preferences toolbar button, or
choose File, Preferences.

Managing Your System and Monitoring Performance 2–3

Ingres Visual Manager

Monitoring Components

You can monitor the components that are on your system using Ingres Visual
Manager.

Servers

For each of the following components as well as their instances, you can use
Ingres Visual Manager to monitor status, logged events, and event statistics:

■ Bridge Servers

■ DBMS Servers

■ JDBC Servers

■ Net Servers

■ Star Servers

■ Internet Communcation Server

■ Name Server

■ Remote Command

■ Recovery Server—a Recovery Log File page appears in the Ingres Visual
Manager window.

■ Archiver Process—an Archiver Log File page appears in the Ingres Visual
Manager window.

For more information, see online help for Ingres Visual Manager.

Log Information

The Logged Events page displays a list of the logged events for the Logging
System branch, and any of its sub-branches. However, the messages are filtered
according to certain preferences you define in the Preferences dialog. For more
information, see online help for Ingres Visual Manager.

Lock Information

The Logged Events page displays a list of the logged events for the Locking
System. However, the messages are filtered according to certain preferences you
define in the Preferences dialog. For more information, see online help for Ingres
Visual Manager.

2–4 Advantage Ingres Embedded Edition Administrator's Guide

Visual DBA

Visual DBA

The Visual DBA Performance Monitor can be used as a monitoring tool, a
performance analysis tool, and a system management tool. It displays useful
information about the servers, sessions, and locking and logging activities on
your Ingres installation.

With the Performance Monitor, you can:

■ Monitor information on servers, sessions, and the amount of logging and
locking resources being consumed

■ Analyze system performance

■ Refresh data in the window from a server

■ Shut down a database server or close a session

■ Monitor replication

Detailed steps for performing these procedures can be found in the Procedures
section of the online help for Visual DBA. See the following topics:

■ Viewing Performance Information

■ Closing a Session

Managing Your System and Monitoring Performance 2–5

Visual DBA

Using the Performance Monitor

Using the Performance Monitor, you can view and monitor information for
various Ingres components: Servers, Lock Information, Log Information,
Databases, Active Users, and Replication.

Performance Monitor Window

The Performance Monitor window contains a list of categories under which
various types of Ingres performance information appears. The Performance
Monitor window is used to examine the Ingres system information that is
related to performance.

Under each root object category there are sub-branches representing each
performance entity. Beneath these branches are sub-branches that pertain to the
particular type of performance entity.

2–6 Advantage Ingres Embedded Edition Administrator's Guide

Visual DBA

Working with Performance Monitor Components

Within Visual DBA, you can view the servers that are started on an Ingres
installation and access monitor information about these servers.

Force Refresh or Shut Down Instances

You can force a refresh of the servers or remove/shut down instances of
component configurations. To force refresh, right-click the branch representing
the component, and choose Force Refresh. To remove or shut down a
configuration instance, choose Remove/Shut Down. When a specific server
instance has been selected, you are given the opportunity to close or open it.

Background Refresh

You can set up background refreshing, which automatically performs the
refresh periodically, based on intervals that you define, through the File
Preferences menu command.

Note: The background refresh feature is activated only if View, Activate
Background Refresh is chosen.

Monitoring Components

Within Visual DBA, you can monitor the servers that are started on an Ingres
installation using the Performance Monitor.

Servers

You can view a list of the servers that are started on an Ingres installation and a
quantity of information about each of these servers. For example, you can view
the sessions that are currently active for each server. You can also remove a
session of stop a server (if you are a privileged user).

Viewing Other Server

Information

In addition to examining servers and their sessions, Visual DBA provides
additional information for each server. You can access the following
information for a particular server:

■ Lock lists

■ Locks

■ Transactions

■ Locked databases, tables, and pages

■ Other locked resources

Managing Your System and Monitoring Performance 2–7

Visual DBA

For detailed information on monitoring these types of data, press F1 for context-
sensitive help on any active dialog or window.

Shutting Down a

Server

The recommended way to shut down servers is to use Ingres Visual Manager.
For information about performing this task, see the Stop command (File menu,
Ingres Visual Manager) topic in Ingres Visual Manager online help.

You can also shut down a server using the Performance Monitor. The “soft”
shutdown operation waits for all sessions to end before stopping the server. You
may want to first close the sessions (or ask the users of those sessions to close
them) before shutting down a server.

Lock Information

Monitoring lock information can be used to determine which lock parameters
need to be adjusted. Viewing locking system summaries, lock lists and resources
provides you with the information you need to spot conditions when, for
example, additional locking system resources may need to be added.

Viewing your lock lists is useful for locating transactions that cannot proceed
because they are blocked by another transaction.

Log Information

You can view logging system summaries, transaction lists, process, and
database lists. Log information can be used to monitor transaction rates, log file
activity, processes, and databases in the logging system. This information is
useful in determining which logging parameters need to be adjusted.

Databases

Visual DBA allows you to view your performance information from a
“database” point of view. This means you can access performance information
via database, as opposed to through root branches of the Performance Monitor.

Active User Information

Monitor users for whom there are open sessions currently. You can find out
which sessions are open for a particular user, and drill down further to reveal
all the related information about those sessions (lock lists, transactions locked,
databases locked, and so on).

2–8 Advantage Ingres Embedded Edition Administrator's Guide

Visual DBA

Replication

You can start, stop, and monitor Replicator servers that are required for the
replication scheme that has been defined in a Visual DBA DOM window. You
can set up startup parameters for these servers, send events to these servers,
view and manage collisions, and display other miscellaneous replication
monitor information.

Managing Your System and Monitoring Performance 2–9

Chapter

3
Maintaining Databases

This chapter discusses various database maintenance tools and techniques that
are available to the DBA. It includes the following topics:

■ Viewing database objects

■ Deleting database objects

■ Routine maintenance tips

■ Operating system maintenance tips

■ Verifying databases

■ Avoiding user errors

■ Translating file names into table names

■ Retaining templates of important tables

Databases benefit from optimal maintenance activities. By making use of the
information in this chapter, your databases will stay in better condition, and any
problems that might develop will be more quickly brought to your attention.

Viewing Database Objects

The DBA must make sure important database objects, such as tables and views,
are available; devise a way to separate temporary objects from important
objects; and keep private objects to a minimum.

Database objects, such as tables, views, secondary indexes, and synonyms, can
be viewed from within the Ingres/Visual DBA Database Object Manager
window, as mentioned in several of the previous chapters of this guide. You can
view a list of objects using a tree structure, and you can also view specific
details for any object in the tree by selecting it and using the panes to the right
of the tree structure (see the online help topic Viewing Object Properties for
more information).

Note: For information on the SQL statement equivalent to accomplish this task,
see the entry for the help statement in the SQL Reference Guide. This statement
has various options, such as index, table, and view, to allow you to obtain
information about various types of database objects.

Maintaining Databases 3–1

Deleting Database Objects

Impersonating

Another User

By default, when you open a Database Object Manager window, the objects
belonging to you are visible in the tree structure, but objects belonging to other
users are not. To view and work with objects belonging to another user, you
need to impersonate that user (which requires the security privilege).

To impersonate another user, select that user from the Users branch in the
Virtual Nodes window within Ingres/Visual DBA, then open a Database Object
Manager window. The objects belonging to that user and those belonging to the
DBA will appear in the window, where you can view and manage them.

The Ingres/Visual DBA Database Object Manager cannot show a list of all
tables owned by all users; however, the view iifile_info, described below,
permits you to select all tables and their owners. For example, the following
query lists all user tables not owned by the DBA:

������������	�
���������
�	���������������
����

����������
��������������
�	�����������������	��
��������
�	������� !"�#�

Note: For more information on using the iifile_info view, see the Translating
File Names into Table Names section later in this chapter.

Deleting Database Objects

Database objects, such as tables, views, secondary indexes, and synonyms, can
be deleted from within the Ingres/Visual DBA Database Object Manager
window. When you drop a table, objects that are directly dependent on that
table, such as indexes and views, are automatically dropped as a result.

The online help topic Dropping Objects gives a generic description for dropping
any type of database object from within the Database Object Manager window,
while each type of object has a separate help topic, such as Dropping a Table or
Dropping a View, that is specific to that object type.

While impersonating another user within Ingres/Visual DBA (as described in
the previous section), the Database Object Manager window shows the objects
belonging to that user. Within this window, you can manage the objects
belonging to that user as if they belonged to you, including dropping objects
that you deem no longer needed.

Note: For information on the SQL statement equivalent to accomplish this task,
see the entry for the drop statement in the SQL Reference Guide.

There is another method by which tables can be deleted, if for some reason you
cannot drop them from within Ingres/Visual DBA. See the Verifying Databases
section later in this chapter for more information.

3–2 Advantage Ingres Embedded Edition Administrator's Guide

Routine Maintenance Tips

Routine Maintenance Tips

Note: Before making any changes to table structure or database design, please
check with this product's local support center for clarification.

It is recommended that you run the following maintenance tools periodically, to
keep your tables in good condition:

■ Modify database tables periodically if they are subject to frequent updates
or inserts. Frequent updates and inserts to all table structures except btree
cause overflow data pages to be created, which are inefficiently searched.

 If you do not have enough disk space to modify a large btree table, then you
can modify the table in order to shrink the btree index. This will tidy the
structure of the btree index pages, but does not require the amount of free
disk space required by other modify options.

 The “Maintaining Storage Structures” chapter of this guide provides specific
details on how to modify tables. The Overflow section discusses minimizing
overflow pages, and the Shrink Btree Index section tells you how to shrink a
btree index that is too large to otherwise modify.

Note: Choosing the correct storage structure for your needs will make
maintenance of the database easier. If the storage structure you are using is
not the best one, you can modify it using the information in the
“Maintaining Storage Structures” chapter of this guide.

■ Run system modification on the database if the database is active (that is,
users frequently create or modify tables, views, or other database objects).
Both system catalog data page overflow and locking contention will be
reduced by regular use of system modification.

■ Use optimization to help maintain databases. When you optimize a
database, data distribution statistics are collected that help queries run more
quickly and use fewer system resources. You should optimize your
database when the data distribution patterns of a database change.

 Optimization should not be run on all columns of all tables in your
database. Instead, you should run it only on those columns that are
commonly referenced in the where clauses of queries. Collecting more
statistics than you need will consume extra disk space and require the
Ingres query optimizer to consume more system resources to arrive at an
appropriate query execution plan.

Tip: You can set up these routine maintenance tasks to be done inside
maintenance batch jobs to avoid the need to run them interactively.

Maintaining Databases 3–3

Operating System Maintenance Tips

Operating System Maintenance Tips

It is important for you, as DBA, to monitor the operating system. If you are not
also the Ingres system administrator, then you should work closely with your
system administrator so that you are aware of any operating system problems.

Ingres relies on the operating system in order to access data in tables. If the
operating system develops problems, such as system resource shortages, lack of
free disk space, or hardware errors, this can affect the responsiveness of the
Ingres system and its ability to process requests on behalf of its clients.

Disk errors, memory errors, or operating system resource shortages are the
problems most likely to affect the quality of operation. Most hardware errors
are dependably logged by the operating system. If you are not the system
administrator, make sure that the system administrator is aware of your
concern about the efficiency of the operating system.

The operating system offers tools to check and verify the health of the
hardware. These include disk drive verification programs and diagnostic
programs for memory boards.

Windows lets the system administrator check for and optionally fix problems
in a file system. Free disk space and system configuration can be monitored
with the Windows Diagnostics. System-wide performance data, such as CPU
usage, can be monitored using the Performance Monitor. Certain system-wide
errors and events are monitored in the Event Log, which can be viewed with
the Event Viewer.

Most UNIX vendors have a fsck program to check for unreferenced disk
blocks, unreferenced inodes, and inconsistencies in operating system tables.
Free disk space in your file systems is easily monitored with operating system
tools such as df and du. The pstat (BSD) or sar (System V) UNIX commands
have options to show the use and distribution of various operating system
resources. Every vendor also provides a variety of system maintenance
utilities that are menu-driven and easy to use, but which are generally specific
to a particular operating system vendor. Make full use of any operating
system tools such as these.

VMS offers the analyze command which, among other operations, analyzes
readability and validity of files and disk volumes. The show device command
shows the amount of free disk space. The VMS Monitor Utility (MONITOR)
monitors classes of system-wide performance data, such as CPU usage, at a
specified interval. These are only a few of the system maintenance utilities
that VMS provides. Consult the VMS Help facility and your VMS System
Manager for more information on these and other useful operating system
tools.

3–4 Advantage Ingres Embedded Edition Administrator's Guide

Verifying Databases

Verifying Databases

The Verify Database dialog within Ingres/Visual DBA provides the DBA with
several operations that can be executed to verify the integrity of a database and
to repair certain table-related problems that may arise. To use this dialog, you
must be the DBA for all the databases you want to verify, or a user with the
security or the operator privilege (as described in the “Ensuring Access
Security” chapter).

The Verify Database dialog allows you to verify one or more databases by
specifying an operation, then choosing an appropriate scope and mode for that
operation. This dialog is quite versatile, allowing you to perform several
different operations, including:

■ Checking specified tables for inconsistencies and recommending ways to
repair them

■ Checking database system catalogs for inconsistencies and recommending
ways to repair them

■ Purging temporary tables, which may be left on the disk inadvertently when
the system does not have time to shut down in an orderly fashion (for
example, if the machine is rebooted or stops due to power loss)

■ Purging expired tables

■ Dropping tables that cannot be dropped in the normal manner (for example,
if the underlying disk file for the table was deleted at the operating system
level) by removing all references to them from the database system catalogs

■ Checking the specified databases to determine if they can be and indicates
whether the user can connect to the database accessed

For details on how to specify these operations using the Verify Database dialog,
see the online help topic Verifying a Database.

Avoiding User Errors

Follow these rules for databases that are shared among multiple users:

■ Have users use only application programs to access data in the database.
Discourage users from using Ingres tools, such as the Terminal Monitor or
Ingres/Visual DBA, to access data. Permitting users to access data only by
means of an application program guarantees that the executing queries were
written by an application programmer and are not ad hoc queries that could
damage or delete data, or cause lock contention delays.

Maintaining Databases 3–5

Translating File Names into Table Names

■ Ensure that reports are run with readlock = nolock. This may be done by
including all reporting tools within application programs and setting
readlock there, or by running all reports from operating system scripts
which set lockmode before the report runs. This avoids locking contention
problems that could lead to severe concurrent performance problems in the
database.

 See the Setting Readlock section in the “Ingres Locking” chapter of this
guide for the advantages and drawbacks of using readlock=nolock.

Translating File Names into Table Names

A naming algorithm is used to assign underlying file names for tables. There are
two columns in the iirelation table used to produce names:

■ reltid, a unique table identifier assigned in sequential order

■ reltidx, a unique index identifier associated with each base table

The algorithm for creating the name is as follows:

1. Convert reltid (for base tables) or reltidx (for secondary indexes) to an 8-
digit hexadecimal number.

2. Assign letters to each of the resulting hexadecimal digits:

 0,1, 2, ..., F is assigned to a, b, c, ..., p

For example, a reltid of 129 converted to an 8-digit hex number is “00000081”.
Substituting letters gives a file name of aaaaaaib.tnn, where nn=00, 01, ..., for
first (or only) location, second location, and so on.

As the DBA, you can use the view iifile_info to select the names of the disk files
associated with tables, as shown in the example below:

�������������	�
���
�	���	�
��������	�
���������$��
������

���������	�
#�

Retaining Templates of Important Tables

It is good practice to periodically generate copy scripts for important tables and
views. The copy.in scripts produced will be useful in the future if you need to
recreate new, empty tables, or the entire database. Generating copy scripts is
accomplished using the Generate copy.in and copy.out dialog within
Ingres/Visual DBA.

3–6 Advantage Ingres Embedded Edition Administrator's Guide

Chapter

4
Maintaining Storage Structures

Note: Before making any changes to table structure or database design, please
check with this product's local support center for clarification.

Maintaining good performance is one of the major responsibilities of the DBA.
Performance issues with respect to storage structures include modifying the
database tables, compressing storage structures, and managing overflow.

This chapter discusses how and when to use the Visual DBA modify procedures
to change storage structures for tables and secondary indexes. Modify
procedures should be used as part of regular system maintenance to get rid of
overflow pages and recover disk space for deleted rows.

For additional information on database performance, see the chapter,
“Improving Database and Query Performance," in this guide.

Storage Structures and Performance

The data for each table is stored in a file on disk. Tables consist of pages with a
size that you define when you create the table. For example, you can specify a
page size of 2 KB, 4 KB, and so forth, by powers of two up to 64 KB. Each page
has a certain amount of overhead, which depends upon the page size.

Each page stores a number of rows. The number of rows per page varies,
according to the row width, the storage structure of the table, whether or not
the table is compressed, and how much data has been added or deleted since
the table was last modified. Rows cannot span pages, limiting the maximum
row width to the per-page data size.

The page is an important concept in understanding query performance because
it affects the amount of disk I/O a query does, as well as the amount of CPU
resources required to read through a table.

To see how many pages there are in a table, use Visual DBA to select a table,
then select the Pages tab.

Note: For information on the SQL statement equivalent to accomplish this task,
see the help table statement in the SQL Reference Guide.

Maintaining Storage Structures 4–1

Storage Structures and Performance

A B-tree table is shown in the following example:

������ �����
�	
���� �

�����
��������� ���������������������
�������
�� �������������
� ���� !�������"���
#�����
�� $$�%&�
'�
����(��� ��)��
���*��������� �� ��
+"�������"��,�����
�� ��
+"�������"�����	���*�� ���
-�	�	���*�� ����
�!������.���	��� ���
/����
�����!��!���� 0������
����������
��
�
��
1!�"������-�	���
����""�	���
�!������.���
���� 2�
�,��."�	��������
���� ���
3�!�
�"�

����������� �
��"���
0�������"��.���,��	�� ���
'��������
���
�
��
$
��
��������
�
��
������(���������������
�
��
��"!�
�$
.�������
��

� � � � � 4� �
��"!�
������ � ��� ��

�*� �!""�� 1�.�!"��� /�5�

���� ,���*��� ���
��
�� ��
���"�� ,���*��� �&�
�� ���
*�!�" ������ ��
� � �
�� ���
��
�
��� ,���*��� ��� ���
!""�

/���
��� ��
��6�����
�
��

Limitations of Heap Structure

Without help from the storage structure, when you want to retrieve a particular
row from a table, you must search through every row in the table looking for
rows that qualify. (Searching through every row is called scanning the table.)
Stopping at the first row that qualifies is not enough, since multiple rows may
qualify.

Consider the data shown in a sample heap table:

�����������
���
�����������
������"�� ���������
���
��������7���
'�
�����8����8�/*�
������8����8������%���8������������
��������8����8�0"!����
��8����8������%���8������������
��������8��2�8�/��,������8����8��&���%���8������������
��������8����8�9�
�������8��)28�)����%���8������������
��������8���
'�
�����8����8�:�""������8��)�8�)2���%���8������������
��������8����8�9�

������8����8������%���8������������
��������8����8��!�� �����8���)8������%���8������������
��������8����8�-���������8��&�8�&&���%���8������������
��������8���
'�
�����8����8�9���
!����8��))8�)����%���8������������
��������8����8�-���
��
��8��2)8������%���8������������
��������8����8�4� �������8��)�8������%���8������������
��������8����8�/���
�����8��))8�)����%���8������������
��������8���

4–2 Advantage Ingres Embedded Edition Administrator's Guide

Storage Structures and Performance

'�
�����8����8�������
���8����8��&���%���8������������
��������8����8�/�6�
�����8���)8������%���8������������
��������8����8�-���������8����8������%���8������������
��������8��)�8�/��

��*��8���28������%���8������������
��������8���
'�
��)��8����8�;!��������8���&8������%���8������������
��������8����8��"��<�����8��)�8�)����%���8������������
��������8����8�0���������8��)�8�)����%���8������������
��������8��&�8�#���!�����8��&&8�&&���%���8������������
��������8���
'�
��&��8����8�=�������
�8���28��&���%���8������������
��������8��)�8�4�����<���8���&8��)���%���8������������
��������8����8�/���*�����8����8������%���8������������
��������8��2�8�+��<�
����8��)�8�&����%���8������������
��������8���
'�
��2��8����8�:����
����8����8������%���8������������
��������8��&�8�:���
�����8����8��2���%���8������������
��������8����8��!��
�����8����8������%���8>�����������
��������8��)�8�/���"�����8����8������%���8������������
��������8���
'�
�����8��2�8�:��
������8����8������%���8������������
��������8����8�9�/*�
����8����8������%���8������������
��������8��&�8�/!""�,�
��8����8��&���%���8������������
��������8�
��������7��

With this heap structure, a retrieval such as the following would have to look at
every page in the emp table:

��"����?�.��������	*�������%
����@�A/!""�,�
AB�

Although Shigio’s record is the first row in the table, the following retrieval
would also have to look at every row in the table:

��"����?�.��������	*�������%
����@�A/*�
��AB�

Since the table is not sorted, the entire table must be scanned in case there is
another employee named Shigio on another page in the table.

A retrieval from a large table can be expensive in time and system resources. To
understand the performance consequences of a scan of a large table, assume that
the emp table is actually 300,000 pages, rather than 8. Further, assume the disks
can manage approximately 30 disk I/Os per second. Assume one disk I/O per
page. With a heap storage structure, the above select would take 300,000 / 30 =
10,000 seconds (or 2 hours, 46 minutes) just in disk access time alone, not
counting the CPU time it would take to scan each page once it was brought in
from disk, and assuming no other system activity.

For a large table, a different storage structure is needed. A production system
cannot tolerate a three-hour wait to retrieve a row. The solution is to provide a
storage structure that allows for keyed access, like hash, isam, or B-tree.

Maintaining Storage Structures 4–3

Modifying Storage Structures

Modifying Storage Structures

You can change tables to a more effective storage structure. To change a table
from one storage structure to another, use the Modify Table Structure dialog. By
enabling the Change Storage Structure radio button and clicking Structure, you
activate the Structure of Table dialog, where you can specify the parameters for
the storage structure type and other structure-specific characteristics. For
secondary indexes, the Modify Index Structure dialog offers a similar option to
enable the Structure of Index dialog. See the online help topic Modifying Storage
Structures for more information.

Key columns must be specified for hash, isam, and B-tree (heap and heapsort
tables do not have key columns). There is no limit to the number of key columns
that can be specified, but there is a slight decline in performance as the key
columns increase.

Note: For information on the SQL statement equivalents for accomplishing this
task, see the modify statement in the SQL Reference Guide.

Modify Cautions

Keep in mind the following effects of the modify procedure when you are
modifying the storage structure:

■ Locking—During the modify procedure, the table is exclusively locked and
inaccessible to other users.

■ Secondary Indexes—Secondary indexes are destroyed when you modify the
base table storage structure. For details, see the Modifying Secondary
Indexes section.

■ Disk Space—When a table storage structure is modified, temporary sort
files are created. Before the old table can be deleted, a new table must be
built. Once it is completely built, the old table is deleted, and the temporary
file is renamed with the old table name.

Modify Options

The Structure of Table and Structure of Index dialogs provide several options:
Min Pages, Max Pages, Allocation, Extend, Fillfactor, Leaffill, Nonleaffill,
Unique, and Compression, which are discussed in the following sections. Some
of these options take effect only during the modify procedure (Min Pages, Max
Pages, Fillfactor, and Nonleaffill), while others are enforced for the life of the
table (Allocation, Extend, Unique, and Compression).

4–4 Advantage Ingres Embedded Edition Administrator's Guide

Modifying Storage Structures

Controlling the Number of Pages

Min Pages and Max Pages are valid options only when you are modifying the
table to hash. These options allow you to control the hashing algorithm to some
extent, extending the control offered by the Fillfactor option.

The Min Pages option is useful to specify if the table is going to be growing
rapidly or if you want few rows per page in order to increase concurrency so
multiple people can update the same table. (You can achieve nearly the same
effect by specifying a low value for the Fillfactor option, but the fill factor is
based on the current size of the table. See Specifying Alternate Fill Factors
below.)

To force a specific number of main pages, use the Min Pages option to specify a
minimum number of main pages. The number of main pages used will be at
least as many as specified, although the exact number of Min Pages specified
might not be used.

As an example, for the emp table, you could force a higher number of main
pages by specifying the minimum number of main pages when you modify the
table to hash. If you specify 30 main pages for the table, which has 31 rows, you
have approximately one row per page. To modify the storage structure of the
emp table, you would enter the following values in the Structure of Table
dialog, assuming it is already open for the emp table. (See the online help for
more information.)

1. Select Hash from the Structure drop-down list.

2. Enter 30 in the Min Pages edit control.

3. Enable the age column in the Columns list.

To specify a maximum number of main pages to use, rather than the system
choice, use the Max Pages option. If the number of rows does not completely fit
on the number of pages specified, overflow pages are allocated. If fewer pages
are needed, the lesser number is used. Max Pages is useful mainly for shrinking
compressed hash tables more than might otherwise happen. (You can achieve
nearly the same effect by specifying a high value for the Fillfactor option, but the
fill factor is based on the current size of the table. See Specifying Alternate Fill
Factors below.)

The following example modifies the emp table, specifying a Max Pages value.
The steps assume the Structure of Table dialog is already open for the emp
table. (See the online help for more information.)

1. Select Hash from the Structure drop-down list.

2. Enter 100 in the Max Pages edit control.

3. Enable the empno column in the Columns list.

Maintaining Storage Structures 4–5

Modifying Storage Structures

Remember that Max Pages controls only the number of main pages; it does not
affect overflow pages. For example, assume your data takes 100 pages in heap.
If you modify to hash and limit the number of main pages to 50, then the
remainder of the data goes onto overflow pages.

Preallocating Space

Use the Allocation option to preallocate space. You can modify the table to an
allocation greater than its current size to leave free space within the table. (The
default is four pages if no allocation has been specified.) This allows you to
avoid a failure due to lack of disk space, or to provide enough space for table
expansion instead of having to perform a table extend operation (see the
Extending a Table or Index section later in this chapter for more information).

For example, the following example specifies that 1000 pages be allocated to
table inventory. The steps assume the Structure of Table dialog is already open
for the inventory table. (See the online help for more information.)

1. Select B-tree from the Structure drop-down list.

2. Enter 1000 in the Allocation edit control.

The size must be in the range 4 to 8,388,607 (the maximum number of pages in a
table). The specified size is rounded up, if necessary, to make sure the allocation
size for a multi-location table or index is always a multiple of sixteen. For
example, the actual space allocated in the preceding example is 1008.

Note: If the specified number of pages cannot be allocated, the modify
procedure is aborted.

Once an allocation is specified, it remains in effect and does not need to be
specified again when the table or index is modified.

Extending Space

The Extend option allows you to control the amount of space by which a table is
extended when more space is required. (The default extension size is 16 pages.)
The following example specifies that the table inventory be extended in blocks
of 1000 pages. The steps assume the Structure of Table dialog is already open for
the inventory table. (See the online help for more information.)

1. Select B-tree from the Structure drop-down list.

2. Enter 1000 in the Extend edit control.

The size must be in the range 1 to max_size, where the max_size is calculated as:

8,388,607 – allocation_size

4–6 Advantage Ingres Embedded Edition Administrator's Guide

Modifying Storage Structures

The specified Extend size is rounded up, if necessary, to make sure the size for a
multi-location table or index is always a multiple of sixteen. For example, the
actual extension space in the above example is 1008.

Note: If the specified number of pages cannot be allocated, the operation will
fail with an error.

Once an extend size has been specified for the table or index, it remains in effect
and does not need to be specified again when the table or index is modified.

When choosing an extend size, keep the following in mind:

■ When extending a table, not only the physical extension must be performed,
but the extension must also be recorded. Therefore, avoid an excessively
small extend size that requires many additional small extensions.

■ In an environment that is short of disk space, a large extend size may cause
an operation to fail, even when there is sufficient disk space for the
particular operation.

■ On a file system that requires the underlying files to be written to when
allocating disk space (such as Windows NT), a large extend size may be
undesirable because it will affect the performance of the operation that
causes the extend.

■ On a file system that requires the underlying files to be written to when
allocating disk space (such as UNIX), a large extend size may be
undesirable because it will affect the performance of the operation that
causes the extend.

■ On file systems that provide calls for allocating disk space (such as VMS),
a large extend size will help reduce the amount of table fragmentation.

Keeping Default Fill Factors

Each storage structure has a different default fill factor. The term fill factor refers
to the number of rows that are actually put on a data page divided by the
number of rows that could fit on a data page for a particular structure.

The various fill factors enable you to add data to the table without running into
overflow problems. Since the data pages have room to add data, you do not
have to remodify.

For instance, a heap table fits as many rows as possible on a page; this is known
as 100% fill factor. However, isam and B-tree data pages are filled only to 80%
capacity, leaving room to add 20% more data before a page is completely full.
The default data page fill factors are shown in the following table:

Maintaining Storage Structures 4–7

Modifying Storage Structures

Storage Structure Default Fill

Factor

Multiply

Heap Size by

Number of Pages

Needed for 100 Full

Pages

B-tree 80% 1.25 125 + index pages

compressed B-tree 100% 1 100 + index pages

hash 50% 2 200

compressed hash 75% 1.34 134

heap 100% 1 100

compressed heap 100% 1 100

isam 80% 1.25 125 + index pages

compressed isam 100% 1 100 + index pages

The default B-tree index page fill factors are shown in the following table:

Storage Structure Default Fill Factor

B-tree leaf 70%

B-tree index 80%

The first table shows that if a heap table is 100 pages and you modify that table
to hash, the table now takes up 200 pages, since each page is only 50% full.
(Note that the number of pages may be approximate, depending on the system
allocation for tracking used and free pages.)

Specifying Alternate Fill Factors

In the Structure of Table and Structure of Index dialogs, you control the fill
factor of the data pages using the Fillfactor option.

You can tailor the fill factor for various situations. For instance, if the table is not
going to grow at all, you might use a 100% fill factor for the table. On the other
hand, if you know you are going to be adding a lot of data, you may wish to use
a low fill factor, perhaps 25%. Also, if your environment is one where updates
are occurring all the time and good concurrency is important, you may wish to
set the fill factor low.

Note: Fill factor is used only at modify time. As you add data, the pages fill up
and the fill factor no longer applies.

When specifying a fill factor other than the default, you should keep the
following points in mind:

4–8 Advantage Ingres Embedded Edition Administrator's Guide

Modifying Storage Structures

■ Use a high fill factor when the table is static and you are not going to be
appending many rows.

■ Use a low fill factor when the table is going to be growing rapidly. Also, use
a low fill factor to reduce locking contention and improve concurrency. A
low fill factor distributes fewer keys per page, so that page level locks lock
fewer records.

Specifying fill factor is useful for hash and isam tables; but because only data
pages are affected, the Fillfactor option should be done in conjunction with the
Leaffill or Nonleaffill options for B-tree tables. (See the next two sections.)

Normally for hash tables, a 50% fill factor is used for uncompressed tables. You
can raise or lower this, but raising it too high may cause more overflow pages
than would be desirable. You should always measure the overflow in a hash
table when setting a high fill factor—fill factors higher than 90% are very likely
to cause overflow.

This example sets the fill factor on a hash table to 25%, rather than the default of
50%, by modifying the emp table. The steps assume the Structure of Table
dialog is already open for the emp table. (See the online help for more
information.)

1. Select Hash from the Structure drop-down list.

2. Enter 25 in the Fillfactor edit control.

3. Enable the empno column in the Columns list.

If you are using compressed isam tables and are adding data, make sure you set
the fill factor to something lower than the default 100%, or you immediately add
overflow pages.

Normally, uncompressed isam tables are built with an 80% fill factor. You can
set the fill factor on isam tables to 100%, and unless you have duplicate keys,
you should not have overflow problems until after you add data to the table, as
shown in the example below. The steps assume the Structure of Table dialog is
already open for the emp table. (See the online help for more information.)

1. Select Isam from the Structure drop-down list.

2. Enter 100 in the Fillfactor edit control.

3. Enable the name column in the Columns list.

Maintaining Storage Structures 4–9

Modifying Storage Structures

Specifying Leaf Page Fill Factors

It is possible to specify B-tree leaf page fill factors at modify time. This is the
percentage of the leaf page that will be used during the modify procedure. The
remaining portion of the page is available for use later when new rows are
added to the table. The purpose of the fill factor is to leave extra room on the
leaf pages to do inserts without causing leaf page splits. This is useful if you
modify a table to B-tree and plan to add rows to it later. In the Structure of
Table dialog, you control these values using the Leaffill options.

The Leaffill option specifies the percentage of each leaf page to be filled at the
time the table is modified to B-tree or cB-tree. The Leaffill default is 70, which
means that 70% of the leaf page is filled at modify time and 30% remains empty
for future use.

For example, assume that the key-tid pair requires 400 bytes of storage. This
means that five key-tid pairs should fit on a single 2KB B-tree leaf page.
However, if the leaf page fill factor is specified at 60%, then only three key-tid
pairs are allocated on each B-tree leaf page at modify time. If subsequent
updates to the table cause two new rows on this leaf page, they are placed in the
empty space on the leaf page. The key-tid pairs are reordered on the leaf page
from min to max. If more than two new rows need to be added to this leaf page,
then there is not enough space and the leaf page will have to split.

Specifying Index Page Fill Factors

It is possible to specify B-tree index page fill factors at modify time. This is the
percentage of the index page that will be used during the modify procedure.
The remaining portion of the page is available for use later when new rows are
added to the table. The purpose of the fill factor is to leave extra room on the
index pages to do inserts without causing index page splits. This is useful if you
modify a table to B-tree and plan to add rows to it later. In the Structure of
Index dialog, you control these values using the Nonleaffill options.

The Nonleaffill option specifies the percentage of each index page that is to be
filled at the time the table is modified to B-tree. That is, it is similar to Leaffill,
but for index pages instead of leaf pages. The Nonleaffill default is 80. This
means that 80% of the index page is used at modify time and 20% remains
empty for future use.

For example, assume that the key-tid pair requires 500 bytes of storage. This
means that four key-tid pairs should fit on a single B-tree index page. However,
if the index page fill factor is specified at 75%, then only three key-tid pairs are
allocated on each 2KB B-tree index page at modify time. If subsequent updates
to the table cause another leaf page to be allocated, then the empty space on the
index page is used to hold a key-tid pair for that new leaf page. If there were
enough new rows to cause two new leaf pages to be added to that index page,
then the index page would have to split.

4–10 Advantage Ingres Embedded Edition Administrator's Guide

Modifying Storage Structures

Setting a fill factor of lower than 60 on leaf pages can help reduce locking
contention when B-tree leaf pages are splitting, since index splitting is reduced.
Setting Leaffill low for small but quickly growing B-trees is advisable.

When you specify a high Leaffill, index splitting is almost guaranteed to occur
because leaf pages immediately fill up when data is added. Thus you want to
avoid a high fill factor unless the B-tree table is relatively static. Even in this case
you might be better off with an isam table.

Ensuring Key Values Are Unique

Unique keys can be enforced automatically for hash, isam, and B-tree tables
using the modify procedure. Unique keys can be specified as Row or Statement
in the Unique group box in the Structure of Table and Structure of Index
dialogs:

■ Row indicates that uniqueness is checked as each row is inserted.

■ Statement indicates that uniqueness is checked after the update statement is
executed.

If you do not want to create a unique key, select the No option.

The following example prevents the addition of two employees in the emp table
with the same empno. The steps assume the Structure of Table dialog is already
open for the emp table. (See the online help for more information.)

1. Select Isam from the Structure drop-down list.

2. Enable Row in the Unique radio button group box.

3. Enable the empno column in the Columns list.

If a new employee is added with the same employee number as an existing
record in the table, the row is not added, and you are returned a row count of
zero.

Note: An error is not returned in this case; only the row count shows that the
row was not added. Be aware of this if you are writing application programs
using unique keys.

Benefits of unique keys are:

■ A good database design that provides unique keys enhances performance.

■ You are automatically ensured that all data added to the table has unique
keys.

■ The Ingres optimizer recognizes tables that have unique keys and uses this
information to plan queries wisely.

Maintaining Storage Structures 4–11

Modifying Storage Structures

The disadvantages of unique keys include a small performance impact in
maintaining uniqueness. You must also plan your table use so that you will not
add two rows with the same key value. In most cases, unique keys are a decided
advantage in your data organization.

The following example modifies the emp table to hash and prevents the
addition of two employees in the emp table with the same empno. The steps
assume the Structure of Table dialog is already open for the emp table. (See the
online help for more information.)

1. Select Hash from the Structure drop-down list.

2. Enable Row in the Unique radio button group box.

3. Enable the empno column in the Columns list.

The rows in the following example have unique keys. Although employee #17
and #18 have the same records except for their employee numbers, the
employee numbers are unique, so these are valid rows after the modification:

����C��
����������+
���/�"�� �
���8����8�/*�
���8���8������%���8��
���8����8�/*�
���8���8������%���8��
���8����8�+��<�
�8��&8�&����%���8�

The following two rows do not have unique keys. These two rows could not
both exist in the emp table after modification to hash unique on empno:

����C��
����������+
���/�"�� �
���8����8�/*�
���8���8������%���8��
���8����8�+��<�
�8��&8�&����%���8��

Compressing Tables

All storage structures permit tables and indexes (where present) to be
compressed, except the r-tree secondary index storage structure and the
heapsort storage structure, which cannot be compressed. Compression is
controlled using the Key and Data options in the Compression group box in the
Structure of Table and Structure of Index dialogs. By default, there is no
compression when creating or modifying, indicated by the fact that no
Compression options are enabled.

Not all parts of all storage structures can be compressed, as summarized in the
table below:

Storage Structure Data Key

B-tree Base Table Yes Yes

 Secondary Index No Yes

hash Base Table Yes No

 Secondary Index Yes No

4–12 Advantage Ingres Embedded Edition Administrator's Guide

Modifying Storage Structures

Storage Structure Data Key

heap Base Table Yes No

 Secondary Index N/A N/A

heapsort Base Table No No

 Secondary Index N/A N/A

isam Base Table Yes No

 Secondary Index Yes No

r-tree Base Table N/A N/A

 Secondary Index No No

Note: Selecting Data in the Compression group box in the Structure of Table
dialog does not affect keys stored in isam or B-tree index and leaf pages—only
the data on the data pages is compressed. To compress index entries on B-tree
index pages, select Key instead.

Isam index pages cannot be compressed.

Compression of tables compresses character and text columns. Integer, floating
point, date, and money columns are not compressed, unless they are nullable
and have a null value.

Trailing blanks and nulls are compressed in character and text columns. For
instance, the emp table contains a comment column that is 478 bytes. However,
most employees have comments that are only 20 to 30 bytes in length. This
makes the emp table a good candidate for compression because 478 bytes can be
compressed into 30 bytes or fewer, saving nearly 450 bytes per row.

Furthermore, as many rows are placed on each page as possible, so that the
entire emp table (31 rows) that normally took eight 2KB pages as a heap, takes
just one page as a compressed heap. In this example, pages were limited to four
rows per page, but by using compression, many more rows could be held per
page.

There is no formula for estimating the number of rows per page in a
compressed table, as this is entirely data dependent.

When to Compress a

Table

When a table is compressed, you can reduce the amount of disk I/O needed to
bring a set of rows from disk. This can increase performance if disk I/O is a
query-processing bottleneck.

For instance, having compressed the emp table from eight pages down to one
page, the following query performs only one disk I/O, whereas prior to
compression as many as eight disk I/Os may have been required:

��"����?�.�������B�

Maintaining Storage Structures 4–13

Modifying Storage Structures

In a large table, compression can dramatically reduce the number of disk I/Os
performed to scan the table, and thus dramatically improve performance on
scans of the entire table. Compression is also useful for conserving the amount
of disk space it takes to store a table.

But compression should be used wisely, as the overhead associated with
compression can sometimes exceed the gains. If a machine has a fast CPU, disk
I/O can be the bottleneck for queries. However, because compression incurs
CPU overhead, the benefits must be weighed against the costs, especially for
machines with smaller CPUs. Compression can increase CPU usage for a query
because data must be decompressed before it is returned to the user. This
increase must be weighed against the benefits of decreased disk I/O and how
heavily loaded the CPU is. High compression further reduces disk I/O, but uses
even more CPU resources.

There is overhead when updating compressed tables. As rows are compressed
to fit as many as possible per page, if you update a row so that it is now larger
than it was before, it must be moved to a new spot on the page or even to a new
page. If a row moves, its tid, or tuple identifier, also changes, requiring that
every secondary index on the compressed table also be updated to reflect the
new tid.

For instance, if you change Shigio’s comment from “Good” to “Excellent,”
Shigio’s record length grows from 4 bytes to 9 bytes and does not fit back in
exactly the same place. His record may need to be moved to a new place (or
page), with updates made to any secondary indexes of this table (if the emp
table was B-tree, the appropriate B-tree leaf page would be updated instead).

Compressed tables should be avoided when updates that increase the size of
text or character columns occur frequently, especially if there are secondary
indexes involved—unless you are prepared to incur this overhead. If you do
compress and are planning to update, use a fill factor lower than 100% (75% for
hash); the default fill factor for compressed tables is 75% for hash with data
compression, 100% for the others. With free space on each page, moved rows
are less likely to be placed on overflow pages. For more information, see the Fill
Factor section, earlier in this chapter.

Page Size

Page size was discussed earlier in this chapter in the section entitled Storage
Structures and Performance. In Visual DBA, you specify page size using the
Page Size option in the Structure of Table and Structure of Index dialogs.

The default page size is 2 KB. The corresponding buffer cache for the installation
must also be configured with the page size you specify or you will get an error.

4–14 Advantage Ingres Embedded Edition Administrator's Guide

Modifying Storage Structures

Shrinking a B-tree Index

In order to maintain good concurrency and performance, the B-tree index is not
rebuilt after deletions. Deletions occur at the leaf and data page level, but an
empty leaf page is not released. If your environment is one where many
deletions are performed, you should occasionally update the index using the
Shrink B-tree Index option in the Modify Table Structure and Modify Index
Structure dialogs.

The Shrink B-tree Index option is also important for users with incremental
keys, which may incur lopsided indexes after heavy appends to the end of the
table.

Not updating the index to reflect unused leaf pages can cause the index to be
larger than it might otherwise be. For example, if the emp table is keyed on
empno (ranging from 1 to 31), and you fire all employees with employee
numbers less than 16, the B-tree index would not shrink but would be
unbalanced. This is shown in the Before diagram that follows:

��������������������0�.�����
�
���������D@�2����������������������E�2�
�������F�����������������������������G�
�����D@�������E���������������D@�)����E�)��
������F��������G���������������F��������G�
D@)��E)���D@����E�������D@����E����D@����E���
�
'�
��������'�
����������'�
����������'�
��)�
H��"�������H��"���������,�"����������,�"���
�����I����������I�������������������������

To rebalance the index level, you can use the Shrink B-tree Index option. It also
reclaims unused leaf pages that would otherwise never be reused. This is
illustrated in the After diagram that follows:

�������������������+.�����
�
����������D@��)�������������E�)�
�����������F������������������G�
���������D@�2���E�2������D@�����E���
���
���������'�
������������'�
��)�
���������,�"������������,�"���
�����������������������������
�
�����>������
��"������J��

The index is rebuilt, and empty leaf pages are marked as free, but otherwise leaf
and data pages remain untouched. Therefore, this procedure is neither as time-
consuming nor as disk-space intensive as modifying the table structure using
the Change Storage Structure option. Shrink B-tree Index, however, does not re-
sort the data on the data pages. Modifying the structure to B-tree is the only
option for resorting data on data pages.

Maintaining Storage Structures 4–15

Modifying Storage Structures

Note: For information on the SQL statement equivalent to accomplish this task,
see the modify statement in the SQL Reference Guide. The to merge clause is the
same as the Shrink B-tree Index option.

Extending a Table or Index

Within Visual DBA, you can extend (add pages to) a table or index by enabling
the Add Pages radio button in the Modify Table Structure or Modify Index
Structure dialogs, then specifying the number of pages you want to add. Using
this option does not rebuild the table or drop any secondary indexes.

Note: For information on the SQL statement equivalent to accomplish this task,
see the modify statement in the SQL Reference Guide. The to extend clause is the
same as the Add Pages option.

Modifying Secondary Indexes

Secondary indexes are destroyed by default when you modify the base table
storage structure. They are destroyed automatically because secondary indexes
use the tidp column to reference the row of the base table to which they are
pointing. When you modify a table, all the tids of the rows in the base table
change, rendering the secondary index useless.

Persistence Option You can use the Persistence option when creating or modifying a secondary
index to specify that the index be recreated whenever the base table is
modified. This option is found in the Structure of Index and the Create Indexes
dialogs. By default, indexes are created with no persistence.

Note: For information on the SQL statement equivalents to accomplish this task,
see the create index and modify statements in the SQL Reference Guide. The
[no]persistence clause is the same as the Persistence option.

For example, assuming the secondary index empidx was created without
enabling the Persistence option, you could modify it as shown in the following
example to enable this feature. The steps assume the Structure of Index dialog is
already open for the empidx index. (See the online help for more information.)

1. Select B-tree from the Structure drop-down list.

2. Enable the Persistence check box.

Changing the Index

Storage Structure

The default storage structure for secondary indexes is isam; you can choose a
different structure when creating an index using the Create Indexes dialog.
You can also modify the index to another storage structure after it has been
created, using the Structure of Index dialog.

The following example creates a B-tree index for the emp table. The steps
assume the Create Indexes dialog is already open for the emp table:

4–16 Advantage Ingres Embedded Edition Administrator's Guide

Modifying Storage Structures

1. Enter an appropriate name in the Index Name edit control.

2. Select B-tree from the Structure drop-down list.

3. Select an appropriate key column in the Base Table Columns list box, and
click the double-right arrow (>>) to add the column to the Index Columns
list box.

The next example shows how you would modify an existing index to use the B-
tree storage structure, assuming it was created using another storage structure.
The steps assume the Structure of Index dialog is already open for the index.
(See the online help for more information.)

1. Select B-tree from the Structure drop-down list.

2. Enable the appropriate column(s) in the Columns list.

If a secondary index is modified to B-tree, it will not contain any data pages.
Instead, the leaf pages in the secondary index point directly to data pages in the
main table.

Overflow can occur in secondary indexes, as well as base tables, and should be
monitored. One way to handle overflow is to use B-tree as the default index
structure. If overflow is not a problem, isam or hash may be preferable because
the indexes are smaller, require less locking, and reuse deleted space.

Secondary indexes are smaller and can be modified more quickly than the base
table. When they are used, overflow occurs less frequently since only key values
are stored, rather than the entire row.

Because it is quicker to build secondary indexes than to modify the base table, it
is easier to experiment with different choices of secondary indexes and different
storage structures for them. Remember, however, that it will take longer to
update a table with secondary indexes than one without them.

A high degree of duplication in a secondary key can lead to overflow in the
secondary index. Repetitive keys are not recommended. Performance benefits
can be derived by the inclusion of another column in the secondary index that
makes the entire key less repetitive. The less repetitive key reduces the
likelihood of overflow chains, resulting in better performance when updates
made to the base table require updates to the secondary index. Because
overflow chains are reduced, locking and searching overhead is lessened.

If the secondary index to be stored is isam or B-tree and the key is not unique,
the tidp column is automatically included in the key specified when the index is
modified. This achieves key uniqueness without any loss of functionality when
the key is used for matches.

Maintaining Storage Structures 4–17

Modifying Storage Structures

When to Remodify B-tree Tables

If you suspect that the data on the data pages is scattered over several data
pages, you can modify the table to B-tree again. You can check this by retrieving
the tids as well as the column values, and looking at the pages they reflect.
Remodifying sorts the data and then builds the B-tree index, placing like keys
on the same data pages, which can slightly reduce the number of disk I/Os
required to access the data.

This type of modification is especially useful when the key size is small, the row
size is large, and the data has not been appended in sorted order. Remodifying a
B-tree is also useful when you have deleted many rows and wish to reclaim disk
space.

Examples of a modification to B-tree follow. The first example represents the
table before modification, and the second example shows it after modification.

Note that the following retrieval touches all three data pages before
modification but only one page after modification:

��"����?�.��������	*�������%�
��@��&B�

The following table shows the leaf and data pages prior to modification. Note
that the records with a key of 35 are found on several data pages:

���.�'�
��
<� �����
�J��	�H���I�
�&�����J��H&�)I�
�&�����J��H���2I�
�&�����J��H�&��I�
�2�����J��H����I�
�������J��H�&��I�

1����'�
����
'�
������������'�
�������������'�
����
�J��H&��I�������J��H���&I�������J��H�&��I����
�J��H&�)I��&����J��H���2I��&����J��H�&��I����
�J��H&�&I�������J��H����I��2����J��H�&��I��&�

The following example modifies the emp table, respecifying B-tree as its
structure. The steps assume the Structure of Table dialog is already open for the
emp table. (See the online help for more information.)

1. Select B-tree from the Structure drop-down list.

2. Enable the age column in the Columns list.

After you perform this modification, the table looks as follows. Note that all
records with a key of 35 are clustered together on Page 2:

'�
������������'�
�������������'�
����
�J��H&��I�������J��H���&I��&����J��H�&��I��2�
�J��H&�)I�������J��H���2I��&����J��H�&��I����
�J��H&�&I�������J��H����I��&�

4–18 Advantage Ingres Embedded Edition Administrator's Guide

Overflow

Common Errors During the Modify Procedure

When using the modify procedure in Visual DBA, the most common errors
include:

■ A “duplicate key” error message when you use the Unique option (or the to
unique clause of the modify statement). To resolve this problem, determine
which rows have duplicate keys and delete these rows.

You can locate these rows with the following query:

��"����<� ���"J���!
�H?I�����������
!�����
��.�������"��
����

� ��
��!��� �<� ���"�
� ��*�,�

���!
�H?I�E��B�

■ An error when modifying a table. You may be completely out of disk space
on the file system the modify procedure is trying to use. Clear up disk space
on this file system.

Overflow

Overflow chains can considerably slow down performance and should be
monitored and, as much as possible, prevented. The sections that follow explain
how to monitor overflow, describe and give examples of some of the causes of
overflow, and discuss overflow in relation to the different types of storage
structures.

Preventing or reducing overflow requires you to do the following:

■ Carefully monitor overflow in both primary tables and secondary indexes

■ Avoid the use of repetitive keys, including both primary keys and
secondary index keys

■ Modify table structure to redistribute poorly distributed overflow

■ Understand the overflow implications when choosing a particular storage
structure

Measuring the Amount of Overflow

To monitor overflow in Visual DBA, select a table or secondary index in the
Database Object Manager window, and click the Pages tab. For tables, overflow
data is displayed in red in the pie chart, as indicated in the legend. Heap tables
are considered as one main page, with an overflow chain attached to the main
page. For B-tree tables, overflow occurs only at the leaf level and only with
duplicate keys.

Note: For information on the SQL statement equivalent to monitor overflow,
see the help table statement in the SQL Reference Guide.

Maintaining Storage Structures 4–19

Overflow

The iitables catalog (a view into the iirelation catalog) includes one row for each
table in the database. It contains pertinent information for evaluating overflow.
For example, the following query results in the information shown in the table:

��"�������"��
���J������
�����!��!��J�
��
!�������
��J��,��."�	���
���
��.���������"���

table_name storage_structure number_pages overflow_pages

manager hash 22 4

department B-tree 5 0

parts B-tree 5 0

orders heap 3 0

The above figures are approximate; they are updated only when they change by
a certain percentage (5%) to prevent performance degradation by continuously
updating these catalogs. Also, if transactions that involve many new pages are
backed out during a recovery, then the page counts may not be updated. Page
counts are guaranteed to be exact only after modification.

In evaluating overflow, if the number of overflow pages is greater than 10-15%
of the number of data pages, expect performance degradation. Overflow must
be regularly monitored to ensure that performance does not degrade as rows
are appended to tables.

Repetitive Key Overflow

Storage structures other than heap that have a high degree of duplication in the
key values are likely to have overflow since duplicate keys are stored in
overflow pages. Keys with a high degree of duplication are not recommended.
This applies to secondary index keys as well as primary keys.

Repetitive key overflow occurs, for example, if the emp table is keyed on sex,
resulting in two primary pages for the values “M” and “F.” The remainder of
the pages would be overflow pages to these two primary pages.

Consider if the following query is run:

��"����?�.������!��
��
��	*������!��
�%��6�@�A>A��
���
����!��
�%
����@�A0�<��AB�

4–20 Advantage Ingres Embedded Edition Administrator's Guide

Overflow

The key is used to find the first primary page. Then the search goes down the
entire overflow chain for “F” looking for all names Baker (there might be more
than one Baker, so every page is checked). Since this query looks restrictive, the
locking system would probably choose to page level lock. The query would lock
10 pages and then eventually escalate to a table level lock. You may have had to
wait for the table level lock if other users were updating. Finally, the search
finishes scanning the overflow chain and returns the row.

Retrieval performance with a duplicate key is still better than for a heap table
because only half the table is scanned.

However, update performance suffers. If a user wants to append a new female
student, the locking system starts by exclusively locking pages in the “F”
overflow chain. If another 10 pages need to be locked eventually, the locking
system attempts to escalate to an exclusive table level lock. If only one user is
updating the table, the lock is easily obtained. If multiple users are trying to
update the table at the same time, deadlock is likely.

User1 and User2 would both exclusively hold 10 pages in the table. User1 wants
to escalate to an exclusive table level lock so the query can continue, but User1
cannot proceed until User2 drops the exclusive page level locks User2 holds.
User2 also wants to obtain an exclusive table level lock, but cannot proceed until
User1 releases the locks. This is deadlock, which can seriously degrade update
performance.

Poorly Distributed Overflow

Overflow that is not uniformly distributed, that is, it is concentrated around one
or two primary pages, is poorly distributed. A classic example of poorly-
distributed overflow occurs when new rows are added to a table with a key that
is greater than all the keys that already exist in the table (for example, a time
stamp). If this table has an isam structure, the table builds up overflow in the
last primary page, and all operations involving this overflow chain will exhibit
poor performance. This type of table is best stored as a B-tree or hash.

Maintaining Storage Structures 4–21

Overflow

Overflow and Storage Structures

This section discusses overflow issues as they relate to specific storage
structures.

Isam and Hash

Tables

In hash and isam tables that have had a large amount of data added and have
not been remodified, overflow and the resulting performance degradation is
easy to understand. A keyed retrieval that normally would touch one page,
now has to look through not only the main data page, but every overflow page
associated with the main data page. For every retrieval, the amount of disk
I/O increases as the number of overflow pages increases.

Overflow pages are particular to a main data page for isam and hash tables, not
to the table itself. If a table has 100 main pages and 100 overflow pages, it is
likely that the overflow pages are distributed over many main data pages (that
is, each main data page has perhaps one overflow page). A keyed retrieval on
such a table would possibly cause only one additional I/O rather than 100
additional I/Os.

For more information on overflow in hash tables, see Specifying Alternate Fill
Factors earlier in this chapter.

For isam tables, because the isam index is static, if you append a large number
of rows, the table may begin to overflow. If there is no room on a page to
append a row, an overflow page is attached to the data page. For example, if
you wanted to insert empno #33, there is no more room on the data page, so an
overflow page is allocated for the data page as shown in the following diagram:

'�
������������������������������������,��."�	�'�
��.���'����� �'�
����
8����������������������������8�������8�������������������������������8�
8����8-������8���8������%����8�������8������8K!�

��8���8������%�����8�
8����80������8�)�8�)����%����8����E��8�������������������������������8�
8����8/���*��8���8������%����8�������8�������������������������������8�
8����8;������8��28�&����%����8�������8�������������������������������8�
8����������������������������8�������8�������������������������������8�

For hash and isam tables, one way of looking at overflow is by looking at the
tids of rows and analyzing the way the tids grow in a sequential scan through
the table.

As an example, the sample code shown below can be customized to show
overflow distribution. Each time a primary page is encountered, the tid’s value
grows by 512. If a primary page has associated overflow pages, the tid’s value
jumps by more than 512. So if the embedded SQL/C program shown below in
Sample Code to Show Overflow is run, the output looks like that shown in
Output from Sample Code.

Sample Code to Show Overflow

��
��,�"�@��B��
�6����5"���"����<� J�����
�����
����<� �,�"J������,�"�
����.�������"�
����
�6����5"���
�
B�

4–22 Advantage Ingres Embedded Edition Administrator's Guide

Overflow

���.�H����,�"�@@���
��,�"I��
��L��
�������
�.HM'����� �'�
��N�J�����@�N�JMJH��
��,�"F&��I7�J�����,�"IB�
�������
�.HM�/�����

�<� �,�"!��@�N��MJ�<� �,�"IB�
������
��,�"�@���
��,�"�7�&��B�
�����"������,�"�@�����,�"B�
�����,��."�	���
��@��B�
��O�
���"���
��L�
�����.�H����,�"�E��"������,�"�7��I�
����L�
�������,��."�	���
�77B�
���������
�.HMG
��,��."�	���
��N�J����@�N��MJ�,�����
�J����,�"IB�
����O�
�����"������,�"�@�����,�"B�
��O�
�6����5"��
�B�

Output from Sample Code

'����� �'�
���J�����@��J�/�����

�4� �#�"!��@�����
��,��."�	���
���J����@���)���
��,��."�	���
���J����@��&2���
��,��."�	���
���J����@�������
��,��."�	���
��)J����@��&�)��
'����� �'�
���J�����@�&��J�/�����

�4� �#�"!��@�)&2��
��,��."�	���
���J����@�)��2��
��,��."�	���
���J����@�)2����
��,��."�	���
���J����@�&�����
��,��."�	���
��)J����@�&2���

B-tree Tables Eliminating overflow is one of the major benefits of the B-tree storage
structure. Overflow in a B-tree occurs only at the leaf level, and then only if
you have a significant number of duplicate keys.

For instance, if 30 new employees all joined the company and all had the last
name Aitken, the attempt is made to add their records to leaf page 1. In this
case, since leaf page 1 can hold only 8 keys (remember that the leaf page can
actually hold 2000/(key_size + 6)), an overflow leaf page would be added to hold
all the duplicate values. This is different than splitting the leaf page, because the
same index pointer could still point to the same leaf page and be accurate. There
would be no additional key/leaf page entry added to the index.

In B-tree tables, you can look at overflow in the leaf level by running a query of
the following type, substituting your B-tree table name for t, your B-tree keys
for the keycol values, and the width of the key for key_width:

��"�����������J��������J��,��."�	�@��
��H��!
�H?IF�����	�
�	���I���
��.�������"�
����
�
��
��!��� ��������J��������B�

Notes:

■ This query is not needed for a B-tree index, in which the automatic inclusion
of the tidp column in the key prevents overflow.

Maintaining Storage Structures 4–23

Overflow

■ For B-tree tables with key compression selected, in the select statement you
can substitute an estimate of the average key size for key_width.

The results of this query give an approximation of the amount of overflow at the
leaf level, per key value. The query works by calculating the number of keys
that fit on a page and dividing the total number of particular key incidents—
grouped by key—by this value. For instance, if there are 100 occurrences of a
particular key and 10 keys would fit on each page, there would be nine overflow
pages at the leaf level.

Other tables may incur overflow pages for reasons other than duplicate keys;
hence, overflow distribution may involve more than simply running a query.

Secondary Indexes Overflow should be monitored in secondary indexes, as well as in the primary
tables. Even if the base table has a low overflow percentage, the secondary
indexes may have badly overflowed. Except when the base table is a heap or
B-tree table, the base table generally overflows before the secondary index.

Secondary indexes need to be monitored and modified at interim points—even
between base table modifications—to ensure a low percentage of overflow
pages. See Changing the Index Storage Structure in the Modifying Secondary
Indexes section earlier in this chapter for more information.

4–24 Advantage Ingres Embedded Edition Administrator's Guide

Chapter

5
Backup and Recovery

It is important to back up your database regularly, so that you can recover your
data, if necessary. Databases, or individual tables, can be damaged accidentally
by hardware failure or human error. For instance, a disk crash, power failure or
surge, operating system bugs, or system crashes, can destroy or damage your
database or tables in it.

This chapter describes the following backup and recovery features of Ingres:

■ Checkpointing and journaling to back up a database or selected tables

■ Unloading a database

■ Copying a database to back up particular tables or all of the objects you own
in a database

■ Operating system backups to replace current or destroyed tables in a
database

■ Roll forward of a database to recover a database or selected tables from
checkpoints and journals

Ingres allows you to perform full recovery, which involves recovering an entire
database, or partial recovery, which recovers selected tables in a database. Partial
recovery entails recovering data from a backup copy at a level of granularity
finer than the entire database. In the event of failure, Ingres will be able to, if
possible, mark less than the whole database physically inconsistent. The
advantage of partial recovery is that it reduces recovery times by requiring only
recovery of logically or physically invalid data.

The Logging System

The Ingres logging system keeps track of all database transactions
automatically. It is comprised of the following facilities and processes:

■ Logging facility, which includes the transaction log file

■ Recovery process (dmfrcp)

■ Archiver process (dmfacp)

■ Cluster server process (dmfcsp, VAXcluster configurations only)

Backup and Recovery 5–1

The Logging System

The Logging Facility

Each installation has an installation-wide transaction log file that keeps track of
all transactions for all users. The log file can be distributed among up to sixteen
partitions (locations), although Ingres treats the files as one logical file. These log
files are identified by the configuration file parameter II_LOG_FILE_n, where n
is the partition number from 1 to 16.

With dual logging enabled, the installation has an alternate log file. With dual
logging, a media failure on one of the logs will not result in the loss of data or
the interruption of service. If one of the log file disks fail, the logging system
automatically switches over to access the other log without interrupting the
application. The dual log file is identified by the configuration file parameter
II_DUAL_LOG_n.

When log files are properly configured, the use of dual logging has a negligible
impact on system performance.

In a VAXcluster installation, there is one log file per cluster node. Dual
logging is also provided on VAXclusters.

Log Space Reservation

During normal online processing, space is reserved in the transaction log file for
possible use during recovery when it is rolling back transactions. The reserved
space is used to write Compensation Log Records (CLRs), which describe the
work performed during the rollback.

Generally, the logging system reserves approximately as much log file space to
perform the rollback as was required to log the original operation. Exceptions
are insert and update operations, which require less reserved space than the
original log.

In the Log File page in the Performance Monitor window, you can see a close
approximation of the log file space required for both normal log writes and for
CLRs. Also displayed is the number of log file blocks reserved for use by the
recovery system at any point in time.

To access the Log File page, you click on the Log Information branch in the
Performance Monitor window, and click the Log File tab in the Properties pane.

Note: For information on the Ingres system command equivalents to
accomplish these tasks, see the sysmod and set log_trace commands in the
appendix, "Ingres Commands," in this guide.

The set log_trace statement is also described in the Tracing with Set Log_Trace
section in this chapter.

5–2 Advantage Ingres Embedded Edition Administrator's Guide

The Logging System

The Recovery Process

The recovery process (dmfrcp) handles online recovery from server and system
failures. The logging system writes consistency points into the transaction log
file to ensure that all databases are consistent up to that mark and to allow
online recovery to take place when a problem is detected. While a transaction is
being rolled back, users may continue working in the database.

The recovery process is a multi-threaded server process, similar to a normal
DBMS server. However, the recovery process does not support user
connections. The process must remain active whenever the installation is active.

The Archiver Process

The archiver process (dmfacp) removes completed transactions from the
transaction log file and, for journaled tables, writes them to the corresponding
journal files for the database. Each database has its own journal files, which
contain a record of all the changes made to the database since the last
checkpoint was taken. The archiver process “sleeps” until sufficient portions of
the transaction log file are ready to be archived or until the last user exits from a
database.

The Cluster Server Process

The cluster server process (DMFCSP) is resident only on VAXcluster
configurations, and is responsible for the management of installations running
on different cluster nodes. The process manages the startup, shutdown, and
recovery of all cluster nodes. The cluster server has capabilities of both the
recovery process and archiver process, as well as special-purpose logging and
locking capabilities.

The cluster server maintains a history of important actions in its own message
log file, resident in:

II_SYSTEM:[INGRES.FILES]IICSP.LOG

Relevant parts of this file should be included in any communication with
Technical Support regarding this process.

Backup and Recovery 5–3

Verifying Data Accessibility Before Backup

Verifying Data Accessibility Before Backup

As the DBA, you should know that the data in your database is good before
backing it up. This will assure that a successful recovery can be made should it
become necessary to restore the database from the backup copy.

One method of verifying the accessibility of your tables would be to write a
script that automatically checks each of the tables and system catalogs in your
database. Otherwise, you can use one of the following suggested methods with
Visual DBA:

■ Modify system tables to predetermined storage structures using the System
Modification dialog.

■ Modify user table storage structures using the Modify Table Structure
dialog.

■ Use any procedure that will touch all the rows in each table being backed
up. (For example, select all the rows from the tables using an SQL Test
window.)

 If rows in a table are not accessible, you will receive an error message. If this
happens, restore the table from an earlier checkpoint before doing a new
backup.

■ Check the integrity of specific tables using the Verify Database dialog. (For
each table, specify report for Mode, table for Operation, and a table name.)

The detailed steps for performing these procedures can be found in the
Procedures section of the online help for Visual DBA. See the following topics:

■ Optimizing System Tables

■ Modifying Storage Structures

■ Specifying a Query

■ Verifying a Database

Note: For information on the Ingres system command equivalents to
accomplish these tasks, see the sysmod, modify, select, and verifydb commands
in the appendix, "Ingres Commands," in this guide.

5–4 Advantage Ingres Embedded Edition Administrator's Guide

Backing Up a Database with Checkpoints

Backing Up a Database with Checkpoints

Using checkpoints, you can make a static (“snapshot”) backup of your entire
database, or selected tables. For a dynamic backup of your database, you use
checkpointing in combination with journaling. These backup methods enable
you to restore data up to the last checkpoint, or the last journaled transaction,
respectively.

This section primarily discusses the use of checkpointing for static backups. For
details on dynamic backups, see the Using Journaling System section for more
information.

To checkpoint a database or tables, you must be a privileged user (operator
privilege or Ingres system administrator).

Note: For information on the Ingres system command equivalent to accomplish
this task, see the ckpdb command in the appendix,
Ingres Commands," in this guide.

Checkpointing a Database

You can create a new checkpoint for a database by using the Checkpoint dialog,
invoked by the Database Checkpoint menu command in Visual DBA. Each time
you perform this operation, a new checkpoint of the database is taken.

A record of up to 99 checkpoints can be maintained at any point. It is
recommend that at least one database-level checkpoint be included in this
record.

The use of the Database Infodb menu command to verify the status of the
database and checkpoints is encouraged. This will help ensure that a valid
database checkpoint is always available.

The detailed steps for performing this procedure can be found in the Procedures
section of the online help for Visual DBA. See the Setting Checkpoints topic.

Running a checkpoint does not affect the current state of journaling for the
database. For details on how to enable and disable journaling with a checkpoint,
see the Starting Journaling and Stopping Journaling sections.

Tables that have had journaling enabled since the previous checkpoint will have
their journaling status changed from “enabled after next checkpoint” to just
“enabled.”

Backup and Recovery 5–5

Backing Up a Database with Checkpoints

Checkpointing Tables

In the Checkpoint dialog, you can specify that checkpointing be done for
selected tables. Table-level checkpoints should only be used as a supplement to
database-level checkpoints, and never as a substitute for them.

Database versus

Table-Level

Checkpoints

Use caution in the area of table-level checkpoints and recovery. Generally, full
database checkpoints are recommended over table-level checkpoints. When
using table-level checkpoints and restores, it is important—at the very least—
to back up all dependent tables with a full checkpoint.

Table-level checkpoints are restricted in their recoverability when the
checkpointed table has been dropped or the table has been modified through
any DDL statement. In these cases, the table-level checkpoint is rendered
unusable. There is also danger in compromising the referential integrity of the
database when rolling forward a table without journaling.

Performing table-level checkpoints on system catalogs is not permitted.
Frequent database checkpointing of the iidbdb database is strongly encouraged.

Roll Forward of

Tables

Whenever a database is rolled forward, it is recommended that a new
checkpoint be taken to allow subsequent table-level roll forward activities.

When a roll forward is performed at the table level, you may choose either to
roll forward the table excluding or including all secondary indexes. You cannot
specify a secondary index name as a table.

If it is necessary to do a roll forward with the No Secondary Index option, the
base table’s secondary index in the RDF cache will become inconsistent. To clear
the inconsistency, do one of the following:

■ Drop or recreate the inconsistent secondary index

■ Restart Ingres to refresh the RDF cache

Call Computer Associates Technical Support if additional assistance is required.

Checkpoint

Template File

A file called the checkpoint template file, cktmpl.def, drives the checkpoint
and roll forward operations. The cktmpl.def file allows you to customize
backup and recovery processes and provides additional information tracking.
It is possible to modify the backup process so that the names of the tables that
are specified during a table-level backup are written to a text file.

5–6 Advantage Ingres Embedded Edition Administrator's Guide

Backing Up a Database with Checkpoints

The II_CKTMPL_FILE environment variable overrides the default cktmpl.def
file for a particular user. This should be used when testing modifications to the
cktmpl.def file before it is made available to the entire installation so that other
users in the installation are not affected.

See the Altering the Checkpoint Template File section for checkpoint template
codes and parameters.

Online and Offline Checkpoints

Taking Online

Checkpoints

An online checkpoint is one taken when users are using the database. This is
the default when you take a checkpoint.

Taking Offline

Checkpoints

A checkpoint taken offline is performed when no one is using the database. To
take an offline checkpoint, enable the Exclusive Lock check box in the
Checkpoint dialog.

When you specify the Exclusive Lock option, you can also specify the Wait
option to wait for the database to be free before performing the checkpoint.

The behavior with or without the Wait option specified is described as follows:

■ If specified, the wait will be as long as necessary for the database to become
free before taking the checkpoint.

■ If not specified, an error message is returned if the database is busy.

Locking During a Checkpoint

By default, an exclusive lock is not taken on the database when you take a
checkpoint. Other users who may be using the database at the time of the
checkpoint can continue working online. During this time, transactions in
progress are placed in the dump file for the database.

When you perform a roll forward, the dump files are used to restore the
database to its state when the checkpoint was taken. It then updates the
database from journals, if the database is journaled.

There are two cases, however, in which checkpointing takes an exclusive
database lock. These are if either of the following options in the Checkpoint
dialog are used:

■ The Exclusive Lock option is specified to take the checkpoint offline

■ The Enable Journaling or Disable Journaling options are specified to
enable/disable journaling

If you want to continue the present journaling status, you do not use either
journaling option.

Backup and Recovery 5–7

Backing Up a Database with Checkpoints

Cleaning Up Outdated Checkpoints

To delete previous checkpoints and journals after you take a new checkpoint,
specify the Delete Previous option in the Checkpoint dialog.

Up to 98 checkpoints can be deleted in this way. If you have taken more than 98
checkpoints since the last time you created a checkpoint with the Delete
Previous option, you need to delete the additional old checkpoints manually
using an operating system command:

Use the Windows del command from the
II_CHECKPOINT\ingres\ckp\dbname directory.

Use the UNIX rm command from the ii_checkpoint/ingres/ckp/dbname
directory, where ii_checkpoint is the value of II_CHECKPOINT as displayed
by the ingprenv command.

Use the VMS delete command.

Observe the following cautions when manually deleting checkpoints:

■ Do this only after creating a checkpoint with the Delete Previous option.

■ Be sure that you do not delete the most recent checkpoint. You can identify
the most recent checkpoint by its version number, described below.

When you checkpoint a database, a checkpoint file is created for each location
on which the database is stored. The names of the checkpoint files are in the
format shown by the following example:

C000v00l.ckp

where v shows the version number of the checkpoint sequence and l shows the
location number of the data directories. The most recent checkpoint file has the
highest version number. To obtain this number, select the database and choose
the Infodb command from the Database menu. View the information in the
Infodb dialog.

5–8 Advantage Ingres Embedded Edition Administrator's Guide

Backing Up a Database with Checkpoints

Deleting the Oldest Checkpoint

You can delete the oldest available full database checkpoint, along with
associated journal and dump files, by enabling the Delete Oldest Checkpoint
check box in the Database Characteristics dialog, invoked by the Operations
Alter DB menu command.

This option operates only for full database checkpoints, not partial checkpoints.
For additional information about the Database Characteristics dialog, see the
Altering Database Characteristics section in this chapter.

Checkpoints and Destroyed Databases

Important! A checkpoint is a backup of an existing database. If you destroy the
database (with the Edit Drop menu command), you will not be able to recreate it from a
checkpoint, because this deletes a database’s associated checkpoints as well.

If you want to destroy your database and then recreate it, use the Unloaddb
menu command, appearing off the Database Generate Scripts submenu.

Parallel Checkpointing in UNIX

In UNIX, you can checkpoint to a disk or a tape in parallel, as described in this
section.

Checkpointing to

Disk

To checkpoint a multi-location database to disk in parallel, issue the ckpdb
command with the #m flag followed by the number of parallel checkpoints to
be run. For example, to save two data locations at a time to the
II_CHECKPOINT location, the command would be as follows:

ckpdb #m2 dbname

Checkpoint to Tape To checkpoint a multi-location database to tape in parallel, in the Checkpoint
dialog, specify multiple table devices to be used in the Tape Device edit
control. For example, enter the following:

/dev/rmt/0m,/dev/rmt/1m

This saves one location per tape—the first location will be stored on device 0m;
the second on device 1M. The third location will be stored on whichever device
is finished first. The remaining locations will be stored on the next free device.
The operator is prompted to insert a new tape for each location.

Some points to be aware of when performing parallel checkpointing to tape in
UNIX include:

■ Recovery does not have to be in parallel if a checkpoint was done in parallel.

Backup and Recovery 5–9

Backing Up a Database with Checkpoints

■ Each tape label should include the checkpoint number, database name, and
location number.

■ Each tape device must be the same medium, that is, all 4mm or all 8mm;
mixing is not permitted.

■ The maximum number of devices that can be used is limited by the system’s
input and output bandwidth.

Putting Checkpoints on Tape in Windows

In Windows, the backup system uses the Windows backup utility to create
checkpoints on tape. This utility allows you to back up on multiple tapes. The
program prompts you for more tapes as needed during the checkpoint
procedure.

The backup uses the commands in the following batch file:

%II_SYSTEM%\ingres\bin\ckcopyt.bat

You can tailor these commands in any way you wish (for example, to meet local
conventions such as tape labeling).

For detailed information on backing up to tape, please see your Windows
documentation on backup utilities.

Putting Checkpoints on Tape in UNIX

In UNIX, the backup system uses an operating system utility, such as tar
(Berkeley UNIX) or cpio (System V), to create checkpoints. Both cpio and tar
are limited to handling files that will fit on a single tape. Since checkpoints of
larger databases will abort at the end of the first tape, you must estimate both
the checkpoint size and the tape capacity before checkpointing these
databases. If you estimate that the checkpoint will exceed the tape size, follow
instructions in the Checkpointing to Multiple Tapes in UNIX section.

The following sections provide instructions for estimating checkpoint and tape
size, checkpointing to a single tape, and checkpointing to multiple tapes.

Estimating Checkpoint File Size in UNIX

A separate checkpoint file is created for each location to which a database has
been extended. To estimate the size of checkpoint files:

1. Issue the following command at the operating system prompt:

 du ii_database/ingres/data/default/dbname

 where ii_database is the value of the environment variable II_DATABASE
displayed by the ingprenv command.

5–10 Advantage Ingres Embedded Edition Administrator's Guide

Backing Up a Database with Checkpoints

 For other locations, substitute the name of the directory associated with the
location name.

2. If your operating system uses tar, increase the resulting block size of the
directory by 5%.

3. The du command displays the directory size in blocks. To get the file size in
bytes, multiply the block size by the number of bytes in a block on your
operating system.

See your operating system manual for information on the number of bytes in a
block on your system.

Estimating Tape Capacity in UNIX

The capacity of a tape depends on the following:

■ Density at which the tape is written

■ Length of the tape

■ Size of the blocks written on the tape

■ Length of the inter-record gap (IRG)

Standard 9-track tape drives write at either 800, 1600, or 6250 bits per inch (bpi),
so the bits per inch specification is the same as bytes per inch. The standard tape
length is 2400 feet.

Block sizes, which are not standardized, are important because of what is
between the blocks—the IRG. A typical IRG is .75 inches of empty tape
separating each block from the next. With this information, you can use the
following formula to estimate the size of the file in bytes that a tape can
accommodate:

F = (B + (I * D))/(12 * B * D * L)

where:

■ F is the file size in bytes

■ B is the block size in bytes

■ D is the density in bits per inch

■ L is the length of the tape in feet

■ I is the IRG in inches

The sample file sizes in the following table were calculated for a standard 2400
foot tape, assuming an IRG of .75:

Backup and Recovery 5–11

Backing Up a Database with Checkpoints

Tape Size IRG Block Size Density File Size (MB)

2400 .75 512 1600 13.8

2400 .75 512 6250 17.7

2400 .75 8192 1600 40.2

2400 .75 8192 6250 114.5

After using this formula to calculate the file size, you need to add an arbitrary
amount to allow for miscalculations. You do not want a tape to run off the reel
because you miscalculated the size of the file that should fit. A reasonable
amount to add is 5% of a tape’s capacity.

If your system uses a cartridge tape or other storage media, contact the vendor
for the specifications that will allow you to make the calculations described
above.

Checkpointing to a Single Tape in UNIX

To checkpoint a database to a single tape:

1. Mount a tape reel.

2. In the Checkpoint dialog, enter the name of the tape drive in the Tape
Device edit control.

 The equivalent ckpdb command at the operating system prompt would be
as follows with a tape drive named “/dev/rmt8”:

 ckpdb -m/dev/rmt8 dbname

The backup created by this checkpoint writes over everything that was
previously on the tape.

Checkpointing to Multiple Tapes in UNIX

There are two cases to consider when checkpoint files exceed the tape size:

Case 1 In Case 1, the checkpoint file exceeds the size of the tape, but will fit on a disk.
In this case, follow this procedure:

5–12 Advantage Ingres Embedded Edition Administrator's Guide

Backing Up a Database with Checkpoints

1. Follow normal procedures for checkpointing to disk.

2. Have your operating system administrator move the checkpoints from disk
to tape. Use a standard system backup method, such as cpio or dump.

 If some of the database’s tables are stored in alternate locations, separate
checkpoint files are created for them in the checkpoint location. These files
may be small enough to move to single tapes.

 Caution! To System V Users: It is possible that large checkpoints will exceed the
ulimit on your system. (The ulimit is a tunable operating system parameter that
sets a limit on file size.)

Case 2 In Case 2, the checkpoint file exceeds the size of the tape and will not fit on a
disk.

In this case, you must checkpoint the database using the operating system. To
successfully checkpoint a database, you have to lock all users out during the
entire process.

To lock out all users and take the checkpoint, follow this procedure:

1. To synchronize journaling, checkpoint the database to a null device by
specifying the following options in the Checkpoint dialog:

■ Exclusive Lock

■ Wait

■ Delete Previous

■ Tape Device: /dev/null

 The Wait option causes the checkpointing to wait until all user locks have
been released before beginning the checkpoint.

 The Delete Previous option removes all previous checkpoints and journals.

 The Tape Device specification causes the checkpoint to be placed in
/dev/null, which is a nonexistent device. This makes the database “think” it
is being checkpointed and causes journaling to be correctly synchronized.
At this time, all changes to the database are guaranteed to be on disk.

2. To lock the database, start a new process:

– C shell:

 After the first message from the checkpoint is printed, press Ctrl+Z.

 Bourne shell:

 Log in at another terminal immediately after the checkpoint begins.

– Start the new process by issuing the following command at the
operating system prompt:

 ingres -l +w dbname

 The +w flag causes a wait until that lock is granted.

Backup and Recovery 5–13

Backing Up a Database with Checkpoints

3. After the checkpoint finishes:

 For the C shell:

 If the checkpoint process is stopped (csh job control), put the job back in the
foreground; wait for the process to complete.

 For the Bourne shell:

Wait for the process to complete.

4. Have your operating system administrator use standard system backup
methods to back up the database directory to tape.

 Make sure that the backup method used allows you to save the files and
recover them to their original places on the system. Some backup methods
have limitations. The volcopy command, for instance, requires that the
database disk device be unmounted and unavailable for use by any users
during the copy. Additionally, it saves files by saving the entire file system.

5. For the C shell:

Leave the second process stopped (csh).

 For the Bourne shell:

 Leave the second process at the SQL prompt (*) until the backup is
complete.

6. Quit from the SQL prompt held by the second process.

Putting Checkpoints on Tape in VMS

To initiate a checkpoint in VMS, ready the tape and issue the ckpdb command
with the –m option. See the appendix, "Ingres Commands", in this guide, for
information about the ckpdb command.

The backup system uses the VMS BACKUP utility to create checkpoints. This
utility allows you to back up on multiple tapes. The program will ask for more
tapes as needed during the checkpoint procedure.

The backup uses the following command in the script:

II_SYSTEM:[INGRES.FILES.CHECKPOINT]CKP_TO_TAPE.COM

You can tailor this command in any way you wish, for example, to meet local
conventions, such as tape labeling.

5–14 Advantage Ingres Embedded Edition Administrator's Guide

Using the Journaling System

Using the Journaling System

For a dynamic backup of your database, journals are used in combination with
checkpoints. Checkpoints provide you with a snapshot of the database at the
time you took the checkpoint. Journals keep track of all changes made to
journaled tables since the last checkpoint.

When you are journaling a database:

■ Take regular checkpoints of your database to minimize recovery time.

■ Periodically verify that your journaling data is correct by auditing the
database. See the Producing Audit Trails with Journals section.

The detailed steps for performing the procedures in this section can be found in
the Procedures section of the online help for Visual DBA. See the following
topics:

■ Setting Checkpoints

■ Altering Database Characteristics

Note: For information on the Ingres system command equivalents to
accomplish these tasks, see the ckpdb and alterdb commands in the appendix,
"Ingres Commands," in this guide.

Starting Journaling

Journaling may be selected for an entire database or on a table-by-table basis, as
described below:

■ Journaling on the entire database

 The recommended approach is to journal the entire database. Tables in
journaled databases are created “with journaling” if that is the
default_journaling setting of the server class used by the DBMS server you
are connected to.

 You can then disable journaling on specific tables only if a rollforward
recovery of those tables is not important. You should exercise caution when
creating non-journaled tables in journaled databases. Non-journaled tables
cannot be audited when the database is audited, in addition to their lack of
roll forward recovery. Following a roll forward recovery, the relationship
between journaled and non-journaled tables can be very confusing.

■ Journaling table-by-table

 If you choose to journal selected tables, you are responsible for ensuring
that all related objects are also journaled (for example, that all tables
associated with a view are journaled).

Journaling an Entire

Database

To journal an entire database, use one of the following methods:

Backup and Recovery 5–15

Using the Journaling System

Enable journaling on the database using the Enable Journaling option in the
Checkpoint dialog.

Note: The only tables that will be enabled are those whose journaling status is
“enabled after next checkpoint.” Tables whose journaling status is “disabled”
will not be enabled.

Journaling New

Tables

The journaling of new tables begins:

■ If you have enabled journaling on the database and the table is created with
journaling enabled, the new tables begin journaling immediately.

■ If you have not enabled journaling on the database, the new tables begin
journaling after you take a checkpoint with the Enable Journaling option in
the Checkpoint dialog (although tables created with journaling disabled are
never enabled even after journaling is enabled for the database as a whole).

Starting Journaling

and Online/Offline

Checkpoints

To start journaling on a database that has not yet been checkpointed, invoke
the Checkpoint dialog (by choosing the Database Checkpoint menu command)
and set the Enable Journaling option.

Please note the following:

■ The first time journaling is turned on in a particular database, you must
checkpoint the database by setting the Enable Journaling option in the
Checkpoint dialog. This ensures that the checkpoint is taken offline and
with an exclusive lock on the database.

■ Once you have enabled journaling by checkpointing offline with the Enable
Journaling option, you can maintain the “journaling on” status and take
online checkpoints by not subsequently setting the Enable Journaling option
when you take a checkpoint. Online checkpoints permit users to continue
using the database while the checkpoint is being taken.

■ Once you have enabled journaling for the database by checkpointing offline
with the Enable Journaling option, you can take an offline checkpoint to
start journaling of tables for which journaling is enabled after the next
checkpoint.

 Any explicit journaling option causes the checkpoint to be taken offline,
exclusively locking the database.

Disabling Journaling

To disable journaling, disable the Journaling check box in the Options dialog
invoked from the Create Table dialog.

5–16 Advantage Ingres Embedded Edition Administrator's Guide

Using the Journaling System

Stopping Journaling

To stop journaling a particular table, issue the following statement from the
query language monitor:

set nojournaling on tablename;

You can stop journaling all the tables in a database using either of the following
methods in Visual DBA:

■ Creating a checkpoint, specifying the Disable Journaling option in the
Checkpoint dialog.

■ Altering a database using the Database Characteristics dialog. Note that this
will take effect immediately, therefore, it should only be used for
emergencies. See the next section, Disabling Journaling When Altering a
Database.

To re-enable journaling on a table or database that has had journaling disabled,
use the Checkpoint dialog, as described in the Starting Journaling section.

Disabling Journaling When Altering a Database

When you alter a database with the Disable Journaling option (using the
Database Characteristics dialog), journaling of a database is halted immediately,
regardless of whether users are connected to the database.

This option is provided as a method for recovering from journaling system
problems that prevent the archiver from moving transaction log file records to
the database journal files. This might be the case, for example, if the disk
partition containing the journal files is not periodically purged of obsolete
journal files and the partition becomes entirely full. If the logging system is
unable to move records from the log file to the journal files, the transaction log
file will eventually fill up, causing a LOGFULL condition. When this occurs, no
database activity can proceed until the LOGFULL state is cleared.

Important! Using this option to disable journaling will make the displayed value for
the journaling status inconsistent. Tables will show as “journaling enabled,” even
though journaling is disabled for the database as a whole and you would expect to see
“enabled after next checkpoint.”

See the Altering Database Characteristics topic in the Procedures section of the
Visual DBA online help for step-by-step instructions.

Backup and Recovery 5–17

Using the Journaling System

The following example shows the steps that must be performed by the DBA of
the database. It does not require a database lock and can be run even while the
log file is full (LOGFULL).

1. To disable journaling on a database, select the database in the Database
Object Manager and choose the Alter DB command from the Operations
menu.

 The Database Characteristics dialog appears.

2. Enable the Disable Journaling check box and click OK.

 At this point the database is no longer journaled.

 Caution! Do not roll forward a database that has journaling disabled. Any
transactions committed after the alter database operation, or that were still in the
transaction log file at the time journaling was disabled, will be lost.

3. To check the database state, choose the InfoDb command from the Database
menu.

 Using the Infodb dialog, you can determine whether journaling has been
disabled.

4. Schedule a new checkpoint to re-enable journaling as soon as it is possible.
To do this, select the database in the DOM window and choose the
Checkpoint command from the Database menu.

The Checkpoint dialog appears.

5. Enable the Enable Journaling check box and click OK.

Disabling Journaling When Checkpointing

When you choose the Disable Journaling option in the Checkpoint dialog,
journaling is stopped for all tables in a database.

This causes a checkpoint of the specified database to be taken and then
journaling on it stopped. After stopping journaling, you can still take periodic
checkpoints of the database.

5–18 Advantage Ingres Embedded Edition Administrator's Guide

Using the Journaling System

Altering Database Characteristics

As previously discussed, you can disable journaling from the Database
Characteristics dialog. This dialog also allows you to change several database
characteristics, including:

■ Change journal block settings

■ Delete oldest checkpoint

■ Set verbose mode

In order to perform this operation, you must be the owner of the database or
have the operator privilege.

Resizing the Journal File

Journal files are created by the archiver process by the first journal write after a
checkpoint takes place. Additional journal files are created as prior files are
filled.

By default, journal files are created with:

■ A target number of journal blocks of 512

■ A block size of 16, 384 bytes

■ An initial allocation of 4 blocks

This results in a target journal file size of 8 MB (16, 384 * 512 bytes). Although
most users will find these parameters satisfactory, all three may be modified via
the Database Characteristics dialog, using the Block, Size, and Initial edit
controls.

Setting the Target Journal Size

The Database Characteristics dialog specifies the target journal size in the Block
edit control. The possible values are between 32 and 65536.

A journal file is closed and a new one is created when either a checkpoint is
taken (actually, when the first write after a checkpoint is taken) or when the
journal file fills.

The Block edit control allows some control over when the logging system
declares a journal file full. This parameter is known as the “target journal file
size” because the exact size of a journal file cannot be easily predicted. The
archiver closes off journal files, if they grow larger than the target number of
blocks, only at the completion of an archive cycle. Longer archive cycles imply
more variation in journal file sizes.

Backup and Recovery 5–19

Using the Journaling System

Upon successful completion of this command, a message is written to the
errlog.log. The updated block value can be observed as the infodb parameter
“Target journal size”.

The command takes effect immediately (or more accurately, the next time the
archiver reads the configuration file).

This option has no effect on journal files created as part a “VAXcluster
merge.”

The initial journal size (specified in the Initial edit control) may be affected by
this command.

Setting the Journal Block Size

The Database Characteristics dialog allows you to specify the journal block size
in the Size edit control. Valid journal block sizes are 4096, 8192, 16384, 32768,
and 65536 bytes.

Archiver (dmfacp) performance is affected by the journal file block size. You
would normally change the block size (Size edit control) in conjunction with the
number of target journal blocks (Block edit control). This allows you to target
the creation of journal files of a given size. Changing the block size without also
changing the number of blocks in a journal file will change the target size of the
file.

You would typically change the journal block size immediately after the
database is created, before the initial checkpoint is taken with the journaling
option. Thereafter, changing the journal block size is generally required only for
installations with a relatively high volume of journaled data. You can only
change the journal block size when journaling is not currently enabled.

To change the journal block size on a database that is currently journaled,
perform the following operations:

■ Take a checkpoint and disable journaling using the Checkpoint dialog

■ Set the journal block size using the Database Characteristics dialog

■ Take a checkpoint and enable journaling using the Checkpoint dialog

Upon successful completion of this operation, a message is written to the
errlog.log. The updated journal file block size can be observed as the infodb
“Journal block size” parameter.

5–20 Advantage Ingres Embedded Edition Administrator's Guide

Using the Journaling System

Setting the Initial Journal Size

The Database Characteristics dialog allows you to specify the initial journal size
in the Initial edit control. Valid journal block sizes are from 0 to the current
target journal size (which can be obtained using infodb).

The Initial option allows a measure of control over when journal file disk space
allocation takes place, but only for the first journal file created after a checkpoint
is taken.

You can change the initial journal size at any time, and it takes effect when the
next database journal file is created. In the case of an offline checkpoint, this
may be some time after a checkpoint is taken. In the case of an online
checkpoint, the file allocation occurs during execution of the checkpoint.

Upon successful completion of this command, a message is written to the
errlog.log. The updated block value can be obtained from the “Initial journal
size” parameter in the Infodb dialog (invoked by the Database Infodb menu
command).

Resize Considerations

Preallocating space in journal files using the Database Characteristics dialog can
reduce the likelihood of running out of journal file disk space. Filling a journal
file causes the archiver to stop, and if left untreated will eventually cause the log
file to fill, which will bring the system to a halt.

With the alter database operation you can, for example, request creation of
journal files of a given size and also request preallocation of the entire file. If the
file is sufficiently large, this eliminates the possibility of running out of journal
disk space during normal online processing.

This may, however, cause unused journal space to be wasted. If excessive space
is allocated during journal file creation, that disk space will be made unavailable
when a subsequent checkpoint operation takes place.

On UNIX systems, disk space must be physically written when a journal file is
extended. Since consecutive journal files are created as prior ones fill, it is
undesirable to affect performance caused by file initialization occurring at
unplanned intervals during the processing day. The alter database space
preallocation features can be used to manage when the allocation takes place,
allowing control over when the allocation time delay occurs. A significant
amount of journal file I/O may occur when the first journal file is created,
with the archiver being unavailable during this time. This will be observed as
an online checkpoint taking a long time to complete, or the archiver
performing a large amount of work when the first journal write after an
offline checkpoint takes place.

Backup and Recovery 5–21

Using the Journaling System

If it is necessary to more accurately control journal file size, the archiver must be
awakened more frequently. This can be accomplished with smaller consistency
point (CP) intervals, allowing more frequent archiver “wake-ups.” The
consistency point interval can be configured using the Ingres Configuration
Manager. (For details on the Ingres Configuration Manager utility, see the Using
the Ingres Configuration Manager topic in the Visual DBA online help.) Smaller
CP intervals can affect system performance, although the processing involved is
for a short interval of time.

Producing Audit Trails with Journals

In addition to using journals for recovery, you can use journals to produce audit
trails of changes to a database. You must be the DBA for the database or have
the security privilege to perform an audit on a database.

You should audit your database periodically to verify that your journals are
correct.

The detailed steps for performing this procedure can be found in the Procedures
section of the online help for Visual DBA. See the Auditing a Database topic.

Note: For information on the Ingres system command equivalent to accomplish
this task, see the auditdb command in the appendix, "Ingres Commands," in this
guide.

5–22 Advantage Ingres Embedded Edition Administrator's Guide

Using the Journaling System

Auditing a Database

The audit database operation in Visual DBA can be performed on a database by
using the Audit Database dialog, invoked by the Operations Audit menu
command.

The Audit Database dialog enables you to produce a listing or file of changes
made to journaled tables since the last checkpoint. This listing may not include
all changes made since the last checkpoint for the following reasons:

■ Since the audit database does not exclusively lock the database, other users
may complete a transaction while the audit is running.

■ If other users are using the database when you perform an audit, a
completed transaction may not have been moved to the journal files.

The audit database operation scans journal files twice. A prescan is performed
to filter out undesired information (for example, aborted transaction data). The
second scan outputs journal records of interest. To improve program
performance, the Before edit control value terminates both scans when an End
Transaction record is found that has a time later than that specified.

When the Inconsistent check box is enabled, you are allowed to view journals
that the database has marked as inconsistent. Note, however, that audit
database operation will still fail if core catalogs are inconsistent.

When the Wait check box is enabled, the audit waits until journals are current.
“Current” in this context means either of the following:

■ No further archiving is required on the database.

■ The archiver has copied all log file information up to the log file end-of-file
when the audit database request was initiated.

Note that if a large amount of unarchived information remains in the log file
when this request is initiated, there may be significant delay in processing.

Backup and Recovery 5–23

Using the Journaling System

Loading an Audit Trail as a Table

To make querying the data easier, you can create an audit trail as a file in your
current directory and then load the file into a table in your database. To do this:

1. In the Audit Database dialog, enable the Output Files check box and specify
the corresponding files to create an audit trail file in the current directory.
(Note that you must have first specified at least one table. Also, you can
specify file(s) only if the table you are auditing has fewer than 1940 bytes
per row.)

For example, the audit database operation could extract a record of the
changes to an employee table from the journal for a particular database. The
changes in the current directory could then be placed in a file named
empaudit.trl.

2. To copy the file into a database table, create a table to hold the audit trail
data.

When creating the table, include the audit trail and employee table columns
shown below. Enter the audit trail columns before the table’s columns, in
the order shown. If you do not, the copy operation will fail when you try to
copy the audit trail data into the table.

Column

Name

Data Type Description

date date not null with
default

Date and time of the beginning of the
multi-query transaction that contained
the operation

username char(32) not null with
default

User name of the user who performed
the operation

operation char(8) not null with
default

Insert, update, or delete operation

tranid1 integer not null with
default

Transaction identification number.
Concatenated with tranid2.

tranid2 integer not null with
default

Transaction identification number.
Concatenated with tranid1.

table_id1 integer not null with
default

Table identification number.
Corresponds to value in table_reltid
column of iitables system catalog for
specified table.

table_id2 integer not null with
default

Table identification number.
Corresponds to value in table_reltidx
column of iitables system catalog for
specified table.

name varchar(20) Employee name

5–24 Advantage Ingres Embedded Edition Administrator's Guide

Using the Journaling System

Column

Name

Data Type Description

age integer Employee age

salary money Employee salary

dname varchar(10) Department name

manager varchar(20) Employee manager

3. Use the copy statement to load the new table with the data from the file
from Step 2.

In the following example, the data in the empaudit.trl file is copied to the
empaudit table:

copy empaudit() from 'C:\users\joe\empaudit.trl';

copy empaudit() from '/usr/joe/empaudit.trl';

copy empaudit() from '[usr.joe]empaudit.trl';

The table created from the audit trail (in this example, the empaudit table)
will contain:

– A row for each row added to the employee table

– A row for each row removed

– Two rows for each update: one showing the row before the update and
the other showing the row after the update

Note: See the appendices in this guide for more information on the copy
statement.

Backup and Recovery 5–25

Copying a Database

Copying a Database

You can copy a database to back up the tables, views, and procedures that you
own in a database. By default, all of the tables, views, and procedures that you
own in the database are copied. If you specify table names, only those tables will
be copied.

Since any user authorized to use a database can use the copy database
operation, this is a useful backup method for a non-DBA, who can use it to back
up his or her own tables, views, and procedures.

Creating Copy Scripts

To create scripts that will be used to copy objects from a source database to a
target database, you use the Generate copy.in and copy.out dialog, invoked
from the Database Generate Scripts Copydb menu command.

The detailed steps for performing this procedure can be found in the Procedures
section of the online help for Visual DBA. See the Creating Copy Database
Scripts topic.

Note: For information on the Ingres system command equivalent to accomplish
this task, see the copydb command in the appendix, "Ingres Commands," in this
guide.

Copying a Database

To perform the copy database operation, you run the scripts that have been
created using the Generate copy.in and copy.out dialog.

The detailed steps for performing this procedure can be found in the Procedures
section of the online help for Visual DBA. See the Executing Copy Database
Scripts topic.

5–26 Advantage Ingres Embedded Edition Administrator's Guide

Unloading a Database

Unloading a Database

Unloading a database is a time-consuming method for backing up and
recovering your database, because all of your database’s files must be unloaded
and then reloaded. For this reason, it is recommended that you use
checkpointing instead.

However, unloading a database can be useful as a backup tool because it
enables you to:

■ Generate copy scripts, which can be used to recreate your database.

■ Recover particular tables by editing the copy.in scripts.

The detailed steps for generating these scripts can be found in the Procedures
section of the online help for Visual DBA. See the Creating Unload and Reload
Scripts topic.

Note: For information on the Ingres system command equivalents to
accomplish this task, see the unloaddb command in the appendix, "Ingres
Commands," in this guide.

Recovering Databases

This section tells you how to recover:

■ A non-journaled database from a checkpoint

■ A journaled database from checkpoints and journals

■ A database from a tape checkpoint

■ Selected tables

Backup and Recovery 5–27

Recovering Databases

Recovering Databases from Checkpoints and Journals

To recover a database from checkpoints and journals or from checkpoints only,
you use the roll forward operation. Performing a roll forward of a database
overwrites the current contents of the database being recovered.

When you roll forward a database, the database is locked to prevent errors from
occurring. If the database is busy, the roll forward operation waits for the
database to be free before recovering it. (If you specify the Wait option, the
rollforwarddb operation pauses until all users have left the database. If you do
not specify the Wait option, you get a message that the database is in use.)

If the target checkpoint was taken online (when the database was in use), the
roll forward operation:

■ Restores the database from the checkpoint location to the database location.

■ Applies the log records in the dump location to the database, which restores
it to the state when the checkpoint began. The log records contain the
transactions that were in progress when the checkpoint was taken.

 Since there were no transactions in progress during an offline checkpoint,
this step is not performed when restoring a database from an offline
checkpoint.

■ Applies the journal records to the database, if the database is journaled.

Performing a Roll Forward of a Database

You can recover a database by using the Roll Forward DB dialog, invoked by
the Database Rollforward DB menu command in Visual DBA. To perform a roll
forward, you must be the DBA for the database or have the operator privilege.

A roll forward may write Compensation Log Records (CLRs) to the transaction
log file while executing the rollback phase of a roll forward recovery. This
happens rarely, only if incomplete transaction histories are written to the
journals. This is an unlikely condition except when the transaction log file is lost
(or, if running with dual logging, when both copies are lost). In this case, it is
possible for journal files to grow in size as a consequence of performing a roll
forward.

The detailed steps for performing this procedure can be found in the Procedures
section of the online help for Visual DBA. See the Recovering a Database from
Checkpoints topic.

Note: For information on the Ingres system command equivalent to accomplish
this task, see the rollforwarddb command in the appendix, "Ingres Commands,"
in this guide.

5–28 Advantage Ingres Embedded Edition Administrator's Guide

Recovering Databases

Recovering a Journaled Database

To recover a specific database from the last checkpoint and journal, where both
the checkpoints and journals are stored online, select the default options in the
Roll Forward DB dialog.

Recovering a Non-Journaled Database

To recover a non-journaled database from the last checkpoint, enable the From
Last Checkpoint check box in the Roll Forward DB dialog.

Recovering a Database from Tape Checkpoints

To recover a database whose checkpoints are on tape, mount the tape reel
containing the checkpoints. Then, select the default options in the Roll Forward
DB dialog and also specify the tape drive in the From Tape Device edit control.

The checkpoint is read from the tape and then the journal files are applied, if the
database is journaled, to bring your database up to date.

Parallel Roll Forward from Disk

To roll forward a multi-location database to disk in parallel, issue the
rollforwarddb command the #m flag followed by the number of parallel
restores to be run. For example, to restore two data locations at a time from
the II_CHECKPOINT location, the command would be as follows:

rollforwarddb #m2 dbname

Parallel Roll Forward from Tape

To roll forward a multi-location database from tape in parallel, specify the
devices to be used in the From Tape Device edit control. For example, the
following tape device may be specified:

Backup and Recovery 5–29

Recovering Databases

/dev/rmt/0m,/dev/rmt/1m

This restores one location per tape—the first location will be restored from
device 0m; the second location will be restored from device 1M. The third
location will be restored from whichever device is finished first. The remaining
locations will be restored from the next free device. The operator is prompted to
insert the numbered tape into the free device.

Some points to be aware of when performing parallel roll forward from tape in
UNIX include:

■ Recovery does not have to be in parallel if a checkpoint was done in parallel.

■ Recovery can be in parallel if a checkpoint was not done in parallel.

■ Each tape label should include the checkpoint number, database name, and
location number.

■ Each tape device must be the same medium, that is, all 4mm or all 8mm;
mixing is not permitted.

■ The maximum number of devices that can be used is limited by the system’s
input and output bandwidth.

Recovering Tables Using Roll Forward

You can specify that only certain tables are recovered during a roll forward
database operation. (Journals of tables in the database must be enabled.) When
doing table-level recovery, you may optionally move the table to a new location.
(Note that the database must be extended to the new locations before the
rollforward.)

In the Roll Forward DB dialog, some of the available options that relate to
specifying tables include:

■ Specifying individual tables

■ Relocating tables

■ Continue processing on error conditions

■ Inhibiting automatic recovery of secondary indexes

Note that table recovery is not allowed if structural changes have been made to
the table since the checkpoint. This means table recovery is not allowed if you
have modified the table, created indexes, or altered the number of columns in
the table.

Retracting Changes Using Roll Forward

If a user makes a serious error in a table that is being journaled, the changes can
be retracted. Use roll forward to restore the database up to the beginning of the
transaction in which the error occurred.

5–30 Advantage Ingres Embedded Edition Administrator's Guide

Recovering Databases

For example, to restore a database from the previous checkpoint to its condition
at 8:00 A.M. on August 17, 1998, you would specify the following options in the
Roll Forward DB dialog:

■ Verbose check box enabled

■ From Last Checkpoint check box enabled

■ From Journal check box enabled

■ Before: 17-aug-1998:08:00:00

This retracts all changes made to the database after this time, not just those
made to the table with the error.

To ensure that the error is not reintroduced when you perform a roll forward in
the future, take a new checkpoint to reset the journals.

Recovering a Subset of Data Using Roll Forward

The roll forward end time option (specified in the Before edit control) permits
the recovery of a subset of data in the journal file. The option is useful when
problems have been encountered in a full roll forward database operation or
when, for example, a critical piece of data has been inadvertently deleted.

There is one important consideration when using this option. As this form of
recovery does not restore the database to the state reflected by the full set of
journals, it is critical that a checkpoint of the database be performed after the
recovery completes. If not, another roll forward performed later may leave the
database in an inconsistent state.

The only recommended courses of action that may be taken is to roll forward a
database with the Before value specified:

■ Roll forward the database again

■ Checkpoint the database, preferably specifying the Delete Previous option
(to delete previous checkpoints)

Note also that the Before and End options operate on End Transaction
timestamps, not on the time that a user may associate with an update. The audit
database End and Before options (in the Audit Database dialog) also operate on
End Transaction timestamps, and can be used to check anticipated roll forward
results.

Backup and Recovery 5–31

Recovering Databases

Recovering a Database from an Old Checkpoint

If the most recent checkpoint has been damaged or is unreadable, it is possible
to recover from an older checkpoint. You can use either a specific checkpoint
number or the most recent usable checkpoint.

To recover the database from a particular checkpoint and apply all journals
since that time, enable the From Specified Checkpoint check box and enter the
checkpoint number in the corresponding spin box.

The checkpoint sequence number must be a valid checkpoint number. You can
verify this number in the Infodb dialog, invoked by the Database Infodb menu
command.

If the most recent checkpoint is unfinished and you want to recover using the
most recent usable finished checkpoint, enable the From Specified Checkpoint
check box and do not enter a corresponding checkpoint number.

The From Specified Checkpoint option can also be used in conjunction with the
After and Before edit controls if you want to restore a database to its state at
some previous moment in time. You should exercise extreme caution with the
After and Before options. As these commands roll the database forward to a
point in time other than that fully represented by the journals, transactions that
were performed after the Before time or before the After time are lost. Partially
completed transactions will be backed out by the roll forward process.

Furthermore, a checkpoint should always be performed after completion of such
a roll forward, thereby ensuring that obsolete journal data is not inadvertently
reused in a subsequent recovery (or by an audit database operation to produce
inaccurate auditing results). Note that audit database After and Before options
behave as do the equivalent roll forward flags, and can be used to predict roll
forward results.

For a full explanation of the options associated with roll forward operation, see
the Roll Forward DB dialog topic in the Visual DBA online help. It can be
accessed through the Recovering a Database From Checkpoints topic in the
Procedures section.

5–32 Advantage Ingres Embedded Edition Administrator's Guide

Altering the Checkpoint Template File

Recovering from the Loss of the Transaction Log File

In the unlikely event of a loss of the transaction log file (or, if dual logging is
enabled, loss of both file copies), the following recovery procedure may be used
to restore as much database information as is possible.

1. Create a new transaction log file.

2. At this point the action differs, depending on whether offline or online
backups take place. Included in the latter class of systems are those that
employ journaling capabilities.

– For offline backups

 Installations using their own backup and recovery mechanisms
(implying no use of online checkpoint or journaling facilities) only need
to restore database directories and bring the system back up. No
directed recovery is needed, since backups are done during a period
when there is no system activity, and when all database information is
resident on disk.

– For online backups and roll forward

 If you are using online checkpoints and journaled databases, bring the
installation back up with the newly initialized log file. All databases
open at the time of the failure will be marked inconsistent by the
recovery process. Each must be recovered in turn by the roll forward
database operation. The Enable Journaling option with roll forward is
specified for journaled databases; this option is not specified for those
databases that are not journaled.

 Note that a roll forward operation restores databases to a consistent
state even if incomplete transaction histories have been copied to the
journal files.

Altering the Checkpoint Template File

The checkpoint template file drives the checkpoint and roll forward operations.
This section describes this command file in detail so that, if needed, you can
tailor it to meet the requirements of your site.

For example, if the database exists on multiple locations, checkpointing backs
up each location to a separate tape or disk and, in turn, roll forward restores
each location one at a time. If you want to use a different backup method or
only one tape for all locations, you can edit this command file.

Backup and Recovery 5–33

Altering the Checkpoint Template File

Checkpoint Template Codes

In the checkpoint template file, a four-character uppercase code at the beginning
of each line provides the following information:

First Character The first character indicates when the command is to be used. Valid characters
are:

■ B (Begin)—the command is to be executed before the device is used. It
indicates setup work done prior to the execution of the command.

■ P (Prework)—the command is to be executed before the work is executed.

■ I—the command begins table-level recovery (initializes only).

■ W (Work)—the command activates the device. It indicates the execution of
the command.

■ F—the command ends table-level recovery (comments only).

■ E (End)—the command is executed after the device is used. It indicates
cleanup work done after the operation is complete.

Second Character The second character indicates whether the command specifies several types of
checkpointing and roll forward options. Valid characters are:

■ S—the command is for checkpointing only.

■ R—the command is for roll forward only.

■ E—the command is for both checkpointing and roll forward.

■ D—the command is for delete file processing.

■ C—the command checks if a database checkpoint exists before the roll
forward.

■ J—journals are to be applied, for a roll forward.

■ U—dumps are to be applied, for a roll forward.

Third Character The third character specifies the device. Valid characters are:

■ T—the command on that line refers to reading from or writing to a tape.

■ D—the command refers to disk operations.

■ E—the command applies to both types of devices.

Fourth Character The fourth character specifies the data. Valid characters are:

■ D—the command is for a database.

■ A—the command is for all databases.

■ T—the command is for table(s).

■ E—the command is for either a database or table.

Examples Some examples of a checkpoint template code follow:

5–34 Advantage Ingres Embedded Edition Administrator's Guide

Altering the Checkpoint Template File

WSTD identifies the command line to use during the working (W) phase of a
checkpoint, which is saving (S) a database to tape (T), for a database (D).

BRDT identifies the command line to use during the begin (B) phase of a roll
forward operation that is restoring (R) from disk (D) for a table (T).

Substitution Parameters

The checkpoint template file can optionally include substitution parameters that
will be filled in at run time, to specify things like:

■ Which database directory to back up

■ Which tape device the user specified in the Checkpoint dialog

The parameters consist of a “%” and a single uppercase character. These
parameters have the following meanings:

%T The type of operation: 0 if to tape, 1 if to disk.

%N The total number of locations being written.

%M For the begin or end operations, the incremental/current location
number. For save or restore operations, this starts at 1 and is
incremented after each save or restore command.

%D The path to the database directory being saved or restored.

%C The path to the checkpoint directory of disk files or the device name if
to tape.

%F The name of the checkpoint file created or read from.

%A %C prepended to %F in a form to produce a fully specified file (that is,
%A = %C/%F).

%X The name of the table, pertinent to the work commands executed under
table processing.

%B Expanded during execution to represent the list of internal files that are
associated with a table checkpoint. This parameter is pertinent to the
work commands executed under table processing.

The “%” parameters in the commands are replaced by ckpdb and/or
rollforwarddb when the command is executed.

Backup and Recovery 5–35

Altering the Checkpoint Template File

Valid Code Combinations

The valid code combinations are shown here:

B [S,R,E,J,U] [T,D,E] [T,D,E,A]
P [S,R] [T,D] [D,T]
W [S,R,E,J,U,D,C] [T,D,E] [T,D,E,A]
I [,R,E] [T,D,E] [T,E]
F [,R,E] [T,D,E] [T,E]
E [S,E] [T,D] [D,T,E]

For every entry with a first character of B, there must be an accompanying entry
beginning with E.

This section demonstrates how the codes are used in the checkpoint template
file to perform checkpointing and roll forward operations in a variety of ways.

Checkpointing The checkpointing operation (ckpdb command) executes the following
sequence of codes in the cktmpl.def file:

Bsxy Beginning checkpoint
Wsxy Executed once for each location
Esxy Ending checkpoint

where:

x denotes D for disk, T for tape, or E for both.
y denotes D for database, T for table, or E for both.

Roll Forward The roll forward operation (rollforwarddb command) processes the following
codes in the cktmpl.file:

WCxA for each location

If table processing is specified, the following codes are executed:

BRxT once per location
IRxT once per location
WDxT for each table
WRxT for each table
FRxT once per location
EExE once (note that ERxT is executed if available)

5–36 Advantage Ingres Embedded Edition Administrator's Guide

Altering the Checkpoint Template File

If an entire database is being recovered (rather than specific tables), the
following codes are executed:

BRxD once for each location
WDxD once for each location
WRxD once for each location
EExE once (note that ERxD is executed if available)

For all roll forward operations, the following codes are executed:

BUxA if dumps are to be applied
WUxA
EExE
BJxA if journals are to be applied
WJxA
EExE

Format of the Checkpoint Template File in Windows

The checkpoint template file uses the two batch files, ckcopyd.bat (for
checkpointing to disk) and ckcopyt.bat (for checkpointing to tape).

The checkpoint template file, cktmpl.def, can be found in the following folder:

%II_SYSTEM%\ingres\files

Each line contains a command preceded by a four-character code that tells when
to use the command.

By altering this file, or the two batch files that it calls, you can change how
checkpoints are performed. You can add or delete flags to the underlying
operating system commands, or you can supply your own batch files to perform
the backup and restore steps.

Windows Examples For example, the command:

BSTD: echo Beginning checkpoint to tape %C of %N locations

indicates what is done initially, before the device is used (B), when
checkpointing is used to save (S) a database location to tape (T), for a database
(D).

As another example, when executing a checkpoint on a database which spans
multiple locations, one of the following commands is executed once for each
location (WSTD for backup to tape, WSDD for backup to disk):

WSTD: ckcopyt %N %D BACKUP

WSDD: ckcopyd %D %A BACKUP

Backup and Recovery 5–37

Altering the Checkpoint Template File

The commands instruct the checkpoint operation to call either the ckcopyt.bat or
ckcopyd.bat batch command file to do the actual backup.

The checkpoint utility automatically substitutes the appropriate values for
“%N,” “%D,” and “%A.”

The ckcopyt.bat batch file calls the Windows backup backup command and
passes it the name of the directory for the location, and other operating system
flags.

Format of the Checkpoint Template File in UNIX

The checkpoint template file, cktmpl.def, uses the UNIX tar command. This
file can be found in:

$II_SYSTEM/ingres/files

Each line is a command preceded by a four-character code that instructs the
checkpoint operation when to use the command.

By altering this file, you can change how checkpoints are performed. You can
add or delete flags from the tar commands or you can supply your own shell
scripts to perform the backup and restore steps.

UNIX Examples For example, the command:

BSTD: echo beginning checkpoint to tape %C of
 %N locations

indicates what is done initially, before the device is used (B), when the
checkpoint operation is used to save (S) a database location to tape (T) for a
database (D).

As another example, when executing a checkpoint on a database that spans
multiple locations, the following command is executed once for each location:

PSTD: echo mount tape %N and press return;
 read foo;

WSTD: cd %D; /bin/tar cbf 20 %C *

The command instructs the checkpoint operation to save each location on a tape
and to use the tar command with the parameter cbf 20. The checkpoint utility
automatically substitutes the appropriate value for “%N,” “%D,” and “%C.”

Format of the Checkpoint Template File in VMS

The checkpoint template file, cktmpl.def, can be found in:

5–38 Advantage Ingres Embedded Edition Administrator's Guide

Backup and Recovery of the Master Database (iidbdb)

$II_SYSTEM:[INGRES.FILES]

The checkpoint template file uses the four-letter key described above to begin
each line. A line can specify an individual tape and disk handling command or
the name of a user-written command file to provide more complex processing
such as backing up all of a database’s locations concurrently.

Defaults are provided so that sites using standard processing do not need to
alter the checkpoint template file.

VMS Example Here are some example lines from a cktmpl.def file:

WSTD: @ckp_to_tape "%N" "%D" "%C" "%F"
WSDD: @ckp_to_disk "%D" "%A"
WRTD: @rollfwd_from_tape "%N" "%D" "%C" "%F"
WRDD: @rollfwd_from_disk "%A" "%D"

Each of these example lines specifies the name of a command file and
establishes requests for run-time information.

 An Alternate Checkpoint Template File in UNIX

The alternate checkpoint template file, cktmpl_cpio.def, uses the UNIX cpio
command to backup and restore the database files. This file can be found in:

$II_SYSTEM/ingres/files

To use this template file, enter the following command to override the default
cktmpl.def template file:

ingsetenv II_CKTMPL_FILE $II_SYSTEM/ingres/cktmpl_cpio.def

Backup and Recovery of the Master Database (iidbdb)

The iidbdb database is your Ingres installation’s master database. It contains
information about your installation as a whole, such as:

■ Which databases exist in this installation

■ Where user databases are located

■ Which locations may be used for files

■ Which users may access databases

The iidbdb also contains information about groups, roles, and database
privileges defined for your site.

Backup and Recovery 5–39

Tracing with Set Log_Trace

The iidbdb is journaled by default.

Checkpointing the

iidbdb

It is important to regularly checkpoint and journal the iidbdb database just as
you would do for a user database. Ckpdb and rollforwarddb are the
supported utilities for recovering the iidbdb if it is lost or damaged for any
reason. The system catalogs containing the installation information for groups,
roles and database privileges are stored in the iidbdb database and can only be
recovered from backups.

The detailed steps for performing these procedures can be found in the
Procedures section of the online help for Visual DBA. See the following topics:

■ Setting Checkpoints

■ Recovering a Database From Checkpoints

Tracing with Set Log_Trace

You can use the log_trace option of the set statement to start and stop tracing of
logfile writes. Using this option requires the trace privilege.

Caution! You should use set log_trace only as a debugging or tracing tool. Set
log_trace output is not guaranteed to remain the same across versions, so you should
not base applications on it. You are not guaranteed of the support of set log_trace in this
or future versions.

To start tracing log writes, issue the following statement:

set log_trace;

To stop tracing log writes, issue the following statement:

set nolog_trace;

When you use set log_trace during a session, you receive a list of the log records
written during execution of your query, along with other information about the
log. Set log_trace output includes:

■ The length of the log and the amount of space reserved for its CLR. For
more information on CLRs, see the Log Space Reservation section.

■ If the log write is a normal log record (do/redo) or a CLR.

■ If the log record will be copied to the journal file.

■ If the log is associated with a special recovery action.

5–40 Advantage Ingres Embedded Edition Administrator's Guide

Chapter

6
Improving Database and Query
Performance

This chapter contains information and tips on how to improve and optimize
query and database performance. Good performance requires planning and
regular maintenance by the DBA.

By following the techniques and procedures in this chapter, you may find that
you can often solve the problem yourself. If it is still necessary to call your
Technical Support representative, you should be able to accurately define the
problem, in this way contributing substantially to a rapid solution.

Note: This chapter assumes that Ingres is running satisfactorily.

Locking and Concurrency Issues

Use this section if your performance problem occurs in a multi-user
environment or if the query runs slowly or hangs intermittently.

Concurrency problems occur when several users access the same tables, and at
least one is a writer. If your query needs to access objects that are locked, that
session will wait indefinitely for locks to be released unless the lockmode
timeout is set, or a deadlock occurs.

The sections below suggest some reasons for concurrency problems.

Improving Database and Query Performance 6–1

Locking and Concurrency Issues

Identifying Lock Waits

Use the Lock Information branch of the Performance Monitor window within
Visual DBA to monitor lock waits. For details on using this window, see the
online help topic, Viewing Performance Information. If you find lock waits,
identify the queries that are holding locks on the resources you are waiting to
access. You may need to modify your locking strategy to avoid future problems.

Pay particular attention to:

■ maxlocks

■ readlock = nolock

■ timeout

■ set lock_trace command

If the lock being waited on was created as the result of lock escalation, your
system may be configured with too few system-wide locks. This is a
configuration issue.

If lock escalation occurs because too many locks are taken on a given table’s
pages, a set lockmode statement can be issued to increase this threshold. The
default is 10 before escalation occurs.

Multi-Query Transactions (MQTs)

Remember that a transaction accumulates locks on resources until you roll back
or commit. A transaction that is waiting for lock(s), or that is not waiting for a
lock but nevertheless seems unusually slow, may be using excessive server or
system resources.

Here are suggestions:

■ Keep your transactions as short as possible.

■ Commit your transactions quickly:

– You will create large MQTs unless you use set autocommit on or
commit after each statement. Statements accumulate as one multi-query
transaction until you commit.

– MQTs should not include prompts that hang the transaction until a user
responds; or sleeps that prevent your transaction from being released
quickly.

■ Avoid bottlenecks in your transaction such as:

– Insert to heap table with secondary indexes

– Counter table updates

– Iterative deletes

– Unbounded long iterations

6–2 Advantage Ingres Embedded Edition Administrator's Guide

Locking and Concurrency Issues

Managing Overflow

Overflow chains slow concurrent performance. Overflow pages are attached to
the main data page if a record must be added to a full main page. Then a query
that should touch one main data page must now touch that page plus each
associated overflow page. This will increase I/O, cause concurrency problems,
and use up locking system resources.

Here are suggestions:

■ Monitor overflow chains.

 Check the number of overflow pages for your tables and secondary indexes.
To monitor overflow in Visual DBA, select a table or secondary index in the
Database Object Manager window, and click the Pages tab. Use the legend
to interpret the information displayed.

 If the number of overflow pages is greater than 10-15% of the number of
data pages, expect performance degradation.

■ Overflow problems are often caused by duplicate keys.

■ Some table structures create long overflow chains when much new data is
added. If you have problems with overflow, you may want to consider
trying a different storage structure:

– Heap

 Heap tables are created as one main page with an overflow chain. There
is no overflow management.

– Hash

 Overflow pages occur in a newly modified table if the key is repetitive;
this is normal but undesirable. Check a freshly modified table. If there is
overflow, consider using isam instead.

– Isam

 Has a fixed index that can cause long overflow chains. Modify
frequently or use B-tree for a non-static table. Use heap structure for
large bulk updates, then modify back to isam to avoid update
performance problems.

– B-tree

 No overflow if there are no duplicate keys, so consider making keys
unique. Overflow occurs only at the leaf level. Use the Shrink B-tree
Index option to reorganize it. Use heap structure for bulk loads, then
modify to B-tree.

■ Decrease overflow

 There are several ways to decrease overflow and improve concurrency:

– Use unique keys.

– Modify the table to reorganize it; with a B-tree structure, simply specify
the Shrink B-tree Index option.

Improving Database and Query Performance 6–3

Database Maintenance

– Consider tailoring the table’s fill factor.

Set Statements

There are a variety of set statements you can use to manage your locking
strategy. Be sure you are using user-defined lockmodes and isolation levels to
their fullest for concurrency and deadlock avoidance. See your query reference
guide sections for command syntax. Pay particular attention to:

■ Deadlock

■ Lock_trace flag

■ Maxlocks

■ Readlock = nolock

■ Timeout

Database Maintenance

If your query used to run quickly and recently it slowed down, or the speed of
the query changes depending on the constants specified in the where clause,
your problem may be poor database maintenance. To optimize performance, set
up maintenance procedures to include running DBA utilities.

The following features are especially useful in tracking performance problems:

■ Optimization—perform using the Optimize Database dialog within Visual
DBA or the optimizedb command

 This feature collects the statistics that are used by the Ingres query
optimizer to determine the best query execution plan (QEP) to use for your
queries.

– Periodically run optimization on all your databases to generate statistics
for columns that are keys or indexed. List the other columns you need
as an argument to this command.

– Run full optimization statistics on columns referenced in where clauses
of strategic queries that are having problems.

– For very large tables, create statistics based on sample data.

– When there are significant changes to your data distribution, run
optimization on the affected columns.

– Do not collect excessive statistics, because you will build up large
optimizer tables with unused data.

– Always run system modification after optimization.

■ Modification—perform using the Modify Table Structure and Modify Index
Structure dialogs within Visual DBA or the modify statement

6–4 Advantage Ingres Embedded Edition Administrator's Guide

Database Maintenance

 You can modify a table or index to:

– Reorganize data on new data pages

– Free deleted record space

– Reduce overflow chains

– Adjust the fill factor

 Use the Shrink B-tree Index option (or modify to merge statement) to:

– Reorganize index pages of B-tree tables

– Reduce overflow chains

 Use the Change Location option (or modify to relocate statement) to move
your tables to balance disk access.

■ System Modification—perform using the System Modification dialog within
Visual DBA or the sysmod command

 This feature modifies system catalogs to predetermined storage structures.

– Run system modification on the iistatistics system catalog after
optimization.

– Run system modification on ii_rcommands if you create and update a
lot of Report-Writer reports.

– Regularly using system modification reduces overflow in your system
catalogs. Run it often if catalog changes are frequent due to
development or if you use many create or drop statements in your
applications.

■ Verification—perform using the Verify Database dialog within Visual DBA
or the verifydb command

 Use this utility to:

– Destroy or list unrequired disk files, expired tables, or temporary tables
in your database

– Clean up fragmented disk space

See the appendix, "Ingres Commands," in this guide, for more information on
the commands mentioned in this section. See the Visual DBA online help for
more information on the dialogs mentioned in this section. For discussions of
maintenance issues, see the chapters “Maintaining Databases” and “Maintaining
Storage Structures,” in this guide.

Improving Database and Query Performance 6–5

Design Issues

Design Issues

Good query performance requires planning. Poor performance can be caused by
design problems if the following are not considered; these subjects are covered
in sections below:

■ Storage structures and index design

■ Key design

■ Query design

Other important design issues are:

■ Database design

■ Validation checks and integrities

■ Grants and views

■ Application design

Diagnostic Hierarchy

The diagnostic hierarchy begins with the area of greatest gain. A thorough
performance analysis must include each item in the following list. Notice that
the highest priority items are the design issues covered in the sections below.
For instance, if your database design is flawed, perfect server configuration will
not help you avoid query performance problems.

Storage Structures and Index Design

Choosing the correct table storage structure for your needs can improve
concurrency and query performance. Remember that there is no substitute for
testing and benchmarking your queries.

For modifying and compressed storage structures and a discussion of overflow,
see the chapter, “Maintaining Storage Structures,” in this guide.

Keys

Key design can be a very complex subject. The following material presents
guidelines only.

6–6 Advantage Ingres Embedded Edition Administrator's Guide

Design Issues

Evaluate Your Keys

Here are guidelines on good keys and bad keys:

Good keys have the following features. They:

■ Use columns referenced in the where clauses and joins of your queries

■ Are unique or as unique as possible

 Document reasons for maintaining non-unique keys.

All keyed storage structures can enforce unique keys. They are:

■ Short

■ Static

■ Non-nullable

Bad keys have the following features. They are:

■ Wide

– Use wide keys with caution.

– You get fewer rows per page.

– Evaluating the hash function takes more time with wide keys.

– A wide key deepens the index level of B-tree and isam logarithmically,
with respect to key width. B-tree is the least affected table structure.

– Consider using a surrogate key as an alternative.

■ Non-static

 Updating the index will slow performance.

■ Non-uniform duplication

 A mix of high and low duplication will cause inconsistent query
performance.

■ Sequential keys

– These should be used with care.

– Isam tables will be lopsided, and the overflow chains will cause
concurrency problems.

– Control sequential key problems with a frequent modify schedule.

Improving Database and Query Performance 6–7

Design Issues

Using Multi-Column Keys

Multi-column keys have special issues. If used improperly in your query, the
key will not be used and the search will do a full-table scan.

Keep the following in mind:

■ Use the most unique and frequently used columns for the left member of a
multi-column key.

■ Searches on B-tree and isam tables must use at least the leftmost part of a
multi-column key in a query, or a full-table scan will result.

■ Searches on hash tables must use an exact match for the entire key in the
query, or a full-table scan will result.

■ Optimizer statistics are approximated by adding the statistics of the
columns making up a multi-column key.

Surrogate Keys

When you use a short surrogate or internal key to replace a bad key, or because
there is no good key, consider the performance trade-offs. The set processing of
data includes the overhead of deriving the key. There are three surrogate key
types:

■ Natural

 Universal, a social security number, or zip code are examples.

■ Environmental

 These are local to an organization, like an employee number.

■ Design artificial. These are:

– Local to an application

– Hard to remember

– Hard for users to understand

– Can be hidden from users

6–8 Advantage Ingres Embedded Edition Administrator's Guide

Before Calling Technical Support

Query Design

Query design can be a very complex subject. The following material presents
guidelines only.

The following tips will improve the performance of your queries.

■ Conversion joins are joins where two columns of different data types are
joined in a query, either explicitly or implicitly. These joins are frequently
the result of database design problems and should be avoided.

■ Avoid using function joins.

– Functions in the where clause force a full-table scan.

– Control uppercase and lowercase, and so on, at input time.

■ Some complex OR queries may be rewritten as unions.

■ Evaluate QEPs for critical queries:

– Can large table scans be avoided?

– Is an additional index needed?

– Are Cartesian products with large tables used?

– Are function joins used?

■ Use repeated queries for queries that are used many times.

■ Do not forget to commit.

 Consider using set autocommit on.

Before Calling Technical Support

If you have worked through the query performance evaluation and your
problem is still not resolved, then it is time to call Technical Support. Before you
call Technical Support there are two procedures to follow:

■ Isolate and analyze the suspect query

■ Create a test case

Improving Database and Query Performance 6–9

Before Calling Technical Support

Isolate and Analyze the Suspect Query

Use the following procedure to determine if you have a problem with the user
interface, the query itself, or a software bug.

1. Isolate a poorly performing query from your user interface using the trace
flag set printqry, which prints queries before they are optimized and
executed. Identify the query that seems to hang.

 Execute the query in the Terminal Monitor or from within the Visual DBA
SQL Test window, and determine if performance is the same. If
performance is only a problem when the query is executed from the user
interface, you have identified an application problem. If performance is the
same, continue.

2. In the Terminal Monitor, issue the following statements to display the QEP
without running the query:

���������

�������	
	����
���

 Now, execute your query and save the output to a file for examination.
After running the query, exit the Terminal Monitor session or turn query
execution back on using:

���������	
	����
���

3. Review the Design Issues section and evaluate the QEP for your query. For
example, you can look for:

– Large table scans that can be avoided

– An additional index that is needed

– Cartesian products with large tables

– Function joins

If you are not able to identify your problem and suspect a software bug, submit
your query to Technical Support along with a test case.

Create a Test Case

First verify that you are on the most recent version of Ingres available for your
platform. Next, collect the information Technical Support needs to duplicate
your problem, and then call.

Technical Support needs the following information in ASCII files that you can
send by email, UUCP, or on a tape:

■ The exact query that causes the error to occur

■ The QEP generated by the problem query

■ Dump optimizer statistics for all the tables in the query (use the Direct
Output to Server File option in the Display Statistics dialog within Visual
DBA, or the statdump command with the -o flag)

6–10 Advantage Ingres Embedded Edition Administrator's Guide

Before Calling Technical Support

■ The help table tablename information for all the tables that the query
references (or equivalent information obtained from within Visual DBA)

■ The help index indexname information for all secondary indexes of tables in
the query (or equivalent information obtained from within Visual DBA)

■ The help permit on table tablename information for grants on all the tables in
the query (or equivalent information obtained from within Visual DBA)

■ A query of the system catalogs for information about each table. Look at
iirelation and select relpages, reltups, relmain, and relprim, where the relid
is equal to each table and index in the query.

■ The create scripts and data for all the tables, indexes, and grants that the
query references. When generating the scripts, you should specify the
Create Printable Data Files option.

Now you are ready to contact Technical Support about your problem.

Improving Database and Query Performance 6–11

Appendix

A
Ingres Commands

This appendix is intended for programmers and users of Ingres who have a
basic understanding of how relational database systems work. In addition, the
reader should have a basic understanding of the operating system.

Issues you should be aware of before using this guide include the following:

■ C2 Security—Ingres installations can be administered in compliance with
the C2 security standard.

■ Enterprise Access Compatibility—If you are working through an
Ingres/Enterprise Access product (formerly called “Gateways”), refer to
your Ingres/Enterprise Access documentation for information about syntax
that may differ from that described in this guide.

Audience

This guide will be useful to the person who has responsibility for the operation
of Ingres and needs a quick reference to Ingres commands and system utilities
used when monitoring and troubleshooting Ingres.

Special Considerations

UNIX Variations In this guide, command formats for the following UNIX shell variations are
shown:

■ C shell

■ Bourne shell

For the Korn shell, use the Bourne shell syntax. Refer to your operating system
shell documentation for any variations required on your particular system.

Ingres Commands A–1

Special Considerations

Command formats for the following UNIX operating system variants are shown
where needed:

■ BSD

■ System V

Query Languages The industry standard query language, SQL, is used as the standard query
language throughout this guide. Ingres is compliant with ISO Entry SQL92. For
details about the settings required to operate in compliance with ISO Entry
SQL92, refer to the online SQL Reference Guide.

This chapter lists Ingres commands that are executed at the operating system
level. Complete syntax and descriptions of the commands used for normal
operation are listed. Many of these commands operate on the database as a
whole. Other commands invoke various Ingres querying and reporting tools
and preprocessors.

Command Syntax

You enter system-level commands to invoke an Ingres command or utility at the
operating system prompt. A command consists of one or more required
command words, usually followed by one or more parameters or flags,
including database name(s):

command dbname | vnode::dbname[/server_class] [flags] [parameters]

In general, you can enter command options in any order. However, a few
commands require certain ordered parameters.

Standard Command Line Flags and Parameters

A flag is a letter preceded by a hyphen (-) that determines various options for
commands. Use the following standards:

■ Parameter—A flag may stand alone (-f) or be followed by a parameter
(-fparameter). Generally, there is no intervening space entered between a flag
and parameter.

■ Case-sensitivity—Flags are shown in lowercase unless they are required to be
passed as uppercase. Uppercase flags may need special input syntax if the
host operating system is case-insensitive. See the Uppercase Flags section.

A parameter is any other command line option that is not a flag. It can be the
name of a database, a table or other object, or a value that specifies a particular
use for a command.

The following table describes the parameters and flags that are commonly used
in many commands. You can specify these options if they are shown in the
syntax sections of this chapter.

A–2 Advantage Ingres Embedded Edition Administrator's Guide

Special Considerations

Flag Description

dbname The name of a database. This parameter must precede all
other non-flag parameters (with the exception of
vnode::dbname).

vnode The name of the computer on which your database is stored,
as known to Net. If you are accessing a database on a remote
node, you must specify vnode, the name of the remote host
where the database resides. It must be followed by two colons
(::) and the dbname parameter, with no intervening space.

server_class The name of one of the Ingres servers or Ingres/Enterprise
Access products (for example, db2). If you are accessing a
distributed database or a non-Ingres database through an
Enterprise Access product, you must specify the server_class.
For a complete description of server types, see your
Ingres/Enterprise Access documentation.

[-f]product The name of a product parameter. In selected commands, the
catalog modules for one or more products may be specified.
The user interface catalogs are grouped into modules. Each
Ingres tool requires a set of modules in order to operate. If
you omit the product, the command reads the installation’s
authorization string and specifies all products that the
authorization string permits.

The product parameter must be one of the following:

ingres—processes catalogs for the Ingres tools (ABF, QBF,
RBF, and VIFRED).

ingres/dbd—processes catalogs for DBD.

vision—processes catalogs for Vision.

windows_4gl—processes catalogs for OpenROAD.

nofeclients—directs the command not to process catalogs for
any user interface products. You cannot use the nofeclients
name in conjunction with the name of any valid user interface
product; nofeclients is valid only in specified commands.

-uusername Specifies the effective user name for the session. Valid only
for a privileged user, DBA, or sessions that have the
db_admin database privilege. (Some commands, including
ckpdb, rollforwarddb, verifydb, createdb, and destroydb,
restrict the use of the -u flag to privileged users.)

Note: The -u flag does not assume the group of the effective
user. Use the -G flag to distinguish between the real and
effective user.

Ingres Commands A–3

Special Considerations

Flag Description

-Ggroupid Specifies the group identifier for the session. After the Ingres
system administrator defines a group identifier, a DBA can
grant database permissions to the group. When you issue a
command, specifying group ID (using the -G flag), the
group’s permissions are applied to the session.

In order to specify a group, you must be a member of the
specified group identifier’s user list, an Ingres system
administrator, the DBA of the specified database, or a user
that has the db_admin privilege.

If you omit this flag and there is a default group identifier
specified for you, the default group identifier is assigned to
the session. (Default group identifiers are assigned using
accessdb.)

You must enclose this parameter in double quotation marks
("-Ggroupid").

-Rroleid Specifies the role identifier for an application image. After the
Ingres system administrator defines a role identifier, a DBA
can grant database permissions to the role ID. When you
invoke an application and specify role ID (using the -R flag),
the role permissions are applied to your session.

The roleid must be an existing role identifier. If the role
identifier requires a password, you are prompted for the
password. If you specify the -R flag, but omit both the role
identifier and password, you are prompted for both. If no
password is defined for the specified roleid, press the Enter
key when prompted for the password.

Neither roleid nor password is validated if you are an Ingres
system administrator, DBA for the specified database, or a
user that has the db_admin privilege.

You must enclose this parameter in double quotation marks
("-Rroleid").

Uppercase Flags

Flags that must be entered in uppercase may need special input syntax when the
host operating system is case-insensitive.

The Windows operating system passes uppercase flags with no special
formatting needed. For example, to invoke Ingres Interactive Terminal
Monitor with a group of sales, you could enter:

isql dbname -Gsales

A–4 Advantage Ingres Embedded Edition Administrator's Guide

Special Considerations

UNIX is case-sensitive and passes uppercase flags with no special formatting
needed. For example, to invoke Ingres Menu with a group of sales, you could
enter:

ingmenu dbname -Gsales

OpenVMS is case-insensitive and requires the addition of double-quotation
marks around the uppercase flags. In OpenVMS, be sure to enclose all
uppercase Ingres flags in double quotation marks.

For example, to invoke Ingres Menu with a group of sales, use double quotes
around the -G designation:

ingmenu dbname "-Gsales"

Using Schemas for Owner Qualification

A schema is a collection of database objects, such as tables. Each table, view, and
synonym belongs to a schema that is determined when the object is created. (A
synonym is a “redefinable” label for a table name. The schema name corresponds
to the user who owns the object. The schema name allows you to distinguish
between objects with identical names but different owners.

You can specify a schema name for a table, view, or synonym on the command
line. You use the following syntax to specify ownership:

schema.objectname

For example, to specify the table named “empinfo” having a schema name of
dave, you would specify the table name as:

dave.empinfo

The period (.) must immediately follow the schema name and precede the object
name, with no intervening spaces. Both the schema name and the object name
can be delimited identifiers.

You do not use a schema name when referencing a table, view, or synonym, for
example, you specify the table name as:

empinfo

The search looks first for an object with a schema corresponding to the current
user; then it looks for an object owned by the DBA to which you have access.
Lastly, if the object name begins with ii, the search looks for a system catalog
with that name.

Ingres Commands A–5

Special Considerations

Delimited Identifiers on the Command Line

Delimited identifiers are database object names that are identical to reserved
words, words that contain spaces, and non-alphanumeric characters that are
disallowed in a regular identifier. If the installation allows mixed case names,
you can also use delimited identifiers to distinguish among identical names with
different case (for example, SALES and Sales).

On the command line, you use delimited identifiers if needed for names of
tables, views, synonyms, schema, and authorization names (users, groups, and
roles). For more information on allowable characters in delimited identifiers, see
the SQL Reference Guide.

To create a delimited identifier, you must enclose the name in double quotation
marks ("), dereference any embedded quotes, and use the appropriate number
and type of delimiting quotes to pass it through your operating system. Use
delimited identifiers on the operating system command line to specify database
object names:

report my_database "Jane's table"

You must observe any operating system requirements for specifying quoted
parameters, parameters containing embedded quotes, and parameters
containing other characters that could be interpreted differently by the
operating system. Depending upon your operating system, you add delimiting
and dereferencing quotes to a delimited identifier on the command line in order
to pass it through the operating system with its own delimiting and embedded
quotes (if any).

The names of the tables used in the following examples are shown in this table:

Table Stored in Database Delimited Identifier

Jane’s table "Jane’s table"

"Expert" Table """Expert"" Table"

In the Windows environment, surround delimited identifiers and their
delimiting quotes with double quotes on the command line, and dereference
the delimited identifier quotes, preceding them with a backslash(\):

report my_database “\”Jane’s table\””
report my_database “\”\”Expert\”table\””

In UNIX, surround delimited identifiers and their delimiting quotes with
double quotes on the command line, and dereference the delimited identifier
quotes, preceding them with a backslash (\):

report my_database “\”Jane’s table\””
report my_database “\”\”Expert\” table\””

A–6 Advantage Ingres Embedded Edition Administrator's Guide

Special Considerations

In OpenVMS, you must surround delimited identifiers with a set of
dereferenced double quotes on the command line. Also, you must dereference
each embedded quote by doubling it (including any quotes required to
dereference an embedded quote):

report my_database “””Jane’s table”””
report my_database “””””””Expert”””” table”””

Authorization

Parameters

You can use delimited identifiers to specify a username for the
-u flag, a groupid parameter for the –G flag, or a roleid for the –R flag on the
command line. A general example is:

sreport my_database myfile –u”user 5” –G”group 2”

Specific operating system examples are:

sreport my_database myfile –u’”user 5”’ –G’”group 2”’

sreport my_database myfile –u’”user 5”’ –G’”group 2”’

In OpenVMS you must also enclose the entire –Ggroupid parameter within
double quotes:

sreport my_database myfile–u”””user 5”””“-G”””group2””””

The following is an Windows NT-specific example:

���������	
����
�����	�������������������������������

Case Sensitivity By default, identifiers are forced to lowercase, and are therefore case-
insensitive. The casing rules can be specified at installation time for delimited
identifiers. The following settings are allowed:

■ Ingres setting: lowercase (case-insensitive; forces all letters to lowercase).

■ ISO Entry SQL92 standard: mixed case (case-sensitive; preserves case for
delimited identifiers); regular identifiers are uppercase (case-insensitive;
forces all letters to uppercase).

For compliancy with ISO Entry SQL92 standards, the Ingres system
administrator should set delimited identifiers to mixed case.

Ingres Commands A–7

abf

abf

Invokes Ingres/Applications-By-Forms (ABF).

Syntax

abf dbname |vnode::dbname[/server_class] applname [-w] [+wopen] [-5.0]
[-uusername] [-Ggroupid]

Description

The abf command invokes ABF, a forms-based interface for creating forms
applications.

The following table lists valid flags and parameters for this command:

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

applname The name of an ABF application. If omitted, ABF
prompts for the name of the application.

-w Causes an application’s procedure names to be checked
for conflicts with system function names.

+wopen Generates warnings if ABF detects statements that are
not compatible with OpenSQL.

-5.0 Causes 4GL to be invoked in 5.0 compatibility mode.

-uusername Specifies the effective user for the session. Files that are
created by ABF when using this flag are not owned by
username, but rather by the user actually running the
ABF process. See the Standard Command Line Flags
and Parameters section.

-Ggroupid

Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section.

You must enclose this parameter in double quotation
marks (“-Ggroupid”).

A–8 Advantage Ingres Embedded Edition Administrator's Guide

accessdb

accessdb

Authorizes access to a database.

Syntax

accessdb [-uusername] [-vnode=vnode]

Description

The accessdb command invokes a forms-based interface by which the Ingres
system administrator or another privileged user can authorize access to Ingres
and individual databases. Accessdb is also used to extend databases to new
locations.

The following table lists valid flags and parameters for this command:

Parameter Description

-uusername Specifies the effective user for the session. Refer also
to the Standard Command Line Flags and
Parameters section.

-vnode=vnode Specifies a vnode name as described in the Standard
Command Line Flags and Parameters section.

alterdb

Sets database characteristics.

Syntax

alterdb dbname[/server_class]
[-target_jnl_blocks=n |
-jnl_block_size=n |-next_jnl_file|
-init_jnl_blocks=n |-disable_journaling |

-delete_oldest_ckp] [-verbose] [-help]

Description

The alterdb command sets journaling block characteristics for a database. You
can use alterdb to halt journaling for a specified database.

Ingres Commands A–9

alterdb

Alterdb can be run only by the DBA or a privileged user running as the DBA.

The following table lists valid command flags and parameters:

Parameter Description

dbname The database to be operated on by alterdb. A single
database name must be specified.

The server_class is specified if required; for details, see
the Standard Command Line Flags and Parameters
section.

-target_jnl_blocks=n Specifies the number of journal blocks to be used for the
database’s journal file, where:

32 <= n <= 65536

One and only one database name can be specified.

In OpenVMS, this option has no effect on journal files
created as part of a OpenVMScluster merge.

The current size can be obtained by the infodb Target
journal size parameter.

-jnl_block_size=n Specifies the size of each journal file block for the
database, where:

 n = 4096, 8192, 16384, 32768, or 65536 (bytes)

One and only one database name can be specified.
Journaling must be off when this command is issued.

The current size can be obtained by the infodb Journal
block size parameter.

-next_jnl_file Causes Ingres to start a new journal file for this
database.

-init_jnl_blocks=n Specifies the size of the first journal file created after a
checkpoint is taken (with the ckpdb command), where:

0 <= n <= current target journal size

The target journal size is displayed by infodb and is the
parameter set by the -target_jnl_blocks flag.

-disable_journaling Halts journaling immediately, regardless of whether
users are connected to the database.

Note: A side effect of using alterdb to disable journaling
is that incorrect journaling status is displayed for tables.
Tables display journaling as enabled—though journaling
is disabled for the database—where enabled after next
checkpoint is what would be expected.

A–10 Advantage Ingres Embedded Edition Administrator's Guide

arcclean

Parameter Description

-delete_oldest_ckp Deletes the oldest available checkpoint, including
related journals and dump files.

The request fails if you attempt to delete the only
remaining valid checkpoint.

-verbose Displays system commentary to the standard output
device as the alterdb operation continues. This may be
used with any one other alterdb parameter.

-help Displays syntax online.

To restart journaling, you must use the ckpdb +j command.

arcclean

Purges unneeded records from the Replicator shadow and archive tables.

Syntax

arcclean [vnode::]dbname “before_time”[--udba_name]

arcclean [vnode::]dbname ‘before_time’ [-udba_name]

The parameters of the arcclean command are explained in the following table:

Parameter Description

[vnode::]dbname Name of the database to be cleaned.

“before_time” Indicates that all records in the shadow and archive
tables dated before the specified date and time are to
be purged. Provide the date and time in standard
Ingres date and time format. Be sure to place single
quotes around the date and time for UNIX and double
quotes for OpenVMS and Windows NT.

Caution! The date you specify should be before the last
successful checkpoint or backup.

dba_name Name of the database owner.

Ingres Commands A–11

arcclean

Description

Use the arcclean command to reclaimdisk space and improve performance.
After the Replicator server processes data in the local queues, the records
remain in the shadow and archive tables. This data continues to grow until you
perform cleanup. The arcclean command purges records that are no longer
needed. Access to the shadow and archive tables is greatly improved after
arcclean is run. You must execute the arcclean command from the DBA account
or from an account that has DB_ADMIN privilege on the databases against
which you want to run arcclean.

Replicator needs records of the last transactions on each row in order to detect
and resolve collisions. Therefore, after arcclean is run, there will still be at least
one shadow record for each record in the base table that has been touched by a
replicated transaction. However, if there are any records in the input or
distribution queues, the associated transactions in the shadow and archive
tables also remain. To ensure that records still remaining in input and
distribution queues are not removed, the arcclean command selects records
eligible for deletion and places them in a temporary table. If arcclean aborts, this
temporary table should be removed automatically. If it is not removed, you can
safely drop the table manually and then rerun arcclean.

You can modify the storage structures and locations of the shadow table, the
shadow table index, and the archive table. The arcclean command remodifies
the shadow and archive tables back to their current storage structures after it
purges unneeded records.

The arcclean command should be run at intervals using the operating system’s
job scheduling mechanism, such as cron under UNIX and a batch job under
OpenVMS. In UNIX, you can place the arcclean command in a cron file if
$II_SYSTEM/ingres/bin is in the path. In OpenVMS, you can run the arcclean
command from a batch job if you have executed the ingdbadef.com command
file that defines the arcclean symbol.

Caution! Do not use arcclean if you do not have checkpoints and journals or other types
of recovery mechanisms. The data arcclean purges from the shadow and archive tables
can be used to aid recovery in the event of a disaster.

Examples

In this example, invoking the arcclean command would require the preparation
described in the following steps:

1. Make sure that you have valid checkpoints or backups of all databases to be
cleaned. The date you specify for arcclean (in a later step) should be before
the checkpoint or backup date.

Removing records without a valid checkpoint could hinder recovery in the
event of a system failure. See reconcil in this chapter for further details.

A–12 Advantage Ingres Embedded Edition Administrator's Guide

auditdb

2. Deny user access to all databases involved.

There should be no new transactions during the cleaning process. Also, the
shadow and archive tables need exclusive locks to the base tables during the
remodification procedure.

3. Make sure the input and distribution queues are empty. You can do this by
allowing the servers to run until they complete processing of all pending
transactions.

 If records remain in the queues, the arcclean process will retain the relevant
records in the shadow and archive tables on the local database. However,
arcclean has no way of knowing which transactions are pending on other
databases, and could thus remove records on the local database that are
required for an outstanding transaction on a target database. This situation
may generate collisions when the outstanding transactions are distributed.

4. Type the arcclean command at the operating system prompt:

 arcclean nyc::hq –unyc_dba “20-feb-01”

 arcclean nyc::hq –unyc_dba ‘20-feb-01’

auditdb

Audits a database.

Syntax

auditdb dbname[/server_class] [-a][-all] |
[-table=tablename {,tablename}[-file[=filename {,filename}]]]
[-bdd-mmm-yyyy[:hh:mm:ss]] [-edd-mmm-yyyy[:hh:mm:ss]]
[#cn] [-iusername] [-inconsistent] [-wait] [-uusername]
[-help]

Description

The auditdb command enables the user to print selected portions of the journal
for a database. The user can also create an audit trail of the changes made to
particular table(s).

Only the database’s DBA or the Ingres system administrator can run the
auditdb command on a database.

Ingres Commands A–13

auditdb

If you are using this command against a database in a group level installation,
you must have the VMS CMKRNL privilege to run the command.

The following table lists valid flags and parameters for this command:

Parameter Description

dbname The database that is to be audited. A single database
name must be specified.

The server_class is specified if required; for details,
see the Standard Command Line Flags and
Parameters section.

-a Prints journal entries for the system catalogs.

-all Prints everything in the journal file.

-table=tablename
 {,tablename}

Specifies a particular table or tables for which
journal entries are to be printed. Up to 64 tablenames
(and 64 filenames if the –file flag is also used) may be
specified on the command line. No spaces are
allowed in the table list. If this flag is omitted, all
tables in the database are audited.

This flag is not valid for system catalogs
(-a flag).

The table name may be qualified with a valid
schema name in the format schema.tablename. See the
Using Schemas for Owner Qualification section.

-file[=filename
 {,filename}]

Specifies that audit output is to go to one or more
files. To use this option, you must specify the –table
option on tables of fewer than 1948 bytes per row.

If a file list is specified, the number of files must
match the number of tables. The audit output of the
first tablename goes to the first filename, etc. No
spaces are allowed in the file list.

If the –file flag is present without a list of file names,
auditdb creates default filenames of the form
“tablename.trl” (the file extension is an abbreviation
of ‘trail’).

If a list of tables is specified without a list of files,
output is presented to the standard output device.

This flag is not valid for system catalogs
(-a flag).

A–14 Advantage Ingres Embedded Edition Administrator's Guide

auditdb

Parameter Description

-bdd-mmm-yyyy
 [:hh:mm:ss]

Prints journal entries for transactions committed
after the specified date and time. If you specify a
date and omit the time, the time defaults to 00:00:00
(midnight).

If you omit this parameter, auditdb lists transactions
starting from the date and time of the most recent
checkpoint.

-edd-mmm-yyyy
 [:hh:mm:ss]

Prints journal entries for transactions committed
before the specified date and time. If you specify a
date and omit the time, the time defaults to 00:00:00
(midnight).

If you omit this parameter, auditdb lists transactions
through the current system date and time.

#cn Prints journal entries for transactions committed
starting from an older checkpoint. The checkpoint
number n must be a valid checkpoint number (as
shown by the infodb command).

If you omit this parameter, auditdb lists transactions
starting from the most recent checkpoint.

-iusername Prints journal entries for actions taken by the
specified user.

-inconsistent Allows you to view journals that the database has
marked as inconsistent. The audit will still fail if
core catalogs are inconsistent.

-wait Specifies that auditdb is to wait until journals are
current before starting the audit. Auditing begins
after all archiving is completed on the database, or
after the archiver has copied all log file information
up to the log file end-of-file when the auditdb
request was initiated.

-uusername Specifies the user for which journal entries are to be
printed. See the Standard Command Line Flags and
Parameters section.

-help Displays command options.

The audit files specified with the –file flag are in binary (bulk copy) format and
contain rows appended to, deleted from, or copied into the tables specified with
the –table flag. You can copy such a file into a database table that has been
created as in the following example:

Ingres Commands A–15

auditdb

���������
������������
��
������������������ �!�������������������������
������������������"!�������������������������
��������#������������������������������������
���
����
��
��#����������������������������������
����
��
�������������������������������������
��$���������	�
���
���
%!�

To copy the file audit.trl into the table auditrel, use the following command:

copy table auditrel () from ‘C:\WINNT\Profiles\user1\audit.trl’

copy table auditrel () from ’/usr/dir/audit.trl’

copy table auditrel () from ’dev:[directory]
 audit.trl’

When the copy is finished, auditrel will have a row for each operation against
the specified table. The values in each row, corresponding to the columns in the
table, are:

Value Description

date The date and time of the beginning of the multi-query
transaction that contained the operation.

username The user name of the user who performed the
operation.

operation Contains one of the following: append, repold, repnew,
or delete.

transaction id An 8-byte value composed of two 4-byte integers
concatenated. The tranid1 column holds the high order
4 bytes and the tranid2 column holds the low order 4
bytes of the transaction id.

table id Table_id1 and table_id2 are two 4-byte integers whose
values correspond to the values in the columns
table_reltid and table_reltidx, respectively, from the
iitables standard catalog for the table specified.

Auditdb does not necessarily give you a complete list of all transactions since
the last checkpoint. There are two reasons for this:

■ Since auditdb does not exclusively lock the database, other users may
complete a transaction while auditdb is running.

■ In some cases, a completed transaction might not yet have been moved from
the log files to the journal files.

A–16 Advantage Ingres Embedded Edition Administrator's Guide

auditdb

If you need an absolutely accurate list of transactions since the last checkpoint,
make sure all users exit the database before you run auditdb or use the –wait
flag. Note that if a large amount of unarchived information remains in the log
file when auditdb with –wait is requested, there will be a delay before the
request can be completed.

Examples

To audit the empdata database, use the following command:

auditdb empdata

To audit empdata, creating an audit trail for the employee table, use the
following command:

auditdb empdata –table=employee –file sql empdata
�

���������
�������������
���
�������������������� �!������������������������
��������������������"!������������������������
��������#�������������������������������������
��
����
��
��#�����������������������������������
����
��
��������������������������������������
���������������&���
��������������������#'!��
���������������&#��
��(�
����������&���
�������	�����������	��
���������������&�!)�

copy table empaudit () from
‘C:\WINNT\Profiles\user1\employee.trl’

copy table empaudit () from “/usr/directory/employee.trl”;

copy table empaudit () from “dev:[directory]employee.trl”;

Ingres Commands A–17

ckpdb

Auditing empdata creates audit trails for the employee and address tables. The
default files are employee.trl and address.trl:

auditdb empdata –table=employee,address –file

To use specified files, the specified files are created as aud2.trl and aud3.trl:

auditdb empdata –table=employee,address
 -file=aud2.trl,aud3.trl

ckpdb

Checkpoints a database or selected tables in a database.

Syntax

ckpdb dbname[/server_class]
[-d] [+j|-j] [-l] [#m[n]] [-mdevice {, device}]
[-table=tablename {, tablename}]
[-v] [+w|-w] [-uusername] [-help]

Description

The ckpdb command creates a new checkpoint for the specified database. If a
table list is specified, only the tables on the table list are included in the
checkpoint. If journaling is enabled for the database, all journal entries up to this
checkpoint are marked as expired. Checkpointing takes place online (while the
database is in use) and is transparent to the users. Ckpdb creates the checkpoint,
then copies (to the dump file) the log records of any changes to the database that
occurred during the checkpoint procedure. Rollforwarddb uses the dump file
when it recovers a database that was checkpointed online.

Ingres keeps track of whether the checkpoint is for a table or a database, and
will prevent an attempt to roll forward an entire database from a table
checkpoint. For table checkpoints, an infodb display of the mode field of the
Journal Checkpoint History and Dump Checkpoint History will indicate
TABLE.

You can checkpoint a database if you are the Ingres system administrator, DBA,
or any Ingres user with the operator privilege.

If you are checkpointing a database in a group level installation, you must
have the VMS CMKRNL privilege to run the command.

A–18 Advantage Ingres Embedded Edition Administrator's Guide

ckpdb

The following table lists the valid command flags and their parameters:

Parameter Description

dbname Specific database to be checkpointed. A single database name
must be specified.

The server_class is specified if required; for details, see the
Standard Command Line Flags and Parameters section.

-d Destroys all previous checkpoint and journal files.

+j|-j Enables/disables journaling for a database. When this flag is
not specified, current journaling status of the database is
maintained. If you specify this flag, the checkpoint is
performed offline.

-l Takes an exclusive lock on the database. When you specify
the –l flag, you may use the +w or –w flag.

If you specify this flag, the checkpoint is performed offline.

#m[n] For a multi-location database, checkpoint n locations at a time
to disk.

-mdevice {,
device}

Writes the checkpoint to the specified tape device. If a list of
tape devices is supplied, parallel checkpointing will be used
for a multi-location database.

The –m option is not supported on Windows NT.

-table=tablename
{, tablename}

A list of tables to be checkpointed. If multiple tables are
specified, no space is allowed between the tables listed. Table
checkpoint is not allowed for system catalogs.

The database must be journaled to use this parameter. Do not
use +j|-j with -table.

-v Verbose mode; displays interim messages as checkpointing
proceeds.

+w|-w Flag to wait/don’t wait for the database to be free (not in
use). Valid only if you have specified the +j, -j, or -l flag. The
default is -w.

-uusername Specifies the effective user for the session. For details see the
Standard Command Line Flags and Parameters section.

-help Displays syntax online.

Use the -m flag to write the checkpoint to a specified tape device. You can only
write one checkpoint per tape. When you use this flag, it is not necessary to
mount the tape device. (When you restore a checkpoint that was created using
the ckpdb -m command, you must use the rollforwarddb +c command.)

Ingres Commands A–19

ckpdb

If you want to checkpoint a database offline, that is, while it is not in use, you
must specify the -l flag. Checkpointing a database offline requires the database
to be locked.

In an interactive session, if you specify the -l flag to perform the checkpoint
offline, then you can specify the +w|-w flag also. This flag, +w|-w, cannot be
used if the backup is performed online.

The +w|-w flag directs ckpdb to wait (+w) or not wait (-w) for the database to
be free before performing the checkpoint. Since an offline checkpoint requires
the database to be locked, this flag allows you to decide whether ckpdb will
wait or not for the database to be free if it is in use. If you specify “wait,” ckpdb
will wait as long as necessary for the database to become free for locking and
checkpointing. If you specify “not wait,” an error is returned if the database is
busy. The default is –w (not wait).

By default, ckpdb will sequentially checkpoint data locations one at a time. A
database with more than one data location can be checkpointed in parallel.

Examples

To checkpoint and initiate journaling on the empdata database, use the
following command:

ckpdb +j empdata;

To checkpoint the tables employee and dept, use the following command:

ckpdb empdata –table=employee,dept

To checkpoint the empdata database retaining only the newest checkpoint, use
the following command:

ckpdb empdata –d;

To checkpoint the empdata database to tape, use the following:

ckpdb –m/dev/rmt0 empdata

ckpdb –mMTA0: empdata

A–20 Advantage Ingres Embedded Edition Administrator's Guide

convrep

convrep

Converts the Ingres/Replicator data dictionary for use with the current release
of Ingres.

Syntax

convrep [vnode::] dbname [-udba_name]

copyapp

Copies an application, created with Ingres/Applications-By-Forms (ABF) or
Ingres/Vision, from one database to another.

Syntax

copyapp out dbname |vnode::dbname[/server_class]
applname [-ddirname] [-tintfilename] [-lfilename] [-uusername]

copyapp in newdbname |vnode::dbname[/server_class]
[-nnewapplname] [-ddirname] intfilename [-lfilename]
[-c] [-p] [-q] [-r] [-s[dirname]|-a[dirname]] [-uusername]

Description

The copyapp command copies an application from one database to another. The
copyapp out command copies information about the application and its objects
to an intermediate text file. The copyapp in command transfers the information
from the text file into a database.

Valid parameters for copyapp out are listed in the following table:

Parameter Description

dbname The name of the database containing the applname.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

applname The name of the application to be copied.

Ingres Commands A–21

copyapp

Parameter Description

-ddirname Specifies the directory in which to create the
intermediate text file; the default is the current
directory.

-tintfilename Specifies the intermediate text file filename; the default
file name is iicopyapp.tmp.

-lfilename Creates a file containing the names of the source files to
be copied. For Vision applications, the list includes
only custom frames.

-uusername Specifies the effective user for the session. For details,
see the Standard Command Line Flags and Parameters
section.

Valid flags for copyapp in are listed in the following table:

Flag Description

-uusername Specifies the effective user for the session. For details,
see the Standard Command Line Flags and Parameters
section.

newdbname The name of the database into which the application is
to be copied.

The vnode and server_class are specified if required. For
details, see the Standard Command Line Flags and
Parameters section.

-nnewapplname Specifies the name to be assigned to the application in
the new database. The default is the same name as in
the old database.

-ddirname Specifies the directory where the intermediate text file
is located; the default is the current directory.

intfilename The name of the intermediate file previously created by
the copyapp out. This will be iicopyapp.tmp unless a
different intermediate file name was designated with
the –t flag of copyapp out.

-lfilename Creates a file containing a list of source files that were
copied (or processed if the –a flag was specified). For
Vision applications, the list includes only custom
frames.

-c Specifies that the intermediate text file should be
deleted.

A–22 Advantage Ingres Embedded Edition Administrator's Guide

copyapp

Flag Description

-p Suppresses messages about name conflicts. The default
is to display messages.

-q Specifies that copyapp will be performed as a single
transaction. If there is a duplicate name conflict, all
changes are rolled back. If you specify the –q flag,
copyapp locks system catalogs; for this reason, you
should not specify –q when users are connected to the
database. In addition, the transaction is logged in the
log file; you should be sure that the log file is large
enough to accommodate the copyapp transaction.

-r Specifies that objects with the same name should be
replaced (overwritten). By default, duplicate names are
not overwritten; instead, the copy is not completed and
terminates with an error message.

-s[dirname] Specifies a new directory for source files. If dirname is
omitted, the current working directory is used as the
new application’s source directory. This flag transfers
4GL source for custom Vision frames, but does not
transfer source for non-custom Vision frames. Instead,
it marks these frames as new, and source for these
frames is regenerated on the next Go or Image
operation.

This flag is intended for Vision applications. You
cannot specify both the –a and the –s flags.

-a[dirname] Specifies a new source directory for the application,
but does not copy source files. If dirname is omitted,
then the current working directory is used as the new
application’s source directory. Any Vision frames are
marked as new; source for these frames is regenerated
on the next Go or Image operation.

This flag is intended for Vision applications. You
cannot specify both the –a and the –s flags.

For Vision applications, when performing copyapp in on applications that
contain non-custom frames, be sure to specify
-a or –s; if you omit the –s or –a flag, all frames are marked as custom frames.

See the Using Forms-Based Application Development Tools for a further description
of this command.

Ingres Commands A–23

copydb

Examples

Copy the Vision new_emp application from the employee database to the
employee2 database. Use the default intermediate text file, and use the current
working directory as the new application’s source directory.

copyapp out employee new_emp
copyapp in –a employee2 iicopyapp.tmp

copydb

Creates command files to copy and restore a database.

Syntax

copydb [-param_file=filename] | [dbname|vnode::dbname[/server_class]
[-c] [-row_labels] [-uusername] [-Ggroupid] [-parallel] [-P]
[-source=dirname] [-dest=dirname] [-ddirname]
[-with_tables] [-with_modify] [-with_data] [-all] [-order_ccm]
[-with_index] [-with_constr] [-with_views] [-with_synonyms]
[-with_events] [-with_proc] [-with_reg] [-with_rules] [-with_alarms]
[-with_comments] [-with_roles] [-add_drop] [-infile=filename]
[-outfile=filename] [-with_permits] [-relpath] [-no_loc] [-no_perm]
[-no_int] [-no_persist] {tablename|viewname}

Description

The copydb command creates command files containing the SQL statements
required to copy and restore the tables, views, and database procedures owned
by the user. The command creates the following two command files in the
current directory:

■ copy.out contains SQL commands to copy all tables, views, and procedures
owned by the user into files in the specified directory.

■ copy.in contains SQL commands to copy the files into tables, recreate views,
procedures, and indexes, and perform modifications.

To copy the database, you must execute the SQL commands in the copy.in and
copy.out command files.

A–24 Advantage Ingres Embedded Edition Administrator's Guide

copydb

The following table lists valid command flags and parameters:

Parameter Description

-param_file=filename Directs copydb to read filename for all other command line

flags, database names, and any other command line
arguments. This file must contain only one flag per line
(see the examples that follow this table). If this flag is
specified, no other flags or arguments can appear on the
command line; they must, however, appear in the
specified file.

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

-c Directs copydb to create a printable data file. This is
useful for transporting databases between computer
systems whose internal representations of non-ASCII data
differ. (When you restore a database from a file created
using the –c flag, the copy command automatically
converts data stored in this format back to the
appropriate type.)

Copydb cannot represent the following types of data
using printable characters: (1) binary data stored in
varchar columns, and (2) user-maintained logical keys.

-row_labels This flag copies the row labels.

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters
section. Also, see the Using Schemas for Owner
Qualification section.

-Ggroupid

Specifies a group identifier. You must enclose this
parameter in double quotation marks (“-Ggroupid”). For
details, see the Standard Command Line Flags and
Parameters section.

You must enclose this parameter in double quotation
marks (“-Ggroupid”).

-parallel Creates indexes using the parallel index creation syntax
(to build multiple indexes concurrently).

-P Prompts for password if the session requires a password.

Ingres Commands A–25

copydb

Parameter Description

-source=dirname The source directory from which the database will be
copied in, that is, the directory that contains the data files
and from which copy.in will be run. An empty dirname
specification (“”) denotes the current directory. The –
source specification overrides a –d specification for the
copy in file.

If a source is specified without a destination (no –d or –
dest), the default copy out directory is used.

The source directory specification is not checked for
validity or existence. This allows the scripts to be moved
to another machine.

-dest=dirname The destination directory into which the database will be

copied out, that is, the directory where the data files

created by copy.out will be stored. An empty dirname

specification (“”) denotes the current directory. The –dest

specification overrides a –d specification for the copy out

file.

If a destination is specified without a source (no –source)

then the default copy in directory is used.

The destination directory specification is not checked for

validity or existence. This allows the scripts to be moved

to another machine.

-ddirname Stores the copy.in and copy.out files in the specified

directory instead of the default current directory. It must

be a full filename specification.

- with_tables Print only the create statements.

- with_modify Print only the modify statements.

- with_data Print only the copy statements.

- all Print all the statements related to the database.

- order_ccm This flag will order the copy and modify statements for

the table. Default is to modify first and then copy; if

–CCM is specified, copy first and then modify.

- with_index Print statements only related to index.

- with_constr Print statements only related to constraints.

- with_views Print statements only related to views.

- with_synonyms Print statements only related to synonyms.

A–26 Advantage Ingres Embedded Edition Administrator's Guide

copydb

Parameter Description

- with_ events Print statements only related to event.

- with_proc Print statements only related to procedure.

- with_reg Print statements only related to registration.

- with_rules Print statements only related to rules.

- with_alarms Print statements only related to a security alarms.

- with_comments Print statements only related to a comments.

- with_roles Print statements only related to roles.

- add_drop This flag will also write a drop statement, before writing

the create statements. This will help when the scripts are

run repeatedly in case of errors, and tables were already

created once.

-infile= The user can specify an input file name for the copy.in

file, so user can run copydb with different options and

give different names for infile.

-outfile= The user can specify an output file name for the copy.out

file.

-with_permits Print statements only related to permits.

- relpath This removes the paths from the filenames, the files will

thus be created and copied from the current directory.

- no_loc This flag sets all the locations to the default location.

- no_perm This flag will not print any grant statements.

- no_int This flag will run the copydb statement uninterrupted for

all the tables.

-no_persist This flag will not write any create table statements for
tables which are created with “with persistence” clause.

tablename|viewname The table(s) to be copied. If omitted, all tables are copied.
This could also be a list of views; in that case the given
views are only copied.

The table name may be qualified with a valid schema
name in the format schema.tablename. See the Using
Schemas for Owner Qualification section.

Ingres Commands A–27

copydb

The name of a file created by copy.out consists of the name of the table followed
by an extension made up of the first three letters of the owner’s login name. If
file names collide, a unique digit replaces the last character of the table name
segment.

The destination directory must be different from the database’s actual
directory [II_DATABASE]\ingres\data\default
\dbname, because the files have the same names as the table files.

The destination directory must be different from the database’s actual
directory, $II_DATABASE/ingres/data/default/dbname, because the files
have the same names as the table files.

The destination directory must be different from the database’s actual
directory, II_DATABASE:[INGRES.DATA.DBNAME], because the files have
the same names as the table files.

Note: It is important that the database be recreated with copy.in before doing
any work (for example, creating tables, forms, applications, or reports) in the
new database. After recreating a database, be sure to run sysmod in order to
optimize storage structures.

System catalogs cannot be copied using copydb. Use unloaddb to copy a
complete database, including system catalogs.

Examples

To make a copy of olddb, use the following example replacing the named
directory (\mydir\backup) with one of your own choice:

cd \mydir\backup
copydb olddb
sql olddb<copy.out

To create a new database newdb, use the following example:

createdb newdb
sqlnewdb<copy.in
sysmod newdb

To run copydb with parameters supplied in a file called flagfile, use the
following command:

copydb -param_file=flagfile

where flagfile may contain the following entries:

A–28 Advantage Ingres Embedded Edition Administrator's Guide

copydb

dbname
-order_ccm
-relpath
-no_loc
-all

This is equivalent to the command:

copydb dbname -order_ccm -relpath -no_loc -all

To copy mydb to tape, use the following example replacing the named
directory (/usr/mydir/backup) with one of your own choice:

cd /usr/mydir/backup
copydb mydb /usr/mydir/backup
sql mydb <copy.out
tar c
rm *

In order to copy a tape to mydb, use the following example replacing the named
directory (/usr/mydir/backup) with one of your own choice:

cd /usr/mydir/backup
tar xvpf /dev/rmt0
sql mydb <copy.in
sysmod mydb

To make a static copy of olddb, use the following example replacing the
named default directory (mydir.backup) with one of your own choice:

createdb newdb
set default [mydir.backup]
copydb olddb
sql olddb <copy.out

Next, to make a copy backup of olddb into newdb, use the following example
replacing the named default directory (mydir.backup) with one of your own
choice:

set default [mydir.backup]
sql newdb <copy.in
sysmod newdb

Ingres Commands A–29

createdb

createdb

Creates a database.

Syntax

createdb dbname |vnode::dbname[/server_class]
[cdbname]
[-dlocationname] [-clocationname] [-jlocationname]
[-blocationname] [-wlocationname] [-f product {product}]
[-llanguage] [-p] [-S][-uusername]
[-rlocationname]

Description

The createdb command creates a new database. The user who creates a database
becomes the Database Administrator (DBA) for that database. The DBA has
special privileges and responsibilities regarding the database.

Important! When a database is created, system catalogs are created with the server
default page size.

The following table lists valid command flags and parameters:

Parameter Description

dbname The name of the database to be created. It must be unique
among database names, begin with an alphabetic character,
and can have a maximum of 24 alphanumeric characters
(the underscore is also allowed).

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

If you are using Ingres/Star, you must specify /star as the
/server_class. For examples, see the Star User Guide.

cdbname Optional parameter for use with Ingres/Star. Overrides the
default coordinator database name stored in the Star
catalogs. The default name of the coordinator database is
the dbname you already specified, prefixed with ii.

-dlocationname Specifies the location of the database files; the default is the
location to which II_DATABASE points.

A–30 Advantage Ingres Embedded Edition Administrator's Guide

createdb

Parameter Description

-clocationname Specifies the location of the checkpoint files; the default is
the location to which II_CHECKPOINT points.

-jlocationname Specifies the location of the journal files; the default is the
location to which II_JOURNAL points.

-blocationname Specifies the location of the dump files; the default is the
location to which II_DUMP points.

-wlocationname Specifies the location of the work files; the default is the
location to which II_WORK points.

-f product Names specific user interface product(s) for which you
want to create catalogs. Allowable product names are
ingres, ingres/dbd, vision, windows_4gl, and nofeclients.
For more details, see the Standard Command Line Flags
and Parameters section. The default is to include all
product names.

Use nofeclients if you want to copy from an existing
database to an empty database using the reload.ing script
created by unloaddb.

-llanguage Specifies the collating sequence for the database. This
sequence must exist in the installation when the createdb
statement is issued.

-p Creates a private database. Only the DBA and those named
specifically with the accessdb command have access to the
database. Do not use with Ingres/Star.

-S

This flag is used only when you are creating an iidbdb. You
must be a privileged user to use this flag. Do not use with
Ingres/Star.

You must enclose this flag in double quotation marks (“-
S”).

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters section.

-rlocationname Specifies the new location of the read-only database;
typically this will be the CDROM drive where the read-
only database is located.

Private Database By default, all users have access to a database although access to tables in the
database must be explicitly granted. To create a private database, use the -p
flag.

Ingres Commands A–31

createdb

Locationnames Before you can reference them in the createdb command, a directory for
locationnames must exist. A default location is assumed for any file location
that you do not specify. The default locations are created during installation.
Additional locations can be created for database, checkpoint, journal, and
dump files.

Collating Sequence The -l flag specifies the collating sequence for the database. A database’s
collating sequence determines the order in which data is sorted. The collating
sequence, specified by the language parmeter, must exist in the installation
when the createdb statement is issued.

The language parameter can be:

multi DEC Multinational Character Sequence

spanish Spanish alphabet’s character sequence

collation_name A custom collation sequence.

The available collation sequences can be viewed by examining the contents of
the collation file:

%II_SYSTEM%\ingres\files\collation

$II_SYSTEM/ingres/files/collation

II_SYSTEM:[INGRES.FILES.COLLATION]

If the -l flag is not specified, the collating sequence is determined by the value of
II_COLLATION (if this is set). If II_COLLATION is not set, the default collating
sequence is assigned to the database. The default is the native sequence of the
ASCII or EBCDIC character set, depending on which is present in your
computer.

Note: If createdb fails for any reason, destroy the partially created database
using destroydb.

Examples

To create a private database on the default device(s), use the following
command:

createdb -p mydb

A–32 Advantage Ingres Embedded Edition Administrator's Guide

dereplic

To create the public database ericsdb using a different user name, use the
following command:

createdb ericsdb -ueric

To create a database with its database, checkpoint, and journal files on different
devices, use the following command:

createdb bigdb -ddb_ingres -cnewdev_ingres -jotherdev_ingres

To create a database with catalogs for Ingres and OpenROAD, use the following
command:

createdb testdb -f ingres windows_4gl

To create a distributed database for use with Ingres/Star:

createdb connie/STAR

dereplic

Removes the Ingres/Replicator database objects (queues and tables, events, and
database procedures) from a replicated database.

Syntax

dereplic [vnode::] dbname [-udba_name]

where [vnode::] dbname is the name of the database to be dereplicated.

destroydb

Destroys an existing database.

Syntax

destroydb dbname |vnode::dbname
[-p] [-l] [-uusername]

Ingres Commands A–33

destroydb

Description

The destroydb command removes an existing database. The directory of the
database and all files in that directory are removed. You cannot destroy the
iidbdb using destroydb.

If you are using Ingres/Star, the destroydb command destroys the distributed
database, the coordinator database, and all the Star objects that make up the
distributed database. Data in underlying tables in non-coordinator local
databases registered in the distributed database are not affected.

To execute this command, you must be the DBA for the database or the Ingres
system administrator. The following table lists valid command flags and
parameters:

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required; for details,
see the Standard Command Line Flags and Parameters section.

-p

Requires a prompt to be displayed, asking if you are sure that
you want to destroy the database.

If you want to be prompted for confirmation automatically
when you execute the destroydb command, use the following
command:

destroydb:=="ii_system:[ingres.bin]
 destroydb.exe -p"

This command eliminates the need to use the -p flag to obtain a
confirmation prompt.

-l Confirm if the database is in use, and if in use, return with an
error message.

-uusername Specifies the effective user for the session. For details, see the
Standard Command Line Flags and Parameters section.

Examples

To destroy the empdata database, use the following command:

destroydb empdata

To destroy the video database and specify the user name Brad, use the
following command:

destroydb video -uBrad

A–34 Advantage Ingres Embedded Edition Administrator's Guide

esqla (ESQL Preprocessor)

esqla (ESQL Preprocessor)

Invokes the specified Ingres embedded SQL (ESQL) preprocessor.

Syntax

esqla| esqlc | esqlcc | esqlcbl | esqlf
[flags] [filename]

Description

The ESQL preprocessor commands are used to invoke the preprocessing of
source files containing embedded SQL statements.

The languages supported by ESQL preprocessors are listed in the following
table:

Language Preprocessor Command

ADA esqla

C esqlc

C++ esqlcc

COBOL esqlcbl

FORTRAN esqlf

The following table lists valid command parameters:

Parameter Description

flags The flags that may be passed to individual ESQL
preprocessors. These flags are listed in the table below. Note
that some flags are applicable only to particular
preprocessor languages.

filename Specifies a filename

The following table lists valid command flags; language-specific flags are noted:

 Flag Description

 -{# | p} (esqlc) Generates # line directives to the C compiler (by
default, they are in comments). This flag is helpful when
debugging the error messages from the C compiler.

Ingres Commands A–35

esqla (ESQL Preprocessor)

 Flag Description

-? (Hyphen and question mark)—Lists the valid command line
options.

- - (Two hyphens)—Lists the valid command line options.

-? (Hyphen and question mark)—Lists the valid command line
options.

 -a (esqlcbl) Generates output in ANSI format. Use this flag if
your source code is in ANSI format and you want to
compile the program with the COBOL command line
qualifier ansi_format.

If this flag is omitted, the preprocessor generates output in
Compaq COBOL terminal format.

-avads (esqla) Required flag to generate code for VADS on systems
that have both an OpenVMS preprocessor and VADS Ada
preprocessor.

 -[no]blank_pad (esqlc) Tells the preprocessor to pad (-blank_pad) or not pad
(-noblank_pad) with blanks any data selected at run time
into fixed-length char host variables. Padding is done p to
the declared length of the variable, less one byte for the C
null terminator.

The setting -blank_pad complies with ANSI data retrieval
rules for fixed-length char variables.

The setting -noblank_pad complies with current data
retrieval rules. Instead of blank padding, char data will be
null terminated to the length of the data retrieved; -
noblank_pad is the default.

 -[no]check_eos (esqlc) Tells the preprocessor to check (check_eos) or not
check (-nocheck_eos) for an end-of-string null terminator on
char variables.

The setting -check_eos is provided for ANSI SQL92
conformity. It raises an error if a null terminator is missing.

The setting -nosqlcode is the default. It turns off the above
checking.

 -d Adds debugging information to the runtime database error
messages generated by ESQL. The source file name, line
number, and the erroneous statement are printed along with
the error message.

A–36 Advantage Ingres Embedded Edition Administrator's Guide

esqla (ESQL Preprocessor)

 Flag Description

 -f[filename] Writes preprocessor output to the specified file.

If the filename variable is omitted, the output is sent to
standard output, one screen at a time.

If the -f flag is omitted, output is written to a file that has the
same base name as the input file, and contains an extension
corresponding to the language preprocessor you invoked.
For information about filename extensions, consult your
host language companion guide.

 -iN (esqlb, esqlc) Sets the default size of integers to N bytes. N
must be 1, 2, or 4. 4 is the default setting.

(esqlf) Sets the default size of integers to N bytes. N must be
either 2 or 4 (the default setting).

If N=2 is used, the -i2 flag must be specified with the
FORTRAN compiler.

If N=2 is used, the noi4 qualifier must be used with the
FORTRAN compiler.

 -l Writes preprocessor error messages to the preprocessor’s
listing file, as well as to the terminal. The listing file includes
preprocessor error messages and your source text in a file
named filename.lis, where filename is the name of the input
file.

 -lo Like -l, but the generated code also appears in the listing file.

 -multi Generates a thread safe code for use in multi-threaded ESQL
applications.

 -o If no extension is specified, the include file preprocessor
does not create an output file. This does not affect the
inclusion of files in the main program. The preprocessor
generates a default extension for the translated include file
statements unless you specify the -o.ext flag.

 -o[. ext] Specifies the extension of the files to which include files are
output after being preprocessed by ESQL. If no extension is
given, output files are not generated for include files.

 -rN (esqlb) Sets default size of reals to N bytes. N must be 4 or 8;
4 is the default setting.

Ingres Commands A–37

esqla (ESQL Preprocessor)

 Flag Description

 -s

Reads embedded commands from standard input and
generates resulting code to standard output. If the -l option
is specified with this flag, the listing file is called stdin.lis.

To terminate the interactive session, type Ctrl + C.

To terminate the interactive session, type Ctrl + D.

To terminate the interactive session, type Ctrl + Z.

 -[no]sqlcode Tells the preprocessor to assume
(-sqlcode) or not assume (-nosqlcode) the existence of a
status variable named SQLCODE to receive status
information from SQL statements.

The -sqlcode setting is provided for ANSI SQL92
conformity.

The -nocheck_eos setting is the default.

 -w Prints warning messages.

 -wsql =
entry_SQL92 |
open

Issues a warning if the preprocessor detects an embedded
SQL statement that does not follow the specified syntax.

entry_SQL92 specifies the ANSI.SQL92 entry level standard.

open specifies OpenSQL syntax. This flag is useful if you
intend to port an application across different Enterprise
Access products. Warnings do not halt or affect the success
of compilation. This flag does not validate the statement
syntax for any SQL Enterprise Access whose syntax is more
restrictive than that of OpenSQL.

For a complete description of the SQL preprocessor requirements for your host
language, see the related host language companion guide.

A–38 Advantage Ingres Embedded Edition Administrator's Guide

extenddb

extenddb

Extend databases to new or existing locations.

Syntax

extenddb –llocation [-uuser] [dbname…|-nodb] [-aarea_dir]
[-Udata,ckp,jnl,dmp,work|awork] [-rraw_pct] [-drop] [-alter]

Description

The extenddb command provides a command line interface to extend databases
to new locations.

The following table lists valid flags and parameters for this command:

Parameter Description

-llocname The name of the location to be extended to.

-uuser Specifies the effective user for the session. See also the
Standard Command-Line Flags and Parameters section in
this chapter.

dbname…|-nodb The list of databases to be operated on by extenddb. If no
databases are to be extended, the –nodb flag should be
passed. This allows for the creation of a location without
extending any databases to the new location.

The vnode is specified if required; for details, see the
Standard Command-Line Flags and Parameters section in
this chapter.

-aarea_dir Specifies the directory the new location will point to. This
option is used only when creating a new location and
should not be passed when extending a database to an
existing location.

-Udata,,ckp,jnl,dmp,
work| awork

Specifies the usage for the new location. Valid usages
include database, checkpoint, journal, dump, work, and
auxiliary work.

-rraw_pct For Raw locations, specifies the percentage of the Raw
Area to be allocated to this location. This option is used
only when creating a new location and should not be
passed when extending a database to an existing location.

Ingres Commands A–39

fastload

Parameter Description

-drop Drop the specified location.

-alter Modify a location’s usage to add data, ckp, jnl, dmp, or
work areas.

Examples

To extend the stockdb database to use the directory /disk1/loc1 as new data
and work areas:

extenddb –lextraloc1 –a/disk1/loc1 –Udata,work

To create a location without extending it to any databases:

extenddb –lextraloc2 –a/disk2/loc2 –Uckp,jnl –nodb

To extend the employeedb database to an existing location:

extenddb –lextraloc3 –Udata employeedb

fastload

Loads binary format files into the database.

Syntax

fastload dbname -file = filename -table= tablename

If the filename does not exist in the current directory, specify the full path of the
file.

Description

The following requirements must be met to use fastload:

■ The fastload command must be able to obtain an exclusive lock on the table;
otherwise fastload exits.

■ The file’s data format must match the table’s data format.

A–40 Advantage Ingres Embedded Edition Administrator's Guide

fastload

 If the formats do not match, incorrect data will be loaded into the table. For
example, if each record in a file contains a 5-byte char and a 4-byte integer
and this file is loaded into a table that has a 4-byte char field followed by a
4-byte integer field, fastload would read 8-bytes of the file and load it as a
row into the table. This means that the integer field will not contain the
actual integer in the original file because the last byte of the 5-byte char field
plus 3-bytes of the integer field will be interpreted as a 4-byte integer. The
problem is incremented as more data is read since the data will be off by
one more byte for each row.

 You should calculate the record length in the file and check that it matches
the record length specified in the fastload statement. The record length can
be found in the row width field output from the SQL help table statement.
For more information about this statement, see the SQL Reference Guide.

 In many cases, fastload is unable to determine the record size of a binary file
(on all UNIX platforms this is the case); in these cases, fastload generates a
message warning that no format checking will be performed. The warning
also contains the expected size of records in the binary file.

■ Be aware of the extra data added by the Ingres varchar data type and all
nullable fields. The fastload command expects to read a two-byte integer at
the beginning of a varchar field that contains the length of the varchar data.
All nullable fields should be terminated with a single byte null indicator that
indicates the field is null.

■ The fastload command supports all standard Ingres table structures when
loading into empty tables. It can also load data into heap tables that already
contain rows.

 All other table types that contain data require a data sort that merges the
loaded data with the existing data. Fastload does not perform this function.
The data always loads fastest into a heap table with no secondary indexes.

■ The fastload command does not support complex data types such as intlist,
ord_pair, or udts.

Examples

To use Fastload, perform the following steps:

1. Make a backup of the table’s content.

 You need a backup because it may be difficult to fix or eradicate loaded
data that is incorrect.

 Always check manually that the data has been loaded correctly.

2. Generate a copy of the file you want to fastload by copying it from an Ingres
table that has the same format as the target table, or by creating it
programmatically.

 Do the copy in binary format, for example:

 copy test() into 'test.out'

Ingres Commands A–41

genxml

3. Enter the fastload command, for example:

 fastload fload -file=test.out -table=test

 The table test in the database fload is loaded from the file test.out.

4. Observe that a summary of the load displays, showing the row size, number
of rows loaded, and the number of bytes read.

5. Verify manually that the data has been loaded correctly.

Additional

Considerations

Binary format files may not be transported to/from byte-swap from/to non-
byte swap machines. The data can be generated programmatically, but you
should be careful to generate the correct record format, taking into account
additional bytes needed for some field types as described in the fastload
command description section.

genxml

Exports Ingres tables data into xml format.

Syntax

genxml dbname | vnode::dbname[/server_class] [-uuser] [-P] [-GgroupID]
 [-dest=dir] [-xmlfile=filename] [-dtdfile=filename]
 [-metadata_only] [-internal_dtd] [-referred_dtd]
 [{tablename}] [title_doctype=title]

Description

This utility allows bulk transfer of Ingres data from an Ingres database into xml
format. The generated xml documents refer to generic Ingres DTD (Document
Type Definition). Ingres DTD is a controlled document describing the Ingres
data. DTD can be internal or external.

When the genxml command is executed on an Ingres database, an xml file is
generated, containing the metadata and the data for the tables in xml format, as
specified by the Ingres DTD. A DTD file is also generated by genxml by default,
unless other options are specified.

For external DTDs, the dtd file may be printed in the same directory as the xml
file. Alternatively, external DTDs may be a referenced in the xml file to the DTD
location. This location will be either a URL or a static location like
$II_SYSTEM/ingres/files/ingres.dtd. Reference to the ingres dtd is made using
the DOCTYPE declaration in the generated xml file.

The following table lists valid command flags and parameters:

A–42 Advantage Ingres Embedded Edition Administrator's Guide

genxml

Parameter Description

dbname The name of the database being exported. The vnode and
server_class are specified if required; for details, see the
Standard Command Line Flags and Parameters section.

-uuser Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters
section.

-P Password if the session requires a password.

-GgroupID Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section.

-dest=dir The destination directory into which the xml file is
generated. An empty dirname specification (“”) denotes
the current directory. The generated Ingres dtd will also
be placed in this directory.

-xmlfile=filename The name of the output xml file. By default the xmlfile is
called xmlout.xml.

-dtdfile=filename The name of the output dtd file. By default this file is
called ingres.dtd.

-metadata_only If this flag is specified, only the metadata information is
printed out.

-internal_dtd This flag prints the DTD inline inside the xml doc.

-referred_dtd This flag places a reference to the ingres.dtd in Ingres files
directory ($II_SYSTEM/ingres/files).

tablename Table name or names that the user wants the xml to out
put. Table names must be separated by spaces. If omitted,
all tables are copied. The table name may be qualified
with a valid schema name in the format schema.tablename.
See the Using Schemas for Owner Qualification section.

-title_doctype=title This flag allows the users to change the doctype or the
document name of the XML file. The default doctype is
IngresDoc. This flag should be used with caution. If the
document name is changed, the referred_dtd option
should not be used as the referred generic Ingres DTD in
$II_SYSTEM/ingres/files still has IngresDoc as document
type.

The xml generation utility genxml copies out the Ingres data in xml format. This
allows Ingres data on the web to communicate with other third party products.

Ingres Commands A–43

infodb

Examples

To generate a copy of a data base testdb in xml format, run:

genxml testdb

This produces files “xmlout.xml” and “ingres.dtd” in the current directory.

xmlout.xml contains the metadata and the data of all the tables of the database
testdb.

To output only table tab1 and produce the files in directory (/tmp/mydirectory)
with the filename myxml.xml and with DTD file placed inline with the xml file
type the following command:

genxml testdb –dest=”/tmp/mydirectory” –xmlfile=myfile.xml –internal_dtd
tab1

Only information about the table tab1 will be generated.

The -metadata_only flag may be useful in generating the metadata information
in xml form in cases when you wish to recreate objects at any other location or
installation without copying what may be a large amount of data.

The generated xml file can be input to the xmlimport utility for importing into
another Ingres installation. (See the xmlimport section for more details on
xmlimport utility).

infodb

Provides a variety of information about a database.

Syntax

infodb [dbname[/server_class]][#c[n]][-uusername][-help]

Description

The infodb command displays information on the status of the database, a
history of checkpoints and journaling, as well as information from the
database’s configuration file ‘aaaaaaaa.cnf’ concerning the location of database
files. If no database is specified, infodb prints a report for each database.

A–44 Advantage Ingres Embedded Edition Administrator's Guide

infodb

You must be a privileged user or the DBA of the specified database to use this
command. If you are a privileged user, you can use the -u flag to impersonate
another user.

If you are using this command against a database in a group level installation,
you must be a privileged user (VMS CMKRNL, SYSPRV, and PHY_IO
privileges) to run the command.

The following table lists valid parameters and command flags:

Parameter Description

dbname The name of the database.

The server_class is specified if required; for details, see the
Standard Command Line Flags and Parameters section.

#c[n] Provides detailed information about a specific checkpoint
for the database. The checkpoint number n must be a
valid checkpoint number. If n is omitted, information
about the most recent completed checkpoint is displayed.

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters
section.

-help Displays syntax online.

Example

The following example shows the output from infodb:

�����������������������������	�
������
��	��������	����������������������������	
				��������	�	���������� 		��	�	�!���"#$%�	 	 &�''������	����('�	
)!�����		�	�				*���	+��'�	��	�	�,�	
				&����-	#�'�	�������	��	�	�!��������			��������	�������	��	�	�	
				.����	��*	/**�0)��	��*��)	&1)&23���+)�/"*)�	
				4���(�			�	�/*���5�67�/*�&23��6.3�7�**8#�70/7��b"/&263	
	
															+:�	��������	:��	����	&:���;������
	
															+:�	��������	��	5�(���'��
	
	
															5�(���'�	���	<�'��	����	�:���;����	��=(����	�	�	
	
����5�(���'	��	
				&:���;����	��=(����	�										>				5�(���'	��=(����	�																	>	
				&(�����	?�(���'	�'���	�								�				5�(���'	�'���	��@�	�											�$>%
	
				������'	?�(���'	��@�	�									
				+��-��	?�(���'	��@�	�												���	
				*���	*�-	/������	5�(���'��	�	A,$�%�B
$
��B$$$��%%C	
�����(�;	���	
				&:���;����	��=(����	�										>				�(�;	��=(����	�																				�	
				&(�����	�(�;	�'���	�											�				�(�;	�'���	��@�	�														�$>%
	
				������'	�(�;	��@�	�												
				+��-��	�(�;	��@�	�															���	

Ingres Commands A–45

infodb

				*���	*�-	/������	�(�;��	�	A,$�%�B
$
�����������C	
����&:���;����	1�����D	���	5�(���'��	
				����																						&�;8��=(����		#����8?�'			*���8?�'		<�'��		����	
				��	
				�����������	�>��>�
>
�,														�										�									�						�		�##*��)	
				�����������	�>��
���

�														�										�									�						�		��*��)	
				�����������	�>��%���
$�														>										>									>						�		��*��)�	
																																																																								+/"*)	
����&:���;����	1�����D	���	�(�;���	
				����																						&�;8��=(����		#����8��;			*���8��;		<�'��		����	
				��	
				�����������	�>��%���
$�														�										�									�						�		��*��)			
				�����������	�>��%���
$�														>										�									�						�		��*��)�	
																																																																								+/"*)	
����&'(����	5�(���'	1�����D���	
				����	��			&(�����	5�(���'			&(�����	"'���			*���	*�-	/������	
				��	
										�																	�															�			A,$�%�B
$��
,>����B�C	
										�																	>														��			A,$�%�B
$
�>������%%C	
				����
	

����)!����	��������D��	
				*�������															#'�-�												3:D����'8;��:	
				��	
				��8��������													7��+��/+/							��E��-�����E��-���E����E����('�E������	
				��8?�(���'														5�67�/*									��E��-�����E��-���E?�'E����('�E������	
				��8�:���;����											&1)&23���+						��E��-�����E��-���E��;E����('�E������	
				��8�(�;																	�6.3												��E��-�����E��-���E��;E����('�E������	
				��8F���																	0�72												��E��-�����E��-���EF���E����('�E������	
���	

The following example shows the output from the database information section.
See the table that follows for a description of each field in this output:

�� �������������������#)"�����	�
������
��	��������	���������������������	
				��������	�	���������� 		��	�	�!���"#$%�	
)!�����		�	�				*���	+��'�	��	�	�,�	
				&����-	#�'�	�������	��	�	�!���
����			��������	�������	��	�	�	
				4���(�			�	�/*���5�67�/*�&23��6.3�7�**8#�70/7��b"/&263	
	
�� 												+:�	��������	:��	����	&:���;������
	
															+:�	��������	��	5�(���'��
	
	
															5�(���'�	���	<�'��	����	�:���;����	��=(����	�	�	

The following table describes the fields in the preceding database information
output:

Field Description

At (1) Date and time the infodb operation was run.

Database The name (doc) and owner (kbref) of the
database.

ID The internal identifier of the database.

Extents Number of locations the database is using.

Last Table ID The integer identifier assigned to the last created
table.

A–46 Advantage Ingres Embedded Edition Administrator's Guide

infodb

Field Description

Config File Version ID Major (upper 2 bytes) and minor (lower 2 bytes)
versions of the configuration file.

Database Version ID The version of DMF that created the database.
Note that this is not related to the Ingres version
of the database.

Status Displays status information for the database.
The following status abbreviations may appear:

CFG_BACKUP—automatic backup of the
configuration file is enabled.

CKP—indicates that you must perform a
rollforward +c (back to saveset) before you can
do a rollforward -c +j.

DUMP—the database has undergone dump
processing (that is, a dump file was created in
the dump location) via some online checkpoint.

JOURNAL—the database is journaled.

JOURNAL_DISABLED—journaling has been
disabled.

NOLOGGING—the database has been opened
by a set nologging session. Note that if this
session encounters an error, the database will be
marked inconsistent.

 ROLL_FORWARD—indicates that rollforward
is available on the database and has not been
run to completion since the last checkpoint was
taken.

SMINC—indicates the system catalogs are in an
inconsistent state.

VALID—the database is consistent and available
for use. If this does not appear, the database is
marked inconsistent.

At (2) This section displays comments regarding the
status of the database. Important state
information is highlighted here.

Ingres Commands A–47

infodb

Field Description

The Database is Inconsistent.
Cause of Inconsistency: <...>

Shown if the database is inconsistent. The cause
of inconsistency will be one of the following:

NOLOGGING_ERROR—a transaction failed
while the database was in the nologging state.

NOLOGGING_OPENDB—the database was
opened for the first time, but was in the
nologging state. This means a session exited
abnormally.

OPEN_COUNT—the database was opened for
the first time, but the database open count in
the configuration file was not zero. This means
the configuration file could not be read during a
recovery attempt.

REC_OPEN_FAILURE—the RCP could not
recover a database because the database could
not be opened.

RECOVER_ERROR—the RCP failed to recover a
database due to an unexpected logging system
or recovery protocol problem.

REDO_ERROR—the RCP failed to recover a
database due to an error in REDO processing.

RFP_FAIL—the rollforward of the database
level checkpoint failed.

UNDO_ERROR—the RCP failed to recover a
database due to an error in UNDO processing.

WILL_COMMIT_ERR—the RCP was unable to
restore a transaction to the willing commit
state.

The Database has been
Checkpointed.

Shown if the database has been checkpointed.

The Database is Journaled.
 or
The Database is not
Journaled.

Shows the journaling status.

Journaling has been disabled
on this database by alterdb.
Run 'ckpdb +j' to re-enable
journaling.

Shown if journaling has been disabled.

A–48 Advantage Ingres Embedded Edition Administrator's Guide

infodb

Field Description

Database is being accessed
with Set Nologging, allowing
transactions to run while
bypassing the logging system.

Shown if a set nologging session is active on the
database.

Journals are valid from
checkpoint sequence:
checkpoint sequence number

Shows the earliest checkpoint from which
rollforward is allowed.

Journals are not valid from
any checkpoint.

Shown if rollforward is not valid from any
checkpoint, or there are no checkpoints.

The following example shows the output from the journal information section:

����5�(���'	��	
				&:���;����	��=(����	�						>				5�(���'	��=(����	�															>	
				&(�����	?�(���'	�'���	�				�				5�(���'	�'���	��@�	�									�$>%
	
				������'	?�(���'	��@�	�					
				+��-��	?�(���'	��@�	�										���	
				*���	*�-	/������	5�(���'��	�	A,$�%�B
$
��B$$$��%%C	

This table describes the fields in the journal information output:

Field Description

Checkpoint sequence The current checkpoint sequence number.
Incremented when a checkpoint operation is
performed.

Journal sequence The current journal file sequence number.

Current journal block The current journal file block sequence number.
This is the logical end-of-file of the current
journal file.

Journal block size The block size of the current journal file, in
bytes.

Initial journal size The number of blocks initialized in the “first
journal file” when it is created. The first journal
file is the journal file created during the
checkpoint +j operation. Subsequent journal files
created before the next checkpoint is done will
not be initialized.

Target journal size The size, in blocks, to which the current journal
file may grow before a new journal file should
be created. A new journal file will be created at
the start of the next archive cycle after the
current journal file reaches this size.

Ingres Commands A–49

infodb

Field Description

Last log address journaled The log address (log sequence number, log page
number, log word offset) of the last log record
written to a journal file.

The following example shows the output from the dump information section:

�����(�;	���	
				&:���;����	��=(����	�						>				�(�;	��=(����	�																�	
				&(�����	�(�;	�'���	�							�				�(�;	�'���	��@�	�										�$>%
	
				������'	�(�;	��@�	�								
				+��-��	�(�;	��@�	�											���	
				*���	*�-	/������	�(�;��	�	A,$�%�B
$
�����������C	

This table describes the fields in the dump information output:

Field Description

Checkpoint sequence The current checkpoint sequence number.
Incremented when a checkpoint operation is
performed.

Dump sequence The current dump file sequence number.

Current dump block The current dump file block sequence number.
This is the logical end-of-file of the current
dump file.

Dump block size The block size of the current dump file, in
bytes.

Initial dump size The initial allocation of the current dump file,
in blocks. The number of blocks initialized
when a dump file is created.

Target dump size The size, in blocks, to which the current dump
file may grow before a new dump file should
be created. A new dump file will be created at
the start of the next archive cycle after the
current dump file reaches this size.

Last log address dumped The log address (log sequence number, log page
number, log word offset) of the last log record
written to a dump file.

The following example shows the output from the checkpoint history
information section:

����&:���;����	1�����D	���	5�(���'��������������������������������������	
				����																	&�;8��=(����		#����8?�'		*���8?�'	<�'��		����	
				��	
				�����������	�>��>�
>
�,							�							�										�								�		�##*��)	
				�����������	�>��
���

�							�							�										�								�		��*��)	
				�����������	�>��%���
$�							>							>										>								�		��*��)�	
																																																																		+/"*)	

A–50 Advantage Ingres Embedded Edition Administrator's Guide

infodb

The following table describes the fields in the checkpoint history information
output:

Field Description

Date The date and time the checkpoint operation was
done.

Ckp_sequence The sequence number of the checkpoint.

First_jnl The journal sequence number of the first (or oldest)
journal file corresponding to the checkpoint.

Last_jnl The journal sequence number of the last (or
youngest) journal file corresponding to the
checkpoint.

Valid Indicates whether or not the checkpoint is valid (1
implies valid, 0 implies invalid).

Mode Indicates whether the checkpoint operation was
online or offline. Also indicates TABLE if the
checkpoint was a table checkpoint.

To recover the entire database, you need to specify #c2, for example, in the
rollforwarddb command to roll forward from the database checkpoint.
Checkpoint 3 was taken on selected table(s).

The following example shows the output from the dump checkpoint history
information section:

����&:���;����	1�����D	���	�(�;��	
				����																&�;8��=(����		#����8��;		*���8��;	<�'��		����	
				���	
				�����������	�>��%���
$�				�							�										�									�				��*��)		
				�����������	�>��%���
$�				>							�										�									�				��*��)�	
																																																																		+/"*)	

The following table describes the fields in the database’s online checkpoints
output:

Field Description

Date The date and time the checkpoint operation was
done.

Ckp_sequence The sequence number of the checkpoint.

First_dmp The dump sequence number of the first (or oldest)
dump file corresponding to the checkpoint.

Last_dmp The dump sequence number of the last (or
youngest) dump file corresponding to the
checkpoint.

Ingres Commands A–51

infodb

Field Description

Valid Indicates whether or not the checkpoint is valid (1
implies valid, 0 implies invalid).

Mode Indicates whether the checkpoint operation was
online or offline (should always be online). Also
indicates TABLE if the checkpoint was a table
checkpoint.

The following example shows the output from the cluster journal history
section:

����&'(����	5�(���'	1�����D��	
				����	��			&(�����	5�(���'			&(�����	"'���			*���	*�-	/������	
				��	
										�																	�															�			A,$�%�B
$��
,>����B�C	
										�																	>														��			A,$�%�B
$
�>������%%C	

The following table describes the fields in the cluster journal history output:

Field Description

Node ID The integer identifier of the node.

Current journal The node’s current journal file sequence number.

Current block The node’s current journal file block sequence
number. This is the logical end-of-file of the node’s
current journal file.

Last log address The log address (log sequence number, log page
number, log word offset) of the last log record written
to a journal file on this node.

The following example shows the output from the extent directory section:

����)!����	��������D���	
	
				*�������												#'�-�								3:D����'8;��:	
				���	
				��8��������								7��+��/+/					��E��-�����E��-���E����E����('�E������	
				��8?�(���'									5�67�/*							��E��-�����E��-���E?�'E����('�E������	
				��8�:���;����						&1)&23���+				��E��-�����E��-���E��;E����('�E������	
				��8�(�;												�6.3										��E��-�����E��-���E��;E����('�E������	
				��8F���												0�72										��E��-�����E��-���EF���E����('�E������	

The following table describes the fields in the extent directory output, which
shows all locations being used by the database:

Field Description

Location The logical name of the location.

Flags Indicates the types of database files being stored in
h l Th b l

A–52 Advantage Ingres Embedded Edition Administrator's Guide

ingmenu

Field Description

the location. The possibilities are:

ALIAS—this is a location alias. This means at least
one other location points to the same area as this
location. This flag is used only for checkpoint and
rollforward operations so that locations are neither
checkpointed nor rolled forward more than once.

AWORK—this is an auxiliary work file location.
Work files (that is, for sorts and temporary tables)
are stored in the location.

CHECKPOINT—checkpoint files are stored in the
location.

DATA—user data (such as tables, indexes) is stored
in the location.

DUMP—dump files are stored in the location.

JOURNAL—journal files are stored in the location.

ROOT—system data (that is, system catalogs) is
stored in the location.

WORK—work files (for sorts and temporary tables)
are stored in the location.

Physical_path The physical path of the location.

ingmenu

Starts Ingres Menu.

Syntax

ingmenu dbname|vnode::dbname[/server_class]
[-e] [-uusername] [-Ggroupid]

Description

The ingmenu command invokes Ingres Menu, a forms-based interface for
accessing the Ingres tools. See the Using Character-Based Querying and Reporting
Tools guide for a complete description of Ingres Menu.

Ingres Commands A–53

ingprenv

The following table lists valid command flags and parameters:

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

-e Invokes Ingres Menu in empty mode. This flag is
passed to the QBF, RBF, TABLES, and VIFRED options
of Ingres Menu. In essence, it causes any catalog of
applications, Join Definitions, tables, reports, or other
objects to be initially displayed empty, so that the user
can enter specific names of such objects.

-uusername Specifies the effective user for the session. For details,
see the Standard Command Line Flags and Parameters
section.

-Ggroupid

Specifies a group identifier. For details, see the
Standard Command Line Flags and Parameters
section.

You must enclose this parameter in double quotation
marks ("-Ggroupid").

ingprenv

Displays the Ingres installation environment variables.

Syntax

ingprenv [variable_name]

A–54 Advantage Ingres Embedded Edition Administrator's Guide

ingprenv

Description

The ingprenv command displays values for the Ingres variables defined at
installation time. These include:

ING_ABFDIR
ING_EDIT
II_CHARSETxx
II_CHECKPOINT
II_COLLATION
II_CONFIG
II_DATABASE
II_DUMP
II_INSTALLATION
II_JOURNAL
II_LANGUAGE
II_MSGDIR
II_TEMPORARY
II_TIMEZONE_NAME
II_WORK
TERM_INGRES

This command reads the symbol.tbl file in %II_SYSTEM%\ingres\files. To
add or remove symbols, use the ingsetenv, ingunset, and ingprenv
commands.

This command reads the symbol.tbl file either in
$II_SYSTEM/ingres/files or, for client installations, in
$II_SYSTEM/ingres/admin/node_name.

To add or remove symbols for:

■ Local installation—use ingsetenv, ingunset, and ingprenv

■ Global operations (server and client installations)—use ingsetall,
ingunsetall, and ingprall

 Caution! Never edit the symbol.tbl directly.

Use ingprenv with the optional variable_name to check the value of a particular
symbol or variable. For example, to examine the value of II_DATABASE, enter:

ingprenv II_DATABASE

If you do not specify variable_name, all of the installation variables are displayed.
If the variable is not defined, no output is returned.

Ingres Commands A–55

ingsetenv

ingsetenv

Sets an Ingres installation environment variable.

Syntax

ingsetenv variable_name value

Description

The ingsetenv commmand allows you to set or change an Ingres environment
variable.

The variable_name identifies the installation variable that you want to set or
change.

The value specifies the value to which you want to set the installation variable.

For example, the following command line sets the ABF directory variable:

ingsetenv ING_ABFDIR \proj\abf

ingsetenv ING_ABFDIR /proj/abf

You cannot use this command to set Windows or UNIX environment variables. This
command affects only the Ingres environment variables stored in the Ingres symbol
table. These installation variables can be viewed with the ingprenv command.

ingunset

Unsets an Ingres installation environment variable from the Ingres symbol
table.

Syntax

ingunset variable_name

A–56 Advantage Ingres Embedded Edition Administrator's Guide

ipm

Description

The ingunset command deletes the specified Ingres environment variable from
the Ingres symbol table.

The variable_name identifies the installation variable that you want to unset.

Note: You cannot use this command to unset Windows or UNIX environment
variables. This command affects only the Ingres installation environment
variables stored in the Ingres symbol table. These installation variables can be
viewed with the ingprenv command.

ipm

Combines the functions of the lockstat, logstat, iimonitor, and iinamu utilities in
a single forms-based tool.

Syntax

ipm options

Description

The Ingres/Interactive Performance Monitor (IPM) is used to view different
aspects of a running installation. It can be used to view a running server,
examine the logging and locking system, and perform some actions on active
servers. It can:

■ Monitor the locking system:

– Determine which tables/pages are locked

– Find who is holding locks

– Aid in debugging concurrency problems

■ Monitor the logging system:

– View logging statistics (efficiency and tuning information)

– Display which processes can be logged

– Display which databases have transactions

– Display which transactions are active

– Terminate servers or sessions

Ingres Commands A–57

isql

The IPM startup options are summarized in the following list:

-ddbname Report only on resources for database dbname.

-s Also display locklists that contain no locks.

-l Report on all resource types (page, table, database, etc.).

-lrestype Report only on the specified resource type.

-n Print resources granted in NL (null) mode.

-t Report on a particular table. With this parameter you must also
specify a database.

-rseconds Set refresh time for various screens.

For complete details on the use of the IPM command, see Visual DBA online
help.

isql

Invokes the interactive forms-based Ingres/Terminal Monitor for Interactive
SQL (ISQL).

Syntax

isql [SQL option flags] dbname|vnode::dbname[/server_class]

Description

The isql command invokes the forms-based Terminal Monitor for use with SQL
query language. See Using Character-Based Querying and Reporting Tools for a
complete description of the forms-based Terminal Monitor.

The following table lists valid command flags and parameters:

Parameter Description

SQL option flags The flags that are passed when the ISQL Terminal
Monitor is invoked. These include the standard flags
-uusername, -Ggroupid, and -Rroleid as wells as
formatting and DBMS control flags. For details see
the sql command.

A–58 Advantage Ingres Embedded Edition Administrator's Guide

modifyfe

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required;
for details, see the Standard Command Line Flags
and Parameters section.

Example

To invoke interactive forms-based SQL on the employee database, type the
following command:

isql employee

modifyfe

Modifies the storage structure of catalogs for Ingres querying and reporting
tools.

Syntax

modifyfe dbname |vnode::dbname[/server_class]
[-uusername] [+w|-w] {product}

Description

The modifyfe command modifies the storage structure of catalogs for Ingres
tools such as OpenROAD, Ingres/Vision, or Ingres/Applications-By-Forms
(ABF).

The following table lists valid command parameters and flags:

Parameter Description

dbname The name of the database containing the catalogs to be
modified.

The vnode and server_class are specified if required; for details,
see the Standard Command Line Flags and Parameters
section.

Ingres Commands A–59

netutil

Parameter Description

-uusername Specifies the effective user. If you want to modify a database
you do not own, you must use this flag to specify the DBA’s
user name. For details, see the Standard Command Line Flags
and Parameters section.

+w|-w Wait/don’t wait for the database to be free (not in use). The
default is -w.

If you specify -w or if you do not specify this flag, then
modifyfe aborts immediately if the database is not free
(another session has an exclusive connection).

If you specify +w then modifyfe waits for anyone with an
exclusive connection to disconnect, then proceeds.

product Specifies the products for which you want to modify catalogs.
Allowable product names are ingres, ingres/dbd, vision, and
windows_4gl. For details, see the Standard Command Line
Flags and Parameters section.

If you omit this parameter, all user interface catalogs are
modified.

Like upgradedb, modifyfe takes an exclusive lock on the database.

The modifyfe command is normally not called directly. It is called by
upgradedb to perform the required catalog updates.

netutil

Forms-based command for configuring Ingres/Net. The Net Management
Utility allows you to store and manage the information—connection data and
remote user authorizations—needed by the communications and Bridge servers
to connect to remote installations.

Syntax

netutil [-uuser] [-vnode vnode] -file=filename{,filename}

The parameters are described in the following table:

Parameter Description

user Specifies the effective user name for the session. When
creating private connection information, the information will
be stored for the specified user.

A–60 Advantage Ingres Embedded Edition Administrator's Guide

netutil

Parameter Description

vnode The name of the remote node on which the connection
information is to be stored. This vnode name must have been
configured through netutil previously.

file When the -file switch is specified, netutil operates non-
interactively, and all statements in the specified control file
are executed.

Note: When the input file name is specified as - (a single
dash character), input is taken from the standard input
channel. This allows the user to enter commands directly
from the keyboard.

Description

Netutil is a forms-based program for configuring Ingres/Net. This command
allows any number of Ingres sites to be connected together in a single network.

Examples

To edit private connection information for the user emma, type the following
command:

netutil -uemma

To edit connection information for the previously defined node new_york, type
the following command:

netutil -vnew_york

To run netutil in interactive mode, taking input from the keyboard, for the user
emma on the remote node new_york, type the following command:

netutil -uemma -vnew_york -file-

Ingres Commands A–61

optimizedb

optimizedb

Generates statistics for use by the Ingres Query Optimizer.

Syntax

optimizedb [SQL option flags][-i filename]
[-o filename] [-z flags]
dbname |vnode::dbname[/server_class]
{-rtablename {-acolumnname}} | {-xrtablename} [-help]

Description

The optimizedb command generates statistics on the specified columns. These
statistics are stored in system catalogs (iistats and iihistograms) and used by the
Ingres Query Optimizer to select an efficient query processing strategy.

Complete and accurate statistics in the system catalogs generally result in more
efficient query execution strategies and faster system performance. The process
of generating complete and accurate statistics requires some time, but a balance
between accurate statistics and the time to generate them can be achieved by
specifying the -zx or -zs flag, described below. Statistics need to be refreshed
only when a significant change in the distribution of a column’s values has
occurred.

The statistics generated by the optimizedb command for any column consist of
two elements: (1) the number of unique values in a column, and (2) a histogram
with a variable number of variable-width cells. The accuracy of the histograms
can be controlled by the -zu# and -zr# flags described below. Increasing the
number of cells in the histograms increases the amount of space required for the
iihistograms table and thus increases somewhat the amount of space and time
used by the optimizer. However, the increased accuracy of the statistics will
generally result in more efficient query execution strategies.

It is recommended that you generate the statistics for all columns that appear in
the qualification (where clause) of a query statement. If statistics are missing or
incorrect, the query will still execute, although the speed of query processing
can be affected.

After running optimizedb, it is prudent to run sysmod. This is especially true
the first time optimizedb is run on a database.

Note: Although optimizedb does not lock the database or individual tables
while it is retrieving values and generating statistics, once the statistics have
been collected and stored in the appropriate catalogs, optimizedb does take an
exclusive lock on the database or individual tables in order to complete its task.

A–62 Advantage Ingres Embedded Edition Administrator's Guide

optimizedb

The following table lists valid command flags and parameters:

Parameter Description

SQL option flags SQL option flags on the optimizedb command line are
automatically passed. The optimizedb command accepts
the following SQL option flags:

[+|-]U
-u
-cN
-tN
-ikN
-fkxM.N
[+|-]w
-xk

For a complete description of these flags, see the sql
command.

-z flags Specify options to optimizedb. These flags are listed in the
following table.

-i filename If this flag is specified, optimizedb reads statistics from
filename instead of operating directly on the database.
Filename must be the name of a file that has been
generated by the statdump command using the -o flag.
This file is in ASCII format and can be edited. However,
only two types of changes are acceptable: a) you can
modify values and b) you can add rows describing cells.

Do not change the format of the file, that is, do not change
the order in which data appears or add an incomplete
new row.

When the -r and -a flags are used in conjunction with this
flag, they act as filters. Optimizedb will only read in from
the file those statistics that belong to the specified table or
column.

Optimizedb does not use the row and page count values
in the file unless the -zp flag is also specified.

Note: These values are vital for correct operation of the
DBMS. If you use the -zp flag, be sure to put new values
for row and page counts in iitables.

-o filename Write the optimizedb output to the specified file instead
of to the system catalogs.

Ingres Commands A–63

optimizedb

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

-rtablename Specifies tablenames to be processed by the optimizer. If
no table name is specified, then all columns for all tables
in the database are processed.

The table name may be qualified with a valid schema
name in the format schema.tablename. See the Using
Schemas for Owner Qualification section.

If tablename specifies a secondary index name, optimizedb
creates a composite histogram on the key columns
comprising the index.

-rxtablename Specifies tablenames to be excluded from processing by the
optimizer. Except for these, all columns for all tables in
the database are processed.

-acolumnname If the -rtablename flag is specified, then (and only then)
individual columns can be specified with the -a flag for
the generation of statistics. When table(s) and column(s)
are specified, then statistics processing is limited to the
specified columns (plus any included through the -zk
flag, described in the following table).

-help Displays syntax online.

Note: The combination of -rtablename and -xrtablename parameters is not
permitted in a single optimizedb request, nor is the combination of -xrtablename
and -acolumnname.

The -z flags that are available with the optimizedb command are described in
the following table:

Parameter Description

-zffilename Directs optimizedb to read filename for all other command
line flags, database names, and any other command line
arguments. This file must contain only one flag per line
(see the examples below). If this flag is specified, no other
flags or arguments can appear on the command line; they
must, instead, appear in the specified file.

A–64 Advantage Ingres Embedded Edition Administrator's Guide

optimizedb

Parameter Description

-zc Directs optimizedb to optimize the system catalogs in
addition to the base tables. If you want to optimize selected
system catalogs, rather than all of them, use this flag and
specify the individual tables with the -r flag. This flag is
valid only if the user issuing the command is the DBA for
the specified database.

-zcpk Requests a composite histogram on primary key structure.

-zdn Directs optimizedb to use its algorithm to estimate the
number of distinct values and repetition factor for a
column whose histogram is built with sampling (see the -
zs# option).

-zh Prints the histogram that was generated for each column.
This flag also implies the -zv flag.

-zk Generates statistics for columns that are keys on the table
or are indexed, in addition to columns specified on the
command line.

-zlr Reuse existing repetition factor if there is one.

-zn# Directs optimizedb to read floating point numbers using
the precision level specified by #. Use this flag in
conjunction with the -i filename flag.

-zp Directs optimizedb to read the row and page count values
in the file specified with the -i flag and to store those values
in the appropriate system catalog (they can be viewed in
iitables).

-zr# Specifies the maximum number of cells that the histogram
can contain if optimizedb creates an inexact histogram. In
an inexact histogram, each cell represents a range of
values.

The allowable range is 1<#<500 (that is, the minimum is 2
and the maximum is 499).

The default number of cells is 15.

-zs[s]# Creates statistics based on sample data. The percentage of
table rows sampled is determined by the value of #. This
number must be a floating point number in the range of 0
to 100. Specifying the optional s (-zss) will cause the tuple
identifiers (TIDs), which are used to retrieve the sample
rows, to be sorted before the rows are retrieved. This
decreases retrieval time but increases the amount of
memory used by optimizedb.

Ingres Commands A–65

optimizedb

Parameter Description

-zu# Specifies the maximum number of cells an exact histogram
can contain. In an exact histogram, each cell represents a
single, unique value.

The allowable range is 0 < # < 250 (that is, the minimum is
1 and the maximum is 249).

The default number of cells is 100.

-zv Prints information about each column as it is being
processed.

-zw Sets the complete flag, which indicates whether a column
contains all possible values. The range of values in a
column affects query optimization. By default, columns are
assumed to be not complete.

-zx Directs optimizedb to determine only the minimum and
maximum values for each column rather than full statistics.
Because minimum and maximum values for columns from
the same table can be determined by a single scan through
the table, this flag provides a quick way to generate a
minimal set of statistics. Minimal statistics cannot be
created on columns holding only null values.

Examples

To generate full statistics for all columns in all tables in the empdata database,
type the following command:

optimizedb empdata

To generate statistics for key or indexed columns in the employee and dept
tables and, additionally, generate statistics for the dno column in the dept table,
type the following command:

optimizedb -zk empdata -remployee -rdept -adno

To do the same as the above example, but from a file, type the following
command:

optimizedb -zf flagfile

A–66 Advantage Ingres Embedded Edition Administrator's Guide

qbf

where flagfile contains:
-zk
empdata
-remployee
-rdept
-adno

The command that follows allows you to:

■ Generate statistics for all key or indexed columns in employee, dept, and
salhist.

■ Process the eno column in employee, whether or not eno is a key or indexed
column.

■ Generate statistics with only minimum and maximum values from the
columns.

■ Print status information as each column is processed. To proceed, type the
following:

optimizedb
-zk
-zv
-zx
empdata
-remployee
-aeno
-rdept
-rsalhist;

To allow up to 100 unique values from each column in the employee table
before merging adjacent values into the same histogram cell, type the following
command:

optimizedb
-zu100
empdata
-remployee;

qbf

Invokes Ingres/Query-By-Forms (QBF).

Ingres Commands A–67

qbf

Syntax

qbf dbname |vnode::dbname[/server_class]
[-mmode] [[-t]|-f|-j|-l querytarget] [-e] [-s]
[-uusername] [-Ggroupid]

Description

The qbf command invokes QBF, a forms-based interface for manipulating data
in a database.

If you specify a query target on the command line, you must own all the tables
that underlie the query target or have the proper permissions to access them. If
you specify a JoinDef for the query target, you or the database administrator
must own it.

The following table lists the valid command parameters and flags:

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

-mmode Bypasses the Join Definition phase of QBF, putting you
directly into the mode function for Query Execution,
where mode is retrieve, append, update or all. If you use
the -m flag, you must also specify a querytarget.

-t Indicates that querytarget is a table. A table field format
will be used to query the table. This is the default type.

-f Indicates that querytarget is a QBFName. This invokes
QBF with a Visual-Forms-Editor (VIFRED) form.

-j Indicates that the querytarget is a JoinDef.

-l Allows QBF to locate the querytarget type. QBF looks first
for a QBFName, then a JoinDef, and finally a table until it
finds the querytarget specified.

A–68 Advantage Ingres Embedded Edition Administrator's Guide

query

Parameter Description

querytarget Identifies the table, view, synonym, QBFName, or JoinDef
you want to access in your query. Specifying querytarget
will bring you directly into the Query Execution phase. If
you specify it without also specifying -mmode, you will
have the option of switching to the Join Definition phase.

The table, view, or synonym name may be qualified with
a valid schema name in the format schema.name. See the
Using Schemas for Owner Qualification section.

You can specify the type of querytarget to QBF by using
the -t, -f, -j, or -l flag. If no flag is specified for querytarget,
QBF assumes that the type is table and generates an error
if it cannot find a table with that name.

-e Flag that invokes the command in expert mode, causing
the catalogs to be displayed empty initially. This allows
you to enter the name of a specific object directly, rather
than select it from a list.

-s Suppresses status messages.

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters
section.

-Ggroupid

Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section.

You must enclose this parameter in double quotation
marks ("-Ggroupid").

See the Using Character-Based Querying and Reporting Tools for a complete
description of QBF.

query

Invokes the Query Execution phase of Ingres/Query-By-Forms (QBF).

Syntax

query dbname |vnode::dbname[/server_class]
[-mmode] [-t|-f|-j] querytarget [-e]
[-uusername] [-Ggroupid]

Ingres Commands A–69

reconcil

Description

The query command invokes the Query Execution phase of QBF, a forms-based
interface for manipulating data in a database. Through the Query Execution
phase you can append, retrieve or modify data. See Using Character-Based
Querying and Reporting Tools for a complete description of QBF Query Execution.

The flags and parameter names have the same meaning as those for the qbf
command, except that here querytarget is required. If you do not include
querytarget, you are prompted for it. If the querytarget type is not specified with
the –t, -f or –j flag, query uses the same order for looking up querytarget as the
flag –l in the qbf command: first QBFName, JoinDef, and then table.

reconcil

Assists in recovering lost data as a means of disaster recovery.

Syntax

reconcil [vnode::] dbname target_db_number
cdds_no|“(x,y,z,…)” |all “start_time” [-udba_name]

reconcil [vnode::] dbname target_db_number
cdds_no|‘(x,y,z,…)’ |all ‘start_time’ [-udba_name]

The following table lists valid command parameters and flags:

Parameter Description

target_db_number Specifies the Ingres/Replicator database number of
the failed database.

It must represent a valid database name and
Ingres/Net virtual node name.

dba_name Name of the DBA who owns the replicated
database specified in dbname.

A–70 Advantage Ingres Embedded Edition Administrator's Guide

reconcil

Parameter Description

cdds_no | “(x,y,z,…)” |all Specifies the CDDSs that are to be transmitted to
the failed database to bring it back in synch with its
replica.

To specify the CDDS, use one of the following
formats:

❧ cdds_no to send a single CDDS number

❧ ‘(x,y,z,…)’ to send a set of CDDS numbers

❧ all to send all CDDS numbers

Note: If you specify more than one CDDS number,
provide single quotes for UNIX and double quotes
for OpenVMS and Windows.

“start_time” Specifies the start time in Ingres date and time
format used for recovering the lost data. Provide
single quotes around the date and time for UNIX
and double quotes for OpenVMS and Windows
NT.

To ensure that the start time covers the duration of
the information gap, be sure to specify a start time
prior to the database failure. It is better to have
overlapping data that can be reconciled than risk
an information gap in the target database.

[vnode::]dbname Name of the replicated database that is to provide
the lost data to the failed database.

This replicated database must have a Replicator
server configured to transmit the lost data to the
failed database.

Before you access the reconcil command, be sure you have:

■ Quieted all Replicator servers in the environment by excluding users from
replicated databases.

■ Ensured that all the entries in the input queue have been moved to the
distribution queue.

Ingres Commands A–71

reconcil

Description

The reconcil command is used along with standard DBMS recovery methods to
recover lost data from journals, the Transaction Log File, or dump areas. The
cause of lost data is usually irrecoverable disk failure.

The reconcil command works only on a replicated database that is restored to a
consistent state using one of the standard recovery methods, such as
checkpointing, journaling, and operating system backup.

Caution! Do not use the reconcil command as your only means of disaster recovery. It
is intended for use only with other standard disaster recovery tools and only if the
conventional methods, alone, are unable to recover the data.

In the event of a system failure, it is standard procedure to restore the affected
database from checkpoints; however, if journals, log files, or dump areas are
lost, a gap of missing data will exist on the failed database. This gap of data may
still exist on one of the database replicas. The reconcil command can recover this
gap using the shadow and archive tables on the affected database, provided
those records still exist on these tables and reflect the data that was lost for the
duration of the gap.

Note: Since the arcclean command purges records from the archive and shadow
tables, you cannot use the reconcil command to recover lost data if you have
executed arcclean on all of the replicated databases for the time of the
information gap.

The reconcil command looks at each shadow table in the replicated database
from a user-specified start time. If a record belongs to a CDDS that is common
to the failed database, the command places an operation (insert, update, delete)
for that record in the distribution queue, provided the operation does not
already exist in the queue. Set the collision mode of the CDDS to
BenignResolution and start the necessary servers to allow the lost data to be
retransmitted to the failed database.

Example

The steps in the following scenario provide an example of how you can perform
disaster recovery with the reconcil command:

1. A system failure occurring between 10:25 a.m. and 10:30 a.m. on September
20 destroys a disk on database lon::europe. A disk containing the
transaction log file is also destroyed.

As a result, there is an estimated five-minute gap in committed transactions
that were in the log file after the journals were re-run.

2. The DBA recovers the database from checkpoint which brings the database
lon::europe to consistency as of 10:25 a.m.

A–72 Advantage Ingres Embedded Edition Administrator's Guide

reconcil

3. In order to recover lost data in the database from the transaction log file, the
DBA selects two databases to use with the reconcil command, nyc::hq and
hkg::asia, both of which are full-peer replicas of the original lon::europe
database.

The database lon::europe shares CDDS numbers 0 and 1 with nyc::hq and
CDDS number 2 with hkg::asia.

4. The DBA removes databases nyc::hq and hkg::asia from user service and
quiets their Replicator servers.

5. In both databases, the DBA ensures that all the entries in the input queue
have been moved to the distribution queue.

6. The DBA invokes the reconcil command on the nyc::hq and hkg::asia
databases. For example, the DBA issues the following command
respectively on the nyc::hq and hkg::asia UNIX machines:

reconcil nyc::hq 20 ‘(0,1)’ ‘16-nov-98 10:20’

reconcil hkg::asia –uwong 20 2 ‘16-nov-98 10:20’

 The target database number for both these commands is 20 (the number for
lon::europe). On the nyc::hq machine, the CDDS set specified is ‘(0,1)’, while
on the hkg::asia machine, only CDDS number 2 is specified.

 Note: Since data was lost between 10:25 and 10:30, the DBA starts the
reconcil command at 10:20, providing an overlap of at least five minutes to
ensure the gap of missing data is recovered.

7. The DBA configures CDDSs 0, 1, and 2 with collision mode
BenignResolution.

8. The DBA starts the Replicator servers to bring the database back in synch.

Ingres Commands A–73

relocatedb

relocatedb

Moves the journal, dump, checkpoint, or default work location for a database to
another location. Relocates or makes a copy of an entire database.

Syntax

relocatedb dbname[/server_class]
-new_ckp_location=locationname |
-new_dump_location=locationname |
-new_jnl_location=locationname |
-new_work_location=locationname |
-new_database=newdbname
[-location=locationname{, locationname}
–new_location=locationname {, locationname}]

Description

The relocatedb command performs relocation operations. It can move the
journal, dump, checkpoint, or default work locations. This is done, for example,
when a disk fills or is swapped out.

The relocatedb command can also make a copy of an entire database. Any
location in the original database can be moved to a new location in the new
database.

The following table lists valid command parameters and flags:

Parameter Description

dbname The name of the database whose file(s) are to be
moved.

The server_class is specified if required; for details,
see the Standard Command Line Flags and
Parameters section.

-new_ckp_location= Flag preceding the name of the new checkpoint
location. The location must be defined with
checkpoint usage. Relocating a checkpoint location
requires that checkpoints be disabled.

-new_dump_location= Flag preceding the name of the new dump location.
The location must be defined with dump usage.
Relocating a dump location requires that
checkpoints be disabled.

A–74 Advantage Ingres Embedded Edition Administrator's Guide

relocatedb

Parameter Description

-new_jnl_location= Flag preceding the name of the new journal location.
The location must be defined with journal usage.
Relocating a journal location requires that journaling
and checkpoints be disabled.

-new_work_location= Flag preceding the name of the new work location.
The database must have been previously extended
to this location for work usage. An exclusive lock is
required while the relocation is done.

-new_database= Flag preceding the name of the new database to be
created. An exclusive lock on the original database
is required while the original database is copied to
the new database.

newdbname The name of the new database to be created. The
new database name must not exist.

-location= Flag preceding a list of data locations. All locations
in the location list that follows this flag must be
valid locations for the database. When –
new_location is also specified, the data in each area
in the location list is moved to the corresponding
area in the new location list.

This option is valid only for database relocation
(-new_database= option).

-new_location= Flag preceding a list of new data locations. All
locations in the new location list that follows this
flag must be defined for the installation, and the
usage must be compatible with the usage of the
corresponding area in the location list. Each location
in the location list must be mapped to a distinct
location in the new location list.

This option is valid only for database relocation
(-new_database= option).

locationname The location name for the location involved in the
relocation.

Examples

To relocate the checkpoint location for the empdata database to newckp, type
the following command:

relocatedb empdata –new_ckp_location=newckp

Ingres Commands A–75

relocatedb

The foregoing command does the following:

■ Performs an update to the iidbdb: update iidatabase.ckpdev=’newckp’
where name=’empdata’ (This can be verified by connecting to the iidbdb
database and doing a select from iidatabase where name=’empdata’.)

■ Updates the checkpoint location in the configuration file. (This can be
verified by examining the output of the infodb empdata command.)

■ Copies checkpoint files from the old checkpoint location to the new
checkpoint location.

■ Deletes checkpoint files from the old checkpoint location.

To relocate the journal location for the empdata database to newjnl, type the
following command:

relocatedb empdata –new_jnl_location=newjnl

The command above does the following:

■ Performs an update to the iidbdb: update iidatabase.jnldev=’newjnl’ where
name=’empdata’. (This can be verified by connecting to the iidbdb database
and doing a select from iidatabase where name=’empdata’.)

■ Updates the journal location in the configuration file. (This can be verified
by examining the output of the infodb empdata command.)

■ Copies journal files from the old journal location to the new journal location.

■ Deletes journal files from the old journal location.

To relocate the dump location for the empdata database to newdump, type the
following command:

relocatedb empdata –new_dump_location=newdump

The command above does the following:

■ Performs an update to the iidbdb: update iidatabase.dmpdev=’newdump’
where name=’empdata’ (This can be verified by connecting to the iidbdb
database and doing a select from iidatabase where name=’empdata’.)

■ Updates the dump location in the configuration file. (This can be verified by
examining the output of the infodb empdata command.)

■ Copies dump files from the old dump location to the new dump location.

■ Deletes dump files from the old dump location.

To relocate the work location for the empdata database to newwork, type the
following command:

relocatedb empdata –new_work_location=newwork

A–76 Advantage Ingres Embedded Edition Administrator's Guide

repcat

The command above does the following:

■ Performs an update to the iidbdb: update iidatabase.sortdev=’newwork’
where name=’empdata’ (This can be verified by connecting to the iidbdb
database and doing a select from iidatabase where name=’empdata’.)

■ Updates the default work location in the configuration file. (This can be
verified by examining the output of the infodb empdata command.)

■ No files are copied for work locations.

To copy the empdata database to a new database called empdev, type the
following command:

relocatedb empdata –new_database=empdev

The command above does the following:

■ Inserts a record in the iidatabase table for this database.

■ Inserts a record in the iiextend table for all locations to which the new
database is extended.

■ Creates all the directories and copies all the files from the old database to
the new database.

■ Builds a database configuration file for the new database.

After the new database is created, you should be able to connect to it and access
all data.

repcat

Creates and loads Ingres/Replicator catalog tables.

Syntax

repcat [+w|-w] [-udba_name] [vnode::]dbname

Parameter Description

+w|-w Wait or don’t wait for an exclusive lock on the database
(-w is the default).

-udba_name Specifies the effective user for the session. You must run
repcat as the owner of the database.

This flag is optional.

Ingres Commands A–77

repcfg

Parameter Description

dbname The name of the database.

The vnode is specified if required. For details, see the
Standard Command Line Flags and Parameters section.

Description

The repcat command creates and populates the Ingres/Replicator catalogs and
creates Ingres/Replicator database events. You must run repcat before starting
the Replicator Manager for the first time.

The repcat command must be run on every Replicator database containing Full
Peer or Protected Read-only CDDSs. You do not need to run repcat on
databases with only Unprotected Read-only CDDSs. The repcat command must
be run before you can move the Ingres/Replicator configuration from a
configuration database to the other participating databases.

Note: You can run repcat from a single location by specifying the virtual node
name (vnode).

Examples

repcat europe

repcat –urep_dba nyc::hq

repcfg

Allows configuration of Replicator installations from the command line as an
alternative to using Replicator Manager or Visual DBA.

Syntax

repcfg dbname cdds activate [-uusername] cdds_no [cdds_no…]

repcfg dbname cdds deactivate [-uusername] cdds_no [cdds_no…]

repcfg dbname table createkeys [-uusername] [-q] table_no [table_no…]

A–78 Advantage Ingres Embedded Edition Administrator's Guide

repdbcfg

The following table lists valid command parameters:

Parameter Description

dbname The name of a database.

obj_type Can be cdds or table. These arguments can be abbreviated to
the initial character and are case-sensitive.

action Can be activate, deactivate, or createkeys. These arguments
can be abbreviated to the initial character and are case-
sensitive.

object Can be a CDDS number or table number.

Examples

To activate CDDS 0 in the repdb database:

repcfg repdb cdds activate 0

To create replication keys for tables 3 and 4 in the europe database and populate
the input queue:

repcfg europe table createkeys –q 3 4

repdbcfg

Configures multiple Ingres mobile databases simultaneously.

Syntax

repdbcfg [vnode::]dbname filename [- udba_name]

where vnode::dbname is the name of the database to be configured and filename is
the name of the input file.

The input file should have the following format:

user_name [db_no] [dbname] [cdds_no] [target_type]

Ingres Commands A–79

repdbcfg

The parameters of the input file are described in the following table:

Parameter Description

user_name The user name of the owner of the mobile database.

The user_name must be unique and 32 characters or less.

[db_no] The number of the mobile database.

The optional db_no must be a number in the range of 1-
32,767 that has not already been used in your Replicator
configuration (it must not exist in the dd_databases table). If
db_no is not provided on the first line in the file, repdbcfg
uses 101 as a default or the next higher number that does not
exist in dd_databases. If db_no is not specified on
subsequent lines, the previous value incremented by one is
used.

[dbname] The name of the mobile database.

The optional dbname should be a unique database name up
to 32 characters long. If it is not provided, the user_name is
used as the default database name. The node name for all
mobile databases is “mobile.”

[cdds_no] The number of the CDDS for the mobile database.

The optional cdds_no should be a number in the range of 1-
32,767. It should already be defined in the dd_cdds table
through the CDDS Detail screen. If it is not provided on the
first line, repdbcfg uses 50 as the default. If it is not provided
on subsequent lines, the previous value is used.

[target_type] The CDDS target type of the mobile database.

The possible values for target_type are:

FP – Full Peer
PR – Protected Read-only
UR – Unprotected Read-only

If target_type is not provided on the first line, the default is
FP. If it is not provided on subsequent lines, the default is
the previous value. For each target_type, repdbcfg creates a
data propagation path, under the given or default CDDS,
from the local database to the mobile database. If the
target_type is FP, repdbcfg creates an additional path from
the mobile database to the local database.

Note: In Full Peer situations, the paths created by repdbcfg will not be sufficient
to permit all changes from each mobile database to be replicated to all other
mobile databases.

A–80 Advantage Ingres Embedded Edition Administrator's Guide

repinst

Description

The repdbcfg command allows you to configure multiple Ingres mobile
databases simultaneously from the operating system prompt of the host
machine to which Ingres/Replicator on mobile Replicator will connect.

Examples

In the first example, repdbcfg is invoked against an input file containing 26 user
names:

�'����	
�������	
�:��'��	
G	
@��	

The repdbcfg utility defines 26 new full peer mobile databases, numbered 101
through 126. Connection names are in the form “mobile::charlie.” Data
propagation paths are added for CDDS 50 to and from the local database and
each new mobile database. If the local database number is 5, the first four paths
are 5-5-101, 101-101-5, 5-5-102, and 102-102-5.

In the second example, the repdbcfg uses the input file:

�'����	���	�'����	>	#3	
�������	
�:��'��	>��	�:��'��	
	37	
�����'	

The repdbcfg utility defines four new mobile databases numbered 201, 202, 301,
and 302. The first two are full peer and each has two data propagation paths for
CDDS 3. The other two databases are protected read-only and each has one
propagation path for CDDS 4.

repinst

Command used to create or remove one or more Ingres/Replicator services.

Syntax

repinst num_servers

repinst remove

Ingres Commands A–81

repmgr

Parameter Description

num_servers Number of Replicator servers to install.

Description

The repinst command creates or removes Replicator servers as Windows
Services. The first format of the command creates num_servers services. Servers
are numbered sequentially starting from 1. If some services have already been
created, repinst only creates new services beyond the existing ones, but up to
num_servers. The second format of the command removes all services.

Examples

To create three services, type the following command:

repinst 3

To create two more services, type the following command:

repinst 5

To remove all five services, type the following command:

repinst remove

repmgr

Invokes the Replicator Manager used to configure Ingres/Replicator.

Syntax

repmgr [-udba_name] [vnode::]dbname

The following table describes the repmgr parameters:

Parameter Description

-udba_name Specifies the effective user for the session. You must run
repmgr as the owner of the database.

This flag is optional.

A–82 Advantage Ingres Embedded Edition Administrator's Guide

repmod

Parameter Description

[vnode::]dbname Specifies the database to connect to.

By specifying the nodename of a remote database in
Replicator Manager, the database administrator can
administer the entire Ingres/Replicator network from the
local machine.

Note: To run Replicator Manager, you must have the correct system privileges
and use the correct DBA name. An Ingres user with security privilege can
impersonate the DBA and modify Replicator Manager information.

Description

The Replicator Manager command lets the distributed DBA for
Ingres/Replicator:

■ Connect to a single local database for table registration, a task that is
required to set up a table or database for replication

■ Configure the replication scheme

■ Move replication configuration information between databases

■ Check for replication configuration errors

■ Issue database events to determine server action

■ Monitor the distributed replication in a local database

■ Run Ingres/Replicator integrity reports

Example

Assume the following command is executed from a remote San Francisco
computer:

repmgr –unyc_dba nyc::hq

This command allows Replicator Manager to be run in client-server mode from
the local San Francisco computer to the hq database on the nyc node, and
assumes that the San Francisco DBA is impersonating the New York DBA
(nyc_dba).

repmod

Modifies the Ingres/Replicator system tables to predetermined storage
structures.

Ingres Commands A–83

report

Syntax

repmod [vnode::] dbname [- udba_name]

where [vnode::] dbname is the name of the database whose system tables are to be
modified.

Description

The repmod command is used to modify Ingres/Replicator system tables in a
replicated database to the most appropriate storage structure for accelerating
query processing. You must run repmod on the whole database.

report

Runs a default report or a report created with the rbf or sreport command.

Syntax

report dbname |vnode::dbname[/server_class]
[-r|-m [style]] report_target [(variable=value {,variable=value})]
[-foutputfile] [-oprinter] [-ncopies]
[-5] [-6] [+b|-b] [-d] [-h] [-lpagewidth] [-qmxquer]
[+t|-t] [-vpagelength] [-wmxwrap]
[-ifilename] [-s] [-uusername] [-Ggroupid]

Description

The report command creates a report set up by the rbf or sreport command, or
creates a default report for a table in the database.

The following table lists valid command parameters and flags:

Parameter Description

dbname The name of the database containing the report data.

Specify the vnode and server_class if required; for details,
see the Standard Command Line Flags and Parameters
section.

A–84 Advantage Ingres Embedded Edition Administrator's Guide

report

Parameter Description

-r Indicates that a report is specified as the report_target. If
the specified report is not found, an error message is
returned.

-m[style] Indicates that a table is specified as the report_target. This
instructs report to format a default report for the
specified table.

The optional style specifies the style of your report.
Accepted values are wrap, tabular (same as column),
block, labels, and indented. If you do not specify a style,
report selects either tabular or block, depending on the
width of your report. Tabular is used if all of the columns
fit on one page; otherwise block is selected. The default
report width is 132 characters.

report_target The name of the object on which you wish to run the
report. The report_target may be:

An existing report, created using RBF or sreport.

A table, view, or synonym in your database on which you
want a default report formatted.

The table, view, or synonym name may be qualified with
a valid schema name in the format schema.name. See the
Using Schemas for Owner Qualification section.

You can specify the type of report_target to report by using
the –r or –m flag. If neither flag is specified, report looks
first for a report having the specified name. If a report is
not found, but a table with the same name exists, report
sets up a default report for that table.

variable=value The variable specifies the name of a parameter used in the
report. The value specifies the value that is replaced for
every occurrence of the corresponding variable name in
the report specifications. If you want to specify a string or
a date, value must be quoted. Variable/value combinations
on the command line can be separated by blanks, tabs, or
commas.

-foutputfile Directs the formatted report to the outputfile. If this option
is not specified, the report is written to the standard
output file (normally your terminal), or, in the case of a
report specified by the Report-Writer, to the file
designated by the .output command in the report
specification file.

Ingres Commands A–85

report

Parameter Description

-oprinter Sends the report to the specified printer.

To set a default printer, define ING_PRINT. If you require
special print options, specify the options in ING_PRINT,
and specify the –o flag with no argument.

-ncopies Specifies the number of copies of the report to print.

-5 Forces version 5 compatibility mode, as follows:

The +t option is the default for aggregates.

All arithmetic is floating point, unless all values in the
computation are integers.

By default, the month portion of the current_date()
function is displayed in capital letters.

-6 (SQL reports only) Eliminates duplicate rows from
reports whose specification contains .data, .table, .view,
or .sort statements.

-b|+b +b forces form feeds at the end of each page. –b
suppresses form feeds for the end of each page. The flag
overrides any .formfeed or .noformfeed commands in the
report specification file.

-d Directs report to continue running the specified report if
the .setup or .cleanup statements generate DBMS errors.

-h Provides a null set of data for a report that retrieves no
rows. All .header and .footer sections are executed. The
detail section is suppressed. This feature allows you to
include the following .if statement in the report footer to
indicate that no rows were found:
��	��(�����'(�� 	�	�	
�:��		
		
;����		
		H��	����	����:��	�:�	
			=(��D	�;������������
I	

�����	

-lpagewidth Sets the maximum output line size to pagewidth
characters. By default, if output is to a file, the maximum
output line size is 132 characters; otherwise, the default
maximum line size is the width of the terminal.

-qmxquery Sets the maximum length of the query after all
substitutions for runtime parameters have been made to
mxquery characters. By default, the maximum query size
is 2048 characters. This option is needed only for
particularly long queries.

A–86 Advantage Ingres Embedded Edition Administrator's Guide

report

Parameter Description

-t|+t If enabled (+t), causes aggregates and breaks to occur
over rounded values for any floating point column whose
format has been specified in a .format command as
numeric F or template. Each value in the column is
rounded to the precision given by its format.
Additionally, breaks for date columns that use a date
template occur over the actual value appearing for the
dates.

If disabled (-t), aggregates and breaks use the underlying
values, not the rounded values. –t is the default.

-vpagelength Sets the number of lines for each page of output.
pagelength must be a positive integer. This flag overrides
any .pagelength command in the report specification file.
The default is 61 lines per page if the report is written to a
file, and 23 lines per page if written to a terminal.

-wmxwrap Sets mxwrap as the maximum number of lines to wrap
with one of the column C formats, or the maximum
number of lines that can be used within any block. By
default, the maximum value is 300 lines. This maximum is
provided as a protection against misspecified columns,
and is rarely needed.

-ifilename Reads a report specification from the specified file outside
of the database, and runs the report. This eliminates the
need to use the sreport command to place the report
source file within the database for processing.

You must omit report_target and the –r|-m flag if you use
the –I flag to specify a command file.

-s Suppresses status messages.

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters
section.

-Ggroupid

Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section.

You must enclose this parameter in double quotation
marks (“-Ggroupid”).

See Using Character-Based Querying and Reporting Tools for a complete description
of Ingres reporting tools and use of the report command.

Ingres Commands A–87

repstat

repstat

Provides statistics about Ingres/Replicator transactions.

Syntax

repstat

Description

The repstat command provides statistics about Ingres/Replicator transactions,
which include the Mutex address, queue size in entries, the start and end of
queue at entry number, and the number of entries currently in the queue.

rollforwarddb

Recovers a database or table from the last checkpoint and the current journal
and dump files. Can be used to relocate as well as recover tables.

Syntax

rollforwarddb dbname[/server_class]
[+c|-c] [+j|-j] [#m[n]] [-mdevice {, device}]
[-bdd-mmm-yyyy:hh:mm:ss] [-edd-mmm-yyyy:hh:mm:ss]
[#c[n]] [+w|-w] [-v] [-#f] [-uusername] [-help] [-statistics]
[-table=tablename {, tablename}
[-nosecondary_index] [-on_error_continue]
[-relocate –location=locationname {, locationname}
 -new_location=locationname {, locationname}]]
[-dmf_cache_size= x]
[-dmf_cache_size_4k|8k|16k|32k|64k= x]

Description

The rollforwarddb command recovers the specified databases. If a table list is
given, only those tables will be recovered. When executing table level recovery,
you may optionally move the table to a new location with the –relocate option.

If the target checkpoint was performed online (while the database was in use),
then rollforwarddb does the following:

1. Restores the database from the checkpoint location to the database location.

A–88 Advantage Ingres Embedded Edition Administrator's Guide

rollforwarddb

2. Applies the log records in the dump location to the database, which returns
the database to its state when the checkpoint began.

3. Applies the journal records to the database.

If the target checkpoint was executed offline, then the second step is omitted.

To execute the rollforwarddb command you must be:

■ The DBA for the named database, or

■ An Ingres system administrator running rollforwarddb with the –u flag

If you are using this command against a database in a group level installation,
you must have the VMS CMKRNL privilege to run the command.

The following table lists valid command parameters and flags:

Parameter Description

dbname The database to be recovered. One database name
must be specified.

The server_class is specified if required; for details, see
the Standard Command Line Flags and Parameters
section.

+c|-c Recover/do not recover the database from the
checkpoint file. The default is +c.

+j|-j Recover/do not recover the database from the journal.
The default is +j.

-mdevice {, device} Recovers the checkpoint from the specified tape device.
If a list of tape devices is supplied, parallel recovery
will be used for a multi-location database.

-bdd-mmm-yyyy
 [:hh:mm:ss]

Recovers only transactions that were completed after
the specified date and time.

Before using this option, read Caution notice below.

-edd-mmm-yyyy
 [:hh:mm:ss]

Recovers only transactions that were completed before
the specified date and time.

Before using this option, read Caution notice below.

#c[n] Recovers from an older checkpoint. The checkpoint
number n must be a valid checkpoint number (as
shown by the infodb command). This flag can be used
to recover the database when the current checkpoint is
unfinished. If n is omitted, the most recent usable
finished checkpoint is used for the recovery.

Ingres Commands A–89

rollforwarddb

Parameter Description

+w|-w

Wait/don’t wait for the database to be free (not in use).
The default is -w. This flag is described further below.

This flag can be used only in interactive sessions and
not in batch mode.

#m[n] For a multi-location database, recover n locations at a
time from disk.

-v Recovers the database from the journal in verbose
mode, which provides diagnostic information about all
operations executed during the recovery process.

-#f If rollforwarddb with journaling is attempted on a
database that has had jounaling disabled, it will fail
unless the force flag #f is specified.

-uusername Specifies the effective user for the session. For details,
see the Standard Command Line Flags and Parameters
section.

-help Displays syntax online.

-statistics Flag to print statistics about the rollforward.

-table=tablename
{, tablename}

A list of tables to be recovered from the target
checkpoint. If multiple tables are specified, no space is
allowed between the tables listed. Table recovery is not
allowed for views, system catalogs, or Enterprise
Access tables.

If recovering a base table:

Blob columns (long byte and long varchar columns)
will also be recovered.

Secondary indexes will also be recovered, unless
–nosecondary_index is specified.

-nosecondary_index Flag to inhibit automatic recovery of secondary
indexes.

Note: All secondary indexes will be marked
inconsistent. The base table cannot be accessed until
the secondary indexes are rebuilt or dropped.

This option is invalid for database level recovery.

A–90 Advantage Ingres Embedded Edition Administrator's Guide

rollforwarddb

Parameter Description

-on_error_continue Flag to continue processing if possible even if an error
occurs. If any error occurs processing a table, the table
is removed from the table list and processing
continues. If rollforwarddb processing has already
started for the table when the error occurs, the table is
marked inconsistent and all further operations on this
table are ignored.

If this option is not specified and an error is
encountered, all tables being recovered are marked
inconsistent and rollforwarddb terminates.

Note that this option will not force continuation of an
invalid rollforwarddb command. Rollforwarddb is
terminated immediately if an invalid table is specified
in the table list, for example, if a view, system catalog,
or Enterprise Access table, a nonexistent table; or a
table for which recovery is disallowed is specified.

This option is invalid for database level recovery.

-relocate Flag to indicate that a table is to be relocated to a new
location during recovery. When –relocate is specified
–location and –new_location must also be specified.

This option is invalid for database level recovery.

-location=locationname
{, locationname}

Flag preceding a list of data locations. When
–relocate and –new_location are also specified, the data
in each area in the location list is moved to the
corresponding area in the new location list. Only tables
being recovered are relocated.

This option is invalid for database level recovery.

-new_location=
locationname
{, locationname}

Flag preceding a list of new data locations. When
–relocate and –location are also specified, the data in
each area in the location list is moved to the
corresponding area in the new location list. Only tables
being recovered are relocated.

When this option is specified, –relocate and
–location must also be specified, and the number of
locations in the location list must equal the number of
locations in the new location list. (The number of
location names associated with a table cannot be
changed using rollforwarddb.)

This option is invalid for database level recovery.

locationname The location name for the location involved in the
relocation.

Ingres Commands A–91

rollforwarddb

Parameter Description

[-dmf_cache_size= x]
[-dmf_cache_size_4k|
8k|16k |32k|64k= x]

Specifies the size of the local cache that rollforwarddb
allocates.

Default values are:

256 for –dmf_cache_size= x which specifies number of
2 KB buffers.

200 for 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB which
specifies the number of respective buffers. For
example:

-dmf_cache_size_64k=200 would indicate the 200
64 KB buffers.

However, if you specify 0 for the 4 KB, 8 KB, 16 KB, 32
KB, or 64 KB buffers, 256 buffers will be allocated.

If the database was checkpointed to a tape, you can use the –m flag to restore
the database from the tape.

Before you execute rollforward from a tape device, the tape must be inserted
into the tape drive.

Caution! The –b and –e options of rollforwarddb should be used with caution. Recovery
enhancements in the Ingres release do not guarantee attempts to skip recovery of a
segment of the journal file with these parameters, and using –b/-e in this manner is not
supported. Table level recovery using the –e option will result in the table being logically
inconsistent.

The +w|-w flag directs rollforwarddb to wait (+w) or not wait (-w) for the
database to be free before recovering the database. Since rollforwarddb requires
the database to be locked, this flag allows you to decide whether or not to wait
for the database to be free if it is in use. If you specify +w, rollforwarddb will
wait as long as necessary for the database to become free for locking and
recovery. If you specify –w, an error is returned if the database is busy. The
default is –w.

By default, rollfrowarddb will sequentially restore data locations one at a time.
A database with more than one data location can be restored in parallel.

For detailed procedures on performing backup and recovery of the database,
see the Database Administrator’s Guide.

A–92 Advantage Ingres Embedded Edition Administrator's Guide

rpserver

Examples

The following command allows you to recover the empdata database from the
target checkpoint and journal. This assumes that both the journal and the
checkpoint are currently online. If not, they should be placed online before
executing these commands. To proceed, type the following command:

rollforwarddb empdata –v

To recover tables emp and emphist from the empdata database, type the
following command:

rollforwarddb empdata –table=emp,emphist

To recover tables emp and emphist from the empdata database without
recovering the indexes, type the following command:

rollforwarddb empdata –table=emp,emphist
 -nosecondary_index

Note: The indexes on tables emp and emphist will have to be rebuilt or dropped
before the tables can be accessed.

To recover table emp in the empdata database and also relocate it from location
emploc to the new location newemploc, type the following command:

rollforwarddb empdata –table=emp,emphist
 -relocate –location=emploc –new_location=newemploc

rollforwarddb empdata +c +j –m/dev/rmt0

rollforwarddb empdata +c +j –mMTA0:

rpserver

Command used to start up each Replicator server individually from the
operating system prompt.

Syntax

rpserver n

where n is the number of the server you want to start.

Ingres Commands A–93

rsstatd

Description

The rpserver command is used to start a Replicator server from the command
line. It takes only a single parameter, the server number. All other parameters
are read in from the runrepl.opt file, which should be present in the
corresponding server directory.

rsstatd

Provides Ingres/Replicator server statistics.

Syntax

rsstatd

sql

Invokes the line mode Ingres/Terminal Monitor.

Syntax

sql [SQL option flags] [line-mode flags]
dbname |vnode::dbname[/server_class]
[<altin] [>altout]

Description

This command invokes the line mode Ingres/Terminal Monitor. For procedures
on using this Terminal Monitor, see the SQL Reference Guide.

The following table lists valid command parameters and flags:

Parameter Description

SQL option flags Flags that can be used with the line mode Terminal
Monitor and other commands where noted. These flags
are described below.

line-mode flags Flags that can be used only with the line mode
Terminal Monitor. These flags are described below.

A–94 Advantage Ingres Embedded Edition Administrator's Guide

sql

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

<altin Specifies a file from which the Terminal Monitor reads
commands. The file must contain all the terminal
monitor commands needed to run the session.

>altout

Directs output from the Terminal Monitor to the
specified file. If you specify this parameter, you will
not see any output.

No space must come between the angle brackets
(< or >) and the filename.

Line-mode Flags The following table lists the line-mode flags that can be used only with the sql
command:

Flag Description

+a|-a Set/clear the autoclear option in the terminal monitor.
The default is +a.

+d|-d Print/don’t print the dayfile. The default is +d.

+s|-s Print/don’t print any of the monitor messages,
including prompts. The default is +s; if you specify -s,
the dayfile is not displayed.

-vX Set the column separator to the character specified by X.
The default is vertical bar (|).

SQL Option Flags SQL option flags are accepted by the sql command and other commands
where noted as the parameter [SQL option flags]. You can specify a maximum
of 12 SQL option flags.

The SQL option flags are presented in the table below. The first four flags (-c, -f,
-i, and -t) specify the format of output. The remaining SQL option flags affect
the behavior of the DBMS.

Flag Description

-cN Set the minimum field width for printing character
columns to N. The default is 6.

Ingres Commands A–95

sql

Flag Description

-fkxM.N Set floating point output column width to M characters
(total), including N decimal places, and (if warranted) e+
-xx and the decimal indicator character itself. k may be 4 or
8 to apply to f4’s or f8’s respectively. x may be E, F, G or N
(uppercase or lowercase) to specify an output format. E
indicates exponential format. F or N indicates the floating
point format. G indicates the floating point format and
guarantees decimal alignment.

If you specify F, N, or G and the number is too large for the
format indicated by the flag, it is displayed in exponential
format. To prevent this format overflow, M should be
greater than or equal to N + 7.

 The default display format for both f4 and f8 is n10.3,
unless your computer supports the IEEE standard for
floating point numbers, in which case the display format
for f4 and f8 is n11.3.

-ikN Set integer output column width to N. k may be 1, 2, or 4
for i1’s, i2’s, or i4’s, respectively. The default for N is 6 for
i1 and i2 fields, and 13 for i4 fields.

-tN Set the minimum field width for printing text columns to
N. The default is 6.

+U|-U

Enables/disables user updating of the system catalogs and
secondary indexes. This flag takes an exclusive lock on the
database.

To update system catalogs you must have the update
system tables privilege obtained through accessdb.

You must enclose this flag in double quotation marks ("+U"
or "-U").

+Y|-Y

Same as “+/-U” flag, except an exclusive lock on the
database.

You must enclose this flag in double quotation marks ("+Y"
or "-Y").

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters section.

-Ggroupid

Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section. You must
enclose this parameter in double quotation marks
("-Ggroupid").

A–96 Advantage Ingres Embedded Edition Administrator's Guide

sql

Flag Description

-Rroleid

Specifies a role identifier for the session. For details, see the
Standard Command Line Flags and Parameters section.

You must enclose this parameter in double quotation
marks ("-Rroleid").

-l Locks the database for your exclusive use. When you
specify this flag, no one else can open the database while
you are in it. If you attempt to take an exclusive lock on a
database that is in use, the system informs you that the
database is temporarily unavailable.

-nM Sets modify mode on the index command to M. M must be
one of the following storage structures: ISAM, CISAM, B-
tree, CB-tree, Hash, or CHash. The default is ISAM.

+w|-w

Specifies wait/don’t wait for the database. The default is -
w. If you specify +w, there is a wait, provided that certain
processes are running (sql -l, sql -U, verifydb,
rollforwarddb or sysmod) on the given database. Upon
completion of those processes, the operation proceeds. If
you specify -w and the database is not available, a message
is returned and execution is stopped. If you omit the w flag
and the database is unavailable, then an error message is
returned if running in foreground (more precisely, if the
standard input is from a terminal). Otherwise the wait
option is invoked.

This flag is not valid in batch mode.

-numeric_
overflow =
fail|ignore
|warn

Sets error handling mode for numeric overflow, underflow
and division by zero.

The fail setting causes an error message to be issued and
the statement is aborted. This is the default setting. To
obtain ANSI-compliant behavior, use this setting (or omit
for the default).

The ignore setting causes no error message to be issued.

The warn setting causes a warning message to be issued.

-string_
truncation =
fail|ignore

Sets error handling mode for string truncation errors. This
error will occur if you attempt to insert a string into a table
column that is too short to contain the value.

The fail setting causes an error message to be issued and
the statement is aborted.

The ignore setting causes no error message to be issued.
The string is truncated and inserted. This is the default
setting.

Ingres Commands A–97

starview

Examples

Open the empdata database:

sql empdata

Open empdata, suppressing the dayfile message:

sql empdata -d

Open empdata, suppressing the dayfile message and the terminal monitor
prompts and messages; read into the workspace the contents of the batchfile:

sql empdata -s <batchfile

Open empdata, display f4 columns in G format with two decimal places and i1
columns with three spaces:

sql empdata -f4g12.2 -I13

starview

Invokes the forms-based program, StarView, which is used for managing
distributed database(s) using Ingres/Star. StarView allows access to multiple
databases simultaneously.

Syntax

starview [vnode::][distdbname][/star]

You may also include a remote vnode name to run StarView against a
distributed database on a remote node.

Note: If you invoke StarView with a database name, the Node Status and LDB
Types frame is displayed. If you invoke StarView without specifying a database
name, the opening StarView main frame is displayed.

Description

StarView is a simple forms-based program that helps you manage your
distributed databases.

Using StarView you can:

■ Display all your distributed databases

A–98 Advantage Ingres Embedded Edition Administrator's Guide

statdump

■ Display the nodes, databases, and tables registered in a distributed database

■ Display the local database objects that make up a distributed database

■ Test the network connections to each node in a distributed database

■ Register local tables and views in a distributed database without using the
SQL register as link statement

■ Remove database objects that you had previously registered in your
distributed database

In addition, you can query databases from within StarView with direct access
to:

■ Ingres Interactive SQL (ISQL)

■ The Tables command

The StarView program operates in exactly the same way as forms-based Ingres
tools. See Using Character-Based Querying and Reporting Tools for a complete
explanation of using forms.

Example

To manage distributed databases on the remote node new_york, type the
following command:

starview new_york::mystar

statdump

Prints statistics contained in the iistats and iihistograms catalogs of the Standard
Catalog Interface.

Syntax

statdump [-zf filename]

or
statdump [-zq] [-zdl] [-zn#]
[-zc] [-o filename]
[ingres flags] dbname
{-rtablename {-acolumnname}}|{-xrtablename}

or
statdump [-help]

Ingres Commands A–99

statdump

Description

The statdump command allows you to inspect the iistats and iihistograms
catalogs in the Standard Catalog Interface. These views contain statistical
information about columns used by the Ingres Query Optimizer as it selects an
efficient query processing strategy. The statistical information is usually
generated by issuing the optimizedb command.

The following table lists valid command parameters and flags:

Parameter Description

-zffilename Directs statdump to read filename for all other command
line flags, database names, and any other command line
arguments. This file must contain only one flag per line.
(See the examples below.) If this flag is specified, no other
flags or arguments can appear on the command line; they
must, instead, appear in the specified file.

-zq Displays only the information contained in the iistats
catalog and not the histogram information contained in
iihistograms (Quiet mode).

-zdl Deletes statistics from the system catalogs. When this flag
is included, the statistics for the specified tables and
columns (if any are specified) are deleted rather than
displayed.

-zn# Displays floating point values in scientific notation (for
example, 9.9999+e9) and sets the precision to the level
specified by #. The total width of the displayed number
will be equal to the value of the precision level + 7.

-zc Displays statistics on the system catalogs as well as the
base tables. If you want statistics for selected system
catalogs, use this flag and specify the individual tables with
the -r flag. You must be the DBA of the specified database
to use this flag.

-o filename Directs the output of statdump to the file specified by
filename. The resulting file is an ASCII file whose content is
identical to the information normally sent to the terminal
screen.

The resulting file can be used as input to optimizedb. See
the -i flag description for the Optimizedb command.

A–100 Advantage Ingres Embedded Edition Administrator's Guide

statdump

Parameter Description

ingres flags Pass any of these flags. Statdump accepts the following
SQL option flags:

[+|-]U
-u
-cN
-tN
–ikN
-fkxM.N
[+|-]w
-xk

For a complete description of these flags, see the sql
command.

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

-rtablename Produces statistics for the specified tables only. If omitted,
then statistics for all tables are produced.

The table name may be qualified with a valid schema name
in the format schema.tablename. See the Using Schemas for
Owner Qualification section.

-rxtablename Specifies tablenames to be excluded from processing by
statdump. Except for these, statistics for all columns in all
tables in the database are produced.

-acolumnname Produces statistics for the specified column(s) only. To
specify individual columns you must specify the table
name with the -r flag. If column names are omitted, then all
columns of the specified table are processed.

-help Displays syntax online.

Note: If a specified table or column cannot be found, then a warning message is
printed and processing continues.

Note: The combination of -rtablename and -xrtablename parameters is not
permitted in a single statdump request, nor is the combination of -xrtablename
and -acolumnname.

Examples

Print the statistical information for all columns in the employee table in the
empdata database:

Ingres Commands A–101

sysmod

statdump empdata -remployee

For all columns in all tables of the empdata database, print out only the
information in the iistats system table:

statdump -zq empdata

Delete statistics for all columns in the employee table:

statdump -zdl empdata -remployee

sysmod

Modifies the system tables to predetermined storage structures.

Syntax

sysmod dbname [/server_class]
{tablename} [-f product {product}] [-page_size=n][+w|-w]

Description

The sysmod command modifies a database’s system tables (catalogs) to the
most appropriate storage structure for accelerating query processing. You can
run sysmod on the whole database or on specified tables.

To use this command, you must be the DBA for the specified database or the
Ingres system administrator.

The following table lists valid command parameters and flags:

Parameter Description

dbname The name of the database.

The server_class is specified if required; for details, see the
Standard Command Line Flags and Parameters section. Do
not specify the server_class as /star if the database is a Star
distributed database.

A–102 Advantage Ingres Embedded Edition Administrator's Guide

tables

Parameter Description

tablename Specifies individual tables to be modified by sysmod. May be
Star standard catalogs or Star-specific system catalogs. If
omitted, all tables in the database are processed.

The table name may be qualified with a valid schema name in
the format schema.tablename. See the Using Schemas for
Owner Qualification section.

-f product Specifies the user interface product(s) for which you want to
modify system tables. Allowable product names are ingres,
ingres/dbd, vision, and windows_4gl. If you omit this
parameter, all user interfaces are processed. For details, see
the Standard Command Line Flags and Parameters section.

Note: You cannot specify individual user interface catalogs;
when you specify the product parameter, all catalogs are
processed for that user interface product.

-page_size Permits modifying the existing system catalogs with a
different page size: Specify page_size=n, where n is one of
2048, 4096, 8192, 16384, 32768, 65536.

Example: SYSMOD test –page_size=4096

+w|-w

Directs sysmod to wait or not wait until the database is free
before executing. Sysmod requires exclusive access to the
database.

This flag is not valid in batch mode.

tables

This command starts the tables program.

Syntax

tables dbname|vnode::dbname[/server_class][-e] [-uusername]
[-Ggroupid]

Description

The tables program invokes Tables, a forms-based interface for creating,
destroying and examining tables.

Ingres Commands A–103

unloaddb

See Using Character-Based Querying and Reporting Tools for a complete description
of tables.

The following table lists valid command flags and parameters:

Parameter Description

dbname The name of the database.

Note: The vnode and server_class are specified if required.
For details, see the Standard Command Line Flags and
Parameters section.

-e Invokes Tables in empty mode. In essence, this flag causes
any catalog of tables to be initially displayed empty, so that
the user can enter specific names of such objects.

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters section.

-Ggroupid

Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section.

You must enclose this parameter in double quotation
marks ("-Ggroupid").

Example

Invoke the tables utility with an empty initial catalog of the emp database for
the effective user emma:

tables emp -e -uemma

unloaddb

Creates command files for complete unloading and reloading of a database.

Syntax

unloaddb dbname|vnode::dbname[/server_class]
[-c] [-ddirname] [-source=dirname] [-dest=dirname]
[-uusername] [-Ggroupid]

A–104 Advantage Ingres Embedded Edition Administrator's Guide

unloaddb

Description

The unloaddb command creates two command files that the DBA uses to
unload the data from a database and reload the data into a new, empty
database. The name of the two command files depend upon the operating
system:

unload.bat—contains commands to read sequentially through the database,
copying every user table into its own file in the named directory.

unload.ing—contains commands to read sequentially through the database,
copying every user table into its own file in the named directory.

reload.bat—contains commands to load a new, empty database with the
information contained in the files created by unload.bat.

reload.ing—contains commands to load a new, empty database with the
information contained in the files created by unload.ing.

The unloaddb command does not do the unloading or reloading of the
database; the command files created by unloaddb must be executed by the DBA
to accomplish these tasks. It is important that the database be recreated with
reload.ing before doing any work (for example, creating tables, forms, and
reports) in the new database.

The following table lists valid command parameters and flags:

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required. For
details, see the Standard Command Line Flags and
Parameters section.

-c Directs unloaddb to create printable data files. This is
useful for transporting databases between computer
systems whose internal representations of non-ASCII
data differ.

Unloaddb cannot create printable files if (1) binary data
is stored in varchar columns, or (2) tables contain user-
maintained logical keys.

Ingres Commands A–105

unloaddb

Parameter Description

-ddirname Stores the unload.ing and reload.ing in the location
specified by dirname instead of the default current
directory. The specification can be either a full or
relative directory specification.

The dirname must not be the actual database directory,
because the files created by unloaddb may have the
same names as the tables in the database. The actual
database directory is:

[II_DATABASE]\ingres\data\default\dbname

Note: [II_DATABASE] must be replaced by the value
returned by ingprenvII_DATABASE.

$II_DATABASE/ingres/data/default/dbname

II_DATABASE:[INGRES.DATA.DBNAME]

-source=dirname The source directory from which the database will be
reloaded. An empty dirname specification ("") denotes
the current directory. The -source specification overrides
a -d specification for the reload file.

If a source is specified without a destination (no -d or
-dest) then the default unload directory is used.

The source directory specification is not checked for
validity or existence. This allows the scripts to be moved
to another machine for reloading.

-dest=dirname The destination directory into which the database will
be unloaded. An empty dirname specification ("")
denotes the current directory. The -dest specification
overrides a
-d specification for the unload file.

If a destination is specified without a source (no -source)
then the default reload directory is used.

The destination directory specification is not checked for
validity or existence. This allows the scripts to be moved
to another machine for unloading.

-uusername Specifies the effective user for the session. For details,
see the Standard Command Line Flags and Parameters
section.

A–106 Advantage Ingres Embedded Edition Administrator's Guide

unloaddb

Parameter Description

-Ggroupid

Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section.

You must enclose this parameter in double quotation
marks ("-Ggroupid").

The unloaddb command unloads all objects in the database. These include
tables, views, integrity constraints, permissions, forms, graphs, and report
definitions. Use unloaddb when a database must be totally rebuilt, or for
checkpointing the database.

In order to optimize performance, run the sysmod and optimizedb commands
after recreating the database.

The unloaddb command uses a version of the copydb command to generate the
copy commands in the unload.ing and reload.ing files. Consequently, all
limitations of the copydb command apply to the unloaddb command.

Examples

To unload and reload the empdata database:

cd\mydir\backup
unloaddb empdata
unload
destroydb empdata
createdb empdata
reload
sysmod empdata

cd /mydir/backup
unloaddb empdata
unload.ing
destroydb empdata
createdb empdata
reload.ing
sysmod empdata

set default [mydir.backup]
unloaddb empdata
@unload.ing
destroydb empdata
createdb empdata
@reload.ing
sysmod empdata

Ingres Commands A–107

upgradedb

To unload the empdata database with separate source and destination directory
specifications:

unloaddb empdata -source="misc/loaddir/"
-dest="misc/dumpdir"

Copy statements in the reload script would have the form:

copy emps () from ‘misc/loaddir/emps.bob’

Copy statements in the unload script would have the form:

copy emps () into ‘misc/dumpdir/emps.bob’

Unload the empdata database from the $HOME directory with source and
destination directory specifications with no path:

unloaddb empdata -source="" -dest=""

Copy statements in the reload script would have the form:

copy emps () from ‘emps.bob’

Copy statements in the unload script would have the form:

copy emps () into ‘emps.bob’

upgradedb

Installs and upgrades databases.

Syntax

upgradedb dbname |vnode::dbname[/server_class]|-all
[-f product {product}] [-help]

Description

Upgradedb is used to install and upgrade one or all databases in the Ingres
installation.

Note: If databases are not upgraded at install time, rmcmd must be shut down
(that is, set to zero in CBF) before running upgradedb. Upgradedb takes a lock
on iidbdb, and it cannot get the lock if rmcmd is running.

A–108 Advantage Ingres Embedded Edition Administrator's Guide

upgradedb

The following table lists valid command parameters and flags:

Parameter Description

dbname The name of a specific database to be upgraded.

There can be only one database specified at a time.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

-all Causes upgradedb to operate on all databases in the
installation that have not already been upgraded to the
new release level. When you specify the -all flag,
upgradedb skips any databases already at the current
release level.

You can specify either dbname or all, but not both.

-f product Specifies the user interface product(s) for which you want
to upgrade the database. Allowable product names are
ingres, ingres/dbd, vision, windows_4gl and nofeclients. If
you omit this parameter, all Ingres tools for the database
are processed. For more details, see the Standard
Command Line Flags and Parameters section.

-help Displays syntax online.

Note: It is usually advisable to use the same -f command to upgrade the
database that was used to create it initially. If you are upgrading a pre-6.3
database, the
-fingres command upgrades your existing user interface catalogs without
creating the catalogs for the Ingres tool products that were new with 6.3 (Vision
and Windows 4GL).

Upgradedb triggers upgradefe, which is described in more detail in the
upgradefe command description.

If upgradedb cannot upgrade the user interface catalogs for a database, it prints
a warning and marks the database operative. You can then either run upgradefe
directly on the database, or rerun upgradedb, specifying the database
individually with the dbname parameter.

Ingres Commands A–109

upgradefe

upgradefe

Installs and upgrades Ingres tool catalog definitions.

Syntax

upgradefe dbname |vnode::dbname[/server_class]
{product} [-b] [-vversion] [-s] [-uusername]

Description

The upgradefe command installs and upgrades the catalogs required by Ingres
tools. You must execute the upgradefe command after installing a new version
of any Ingres tool, if the new version requires changes to the catalog definitions.

The following table lists valid command parameters and flags:

Parameter Description

dbname The name of the database.

The vnode and server_class are specified if required; for
details, see the Standard Command Line Flags and
Parameters section.

product Specifies the Ingres tool products for which you want to
upgrade the database. Allowable product names are
ingres, ingres/dbd, vision, and windows_4gl. If you omit
this parameter, all user interfaces for the database are
processed. For more details, see the Standard Command
Line Flags and Parameters section.

-b Installs the modules required to support the product
Ingres. (Specifying the -b flag is equivalent to specifying
the product ingres.)

-vversion Specifies the version number of the product to be
installed; if the -v flag is not specified, the highest known
version is installed.

-s Suppresses messages from upgradefe.

A–110 Advantage Ingres Embedded Edition Administrator's Guide

usermod

Parameter Description

-uusername Specifies the effective user for the session. If you want to
upgrade a database you do not own, you must use the -u
flag to specify the user name of the DBA. For details, see
the Standard Command Line Flags and Parameters
section.

Examples

The following example installs catalogs for OpenROAD:

upgradefe mydb windows_4gl

The following example installs catalogs for the base tools and Vision:

upgradefe mydb ingres vision

usermod

Modifies the user-defined tables to predetermined storage structures.

Syntax

usermod dbname |vnode::dbname[/server_class] [-uusername] [tables] [-noint]

Description

The usermod command modifies a database’s user-defined tables to the most
appropriate storage structure for accelerating query processing. Just like
sysmod, which does a modify on system catalogs, this is a useful utility for
maintaining tables on a regular basis. Running this utility on a regular basis or
when the table has excess overflow pages, improves the performance of user
applications.

You can run sysmod on the whole database or on specified tables. If no specific
tables are specified, all the tables belonging to the user will be modified.

The following table lists valid command parameters and flags:

Parameter Description

Ingres Commands A–111

verifydb

Parameter Description

dbname The name of the database. The vnode and server_class are
specified if required; for details, see the Standard Command
Line Flags and Parameters section. Do not specify the
server_class as /star if the database is a Star distributed
database.

-uusername Specifies the effective user for the session. For details, see the
Standard Command Line Flags and Parameters section.

tables Specifies individual tables to be modified by usermod, the
table names should be separated by spaces. May be Star
standard catalogs or Star-specific system catalogs. If omitted,
all tables in the database are processed. The table name may
be qualified with a valid schema name in the format
schema.tablename. See the Using Schemas for Owner
Qualification section.

-noint The “-noint” flag specifies uninterrupted run, that is, usermod
should be run for all the specified tables, even if there were
errors.

verifydb

Destroys or lists any unrequired disk files, expired tables, or temporary tables in
the specified databases, or removes references to a specified table from the
DBMS system catalogs.

Syntax

verifydb -mmode -sscope -ooperation [-n | -lflogfilename]
[-v] [-uusername]

Description

The verifydb command performs clean up operations on one or more databases
in an installation. Using this command, you can delete all unrequired disk files
in a database directory, delete temporary and/or expired tables, or remove all
references to a specified table from the DBMS system catalogs.

This command requires exclusive access to databases. Verify that there are no
active sessions in the DBMS before continuing. If users are connected to the
database, a runtime error is displayed. Processes that maintain database
connections, rmcmd and icesvr, should be shut down.

A–112 Advantage Ingres Embedded Edition Administrator's Guide

verifydb

Verifydb logs all of its actions to the terminal screen. It also logs to a verify log
file, unless the -n (nologging) flag is used. The default log file is iivdb.log and is
used unless another name is specified with the -lf option. Note that verifydb
always outputs the log file to the II_CONFIG location. If II_CONFIG is not
defined, it outputs to location:

%II_SYSTEM%\ingres\files

II_SYSTEM/ingres/files

II_SYSTEM:[INGRES.FILES]

If the log file does not exist when you execute verifydb, it is created. If it does
exist, verifydb appends to it. Since this file grows each time you execute
verifydb with this log file, be sure to delete it occasionally in order to save disk
space.

The following table lists valid command parameters and flags:

Parameter Description

-mmode This mandatory flag specifies the mode in which verifydb
executes. Mode can be any of the following:

report—directs verifydb to log its findings. Use the report
mode if you want verifydb to only log, rather than actually
delete, the tables and/or files that it finds.

run—directs verifydb to perform the specified operation
and log all actions that it performs.

runinteractive—directs verifydb to prompt the user for
confirmation before each action is taken. If the user
responds negatively to a prompt, verifydb skips that action
and goes on to the next.

runsilent—tells verifydb to perform the specified
operations but turns off the logging to the terminal.
(Logging to the log file continues.)

Ingres Commands A–113

verifydb

Parameter Description

-sscope This mandatory flag specifies the scope of the verifydb
command. Scope can be any of the following:

dbname “dbname |vnode::dbname
[/server_class]
{dbname |vnode::dbname
[/server_class]}”

Tells verifydb to perform the operation only on the
databases specified. All databases specified by this
qualifier must have the same owner. You can specify up to
10 databases.

dba—directs verifydb to operate on all databases for which
the user is the DBA or for all databases owned by the DBA
specified by the -u flag.

installation—requires verifydb to perform the operation on
all operative databases. You must be a privileged user to
use this qualifier.

-ooperation This mandatory flag specifies the operation to be
performed. If the report mode is specified, the files or
tables found are not actually deleted, but only logged. The
options for operation are:

accesscheck—checks each database specified by the scope
and returns a message that says whether the server can
connect to the database and, if not, provides a short
message indicating why not. When you use this option,
you must also specify report mode (-mreport).

You must be either a DBA or a privileged user to use this
option. If you are a DBA and use the dbname option for
scope, you must be the DBA of all the listed databases. If
you use the dba option, verifydb will check all the
databases for which you are the DBA. To use the scope’s
installation option, you must be a privileged user. In that
case, accesscheck will check all the databases in the
installation.

Additionally, if you are a privileged user, you can use the -
u flag to run this option as another user.

purge—directs verifydb to delete all disk files in the
database directory that are no longer required. This
operation is a combination of temp_purge and
expired_purge.

A–114 Advantage Ingres Embedded Edition Administrator's Guide

verifydb

Parameter Description

-ooperation (cont.) temp_purge—tells verifydb to search for and delete all
temporary tables from the database.

expired_purge—directs verifydb to search for and delete
all expired tables from the database.

drop_table “tablename”—tells verifydb to remove all
references to a specified table from the DBMS system
catalogs. If you specify this option, you must use the
dbname option for the -s flag.

table “tablename”—checks the specified tables and reports
any inconsistencies found, making recommendations to
repair those inconsistencies. The table operation may not
be used on core system catalogs. Secondary indexes may
be checked but cannot be repaired. A table lock is taken
during verifydb table operations, but a database lock is not
taken. Use this option only when you are using the report
mode (-mreport).

This operation also verifies referential integrity between
the internal pointers for long data types stored in base table
records and the extension table records they point to. Any
inconsistencies are reported.

Caution! Using this option when you are in any run mode is
not supported unless you are receiving assistance from Technical
Support and are advised to do so; it can have severe, unexpected
results.

xtable “tablename”—functions like the table option,
however xtable uses a stricter patch algorithm, which
guarantees data integrity—with the risk that some valid
data may be discarded. Use this option only when you are
using the report mode (-mreport).

Ingres Commands A–115

verifydb

Parameter Description

-ooperation (cont.) Caution! Using this option when you are in any run mode is
not supported unless you are receiving assistance from Technical
Support and are advised to do so; it can have severe, unexpected
results.

dbms_catalogs—checks the dbms catalogs and reports any
inconsistencies found, making recommendations to repair
those inconsistencies. Use this option only when you are
using the report mode (-mreport).

Caution! Using this option when you are in runinteractive
mode is not supported unless you are receiving assistance from
Technical Support and are advised to do so; it can have severe,
unexpected results. This operation is not supported in run modes
other that runiteractive

force_consistent—used to permit entry into a database
that is inconsistent. This does not fix the problem with the
database; it merely allows you to force the database to act
as if it were in a consistent state. This can be very
dangerous if used against a production database. Hidden
data damage may render one or more tables in the
database unrecoverable at some time in the future. Use
this option only when you are using the report mode
(-mreport).

Caution! Using this option when you are in any run mode is
not supported unless you are receiving assistance from Technical
Support and are advised to do so; it can have severe, unexpected
results.

refresh_ldbs—directs verifydb to assure that a distributed
database correctly reflects the release level of all remote
databases that contain objects registered to the distributed
database. It is recommended that you run this operation on
a distributed database after you run upgradedb on any of
the remote databases accessed by the distributed database.

The distributed databases are specified by the -sscope
parameter. For the refresh_ldbs option only, verifydb
skips all non-distributed databases and processes only
distributed databases. (In all other cases, verifydb
processes only non-distributed databases.)

-n Nolog mode. Turns off the logging to the log file; logging
to the terminal continues.

-lflogfilename Specifies an alternate log file (in the II_CONFIG location) to
which verifydb is to log activity.

The -n flag cannot appear if an alternate log is specified.

A–116 Advantage Ingres Embedded Edition Administrator's Guide

verifydb

Parameter Description

-v Verbose mode. Provides additional dialog messages when
performing the verifydb operation.

This flag applies only for table operations.

-uusername Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters section.

Examples

Execute verifydb against all databases for which you are the DBA, removing all
unrequired disk files and logging all the operations that are performed:

verifydb -mrun -sdba -opurge

Run verifydb against the database teach_examp in report mode, looking for
expired tables:

verifydb -mreport -sdbname "teach_examp" -oexpired_purge

Execute verifydb as the user fredk against all the databases for which fredk is
the DBA, deleting temporary and expired tables:

verifydb -mrun -sdba -opurge -ufredk

Drop references to the table new_benefits in the database new_employee:

verifydb -mrun -sdbname "new_employee" -odrop_table
 "new_benefits"

Run consistency checks on the DBMS catalogs for the iidbdb database. Note that
only the report mode is used for this catalog verify activity:

verifydb -mreport -sdbname "iidbdb" -odbms_catalogs

Run consistency checks on the DBMS catalogs for all databases that you own,
with output going to the alternate log file checkdbs.log. Note again that only the
report mode is used for this catalog verify activity:

verifydb -mreport -sdba -odbms_catalogs -lfcheckdbs.log

Ingres Commands A–117

xmlimport

xmlimport

Imports the xml data file into Ingres.

Syntax

xmlimport dbname [uuser] [P] [-GgroupID] [-debug] xmlfile

Description

The xmlimport utility imports into the Ingres database any xml data file
containing Ingres table data that conforms to Ingres dtd. You may have several
table definitions and index definitions in the xml file. When xmlimport is run,
the tables and indexes specified in the xml file are created in the provided
database, and the data is uploaded.

Internally, xmlimport parses the xml file to generate an SQL script from the
metadata information in the xml file and for the data files for each table's data.
The xmlimport utility then runs the SQL script to create tables and upload the
data from the data files. Files are created in the temp directory and deleted
when the script has been run, except when the -debug flag is specified.

Parameter Description

dbname The name of the database being exported. The vnode and
server_class are specified if required. For details, see the
Standard Command Line Flags and Parameters section.

-uuser Specifies the effective user for the session. For details, see
the Standard Command Line Flags and Parameters section.

-P Password if the session requires a password.

-GgroupID Specifies a group identifier. For details, see the Standard
Command Line Flags and Parameters section.

-debug Leaves the generated xml file and the data files in the temp
location. By default the files in this location are deleted.

xmlfile The name of the xmlfile that needs to be imported into the
database.

A–118 Advantage Ingres Embedded Edition Administrator's Guide

xmlimport

The xmlimport utility validates the xmlfile against the generic Ingres dtd. If the
ingres dtd is External, it should be by default at the same location as the xml
file. If Ingres is referred to the ingres.dtd in the $II_SYSTEM/ingres/files area,
the dtd should be present in the $II_SYSTEM/ingres/files directory.

If the tables and indexes are already present in the database, an error displays
and the data is appended to the existing table.

This utility is useful to import an xml file generated by genxml into an Ingres
database. (See the genxml section for more information about exporting Ingres
data in xml format).

Example

To import an xmlfile ‘xmlout.xml’ into an Ingres database testdb, run:

xmlimport testdb xmlout.xml.

The xmlimport utility parses xmlout.xml and then creates the tables and indexes
defined in the xmlout.xml file in testdb database.

Ingres Commands A–119

Appendix

B
Ingres Utilities

This appendix lists Ingres utilities that are executed at the command line. These
utilities require special privileges to invoke or are special purpose programs.

cacheutil

Returns information about shared memory buffer caches installed in the Ingres
installation.

Syntax

cacheutil

Description

The cacheutil utility can be used to show brief or detailed information about
existing caches that are no longer being used. It can also be used to destroy
shared memory segments used for buffer caches that are no longer being used.
Cacheutil will not destroy a buffer cache that is currently being used.

You must have OpenVMS privileges to use the cacheutil utility.

When you see the CACHEUTIL> prompt, choose one of the following options:

■ list

 List the installation’s existing shared buffer caches. The list gives the size of
the cache and the number of connected DBMS servers.

■ show cache_name

 Display detailed statistics on the specified shared buffer cache.

■ destroy cache_name

 Destroy the shared memory segment associated with the specified cache
name.

Ingres Utilities B–1

catalogdb

 This is needed on systems where shared segments are allocated in a manner
such that they are not automatically released when all DBMS servers
connected to them are brought down. On these systems, if a DBMS with a
shared memory cache fails or is brought down in an unsupported manner,
the shared memory segment cannot be automatically cleaned up by the
recovery system.

 In systems where shared segments are automatically released, when the
failed server is restarted, it will automatically clean up the old shared
segment. In this case cacheutil is not necessary to release the shared
memory.

However, if no server will be restarted that specifies the same cache name as the
orphaned cache, then the shared segment must be cleaned up through the
destroy option of cacheutil.

■ help

 Display help on the cacheutil utility.

■ exit

 Exit from the cacheutil utility.

catalogdb

Lists databases that you own.

Syntax

catalogdb [-uusername] [-vnode=vnode]

Description

The catalogdb utility is a forms-based interface that enables you to list your
databases, the databases that you can access, the location names known to the
system, the extensions made to your databases, and your user capabilities. See
the accessdb command in the appendix, “Ingres Commands," for information
on how to modify these attributes.

The following table lists valid command flags and parameters:

Parameter Description

-uusername Specifies the effective user for the session. For
details, see the Standard Command Line Flags and
Parameters section in the appendix, “Ingres

B–2 Advantage Ingres Embedded Edition Administrator's Guide

cbf

Commands”.

-vnode=vnode Specifies a vnode name as described in the Standard
Command Line Flags and Parameters section in the
appendix, “Ingres Commands”.

Catalogdb requires you to define the type of terminal you are using. When you
invoke the catalogdb command, the following main menu appears:

�������������	�
����
�����������
����

These menu options are described in the following table:

Menu Option Function

Databases Detailed information on a selected database

User Summary information about your user ID

Locations Information about system location names

Help Provides help

Quit Exits the catalogdb program

Each command invokes a form to browse. Each form includes its own command
menu, including a Help option—which provides a help message—and an End
command, which returns you to the main menu.

Examples

To browse through data on your own account and databases, type the
following:

catalogdb

As system administrator to browse the data for another user, type the following:

catalogdb -uPeter

cbf

Starts the Ingres/Configuration-By-Forms (CBF) utility.

Syntax

cbf [-host=name]

Ingres Utilities B–3

cscleanup

Description

The CBF utility displays current values of the server parameters and provides
menu and screen selections for changing them. With CBF you can:

■ Configure various components of the installation:

− Name, DBMS, Bridge, Net, or Star server

− Locking or logging segment

− Security

− Internet communications

− Visual DBA Remote Command Server

− Primary and secondary transaction log files

■ Select which databases can be accessed by a DBMS server

■ Reformat transaction log file(s) and enable/disable dual logging

■ Reconfigure protocol accesses for the Net server

■ Set a new value of any configuration parameter, or restore the factory
default

■ Automatically calculate configuration parameters derived from other
parameters

■ Protect any derived parameter from further change

■ Run a system check for sufficient resources on a new configuration

With an optional -host parameter specified, the CBF utility is capable of
configuring remote NFS client installations. The only difference in the operation
of the utility in this mode is that system resource checking must be disabled.

cscleanup

Deallocates low-level Ingres shared memory and semaphore resources.

Syntax

cscleanup

B–4 Advantage Ingres Embedded Edition Administrator's Guide

csreport

Description

The cscleanup utility deallocates the UNIX shared memory and semaphore
resources that were allocated by csinstall for use by Ingres. This utility is called
by ingstop, so you should ordinarily have no need to run this utility.

Use cscleanup when the Ingres servers have aborted or you are forced to stop
one of those servers by using the UNIX kill command. Use csreport and the
UNIX command ipcs to verify the cleanup. If this utility fails for some reason,
you can remove Ingres shared memory and semaphores with the UNIX
command ipcrm.

The cscleanup utility does not deallocate shared memory buffer caches. For
information about destroying shared caches, see the cacheutil section.

csreport

Display shared memory and semaphore information.

Syntax

csreport

Description

The csreport utility displays shared memory and semaphore information for
your installation. Verify that ingres system administrator is the owner of any
shared memory segments or semaphores used by your Ingres installation.
Running csinstall or ingbuild as root or some other user can cause segments and
semaphores to be allocated that are not owned by user ingres. Cscleanup will
not remove these, so they will have to be specifically removed under the user
login of the user who created them. Use the UNIX utility ipcrm in the format:

ipcrm -mmid | -ssid

where mid is the ID number of the shared memory segment and sid is the
semaphore identifier.

Ingres Utilities B–5

deregdocs

Examples

Here is an example of csreport output:

��������������
�����	�
����������
��������������	������	��	�����
���������	
��
������� �	�!�����	"���	�����	����"������
�����#�"���$%&���&'���
(����&�$������ ����������
���������	
��
������� �	�!�����	"���	���))
�)�*����+
�)��"������
�����#�"���$%&���$,���
(��--%&.������� �'���/����
�����0���� �	��
���	���
�����	�
��������
����
��������"�1����
!�&�2����������-�2����!�������%�
���
�����,������"���������!��������&-��2����)� ���������&�$�

Csreport output can be tailored to obtain the server connect ids for iimonitor
input. The following command shows the processes that are currently running:

csreport | grep "inuse 1"

Here is a sample output:

�
������2��
!�&&./2���������
!�--�.2�
!3�����	��2����
!�&%���
�
������2��
!�&&�$2���������
!�---�2�
!3�����	��2����
!�$����
�
������2��
!�&&�%2���������
!�2�
!3�����	�-2����
!���

The recovery server is listed first and can be connected to iimonitor with the
connect ID 2217. The other server in this listing has the connect ID 2220.
Processes (as opposed to servers) do not have a connect ID.

deregdocs

Deregister specified files from an Ingres/ICE business unit.

Syntax

deregdocs options filename(s)

Description

The deregdocs utility allows a system administrator to deregister files from
Ingres/ICE in bulk without having to use the Visual DBA utility. With this
utility, you can build scripts to aid in the maintenance of an Ingres/ICE web
site.

B–6 Advantage Ingres Embedded Edition Administrator's Guide

ICETranslate

The filename(s) parameter specifies one or more files that you want to deregister.
Alternatively, you can use the –ilistfile flag to specify the names of multiple files
in the specified listfile, saving you typing, and input errors while using the
command line.

The following table lists valid options for this utility:

Options Description

-uunitname The name of the business unit to which the files belong.

-llocation The name of the location of the files within the business
unit. (A business unit can have more than one location
associated with it.)

-ilistfile The name of the file that contains the list of files (pages
and facets) to be removed from the business unit.

-help Displays syntax online.

ICETranslate

Reads an Ingres/ICE XHTML template file and convert it into the equivalent
Ingres/ICE macro template file. This utility must be used when creating web
sites with Ingres/ICE XHTML template files.

Syntax

ICETranslate input_file.xml [> output_file.html]

icetranslate input_file.xml [> output_file.html]

Description

On UNIX platforms, the ICETranslate utility must be entered with the first 4
letters in uppercase. On Windows, this is not a requirement. ICETranslate reads
an Ingres/ICE XHTML template file and converts it into the equivalent
Ingres/ICE macro template file. This utility writes to its standard output so you
must redirect the output to the file name of your choice. Please see the example
below for how to do this. Once the file has been registered with the Ingres/ICE
server, it is available for use.

Ingres Utilities B–7

iigenres

Example

icetranslate my_query.xml > my_query.html

iigenres

Used by the installation process to generate a default CONFIG.DAT file.

Syntax

iigenres [-v] [host] [rule_map]

The parameters are described in the following table:

Parameter Description

-v The -v (for verbose) flag, displays system commentary to the
standard output device as the iigenres operation continues.

host The host parameter if provided, specifies the host for which
the configuration should be generated.

rule_map Specifies the rule map file to use.

 The rule map file, contains a list of the rule system files (CRS
extension files) to use when generating the default
configuration.

Description

The iigenres utility generates a default configuration for an Ingres installation.
Use this utility to regenerate the Ingres configuration file, should it be
accidentally deleted or corrupted.

Example

iigenres usilgpqo default.rfm

B–8 Advantage Ingres Embedded Edition Administrator's Guide

iigetres

iigetres

Used by CBF and the installation process to get the value of a named resource.

Syntax

iigetres name

where name is the name of the configuration parameter, as it appears in the
default configuration file.

Description

The iigetres utility looks up a value in the default configuration file
(CONFIG.DAT) and prints the value to the standard output device.

iimklog

Invoked by CBF and the Configuration Manager to generate an Ingres
transaction log file.

Syntax

iimklog

Description

The current transaction log must be deleted before creating a new one.

iiremres

Removes a specified configuration parameter from CONFIG.DAT and
recalculates any derived resources.

Ingres Utilities B–9

iisetres

Syntax

iiremres [-v] name

The parameters are described in the following table:

Parameter Description

-v Displays system commentary to the standard output
device as the operation continues

name The parameter name as it appears in the default
configuration file

Example

iiremres –v ii.lusilgpqo.gcn.local_vnode

iisetres

Sets a configuration resource in CONFIG.DAT and recalculates derived
resources.

Syntax

iisetres [-v] [-p] name value

The parameters are described in the following table:

Parameter Description

-v Displays system commentary to the standard output device
as the operation continues

-p Protects the parameter from further automatic adjustments

name Name of the configuration parameter to set

value The value of the configuration parameter

Example

iisetres ii.usilgpqo.dbms.*.default_page_size 4096

B–10 Advantage Ingres Embedded Edition Administrator's Guide

iivalres

iivalres

Validates a configuration resource for rule system constraint violations.

Syntax

iivalres [-v] name value [rule_map]

The parameters are described in the following table:

Parameters Description

-v Displays system commentary to the standard output device
as the operation continues

name Name of the configuration parameter to set

value The value of the configuration parameter

rule_map Specifies the rule map file to use.

The rule map file contains a list of the rule system files (CRS
extension files) to use when generating the default
configuration.

Example

iivalres –v ii.usilgpqo.dbms.*.default_page_size 2048

iimonitor

Monitors and administers DBMS and recovery servers.

Syntax

iimonitor server_id

Ingres Utilities B–11

iimonitor

Description

The iimonitor utility is an operating system level utility that allows an Ingres
system administrator or other privileged user to perform a number of session
and server connection functions. The server_id refers to the server’s GCF
address. You can obtain this address using the iinamu or (UNIX) csreport
utility.

You can use the iimonitor utility to examine the status of a DBMS server or to
shut down a server. In addition, you can use iimonitor to monitor or shut down
a particular server session and perform other server control functions.

If you are using iimonitor to terminate a session that has an active transaction,
the server first rolls back the transaction. The session is not completely removed
until the rollback is complete.

At the IIMONITOR > prompt, the following commands are available:

Command Description

help Lists the available commands.

show server
[listen|shutdown]

The show server command displays
information about the server, including the
number of sessions currently active or
connected to it, the state of the server, and the
CPU usage in terms of quanta used.

■ The listen option displays the server listen
state, either OPEN or CLOSED.

■ The shutdown option displays the server
shutdown state, either OPEN or CLOSED.

show [user]|system|all
sessions[formatted]

The show sessions command displays a list of
active sessions and their current state:

■ The user option, or the default if no option
is specified, gives the information on user
sessions.

■ The system option provides the information
on system sessions.

■ The all option provides the information on
both user and system sessions.

■ If formatted is specified, additional
information is shown for each session in a
block format.

B–12 Advantage Ingres Embedded Edition Administrator's Guide

iimonitor

Command Description

show [user]|system|all
sessions[formatted] (cont.)

Following is an explanation of session states:

CS_EVENT_WAIT: Session is waiting for an
event. The event type is shown in parentheses.
The session is waiting for:

■ (LOCK)—a lock to be granted

■ (DIO)—a disk i/o to complete

■ (LOG-IO) – the completion of i/o to the
transaction log

■ (BIO)—a message to be received from or
sent to its associated user interface

■ (GWFIO)—completion of a request it has
made through a gateway to a non-Ingres
database

CS_MUTEX: Awaiting a semaphore (access to
a system data structure)

CS_COMPUTABLE: Runnable and waiting for
a chance to run

CS_INTERRUPT: The current wait state may
be interrupted if desired.

set server shut|closed|open Affects the server running state, as follows.
This command may only be run by a
privileged user:

■ The shut option disallows additional
connections and shuts the server down
when currently connected sessions finish.

■ The closed option is the same as shut except
that the server is not terminated on idle.

■ The open option re-allows connections and
cancels a pending set server shut.

stop server Stops the server. This command may be run
only by a privileged user.

This commands stops the server immediately.
Only use this if absolutely necessary, for
example, if an Ingres tool program is hanging.

The following commands use the session_id to perform actions on a specific
server session. The session_id is displayed in the iimonitor utility with the show
sessions command:

Ingres Utilities B–13

iimonitor

Command Description

format session_id |all Gives a synopsis of the information about a
session. The all option gives the information on
all active sessions.

remove session_id Disconnects a particular user session. This
command may be run only by a privileged user.
This command cannot be used to drop system
threads.

suspend session_id Suspends a compute-bound session to allow a
trace of the problem.

resume session_id Resumes a suspended session.

quit Terminates the iimonitor session.

The system sessions shown by iimonitor include server threads. The server
threads are described in the following table:

Thread Description

Admin thread Assists in administrative chores. This thread
cannot be seen with iimonitor.

Idle thread Assists in administrative chores.

Event thread Handles event processing.

Write behind thread Performs write behind processing.

Consistency point thread Previously called the Fast Commit thread; now
all servers use this thread to perform
consistency points (even non-Fast Commit
servers).

Dead process thread Checks for abnormal process termination.

Force abort thread Performs force abort processing.

Group commit thread Performs group commit processing.

Lock callback thread Performs all lock callback actions.

Log writer thread Performs transaction logfile writes.

License thread Checks the validity of the Ingres license.

Security audit thread In C2 enabled servers only, performs security
auditing.

B–14 Advantage Ingres Embedded Edition Administrator's Guide

iinamu

The iimonitor utility can also be used to connect to the recovery process
(DMFRCP). Formatting the recovery thread in the recovery process displays the
current state of online recovery operations, if any are taking place. The recovery
process is multi-threaded, and has the following threads that can be viewed
with iimonitor:

Thread Description

Recovery thread Performs online recoveries

Consistency point timer
thread

Performs timed consistency points

iinamu

Monitors and administers the name server.

Syntax

iinamu

Description

You can use the Name Server Maintenance Utility (iinamu) to display DBMS
server information and administer the Name server. Only a privileged user can
execute the administrative options, such as adding or deleting entries or
stopping the name server process.

When you see the IINAMU prompt, choose one of the following commands:

Command Description

show [svr_type] Show the list of currently registered servers. svr_type
can be:

INGRES: Ingres—DBMS server type and the default

COMSVR—GCC Net server process type.

IINMSVR—Name server process

STAR—Star server process

Ingres Utilities B–15

iinamu

Command Description

The following is an example of SHOW command
output:
��4�567,04!��
��4�567,04���� �

�567,0�8��-����
�567,0�8��-$& �

�567,0�8���3�9�03&�%�
�567,0�8���3�9�03$,� �

The first column is the server type, the second is a list
of databases registered to be served by this DBMS
server, and the third is the GCF_ADDRESS.

The database name entry * means that the server has
registered to service requests for any database.

The GCF_ADDRESS column contains the GCF
specific address for access to this server. This can be
used with the iimonitor command.

add svr_type obj_name
gcf_address [flag]

Manually add to the list of registered servers. Only a
privileged user may run this command. See also the
information below on non-registered servers. The
optional flag can be one or more of the following:

sole—the server being added is a sole server.

merge—existing entries for the server at
GCF_ADDRESS should not be deleted when the new
entry is added. This flag may be used to add a new
object to be serviced by an existing server.

delete svr_type obj_name
gcf_address

Manually delete a server from the list of registered
servers. Only a privileged user may run this
command.

stop Stop the GCF name server. This is the correct way to
stop the name server. If the name server is stopped
while DBMS servers are running, no users can
connect to those servers. Connected users will
function undisturbed until they disconnect their
sessions. Only a privileged user may run this
command.

help Displays command information.

quit Quit iinamu.

B–16 Advantage Ingres Embedded Edition Administrator's Guide

iinamu

It is sometimes desirable to start DBMS servers that are not publicly registered
with the name server. This can be done with the nonames option as shown
below. If this option is included, then DBMS servers will not register with the
name server upon start up and will therefore be invisible to iinamu. You can
still find the GCF address, however, by examining II_DBMS_SERVER, if it is
defined.

The default setting is names, thus automatically registering with the name
server on DBMS server start up.

Examples

UNIX output formats are shown:

■ Show all DBMS servers:

IINAMU> show ingres

 Here is a sample output:

�567,0�8�&��/�
�567,0�8�$-�$�

– The first column is the server type.

– The second column is a list of databases registered to be served by this
DBMS server. The database name entry * means that the server has
registered to service requests for any database.

– The third column is the GCF_ADDRESS. This column contains the GCF
address for access to this server. The example shows that there are two
DBMS servers, running at GCF addresses 3105 and 4204. This can be
used with the iimonitor command.

■ Show the communications server registrations:

IINAMU> show comsvr

 Here is a sample output that indicates there are two communications
servers running:

':�017�8�&�%.�
':�017�8�&&-��

■ Add a DBMS server with GCF address 1093 to the name server registry.
Any database may use this server:

IINAMU> add ingres * 1093

 Add a DBMS server with GCF address 2180 to the name server registry.
Only the salesdb database may use this server:

IINAMU> add ingres salesdb 2180

■ Delete a DBMS server with GCF address 1093 from the GCN registry so it is
no longer visible from the name server:

IINAMU> delete ingres * 1093

Ingres Utilities B–17

iinamu

■ Stop the name server:

IINAMU> stop

 ■ Show all DBMS servers:

IINAMU> show ingres

 Here is a sample output:

�567,0�8���4�567,04���
�567,0�8���4�567,04���

– The first column is the server type

– The second column is a list of databases registered to be served by this
DBMS server. The database name entry * means that the server has
registered to service requests from any database.

– The third column is the server identifier. This can be used with the
iimonitor command.

■ Show the communication server registrations:

IINAMU> show comsvr

 Here is a sample output that indicates there are two communications
servers running:

':�017�8���4':�0174�&�
':�017�8���4':�0174�-�

■ Add a DBMS server with a process ID of af to the name server registry. Any
database may use this server:

 IINAMU> add ingres * II\INGRES\af

 Add a DBMS server with a process ID of ab to the name server registry.
Only the salesdb may use this server:

 IINAMU> add ingres salesdb II\INGRES\ab

■ Delete a DBMS server with a process ID of af from the name server registry
so it is no longer visible from the name server:

 IINAMU> delete ingres * II\INGRES\af

■ Stop the name server:

 IINAMU> stop

B–18 Advantage Ingres Embedded Edition Administrator's Guide

iishowres

iishowres

Displays the amount of shared memory used by the locking and logging
system.

Syntax

iishowres [-d] [-help]

Description

The iishowres utility displays the amount of shared memory the locking and
logging system uses to manage logging and concurrency in an installation. The
size of the logging and locking memory segment depends on several parameters
such as the number of concurrent users, the number of open databases, and the
number of lock lists.

If you do not use the -d flag, iishowres returns the total amount of shared
memory needed by the logging and locking memory segment (in bytes).

If you use the -d flag, iishowres returns the amount of memory each component
of the locking and logging system uses.

The -help option displays the iishowres syntax online.

iizic

Customizes time zone table files.

Syntax

iizic [-doutput_directory] timezone_rule_file

Description

The iizic utility customizes the time zone table files that are provided, allowing
the user to tailor time zone information when needed for special cases not
covered by the supplied time zone selections.

Ingres Utilities B–19

iizck

This utility works similarly to the UNIX zic utility.

The default timezone_rule_file is indicated by II_TIMEZONE_NAME. When
II_TIMEZONE_NAME is set to the name of a time zone table, utilities such as
date and C functions such as localtime() and gettimeofday() make GMT
adjustments using the time zone table.

The Olsen time zone table for making Greenwich Mean Time (GMT)
adjustments is supported. This method builds time zone tables based on the
given rule file. The time zone tables consist of start and end GMT times for each
time period. In addition, the corresponding GMT offset value and the
abbreviation of the time zone name for each period are kept in the table.

When retrieving internal dates, which are stored in GMT, Ingres searches for the
correct time period and then applies the corresponding GMT offset value as
well as the abbreviated time zone name to determine the local time.

iizck

Displays the time zone table files.

Syntax

iizck [-name=timezone_name] [-fpathname/filename]

Description

The iizck utility displays the time zone table files. The time zone table currently
in effect can be checked, or you can check a newly created one with iizck by
specifying the -f parameter.

The display shows the Greenwich Mean Time (GMT) offset for the time zone.
For those timelines with Daylight Savings Time (DST) adjustment, it gives each
date that the GMT offset changed. If no parameters are specified, iizck displays
the II_TIMEZONE_NAME table. For example:

�
��(��������������	��
�;��<�
�
��(�����
������4
�)	����4
�)	��4�
���4(���
���4���	�4��<�

;;;�
� =�	
�!�9�)
�����������������������6�>��������
� ?@@@@3��3�������������������������?�
����A�
�
� �%.�3��3&���-�����������������������������,0>�
� �%.-3�-3-.��&�����������������������������,0>�
� �%.-3��3-%��-�����������������������������,0>�

The dates range from 1971 to 2037.

B–20 Advantage Ingres Embedded Edition Administrator's Guide

ingbuild (UNIX) or vmsinstal (OpenVMS)

ingbuild (UNIX) or vmsinstal (OpenVMS)

Runs the Ingres installation procedure.

Syntax

Interactive mode:

ingbuild

Command line mode:

ingbuild [flags] [distribution_medium] [-help]

@vmsinstal distribution_medium.

Description

The ingbuild (UNIX) or vmsinstal (OpenVMS) utility performs the initial install
of your Ingres release. Use this utility when installing for the first time and
when updating to a new version.

During install, you will unload the Ingres software and set the non-default
configuration parameters. If you are updating an existing installation, it must be
shut down before you run the install program. Shut it down using ingstop.

You must be logged into the ingress system administrator account to use the
install utility.

ingnet

Permits you to view and define Ingres/Net node definitions.

Syntax

ingnet

Ingres Utilities B–21

ingstart

Description

The Ingres Network Utility (ingnet) is a stand-alone tool that permits you to
view and define Ingres/Net node definitions, which then allows you to connect
to remote Ingres installation through Ingres/Net. In addition, ingnet allows you
to launch the stand-alone Database Object Manager, Monitor, and SQL/Test
windows for such installations.

ingstart

Starts up an Ingres installation.

Syntax

ingstart [-iigcn | -dmfrcp | -dmfacp | -rmcmd | -icesvr |
[-iidbms|-iigcc|-iigcb|-iijdbc|-iistar [= config_name]]] [-help]

Description

In the start process, ingstart checks that you have sufficient operating system
resources to run Ingres and have initialized the log file. The utiltiy then starts up
the name server, recovery and archiver processes, and DBMS server(s). If you
are authorized to run them, ingstart also starts up the Net Communications
server (iigcc), the Visual DBA Remote Command server (rmcmd), the Ice server
(icesvr), and the Star server (iistar). The ingstart utility starts up all the elements
of your installation in the correct sequence.

Note: If a server or process is specified, only that component is started up.

Important! You must be logged into the ingress system administrator account to use
this command.

The following table lists valid command flags and parameters:

Parameter Description

-iigcn Starts the Name server.

-dmfrcp Starts the recovery process.

-dmfacp Starts the archiver process.

-rmcmd Starts the Remote Command server required by Visual
DBA.

-icesvr Starts the Ice server.

B–22 Advantage Ingres Embedded Edition Administrator's Guide

ingstart

Parameter Description

-iidbms Starts the DBMS server. You can optionally specific a
config_name as the name of that DBMS server.

-iigcc Starts the Net communications server. You can optionally
specify a config_name as the name of that communications
server.

-iigcb Starts the Bridge server. You can optionally specify a
config_name as the name of that communications server.

-iijdbc Starts the JDBC server. You can optionally specify a
config_name as the name of that communications server.

-iistar Starts the Star server. You can optionally specify a
config_name as the name of that Star server.

config_name If specified, this is the name of the server being started
up. This name appears in the Config Name field of the
Ingres Configuration Manager main window.

-help Displays syntax online.

Examples

To start an additional default DBMS server, type the following command:

ingstart -iidbms

To start the “speedy” Net server, type the following command:

ingstart -iigcc=speedy

UNIX Examples Start up your installation interactively using the configuration option, where
$II_SYSTEM is set to /install/r6:

setenv II_SYSTEM /install/r6
ingstart

Start up your installation automatically by including ingstart in the /etc/rc or
other boot script.

su ingres -c /install/r6/ingres/utility/ingstart \
 > /dev/console

Ingres Utilities B–23

ingstop

ingstop

Shuts down an Ingres installation.

Syntax

ingstop [-f] [-timeout=minutes] [-kill] [show]
[-force | -immediate] [-help]

Description

The ingstop command shuts down the servers in an Ingres installation in an
orderly fashion for reconfiguration or system shutdown. It automatically brings
down all or selected server-related processes in the installation. It can shut
down servers, the archiver and recovery processes, and deallocate shared
memory.

The ingstop command provides a graceful shutdown: the program waits for all
traffic to terminate and for all users to exit from Ingres before shutting down the
Ingres processes.

You can optionally specify a forced shutdown.

Because it is important that processes be brought down in the correct sequence,
you should use ingstop whenever you shut down the entire installation. You
may also use ingstop to shut down the locking and logging system.

You must be logged into the ingress system administrator account to use this
command.

The following table lists valid command flags and parameters:

Parameter Description

-f Forces immediate shutdown.

-timeout=minutes Waits the specified number of minutes for active
sessions to terminate before shutting down the
installation.

-kill Shuts down the installation without waiting for
currently executing transactions to complete.
Transaction recovery will be required when the
installation is restarted. Any Ingres processes that
cannot be shut down by conventional means are
terminated.

B–24 Advantage Ingres Embedded Edition Administrator's Guide

ivm

Parameter Description

-force Forces the shut down of active servers in the installation
without waiting for users to disconnect.

-immediate Shuts down the installation immediately. It does not
wait for currently executing transactions to complete.
Transaction recovery will be required when the
installation is restarted.

-show Displays a list of currently running Ingres processes that
would have been stopped by ingstop without actually
shutting any of them down.

-help Displays syntax online.

ivm

Manages Ingres components and provides access to other utilities.

Syntax

ivm

Description

The Ingres Visual Manager (IVM) is an integrated, GUI tool that provides a
global view into your Ingres installation. It serves as a system console from
which you can manage Ingres components and access other utilities. This utility
captures events that are occurring in the system and allows them to be filtered
for emphasis, according to the system administrator’s preferences.

Use IVM to do the following:

■ Start and stop the Ingres installation

■ Monitor the status of the installation or individual servers

■ View and configure system, user, and other types of parameters

■ View log files and event statistics for the installation or individual servers

■ View and define error message alerts

Ingres Utilities B–25

lockstat

lockstat

Displays locking status.

Note: The forms-based ipm utility incorporates the lockstat functions.

Syntax

lockstat [-help | -summary | -statistics | -lists | -user_lists
| -special_lists | -resources]

Description

The lockstat utility displays locking status information for your Ingres
installation. It allows you to examine the state of the Lock Database by
providing a summary listing and a snapshot of the installation’s locking activity.

The lockstat options are described in the following table. Type lockstat, the
default, to display all reports as follows:

Locking System Quotas
Locking System Summary
Locks by Lock List (User and Special)
Locks by Resource

Lockstat Options Description

-help Displays the lockstat command options online.

-summary Locking System Quotas

-statistics Locking System Quotas
Locking System Summary

-lists Locks by Lock List (User and Special)

-user_lists Locks by Lock List (User)

-special_lists Locks by Lock List (special, that is,
"NONPROTECT")

-resources Locks by Resource

This tool is useful for finding lock contention and concurrency problems. It will
help you identify locking bottlenecks so that you can correct the problem by
setting lockmode appropriately or by remodeling the application if it is a
fundamental design or program flow problem.

B–26 Advantage Ingres Embedded Edition Administrator's Guide

lockstat

Example

A compressed example of the output from the lockstat utility follows. An
explanation of each part of the output appears in the What to Look for in a
Lockstat Output section:

BBBBBBBBBBBC	
�D�	�-/��&�&$�������
��+
�)�0"�����������BBBBBBBBB�
��>�����
��+������������/�����>�����7����	���������/����
��
��+����	��	������
�������������������������������/���
��
��+� �� �������������-%�&��
��+��
����������������-%�
��7����	��� �� ���������-%�&��7����	����
������������-.�
��>��������+��
����������$����
��+��
����
�����������/.�

BBBBBBBBBBBC	
�5����&��&�&$�������
��+
�)�0"�����0����	"BBBBBBBB�
��'	��������+��
�����$%&%/����7����������+��
������$%&-.�
��7�E��������+������/��-%/����7�;	�E��������+�����$/.����
��'����	�����+����������/.����7����������+��������$���$��
��,���������������������������
��+�<�
�������������-.$�%�
��'����	��<�
������������-����'����	�����!���+�����������
�����!���+�F�+��������--����������!�+�E������������������
�����!���+�0��	� ������%$.�������!���+����������������&$�
��'���������������������&/����'����	��0��	� �����������-�
��D��������'9����������$.����������������'9��������������

��
9#��
) <���	�������&����

9��
) <���	����������.�
��09#��
) <���	�������/����
#9��
) <���	��������$-��
��79#��
) <���	�������/����709��
) <���	��������$-��
������
�����!�+��	� ��&������+����+������
��!��-&���
������	�	��� �
�������/�����������+�� �
����������/�
��'������+�F�+�������������'������+������+�!��������
��'������+���)��	�!�����
;;;;;;;;;;;;;;;;;;;;;;;;;;;
��+���"����+��
��;;;;;;;;;;;;;;;;;;;;;�

�!�����������>	��3
!�����������������D�73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=������.���0����������,�
�!���������-�>	��3
!�����������������%�73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=������.���0����������%�
�!���������&�>	��3
!�������������������73��������������73�������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=����
��.���0����������'�
�!���������$�>	��3
!������&&$'&&�-��-9�73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>�=����
��.���0����������.�
�!���������/�>	��3
!�������������������73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=����
��.���0����������.�
�!�����������>	��3
!�����������������/�73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=����
��.���0����������9�
�!���������.�>	��3
!�����������������$�73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=����
��.���0����������/�
�!�����������>	��3
!�����������������&�73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=������.���0������������
�!���������%�>	��3
!�����������������-�73��������������73��������
F�
������������
��+���?�2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>�=����
��.���0������������
���!��������-��7����������&'�6	��5��7�E��5��0������67�=�@0?�A��
#,@?D���>2
D9,
3'D'�,A�
�!���������D�>	��3
!�������������������73��������������73��������
F�
������������
��+���?�2�G�A�0�������5:5=7:>,'>2=0�D7,��=�����.����
0������������
�
�!���������9�>	��3
!�������������������73��������������73��������

Ingres Utilities B–27

lockstat

F�
������������
��+���?%/2�G-/�A�0�������5:5=7:>,'>25:�5>,77�=>2�
0�D7,��=�����.���0������������
�
���

�!���������C�7����������&$�6	���0�7�E���0�0������67�=�@0?�A��
;;;;;;;;;;;;;;;;;;;;;;;;;;;
��+���"�	����	��;;;;;;;;;;;;;;;;;;;;;;;�
�!��������-��6	���0�'������0�'���+����1������H���������������-I�
�����#,@?013=D6,2�9B��������2>D9
,BJ�2�K2=D6,B&A�
���!���������D�
�����������9�6	���0�7�E���0�0������67�=�@0?�A�
�!��������-��6	���0�'������0�'���+����1������H����������������I�
�����#,@?013=D6,2�9B��������2>D9
,BJ�2�K2=D6,B&�A�
���!���������9�
�����������9�6	���0�7�E���0�0������67�=�@0?�A�
�!��������--�6	���0�'������0�'���+����1������H����������������I�
�����#,@?013=D6,2�9B��������2>D9
,BJ�2�K2=D6,B-A�
���!���������'�
�����������9�6	���0�7�E���0�0������67�=�@0?�A�
�!��������-&�6	���0�'������0�'���+����1������H����������������I�
�����#,@?013=D6,2�9B��������2>D9
,BJ�2�K2=D6,B-&A�

���!�����������
�����������9�6	���0�7�E���0�0������67�=�@0?�A�
�!��������-$�6	���0�'������0�'���+����1������H����������������I��
�����#,@?013=D6,2�9B��������2>D9
,BJ�2�K2=D6,B�A�
���!���������,�
�����������9�6	���0�7�E���0�0������67�=�@0?�A�
�!��������-/�6	���0�'������0�'���+����1������H����������������I�
�����#,@?013=D6,2�9B��������2>D9
,BJ�2�K2=D6,B&&A�
�
���!���������C�
�����������9�6	���0�7�E���0�0������67�=�@0?�A�
BBB�

What to Look for in a

Lockstat Output

Keep in mind that lockstat gives detailed statistics on all locking activity in the
installation. If there is much activity, there will be a considerable quantity of
lockstat output.

The key items to examine in lockstat output are the waiting statistics. Look
especially at:

■ Lock wait in the Locking System Summary

■ Deadlock in the Locking System Summary

■ Wait in the Locks by Lock List

■ Status WAIT in the Locks by Lock List

Interpreting Locking

System Quotas

The first portion of the output shown above is a summary listing of locking
quotas for this installation. All values are cumulative from the time ingstart
was run for this iteration of the system. The meaning of each entry is described
in the following table:

Field Description

Total locks Maximum number of locks in the installation

Total Resources Maximum number of lockable resources in the
installation

Locks per transaction Maximum number of locks that may be
acquired by a transaction

B–28 Advantage Ingres Embedded Edition Administrator's Guide

lockstat

Field Description

Lock hash table Number of hash buckets in the locking system
hash table

Locks in use Number of locks currently in use in the
installation

Resource hash table Number of hash buckets in the resource hash
table

Resources in use Total number of countable resources in use

Total lock lists Maximum number of lock lists available

Lock lists in use Number of lock lists currently in use

Interpreting the

Locking System

Summary

The next portion of the output shown above is a summary listing of locking
activity for this installation. Again all values are cumulative from the time
ingstart was run for this iteration of the system. The meaning of each entry is
described in the following table:

Field Description

Create lock list Number of times a lock list was created for server,
session, or transaction

Release lock list Number of times a release of a lock list occurred for
a server, session, or transaction

Request lock Number of new lock requests that the locking
system processed

Re-request lock Number of times an implicit lock conversion request
was issued on a resource that the lock list already
had locked. Implicit lock conversion requests can
occur when a request is made on a page for update
that was previously requested for read.

Convert lock Number of times an explicit lock conversion request
is made to change a lock mode on a physical lock
from one mode to another. These types of requests
occur as a result of a physical lock being converted
during an existing transaction to lower or higher
modes.

Release lock Number of times a specific logical lock is released,
as opposed to a full, partial, or physical lock release

Escalate Number of times a partial release occurred to allow
lock escalation from page to table level

Ingres Utilities B–29

lockstat

Field Description

Lock wait Number of times a new lock request had to wait to
be granted

Convert wait Number of times an existing lock waited for
conversion to a different lock mode

Convert deadlock Number of times a request for conversion turned
into a deadlock

Deadlock Wakeups Number of times the interval-based deadlock
detection thread was awakened

Max dlk queue len Maximum number of waiting lock lists examined by
the deadlock detection thread

Deadlock search Number of times a deadlock search was initiated

Deadlock Number of times that deadlock existed

Cancel Number of times a lock request was canceled due to
a time-out or interrupt

Convert search Number of times a convert deadlock search was
initiated. The searches are performed when
converting a lock from one mode to another.

Allocate CB Number of locking control block allocations

Deallocate CB Number of locking control block deallocations

LBK Highwater Maximum number of lock list blocks allocated

LLB Highwater Maximum number of lock lists allocated

SBK Highwater Maximum number of lock blocks allocated

LKB Highwater Maximum number of locks allocated

RBK Highwater Maximum number of resource blocks allocated

RSB Highwater Maximum number of resources allocated

Max Local dlk srch Maximum number of locks examined to resolve

Dlk locks examined Number of locks examined by the deadlock
detection thread

Max rsrc chain len Maximum length of a resource hash chain

Max lock chain len Maximum length of a lock hash chain

B–30 Advantage Ingres Embedded Edition Administrator's Guide

lockstat

The remaining fields are relevant only when the installation has been configured
to run with the Distributed Multi-Cache Management (DMCM) protocol:

Field Description

Callback Wakeups Number of times the DMCM callback thread was
awakened

Callbacks Invoked Number of times callback functions were invoked to
resolve a blocking cache lock

Callbacks Ignored Number of blocking cache locks which had already
been released by the time the callback function was
invoked

Interpreting the

Locks by Lock List

Portion

The next portion of the lockstat utility prints out the lock information sorted by
lock list. The first line item reports the lock list identifier. Any locks associated
with the specified lock list are listed following the lock list description and
indented to set them off.

Most lock lists represent transaction units and hold the locks owned by their
transactions. Some lock lists are used to hold special server or cache locks
required for processing; these lock lists are owned and managed by the DBMS
server or recovery process rather than by user transactions.

Locks by Lock List fields are described in the following table:

Field Description

Id Internal lock list identifier (lock list block)

Tran_id Transaction identifier associated with this lock list. This value
correlates to a transaction identifier in the logstat utility output.

R_llb Related lock list identifier, if not a transaction lock list

R_cnt Number of related lock list identifiers that this lock list must
assure are released before this lock list can be released

Wait Internal resource block identifier of the lock that is currently
blocked

Locks Made up of three values: total number of locks currently on the
list, number of logical locks on the list currently, and total number
of locks allowed to be on this list

Ingres Utilities B–31

lockstat

Field Description

STATUS Indicates the state of the lock list at the present time. The possible
values are:

WAIT—waiting for lock

NONPROTECT—can be released without going through recovery
(system lock lists)

ORPHAN—lock list remaining without transaction

EWAIT—waiting for system event

RECOVER—lock list taken over by the recovery process

MASTER—lock list owned by the recovery process

ESET—lock list set on wait queue for event

EDONE—event that lock list is waiting for is done

NOINTERRUPT—lock requests on this list are non-interruptible

PID Process ID of the lock list owner

SID Session ID of the lock list owner

The values indented under individual lock lists are lock block values. These are
described in the following table:

Lock Block Values Description

Id Internal Lock block identifier

Rsb Internal Resource block identifier

Gr Granted lock mode

Req Requested lock mode

State Current state of lock (GR = granted, WT = waiting)

KEY Information used to identify the resource being
locked.

■ When checking contention on data pages, the key
will contain PAGE, the database ID, the table
reltid and reltidx, and the page number.

■ ROW is a special type of lock used to reserve
space for deleted rows in four core catalogs only:
iirelation, iirel_idx, iiattribute and iidevices.

B–32 Advantage Ingres Embedded Edition Administrator's Guide

logstat

Interpreting the

Locks by Resource

Portion

The last portion of lockstat groups the individual locks by resource block and
shows any contention that can lead to query performance problems.

The Locks by Resource fields are described in the following table:

Field Description

Id Internal Resource block identifier

Gr Granted mode of the resource

Cbacks This field is relevant only when the installation has been
configured to run with the Distributed Multi-Cache
Management (DMCM) protocol. It describes the number of
resource locks which contain DMCM callback information.

Conv Conversion mode requested on the resource

Value Lock value associated with the resource

KEY Byte string identifying the resource

The indented portions of the resource blocks show the individual lock blocks
that are contending for the resource. These lock blocks are described in the
following table:

Lock Block Values Description

Id Internal Lock block identifier

Llb Lock list identifier on which this lock resides

Gr Granted mode of the lock

Req Requested lock mode

State Current state of the lock
(GR = granted, WT = waiting)

logstat

Displays logging status.

Note: The forms-based ipm utility incorporates the logstat functions. Also, you
can use Visual DBA to monitor log information. See Visual DBA online help.

Ingres Utilities B–33

logstat

Syntax

logstat [-help]

The –help parameter displays logstat command options online.

Description

Logstat output is composed of the following major sections:

■ Logging System Summary

 Provides an overall view of the logging system. It yields information on
how well the logging system is tuned.

■ Current log file header

 Gives quantitative information on the logging system, such as the size of the
log file, log buffers, and CP interval.

■ List of active processes

 Provides information on processes currently active in the logging system.

■ List of active databases

 Provides users with statistical information on all the active databases in the
logging system.

■ List of active transactions

 Provides statistical information per active transaction.

Each of these major sections is described below, followed by an example with a
detailed interpretation.

Logging System

Summary

The Logging System Summary on the logstat output provides an overall view
of the logging system. It yields information on how well the logging system is
tuned.

The fields are described in the following table in the order in which they appear
on the logstat output:

Field Description

Database add Number of times a database has been added to the
logging system. This number is incremented whenever a
session is the first session to access the database.

Database removes Number of times a database has been removed from the
logging system. This number is decremented when the
last session accessing the database exits.

B–34 Advantage Ingres Embedded Edition Administrator's Guide

logstat

Field Description

Transaction begins Number of times a transaction has been started in the
logging system. This number indicates the total number
of transactions started in the logging system.

Transaction ends Number of times a transaction has been completed in the
system during normal processing. This number
corresponds to all the transactions that were committed
or rolled back without incident and properly terminated.
This value does not include FORCE-ABORT, LOGFULL
or any other rcp actions that terminated a transaction
abnormally.

Log read i/o’s Number of times a read was performed on the log file.
This is a physical operation. This number corresponds to
the number of times the log buffer was read from the
transaction log file to perform an abort, archive or purge
operation.

Log write i/o’s Number of times a write was performed on the log file.
This is a physical operation. This number corresponds to
the number of times a log buffer was written to the
transaction log file.

Log writes Number of writes from the database buffer into the log
buffers. These are memory-to-memory writes.

Log forces Number of requests made to the logging system to force
the current log buffers to the log file. This is most
frequently done to commit a transaction or to guarantee
the consistency of the log file before writing an update to
the database.

Log waits Number of times any event wait condition requires a log
buffer write to stall. These are events such as LOGFULL,
CP writing, RECOVERY, ARCHIVING required, FREE
WAIT for log buffers, OPENDB wait, log buffer SPLIT
wait, wait for completion of log i/o (that is, from the log
buffer to the log file).

Log split waits The number of times a log split operation is delayed due
to no free log buffers on the free queue. Log splits in and
of themselves are not to be interpreted as bad events.
What is potentially harmful is the inability of the logging
system to proceed with the log record split. This situation
can be remedied by adding additional log buffers to the
system or by increasing the size of the current buffers to
minimize the need for splits. Any modification should be
examined in conjunction with the effect that it has on the
other wait states.

Ingres Utilities B–35

logstat

Field Description

Log free waits Number of times all the log buffers are either in force
mode or unavailable for writing. One log buffer is written
to at a time. If log free waits is frequent, then an increase
in the amount of log buffers from 4 to 8 may be the
solution. Remember that an increase in the number of
buffers requires (number_of_log_buffers *
log_buffer_size) more memory on the host system.

Log stall waits Number of times any writes to the log buffers are stalled
due to either CP events (consistency point writing) or
LOGFULL events occur. All logging system writes are
stalled for users until these conditions are cleared. This is
most often seen from the user’s viewpoint as a “hung”
system. Always check logstat for the status in the header
block. If this value is LOGFULL then this is a stall
condition.

Logfull BCP waits Number of times a thread was stalled waiting for Begin
Consistency Point information to be written to disk. This
is a very brief stall performed at the start of a consistency
point.

Logfull stall waits Number of times a thread was stalled waiting for a
LOGFULL condition to clear.

Log group commit Number of times that multiple transactions participate in
a log buffer flush to the log file.

Log group count Number of transactions that are participating in the flush
to the log file. This value is the wait count associated with
the Log group commit count above. This value is
incremented based on the number of waiters at write
completion time.

The ratio of Log group count to Log group commit gives
an indication of how effectively the group commit
mechanism is working in the current configuration.

Check commit timer Number of times the timer associated with the group
commits completes. This does not necessarily mean that a
write to the log file has to occur, because the log buffer
that initiated the timer may have already been written
due to being full.

Timer write Number of times a log file write actually occurs as a
result of the timer expiration. As explained above, this
will occur only if the buffer has not completely filled
before this timer expires.

B–36 Advantage Ingres Embedded Edition Administrator's Guide

logstat

Field Description

Inconsistent db Number of times the logging system has had to mark a
database inconsistent due to an inability to recover some
portion of work that currently exists in the logging
system.

Kbytes written Number of bytes written to the log file

ii_log_file read Number of physical reads of the primary log file

ii_dual_log read Number of physical reads of the dual log file

Write complete Number of times a write of the primary log file completes
successfully

Dual write complete Number of times a file write of the dual log file completes
successfully

Current Log File

Header

The Current Log File Header gives quantitative information on the logging
system, such as the size of the log file, log buffers, and CP interval. This section
has the following fields:

Field Description

Block size Size of the log buffer and log file blocks in bytes. The
log file is organized as a series of blocks that are laid
down in a circular fashion and used for on line backup.

Block count Size of the log file in blocks

Buffer count Number of log file buffers. These are shared by all
processes connected to the logging system.

CP interval Number of blocks between consistency points. CPs
may also be caused by other events, such as archiver
PURGEs and online checkpoints.

Logfull interval Number of log file blocks used before LOG_FULL is
signaled

Abort interval Number of log file blocks that must be used before a
FORCE_ABORT is signaled

Last Transaction Id ID of the last transaction to write a log record

Begin, CP, End Log addresses of the beginning of the log file, the last
consistency point, and the end of the log file

Percentage of log file
in use or reserved

Percentage of the log file that has either been used or is
reserved for use by the recovery system

Ingres Utilities B–37

logstat

Field Description

Log file blocks
reserved by recovery
system

Number of log file blocks reserved for transaction
recovery operations. Space reserved by a transaction is
freed when the transaction commits normally, or it is
used to write compensation log records during
transaction abort processing.

Archive Window The segment of the log file that may be examined by
the archiver for journal or dump processing

Status This field indicates the current logging system status.
This field can take one or more of the following values:

ACP_SHUTDOWN—the archiver is preparing to shut
down. (This indicates that an rcpconfig command with
the shutdown option has been issued.)

ARCHIVE—the archiver process is archiving journaled
transactions to the journal files.

BCPSTALL—the logging system is requesting the
recovery process to start writing a begin consistency
point.

CKP_SBACKUP—the logging system marks the start
of online backup. It marks this block as the online
backup start block (SB). Ckpdb starts backing up the
database.

CLOSEDB—the logging system is in the process of
closing a database.

CPFLUSH—DBMS servers are flushing their modified
pages to disk.

CPNEEDED—the logging system is about to take a
consistency point.

B–38 Advantage Ingres Embedded Edition Administrator's Guide

logstat

Field Description

Status (cont.) CPWAKEUP—the logging system is synchronizing the
fast-commit threads.

DISABLE_DUAL_LOGGING—the logging system is in
the process of disabling dual logging.

DUAL_LOGGING—dual logging is enabled. (Note
that this does not mean that both primary and dual
logs are active. For active logs look at the Active Log(s)
field.)

ECP—the logging system is requesting that the
recovery process start writing an end consistency
point.

ECPDONE—the logging system has taken an end
consistency point. This status flag is present most of
the time while the logging system is functioning
normally.

FORCE_ABORT—the force-abort-limit has been
reached; the oldest open transaction will be aborted.

IMM_SHUTDOWN—the logging system has been
told to shut down immediately. (This is displayed
when the user invokes rcpconfig with the
imm_shutdown option.) Note that the logging system
does not perform any housekeeping as part of the
shutdown process. The recovery process then becomes
responsible for backing out any uncommitted
transactions left in the log file once the logging system
has been restarted.

Ingres Utilities B–39

logstat

Field Description

 LOGFULL—the log file is full. The Ingres system
administrator should determine the cause of this and
increase the log file size. A warning indicator is also
displayed.

MAN_ABORT—the logging system has been requested
to manually abort a distributed transaction.

MAN_COMMIT—the logging system has been
requested to manually commit a distributed
transaction.

ONLINE—the logging system is on line. The logging
and recovery systems are operating OK.

OPENDB—the logging system is in the process of
opening a database.

PURGEDB—a database has been closed by the last
user who had it open; the archiver is archiving
transactions that belong to this database.

RCP_RECOVER—the recovery process is recovering
transactions from a runaway DBMS.

Status (cont.) RECOVER—the logging system has requested the
recovery process to perform recovery.

START_ARCHIVER—this is an important status that
indicates that the archiver has stopped and must be
restarted by the DBA. This is not done automatically. If
the DBA does not do it, the log file will eventually fill
up, reaching the LOG_FILE_FULL limit, and cause the
system to stall.

START_SHUTDOWN—the logging system is shutting
down. As part of the shutdown process, the logging
system commits to disk all the committed transactions
and backs out any uncommitted ones. The archiver
also journals all the committed transactions for tables
with journaling enabled.

Active Log(s) Displays which log files are currently active.

List of Active

Processes

The List of Active Processes provides information on processes currently
active in the logging system. This section has the following fields:

Field Description

ID The internal logging system ID for a process

B–40 Advantage Ingres Embedded Edition Administrator's Guide

logstat

Field Description

PID The process ID

TYPE Indicates the type of the active process. The type field can
be:

FCT—a DBMS server running Fast Commit

SLAVE—a DBMS server not running Fast Commit

ARCHIV—the archiver process

MASTER—the recovery process

OPEN_DB Number of times the server opened a database. The
recovery process and archiver each have their own
database opened at all times, while the server is the process
that opens the databases.

WRITE Number of writes this process has performed in the
logging system

FORCE Number of times this process requested that a log buffer be
forced to disk

WAIT Number of times any transaction in this process needed to
wait for a logging system-related reason

BEGIN Number of transactions started by this process

END Number of transactions ended by this process

List of Active

Databases

The List of active databases provides statistical information on all the active
databases in the logging system. This section has the following display fields:

Field Description

Id The logging system ID number of an active database

Database The first element in the row marks the database’s name and
the second element indicates the DBA’s name.

Status This field indicates the current state of the database.

Tx_cnt Number of transactions currently active in the database

Begin Number of transactions started in this database

End Number of transactions ended in this database

Read Number of reads that the logging system performed on behalf
of this database

Write Number of writes that the logging system performed on
behalf of this database

Ingres Utilities B–41

logstat

Field Description

Force Number of times that the logging system had to force out the
log buffer on behalf of this database

Wait Number of times that the logging system had to wait for a log
buffer on behalf of this database

Location The physical location of this database in the file system

Journal Window The active journal window on this database. In the case where
there is no journaling active on the database, the window
would have boundaries <0,0,0>. .<0,0,0>.

Start Backup
Location

The log file end-of-file (EOF) address when a database backup
is started. This is used during online backup processing.

List of Active

Transactions

The List of active transactions provides statistical information on each active
transaction. The fields in this section are described below:

Field Description

Tx_id Transaction ID used by the logging system

Tran_id Uniquely identifies a transaction. It is used by both the logging
and locking systems. This ID is useful when you want to follow
a transaction from lockstat to logstat output.

Database Unique ID of the database. This ID is the same as the ID in the
List of active databases section of logstat.

Process Process ID of the process currently working on this transaction.
This field corresponds to the internal logging system ID in the
List of active processes section of logstat.

Dis_tran_id Currently not used

Session The user session ID that owns this transaction. This is the same
ID used in iimonitor output. Use this ID to locate the user and
the terminal that initiated the transaction.

First Log file address of the first record associated with this
transaction

Last Log file address of the last record associated with this
transaction

Cp First consistency point address taken that concerns this
transaction

B–42 Advantage Ingres Embedded Edition Administrator's Guide

logstat

Field Description

Write Number of log buffer writes because of this transaction

Split Number of times this transaction had to wait for a log buffer in
order to write a log record that spanned multiple buffers

Force Number of times the log buffer was flushed. The force
conditions are commented in more detail under the Log forces
field in the Summary section above.

Wait Number of times this transaction had to wait for a logging
system-related event

Reserved Number of log blocks reserved by this transaction for recovery
operations

Status Present status of this transaction. This field can take the
following values:

ACTIVE—this transaction has written a number of records to
the log file.

INACTIVE—this transaction is in the retrieve mode and has not
written any records to the log file.

PROTECT—this transaction is a user transaction (as opposed to
an internal system transaction) and will be recovered in the
event of a server or system failure.

JOURNAL—this transaction must be journaled. This flag
indicates that the transaction should be archived.

Ingres Utilities B–43

logstat

Field Description

Wait Reason Reason for wait. This field can take the following values with
respect to the transaction:

(not waiting): The transaction is not waiting.

FORCE—waiting for a log force

FREE—waiting for a free log buffer

SPLIT—waiting for a log split completion

HDRIO—waiting for log header I/O completion

CKPDB—waiting for a ckpdb completion

OPENDB—waiting for an open database completion

BCPSTALL—waiting for BCP log write to complete

LOGFULL—waiting because of LOGFULL condition

FREEBUF—waiting for a free buffer

LASTBUF—waiting for the last buffer in the transaction to be
written

BUFIO—waiting for a log buffer to be freed

EVENT—waiting for a log event

ABSOLUTE_LOGFULL—waiting at the absolute end of a
LOGFULL condition

User The owner of this transaction. This field can take the following
values:

■ logfile_I/O_thread—log file read/write thread

■ group_commit_thread—group commit thread

■ buffer_manager—the buffer manager

■ log_reader_transaction—log file read/write thread

■ recovery_thread—the DMFRCP recovery thread

■ consistency_pt_thread—the consistency point thread

■ consistency_point_timer—the consistency point timer thread

■ write_behind—the write behind thread

■ security audit thread—in C2 enabled systems only, the
security audit thread

■ username—user session

B–44 Advantage Ingres Embedded Edition Administrator's Guide

logstat

Example

The following example is typical partial output from logstat. A discussion of
this output follows:

BBBBBBF�!�5�������&�$-�&���%%��
�))
�)�0"�����0����	"BBBBB�
����������!!������������%/���������������	��������������.%�
>	������
�����)
������/�./������>	������
�����!�������/�/%�

�)�	��!�
G�L�����������/.������
�)�<	
���
G�L�������������

�)�<	
��������������-$���������
�)���	����������������.&&�

�)�<�
���������������/&�%������
�)����
��<�
����������..$�

�)��	���<�
��������������������
�)�������<�
�����������-��

�)�9'=�<�
�������������-�������
�)�����������<�
����������

�)�)	��������
�������-��%������
�)�)	����������������--�.�
' ��+�����
���
��	��������������>
��	�<	
������������������
������
������!������������������#�"����<	
������������/%//�

3��)3�
���	��!�������.�.������

3!���3��)�	��!��������$��
<	
�������������������//�&������!����<	
��������������//�&�
�
;;;;'�		������)��
��� ��!�	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;�
9���+��
(���$�%���9���+��������-�$���9����	��������$�
'=�
���	�������-��
�)�����
���	������%$/��D��	��
���	������/&��

����>	������
����!�������-�/9-�/9C%C.�
9�)
����H.��%%���$�..��&���I��'=��H.��%%���$����%�����I��
,�!��H.��%%���$��-%%�-�/�I�
=�	�����)�������)��
���
�������	�	���	��!��&-�

�)��
�������+��	���	��!��"�	�����	"��"�������$��
D	�
���F
�!�<��H.��%%���$2%��2-���IMMH.��%%���$2�-%%2-�/�I�
=	��
����'=���H.��%%���$2..�2&���I�
0�����������:5
�5,2D7'��1,2'=C
�0��
D��
���
�)?�A������
:63C�
,�
�
;;;;

���������
����	�������;;;�
������������=�����>@=,��:=,53�9���F7�>,���C:7',���FD�>����9,6�5����,5��
;;;�
�������'���.��-����D0>,7���.�������-�.������-�����%���������.����������
�������-���.��.���C'>������������-&�&�����//-����$�-%�����/�/�����/�/��
�������/���.������D7'��1�������������������/������-����������-���������
;;;;

���������
���!��������;;;�
�!��CCCC����������������?N	�����	"2N
�)	��A��0�������5:>�92D'>�1,�
��>�3������&�9�)
������,�!����7��!����F	
����-�.�C�	����/�&�F�
����.�.�
��
����
������5����
�
��O��	����F
�!�<��H�2�2�IMMH�2�2�I�
��0��	��9��+���
����
����H�2�2�I�?�2�A�
�!����-����/������������?����!�2����A��0�������O:�75D
2CD0>3':���>2D'>�1,�
��>�3�������9�)
����.�,�!�����7��!����F	
����$�%��C�	������F�
�������
��
����
������G!���	�G�/���$G
������G����G
�)	��G!���G!������G����!��
��O��	����F
�!�<��H.��%%���$2%��2-���IMMH.��%%���$2�&��2&��$I�
��0��	��9��+���
����
����H�2�2�I�?�2�A�
�
;;;;

���������
����	������
���;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;�
�
��JMMM��	������
���
���	���
���!�����!�MMMK�
�
>�3
!��-%/�������>	��3
!������-�/9-�/9C%C.��������������-����/�
��=	��������������-���
�3�	��3
!��H�2�I�0���
������%&'����
��C
	����H.��%%���$2����2&���I��
�����H.��%%���$2�&��2&��$I�
����'���H.��%%���$2���2%$�I�
��F	
����$�&�0��
�����.�C�	������F�
�����%�7���	��!���$��
��0�������D'>�1,2=7:>,'>2O:�75D
�
��F�
��7�������?����<�
�
�)A�
�����	��H����I�
BBB�

Ingres Utilities B–45

logstat

Determining

Proximity to FORCE-

ABORT-LIMIT

To determine how close your installation is to the FORCE-ABORT-LIMIT, use
the information from the section titled Current log file header in the logstat
output. Four figures are relevant: the abort interval, the Block count, the Begin,
and the End.

The number appearing after abort interval is the number of blocks in the log file
that must be filled before the FORCE-ABORT-LIMIT is reached. The Block
count refers to the total number of blocks in the log file. Begin refers to the block
marking the log file’s Beginning of File (BOF) and End refers to the block
marking the log file’s End of File (EOF). The numbers following Begin and End
are divided into three groups separated by colons. It is the middle group of
numbers that are most relevant. For example, in the sample output, block 778
marks the beginning of the log file.

To calculate how close your installation is to the FORCE-ABORT-LIMIT:

1. Calculate the number of blocks in use.

 Because the log file is a circular file, the block marking the file’s beginning
can have a higher number than the block marking the file’s end (see the
Second Log File Header).

Consequently, there are two ways to determine the number of blocks in use:

a. If the End of File is larger than the Beginning of File, subtract the BOF
from the EOF to obtain the number of blocks in use. For example, in the
sample output, the BOF is 778 and the EOF is 1299. The number of
blocks in use in this example is:

1299 - 778 = 521

b. If the End of File is smaller than the Beginning of File, subtract the BOF
from the block count figure and add the result to the EOF to obtain the
number of blocks in use. For example, in the second Log File Header,
the Beginning of File is 1702, the Block Count is 2048, and the End of
File is 107. The number of blocks in use is:

(2048 - 1702) + 107 = 453

2. Subtract the number of blocks in use from the Abort interval figure to
determine how many blocks are available before the FORCE-ABORT-LIMIT
is reached.

 For example, in the sample output, 521 blocks are in use and the Abort
interval is 1536, so the number of blocks still available is:

1536 - 521 = 1015

B–46 Advantage Ingres Embedded Edition Administrator's Guide

logstat

;;;;'�		������)��
��� ��!�	;;�
9���+��
(���$�%���9���+��������-�$���9����	��������$�
'=�
���	�������-��
�)�����
���	������%$/��D��	��
���	������/&��

����>	������
����!�������-�/9-�/9CD�&�
9�)
���H.��%%���$��.�-�-&�$I�'=��H.��%%���$���.&�&/%-I�,�!��H.��%%���/���.�-�I�
=�	�����)�������)��
���
�������	�	���	��!��&��

�)��
�������+��	���	��!��"�	�����	"��"����������
D	�
���F
�!�<��H.��%%���$2�%%�2&/��IMMH.��%%���/2��.2--�I�
=	��
����'=���H.��%%���$2�.�-2-&�$I�
0�����������:5
�5,2D7'��1,2'=C
�0��
D��
���
�)?�A������
:63C�
,�
�

CP—Consistency

Points

Within the Current log file header section is a group of numbers preceded by
the label CP. These numbers, like the numbers following Begin and End are
divided into three groups. The middle of the three groups refers to the block
marking the last consistency point. This consistency point contains a list of all
open transactions and open databases at that time.

In the sample output, the block marking the consistency point is 1873. CPs
shorten the recovery window after a system goes down. Instead of reading from
BOF to EOF, the last CP is read and recovery is begun from there.

Interpreting Status Within the Current log file header section is an area called Status, which in this
case states: “ONLINE,ARCHIVE,CPFLUSH.” The status provided here is of
the logging and recovery systems. ONLINE indicates that everything is fine.
ARCHIVE indicates that archiving is currently taking place. CPFLUSH
indicates that a consistency point is taking place.

Using the Lists of

Active Databases

and Transactions

The bottom half of the logstat output is two sections, the List of active
databases and the List of active transactions. You can use the information in
these sections to determine which databases are open and active. This is useful
if you must shutdown the installation, since it is good policy to make sure that
all databases are closed before shutting down an installation. Many times,
knowing which databases are open and active allows you to determine whom
to notify of the impending shutdown.

To determine which databases are currently active:

1. Look first at the section titled List of active databases in the logstat output.
For each database listed, the database’s ID number, its name and owner and
its status appear on one line. (Note that the first entry listed will always be
owned by $ingres.)

2. Make a note of the ID number of each database listed. These numbers are
used in the List of active transactions in the logstat output to identify the
database associated with each transaction.

3. Compare the database ID numbers to the entries following the heading
Database in the listings of active transactions. If you find a match, it means
that the database associated with that ID is currently active.

Ingres Utilities B–47

mkrawarea

For example, in the sample output, the second database shown in the output is
testdb owned by test. The ID for this database is 00280005. In the List of active
transactions, the transaction listed belongs to Database: 00280005. The status of
this database (testdb) is ACTIVE,PROTECT,JOURNAL. If an installation
shutdown was pending, you could then inform the testdb’s owner, test, of the
impending shutdown.

mkrawarea

Sets up a raw area file in a UNIX installation.

Syntax

mkrawarea

Description

The mkrawarea command is run at install time from the root login to create a
raw database area and link it to a character special file.

mkrawlog

Sets up a raw log file in a UNIX installation.

Syntax

mkrawlog [-dual]

Description

The mkrawlog command is run at install time from the root login to create a
raw log file for the transaction log. The command is optionally run after
installation to set up a raw log file for the dual log.

B–48 Advantage Ingres Embedded Edition Administrator's Guide

rcpconfig

rcpconfig

Configure or shut down the logging and locking systems.

Syntax

 rcpconfig [[-init | -init_log | -init_dual [-node nodename]]|
-force_init |-force_init_log | -force_init_dual |
-enable_log | -enable_dual |-disable_log |
-disable_dual | -shutdown | -imm_shutdown][-silent]
[-help]

Description

The rcpconfig utility can be used to control the state of the logging system. It is
designed for use in system maintenance for special purpose control functions.
You must be an Ingres system administrator to use this utility.

The flags specify the following functions:

Flag Description

init Initializes both transaction log files. This may be done
only when the installation is offline.

For clustered installations only, the node flag may
optionally be used.

init_log Initializes the primary transaction log file. This may be
done only when the installation is offline.

For clustered installations only, the node flag may
optionally be used.

init_dual Initializes the dual transaction log file. This may be
done only when the installation is offline.

For clustered installations only, the node flag may
optionally be used.

node nodename Is used to query a specific node. A nodename is valid
only in a clustered installation.

force_init Forcibly initializes both transaction log files. This may
be done only when the installation is offline, but after
allocating shared memory (csinstall).

force_init_log Forcibly initializes the primary transaction log file. This
may be done only when the installation is offline.

Ingres Utilities B–49

rcpstat

Flag Description

force_init_dual Forcibly initializes the dual transaction log file. This
may be done only when the installation is offline.

enable_log Enables the primary transaction log file. This may be
done only when the installation is offline.

enable_dual Enables the dual transaction log file. This may be done
only when the installation is offline.

disable_log Disables the primary transaction log file.

disable_dual Disables the dual transaction log file.

shutdown Gracefully shuts down the installation. It waits for any
currently executing transactions to finish and cleans up
the logging and locking system prior to shutdown.

imm_shutdown Immediately shuts down the installation. It does not
wait for currently executing transactions to complete.
Transaction recovery will be required when the
installation is restarted.

silent Sets the program exist status to TRUE or FALSE
according to the results of the operation.

help Displays syntax online.

 Note: Each flag on a command line must be preceded by a hyphen -.

Rcpconfig is called by ingstart and ingstop to configure or shut down the
archiver and recovery processes for your installation. You will normally not run
the rcpconfig utility directly. Instead, use ingstart to reconfigure the locking and
logging system and ingstop to shut down the entire Ingres system, including the
locking and logging system.

rcpstat

Displays the status of the logging system.

Syntax

rcpstat [[[-exist | -format | -enable [-dual]]| -online |
-transactions | -sizeok | -csp_online
[-node nodename]] | -any_csp_online]
[-silent] [-help]

B–50 Advantage Ingres Embedded Edition Administrator's Guide

regdocs

Description

The rcpstat utility can be used to query the state of the logging system. It is
designed for use in system maintenance and is not normally employed by users.

The flags specify the following functions:

Flag Description

exist Show whether the primary (default) or dual (dual flag)
transaction log file exists.

format Show whether the primary (default) or dual (dual flag)
transaction log file is formatted.

enable Show whether the primary (default) or dual (dual flag)
transaction log file is enabled.

dual Flag option for the exist, format, or enable options to
specify the dual log.

online Show whether the logging system is online or offline.

transactions Show if the logging system has recoverable transactions
in the transaction log file.

sizeok Show whether the primary and dual transaction log files
are the same size.

csp_online Show if, in a clustered installation, the Cluster server
(CSP) is online on this node.

node nodename Is used to query a specific node, on any of the preceding
flags. A nodename is valid only in a clustered installation.

any_csp_online Display if, in a clustered installation, the Cluster server
(CSP) is online on any node.

silent Sets the program exist status to TRUE or FALSE
according to the results of the operation.

help Displays syntax online.

Note: Each flag on a command line must be preceded by a hyphen -.

regdocs

Register specified files to an Ingres/ICE business unit.

Ingres Utilities B–51

regdocs

Syntax

regdocs options filename(s)

Description

The regdocs utility allows a system administrator to register files to Ingres/ICE
in bulk without having to use the Visual DBA utility. With this utility, you can
build scripts to aid in the maintenance of an Ingres/ICE web site.

The filename(s) parameter specifies one or more files that you want to register.
Alternatively, you can use the –ilistfile flag to specify the names of multiple files
in the specified listfile, saving you typing, and input errors while using the
command line.

The following table lists valid options for this utility:

Options Description

-nnode The node name of the target server.

-oowner The Ingres/ICE user who owns the file.

-uunitname The name of the business unit to which the files will
belong.

-llocation The name of the location of the files within the business
unit. (A business unit can have more than one location
associated with it.)

-tdoctype The type of document being registered, either pages or
facets.

p—the document is a page, which is processed by the
Ingres/ICE server. This is the default.

f—the document is a facet, which is not processed by the
Ingres/ICE server.

-fflags The flags associated with the file that is being registered.

e—the file is located in an external location. This flag
causes the flags r, p, f, and s to be ignored.

g—the file is accessible by any user.

r—the file is located in the repository. This flag causes the
p, f, and s flags to be enabled.

p—the file is preloaded during server start.

f—the file is always loaded.

s—the file is loaded on demand.

B–52 Advantage Ingres Embedded Edition Administrator's Guide

rmcmdgen

Options Description

-help Displays syntax online.

-ilistfile The name of the file that contains the list of files (pages
and facets) to be added to the business unit.

rmcmdgen

Utility used to generate the Visual DBA remote command catalogs.

Description

The rmcmdgen utility can only be started by the ingres system administrator,
and it has no command line parameters. It generates the objects in the iidbdb
database that are needed by rmcmd.

The rmcmdgen utility is normally invoked by the installer.

rmcmdrmv

Utility used to remove the Visual DBA remote command catalogs.

Description

Generally used when upgrading an installation.

rmcmdrmv can only be executed by the ingres system administrator, and it has
no command line parameters. It removes (from the iidbdb database) the objects
(tables/view/ procedures/dbevents) that are needed by rmcmd.

rmcmdstp

Utility used to stop rmcmd—the remote command process.

Ingres Utilities B–53

syscheck

Description

rmcmdstp can only be executed by the ingres system administrator, and has no
command line parameters. rmcmdstp stops the rmcmd process. Note:
Normally, rmcmd is stopped by the ingstop process.

syscheck

Displays process and system resources and verifies that there are enough
resources to run an Ingres installation as currently configured.

Syntax

syscheck [-v] [-ofilename] [-help]

Description

The syscheck utility checks if there are sufficient resources available in your
system to run Ingres. If not, syscheck displays the resources needed. If you have
enough resources, syscheck prints a confirming message and continues. If it
finds that your system does not have enough resources, it prints an error
message and exits with an error status.

If you run this command, be sure to run it after you have configured your
system since syscheck reads the locking and logging parameters before it checks
for resources.

The following table lists valid command parameters and flags:

Parameter Description

-v Verbose mode. The command displays
messages on all resources, not just the
insufficient ones.

-ofilename Specifies that syscheck output is to go to the
specified filename.

-help Displays syntax online.

B–54 Advantage Ingres Embedded Edition Administrator's Guide

vcbf

Ingstart calls syscheck after the system is configured and before starting the
servers, so you will ordinarily have no need to call this command directly.
However, if system resources have changed since installation, you can use this
command to see if you are reaching operating system resource limits that might
cause the system to fail.

vcbf

The vcbf utility starts up the Configuration Manager, a graphical user interface
for configuring your Ingres installation.

Syntax

vcbf

Description

The Configuration Manager displays current values of the server parameters
and provides menu and screen selections for changing them.

With the Configuration Manager you can:

■ Configure various components of the installation:

– Name, DBMS, ICE, Net, or Star servers

– Locking or logging systems

– Archiver or recovery process

– Transaction log files

■ Select which databases can be accessed by a DBMS server

■ Reformat transaction log file(s) and enable/disable dual logging

■ Reconfigure protocol accesses for the Net server

■ Set a new value of any configuration parameter, or restore the factory
default

■ Automatically calculate configuration parameters derived from other
parameters

■ Protect any derived parameter from further change

■ Run a system check for sufficient resources on a new configuration

■ View a log of all configuration changes

Ingres Utilities B–55

vdba

vdba

The Visual DBA utility is a graphical user interface through which the database
administrator can administer an Ingres installation.

Syntax

To launch the specified environment at Visual DBA startup, use the vdba
environmentname.cfg syntax. This syntax requires the environment to have
been previously saved with Visual DBA.

vdba environmentname.cfg

To start Visual DBA with a list of parameters, use the vdba /c syntax:

vdba /c [maxapp] [maxwin] [nonodeswindow] [windowdesc {,windowdesc}...]

Description

The vdba utility is a graphical user interface through which the database
administrator can manage a local or remote Ingres installation.

The following table describes vdba parameters:

Parameter Description

/c Provides a means of invoking Visual DBA with a list of
parameters.

maxapp Maximize the Visual DBA application.

maxwin Maximize the MDI windows within Visual DBA.

nonodeswindow Do not display the Virtual Nodes toolbar and window.

B–56 Advantage Ingres Embedded Edition Administrator's Guide

vdba

Parameter Description

windowdesc Type of window to open on startup. Valid values are dom,
sql, monitor, and dbevent.

Syntax for each windowdesc:

dom|sql|monitor|dbevent [nodename][/serverclass]
[-uusername][objecttype objectidentifier]

where:

dom|sql|monitor|dbevent
 Specifies the type of window to be opened

[nodename]: (optional) Node where the window is to
open. No node designates the local node.

[/serverclass]: Optional server class (allows work on
 gateways)

[-uusername]: Optional user to impersonate through the –
u
 option

[vnode]: Specifies the remote node for which
 specified windows should be opened. For
 details, see the Standard Command Line
 Flags and Parameters section in the “Ingres
 Commands” chapter.

[objecttype objectidentifier]:
 Places the selection on the corresponding
 object: In dom and monitor, expands
 appropriate branches and places the
 selection of the corresponding object.
 In sql and dbevent, only a database can be
 specified (it becomes the active database).

 Valid values for objecttype:
database|table|view|procedure|user
|group|role|location|server

 Valid values for objectidentifier:
 serverno (for servers) (in monitor windows)
 objectname (if not a child branch from a
 database) dbname/objectname (if child
 a database). Schema prefixes are acceptable.

Note: The last windowdesc becomes the topmost window in
Visual DBA.

Ingres Utilities B–57

vdba

Examples

Invoke vdba without the Virtual Nodes window, maximized on the screen, with
one dom window opened for the local node:

vdba /c nonodeswindow maxwin dom

Invoke vdba, maximized on the screen, with both the performance monitor
window and a dom window opened for the local node:

vdba /c maxapp monitor, dom

Invoke a saved vdba environment:

vdba gateway.cfg

B–58 Advantage Ingres Embedded Edition Administrator's Guide

	Bookshelf
	Advantage Ingres Embedded Edition Administrator's Guide
	Contents
	1: Overview of Ingres
	Ingres Installation
	Ingres Architecture
	Ingres Querying and Reporting Tools
	DBMS Server
	How Ingres Executes a Query
	DBMS Server Facilities
	Ingres Visual Tools
	Logging and Locking Systems
	Lock Manager
	Logging Facility
	Recovery Process
	Archiver Process
	Transaction Recovery
	Ingres Log Files
	Other Optional Log Files

	General Communication Facility (GCF)
	JDBC Connectivity
	JDBC Components
	JDBC 2.1 API Features
	JDBC 2.0 Standard Extensions
	Running the JDBC Server
	Loading the Driver
	Accessing the Driver
	Driver Properties
	Autocommiting Transactions
	Cursors and Select Loops
	Date/Time Columns and Values
	National Character Set Columns
	Tracing

	2: Managing Your System and Monitoring Performance
	Ingres Visual Manager
	Using Ingres Visual Manager
	Ingres Visual Manager Window
	Configuring Parameters
	System and User Parameters
	Server Parameters

	Defining Message Categories and Notification Levels
	Setting Preferences
	Monitoring Components
	Servers
	Log Information
	Lock Information

	Visual DBA
	Using the Performance Monitor
	Performance Monitor Window
	Working with Performance Monitor Components
	Force Refresh or Shut Down Instances
	Background Refresh

	Monitoring Components
	Servers
	Lock Information
	Log Information
	Databases
	Active User Information
	Replication

	3: Maintaining Databases
	Viewing Database Objects
	Deleting Database Objects
	Routine Maintenance Tips
	Operating System Maintenance Tips
	Verifying Databases
	Avoiding User Errors
	Translating File Names into Table Names
	Retaining Templates of Important Tables

	4: Maintaining Storage Structures
	Storage Structures and Performance
	Limitations of Heap Structure

	Modifying Storage Structures
	Modify Cautions
	Modify Options
	Shrinking a B-tree Index
	Extending a Table or Index
	Modifying Secondary Indexes
	When to Remodify B-tree Tables
	Common Errors During the Modify Procedure

	Overflow
	Measuring the Amount of Overflow
	Repetitive Key Overflow
	Poorly Distributed Overflow
	Overflow and Storage Structures

	5: Backup and Recovery
	The Logging System
	The Logging Facility
	Log Space Reservation
	The Recovery Process
	The Archiver Process
	The Cluster Server Process

	Verifying Data Accessibility Before Backup
	Backing Up a Database with Checkpoints
	Checkpointing a Database
	Checkpointing Tables
	Online and Offline Checkpoints
	Locking During a Checkpoint
	Cleaning Up Outdated Checkpoints
	Deleting the Oldest Checkpoint
	Checkpoints and Destroyed Databases
	Parallel Checkpointing in UNIX
	Putting Checkpoints on Tape in Windows
	Putting Checkpoints on Tape in UNIX
	Putting Checkpoints on Tape in VMS

	Using the Journaling System
	Starting Journaling
	Disabling Journaling
	Stopping Journaling
	Altering Database Characteristics
	Resizing the Journal File
	Producing Audit Trails with Journals

	Copying a Database
	Creating Copy Scripts
	Copying a Database

	Unloading a Database
	Recovering Databases
	Recovering Databases from Checkpoints and Journals
	Recovering from the Loss of the Transaction Log File

	Altering the Checkpoint Template File
	Checkpoint Template Codes
	Substitution Parameters
	Valid Code Combinations
	Format of the Checkpoint Template File in Windows
	Format of the Checkpoint Template File in UNIX
	Format of the Checkpoint Template File in VMS
	An Alternate Checkpoint Template File in UNIX

	Backup and Recovery of the Master Database (iidbdb)
	Tracing with Set Log_Trace

	6: 6:Improving Database and Query Performance
	Locking and Concurrency Issues
	Identifying Lock Waits
	Multi-Query Transactions (MQTs)
	Managing Overflow
	Set Statements

	Database Maintenance
	Design Issues
	Diagnostic Hierarchy
	Storage Structures and Index Design
	Keys
	Query Design

	Before Calling Technical Support
	Isolate and Analyze the Suspect Query
	Create a Test Case

	A: Ingres Commands
	Audience
	Special Considerations
	Command Syntax
	Standard Command Line Flags and Parameters
	Uppercase Flags
	Using Schemas for Owner Qualification
	Delimited Identifiers on the Command Line

	abf
	Syntax
	Description

	accessdb
	Syntax
	Description

	alterdb
	Syntax
	Description

	arcclean
	Syntax
	Description
	Examples

	auditdb
	Syntax
	Description
	Examples

	ckpdb
	Syntax
	Description
	Examples

	convrep
	Syntax

	copyapp
	Syntax
	Description
	Examples

	copydb
	Syntax
	Description
	Examples

	createdb
	Syntax
	Description
	Examples

	dereplic
	Syntax

	destroydb
	Syntax
	Description
	Examples

	esqla (ESQL Preprocessor)
	Syntax
	Description

	extenddb
	Syntax
	Description
	Examples

	fastload
	Syntax
	Description
	Examples

	genxml
	Syntax
	Description
	Examples

	infodb
	Syntax
	Description
	Example

	ingmenu
	Syntax
	Description

	ingprenv
	Syntax
	Description

	ingsetenv
	Syntax
	Description

	ingunset
	Syntax
	Description

	ipm
	Syntax
	Description

	isql
	Syntax
	Description
	Example

	modifyfe
	Syntax
	Description

	netutil
	Syntax
	Description
	Examples

	optimizedb
	Syntax
	Description
	Examples

	qbf
	Syntax
	Description

	query
	Syntax
	Description

	reconcil
	Syntax
	Description
	Example

	relocatedb
	Syntax
	Description
	Examples

	repcat
	Syntax
	Description
	Examples

	repcfg
	Syntax
	Examples

	repdbcfg
	Syntax
	Description
	Examples

	repinst
	Syntax
	Description
	Examples

	repmgr
	Syntax
	Description
	Example

	repmod
	Syntax
	Description

	report
	Syntax
	Description

	repstat
	Syntax
	Description

	rollforwarddb
	Syntax
	Description
	Examples

	rpserver
	Syntax
	Description

	rsstatd
	Syntax

	sql
	Syntax
	Description
	Examples

	starview
	Syntax
	Description
	Example

	statdump
	Syntax
	Description
	Examples

	sysmod
	Syntax
	Description

	tables
	Syntax
	Description
	Example

	unloaddb
	Syntax
	Description
	Examples

	upgradedb
	Syntax
	Description

	upgradefe
	Syntax
	Description
	Examples

	usermod
	Syntax
	Description

	verifydb
	Syntax
	Description
	Examples

	xmlimport
	Syntax
	Description
	Example

	B: Ingres Utilities
	cacheutil
	Syntax
	Description

	catalogdb
	Syntax
	Description
	Examples

	cbf
	Syntax
	Description

	cscleanup
	Syntax
	Description

	csreport
	Syntax
	Description
	Examples

	deregdocs
	Syntax
	Description

	ICETranslate
	Syntax
	Description
	Example

	iigenres
	Syntax
	Description
	Example

	iigetres
	Syntax
	Description

	iimklog
	Syntax
	Description

	iiremres
	Syntax
	Example

	iisetres
	Syntax
	Example

	iivalres
	Syntax
	Example

	iimonitor
	Syntax
	Description

	iinamu
	Syntax
	Description
	Examples

	iishowres
	Syntax
	Description

	iizic
	Syntax
	Description

	iizck
	Syntax
	Description

	ingbuild (UNIX) or vmsinstal (OpenVMS)
	Syntax
	Description
	ingnet

	Syntax
	Description

	ingstart
	Syntax
	Description
	Examples

	ingstop
	Syntax
	Description

	ivm
	Syntax
	Description

	lockstat
	Syntax
	Description
	Example

	logstat
	Syntax
	Description
	Example

	mkrawarea
	Syntax
	Description

	mkrawlog
	Syntax
	Description

	rcpconfig
	Syntax
	Description

	rcpstat
	Syntax
	Description

	regdocs
	Syntax
	Description

	rmcmdgen
	Description

	rmcmdrmv
	Description

	rmcmdstp
	Description

	syscheck
	Syntax
	Description

	vcbf
	Syntax
	Description

	vdba
	Syntax
	Description
	Examples

