Advantage VISION:Builder
Advantage” UISION:-Two
forz/0S

Environment Guide
1o

a)

Computer Associatese

B02633-1E

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for the
end user's informational purposes only and is subject to change or withdrawal by Computer Associates International,
Inc. ("CA") at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for their
own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the license
for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and effect.
Should the license terminate for any reason, it shall be the user's responsibility to return to CA the reproduced copies
or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation "as is" without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption, goodwill,
or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with "Restricted Rights" as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227- 19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

© 2005 Computer Associates International, Inc.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introduction

Configuration Requirements. 1-1
Organization and Standards for This Book 1-2
Overview of VISION:Builder Application Development 1-3
Definitionso 1-5
Processing Data. 1-6

Chapter 2: VISION:Builder Runs, Run Control, and Execution
JCL

Relationship Between Run Control, VISION:Builder Processing, and JCL........................... 2-1
Files and Their DDnames in a VISION:Builder Run.......... 2-2
Job Control Statements.ot 2-2
Run Control GroUp. oottt 2-5
The Definition Maintenance Run i 2-8
The Application RUNo oo e e e e 2-9
Single-Step Process-Sort-Report Run. o i i 29
Three-Step Process-Sort-Report Run i e 2-11
Single-Step No-Sort Report Run. 2-15
Run Control and Execution JCL for Sample VISION:Builder Applications 2-17
Alternate Report Fileso 2-18
Report from Master File and Coordinated Files (Three-Step), 2-22
Create a Subfile and Generate a Report on an Alternate List File (Three-Step) 2-26
Update a Master File (Single-Step Sort). 2-30
Scan/Sample Report 2-33
Program Analyzer 2-35
Report Summary File. 2-43
Update-in-Place (Single-Step No-Sort) 2-49

Contents 1

Report Manager JCL Examples. e 2-51

Report Manager Single-Step JCL for Collating and/or Routing 2-51
Report Manager Three-Step JCL for Collating with or without Routing 2-54
Report Manager Three-Step JCL for RoutingOnly 2-57
Alternate Report Output Method JCL Examples i 2-60
Alternate Report Output Methods Single-Step JCL............. o ... 2-60
Alternate Report Output Methods Three-Step JCL o i 2-64

Chapter 3: VISION:Builder — IMS Database Interface and
Retrieval

MARKDLI, DBDs, and PSBs 3-1
Sample File Definition. e 3-4
IMS Batch Region Execution of VISION:Builder i 3-7
IMS BMP Region Execution of VISION:Builder.......... i 3-9
VISION:Builder Extended DL/ISupportt e 3-10
Secondary Indexing. 3-10
Non-Unique IMS Key/Search Field Names i i, 3-10
Generic and Duplicate Root Keys. 3-11

Chapter 4. VSAM User Files

ESDS and KSDS FIleSottt ettt e e e e e et e e e e e e e e e 4-1
ESDS and KSDS Alternate Index Paths i et 4-1
Alternate Indexasa User File 4-3
Generic and Duplicate Keys. 4-4

Chapter 5: Own-Code Facilities

Integrating MAOWN 5-2
Obtaining Space for Own-Code Routines 5-3
Interrupts and Linkage Considerations 5-4
Own-Code Hook Naming Conventions. i 5-5
VISION:Builder Own-Code Hook Flow o i i i i 5-6

2 Environment Guide

Own-Code Hook Descriptions« ...ttt et e e e e 5-9

OWn-Code HOOK 10 . ..ot e e e e e e e e e e e 5-9
OWn-Code HOOK T . ..o e e e e e e e e et e e e it 5-10
OWn-Code HOOK 20 e e e e e e e e 5-11
Own-Code HooOK 21 e e e 5-12
OWn-Code HOOK 30o e e e e e e e e e 5-14
OWn-Code HOOK B0 . ..ot e e e e e e e 5-15
Own-Code HoOK Bl e e e e e 5-16
OWn-Code HOOK 60ottt e e e e e e e e e e e 5-16
OWn-Code HOOK 61 e e e e e e e e e e 5-17
Own-Code HoOK 62 e e e e 5-17
Own-Code HOOK 63 o e e e e e e e 5-18
OWn-Code HOOK 70 . ..ot e e e e e e e e e e 5-19
Own-Code HoOK 91 e e e e 5-21
Own-Code HoOK 92 e e e e e 5-23
Own-Code HoOK 93 o e e e e e e 5-24
Variable Length Fields withOwn-Code 5-24
USer I/ O . oot e 5-24
Primary Parameter List 5-26
Communication Table e 5-27
File Table . ..ottt e e e e e e e e 5-31
Key Table oo 5-34
Relationships Among Tables i 5-37
Update-in-Place Example 5-38
COBOL Example of User I/ Oo e e e 5-39

Chapter 6: Checkpoint/Restart

Checkpoint Optionsot 6-1
Taking Checkpoints in VISION:Builder 6-4
Checkpoint Fileso e 6-4
Checkpointing at Time Intervals 6-4
Checkpointing on Record Count 6-5
Checkpointing Under Operator Control......... e 6-5
Checkpointing at End of Volume. 6-5
Multiple Checkpoint Options.o e 6-5
Writing Checkpoints 6-6
z/0OS Samples of Checkpoint/Restart. 6-6

Contents 3

IMS Checkpoint/Restartttt e e e 6-9

IMS Requirements for Checkpointing 6-10
VISION:Builder Considerations for IMS Checkpoints i, 6-14
VISION:Builder Restrictions for IMS Checkpoint/Restart, 6-15
IMS Checkpoints with DB2 6-16

Chapter 7: Batch Query Language Execution

Query Language Input and Output Files. 7-1
Steps in the Execution of the Batch Query Language 7-2
QUETY SteD . ..t 7-3
Glossary Step 7-4
Processing Step 7-5
Definition Stepot 7-5
SOrt St . . 7-6
RepOrt Step . . .o 7-6
Sample Execution of Batch Query Language 7-6

Chapter 8: Batch Free-Form Input Execution

Job Control Language ReqUITementsttt 8-1

Chapter 9: VISION:Builder Online Execution

Using the VISION:Builder Executive Under TSO i i 9-1
Input and Output Devices e 9-1
Furnishing Allocation Data i 9-2
Using CLISTSo 9-4
Messages Issued By OLX o 9-4

OLX Commandsttt 9-5
Data Set and Command Security Interfaces 9-5

Online Query Language.o i e 9-6

Online Free-Form Input 9-6
Input Modeand Edit Mode 9-6
Input of VISION:Builder Source Statements.ouuuutetttin i 9-6
OFL Commandst 9-11
Sample RUN. 9-12

4 Environment Guide

Chapter 10: Operating Characteristics

JCL Override Parameters.ottt ettt e e e e e 10-1
Concatenation of Input DataSets. 10-3
Linking to VISION:Builder 10-4
Calling SEqUENCE.o ot 10-4
VISION:Builder Input Parameter List 10-4
PARM Information i 10-5
ddname. 10-5
ExitSequence. 10-5
Sort Control Statements. 10-6
Limiting the Number of Records Read During Input File Processing 10-7
Resource Optimization 10-7
Access Methods. 10-9
Blocking Factor for ISAM Files.o o 10-9
Non-VSAM Variable-Spanned Records i 10-9

Chapter 11: Using VISION:Builder with DB2

TSO Attach Facility. 11-1
IMS Attach Facility o 11-2
CALL Attach Facility oo 11-3

Chapter 12: Common Library Access and Utilities

Using Multiple Common Libraries 12-2
Using Common Librarieson Shared DASD 12-2
Sharing Common Librarieson DASD 12-3
COMLIB Release 4.5 Considerations. i i i i i 12-4
Internal MALIB 4.5 Format 12-4
Common Library Utility Work File (M4WORK) Format i, 12-5
Common Library Data Set (M4LIB) Compression.iiiiiuiinniiiiiianaaaa.. 12-5
COMLIB r5 Considerations. 12-6
Internal MALIB 5.0 Format 12-6
New and Enhanced Field Types and Characteristics 12-7
The Common Library Service Program. 12-7
MARKUTIL Initialization 12-7
MARKUTIL Dump and Restore. e 12-11
MARKUTIL Condense.o o 12-13
MARKUTIL Copy and Merge.ottt e i 12-15
MARKUTIL and Multiple UC Statements i 12-17
MARKINIT Common Library Initialization. 12-18

Contents 5

MARKDUMP and MARKREST Common Library Dump and Restore 12-19

MARKCON Common Library Condense i, 12-22
Using Cataloged Procedures and Requests. i i 12-23
Cataloged Procedure and Request Maintenance 12-23
Cataloged Procedure and Request Execution............, 12-24
Listing and Retrieving Common Library Items 12-24
Common Library Listing Operations. i ... 12-24
Common Library Retrieval Operations i .. 12-25
Sample Source Statement Retrieval Runs 12-26
Fixed Syntax Statement Usage Considerations. 12-28

Chapter 13: VISION:Builder HTML Document Style
Customization

Index

6 Environment Guide

Chapter

Infroduction

1

This book provides detailed information on the use of Advantage
VISION:Builder® (hereinafter referred to as VISION:Builder) and the COMLIB
subsystem. This book covers operations, instructions for input to the system, and
z/OS®run setups for all VISION:Builder models.

Each VISION:Builder system can be combined with options in a variety of ways to
provide any user with the VISION:Builder processing functions needed to solve
problems. Depending on configuration, these systems are upward compatible.

Since not all functions are available in every installation, you might find that some
specifications described in this book are not operable with your system. When that
is the case, VISION:Builder outputs an appropriate message.

Configuration Requirements

The VISION:Builder software system has several models grouped in two different
series.

m The 4000 model series represents the VISION:Builder software system that
allows users to develop fully functional applications. These applications
include the transaction processing and master file updating facilities along
with the entire set of information retrieval, selection, and manipulation
functions used in conjunction with the multitude of reporting and data
extraction capabilities.

m The 2000 model series represents the VISION:Builder software system subset
known as VISION:Two™. This subset of VISION:Builder includes all the same
information retrieval, selection, and manipulation functions that are used in
conjunction with the multitude of reporting and data extraction capabilities
that are part of the 4000 model series. However, the transaction processing and
master file updating facilities are not included in the 2000 model series.

Introduction 1-1

Organization and Standards for This Book

Organization and Standards for This Book

The term VISION:Builder is used to represent both the 4000 model series and the
VISION:Two 2000 model series. The model number appears on the banner page
that is output at the start of all source listing displays. Throughout this book, the

symbol @ is used to designate that the feature or function being described only
applies to the VISION Builder 4000 model series.

The job control language (JCL) examples in this book follow a standard format.
Uppercase characters are used for specifications that are thought to be usable as is.
Lowercase characters are used for specifications, such as data set names and
volume serial numbers, that are installation dependent in nature.

This following is a brief description of each chapter contained in this book.

m Chapter 1, “Introduction” is an introduction and overview of VISION:Builder
application development. It also describes the minimum configuration
required by VISION:Builder.

m Chapter 2, “VISION:Builder Runs, Run Control, and Execution JCL” describes
the VISION:Builder run control group, the various VISION:Builder runs, and
the z/OS JCL to execute these runs.

m Chapter 3, “VISION:Builder - IMS Database Interface and Retrieval” describes
using VISION:Builder and IMS™ Data Base Interface and Retrieval.

m Chapter 4, “VSAM User Files” describes the use of VSAM user files and
VISION:Builder.

m Chapter 5, “Own-Code Facilities” describes how to use Own-Code and User
I/0O facilities.

m Chapter 6, “Checkpoint/Restart” describes Checkpoint/Restart with
VISION:Builder.

m Chapter 7, “Batch Query Language Execution” describes the execution of
VISION:Builder in a Batch Query Language environment.

m Chapter 8, “Batch Free-Form Input Execution” describes how to use
VISION:Builder Batch Free-Form Input.

m Chapter 9, “VISION:Builder Online Execution” describes how to use
VISION:Builder Online Executive under TSO.

m Chapter 10, “Operating Characteristics” describes some operating
characteristics of VISION:Builder.

m Chapter 11, “Using VISION:Builder with DB2” describes using
VISION:Builder with DB2°.

m Chapter 12, “Common Library Access and Utilities” describes the
maintenance of the common library.

m Chapter 13, “VISION:Builder HTML Document Style Customization”
describes the customization of HTML document styles.

1-2 Environment Guide

Overview of VISION:Builder Application Development

Overview of VISION:Builder Application Development

VISION:Builder is a general purpose software system for the design,
implementation, and operation of data processing applications.

VISION:Builder is able to input and output a variety of files. For a detailed
discussion of input and output files, refer to the VISION:Builder for z/OS Reference
Guide.

Figure 1-1 illustrates the input files processed by VISION:Builder. Figure 1-2
illustrates the output files produced by VISION:Builder during the processing step
while Figure 1-3 illustrates the output files produced during the report step.

Source

Statements

Y

Processing
Step

A

Figure 1-1 Input Files Processed byVISION:Builder

Note: For M4CORDn in Figure 1-1, n can be a value from 0 to 9.

Intfroduction 1-3

Overview of VISION:Builder Application Development

So
Fil
Rejected
Transaction
File
10 Maximum
Processing Subfiles
Step and
Array
Files
9 Maximum

w

M4PAOUT

Figure 1-2 Output Files Produced During Processing

and
M4CHK?2
Checkpoint
Files

Note: For M4SUBFn and M4REPn in Figure 1-2, n can be a value from 0 to 9.

1-4 Environment Guide

Overview of VISION:Builder Application Development

Definitions

| | Alternate Lists
| MALISTI

Collated
Reports

M4L ST

|Routed Reports

MAPRINT _ |
[

XXX~ XXX

Report
Step

255 Maximum

Alternate
Qutput
Formats

Figure 1-3 Output Files Produced During Report Step

Any file or data structure, including arrays, tables, and transaction definitions,
input to a VISION:Builder application run must first be defined to
VISION:Builder. You define data structures to VISION:Builder by inputting
definition source statements to a definition/ maintenance run.

Note: You can also define master and coordinated files instream in a processing
run (refer to the VISION:Builder for z/OS Reference Guide).

The definition/ maintenance run checks the source statements for errors and
catalogs error free definitions in the common library (M4LIB), which is located on
a direct access device (DASD). The printed output of a definition run is a glossary,
a formatted listing of the data structure defined to VISION:Builder. Figure 1-4 on
page 1-6 illustrates the definition/maintenance run.

Intfroduction 1-5

Overview of VISION:Build

er Application Development

Processing Data

Before defining any data to VISION:Builder, you must initialize the common
library. See Chapter 12, “Common Library Access and Utilities” for more
information on how to initialize the common library.

File Definitions
Other Definitions

/
/ RC

COMMON

L 1BRARY ¢

File Defs o
Transaclion Defs Definition
Table Defs Function

Array Defs

Glossary

Figure 1-4 A Definition/Maintenance Run

The processing of data by VISION:Builder occurs in an application run. An
application run that generates report output typically consists of three functions:
processing, sorting, and reporting.

You can combine the three functions into a single step where the report data is
sorted internally rather than being passed to a separate sort step and then a report
step. This method of processing an application run is known as single-step
processing, which optimizes processing and saves external I/O operations.

Application runs can be processed by a three-step VISION:Builder processing
method. The processing step is first and it includes the decoding of the
VISION:Builder source statements, reading of input files, outputting new files,
and, often, producing a report file (or files). The final two steps, sorting and
reporting, are for the processing of the report file and possibly producing report
summary files.

1-6 Environment Guide

Overview of VISION:Builder Application Development

Figure 1-5 illustrates the conceptual flow of an application run. Figure 1-6 on
page 1-8 illustrates single-step and three-step application runs.

Common
Library
Definitions

Glossary

Application
Requirements

!

Sort Control
Statements

v

Sort

Procedures.
Reports.
Subfiles
Program
Listing
Compile
Process Files In [N~———
< Master
__
3 (—
New®| | Report ,i;:(s) Check-
Master | | File(s) and poinl
Files Out |
Sorted Report

Report File

Printed II
Alternate Reports
Output

Formats

Report
Summary
Files

Figure 1-5 The Application Run

Introduction 1-7

Overview of VISION:Builder Application Development

THREE-STEP
PROCESSING AND REPORTING

Request MAL 1B

Inpul

Compile
Files P

MALIST M4REPO

-

SORT

M4REP |

Repor t

{ M4 INPUT L’
=i

Alternate
Output
Formats

SINGLE-STEP
PROCESSING AND REPORTING

Request MALIB

I
H

v v

Compile -
Process
(Sort) Report M4REPO

IIIHIEHIII

Figure 1-6

Three-Step vs. Single-Step Processing and Reporting

Note: In Figure 1-6, input files include any VISION:Builder file that can be
considered an input file, such as M4OLD, M4TRAN,@ M4CORDn, and

M4INPUT.

1-8 Environment Guide

il VISION:Builder Runs, Run Control,
2 and Execution JCL

This chapter describes VISION:Builder runs, run control, execution JCL, and their
relationships to each other. It is divided into the following sections:

m Relationship Between Run Control, VISION:Builder Processing, and JCL on
page 2-1
m Files and Their DDnames in a VISION:Builder Run on page 2-2

s Run Control Group on page 2-5

m The Definition Maintenance Run on page 2-8

m The Application Run on page 2-9

m Run Control and Execution JCL for Sample VISION:Builder Applications on
page 2-17
m Update-in-Place (Single-Step No-Sort) on page 2-49

m Report Manager J[CL Examples on page 2-51

m Alternate Report Output Method JCL Examples on page 2-60

Relationship Between Run Control, VISION:Bvuilder Processing,
and JCL

The first statement or set of statements in any VISION:Builder run is the run
control group. These statements perform the following functions:

m They define the master, transaction,@ and report files for the run, and allow
you to control run-dependent parameters. The CONTROL statement allows
you to select a variety of options that affect how VISION:Builder executes.

m Therun control group acts as a bridge between the files (described by JCL) and
the VISION:Builder processing performed. Based on the files you specify in
the run control group, VISION:Builder locates the appropriate JCL statements
that define the files to the operating system.

VISION:Builder Runs, Run Control, and Execution JCL 2-1

Files and Their DDnames in a VISION:Builder Run

Files and Their DDnames in a VISION:Builder Run

This book illustrates typical JCL that you need to execute VISION:Builder under
IBM's z/OS operating system. VISION:Builder accepts most sequential or
indexed-sequential files. The files you use can have standard labels or they can be
unlabeled. They can exist on any standard I/O device.

Provisions are made on the VISION:Builder run control statements for indication
of the label type for all of the files that can be used in your system. The JCL you
provide to assign files must agree with the run control specifications.

Job Control Statements

The following table contains a brief description of each type of z/OS JCL
statement. The table on page 2-3 shows the ddnames for all of the VISION:Builder
files. See Chapter 10, “Operating Characteristics” for additional JCL information.

Statement Format Description
JOB //jobname JOB (accounting The job name is one
information), name, to eight
msglevel=1 alphanumeric
characters.
JOBLIB //JOBLIB DD (parameters

describing the data
sets where the

VISION:Builder and
COMLIB programs
reside)

EXEC //stepname EXEC PGM=MARKIV

DD //ddname DD (parameters The choice of
describing the data DSNAME is entirely
set) arbitrary. The

ddname must be one

of the entries
specified in the
following table,
except where
otherwise noted.

2-2 Environment Guide

Files and Their DDnames in a VISION:Builder Run

Description DDName VISION:Builder DDName
Assignments/Comments
Source Input M4INPUT Assigned to a standard I/O device which is:
(Fixed Syntax 1. physical sequential or a member of a
or ASL) »
partitioned data set.
2. blocked one or more 80-character records per
block.
Object Input M4OWN Must be a load module in a partitioned data set.
Source Listing MA4LIST Usually assigned to a printer, but can be any data
and Reports set that is:
1. physical sequential.
2. blocked one or more 133-character records per
block (or the MAPARAMS value).
Alternate List M4LIST1 Any data set that is:
File (or any . .
unique 1. physical sequential.
name) 2. Dblocked one or more 133-character records per
block (or the MAPARAMS value).
Old Master In M4OLD A physical sequential or VSAM data set, IMS
database, or DB2 tables.
New Master ~M4NEW A physical sequential or VSAM data set, or IMS
Out database.®
Transaction In M4TRAN A physical sequential or VSAM dataset, or IMS
database.®
Audit File Out MA4AUDIT physical sequential dataset.®
Report File MA4REPO A physical sequential dataset.
Out
Report File In M4REPI A physical sequential dataset.
Coordinated M4CORDn A physical sequential or VSAM data set (n=1-9),
Filen IMS database, or DB2 tables.
Subfile n M4SUBFn A physical sequential or VSAM dataset (n=0-9),

IMS database, or DB2 tables.

VISION:Builder Runs, Run Control, and Execution JCL 2-3

Files and Their DDnames in a VISION:Builder Run

Description DDName VISION:Builder DDName
Assignments/Comments
Sort Control ~ M4SORT Any data set which is:
1. physical sequential.
2. blocked one or more 80-character records per
block.
Common MA4LIB A direct-access or VSAM data set. DISP=SHR may
Library be specified on the DD statement for M4LIB; if this
is done, VISION:Builder will ensure the integrity of
the library.
Multiple common libraries are supported for
processing runs only. In this case, the ddname is
MA4LIBn where n is a number 1-9.
Rejected M4REJCT Muyst be a physical sequential data set.®
Transaction
File
Alternate M4REPn A physical sequential data set (n = 2-9).
Report File
Out
Work File M4WORK A physical sequential data set.
Source M4SSOUT Assigned to a standard I/O device that is:
Statement Out . .
1. physical sequential.
2. blocked one or more 80-character records per
block.
Program M4PAOUT A physical sequential data set.
Analyzer
Checkpoint M4CHKn A file containing checkpoint information (n = 1-2).
File
Report Any unique A physical sequential data set, blocked with
Summary File name variable length records.
Report MA4PRINT Usually assigned to a printer, but can be any data
Manager (or any set that is:
Reports unique . .
name) 1. physical sequential.

2. blocked one or more 133-character records per
block (or the M4PARAMS value).

2-4 Environment Guide

Run Confrol Group

Description DDName VISION:Builder DDName

Assignments/Comments

Extended Any unique A physical sequential or VSAM data set, IMS
Subfile name database, or DB2 tables.

Output

Alternate Any unique A physical sequential data set.

Report name

Output Attributes dependent upon method selected.

Method

Captured MA4FIXED Assigned to a standard I/O device that is:

Fixed-syntax
from ASL

1. physical sequential.

2. blocked one or more 80-character records per
block.

Run Control Group

The run control group is the first set of statements in the source input data set in
every VISION:Builder run. These statements may be coded either in ASL or in the
traditional fixed-syntax. The ASL run control group consists of the following
statements (refer to the VISION:Builder for z/0S ASL Reference Guide for a complete
description of these statements):

CONTROL

FILE MASTER
FILE CORDn

FILE TRAN
FILE REJECT
FILE AUDIT
FILE SUBFn
FILE REPORT
FILE REPn
ARRAY
WORK
LINKAGE
ROUTE
COLLATE

Application parameters and controls - must be first
statement.

Master file parameters and controls.

Coordinated file and external array parameters and
controls.

Transaction file parameters and controls.
Rejected transaction file parameters.

Audit file (deleted master file record) parameters.
Subfile parameters.

Primary report file parameters.

Additional report file parameters.

Internal array parameters.

Working storage parameters.

Linkage section parameters.

Report routing parameters and controls.

Report collating parameters and controls.

VISION:Builder Runs, Run Control, and Execution JCL 2-5

Run Confrol Group

CHECKPOINT Checkpoint parameters and controls. See Chapter 6,
“Checkpoint/Restart”.

CATALOG Request cataloging controls.

TRACK Catalog item tracking parameters.

OVERRIDE DD Name override parameters.

MULTILIB Multiple M4LIB ordering parameters.

OWNCODE Own Code parameters. See Chapter 5, “Own-Code
Facilities”.

LISTCNTL Program output listing controls.

DOCUMENT Application documentation (Program Analyzer)
controls.

LISTLIB GLOSSARY Catalog content glossary listing controls.

LISTLIB NAMES Catalog content names listing controls.
RETRIEVE Catalog content retrieval controls.
DEBUG Debugging output controls.

COPY

Copy commands from an alternate input stream.

The fixed-syntax run control group consists of the following statements (refer to
the VISION:Builder for z/OS Specifications Guide for a complete description of these

statements):

RC

DB

RF

LB

RA

RP

The run control (RC) statement specifies the type of run (processing,
definition, or report). For a processing run, the CONTROL statement

specifies the master, transaction,® and other input and output files for
the run, and allows you control of run-dependent parameters. The
CONTROL statement must be the first statement in the M4INPUT data
set (except in a MARKUTIL run). The balance of the run control
statements are optional; if used, they must directly follow the CONTROL
statement.

The DB statement specifies the name of the run data group. There must
be one DB statement for each run data group you define. Run data
groups are VISION:Builder run control statements that are saved in the
common library to be used during VISION:Builder processing.

The RF statement specifies files used other than the master file specified
in a CONTROL statement. Use the RF statement to specify coordinated
files, output data or subfiles, arrays, and alternate report files.

The LB statement is used to assign alias names to segments, fields, or
ddnames for files within a run data group.

The RA statement allows you to overdefine an array with a secondary
definition, allowing the same array to be referenced multiple ways.

The run parameters (RP) statement supplies parameters that are effective
only during the run where they are supplied. They provide a means of
specifying execution time parameters.

2-6 Environment Guide

Run Confrol Group

RG®

RT

WH

ocC

cpP

PA

IT

The transaction groups (RG) statement specifies the transaction groups
to be used in a particular run.

The relational tables (RT) statement provides the DB2® or SQL/DS™
table names and controls table updating for a particular run.

The WH statement provides the option of extending the selection criteria
of logical relationship (LR) statements for segments in a relational table.
(This applies only if your system has the relational support option
installed.)

The own-code (OC) statement is used when user supplied coding is to
receive control at selected points during the run. Own-code is discussed
in Chapter 5, “Own-Code Facilities”.

The checkpoint (CP) statement is included in runs that need
checkpoint/restart capabilities. Checkpoint/restart is discussed in
Chapter 6, “Checkpoint/Restart”.

The program analyzer (PA) statement is included in runs to obtain
program documentation and aid in debugging your VISION:Builder
program.

The item tracking (IT) statement is used to track items maintained in the
common library. The three types of information maintained are:

m The date and time an item on M4LIB is created, updated, or retrieved
for use. VISION:Builder maintains this information automatically.

m Afield that identifies the entity that caused an item to be created and
another field that identifies the entity that caused an item to be
updated. You supply this information.

m A retention period/expiration date field that specifies either the
length of time a temporarily cataloged item is to be retained in the
library or the date the item expires. You supply this information.

VISION:Builder Runs, Run Control, and Execution JCL 2-7

The Definition Maintenance Run

The Definition Maintenance Run

You must define an input file before it can be processed by VISION:Builder. File,

transaction,® table, and array definition statements are input to a VISION:Builder
definition/ maintenance run. Multiple file, transaction, table, and array definitions
can be input to the same definition/maintenance run. Once cataloged, the
definitions are available to any processing run when the defined input file is

specified on an RC, RG,Q or RF statement for that run. You only need to reference
a table for it to be available for processing. Figure 2-1 on page 2-8 describes the
flow and JCL for a definition/ maintenance run.

The common library must be initialized before any VISION:Builder runs can be
made. It is normally initialized only once. See Chapter 12, “Common Library
Access and Utilities” for more information on how to initialize the common

library.
/ M4 INPUT /
4

M4L 1B Application Program
) 1 :
MAL I ST
3
Notes
// JOB (accounting information)
//* JCL FOR A DEFINITION RUN **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //def EXEC PGM=MARKIV,REGION=1536K
2 //M4LIB DD DSN=your.m4lib, DISP=SHR
3 //MALIST DD SYSOUT=a
4 //M4INPUT DD *
CONTROL
% VISION:Builder DEFINITION SOURCE STATEMENTS **
/*
//
Figure 2-1 Flow and JCL for a Definition/Maintenance Run

2-8 Environment Guide

The Application Run

An explanation of the numbered statements in Figure 2-1 follows:

Notes Explanation

! The library maintenance functions of VISION:Builder are executed in a
file definition run. These functions process source statements from the
MA4INPUT data set, checking for syntactical errors.

2 Syntactically correct definitions are cataloged or updated in the
common library for later use in the processing of applications.

3 This DD statement defines the location of the system output device for
this job. The M4LIST output from a file definition run includes a listing
of the source statements in the M4INPUT data set, diagnostic
messages, and glossaries of any definitions cataloged or updated on
the common library (or requested for listing) in this definition run.

4 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
The CONTROL statement is followed by TRACK, COPY, or ;;ENDASL
statements. You can include valid fixed-syntax file definition
statements, grouped by file name, after the ;;ENDASL statement.

The Application Run

A VISION:Builder application run that generates report output usually consists of
three functions: processing, sorting, and reporting. Requests allow you to specify
input, validation, manipulation, or selection of data to be used or output. Using
these specifications, VISION:Builder processes the input files and produces
reports, report summary files, or subfiles.

The next two subsections describe how the three function process can be executed
in three separate steps or as a single step.

Single-Step Process-Sort-Report Run

VISION:Builder allows you to optimize I/O processing and CPU usage when
generating reports through the use of single-step processing, where the report file
is sorted internally rather than being passed to a sort step and to a report step. This
is a more efficient process and reduces the amount of I/O for sorting and
reporting.

VISION:Builder Runs, Run Control, and Execution JCL 2-9

The Application Run

The CONTROL statement associated with this process is the same as the three-step
process listed in Three-Step Process-Sort-Report Run on page 2-11, except for the
absence of SORT EXTERNAL on the CONTROL statement. The JCL is similar to a
processing run, with the following changes: M4SORT JCL can be eliminated
(unless alternate report files are used), sort work JCL must be added, and DD
statements for SORTLIB and SYSOUT are required. Figure 2-2 on page 2-10 shows
the flow and JCL for a single-step processing run. Notice that a run parameter (RP)

statement has been coded.

M4 INPUT
m
N 7
SORTLIB ¢ -
5)
v
o Application Program M40LD
N 1 4
MAL IB
A
M4REPQ MALIST
3
6
Notes
// JOB (accounting information)
//* JCL FOR SINGLE-STEP (PROCESS-SORT-REPORT) **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //step EXEC PGM=MARKIV,REGION=1536K
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //MALIST DD SYSOUT=a
4 //MAOLD DD DSN=old.master.file, DISP=(OLD, KEEP)
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,n,, CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,n,, CONTIG)
5 //SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
6 //MAREPO DD DSN=your.m4repo, DISP=(NEW, PASS) ,UNIT=sysda,
SPACE= (TRK, (n,n)
7 //M4AINPUT DD *
CONTROL SORTSIZE 200K
FILE MASTER INPUT, NAME . . .
FILE REPORT
/%
//
Figure 2-2 Flow and JCL for Single-Step Application Run (Process-Sort-Report)

2-10 Environment Guide

The Application Run

An explanation of the numbered statements for Figure 2-2 follows:

Notes Explanation

1 VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary sort
control statements. The execution of VISION:Builder is controlled by
run control statements that specify the files and DD statements required
for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name required for the file definition.

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the report(s).

4 MA4OLD defines the master file and is the primary data input to the
processing step in this run.

5 SORTLIB defines the location of the system sort program.

6 MA4REPO is the file containing the report command language necessary

to build the report from the processing step. The report data records are
passed to the sort process.

7 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
The CONTROL statement is followed by other run control statements
and any valid requests.

You may need to code SORTSIZE on the CONTROL statement if SORT
INTERNAL (the default if there is no SORT keyword) has been specified
and SORTSIZE in MAPARAMS is not adequate. The SORTSIZE
parameter indicates the amount of main storage VISION:Builder
allocates for the sort.

Three-Step Process-Sort-Report Run

VISION:Builder application runs that generate reports can be invoked using a
three-step process. Each step can also be executed as a separate job. The first is the
processing step, which includes decoding of the VISION:Builder source

statements, reading input files, outputting new files (including master file),9 and
production of VISION:Builder report files (MAREPO, M4REP2-9). Sort control
statements are produced automatically by VISION:Builder during this step. The
sort control statements and M4REPO are input to the sort step, as SYSIN and
SORTIN, respectively.

VISION:Builder Runs, Run Control, and Execution JCL 2-11

The Application Run

The sort step executes a standard IBM OS compatible sort program to sort the
report file according to the VISION:Builder sort parameters. The output is a sorted
report file, which is the input for the third (report) step as M4REPIL.

The report step generates the report using the sorted report file (M4REPI) to
perform a variety of functions, including;:

m calculate summaries, percents, and ratios

m group information using control break specifications

m generate title information for each page

2-12 Environment Guide

The Application Run

Figure 2-3 and Figure 2-4 list the flow and JCL for a typical application run.

M4 INPUT
7
Application Program M40LD
1 6
M4SORT M4REPO MALIST
3
5 4
»
SORT
8
M4 INPUT Application Program — 3 MALIST
12 9 19
Figure 2-3 Flow of a Three-Step Application Run (Process-Sort-Report)

VISION:Builder Runs, Run Control, and Execution JCL 2-13

The Application Run

Notes

(@] AON—

e

10
11
12

// JOB (accounting information)

//* JCL FOR A THREE-STEP APPLICATION RUN **

//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR

//stepa EXEC PGM=MARKIV,REGION=1536K

//MALIB DD DSN=your.m4lib,DISP=SHR

//MALIST DD SYSOUT=*

/ /M4REPO DD DSN=your.mdrepo, DISP=(NEW, PASS) , UNIT=sysda,

// SPACE=(TRK, (n,n))
//M4SORT DD DSN=sort.file, DISP=(NEW, PASS),UNIT=sysda,
// SPACE= (TRK, n)
//M40LD DD DSN=old.master.file,DISP=(OLD, KEEP)
*

//M4INPUT DD

CONTROL SORT EXTERNAL
FILE MASTER INPUT, NAME .
FILE REPORT

7%
//sort EXEC PGM=SORT
//SYSIN DD DSN=sort.file, DISP=(, PASS)

//SORTIN DD DSN=your.m4repo, DISP=(OLD, DELETE)
//SORTOUT DD DSN=your.mdrepi, DISP=(NEW, PASS),
// UNIT=sysda, SPACE=(TRK, (n,n))
//SYSOUT DD SYSOUT=*

//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWK03 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//*

//report EXEC PGM=MARKIV, REGION=1536K

//M4ALIST DD SYSOUT=*

//MAREPT DD DSN=your.m4repi,DISP=(OLD, DELETE)
//M4AINPUT DD *

CONTROL

FILE REPORT

/*

//

Figure 2-4 JCL for a Three-Step Application Run (Process-Sort-Report)

An explanation of the numbered statements for Figure 2-3 and Figure 2-4 follows:

Note: SORTOUT should not have DCB information on the JCL.

Note

Explanation

1

VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary sort
control statements. The execution of VISION:Builder is controlled by
run control statements that specify the files and DD statements required
for this job step.

The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages and the report(s).

2-14 Environment Guide

The Application Run

Note Explanation

4 MA4REPO is the file containing the VISION:Builder report file output
from the processing step. The data is used in subsequent sort and report
generation steps.

5 The M4SORT file contains the sort control statements for the sort
program.
6 M4OLD defines the old master file and is the primary data input file to

the processing step in this run.

7 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements
and you must code SORT EXTERNAL to specify a three-step run.

8 This statement calls in and executes the system sort program.
? VISION:Builder is invoked to generate the report.
10 This M4LIST is output from the report step and includes a listing of the

CONTROL statements, report messages and the reports.

1 Defines the location of the sorted report file (M4REPI), which is output
by the sort step and the input to the report step.

12 This M4INPUT indicates to VISION:Builder that only the report step
has to be executed.

Single-Step No-Sort Report Run

In a single-step processing run that does not require sorting, M4REPO and sorting
statements can be eliminated. Sorting is not required when the fields will be
printed on the report in the same order as the input file and only a single report is
being produced. The CONTROL statement for this process is the same as the
CONTROL statement listed in Single-Step Process-Sort-Report Run on page 2-9,
except for the addition of the SORT NONE. The SORT NONE indicates to
VISION:Builder that no sort is required. Figure 2-5 shows the flow and JCL for a
single-step processing no-sort run.

VISION:Builder Runs, Run Control, and Execution JCL 2-15

The Application Run

M4 INPUT
5
M4LIB Application Program M40LD
2 1 4
M4LIST
3
Notes
// JOB (accounting information)
//* JCL FOR A SINGLE-STEP (NO SORT) RUN **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //step EXEC PGM=MARKIV,REGION=1536K
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //M4LIST DD SYSOUT=A
4 //M40L DD DSN=old.master.file, DISP=(OLD,KEEP)
5 //MAINPUT DD *

CONTROL SORT NONE, REPTSIZE 200K
FILE MASTER INPUT, NAME .
FILE REPORT

7%
//

Figure 2-5 Flow and JCL for Single-Step Application Run (No-Sort)

2-16 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

An explanation of the numbered statements in Figure 2-5 follows:

Notes

Explanation

1

VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, selects data for the report, and
passes the report records directly to the report phase. The execution of
VISION:Builder is controlled by run control statements that specify the
files and DD statements required for this job step.

The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the report(s).

M4OLD defines the old master file and is the primary data input file to
the processing step in this run.

The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
You must code SORT NONE on the CONTROL statement for a
single-step no-sort run. The CONTROL statement is followed by other
run control statements and any valid requests. Only one request can
produce a report when SORT NONE is specified.

When resource optimization is used and it is a no-sort run, a CONTROL statement
may need to be coded with REPTSIZE, if M4PARAMS is not adequate.

Run Control and Execution JCL for Sample VISION:Builder

Applications

The following sections illustrate JCL examples that are used in conjunction with
various types of VISION:Builder runs. It is also possible to use varying
combinations of VISION:Builder files, depending on your application needs.

These JCL examples show different types of input and output files and the use of
the run control group. You can find the descriptions for a simple application run,
either single-step or three-step method, in Single-Step Process-Sort-Report Run on
page 2-9 or Three-Step Process-Sort-Report Run on page 2-11.

VISION:Builder Runs, Run Control, and Execution JCL 2-17

Run Control and Execution JCL for Sample VISION:Builder Applications

Alternate Report Files

A VISION:Builder processing step can produce up to nine report files (M4REPO,
M4REP2-9) to facilitate multiple report forms and multiple report destinations. A
report file contains reporting, sorting, and printing information. Each report file
requires a separate sort step and a separate report step.

Figure 2-6 and Figure 2-7 show the flow and JCL for a three-step
(process-sort-report) alternate report files application run. An additional files (RF)
statement must be coded for each additional report file (M4REP2-9). Alternate
report files can be produced in a single-step run.

2-18 Environment Guide

Run Conftrol and Execution JCL for Sample VISION:Builder Applications

MALIB

M4 INPUT

Application Program

.¢

v

n

n«d

10

10

Al

>

M4REP2 M4REPO MALIST
3
6

SORT SORT

9 9
M4REP | M4REP |

12 12
Application Program Application Ploglam—) MA4LIST

Figure 2-6

Flow for a Three-Step (Process-Sort-Report) Alternate Report Files

Application Run

VISION:Builder Runs, Run Control, and Execution JCL 2-19

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes
// JOB (accounting information)
//* JCL FOR THREE-STEP ALTERNATE FILES APPLICATION RUN **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //step EXEC PGM=MARKIV,REGION=1536K
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //M4LIST DD SYSOUT=a
4 //MAREPO DD DSN=your.mdrepo,DISP=(NEW, PASS), UNIT=sysda,
// SPACE=(TRK, (n,n))
5 //MASORT DD DSN=sort.file, DISP=(NEW, PASS), UNIT=sysda,
// SPACE= (TRK, n)
6 //M4REP2 DD DSN=your.mdrep2,DISP=(NEW, PASS) ,UNIT=sysda,
// SPACE= (TRK, n)
7 //M40LD DD DSN=old.master.file, DISP=(OLD, KEEP)
8 //M4INPUT DD *
CONTROL SORT EXTERNAL
FILE MASTER INPUT, NAME
FILE REPORT
FILE REP2 NAME
Ix
9 //sorta EXEC PGM=SORT
//SYSIN DD DSN=sort.file,DISP=(OLD, PASS),
//SORTIN DD DSN=your.mérepo,DISP=(OLD, DELETE)
//SORTOUT DD DSN=your.mdrepi,DISP=(NEW, PASS),
// UNIT=sysda, SPACE= (TRK, (n,n))
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//*
10 //report EXEC PGM=MARKIV,REGION=1536K
11 //MALIST DD SYSOUT=a
12 //MAREPT DD DSN=your.mérepi, DISP=(OLD,delete)
13 //M4AINPUT DD *
CONTROL
FILE REPORT
/*
//

Figure 2-7 JCL for a Three-Step (Process-Sort-Report) Alternate Report Files
Application Run

The numbered statements in Figure 2-7 represent those dealing with alternate
files. An explanation of the numbered statements follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary
sort control statements. The execution of VISION:Builder is controlled
by run control statements that specify the files and DD statements
required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

2-20 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes

Explanation

The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements and
diagnostic messages.

MA4REPO is the file containing the VISION:Builder report file output
from the processing step. The data is used in subsequent sorting and
reporting steps.

The M4SORT file contains the sort control statements needed to sort the
report file generated by VISION:Builder in the sort program.

MA4REP?2 is the file containing the alternate report file output from the
processing step. The data is sorted and reported separately from
M4REPO data.

MA4OLD defines the old master file and is the primary data input file to
the processing step in this run.

The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements
and additional FILE statements must be specified as required. The
CONTROL statement is followed by other run control statements and
any valid requests. A FILE REPn statement must be coded for each
additional report file (MAREP2-9). Refer to the VISION:Builder for z/0S
ASL Reference Guide for coding rules.

This statement calls in and executes the system sort program.

VISION:Builder is invoked to generate the report.

This M4LIST is output from a report step and includes a listing of run
control statements, report messages, and the reports.

Defines the location of the sorted report file (M4REPI) which is the
input to the report step.

This M4INPUT indicates to VISION:Builder that only the report step
has to be executed.

VISION:Builder Runs, Run Control, and Execution JCL 2-21

Run Control and Execution JCL for Sample VISION:Builder Applications

Report from Master File and Coordinated Files (Three-Step)

VISION:Builder is able to handle a number of input files (one master and up to
nine additional coordinated files) in one run. A coordinated file is a read only input
file defined to VISION:Builder. When used as input to a run along with a master
file, records become optionally available to you for processing such that:

m Matched records may be processed.

m Unmatched records may be processed.

m All records may be processed.

An RF statement must be coded for each additional coordinated file and specifies

the DTF/DDname for the cord file, an alternate key field (if other than the key field
in the file definition), and the type of coordination wanted.

Figure 2-8 on page 2-23 and Figure 2-9 on page 2-24 show the flow and JCL for a
report from a master file and coordinated files (three-step). For a detailed
explanation of coordinated files and types of coordination see the VISION:Builder
for z/OS Reference Guide.

2-22 Environment Guide

Run Conftrol and Execution JCL for Sample VISION:Builder Applications

M4 INPUT
N
3 N
<7
v
Application Program
AN
1 <—¥/
M4CORD 1
6
v
M4SORT M4REPO MALIST
5 4 3
SORT M4 INPUT
9 13

Application Program—) M4LIST

10

Figure 2-8 Flow for a Three-Step (Process-Sort-Report)
Application Run with Coordinated File(s)

VISION:Builder Runs, Run Control, and Execution JCL 2-23

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes
// JOB (accounting information)
//* JCL FOR A THREE-STEP, WITH COORDINATED FILE **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //step EXEC PGM=MARKIV,REGION=1536K
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //MALIST DD SYSOUT=a
4 / /M4REPO DD DSN=your.mé4repo, DISP=(NEW, PASS) ,UNIT=sysda,
// SPACE= (TRK, n)
5 //M4ASORT DD DSN=sort.file, DISP=(NEW, PASS), UNIT=sysda,
// SPACE=(TRK, n)
//MACORD1 DD DSN=cord.file,DISP=(OLD,KEEP)
7 //M40LD DD DSN=old.master.file, DISP=(OLD, KEEP)
8 //M4INPUT DD *
CONTROL SORT EXTERNAL
FILE MASTER INPUT, NAME .
FILE CORD1 NAME .
FILE REPORT
7%
9 //sort EXEC PGM=SORT
//SYSIN DD DSN=sort.file,DISP=(OLD, PASS)
//SORTIN DD DSN=your.mérepo,DISP=(OLD, DELETE)
//SORTOUT DD DSN=your.mdrepi,DISP=(NEW, PASS),
// UNIT=sysda, SPACE= (TRK, (n,n))
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//*
10 //report EXEC PGM=MARKIV,REGION=1536K
11 //MALIST DD SYSOUT=a
12 //MAREPI ~ DD DSN=your.mdrepi,DISP=(OLD,DELETE)
13 //M4AINPUT DD *
CONTROL
FILE REPORT
/*
//

Figure 2-9 JCL for a Three-Step (Process-Sort-Report)
Application Run with Coordinated File(s)

The numbered statements in Figure 2-9 represent those dealing with coordinated
files. An explanation of the numbered statements follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary
sort control statements. The execution of VISION:Builder is controlled
by the run control statements, which specify the files and DD
statements required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

2-24 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes Explanation

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements and
diagnostic messages.

4 MA4REPO is the file containing the VISION:Builder report file output
from the processing step. The data is used in subsequent sort and
report steps.

5 The M4SORT file contains the sort control statements for the sort
program.

6 M4CORDL1 is the input file that is matched against the master file.

7 MA4OLD defines the old master file and is the primary data input file to

the processing step in this run.

8 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
The FILE REPORT statement specifies that a report file is generated.
The FILE CORD1 statement specifies an additional input file,
M4CORDI1. The run control statements are followed by any valid
requests.

7 This statement calls in and executes the system sort program.

10 VISION:Builder is invoked to generate the report.

1 This M4LIST is output from a report run and includes a listing of the
run control statements, report messages, and the reports.

12 MA4REPI defines the location of the sorted report file output by the sort
step, that is the input to the report step.

13 This M4INPUT indicates to VISION:Builder that only the report step
has to be executed.

VISION:Builder Runs, Run Control, and Execution JCL 2-25

Run Control and Execution JCL for Sample VISION:Builder Applications

Create a Subfile and Generate a Report on an Alternate List File (Three-Step)

Subfiles can be created by outputting selected records from an input data set or by
outputting selected fields. The VISION:Builder for z/OS ASL Reference Guide shows
how you can use your source statements to create a subfile.

Typically, the VISION:Builder source listing and report(s) are output to the
MA4LIST DD (generally the system printer). However, the use of alternate M4LISTs
allows you to separate your output report(s) from the source listing and direct the
report(s) to other destinations or devices.

The following methods are available for using alternate M4LISTs.

m Direct all your application's reports to an M4LIST1 DD by including
LISTCNTL ALTLIST YES statement in your run control statements. The DD
for M4LIST1 is specified in the report step of your application run JCL.

Figure 2-10 on page 2-27 and Figure 2-11 on page 2-28 show the flow and JCL
for a three-step application run using an alternate list and a subfile where all
reports are being directed to M4LIST1.

m Separate the reports individually by specifying your own specific ddname by
including a FORMAT command with METHOD ALTLIST and DDNAME
keywords for each report. See the VISION:Builder for z/0S ASL Reference Guide
for details. You must also provide JCL DD statements in the report step for
each ddname specified on the En statements of your application.

2-26 Environment Guide

Run Conftrol and Execution JCL for Sample VISION:Builder Applications

M4 NPUT

8

Application Program |«€—]

1

v

y

L
)

e

M4SORT M4REPO M4SUBF 1 MALIST
3
5 4 6
SORT
9

v
-

MAREP1
12
MALIST
o —
Application Program
10)'
MALISTI

B

Figure 2-10 Flow for a Three-Step (Process-Sort-Report)
Application Run Using a Subfile and MA4LIST1

VISION:Builder Runs, Run Control, and Execution JCL 2-27

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes
// JOB (accounting information)
//* JCL FOR A THREE-STEP RUN WITH SUBFILES **
//JOBLIB DD DSN=your.builder.loadlib, DISP=(SHR, PASS)
1 //step EXEC PGM=MARKIV,REGION=1536K
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //M4LIST DD SYSOUT=a
4 //MAREPO DD DSN=your.mdrepo,DISP=(NEW, PASS), UNIT=sysda,
// SPACE=(TRK, (n,n)
5 //MASORT DD DSN=sort.file, DISP=(NEW, PASS), UNIT=sysda,
// SPACE= (TRK, n)
6 //M4SUBF1 DD DSN=sub.file, DISP=(NEW, PASS) ,UNIT=sysda,
// SPACE=(TRK, (n,n))
7 //M40LD DD DSN=old.master.file, DISP=(OLD, KEEP)
8 //M4INPUT DD *
CONTROL SORT EXTERNAL
LISTCNTL ALTLIST YES
FILE MASTER INPUT, NAME .
FILE SUBF1 NAME .
7%
9 //sort EXEC PGM=SORT
//SYSIN DD DSN=sort.file,DISP=(OLD, PASS)
//SORTIN DD DSN=your.mérepo,DISP=(OLD, DELETE)
//SORTOUT DD DSN=your.mdrepi,DISP=(NEW, PASS),
UNIT=sysda, SPACE=(TRK, (n,n))
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//*
10 //report EXEC PGM=MARKIV,REGION=1536K
11 //MALIST DD SYSOUT=a
12 //MAREPI ~ DD DSN=your.mdrepi,DISP=(OLD,DELETE)
13 //M4LIST1 DD DSN=builder.list,DISP=(NEW,CATLG),UNIT=sysda,
// SPACE=(TRK, (n,n))
14 //MAINPUT DD *
CONTROL
FILE REPORT
/*
//

Figure 2-11 JCL for a Three-Step (Process-Sort-Report)
Application Run Using a Subfile and MA4LIST1

The numbered statements in Figure 2-11 represent those dealing with subfiles and
MA4LIST1. An explanation of the numbered statements follows:

Notes Explanation

! VISION:Builder processes the source statements from the M4INPUT
data set, checking for syntactical errors, and generates the necessary
sort control statements. The execution of VISION:Builder is controlled
by run control statements that specify the files and DD statements
required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

2-28 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes

Explanation

The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements and
diagnostic messages.

MA4REPO is the file containing the VISION:Builder report file output
from the processing step. The data is used in subsequent sort and report
steps.

The M4SORT file contains the sort control statements for the sort
program.

Describes the file (M4SUBF1) which will hold the subfile data.

MA4OLD defines the old master file and is the primary data input file to
the processing step in this run.

The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
The FILE SUBF1 statement is coded for the subfile (M4SUBF1). Refer to
the VISION:Builder for z/0S ASL Reference Guide for coding rules. The
run control statements are followed by any valid requests.

This statement calls in and executes the system sort program.

VISION:Builder is invoked to generate the report.

This M4LIST is output from a report run and includes a listing of the
source statements and report messages.

Defines the location of the sorted report file (M4REPI), output by the
VISION:Builder processing run, that is the input to the report step.

An alternate M4LIST file containing reports and report messages for
that file. The LISTCNTL ALTLIST YES statement in the processing step
causes all reports to be output to M4LIST1.

Note: If you had specified the alternate list ddnames in your En
statements, you would provide a DD for each name specified in place
of the M4LIST1 DD statement.

This M4INPUT indicates to VISION:Builder that only the report step
has to be executed.

VISION:Builder Runs, Run Control, and Execution JCL 2-29

Run Control and Execution JCL for Sample VISION:Builder Applications

Update a Master File (Single-Step Sort)

Updating the master file® is achieved through a transaction processing step. A
transaction processing step inputs a transaction file (M4TRAN) composed of
transaction records that are applied against the old master file (M4OLD). A
detailed discussion of transaction processing is found in the VISION:Builder for
z/OS Reference Guide.

During updating, you can output a file of deleted master file records (M4AUDIT)
or rejected transaction records (M4REJCT) by coding the FILE AUDIT or FILE
REJECT run control statements and also including the JCL statements for each file.
Refer to the VISION:Builder for z/0S ASL Reference Guide for coding rules.

After processing, if the record is not deleted, it can be output to a new master file
(M4NEW), which is the updated version of the master file. It can also be used for
update-in-place with the old master file.

Figure 2-12 and Figure 2-13 show the flow and JCL for an updated master file run
(single-step sort).

2-30 Environment Guide

Run Conftrol and Execution JCL for Sample VISION:Builder Applications

MAL 1B M4 INPUT M40LD
2 10 4

Application Program
—> <
M4REPO M4TRAN
9 6

2 v VV ¢
MAAUDI T M4REJCT MANEW {:i‘\‘_ﬁjiifj///f———J
7 8 5

Figure 2-12 Flow and JCL for a Single-Step Application Run (Sort)

VISION:Builder Runs, Run Control, and Execution JCL 2-31

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes
// JOB (accounting information)
% JCI, FOR AN UPDATE MASTER FILE USING AUDIT AND REJECT FILES **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //step EXEC PGM=MARKIV,REGION=1536K
2 //M4LIB DD DSN=your.m4lib, DISP=SHR
3 //M4LIST DD SYSOUT=a
4 //M40LD DD DSN=old.master.file, DISP=(OLD, KEEP)
5 / /M4NEW DD DSN=new.file, DISP=(NEW, PASS) ,UNIT=sysda,
// SPACE=(TRK, (n,n))
) //MATRAN DD DSN=tran.file, DISP=SHR
7 //M4RUDIT DD DSN=audit.file, DISP=(NEW, PASS),UNIT=sysda,
// SPACE=(TRK, (n,n))
8 //MAREJCT DD DSN=reject.file,DISP=(NEW, PASS), UNIT=sysda,
// SPACE=(TRK, (n,n))
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL,n,, CONTIG)
//SORTLIB DD DSN=SYS1.SORTLIB, DISP=SHR
9 / /M4REPO DD DSN=your.mé4repo, DISP=(NEW, PASS) ,UNIT=sysda,
// SPACE=(TRK, (n,n))
10 //M4INPUT DD *

CONTROL SORTSIZE 150K, REPTSIZE 150K
FILE MASTER INPUT, NAME .

FILE MASTER OUTPUT

FILE TRAN

FILE AUDIT

FILE REJECT

FILE REPORT

/%
//

Figure 2-13 JCL for a Single-Step (Sort) Application Run Using Audit, Transaction,
and Reject Files and New Master Files

The numbered statements in Figure 2-13 represent those dealing with updating a
master file, MAAUDIT, M4REJCT, and M4TRAN files. An explanation of the
numbered statements follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary
sort control statements. The execution of VISION:Builder is controlled
by run control statements that specify the files and DD statements
required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the report(s).

2-32 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes Explanation

4 MA4OLD defines the old master file and is the primary data input file to
the processing step in this run.

5 This statement defines the new master file (M4NEW).

6 This statement defines the transaction file (M4TRAN) used to process

against the master file.

7 This statement defines the file (M4AUDIT) that holds the deleted
master file records.

8 This statement defines the file (M4RE]JCT) that holds the rejected
transaction records.

? M4REPO is the file containing the VISION:Builder report command
language records output during the processing phase. The report data
records are passed to the sort processes.

10 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.

The SORTSIZE and REPTSIZE keywords may need to be coded when
the default values specified in MAPARAMS is not adequate.

m SORTSIZE indicates the amount of main storage VISION:Builder
allocates for the sort.

m REPTSIZE indicates the amount of storage VISION:Builder
allocates for the report generation process.

Scan/Sample Report

A scan/sample report is produced by coding the SAMPLE keyword on the
CONTROL statement. This causes VISION:Builder to decode requests without
doing any processing. No input data file (M4OLD) is necessary in your JCL.
Diagnostic messages and a sample report (if requested) for each valid request are
produced allowing you to check the appearance of your data.

VISION:Builder Runs, Run Control, and Execution JCL 2-33

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Figure 2-14 shows the flow and JCL for a scan/sample report (single-step no-sort).

M4 INPUT
5
M4L |1B Application Program
2 ! ¢
MALIST
M4REPO 3
4
Notes
// JOB (accounting information)

//* JCL FOR A SCAN SAMPLE RUN **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
//scan EXEC PGM=MARKIV, REGION=1536K

1

2 //MALIB DD DSN=your.m4lib, DISP=SHR

3 //M4LIST DD SYSOUT=a

4 / /M4REPO DD DSN=your.mé4repo, DISP= (NEW, DELETE) , UNIT=sysda,
// SPACE= (TRK, (n,n))

5 //M4INPUT DD *

CONTROL SORT NONE, SAMPLE
FILE MASTER INPUT, NAME .
FILE REPORT

%
//

Figure 2-14 Flow and JCL for a Scan/Sample Report Single-Step (No-Sort) Run

2-34 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

The numbered statements in Figure 2-14 represent those dealing with a
scan/sample report. An explanation of the numbered statements follows:

Notes Explanation

! VISION:Builder decodes the source statements from the M4INPUT
data set, checking for syntactical errors. The execution of
VISION:Builder is controlled by run control statements that specify the
files and DD statements required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the sample report(s).

4 The M4REPO statement defines the file containing the VISION:Builder
report command language records.

5 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements
and is followed by other run control statements and any valid requests.

Program Analyzer

The program analyzer (PA) statement is an optional part of the run control group
that provides the user with various means to enhance program documentation
and assist in the debugging process.

The PA statement options allow you to enhance the source statement listings so
that they identify the VISION:Builder automatic numeric conversions, as well as
create a VISION:Builder file, M4PAOUT. This file enables you to create two
reports: Cross Reference and Execution Trace. Refer to the VISION:Builder for z/OS
Reference Guide for a detailed discussion of the Program Analyzer.

Figure 2-15 on page 2-36 shows the flow and JCL for a single-step sort run using
the program analyzer for execution trace reports and numeric conversions.
M4PAOUT represents a file that is created during a processing step and brought
back into a separate report step as M4OLD. Figure 2-15 on page 2-36 also shows
the necessary JCL to create the MAPAOUT file. Figure 2-16 on page 2-38 shows the
flow and JCL for a single-step (sort) run using M4PAOUT to produce the trace
reports. Figure 2-17 on page 2-40 shows the flow and JCL for a three-step run using
the program analyzer cross reference feature.

VISION:Builder Runs, Run Control, and Execution JCL 2-35

Run Confrol and Execution JCL for Sample VISION:Builder Applications

M4 INPUT
7
M4L 1B Application Program M40LD
2 1 4
MALIST
M4PAQUT MAREPO
3
5 6
Notes
// JOB
//* JCL, FOR PROGRAM ANALYZER **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //app EXEC PGM=MARKIV,REGION=1536K
2 //M4LIB DD DSN=your.m41lib, DISP=SHR
3 //MALIST DD SYSOUT=a
4 //MA40LD DD DSN=old.master.file, DISP=(OLD,KEEP)
5 //M4APAOUT DD DSN=mdpaout.file, DISP=(NEW, CATLG),
// UNIT=sysda,
// SPACE=(TRK, (n,n))
//SYSPRINT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWKO2 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
6 //M4REPO DD DSN=your.mdrepo, DISP= (NEW, PASS),
// UNIT=sysda, SPACE=(TRK, (n,n))
7 //M4INPUT DD *
CONTROL SORTSIZE 200K, FREESIZE 200K
8 DOCUMENT CONVMSGS, EXECTRACE

FILE MASTER INPUT, NAME .
FILE REPORT

Figure 2-15 Flow and JCL for a Single-Step (Sort) Run, Creating the Program
Analyzer Output File MAPAOUT

2-36 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

The numbered statements in Figure 2-15 represent those dealing with creating the
PAL output file, MAPAOUT. An explanation of the numbered statements follows:

Note: If you select Execution Trace only, you do not need to sort M4PAOUT before
processing it.

Notes

Explanation

1

VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors. The execution of
VISION:Builder is controlled by run control statements that specify the
files and DD statements required for this job step.

The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, arithmetic
conversion messages, diagnostic messages, and the reports.

MA4OLD defines the old master file and is the primary data input file to
the processing step in this run

The M4PAOUT statement represents the output file for the program
analyzer (PAL).

MA4REPO is the file containing the VISION:Builder report command
language records output from the processing phase. The data is then
used in report generation.

The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
The CONTROL statement is followed by other run control statements
and any valid requests.

The DOCUMENT statement invokes the program analyzer. The
CONVMSGS keyword causes numeric messages to be printed. The
EXECTRACE keyword causes trace data to be output to MAPAOUT.

The PAL output file, MAPAOUT, was created in Figure 2-15. Figure 2-16 shows the
flow and JCL for processing M4PAOUT as M4OLD.

VISION:Builder Runs, Run Control, and Execution JCL 2-37

Run Confrol and Execution JCL for Sample VISION:Builder Applications

M4 INPUT

M40LD
(M4PAOUT)

4

Application Program

1 M4CORD1

D X

MALIST

(PAL Reports)
M4REPO Execution Traces
5
Notes

// JOB
//* JCL USING M4PAQUT **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR

1 //step EXEC PGM=MARKIV,REGION=1536K

2 //MALIB DD DSN=your.m4lib, DISP=SHR

3 //MALIST DD SYSOUT=a

4 //M40LD DD DSN=m4paout.file, DISP=SHR
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWKO2 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)

5 //MAREPO DD DSN=your.m4repo, DISP=(NEW, PASS) , UNIT=sysda,
// SPACE=(TRK, (n,n))

6 //MACORDL DD *
IGCPAL YY
/*

7 //M4INPUT DD *

CONTROL DELIMITER '#', SORTSIZE 200K

FILE MASTER INPUT, NAME IGCPALVB, KEYS NONE
FILE CORD1 NAME IGCPALRS, USER READ

FILE REPORT

WORK AREA 1, NAME IGCPALWK

Figure 2-16 Flow and JCL for a Single-Step (Sort) Run, Using M4PAOUT to Produce
Reports (Execution Trace)

2-38 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

The numbered statements in Figure 2-16 represent those dealing with the use of
the PAL output file, M4PAOUT. An explanation of the numbered statements
follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors. The execution of
VISION:Builder is controlled by run control statements, which specify
the files and DD statements required for this job.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the PAL file
definitions and cataloged requests.

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the execution trace reports.

4 During this run M4OLD represents the M4PAOUT file created in
Figure 2-15 on page 2-36. It is the output file for the program analyzer
that will enable you to create PAL cross reference or execution trace
reports. In this example, it produces execution trace reports.

5 MA4REPO is the file containing the VISION:Builder command language
records used to create the reports.

6 The M4CORD1 data set consists of a control card specifying the literal
IGCPAL in positions 1-6 and Ys in appropriate positions for requesting
specific reports (refer to the VISION:Builder for z/OS Reference Guide). In
this example, only the request execution trace reports are generated.

7 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.

Note: The system delimiter must be pound sign (#) and that this is a
single-step run (default to SORT INTERNAL).

m The FILE MASTER statement with name IGCPALVB specifies the
PAL master file.

m The FILE CORD1 statement supplies the request-read coordinated
file (M4CORD1) information, including the PAL definition name
for the coordinated file.

m The WORK AREA statement specifies the working storage file
used by the PAL cataloged requests.

m The INCLUDE statement is used to bring in the required request
group.

VISION:Builder Runs, Run Control, and Execution JCL 2-39

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Figure 2-17 shows the flow and JCL for a three-step application run using the
program analyzer cross reference feature. Note that when cross reference reports
are to be generated, the M4PAOUT file must be sorted before using it as M4OLD
to generate the reports

Application Program M40LD
1 6

7
)

M4REPO M4PAOUT SORT MALIST
4

1
o

.<
(_

I o‘

SORT MAL 1B (MPROUT)

8 15

13
M4 INPUT Application Program
17 > 12
M4LIST
Application Program M4CORD1 szﬁ'; Eg’,’g{éﬁge
. 16 14
M4ALIST

Figure 2-17 Flow for a Three-Step Application Run (Process-Sort-Report) Using the
Program Analyzer Cross-Reference Feature

Note: In Figure 2-17, for SYSIN, the sort control statements are shown in
Figure 2-18 on page 2-41.

2-40 Environment Guide

Run Control and Execution JCL for Sample VISION:Builder Applications

Notes

// JOB (accounting information)

//* JCL FOR A THREE-STEP APPLICATION RUN **
//J0BLIB DD DSN=your.builder.loadlib, DISP=SHR
//stepa EXEC PGMAVMARKIV,REGION=1536K

//MALIB DD DSN=your.m4lib, DISP=SHR

//MALIST DD SYSOUT=a

//MAREPO DD DSN=your.mdrepo, DISP= (NEW, PASS) ,UNIT=sysda,
// SPACE=(TRK, (n, n) ,RLSE)

//MASORT DD DSN=6&SCRT, DISP= (NEW, PASS, DELETE) ,
// SPACE=(TRK, 1) , UNIT=SYSDA

5 //M4PAOUT DD DSN=6&PAOUT, DISP= (NEW, PASS) ,

/] UNIT=sysda,

// SPACE= (TRK, (n,n) ,RLSE)

//M4OLD DD DSN=old.master.file, DISP=(OLD, KEEP)
//MAINPUT DD *

CONTROL SORT EXTERNAL

DOCUMENT XREF

FILE REPORT

AOWON—

N o~

/*
8 //sort EXEC PGVESORT,REGION=1536K
//SYSIN DD DSN=6&SCRT, DISP= (CLD, DELETE)
//SORTIN DD DSN=your .mdrepo, DISP= (OLD, DELETE)
//SORTOUT DD DSN=66M4REPT, DISP= (NEW, PASS) ,
// SPACE=(TRK, (n, n) ,RLSE) , UNIT=SYSDA
//SYSOUT DD SYSOUT=A
//SORTWKOL DD UNIT=SYSDA, SPACE= (CYL,n, , CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
/1*
9 //report EXEC PGMAVARKIV, REGION=1536K
//MAREPT DD DSN=6&M4REPT, DISP= (OLD, DELETE)
//MAINPUT DD *
CONTROL
FILE REPORT
/*
//MALIST DD SYSOUT=A
10 //sort EXEC PGVESORT,REGION=1536K
11 //SYSIN DD *
SORT FIELDS=(9, 50,A) , FORVAT=RT
RECORD TYPE=V, LENGTH= (168, 168, 168, 65,168)
END
//SORTIN DD DSN=&&PAOUT, DISP=, PASS)
//SORTOUT DD DSN=6&PAREPT, DISP= (NEW, PASS) ,
/] UNIT=sysda,
// SPACE=(TRK, (n, n) ,RLSE)
//SYSOUT DD SYSOUT=a
//SORTWKOL DD UNIT=SYSDA, SPACE= (CYL,n, , CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
/1*
12 //usepal EXEC PGURMARKIV, REGION=1536K
13 //MALIB DD DSN=your.m4lib, DISP=SHR
14 //MALIST DD SYSOUT=a
15 //M4OLD DD DSN=6&PAREPT, DISP=(, PASS)
16 //MACORDL DD *
IGCPAL YYYY
/*
//SYSOUT DD SYSOUT=a
//SORTWKOL DD UNIT=SYSDA, SPACE= (CYL,n, , CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
//MARERO DD DSN=your.mdrepo, DISP= (NEW, DELETE) , UNIT=sysda,
// SPACE=(TRK, (n, n) ,RLSE)
17 //MAINPUT DD *
CONTROL DELIMITER '#', SORTSIZE 200K
FILE MASTER INPUT, NAME IGCPALVB, KEYS NONE
FIIE CORDI NAME IGCPALRS, USER READ
FILE REPORT
WORK AREA 1, NAME IGCPALIK

'INCLUDE IGCPAL
/*
//
Figure 2-18 JCL for a Three-Step Application Run (Process-Sort-Report) Using the
Program Analyzer Cross Reference Feature

VISION:Builder Runs, Run Control, and Execution JCL 2-41

Run Confrol and Execution JCL for Sample VISION:Builder Applications

An explanation of the numbered statements for Figure 2-18 follows:

Notes Explanation

1 VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary sort
control statements. The execution of VISION:Builder is controlled by run
control statements, which specifies the files required, and the DD
statements required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements and diagnostic
messages.

4 MA4REPO is the file containing the VISION:Builder report file output
from the processing step. The data is used in subsequent sort and report
steps.

5 MA4PAOUT is the output file for the program analyzer.

6 MA4OLD defines the old master file and is the primary data input file to

the processing step in this run.

7 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
The CONTROL statement is followed by other run control statements
and any valid requests. The DOCUMENT statement specifies that only
cross reference data is to be output to the MAPAOUT file. Note that, in
this run, the M4PAOUT file is a temporary data set.

8 A stand alone sort step is executed to sort the VISION:Builder report file
produced during the processing step.

7 VISION:Builder is invoked to generate the VISION:Builder reports.

10 This sort step sorts the MAPAOUT file produced during the processing
step.

1 This statement defines the sort control statements needed to sort the
M4PAOUT file.

12 VISION:Builder is invoked to generate the PAL cross reference reports.

13 The common library defines the cataloged data set that contains the PAL
definitions and requests.

14 This M4LIST statement defines the location of the system output device
for this step and includes a listing of the run control statements, report
messages, and the PAL cross reference report(s).

2-42 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes Explanation

15 The sort step returns a sorted M4PAOUT file (&&PAREPT) that is used
as input (M4OLD) to the report step.

16 The request-read coordinated file contains a user supplied record
specifying which PAL reports are to be generated. The literal IGCPAL
must be in positions 1-6. In this example, all four cross reference reports
are to be generated.

17 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.

Note: The system delimiter must be pound sign (#) and that this is a
single-step run (default to SORT INTERVAL).

m The FILE MASTER statement with name IGCPALVB specifies the
PAL master file.

m The FILE CORDI statement supplies the request-read coordinated
file (M4CORD1) information, including the PAL definition name for
the coordinated file.

m The WORK AREA statement specifies the working storage file used
by the PAL cataloged requests.

The INCLUDE statement is used to bring in the required request group.

Report Summary File

A report summary file can be created during the report phase of VISION:Builder
for a report that has summaries specified. You can choose to create a report
summary file by specifying a ddname with the SUMFILE keyword on the
FORMAT statement for the report (see the VISION:Builder for z/0S ASL Reference
Guide) and providing JCL for the report summary file. Up to 255 report summary
files can be produced, one for each report.

Figure 2-19 and Figure 2-20 show the flow and JCL for creating two report
summary files in a three-step run. Figure 2-21 on page 2-47 and Figure 2-22 on
page 2-48 show the flow and JCL for a single-step run. If a report summary file is
requested in a three-step sample report run, the JCL statement for the report
summary file must appear in the decode step instead of the report step.

VISION:Builder Runs, Run Control, and Execution JCL 2-43

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Application Program

i

MALIST

M4REPQ N_—__"/////’___J
3

5 4

MASORT
>

bl

.(

SORT

MAREP |

i1

MALIST

Application Program

9

Figure 2-19 Flow for a Three-Step Application Run Using a Report Summary File

2-44 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes

// JOB (accounting information)

//* JCL FOR A THREE-STEP RUN WITH REPORT SUMVARY FILES **
//JOBLIB DD DSN=your.builder.loadlib, DISP=(SHR, PASS)
//step EXEC PQEMARKIV,REGION=1536K

//MALIB DD DSN=your.m4lib, DISP=SHR

//MALIST DD SYSOUT=a

//MAREPO DD DSN=your.m4repo, DISP= (NEW, PASS) , UNIT=sysda,
/! SPACE=(TRK, (n,n))

//MASORT DD DSN=sort.file, DISP=(NEW, PASS) , UNIT=sysda,
/! SPACE=(TRK, n)

//MAOLD DD DSN=old.master.file, DISP=(OLD, KEEP)
//MAINPUT D *

CONTROL SORT EXTERNAL

FILE MASTER INPUT, NAME . . .

FILE REPORT

NOos 0 AOWN—

REPORT . . .
FORMART SUMFILE RPTSUMOL, . . .
END REPCRT

REFCRT . . .
FORVAT SUMFILE RPTSIMO2, . . .
END REPCRT
/*
8 //sort EXEC PQYESORT
//SYSIN DD DSN=sort.file, DISP=(OLD, PASS)
//SORTIN DD DSN=your.mdrepo, DISP=(OLD, DELETE)
//SORTOUT DD DSN=your.m4repi, DISP= (NEW, PASS) ,
UNIT=sysda, SPACE=(TRK, (n,n))
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL,n, , CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE=(CYL, n, , CONTIG)
//SORTWK03 DD UNIT=SYSDA, SPACE=(CYL,n, , CONTIG)
/1*
//report EXEC PQEMARKIV,REGION=1536K
10 //MALIST DD SYSOUT=a
11 //MAREPT DD DSN=your.mdrepi, DISP=(OLD, DELETE)
12 //RPTSUMOL DD DSN=your.report.sunfilel,
DISP=(NEW, CATLG) , UNIT=sysda,
/! SPACE=(TRK, (n,n))
12 //RPTSUMO2 DD DSN=your. report.sunfile?,
DISP=(NEW, CATLG) , UNIT=sysda,
/! SPACE=(TRK, (n,n))
13 //MAINPUT D *
CONTROL
FILE REPORT
/*
//

Figure 2-20 JCL for a Three-Step Application Run Using a Report Summary File

The numbered statements in Figure 2-20 represent those dealing with producing a
report summary file. An explanation of the numbered statements follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary
sort control statements. The execution of VISION:Builder is controlled
by run control statements, which specify the files and DD statements
required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

VISION:Builder Runs, Run Control, and Execution JCL 2-45

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes

Explanation

The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements and
diagnostic messages.

MA4REPO is the file containing the VISION:Builder report file output
from the processing step. The data is used in subsequent sort and
report steps.

The M4SORT file contains the sort control statements for the sort
program.

MA4OLD defines the old master file and is the primary data input file to
the processing step in this run.

The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
A FORMAT statement must be coded with a SUMFILE keyword for
each report generating a summary file.

This statement calls in and executes the system sort program.

VISION:Builder is invoked to generate the report.

This M4LIST is output from a report run and includes a listing of the
source statements and report messages.

Defines the location of the sorted report file (M4REPI), which is output
by the VISION:Builder processing run and the input to the report step.

Two report summary files that contain control break fields and
summary values for a report. RPTSUMO1 contains the values from one
report and RPTSUMO2 from another report.

This M4INPUT indicates to VISION:Builder that only the report step
has to be executed.

2-46 Environment Guide

Run Confrol and Execution JCL for Sample VISION:Builder Applications

M4 INPUT

M4LIB Application Program

2 1

4L1ST

MAREPO M
3
5

Figure 2-21 Flow for a Single-Step Run Using a Report Summary File

Summary
Files

VISION:Builder Runs, Run Control, and Execution JCL 2-47

Run Confrol and Execution JCL for Sample VISION:Builder Applications

Notes
// JOB (accounting information)
//* JCL FOR SINGLE-STEP RUN WITH A REPORT SUMMARY FILE **
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //step EXEC PGM=MARKIV,REGION=1536K
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //MALIST DD SYSOUT=a
4 //M40LD DD DSN=old.master.file,DISP=(OLD, KEEP)
//SYSOUT DD SYSOUT=a
//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE=(CYL,n, ,CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
5 //M4REPO DD DSN=your.mdrepo,DISP=(NEW, PASS) ,UNIT=sysda,
// SPACE=(TRK, (n,n))
[//RPTSUM0O1 DD DSN=your.report.sumfilel, DISP=(NEW,CATLG),
UNIT=sysda, SPACE=(TRK, (n,n))
6 //RPTSUM02 DD DSN=your.report.sumfile2,DISP=(NEW, CATLG),
UNIT=sysda, SPACE=(TRK, (n,n))
7 //MAINPUT DD *

CONTROL SORTSIZE 200K
FILE MASTER INPUT, NAME .
FILE REPORT

REPORT . . .
FORMAT SUMFILE RPTSUMO1,
END REPORT

REPORT . . .
FORMAT SUMFILE RPTSUMO02,
END REPORT
/*
//

Figure 2-22 JCL for a Single-Step Run Using a Report Summary File

The numbered statements in Figure 2-22 represent those dealing with producing a
report summary file. An explanation of the numbered statements follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary
sort control statements. The execution of VISION:Builder is controlled
by run control statements that specify the files required and the DD
statements required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the report(s).

4 MA4OLD defines the master file and is the primary data input to the
processing step in this run.

2-48 Environment Guide

Update-in-Place (Single-Step No-Sort)

Notes Explanation

5 MA4REPO is the file that will contain the report command language
necessary to build the report from the processing step. The report data
records are passed to the sort process.

6 These are report summary files that contain control break fields and
summary values for a report. RPTSUMO1 contains the values from one
report and RPTSUMO2 from another report.

7 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.

A single-step run requires that SORT INTERNAL be allowed as the
default on the CONTROL statement. The CONTROL statement is
followed by other run control statements and any valid requests. A
FORMAT statement with the SUMFILE keyword must be coded for the
report summary file.

Update-in-Place (Single-Step No-Sort)

Updating a master file through transaction processing (see Update a Master File
(Single-Step Sort) on page 2-30) can also be accomplished by performing an

update—in—placee. The input transaction file (M4TRAN) is composed of
transaction records that are applied against the old master file (M4OLD). When
using update-in-place, you do not need to specify a new master file, as an updated
record occupies the same physical position on a direct-access device as the original
old master record. Update-in-place allows you to update randomly accessed old
master file records.

VISION:Builder Runs, Run Control, and Execution JCL 2-49

Update-in-Place (Single-Step No-Sort)

Figure 2-23 shows the flow and JCL for an update-in-place run.

M4 INPUT

- M40LD

Application Program

I |

1

M4TRAN
3
MALIST
4

Notes

// JOB (accounting information)

//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //update EXEC PGM=MARKIV,REGION=1536k
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //MATRAN DD DSN=tran.file,DISP=SHR
4 //MALIST DD SYSOUT=a
5 //M40OLD DD DSN=old.master.file, DISP=(0OLD,KEEP)
6 //MAINPUT DD *

CONTROL SORT NONE, REPTSIZE 200K
FILE MASTER UPDATE, NAME . . .
FILE TRAN

FILE REPORT

7%
//

Figure 2-23 Flow and JCL for an Update-In-Place, Single-Step (No-Sort)
Application Run

Note: A master file can be updated-in-place only if the storage medium is a
direct-access storage device.

2-50 Environment Guide

Report Manager JCL Examples

The numbered statements in Figure 2-23 represent those dealing with updating in
place. An explanation of the numbered statements follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors. The execution of
VISION:Builder is controlled by run control statements that specify the
files required, and the DD statements required for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

3 M4TRAN defines the transaction record file.

4 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the report.

5 MA4OLD defines the old master file.

6 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
The run control statements are followed by any valid requests.

Report Manager JCL Examples

The use of the Report Manager facility to COLLATE and/or ROUTE reports
produced by VISION:Builder applications requires minor additions to the
standard application run JCL. The following lists JCL for single-step and three-step
application runs that use the Report Manager facility.

Report Manager Single-Step JCL for Collating and/or Routing

In single-step application runs, the Report Manager needs JCL statements that are
the destinations for the collated and/or routed reports. The M4PRINT DD
statement receives all the collated-only reports and any non-routed reports.
Specifically named DD statements receive routed reports that correspond to the
designated routing destinations. There are no other changes needed to the
single-step application run JCL for Report Manager. Any Report Manager
messages and run statistics are directed to M4LIST.

VISION:Builder Runs, Run Control, and Execution JCL 2-51

Report Manager JCL Examples

Figure 2-24 shows a simple single-step JCL example with the additional JCL
needed for Report Manager.

Notes

// JOB (accounting information)
//*
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
//*
//* JCL for SINGLE-STEP PROCESSING RUN with REPORT MANAGER
//* (Process-Sort-Report)
//*
//step EXEC PGM=MARKIV,REGION=1536K
//MALIB DD DSN=your.m4lib, DISP=SHR
//MALIST DD SYSOUT=*
//M40LD DD DSN=old.master.file, DISP=(OLD,KEEP)
//SYSOUT DD SYSOUT=*
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWKO2 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
5 //SORTLIB DD DSN=SYS1.SORTLIB, DISP=SHR
6 / /M4REPO DD DSN=your.mé4repo, DISP=(NEW, PASS) ,UNIT=sysda,
// SPACE=(TRK, (n,n))
7 //MAINPUT DD *
CONTROL
FILE MASTER INPUT, NAME .
FILE REPORT
COLLATE REPORTS REP1 REP2, KEYLENGTH 1
ROUTE REPORT REP3 TO DEST001

7

REP1: REPORT .

AON—

END REPORT

REP2: REPORT .

END REPORT

REP3: REPORT .

END REPORT

/*

//* ADDITIONAL REPORT MANAGER JCL STATEMENTS
//*

8 //M4PRINT DD SYSOUT=* COLLATE ONLY OUTPUT/NON-ROUTED OUTPUT
9 //DEST001 DD SYSOUT=* ROUTE DESTINATION STATEMENTS AS NEEDED

Figure 2-24 Report Manager Single-Step Application Run JCL

An explanation of the numbered statements for Figure 2-24 follows:

Notes Explanation

! VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary sort
control statements. The execution of VISION:Builder is controlled by run
control statements that specify the files and DD statements required for
this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

2-52 Environment Guide

Report Manager JCL Examples

Notes Explanation

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages, and the run statistics.

4 M4OLD defines the master file and is the primary data input to the
processing step in this run.

5 SORTLIB defines the location of the system sort program.

6 MA4REPO is the file containing the report command language and

ROUTE commands necessary to build and route the reports. The report
data records are passed to the sort process.

7 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements. As
part of the run control statements for the application, the report manager
COLLATE and/or ROUTE Commands are specified.

8 The M4PRINT statement defines a location for Report Manager output.

m In collate-only runs, the collated reports are directed here first
followed by the non-collated reports.

m Inruns that perform routing, the non-routed reports are directed
here.

m If the M4PRINT statement is present without any report manager
commands in the application source code, all reports are directed
here instead of M4LIST.

Note: The report output from VISION:Builder can be directed to
SYSOUT, disk and tape data sets, PDS members, or wherever your
operating system JCL specification will allow.

? The DEST001 statement defines the destination for report REP3.

Additional statements are needed for each designated destination name
specified in the report manager ROUTE commands.

VISION:Builder Runs, Run Control, and Execution JCL 2-53

Report Manager JCL Examples

Report Manager Three-Step JCL for Collating with or without Routing

In three-step application runs, minor JCL changes are needed for the Report
Manager when performing collating with or without routing.

There are no changes needed in the processing step; however, your application
source code will include your collating and routing specifications.

The sort step needs to execute the program called COLLATOR that performs a
portion of the collating specifications while using the SORT program to sort the
report file. An M4LIST DD statement is needed in the sort step for receiving any
COLLATOR program messages.

Note: The COLLATOR program can only be used to sort report files from
applications using COLLATE commands.

Finally, the report step needs JCL statements that are the destinations for the
collated and/or routed reports. The M4PRINT DD statement receives all the
collated-only reports and any non-routed reports. Specifically named DD
statements receive routed reports that correspond to the designated routing
destinations.

2-54 Environment Guide

Report Manager JCL Examples

Figure 2-25 shows a simple three-step JCL example with the additional JCL
changes needed for the Report Manager.

Notes

N o ObhWN—

15
16

// JOB (accounting information)

//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR

/*

//* JCL for THREE-STEP APPLICATION RUN with REPORT MANAGER
/*

//* PROCESSING STEP - COLIATE Commands present

//* (with or without ROUTE Commands)

/*

//stepa EXEC PQEMARKIV,REGION=1536K

//MALIB DD DSN=your.m41ib, DISP=SHR

//MALIST DD SYSOUT=*

//MAOLD DD DSN=old.master. file, DISP=(CLD, KEEP)
//MASORT DD DSN=sort.file, DISP=(NEW, PASS) , UNIT=sysda,
/] SPACE= (TRK, 1)

//MAREPO DD DSN=your.m4repo, DISP= (NEW, PASS) , UNIT=sysda,
/] SPACE= (TR, (n,n))

//MAINPUT DD *

COLIATE REPCRTS REP1 REP2, KEYLENGTH 1
ROUTE REPORT REP3 TO DEST001

REP1: REPORT . . .

END REPCRT

REP2: REPCRT . . .

END REPCRT

REP3: REPCRT . . .

END REPCRT

/*

//* SCRT STEP - The COLLATCR Program performs some COLIATE functions
/*

//stepo EXEC PQECOLLATOR, REGION=1536K

/*

//SYSIN DD DSN=sort.file, DISP=(, PASS)
//SORTIN DD DSN=your.m4repo, DISP= (OLD, DELETE)
//SORTOUT DD DSN=your.mdrepi, DISP= (NEW, PASS) ,
/! UNIT=sysda, SPACE=(TRK, (n,n))
//SYSOUT DD SYSOUT=*

//SORTLIB DD DSN=SYS1, SORTLIB, DISP=SHR
//SORTWKOL DD UNIT=SYSDA, SPACE=(CYL,n, , CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE=(CYL,n, , CONTIG)
//SORTWK03 DD UNIT=SYSDA, SPACE=(CYL, 1, , CONTIG)
/*

//* ADDITIONAL REPORT MANAGER (COLLATOR) JCL STATEMENT
/1*

//MALIST DD SYSOUT=* COLLATOR Program message output
/*

//* REPORT STEP

/*

//stepc EXEC PQEMARKIV,REGION=1536K

//MALIST DD SYSOUT=*

//MAREPT DD DSN=your.mdrepi, DISP=(OLD, DELETE)
//MAINPUT DD *

//* RDDITIONAL REPORT MANAGER JCL STATEMENTS

/1*

//MABRINT DD SYSOUT=* COLLATE ONLY OUTPUT/DEFAULT ROUTE OUTPUT
//DEST001 DD SYSOUT=* ROUTE DESTINATION STATEMENTS AS NEEDED

Figure 2-25 Report Manager Three-Step JCL with Collating, with or without

Routing

VISION:Builder Runs, Run Control, and Execution JCL

2-55

Report Manager JCL Examples

An explanation of the numbered statements for Figure 2-25 follows:

Notes Explanation

1 VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary sort
control statements. The execution of VISION:Builder is controlled by
run control statements that specify the files and DD statements required
for this job step.

2 The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

3 The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages and the report(s).

4 MA4OLD defines the old master file and is the primary data input file to
the processing step in this run.

5 The M4SORT file contains the sort control statements and COLLATE
commands for the COLLATOR (SORT) program.

6 MA4REPO is the file containing the VISION:Builder report file output
from the processing step. This includes the report command language
and ROUTE commands necessary to build and route the reports from
the processing step. The information and data are used in subsequent
sort and report generation steps.

7 The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
As part of the run control statements for the application, the report
manager COLLATE (and ROUTE) commands are specified.

8 This statement calls in and executes the report manager COLLATOR
program which invokes the system sort program.

9 The SYSIN file contains the sort control statements and the COLLATE
commands for the COLLATOR (SORT) program.

10 The M4LIST statement defines the location of the system output device
for the COLLATOR program to direct any messages and statistics.

1 VISION:Builder is invoked to generate the report.

12 This M4LIST is output from the report step and includes a listing of the
run control statements and report messages.

13 Defines the location of the sorted report file (M4REPI), output by the sort
step, that is the input to the report step.

2-56 Environment Guide

Report Manager JCL Examples

Notes Explanation

14 This MAINPUT indicates to VISION:Builder that only the report step has
to be executed.

Note: SORTOUT should not have DCB information on the JCL.

15 The M4PRINT statement defines a location for Report Manager output.

m In collate-only runs, the collated reports are directed here first
followed by the non-collated reports.

m Inruns that perform routing, the non-routed reports are directed
here.

m If the M4PRINT statement is present without any report manager
commands in the application source code, all reports are directed
here instead of M4LIST.

Note: The report output from VISION:Builder can be directed to
SYSOUT, disk and tape data sets, PDS members, or wherever your
operating system JCL specification will allow.

16 The DEST001 statement defines the destination for report REP3.

Additional statements are needed for each designated destination name
specified in the report manager ROUTE commands.

Report Manager Three-Step JCL for Routing Only

In three-step application runs, minor JCL changes are needed for the Report
Manager when performing routing only.

There are no changes needed in the processing step; however, your application
source code includes your collating and routing specifications.

There are no changes needed in the sort step.

Finally, the report step needs JCL statements that are the destinations for the
Routed reports. The M4PRINT DD statement receives any non-routed reports. The
specifically named DD statements receive routed reports that correspond to the
designated routing destinations.

VISION:Builder Runs, Run Control, and Execution JCL 2-57

Report Manager JCL Examples

Figure 2-26 shows a simple three-step JCL example with the additional JCL
changes needed for the report manager.

Notes

// JOB (accounting information)

/1%

//JOBLIB DD DSNeyour.builder. loadlib, DISP=SHR

/1%

//* JCL for THREE-STEP APPLICATION RUN with REPORT MANAGER
/1%

//* PROCESSING STEP - ROUTE Commands present

//* (no COLLATE Commands are coded)
/1%

//stepa EXEC PQEVBRKIV,REGION=1536K

//MALIB DD DSN=your.m41ib, DISP=SHR

//MALIST DD SYSOUT=*

//MAOLD DD DSN=old.master.file, DISP=(OLD, KEEP)
//MASCRT DD DSN=sort.file, DISP= (NEW, PASS) ,UNIT=sysda,
/! SPACE= (TRK, n)

//MAREPO DD DSN=your.mdrepo, DISP= (NEW, PASS) ,UNIT=sysda,
/! SPACE= (TRK, (n,n))

//MAINPUT DD *

CONTROL SORT EXTERNAL

FILE MASTER INPUT, NAME . . .

FILE REPCRT

ROUTE REPORT REP1 TO DEST00L

N o obhWON—

REPL: REPORT . . .
END REPCRT
REP2: REPORT . . .
END REPCRT
REP3: REPORT . . .
END REPCRT
/*
/1*
//* SORT STEP
/1*
8 //stepo EXEC PGMECOLLATOR, REGION=1536K
/1*
//SYSIN DD DSN=sort.file, DISP=(, PASS)
//SORTIN DD DSN=your .mdrepo, DISP= (OLD, DELETE)
//SORTOUT DD DSN=your.mdrepi, DISP= (NEW, PASS) ,
// UNIT=sysda, SPACE= (TRK, (n,n))
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYS1, SORTLIB, DISP=SHR
//SORTWKOL DD UNIT=SYSDA, SPACE= (CYL,n, , CONTIG)
//SORTWK02 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE= (CYL, n, , CONTIG)
/1*
//* REPCRT STEP
/1*
9 //stepc EXEC PGMAVARKIV, REGION=1536K
10 //MALIST DD SYSOUT=*
11 //MAREPT DD DSN=your.mdrepi, DISP= (LD, DELETE)
12 //MAINPUT DD *
CONTROL
FILE REPORT
/*
//* RDDITIONAL REFORT MANAGER JCL STATEMENTS
/1*
13 //M4PRINT DD SYSOUT=* DEFAULT ROUTE OUTPUT
14 //DESTO0L DD SYSOUT=* ROUTE DESTINATION STATEMENTS AS NEEDED

Figure 2-26 Report Manager Three-Step JCL with Routing Only

2-58 Environment Guide

Report Manager JCL Examples

An explanation of the numbered statements for Figure 2-26 follows:

Notes

Explanation

1

VISION:Builder processes the source statements from the MAINPUT
data set, checking for syntactical errors, and generates the necessary
sort control statements. The execution of VISION:Builder is controlled
by run control statements that specify the files and DD statements
required for this job step.

The common library defines the cataloged data set on a direct access
device. This is the same data set name as required for the file definition.

The M4LIST statement defines the location of the system output device
for this job and includes a listing of the source statements, diagnostic
messages and the report(s).

MA4OLD defines the old master file and is the primary data input file to
the processing step in this run.

The M4SORT file contains the sort control statements for the sort
program.

MA4REPO is the file containing the VISION:Builder report file output
from the processing step. This includes the report command language
and ROUTE commands necessary to build and route the reports from
the processing step. The information and data are used in subsequent
sort and report generation steps.

The M4INPUT data set consists of VISION:Builder source statements.
The CONTROL statement must be the first of these source statements.
As part of the run control statements for the application, the report
manager ROUTE commands are specified.

This statement calls in and executes the system sort program.

VISION:Builder is invoked to generate the report.

This M4LIST is output from the report step and includes a listing of the
run control statements and report messages.

Defines the location of the sorted report file (M4REPI), which is output
by the sort step and the input to the report step.

This M4INPUT indicates to VISION:Builder that only the report step
has to be executed.

VISION:Builder Runs, Run Control, and Execution JCL 2-59

Alternate Report Output Method JCL Examples

Notes Explanation

13 The M4PRINT statement defines a location for Report Manager output.

m Inruns that perform routing, the non-routed reports are directed
here.

m If the M4PRINT statement is present without any report manager
commands in the application source code, all reports are directed
here instead of M4LIST.

Note: The report output from VISION:Builder can be directed to
SYSOUT, disk and tape data sets, PDS members, or wherever your
operating system JCL specification will allow.

14 The DEST001 statement defines the destination for report REP1.

Additional statements are needed for each designated destination name
specified in the report manager ROUTE commands.

Alternate Report Output Method JCL Examples

Alternate Report Output Methods Single-Step JCL

In single-step application runs using one or more alternate report output methods,
you must include JCL statements that define the destination for each alternate
output. If HTML is used as the method for any alternate output, you must add a
JCL statement that identifies the location of the HTML templates used to prepare
the HTML output. A message identifying the destination for each alternate output
and any messages generated by the alternate output method are directed to
MA4LIST. Note that a single VISION:Builder application program may generate
multiple reports using alternate report output methods in any combination along
with print-formatted reports, up to a total of 255 such outputs.

Figure 2-27 shows a single-step JCL example with the JCL needed for the different
alternate output methods:

Notes
//jobname JOB ...
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
//*
//* JCL for SINGLE-STEP PROCESSING RUN using ALTERNATE
//* REPORT OUTPUT METHODS (Process-Sort-Report)
//*

1 //step EXEC PGM=MARKIV, REGION=2M

2 //MALIB DD DSN=your.m41lib, DISP=SHR

3 //MALIST DD SYSOUT=*

4 //M40LD DD DSN=old.master.file, DISP=SHR

//SYSOUT DD SYSOUT=*
//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL,n, ,CONTIG)

Figure 2-27 Alternate Report Output Methods Single-Step Application Run JCL

2-60 Environment Guide

Alternate Report Oufput Method JCL Examples

//SORTWKO2 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL,n,,CONTIG)
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

5 / /MAREPO DD UNIT=SYSDA, SPACE=(CYL, (n,n))
6 //MAINPUT DD *
CONTROL

FILE MASTER INPUT, NAME .
FILE REPORT

7

REPORT .
FORMAT METHOD . . ., DDNAME .
END REPORT
//*
//* ADDITIONAL JCL STATEMENTS FOR COMMA-DELIMITED OUTPUT
//*
7 //comdata DD DSN=comma.delimit.data, DISP=(NEW,CATLG),
// UNIT=SYSDA, SPACE=(CYL, (n,n))
//*
//* ADDITIONAL JCL STATEMENTS FOR TAB-DELIMITED OUTPUT
//*
8 //tabdata DD DSN=tab.delimit.data, DISP=(NEW, CATLG),
// UNIT=SYSDA, SPACE=(CYL, (n,n))
//*
//* ADDITIONAL JCL STATEMENTS FOR HTML OUTPUT
//*
9 //htmlout DD DSN=html.document.output, DISP=(NEW, CATLG),
UNIT=SYSDA, SPACE=(CYL, (n,n,m))
10 //M4HTBASE DD DSN=your.html.template.library, DISP=SHR
*

//* ADDITIONAL JCL STATEMENTS FOR PLAIN TEXT OUTPUT
*

11 //plaintxt DD DSN=plain.text.output, DISP=(NEW,CATLG),
// UNIT=SYSDA, SPACE=(CYL, (n,n))

//*
//* ADDITIONAL JCL STATEMENTS FOR RAW DATA OUTPUT
*
12 //rawout DD DSN=raw.data.output, DISP=(NEW,CATLG),
// UNIT=SYSDA, SPACE=(CYL, (n,n))
//*
//* OPTIONAL JCL STATEMENTS FOR HTML OUTPUT
//*
13 //M4AWORK1 DD UNIT=SYSDA, SPACE=(CYL, (n,n)) HTML
14 / /M4OPTS DD DSN=your.builder.worklib (M4OPTNS) , DISP=SHR
//

Figure 2-27 Alternate Report Output Methods Single-Step Application Run JCL

An explanation of the numbered statements in Figure 2-27 follows.

Notes Explanation

! This statements invokes VISION:Builder to process the source
statements from the M4INPUT data set, check for syntactical errors,
process the data base input records, generate the necessary sort control
parameters, extract and sort the required report data, and generate any
report output. The execution of VISION:Builder is controlled by run
control statements that specify the files and DD statements required for
this job step.

2 The M4LIB statement identifies the cataloged data set on a direct access
device containing the common library objects needed by this
application.

VISION:Builder Runs, Run Control, and Execution JCL 2-61

Alternate Report Output Method JCL Examples

Notes

Explanation

The M4LIST statement defines the location of the system output device
for this job that receives the listing of the source statements, diagnostic
messages, and the run statistics.

The M4OLD statement identifies the master file and is the primary data
input to the processing step in the run. If the primary data input is
through a database manager, JCL statements required by the database
manager are used in place of this statement.

The M4REPO statement defines the file containing the report command
language. The report data records are passed directly to the sort
process.

The M4INPUT statement identifies the source of the VISION:Builder
source statements. The CONTROL statement must be the first of these
source statements. A single-step run requires that the default

SORT INTERNAL be allowed. Other run control statements and any
valid requests typically follow the CONTROL statement.

This JCL statement is an example of one that would be required for
comma-delimited output (CSV). The ddname must be identical to the
name specified with the DDNAME keyword on the FORMAT
METHOD CSV statement.

This JCL statement is an example of one that would be required for
tab-delimited output. The ddname must be identical to the name
specified with the DDNAME keyword on the FORMAT METHOD
TAB statement.

This JCL statement is an example of one that would be required for
HTML output. Note that this statement must define a partitioned data
set and the ddname must be identical to the name specified with the
DDNAME keyword on the FORMAT METHOD HTML statement.
VISION:Builder creates up to 4 members in the data set. See Chapter 13,
“VISION:Builder HTML Document Style Customization” for a
discussion of the content of each created member.

The MAHTBAGSE statement identifies the data set containing the HTML
template members required for the styles used by this application. This
data set must be a partitioned data set containing the required
members. See Chapter 13, “VISION:Builder HTML Document Style
Customization” for a discussion of the names of the members required
in this data set, their function, and content.

This JCL statement is an example of one that would be required for
plain text output. The ddname must be identical to the name specified
with the DDNAME keyword on the FORMAT METHOD PLAINTEXT
statement.

2-62 Environment Guide

Alternate Report Oufput Method JCL Examples

Notes

Explanation

This JCL statement is an example of one that would be required for Raw
Data output. The ddname must be identical to the name specified with
the DDNAME keyword on the FORMAT METHOD RAWDATA
statement.

The M4WORKI statement defines a work data set used by the HTML
output method. If the statement is omitted, VISION:Builder
dynamically allocates the data set as necessary, with a space allocation
of (CYL,(1,1)) and a unit name of SYSDA.

The M4OPTS statement identifies an optional input stream containing
VISION:Builder run time parameters and/or options. If this statement
is omitted, the default parameters and options are used. The acceptable
parameters are:

UNITNAME Defines the DASD Pool Name for dynamic dataset
allocation. The default name is SYSDA.

URLFILE Defines the type of URL to create for HTML
document file references. Acceptable values are HFS
or MVS. Use MVS or HFS if the document will be
served up by WebSphere running under z/OS. Use
HES if the document will be served up by a web
server running on another platform.

FILESIZE Defines the file size limit for the files or members
containing the body frame of an HTML document.
Data for large reports will be segmented into files or
members not exceeding the specified size. The default
size is 500K.

See the sample member named M4OPTNS in the
installation WORKLIB dataset for further details.

VISION:Builder Runs, Run Control, and Execution JCL 2-63

Alternate Report Output Method JCL Examples

Alternate Report Output Methods Three-Step JCL

In three-step application runs using one or more alternate report output methods,
no changes are needed in the processing and sort step JCL. In the report step, you
must include JCL statements that define the destination for each alternate output.
If HTML is used as the method for any alternate output, you must add a JCL
statement that identifies the location of the HTML templates used to prepare the
HTML output. A message identifying the destination for each alternate output and
any messages generated by the alternate output method are directed to M4LIST.
Note that a single VISION:Builder application program may generate multiple
reports using alternate report output methods in any combination along with
print-formatted reports, up to a total of 255 such outputs.

Figure 2-28 shows a single-step JCL example with the JCL needed for the different
alternate output methods:

Notes
//jobname JOB ...
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
//*
//* JCL for THREE-STEP PROCESSING RUN using ALTERNATE
//* REPORT OUTPUT METHODS
//*
//* PROCESS STEP
//*
1 //stepa EXEC PGM=MARKIV,REGION=2M
2 //MALIB DD DSN=your.m4lib, DISP=SHR
3 //MALIST DD SYSOQUT=*
4 //M40LD DD DSN=old.master.file, DISP=SHR
5 //MAREPO DD UNIT=SYSDA, SPACE=(CYL, (n,n)), DISP=(NEW, PASS)
6 //M4SORT DD UNIT=SYSDA, SPACE=(TRK, (1,1)),DISP=(NEW, PASS)
7 //M4INPUT DD *
CONTROL SORT EXTERNAL
FILE MASTER INPUT, NAME . . .
FILE REPORT
REPORT . . .
FORMAT METHOD . . ., DDNAME . . .
END REPORT
//*
//* SORT STEP
//*
8 //stepb EXEC PGM=SORT, REGION=4M
9 //SYSIN DD DSN=*.stepa.M4SORT, DISP=(OLD, DELETE)
10 //SORTIN DD DSN=*.stepa, MAREPO, DISP= (OLD, DELETE)
11 //SORTOUT DD UNIT=SYSDA,SPACE=(CYL, (n,n)),DISP=(NEW, PASS)
//SYSOUT DD SYSQUT=*
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWKO2 DD UNIT=SYSDA,SPACE=(CYL,n,,CONTIG)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL,n,, CONTIG)
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//*
//* REPORT STEP
//*
12 //stepc EXEC PGM=MARKIV,REGION=1M
13 //M4LIST DD SYSOUT=*
14 //M4REPT DD DSN=*.stepb.SORTOUT, DISP=(OLD, DELETE)
15 //M4INPUT DD *
CONTROL
FILE REPORT
//*

//* ADDITIONAL JCL STATEMENTS FOR COMMA-DELIMITED OUTPUT
*

Figure 2-28 Alternate Report Output Methods Three-Step Application Run JCL
(Page 1 of 2)

2-64 Environment Guide

Alternate Report Oufput Method JCL Examples

18
19

20

21

22
23

//comdata DD DSN=comma.delimit.data, DISP=(NEW,CATLG),

//* UNIT=SYSDA, SPACE=(CYL, (n,n))

/?: ADDITIONAL JCL STATEMENTS FOR TAB-DELIMITED OUTPUT
;;tabdata DD DSN=tab.delimit.data,DISP=(NEW, CATLG),
//* UNIT=SYSDA, SPACE=(CYL, (n,n))

22: ADDITIONAL JCL STATEMENTS FOR HTML OUTPUT

//htmlout DD DSN=html.document.output, DISP=(NEW,CATLG),
UNIT=SYSDA, SPACE=(CYL, (n,n,m))
//M4HTBASE DD DSN=your.html.template.library, DISP=SHR
*

//* ADDITIONAL JCL STATEMENTS FOR PLAIN TEXT OUTPUT
*

//plaintxt DD DSN=plain.text.output,DISP=(NEW, CATLG),
// UNIT=SYSDA, SPACE=(CYL, (n,n))

//*
//* ADDITIONAL JCL STATEMENTS FOR RAW DATA OUTPUT
*
//raw DD DSN=raw.data.output,DISP=(NEW, CATLG),
// UNIT=SYSDA, SPACE=(CYL, (n,n))
//*

//* OPTIONAL JCL STATEMENTS FOR HTML OUTPUT
//*

/ /MAWORK1 DD UNIT=SYSDA, SPACE=(CYL, (n,n)) HTML
//M40PTS DD DSN=your.builder.worklib (M4OPTNS),DISP=SHR
//

Figure 2-28 Alternate Report Output Methods Three-Step Application Run JCL

(Page 2 of 2)

An explanation of the numbered statements in Figure 2-28 follows.

Notes

Explanation

1

This statement invokes VISION:Builder to process the source
statements from the M4INPUT data set, check for syntactical errors,
process the database input records, extract the report data, and
generate the necessary sort control parameters. The execution of
VISION:Builder is controlled by run control statements that specify the
files and DD statements required for this job step.

The M4LIB statement identifies the cataloged data set on a direct access
device containing the common library objects needed by this
application.

The M4LIST statement defines the destination for the output stream of
this job that receives the listing of the source statements, diagnostic
messages, and run statistics.

The M4OLD statement identifies the master file and is the primary
data input to the processing step in the run. If the primary data input
is through a database manager, JCL statements required by the
database manager are used in place of this statement.

The M4REPO statement defines the file containing the report
command language and the extracted data records. This file is used as
input to the sort program in the following step.

VISION:Builder Runs, Run Control, and Execution JCL 2-65

Alternate Report Output Method JCL Examples

Notes

Explanation

The M4SORT statement defines the file containing the sort control
statements used by the sort program in the following step.

The M4INPUT statement identifies the source of the VISION:Builder
source statements. The CONTROL statement must be the first of these
source statements. For a three-step run, you must specify

SORT EXTERNAL on the CONTROL statement. Other run control
statements and valid requests typically follow the CONTROL
statement.

This statement invokes the system sort program.

The SYSIN statement for the sort program identifies the data set
containing the sort control statements created by VISION:Builder in
the previous step.

The SORTIN statement identifies the input file containing the records
to be sorted. This file was created by VISION:Builder in the previous
step.

The SORTOUT statement defines the output data set containing the
command language and extracted data records in sorted order. This
file is used in the subsequent report generation step.

This statement invokes the report generation process of
VISION:Builder.

The MA4LIST statement defines the destination for the output stream of
this job that receives the run control statement listing, diagnostic
messages, and print-formatted reports not directed to other
destinations.

The M4REPI statement identifies the data set containing the sorted
command language records and extracted data records that will be
used to create the various report outputs.

The M4INPUT statement identifies the source of the run control
statement that directs VISION:Builder to perform its report generation
function.

This JCL statement is an example of one that is required for
comma-delimited output (CSV). The ddname must be identical to the
name specified with the DDNAME keyword on the FORMAT
METHOD CSV statement.

This JCL statement is an example of one that is required for
tab-delimited output. The ddname must be identical to the name
specified with the DDNAME keyword on the FORMAT METHOD
TAB statement.

2-66 Environment Guide

Alternate Report Oufput Method JCL Examples

Notes Explanation

18 This JCL statement is an example of one that would be required for
HTML output. Note that this statement must define a partitioned data
set and the ddname must be identical to the name specified with the
DDNAME keyword on the FORMAT statement. VISION:Builder
creates up to 4 members in this data set. See Chapter 13,
“VISION:Builder HTML Document Style Customization” for a
discussion of the content of each created member.

19 The M4HTBASE statement identifies the data set containing the HTML
template members required for the styles used by this application. This
data set must be a partitioned data set containing the required
members. See Chapter 13, “VISION:Builder HTML Document Style
Customization” for a discussion of the names of the members required
in this data set, their function, and content.

20 This JCL statement is an example of one that would be required for
plain text output. The ddname must be identical to the name specified
with the DDNAME keyword on the FORMAT METHOD PLAINTEXT
statement.

21 This JCL statement is an example of one that would be required for
Raw Data output. The ddname must be identical to the name specified
with the DDNAME keyword on the FORMAT METHOD RAWDATA
statement.

VISION:Builder Runs, Run Control, and Execution JCL 2-67

Alternate Report Output Method JCL Examples

Notes

Explanation

22

The MAWORKT1 statement defines a work data set used by the HTML

output method.

If the statement is omitted, VISION:Builder

dynamically allocates the data set as necessary, with a space allocation
of (CYL,(1,1)) and a unit name of SYSDA.

23

The M4OPTS statement identifies an optional input stream containing
VISION:Builder run time parameters and/or options. If this statement
is omitted, the default parameters and options are used. The acceptable

parameters are:

UNITNAME

URLFILE

FILESIZE

Defines the DASD Pool Name for dynamic dataset
allocation. The default name is SYSDA.

Defines the type of URL to create for HTML
document file references. Acceptable values are HFS
or MVS. Use MVS or HFS if the document will be
served up by WebSphere running under z/OS. Use
HEFS if the document will be served up by a web
server running on another platform.

Defines the file size limit for the files or members
containing the body frame of an HTML document.
Data for large reports will be segmented into files or
members not exceeding the specified size. The default
size is 500K.

See the sample member named M4OPTNS in the
installation WORKLIB dataset for further details.

2-68 Environment Guide

il VISION:Builder - IMS Database
3 Interface and Retrieval

Note: Examples in this chapter will be illustrated using

VISION:Workbench™ for DOS. VISION:Workbench is a VISION:Builder
application development system executing on IBM PCs and compatibles. For more
information about VISION:Workbench, see the VISION:Builder for z/OS
Workbench for DOS Reference Guide.

MARKDLI, DBDs, and PSBs

A VISION:Builder interface routine, MARKDLYI, is supplied as part of the Data
Base Interface/IMS and Data Base Retrieval/IMS option. This routine is link
edited with the IMS interface routine (DFSLI000) to form the interface between
VISION:Builder and IMS. VISION:Builder operates as a normal batch program
under the IMS region controller and uses your installation's IMS system to access
DL/ files.

The VISION:Builder/IMS operations process is shown in Figure 3-1.

VISION:Builder — IMS Database Interface and Retrieval 3-1

MARKDLI, DBDs, and PSBs

DFSRRCOO
IMS Region
Controller
\ 4
MARKDL1 & 3 »
DL/1 1 ounno "1 Bata
Language Interface Roulines < Bases
(Master file.
A Coordinated
files. or
Subfiles)
M4AUD 1 1@

M4TRAN@

\ 4
Application
Program
M4CORDn
n=1-9
MAREPn M4REPO M4SUBFn
n=2-9 n=0. 1-9

Figure 3-1 VISION:Builder - IMS Operation

The database definitions you provide to IMS and VISION:Builder must be
compatible with each other. This means that the DBD and PSB provided to IMS
must be compatible with the VISION:Builder file definition. Figure 3-2 illustrates
the relationship between an IMS DBD, PSB, and a VISION:Builder file definition.

3-2 Environment Guide

MARKDLI, DBDs, and PSBs

(0BDLIB) SEGM NAME FIELD NAME
. DBD _ | 'EMPLDE" ASE EMPN
DBD < f BHEV Evp
i i <
gt g
~_
TR
% DB/PCBs SENSEG NAME
11,/ pss (pcp) [PSB] EMPLPSB EMPLDB BASE
B s <
~_
Car18) L0 KEY/SEARGH
REPORTR- LS NAMES PieRGY
11l BASE PN
i Wiy <
a tRE
(FD FILEEMPILDDEBNT> <
IV. 1ISTEP EXEC PGM=DFSRRCOO,PARM='DLI,MARKDLI,EMPLlPSB'

Figure 3-2 VISION:Builder and IMS

VISION:Builder — IMS Database Interface and Retrieval 3-3

Sample File Definition

Sample File Definition

Figure 3-3 shows the file definition for a personnel file that has a three level
hierarchical structure. The DL/I organization method chosen is HISAM. Since the
IMS definition process calculates an optimum record size and blocking factor,
these entries have not been provided. Note that each segment has only one key
field and that segments PRIOREMP and MINOR do not have count fields
associated with them. The DBD name (EMPLYDBD in this example) is required in
the file identification specification.

FILE STRUCTURE DIAGRAM FCR
FILE DEFINITION - EMPLOYEE

RECORD FORMAT = DL/I FILE IDENTIFICATION = EMPLYDBD
BUFFER SIZE = 10000 NUMBER OF SEGMENTS IN FIIE = 8
At
|EMPLOYEE |
Aot
[
I I I
At At et
| PRIOREMP | |SCHOOL | |DEPENDNT |
e + ot o +
| T
I I I I
|SKILLS | [MAJCR | [MINOR | |DEGREE |

DETATIED GLOSSARY BY LOCATION FCR
FILE DEFINITION - EMPLOYEE

FILE IDENTIFICATION = EMPLYDBD RECORD FORMAT = DL/I
NUMBER OF SEQVENIS IN FIIE = 8
NUMBER OF FIELDS IN FIIE = 29 BUFFER SIZE = 10000

* SEQENT 1, IEVEL 1 *
* SEQENT NAME = EMPLOYEE *

SEGMENT OCCURS N TIMES = 1 KEY FIELD 1 = EMPNOMBR TYPE =P/S IENGTH = 3
SEGMENT SIZE = 62

NUMBER OF FIELDS IN SEQVENT = 10

SEQMENT KEY CHARACTERISTICS = U

FIEID FIELD FIELD FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTPUT LINE DATA BASE NAME/

NAME ~ TYPE IOCATION LENGTH RNDING PIACES FOR S@T () () () IENGTH WIDIH NO *** COLUMN HEADING ***
EMPNUMBR P/S 1 3 7 7
FIRSTNAM C 4 15 15 15
FULINAME C 4 30 30 30

2 ek EWPIOYEE e

IASIAME C 19 15 15 15

SSNMBR C 34 9 9 9
1 *kk SmIAL Kkk
2 *kk SECU’RITY *kk
3 *kk NUMBE‘R *kk

RATE F 43 2 6 () () 7 7

DEPT C 45 10 10 10

PHONE P 55 6 15 15
1 Kok PHONE *kk
2 *kk NUMBE‘R *kk

DEPENCNT P 61 1 8 2 2

SCHICNT P 62 1 4 2 2

Figure 3-3 File Definition for Sample Application (Page 1 of 3)

3-4 Environment Guide

Sample File Definition

DETAILED GLOSSARY BY LOCATION FCR
FILE DEFINITION - EMPLOYEE

* SEGMENT 2, IEVEL 2 *
* SEGMENT NAME = PRICREMP *

COUNT FIFLD FOR SEGMENT = **NONE** KEY FIELD 1 = PREVEMP ~ TYPE =C/S LENGTH = 20
SEQVENT SIZE = 66

NUMBER OF FIELDS IN SEGMENT
SEGVENT KEY CHARACTERISTICS

5
U

FIELD FIELD FIELD FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTPUT LINE DATA BASE NAVE/
NAME ~ TYPE ILOCATION IENGTH RNDING PIACES FOR ST () () () IENGTH WIDIH NO *** COLUMN HEADING ***

PREVAMP C/S 1 20 20 20
1 oo REVIOUS *e
2 *kk H/JPLOYER *kk

ADDRESSL C 21 20 20 20
ADDRESS2 C 41 20 20 20
ZIP C 61 5 5 5
SKILICNT P 66 1 3 2 2

DETATLED GLOSSARY BY IOCATION FOR

FILE DEFINITION - EMPLOYEE

* SEGMENT 3, IEVEL 3 *

* SEQMENT NAME = SKILLS *
COUNT FIELD FCR SEGMENT = SKILLCNT KEY FIELD 1 = SKILL TYPE =C/S IENGTH = 20

SEQENT SIZE = 22
NUMBER OF FIELDS IN SEQYENT = 2
SEGVENT KEY CHARACTERISTICS = U

FIELD FIELD FIELD FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTPUT LINE DATA BASE NAVE/
NAME ~ TYPE IOCATION LENGTH RNDING PIACES FOR ST () () () IENGTH WIDTH NO *** COLUMN HEADING ***

SKILL C/S 1 20 20 20
1 *kk SKILL Khk
RATE/HR P 21 2 2 5 5

DETAILED GLOSSARY BY LOCATION FCR
FILE DEFINITION - EMPLOYEE

* SEGMENT 4, IEVEL 2 *
* SEQMENT NAME = SCHOOL *

COUNT FIELD FOR SEGMENT = SCHLCNT KEY FIELD 1 = SCHOOL TYPE =C/S IENGTH = 20
SEQVENT SIZE = 23

NUMBER OF FIELDS IN SEQVENT = 4

SEGVENT KEY CHARACTERISTICS = U

FIELD FIELD FIELD FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTPUT LINE DATA BASE NAVE/

NAME ~ TYPE ILOCATION IENGTH RNDING PIACES FOR ST () () () IENGTH WIDIH NO *** COLUMN HEADING ***
SCHOOL C/S 1 20 20 20

1 *kk SCH%L Kk
MAJCOUNT P 21 1 5 2 2
MINCOUNT P 22 1 6 2 2
DEGCOUNT P 23 1 7 2 2

Figure 3-3 File Definition for Sample Application (Page 2 of 3)

VISION:Builder — IMS Database Interface and Retrieval

3-5

Sample File Definition

DETAIIED GLOSSARY BY LOCATION FCR
FILE DEFINITION - EMPLOYEE

* SEQENT 5, IEVEL 3 *
* SEQENT NAME = MAJOR *

COUNT FIELD FCR SEGMENT = MAJCOUNT KEY FIELD 1 = MAJOR
SEQENT SIZE = 16

NUMBER OF FIELDS IN SEGVENT = 2

SEGMENT KEY CHARACTERISTICS = U

TYPE =C/S LENGTH = 15

FIELD FIELD FIEID FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTPUT

LINE DATA BASE NAME/

NAVE TYPE IOCATION IENGTH RNDING PLACES FOR S@T () () () IENGTH WIDIH NO *** COLUMN HEADING ***
MAJCR C/S 1 15 15 15
MAJGRRDE C 16 1 1 1

DETAILED GLOSSARY BY LOCATION FOR
FILE DEFINITION - EMPLOYEE

* SEQENT 6, LEVEL 3
* SEQVENT NAME = MINOR *

COUNT FIELD FOR SEGMENT = MINCOUNT KEY FIEID 1 = MINOR
SEQVENT SIZE = 16
NUMBER OF FIELDS IN SEGMENT =

2
SFGMENT KEY CHARACTERISTICS = U

TYPE =C/S 1ENGTH = 15

FIELD FIELD FIEID FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTRUT

LINE DATA BASE NAME/

NAVE ~ TYPE IOCATION LENGTH RNDING PIACES FOR S@T () () () IENGTH WIDTH NO *** COLUMN HEADING ***
MINOR C/S 1 15 15 15
MINGRADE C 16 1 1 1

DETAILED GLOSSARY BY LOCATION FOR
FILE DEFINITION - EMPLOYEE

* SEQENT 7, LEVEL 3 *
* SEQENT NAME = DEGREE *

COUNT FIELD FOR SEGMENT = DEGCOUNT KEY FIEID 1 = DEGREE
SEQVENT SIZE = 4

NUMBER OF FIELDS IN SEGMENT
SEGMENT KEY CHARACTERISTICS

1
U

TYPE =C/S LENGTH = 4

FIEID FIELD FIELD FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTPUT
NAME ~ TYPE IOCATION LENGTH RNDING PIACES FOR S@T () () () IENGTH WIDIH

LINE DATA BASE NAME/
% COLUMN HEADING *

NO

DEGREE C/S 1 4 4 4

DETAILED GLOSSARY BY IOCATION FOR
FILE DEFINITION - EMPLOYEE

* SEQENT 8, IEVEL 2 *
* SEGVENT NAME = DEPENDNT

COUNT FIELD FOR SEGMENT = DEPENCNT
SEQENT SIZE = 42

NUMBER OF FIELDS IN SEGMENT
SEGMENT KEY CHARACTERISTICS

3
U

KEY FIELD 1 = DEPENAME TYPE =C/S IENGTH = 30

FIELD FIELD FIEID FIELD FIELD DEC CNT FIELD EDIT CODES ~ EDIT OUTRUT LINE DATA BASE NALE/
MME TYPE IOCATION IENGTH RNDING PIACES FORSGMT () () () IENGTH WIDTH ~ NO *** COLUMY HEADING ***
DEPENRE C/S 1 30 30 30
1 o DEPENDENT %%+
2 *kk NAME *kk
DEPEIBGE C 31 2 2 9
l *kk DEPEI\]‘DEI\IT *kk
2 *kk AGE *kk
RELATION C 3 10 10 10

Figure 3-3 File Definition for Sample Application (Page 3 of 3)

3-6 Environment Guide

IMS Batch Region Execution of VISION:Builder

In processing an IMS database, IMS returns status codes to VISION:Builder in the
PCB. If an unexpected status code occurs during transaction application with
MOSAIC processing, the transaction is rejected, but VISION:Builder can continue.

Unexpected status codes occurring at other times cause VISION:Builder to
terminate the job with a user abend code of 0111. Prior to termination,
VISION:Builder issues an error message that includes the unexpected status code.
Usually, the status code indicates a problem with JCL or with the database
structures.

If the information in the message is not sufficient for debugging, a dump should
be requested. In this dump, register 7 contains the address of the DL/I call
parameter list.

IMS Batch Region Execution of VISION:Builder

Since VISION:Builder operates under the IMS region controller, the program
DFSRRCO0 is invoked rather than VISION:Builder. The DD statements for
VISION:Builder data sets are the same as required in a normal VISION:Builder job,
except for those files specified as IMS files.

These statements are replaced by the DD statements as specified in the DBD for the
file. Additional DD statements are required to specify the PSB and DBD libraries.
The ddname used is IMS. The JCL for a processing run is shown in Figure 3-4. The
ddnames for the DL/I databases differ depending on the DBD. The EXEC
statement must be filled out as follows:

//mk4 EXEC PGM=DFSRRC00,PARM='DLI,MARKDLI,psbname’

where psbname is the name of the PSB previously link edited into the PSB library.

VISION:Builder — IMS Database Interface and Retrieval 3-7

IMS Batch Region Execution of VISION:Builder

In all cases, the JCL is the same as shown for the batch region in Figure 3-4.

Notes
//markdli JOB (accounting information)
//JOBLIB DD DSN=IMSVS.RESLIB,DISP=SHR
// DD DSN=your.builder.loadlib, DISP=SHR
1 / /mk4 EXEC PGM=DFSRRCO00, PARM='DLI,MARKDLI, psbname',
// REGION=1536K
//MALIST DD SYSOUT=a
//MALIB DD DSN=your.m41lib, DISP=SHR
//MAREPO DD UNIT=sysda, SPACE=(TRK, (nn,nn)),
// DISP=(NEW, PASS),
// DSN=your .mdrepo
/ /MASORT DD UNIT=sysda, SPACE=(TRK, (nn,nn)),
// DISP=(NEW, PASS),
// DSN=your.mdsort
2 //IMS DD DSN=ims.psblib, DISP=SHR
// DD DSN=ims.dbdlib, DISP=SHR

//DFSRESLB DD DSN=IMSVS.RESLIB,DISP=SHR
//IEFRDER DD DUMMY

//DBASE1 DD DSN=data.basel,disp=SHR
//DBASE2 DD DSN=data.base2,disp=SHR
//MAINPUT DD *

CONTROL

FILE MASTER INPUT, NAME EMPLOYEE

FILE REPORT

/%
//

Figure 3-4 JCL for an IMS Processing Run (Batch Region)

The following explanations are keyed to the numbered statements in Figure 3-4.

Notes Explanation

! DFSRRCO0 is the IMS executable program. Parm DLI is used when
application control blocks are built dynamically in execution.
MARKDLI is the VISION:Builder entry module that provides linkage
between IMS and VISION:Builder. Psbname is your link edited PSB.

2 IMS is the ddname for the data sets containing the link edited DBDs and
PSBs.

Note: If the application control blocks have been prebuilt (that is, an ACBGEN has
been executed for the DBDs and PSBs), change parm DLI to DBB and change the
IMS DD statement to contain the name of the output data set from the ACBGEN

(on the IMSACB DD statement).

3-8 Environment Guide

IMS BMP Region Execution of VISION:Builder

IMS BMP Region Execution of VISION:Builder

To execute VISION:Builder in a batch message processing (BMP) region, you must
run an IMSGEN update. This update must include the DBD name for the database
macro and the PSB name for the application macro (BATCH must be used as the

program type). Also, you must supply all DD and data set names for IMS user files.
In a BMP region, VISION:Builder has access to those online files and to the online
message queues (through the IMS control region), as well as access to any offline
standard OS files in the application JCL.

For example, database and application macros could be as follows:
DBEDNAME=EMPLYDBD

APPLCTN PSB=psbname
PGMTYPE=BATCH

IMS user file DD statements are added to the IMS dynamic JCL allocation pool, for
example:

//DLIDD1 DD DSN=EMPLOYEE.PRIME,DISP=SHR
//DLIDD1 DD DSN=EMPLOYEE.OVERFLOW, DISP=SHR

VISION:Builder job control does not require any DD statements for online IMS
user files (this is handled by the IMS region controller).

You must assign a sufficient region size to properly execute in the BMP. Refer to
the appropriate IMS manual for a description of each of the parameters on the
PARM statement.

//markbmp JOB (accounting information)

//JOBLIB DD DSN=IMSVS.RESLIB,DISP=SHR

// DD DSN=your.builder.loadlib, DISP=SHR

//MK4 EXEC PGM=DFSRRC00,REGION=1536K,
PARM="BMP, MARKDLT, psbname, , ,N0O000O"'

//IEFRDER DD DUMMY

//DFSRESLB DD DSN=IMSVS.RESLIB,DISP=SHR

//IMS DD DSN=IMSVS.ACBLIB,DISP=SHR

//M4LIST DD DSN=SYSOUT=*

//MALIB DD DSN=your.m4lib, DISP=SHR

/ /M4REPO DD DSN=your.mérepo, DISP=(NEW, PASS),

// UNIT=SYSDA, SPACE=(TRK, (nn,nn),RLSE)
//M4ASORT DD DSN=your.mé4sort, DISP=(NEW, PASS),

// UNIT=SYSDA, SPACE= (TRK, (nn,nn),RLSE)

//M4INPUT DD *

CONTROL SORT EXTERNAL

FILE MASTER INPUT, NAME EMPLOYEE
FILE REPORT

%
//

Figure 3-5 JCL for an IMS BMP Processing Run

VISION:Builder — IMS Database Interface and Retrieval 3-9

VISION:Builder Extended DL/I Support

VISION:Builder Extended DL/l Support

VISION:Builder extended DL/I support expands capabilities for processing IMS
databases, including virtual keys used with secondary indexing, alias names used
with non-unique IMS key/search fields, and generic and duplicate root keys for
file retrieval. The following subsections describe these functions.

Secondary Indexing

VISION:Builder Data Base Interface and Data Base Retrieval supports secondary
indices, with no modifications, as long as the source and target segments are the
same and the search field (XDFLD) is composed of one or more contiguous fields.

If you define a virtual key to VISION:Builder, processing is made available for
secondary indices. When using secondary indices, the entry point (target segment)
can be one segment and the key fields can come from a dependent segment (source
segment), or the source key could have noncontiguous fields.

A virtual key is defined as a type V segment key on the LO statement in a
VISION:Builder file definition (see the VISION:Builder for z/OS Specifications
Guide). A virtual key defined to VISION:Builder must also be an XDFLD search
field in the secondary index DBD. VISION:Builder treats the virtual key as any
other database segment key.

During IMS calls, the virtual key is not included in the segment and does not
appear in the IMS file on disk, nor can it be overdefined in the VISION:Builder file
definition.

Non-Unique IMS Key/Search Field Names

VISION:Builder requires the field names in a file definition to be unique.
VISION:Builder allows you to specify alias names for key/search field names
when non-unique key and search field names exist in an IMS database. The
non-unique name or names must be unique within each segment and are valid
only for key and search fields. The aliases are used for segment search arguments
(SSA) and cannot be referenced in your VISION:Builder application; the actual
field name must be used. An alias is defined on an L0 statement in your
VISION:Builder file definition.

3-10 Environment Guide

VISION:Builder Extended DL/I Support

Generic and Duplicate Root Keys

A generic key is the high order part of a record key whose length is less than the
full key. Generic keys can only be specified for the root segment. They are defined
in your VISION:Builder file definition as an overdefinition of the primary key.

Random access of an IMS file using a generic key search is accomplished by the use
of an additional file (RF) statement, with the generic key specified as the
key/search field. Read operators (described in the VISION:Builder for z/0S
Reference Guide) are used in your VISION:Builder program to search for the generic
key.

The same read operators used for generic key support can also be used for direct
retrieval of all occurrences of duplicate root segment keys (refer to the
VISION:Builder for z/OS Reference Guide).

VISION:Builder — IMS Database Interface and Retrieval 3-11

Chapter

VSAM User Files

4

Note: Examples in this chapter will be illustrated using

VISION:Workbench for DOS. VISION:Workbench for DOS is a VISION:Builder
application development system executing on IBM PCs and compatibles. For more
information about VISION:Workbench for DOS, see the VISION:Builder for z/OS
Workbench for DOS Reference Guide.

ESDS and KSDS Files

VISION:Builder supports the use of VSAM records for key sequenced data sets
(KSDS) and entry sequenced data sets (ESDS). This includes spanned records. A
record format entry of K for KSDS or E for ESDS is entered on the VISION:Builder
FD statement. The VSAM cluster must have been defined properly before
VISION:Builder can access the records. Refer to the IBM Access Methods Services
manual for information on the definition of VSAM clusters.

ESDS and KSDS Alternate Index Paths

VISION:Builder also supports alternate index paths to access VSAM KSDS or
ESDS. VISION:Builder treats an ESDS alternate index path as though it is a KSDS.
The ESDS alternate path must be defined to VISION:Builder as a KSDS.

Figure 4-1 illustrates a sample alternate index definition for the VISION:Builder
file definition in Figure 4-2.

VSAM User Files 4-1

ESDS and KSDS Alternate

Index Paths

//STEP1 EXEC PGM=IDCAMS,REGION=1536K
DEFINE ALTERNATEINDEX -

(NAME (vsam.aix) -
RELATE (base.cluster) -
KEYS (3 24) -
RECORDSIZE (80 80) -
VOL (volser) -
TRACKS (n n) -
NONUNIQUEKEY -

Figure 4-1 Sample DEFINE AIX

A VISION:Builder file definition of the alternate path must be created with a K
specified in the record format entry. The alternate key must be in the root segment
of the file and specified as the record key field. JCL must be provided that points
to the alternate index path. Figure 4-2 shows the root segment of a sample
VISION:Builder file definition of an alternate path. The key field of the primary
index definition is EMP-NO. The key field is DEPT in the alternate path definition.

DETATLED GLOZSARY BY NAME FOR
FILE DEFINITION - ALTPATH

FILE IDENTIFICATION = RECORD FORMAT = EEY SEQUENCED VSAM
NUMEER OF SEGMENTS IN FILE = 1 RECORD 3IZE = 4080
NUMBER OF FIELDS IN FILE = & EBUFFER 3IZE = 40&0

TR TTTTRTTARR AATRT ATTTRTTRRRTHT

* SEGMENT 1, LEVEL 1 *

* SEGMENT NAME = EMFLOYEE *

TR TTTTRTTARR AATRT ATTTRTTRRRTHT

SEGMENT OCCURS N TIMES = 1 KEY FIELD 1 = DEFT TYVPE = C LENGTH = 3
SEGMENT SIZE = 41
NUMEER OF FIELDS IN SEGMENT

SEGMENT KEY CHARACTERISTICS = U

FIELD FIELD FIELD FIELD FIELD DEC CNT FIELD EDIT CODES EDIT OUTPUT LINE DATA BASE NAME/
NAME ~ TYPE LOCATION LENGTH ENDING PLACES FOR SG6MT () () () LENGTH WIDTH N0 COLUMN HEADING
DEFT c 25 3 3 3

EMP-NO c 1 4 4 4

1 x

FIRST C 5 8 8 8

JOBCODE € z8 1 1 1

LAST c 13 1z 1z 1z

NANE c 5 20 20 z0

SALARY P 23 4 z (51 01 10 10

ER c 33 a E] a

Figure 4-2 VISION:Builder File Definition of an Alternate Index Path

4-2 Environment Guide

Alternate Index as a User File

Alternate Index as a User File

The index of an alternate index path is automatically maintained by VSAM when
the base cluster data file has been updated. If you want to access the alternate index
and maintain or retrieve the index data yourself, you can do so using

VISION:Builder.

If you want to access the alternate index, create a VISION:Builder file definition
that maps the IBM configuration for an alternate index record. Also, VSAM
ALT-INDEX must be specified in the record format entry of the File Definition
window and the VSAM control interval size must be used as the buffer size.

Provide JCL that points to the alternate index. Figure 4-3 illustrates a
VISION:Builder file definition for the IBM alternate index record for a KSDS base

with a key length of 3 bytes.

1 RECORD FORNRY - SF3kii RLIERWRIE INODEX
RECORD 2IZE - 312 EUFFER S2IZE - 3132

EILE IDENIIEICRIION =
NUMEER OF SEEMENIZS IN FILE - 2
NUMEER OF FIELDZ IN FILE - &

SEENENT OCCORS W ITWES - 1
SECWMENT SIZE - 8
NUMEER OF FIELDS IN SEQMENI - 3

EIELL FIELL FIELD EIELL FIELD
¥ TYEE LOCRTION LEWSIH RWDING
RINEG e 1 1

3nonxs 3 H 1

Qronxy e] 4

Brinee e 2 2

(Y513 4 2 1

COUNY FIELD FOR SEENENY - RINEC
SECWMENT 2IZE -
NUMEER OF FIELDS IN SEQMENI - 1

FIELD FIELD FIELD FIEL DO PIELD
WRE IYEE LOCRIION LENZIH FRWODING
71\.1}“1 c 1 4

FILE STRUCIURE ODIRCHR: FOR

FILE DEFIHITION - ALY

#--------- +
I INDEHSER |

DETAILED ELOSSARY EY HAME FOR
FILE DQEFIMITION - ALIIMODEX

AR AhAARRRAARARRAAARARRAAA RRAA
" SEMENT 1, LEVEL 1 "
- SEEMEHT HAME - IHODEHSEG b
AR AR AAARRAAAAARAAARARRAAR AR

KEY

CHET FIELD

EQDIT CORES
FOR ST »

Crond

DETAILED GLOSSARY EY HAME FOR
PILE DEFIHITION - ALIIHODEX

AR AhAARRRAARARRAAARARRAAA RRAA
" SEMENT 2. LEVEL 2 "
- SE@MEHT HAME - PIRSEG b
AR AR R AAARRAAAAARAARARRAAAR AR

KEY

CHT PIELD
FOR ST

EDIT COODES
LA S

INDEX

MUMEER OF SECMEWIZS IN FILE - 2

HRECORD FORMARI - VShsi ALIERWARIE INDEX
HECORD SIEE - 5132
EUFFER SIEZE - 35132

FIELD 1 - RINKY IYEE - F LENZIH - 4
EDOIT QUIELY LINE DAIR ERSE MAME/
LEMZIH WIDIH Mo COLUsY HEARDIWNS
Ll 14
1 X302 EWIR FLAQ
Ll 13
1 ALIERWAIE KEY
2 EIELD LEMIH
io 1e
1 ALY KEY FROM FOD
2 DEEEHDS OM AINKL
3 13
1 XEY POINIER CHI
2 FOR HO. OF PBIRZ
Ll 1s

1 X303 EWIR LEWGIH

FIELD 1 - RINEX IYEE - C LENZIH - 4

EOIT QUIPOY LIWE DAIR ERSE MAME/

LENZIH WILIH MO COLUSH HEARODIWGE *#4*
Ll 18

1 ERSE XKEY FRO FOD
2 DEPEHDS OM RINEL

Figure 4-3

VISION:Builder File Definition of an Alternate Index for a KSDS Base

VSAM User Files 4-3

Generic and Duplicate Keys

The following explanations refer to the numbered statements in Figure 4-3.

Notes Explanation

! Record format is specified as VSAM ALT INDEX and buffer size is the
CISIZE, which in this example is 512K.

2 Pointer flag: if 0, pointers are RBAs (ESDS base); if 1, pointers are keys
(KSDS base).

3 Key field length: the alternate key length.

4 Key field: this is the alternate key. The length of this field depends on
AIXKL.

5 Key pointer count: the number of pointers in this record.

6 Pointer length: if RBA pointer, the value of the length of this field is 4
bytes; if key pointer, the value of the length of this field is the key length
of the KSDS base cluster.

7 Key field pointer to the base cluster data record. The length of this field
depends on AIXPL.

Generic and Duplicate Keys

A generic key is the high order part of a record key whose length is less than the
full key. Generic keys can be used for all key sequenced VSAM files (KSDS base,
KSDS path, and ESDS path). They are defined in your VISION:Builder file
definition as an overdefinition of the primary key.

Access to a VSAM file using a generic key is accomplished by using an additional
file (RF) statement, with the generic key specified as the key field on the RF
statement. Read operators (described in the VISION:Builder for z/OS Reference
Guide) are used in your VISION:Builder program to retrieve records based on the
generic key.

The same read operators used for generic key search can also be used for retrieval
of all occurrences of duplicate keys in an alternate index path for KSDS or ESDS.
See the VISION:Builder for z/OS Reference Guide for further information on the
processing of generic and duplicate keys with VISION:Builder.

4-4 Environment Guide

Chapter

Own-Code Facilities

S

The term own-code refers to user supplied programming that can be integrated
with VISION:Builder. Own-code might be required to provide functions that are
not sufficiently general to warrant their inclusion in VISION:Builder. Own-code is
an addition to VISION:Builder; it is your responsibility to guarantee the integrity
of the system when it is used.

Own-code facilities provide you with two methods of specialized control in a
VISION:Builder program: at specific points in VISION:Builder processing or for
handling I/O functions for any specific file or files in the run.

The specific points in the VISION:Builder processing routines that allow access to
user written modules are called own-code hooks and are identified by
two-character identifiers. Own-code hooks are invoked by using the own-code
(OC) statement. When an own-code hook is invoked, VISION:Builder transfers
control to a user written routine. In any one run, many own-code hooks can be
invoked, but VISION:Builder always transfers control to the same user routine
known as your own-code control module (M4OWN).

M4OWN is a user written interface between VISION:Builder and the various
own-code routines required for your processing. VISION:Builder provides the
identity of the hook and a parameter list to MAOWN. It is the responsibility of
M4OWN to locate the appropriate user routine and ensure that it is in main
storage. The MAOWN routine is resident in storage while VISION:Builder is
executing.

User handling of I/ O functions is provided by the user I/O feature which allows
you to control all I/ O for a specific file without requiring user control of all files in
the run. User 1/0O is available only when own-code is included in the
VISION:Builder system.

You establish control of I/O functions for a file in an additional file (RF) statement.
A user I/O module name is entered to identify the routine you have coded to

control the I/O for the file. Whenever VISION:Builder attempts to performan /O
operation for that file, control is transferred to the user written module along with
parameter lists that contain all information pertinent to the file and its processing.

Own-Code Facilities 5-1

Integrating MAOWN

Integrating MAOWN

M4OWN can be integrated in one of two ways: static integration, where M4AOWN
is link edited with VISION:Builder, and dynamic integration, where M4OWN is
loaded in main storage using the LOAD macro. MAOWN is resident in storage
through the entire VISION:Builder run.

Static
Integration

Dynamic
Integration

M4OWN must be a load or object module in a partitioned data set.
Both the CSECT name and the name of the member must be
M4OWN. To use Static Integration, you must perform the Static
Own Code Integration Relink step as described in the Installation
instructions.

In the case of static integration, own-code receives control before
VISION:Builder does any processing. This is accomplished
through own-code hook 10 for the purpose of initializing various
parameters.

Own-code hook 10 can also be used to activate hooks that can be
activated only by this method and not using the OC statement.
Refer to Own-Code Hook 10 on page 5-9 for a complete description
of these hooks.

Dynamic integration is performed whenever the first OC statement
is encountered. VISION:Builder uses the LOAD macro to obtain
the module whose name is provided on the OC statement. In this
case, the module does not have to be called MAOWN or have a
CSECT of this name. For simplicity, this description continues to
use MAOWN as the name of the control module.

The module that is loaded must reside as a load module on a
partitioned data set. The data set can be either SYS1.LINKLIB, the
current JOBLIB, or another data set referenced by an MAOWN DD
statement.

If an MAOWN module has been included with VISION:Builder
during the link edit (static integration), dynamic integration of an
own-code routine can be performed by setting an appropriate
parameter at the hook 10 exit. This procedure inhibits static
integration for the duration of the run.

5-2 Environment Guide

Obtaining Space for Own-Code Routines

Obtaining Space for Own-Code Routines

M4OWN is an interface routine between VISION:Builder and own-code. As such,
it may require main storage to use as work space or to load other routines. This
main storage can be obtained using GETMAIN at own-code hook 10 or 11.

Main storage can be obtained other than at own-code hook 10 or 11 using one of
the following methods:

Permanent

Semi-Permanent

Temporary

M4OWN can be of such a size that it contains buffers or work
areas large enough to accommodate any storage requirement
imposed by the run. In this case, the space is permanently
sacrificed for all VISION:Builder runs using own-code.

The semi-permanent method allows MAOWN to allocate
storage for routines dynamically. This method relies on
passing control to own-code at certain points solely for the
purpose of allocating and freeing storage. These points are:

m Initially (own-code hook 51).

m Just after decoding requests and before entering
processing and passing the master file (own-code hook
61).

When you request storage for own-code from
VISION:Builder, the storage is awarded from the lower end
of the range (that is, starting at the storage address that is
passed to MAOWN when the hook is executed).

The temporary method is an extension of the semi-permanent
method. In this method, MAOWN can obtain storage
dynamically for the MAOWN processing routine. The storage
is obtained from storage allocated to VISION:Builder. In this
situation, the storage belongs to own-code only while
own-code actually has control.

When M4OWN returns control to VISION:Builder, the
storage is used by VISION:Builder. In this situation, the
absolute origin of such storage can vary from call to call.

The origin and amount of available storage are specified in
the primary calling list (see Figure 5-2 on page 5-5). This
method is advantageous in that it does not rob
VISION:Builder of excessive amounts of storage.

Since it is immaterial to VISION:Builder which methods are
employed, VISION:Builder provides parameters so that any
combination of the methods can be used.

Own-Code Facilities 5-3

Interrupts and Linkage Considerations

Interrupts and

Linkage Considerations

In transferring to own-code, VISION:Builder enables all programmable interrupts.
Your own-code module must field any interrupts. If the own-code routine does not
handle interrupts and an interrupt occurs, VISION:Builder terminates with an
appropriate message. A user 60 ABEND is also issued.

Own-code routines can process their own interrupts by use of the SPIE macro;
however, it is imperative that own-code restore the VISION:Builder PICA before
returning to VISION:Builder. Figure 5-1 shows an example of restoring the PICA.

Note: If you use 31-bit addressing, you must use the ESPIE macro in place of the
SPIE macro.

}':S}:?Ié SET, FIXUP, (8), PARAM=LIST1 Provide exit routine for fixed-point overflow
ST 1,HOLD Save address returned in register 1

i o 5,HOLD Reload returned address

ESPIE RESET, (5)) Use execute form and old PICA address

HOLD DC F'0
LIST1 DC A Parameter List

Figure 5-1 Restoring the VISION:Builder PICA

VISION:Builder saves and restores all general registers used before and after
transfer to M4OWN. If you use SAVE and RETURN macros, all registers are stored
twice. VISION:Builder does NOT save floating point registers. These are the
responsibility of MAOWN. The following register conventions are used:

Register 1 ~ This register is used to pass the address of a parameter list to
M4OWN.

Register 13 This register contains the address of an area set aside by
VISION:Builder where MAOWN can save registers.

Register 14 This register contains the return point to VISION:Builder. You
should return with BR 14.

Register 15 This register contains the entry point of MAOWN. It can be used by
M4OWN as a base register. This register can also be used by
M4OWN to pass a return code back to VISION:Builder. The
meaning of the return code varies according to the hook.

The parameters passed to own-code are contained in a non-contiguous list. The
two parts of this list are known as the primary calling list and the secondary calling
list. Register 1 contains the address of the primary calling list. This list always
exists, is fixed, five words long, and starts on a fullword boundary. The primary
calling list is shown in Figure 5-2. The secondary calling list exists only if word 5
of the primary list is non-zero. The secondary calling list is variable and dependent
upon the hook invoked. Its format, where it exists, is documented with the
description of the specific hook.

5-4 Environment Guide

Own-Code Hook Naming Conventions

& 2 Bytes <t 2Bytes —®

Word1l O Own-Code Hook Identifier Reserved

Word2 4 [Base of Available Storage for User Routines

Word3 8 |Amount of Available Storage

Word4 12 |Pointer to OWN Flag

Word5 16 [Pointer to Secondary Calling List

Figure 5-2 Primary Calling List

Own-code Hook
Identifier

Base of Available
Storage

Amount of
Available Storage

Pointer to OWN
Flag

Pointer to
Secondary Calling
List

The two EBCDIC characters that identify the own code
hook.

The location of the first byte of available storage.

A binary fullword that contains the amount of storage that
you can use.

The OWN flag is a 16-byte character string. This flag can be
referenced in VISION:Builder requests by using the
qualifier F and the name OWN.

The flag is initially blank and is not subsequently used by
VISION:Builder. It is provided for communication between
M40OWN and the requests.

A pointer to the remainder of the list. The remaining
portions of the list are dependent upon the particular hook.
If there are no further parameters, this word is zero.

Own-Code Hook Naming Conventions

Type Comments

1x Mandatory for all own-code users. When own-code is used, these hooks
are always activated and cannot be inhibited. They cannot be invoked
from an OC statement.

2x Can only be invoked from own-code hook 10.

3x Hooks relevant during the entire VISION:Builder run.

Own-Code Facilities 5-5

VISION:Builder Own-Code Hook Flow

Type Comments

5x Hooks relevant for request decoding.

6x Hooks relevant for transaction processing (if VISION:Two, prior to
request processing).

7x Hooks relevant for request processing.

9x Hooks relevant to I/O situations.

These classifications are of a general nature since it is not always possible to define
the exact classification for certain hooks. See Own-Code Hook Descriptions on
page 5-9 for details.

Own-code hooks are documented as illustrated in Figure 5-3.

Hook ID =

Time When Control is Passed to MAOWN
(In external terms.)

Secondary Cadlling List
(Parameters peculiar to the hooks that are provided by VISION:Builder to the
own-code routine.)

Return Parameters
(Parameters returned to VISION:Builder by the own-code routine.)

Comments

Figure 5-3 Own-Code Hook Description Format

VISION:Builder Own-Code Hook Flow

Figure 5-4 depicts the points at which own-code hooks can be activated during
either a VISION:Builder report step or processing step. Hook 30, when invoked, is
active just before printing any VISION:Builder message.

5-6 Environment Guide

VISION:Builder Own-Code Hook Flow

Enter

HOOKS 20. 21.
AND 63 OR 91
ARE ACTIVE
WHENEVER 1/0
IS _PERFORMED
IF_INVOKED
THROUGH
HOOK 10.

63. AND 91 ARE
THE ONLY HOOKS
SUPPORTED IN
SOURCE STATEMENT
RETRIEVAL RUNS.

HOOKS 10. 20. 21.

Static
Integration

Statement

Read Next
Source

MAIN STORAGE ALLOCATION.
ACTIVATE HOOKS 20. 21. AND 63
OR HOOK 91 IF NOT A
NO-SORT RUN.

Statement

Own-
Code in
Storage?

Hooks ONLY IF
0. 21 and INVOKED
63 or |- — FROM
Hook 91 HOOK 10.
Report EOJ
cooad own — DYNAMIC INTEGRATION

Set OC
Statement
Hook(s) Active

EACH OWNCODE STATEMENT

Figure 5-4

VISION:Builder Own-Code Flow (Page 1 of 2)

Own-Code Facilities 5-7

VISION:Builder Own-Code Hook Flow

Read Next
Source
Statement

Read IT. CT.
and Request
Statement

Pass User
Files

Process
Requests

J

Request
Decoding and
Setup

VAL IDATE OWN-
CODE OPERATORS

BEFORE PASSING
USER FILES

EACH TaﬁNSACTION
RECORD

BEFORE PROCESS ING
REQUESTS

OWN-CODE
OPERATORS

END OF STEP
FILE CLOSING

Figure 5-4 VISION:Builder Own-Code Flow (Page 2 of 2)

5-8 Environment Guide

Own-Code Hook Descriptions

Own-Code Hook Descriptions

A detailed description of each hook follows.

Own-Code Hook 10

Hook ID =10

Time When Control is Passed to MAOWN: Before any VISION:Builder
processing occurs.

This hook is always active when static integration is used. Static integration can be
inhibited at Hook 10 in order that dynamic integration can be used.

Secondary Calling List

<& 1 Byte > 3 Bytes —— %
0 FLAGS IPointer to PARM
Information
4 X'00 IAddress of MAOWN

Note: The Pointer to PARM Informationl contains the contents of Register 1
received by VISION:Builder when initially invoked. For example, if DL /I is the
actual program named on the EXEC statement, this is the address of the parameter
list passed from DL/I to VISION:Builder.

Return Parameters

FLAGS can be set as follows:

X'80" UserI/O. This flag indicates that the user will perform all I/ O operations:
OPEN, CLOSE, GET, and PUT. It automatically activates hooks 20, 21,
and 63. OPENs must be performed at the first GET or PUT exit (hooks 20,
21) and CLOSEs must be performed at the EOJ exit (hook 63).

X'40" User I/O error control. You receive control of all I/O errors that occur
during sequential file processing. It automatically activates hook 91. In
this case, VISION:Builder is performing all I/O and you process all I/O
errors.

Note: These flags are mutually exclusive and must not be set at the same time.

Own-Code Facilities 5-9

Own-Code Hook Descriptions

The address of MAOWN in the secondary calling list can be modified at hook 10 to
change the entry point of MAOWN for all other hooks or to inhibit static
integration. Static integration is inhibited by storing hexadecimal zero in the
second 4 bytes of the secondary calling list (address of MAOWN).

Comments
m Use this hook to do any initial GETMAINs required by own-code.

m Use this hook to obtain control of all I/O (for example, to process user labels).

m Use this hook to pass PARM information. You can use any PARM information
you want. However, if the first two characters are M4, VISION:Builder
assumes that the first eight characters specify a VISION:Builder parameter.
Therefore, you should not use M4 as the first two characters of this PARM
information.

m If user I/O is requested, the following is not allowed:
- User I/O error handling (own-code hook 91).
- NoSortruns (A'Y for sort control on the RC statement).

m Use this hook to inhibit static integration. When static integration is inhibited,
dynamic integration can be employed.

m Use this hook to change the M4OWN entry point.

Own-Code Hook 11

Hook ID = 11

Time When Control is Passed to MAOWN: After reading each OC statement,
but before scanning the
statement.

This hook is automatically activated when an OC statement is encountered. This
hook cannot be inhibited.

Secondary Calling List

Own-code statement (the actual 80-byte image of the OC statement).
Return Parameters

None.

Comments

m Use this hook to manipulate the own-code statement as desired.

m You can perform GETMAINSs at this hook.

5-10 Environment Guide

Own-Code Hook Descriptions

Own-Code Hook 20

Hook ID = 20
Time When Control is Passed to MAOWN: Each GET.
Secondary Calling List

<& 1 Byte > 3 Bytes — %
0 File Code IDCB Address
4 Not used - Reserved for VISION:Builder
8 Input Record Length

The File Code is as follows:

Code File Code File

X'or' Source Input (M4INPUT) X'04' Old Master File
X'06' Transaction File® X'0A' Report File In
X'0E!' Coordinated File 1 X'OF' Coordinated File 2
X'10' Coordinated File 3 X'1E' Coordinated File 4
X'1F' Coordinated File 5 X'20' Coordinated File 6
X'21' Coordinated File 7 X'22! Coordinated File 8
X'23' Coordinated File 9

Return Parameters

The address of the input record, as returned by IOCS, must be returned in
Register 15. When end of file is reached, this register must contain 0. When you
process undefined format records, the length of the input record must be returned

in the appropriate field in the secondary calling list.

Own-Code Facilities

5-11

Own-Code Hook Descriptions

Comments

m Youare responsible for all GET I/ O except for the common library. At the first
hook 20 exit for each file, you must do the following;:

1. Insert your own end of file exit address in the DCB. If you want I/O
error control, you must alter the DCB accordingly.

2. OPEN the file for input. User or non-standard label processing can be
performed at this time.

3. VISION:Builder builds a DCB for the file. I/O areas are allocated. You
can use this DCB or use your own. The same is true of the I/O areas that
can be obtained from the DCB. Own-code can perform any operation;
however, the return to VISION:Builder must effectively simulate the
return from the operating system IOCS.

4. DD overrides are not permitted if the VISION:Builder DCB is used.

5. You should save the DCB address so that, if necessary, you can CLOSE
it at hook 63.

m Hook 20 is not invoked for VSAM files or database files.

Own-Code Hook 21

Hook ID = 21
Time When Control is Passed to MAOWN: Each PUT.

Secondary Calling List

<— 1Byte > 3 Bytes ——

0 File Code DCB Address

4 Work Area Address

8 Output Record Length

Code File Code File
X'02' Source Listing (M4LIST) X'03' Sort Statements
X'05' New Master File® X'07' Audit File®

X'08' Rejected Transactions File® X'09" Report File Out

X'0B' Report File Out 2 X'0C'" Report File Out 3

5-12 Environment Guide

Own-Code Hook Descriptions

Code File Code File

X'0D' Report File Out 4 X'24' Report File Out 5
X'25' Report File Out 6 X'26' Report File Out 7
X127 Report File Out 8 X'28' Report File Out 9

X'13' Source Statement Output File ~ X'14' Subfile 1

X'15' Subfile 2 X'16' Subfile 3

X17' Subfile 4 X'18' Subfile 5

X19' Subfile 6 X"1A' Subfile7

X1B' Subfile 8 X1C'" Subfile 9

X'1D' Subfile 0 X'29' Alternate Lists (M4LIST1)
X2D' Program Analyzer (PAL) X'30' Report Summary File

Return Parameters

None.

Comments

You are responsible for all PUT I/ O except for the common library. You must
OPEN the file for output at the first hook 21 exit.

If you want 1/O error control, you must alter the DCB accordingly.

OPEN the file for output. User or non-standard label processing can be
performed at this time.

VISION:Builder builds a DCB for the file. I/ O areas are allocated. You can use
this DCB or use your own. The same is true of the I/O areas that can be
obtained from the DCBs. Own-code can perform any operation; however, the
return to VISION:Builder must effectively simulate the return from the
operating system IOCS.

DD overrides are not permitted if the VISION:Builder DCB are used.

You must save the DCB address so that, if necessary, you can CLOSE the file
at hook 63.

The length of the record to be PUT is available in the secondary calling list.
Hook 21 is not invoked for VSAM files or database files.

Own-Code Facilities 5-13

Own-Code Hook Descriptions

Own-Code Hook 30

Hook ID = 30
Time When Control is Passed fo MAOWN: Just before printing a message.

Secondary Calling List

& 1Byte >t 3 Bytes ——®
0 FLAGS Message Address
4 Code Letters Message Number

Return Parameters

If Register 15 = 0, the message is written.

If Register 15 = 4, the message is suppressed.

Comments

m Flag settings are as follows:
X'01' — Terminal message.
X'02"' — Continuation of a previous message.
X'04' — Message is to be printed on console.
X'08' — Message is to be printed on printer.

m Code letters and message number are in EBCDIC format.
m You can alter VISION:Builder messages or supply your own.

m VISION:Builder message format is as follows:

Byte Description Byte Description
1 ASA control character 2-3 Asterisks
4 Blank 5-7 Component code letters (CLS=library,

MK4=VISION:Builder)

8-11 Message code letters ~ 12-13 Blanks

14-17 The word TYPE 18 Blank

19 Type code 20-21 Blanks

22-121 Message text

5-14 Environment Guide

Own-Code Hook Descriptions

Own-Code Hook 50

Hook ID = 50
Time When Control is Passed to MOWN When an own-code operator is to

be validated during the decoding
of a request.

Secondary Calling List

The PR statement (the actual 80-byte image of the PR statement).

Note: Positions 1-8 of this statement are used for VISION:Builder internal
parameters and must not be altered by own-code.

Return Parameters

If Register 15 = 0, the operator has been verified as valid.

If Register 15 = 4, the operator is not valid.

Comments

Own-code hook 50 must be used to validate own-code operators (PR
statement “operation” field). If it is not used, the own-code operators are
assumed to be illegal.

Own-code hook 50 must be used in conjunction with own-code hook 70.
A result field (Operand C) must always be provided for own-code operators.

Own-code operators may be any single character (right-adjusted or
left-adjusted in the PR statement operation field) with the exception of the
following;:

+ (plus)
- (minus)

/ (virgule)
_ (underline)
| (bar)

* (asterisk)
LLLK R

0to9

Any EBCDIC combination that produces internal representations of X'FA' to
X'FF' or X'00' to X'09".

Own-Code Facilities 5-15

Own-Code Hook Descriptions

Own-Code Hook 51

Hook ID = 51

Time When Control is Passed fo MAOWN: After the run control group and
CT statements have been read,
but before decoding requests.

Secondary Calling List

None.

Return Parameters

Register 15 contains the amount of storage obtained from VISION:Builder.

Comments

To obtain virtual storage from VISION:Builder (semi-permanent).

Own-Code Hook 60

Hook ID = 60

Time When Control is Passed fo MAOWN: After all transactions (if
VISION:Two, prior to request
processing) have been processed
forarecord, but before processing
normal (type N) requests.

Secondary Calling List

& 4Bytes ————®

0 IAddress of Old Master File Record

4 IAddress of New Master File Record

Return Parameters

If Register 15 = 0, request processing continues normally.

If Register 15 = 4, all request processing of normal (type N) requests for this record
are bypassed.

Comments

None.

5-16 Environment Guide

Own-Code Hook Descriptions

Own-Code Hook 61

Hook ID = 61

Time When Control is Passed to MAOWN: After request decoding, but
before passing any files.

Secondary Calling List

None.

Return Parameters

Register 15 contains the amount of storage obtained from VISION:Builder.

Comments
m Use this hook to obtain storage from VISION:Builder (semi-permanent).

m Storage cannot be returned to VISION:Builder.

Own-Code Hook 62

Hook ID = 622

Time When Control is Passed to MAOWN: After reading each transaction
record.

Secondary Calling List

The transaction record.

Return Parameters

If Register 15 = 0, transaction processing continues normally.

If Register 15 = 4, the transaction is rejected.

Comments

A transaction rejected in this manner is output to the rejected transaction file
(M4REJCT) but is not reflected in the setting of the TRAN flag.

Own-Code Facilities 5-17

Own-Code Hook Descriptions

Own-Code Hook 63

Hook ID = 63

Time When Control is Passed fo MAOWN: End of job, before returning to the
system.

Secondary Calling List

Halfword condition code with which VISION:Builder returns. This can be
modified in order to change the condition code returned by VISION:Builder. The
value in the CONDCODE flag has already been added to the condition code when
hook 63 receives control.

Return Parameters

The condition code in the secondary calling list can be modified by MAOWN. This
code is returned to the calling program when VISION:Builder exits. If the
operating system called VISION:Builder, this condition code can be tested by the
JCL in subsequent steps.

Comments

Use this hook to pass along instructions for the operator or timing.

m If hooks 20 or 21 have been invoked using hook 10, this hook is automatically
activated to allow you to CLOSE all files. You must have saved the DCB
address of each file at hook 20 or 21 or have some other way of determining
the DCB addresses in order to properly close each file.

5-18 Environment Guide

Own-Code Hook Descriptions

Own-Code Hook 70

Hook ID =70

Time When Control is Passed to MAOWN:

Secondary Calling List

When an own-code operator is to

be executed during the processing

of a request.

0 [Type of Field 1 IAddress of Field 1
4 [TypeofField2 |Address of Field 2
8 [Type of Field 3 IAddress of Field 3
12 [Length of Field 1 [Scale of Field1 [Length of Field 2 [Scale of Field 2
16 [Length of Field 3 [Scale of Field 3 ~ Operation Code [Rounding
Indicator
20 Number of Fields [VISION:Builder Internal Use
4 | Byte —# |®—1Byte > |[®—1Byte > | 1Byte ®
Field Type Code Field Type Code
Character X'00' Zoned X'04'
Packed X'08' Fixed point x'ocC'
Floating point X'10'

The lengths of fields are supplied as Length -1. The scale factor is the number of
implied decimal places and is required for decimal point adjustment. These
parameters are fixed point binary.

Operation Code:

Any single EBCDIC character other than the following:

+ (plus)

(minus)

~

(virgule)

(underline)

Own-Code Facilities

5-19

Own-Code Hook Descriptions

m | (bar)

m ¥ (asterisk)
s [J,KR

m Oto9

m Internal codes X'FA' to X'FF' or X'00' to X'09'

Fields stored in the secondary calling list have the following relationships to the
input statement (result is always field 3):
m One field is field 3 (result of the input statement).

m Twofields are fields 1 and 3 (operand A or B and result of the input statement).

m Three fields are fields 1, 2, and 3 (operand A, operand B, and result).

Rounding Indicator

If the code is X'00', the result field does not have the rounding attribute.

If the code is X'04', the result field has the rounding attribute.

Return Parameters

If Register 15 = 0, the data has been stored and is valid.

If Register 15 = 4, the result field must be treated as invalid.

Comments

m If a field other than the result field is invalid or missing, control is not passed,
and the result field is flagged as invalid.

m Own-code hook 70 must be used in conjunction with own-code hook 50.
m A result field must always be provided for own-code operators.

m If the result field is missing, control is not passed.

5-20 Environment Guide

Own-Code Hook Descriptions

Own-Code Hook 91

Hook ID = 91
Time When Control is Passed to MAOWN: Whenever an I/O error occurs.

Secondary Calling List

0 |CCW IAddress of Status Indicator
Displacement

4 Status Information [DCB Address

8 File Code Reserved

<4 1 Byte— ®| % 1 Byte ®| %2 Bytes— ®

Bytes 0-7 are the contents of registers 0 and 1 respectively, upon entry to the
SYNAD routine. The file code is defined as follows:

Code File Code File
X'01' Source Input (M4INPUT) X'02' Source Listing (M4LIST)

X'03' Sort Statements X'04' Old Master File

X'05' New Master File® X'06' Transaction File®

X'07' Audit File® X'08' Rejected Transactions File®
X'09' Report File Out X'0A" Report File In

X'0B' Report File Out 2 X'0C'" Report File Out 3

X'0D' Report File Out 4 X'24' Report File Out 5

X'25' Report File Out 6 X'26' Report File Out 7

X227 Report File Out 8 X'28' Report File Out 9

X'0E' Coordinated File 1 X'OF' Coordinated File 2

X'10' Coordinated File 3 X1E' Coordinated File 4

X'1F' Coordinated File 5 X'20' Coordinated File 6

X221 Coordinated File 7 X'22' Coordinated File 8

X'23' Coordinated File 9 X'13' Source Statement Output File
X14' Subfile 1 X15' Subfile 2

X'16' Subfile 3 X17' Subfile 4

Own-Code Facilities 5-21

Own-Code Hook Descriptions

Code File Code File

X'18' Subfile 5 X'19' Subfile 6

X'TA' Subfile 7 X'1B' Subfile 8

X'1C'" Subfile 9 X'1D' Subfile 0

X'29' Alternate Lists (M4LIST1) X2D' Program Analyzer (PAL)
X'30' Report Summary File

Return Parameters

None.

Comments

m You are responsible for run termination. Processing continues if control is
returned to VISION:Builder. The block is skipped.

m If this hook is invoked using the OC statement, it does not apply to I/O errors
from source input, source listing, or the VISION:Builder report file. These files
are included if the hook is invoked through hook 10.

m Note that /O errors from the common library are not passed to you. These
errors always terminate a run.

m Hook 91 is not invoked for VSAM files or database files.

5-22 Environment Guide

Own-Code Hook Descriptions

Own-Code Hook 92

Hook ID = 92
Time When Control is Passed to MAOWN: During single-step runs only and

prior to writing each formatted
text line to the printer.

Secondary Calling List

& 4Bytes ——————»

IDCB Address for M4LIST

IAddress of Report Line

Length of Report Line

Return Parameters

If Register 15 = 0, the report line is output.

If Register 15 = 4, the report line is not output.

Comments

This hook provides access to the formatted report line for modification.

Optionally, this hook allows the user to issue all PUTs, suppressing those
issued by VISION:Builder.

Blank lines may not be passed to the user routing individually since
VISION:Builder optimizes them using carriage control.

VISION:Builder keeps track of the number of system-generated lines and uses
this number to determine when to issue page ejects. Therefore, care must be
taken when the own-code routine inserts physical lines into the page which
could cause incorrect page formatting.

Own-Code Facilities 5-23

Variable Length Fields with Own-Code

Own-Code Hook 93

Hook ID = 93

Time When Control is Passed fo MAOWN: After reading each source input
statement, but before processing.

Secondary Calling List

& 4Bytes ——————»

IAddress of source input statement

Return Parameters

None.

Comments
m Provides access to the 80-column VISION:Builder source input statement.

m Allows the user to perform editing on the source statements (for example,
column headings, titles, and PR statements).

Variable Length Fields with Own-Code

The secondary calling list does not contain the address of a variable length (type
V) field used as an operand of an own-code operator. For non-temporary fields, the
address passed is the first variable length field in the segment. For temporary
fields, the address passed is a word that contains the address of the variable length
field.

User I/O

The user 1/O feature of own-code, available only when own-code is included in
the VISION:Builder system, allows you to control all I/ O for a specific file without
requiring that all I/O for all files be controlled. User I/O can be specified for any
or all of the files listed in the table on page 5-25, but user I/O cannot be specified
when own-code 1/O using hooks 20, 21, or 91 is specified.

5-24 Environment Guide

User 1/O

Interrupt handling is the same with user I/O as with existing own-code modules.
Whenever VISION:Builder attempts I/O for a file where user I/O is invoked,
control is passed to a module written by you. VISION:Builder passes a primary
parameter list and a series of secondary parameter lists to your module.

The primary parameter list and some of the fields in the secondary parameter lists
are all that is necessary for a basic interface with most languages. The secondary
parameter lists contain additional items and addresses of other lists that may be
manipulated by assembler language if you want to code a more general interface.

You specify user controlled I/O for a file using an RF statement containing the
following entries:

m Runname m Form code (RF) m User file name
m Label m DTF/DD name m User I/O module name

The table on page 5-25 indicates the files where user I/ O can be specified plus the
requirements for the user file name entry. The user I/O module name is the link

edited module name of the routine that you have coded to control the I/O for the
file. If the same module is specified for more than one file, a separate copy of the

module is loaded for each file unless the module was link edited reentrant.

On entry to your I/O module, register 1 contains the address of the primary
parameter list, register 14 contains the return address, and register 15 contains the
address of your I/O module. Register 13 contains the address of an area of
eighteen fullwords in which you can save registers. You do not need to save or
restore the registers since VISION:Builder saves and restores all registers, using a
different area, before and after transfer to your I/O module.

ddname or equivalent User File Name
(if overridden in z/OS)

M4OLD The entry must match the file name entered in the
M4NEW® RC statement.

MVAUDIT®

M4TRAN® If RF statements are entered for both MATRAN and
M4RE]CT9 MA4RE]JCT, the entries in user file name must match.
M4CORDn User file name required (n = 1-9).

M4SUBFn User file name required (n = 1-9).

Own-Code Facilities 5-25

User I/O

Primary Parameter List

The primary parameter list is a series of fullword addresses of tables and data
areas; each table or data area begins on a doubleword boundary. The last of these
addresses has a hexadecimal 80 in the high order byte. Figure 5-5 illustrates this
parameter list.

Byte
4 Fullword ———— P
0 COMMUNICATION TABLE ADDRESS
4 FILE TABLE ADDRESS
8 INPUT RECORD ADDRESS

12 (OUTPUT RECORD ADDRESS

16 |KEY ADDRESS

20 OWN-CODE FLAG ADDRESS

24 X'80" PARAMETER ADDRESS

Figure 5-5 Primary Parameter List

The following table contains an explanation of each of the addresses in the primary
parameter list.

Address Description
SSS?QAE‘SUSN'CAT'ON TABLE The address of a table containing seven fullwords that

are used for communication to and from your module.

FILE TABLE ADDRESS The address of a table containing characteristics of the
file that you are controlling.

INPUT RECORD ADDRESS The address of the record to be input to VISION:Builder.
If the file has no input associated with it, this address is
zero. The address points to the beginning of the data of
the record unless there is a record descriptor word; in
that case, the address points to the 4-byte record
descriptor word. This address is set either by
VISION:Builder on return from an OPEN call if
requested by you or by you on each GET function.

5-26 Environment Guide

User 1/O

Address

Description

OUTPUT RECORD ADDRESS

The address of the record to be output. If the file has no
output associated with it, this address is 0. The address
points to the beginning of the data of the record unless
there is a record descriptor word. In that case, the
address points to the 4-byte record descriptor word. This
address is set by VISION:Builder on each add, replace, or
delete function.

KEY ADDRESS

VISION:Builder uses the definition of the primary key
for the file (if any) and places this key in a work area. The
key address contains the address of this work area that
contains the key of the current or requested record. In the
case of sequential input, the key area contains the key of
the last record processed.

OWN-CODE FLAG ADDRESS

The address of the 16-byte OWN flag provided for
communication between MAOWN and requests.

PARAMETER ADDRESS

The address of OS PARM information as passed to
VISION:Builder.

Communication Table

The communication table contains codes, an address, and values that
VISION:Builder uses to communicate to and from your module. Figure 5-6 is a
representation of the communication table and its contents.

Byte
¢ Fullword ———— ¥
0 FUNCTION CODE
4 STATUS CODE
8 TEMPORARY VIRTUAL STORAGE START

12 TEMPORARY VIRTUAL STORAGE LENGTH

16 IRTUAL STORAGE TAKEN

20 INPUT RECORD DATA SIZE

24 OUTPUT RECORD DATA SIZE

Figure 5-6 Communication Table

Own-Code Facilities 5-27

User I/O

The following table contains explanations of the entries in the communication
table (Figure 5-6).

Entry

Description

FUNCTION CODE

Ahexadecimal, fullword, fixed point, encoded number indicating
what function VISION:Builder wants your I/O module to
perform. For function codes 00000014, 0000001C, and 00000020,
for an update-in-place file when the file I/O is user controlled,
VISION:Builder does not set X’FF’ in the first byte of a record
being deleted.

Code Meaning Comments

00000004® Open the file.

00000008 Close the file.

0000000C Get a record sequentially.

00000010® Addarecord For records that are to be added
sequentially to the file. This would be the
function code for files that are
only output.

00000014® Delete record For an update-in-place
sequentially sequential access file.

000000182 Replace record For an update-in-place
sequential access file, when a
record has been read in and now
is to be written out.

0000001C® Adda re.:cord For outputting a nevyly create.d
sequentially record to an update-in-place file.

000000202 Deletearecord For an gpdate—in—place random
by key access file.

000000242 Replace a For an update-in-place random
record by key access file, when a record has
been read in and is now to be
written out.

000000282 Addrecord by For outputting a newly created
key record to a random access file
being updated-in-place.

0000002C Get a record
by key

5-28 Environment Guide

User 1/O

Entry

Description

STATUS CODE

A hexadecimal, fullword, fixed point encoded number specifying
your response to the VISION:Builder requested functions. Upon
entry to your user I/O module, the status indicator is set to 0.
Your I/ O module must replace a number into the status code
before it returns to VISION:Builder, depending on the results of
the requested function. If an incompatible or unrecognized status
code for the requested operation is returned in the status
indicator, VISION:Builder issues a type 5 diagnostic message
specifying the invalid code and terminates the run.

Code Meaning

00000000 Requested function successfully completed. Since
this code is the status indicator upon entry to the
user I/O module, it is not necessary to set it to 0 if
the function was successfully completed.

00000004 End of file has occurred on an X’0C’ function.

00000008 Record not found during an X"2C’ function.

0000000C Request by you to VISION:Builder to allocate the
record work area for the file and set the address of
this area in the record address in the primary
parameter list. VISION:Builder allocates an area
equal to the record size (plus 4 if variable format) in
the file table. This status code applies only on
return from OPEN calls for input fields; output
record areas are always allocated by
VISION:Builder.

FFxxxxxx Terminate the run. xxxxxx is a user-supplied
hexadecimal value. VISION:Builder normally
terminates the run, that is, it closes all of the fields
in the run (user I/ O modules are called with a close
function) and issues a type 5 message specifying
that you terminated the run.

Own-Code Facilities 5-29

User I/O

Entry

Description

TEMPORARY
VIRTUALSTORAGE
START

The address of available temporary work space. This area begins
on a doubleword boundary. During all functions, except opening
a file, this temporary storage may be used as a work space. The
contents and the location of this area may be changed by
VISION:Builder between calls to your I/O module. Under z/OS,
this entry is unused during an open function and is 0. During this
time, storage is available to you through the operating system
using GETMAINs and LOADs.

You can perform GETMAINSs for any permanent work area or
buffers that are required. Also, at this time, you can perform
GETMAINs and FREEMAINSs for any temporary work space.

TEMPORARY
VIRTUALSTORAGE
LENGTH

The amount of available temporary work space. Under z/OS, this
entry is unused during an open function and is 0. This value
should be used to determine if enough storage is available for
your 1/ O module functions.

VIRTUALSTORAGE
TAKEN

Not used under z/OS.

INPUT RECORD
DATA SIZE

For input files, this is the size of the record just retrieved by your
module. The value must be set by you at each GET function and
does not include any record descriptor word (4 bytes), if one is
present. For output only files, this word is unused.

OUTPUT RECORD
DATA SIZE

For output files, this is the size of the record that VISION:Builder
is requesting your module to output. This value is set by

VISION:Builder at each add, replace, or delete function and does
not include any record descriptor word (4 bytes) if one is present.

5-30 Environment Guide

User 1/O

File Table

The file table contains information about the file obtained from the file definition
or from En/Rn statements. The format of the file table is shown in Figure 5-7.

By te |€—— Halfword > Haltword ———3»]
0 FILE DEFINITION
NAME -
8 DTF /DD
NAME]
16 FILE CODE RECORD FORMAT CODE
20 | NUMBER OF KEYS | RECORD BLOCKING
o4 RECORD SIZE
o8 BLOCK SIZE
32 KEY TABLE ADDRESS
36 ACCESS MODE PROCESS ING MODE
40 START |
SEARCH —
56 END
SEARCH]
72 PASSWORD
80 RESERVED
84 USER'S
WORK
96 SPACE

Figure 5-7 File Table

The following table contains explanations of the entries of the file table:

Entry Description

FILE DEFINITION The name of a related file definition or the subfile name
NAME entered in the RF statement.

DTF/DD NAME The 8-byte name entered in the RF statement.

FILE CODE A 2-byte fixed point number that identifies the
VISION:Builder file being controlled. This entry relates
directly to the ddname as shown in the table on page 5-34.

Own-Code Facilities 5-31

User I/O

Entry

Description

RECORD
FORMAT CODE

A 2-byte, fixed point number that identifies the format of
the file. The information is obtained from either an
associated file definition or from En/Rn statements. The
hexadecimal codes are:

Record Format Code Format

4 F

8 \

C U

10 I

14 J

18 P

20 A (VSAM Alternate Index)

20 K (Key-sequenced VSAM file)
24 E (Entry-sequenced VSAM file)

The code 18 applies only to the extended file processing
option, where you receive on output, and must supply on
input, a record in the VISION:Builder packed format.

NUMBER OF KEYS

A 2-byte, fixed point number. The information is obtained
from either an associated file definition or from En/Rn
statements.

RECORD
BLOCKING

A 2-byte, hexadecimal code; 0004 indicates unblocked and
0008 indicates blocked records.

RECORD SIZE

A 4-byte, fixed point number. The information is obtained
from either an associated file definition or from En/Rn
statements. This is the size of the data part of the record; it
does not include the record descriptor word (4 bytes), if one
is present.

BLOCK SIZE

A 4-byte, fixed point number. The information is obtained
from either an associated file definition or from En/Rn
statements.

5-32 Environment Guide

User 1/O

Entry

Description

KEY TABLE
ADDRESS

A pointer to a table containing information about the record
keys (level one segment keys). If the table is not built, the
pointer to the key table is binary zero. If the table is built, the

information for M4OLD, M4NEW,9 M4CORDn,

MATRAN,® M4AUDIT,® and M4REJCT® files is obtained
from the related file definition; if there is no related file

definition for MATRAN® or M4RE]CT,9 no key table is
built for these files. For an M4SUBFn sequential file, no key
table is built. For an M4SUBFn ISAM file, the single key is
obtained from the first EN/Rn set decoded that is to be
output to the subfile. Within that Rn set it is the major sort
key. If entire record selection is specified, it is the record key
or if the above cannot be satisfied, it is the field name
specified on the first Rn statement.

ACCESS MODE

A 2-byte, hexadecimal code; 0004 indicates random and
0008 indicates sequential access.

PROCESSING
MODE

A 2-byte, hexadecimal code; 0004 indicates output only,
0008 indicates input only, and 000C indicates
update-in-place (input/output).

START SEARCH

The key value, left-aligned, exactly as specified on the RC
statement for start search. This is the key of the record to
begin processing. The initial value of the start search field is
low value (X'00") for the entire 16 bytes of the field.

END SEARCH

The key value, left-aligned, exactly as specified on the RC
statement for end search. This is the key of the record after
which processing should terminate. The initial value of the
end search field is high value (X'FF') for the entire 16 bytes
of the field.

Own-Code Facilities 5-33

User I/O

Entry Description

PASSWORD The password as supplied on the RF statement for VSAM
files by you. It is left blank for all non-VSAM files.

USER'S WORK Four fullwords for your own use, such as pointers to
SPACE modules to handle special functions for a given file.

File Code VISION:Builder File Code VISION:Builder

(Decimal) ddname (Decimal) ddname
1 M4OLD 28 M4AUDIT®
2 M4NEW® 29 MA4REJCT®
3 MATRAN® 33 M4SUBF1
4 M4CORD1 34 M4SUBF2
5 M4CORD2 35 M4SUBF3
6 M4CORD3 36 M4SUBF4
7 M4CORD4 37 M4SUBF5
8 M4CORDS5 38 M4SUBF6

Key Table

The key table contains information about the record keys (the keys of the level one
segment). The table consists of a series of contiguous entries, each beginning on a
fullword boundary, with one entry for each key. The entries are ordered from
major key (key number 1) to minor key. The structure of the table is illustrated in
Figure 5-8 on page 5-36.

5-34 Environment Guide

User 1/O

The following table contains explanations for the table entries:

Entry

Description

TYPE CODE

A 2-byte, fixed point number encoding the field type of the
key. The hexadecimal codes are:

Code Type

4 C

8 Z

C P,L,orS

10 F

14 E

SCALE

A 2-byte, fixed point number (0 to 9) describing the scaling
factor according to the definition of the field.

LENGTH

The defined length of the field, stored as a 2-byte, fixed
point number.

FLAGS

A 1-byte field containing eight 1-bit indicators as follows:

0...Field does not have the rounding attribute.
1...Field has the rounding attribute.

Only the first bit can be referenced; the other seven are
reserved.

DISPLACEMENT
INTO ROOT
SEGMENT

A 4-byte, fixed point number that is the displacement into
the record where the key field begins.

Own-Code Facilities 5-35

User I/O

Byte
<&— Halfword — % |€— Halfword —®| Halfword
0 Key Field TYPE CODE Key Field SCALE Entry for First Key
Field
4 Key Field LENGTH Flags Reserved
8 DISPLACEMENT INTO ROOT SEGMENT
Key Field TYPE CODE [Key Field SCALE Entry for nth Key Field
Key Field LENGTH Flags Reserved
DISPLACEMENT INTO ROOT SEGMENT
Figure 5-8 Key Table Structure

5-36 Environment Guide

User 1/O

Relationships Among Tables

Figure 5-9 illustrates the various relationships among the tables which are passed

to your I/O module.
— REGISTER 1 |
N COMMUNICATION TABLE ADDRESS v
— FILE TABLE ADDRESS FUNCT ION CODE
INPUT RECORD ADDRESS STATUS CODE
QUTPUT RECORD ADDRESS TEMPORARY MAIN STORAGE START
KEY ADDRESS TEMPORARY MAIN STORAGE LENGTH
OWN_CODE FLAG ADDRESS MAIN STORAGE TAKEN
HEX'80' PARAMETER ADDRESS INPUT RECORD DATA SIZE
OUTPUT RECORD DATA SIZE
PRIMARY PARAMETER LIST COMMUNICATION TABLE
N FTLE DEFINTTION v
I NAME KEY 1 |
DTFTOD
NAME
FILE CODE RECORD FORMAT CODE <
NUMBER OF KEYS RECORD BLOCK ING
RECORD SIZE
BLOCK SIZE
KEY TABLE ADDRESS
ACCESS MODE PROCESSING MODE
START INPUT RECORD
T SEARCH T
END KEY FIELD TYPE CODE KEY FIELD SCALE ESARY
N] KEY FIELD LENGTH FLAGS | RESERVED| - FiRsT
SEARCH DISPLACEMENT INTO ROOT SEGMENT EEELD
[]
PASSWORD U
- — []
RESERVED ENTRY
FOR
USER'S Nth
FTELD
L — IEL
WORK KEY TABLE
SPACE
FILE TABLE
Figure 5-9 Table Relationships

Own-Code Facilities 5-37

User I/O

Update-in-Place Example

The following is an example of the calls VISION:Builder would make to your I/O

module if you are controlling the I/ O for an update—in—place@, randomly-accessed

MA4OLD file.

Master File Record Transaction File Attempted Action

Keys Record Keys

A G Update

D B Update

G A Delete

] C Create

Function Code Key Explanation Returned

(Hexadecimal) Status Code

00000004 - Open M4OLD 0

0000002C G Get record G 0

00000024 G Replace record G 0

0000002C B Get record B. After this call, 8
VISION:Builder outputs the (not found)
transaction to M4AREJCT

0000002C A Get record A 0

00000020 A Delete record A 0

0000002C C Get record C 8

00000028 C Add record C 0

00000008 - Close M4OLD 0

5-38 Environment Guide

User 1/O

COBOL Example of User I/O

Figure 5-10 illustrates a COBOL user I/O program that communicates to
VISION:Builder through its linkage section. The COBOL example is retrieval only.
The linkage section ends with the input record address.

ID DIVISION.
PROGRAM-ID.

AUTHOR.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MARKIV-FILE-IN ASSIGN TO UT-S-SYSIN.
DATA DIVISION.
FILE SECTION.

FD MARKIV-FILE-IN

02 FILLER

RECORDING MODE IS F

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 0 RECORDS

DATA RECORD IS MARKIV-RECORD.
01 MARKIV-RECORD.

WORKING-STORAGE SECTION.

01 FILLER

LINKAGE SECTION.

01 MARKIV-PARAMETER-AREA

02

02

02
02
02
02
02

01 MARKIV-FILE-TABLE

02
02
02
02
02
02

02
02
02
02

02

02
02
02
02

Figure 5-10

MARKIV-FUNCTION

88 OPEN-FILE

88 CLOSE-FILE

88 GET-SEQUENTIAL
88 ADD-SEQUENTIAL
88 DELETE-SEQ-UIP
88 REPLACE-SEQ-UIP
88 ADD-SEQ-UIP

88 DELETE-KEY-UIP
88 REPLACE-KEY-UIP
88 ADD-KEY-UIP

88 GET-KEY-UIP
MARKIV-STATUS-CODE
88 STATUS-OK

88 STATUS-EOF

88 RECORD-NOT-FOUND
88 ALLOCATE-WORK
TEMP-STORAGE-START
TEMP-STORAGE-LENGTH
FILLER
MARKIV-INPUT-SIZE
MARKIV-OUTPUT-SIZE

MARKIV-FILE-NAME
MARKIV-DDNAME
MARKIV-FILE-CODE
MARKIV-RECORD-FORMAT
MARKIV-KEY-COUNT
MARKIV-RECORD-BLOCKING
88 UNBLOCKED-FILE

88 BLOCKED-FILE
MARKIV-RECORD-SIZE
MARKIV-BLOCK-SIZE
FILLER
MARKIV-ACCESS-MODE
88 RANDOM-ACCESS

88 SEQUENTIAL-ACCESS
MARKIV-PROCESS-MODE
88 OUTPUT-ONLY

88 INPUT-ONLY

88 UPDT-IN-PLACE
MARKIV-START-SEARCH
MARKIV-END-SEARCH
MARKIV-SAVED
MARKIV-WORK-SPACE

PIC X(15) VALUE

SYNC.

SYNC.

PIC X(80).

PIC S9(8)
VALUE +4.
VALUE +8.

VALUE +12.
VALUE +16.
VALUE +20.
VALUE +24.
VALUE +28.
VALUE +32.
VALUE +36.
VALUE +40.
VALUE +44.

PIC S9(8)

COMP.

COMP.

VALUE ZEROES.

VALUE +4.
VALUE +8.

VALUE +12.

PIC S9(8)
PIC 59(8)
PIC X(4).
PIC S9(8)
PIC S9(8)

PIC X (8

PIC X(8).
PIC S9(4)
PIC S9(4)
PIC S9(4)
PIC S9(4)
VALUE +4.
VALUE +8.
PIC S9(8)
PIC S9(8)
PIC S9(8)
PIC S9(4)
VALUE +4.
VALUE +8.
PIC S9(4)
VALUE +4.
VALUE +8.

VALUE +12.
PIC X(16).

PIC X

PIC X

COBOL User I/O (Page 1 of 2)

(

(16)
PIC X(12).

(16)

COMP.
COMP.

COMP.
COMP.

COMP.
COMP.
COMP.
COMP.

COMP.
COMP.
COMP.
COMP.

COMP.

'"WORKING STORAGE'.

Own-Code Facilities

5-39

User I/O

01-MARKIV-REC.

02 FILLER PIC X(80).
PROCEDURE DIVISION USING MARKIV-PARAMETER AREA
MARKIV-FILE-TABLE
MARKIV-REC.

IF OPEN-FILE GO TO OPEN-IT-UP.
IF CLOSE-FILE GO TO CLOSE-IT-UP.
IF GET-SEQUENTIAL GO TO READ-IT.
EXHIBIT NAMED 'INVALID' MARKIV-STATUS-CODE.
MOVE -1 TO MARKIV-STATUS-CODE GOBACK.
OPEN-IT-UP.
OPEN INPUT MARKIV-FILE-IN.
MOVE +12 TO MARKIV-STATUS-CODE.
GOBACK.
CLOSE-IT-UP.
CLOSE MARKIV-FILE-IN.
MOVE ZEROES TO MARKIV-STATUS-CODE.
GOBACK.
READ-IT.
READ MARKIV-FILE-IN
AT END MOVE +4 TO MARKIV-STATUS-CODE
GOBACK.
MOVE ZEROES TO MARKIV-STATUS-CODE.
MOVE MARKIV-RECORD TO MARKIV-REC.
GOBACK.

Figure 5-10 COBOL User I/O (Page 2 of 2)

5-40 Environment Guide

Chapter

Checkpoint/Restart

6

Checkpoint/Restart provides a variety of methods for checkpointing
VISION:Builder runs so that they can be restarted in case of a computer
malfunction or operator error, without excessive loss of processing time.
Checkpoints are usually specified on lengthy jobs to avoid rerunning the entire job
if it should end abnormally. Checkpoints can be written during processing runs.

VISION:Builder uses the MARKDLI entry module for taking basic checkpoints
under IMS and it uses the MARKDLIX entry module for taking extended
checkpoints under IMS. Restart is only permitted with extended checkpoints (that
is, entry using MARKDLIX for both checkpoint and restart).

At each checkpoint specified by you, the contents of storage and the state of the
peripheral units are saved. Pertinent identifying information is printed at each
checkpoint to aid you in restart procedures. When the run is restarted, the
peripheral units are reset to the required condition and the saved memory dump
is loaded into storage. Restart at a selected checkpoint is initiated using standard
operating system procedures (z/OS or IMS) and is transparent to VISION:Builder.

VISION:Builder can write checkpoints automatically at selected intervals during a
run or can write them under operator control. In addition, a combination of
checkpoint options can be selected to ensure that checkpoints are taken at the
appropriate intervals. For example, a checkpoint can be requested under operator
control every 30 minutes. If the operator fails to do so within a 30 minute interval,
VISION:Builder initiates a checkpoint automatically.

Checkpoint Options

All checkpoint options are specified on the checkpoint specification (CP) statement
of the RC group. The CP statement is entered after the RC statement and before the
first request (if any). Checkpoints are written on a separate checkpoint tape or
direct-access file and are also displayed on the JES log.

Checkpoint/Restart 6-1

Checkpoint Options

The checkpoint COUNT record interval specifies the number of records processed
before the checkpoint is taken, but only in the case of read-only or newly inserted
records.

For existing records being updated or deleted, both record actions (get and replace
or delete) are considered in the counting process and as such, two internal counts
are taken for one record. The count is reached at an earlier point and the
checkpoint is issued when approximately half the records are processed.

For example, suppose you set the checkpoint count at 6. In action A, six new
records are inserted and, in action B, three existing records are deleted. Given these
circumstances, the checkpoints are taken as follows:

A — Insert 6 new records Internal count

Insert record 1 1

Insert record 2

Insert record 3

Insert record 4

Insert record 5

N G| =] WD

Insert record 6 (matches specified count)

6 records processed CHECKPOINT TAKEN
B — Delete 3 old records Internal count
Read record 1 1

Delete record 1

Read record 2

Delete record 2

Read record 3

N G| =] W DN

Delete record 3 (matches specified count)

3 records processed CHECKPOINT TAKEN

6-2 Environment Guide

Checkpoint Options

The following IMS checkpoint options can be selected:

Checkpoint Files

Checkpoints can be written on a single checkpoint file or on two alternating
checkpoint files.

Sort Program Checkpoints

Sort control statements can be created by VISION:Builder that cause the sort
program to take checkpoints. The additional parameter is added to the sort control
statements when requested on the checkpoint specification statement.

Checkpoints Under Timer Control

VISION:Builder can take a checkpoint at an elapsed time interval. The time
interval used is based on the time made available by the operating system.

Checkpoints Under Record Count Control

Checkpoints can be taken based on a count of I/ O records on a specified file. This
option is useful in a multi-programming environment when elapsed time is not
always a true indication of processing time.

Checkpoints Under Operator Control

The operator can control when a checkpoint is taken using the console. This option
allows checkpoints to be taken at critical points.

See IMS Checkpoint/Restart on page 6-9 for IMS checkpoint options.

Checkpoint/Restart 6-3

Taking Checkpoints in VISION:Builder

Taking Checkpoints in VISION:Builder

Checkpoint Files

This section describes how z/OS checkpoints are written in VISION:Builder.

In general, checkpoints can be written in two ways:
m On asingle checkpoint file.

m On alternating checkpoint files.

Checkpoints on single checkpoint files are written sequentially. When no more
space is available on the checkpoint file, standard operating system procedures for
multiple checkpoint volumes are used. Checkpoints can also be taken on two
alternating files. In this way, only the last two checkpoints are maintained. Each
checkpoint is written over the oldest one, so that the latest valid checkpoint is still
available if a malfunction occurs while taking the checkpoint.

With alternating checkpoints, two direct-access files are usually allocated with
enough space in each file for one checkpoint. Alternating checkpoints can be
written on tape; however, this is an inefficient use of physical devices, since only
one checkpoint can be written on each tape. The first checkpoint is written on the
file specified in Checkpoint File on the CP statement. The second is written on the
file specified in Alternating Checkpoint File, the third checkpoint is written over
the first, and so on.

Checkpointing at Time Intervals

Checkpoints can be written at intervals from 1 to 99 seconds or 1 to 999 minutes,
reflecting the wall clock or program CPU time used by VISION:Builder
(depending on the operating system). The time interval begins after request
decoding or at the beginning of report generation. If the hardware timer is not on,
the operator is informed and can either turn it on or terminate the run.

6-4 Environment Guide

Multiple Checkpoint Opfions

Checkpointing on Record Count

Checkpoints can be controlled by a count of I/O records processed. The number of
records processed between checkpoints can be 1 to 999999. The files which can
control checkpoints are shown in the following list. Normally, the old master file
would be used during a processing run and the M4REPI file during a report
generation run.

M4LIST

M4REPT

M4REPO

M4REPn

M4OLD,

M4NEw<i,

MATRAN gy

M4RUDIT ™ gy

M4REJECT

M4CORDn
M4SUBFn

Note: The M4OLD file is the only valid file for use with IMS checkpoint calls.

Checkpointing Under Operator Control

The operator can request checkpoints during processing by interrupting the
program using the console and responding to a VISION:Builder message.
Checkpoints cannot be requested by the operator during VISION:Builder source
statement decoding.

Checkpointing at End of Volume

Checkpoints can be taken when an end of volume condition occurs on all files or

on one specified file, for example, MAOLD, M4REPO, or MATRAN 9. When end of
volume occurs, the checkpoint is written after processing the current master file
record or at the beginning of the next physical page during report generation.

Multiple Checkpoint Options

A checkpoint is always written at the operator's request or when end of volume
occurs on a file specified in end of volume on file on the CP statement. Either of
these checkpoints automatically resets the time and record intervals if they are also
selected for controlling checkpoints. A time interval-initiated checkpoint resets the
record count interval and vice versa. If both time and record intervals are selected,
the time between two checkpoints is the specified time interval or the time
required to process the specified number of records, whichever comes first.

Checkpoint/Restart 6-5

Writing Checkpoints

Writing Checkpoints

During the processing phase, checkpoints are written after all processing of a
particular master file record is completed. Checkpoints are always taken at this
location regardless of the method used to activate the checkpoint.

When a checkpoint is written during processing runs, VISION:Builder prints the
following information on M4LIST:

m Checkpoint identification number (from the operating system).
m File containing checkpoint data (in case of alternating option).
m Time of the checkpoint.

m Reason for the checkpoint (such as timer or operator).

m Keys of the master file record just processed.

z/0OS Samples of Checkpoint/Restart

The z/OS CHKPT macro is used to write checkpoints on sequential or partitioned
data sets. VISION:Builder uses the checkpoint identification generated by the
operating system, which consists of the letter C followed by a seven digit decimal
number. The number begins at C0000001 and ends with the number of checkpoints
taken in the job.

You can specify data set organization and block size on the checkpoint file DD
statement. The only required DD statement entries are the DSNAME and DISP
parameters. If the data set is on a direct-access device, a space allocation is also
required if DISP=NEW. VISION:Builder assumes DSORG=PS if a data set
organization is not specified and DISP=NEW.

When deferred restart is used, the only DD statements required are for the files
opened at the time checkpoints are written. Since the M4LIB and M4INPUT data
sets are closed before checkpoints are written during processing runs, their DD
statements can be omitted when the job is restarted. Similarly, the M4AINPUT DD
statement is not required when restarting a report generation run.

During the report generation step, checkpoints are written immediately before
beginning a new page. The operating system outputs checkpoint identification
information on the operator's console during both processing and report
generation runs.

This section contains two examples of checkpointing and restarting
VISION:Builder jobs under z/OS. The first example shows a record selection run
and the second shows a report generation run.

6-6 Environment Guide

z/OS Samples of Checkpoint/Restart

In the first example, a report file is generated from an old master file. Checkpoints
are being written at 30 minute intervals on a single DASD checkpoint file.

Figure 6-1 shows the run setup for the processing and Figure 6-2 shows the setup
necessary to restart the job from the second checkpoint, taken 60 minutes after
processing began. Presumably, the run terminated abnormally after the second
checkpoint.

//checkpt JOB (accounting information)

//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR,

//stepl EXEC PGM=MARKIV, REGION=1536K

//MALIST DD SYSOUT=a

//M4LIB DD DSN=your.m4lib, DISP=SHR

//M4REPO DD DSN=your.mdrepo,UNIT=sysda,

// SPACE= (TRK, (nn,nn),RLSE),

// DISP=(NEW, KEEP)

//MASORT DD DSN=sort.file, UNIT=SYSDA, SPACE=(TRK, (nn,nn),RLSE),
// DISP=(NEW, KEEP)

//MAOLD DD DSN=old.master.file, DISP=SHR

//M4CHK1 DD DSN=chkpoint.file, DISP=(,DELETE,CATLG) , UNIT=SYSDA,
// SPACE= (TRK, (nn,nn),RLSE)

//M4INPUT DD *

CONTROL

FILE MASTER INPUT, NAME .

FILE REPORT

CHECKPOINT TIME 30 MINUTES

/* VISION:Builder SOURCE STATEMENTS
/!

Figure 6-1 Checkpointing on a z/OS Processing Run

Notes

1 //checkpt JOB (accounting information),RESTART=(stepl,C0000002)
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR

2 //SYSCHK DD DSN=chkpoint.file, DISP=SHR
//stepl EXEC PGM=MARKIV,REGION=1536K
//M4LIST DD SYSOUT=a

3 //MAREPO DD DSN=your.mdrepo, DISP=MOD
4 //M4SORT DD DD=sort.file, DISP=MOD
/ /M40LD DD DSN=old.master.file, DISP=SHR
5 //M4CHK1 DD DSN=rstchkpt.file, DISP=(, DELETE, CATLG) , UNIT=SYSDA,
// SPACE=(TRK, (nn,nn) ,RLSE)
//
Figure 6-2 Deferred Restart of a z/OS Processing Run

The following explanations are keyed to the numbered statements in Figure 6-2.

Note: The M4LIB and M4INPUT DD statements need not be included because
they are closed after request decoding and before processing of the master file.

Checkpoint/Restart 67

z/OS Samples of Checkpoint/Restart

Notes Explanation

! The RESTART parameter specifies thatjob CHECKPT is to be restarted
from step1 at checkpoint C0000002 on the data set with a ddname of
SYSCHK.

2 The SYSCHK DD statement contains the DSN of the M4ACHK1 DD from
the checkpoint run being restarted. It must be placed before the first
EXEC statement.

3 MA4REPO is changed to a disposition of MOD to accommodate the
restart.

4 M4SORT is changed to a disposition of MOD to accommodate the
restart.

5 This is a new checkpoint file DSN for logging checkpoints subsequent
to the restart.

The following example shows checkpoints being written on two alternating
checkpoint files during a report step. Checkpoints are written at intervals of 10,000
MA4REPI records. Figure 6-3 and Figure 6-4 show the run setups for report
generation and restart. The run is restarted after processing 40,000 report file
records.

Notes

//checkpt JOB (accounting information)
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR,
//stepl EXEC PGM=MARKIV,REGION=1536K
//MALIST DD SYSOUT=a
1 //MAREPI DD DSN=your.m4repo, DISP=OLD

2 //M4CHK1 DD DSN=chkpoint.file.a,DISP=(, DELETE, CATLG) , UNIT=SYSDA,
// SPACE= (TRK, (nn,nn),RLSE)
3 //M4CHK2 DD DSN=chkpoint.file.b, DISP=(, DELETE, CATLG) , UNIT=SYSDA,
// SPACE=(TRK, (nn,nn),RLSE)
//M4INPUT DD *
CONTROL
FILE REPORT
4 CHECKPOINT FILE M4REPI, COUNT 10000, ALTERNATING
/%
//

Figure 6-3 Checkpointing a Report Generation Run

6-8 Environment Guide

IMS Checkpoint/Restart

The following explanations are keyed to the numbered statements in Figure 6-3.

Notes Explanation

! This report file must already exist and be cataloged.

2 The odd checkpoints will be written on M4CHK1.
3 The even checkpoints will be written on M4CHK2.
4 The CP statement specifies that alternating checkpoints are to be
written on the data sets MACHK1 and M4CHK?2 at intervals of 10,000
M4REPI records.
Notes

1 //checkpt JOB (accounting information),RESTART=(stepl,C0000004)
//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR,
2 //SYSCHK DD DSN=chkpoint.file.b, DISP=SHR
//stepl EXEC PGM=MARKIV,REGION=1536K
//M4LIST DD SYSOUT=a
//M4AREPT DD DSN=your.m4repo, DISP=OLD

3 //M4CHK1 DD DSN=rstchkpt.file.a,DISP=(, DELETE, CATLG) , UNIT=SYSDA,
// SPACE= (TRK, (nn,nn),RLSE)
3 //M4CHK2 DD DSN=rstchkpt.file.b, DISP=(, DELETE, CATLG) , UNIT=SYSDA,
// SPACE= (TRK, (nn,nn) ,RLSE)
Figure 6-4 Deferred Restart of a Report Generation Run

The following explanations are keyed to the numbered statements in Figure 6-4.

Notes Explanation

! The RESTART parameter specifies that job CHECKPT is to be restarted
from stepl at checkpoint C0000004 on the data set with the SYSCHK
ddname.

2 The SYSCHK DD statement contains the DSN of the M4CHK1 or
M4CHK?2 DD (depending on which checkpoint is used for the restart)
from the checkpoint run. It must be placed before the first EXEC
statement.

3 These are new checkpoint file DSNs for logging checkpoints
subsequent to the restart.

IMS Checkpoint/Restart

Checkpoints can be taken by VISION:Builder running in either a batch region or a
batch message processing (BMP) region. The CP statement is used to specify that
checkpoints are to be taken and the frequency at which they are to occur.

Checkpoint/Restart 6-9

IMS Checkpoint/Restart

IMS Requirements for Checkpointing

When you want checkpoints with the potential for restart, the entry point name to
VISION:Builder must be MARKDLIX (that is, MARKDLIX must be specified as the
application program name parameter in IMS region controller JCL). When the
MARKDLIX entry point is used, the GSAM access method is used for sequential
files (except MAINPUT and M4SORT) whenever the QSAM access method would
ordinarily have been used. This requires that a GSAM DBD be provided for each
file which utilizes the GSAM access method. In addition, the PSB must include a
PCB for each GSAM file. The PSB must also specify CMPAT=YES on the PSBGEN
statement.

For each GSAM DBD, the DBD name must be identical to the file name parameter
on the corresponding RF statement for the file. If no RF statement is present (as will
be the case for the MALIST file), the GSAM DBD name must be identical to the DD
name for the file (M4LIST for the source listing file, MATRAN for the transaction
file, and so on). The DD name in your JCL must correspond to the DD1 parameter
in your GSAM DBD.

The file characteristic parameters (RECFM, RECORD, and SIZE) on the DATASET
statement of the DBD must be consistent with the data set and the VISION:Builder
file definition or transaction definition if an FD or TD applies to the file. Otherwise,
an unexpected PCB status code, erroneous input data, or loss of output data may
occur.

Figure 6-5 shows sample GSAM DBDs and Figure 6-6 shows a sample PSB
including GSAM PCBs.

DBD NAME=M4LIST, ACCESS=(GSAM, BSAM)
DATASET DD1=M4LIST,RECFM=FB,RECORD=133, SIZE=2660

DBDGEN FINISH
END

DBD NAME=M4REPO, ACCESS= (GSAM, BSAM)

DATASET DD1=M4REPO, RECFM=VB,RECORD=1020,SIZE=1024
DBDGEN

FINISH

END

DBD NAME=M4TRAN, ACCESS=(GSAM, BSAM)

DATASET DD1=M4TRAN, RECFM=FB, RECORD=80, SIZE=800
DBDGEN

FINISH

END

DBD NAME=M4CORD1,ACCESS=(GSAM, BSAM)

DATASET DD1=M4CORD1,RECFM=FB, RECORD=80, SIZE=2000
DBDGEN

FINISH

END

Figure 6-5 Sample GSAM DBDs

6-10 Environment Guide

IMS Checkpoint/Restart

PCB TYPE=DB, DBDNAME=EMPXDBD, PROCOPT=AP, KEYLEN=50, POS=M
SENSEG NAME=EMPLOYEE, PARENT=0

SENSEG NAME=HISTORY, PARENT=EMPLOYEE
SENSEG NAME=PROJHIST, PARENT=HISTORY
SENSEG NAME=PROJACCT, PARENT=PROJHIST
SENSEG NAME=SKILHIST, PARENT=HISTORY
SENSEG NAME=ADMIN, PARENT=EMPLOYEE
SENSEG NAME=PERSONAL, PARENT=EMPLOYEE
SENSEG NAME=CARS, PARENT=PERSONAL
SENSEG NAME=SCHOOLS, PARENT=PERSONAL
SENSEG NAME=DEGREES, PARENT=SCHOOLS
SENSEG NAME=SUBJECTS, PARENT=DEGREES
SENSEG NAME=WORK, PARENT=EMPLOYEE
SENSEG NAME=EXTS, PARENT=WORK

*

PCB TYPE=GSAM, DBDNAME=M4LIST, PROCOPT=L
*
PCB TYPE=GSAM, DBDNAME=M4REPO, PROCOPT=L
*
PCB TYPE=GSAM, DBDNAME=M4TRAN, PROCOPT=G
*

PCB TYPE=GSAM, DBDNAME=M4CORD1, PROCOPT=G

*

PSBGEN PSBNAME=EMPPSB, LANG=ASSEM, CMPAT=YES
END

Figure 6-6 Sample PSB with GSAM

To initiate a restart from a previous batch IMS checkpoint run, supply a value for
the CKPTID parameter on the EXEC statement of the restart JCL with the value in
message DFS05401I on the JES JOB LOG. That value is the concatenation of the
2-digit REGID, 3-digit DAY, and 7-digit TIME. If the restart is from a BMP
checkpoint run, use either the same concatenation, the value of the CKPTID
keyword (also found in message DFS05401) or the four-character value LAST.
Figure 6-7 and Figure 6-8 show sample JCL for checkpoint and restart jobs
requested in a batch region. Figure 6-9 on page 6-13 and Figure 6-10 on page 6-14
show sample JCL for checkpoint and restart jobs requested in a BMP region.

//imsckpt JOB (accounting information)
//*
//IMSDLI PROC MBR=TEMPNAME, PSB=,BUF=7,
SPIE=0, TEST=0, EXCPVR=0, RST=0, PRLD=,

// SRCH=0, CKPTID=, MON=N, LOGA=0, FMTO=T,

// IMSID=, SWAP=, DBRC=, IRLM=, IRLMNM=, BKO=N
//GO EXEC PGM=DFSRRCO00,

// PARM= (DLI, &MBR, &PSB, &BUF,

// &SPIE&TEST&EXCPVR&RST, &PRLD,

// &SRCH, &CKPTID, &MON, &LOGA, §FMTO,

// &IMSID, &SWAP, §DBRC, & IRLM, & IRLMNM, &BKO)
// PEND

//*

//M4p EXEC IMSDLI,MBR=MARKDLIX, PSB=yourpsb, REGION=1500K
//STEPLIB DD DSN=IMSVS.RESLIB, DISP=SHR

// DD DSN=your.builder.loadlib, DISP=SHR
// DD DSN=your.comlib.loadlib, DISP=SHR
//DFSRESLB DD DSN=IMSVS.RESLIB,DISP=SHR
//IMS DD DSN=your.psblib, DISP=SHR

DD DSN=your.dbdlib, DISP=SHR
//IEFRDER DD DSN=your.ckpl.imslog,DISP=(NEW,CATLG),
UNIT=ISPDA, SPACE=(TRK, (5,2),RLSE),
// DCB= (RECFM=VB, BLKSIZE=1920, LRECL=1916, BUFNO=2)
//MALIB DD DSN=your.m4lib, DISP=SHR
//MALIST DD DSN=your.gsam.m4list,DISP=(NEW,CATLG),

// UNIT=ISPDA, SPACE=(TRK, (10,5) ,RLSE)
//MAREPO DD DSN=your.gsam.mdrepo,DISP=(NEW,CATLG),
// UNIT=ISPDA, SPACE=(TRK, (10,5),RLSE)

//M4SORT DD UNIT=SYSDA,DISP=(NEW,PASS), SPACE=(TRK, 1)

Figure 6-7 Checkpointing on an IMS Processing Run (Page 1 of 2)

Checkpoint/Restart 6-11

IMS Checkpoint/Restart

//MAINPUT DD DSN=your.builder.program, DISP=SHR
DD DSN=your.ims.database, DISP=SHR
//*

//GENER EXEC PGM=IEBGENER, COND=EVEN

//SYSPRINT DD DUMMY

//SYSUT1 DD DSN=*.M4P.GO.M4LIST,DISP=OLD

//SYSUT2 DD SYSOUT=A,DCB= (RECFM=FA, LRECL=133,BLKSIZE=133)
//SYSIN DD DUMMY

//*

//SORT EXEC PGM=SORT,REGION=1500K,COND=(0,NE,M4P.GO)
//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=*.M4P.GO.M4REPO, DISP=0LD

//SORTOUT DD UNIT=SYSDA,DISP=(NEW,PASS),

// SPACE=(TRK, (10,5),RLSE)

//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL, (1,1))
//SORTWKO02 DD UNIT=SYSDA, SPACE=(CYL, (1,1))
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL, (1,1))

//SYSIN DD DSN=*.M4P.GO.M4SORT, DISP=(OLD, DELETE)
//*

//M4R EXEC PGM=MARKIV,REGION=1536K, COND=(0,NE, SORT)
//STEPLIB DD DSN=your.builder.loadlib,DISP=SHR

// DD DSN=your.comlib.loadlib, DISP=SHR
//M4LIST DD SYSOUT=A

//M4REPI DD DSN=*.SORT.SORTOUT, DISP=(OLD, DELETE)
//M4AINPUT DD DSN=your.builder.run.control,DISP=SHR
//

Figure 6-7 Checkpointing on an IMS Processing Run (Page 2 of 2)

//imsckpt JOB (accounting information)
/1%

//IMSDLI PROC MBR=TEMPNAME, PSB=,BUF=7,
/1 SPIE=0, TEST=0, EXCPVR=0, RST=0, PRLD=,

// SRCH=0, CKPTID=, MON=N, LOGA=0, FMTO=T, 0
// IMSID=, SWAP=, DBRC=, IRLM=, IRLMNM=, BKO=N
//GO EXEC PGM=DFSRRC00,

// PARM= (DLI, &MBR, &PSB, &BUF,

// &SPIE&TEST&EXCPVR&RST, &PRLD,

// &SRCH, &CKPTID, &MON, &LOGA, &FMTO,

// &IMSID, &SWAP, &DBRC, &IRLM, § IRLMNM, &BKO)
// PEND

//*

//M4P EXEC IMSDLI,MBR=MARKDLIX,PSB=yourpsb, CKPTID=nnnnnnnnnnnn,
REGION=1500K
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
DD DSN=your.builder.loadlib, DISP=SHR

// DD DSN=your.comlib.loadlib, DISP=SHR
//DFSRESLB DD DSN=IMSVS.RESLIB,DISP=SHR
//IMS DD DSN=your.psblib, DIPS=SHR
// DD DSN=your.dbdlib, DISP=SHR

//IMSLOGR DD DSN=your.ckpl.imslog, DIPS=0LD
//IEFRDER DD DSN=your.ckp2.imslog, DISP=(NEW, CATLG),
// UNIT=ISPDA, SPACE=(TRK, (5,2),RLSE),
// DCB= (RECFM=VB, BLKSIZE=1920, LRECL=1916, BUFNO=2)
//MALIB DD DSN=your.m4lib, DISP=SHR
//M4LIST DD DSN=your.gsam.mdlist,DISP=0LD
//M4AREPO DD DSN=your.gsam.mérepo, DISP=0LD
//M4SORT DD UNIT=SYSDA,DISP=(NEW, PASS), SPACE=(TRK, 1)
//M4AINPUT DD DSN=your.builder.source, DISP=SHR
/... DD DSN=your.ims.database, DISP=SHR
//*
//GENER EXEC PGM=IEBGENER, COND=EVEN
//SYSPRINT DD DUMMY
//SYSUT1 DD DSN=*.M4P.GO.MALIST,DISP=0LD
//SYSUT2 DD SYSOUT=A, DCB=(RECFM=FA, LRECL=133, BLKSIZE=133)
//SYSIN DD DUMMY
*

//SORT EXEC PGM=SORT,REGION=1500K, COND= (0, NE,M4P.GO)
//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=*.M4P.GO.M4REPO, DISP=0LD

//SORTOUT DD UNIT=SYSDA,DISP=(NEW, PASS),

// SPACE=(TRK, (10,5),RLSE)

//SORTWK01 DD UNIT=SYSDA, SPACE=(CYL, (1,1))

Figure 6-8 Restarting an IMS Processing Run (Page 1 of 2)

6-12 Environment Guide

IMS Checkpoint/Restart

//SORTWKO02 DD
//SORTWKO3 DD

UNIT=SYSDA, SPACE= (CYL, (1,1))
UNIT=SYSDA, SPACE= (CYL, (1,1)

//SYSIN DD DSN=*.M4P.GO.M4SORT, DISP=(OLD, DELETE)
//*
//M4R EXEC PGM=MARKIV,REGION=1536K,COND=(0,NE, SORT)
//STEPLIB DD DSN=your.builder.loadlib, DISP=SHR
// DD DSN=your.comlib.loadlib,DISP=SHR
//M4LIST DD SYSOUT=A
//M4REPT ~ DD DSN=*.SORT.SORTOUT, DISP=(OLD, DELETE)
//MAINPUT DD DSN=your.builder.run.control,DISP=SHR
//
Figure 6-8 Restarting an IMS Processing Run (Page 2 of 2)

//bmprun JOB
//*
//IMSBMP PROC

//

/ /BMP EXEC
//

//

//

// PEND
//*

//M4P EXEC
//STEPLIB DD
// DD
// DD
// DD
//IMS DD
// DD
//MALIB DD
//MATRAN DD
/ /M4REPO DD
//

//MALIST DD
//

/ /M4SORT DD
//M4INPUT DD
//*

//GENER EXEC
//SYSPRINT DD
//SYSUT1 DD
//SYSUT2 DD
//SYSIN DD
//*

//SORT EXEC
//SYSOUT DD
//SORTIN DD
//SORTOUT DD
//

//SORTWKO1 DD
//SORTWK02 DD
//SORTWKO3 DD
//SYSIN DD
//*

//M4R EXEC
//STEPLIB DD
// DD
//M4LIST DD
/ /MAREPT DD
//M4INPUT DD
//

Figure 6-9

(accounting information)

MBR=TEMPNAME , PSB=, IN=, OUT=,

OPT=N, SPIE=0, TEST=0, DIRCA=000, PRLD=, STIMER=,
CKPTID=, PARDLI=, CPUTIME=, NBA=, OBA=, IMSID=, AGN=
PGM=DFSRRC00,

PARM= (BMP, &MBR, &PSB, &IN, &0UT,
&OPT&SPIESTEST&DIRCA, &PRLD, &STIMER, &CKPTID,
&PARDLI, &CPUTIME, &NBA, &0BA, & IMSID, &AGN)

IMSBMP, MBR=MARKDLIX, PSB=yourpsb, REGION=1536K
DSN=IMSVS.RESLIB, DISP=SHR
DSN=IMSVS.PGMLIB, DISP=SHR
DSN=your.builder.loadlib, DISP=SHR
DSN=your.comlib.loadlib, DISP=SHR
DSN=IMSVS.DBDLIB, DISP=SHR
DSN=IMSVS.PSBLIB, DISP=SHR
DSN=your.m41lib, DISP=SHR
DSN=your.gsam.m4tran, DISP=SHR
DSN=your.gsam.mé4repo, DISP= (NEW, CATLG) ,
UNIT=ISPDA, SPACE=(TRK, (10,5),RLSE)
DSN=your.gsam.mé4list, DISP=(NEW, CATLG),
UNIT=ISPDA, SPACE=(TRK, (10,5),RLSE)
UNIT=SYSDA, DISP=(NEW, PASS), SPACE=(TRK, 1)
DSN=your.builder.source, DISP=SHR

PGM=IEBGENER, COND=EVEN

DUMMY

DSN=* ,M4P.BMP.M4LIST, DISP=0LD

SYSOUT=A, DCB= (RECFM=FA, LRECL=133, BLKSIZE=133)
DUMMY

PGM=SORT, REGION=2000K, COND=EVEN
SYSOUT=A

DSN=* ,M4P . BMP .M4REPO, DISP=0LD
DSN=&&REPI, UNIT=SYSDA, DISP= (NEW, PASS) ,
SPACE= (TRK, (10,5),RLSE)
UNIT=SYSDA, SPACE=(CYL, (1,1))
UNIT=SYSDA, SPACE= (CYL, (1,1)
UNIT=SYSDA, SPACE= (CYL, (1,1)
DSN=* ,M4P . BMP.M4SORT, DISP= (OLD, DELETE)

PGM=MARKIV, REGION=1536K, COND=(0,NE, SORT)
DSN=your.builder.loadlib, DISP=SHR
DSN=your.comlib.loadlib, DISP=SHR
SYSOUT=A

DSN=&&REPI, DISP=(OLD, DELETE)
DSN=your.report.run.control, DISP=SHR

Checkpointing on an IMS BMP Processing Run

Checkpoint/Restart

IMS Checkpoint/Restart

//bmprun JOB (accounting information)
//*

//IMSBMP PROC MBR=TEMPNAME, PSB=, IN=, OUT=,
// OPT=N, SPIE=0, TEST=0, DIRCA=000, PRLD=, STIMER=,

// CKPTID=, PARDLI=, CPUTIME=, NBA=, OBA=, IMSID=, AGN=
//BMP EXEC PGM=DFSRRCO0,

// PARM= (BMP, &MBR, &PSB, &IN, &0UT,

// &OPT&SPIE&TEST&DIRCA, &PRLD, &STIMER, &CKPTID,

// &PARDLI, &CPUTIME, &NBA, &OBA, & IMSID, &AGN)

// PEND

//*

//M4P EXEC IMSBMP, MBR=MARKDLIX, PSB=yourpsb, REGION=1536K, CKPTID=LAST
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

// DD DSN=IMSVS.PGMLIB,DISP=SHR

// DD DSN=your.builder.loadlib, DISP=SHR

// DD DSN=your.comlib.loadlib, DISP=SHR

//IMS DD DSN=IMSVS.DBDLIB, DISP=SHR

// DD DSN=IMSVS.PSBLIB,DISP=SHR

//M4LIB DD DSN=your.m4lib,DISP=SHR

//MATRAN DD DSN=your.gsam.m4tran, DISP=SHR

//MAREPO DD DSN=your.gsam.médrepo, DISP=0LD

//MALIST DD DSN=your.gsam.mé4list, DISP=0LD

/ /M4SORT DD UNIT=SYSDA,DISP= (NEW, PASS), SPACE=(TRK, 1)

//M4INPUT DD DSN=your.builder.source, DISP=SHR

//*

//GENER EXEC PGM=IEBGENER, COND=EVEN

//SYSPRINT DD DUMMY

//SYSUT1 DD DSN=*.M4P.BMP.M4LIST, DISP=0LD

//SYSUT2 DD SYSOUT=A, DCB= (RECFM=FA, LRECL=133, BLKSIZE=133)

//SYSIN DD DUMMY

//*

//SORT EXEC PGM=SORT,REGION=2000K, COND=EVEN

//8YSOUT DD SYSOUT=A

//SORTIN DD DSN=*,M4P.BMP.M4REPO, DISP=0LD

//SORTOUT DD DSN=&&REPI,UNIT=SYSDA, DISP=(NEW, PASS),

// SPACE=(TRK, (10,5),RLSE)

//SORTWKO1 DD UNIT=SYSDA, SPACE=(CYL, (1,1

//SORTWK02 DD UNIT=SYSDA, SPACE=(CYL, (1,1
1

)
)
//SORTWK03 DD UNIT=SYSDA, SPACE=(CYL, (1,1))

)
)
)
(

//SYSIN DD DSN=*.M4P.BMP.M4SORT, DISP=(OLD, DELETE)
//*

//M4R EXEC PGM=MARKIV,REGION=1536K, COND= (0, NE, SORT)
//STEPLIB DD DSN=your.builder.loadlib, DISP=SHR

// DD DSN=your.comlib.loadlib, DISP=SHR

//MALIST DD SYSOUT=A

//MAREPT DD DSN=&&REPI,DISP=(OLD, DELETE)
//M4AINPUT DD DSN=your.report.run.control,DISP=SHR
//

Figure 6-10 Restarting an IMS BMP Processing Run

VISION:Builder Considerations for IMS Checkpoints

Checkpoint frequency on the CP statement can be specified either as a time
interval or as a record count interval for M4OLD.

When specifying M4REPO in the JCL for Checkpoint/Restart runs, it is necessary
to retain the M4REPO data set so that it is available should a RESTART run be
necessary. If a temporary data set is used and subsequently deleted, sort problems
can occur and no report step is generated in the restart run.

6-14 Environment Guide

IMS Checkpoint/Restart

Three flag fields, CHKP, RESTART, and CKPTID, are provided to facilitate user
applications utilizing checkpoints. The CHKP flag field can be used to trigger a
checkpoint based upon user-determined criteria by storing a non-blank value into
the flag. This action triggers a checkpoint operation when the next master file root
segment is about to be read. The CHKP flag field is reset to a blank after every
checkpoint operation.

The RESTART flag field can be used by requests to determine the restart status of
a VISION:Builder run. If a run has been restarted, the RESTART flag contains the
checkpoint ID at which the restart occurred. Otherwise, the value of the RESTART
flag is all blanks. The RESTART flag is provided for applications utilizing
own-code or GDBI (mapping requests) which could require knowledge of the
restart status. The CKPTID flag field contains the checkpoint ID of the last
checkpoint taken.

VISION:Builder Restrictions for IMS Checkpoint/Restart

The following restrictions apply to VISION:Builder applications using the IMS
Checkpoint facility:

m Sorting and report output operations must be run as separate job steps.
One-step processing if sorting or report output is specified should be avoided.

m VISION:Builder programs using own-code or GDBI (mapping requests) can
take checkpoints and try restarts but only at the user's risk. Successful restart
might require changes in the user's code or might even be impossible.

m No program data definition changes can be made before a program is
restarted. Minor program logic changes can be made but these changes must
not create any additional temporary fields (either default or explicitly
defined), change the order of any defined fields (temporary fields or fields
defined using an FD statement), reference new flag fields, or affect the number
of files or the sequence in which they are accessed.

If a data definition change is detected during restart, VISION:Builder
terminates. Note, however, that not all illegal program data definition changes
are detected and, in this case, run results are unpredictable.

m Any program which creates a new IMS or VSAM database (using MANEW or
M4SUBEFn) is not eligible for Checkpoint/Restart.

m VSAM files can only be used as indexed coordinated files.

m Packed files (record format of P in the file definition) cannot be used by the
VISION:Builder program for Checkpoint/Restart.

Checkpoint/Restart 6-15

IMS Checkpoint/Restart

IMS Checkpoints with DB2

The IMS checkpoint facility can be used with VISION:Builder in runs using DB2
files with or without any IMS files. When DB?2 files are used and VISION:Builder
is running in an IMS batch region, the sample JCL shown in Figure 6-11 must be
used in place of the sample JCL shown in Figure 6-7 on page 6-11. Likewise, the
restart JCL shown in Figure 6-8 on page 6-12 must be changed in a manner
consistent with that shown in Figure 6-11 when performing an IMS restart while
VISION:Builder is running in an IMS batch region. In the case where
VISION:Builder is running in a BMP region, no JCL change is required, regardless
of whether or not any DB2 files are used.

//imsckpt JOB (accounting information)
//*

//IMSDLI PROC MBR=TEMPNAME, PSB=,BUF=7,

// SPIE=0, TEST=0, EXCPVR=0, RST=0, PRLD=,
// SRCH=0, CKPTID=, MON=N, LOGA=0, FMTO=T,
// IMSID=, SWAP=, DBRC=, IRLM=, IRLMNM=, BKO=N
//GO EXEC PGM=DFSRRC00,
// PARM= (DLI, &MBR, &PSB, &BUF,
// &SPIE&TEST&EXCPVR&RST, &PRLD,
// &SRCH, &CKPTID, &MON, &LOGA, &§FMTO,
// &IMSID, &SWAP, §DBRC, &IRLM, & IRLMNM, &BKO)
// PEND
//*
//M4P EXEC IMSDLI,MBR=DSNMTV01, PSB=yourpsb, REGION=1500K
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
// DD DSN=your.builder.loadlib, DISP=SHR
// DD DSN=your.comlib.loadlib, DISP=SHR
// DD DSN=your.db2.loadlib, DISP=SHR
//DFSRESLB DD DSN=IMSVS.RESLIB,DISP=SHR
//IMS DD DSN=your.psblib, DISP=SHR
DD DSN=your.dbdlib, DISP=SHR
//IEFRDER DD DSN=your.chkl.imslog, DISP=(NEW, CATLG),
UNIT=SYSDA, SPACE=(TRK, (5,2) ,RLSE),
// DCB= (RECFM=VB, BLKSIZE=1920, LRECL=1916, BUFNO=2)
//DDITV02 DD *

ssid, SYS1,DSNMIN1O, ,R,-,DLIBATCH, yourplan, MARKDLIX

//DDOTV02 DD UNIT=SYSDA,DISP=(NEW,PASS), SPACE=(TRK, (1,1)),
DCB= (RECFM=VB, LRECL=4092, BLKSIZE=4096)

//MALIB DD DSN=your.m4lib,DISP=SHR

//MALIST DD DSN=your.gsam.mé4list,DISP=(NEW, CATLG),

// UNIT=SYSDA, SPACE=(TRK, (10, 5) ,RLSE)

/ /MAREPO DD DSN=your.gsam.mé4repo, DISP=(NEW, CATLG),

// UNIT=SYSDA, SPACE=(TRK, (10,5),RLSE) (DCB deliberately omitted)

/ /M4SORT DD UNIT=SYSDA,DISP=(NEW, PASS), SPACE=(TRK, 1)

//MAINPUT DD DSN=your.builder.program, DISP=SHR

//database DD DSN=your.ims.database, DISP=SHR

//*

//GENER EXEC
//SYSPRINT DD

//SYSUT1 DD
//SYSUT2 DD
//SYSIN DD
//*

//SORT EXEC
//SYSOUT DD
//SORTIN DD
//SORTOUT DD
//

//SORTWKO1 DD
//SORTWK02 DD
//SORTWKO3 DD
//SYSIN DD
//*

//M4R EXEC
//STEPLIB DD
// DD
//M4LIST DD
Figure 6-11

PGM=IEBGENER, COND=EVEN

DUMMY

DSN=* ,M4P.GO.M4LIST, DISP=0LD

SYSOUT=*, DCB= (RECFM=FA, LRECL=133, BLKSIZE=133)
DUMMY

PGM=SORT, REGION=1500K, COND= (0, NE, M4P . GO)
SYSOUT=*

DSN=* .M4P,GO.M4REPO, DISP=0LD

UNIT=SYSDA, DISP=(NEW, PASS),
SPACE= (TRK, (10,5),RLSE)

UNIT=SYSDA, SPACE=(CYL, (1,1))
UNIT=SYSDA, SPACE=(CYL, (1,1))
UNIT=SYSDA, SPACE= (CYL, (1,1))

DSN=* . M4P.GO.M4SORT, DISP= (OLD, DELETE)

(DCB deliberately omitted)

PGM=MARKIV, REGION=1536K, COND= (0, NE,M4P.GO)
DSN=your.builder.loadlib, DISP=SHR
DSN=your.comlib.loadlib, DISP=SHR

SYSOUT=*

IMS Checkpoints with DB2 in a Batch Region (Page 1 of 2)

6-16 Environment Guide

IMS Checkpoint/Restart

//M4REPT DD
//MAINPUT DD
//*

//DB2LST EXEC
//STEPLIB DD
//SYSPRINT DD
//SYSUT1 DD
//SYSIN DD
CONTROL CNTL
OPTION PRINT
//

Figure 6-11

DSN=*. SORT. SORTOUT, DISP= (OLD, DELETE)
DSN=your.builder.run.control.stmt, DISP=SHR

PGM=DFSERA10, COND=EVEN
DSN=IMSVS.RESLIB, DISP=SHR

SYSOUT=*

DSN=* ,M4P.GO.DDOTV02, DISP=(OLD, DELETE)
*

K=000,H=8000

IMS Checkpoints with DB2 in a Batch Region (Page 2 of 2)

Checkpoint/Restart

6-17

Chapter

Batch Query Language Execution

7

Query Language Input and Output Files

The Query Language accepts input from a statement image file on tape or disk. All
files except SYSPRINT must contain 80-byte fixed length unblocked records.
SYSPRINT contains 121-byte fixed length unblocked records. If a COPY command
is entered, input can also be obtained from the file specified in the command.

Certain Query Language command statements such as USE, LIST, or SORT are
automatically saved in the $SOURCE file. They can also be saved in other files

specified in a RETAIN command. The $SOURCE file is available to you on exit
from the Query Language processor (BQL).

The $QUERY file contains the VISION:Builder source statements generated by the
Query Language processor for the request(s), if any.

The $GLOSS file contains the VISION:Builder specifications required to obtain a
glossary, if one was specified.

Both $QUERY and $GLOSS files are available to you on exit from the Query
Language processor. These files are normally used to execute the actual requests
to produce reports or glossaries.

The $TEMP file is a temporary work file generated during preparation of the
$QUERY file.

Batch Query Language Execution 7-1

Steps in the Execution of the Batch Query Language

Figure 7-1 shows these I/O files of the Query Language and their relationship to
the subsequent VISION:Builder steps. For more information on VISION:Builder
steps, job steps, and I/ O data files, refer to the VISION:Builder for z/OS Reference

Guide.

INPUT DATA FILES
f’—_*4444444——//A\\~_;4444444_~‘\

(oo { G (o

N

M4SUBFO e}
MAREPQ H SORT '—b(M4REP1 eb

v v v ¥ v l

(ol fabf| (e | (Z) (2ol (2] (ol (metl f=7 =
OUTPUT DATA FILES Repor I 255
e

(e

o (A

Delérll;;ion (MAL 1B

b~

I

4

Progessin Re, arl n
Slep 9 p ing

N

il
|

o
S
Do E
Sag
2rs 2
=<
Se

Figure 7-1 Batch Query Language Job-Step Flow and Input/Output Files

Steps in the Execution of the Batch Query Language

This section describes the job steps used for Query Language runs. The QL
procedure consists of six steps: QLM, GLS, PRO, DEF, SRT, and REP, as shown in
Figure 7-2 on page 7-3. These six job steps make up a complete Query Language
job stream. This job stream provides a successful execution of all functional
capabilities of the Query Language. Once the job stream is available, you can
control the execution based on the kind of query you enter.

The z/OS versions of the Query Language use operating system return codes to
control the execution of the job steps. These job steps are described in the following
subsections and the names used correspond to the step names shown in the sample
JCL procedure (Figure 7-2).

7-2 Environment Guide

Steps in the Execution of the Batch Query Language

Query Step

The query (QLM) step reads the input QL statements and generates up to four
output files:

m $SOURCE contains a copy of the QL input statements.

m $TEMP is a temporary work file.

m $QUERY contains the VISION:Builder source statements generated for the
request(s), if any. This file is the M4INPUT file in the PRO (processing) step.

m $GLOSS contains the VISION:Builder source statements needed to obtain a
glossary, if one was requested. This file is the M4INPUT file in the GLS
(glossary) step.

The QLM step return codes indicate which of the other five Query Language steps
in Figure 7-2 are to be executed:

B~ W NN =R O

130
140

150

PRO

GLS, PRO

PRO, DEF

GLS, PRO, DEF

GLS

None; a start before END statement or START after query error.

None; either there were too many continuation statements, there was no
START command, or there was an error in compilation.

None; the QUIT command was entered.

Only the above return codes are valid from the QLM step.

A return code of 0 from the execution of the PRO step indicates that the SRT and
REP steps should be executed.

A return code of 8 from the execution of the PRO step indicates that the SRT and
REP steps are not to be executed.

//MAQUERY PROC MA4LIB='MARKIV.QUERY.M4LIB', M4LIB DSNAME

// OLDMAST=NULLFILE, M40OLD DSNAME

// NEWMAST=NULLFILE, NEWUNIT=, NEWVOL=, MANEW INFO

// TRANS=NULLFILE, CORDONE=NULLFILE, MATRAN/MACORD1 DSN'S
// SUBONE=NULLFILE, SF1UNIT=, SF1VOL=, M4SUBF1 INFO

// SUBTWO=NULLFILE, SF2UNIT=, SF2VOL= MASUBF2 INFO

//*

//QLM EXEC PGM=BQL,REGION=100K

//$QUERY DD DSN=&&QUERY, UNIT=SYSDA,DISP=(,PASS),

DCB= (BLKSIZE=80, LRECL=80, RECFM=F) , SPACE= (TRK, (2,1))

//
//$SOURCE DD DSN=&&SOURCE, UNIT=SYSDA, DISP=(, PASS),
//

//$TEMP
//

DCB= (BLKSIZE=80, LRECL=80, RECEM=F) , SPACE=(TRK, (2,1))
DD UNIT=SYSDA,SPACE=(TRK, (2,1)),
DCB= (BLKSIZE=80, LRECL=80, RECFM=F)

//$GLOSS DD DSN=&&GLOSS, UNIT=SYSDA, DISP=(, PASS),
//

DCB= (BLKSIZE=80, LRECL=80, RECFM=F) , SPACE=(TRK, 1)

Figure 7-2 Sample JCL Procedure for a Query Language Run Under z/OS

(Page 1 of 2)

Batch Query Language Execution 7-3

Steps in the Execution of the Batch Query Language

Glossary Step

//SYSPRINT DD
A

//GLS EXEC
//

//MALIB DD
//MAINPUT DD
//M4LIST DD
//*

//PRO EXEC
//MALIB DD
//M4INPUT DD
//M40LD DD
/ /MANEW DD
//

//MATRAN DD
//MACORD1 DD
//M4SUBFO DD
//MASUBF1 DD
//MASUBF2 DD
//MAREPO DD
//

//M4SORT DD
//M4LIST DD
//*

/ /DEF EXEC
//

//MALIB DD
//MAINPUT DD
//M4LIST DD
//*

//SRT EXEC
//

//SORTIN DD
//SORTOUT DD
//

//SORTLIB DD
//SORTWKO1 DD
//SORTWK02 DD
//SORTWKO3 DD
//

//SYSIN DD
//SYSOUT DD
//*

//REP EXEC
//

//M4INPUT DD
//MALIST DD
//M4REPI DD
Figure 7-2

SYSOUT=A

PGM=MARKIV, REGION=1536K,

COND=((0,EQ, OLM) , (2,EQ, QLM), (4,LT,QLM))
DSN=&MALIB, DISP=SHR
DSN=*.QLM. $GLOSS, DISP= (OLD, DELETE)
SYSOUT=A

PGM=MARKIV, REGION=1536K, COND= (4, LE, QLM)
DSN=6M4LIB, DISP=SHR

DSN=* ,QLM. $QUERY, DISP= (OLD, PASS)

DSN=&0LDMAST, DISP=SHR
DSN=6NEWMAST, DISP= (NEW, PASS, DELETE) ,
UNIT=6NEWUNIT, VOL=SER=&NEWVOL, SPACE= (TRK, (5, 5))
DSN=&TRANS, DISP=SHR

DSN=&CORDONE, DISP=SHR
DSN=6&M4SUBFO, UNIT=SYSDA, DISP=(, PASS) , SPACE= (TRK, 1)
DSN=&SUBONE . DISP= (NEW, PASS . DELETE) ,
UNIT=&SF1UNIT.VOL=SER=&SF1VOL, SPACE= (TRK, (5,5))
DSN=&SUBTWO, DISP= (NEW, PASS, DELETE) ,

UNIT=&SF2UNIT, VOL=SER=&SF2VOL, SPACE= (TRK, (5,5))
DSN=&&REPO, DISP= (NEW, PASS) , UNIT=SYSDA,
SPACE= (TRK, (40,40))
DSN=&&M4SORT, UNIT=SYSDA, DISP=(, PASS) , SPACE= (TRK, 1)
SYSOUT=A

PGM=MARKIV, REGION=1536K,

COND=((4,EQ, PRO), (8,LT,PRO), (2,GT,QLM), (3,LT,QLM))
DSN=6M4LIB, DISP=SHR

DSN=*, PRO.M4SUBF0, DISP= (OLD, DELETE)

SYSOUT=A

PGM=SORT, PARM="CORE=MAX, MSG=AP"' , REGION=100K,
COND= ((0,NE, PRO) , (4,LE, QLM))

DSN=* . PRO.M4REPO, DISP= (OLD, PASS)

DSN=* . PRO.M4REPO, DISP= (OLD, PASS) , UNIT=SYSDA,
VOL=REF=* . SORTIN

DSN=SYS1.SORTLIB, DISP=SHR

SPACE=(CYL, 5, , CONTIG) , UNIT=(SYSDA, SEP=SORTIN)
SPACE=(CYL, 5, , CONTIG) , UNIT=(SYSDA, SEP=SORTWK01)
SPACE=(CYL, 5, , CONTIG) ,
UNIT=(SYSDA, SEP= (SORTWKO1, SORTWKO2))

DSN=* . PRO.M4SORT, DISP= (OLD, DELETE)

SYSOUT=A

PGM=MARKIV, REGION=1536K,

COND=((0, NE, PRO), (4,LE,QLM), (16,LE, SRT))
DSN=MARKIV, REPORT .RCCARD, DISP=SHR
SYSOUT=A

DSN=*, SRT.SORTOUT, DISP= (OLD, DELETE)

Sample JCL Procedure for a Query Language Run Under z/OS
(Page 2 of 2)

The glossary (GLS) step is a common library definition run to obtain a glossary
from the specified library. This step is executed only if the GLOSSARY command
was entered in the query language input. The M4INPUT file to this step is the
$GLOSS file generated in the preceding QLM step. Output goes to M4LIST.

The only valid return code for the GLS step is 0. Any other return codes indicate
the step failed.

7-4 Environment Guide

Steps in the Execution of the Batch Query Language

Processing Step

Definition Step

The processing (PRO) step is the VISION:Builder processing step. This step is not
executed if only a glossary was requested; otherwise, it uses as MAINPUT the
$QUERY file generated in the previous QLM step. It may read an old master file.

(M4OLD), a transaction file (M4TRAN),9 and up to three coordinated files

(M4CORDn). It may output a new master file (M4NEW)9 and up to six subfiles
(M4SUBF1 through M4SUBF5 and M4SUBFO0).

If a file definition is requested for a subfile (M4SUBF1 through M4SUBES), a
M4SUBEFO file is output from this step. This file contains the necessary file
definition statements and is the M4INPUT file to the DEF step.

If no sort is required and only one request is specified, the PRO step also generates
the required report, which is output to M4LIST. Otherwise, the SRT and REP steps
must be executed to do the sort and report.

The default DISP parameter for the VISION:Builder output files (M4NEW,@
M4SUBFn) is DISP=(,PASS, DELETE). Note that if these data sets are not kept by a
later step, they are passed off the end of the job and deleted. The default DISP

parameter for the VISION:Builder input files (M4OLD, MA4TRAN,® M4CORDn) is
DISP=SHR.

Valid return codes for the PRO run are 0 and 8. A return code of 0 from the PRO
step indicates the SRT and REP steps are required; a return code of 8 indicates no

separate SRT/REP steps are required. Any other return codes indicate the step
failed.

The definition (DEF) step is a common library definition run. It is executed only if
a file definition for M4SUBFn was requested in the Query Language SAVE
command. The M4INPUT to this step is the M4SUBFO generated in the preceding
PRO step. Output goes to M4LIST.

If the save library (M4LIB) does not already exist, it must be initialized prior to
execution of this step.

The only valid return code for the DEF step is 0. Any other return codes indicate
the step failed.

Batch Query Language Execution 7-5

Sample Execution of Batch Query Language

Sort Step
The sort (SRT) step sorts the MAREPO report file output from the PRO step. This
step is executed only if you specify a sort or generate more than one
VISION:Builder request.
The only valid return code for the SRT step is 0. Any other return codes indicate
the step failed.

Report Step

The report (REP) step is a VISION:Builder report step that outputs the required
report(s) to M4ALIST. This step is executed only if the preceding SRT step was
executed.

The only valid return code for the REP step is 0. Any other return codes indicate
the step failed.

Sample Execution of Batich Query Language

This section contains a part of the sample JCL used for a batch Query Language
run, Query Language input for a report, and the resulting output report. The
sample JCL and input are shown in Figure 7-3 and the output report is shown in

Figure 7-4.

//sample JOB (accounting information),programrer, TIVE=(, time),
// REGION=1536K
/4(

//JOBLIB DD DSN=VARKIV. DEVEL. ATMSLORD, DISP=SHR
*

//QLRIN EXEC PQYEBQL, REGION=70K
//STEPLIB DD DSN=VRRKTV.ONLINE.IORD, DISP=SHR
//$SOURCE DD DSN=&&SOURCE, UNIT=SYSDA, DISP=(, PASS) , SPACE= (TRK, (2,1)),
// DCB= (BLKSIZE=80, LRECL~80, RECFM=F)
//SQUERY DD DSN=&&QUERY, UNIT=SYSDA, DISP=(, PASS) , SPACE=(TRK, (2,1)),
/] DCB= (BLKSIZE=80, LRECL=80, RECEM=F)
//$TEMP DD DSN=&&TEMP, UNIT=SYSDA, DISP=(, PASS) , SPACE=(TRK, (2,1)),
/] DCB= (BLKSIZE=80, LRECL~80, RECEM=F)
//$GLOSS DD DUMMY, DCB= (RECEM=F, LRECL~80, BLKSIZE=80)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
USE OLD LIB
FNAVE, CASEPROB
EQUATE MINBAI='MIN-BAL' PARTNO = 'PART-NO'
IET T.TOTAL~QANONHND+QANONORD
IET T.SHORT=MINBAL-T.TOTAL WHERE MINBALT>TOTAL
LIST PARTNO DESCRIPT QANONHND QANONORD MINBAL T.SHORT
WHERE MINBAL GT T.TOTAL
SORT PARTNO
COUNT PARTNO
TITIE 'SHORT ITEM REPCRT#'
FORVAT DATEF=A =B
END ; START
//MARON ~ EXEC PQEMARKTV,COND= (4,LE, QLRUN) , REGION=196K
//MALIB DD DSN=DSG.TRAINL.M4LIB, DISP=SHR
//M4OLD DD DSN=PSOTRAN.EFFARRH.MAIN, DISP=SHR
//MALIST DD SYSOUT=A
//MAREPO DD DSN=6MAREPO, DISP=(, PASS) , UNIT=SYSDA, SPACE= (CYL, (2,1,) ,RLSE) (DCB deliberately omitted)

Figure 7-3 Sample JCL Procedure and Batch Query Language Input
Statements (Page 1 of 2)

7-6 Environment Guide

Sample Execution of Batch Query Language

/ /MASCRT
/ /MATNPUT
/ /MASCRT
//
//SORTIN
//SORTOUT

DD DSN=6MASORT, DISP=(, PASS) , UNIT=SYSDA, SPACE=(TRK, 1)
DD DSN=&QUERY, DISP=(OLD, DELETE)
EXEC PQYESORT, COND=((4, LE, QLRUN) , (4, IE,MARIN)) ,
PARM="MSG=AP, COREAVRX ', REGION=100K
DD DSN=§MARERO, DISP= (OLD, DELETE)
DD DSN=§MAREPT, DISP=(, PASS) , SPACE= (CYL, (2, 1) ,RLSE)
DCB= (RECEMVB, LRECL=1020, BLKSIZE=1024) , UNIT=SYSDA

1l

//SORTWKOL DD SPACE=(CYL, 5, , CONTIG) , UNIT= (SYSDA, SEP=SORTIN)
//SORTWK02 DD SPACE=(CYL, 5, , CONTIG) , UNIT= (SYSDA, SEP=SORTWKO1)
//SORTWKO3 DD UNIT=SYSDA, SPACE=(CYL, 5, , CONTIG)

//SORTLIB DD DSN=SYS1.SORTLIB, DISP=SHR

//SYSOUT DD DUMMY

//SYSIN DD DSN=&MA4SORT, DISP=(OLD, DELETE)

/ /MARPT EXEC PQEMARKIV, REGION=170K,

// COND= ((4, IE,QLRUN) , (4,1E,M4RIN), (16, LE, MASORT))

//MALIST DD SYSOUT=A

//MAREPT DD DSN=6MAREPI, DISP= (OLD, DELETE, KEEP)

//MAINPUT DD *

MAREPORTRCD S

//

Figure 7-3 Sample JCL Procedure and Batch Query Language Input

Statements (Page 2 of 2)

JBN 15, 1995 SHORT ITEM REPORT PAGE 1
PART PRRT DESCRIPTION QUANTITY QUANTITY MINIMUM SHORT
NUMBER ON HAND ON CRDER BALANCE
10020 WIDGET DIGITS 30 60 30
10040 WRENCH WIDGETS 15 25 10
10050 HOLLOW WIDGETS 40 40
10060 GIRL WIDGITS 25 25 80 30
10070 BOY WIDGITS 80 80
10090 YELIOW WIDGITS 90 90
10100 GREEN WIDGITS 80 80
10110 STEERING WIDGITS 70 70
10130 WIDGIT PILLS 200 200
10140 LIGGIT WIDGITS 18 945 1,800 837
10160 TALL WIDGITS 2,550 2,500
10180 MEDIUM SIZED WIDGITS 2,500 4,500 2,000
10190 IONG WIDGITS 4,790 5,500 710

10200 WIDE WIDGITS

GRAND COUNT 14

Figure 7-4

Sample Run Output Report

6,500 6,500

Batch Query Language Execution 7-7

Chapter

8

Batch Free-Form Input Execution

Job Control Language Requirements

VISION:Builder Batch Free-Form Input, which runs as a standard job step under
z/OS, requires one input data set and generates two output data sets. The
following table shows the ddnames for the three files used by this capability. All
three files have a fixed length record format and a logical record length of 80-bytes.
Figure 8-1 shows a typical z/OS job stream using this capability.

ddname

Description

M4FREE

Free-form source input statements.

M4INPUT

Fixed form VISION:Builder output statements. This file can be used
directly as a VISION:Builder source statement input file.

FREELIST

List of free-form source input statements and diagnostic messages.

Notes

//jobname JOB job card parameters

//JOBLIB DD DSN=your.builder.loadlib, DISP=SHR
1 //stepnaml EXEC PGM=FORMATER

//FREELIST DD SYSOUT=A

//MAINPUT DD UNIT=SYSDA,DISP=(,PASS),

//

SPACE=(TRK, (2,2),RLSE),
DCB=BLKSIZE=6160

//M4FREE DD *

(free-form source statements)

//stepnam?2 EXEC PGM=MARKIV,COND=(8,LE, stepnaml)
//M4INPUT DD DSN=*.stepnaml.M4INPUT,DISP=0LD

Figure 8-1

(remainder of standard VISION:Builder JCL)

A Sample z/OS Job Stream

Batch Free-Form Input Execution 8-1

Job Control Language Requirements

The numbered statement in Figure 8-1 is explained as follows:

Note Explanation

1 EXEC PGM=BFI can be used instead of EXEC PGM=FORMATER.

8-2 Environment Guide

Chapter

VISION:Builder Online Execution

9

Using the VISION:Builder Executive Under TSO

The VISION:Builder Online Executive (OLX) option combines the capabilities
provided by the IBM Time Sharing Option (TSO) for program execution with
VISION:Builder source input and formatted output. OLX acts as the monitor for
VISION:Builder online activity.

OLX includes the ability to access an online option of VISION:Builder: Online
Free-Form Input (OFI).

OFl is a comprehensive free-form language preprocessor that adapts
VISION:Builder to an online environment. OFI is discussed further in this chapter.

A VISION:Builder online session is initiated, after logging onto TSO, by entering
the MAEXEC command. M4EXEC calls the monitor program for execution. It also
makes the OLX commands and all their functions available to you. All TSO
commands except TEST are accessible while M4EXEC is active.

Input and Output Devices

You can use any input or output device available to standard VISION:Builder
batch operations; also, your terminal can be used as an I/O device. The terminal
can be used as an input file, for instance, to enter transaction data to update a
master file. Existing data sets, whether they were created online or in batch runs,
can be accessed by VISION:Builder. If your output is a report, the terminal can be
used as an output device. Through the use of TSO commands, the report can be
routed to your system printer.

VISION:Builder Online Execution 9-1

Using the VISION:Builder Executive Under TSO

Furnishing Allocation Data

The standard JCL used with the batch version of VISION:Builder is not required
with OLX. However, allocation specifications (such as DS names) must still be
furnished for all the files to be used during a VISION:Builder session. File
allocations can be supplied either through use of the TSO ALLOCATE command
or by the data set operands of the EDITIV (if OFl is used), RUNIV, LIB, and SUBIV
commands.

All VISION:Builder files allocated using the ALLOCATE command must be given
a file name that corresponds to the ddname shown in the table on page 9-2. If the
file has not been allocated, OLX prompts you for the data set name. Once you enter
the data set name, the file is automatically allocated. If you enter an asterisk (*) in
response to the prompt, the terminal becomes the file. If a null line is entered, the
file is allocated as a dummy file.

Description ddname VISION:Builder ddname
Assignments/Comments

Source Input M4INPUT Assigned to a standard 1/O device which is:
1. physical sequential.

2. Dblocked one or more 80-character records

per block.
Object Input M4OWN Must be a load module in a partitioned data set.
Source Listing MA4LIST Usually assigned to a printer, but can be any
and Reports data set that is:

1. physical sequential.

2. blocked one or more 133-character records
per block (or the MAPARAMS value).

Alternate List File M4LIST1 (or Any data set that is:
any unique . .
name) 1. physical sequential.

2. blocked one or more 133-character records

per block (or the MAPARAMS value).

Old Master In M4OLD A physical sequential, indexed sequential,
VSAM data set, or IMS database.

New Master Out M4NEW A physical sequential, indexed sequential,
VSAM data set, or IMS database.®

Transaction In MA4TRAN A physical sequential, indexed sequential,
VSAM data set, or IMS database.®

Audit FileOut ~ M4AUDIT A physical sequential dataset.®

9-2 Environment Guide

Using the VISION:Builder Executive Under TSO

Description ddname VISION:Builder ddname
Assignments/Comments

Report File Out M4REPO A physical sequential dataset.

Report File In M4REPI A physical sequential dataset.

Coordinated File M4CORDn A physical sequential, indexed sequential, or

n VSAM data set (n=1-9).

Subfile n M4SUBFn A physical sequential dataset (n=0-9).

Sort Control M4SORT Any data set which is:

1. physical sequential.
2. blocked one or more 80-character records
per block.

Common Library M4LIB A direct-access data set. DISP=SHR may be
specified on the DD statement for M4LIB; if this
is done, VISION:Builder will ensure the
integrity of the library.

Multiple common libraries are supported for
processing runs only. In this case, the ddname
is M4LIBn where n is a number 1-9.

Rejected M4REJCT Muyst be a physical sequential data set.®

Transaction File

Alternate Report M4REPn A physical sequential data set (n = 2-9).

File Out

Work File M4WORK A physical sequential data set.

Source Statement M4SSOUT Assigned to a standard I/O device that is:

Out . .

1. physical sequential.
2. blocked one or more 80-character records
per block.

Program M4PAOUT A physical sequential data set.

Analyzer

Checkpoint File M4CHKn A file containing checkpoint information (n =

1-2).

VISION:Builder Online Execution 9-3

Using the VISION:Builder Executive Under TSO

Using CLISTs

Description ddname VISION:Builder ddname
Assignments/Comments

Report Summary Any unique A physical sequential data set, blocked with
File name variable length records.

Report Manager M4PRINT Usually assigned to a printer, but can be any

Reports (or any data set that is:
unique . .
name) 1. physical sequential.

2. blocked one or more 133-character records
per block (or the MAPARAMS value).

The TSO EDIT command can be used to create a data set of TSO commands known
as a command list (CLIST). The TSO EXEC command is used to call the CLIST into
main storage for execution. Each command in the data set is executed in the
sequence where it occurs in the CLIST. The CLIST can be composed of any valid
combination of TSO and OLX commands plus data lines.

Messages Issued By OLX

OLX provides the following types of messages:

m prompting m information m error

OLX prompting messages are similar to TSO prompting messages. Information
messages include all messages that are issued at your request plus all messages
that are issued by the system and which expect no response. Error messages
include the initial indication of the error.

9-4 Environment Guide

OLX Commands

OLX Commands

You communicate with OLX through the use of commands for OLX to perform
certain functions. These commands are:

Command Description

EDITIV The EDITIV command calls in the OFI command processor.

END The END command terminates a VISION:Builder online session.

HELP The HELP command requests information about the other OLX
commands.

LIB The LIB command specifies the name of the common library and

the function that is to be performed upon it.

M4EXEC The M4EXEC command initiates a VISION:Builder online session
and makes the other OLX commands available for use.

QUIT The QUIT command terminates a VISION:Builder online session.
RUNIV The RUNIV command invokes VISION:Builder for execution.
SUBIV The SUBIV command controls VISION:Builder execution and

provides access to IMS databases.

Data Set and Command Security Interfaces

You can invoke data set security routines directly from the TSO Dynamic
Allocation Interface Routine (DAIR). Alternatively, you can perform security
checking on any data set thatis allocated by the RUNIV, SUBIV, EDITIV, M4EXEC,
and LIB functions of OLX through the use of a data set security exit routine that
you can alter.

The security exit routine allows you to check the data set names each time the
DAIR routine is called and to supply a return code to OLX indicating whether or
not the DAIR function is to be performed for the data set. It is, therefore, possible
to prevent access to designated data sets.

You can also implement command security procedures by using the OLX
command security exit. The command security exit routine, MAEXECCE, is called
by OLX before each command or implicit CLIST is invoked. MAEXECCE can
examine the command name and determine whether you are allowed to issue the
command. If you are not allowed to issue the command, OLX issues a message to
the terminal and terminates any active command or CLIST.

VISION:Builder Online Execution 9-5

Online Query Language

Online Query

Language

Online Query Language (OQL) is a Query Language preprocessor that generates
the VISION:Builder input statements to perform processing runs and is an
available option under the CMS operating system.

Online Free-Form Input

Online Free-Form Input (OFI) is a comprehensive free-form language
preprocessor for VISION:Builder that brings all of the VISION:Builder capabilities
to the terminal.

OFl is called by OLX through the EDITIV command. You remain in OFI until you
terminate the command processor by one of three commands: END, FILE, QUIT.

Input Mode and Edit Mode

Input of VISION:Bui

To create and edit stacks of data, OFI operates in either input or edit mode. If the
stack is identified as new, OFI automatically places itself in input mode after
printing the message NEWFILE. If the stack is previously filed, OFI places itself in
edit mode.

In the input mode, VISION:Builder source statements can be typed and entered by
pressing the carriage return key. The input mode is in effect until a null line is
entered. You can also switch to input mode by entering the command INPUT.

After entering a null line, OFI is in edit mode and informs you of the change in
mode by printing the message EDITIV. In the edit mode, you can enter any of the
OFI commands that point to particular lines of the stack, modify lines of data, add
or delete lines of data, or control editing of input.

Ider Source Statements

Input of VISION:Builder source statements to OFI is made field by field.
Identification of fields can be achieved in several ways:

m By specifying the keyword associated with a field.

m By using an abbreviated version of the keyword.

m By specifying the actual column position where the field begins in the
VISION:Builder fixed form.

m By using commas to delineate the fields' relative positions on the fixed format
form.

9-6 Environment Guide

Online Free-Form Input

OFI scans the input statement until the end of the statement is encountered and the
next input line is read. If the character preceding the end of line is a comma, OFI
considers the statement incomplete and the next input line is considered a
continuation of the previous line.

Figure 9-1 lists OFI keywords and their abbreviations for each VISION:Builder
form type.

AA

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -AA-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
SEQUENCE S TEXT T DECKID D
*REQUEST R

AD

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -AD-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
DELETE DEL GLOSSARY G FORMAT 0
RECSIZE RE BLKFACTR L BUFSIZE BU
ROWSIZE RO COLSIZE c DECKID DEC
*FILENAME FI

BA

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -BA-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
*FIELD FIE SRCHTYPE S TABLE. T
ARGUMENT A DECKID D *FILENAME FIL
BN

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -BN-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
*FIELD FIE HEADING H DECKID D
*FILENAME FIL

BO

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -BO-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
*FIELD FIE LOCATION LO LENGTH LE
TYPE T KEY K ROUND R
DPLACES DP EDFLOAT EDFL EDFIL EDFI
EDTRAIL EDT EDLENGTH EDL DECKID DE
*FILENAME FIL

Cp

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -CP-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
CKPTFILE CK ALTERNAT A SORT S
TIME T COUNT CoU CONTROL CON
OPERATOR 0] EOV E DECKID D
*RUNAME R CHECKID CH

CR

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -CR-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
DATE DA ID I DECKID DE
*REQUEST R

CT

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -CT-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
OPERATIO 0] NAME1 NAME1 NAME2 NAME2
NAME3 NAME3 NAME4 NAME4 NAMES NAMES
NAME6 NAME6 CONTINUE c DECKID D
REQGROUP R

Note: Keywords marked with an asterisk (*) are required.

Figure 9-1 Keywords Available for VISION:Builder Form Types (Page 1 of 4)

VISION:Builder Online Execution 9-7

Online Free-Form Input

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -EN-:

KEYWORD
SPACING
HEIGHT
MAXLINES
HEADTYPE
PAGEPOS
LABELS
SUBFILE
BORDER
SINGLETL
DECKID

ABBR.
SP

H
MAXL
HEADT
PAGEP
LA
SUB
BOR
ST

DE

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -ER-:

EN

KEYWORD ABBR.
SUMMARY SUM
WIDTH)
FORMS F
BOTTOM BOT
DATEPOS DA
LINENO LI
ENTIRE EN
RECFM REC
AUTOGRND AU
INVSUMID N
CONTINU C

ER

KEYWORD ABBR.
DATE DA
SELECT SEL
FORMS F
LINENO L
SETNAME SET
REINIT REI
*REQUEST REQ
FD

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
IDENT D
FORMAT FO
BUFSIZE BU
TERM T
*FILENAME FI

FN

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
SEQUENCE S
*REQUEST R

IT

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
GENERIC G
MASTER M
UPDATER U

LA

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
*FIELD FIE
TABLE T
*FILENAME FIL
Jn

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
*GRAPHTYP G
BARWIDTH BARW
FITCHAR F
VTACHAR VTA
*REQUEST R

Kn

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
*GRAPHMOD G
DELTA DEL
M

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
*NAME N
REQUEST R

LN

THE FOLLOWING KEYWORDS
KEYWORD ABBR.
*FIELD FIE
DECKID DEC

ARE

ARE

ARE

ARE

ARE

ARE

ARE

ARE

KEYWORD
ID
SUMMARY
WIDTH
TYPE
SCREEN
PARALOOP

AVAILABLE FOR
KEYWORD
DELETE
RECSIZE
MAPPED
MAPRECSZ

AVAILABLE FOR
KEYWORD
TEXT

AVAILABLE FOR
KEYWORD
TYPECODE
EXPDATE
DECKID

AVAILABLE FOR
KEYWORD
DELETE
ARGUMENT

AVAILABLE FOR
KEYWORD
SUPPRESS
PRMCHAR
HZACHAR
VTHCHAR

AVAILABLE FOR
KEYWORD
START
DECKID

AVAILABLE FOR
KEYWORD
DELETE
DECKID

AVAILABLE FOR
KEYWORD
DELETE
*FILENAME

FORM

FORM

FORM

FORM

FORM

FORM

FORM

FORM

ABBR.
I
SUM
)

T

SC

P

TYPE -FD-:
ABBR.

DEL

R

MAPP
MAPR

TYPE -FN-:
ABBR.
T

TYPE -IT-:
ABBR.

T

E

D

TYPE -LA-:
ABBR.

DEL

A

TYPE -Jn-:
ABBR.

SU

P

HZA

VTH

TYPE -Kn-:
ABBR.

S

DEC

TYPE -LM-:
ABBR.

DEL

DEC

TYPE -LN-:
ABBR.

DEL

IL

KEYWORD
P8LPI
IMAGES
MAXPAGES
HEADPOS
PAGENO
REPORT
BLOCK
EMPTYCTL
REPEATSB
*REQUEST

KEYWORD
MAXSEL
SPACING
HEIGHT
SPECIAL
BRANCH
DECKID

KEYWORD
GLOSSARY
BLKFACTR
INIT
DECKID

KEYWORD
DECKID

KEYWORD
ITEMNAME
PERIOD
RUNAME

KEYWORD
SRCHTYPE
DECKID

KEYWORD
BARTYPE
SCDCHAR
HZHCHAR
DECKID

KEYWORD
END
*REQUEST

KEYWORD
*COMMAND
*FILENAME

KEYWORD
HEADING

Note: Keywords marked with an asterisk (*) are required.

Figure 9-1

ABBR.
P8

M
MAXP
HEADP
PAGEN
REPO
BL

EM
REPE
REQ

ABBR.
SPA
SPE

DE

ABBR.
BL

IN
DEC

ABBR.

DEC

ABBR.
BART
SC
HZH

ABBR.

ABBR.

ABBR.

Keywords Available for VISION:Builder Form Types (Page 2 of 4)

9-8 Environment Guide

Online Free-Form Input

LS

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -LS-:

KEYWORD ABBR. KEYHORD ABBR. KEYWORD ABBR.
NAME N DELETE DEL SEGMENT S
LEVEL L ORDER 0 DECKID DEC
*FILENAME F

L0

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -LO-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
*FIELD FIE DELETE DEL SEGMENT S
LEVEL LEV LOCATION LO LENGTH LEN
TYPE T KEY K ROUND R
DPLACES DP COUNTSEG C OCCURS 0
EDFLOAT EDFL EDFILL EDFI EDTRAIL EDT
EDLENGTH EDL DECKID DEC *FILENAME FIL
ALIAS A

PA

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE —PA-:

KEYWORD ABBR. KEYHORD ABBR. KEYWORD ABBR.
CNVMSG C XREF X TRACE T
MAXTRACE M BLKSIZE B FORMAT F
DECKID D *RUNAME R

oc

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -OC-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
MODULE M INTERFAC IN IDENTIFY D
EXIT1 EXIT1 EXIT2 EXIT2 EXIT3 EXIT3
EXIT4 EXIT4 EXIT5 EXIT5 EXIT6 EXIT6
EXIT7 EXIT7 EXITS EXIT8 EXITY EXIT9
EXIT10 EXIT10 DECKID D *RUNAME R

PN

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -PN-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
SEQUENCE S TEXT T DECKID D
*REQUEST R

PR

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE —PR-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORDA ABBR.
SEQUENCE S LEVEL L CONNECTO C
AQUAL aQ AFIELD AF *OPERATOR 0
BOUAL BO BFIELD BF ROQUAL RO
RFIELD RF PSTART PS PNUMBER PN
POPERAND PO DECKID D *REQUEST RE
RC

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE —RC-:

KEYWORD ABBR. KEYWORD ABBR. KEYWORD ABBR.
FILENAME F OLDIN 0 NEWOUT® N
SEQUENCE SE RANDOM RA UPDATE® U
TRANFILE® T REPORT REP AUDIT® AU
BUFFERS B SORT SO DELIMIT DEL
SCAN sc SRCLIST SR SPOOL SP
REJECT® REJ COROPT C MSGOPT M
RPTOPT RP SSROUT SS APPLTYPE AP
START ST END E DECKID DEC
*RUNAME RU

RF

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -RF-:

KEYWORD ABBR. KEYHORD ABBR. KEYWORD ABBR.
*FILENAME F LABEL L DDNAME DD
KEY1 KEY1 KEY2 KEY2 KEY3 KEY3
ICF I CRD C DBI DB
MODULE M ARRAY A STORAGE S
PASSWORD P DECKID DE *RUNAME R

Note: Keywords marked with an asterisk (*) are required.

Figure 9-1 Keywords Available for VISION:Builder Form Types (Page 3 of 4)

VISION:Builder Online Execution 9-9

Online Free-Form Input

RG®

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -RG-:

KEYWORD ABBR. KEYHORD ABBR. KEYHORD ABBR.
GROUP1 GROUP1 GROUP2 GROUP2 GROUP3 GROUP3
GROUP4 GROUP4 GROUP5 GROUP5 DECKID D
*RUNAME R

RN

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -RN-:

KEYWORD ABER. KEYWORD ABBR. KEYWORD ABBR.
SEQUENCE SE SPACES SP QUAL 0
*FIELD F ENDLINE EN NONPRINT N
SORT) DESCEND DES CONTROL CON
SUBTITLE Su TOTAL T CUMULATE cu
COUNT cou MAXIMUM MA MINIMUM MI
AVERAGE A GRAPHMOD G DPLACES DP
PRQUAL PRQ PRFIELD PRF RATIO RA
PERCENT PE EDIT ED PSTART PS
PNUMBER PN DECKID DEC *REQUEST RE
RP

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -RP-:

KEYWORD ABER. KEYWORD ABBR. KEYWORD ABBR.
*PNAME PN PVALUE PV DECKID D
*RUNAME R

TB

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -TB-:

KEYWORD ABER. KEYWORD ABBR. KEYWORD ABBR.
TYPE TY DELETE DEL PRINT P
ALENGTH AL ATYPE AT ADPLACES AD
RLENGTH RL RTYPE RT RDPLACES D
DECKID DEC *TABLE TA

D%

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -TD-:

KEYWORD ABER. KEYWORD ABBR. KEYWORD ABBR.
D1 D1 Locl LOC1 LEN1 LEN1
D2 D2 LOC2 LOC2 LEN2 LEN2
DELETE DEL GLOSSARY GL *MASTER M
CREATE C INSERT IN FORMAT F
RECSIZE R BLKFACTR BL BUFSIZE BU
DECKID DEC *GROUP GR

TR

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -TE-:

KEYWORD ABBR. KEYHORD ABBR. KEYHORD ABBR.
CONTINUE C DELETE DEL ARGUMENT A
RESULT R DECKID DEC *TABLE T

TF

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -TF-:

KEYWORD ABBR. KEYWORD ABBR. KEYHORD ABBR.
*FIELD F LENGTH L TYPE T
DPLACES DP EDFLOAT EDFL EDFILL EDFI
EDTRAIL EDT EDLENGTH EDL INITIAL I
HEADING1 HEADING1 HEADING2 HEADING2 DECKID DE
*REQUEST R

L@

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -TL-:

KEYWORD ABBR. KEYHORD ABBR. KEYHORD ABBR.
D1 D1 D2 D2 DELETE DEL
*LOCATION LO *LENGTH LE TYPE T
*NAME N *ACTION A DPLACES DP
MINIMUM MI MAXTMUM MA PATTERN P
VALIDTYP v DECKID DEC *GROUP G

TN

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -TN-:

KEYWORD ABBR. KEYWORD ABBR. KEYHORD ABBR.
SEQUENCE S TEXT T DECKID D
*REQUEST R

uc

THE FOLLOWING KEYWORDS ARE AVAILABLE FOR FORM TYPE -UC-:

KEYWORD ABER. KEYWORD ABBR. KEYWORD ABBR.
OPCODE 0 GENERIC G TYPECODE T
ITEMNAME M MASTER M DDNAME DD
REPLACE RE RULE RUL BLOCKING B
PURGE P DECKID DE RUNAME RUN

Note: Keywords marked with an asterisk (*) are required.

Figure 9-1 Keywords Available for VISION:Builder Form Types (Page 4 of 4)

9-10 Environment Guide

Online Free-Form Input

OFI Commands

The following table lists OFI commands, the minimum abbreviation that can be
used, and a summary of the command function, in alphabetical order.

Command Abbreviation Function

AGAIN A Reuses previous LOCATE or FIND command.

ALTER A Alters contents of a field.

BOTTOM B Moves pointer to last line.

BRIEF BR Limits system printed responses.

CHANGE C Modifies contents of a line.

DELETE DE Deletes lines from stack.

DOWN D Moves pointer down.

END E Terminates OFI.

FILE FILE Writes stack and terminates OFI.

FIND F Finds a line in stack.

GET GE Inserts saved lines in data set.

GLOSSARY GL Lists valid field names for specified file.

HELP H Lists information about OF] commands.

INPUT I Places OFI in input mode.

INSERT I Inserts line of data.

KEYWORD K Lists keywords for a given VISION:Builder
form.

LINENO LI Prints current line number.

LIST LIST Prints current line.

LOCATE L Locates a line.

NEXT N Moves pointer down.

PRINT P Prints lines from stack.

PUT PUT Stores lines in a temporary buffer.

PUTD PUTD Stores deleted lines in a temporary buffer.

QUIT Q Terminates OFI.

REPLACE R Replaces line.

VISION:Builder Online Execution 9-11

Online Free-Form Input

Command Abbreviation Function

SAVE SAVE Writes stack.

SCAN sC Scans stack for errors.

TOP T Moves pointer to top of stack.

upP U Moves pointer up.

USE us Specifies VISION:Builder file definition to
validate field names.

VERIFY \Y% Revokes BRIEF command.

? ? Prints additional information.

Sample Run

Figure 9-2 illustrates an example of VISION:Builder free-form language. The
example starts from the point when OLX is invoked and goes through each step
until the request is filled.

méexec
BEGIN MARKIV SESSION - 10/15/92 17.57.36
MARKIV: editiv
NEWFILE.
INPUT:
rc run=demorun, file=caseprob,oldin=s, report=s
er request=demoreq, date=today,width=c
pr af=ganonord,+,,ganonhnd, t, total
pr afield=min-bal, operator=gt,bqual=t,bfield=total
pr af=min-bal,,t,short,t,short
rl f=partno,sort=1, count=g
rl f=descript
rl f=ganonhnd
rl f=ganonord
rl f=minbal
rl g=t,short
tl text='short item report#'

EDITIV

file

SORTED

ENTER SAVE DATASET NAME:
job

FILED

MARKIV:

Figure 9-2 VISION:Builder Free-Form Input Sample

9-12 Environment Guide

Online Free-Form Input

The output of this request is shown in Figure 9-3.

JAN 15, 1995 SHORT ITEM REPCRT PAGE 1

PART PART DESCRIPTION QUANTITY QUANTITY MINIMM SHORT
NUMBER ON HAND ~ ON CRDER BAIANCE

10020 WIDGET DIGITS 30 60 30
10040 WRENCH WIDGETS 15 25 10
10050 HOLLOW WIDGETS 40 40
10060 GIRL WIDGITS 25 25 80 30
10070 BOY WIDGITS 80 80
10090 YELLOW WIDGITS 90 90
10100 GREEN WIDGITS 80 80
10110 STEERING WIDGITS 70 70
10130 WIDGIT PILLS 200 200
10140 LIGGIT WIDGITS 945 1,800 837
10160 TALL WIDGITS 2,50 2,500
10180 MEDIUM SIZED WIDGITS 2,500 4,500 2,000
10190 LONG WIDGITS 4,790 5,500 710
10200 WIDE WIDGITS 6,500 6,500

GRAND COUNT 14

Figure 9-3

Sample Report Run

VISION:Builder Online Execution 9-13

Chapter

Operating Characteristics

10

JCL Override Parameters

You can override the record format, buffering techniques, buffer or block size, and
record size indicated on the VISION:Builder file or transaction definitions. The
override specifications are made in the DCB subparameters of the DD statement
according to the following rules. However, override specifications for the common
library (M4LIB) are not valid and are ignored if used. The block size must match
M4PARAMS or an ABEND may occur. In the three-step processing run, the
M4PARAMS value is used regardless. The number of buffers can be overridden
for all files.

Note: The DCB should always be omitted from M4REPO, SORTIN, SORTOUT,
and M4REPI.

Rule 1

The logical record size (LRECL) can be overridden for F or V formats. If the format
on the file definition is F and the record size does not agree with the size in the FD
or TD statement, a message is issued. If the format is V on the file definition and
the LRECL from the header label /DD statement is smaller than the record size+4
on the glossary, a warning message is issued. The override size is accepted.

The logical record size (LRECL) cannot be overridden for report files (M4REPO,
M4REPI, M4REPn).

Rule 2

The block size (BLKSIZE) can be overridden for all file types.

If block size is overridden for fixed length files (VISION:Builder F and I formats),
it is checked for being an integral multiple of LRECL. If it is not, a message is
printed and the job is terminated.

If block size (buffer size) is overridden for variable length files (V format in
VISION:Builder), it is checked for being at least 4-bytes greater than LRECL. If the
block size is less than LRECL+4, the block size is adjusted to LRECL+4.

Operating Characteristics 10-1

JCL Override Parameters

Example 1

Example 2

The block size specified for report files (M4REPO, M4REPI, M4REPn) must never
be smaller than the block size specified in MAPARAMS.

If you are running under an z/OS system that supports the system-determined
block size capability, you can override the block size for output files that qualify
for this capability. An override to a non-zero value turns the capability off for this
file and sets the block size to the specified value. An override to a zero value or not
specifying a block size at all, turns the capability on for this file and the system will
determine an appropriate block size.

Rule 3

Any specification in the record format (RECFM) field can be overridden, except the
actual record format (first entry). Therefore, the main function of the RECFM
override is to specify the B code (blocking) and S code (standard or spanned)
blocks. If the RECFM code is supplied, the complete format must be supplied (for
example, FBS).

In an FD statement, the following is specified:
s RECORDS PER BLOCK 2

m RECORD SIZE 100

s RECORD FORMAT F

This results in VISION:Builder assigning:

RECFM = FBS (VISION:Builder assumes standard blocks.)

In an FD statement, the following is specified:
s RECORD FORMAT V
m BUFFERSIZE 5000

This results in VISION:Builder assigning:

RECFM=VB

If you want to process a file with spanned records, specify:
RECFM=VBS

This extension does not relieve you of the responsibility for entering a reasonable
value of buffer size on the FD or TD forms.

10-2 Environment Guide

Concatenation of Input Data Sets

Rule 4

The number of buffers (BUFNO) can be overridden for all files.

Rule 5

Optional services (OPTCD) can be specified within z/OS system restrictions.

Concatenation of Input Data Sets

You can concatenate like or unlike sequential input or update-in-place data sets for
processing by VISION:Builder (refer to the IBM MVS Data Management Services
Guide for information regarding the definition of unlike concatenated data sets).
When processing a concatenated data set with VISION:Builder, the following rules
apply to the data sets specified on the second through last DD statements of the
concatenation. If any one of these rules is violated, the run is terminated.

Note: Alternate report files each require their own sort and report steps.

Rule 1

The actual record format (types F, V, U) must be the same as that of the first data
set in the concatenation.

Rule 2

If you are running under a z/OS system that supports the system-determined
block size capability, you can concatenate input data sets in any order. Otherwise,
the block size must be less than or equal to that specified for the first data set.

If the first data set has a smaller block size than a later one, a DD override of the
form DCB=BLKSIZE=n must be used on the first DD statement, where n is the
largest block size in the concatenation.

If the record format of the first data set is FBS and the block size must be
overridden, specify DCB=(RECFM=FB,BLKSIZE=n) to avoid premature
end-of-file indications.

Rule 3

For record format F, the logical record length (LRECL) must be the same as for the
first data set and the block size must be a multiple of the logical record length.

Rule 4

For record format V, the logical record length must be less than or equal to the
LRECL for the first data set. If the block size is less than LRECL+4, it is adjusted to
LRECL+4.

Operating Characteristics 10-3

Linking to VISION:Builder

If any data set in the concatenation has spanned records, you must specify a
maximum records size of at least 32K in the FD buffer size entry for the file. This
activates true VBS processing.

Linking to VISION:Builder

This section describes the interfaces between VISION:Builder and the program
that invokes VISION:Builder. It is included for z/OS users who want to write a
program that calls or links to VISION:Builder rather than executes VISION:Builder
directly using the // EXEC JCL statement.

Calling Sequence

Register 13 Save area where VISION:Builder saves the calling program's
registers using the SAVE macro.

Register 14 Return address used by VISION:Builder to exit to the calling
program.
Register 15 Entry point address in VISION:Builder.

Register1 ~ Address of an input parameter list that specifies PARM
information and a ddname list.

VISION:Builder Input Parameter List

The input parameter list supplied by you must contain one or two fullword
addresses that are aligned on a fullword. The high order byte of each word, except
for the last word, must be zero. The high order byte of the last word must contain
X'80'; the ddname list can be omitted if the high order byte of the address of the

PARM information is X'80'.
Location [1 Bytes > <t 3 Bytes — ¥
0 X'00" Address of PARM
information
4 X'80 Address of ddname list

10-4 Environment Guide

Linking to VISION:Builder

PARM Information

ddname

PARM information has the format used by z/OS to pass PARM data on the EXEC
statement to VISION:Builder. You can use the address to pass PARM information
to own code routines using hook 10. The address of the PARM information points
to a halfword count field:

byte count PARM information
halfword up to 100-bytes

If there is no PARM information, the parameter list address should be zero or the
address of a halfword of zero.

The ddname list contains information used by VISION:Builder to convert
VISION:Builder ddnames to your ddnames. Any names in the list that are not
VISION:Builder ddnames are ignored by VISION:Builder. The list has the
following format:

name count = N VISION:Builder ddname (1) User ddname (1)
halfword 8-bytes 8-bytes
User ddname (N-1) VISION:Builder ddname (N) User ddname (N)
| 8-bytes 8-bytes 8-bytes

Exit Sequence

When VISION:Builder encounters one of its ddnames in the list, the ddname
immediately following is used instead of the standard VISION:Builder name. Note
that the ddnames M4LIB, M4CHK1, and M4CHK?2 cannot be changed.

If a ddname list is not provided, the parameter list address should be zero or the
address of a halfword of zero.

VISION:Builder closes files, deletes loaded modules, frees main storage, and
restores registers before returning to your return address supplied in Register 14
on entry. A condition code is returned to you in Register 15.

Operating Characteristics 10-5

Sort Control Statements

Sort Control Statements

VISION:Builder produces sort control statements for report file sorting when
requested to do so (by means of the Sort Control specification on the RC
statement). These control statements are output to MASORT and listed on M4LIST.
Only one set of control statements is produced per run regardless of the number of
report files created; however, the same sort control statements should be used for
all report files in the run.

The actual sort control statements generated depend on the sort program specified
in MAPARAMS. The sort control statements are shown below in Figure 10-1 and
apply to Sort Program 5740-SM1.

Notes
1 SORT FIELDS=(5,***,A),FORMAT=BI, FILSZ=[E]***** [, CKPT], NOEQUALS
2 RECORD TYPE:V, LENGTH: (*****, *****, *****, *****, * ok k kK
3 [MODS E35=(MARKSS, ****,M4SRTLIB,N)]

END

Figure 10-1 Sort Control Statements

Notes Explanation
! SORT FIELDS = The length of the sort control fields.
FILSZ = E is an optional entry that is used if multiple

report files are specified. The number of
records on the report file (or the maximum of
all report file counts) is inserted.

CKPT = An optional entry that is used if sort
checkpoints are requested on the CP
statement.

2 RECORD LENGTH= Inserts 1-5:

1. The report file record size (LRECL).
2. The maximum record length.

3. The report file record size (LRECL).
4. Minimum record length.

5. The modal record length (size of

maximum possible data record is the
value used).

3 MODS E35 = Optional information used only if Report
File Optimization is requested; the size of the
MARKSS module in bytes is inserted.

10-6 Environment Guide

Limiting the Number of Records Read During Input File Processing

Limiting the Number of Records Read During Input File

Processing

There are instances when the number of records read from an input file could be
less than the total number of records on the file.

The start search specification can be used in conjunction with any master file
with direct-access capabilities, when the file is being processed sequentially.
VISION:Builder retrieves the first master file record with a key value equal to
or greater than the start search specification and begins standard sequential
processing.

The end search specification limits records read from the old master file. The
run is terminated after processing the last record of a key less than or equal to
the specified key, or the next higher one if the specified key is non-existent.

The direct-read specification limits records read from an ISAM or VSAM old
master file by the key value specified.

The ICF capability limits records read from an ISAM or VSAM coordinated file
by the key value specified on the RF statement.

The EOF flag can be set to E to limit the number of records read from any input
file.

Standard coordination limits records read to those records in the coordinated
file that match to a record on the master file.

With chained coordination, one coordinated file matches to the master file,
another coordinated file matches to the first coordinated file, and so on. (This
is different from unmatched coordination, in which all coordinated file records
are read.)

User read coordinated files can limit records read from any sequentially
processed coordinated file by the use of an RD operator within your request.

Runs that terminate with a type 4 or higher error could end input file
processing before all records have been read.

In all cases, VISION:Builder run statistics for input files reflect the number of
records read, not the number of records on the file.

Resource Optimization

Resource optimization gives you the choice of optimizing processing speed or
main storage, whichever resource is most important to your application. Selection
of the type of optimization is made in the Resource Optimization entry on the RC
statement.

Operating Characteristics 10-7

Resource Optimization

The following entries on the RC statement pertain to resource optimization.

STORAGE? - Enter a Y to optimize main storage allocation. Main storage is
conserved during processing. Leave blank or enter N to optimize processing
speed. Extra main storage is used to improve processing speed.

MESSAGE PROCESSING?- Enter a Y to make processing step error messages
resident, thereby eliminating the I/O time normally required to load the
messages from disk. This time savings is most significant for those runs that
result in a high number of transaction error messages. Approximately
3000-bytes of additional main storage are utilized for these messages.

REPORT FILE - Enter R for single-step processing of sort or no-sort runs. Enter
S to request report file optimization.
The S specification is valid for summary only reports that request no
summaries other than TOTAL, CUM, PERCENT, or RATIO. This entry allows
a VISION:Builder routine to be invoked as a sort exit during the output of the
sort. (An M4SRTLIB DD statement that points to the loadlib containing the
VISION:Builder routine, MARKSS, must be included in the sort step JCL.)

The S specification then computes the required summaries prior to writing the
output from the sort and normally only outputs a record when a control break
occurs. This eliminates the I/O required to write detail records as output from
the sort and to read detail records into the report step.

Approximately 4000-bytes of main storage are utilized during the sort step for
this routine. This option is not available if any of the following conditions exist:

- No-sort run.

- Areport is not a summary only report.

- The length of the data records on the report file is greater than 400-bytes.
- More than 40 summary and control fields are specified in one report.

- Summaries are specified on a character field.

- COUNT, MAX, MIN, or AVG are specified.

VISION:Builder considers each report separately in determining whether it
qualifies for report file optimization. The first of several reports in a step can fail to
qualify for optimization while a subsequent report is optimized.

Report file optimization terminates for a report if the frequency of control breaks
or the number of interrupts due to arithmetic overflow substantially reduce the
number of records being eliminated.

10-8 Environment Guide

Access Methods

Access Methods

VISION:Builder uses the following access methods:

VSAM Used for sequential or direct-access of files. VSAM is also used for the
common library only if your system supports this.

BDAM Used for the common library only if your system supports this.

BISAM Used with an indexed sequential file when direct-read or
update-in-place is specified.

QISAM Used with an indexed sequential file when direct-read is not specified.

QSAM Used with sequential file processing.

Blocking Factor for ISAM Files

VISION:Builder supports blocked ISAM files only. A blocking factor of 1 is
allowed. All ISAM files created by VISION:Builder are blocked.

Non-VSAM Variable-Spanned Records

VISION:Builder supports variable-spanned record 1I/O. To activate VBS1/O
processing, the variable-spanned file must be defined to VISION:Builder as a
standard variable length file with a maximum record size of 32K or greater
specified in the FD buffer size entry. The DD statement or header label for the file
must specify RECFM=VBS. Existing variable-spanned files that have
LRECL=BLKSIZE can be processed because VISION:Builder internally sets
BLKSIZE=LRECL+4. If the VBS file record size is greater than 32760, specify
LRECL=X in the DCB.

The report files: MAREPO, M4REPI, and M4REP2 through M4REP9 cannot be
defined as variable-spanned.

Operating Characteristics 10-9

Chapter

Using VISION:Builder with DB2

11

This chapter applies only if you have the relational support option installed in
your system.

This chapter presents the special requirements and considerations for using
VISION:Builder to access or create DB2 databases. VISION:Builder can
communicate with DB2 using any of three attach facilities provided with DB2:

m TSO Attach Facility
m IMS Attach Facility
m CALL Attach Facility

The choice of which facility to use depends upon the requirements of your
particular application and your installation's standards.

TSO Attach Facility

The TSO Attach Facility can be used to access DB2 databases using
VISION:Builder operating in either batch or online mode. Any file type or database
except IMS databases can be accessed concurrently within your application when
using VISION:Builder with the TSO Attach Facility. The sample JCL in Figure 11-1
illustrates the use of VISION:Builder with the TSO Attach Facility.

//TSOATT JOB

//step EXEC PGM=IKJEFTO01, DYNAMNBR=20

//STEPLIB DD DSN=your.builder.loadlib,DIS P=SHR
// DD DSN=your.comlib.loadlib, DISP=SHR
//SYSTSPRT DD SYSOUT =*

//SYSTSIN DD *

DSN SYSTEM (ssid) where ssid=your DB2 subsystem id
RUN PROGRAM (MARKIV) PLAN (planname) LIB('your.builder.loadlib')
END

//MALIST DD SYSOUT=*

//MALIB DD DSN=your.m4lib, DISP=SHR

/ /MAREPO DD UNIT=SYSDA, SPACE=(CYL, (1,1))
//M4AINPUT DD DSN=your.builder.program, DISP=SHR

Figure 11-1 Sample JCL Using the TSO Attach Facility

Using VISION:Builder with DB2 111

IMS Attach Facility

The plan name in the RUN statement above must correspond to the plan name
specified when the DB2 access module MARKSQLT was pre-processed, compiled,
and link edited with the TSO Attach Facility interface module DSNELI. This
process should have been performed when VISION:Builder was installed at your
installation. See the IBM book IBM DATABASE 2 Application Programming and SQL
Guide for further information regarding the DSN and RUN command parameters.
Additional DD statements must be provided for each non-DB2 VISION:Builder
file as discussed in Chapter 2, “VISION:Builder Runs, Run Control, and Execution

ICL”.

IMS Attach Facility

The IMS Attach Facility must be used when your VISION:Builder application
accesses IMS databases as well as DB2 databases. The JCL requirements are shown
in Figure 11-2. See the IBM manual IBM DATABASE 2 Application Programming and
SQL Guide for further information regarding DB2 applications in an IMS
environment.

//imsbatch JOB (accounting information)
//*

//IMSDLI PROC MBR=TEMPNAME, PSB=,BUF=7,

// SPIE=0, TEST=0, EXCPVR=0, RST=0, PRLD=,
// SRCH=0, CKPTID=, MON=N, LOGA=0, FMTO=T,
// IMSID=, SWAP=, DBRC=, IRLM=, IRLMNM=, BKO=N
//GO EXEC PGM=DFSRRC00,
// PARM= (DLI, &MBR, &PSB, &BUF,
// &SPIE&TEST&EXCPVR&RST, &PRLD,
// &SRCH, &CKPTID, &MON, &LOGA, &§FMTO,
// &IMSID, &SWAP, §DBRC, &IRLM, & IRLMNM, &BKO)
// PEND
//*
//M4P EXEC IMSDLI,MBR=DSNMTV01, PSB=yourpsb, REGION=1500K
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
// DD DSN=your.builder.loadlib, DISP=SHR
// DD DSN=your.comlib.loadlib, DISP=SHR
//DFSRESLB DD DSN=IMSVS.RESLIB,DISP=SHR
//IMS DD DSN=your.psblib, DISP=SHR
DD DSN=your.dbdlib, DISP=SHR
//IEFRDER DD DSN=your.chkl.imslog, DISP=(NEW, CATLG),
UNIT=SYSDA, SPACE=(TRK, (5,2),RLSE),
// DCB= (RECFM=VB, BLKSIZE=1920, LRECL=1916, BUFNO=2)

//DDITV02 DD

*

ssid, SYS1,DSNMIN1O, ,R, -, DLIBATCH, yourplan, MARKDLI

//DDOTV02 DD
//

//MALIB DD
//M4LIST DD
//M4REPO DD
//

//MASORT DD
//M4INPUT DD
//database DD
//*

//SORT EXEC
//SYSOUT DD
//SORTIN DD
//SORTOUT DD
//

//SORTWKO1 DD
//SORTWK02 DD
//SORTWKO3 DD
//SYSIN DD

Figure 11-2

UNIT=SYSDA, DISP=(NEW, PASS) , SPACE= (TRK, (1,1)),
DCB= (RECFM=VB, LRECL=4092, BLKSIZE=4096)
DSN=your.m41lib, DISP=SHR

sysout=*

DSN=your.mé4repo, DISP= (NEW, PASS) ,

UNIT=SYSDA, SPACE=(TRK, (10, 5) ,RLSE)
UNIT=SYSDA,DISP=(NEW, PASS), SPACE=(TRK, 1)
DSN=your.builder.program, DISP=SHR
DSN=your.ims.database, DISP=SHR

PGM=SORT, REGION=1500K, COND= (0, NE, M4P . GO)
SYSOUT=*

DSN=* .M4P.GO.M4REPO, DISP= (OLD, DELETE)
UNIT=SYSDA, DISP= (NEW, PASS),
SPACE= (TRK, (10,5) ,RLSE)
UNIT=SYSDA, SPACE=(CYL, (1,1))
UNIT=SYSDA, SPACE=(CYL, (1,1))
UNIT=SYSDA, SPACE=(CYL, (1,1))
DSN=* .M4P.GO.M4SORT, DISP= (OLD, DELETE)

Sample JCL for IMS Batch with DB2 (Page 1 of 2)

11-2 Environment Guide

CALL Attach Facility

//*

//MAR EXEC PGM=MARKIV,REGION=1536K,COND=(0,NE, M4P.GO)
//STEPLIB DD DSN=your.builder.loadlib,DISP=SHR

// DD DSN=your.comlib.loadlib,DISP=SHR

//M4LIST DD SYSOUT=*

//MAREPT DD DSN=*.SORT.SORTOUT, DISP=(OLD, DELETE)
//M4INPUT DD DSN=your.builder.run.control.stmt, DISP=SHR
//*

//DB2LST EXEC
//STEPLIB DD
//SYSPRINT DD
//SYSUT1 DD
//SYSIN DD
CONTROL CNTL

PGM=DFSERA10, COND=EVEN
DSN=IMSVS.RESLIB, DISP=SHR

SYSOUT=*

DSN=* ,M4P.GO.DDOTV02, DISP=(OLD, DELETE)

*

K=000,H=8000

OPTION PRINT
//
Figure 11-2 Sample JCL for IMS Batch with DB2 (Page 2 of 2)

CALL Attach Facility

The Call Attach Facility is an alternate DB2 access facility for DB2 applications not
operating in the CICS/VS or IMS environments. The Call Attach Facility is used
by VISION:Builder whenever an RP statement with the DB2 parameter name is
included with your VISION:Builder source statements. The application plan name
specified on the DB2 parameter statement must correspond to a plan name
specified when the DB2 access module MARKSQL was pre-processed, compiled,
and link edited with the Call Attach Language Interface module DSNALI. This
process should have been performed when VISION:Builder was installed at your
installation. No special JCL statements are required by the Call Attach Facility. The
sample JCL in Figure 11-3 illustrates the use of the Call Attach Facility with

VISION:Builder.

//CALLATT JOB

//step EXEC PGM=MARKIV

//STEPLIB DD DSN=your.builder.loadlib,DIS P=SHR

// DD DSN=your.comlib.loadlib,DISP=SHR

//M4LIST DD SYSOUT= *

//M4LIB DD DSN=your.m4lib, DISP=SHR

/ /M4REPO DD UNIT=SYSDA, SPACE= (CYL, (1,1)

//M4INPUT DD DSN=your.builder.program,DISP=SHR (with DB2 RP statement)
Figure 11-3 Sample JCL Using the Call Attach Facility

Additional DD statements must be provided for each non-DB2 VISION:Builder
file as discussed in Chapter 2, “VISION:Builder Runs, Run Control, and Execution

ICL”.

Using VISION:Builder with DB2 11-3

Chapter

Common Library Access and
Utilities

12

This chapter describes the following information:

m Using Multiple Common Libraries on page 12-2

m Using Common Libraries on Shared DASD on page 12-2

m The following Common library utilities:

- COMLIB Release 4.5 Considerations on - The Common Library
page 12-4 Service Program on
page 12-7
- MARKINIT Common Library - MARKDUMP and
Initialization on page 12-18 MARKREST Common
- MARKCON Common Library Library Dump and

Restore on page 12-19

Condense on page 12-22

m Using Cataloged Procedures and Requests on page 12-23

m Listing and Retrieving Common Library Items on page 12-24

The common libraries (M4LIBs) are referred to by the I/ O access mechanism used
to process the data sets, BDAM or VSAM. The two types of common libraries
(BDAM or VSAM) can be used together in the same run, if appropriate. The
COMLIB subsystem can handle both types of common libraries concurrently.

In each section that describes a particular utility, examples for execution of the
utility are shown.

The common library service program MARKUTIL is described in The Common
Library Service Program on page 12-7. This program should be used for all
common library maintenance. The MARKINIT, MARKDUMP, MARKREST and
MARKCON utilities are also supplied and can be used for common library
maintenance; however, they may not be supplied in future releases. These utilities
are only provided as an interim step until existing users can convert to
MARKUTIL.

MARKINIT, MARKDUMP, MARKREST and MARKCON are described in
MARKINIT Common Library Initialization on page 12-18 through MARKCON
Common Library Condense on page 12-22.

Common Library Access and Utilities 12-1

Using Multiple Common Libraries

You can also find information about cataloged procedures and requests and their
maintenance in Using Cataloged Procedures and Requests on page 12-23.

Listing glossaries and source statement retrieval are described in Listing and
Retrieving Common Library Items on page 12-24.

Using Multiple Common Libraries

You can access up to ten common libraries. JCL must be provided for each
common library you want to access. A run parameter (RP) statement, with the
MULTILIB parameter, is used to specify which common libraries are to be
accessed, as well as the specific order in which they are accessed.

For example, a JCL procedure can reference many common libraries, but your
application source statements can control which common libraries are to be used.
This is valuable in terms of reducing common library search time. For
VISION:Builder, you can also use the RP statement MULTILIB entry with the
parameter value of OFF specified; this inhibits the multiple common library
process. Your product accesses the primary common library (M4LIB) and any JCL
that references multiple common libraries is ignored.

With VISION:Builder, any set of conditions indicating a common library update
situation causes your product to access only the primary common library. Your
product accesses the first M4LIBn, specified in the MULTILIB statements, as the
primary common library and ignores the balance of the M4LIBs. Also, multiple
common libraries cannot be used where:

m Transaction files are being used without an RG statement.
m CT statements are included.

s An RP MULTILIB OFF statement exists.

When searches are made through multiple common libraries and duplicate names
exist for any definitions, procedures, or requests, the first matching name found is
the one used. No attempt is made to search further or to inform you that duplicates
exist. If multiple common libraries were searched, the product outputs an
informational message stating they were searched. If this statement is not evident,
multiple common libraries were not searched.

Using Common Libraries on Shared DASD

There are different levels of protection for common libraries when the common
libraries are being shared by multiple systems. The following subsections describe
the levels of protection for VSAM and BDAM common libraries.

12-2 Environment Guide

Using Common Libraries on Shared DASD

Sharing Common Libraries on DASD

VISION:Builder issues a global ENQ macro instruction for the duration when the
common library data set is open, whether its reserve bit is on or off in MARKLIBP.
This protects the common library from concurrent updates from a single system
(CPU).

If you have a common library on shared DASD, the RESERVE option in
MARKLIBP can be used to protect the common library against concurrent updates
from multiple systems (CPUs). When the MARKLIBP reserve bit is on, the system
issues a hardware “lock” of the DASD where the common library resides. This
reserves a device for use by a particular system and protects against concurrent
updates from multiple systems.

VISION:Builder uses a QNAME of M4LIB and an RNAME the same as the cluster
or data set name when performing ENQs.

The following table shows the reserve and share option protection for VSAM and
BDAM common libraries.

BDAM VSAM
RESERVE ON GLOBAL ENQ & RESERVE RESERVE & GLOBAL ENQ

OFF GLOBAL ENQ GLOBAL ENQ

Note: For BDAM, GLOBAL ENQ is only local in scope (one CPU) unless your
installation has GRS.

Global Resource Serialization (GRS), a component of z/OS, enables your
installation to share symbolically-named resources either between units of work in
a single system or between multiple systems in a loosely coupled environment.
When you have GRS, you do not need RESERVE because the local ENQ issued by
the product provides sufficient protection.

The advantage of GRS over the RESERVE macro alone is that instead of locking all
of the DASD, GRS issues a global ENQ macro instruction to serialize only the
particular data set to be protected.

Note: In all cases, QNAME = M4LIB and RNAME = DSN.

Based upon the above mechanisms, it is safe to specify DISP=SHR for any M4LIB
and M4LIBn DD statement regardless of whether updating will occur. The
common library will always be protected against simultaneous updates using the
global ENQ or RESERVE even when DISP=SHR is used.

Common Library Access and Utilities 12-3

COMLIB Release 4.5 Considerations

COMLIB Release 4.5 Considerations

This section describes changes to the COMLIB Release 4.5 component of
VISION:Builder. These changes impact the compatibility of the COMLIB Library
data set (M4LIB) with previous releases. The COMLIB Release 4.5 component
operates with VISION:Builder releases 13.5, 13.8, and 14.0.

This information is included here for historical purposes and is helpful if you are
upgrading from a previous release of VISION:Builder.

Internal M4LIB 4.5 Format

The internal format used to store File Definitions and Array Definitions was
enhanced and expanded to accommodate the Alternate Name and Field
Description entries and allow for future enhancements. The basic internal
architecture of the COMLIB Library data set (M4LIB) has not changed, only the
internal format of new or updated file and array definitions cataloged using
VISION:Builder Release 13.5 or later and COMLIB Release 4.5 have changed.

As aresult of the internal format changes made to file and array definitions created
or updated using COMLIB 4.5, the definitions will not be compatible with
previous releases of VISION:Builder and COMLIB. The conversion of the
definitions occurs automatically whenever an existing file or array definition is
updated using VISION:Builder Release 13.5 or later and COMLIB Release 4.5.

Because of this incompatibility with previous releases, considerations must be
addressed with regard to using releases of VISION:Builder and COMLIB prior to
13.5 and 4.5, respectively.

It is strongly recommended that you make a complete backup of all Common
Library (M4LIB) data sets using your previous VISION:Builder and COMLIB
releases (13.0 and 4.0 or prior). These backups should be retained until you have
fully implemented VISION:Builder Release 13.5 or later, and are satisfied that you
will no longer be using the previous releases of VISION:Builder and COMLIB.

In order to convert file and array definitions that were cataloged using
VISION:Builder Release 13.5 or later, and COMLIB Release 4.5, back to a prior
release, run a source statement retrieval using VISION:Builder Release 13.5 or later
to obtain the definition source statements; then, recatalog these definition source
statements using the prior release.

12-4 Environment Guide

COMLIB Release 4.5 Considerations

Common Library Utility Work File (M4WORK) Format

With VISION:Builder Release 13.5 or later and COMLIB Release 4.5, the format of
the library utility work file data set (M4WORK) has been changed to significantly
improve the performance of the Common Library DUMP, RESTORE and
CONDENSE operations. The format is now VBS with a block size of 32760. This
allows the library utilities to write complete items spanning blocks as needed,
dramatically reducing I/O counts and processing time.

As a result of the work file format changes, the MAWORK DUMP files created
using VISION:Builder Release 13.5 or later and COMLIB Release 4.5 are
incompatible with releases prior to VISION:Builder Release 13.5. This means that
DUMP files created by releases prior to VISION:Builder Release 13.5 cannot be
read by VISION:Builder Release 14.0 and vice versa.

We strongly recommend that you make a complete backup of all Common Library
(M4LIB) data sets using your previous VISION:Builder and COMLIB releases (13.5
and 4.0 or prior). Retain these backups until you have fully implemented
VISION:Builder Release 14.0 and are satisfied that you will no longer be using the
previous releases of VISION:Builder and COMLIB.

We also recommend that you make a complete backup of all Common Library
(M4LIB) data sets using your new VISION:Builder Release 13.5 or later and
COMLIB Release 4.5 system as soon as the new releases are installed.

Common Library Data Set (M4LIB) Compression

In COMLIB 4.5, which is delivered with VISION:Builder Release 13.5 or later, you
can compress items stored in the Common Library (M4LIB). Because of the
changes to the internal formats of File and Array Definitions as discussed in a
previous section, these definitions require additional space on the Common
Library (M4LIB). To alleviate the impact of these changes on your disk space
utilization, COMLIB 4.5 may be enabled to compress objects whose size exceeds a
specified threshold.

Aside from the disk space utilization consideration, you may want to enable
COMLIB compression in order to reduce the I/O activity performed by COMLIB.
The compression option and item size threshold value are controlled by modifying
the appropriate parameters on the COMLIB MARKLIBP module.

Compression of items by COMLIB occurs when an item is cataloged. A COMLIB
enabled for compression continues to correctly access uncompressed items such as
definitions, tables, and requests. Only as items are recataloged with a COMLIB
enabled for compression will any item be compressed. Conversely, the COMLIB
component will successfully access compressed objects even though compression
has been disabled.

Common Library Access and Utilities 12-5

COMLIB r5 Considerations

An entire Common Library (M4LIB) may be compressed by performing a
DUMP/RESTORE or CONDENSE using a COMLIB enabled for compression.
Conversely, a Common Library may be uncompressed by performing a
DUMP/RESTORE or CONDENSE using a COMLIB which has compression
disabled.

COMLIB r5 Considerations

This section describes changes to the COMLIB r5 Component of VISION:Builder.
These changes impact the compatibility of the COMLIB Library data set (M4LIB)
with previous releases. The COMLIB r5 Component operates with
VISION:Builder r15.

This information is included here for historical purposes and is helpful if you are
upgrading from a previous release of VISION:Builder.

Internal M4LIB 5.0 Format

The internal format used to store Transaction Definitions was modified to
accommodate the larger field length values introduced in VISION:Builder r15 and
COMLIB r5. The basic internal architecture of the COMLIB Library data set
(M4LIB) has not changed, only the internal format of new or updated transaction
definitions cataloged using VISION:Builder r15 and COMLIB r5 have changed.

As a result of the internal format changes, the transaction definitions will not be
compatible with previous releases of VISION:Builder and COMLIB. The
conversion of the definitions occurs automatically whenever an existing
transaction definition is updated using VISION:Builder r15 and COMLIB r5.

Because of this incompatibility with previous releases, considerations must be
addressed with regard to using releases of VISION:Builder and COMLIB prior to
r15 and 15, respectively.

It is strongly recommended that you make a complete backup of all Common
Library (M4LIB) data sets using your previous VISION:Builder and COMLIB
releases (14.0 and 4.5 or prior). These backups should be retained until you have
fully implemented VISION:Builder r15 and are satisfied that you will no longer be
using the previous releases of VISION:Builder and COMLIB.

In order to convert transaction definitions that were cataloged using
VISION:Builder r15 and COMLIB r5 back to a prior release, run a source statement
retrieval using VISION:Builder r15 to obtain the definition source statements; then,
recatalog these definition source statements using the prior release.

12-6 Environment Guide

The Common Library Service Program

New and Enhanced Field Types and Characteristics

The choices for field definitions was enhanced and extended in VISION:Builder
r15 and COMLIB r5. There are new types and characteristics that can be used to
define fields in file, transaction, array, and table definitions.

These new and enhanced field definitions are not backward-compatible with
previous releases of VISION:Builder and COMLIB.

The Common Library Service Program

This section illustrates the JCL statements used with the common library service
program. MARKUTIL is provided with VISION:Builder. In addition to the
common library service program, MARKINIT, MARKDUMP, MARKREST, and
MARKCON are supplied with VISION:Builder. This section describes how to
execute these programs.

Use MARKUTIL for all your common library maintenance. MARKUTIL is a single
utility program that allows you to do the same functions as MARKINIT,
MARKDUMP, MARKREST, and MARKCON. These utilities must be executed in
separate job steps; MARKUTIL is executed in a single job step.

MARKUTIL is executed once and you are able to initialize, dump, restore, and
condense the common library. Also within the same job step, you can transfer
cataloged items from one common library to another. The utility control (UC)
statement is the only allowable input statement available with MARKUTIL.

Multiple UC statements can be used that specify the operation that you want to
perform, such as INIT, DUMP, and REST. Within the UC statement, a common
library filename/ddname specification allows you to choose the common library
that you want the operation to be performed upon. This lets you execute multiple
operations within one job step. For clarity, certain operation types are shown as
separate job steps in this section. This is followed by an example of multiple UC
statements used in one job step. See the VISION:Builder for z/OS Specifications Guide
for details on the UC statement.

MARKUTIL Initialization

The common library must be initialized before definitions or procedures and
requests are cataloged. The MARKUTIL program and a UC statement with an
operation code of INIT are used to initialize the common library. Normally, this
program is executed once to allocate the required space and format the area used
for the common library. Therefore, inadvertent re-execution of the INIT operation
on the same data set name results in erasing items previously cataloged.

Common Library Access and Utilities 12-7

The Common Library Service Program

You can initialize either a BDAM or VSAM common library, depending upon the
access method selected when your COMLIB was installed. A VSAM common
library requires the DEFINE CLUSTER function of the IDCAMS utility.

Figure 12-1 shows the JCL for defining a VSAM cluster for the common library.

Figure 12-2 on page 12-10 shows the JCL statements to initialize a BDAM and
VSAM common library, respectively.

Notes
//define JOB (accounting information)
//JOBCAT DD DSN=vsam.catalog, DISP=SHR
//stepl EXEC PGM=IDCAMS, REGION=1536K
//SYSPRINT DD SYSOUT=a
//SYSIN DD *
DEFINE CLUSTER -
1 (NAME (common.library) -
2 VOLUME (XXXXXX) =
NUMBERED -
3 RECORDSIZE (507 507) -
SHAREOPTIONS (3 3) -
4 CISZ (4096) -
TRK(1 1)) -
5 DATA (NAME (common. library.DATA))
/*
//

Figure 12-1 Define Cluster for a VSAM Common Library in z/OS

Notes Explanation

! This statement identifies the common library (file-ID) for which the
cluster is to be defined. Substitute the name of your common library in
place of 'common.library.'

2 This statement indicates the disk volume where the common library is
to reside. Substitute the volume serial number in place of 'xxxxxx.'

3 This statement specifies the minimum record size allowable for the
common library. (See additional information following these notes.)

4 This statement specifies the control interval that provides efficient
processing in most cases.

5 This statement defines the data portion of the common library cluster.
Substitute the name of your common library in place of
'‘common.library.'

The directory blocking factor (number of directory detail records in a DDR) is
determined for VSAM common libraries by the record size specified in the cluster
definition. The record size must be at least 507-bytes, but can be larger.

12-8 Environment Guide

The Common Library Service Program

A 507-byte record size means that all records on the common library are 507-bytes.
A 507-byte DDR allows 15 directory entries (each entry is 32-bytes). Twelve of
these directory entries point to data records or items. A larger record size increases
the directory blocking factor; each additional 32-bytes increases the directory
entries by 1. The greater the blocking factor, the fewer accesses there are to locate
an item on the common library.

The best record size is the one that is closest to the average size of a common library
item and fits without excessive waste in the chosen control interval size (CI size).
You should also keep in mind the directory blocking factor the record size allows.
Itis advisable to choose a Cl size that best balances a block size which is adequately
large and data transfer time that does not stall the processing throughput. Cl sizes
of 2048 (2K) and 4096 (4K) are good CI sizes. VSAM is likely to compute a CI size
of 2048 if not overridden in the cluster.

With a record size of 507 and CI size of 2048, four records are stored in the CI. Each
CI contains VSAM control information; a 4-byte CIDF (one per CI) and a 3-byte
RDF (one per record). Thus, four records in the CI equals 2028-bytes (4 times 507),
plus 16-bytes of VSAM control fields (4 for the CIDF and 12 for the RDFs).
Therefore, with the 2048 CI size and 507 record size, 2044-bytes of the CI are used
and 4-bytes unused.

The CI size and record size can best be decided after discovering the average size
of your common library items which will vary from one installation to another.
The average can be determined from a dump of an existing common library.
Directory records are easily spotted and bytes 1 through 4 of each directory detail
entry contains the binary length of the data item. For a VSAM common library, the
length of a data item can exceed both record and CI length. Optimally, however,
the record size and longest data item should not exceed the CI size.

Use share options of (3 3) unless you intend to access the common library cluster
with software other than VISION:Builder, such as IDCAMS REPO,; if so, use (2 3).

Common Library Access and Utilities 12-9

The Common Library Service Program

Notes

AON—

(G,

Figure 12-2

// JOB
//JOBLIB DD
//init EXEC
//MALIST DD
//M4LIB DD
//

//M4WORK DD

BDAM

DSN=builder.loadlib, DISP=SHR

PGM=MARKUTIL, REGION=1536K

SYSOUT=a

DSN=common. library, DISP=(NEW, CATLG, DELETE) ,
UNIT=sysda, SPACE=(TRK,n, ,CONTIG)

DUMMY

//MAINPUT DD *
UCINIT

/*

//

VSAM

// JOB
//JOBLIB DD
//JOBCAT DD
//init EXEC
//MALIST DD
//MALIB DD
//M4WORK DD
//MAINPUT DD
UCINIT

DSN=builder.loadlib, DISP=SHR
DSN=vsam.catalog, DISP=SHR
PGM=MARKUTIL, REGION=1536K
SYSOUT=a

DSN=common. library, DISP=SHR
DUMMY

*

/*
//

BDAM/VSAM Common Library Initialization Using MARKUTIL in z/OS

Notes

Explanation

1

Execute the MARKUTIL service program.

2

The M4LIST statement defines the location of the system output device
for this job.

MA4LIB represents the common library you are initializing in this run.
Note that the space must be contiguous for BDAM format common
libraries; if it is not, the common library is initialized to the smaller
contiguous size and the non-contiguous area is ignored.

An M4WORK file is required for all service program operations. Since
it is not actually used by the INIT operation, it can be dummied.

Enter UC in positions [9-10] with the operation code INIT in positions
[11-14] to initialize the common library.

12-10 Environment Guide

The Common Library Service Program

MARKUTIL Dump and Restore

MARKUTIL can be used to backup and restore a common library. A UC statement
with an operation code of DUMP copies the contents of the common library to the
sequential MAWORK data set. A UC statement with a REST operation code copies
the contents of MAWORK to a common library.

When the DUMP function is used, all items in the common library that have gone
beyond their expiration date are flagged for deletion. The output to M4LIST is a
listing of names and types of entries that are dumped and the items that are
flagged. Upon execution of the REST function, the flagged items may or may not
be restored to the common library, depending on a specification entered on the UC
statement.

Figure 12-3 illustrates the JCL to dump a BDAM and VSAM common library.

Figure 12-4 on page 12-12 illustrates the JCL to restore a BDAM and VSAM
common library.

Notes BDAM

// JOB
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
//dump EXEC PGM=MARKUTIL,REGION=1536K

1

2 //MALIST DD SYSOUT=a

3 //MALIB DD DSN=common.library, DISP=SHR

4 //MAWORK DD DSN=work.file, DISP=(NEW,CATLG, DELETE) ,
// UNIT=sysda, SPACE=(TRK, (n,n),RLSE)
//MAINPUT DD *

5 UCDUMP
/*
//

VSAM

// JOB
//JOBLIB DD DSN=builder.loadlib,DISP=SHR
//JOBCAT DD DSN=vsam.catalog, DISP=SHR

1 //dump EXEC PGM=MARKUTIL,REGION=1536K

2 //MALIST DD SYSOUT=a

3 //MALIB DD DSN=common.library, DISP=SHR

4 //M4WORK DD DSN=work.file, DISP=(NEW,CATLG, DELETE) ,
// UNIT=sysda, SPACE=(TRK, (n,n),RLSE)
//M4INPUT DD *

5 UCDUMP
/*
//

Figure 12-3 BDAM/VSAM Common Library Dump Using MARKUTIL in z/OS

Common Library Access and Utilities 12-11

The Common Library Service Program

Notes Explanation

! Execute the MARKUTIL service program.

2 The M4LIST statement defines the location of the system output device
for this job.

3 MA4LIB represents the common library you are dumping in this run.

4 This statement represents the sequential data set onto which the

common library is dumped. This data set must be large enough to
contain the common library.

5 Enter UC in positions [9-10] with the operation code DUMP in positions
[11-14] to unload the common library.

Notes BDAM

// JOB
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
//rest EXEC PGM=MARKUTIL,REGION=1536K

1
2 //M4LIST DD SYSOUT=a
3 //MALIB DD DSN=common.library, DISP=SHR
4 / /M4WORK DD DSN=work.file, DISP=SHR
//M4INPUT DD *
5 UCREST
/k
//
VSAM
// JOB
//JOBLIB DD DSN=bpuilder.loadlib, DISP=SHR
//JOBCAT DD DSN=vsam.catalog, DISP=SHR
1 //rest EXEC PGM=MARKUTIL,REGION=1536K
2 //M4LIST DD SYSOUT=a
3 //MALIB DD DSN=common.library, DISP=SHR
4 / /M4WORK DD DSN=work.file, DISP=SHR
//M4INPUT DD *
5 UCREST
/k
//

Figure 12-4 BDAM/VSAM Common Library Restore Using MARKUTIL in z/OS

Notes Explanation

! Execute the MARKUTIL service program.

2 The M4LIST statement defines the location of the system output device
for this job.

12-12 Environment Guide

The Common Library Service Program

Notes Explanation

3 MA4LIB represents the common library that receives the backup
sequential data set that is restored in common library format.

4 This statement specifies the sequential backup data set used to restore
to M4LIB. It must have been created with the DUMP option.

5 Enter UC in positions [9-10] with the operation code REST in positions
[11-14] to restore your common library.

MARKUTIL Condense

The MARKUTIL service program can be used to free the unused area in the
common library. A UC statement is used with the COND operation code specified
to condense the common library by making available the area from which items
were previously deleted.

The COND function dumps the usable items from the common library to a
sequential data set (M4WORK), frees the common library of the “deleted” items,
and restores the contents of the sequential data set to the common library.

Common Library Access and Utilities 12-13

The Common Library Service Program

Figure 12-5 illustrates the z/OS JCL statements used for condensing a BDAM or
VSAM common library.

Notes BDAM

// JOB
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
//cond EXEC PGM=MARKUTIL,REGION=1536K

1

2 //MALIST DD SYSOUT=a

3 //MALIB DD DSN=common.library, DISP=SHR

4 //MAWORK DD DSN=work.file, DISP=(NEW, DELETE),
// UNIT=sysda, SPACE=(TRK, (n,n),RLSE)
//M4INPUT DD *

5 UCCOND
/*
//

VSAM

// JOB
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
//JOBCAT DD DSN=vsam.catalog, DISP=SHR

1 //cond EXEC PGM=MARKUTIL,REGION=1536K

2 //M4LIST DD SYSOUT=a

3 //MALIB DD DSN=common.library, DISP=SHR

4 //M4WORK DD DSN=work.file, DISP=(NEW,DELETE),
// UNIT=sysda, SPACE= (TRK, (n,n),RLSE)
//MAINPUT DD *

5 UCCOND
/*
//

Figure 12-5 Condensing a BDAM/VSAM Common Library Using MARKUTIL in z/OS

Notes Explanation

! Execute the MARKUTIL service program.

2 The M4LIST statement defines the location of the system output device
for this job.

3 MA4LIB represents the common library to be condensed in this run.

4 This statement represents the sequential data set onto which the

common library is to be dumped and from which it is to be restored.
This data set must be large enough to contain your common library.

5 Enter UC in positions [9-10] with the operation code COND in
positions [11-14] to condense your common library.

12-14 Environment Guide

The Common Library Service Program

MARKUTIL Copy and Merge

The MARKUTIL service program can be used to copy or merge cataloged items
from one or more common libraries (sending) to another common library
(receiving).

The receiving common library is M4LIB. The sending common library or common
libraries can be M4LIB1 through M4LIB9. The sending common library is
determined by specifying the DTF/DDname of the common library, on the UC
statement.

The COPY and MERG functions are implemented by the utility control (UC)
statement. The COPY function copies cataloged items from the sending common
library or common libraries (M4LIBn) to the receiving common library (M4LIB).
The MERG function merges the entire contents of the sending common library or
common libraries (M4LIBn) to the receiving common library (M4LIB).

Duplicate names of cataloged items can occur when dealing with multiple
common libraries. You may want to copy a particular version to the receiving
common library. This is accomplished by specifying the sending common library
on the UC statement. If a sending common library is not specified, the default is
MA4LIB1; the same is true of the MERG function. Therefore, M4LIB1 must be
specified in your JCL if you do not specify a sending common library on the UC
statement.

You can replace an existing cataloged item on the receiving common library by
specifying a replace option on the UC statement. You may also specify that the
replacing item be the newest or oldest version. If you do not specify the newest or
oldest version, the first occurrence is copied.

If the replace option is not used, items cannot be copied/merged to the receiving
common library if they already exist on that common library. If this is the case, the
operation is suppressed, a message is output to M4LIST and the run continues
with the next UC statement. Any copy or merge operation causes the output of an
informational message to M4LIST, indicating the success or failure of the
operation.

Note: Copy operations with REPLACE RULES referencing cataloged definitions
which do not have ITEM TRACKING dates will fail and issue a message.

Common Library Access and Utilities 12-15

The Common Library Service Program

Figure 12-6 illustrates z/OS JCL for MARKUTIL COPY and MERG functions.

Notes BDAM

// JOB
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
//copy EXEC PGM=MARKUTIL,REGION=1536K

1
2 //MALIST DD SYSOUT=a
3 //MALIB DD DSN=common.library, DISP=SHR
4 //MALIB1 DD DSN=altlibl,DISP=SHR
//MALIBS DD DSN=altlib5,DISP=SHR
5 //M4WORK ~ DD DUMMY
//M4INPUT DD *
6 UCCOPY FDfilename YNEW
7 UCMERG MALIBS
/*
//
VSAM
// JOB
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
//JOBCAT DD DSN=vsam.catalog, DISP=SHR
1 //copy EXEC PGM=MARKUTIL,REGION=1536K
2 //MALIST DD SYSOUT=a
3 //MALIB DD DSN=common.library, DISP=SHR
4 //MALIB1 DD DSN=altlibl,DISP=SHR
//MALIBS DD DSN=altlib5,DISP=SHR
5 //M4WORK ~ DD DUMMY
//M4INPUT DD *
6 UCCOPY FDfilename YNEW
7 UCMERG M4LIBS
/k
//

Figure 12-6 Copy and Merge BDAM/VSAM Common Libraries Using MARKUTIL in
z/OS

Notes Explanation

! Execute the MARKUTIL service program.

2 The M4LIST statement defines the location of the system output device
for this run.

3 MA4LIB represents the common library that cataloged items are copied
into.

4 MA4LIB1 represents the common library that cataloged items are copied

from. This is the default sending common library; see notes 6 and 7.

S An M4WORK file is required for all MARKUTIL operations. Since it is
not used by the COPY operation, it can be dummied.

12-16 Environment Guide

The Common Library Service Program

Notes

Explanation

Enter UC in positions [9-10] with the operation code COPY in positions
[11-14] to copy cataloged items from one common library to another.

The item(s) to be copied are specified in the item name entry on the UC
statement(s).

The named file definition is to be replaced into M4LIB, as long as the
version in the sending common library is more recently updated than
the version in M4LIB. Since the sending common library is not specified
on the UC statement, the default sending common library is M4LIB1.

The entire contents of M4LIB5 is merged into the receiving common
library (M4LIB).

MARKUTIL and Multiple UC Statements

This section contains examples of the MARKUTIL service program when multiple
UC statements are used, specifying different operation codes. Figure 12-7
illustrates the z/OS JCL.

Noftes

WN —

O N OO

Figure 12-7

// JOB
//JOBLIB DD
//multuc EXEC
//MALIST DD
//MALIB DD
//
//M4LIB1 DD
//MALIB2 DD
//M4LIB5 DD
//M4LIBY9 DD
//MAWORK DD
//
//
//MAINPUT DD
UCINIT
UCCOND
UCMERG
UCCOPY

DSN=builder.loadlib, DISP=SHR
PGM=MARKUTIL, REGION=1536K
SYSOUT=A

DSN=common.library, DISP=(NEW, CATLG),
UNIT=sysda, SPACE=(TRK,n, ,CONTIG)
DSN=alt.libl,DISP=0LD
DSN=alt.1ib2,DISP=0LD
DSN=alt.lib5, DISP=0LD
DSN=alt.1lib9, DISP=0LD
DSN=work.file,
DISP=(NEW,CATLG, DELETE) ,
UNIT=sysda, SPACE=(TRK, (n,n),RLSE)
*

M4LIB2
M4LIB9
FDfilename M4LIBS

UCCOPY TDtran mastfile

//

MARKUTIL and Multiple UC Statements in One z/OS Job Step

Notes

Explanation

1

Execute the MARKUTIL service program.

2

The M4LIST statement defines the location of the system output device
for this run.

Common Library Access and Utilities

12-17

MARKINIT Common Library Inifialization

Notes

Explanation

MA4LIB specifies the common library that is to be initialized.

This statement specifies the default data set that the second UCCOPY
statement uses since a ddname is not coded on the UC statement. The
items listed on the UC statement are to be copied from M4LIB1 to
MA4LIB.

This statement specifies the common library to be condensed with the
UCCOND statement.

This statement specifies the common library that cataloged items are to
be copied from to M4LIB, with the first UCCOPY statement.

This statement specifies the common library to be merged with M4LIB,
as a result of the UCMERG statement.

This statement specifies the sequential data set that is used in the
UCCOND statement that condenses M4LIB2.

The UC statements are performed in the order in which they are coded,
in this example: INIT, COND, MERG, COPY, COPY.

MARKINIT Common Library Initialization

The MARKINIT utility program can be used instead of MARKUTIL to initialize
your common library. Normally, MARKINIT is executed once to allocate the
required space and format the area used for the common library. Therefore, the
inadvertent re-execution of MARKINIT on the same data set name results in
erasing items previously cataloged.

12-18 Environment Guide

MARKDUMP and MARKREST Common Library Dump and Restore

Figure 12-8 shows the z/OS JCL statements to invoke MARKINIT for a BDAM and
VSAM common library, respectively. Execute a DEFINE CLUSTER before you
initialize a VSAM common library. See the DEFINE CLUSTER JCL in Figure 12-1

on page 12-8.
Notes BDAM
// JOB (accounting information)

//JOBLIB DD DSN=builder.loadlib, DISP=SHR

//stepl EXEC PGM=MARKINIT,REGION=1536K

2 //MALIB DD DSN=common.library, DISP=(NEW, CATLG, DELETE) ,
// UNIT=sysda, SPACE=(TRK, n, ,CONTIG)
3 //MALIST DD SYSOUT=a
//*
//
VSAM
// JOB (accounting information)

//JOBLIB DD DSN=builder.loadlib,DISP=SHR
//JOBCAT DD DSN=vsam.catalog, DISP=SHR
1 //stepl EXEC PGM=MARKINIT,REGION=1536K

2 //MALIB DD DSN=common.library, DISP=0LD
3 //MALIST DD SYSOUT=a

//*

//

Figure 12-8 BDAM/VSAM Initialization Using MARKINIT in z/OS

Notes Explanation

! Execute the MARKINIT utility program.

2 The common library to be initialized.

3 The system output device for this run.

MARKDUMP and MARKREST Common Library Dump and
Restore

MARKDUMP and MARKREST can be used instead of MARKUTIL to backup or
restore a common library or to copy a common library from one area to another.
MARKDUMP copies the contents of the common library to the sequential work
data set.

Common Library Access and Utilities 12-19

MARKDUMP and MARKREST Common Library Dump and Restore

Figure 12-9 and Figure 12-10 illustrate the z/OS JCL for MARKDUMP and
MARKREST.

For a VSAM common library, the following steps are required:

m The common library is dumped.

m The cluster for the common library is deleted.

m A new larger cluster is defined (in cases where more disk space is needed for
the common library).

m The copy of the old common library is restored to the new common library.
MARKREST includes an initialization function (for VSAM common libraries only);

therefore, it is not necessary to initialize a new common library when using
MARKREST.

For a BDAM common library, you use MARKINIT to initialize a new common
library prior to executing MARKREST.

Notes
// JOB (accounting information)
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
//* STEP 1 DUMP THE LIBRARY TO THE WORK DATA SET
1 //stepl EXEC PGM=MARKDUMP, REGION=1536K
//MALIST DD SYSOUT=a
2 //MALIB DD DSN=common.library, DISP=SHR
3 / /MAWORK DD DSN=work.file, DISP=(NEW, PASS, DELETE),
// UNIT=sysda, SPACE=(TRK, (n,n),RLSE)
//* STEP 2 INITIALIZE A NEW LARGER LIBRARY
4 //step2 EXEC PGM=MARKINIT,REGION=1536K
//MALIST DD SYSOUT=a
//MALIB DD DSN=new.common.library,
// DISP=(NEW,CATLG, DELETE) ,
// UNIT=sysda, SPACE= (CYL, n, ,CONTIG)
//* STEP 3 RESTORE THE LIBRARY FROM THE WORK DATA SET
5 //step3 EXEC PGM=MARKREST,REGION=1536k
//MALIST DD SYSOUT=a
6 //MALIB DD DSN=new.common.library, DISP=SHR
7 / /M4WORK DD DSN=work.file,DISP=(OLD,DELETE)
//*
//

Figure 12-9 Dump and Restore a BDAM Common Library Using MARKDUMP,
MARKINIT, and MARKREST in z/OS

Notes Explanation

! Execute the MARKDUMP utility program.

2 The common library to be dumped.

12-20 Environment Guide

MARKDUMP and MARKREST Common Library Dump and Restore

Notes

Explanation

The sequential data set onto which the common library is to be
dumped. This data set must be large enough to contain the common
library.

Execute the MARKINIT utility program.

Execute the MARKREST utility program.

The common library to which the contents of the work data set are to
be restored.

The sequential data set that was created by the dump program and
from which the common library is restored.

Noftes

// JOB
//JOBLIB DD
//JOBCAT DD
//* STEP 1
//stepl EXEC

(accounting information)
DSN=builder.loadlib, DISP=SHR
DSN=vsam.catalog, DISP=SHR
DUMP THE LIBRARY TO THE WORK DATA SET
PGM=MARKDUMP, REGION=1536K
//MALIB DD DSN=common.library, DISP=SHR
//M4WORK DD DSN=work.file, DISP=(NEW,CATLG, DELETE) ,
// UNIT=sysda, SPACE=(TRK, (n,n),RLSE)
//MALIST DD SYSOUT=a
//*
//* PURGE THE OLD VSAM LIBRARY
//* AND DEFINE CLUSTER FOR A NEW, LARGER LIBRARY
//step2 EXEC DSN=IDCAMS,REGION=1536K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DELETE common.library -

PURGE

DEFINE CLUSTER -

(NAME (new.common. library) -

VOLUME (XXXXXX) -

NUMBERED -

SHAREOPTIONS (3 3) -

CISZ (4096)

RECORDSIZE (507 507) -

CYL(1 1)) -

DATA (NAME (new.common. library.DATA))
/*
//* STEP 3 RESTORE THE LIBRARY FROM THE WORK DATA SET
//step3 EXEC PGM=MARKREST,REGION=1536K
//MALIST DD SYSOUT=a
//MALIB DD DSN=new.common.library, DISP=SHR
//M4WORK DD DSN=work.file, DISP=SHR
//*
//

STEP 2

Figure 12-10 Dump and Restore a VSAM Common Library Using MARKDUMP,

MARKINIT, and MARKREST in z/OS

Common Library Access and Utilities 12-21

MARKCON Common Library Condense

Notes Explanation

! Execute the MARKDUMP utility program.

2 The common library to be dumped.

3 The sequential data set onto which the common library is to be
dumped. This data set must be large enough to contain the common
library.

4 Step 2 purges the old common library and allocates a new, larger

common library.

5 The DEFINE for the new, larger common library. (See MARKUTIL
Initialization on page 12-7 for additional information about the
common library cluster definition.)

6 Execute the MARKREST utility program.

7 The common library to which the contents of the work data set is to be
restored.

8 The sequential data set created by the dump program and from which

the common library is restored.

MARKCON Common Library Condense

The MARKCON utility program can be used in place of MARKUTIL to free the
unused area in the common library. MARKCON condenses the common library by
making available the area from which items were previously deleted.

MARKCON dumps the usable items from the common library to a sequential
work data set, frees the common library of the “deleted” items, and restores the
contents of the sequential data set to the common library.

Figure 12-11 illustrates z/OS JCL statements used for condensing a BDAM or
VSAM common library.

Notes BDAM
// JOB (accounting information)
//JOBLIB DD DSN=builder.loadlib, DISP=SHR
1 //stepl EXEC PGM=MARKCON,REGION=1536K

2 //MALIB DD DSN=common.library, DISP=SHR

3 / /M4WORK DD DSN=work.file, DISP=(NEW,DELETE),
// UNIT=sysda, SPACE= (TRK, (n,n) , RLSE)
//MALIST DD SYSOUT=a
//*
//

Figure 12-11 Condensing a BDAM/VSAM Common Library Using MARKCON in
z/OS (Page 1 of 2)

12-22 Environment Guide

Using Cataloged Procedures and Requests

VSAM
// JOB (accounting information)
//JOBLIB DD DSN=builder.loadlib,DISP=SHR
//JOBCAT DD DSN=vsam.catalog, DISP=SHR
1 //STEP1 EXEC PGM=MARKCON,REGION=1536K
2 //MALIB DD DSN=common.library, DISP=SHR

3 //MAWORK DD DSN=work.file, DISP=(NEW, DELETE),
// UNIT=sysda, SPACE=(TRK, (n,n),RLSE)
//MALIST DD SYSOUT=a
//*

//

Figure 12-11 Condensing a BDAM/VSAM Common Library Using MARKCON in
z/OS (Page 2 of 2)

Notes Explanation

! Execute the MARKCON utility program.

2 The common library to be condensed.

3 The sequential work data set onto which the common library is to be
dumped and from which it is restored. This data set must be large
enough to contain the common library.

Using Cataloged Procedures and Requests

Cataloged procedures and requests are VISION:Builder procedures and requests
that are saved in a common library for use during application processing runs.

Cataloged Procedure and Request Maintenance

Catalog maintenance operations are used to save, replace, insert, delete, list, and
dump cataloged procedures and requests that are in your common library.
Procedures and requests can be cataloged and maintained individually or in
groups.

All procedure and request catalog maintenance operations are performed in
application processing runs. See Chapter 2, “VISION:Builder Runs, Run Control,
and Execution JCL” for a description of the JCL for an application processing run.

The various catalog maintenance operations are specified on the CATALOG
statement. The CATALOG statement is included in the application processing run
following the CONTROL statements. You can specify a scan/terminate processing
run (keyword SCAN on the CONTROL statement) if you want to perform catalog
maintenance without executing your application. See the VISION:Builder for z/OS
ASL Reference Guide for the details on the operations and entries available in the
CATALOG statement.

Common Library Access and Utilities 12-23

Listing and Refrieving Common Library Items

Cataloged Procedure and Request Execution

Cataloged procedures and requests are executed in application processing runs.
The procedures and requests to be executed (individual and/or groups) are
retrieved from the common library by including an INCLUDE statement in your
application following the run control statements. See the VISION:Builder for z/OS

ASL Reference Guide for a description of the INCLUDE statement.

Multiple INCLUDE statements can be used and interleaved with other instream
procedures and requests in the application. The order of the INCLUDE statements
will dictate the order that the cataloged procedures and requests will appear
within the application.

Listing and Retrieving Common Library ltems

The catalog listing and retrieval functions of VISION:Builder allow the user to list
and retrieve items previously cataloged and stored in the common library.

Common Library Listing Operations

The various operations for listing the contents of the common library are specified
in the LISTLIB statement. See the VISION:Builder for z/0OS ASL Reference Guide for
the details on the common library listing operations that are available with the
LISTLIB statement.

There are listing operations that allow you to list the names of the various items
stored in the common library by type of item. You can also get a list of everything
in the common library by name within type. You can obtain glossary listings for
the various items in the common library which document their contents in detail.

The common library listing operations are performed in a definition/maintenance
run. See Chapter 2, “VISION:Builder Runs, Run Control, and Execution JCL” for a
description of the JCL required to execute a definition/maintenance run.

12-24 Environment Guide

Listing and Refrieving Common Library ltems

Common Library Retrieval Operations

The various operations for retrieving the contents of the common library are
specified in the RETRIEVE statement. See the VISION:Builder for z/0OS ASL
Reference Guide for the details on the common library retrieval operations that are
available with the RETRIEVE statement.

The retrieval operations allow you to retrieve the various items from your
common library in source statement format. The common library retrieval
operations are performed in a source statement retrieval (SSR)

definition/ maintenance run. Source statement retrieval runs are a distinct type of
run, indicated by the presence of a RETRIEVE statement.

The SSR capability allows you to retrieve the following in source statement form:
m File definitions

m Run data group definitions

m Array and table definitions

m Transaction group definitions

m Cataloged procedures and requests

Retrieved source statements are output to the file indicated by the ddname

M4SSOUT. The input files to a source statement retrieval run are M4LIB and
MA4INPUT; output files are M4LIST and M4SSOUT. No other files can be included.

In the SSR run, the run control group consists of one CONTROL statement and one
or more RETRIEVE statements.

M4SSOUT is a file containing 80-character, fixed length records. If you specify a
RETRIEVE EOF statement, the record output to M4SSOUT is a /* statement. The
VISION:Builder own code hooks 10, 20, 21, 63, and 91 are supported under SSR
runs.

Common Library Access and Utilities 12-25

Listing and Refrieving Common Library Items

Sample Source Statement Retrieval Runs

This section contains sample job control for retrieving source statements from the
common library with VISION:Builder.

Figure 12-12 shows the interactions that take place in a source statement retrieval
run. Figure 12-13 shows the z/OS JCL for a source statement retrieval run.

M4 INPUT

Application Program

1

MALIST

Figure 12-12 Interactions of Source Statement Retrieval Run

12-26 Environment Guide

Listing and Refrieving Common Library ltems

Noftes

AOWON—

// JOB (accounting information)

//* JCL FOR SOURCE STATEMENT RETRIEVAL RUN **
//JOBLIB DD DSN=builder.loadlib, DISP=SHR

//step EXEC PGM=MARKIV,REGION=1536K

//MALIB DD DSN=common.library, DISP=SHR

//M4LIST DD SYSOUT=a

//M4SSOUT DD DSN=ssout.file, DISP=(NEW, CATLG,DELETE),

// SPACE=(TRK, (n,n),RLSE),
// UNIT=sysda

//M4INPUT DD *

CONTROL

RETRIEVE GROUP, ITEM . . .

7%
//

Figure 12-13 z/OS JCL for a Source Statement Refrieval Run

Notes Explanation

! Execute MARKIV for a source statement retrieval run.

2 The M4LIB represents the common library from which items are to be
retrieved.

3 The M4LIST statement defines the location of the system output device
for this run. The output includes a listing of the source statements and
diagnostic messages.

4 This statement defines the file (M4SSOUT) used to hold the source
statements that are retrieved.

5

The M4INPUT defines the data set containing source statement
retrieval statements. The CONTROL statement must be the first of
these statements. One or more RETRIEVE statements defining the
retrieval operation(s) immediately follow the CONTROL statement.

Common Library Access and Utilities 12-27

Listing and Refrieving Common Library Items

Fixed Syntax Statement Usage Considerations

When fixed syntax statements are used instead of ASL statements for an SSR run,
the following considerations will apply:

Except for RP and CT statements, all other M4INPUT records of any type (for
example, JCL or SYSTEM commands) which follow the RC statement are copied
directly to the source statement output file (M4SSOUT); no other actions are
performed on them. CT statements and continuation CT statements containing
retrieval operators are not copied to the source statement output file (M4SSOUT).
Statements containing retrieval operators are only used to define items to be
retrieved and output in source statement form. They are processed before any
subsequent input stream statements are accessed.

Because all statements, except run control group and the CT statements that
specify SSR operations, are copied from M4INPUT directly to M4SSOUT, you can
create a data set on M4SSOUT consisting of common library source statements,
JCL and data, which can be used in a later run.

When a CT statement with an SSR operation is encountered, the specified source
statements are retrieved from the common library and output to the M4SSOUT
before any subsequent MAINPUT statements are accessed.

12-28 Environment Guide

Bl VISION:Builder HTML Document
13 Style Customization

One of the Alternate Report Output Methods in VISION:Builder is an HTML
document. VISION:Builder uses templates containing HTML code to define the
layout and appearance of the report content, when it is displayed as a document
by a web browser. A default template is delivered with VISION:Builder to use in
generating HTML documents. These templates include HTML style specifications
such as background color, text color, font, alignment, and so on, that the browser
uses when displaying the content of the document. Therefore, a template
representing a specific appearance is known as a style.

You can customize the default style delivered with VISION:Builder as you prefer,
and create up to 99 other styles to use for different reports prepared as HTML
documents. You can specify the style number for a report using one of the
following methods:

m Setting it in the Report Method window in VISION:Workbench for DOS
m Including the STYLE keyword on the FORMAT command.

If left blank, the default style is used. At execution time, the HTML templates for
each style used in an application must be present in a library. This library is
identified with the MAHTBASE ddname.

The template for each HTML style consists of 5 related members in the
M4HTBAGSE library. Each template member name for a style ends in a unique
2-digit suffix. The 00 suffix represents the default style. Up to 99 sets of template
members with a suffix of 01 through 99 can be created to define additional styles
as needed. The 5 members making up the template for a specific style must all end
with the same suffix. The following table describes the purpose of each of the 5
members defining a specific style. Note that the HTPRIXnn and HTPRIYnn
members serve the same basic function, and either one or the other is used for each
report. The HTLTOCnn member is only used when the HTPRIXnn member is
chosen for a report.

VISION:Builder HTML Document Style Customization 13-1

M4HTBASE Library Contains the HTML code that...
Member Name

HTPRIXnn Defines the frames used for an HTML document that
includes Level 1 Subtitle specifications.

HTPRIYnn Defines the frames used for an HTML document that does
not include any Level 1 Subtitle specifications.

HTBODYnn Describes the Body frame for the document. This frame
contains the report data in a layout similar to a printed
page. The body frame contains all subtitle lines, detail
lines, and summary lines specified for the report content.

HTHEADnNn Describes the Heading frame for the document. This frame
contains the Page Title and Column Heading lines for the
report, similar to a printed page.

HTLTOCnn Describes the Left-Hand-Table-of-Contents frame for the
document. This frame contains the Level 1 Subtitle data
for the report and can be used as a hyperlink index to the
corresponding section of detail and/or summary data
lines related to the subtitle data value.

Within the HTBODYnn, HTHEADnn, and HTLTOCnn members is a section of
HTML code delimited by the <STYLE> and </STYLE> tags. It is this section of
HTML code that can be modified to create additional styles. To create a new style,
copy the members from the default or existing user style and modify the HTML
code within the style section, to provide the appropriate appearance of the new
style. You must not modify, insert, or remove any HTML code outside of the style
section of these members.

Detail and summary lines in the Body frame as well as Page Title and Column
Heading lines in the Heading frame are inserted into the appropriate frames as
pre-formatted text bracketed by the <PRE> and </PRE> tags. Subtitle lines in the
Body frame are bracketed by the <H5> and </H5> tags. Level 1 Subtitle data in
the Left-Hand-Table-of-Contents frame are bracketed by the <A> and </ A> tags.
The style section for each frame contains style specifications for each tag.
Changing the style parameters for a tag changes the appearance of the related
report data when it displays using the browser.

The Heading frame for the default FRAMESET definition (in members HTPRIX00
and HTPRIYO0O) contains the specification of SCROLLING=NO. To enable
scrolling for this frame, in the HTPRIXnn and HTPRIYnn members change the
specification to SCROLLING=YES. If you are familiar with HTML coding, you can
modify or extend the FRAMESET and FRAME specifications in these two

13-2 Environment Guide

members to meet specific needs or preferences. The portion of the screen space
reserved for each FRAMESET is a parameter that you can change to provide styles
that can better meet the needs for a particular report. You can also define an
additional frame to include a corporate logo or other static information to be
displayed with each report.

The Title Bar of the HTML Page is the text delimited by the <TITLE> and
</TITLE> tags. This can be changed for a template set and becomes the default
Title Bar for the HTML Page. You can also use the Fixed Format Title Statement
(Tn), the Formatted Sectional TITLE command, or the ASL TITLE Command, with
the HTMLTITLEBAR;, to specify the HTML Title Bar text.

When a VISION:Builder report is prepared as an HTML document, the report
content is written out as either 3 or 4 members into the partitioned dataset
specified as the output destination. The following table shows the correspondence
of the style members in the MAHTBASE library to the output member in the
destination dataset. Note that the SMAIN output member is copied from either the
HTPRIXnn or HTPRIYnn template member. The LTOC output member is present
only when the HTPRIXnn template member is used.

M4HTBASE Library Action Output
Member Name Member Name
HTPRIXnn Copied as is when Level 1 Subtitle $MAIN

specifications are present.

HTPRIYnn Copied as is when Level 1 Subtitle $MAIN
specifications are not present.

HTHEADnNn Page Title and Column Heading lines HEAD
are merged into this member at the
“.....7 placeholder location.

HTBODYnn Subtitle, detail, and summary lines are BDYnnnnn
merged into this member at the “.....”
placeholder location.

HTLTOCnn Level 1 subtitle fields are merged into LTOC
this member at the “.....” placeholder
location.

VISION:Builder HTML Document Style Customization 13-3

The following HTML code represents each of the default style members provided
by Computer Associates.

Member HTPRIX00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Builder Report Type X, Default Style</TITLE>
</HEAD>
<FRAMESET COLS="19%,*">
<FRAME NAME="ltoc" SRC="ltoc.html" MARGINHEIGHT=0 MARGINWIDTH=0>
<FRAMESET ROWS="13%,*" BORDER=1>
<FRAME NAME="head" SRC="head.html" MARGINHEIGHT=2 MARGINWIDTH=2
SCROLLING=NO>
<FRAME NAME="body" SRC="body.html" MARGINHEIGHT=2 MARGINWIDTH=2>
</FRAMESET>
</FRAMESET>

</HTML>

Member HTPRIYO0O

<!DOCTYPE HTML PUBLIC "-//W3C//DTID HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Builder Report Type Y, Default Style</TITLE>
</HEAD>
<FRAMESET ROWS="13%,*" BORDER=1>
<FRAME NAME="head" SRC="head.html" MARGINHEIGHT=2 MARGINWIDTH=2
SCROLLING=NO>
<FRAME NAME="body" SRC="body.html" MARGINHEIGHT=2 MARGINWIDTH=2>
</FRAMESET>
</HTML>

13-4 Environment Guide

Member HTHEADOO

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>

<HEAD>

<TITLE>VISION:Builder Report Heading Frame, Default Style</TITLE>
<STYLE>

<!--

BODY {color:black; background:aqua}

PRE {color:black; background:aqua; font-size:x-small}
-=>

</STYLE>

</HEAD>

<BODY>

<PRE>

..... <Place Holder - Do Not Remove or Reposition>
</PRE>

</BODY>

</HTML>

Member HTBODYO00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>

<HEAD>

<TITLE>VISION:Builder Report Detail Frame, Default Style</TITLE>

<STYLE>

<!--

BODY {color:blue; background:white}

H5 {color:black; background:lightgrey; font-size:x-small;
font-weight:bold; font-family:courier;
text-align:left; line-height:normal}

PRE {color:blue; background:white; font-size:x-small}

-=>

</STYLE>

</HEAD>

<BODY><PRE>

..... <Place Holder - Do Not Remove or Reposition>

</BODY>

</HTML>

VISION:Builder HTML Document Style Customization

13-5

Member HTLTOCO00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>

<BASEFONT SIZE=2>

<HEAD>

<TITLE>VISION:Builder Report Table of Contents Frame,
Default Style</TITLE>

<STYLE>

<!--

BODY {color:black; background:skyblue}

H4 {color:yellow; background:blue; font-size:medium; font-weight:bold}

A {color:maroon; background:skyblue; font-size:x-small}

-=>

</STYLE>

</HEAD>

<BODY>

<H4>Report Contents</H4>

..... <Place Holder - Do Not Remove or Reposition>

</BODY>

</HTML>

13-6 Environment Guide

Index

A

access methods, 10-9
alternate list file, 2-26
alternate report files, 2-18, 2-19, 2-20
alternate report output methods
single-step JCL, 2-60
three-step JCL, 2-64
application, 1-3
development overview, 1-3
run, 1-6, 1-7
run control group, 2-5

batch free-form input, 8-1
batch query language, 7-2
definition step, 7-5
glossary, 7-4
processing, 7-5
report step, 7-6
sample execution, 7-6, 7-7
sort step, 7-6

blocking factors ISAM, 10-9

C

call attach facility, 11-1, 11-3
calling VISION:Builder, 10-4

cataloged procedure and request maintenance,
12-23

cataloged procedures and request, 12-23
checkpoint/restart, 6-6, 6-9, 6-15
CHKP flag, 6-15
CKPTID, 6-11
CKPTID flag, 6-15
examples, 6-7, 6-8
timing, 6-4
with DB2, 6-16
comma-delimited output, 2-62, 2-66
configuration requirements, 1-1
CP statement, 6-1
CP statement (checkpoint), 2-7
CT statement, 12-23

D

DB statement, 2-6

DB2
IMS checkpoints, 6-16

DD statements
JCL statements, 2-9

defining data structures, 1-5

definition/maintenance run, 1-5, 2-8
JCL requirements, 2-8
definitions

stored in the common library, 12-2
DL/I, 3-4, 3-10

Index-1

file definition, DBD and PSB relationship, 3-2
JCL requirements, 3-7

MARKDLI, DBDs, and PSBs, 3-1

non-unique IMS key/search field, 3-10
secondary indexing, 3-10

G

GSAM DBD, 6-10
GSAM PCB, 6-10
GSAM PSB, 6-11

H

HTML
code, 13-4
output, 2-60, 2-62, 2-63, 2-64, 2-67, 2-68
style, 13-1
templates, 2-60, 2-62, 2-64, 2-67

IMS attach facility, 11-1, 11-2

IMS checkpoint/restart, 6-15

initialization program formats the common lib, 12-7
introduction, 1-1, 4-1, 6-1, 7-1

IT statement (item tracking), 2-7

J

JCL for VISION:Builder runs
application runs, 2-9
application runs alternate report files, 2-18, 2-19,
2-20
application runs alternate report output
methods, 2-60, 2-64
application runs coordinated files, 2-22
application runs master files, 2-22
application runs report summary files, 2-45, 2-46,
2-48, 2-49
application runs single-step processing, 2-9, 2-10,

2-15
application runs three-step processing, 2-11,
2-13,2-14
application runs update a master file, 2-30
application runs update-in-place, 2-49
concatenation of input data sets, 10-3
definition/ maintenance run, 2-8
override parameters, 10-1
program analyzer, 2-35, 2-36, 2-37, 2-40, 2-41,
2-42
scan runs, 2-34

Job Control Language (JCL)
for common library utilities, 12-7
for source statement retrieval, 12-26

LB statement, 2-6

limiting records read during input processing, 10-7

linking to VISION:Builder, 10-4

listing common library items, 12-24

M

maintenance
to definitions, 12-23
utilities, 12-7

MARKDL], 3-1, 3-7, 3-8, 6-1
MARKDLIX, 6-1, 6-10
master and coordinated files, 2-22, 2-23, 2-24
message processing, 10-8
monitoring activity
multiple common libraries, 12-2

o

OC statement (own-code), 2-7

online execution of VISION:Builder
CLISTs, 9-4
free-form input, 9-6, 9-7, 9-11, 9-12

Index-2 Environment Guide

messages, 9-4

OLX commands, 9-5
query language, 9-6
sample run, 9-12, 9-13
security interfaces, 9-5

optimization of resources, 10-7, 10-8

own-code
dynamic integration, 5-2
facilities, 5-1
flow, 5-7
hook 10, 5-2, 5-3, 5-9, 5-10, 5-18, 5-22
hook 11, 5-3, 5-10
hook 20, 5-11, 5-12, 5-18
hook 21, 5-9, 5-12, 5-13, 5-18
hook 30, 5-6, 5-14
hook 50, 5-15, 5-20
hook 51, 5-3, 5-16
hook 60, 5-16
hook 61, 5-3, 5-17
hook 62, 5-17
hook 63, 5-9, 5-12, 5-13, 5-18
hook 70, 5-15, 5-20
hook 91, 5-9, 5-10, 5-21, 5-22
hook 92, 5-23
hook 93, 5-24

hook descriptions, 5-9, 5-10, 5-11, 5-12, 5-14, 5-15,

5-16, 5-17, 5-18, 5-19, 5-21, 5-23, 5-24
hook naming conventions, 5-5
interrupts, 5-4

linkage, 5-4

obtaining space, 5-3

static integration, 5-2

user I/0O, 5-1, 5-9, 5-10, 5-24, 5-25, 5-29, 5-39

user I/O, COBOL example, 5-39
variable length fields, 5-24

PA statement (program analyzer), 2-7

PAL
program analyzer, 2-37

PARM information, 10-4, 10-5
plain text output, 2-62, 2-67

processing data
application run, 1-6

program analyzer
JCL requirements, 2-35, 2-40, 2-41

Q

query language

batch query language or online execution, 7-1

RA statement (arrays), 2-6

raw data output, 2-63, 2-67

RC statement (run control), 2-6
relational support, 11-1

report file optimization, 10-6

report manager, 2-51

report summary files, 2-45, 2-46, 2-48, 2-49

JCL requirements, 2-43, 2-44, 2-45, 2-46, 2-48

REPTSIZE, 2-33
resource optimization, 10-7, 10-8

restart
checkpoint/restart, 6-1

retrieving
common library items, 12-25
source statements, 12-25

RF statement (files), 2-6

RG statement (transaction groups), 2-7
RP statement (run parameters), 2-6

RT statement (relational tables), 2-7

run control group, 2-5

S

sample reports, 2-33, 2-34, 2-35

Index-3

scan runs
JCL requirements, 2-33, 2-34, 2-35

shared common libraries, 12-2

single-step processing, 1-6
JCL requirements, 2-9, 2-15

SORTSIZE, 2-33
source statement retrieval, 12-25
storage optimization, 10-8

subfile and alternate list
JCL requirements, 2-26, 2-28

tab-delimited output, 2-62, 2-66

three-step processing, 1-7
JCL requirements, 2-11, 2-13, 2-14

TSO attach facility, 11-1, 11-2

U

UC statement, 12-7

update master file
JCL requirements, 2-30

update-in-place (no-sort), 2-49, 2-50, 2-51

user [/O
own-code, 5-1

\'

variable-spanned records, 10-9

VSAM
alternate index as a user file, 4-3
alternate index paths, 4-1, 4-2, 4-3, 4-4
generic and duplicate keys, 4-4
record support, 4-1

w

WH statement, 2-7

Index—4 Environment Guide

	Advantage VISION:Builder Advantage VISION:Two for z/OS Environment Guide
	Contents
	Chapter 1: Introduction
	Configuration Requirements
	Organization and Standards for This Book
	Overview of VISION:Builder Application Development
	Definitions
	Processing Data

	Chapter 2: VISION:Builder Runs, Run Control, and Execution JCL
	Relationship Between Run Control, VISION:Builder Processing, and JCL
	Files and Their DDnames in a VISION:Builder Run
	Job Control Statements

	Run Control Group
	The Definition Maintenance Run
	The Application Run
	Single-Step Process-Sort-Report Run
	Three-Step Process-Sort-Report Run
	Single-Step No-Sort Report Run

	Run Control and Execution JCL for Sample VISION:Builder Applications
	Alternate Report Files
	Report from Master File and Coordinated Files (Three-Step)
	Create a Subfile and Generate a Report on an Alternate List File (Three-Step)
	Update a Master File (Single-Step Sort)
	Scan/Sample Report
	Program Analyzer
	Report Summary File

	Update-in-Place (Single-Step No-Sort)
	Report Manager JCL Examples
	Report Manager Single-Step JCL for Collating and/or Routing
	Report Manager Three-Step JCL for Collating with or without Routing
	Report Manager Three-Step JCL for Routing Only

	Alternate Report Output Method JCL Examples
	Alternate Report Output Methods Single-Step JCL
	Alternate Report Output Methods Three-Step JCL

	Chapter 3: VISION:Builder - IMS Database Interface and Retrieval
	MARKDLI, DBDs, and PSBs
	Sample File Definition
	IMS Batch Region Execution of VISION:Builder
	IMS BMP Region Execution of VISION:Builder
	VISION:Builder Extended DL/I Support
	Secondary Indexing
	Non-Unique IMS Key/Search Field Names
	Generic and Duplicate Root Keys

	Chapter 4: VSAM User Files
	ESDS and KSDS Files
	ESDS and KSDS Alternate Index Paths
	Alternate Index as a User File
	Generic and Duplicate Keys

	Chapter 5: Own-Code Facilities
	Integrating M4OWN
	Obtaining Space for Own-Code Routines
	Interrupts and Linkage Considerations
	Own-Code Hook Naming Conventions
	VISION:Builder Own-Code Hook Flow
	Own-Code Hook Descriptions
	Own-Code Hook 10
	Own-Code Hook 11
	Own-Code Hook 20
	Own-Code Hook 21
	Own-Code Hook 30
	Own-Code Hook 50
	Own-Code Hook 51
	Own-Code Hook 60
	Own-Code Hook 61
	Own-Code Hook 62
	Own-Code Hook 63
	Own-Code Hook 70
	Own-Code Hook 91
	Own-Code Hook 92
	Own-Code Hook 93

	Variable Length Fields with Own-Code
	User I/O
	Primary Parameter List
	Communication Table
	File Table
	Key Table
	Relationships Among Tables
	Update-in-Place Example
	COBOL Example of User I/O

	Chapter 6: Checkpoint/Restart
	Checkpoint Options
	Taking Checkpoints in VISION:Builder
	Checkpoint Files
	Checkpointing at Time Intervals
	Checkpointing on Record Count
	Checkpointing Under Operator Control
	Checkpointing at End of Volume

	Multiple Checkpoint Options
	Writing Checkpoints
	z/OS Samples of Checkpoint/Restart
	IMS Checkpoint/Restart
	IMS Requirements for Checkpointing
	VISION:Builder Considerations for IMS Checkpoints
	VISION:Builder Restrictions for IMS Checkpoint/Restart
	IMS Checkpoints with DB2

	Chapter 7: Batch Query Language Execution
	Query Language Input and Output Files
	Steps in the Execution of the Batch Query Language
	Query Step
	Glossary Step
	Processing Step
	Definition Step
	Sort Step
	Report Step

	Sample Execution of Batch Query Language

	Chapter 8: Batch Free-Form Input Execution
	Job Control Language Requirements

	Chapter 9: VISION:Builder Online Execution
	Using the VISION:Builder Executive Under TSO
	Input and Output Devices
	Furnishing Allocation Data
	Using CLISTs
	Messages Issued By OLX

	OLX Commands
	Data Set and Command Security Interfaces

	Online Query Language
	Online Free-Form Input
	Input Mode and Edit Mode
	Input of VISION:Builder Source Statements
	OFI Commands
	Sample Run

	Chapter 10: Operating Characteristics
	JCL Override Parameters
	Concatenation of Input Data Sets
	Linking to VISION:Builder
	Calling Sequence
	VISION:Builder Input Parameter List
	PARM Information

	ddname
	Exit Sequence

	Sort Control Statements
	Limiting the Number of Records Read During Input File Processing
	Resource Optimization
	Access Methods
	Blocking Factor for ISAM Files
	Non-VSAM Variable-Spanned Records

	Chapter 11: Using VISION:Builder with DB2
	TSO Attach Facility
	IMS Attach Facility
	CALL Attach Facility

	Chapter 12: Common Library Access and Utilities
	Using Multiple Common Libraries
	Using Common Libraries on Shared DASD
	Sharing Common Libraries on DASD

	COMLIB Release 4.5 Considerations
	Internal M4LIB 4.5 Format
	Common Library Utility Work File (M4WORK) Format
	Common Library Data Set (M4LIB) Compression

	COMLIB r5 Considerations
	Internal M4LIB 5.0 Format
	New and Enhanced Field Types and Characteristics

	The Common Library Service Program
	MARKUTIL Initialization
	MARKUTIL Dump and Restore
	MARKUTIL Condense
	MARKUTIL Copy and Merge
	MARKUTIL and Multiple UC Statements

	MARKINIT Common Library Initialization
	MARKDUMP and MARKREST Common Library Dump and Restore
	MARKCON Common Library Condense
	Using Cataloged Procedures and Requests
	Cataloged Procedure and Request Maintenance
	Cataloged Procedure and Request Execution

	Listing and Retrieving Common Library Items
	Common Library Listing Operations
	Common Library Retrieval Operations
	Sample Source Statement Retrieval Runs
	Fixed Syntax Statement Usage Considerations

	Chapter 13: VISION:Builder HTML Document Style Customization
	Index

