

User Guide
Release 11.3.6

CA Workload Automation AE

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Automation Suite for Data Centers (formerly named CA Spectrum® Automation
Manager)

■ CA ControlMinder™ (formerly named CA eTrust® Access Control)

■ CA Embedded Entitlements Manager (CA EEM)

■ CA IT Client Manager

■ CA Job Management Option

■ CA Jobtrac™ Job Management (CA Jobtrac)

■ CA Network and Systems Management (CA NSM)

■ CA Process Automation

■ CA Scheduler® Job Management (CA Scheduler)

■ CA Service Desk

■ CA Systems Performance for Infrastructure Managers (formerly named CA
SystemEDGE)

■ CA Universal Job Management Agent (CA UJMA)

■ CA Workload Automation AE (formerly named Unicenter® AutoSys® Job
Management (Unicenter AutoSys JM))

■ CA Workload Automation AE Connect Option

■ CA Workload Automation Agent for Application Services (CA WA Agent for
Application Services)

■ CA Workload Automation Agent for Databases (CA WA Agent for Databases)

■ CA Workload Automation Agent for i5/OS (CA WA Agent for i5/OS)

■ CA Workload Automation Agent for Linux (CA WA Agent for Linux)

■ CA Workload Automation Agent for Micro Focus (CA WA Agent for Micro Focus)

■ CA Workload Automation Agent for Oracle E-Business Suite (CA WA Agent for
Oracle E-Business Suite)

■ CA Workload Automation Agent for PeopleSoft (CA WA Agent for PeopleSoft)

■ CA Workload Automation Agent for Remote Execution (CA WA Agent for Remote
Execution)

■ CA Workload Automation Agent for SAP (CA WA Agent for SAP)

■ CA Workload Automation Agent for UNIX (CA WA Agent for UNIX)

■ CA Workload Automation Agent for Web Services (CA WA Agent for Web Services)

■ CA Workload Automation Agent for Windows (CA WA Agent for Windows)

■ CA Workload Automation Agent for z/OS (CA WA Agent for z/OS)

■ CA Workload Automation CA 7® Edition (formerly named CA Workload Automation
SE)

■ CA Workload Automation ESP Edition (formerly named CA Workload Automation
EE)

■ CA Workload Control Center (CA WCC)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 17

Intended Audience ... 17

Automated Job Control .. 18

Agents and Agent Plug-ins ... 18

agentparm.txt File ... 19

Legacy Agent Replaced by CA Workload Automation Agent ... 19

Jobs ... 20

Events ... 20

Alarms .. 20

Utilities ... 21

Commands ... 21

Issue a Command on UNIX .. 23

Issue a Command on Windows ... 24

Security ... 25

Chapter 2: Working with JIL 27

The jil Command and JIL (Job Information Language) ... 27

JIL Subcommands ... 28

JIL Syntax Rules... 30

Issue JIL in Interactive Mode on UNIX .. 33

Issue JIL in Interactive Mode on Windows ... 33

Issue JIL Using a Script on UNIX .. 35

Issue JIL Using a Script on Windows ... 36

Example JIL Script ... 37

Chapter 3: Working with Machines 39

Machines .. 39

Real Machines ... 39

Virtual Machines ... 40

Real Machine Pools ... 40

The localhost Definition ... 41

How the localhost Value is Resolved .. 41

Define a Machine ... 42

Examples: Defining Real Machines ... 46

Examples: Defining Virtual Machines .. 47

Examples: Defining Real Machine Pools ... 50

6 User Guide

Delete a Real Machine ... 50

Delete a Virtual Machine .. 51

Delete a Real Machine Pool ... 52

Delete a Real Machine from a Virtual Machine or Real Machine Pool .. 52

Specifying Machine Load (max_load) ... 52

Specifying Job Load (job_load) ... 53

Specifying Queuing Priority (priority) ... 54

Specifying Relative Processing Power (factor) ... 55

Machine Status ... 56

Take a Machine Offline Manually ... 56

Put a Machine Online Manually .. 57

How Status Changes Automatically .. 57

How Status Affects Jobs on Virtual Machines ... 59

Load Balancing ... 60

Load Balancing Using Virtual Resource Dependencies .. 63

Load Balancing Using Virtual and Real Resource Dependencies .. 65

Load Balancing Using Real Resource Pools .. 68

Forcing a Job to Start .. 69

Queuing Jobs .. 71

How CA Workload Automation AE Queues Jobs ... 72

Using a Virtual Machine as a Subset of a Real Machine ... 74

Using a Virtual Machine to Combine Subsets of Real Machines ... 75

User-Defined Load Balancing ... 76

Chapter 4: Working with Jobs 79

Jobs ... 79

Job Types .. 81

Common Job Attributes ... 82

Job States ... 83

Defining Jobs .. 88

Insert a Job Definition ... 88

Update a Job Definition... 89

Defining Jobs to Run on a Cluster ... 91

Delete a Job .. 92

Running a Job After Using JIL ... 93

Specify the Job Owner .. 93

Global Variables ... 95

Alerts .. 98

Starting Conditions ... 100

Date and Time Dependencies ... 102

Job Dependencies Based on Job Status .. 103

Contents 7

Managing Job Status ... 105

Job Dependencies Based on Exit Codes .. 106

Job Dependencies Based on Global Variables ... 108

Starting Conditions and Boxes ... 110

Controlling Jobs in PEND_MACH Status ... 111

Controlling the Starting of Jobs in PEND_MACH Status .. 112

Controlling the Status of Jobs Scheduled on an Offline Machine ... 115

Job Run Numbers and Names .. 116

How Time Dependencies Are Set ... 116

Dependent Jobs .. 118

Look-Back Conditions .. 120

Specifying One-Time Job Overrides.. 121

How Job Overrides Are Set.. 123

Date and Time Attributes and Time Changes ... 123

Daylight Time Changes .. 124

Standard Time Changes .. 126

Job Profiles ... 127

Environment Variables .. 127

How the Environment for a Job is Sourced ... 129

Create a Job Profile ... 129

Assign a Job Profile to a Job .. 130

Convert Job Profiles to the New Format (Windows Only) .. 131

Must Start Times and Must Complete Times ... 131

How Must Start Times and Must Complete Times Work .. 132

Examples: Specifying Must Start Times and Must Complete Times ... 133

Delete Obsolete Job Versions .. 135

Restricting the Runtime Behavior of Jobs .. 136

Chapter 5: Application Services Jobs 137

Application Services Jobs ... 137

Payload Producing and Payload Consuming Jobs .. 139

Entity Bean Jobs ... 140

Define an Entity Bean Job ... 141

HTTP Jobs ... 145

Define an HTTP Job ... 145

Attributes with Default Values .. 147

JMS Publish and JMS Subscribe Jobs .. 150

Define a JMS Publish Job ... 153

Define a JMS Subscribe Job ... 155

Attributes with Default Values .. 158

JMX Jobs ... 160

8 User Guide

Define a JMX-MBean Attribute Get Job .. 161

Define a JMX-MBean Attribute Set Job ... 164

Define a JMX-MBean Create Instance Job .. 166

Define a JMX-MBean Operation Job ... 168

Define a JMX-MBean Remove Instance Job .. 171

Define a JMX-MBean Subscribe Job .. 172

POJO Jobs ... 176

Define a POJO Job ... 176

RMI Jobs ... 178

Define an RMI Job ... 179

Session Bean Jobs ... 181

Define a Session Bean Job ... 182

Attributes with Default Values .. 184

Chapter 6: Box Jobs 187

Box Jobs .. 187

Starting Conditions for Box Jobs .. 187

Basic Box Concepts ... 188

Default Box Job Behavior .. 189

Box Job Recommendations ... 189

How a Box Runs ... 189

How Job Status Changes Affect Box Status ... 191

Box Job Attributes and Terminators... 192

Controlling How CA Workload Automation AE Evaluates the Completion State of a Box Job 193

Attributes in a Job Definition .. 197

Time Conditions in a Box ... 197

Force Jobs in a Box to Start ... 198

Box Job Flow Examples ... 199

Default Box Success and Box Failure ... 199

Explicit Box Success and Box Failure ... 201

Job Flow with Job Terminator Attribute ... 203

Job Flow with Box Terminator Attribute ... 204

Advanced Job Flows ... 205

Job Flow with Time Conditions Running on the First of the Month .. 206

Job Flow with Time Conditions Running on the Second of the Month ... 207

Job Flow with Time Conditions Running on the First of the Following Month ... 208

Resetting a Job Flow with Time Conditions Through INACTIVE Status Change .. 209

Resetting a Job Flow with Time Conditions Through Box Job ... 210

How a Box Job Is Created ... 212

Box Job Attributes .. 212

How Job Groupings Are Created .. 213

Contents 9

How an Existing Job Is Put in a Box .. 214

Delete a Box Job ... 215

Chapter 7: Command Jobs 217

Command Jobs ... 217

The Directory the Job Runs Under ... 219

Determining Which Shell is Used (UNIX) .. 219

Shell Initialization Files (UNIX) .. 220

C Shell Initialization Files ... 221

Korn Shell Initialization Files ... 221

Bourne shell initialization files .. 222

Define a Command Job .. 222

Attributes with Default Values ... 225

Verify File Space Before a Job Starts .. 228

Pass Positional Arguments in a Command Job ... 229

Pass Environment Variables in a Command Job .. 230

UNIX Environment Variables ... 231

Define Alternative Error, Input, and Output Sources ... 233

Create a Job Blob .. 234

Send a User-Defined Exit Code ... 236

Specify a Command or Script Name Without the Full Path ... 237

Specify a Command or Script Name Using an Environment Variable (UNIX) ... 239

Run a Script Under a Specific User Account (UNIX) ... 240

Modify Resource Limits (UNIX) .. 242

Customize the Run-time Environment for a Korn Shell Script (UNIX) .. 243

Customize the Run-time Environment for a Bourne Shell Script (UNIX) .. 244

Customize the Run-time Environment for a C Shell Script (UNIX) ... 245

Define a Command Job to Run a Perl Script (UNIX) ... 246

Run the Windows Command Interpreter (Windows) .. 247

Access Network Resources (Windows) .. 249

Specifying a Password for a User ID (Windows) ... 251

Chapter 8: Database Jobs 253

Database Jobs ... 253

How Database Trigger Jobs Differ from Database Monitor Jobs ... 254

User IDs and Passwords for Database Jobs .. 254

Define a Database Monitor Job .. 255

Define a Database Trigger Job .. 258

Examples: Monitoring Oracle Database Tables .. 260

Examples: Monitoring Microsoft SQL Server Database Tables ... 262

Examples: Monitoring IBM DB2 Database Tables ... 264

10 User Guide

Example: Monitoring a Sybase Database Table .. 265

Define a Database Stored Procedure Job ... 266

Define an SQL Job ... 270

Examples: Running SQL Queries Against Oracle Database Tables .. 272

Examples: Running SQL Queries Against Microsoft SQL Server Database Tables ... 273

Examples: Running SQL Queries Against Sybase Database Tables ... 275

Examples: Running SQL Queries Against IBM DB2 Database Tables .. 276

Attributes with Default Values ... 278

Chapter 9: File Trigger Jobs 281

File Trigger Jobs .. 281

Define a File Trigger Job ... 282

Monitor for Other Types of File Activity... 284

Attributes with Default Values ... 288

Monitor a File Continuously ... 290

Monitor a File that is Owned by a UNIX Owner or Group .. 291

Configure the Agent to Run File Trigger Jobs as an External Process .. 293

Resolve File Names That Contain Variables ... 293

Monitor a File on a Remote UNIX Computer ... 294

Monitor a File on a Remote Windows Computer .. 295

Chapter 10: File Watcher Jobs 297

File Watcher Jobs ... 297

Define a File Watcher Job ... 297

Chapter 11: FTP Jobs 301

FTP Jobs .. 301

EBCDIC File Transfers .. 301

Wildcard Characters in File Names ... 302

Running the Agent as an FTP Client .. 302

Running the Agent as an FTP Server ... 303

FTP User IDs and Passwords ... 304

Define an FTP Job ... 304

Attributes with Default Values ... 307

Transfer Files Using SSL FTP ... 309

Compress Data for FTP ... 312

Send Site-Specific FTP Commands to FTP Servers .. 313

Verify the FTP Job Status .. 314

Contents 11

Chapter 12: i5/OS Jobs 315

i5/OS Jobs ... 315

Running UNIX Workload on a System i5 Computer .. 316

i5/OS Naming Conventions ... 316

Define an i5/OS Job .. 317

Attributes with Default Values ... 319

Pass Positional Parameters .. 320

Use a User's Library List.. 321

Pass Keyword Parameters to SBMJOB ... 321

Responding to Suspended Jobs that Require Manual Intervention ... 323

Returning a Job's Exit Status to CA Workload Automation AE ... 323

Send a Program’s Return Code ... 324

Send a User-defined Exit Code .. 325

Specify Data for a Local Data Area ... 327

Chapter 13: Micro Focus Jobs 329

Micro Focus Jobs .. 329

Define a Micro Focus Job ... 330

Attributes with Default Values ... 332

Pass Variables as Parameters to a JCL File ... 334

Chapter 14: Monitoring Jobs 337

Monitoring Jobs.. 337

Define a CPU Monitoring Job ... 338

CPU Monitoring Modes ... 340

Attributes with Default Values .. 340

Examples: Monitoring CPU Usage ... 342

Define a Disk Monitoring Job ... 344

Attributes with Default Values .. 346

Examples: Monitoring Disk Space ... 347

Define an IP Monitoring Job ... 350

Monitoring Remote IP Addresses on UNIX ... 352

Attributes with Default Values .. 352

Examples: Monitoring an IP Address .. 353

Define a Process Monitoring Job .. 354

Attributes with Default Values .. 355

Examples: Monitoring Processes .. 357

Define a Text File Reading and Monitoring Job .. 358

Attributes with Default Values .. 360

Examples: Monitoring a Text File for Specified Text ... 362

12 User Guide

Define a Windows Event Log Monitoring Job .. 366

Types of Event Logs ... 368

Attributes with Default Values .. 368

Examples: Monitoring a Windows Event Log .. 370

Define a Windows Service Monitoring Job .. 371

Attributes with Default Values .. 373

Examples: Monitoring Windows Services ... 374

Chapter 15: Oracle E-Business Suite Jobs 377

Oracle E-Business Suite Jobs .. 377

Define an Oracle E-Business Suite Copy Single Request Job .. 377

Define an Oracle E-Business Suite Request Set Job ... 380

Specify Data for an Individual Program in a Request Set .. 383

Specify Argument Values to Pass to a Program in a Request Set ... 385

Define an Oracle E-Business Suite Single Request Job ... 386

Specify Argument Values to Pass to a Program in a Single Request ... 389

Attributes with Default Values ... 390

Chapter 16: PeopleSoft Jobs 395

PeopleSoft Jobs .. 395

PeopleSoft Exit Codes... 396

PeopleSoft User IDs and Passwords ... 396

Define a PeopleSoft Job ... 397

Attributes with Default Values ... 399

Mapping of PeopleSoft Fields to Job Attributes ... 401

Distribute a PeopleSoft Report .. 403

Store the Output of a PeopleSoft Job as a Web Report ... 405

Send the Output of a PeopleSoft Job to a Printer .. 407

Chapter 17: Process Automation Jobs 409

Process Automation Jobs ... 409

Define a Process Automation Process Execution Job ... 410

Define a Process Automation Start Request Form Job .. 411

Attributes with Default Values ... 413

Chapter 18: Remote Execution Jobs 415

Remote Execution Jobs .. 415

Define a Remote Execution Job .. 415

Attributes with Default Values ... 417

Contents 13

Chapter 19: SAP Jobs 419

SAP Jobs.. 419

SAP Connection Attributes ... 420

SAP User IDs and Passwords .. 421

Define an SAP Batch Input Session Job .. 421

Define an SAP BW InfoPackage Job .. 424

Define an SAP BW Process Chain Job ... 427

Define an SAP Data Archiving Job .. 428

Define an SAP Event Monitor Job .. 430

Define an SAP Process Monitor Job ... 432

Define an SAP Job Copy Job ... 434

Define an SAP R/3 Job .. 437

Attributes with Default Values ... 439

Email an SAP Job's Spool File .. 441

Email the Spool File of a Single Step in an SAP Job .. 442

Using Success and Failure Messages within an SAP Job Definition .. 444

Chapter 20: Secure Copy Jobs 445

Secure Copy Jobs .. 445

Define a Secure Copy Job ... 445

Attributes with Default Values ... 447

Chapter 21: SNMP Jobs 449

SNMP Jobs .. 449

Define an SNMP Value Get Job .. 450

Define an SNMP Value Set Job ... 453

Attributes with Default Values ... 456

Chapter 22: Wake on LAN Jobs 459

Wake on LAN Jobs .. 459

Define a Wake on LAN Job ... 459

Attributes with Default Values ... 462

Chapter 23: Web Services Jobs 465

Web Service Jobs .. 465

Define a Web Service Document/Literal Job .. 466

Define a Web Service RPC/Encoded Job .. 469

Attributes with Default Values ... 472

14 User Guide

Chapter 24: z/OS Jobs 475

z/OS Jobs .. 475

Define a z/OS Data Set Trigger Job ... 476

Attributes with Default Values .. 478

Monitor Data Set Activity by a User or Job ... 479

Monitor an FTP Transfer on z/OS .. 480

Define a z/OS Manual Job .. 483

Define a z/OS Regular Job .. 484

Chapter 25: Working with User-defined Job Types 487

User-Defined Job Types .. 487

Create a New Job Type ... 489

Use a New Job Type ... 490

Chapter 26: Working with Resources 491

Real Resources ... 491

Virtual Resources ... 494

Depletable Resources ... 495

Renewable Resources ... 496

Threshold Resources ... 497

Define a Virtual Resource ... 499

Update a Virtual Resource ... 501

Delete a Virtual Resource ... 503

Define Real and Virtual Resource Dependencies in a Job .. 504

Update Real and Virtual Resource Dependencies in a Job ... 506

Release Renewable Resources ... 508

Generate a Report on Current Resource Definitions ... 509

Generate a Report to Display a Job's Resource Dependencies .. 509

Generate a Report to Monitor Virtual Resource Usage ... 510

Generate a Report to Monitor Resource Dependencies .. 512

Chapter 27: Working with Binary Large Objects (Blobs) 517

Binary Large Objects ... 518

Types of Blobs .. 519

Job Blobs .. 520

Input Job Blobs .. 520

Output and Error Job Blobs ... 521

Global Blobs ... 521

Manage Blobs Using JIL .. 521

Contents 15

Blob Attributes ... 521

Create Input Job Blobs ... 523

Delete Job Blobs ... 524

Create Global Blobs .. 524

Delete Global Blobs .. 525

Use Blobs in Job Definitions ... 525

std_in_file Attribute .. 526

std_out_file and std_err_file Attributes ... 527

Generate Blob Reports Using Autorep ... 528

Chapter 28: Cross-Instance Scheduling 531

Bi-Directional Scheduling ... 531

CA Workload Automation AE Cross-Instance Job Dependencies ... 532

How Cross-Instance Job Dependencies are Processed .. 534

Types of External Instances .. 536

Creating Cross-Instance Job Dependencies Using CA AutoSys WA Connect Option ... 537

Submitting a Job To and From Another Computer Using CA UJMA ... 538

Unsupported Attributes for CA AutoSys WA Connect Option or CA UJMA Jobs ... 541

How Job Dependencies are Processed Using CA Workload Automation EE .. 542

Cross-Platform Scheduling ... 545

Submitting a Job To and From the Mainframe Using CA AutoSys WA Connect Option .. 545

Cross-Platform Interface Messages Logged for CA UJMA .. 546

Define an External Instance ... 548

Update an External Instance .. 549

Delete an External Instance ... 550

Start a Job on an External CA Workload Automation AE Instance ... 551

Define a Job to Run on an External Instance .. 552

Define a Cross-Instance Job Dependency .. 555

Generate a Report on an External Instance ... 557

Chapter 29: Monitoring and Reporting on Workflow 561

Monitoring Tools .. 561

Run a Monitor or Browser .. 562

Generate a Forecast Report ... 567

Chapter 30: Maintaining Highly-Available Environments 569

How to Maintain Highly-Available Environments .. 569

Monitor the Scheduler Log ... 571

Restore the Failed Scheduler on UNIX .. 572

Restore the Failed Scheduler on Windows ... 574

16 User Guide

Recover the Failed Database on UNIX .. 576

Recover the Failed Database on Windows .. 581

Appendix A: Legacy Agent Considerations 585

Running Jobs on Computers with Legacy CA Workload Automation AE Agents ... 585

How to Run Jobs on Legacy 4.5.1 Agent Computers .. 585

Define Legacy Agent Computers ... 586

Define the Legacy Agent Port .. 588

Verify Communication Between Legacy Agent and Database .. 588

How Jobs Are Run On Legacy Agent Computers .. 589

Index 591

Chapter 1: Introduction 17

Chapter 1: Introduction

This section contains the following topics:

Intended Audience (see page 17)
Automated Job Control (see page 18)
Agents and Agent Plug-ins (see page 18)
Legacy Agent Replaced by CA Workload Automation Agent (see page 19)
Jobs (see page 20)
Events (see page 20)
Alarms (see page 20)
Utilities (see page 21)
Commands (see page 21)
Security (see page 25)

Intended Audience

This document is for schedulers and operators who define, schedule, monitor, and
control workload using CA Workload Automation AE. The concepts in this document can
also help application programmers or developers who create custom applications to
work with CA Workload Automation AE.

This User Guide is a supplement to the Reference Guide and provides overview topics
and concepts. It also contains step-by-step procedures to help you define basic jobs.

The Reference Guide provides detailed information about commands, attributes, and JIL
(Job Information Language) syntax.

To use this document, you must be familiar with the operating system(s) where the jobs
run and any third-party products or software technology that the jobs use.

Notes:

■ The UNIX instructions in this document also apply to Linux systems unless otherwise
noted.

■ The term Windows refers to any Microsoft Windows operating system supported by
CA Workload Automation AE unless otherwise noted.

■ For information about the CA Workload Automation AE components and how they
interact, see the UNIX Implementation Guide or Windows Implementation Guide.

Automated Job Control

18 User Guide

Automated Job Control

CA Workload Automation AE is an automated job control system for scheduling,
monitoring, and reporting.

A job is any single command, executable, script, or batch file. These jobs can reside on
any configured machine that is attached to a network. Corresponding job definitions
contain attributes that define the job properties, including the conditions specifying
when and where a job should run.

As with most control systems, there are many ways to correctly define and implement
jobs. It is likely that the way you use CA Workload Automation AE to address your
distributed computing needs will evolve over time. As you become more familiar with
the product features and the characteristics of your jobs, you can refine your use of CA
Workload Automation AE.

Agents and Agent Plug-ins

Agents are the key integration components of CA Technologies workload automation
products. Agents let you automate, monitor, and manage workload on all major
platforms, applications, and databases. To run workload on a particular system, you
install an agent on that system. If your workload must run on a UNIX computer, for
example, you can install and configure the CA WA Agent for UNIX. The agent lets you
run UNIX scripts, execute UNIX commands, transfer files using FTP, monitor file activity
on the agent computer, and perform many other tasks.

You can extend the functionality of the agent by installing one or more agent plug-ins in
the agent installation directory. If you have a relational database such as Oracle, for
example, you can install a database agent plug-in to query and monitor the database.
Other agent plug-ins are also available. For more information about agent plug-ins, see
the Implementation Guide for the appropriate agent plug-in.

Note: The agent plug-ins are only available for UNIX, Linux, and Windows operating
environments.

Legacy Agent Replaced by CA Workload Automation Agent

Chapter 1: Introduction 19

Example: Workload with Different Types of Jobs

The following workload contains z/OS jobs, a UNIX job, an SAP job, and a Windows job,
running on different computers, in different locations, and at different times:

agentparm.txt File

The agent is installed with a configuration file named agentparm.txt. Some of the
parameters in this file control the properties and behavior of job types. Your agent
administrator can add and modify the parameters as required.

Note: For more information about the agentparm.txt file, see the UNIX Implementation
Guide, Windows Implementation Guide, and CA Workload Automation Agent for UNIX,
Linux, or Windows Implementation Guide.

Legacy Agent Replaced by CA Workload Automation Agent

The CA Workload Automation Agent for UNIX, Linux, or Windows replaces the Remote
Agent (auto_remote) that was provided with Unicenter AutoSys JM 4.5.1 and r11. The
Release 11.3.6 documentation refers to auto_remote as the legacy agent.

Jobs

20 User Guide

The new agent provides additional job types, including monitoring and FTP jobs. The
agent is automatically installed on the computer where CA Workload Automation AE is
installed. You can also install the agent on remote computers to run jobs on those
computers.

Jobs

In the CA Workload Automation AE environment, a job is a single action that can be
performed on a valid agent computer. For example, on UNIX, you can run a script, issue
a command, transfer files using FTP, and monitor file activity and processes on the agent
computer. Similarly, on Windows, you can run an executable or batch file, issue a
command, transfer files using FTP, and monitor files or processes. To run a job, you
must create a job definition that specifies what the job does, when it runs, and where it
runs.

Events

CA Workload Automation AE is event-driven. An event instructs the scheduler to initiate
a specific action. The scheduler completes the action unless doing so violates internal
rules or the event is not applicable. CA Workload Automation AE server components
internally generate certain events in certain circumstances, but you can also manually
generate events using the sendevent command.

Note: For more information about the sendevent command and the individual events,
see the Reference Guide.

Alarms

Alarms are special events that notify operators of situations requiring their attention.
The system issues alarms by internally generating an event, but these events are
informational only. To resolve the issue that triggers an alarm, initiate the required
action using the sendevent command.

Some problems do not trigger the scheduler to generate an alarm. For example, when a
problem quickly resolves itself without manual intervention. Sometimes, you need to
notify someone to follow up on such problems so that they do not recur. In these cases,
use the sendevent command to generate an alarm manually.

The scheduler records alarms in the ujo_alarm table. The ujo_alarm table uses numeric
codes to represent alarms. The numeric codes are resolved using the ujo_intcodes table.
For information about alarms and other events, see the Reference Guide.

Utilities

Chapter 1: Introduction 21

Utilities

CA Workload Automation AE uses its own specification language (JIL) and client utilities
to help you define, control, and report on jobs. The JIL language is processed by the JIL
client executable, which reads and interprets the JIL statements that you enter and then
performs the appropriate actions.

CA Workload Automation AE also provides client programs for controlling and reporting
on jobs. For example, the autorep command lets you generate a variety of reports about
job execution, and the sendevent command lets you manually control job processing.

Additional utilities are provided to help you troubleshoot, run monitors and reports, and
start and stop CA Workload Automation AE and its components. CA Workload
Automation AE also provides a database maintenance utility that runs daily by default.

Commands

CA Workload Automation AE commands let you define, monitor, and manage workload,
and configure and control the system.

The following commands start CA Workload Automation AE:

■ as_server—Runs the application server.

■ event_demon—Represents the binary (the scheduler) that runs CA Workload
Automation AE.

■ eventor—Starts the scheduler (the event demon). This command applies to UNIX
only.

The following commands maintain databases:

■ archive_events—Archives data from the database to a flat file.

■ archive_jobs—Deletes obsolete job versions from the database.

■ autotimezone—Queries, adds, and deletes entries in the ujo_timezones table.

■ autotrack—Tracks changes, such as job definition changes, sendevent calls, and job
overrides, to the database.

■ clean_files—Deletes old agent log files. This command applies to the legacy agent
only.

■ DBMaint—Runs the dbstatistics and archive_events commands to perform
maintenance on the CA Workload Automation AE database.

■ dbspace—Calculates and reports the disk space used by the CA Workload
Automation AE database tables.

■ dbstatistics—Generates statistics in the data servers to maintain an optimal
performance environment.

Commands

22 User Guide

The following commands manage security:

■ as_config—Manages the encryption keys for the application server and for CA
Workload Automation Agent for UNIX, Linux, or Windows.

■ as_safetool—Maintains authentication certificates and installs or removes CA EEM
security policies.

■ autosec_test—Simulates a call to the security subsystem.

■ autosys_secure—Defines security settings.

The following commands check system status:

■ as_info—Returns installation information to standard output.

■ autoflags—Returns system information.

■ autoping—Verifies server and agent communication.

■ chk_auto_up—Determines whether the application server, scheduler, and event
server are running.

■ time0—Calculates internal CA Workload Automation AE time.

The following commands manage assets, such as jobs, machines, and calendars:

■ astail—Displays the last 10 lines of a file. This command applies to UNIX only.

■ autocal_asc—Adds, deletes, prints, exports, and imports calendars.

■ autoprofm—(Windows only) Converts your profiles from a previous release of CA
Workload Automation AE to a file format that works with the CA Workload
Automation Agent.

■ cron2jil—Converts UNIX crontab data to a JIL script or calendar file. This command
applies to UNIX only.

■ jil—Runs the Job Information Language processor that interprets the subcommands
that add, update, and delete jobs, machines, monitors, and browsers (reports).

Commands

Chapter 1: Introduction 23

The following commands monitor jobs and report job status:

■ autoaggr—Generates reports based on the aggregated job, alarm, and scheduler
statistics retrieved from the database.

■ autorep—Reports information about jobs, user-defined job types, external
instances, machines, virtual resources, and global variables defined in the database.

■ autostatad—Reports the status of a CA AutoSys Workload Automation Adapter job
to standard output.

■ autostatus—Reports the status of a job or the value of a global variable to standard
output.

■ chase—Determines which jobs are in a STARTING or RUNNING state. The chase
command also verifies the agent is running.

■ forecast—Reports future job flow.

■ job_depends—Generates detailed reports of job dependencies and conditions.

■ monbro—Runs a monitor or report and returns the results to standard output.

■ autosyslog—Displays the scheduler, application server, or agent log file for a
specified job.

The following command sends event commands:

■ sendevent—Sends events to the scheduler.

The following command provides integration with CA Service Desk:

■ auto_svcdesk—Opens CA Service Desk tickets on behalf of a job or an action that
may occur on CA Workload Automation AE.

Note: For more information about the syntax of a command, see the Reference Guide.

Issue a Command on UNIX

You issue commands to define, monitor, and manage workload. You can also issue
commands to configure and control CA Workload Automation AE. For example, you can
issue the jil command to define jobs and the autosys_secure command to define
security settings.

Note: The CA Workload Automation AE client must be installed on the computer where
you want to issue commands. Before you can issue a command, ensure that your
administrator has completed the following:

■ Run the autosys.shellname.mymachine script for your shell program to source the
environment.

■ Defined your UNIX user ID and password on CA Workload Automation AE.

Commands

24 User Guide

Follow these steps:

1. Run the shell that is sourced to use CA Workload Automation AE.

2. Enter the command at the UNIX operating system prompt.

The command is issued.

Note: For more information about CA Workload Automation AE commands and their
syntax, see the Reference Guide. You can also view the help for the commands by using
the UNIX man command. For example, to view the reference page for the sendevent
command, enter man sendevent at the command prompt. If you do not see the
sendevent man page, check that the MANPATH environment variable is set correctly.
This variable is usually set in the $AUTOUSER/autosys.shell.hostname files (for example,
$AUTOUSER/autosys.ksh.myhostname). These files set up the CA Workload Automation
AE environment.

Issue a Command on Windows

You issue commands to define, monitor, and manage workload. You can also issue
commands to configure and control CA Workload Automation AE. For example, you can
issue the jil command to define jobs and the autosys_secure command to define
security settings.

Note: The CA Workload Automation AE client must be installed on the computer where
you want to issue commands. The client installs the CA Workload Automation AE
Command Prompt, which is required to run commands. You cannot use the MS-DOS
command prompt.

Follow these steps:

1. Click Start, All Programs, CA, Enterprise Workload Automation, Command
Prompt(instance_name).

The CA Workload Automation AE command prompt opens. The command prompt
presets all the environment variables for the instance.

2. Enter the command.

The command is issued.

Security

Chapter 1: Introduction 25

Security

CA Workload Automation AE includes features that let you secure objects such as jobs,
calendars, cycles, global variables, machines, and resources. You can delegate
administrative privileges to these objects to specific users or user groups.

For more information about data encryption and system-level, native, or external
security, see the CA Workload Automation Security Guide.

For additional information about configuring encryption between CA Workload
Automation AE and agents, see the UNIX Implementation Guide and Windows
Implementation Guide.

Chapter 2: Working with JIL 27

Chapter 2: Working with JIL

This section contains the following topics:

The jil Command and JIL (Job Information Language) (see page 27)
JIL Subcommands (see page 28)
JIL Syntax Rules (see page 30)
Issue JIL in Interactive Mode on UNIX (see page 33)
Issue JIL in Interactive Mode on Windows (see page 33)
Issue JIL Using a Script on UNIX (see page 35)
Issue JIL Using a Script on Windows (see page 36)
Example JIL Script (see page 37)

The jil Command and JIL (Job Information Language)

Job Information Language (JIL) is a scripting language that lets you define and modify
assets such as jobs, global variables, machines, job types, external instances, and blobs.

The jil command runs the language processor that inteprets JIL. You use JIL
subcommands and attributes to specify the asset definitions that you want to create or
modify. The jil command loads the data that you specify into the database.

You can define and modify assets using the following methods:

■ Issue the jil command, which displays the JIL command prompt. You enter
subcommands interactively one line at a time. When you exit the command
prompt, the language processor interprets the asset definition and loads it into the
database.

■ Create a JIL script by entering subcommands and attribute statements in a text file.
You redirect the JIL script to the jil command. The jil command activates the
language processor, interprets the information in the script, and loads this
information in the database.

Note: You can also submit job definitions using CA WCC. For more information about
using CA WCC to define jobs, see the CA Workload Control Center Online Help.

JIL Subcommands

28 User Guide

JIL Subcommands

JIL subcommands lets you define and modify asset definitions. You specify JIL
subcommands using the jil command.

The following JIL subcommands define and modify jobs and boxes:

delete_box

Deletes an existing box job and all the jobs in that box from the database.

delete_job

Deletes a job from the database. If the specified job is a box job, the box job is
deleted and the jobs in the box become stand-alone jobs.

insert_job

Adds a new job definition to the database.

override_job

Defines a one-time override for an existing job definition. This override affects the
job for the next run only.

update_job

Updates an existing job definition in the database.

The following JIL subcommands define and modify machines:

delete_machine

Deletes an existing real or virtual machine definition from the database.

insert_machine

Inserts a new real or virtual machine definition in the database. A machine must be
defined before it can be used in a job definition.

update_machine

Updates an existing machine in the database.

The following JIL subcommands define and modify monitor or report definitions:

delete_monbro

Deletes the specified monitor or report definition from the database.

insert_monbro

Adds a new monitor or report definition to the database.

update_monbro

Updates an existing monitor or report definition in the database.

JIL Subcommands

Chapter 2: Working with JIL 29

The following JIL subcommands define and modify job types:

delete_job_type

Verifies that no jobs are currently defined with the specified job type, then deletes
the specified job type definition from the database.

insert_job_type

Adds a new user-defined job type definition to the database. This is the only way to
create a user-defined job type.

update_job_type

Updates an existing user-defined job type definition in the database. You can use
update_job_type to change the values of the command and description attributes.

The following JIL subcommands define and modify blobs and globs:

insert_blob

Adds a new blob definition associated with an existing job.

insert_glob

Adds a new glob definition referenced by a given name.

delete_blob

Decouples a blob definition from an existing job and deletes the blob from the
database.

delete_glob

Deletes the specified glob definition from the database.

The following JIL subcommands define and modify external instances:

delete_xinst

Deletes the specified external instance definition from the database.

insert_xinst

Adds a new external instance definition to the database.

update_xinst

Updates an existing external instance definition in the database.

The following JIL subcommands define and modify resources:

delete_resource

Deletes a virtual resource from the database.

insert_resource

Adds a new virtual resource definition to the database.

JIL Syntax Rules

30 User Guide

update_resource

Updates an existing virtual resource definition in the database.

JIL Syntax Rules

JIL scripts contain one or more JIL subcommands and one or more attribute statements.
These elements constitute a job definition. You can create job definitions in interactive
mode by opening the operating system or instance command prompt and entering the
following command:

jil

Alternatively, you can enter the subcommands and attribute statements for all of your
job definitions in a text (.txt) file and then import the job definitions by redirecting the
file as input to JIL. To import job definitions from a text file, open the operating system
or instance command prompt and enter the following command:

jil < file_name.txt

 A JIL script is valid only when it is written according to the JIL syntax rules. If you create
the job definitions in a text file import them, ensure that you follow the JIL syntax rules.
To automatically check the syntax, enter the following command:

jil -v syntax < file_name.txt

Important! The syntax checker does not commit the job definitions in the file to the
database. To commit the definitions, ensure that you correct any syntax errors that the
checker identifies and then run the following command:

jil < file_name.txt

Note: Running the syntax checker adds time to the import process.

A valid job definition adheres to the following syntax rules:

Rule 1

Each subcommand uses the following form:

sub_command:object_name

sub_command

Defines a JIL subcommand.

object_name

Defines the name of the object (for example, a job or a machine) to act on.

JIL Syntax Rules

Chapter 2: Working with JIL 31

Rule 2

You can follow each subcommand with one or more attribute statements. These
statements can occur in any order and are applied to the object specified in the
preceding subcommand. A subsequent subcommand begins a new set of attributes
for a different object. The attribute statements have the following form:

attribute_keyword:value

attribute_keyword

Defines a valid JIL attribute.

value

Defines the setting to apply to the attribute.

Notes:

■ The entire attribute_keyword:value statement can be up to 4096 characters.

■ The following subcommands do not accept attributes: delete_box, delete_job,
delete_job_type, delete_xinst, delete_monbro, and delete_glob.

Rule 3

You can enter multiple attribute statements on the same line, but you must
separate the attribute statements with at least one space.

Rule 4

A box job definition must exist before you can add jobs to it.

Rule 5

Valid value settings can include any of the following characters:

■ Uppercase and lowercase letters (A-Z, a-z)

■ Hyphens (-)

■ Underscores (_)

■ Pound signs (#)

■ Numbers (0-9)

■ Colons (:), if the colon is escaped with quotation marks (" ") or a preceding
backslash (\)

■ The at character (@)

Note: Object names can only contain the following characters: a-z, A-Z, 0-9, period
(.), underscore (_), hyphen (-), and pound (#). Do not include embedded spaces or
tabs.

JIL Syntax Rules

32 User Guide

Rule 6

Because JIL parses on the combination of a keyword followed by a colon, you must
use escape characters (a backslash) or enclose the value in quotation marks with
any colons used in an attribute statement's value. For example, to define the start
time for a job, specify 10\:00or “10:00”.

Note: When specifying drive letters in commands, you must use escape characters
with the colon (:). For example, "C:\tmp" and C\:\tmp are valid; C:\tmp is not.

Rule 7

Use one of the following methods to indicate comments in a JIL script:

■ To comment an entire line, put a pound sign (#) in the first column.

■ To comment one or more lines, you can use the C programming syntax for
beginning a comment with a forward slash and asterisk (/*) and ending it with
an asterisk and a forward slash (*/). For example:

 /* this is a comment */

Rule 8

You can use the blob_input attribute to manually enter multiline text. This attribute
is only valid for the insert_job, update_job, insert_blob, and insert_glob
subcommands. The blob_input attribute has the following form:

blob_input:<auto_blobt> this is a multi-

line text

</auto_blobt>

Note: Use the auto_blobt meta-tags to indicate the beginning and end of multiline
text. JIL interprets every character input between the auto_blobt meta-tags
literally. This implies that JIL does not enforce any of the previously discussed rules
for text entered in an open auto_blobt meta-tag.

Rule 9

To specify a comma in keyword=value combinations, you must do one of the
following:

■ Escape the comma with a backslash, as follows:

j2ee_parameter: String=Hello1\, World

■ Enclose the entire value in quotation marks, as follows:

j2ee_parameter: String="Hello1, World"

If the keyword=value combination contains commas and quotation marks, you must
escape the commas and quotation marks as follows:

j2ee_parameter: String=\"Hello1\, World\"

Issue JIL in Interactive Mode on UNIX

Chapter 2: Working with JIL 33

Issue JIL in Interactive Mode on UNIX

You can issue the jil command and subcommands on UNIX at the operating system
prompt. The operating system prompt lets you enter data interactively. You can also
create aliases for the commands that you use frequently. The interactive mode is helpful
when you do not need to issue JIL commands in batch. For example, you can use the
interactive mode when you want to test specific job definitions.

Note: Before you can issue commands at the operating system prompt, the CA
Workload Automation AE environment must be sourced in the shell and your UNIX user
ID and password must be defined on CA Workload Automation AE. For more
information about sourcing the environment and defining user IDs, see the UNIX
Implementation Guide.

Follow these steps:

1. Run the shell that is sourced to use CA Workload Automation AE.

2. Do one of the following:

■ Enter jil at the operating system prompt.

The JIL command prompt is displayed for the local CA Workload Automation AE
instance.

■ Enter jil -S instance at the operating system prompt.

The JIL command prompt is displayed for the specified CA Workload
Automation AE instance.

instance

Specifies the CA Workload Automation AE instance where you want to issue
the JIL subcommand. For single-instance environments, the jil command
defaults to the only available instance.

3. Enter a JIL subcommand and follow the prompts.

4. Enter exit when you are done entering the data.

JIL interactive mode ends and the data is loaded into the database.

Issue JIL in Interactive Mode on Windows

You can issue the jil command and subcommands on Windows by using the CA
Workload Automation AE instance command prompt. The instance command prompt
lets you enter data interactively. The interactive mode is helpful when you do not need
to issue JIL commands in batch. For example, you can use the interactive mode when
you want to test specific job definitions.

Issue JIL in Interactive Mode on Windows

34 User Guide

Follow these steps:

1. Click Start, Programs, CA, Workload Automation AE, Command Prompt
(instance_name).

The instance command prompt is displayed.

2. Do one of the following:

■ Enter jil.

The JIL command prompt is displayed for the local CA Workload Automation AE
instance.

■ Enter jil -S instance.

The JIL command prompt is displayed for the specified CA Workload
Automation AE instance.

instance

Specifies the CA Workload Automation AE instance where you want to issue
the JIL subcommand. For single-instance environments, the jil command
defaults to the only available instance.

3. Enter a JIL subcommand and follow the prompts.

4. Enter exit when you are done entering the data.

JIL interactive mode ends and the data is loaded into the database.

Notes:

■ You cannot use the MS-DOS command prompt to issue JIL subcommands.

■ To issue commands that run on a UNIX computer from Windows, you must use the
syntax appropriate to the operating system where the job runs.

■ For the jil command to work properly, the correct environment variables must be
assigned. For more information about environment variables, see the Windows
Implementation Guide.

■ For more information about the jil command, see the Reference Guide.

Issue JIL Using a Script on UNIX

Chapter 2: Working with JIL 35

Issue JIL Using a Script on UNIX

You can embed JIL subcommands and attribute statements in a shell script and redirect
the script to the jil command. The jil command activates the language processor,
interprets the information in the script, and loads this information in the database.
Using a script is helpful when you want to issue JIL subcommands in batch.

Note: Before you can run the JIL script, the CA Workload Automation AE environment
must be sourced in the shell and your UNIX user ID and password must be defined on CA
Workload Automation AE. For more information about sourcing the environment and
defining user IDs, see the UNIX Implementation Guide.

Follow these steps:

1. Run the shell that is sourced to use CA Workload Automation AE.

2. Do one of the following:

■ Enter jil < script at the operating system prompt.

The subcommands in the JIL script are issued on the local CA Workload
Automation AE instance and the data is loaded into the database.

■ Enter jil -S instance < script at the operating system prompt.

The subcommands in the JIL script are issued on the specified CA Workload
Automation AE instance and the data is loaded into the database.

script

Specifies the name of the script that contains the JIL subcommands and
attributes.

instance

Specifies the CA Workload Automation AE instance where you want to run the
JIL script. For single-instance environments, the jil command defaults to the
only available instance.

Note: For more information about the jil command, see the Reference Guide.

Example: Submit a Job Definition Using a JIL Script

This example redirects a file called my_jil_script to the jil command on the PRD instance
of CA Workload Automation AE.

jil –S PRD < my_jil_script

Issue JIL Using a Script on Windows

36 User Guide

Issue JIL Using a Script on Windows

You can embed JIL subcommands and attribute statements in a script and redirect the
script to the jil command. The jil command activates the language processor, interprets
the information in the script, and loads this information in the database. Using a script is
helpful when you want to issue JIL subcommands in batch.

Follow these steps:

1. Click Start, Programs, CA, Workload Automation AE, Command Prompt
(instance_name).

The instance command prompt is displayed.

2. Do one of the following:

■ Enter jil < script.

The subcommands in the JIL script are issued on the local CA Workload
Automation AE instance and the data is loaded into the database.

■ Enter jil -S instance < script.

The subcommands in the JIL script are issued on the local CA Workload
Automation AE instance and the data is loaded into the database.

script

Specifies the name of the script that contains the JIL subcommands and
attributes.

instance

Specifies the CA Workload Automation AE instance where you want to run the
JIL script. For single-instance environments, the jil command defaults to the
only available instance.

Notes:

■ You cannot use the MS-DOS command prompt to redirect a JIL script to the jil
command.

■ To issue commands that run on a UNIX computer from Windows, you must use the
syntax appropriate to the operating system where the job runs.

■ For the jil command to work properly, the correct environment variables must be
assigned. For more information about environment variables, see the Windows
Implementation Guide.

■ For more information about the jil command, see the Reference Guide.

Example JIL Script

Chapter 2: Working with JIL 37

Example: Submit a Job Definition to the Local Instance Using a JIL Script

This example redirects a file called newjobdef to the jil command on the local instance
of CA Workload Automation AE.

jil < newjobdef

Example JIL Script

The following JIL script creates a command job, a file watcher job, and a box job to do
the following:

1. You expect a file named /DOWNLOAD/MAINFRAME/SALE.RAW to arrive from the
mainframe some time after 2:00 a.m.

2. When the file arrives, the command file named filter_mainframe_info processes it,
and the results are sent as an output to the file named
/DOWNLOAD/MAINFRAME/SALES.SQL.

3. When the actions are complete, the SQL commands in the file named
/DOWNLOAD/MAINFRAME/SALES.SQL runs.

Example of a Machine

insert_machine: lowgate

type: a

Example of Jobs

insert_job: Nightly_Download

job_type: box

date_conditions: yes

days_of_week: all

start_times: "02:00"

insert_job: Watch_4_file

job_type: ft

box_name: Nightly_Download

watch_file: /DOWNLOAD/MAINFRAME/SALES.RAW

watch_file_type: generate

machine: lowgate

insert_job: filter_data

job_type: cmd

box_name: Nightly_Download

condition: success(Watch_4_file)

command: filter_mainframe_info

machine: lowgate

std_in_file: /DOWNLOAD/MAINFRAME/SALES.RAW

Example JIL Script

38 User Guide

insert_job: parse_data

job_type: cmd

box_name: Nightly_Download

condition: success(filter_data)

machine: lowgate

command: isql -U mutt -P jeff

std_in_file: /DOWNLOAD/MAINFRAME/SALES.SQL

std_out_file: /LOG/parse_data.out

std_err_file: /LOG/LOG/parse_data.err

Chapter 3: Working with Machines 39

Chapter 3: Working with Machines

This section contains the following topics:

Machines (see page 39)
The localhost Definition (see page 41)
Define a Machine (see page 42)
Delete a Real Machine (see page 50)
Delete a Virtual Machine (see page 51)
Delete a Real Machine Pool (see page 52)
Delete a Real Machine from a Virtual Machine or Real Machine Pool (see page 52)
Specifying Machine Load (max_load) (see page 52)
Specifying Job Load (job_load) (see page 53)
Specifying Queuing Priority (priority) (see page 54)
Specifying Relative Processing Power (factor) (see page 55)
Machine Status (see page 56)
Load Balancing (see page 60)
Load Balancing Using Virtual Resource Dependencies (see page 63)
Load Balancing Using Virtual and Real Resource Dependencies (see page 65)
Load Balancing Using Real Resource Pools (see page 68)
Forcing a Job to Start (see page 69)
Queuing Jobs (see page 71)
User-Defined Load Balancing (see page 76)

Machines

Before you can schedule jobs to run on a machine, you must define the machine to CA
Workload Automation AE. You can define real machines, virtual machines, or real
machine pools.

Note: Do not define localhost (see page 41) using the insert_machine: localhost
command. The localhost machine name is a reserved name.

Real Machines

A real machine is any single machine that meets the following criteria:

■ It has been identified in the appropriate network so that CA Workload Automation
AE can access it.

■ An agent, CA AutoSys WA Connect Option, CA NSM, or CA UAJM is installed, which
lets CA Workload Automation AE run jobs on it.

■ It is defined to CA Workload Automation AE as a real machine using JIL.

Machines

40 User Guide

A real machine must meet these conditions to run jobs. However, for CA Workload
Automation AE to perform intelligent load balancing and queuing while running jobs, it
must know the relative processing power of the real machines. CA Workload
Automation AE uses the virtual machines to provide load balancing and queuing.

Virtual Machines

A virtual machine is a machine definition that references one or more existing real
machine definitions. By defining virtual machines to CA Workload Automation AE and
submitting jobs to run on those machines, you can specify the following:

■ Run-time resource policies (or constraints) at a high level.

■ That CA Workload Automation AE automatically runs those policies in a
multi-machine environment.

Note: Previous releases of CA Workload Automation AE required that all machines in a
virtual machine be of the same type. In the current release, the component real
machines in a virtual machine definition can be UNIX or Windows machines or a mix of
both.

Real Machine Pools

A real machine pool is similar to a virtual machine in that it references one or more
existing real machine definitions. Real machine pools are used specifically to integrate
with CA Automation Suite for Data Centers for load balancing, When a job is scheduled
that references a real machine pool, the node names associated with the machines
referenced are used by CA Automation Suite for Data Centers to assign the real machine
to run the job.

The localhost Definition

Chapter 3: Working with Machines 41

The localhost Definition

The localhost machine name is a reserved name. You cannot define a machine for
localhost by creating an insert_machine: localhost definition.

By default, the localhost value is resolved to the name of the machine where the CA
Workload Automation AE scheduler was installed. You can override the reserved
localhost value to the name of another real machine using the local machine definition
setting. On UNIX, you can configure this setting using the LocalMachineDefinition
parameter in the configuration file. On Windows, you can configure this setting using
the Local Machine Definition field in the Scheduler window of CA Workload Automation
AE Administrator (autosysadmin).

You must create a machine definition in the database for the machine resolved from the
localhost. To create a machine definition, use the insert_machine JIL command.

As part of the CA Workload Automation AE installation process, your administrator must
have created a machine definition for the default localhost (the machine where the
scheduler was installed) in the database. If you configure the local machine definition
setting to another machine, you must create a definition for that machine in the
database. For example, if you configure the local machine definition setting to a
machine named prod, you must define machine prod using the insert_machine: prod
command.

Note: For more information about the LocalMachineDefinition parameter in the
configuration file (UNIX), see the Administration Guide. For more information about the
Local Machine Definition (Windows), see the Online Help.

How the localhost Value is Resolved

If the machine: localhost attribute is specified in a job definition, the scheduler tries to
resolve the localhost value when it runs the job. The localhost value is resolved as
follows:

■ The scheduler checks the value of the LocalMachineDefinition parameter (UNIX) or
the Local Machine Definition field (Windows).

■ If the local machine definition setting is set to a value other than “localhost”, the
scheduler searches the database for a machine definition with that name. For
example, suppose that LocalMachineDefinition is set to agentmach. If an
agentmach machine definition is found and all conditions are satisfied, the job runs
on agentmach. If the scheduler cannot find an agentmach machine definition, or if
it finds multiple agentmach machine definitions, the scheduler does not resolve
localhost. All jobs defined to run on the localhost machine fail.

Define a Machine

42 User Guide

■ If the local machine definition is not defined or is set to “localhost”, the scheduler
searches the database for a machine definition corresponding to the machine
where the scheduler was started (the default localhost). For example, suppose that
the scheduler was started on a machine named prodserver and
LocalMachineDefinition is not defined. When the job runs, the scheduler searches
for a machine definition named prodserver. If the scheduler cannot find the
prodserver definition, or if it finds multiple prodserver definitions, the scheduler
does not resolve localhost. All jobs defined to run on the localhost machine fail.

■ In a high availability failover where the shadow scheduler takes over from the
primary scheduler, the localhost is resolved in the same way. To run a job on the
localhost, the shadow scheduler first checks its local machine definition setting,
which may be different from the setting for the primary scheduler. If the local
machine definition is not defined, the localhost is resolved to the machine where
the shadow scheduler was started.

Define a Machine

Before you can schedule jobs to run on a machine, you must define the machine to CA
Workload Automation AE.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following definition:

insert_machine: machine_name

node_name: address

type: type

machine_name

Defines a unique name for the machine to add.

address

Specifies the IP address or DNS name of the machine. The default is the
machine_name specified on the insert_machine statement.

type

Specifies the type of machine you are defining. Options are the following:

a

Specifies a CA Workload Automation Agent for UNIX, Linux, Windows,
i5/OS, or z/OS machine. This is the default.

Define a Machine

Chapter 3: Working with Machines 43

c

Specifies a CA AutoSys Workload Automation Connect Option machine.

l

Specifies a 4.5.1 real UNIX machine. You must specify a lowercase l.

L

Specifies a 4.5.1 real Windows machine. You must specify a capital L.

n

Specifies an r11 real Windows machine or a virtual machine that consists
only of r11 real Windows machines (type n).

p

Specifies a real machine pool managed by CA Automation Suite for Data
Centers.

Note: In the documentation, the type "p" machine is referred to as the real
machine pool.

r

Specifies an r11 real UNIX machine.

u

Specifies a CA NSM or a CA Universal Job Management Agent (CA UJMA)
machine.

v

Specifies a virtual machine. The virtual machine can consist of CA
Workload Automation Agent machines (type a), r11 real UNIX machines
(type r), and r11 real Windows machines (type n).

3. (Virtual or CA Automation Suite for Data Centers machine pool types only) Specify
the following attribute:

machine

Specifies a real machine as a component of the virtual machine or real machine
pool. The specified machine must have been defined to CA Workload
Automation AE as a real machine.

Define a Machine

44 User Guide

4. (CA Workload Automation Agent for UNIX, Linux, Windows, i5/OS, or z/OS machine
only) Specify the following attribute:

opsys

Specifies the operating system where the CA Workload Automation Agent is
installed. Options are the following:

aix

Specifies a CA Workload Automation Agent for UNIX installed on an AIX
computer.

hpux

Specifies a CA Workload Automation Agent for UNIX installed on an HP-UX
computer.

linux

Specifies a CA Workload Automation Agent for LINUX.

I5os

Specifies a CA Workload Automation Agent for i5/OS.

solaris

Specifies a CA Workload Automation Agent for UNIX installed on a Solaris
computer.

windows

Specifies a CA Workload Automation Agent for Windows.

zos

Specifies a CA Workload Automation Agent for z/OS.

Define a Machine

Chapter 3: Working with Machines 45

5. Specify additional optional attributes as required:

■ agent_name

■ character_code

■ description

■ encryption_type

■ factor

■ heartbeat_attempts (CA Workload Automation Agent for UNIX, Linux,
Windows, i5/OS, or z/OS only)

■ heartbeat_freq (CA Workload Automation Agent for UNIX, Linux, Windows,
i5/OS, or z/OS only)

■ key_to_agent

■ max_load

■ opsys

■ port

6. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The data is loaded into the database and the machine is defined.

Notes:

■ You can only use JIL to define real and virtual machines.

■ Load balancing is automatic when using real machine pools from integration with
CA Automation Suite for Data Centers. Without CA Automation Suite for Data
Centers, load balancing and queuing is possible only if real and virtual machines
have been defined to CA Workload Automation AE using the machine attributes.
The max_load and factor attributes, used when defining real machines, are
important for load balancing and queuing.

■ For more information about the insert_machine subcommand and the related
machine attributes, see the Reference Guide.

Define a Machine

46 User Guide

Examples: Defining Real Machines

The following examples define real machines:

Example: Define a CA Workload Automation Agent

This example defines a machine named eagle where the agent WA_AGENT runs on the
node myagenthostname and uses 49154 as its main input port.

insert_machine: eagle

type: a

agent_name: WA_AGENT

node_name: myagenthostname

port: 49154

max_load: 100

factor: 1.0

Example: Define an r11 Real Windows Machine

This example defines a Windows real machine named jaguar.

insert_machine: jaguar

type: n

max_load: 100

factor: 1.0

Example: Define an r11 Real UNIX Machine

This example defines a UNIX real machine named jaguar.

insert_machine: jaguar

type: r

max_load: 100

factor: 1.0

Define a Machine

Chapter 3: Working with Machines 47

Examples: Defining Virtual Machines

The following examples define virtual machines:

Example: Define a Virtual Machine to Include Two Real Windows Machines

This example defines a virtual machine named giraffe to include two real Release 11.3.6
Windows machines (cheetah with a factor value of 5.0 and a max_load value of 400, and
lily with a factor value of 2 and a max_load value of 15).

insert_machine: cheetah

type: a

opsys: windows

insert_machine: lily

type: a

opsys: windows

insert_machine: giraffe

type: v

machine: cheetah

max_load: 400

factor: 5.0

machine: lily

max_load: 15

factor: 2

Note: In this example, the two real machines (when specified in a job definition through
the virtual machine) vary considerably in capacity from a scheduling standpoint.
However, when these machines are explicitly specified by name in a job definition, the
factor and max_load attributes defined here have no effect; they only have these values
when used through the virtual machine.

Define a Machine

48 User Guide

Example: Define a Windows Virtual Machine with Subsets of r11 Real Machines

This example defines two r11 Windows real machines (lion and lotus), and a virtual
machine (gorilla), which is composed of slices, or subsets, of the max_load specified for
the real machines. Although the real machines were defined with specific max_load
values (100 and 80), the virtual machine only makes use of the reduced loads specified
in the virtual machine definition (10 and 9).

insert_machine: lion

type: n

max_load: 100

factor: 1

insert_machine: lotus

type: n

max_load: 80

factor: .8

insert_machine: gorilla

type: v

machine: lion

max_load: 10

machine: lotus

max_load: 9

Example: Define a Virtual Machine with Default Real Machines

This example defines a virtual machine (sheep), which is composed of two Release
11.3.6 UNIX real machines (warthog and camel). Because the max_load and factor
attributes are not defined for the real machines, they use the default values for these
attributes (a factor of 1.0 and a max_load of none, indicating unlimited load units).

insert_machine: warthog

opsys: linux

insert_machine: camel

opsys: solaris

insert_machine: sheep

type: v

machine: warthog

machine: camel

Define a Machine

Chapter 3: Working with Machines 49

Example: Define a Virtual Machine with r11 Real Machines

This example defines two r11 UNIX real machines (lion and lotus), and a virtual machine
(zebra), which is composed of the two real machines. The virtual machine is a superset
of the two real machines and uses the max_load and factor attributes defined for them.

insert_machine: lion

type: r

max_load: 100

factor: 1

insert_machine: lotus

type: r

max_load: 80

factor: .9

insert_machine: zebra

type: v

machine: lion

machine: lotus

Example: Define a Real Machine Pool

This example defines a real machine pool (DCAPOOL), which is composed of three real
machines (MWIN, MLIN, and MSQL). DCAPOOL is monitored by CA Automation Suite for
Data Centers. When you define a job to reference DCAPOOL, CA Automation Suite for
Data Centers is used for machine selection.

insert_machine: MWIN

node_name: myhost

insert_machine: MLIN

node_name: myhost1

insert_machine: MSQL

node_name: myhost2

insert_machine: DCAPOOL

type: p

machine: MWIN

machine: MLIN

machine: MSQL

Delete a Real Machine

50 User Guide

Examples: Defining Real Machine Pools

The following example defines a real machine pool:

Example: Define a Real Machine Pool

This example defines a real machine pool (DCAPOOL), which is composed of three real
machines (MWIN, MLIN, and MSQL). DCAPOOL is monitored by CA Automation Suite for
Data Centers. When you define a job to reference DCAPOOL, CA Automation Suite for
Data Centers is used for machine selection.

insert_machine: MWIN

node_name: myhost

insert_machine: MLIN

node_name: myhost1

insert_machine: MSQL

node_name: myhost2

insert_machine: DCAPOOL

type: p

machine: MWIN

machine: MLIN

machine: MSQL

Delete a Real Machine

To delete a real machine definition, specify the following subcommand in the JIL script:

delete_machine: name_of_real_machine

[remove_references: y]

[force: y]

name_of_real_machine

Specifies the name of the machine to delete.

remove_references: y

(Optional) Instructs JIL to remove references to the specified machine from the
definitions of machine pools and virtual machines. We recommend that you use
this option when you delete real machines that are referenced in the definitions of
any machine pools or virtual machines. If you do not instruct JIL to remove the
references, you cannot delete the real machine until you delete all of the
references manually.

force: y

(Optional) Use this option to delete a machine that is in use.

Note: For more information about deleting real machines and the related attributes, see
the Reference Guide.

Delete a Virtual Machine

Chapter 3: Working with Machines 51

Example: Delete a Real Machine Not Referenced in Virtual Machines or Real Machine
Pools

This example deletes the real machine definition for the computer named jaguar:

delete_machine: jaguar

Example: Delete a Real Machine Currently Referenced via a Virtual Machine:

This example explicitly deletes the real machine hyena reference from the virtual
machine carnivores followed by the real machine definition itself.

delete_machine: carnivores

machine: hyena

delete_machine: hyena

Example: Delete a Real Machine and All Virtual Machines References Implictly:

This example deletes the real machine panther and implicitly deletes all references to it
that may be in any virtual machines or real machine pools.

delete_machine: panther

remove_references: y

Delete a Virtual Machine

To delete a virtual machine, specify the delete_machine: machine_name subcommand
without the machine attribute in the JIL script. When you delete a virtual machine, the
definitions for its component real machines are not deleted.

You can delete all real machine references in a virtual machine until there is only one
reference remaining. You cannot delete the last reference. To delete all real machine
references in a virtual machine, you must also delete the virtual machine itself.

Note: For more information about deleting virtual machines and the related attributes,
see the Reference Guide.

Example: Delete a Virtual Machine

This example deletes the virtual machine definition named gorilla:

delete_machine: gorilla

Delete a Real Machine Pool

52 User Guide

Delete a Real Machine Pool

To delete a real machine pool, specify the delete_machine: machine_name
subcommand without the machine attribute in the JIL script. When you delete a real
machine pool, the definitions for its component real machines are not deleted.

You can delete all real machine references in a real machine pool until there is only one
reference remaining. You cannot delete the last reference. To delete all real machine
references in a real machine pool, you must also delete the real machine pool itself.

Note: For more information about deleting real machine pools and the related
attributes, see the Reference Guide.

Example: Delete a Real Machine Pool

This example deletes the real machine pool definition named gorilla:

delete_machine: gorilla

Delete a Real Machine from a Virtual Machine or Real Machine
Pool

To delete a virtual machine or real machine pool reference to a real machine, specify
the following subcommand in the JIL script:

delete_machine: virtual_machine_name

machine: real_machine_name_referenced

Example: Delete a Real Machine from a Virtual Machine

This example deletes the real machine named camel from the virtual machine named
sheep. The machine definitions for sheep and camel are not deleted from the database.

delete_machine: sheep

machine: camel

Specifying Machine Load (max_load)

You can use the max_load attribute to define the maximum load (in load units) that a
machine can reasonably handle. The max_load attribute is valid in a real machine
definition or component machines defined to virtual machines.

Specifying Job Load (job_load)

Chapter 3: Working with Machines 53

Load units are arbitrary values, the range of which is user-defined. You can use any
weighting scheme you prefer. For example, a load unit with a range of 10 to 100 would
specify that machines with limited processing power are expected to carry a load of only
10, while machines with ample processing power can carry a load of 100. There is no
direct relationship between the load unit value and any of the machine's physical
resources. Therefore, we recommend that you use conventions that are meaningful to
you. You cannot use zero (0) or negative numbers as load units.

The max_load attribute is primarily used to limit the load on a machine. As long as a
job's load will not exceed a machine's maximum load, the max_load attribute does not
influence which machine a job runs on.

If you do not define the max_load attribute in a machine definition, CA Workload
Automation AE does not limit the load on the machine.

Example: Set the Maximum Load for a Real Machine

Suppose that the range of possible load values is 1 to 100. This example sets the
maximum load for a relatively low-performance real machine.

max_load: 20

Specifying Job Load (job_load)

For load balancing to work, you must assign a job_load value to every job that impacts
the load on a machine. The job_load attribute in a job definition defines the relative
amount of processing power the job consumes (the relative load the job places on a
machine).

Load units are arbitrary values, and the range is user-defined. You can use any weighting
scheme you prefer. You can use the max_load attribute to assign a real machine a
maximum job load. Then, you can use the job_load attribute in the job definition to
assign the job a load value that indicates the relative amount of the machine's load that
the job should consume. These attributes let you control machine loading and prevent a
machine from being overloaded.

Example: Define the Relative Processing Load for a Job

Suppose that the range of possible load values is 1 to 100. This example sets the load for
a job that typically uses 10% of the CPU.

job_load: 10

Specifying Queuing Priority (priority)

54 User Guide

Specifying Queuing Priority (priority)

When a job is ready to run on a designated machine but the current load on that
machine is too large to accept the new job’s load, CA Workload Automation AE queues
the job for that machine so it runs when sufficient resources are available.

For job queuing to take place, you must define the priority attribute in the job
definition. The queue priority establishes the relative priority of all jobs queued for a
given machine. The lower number indicates a higher priority. If you do not set the
priority attribute or the priority is set to 0, the job runs immediately on a machine and is
not put in the queue. The job ignores any other job or machine load settings defined.

Example: Set the Job to Run with Highest Priority

This example sets the job to run with the highest priority without overriding the
machine load control mechanism.

priority: 1

Example: Set the Job to Run in the Background

This example sets the job to run in the background when the machine load is low.

priority: 100

Specifying Relative Processing Power (factor)

Chapter 3: Working with Machines 55

Specifying Relative Processing Power (factor)

You can use the factor attribute to determine the relative processing power for a
machine. To calculate the relative processing power for each machine, the scheduler
multiplies the available CPU cycles by the factor attribute value:

(Available CPU Cycles) x (Factor Attribute Value) = Relative Processing Power

The scheduler determines which of the agent machines specified in the job definition
have the best calculated usage (highest relative processing power). The scheduler starts
the job on the agent machine with the best calculated usage (highest relative processing
power).

Setting the factor value to zero (0) results in a calculated usage of zero (0) but does not
disqualify the machine. The scheduler selects an agent machine with a factor value of
zero (0) only when all other available machines specified in the job definition also have a
factor value of zero (0).

Notes:

■ Factor units are arbitrary, user-defined values. The value consists of a real number,
typically between 0.0 and 1.0. You can set factor units to a value containing a
decimal, such as 0.5. If you do not define the factor attribute in a machine
definition, the value defaults to 1.0.

■ The factor attribute is valid in a real machine definition or component machines
defined to virtual machine.

■ Sometimes the scheduler identifies multiple machines as having the best calculated
usage (highest relative processing power). In such cases, the scheduler randomly
selects one of those machines and starts the job on it. To allow the scheduler to
start the job on any machine specified in the job definition, set the factor attribute
value for all of those machines to zero (0).

■ For more information about the factor attribute in machine definitions, see the
Reference Guide.

Example: Set the Factor for a Low-Performance Real Machine

This example sets the factor for a low-performance real machine, on a scale of 0.0 to
1.0.

factor: 0.1

Example: Set the Factor for a High-Performance Real Machine

This example sets the factor for a high-performance real machine, on a scale of 0.0 to
1.0.

factor: 1.0

Machine Status

56 User Guide

Machine Status

Real machines have a run-time status attribute designed to reflect the machine’s
availability. The machine status lets the scheduler run more efficiently by not wasting
time trying to contact machines that are out of service. If a job is scheduled for a
machine that is offline, it is set to PEND_MACH status until the machine comes back
online. In the case of a virtual machine, offline machines are not considered as possible
candidates for running a job.

A machine can have one of following statuses:

Online

Indicates that the machine is available and accepting jobs to run.

Offline

Indicates that the machine has been manually removed from service and will not
accept jobs to run.

Missing

Indicates that the scheduler has verified that the machine is not responding and has
automatically removed it from service. The machine will not accept jobs to run.

Unqualified

Indicates that the scheduler is attempting to qualify the status of an agent before
switching the machine from an online to missing status. The machine will not
accept jobs to run.

Empty

Indicates that a virtual machine or real machine pool does not contain any
component machines. Jobs scheduled to machines in this status will not run.

Take a Machine Offline Manually

To manually take a machine offline (for example, during hardware service), use the
sendevent command to send a MACH_OFFLINE event.

When you send a MACH_OFFLINE event, jobs that are currently running run to
completion even though the machine’s status is offline. You can use the autorep
command to monitor running jobs.

If you shut a machine down for servicing, you may want to let the running jobs complete
before continuing. With the machine offline, you can service the machine while the
scheduler continues running. All jobs that are scheduled to start on the offline machine
are put in PEND_MACH status until the machine returns to service.

Machine Status

Chapter 3: Working with Machines 57

Note: For more information, see the Reference Guide.

Example: Manually Take a Machine Offline

This example takes the machine cheetah offline:

sendevent -E MACH_OFFLINE -n cheetah

The scheduler log displays a message similar to the following when the machine is
offline:

[11/28/2005 15:38:21] CAUAJM_I_40245 EVENT: MACH_OFFLINE MACHINE: cheetah

Put a Machine Online Manually

To manually put a machine online, use the sendevent command to send a
MACH_ONLINE event.

When you send a MACH_ONLINE event for a machine, jobs with a status of
PEND_MACH on that machine are automatically started.

Note: For more information, see the Reference Guide.

Example: Manually Put a Machine Online

This example returns the machine cheetah to online status:

sendevent –E MACH_ONLINE –n cheetah

The scheduler log displays a message, similar to the following, when the machine is
online:

[11/28/2005 15:38:21] CAUAJM_I_40245 EVENT: MACH_ONLINE MACHINE: cheetah

How Status Changes Automatically

When the scheduler verifies that a real machine is not reachable, it uses the following
process to manage machine and job status:

■ If the scheduler fails to contact a machine's agent, the scheduler marks the machine
as unqualified and logs a message similar to the following:

[11/28/2005 16:01:46] CAUAJM_W_40290 Machine cheetah is in question. Placing

machine in the unqualified state.

Machine Status

58 User Guide

■ The scheduler puts all jobs scheduled to start on the unqualified machine in
PEND_MACH status. The scheduler checks the GlobalPendMachStatus parameter
(on UNIX) or Global Pend Mach Status field (on WIndows) value. If the status is set
to any valid value other than the default (PEND_MACH), the scheduler checks the
GlobalPendMachDelay parameter (on UNIX) or Global Pend Mach Delay field (on
Windows) value. If the delay interval is set to the default value (zero), the scheduler
immediately sends a CHANGE_STATUS event for the job. If the delay interval is set
to a value other than the default, the scheduler waits for the specified interval
before sending the CHANGE_STATUS event.

■ The scheduler attempts to qualify the status of that machine by pinging the agent
every 10 seconds.

■ If the agent responds, the scheduler sends a MACH_ONLINE event and the machine
returns to service.

■ When the machine returns to service, the scheduler starts all jobs in PEND_MACH
status for that machine. The scheduler checks the GlobalPendMachInterval
parameter (on UNIX) or Global Pend Mach Interval field (on WIndows) value. If the
interval is set to the default value (zero), the scheduler does not wait between job
starts. If the interval is set to a value other than the default, the scheduler waits for
the specified interval before starting jobs in PEND_MACH status, and then repeats
that cycle until all of the jobs are restarted.

■ If the agent fails to respond after three attempts, the scheduler marks the machine
as missing, issues a MACHINE_UNAVAILABLE alarm, and logs a message similar to
the following:

[11/28/2005 16:01:46] CAUAJM_I_40253 Machine cheetah is not responding. Taking

offline.

■ The scheduler puts all jobs scheduled to start on the missing machine in
PEND_MACH status based on the values set for the GlobalPendMachStatus and
GlobalPendMachDelay parameters (on UNIX) or Global Pend Mach Status and
Global Pend Mach Delay fields (on Windows). These values control the status of
jobs that are scheduled on a machine that is currently offline.

■ If the machine definition is updated, the scheduler marks the machine as
unqualified, logs the following message, and pings the agent until the machine
returns to service or is marked missing:

[11/28/2005 16:01:46] CAUAJM_W_40291 Machine cheetah has been updated. Placing

machine in the unqualified state.

Machine Status

Chapter 3: Working with Machines 59

■ Otherwise, the scheduler pings the missing machine’s agent every 60 seconds to
check its availability.

■ If the agent responds, the scheduler sends a MACH_ONLINE event and the machine
returns to service.

■ When the machine returns to service, the scheduler starts all jobs in PEND_MACH
status for that machine based on the value set for the GlobalPendMachInterval
parameter (on UNIX) or Global Pend Mach Interval field (on Windows). This
parameter controls the starting of jobs in PEND_MACH status.

Notes:

■ If you understand the cause of a missing machine and intervene to correct it, you
can use the sendevent command to send a MACH_ONLINE event to bring the
machine back online instead of waiting for the scheduler to do so.

■ For more information about the GlobalPendMachInterval, GlobalPendMachStatus,
or GlobalPendMachDelay parameters on UNIX, see the Administration Guide. For
more information about the Global Pend Mach Interval, Global Pend Mach Status,
or Global Pend Mach Delay fields on Windows, see the Online Help.

More Information:

Controlling Jobs in PEND_MACH Status (see page 111)

How Status Affects Jobs on Virtual Machines

If a job is defined to run on a virtual machine or a list of machines and one of those
machines is offline, the job will run on another available machine with which it is
associated.

If, however, all machines in the virtual list are offline, the scheduler puts the job in
PEND_MACH status. If any of the machines with which the job is associated comes back
online, the scheduler removes the job from PEND_MACH status and runs it on the
online machine, subject to the queuing criteria.

Load Balancing

60 User Guide

Load Balancing

Load balancing can be implemented to use inherent features of CA Workload
Automation AE or integrated with CA Automation Suite for Data Centers. The usage of
real machine pools provides automatic load balancing through CA Automation Suite for
Data Centers.

When not using CA Automation Suite for Data Centers for load balancing, you can
implement load balancing (where the workload is spread across multiple machines
based on each machine's capabilities) by using the machine attribute to specify a virtual
machine or multiple real machines in a job definition. This is also an easy way to help
ensure reliable job processing. For example, the scheduler can use load balancing to
check which of the machines in a job definition is best suited to run the job, and
automatically start it on that machine.

The advantages of building a virtual machine are as follows:

■ Its definition can be changed and the new construct is immediately applied globally.

■ The max_load and factor values can vary between machines.

Alternatively, you can specify a list of real machines in the job's machine attribute. The
system configuration includes machines of varying processing power. CA Workload
Automation AE uses one of various load balancing methods to choose a real machine. If
you specify the cpu_mon or vmstat load balancing methods in the configuration file, CA
Workload Automation AE chooses which machine to run on based on the available
processing power obtained from the agent. If you specify the job_load load balancing
method in the configuration file, CA Workload Automation AE chooses which machine
to run on based on the max_load and factor attributes for each real machine in
conjunction with the job definition’s priority and job_load attributes. If you specify the
UNIX-only rstatd load balancing method, in the configuration file, CA Workload
Automation AE chooses which machine to run on based on the information obtained
from the remote UNIX computer’s remote kernel statistics daemon.

Load Balancing

Chapter 3: Working with Machines 61

In either case, CA Workload Automation AE uses the following process to verify the
available relative processing cycles for each machine:

1. CA Workload Automation AE calculates the number of load units available on each
real machine in the specified virtual machine. To do this, CA Workload Automation
AE uses the load balancing method specified in the configuration file.

Notes:

■ For the CA Workload Automation Agent on UNIX, Linux, Windows, or i5/OS
(machine type: a), CA Workload Automation AE uses cpu_mon, rstatd, or the
job_load method. If the machine method specified in the configuration file is
set to the cpu_mon or vmstat methods, the scheduler runs a CPU Monitoring
(OMCPU) job to determine the available CPU cycles. This is the default. For the
CA Workload Automation Agent on UNIX and Linux only (opsys: aix, hpux, linux,
or solaris), CA Workload Automation AE supports the rstatd method.

■ For the legacy agent on UNIX, CA Workload Automation AE only uses vmstat,
rstatd, or the job_load method.

■ For the legacy agent on Windows, CA Workload Automation AE only uses
vmstat or the job_load method.

2. CA Workload Automation AE performs the following calculation:

Machine Usage = Available Load Units * Factor value

3. CA Workload Automation AE chooses the machine with the most relative load units
available, based on the calculation in Step 2.

Notes:

■ If a real machine in the virtual machine is not online, the scheduler does not
attempt to contact it and it is not considered in the load balancing algorithm.

■ If the machines have equal max_load and factor values, it is equivalent to defining a
job and specifying the following in the machine field:

machine: cheetah, camel

■ If the factor attribute is not specified for a machine, CA Workload Automation AE
assumes the default factor value for each machine (1.0).

■ On UNIX, the load balancing method is specified using the MachineMethod
parameter in the CA Workload Automation AE configuration file. On Windows, the
method is specified using the Machine Method field on the Scheduler window of CA
Workload Automation AE Administrator. For more information, see the
Administration Guide or Online Help for CA Workload Automation AE Administrator.

■ The cpu_mon machine method does not apply to z/OS machines (CA Workload
Automation Agent on z/OS) because the OMCPU job is not supported on z/OS.

■ If the load balancing request is sent to a legacy agent, CA Workload Automation AE
uses the vmstat method to obtain the available CPU cycles.

Load Balancing

62 User Guide

Example: Load Balancing With a Virtual Machine

This example defines a virtual machine (marmot) with three real machines (cheetah,
hippogriff, and camel):

insert_machine: marmot

machine: cheetah

factor: 1

machine: hippogriff

factor: .8

machine: camel

factor: .3

To start a job on this virtual machine, specify marmot in the job's machine attribute. The
scheduler performs the necessary calculations to verify on which machine to run the
job, and reflects these calculations in its output log. The output is similar to the
following:

EVENT: STARTJOB JOB: test_mach

[11/22/2005 10:16:53] CAUAJM_I_40245 EVENT: STARTJOB JOB: tvm

[11/22/2005 10:16:54] CAUAJM_I_10208 Checking Machine usages:

[11/22/2005 10:16:59] <cheetah=78>

[11/22/2005 10:17:02] <hippogriff=80*[.80]=64>

[11/22/2005 10:17:07] <camel=20*[.30]=6>

[11/22/2005 10:17:11] CAUAJM_I_40245 EVENT: CHANGE_STATUS STATUS: STARTING

JOB: tvm

[11/22/2005 10:17:11] CAUAJM_I_10082 [cheetah connected for tvm]

Note that even though the machine usage on cheetah was less than that of machine
hippogriff, machine cheetah was picked because of the result of the factor calculation
(machine cheetah had 78% of its processing power available, while machine hippogriff
only had 64% available). Thus, the factors weigh each machine to account for variations
in processing power.

Load Balancing Using Virtual Resource Dependencies

Chapter 3: Working with Machines 63

Load Balancing Using Virtual Resource Dependencies

Load balancing can also be performed using virtual resources combined with virtual
machines or machine lists for basic throttling and serialization. If you assign a virtual
machine or list of real machines to a job along with virtual resource dependencies, the
jobs can be dispatched to the various machines based on resource availability.

Example: Load Balancing Using Machine Virtual Resources

Suppose that you have three machines (sloth, tiger, and leopard) capable of running
several applications but they vary in capacity or physical resources, for example CPU
speed, memory, or utilization. You also have various jobs that use different runtime
resources. Jobs with low resource usage can run anywhere. Jobs that use more
resources are limited to where they can run. The number of concurrent jobs and their
requirements must be controlled to avoid overburdening any machine.

■ Define the real machine definitions for sloth, tiger, and leopard. Then define a
virtual machine, domain, that references all the machines where the jobs should be
allowed to run.

insert_machine: sloth

insert_machine: tiger

insert_machine: leopard

insert_machine: domain

type: v

machine: sloth

machine: tiger

machine: leopard

■ Define the maximum amount of virtual resources available to each machine.
Remember, they are virtual resources. They do not really exist. The virtual resource
amounts are approximations based on estimated capabilities of the machines. In
this example, the sloth machine has the fewest capabilities while the leopard
machine has the most.

insert_resource: job_weight

res_type: r

machine: sloth

amount: 2

insert_resource: job_weight

res_type: r

machine: tiger

amount: 10

insert_resource: job_weight

res_type: r

machine: leopard

amount: 30

Load Balancing Using Virtual Resource Dependencies

64 User Guide

■ Define jobs to run on one of the real machines referenced by the virtual machine
domain. Identify the virtual resource units each job consumes. Similar to the
resource definition, these values are approximations based on perceptions or
expectations of what the job consumes while running. The quantity required for the
job determines where it can run and the mix of jobs that can run concurrently.

insert_job: quick_job

machine: domain

command: efficient_report

resources: (job_weight,quantity=1,free=y)

insert_job: heavy_job

machine: domain

command: analytical_report

resources: (job_weight,quantity=5,free=y)

insert_job: beastly_job

machine: domain

command: quarterly_update

resources: (job_weight,quantity=10,free=y)

Based on the above definitions, job quick_job could run on any of the machines defined
to the virtual machine named domain because all machines have at least one unit of the
job_weight virtual resource defined to it. The jobs heavy_job and beastly_job can only
be scheduled to real machines tiger and leopard. The two jobs cannot be scheduled
concurrently to the tiger machine as that would exceed the virtual resources defined to
it. If the job heavy_job is already running on the tiger machine when job beastly_job is
being scheduled, the job beastly_job would be scheduled to run on the leopard real
machine.

Load Balancing Using Virtual and Real Resource Dependencies

Chapter 3: Working with Machines 65

Load Balancing Using Virtual and Real Resource Dependencies

You can also implement load balancing using virtual and real resources as dependencies
to a job. Virtual and real resource dependencies can be defined to both virtual machines
and real machine pools.

If you assign a virtual machine or real machine pool to a job with either virtual and/or
real resource dependencies, the job runs on the machine that satisfies the resource
dependencies. If the job has real resource dependencies and two or more machines
satisfy the specified metrics, CA Automation Suite for Data Centers returns the best
machine based on the lowest overall utilization. If the job has only virtual resource
dependencies and two or more machines satisfy the specified metrics, the job runs on
the first machine that satisfies the virtual resource requirements.

Note: If CA Workload Automation AE is not integrated with CA Automation Suite for
Data Centers, real resource dependencies are ignored and the job is submitted on the
first machine that satisfies the virtual resource requirements. If the job does not have
virtual resources, it runs on the machine as determined by load balancing using the
max_load and factor values.

Example: Load Balancing Using Virtual and Real Resource Dependencies

Suppose that you want to define a job that gets submitted on a machine that satisfies
the real and virtual resource dependencies, you can do the following:

■ Define a renewable resource ren_glb1 at the global level:

insert_resource: ren_glb1

res_type: R

amount: 10

■ Define a real machine pool DCAPOOL to include three real machines (MWIN, MLIN,
and MSOL) that are discovered and monitored by CA Automation Suite for Data
Centers for real time load balancing:

insert_machine: DCAPOOL

type: p

machine: MWIN

machine: MLIN

machine: MSOL

Load Balancing Using Virtual and Real Resource Dependencies

66 User Guide

■ Define a job job_load with real and virtual resource dependencies:

insert_job: job_load

job_type: CMD

command: sleep 1

machine: DCAPOOL

owner: autosys

date_condition: 0

alarm_if_fail: 1

resources: (ren_glb1, quantity=2, free=y) and (MEM_INUSE_PCT, VALUE=30,

VALUEOP=LTE)

■ Generate a report for the job (job_load) to view whether the real and virtual
resource dependencies are satisfied on the MWIN, MLIN, and MSOL machines:

job_depends -J job_load -r

The report might resemble the following:

Job Name Machine

-------- ----------

job_load MLIN

 Virtual Resources

Resource Type Amount Satisfied?

-------- ---- ------ ----------

ren_glb1 R 2 YES

 Real Resources

Resource Satisfied?

----------- -----------

MEM_INUSE_PCT, VALUE=30, VALUEOP=LTE NO

--

Job Name Machine

-------- ----------

job_load MSOL

 Virtual Resources

Resource Type Amount Satisfied?

-------- ---- ------ ----------

ren_glb1 R 2 YES

 Real Resources

Resource Satisfied?

----------- -----------

MEM_INUSE_PCT, VALUE=30, VALUEOP=LTE YES

--

Job Name Machine

-------- ----------

job_load MWIN

Load Balancing Using Virtual and Real Resource Dependencies

Chapter 3: Working with Machines 67

 Virtual Resources

Resource Type Amount Satisfied?

-------- ---- ------ ----------

ren_glb1 R 2 YES

 Real Resources

Resource Satisfied?

----------- -----------

MEM_INUSE_PCT, VALUE=30, VALUEOP=LTE YES

The report displays that the virtual resource (ren_gbl1) is satisfied on all the
machines. However, the real resource MEM_INUSE_PCT is satisfied only on MWIN
and MSOL machines. When you start the job (job_load), CA Automation Suite for
Data Centers decides the best machine with the least overall utilization between
the MWIN and MSOL machines.

■ Start the job (job_load):

sendevent –E START_JOB –J job_load

■ Generate a detailed report for the job (job_load) to view the machine on which the
job runs:

autorep -J job_load -d

The resulting report might resemble the following:

Job Name Last Start Last End ST Run/Ntry Pri/Xit

___________________________ ____________________ ____________________ __ ________ _______

job_load 10/07/2010 15:06:21 10/07/2010 15:06:23 SU 689/1 0

 Status/[Event] Time Ntry ES ProcessTime Machine

 -------------- --------------------- -- -- --------------------- ----------------

 STARTING 10/07/2010 15:06:21 1 PD 10/07/2010 15:06:22 MSOL

 RUNNING 10/07/2010 15:06:22 1 PD 10/07/2010 15:06:22 MSOL

 <Executing at WA_AGENT>

 SUCCESS 10/07/2010 15:06:23 1 PD 10/07/2010 15:06:23 MSOL

The report displays that CA Automation Suite for Data Centers decided MSOL as the
best machine with the least overall utilization.

Load Balancing Using Real Resource Pools

68 User Guide

Load Balancing Using Real Resource Pools

If you assign the real machine pool to a job without any real resource dependencies, CA
Automation Suite for Data Centers monitors these machines and decides the best
machine with the least overall utilization for job submission.

Note: This does not apply to virtual machines although you may create a virtual machine
that is composed of real machines that are monitored by CA Automation Suite for Data
Centers.

Example: Load Balancing Using Real Machine Pools

Suppose that you want to define a job that gets submitted on a machine with least
overall utilization, you can do the following:

■ Define a real machine pool DCAPOOL to include three real machines (MWIN, MLIN,
and MSOL) that are discovered and monitored by CA Automation Suite for Data
Centers for real time load balancing:

insert_machine: DCAPOOL

type: p

machine: MWIN

machine: MLIN

machine: MSOL

■ Define a job job_load and assign the real machine pool DCAPOOL to it:

insert_job: job_load

machine: DCAPOOL

command: sleep 1

owner: autosys

CA Automation Suite for Data Centers monitors the three machines (MWIN, MLIN,
and MSOL) and decides the best machine with the least overall utilization for job
submission. For example, if the overall utilization of MWIN is 68%, MLIN is 50%, and
MSOL is 56%, CA Automation Suite for Data Centers selects MLIN machine for job
submission.

Forcing a Job to Start

Chapter 3: Working with Machines 69

■ Start the job (job_load):

sendevent –E START_JOB –J job_load

■ Generate a detailed report for the job (job_load) to view the machine on which the
job runs:

autorep -J job_load -d

The resulting report might resemble the following:

Job Name Last Start Last End ST Run/Ntry Pri/Xit

___________________________ ____________________ ____________________ __ ________ _______

job_load 10/07/2010 14:35:42 10/07/2010 14:35:43 SU 687/1 0

 Status/[Event] Time Ntry ES ProcessTime Machine

 -------------- --------------------- -- -- --------------------- ----------------

 STARTING 10/07/2010 14:35:42 1 PD 10/07/2010 14:35:42 MLIN

 RUNNING 10/07/2010 14:35:42 1 PD 10/07/2010 14:35:42 MLIN

 <Executing at WA_AGENT>

 SUCCESS 10/07/2010 14:35:43 1 PD 10/07/2010 14:35:43 MLIN

Forcing a Job to Start

If you use the sendevent command to send a FORCE_STARTJOB event to a job, CA
Workload Automation AE immediately starts the job on the machine that is specified in
the job definition, regardless of the current load on the machine or the job_load value
that is set for the job. If the job was defined to run on a virtual machine or a list of real
machines, CA Workload Automation AE checks which machine has the most processing
power available and runs the job on that machine, even if the job_load value set for the
job exceeds the max_load value set for the machine.

Notes:

■ If you send a FORCE_STARTJOB event to a job in ON_ICE or ON_HOLD status, the
job's status does not revert to its previous status when it completes.

■ If you send a FORCE_STARTJOB event to a job in RESWAIT status, the
FORCE_STARTJOB is ignored and the job remains in the RESWAIT status. You can
remove or alter the resource requirements of the job so the job is no longer in
RESWAIT and can be started.

■ If you send a FORCE_STARTJOB event to a job in FAILURE or TERMINATED status
that has a virtual resource dependency with free=Y or free=N and has not released
the virtual resources, the FORCE_STARTJOB event verifies if the job's current status
is FAILURE or TERMINATED and schedules the job using the already held virtual
resources. Before force starting the job, the scheduler does not re-evaluate other
resource dependencies.

Forcing a Job to Start

70 User Guide

Example: Force a Job to Start

This example describes the effects of forcing a job to start. Assume you scheduled Job1
to run every Monday at 3:00 A.M. On Sunday, you sent a JOB_ON_HOLD event to put
the job in ON_HOLD status, so that the job does not run as scheduled on Monday. If you
send a FORCE_STARTJOB event to Job1 on Wednesday at 2:00 P.M., Job1 runs to
completion (either success or failure), and then runs again as scheduled on Monday at
3:00 A.M. The job did not revert to the ON_HOLD status after you forced it to start on
Wednesday.

Queuing Jobs

Chapter 3: Working with Machines 71

Queuing Jobs

Queuing is a mechanism used in CA Workload Automation AE to check the run order of
jobs that cannot run immediately. There is no actual physical queue. Instead, CA
Workload Automation AE uses queuing policies, which are based on the use and
subsequent interaction of the job_load and priority attributes in a job definition and the
max_load and factor attributes in a machine definition. Jobs that are in a queued state
already meet their starting conditions, but cannot start due to external conditions.

Jobs that meet their starting conditions but are in the ON_HOLD or ON_ICE state also do
not start; however, these jobs are not considered queued jobs. To place a job on hold or
on ice, send a JOB_ON_HOLD or JOB_ON_ICE event using the sendevent command. Jobs
in these states do not start until you take them off hold or off ice.

When a job leaves a queued state, the scheduler determines whether to start the job by
re-evaluating starting conditions for that job unless you configure CA Workload
Automation AE to skip starting condition evaluation for queued jobs. If a job that is
contained in a box fails its starting condition checks when leaving the queue, the
scheduler places that job in the ACTIVATED state. If a job that is not contained in a box
fails its starting condition checks when leaving the queue, the scheduler places that job
in the INACTIVE state. If the job meets its starting conditions, or if you configure the
system to skip starting condition evaluation for queued jobs, the job starts.

When you take a job off hold, the scheduler re-evaluates starting conditions for that job.
When you take a job off ice, the scheduler does not restart the job until its starting
conditions recur, even if those conditions were met while the job was on ice.

When you instruct the scheduler to bypass execution of a job, the scheduler starts the
job when it meets its starting conditions. The scheduler simulates running these jobs,
but the agent does not execute commands associated with the jobs. Bypassed jobs
evaluate as successfully completed on the scheduler machine. When you issue the
JOB_OFF_NOEXEC event, the agent executes commands associated with the specified
job the next time the job starts. Changing the executable status of a job does not affect
evaluation of starting conditions.

Notes:

■ When you take jobs off hold or when jobs leave a queued state, the scheduler does
not re-evaluate date and time conditions. Jobs that meet their date and time
conditions while they are in a queued state or on hold start as soon as they leave
the queue or are taken off hold unless other starting conditions apply and are not
satisfied.

■ If you configure CA Workload Automation AE to skip starting condition evaluation
for queued jobs, those jobs start immediately upon leaving a queued state.

■ For more information about configuring CA Workload Automation AE to skip
starting condition evaluation for queued jobs, see the Administration Guide or the
Online Help.

Queuing Jobs

72 User Guide

The following sections discuss queuing jobs and give examples of how to use load
balancing and queuing to optimize job processing in your environment.

How CA Workload Automation AE Queues Jobs

For queuing to be most effective, you must set the priority attribute for all jobs. By
default, the priority attribute is set to 0, indicating that the job should not be queued
and should run immediately. When you let the priority attribute default for a job, it runs
even if its job load would push the machine over its load limit. However, even when jobs
have a priority of 0, CA Workload Automation AE tracks job loads on each machine so
that jobs with non-zero priorities can be queued.

Note: If the job has resource dependencies, CA Workload Automation AE does not use
the following process to limit the job load on machines and to queue jobs for
processing. Instead, the resource manager (CA Workload Automation AE) is used to
select the best machine to run the job.

CA Workload Automation AE uses the following process to limit the job load on
machines and to queue jobs for processing:

■ If you set a job_load value for a job and you assigned a max_load for every real
machine comprising a virtual machine, CA Workload Automation AE checks if each
machine has sufficient available load units before running the job.

When more than one job is queued, the priority value is considered first when
deciding which job to run next. If there are insufficient load units available to run
the highest priority job, no other priority jobs are considered subsequently.

■ If each real machine has sufficient load units, CA Workload Automation AE employs
the load balancing and factor algorithms to verify on which machine the job should
start.

■ If only one of the machines has sufficient load units, the job runs on that machine.

■ If none of the machines has sufficient load units, CA Workload Automation AE puts
the job in QUE_WAIT status for all the machines. The job stays in QUE_WAIT status
until one of the machines has sufficient load units available.

Note: If a job is in QUE_WAIT status and you want it to run immediately, do not force
the job to start. Instead, use the sendevent command to send a CHANGE_PRIORITY
event that changes the job's priority to 0.

Queuing Jobs

Chapter 3: Working with Machines 73

Example: Job Queuing

This example shows a simple job queuing scenario that uses a previously defined
machine named lion with a max_load of 100:

insert_job: jobA

machine: lion

job_load: 80

priority: 1

insert_job: jobB

machine: lion

job_load: 90

priority: 1

In this example, if JobA was running when JobB started, CA Workload Automation AE
would put JobB in QUE_WAIT status until JobA completes, at which point JobB can run.

Example: Job Queuing and Load Balancing

This example shows a situation in which a machine has 80 load units and multiple jobs
are waiting to start. In this example, JobB and JobC are executing, while JobA and JobD
are queued (in the QUE_WAIT state) and waiting for available load units. The numbers
in the following illustration indicate the job_load assigned to each job, and the
max_load set for the machine.

The following JIL statements define the machine and the jobs in this example:

insert_machine: cheetah

max_load: 80

insert_job: JobA

machine: cheetah

job_load: 50

priority: 70

insert_job: JobB

machine: cheetah

job_load: 50

priority: 50

Queuing Jobs

74 User Guide

insert_job: JobC

machine: cheetah

job_load: 30

priority: 60

insert_job: JobD

machine: cheetah

job_load: 30

priority: 80

In this example, JobB and JobC are already running because their starting conditions
were satisfied first. After JobB or JobC completes, JobA is considered to start before
JobD because JobA has a higher priority.

How soon JobA starts is determined by a combination of its priority and job_load
attributes, and the max_load machine attribute. The result differs based on whether
JobB or JobC finishes first, as follows:

■ If JobB finishes first, 50 load units become available, so JobA runs. After JobA or
JobB complete, sufficient load units become available, so JobD runs.

■ If JobC finishes first, only 30 load units become available, so both JobA and JobD
remain queued until JobB completes.

■ After JobB completes, a total of 80 load units become available, so both JobA and
JobD are eligible to run. Because JobA has a higher priority, it runs first. JobD runs
shortly after.

Using a Virtual Machine as a Subset of a Real Machine

One variety of virtual machine can be considered a subset of a real machine. Typically,
you would use this type of virtual machine to construct an individual queue on a given
machine. One use for this construct might be to limit the number of jobs of a certain
type that run on a machine at any given time.

Example: Define a Virtual Machine as a Subset of a Real Machine

This example shows how to define a virtual machine that functions as a subset of a real
machine, thereby acting as a queue.

In this example, cheetah is a real machine with a max_load value of 80. If you create
three different print jobs, but you want only one job to run on a machine at a time, you
can use a combination of the max_load attribute for a virtual machine and the job_load
attributes for the jobs themselves to control how the jobs run.

Queuing Jobs

Chapter 3: Working with Machines 75

To implement this scenario, you would first create the virtual machine named
cheetah_printQ as follows:

insert_machine: cheetah_printQ

machine: cheetah max_load: 15

Next, you would define the three print jobs as follows:

insert_job: Print1

machine: cheetah_printQ

job_load: 15

priority: 1

insert_job: Print2

machine: cheetah_printQ

job_load: 15

priority: 1

insert_job: Print3

machine: cheetah_printQ

job_load: 15

priority: 2

Although the real machine cheetah has a max_load value of 80, meaning that all three
jobs (with their job_load values of 15) could run on it simultaneously, the virtual
machine cheetah_printQ effectively resets the real machine's max_load to 15. Because
each job is defined to run on cheetah_printQ, not cheetah, only one of the jobs can run
at a time because each job requires all of the load units available on the specified
machine.

Note: The load units associated with a virtual machine have no interaction with the load
units for the real machine. This example implies that the virtual load of 15 does not
subtract from the load units of 80 for the real machine. Load units are simply a
convention that lets the user restrict concurrent jobs running on any one machine.

Using a Virtual Machine to Combine Subsets of Real Machines

You can also define virtual machines to combine subsets (or slices) of real machines into
one virtual machine. You might do this, for example, if there are two machines that are
print servers and you want only one print job to run at a time on each.

Example: Define a Virtual Machine to Combine Subsets of Real Machines

This example defines a virtual machine (printQ) that uses subsets of the loads available
on two real machines to control where jobs run.

User-Defined Load Balancing

76 User Guide

To implement this, you would create the virtual machine named printQ, and specify two
real machines (cheetah and camel), as shown in the following JIL statements:

insert_machine: printQ

type: v

machine: cheetah

max_load: 15

machine: camel

max_load: 15

When a job is ready to start on printQ, CA Workload Automation AE checks if the
component real machine (cheetah or camel) has enough load units available to run the
job.

■ If neither machine has enough available load units, the product puts the job in
QUE_WAIT status and starts it when there are enough load units.

■ If only one machine has enough available load units, the product starts the job on
that machine.

■ If both machines have enough available load units, the product checks the usage on
each, and starts the job on the machine with the most available CPU resources.

User-Defined Load Balancing

As an alternative to using the load balancing methods that CA Workload Automation AE
provides, you can write your own programs or batch files to check which machine to use
at run time. If you specify the name of a program or batch file as the value of the
machine attribute in the job definition, the scheduler runs the batch file at job run time,
and substitutes its output for the machine name.

If the machine returned by the script is offline, the product puts the job in PEND_MACH
status for that machine. When the missing machine returns to service, the pending job
runs on it regardless of whether the script would return a different machine name at
that point in time. Because a machine must be defined for the scheduler to run a job on
it, you must have previously defined the machine returned by the script to CA Workload
Automation AE.

User-Defined Load Balancing

Chapter 3: Working with Machines 77

Example: User-Defined Load Balancing

This example shows how you would specify a user-defined program or batch file in place
of a real or virtual machine for processing a job.

For example, you might supply the following:

insert_job: run_free

machine: '/usr/local/bin/pick_free_mach'

command: $HOME/DEL_STUFF

At run time, the script /usr/local/bin/pick_free_mach runs on the scheduler machine.
The standard output is substituted for the name of the machine, and the job runs on
that machine.

Important! The escape character in the machine value above is the back-tic character
(`), not an apostrophe ('). You must escape a program or batch file used as the machine
attribute value with back-tic characters as shown for the scheduler to recognize that the
machine value specifies a script. The apostrophe and quotation mark characters do not
work in this case.

Chapter 4: Working with Jobs 79

Chapter 4: Working with Jobs

This section contains the following topics:

Jobs (see page 79)
Job Types (see page 81)
Common Job Attributes (see page 82)
Job States (see page 83)
Defining Jobs (see page 88)
Delete a Job (see page 92)
Running a Job After Using JIL (see page 93)
Specify the Job Owner (see page 93)
Global Variables (see page 95)
Alerts (see page 98)
Starting Conditions (see page 100)
Starting Conditions and Boxes (see page 110)
Controlling Jobs in PEND_MACH Status (see page 111)
Job Run Numbers and Names (see page 116)
How Time Dependencies Are Set (see page 116)
Dependent Jobs (see page 118)
Specifying One-Time Job Overrides (see page 121)
Date and Time Attributes and Time Changes (see page 123)
Job Profiles (see page 127)
Must Start Times and Must Complete Times (see page 131)
Delete Obsolete Job Versions (see page 135)
Restricting the Runtime Behavior of Jobs (see page 136)

Jobs

All activity controlled by CA Workload Automation AE is based on jobs. A job is any
single command or executable, UNIX shell script, or Windows batch file. Other objects,
such as monitors, reports, and the Job Status Console, track job progress. A job is the
foundation for the entire operations cycle.

You define jobs to CA Workload Automation AE by creating job definitions. Each job
definition contains attributes that specify the job's properties and behavior. For
example, you can specify conditions that determine when and where a job runs.

Jobs

80 User Guide

You can define jobs using the following methods:

JIL

A scripting language that lets you define and modify assets such as jobs, global
variables, machines, user-defined job types, external instances, and blobs.

CA WCC

A tool that lets you interactively set the attributes that describe when, where, and
how a job should run. The fields in the CA WCC GUI correspond to the JIL
subcommands and attributes. In addition, from the CA WCC GUI, you can define
calendars, global variables, and monitor and manage jobs. CA WCC is supplied with
CA Workload Automation AE.

Both methods set the same attributes and the job definition is always stored in the
database. You can also update and delete existing jobs.

Notes:

■ The scheduler must be running before you start any processes, so you should start
it before performing the tasks described in this chapter.

■ For information about using the CA WCC GUI to define jobs, see the CA WCC
documentation.

■ Before you update or delete an existing job, ensure that the job is not running. To
help avoid losing job definitions in the event of a system failure, we recommend
that you back up your job definitions periodically.

More information:

The jil Command and JIL (Job Information Language) (see page 27)

Job Types

Chapter 4: Working with Jobs 81

Job Types

When you create a job definition, you must specify the job type. Job types define the
type of work to be scheduled. For example, you can create a CMD job to run a Windows
command, an FTP job to download a file from a server, or an SAPEM job to monitor for
the triggering of an SAP event. You can also define box jobs, which are containers that
hold other jobs or box jobs. You can define your own job type.

Each job type has required and optional attributes that define the job. The job types
have many common attributes and CA Workload Automation AE treats them all
similarly. The primary differences between them are the actions taken when the jobs
run.

The structure of a job depends on the job type. For example, the following illustration
shows the structure of a Command, File Watcher, and Box job:

Common Job Attributes

82 User Guide

Common Job Attributes

Some JIL attributes are common to all job types. For example, you can define any job to
send an alarm if the job fails or terminates. You can also define starting or restart
conditions for any job.

Required Attributes for All Job Types

The following attributes are required for all job types:

■ job_name

■ machine

Note: By default, the job type is set to CMD. You can specify a different job type using
the job_type attribute.

Optional Attributes for All Job Types

The following attributes are optional for all job types:

■ alarm_if_fail ■ notification_id

■ application ■ notification_msg

■ auto_delete ■ owner (This attribute does not apply
to File Trigger jobs.)

■ auto_hold ■ permission

■ avg_runtime ■ priority

■ box_name ■ resources

■ box_terminator ■ run_calendar

■ condition ■ run_window

■ date_conditions ■ send_notification

■ days_of_week ■ service_desk

■ description ■ start_mins

■ exclude_calendar ■ start_times

■ group

■ svcdesk_attr

Job States

Chapter 4: Working with Jobs 83

■ job_load ■ svcdesk_desc

■ job_type ■ svcdesk_imp

■ max_run_alarm ■ svcdesk_pri

■ min_run_alarm ■ svcdesk_sev

■ must_complete_times ■ term_run_time

■ must_start_times ■ timezone

■ n_retrys

Job States
CA Workload Automation AE tracks the current state, or status, of every job. CA
Workload Automation AE displays job status in the job report that the autorep
command generates and in the CA WCC GUI.

The scheduler records job run information, including job status. The ujo_job_status
table stores job status for the current run, and the ujo_job_runs table stores job status
for previous runs. These tables use numeric codes to represent job status. The numeric
codes are resolved using the ujo_intcodes table. A job can have one of the following
statuses:

ACTIVATED (9)

Indicates that job is contained in a box job with a status of RUNNING but that the
job itself is waiting to start.

FAILURE (5)

Indicates that a job fails to complete successfully. The scheduler issues this alarm
when the alarm_if_fail attribute in a job definition is set to Y and that job fails.

INACTIVE (8)

Indicates that a newly created job has not yet run for the first time.

PEND_MACH (14)

Indicates that the offline status of the machine to which a job is assigned prevents
the job from starting. These jobs can otherwise logically start, so the scheduler
attempts to start them when the offline machine returns to service.

Note: You can use the GlobalPendMach configuration options to control how jobs
in PEND_MACH status start and what happens to new jobs scheduled to currently
offline machines. For more information about the GlobalPendMach parameters on
UNIX, see the Administration Guide. For more information about the Global Pend
Machine fields on Windows, see Online Help.

Job States

84 User Guide

ON_HOLD (11)

Indicates that the job is on hold and cannot run until you take it off hold.

Notes:

■ You can place a job in this status only by sending the JOB_ON_HOLD event.

■ To take a job off hold, send the JOB_OFF_HOLD event.

ON_ICE (7)

Indicates that the job is removed from the job stream but is still defined.

Notes:

■ You can place a job in this status only by sending the JOB_ON_ICE event.

■ To return a job that is on ice to the job stream and resume running it, send the
JOB_OFF_ICE event.

ON_NOEXEC (16)

Indicates that the scheduler bypasses execution of the job.

Notes:

■ You can place a job in this status only by sending the JOB_ON_NOEXEC event.

■ These jobs, and box jobs containing them, evaluate as successfully completed.
Downstream jobs that are dependent on these jobs still run, conditions
permitting.

■ When you instruct the scheduler to bypass the execution of a box job, the
scheduler automatically places all jobs in that box job in ON_NOEXEC status.

■ To resume executing bypassed jobs, send the JOB_OFF_NOEXEC event.

QUE_WAIT (12)

Indicates that a lack of available load units on the machines to which a job is
assigned prevent the job from starting. When the required load units become
available, the job starts.

RESTART (10)

Indicates that the scheduler is attempting to restart a job that failed to start as
scheduled. The scheduler attempts to restart the job at periodic intervals until the
job starts or the maximum number of restart attempts is exceeded.

Note: You can set the maximum number of restart attempts to zero (0). If the
scheduler reaches the maximum number of restart attempts without successfully
starting the job, the job fails. The maximum number of restart attempts depends on
the following global settings:

■ Max Restart Trys (on the Windows Administrator) or MaxRestartTrys (in the
UNIX configuration file)

■ Max Restart Wait (on the Windows Administrator) or MaxRestartWait (in the
UNIX configuration file)

Job States

Chapter 4: Working with Jobs 85

RESWAIT (15)

Indicates that the job is waiting for a resource before it can continue running. When
the resource is available, the job starts.

RUNNING (1)

Indicates one of the following situations:

■ The agent is executing the job.

■ The scheduler has instructed the agent to start jobs that are contained in the
box job.

Note: A box job acts as a container for other jobs but performs no action itself. The
agent does not execute box jobs. The scheduler places box jobs in RUNNING status
to send a message to the agent that it can start jobs that are contained in the box
job. These jobs start as soon as they meet the starting conditions that are specified
in the job definitions.

STARTING (3)

Indicates that the scheduler initiated the start job procedure with the agent. This
status does not apply to box jobs.

SUCCESS (4)

Indicates that the job exits with a code equal to or less than the maximum exit code
for success specified in the job definition. A box job enters this status in the
following situations:

■ All jobs that are contained in the box job succeed.

■ The exit condition for the box job evaluates to TRUE.

Job States

86 User Guide

TERMINATED (6)

Indicates that the job ends while it is still in the RUNNING state. The scheduler
issues an alarm when a job is terminated. A job is terminated when one of the
following situations occurs:

■ You send a KILLJOB event.

■ You issue the kill command (UNIX).

■ The job definition specifies that the scheduler should terminate the job under
specific circumstances and those circumstances occur. For example, you can
specify that the scheduler should terminate a job when the box job containing
it fails.

■ The job does not complete within the maximum run time specified in the job
definition

WAIT_REPLY (13)

Indicates that the job cannot continue running without manual intervention. The
scheduler issues an alarm when a job requires a user response to continue running.

Note: The job continues running only when you reply to this alarm by sending the
REPLY_RESPONSE event.

The job state reflects the most recent event processed. A job enters one of the
completed states (such as SUCCESS) when all of the events that are associated with that
job are processed, and the job remains in that state until the job starts again.
Sometimes displays a status that does not reflect reality; for example, the system
displays completed jobs as in the RUNNING state when the scheduler is still processing
events that are associated with that job. You can use the autorep command to view all
the of the events (including unprocessed events) that are associated with a job. For
more information about the autorep command, see the User Guide.

Job States

Chapter 4: Working with Jobs 87

Note: The scheduler determines whether or not to start jobs based on a number of
factors. These factors depend on the job type and the state of the job:

■ The scheduler re-evaluates starting conditions for jobs that are in the ON_HOLD
state when you issue the JOB_OFF_HOLD event using the sendevent command. The
scheduler also re-evaluates starting conditions for jobs that are leaving one of the
following queued states:

■ QUE_WAIT

■ RES_WAIT

■ PEND_MACH

The scheduler does not re-evaluate date and time conditions for these jobs if they
meet those conditions while they are on hold or queued. Jobs that meet date and
time conditions while they are on hold or queued start unless they do not meet
other starting conditions. Jobs that did not meet date and time conditions while
they were on hold or queued and still do not meet those conditions do not start.
You can configure CA Workload Automation AE to skip starting condition evaluation
for queued jobs. In this case, the jobs start immediately upon leaving the queue,
even if their starting conditions are no longer satisfied.

■ The scheduler does not start jobs that are in the ON_ICE state when you issue the
JOB_OFF_ICE event using the sendevent command. These jobs start the next time
that their starting conditions recur.

■ The scheduler starts box jobs that are in the ON_NOEXEC state but does not start
jobs of other types that are in this state. The scheduler places these box jobs in
RUNNING status but individual ON_NOEXEC jobs that are contained in the box job
remain in the ON_NOEXEC state. The scheduler automatically generates one
BYPASS event against jobs that are in the ON_NOEXEC state. The BYPASS event is
sent in place of the completion event for box jobs and in place of the RUNNING,
STARTING and completion events for individual jobs. After the scheduler places an
ON_NOEXEC box job in RUNNING status, the scheduler waits for all jobs in the box
job to bypass execution before returning the box job to the ON_NOEXEC state.

■ Box jobs in ON_NOEXEC status start and all of the jobs that are contained in the box
job enter the ACTIVATED state. The scheduler immediately bypasses and marks as
complete the jobs that are contained in the box job unless other conditions apply.
Jobs that are not marked complete by the time the box job completes enter or
remain in the ON_NOEXEC state.

■ All jobs that are contained in a box job enter the ACTIVATED when the box job
starts. Jobs run immediately unless other conditions apply. Jobs contained in a box
job that do not complete by the time that the box job completes enter INACTIVE
status. These jobs do not retain their statuses from previous box job processing
cycles when a new box job cycle begins.

More information:

Box Jobs (see page 187)

Defining Jobs

88 User Guide

Defining Jobs

Job definitions specify the work that individual jobs do.

When you define jobs, you can optionally schedule those jobs using the date and time
condition attributes. Scheduling jobs to run on customized schedules requires defining
custom calendars that you can reference in job definitions. Jobs that do not have date
and time conditions specified in their definitions only run when you start them
manually.

To improve workload performance for certain types of jobs, you can define them to run
on a cluster.

Insert a Job Definition

Sometimes the job that you need to run does not have a definition stored in the
database. For example, a new policy requires that you regularly generate a report but
there is no job definition in the database for a job that produces this report. To create
the job definition, use the insert_job subcommand.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following definition:

insert_job: job_name

machine: machine_name

job_type: type

required_attribute: value

[attribute: value...]

job_name

Defines a unique name for the job.

machine_name

Specifies the name of the machine on which the job runs.

type

Specifies the type of job you are defining.

Defining Jobs

Chapter 4: Working with Jobs 89

required_ attribute: value

Specifies the name of a required JIL attribute and the corresponding value. The
attributes that are required in a job definition depend on the type of job that
you are defining.

optional_attribute: value

(Optional) Specifies that name of an optional JIL attribute and the
corresponding value. The optional attributes that you can specify in a job
definition depend on the type of job that you are defining.

value

Defines the value of the corresponding attribute.

3. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The data is loaded into the database and the job is defined.

Note: You can also define a job using CA WCC. For more information about using CA
WCC, see the CA WCC Online Help.

Example: Define a Command Job

This example runs the /bin/touch command on the file named /tmp/test_run.out. The
job runs on the UNIX client computer named unixagent.

insert_job: test_run

job_type: CMD /* This attribute is optional for Command jobs. CMD is the default. */

machine: unixagent

command: /bin/touch /tmp/test_run.out

Update a Job Definition

Sometimes you must modify an existing job definition. For example, you must edit the
definition of a reporting job to comply with new reporting requirements. To modify the
definition, use the update_job subcommand.

Follow these steps:

1. Take one of the following actions:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

Defining Jobs

90 User Guide

2. Specify the following definition:

update_job: job_name

attribute: value

[attribute: value...]

job_name

Specifies the name of the job you want to update.

attribute

Specifies the name of a JIL attribute that applies to the job type that you are
updating. You can specify one or more attributes.

Note: For more information about specific job types, see the chapter for that
job type. For more information about JIL job types and other job definition
attributes, the values that you can specify for those attributes, and JIL syntax,
see the Reference Guide.

value

Defines the value of the corresponding attribute.

3. Take one of the following actions:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The data is loaded into the database and the job is updated.

Notes:

■ When you update a job, you cannot update the resources attribute in the existing
job definition if the job has a resource dependency and has held the resource.

■ You can also update a job using CA WCC. For more information about using CA
WCC, see the CA WCC Online Help.

More information:

Issue JIL in Interactive Mode on Windows (see page 33)
Issue JIL in Interactive Mode on UNIX (see page 33)
Issue JIL Using a Script on UNIX (see page 35)
Issue JIL Using a Script on Windows (see page 36)

Defining Jobs

Chapter 4: Working with Jobs 91

Defining Jobs to Run on a Cluster

Defining jobs to run on a cluster helps improve workload performance. We recommend
this method for the following types of jobs:

■ Jobs that use shared resources

■ Jobs with high CPU consumption

■ Command jobs that execute client utilities

You can define a job to run on a cluster when you are running CA Workload Automation
AE in a highly-available cluster environment that meets all of the following conditions:

■ The agent is clustered.

■ A machine is defined to represent the cluster.

Note: You can schedule command jobs that execute client utilities to run on a cluster
only when the client is also clustered.

A machine is defined to represent a cluster when the machine definition meets the
following requirements:

■ The machine representing the cluster is a real machine (not a virtual machine or a
machine pool).

■ The node name that is specified for the machine is the same as the host name of
the cluster that the machine represents.

■ The agent name that is specified for the machine is the same as the common agent
name for the agents that are installed on the cluster that the machine represents.

■ The agent port that is specified for the machine is the same as the common agent
port for the agents that are installed on the cluster that the machine represents.

■ The encryption type and key that are specified for the machine are the same as the
encryption type and key that are specified for the agents that are installed on the
cluster that the machine represents.

The cluster manager performs load balancing for jobs that use shared resources or have
high CPU consumption when you define those jobs to run on the cluster. Command jobs
that execute client utilities are more likely to succeed when you define them to run on a
cluster with multiple agents and clients installed on it.

Note: For more information about setting up a clustered agent and a clustered client,
see the UNIX Implementation Guide or the Windows Implementation Guide.

Delete a Job

92 User Guide

Delete a Job

When you no longer need a job definition, you can delete it from the database.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following subcommand:

delete_job: job_name

job_name

Specifies the name of the job you want to delete.

3. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The delete request is issued. When JIL is in job verification mode (the default), the
delete_job subcommand scans the ujo_job_cond table and notifies you of any
dependent conditions for the deleted job before deleting it.

Note: You can also delete a job using CA WCC. For more information about using CA
WCC, see the CA WCC Online Help.

Example: Delete a Job

This example deletes the test_run job.

delete_job: test_run

Running a Job After Using JIL

Chapter 4: Working with Jobs 93

Running a Job After Using JIL

After you submit a job definition to the database, it runs according to the starting
parameters specified in its JIL script. That is, the scheduler continually polls the
database, and when it verifies that the starting parameters are met it runs the job.

If a JIL script does not specify any starting parameters for a job, the scheduler does not
start the job automatically; the job starts only if you issue the sendevent command.

Note: For more information, see the Reference Guide.

Example: Run a Job with the sendevent Command

This example assumes that a job named test_install has no starting parameters specified
in its JIL script. The only way to start it is to issue the following command:

sendevent -E STARTJOB -J test_install

This command tells the scheduler to start the job named test_install.

Specify the Job Owner

By default, the operating system user who invokes jil to define a job is the owner of that
job. You can change the owner a job by specifying a different user ID in the job
definition.

To change the owner of a job, specify the user ID of a CA Workload Automation AE user
in the owner attribute job definition. CA Workload Automation AE accesses the
associated password from the database.

Important! Jobs that run on other software, such as PeopleSoft and databases, can run
only when the owner specified in the job definition is defined as a user on CA Workload
Automation AE and on the authenticated software. For example, to run an SAP job,
specify an SAP user that is also defined as a CA Workload Automation AE user.

You can use the CA WAAE Security Utility to define users on CA Workload Automation
AE.

Specify the Job Owner

94 User Guide

To specify the job owner, add the owner attribute to your job definition.

Notes:

■ The owner attribute does not apply to File Trigger jobs.

■ If CA Workload Automation AE is running in native security mode, you can change
the owner value only if you have EDIT superuser permissions.

■ If CA Workload Automation AE is running in external security mode using CA EEM,
you can change the owner value only if you have as-owner authority.

■ CA Workload Automation AE uses the owner value for all job types except for File
Trigger. CA Workload Automation AE does not use the oscomponent.default.user
parameter located in the agent's agentparm.txt file.

■ Other application specific uses of the owner attribute apply to certain job types. For
more information about these job type specific uses, see the documentation on
individual job types in the User Guide.

■ For more information about the owner attribute, see the Reference Guide.

Example: Specify a Job Owner

Suppose that CA Workload Automation AE is running in external security mode and you
have as-owner authority as defined in CA EEM. You can specify the owner attribute in
job definitions. The following job runs under the prod user on the unixagent computer:

insert_job: jobA

job_type: CMD

machine: unixagent

command: /bin/touch /tmp/test_run.out

owner: prod@unixagent

Global Variables

Chapter 4: Working with Jobs 95

Global Variables

You can define global variables using the sendevent command. After you define a global
variable to CA Workload Automation AE you can use the variable as a job dependency.
The job dependency is satisfied only when the value of the expression evaluates to
TRUE.

You can reference a global variable as part of the syntax of any of the following
attributes:

■ command

■ connect_string

■ destination_file

■ ftp_local_name

■ ftp_remote_name

■ i5_library_list

■ i5_name

■ i5_params

■ monitor_cond

■ scp_local_name

■ scp_remote_dir

■ scp_remote_name

■ sp_name

■ sql_command

■ std_err_file

■ std_in_file

■ std_out_file

■ success_criteria

■ tablename

■ text_file_name

■ trigger_cond

■ watch_file

Global Variables

96 User Guide

Notes:

■ If the length of the attribute value exceeds the limits after the global variable
expansion, the job goes into a RESTART state. The job restarts based on the value
specified in the MaxRestartTrys (on UNIX) or Max Restart Trys (on Windows)
parameter.

■ For the std_in_file, std_out_file, and std_err_file attributes, the length of the
attribute value after the global variable expansion can exceed the limits by four
characters. For the command attribute, the length of the attribute value after the
global variable expansion can be up to 1024 characters.

■ If a global variable is not defined in the database, the scheduler displays a warning
message and continues the execution of the job.

■ For more information about using the sendevent command to define global
variables or about the attributes that support global variable substitution, see the
Reference Guide.

Example: Define a Global Variable

This example sets the global variable "Today" to a value of “12/25/2007":

sendevent -E SET_GLOBAL -G "Today=12/25/2007"

Example: Monitor a File Whose Name is Assigned to a Global Variable on UNIX

This example monitors a file whose name has been assigned to the global variable
file_1.

insert_job: ft_unix2

job_type: FT

machine: unixagt

watch_file: $${file_1}

Global Variables

Chapter 4: Working with Jobs 97

Example: Specify a File Name with a Global Variable on UNIX

This example redirects the job's standard error file output to a file whose path contains
the global variable named Today. You can use the sendevent command to set the value
of a global variable to today’s date.

insert_job: unix_glob_var

job_type: CMD

machine: unixagent

command: /usr/common/backup

std_err_file: /tmp/$${Today}.err

Example: Specify a File Name with a Global Variable on Windows

This example redirects the job's standard error file output to a file whose path contains
the global variable named Today. You can use the sendevent command to set the value
of a global variable to today’s date.

insert_job: win_globalvar

job_type: CMD

machine: winagent

command: “C:\COMMON\Backup”

std_err_file: "C:\tmp\$$Today.err"

More Information:

Job Dependencies Based on Global Variables (see page 108)

Alerts

98 User Guide

Alerts

You can define the following job types to monitor a condition continuously:

■ CPU Monitoring (OMCPU)

■ Database Monitor (DBMON)

■ Database Trigger (DBTRIG)

■ Disk Monitoring (OMD)

■ File Trigger (FT)

■ Text File Reading and Monitoring (OMTF)

■ Windows Event Log Monitoring (OMEL)

■ Windows Services monitoring (OMS)

Each time the specified condition occurs, an ALERT event is written to the scheduler log
file (event_demon.$AUTOSERV on UNIX and event_demon.%AUTOSERV% on Windows).
An alert helps you track and report each time that a monitored condition occurs.

Note: An alert is only generated for triggers that occur during continuous monitoring.
Alerts are not generated for non-continuous monitoring (NOW and WAIT).

To stop a continuous monitor, you must complete the job manually by issuing the
following command:

sendevent –E KILLJOB –J job_name

For non-continuous monitors the proper event order will be reflected as:

1. STARTING

2. RUNNING

3. SUCCESS

For a continuous monitor the event order will be reflected as:

1. STARTING

2. RUNNING

3. ALERT

4. ALERT

5. ALERT...

6. KILLJOB

7. TERMINATED

8. JOBFAILURE (ALARM)

Alerts

Chapter 4: Working with Jobs 99

You can view the text of alerts using the following methods:

■ View the scheduler log file

■ Issue the following command:

autorep –J job_name –d

■ CA WCC

Note: You cannot manually send the ALERT event using the sendevent command.

Example: Trigger Alerts When Monitoring CPU Usage Continuously

This example continuously monitors used CPU on the unixagent computer. When the
job runs, it goes into a RUNNING status. When the job detects that the used CPU is
within 70 and 100 percent, an ALERT event is raised (an alert is written to the scheduler
log file). The available, used CPU and load averages will be reported as part of the ALERT
event and the status message is reported with the RUNNING event. Subsequently, each
time the job detects that the use CPU meets the monitored condition, an alert is
triggered. The job only ends when it is complete manually.

insert_job: cpu_monitoring_used

job_type: OMCPU

machine: unixagent

lower_boundary: 70

cpu_usage: USED

inside_range: TRUE

monitor_mode: CONTINUOUS

In contrast, the following example monitors used CPU in WAIT monitor mode. When the
job runs, it goes into a RUNNING status. When the job detects that the used CPU is
within 70 and 100 percent, the job completes. No alert is triggered. The available, used
CPU and load averages are reported on the SUCCESS event.

insert_job: cpu_monitoring_used_wait

job_type: OMCPU

machine: unixagent

lower_boundary: 70

cpu_usage: USED

inside_range: TRUE

monitor_mode: WAIT

Starting Conditions

100 User Guide

Starting Conditions

CA Workload Automation AE verifies whether it should start a job by evaluating the
starting conditions defined for the job. All defined starting conditions must be true for a
job to start.

CA Workload Automation AE starts all jobs that meet their starting conditions, unless
one of the following conditions apply:

You place the job on hold or on ice. If you put a job on hold or on ice, the job does not
start until you take it off hold or off ice.

Notes:

■ To put a job on hold or on ice, issue the JOB_ON_HOLD or JOB_ON_ICE event using
the sendevent command. To take a job off hold or off ice, issue the JOB_OFF_HOLD
or JOB_OFF_ICE event.

■ You can also instruct the scheduler to bypass execution of a job by issuing the
JOB_ON_NOEXEC event.

■ Jobs in the ON_NOEXEC state start immediately when they meet their starting
conditions. The scheduler simulates running these jobs, but the agent does not
execute commands associated with the jobs. Jobs in this state immediately return
an evaluation of successfully completed on the Scheduler machine. When you issue
the JOB_OFF_NOEXEC event against a job in the ON_NOEXEC state, the agent
resumes executing commands associated with that job the next time the job runs.

■ External conditions prevent the job from running. Depending on the reason, CA
Workload Automation AE places the job in one of the following queued states:

– When an offline machine prevents the job from running, the job enters
PEND_MACH status.

– When held resources prevent the job from running, the job enters RES_WAIT
status.

– When unavailable load units prevent the job from running, the job enters
QUE_WAIT status.

When a job leaves a queued state, the scheduler determines whether to start the job by
re-evaluating starting conditions for that job unless you configure CA Workload
Automation AE to skip starting condition evaluation for queued jobs. If a job that is
contained in a box fails its starting condition checks when leaving the queue, the
scheduler places that job in the ACTIVATED state. If a job that is not contained in a box
fails its starting condition checks when leaving the queue, the scheduler places that job
in the INACTIVE state. If the job meets its starting conditions, or if you configure the
system to skip starting condition evaluation for queued jobs, the job starts.

When you take a job off hold, the scheduler re-evaluates starting conditions for that job.
When you take a job off ice, the scheduler does not restart the job until its starting
conditions recur, even if those conditions were met while the job was on ice.

Starting Conditions

Chapter 4: Working with Jobs 101

When you instruct the scheduler to bypass execution of a job, the scheduler starts the
job when it meets its starting conditions. The scheduler simulates running these jobs,
but the agent does not execute commands associated with the jobs. Bypassed jobs
evaluate as successfully completed on the scheduler machine. When you issue the
JOB_OFF_NOEXEC event, the agent executes commands associated with the specified
job the next time the job starts. Changing the executable status of a job does not affect
evaluation of starting conditions.

Notes:

■ When you take jobs off hold or when jobs leave a queued state, the scheduler does
not re-evaluate date and time conditions. Jobs that meet their date and time
conditions while they are in a queued state or on hold start as soon as they leave
the queue or are taken off hold unless other starting conditions apply and are not
satisfied.

■ If you configure CA Workload Automation AE to skip starting condition evaluation
for queued jobs, those jobs start immediately upon leaving a queued state.

■ For more information about configuring CA Workload Automation AE to skip
starting condition evaluation for queued jobs, see the Administration Guide or the
Online Help.

■ For more information about the sendevent command, see the Reference Guide.

When you put a job on ice or instruct the scheduler to bypass execution of the job, it
affects starting conditions of downstream dependent jobs. How CA Workload
Automation AE evaluates the downstream dependent jobs depends on the condition of
the job that you bypass or put on ice.

Suppose that you put JobA in ON_NOEXEC status. When CA Workload Automation AE
bypasses JobA, downstream jobs dependent upon JobA are evaluated when starting
conditions of JobA are met, based on the condition of JobA, as follows:

Condition Evaluates to

success (JobA) TRUE

failure (JobA) FALSE

terminated (JobA) FALSE

done (JobA) TRUE

notrunning (JobA) TRUE

exitcode TRUE, if the expression evaluates to true with an
exit code of 0

FALSE, if the expression evaluates to false with an
exit code of 0

Starting Conditions

102 User Guide

Suppose that you put JobA in ON_ICE status. The downstream jobs dependent upon
JobA are immediately evaluated based on the condition of JobA, as follows:

Condition Evaluates to

success (JobA) TRUE

failure (JobA) FALSE

terminated (JobA) FALSE

done (JobA) TRUE

notrunning (JobA) TRUE

exitcode FALSE

Date and Time Dependencies

You can use JIL statements to schedule CA Workload Automation AE jobs to start at a
specific date and time. CA Workload Automation AE then calculates a matrix of specified
day, date, and time values and starts jobs accordingly. A time range cannot span more
than 24 hours.

You can specify days of the week or actual dates, but you cannot specify both. For
example, you can define a job to start on Monday, Wednesday, and Friday at 8:00 a.m.
or on the 15th and the 30th of the month at 8:00 a.m. but not on Monday the 15th at
8:00 a.m.

You can specify days of the week using JIL, but you can only specify actual dates using
custom calendars. You can also specify a time zone to apply to your starting times, and
you can define a job to start at one specific time of day or hourly, denoted in minutes
past the hour.

TZ Environment Variable

Valid on UNIX

By default, jobs with time-based starting conditions that do not specify a time zone have
their start event scheduled based on the time zone under which the database runs.

Before you start the scheduler or application server, ensure that the TZ environment
variable is set. The scheduler or application server references this setting to determine
the default time zone. After you upgrade your database, you must start the scheduler to
insert a time zone offset value (calculated from the value of the TZ environment
variable) into the database. Do this before executing jil or autorep.

Important! Ensure that the database is running in the same time zone that the
scheduler starts up with.

Starting Conditions

Chapter 4: Working with Jobs 103

Job Dependencies Based on Job Status

You can define starting conditions to start jobs based on the current status of one or
more jobs that exist in the database. In this way you can program simple or complex
prerequisites for starting a job.

For example, you can implement a single-threaded, batch queue-like set of job
dependencies so that JobB starts when JobA achieves a SUCCESS status and JobC starts
when JobB achieves a SUCCESS status.

You can configure more complex conditions by combining a series of conditions with the
AND and OR logical operators. You can use the pipe symbol (|) instead of the word OR
and the ampersand symbol (&) instead of the word AND. Spaces between conditions
and delimiters are optional. You can specify even more complex conditions by grouping
the expressions in parentheses, which force precedence. The equation is evaluated from
left to right.

For example, in the following set of starting conditions, either both A and B must be
successful or both D and E must be successful for the statement to evaluate as TRUE:

(success(JobA) and success(JobB)) or (success(JobD) AND success(Job E))

Note: If you specify a condition for an undefined job, the condition evaluates as FALSE,
and any jobs dependent on this condition do not run. You can use the job_depends
command to check for this type of invalid condition statement.

The syntax for defining job dependencies is the same whether the job is being defined
using JIL or the CA WCC GUI, except that the JIL statement begins with the JIL condition
keyword.

Starting Conditions

104 User Guide

The following is the syntax for conditions based on job status:

status(job_name)

status

Indicates the status as one of the following:

success

Indicates that the status condition for job_name is SUCCESS, ON_ICE or
ON_NOEXEC. You can abbreviate this value to s.

failure

Indicates that the status condition for job_name is FAILURE. You can abbreviate
this value to f.

done

Indicates that the status condition for job_name is SUCCESS, FAILURE,
TERMINATED, ON_ICE or ON_NOEXEC. You can abbreviate this value to d.

terminated

Indicates that the status condition for job_name is TERMINATED. You can
abbreviate this value to t.

notrunning

Indicates that the status condition for job_name is anything except RUNNING
or STARTING. You can abbreviate this value to n.

job_name

Identifies the job on which the new job is dependent.

You can also abbreviate the dependency specification EXIT CODE to e and VALUE (of a
global variable) to v.

You can use the max_exit_success (maximum exit code for success) attribute set for a
job to control the value of the SUCCESS status. If you specify this attribute, any job that
exits with an exit code less than or equal to the specified value is treated as a success. A
FAILURE status means the job exited with an exit code higher than this value. The
default exit code for normal job completion is 0. A TERMINATED status means the job
was killed.

Note: You can use either uppercase or lowercase letters to specify a status. However,
you cannot use mixed case.

Starting Conditions

Chapter 4: Working with Jobs 105

Example: Job Dependencies

For a job that runs only when the job named DB_BACKUP succeeds, you would specify
the job dependency as follows:

success(DB_BACKUP)

If JobC should only start when both JobA and JobB complete successfully or when both
JobD and JobE complete (regardless of whether JobD and JobE failed, succeeded, or
terminated), you would specify the following dependency in the job definition for JobC:

(success(JobA) AND success(JobB)) OR (done(JobD) AND done(JobE))

As indicated in this example, you can use any job status as part of the specification for a
specific job's starting conditions. With this latitude, you can program branching paths
that must be taken and provide alternate actions for error conditions.

For example, if JobB fails after partially processing, you might want to call a routine
called Backout that reverses the changes that were made. You would specify the
following job dependency in the job definition for Backout:

failure(JobB)

You can use the notrunning operator to keep multiple jobs from running simultaneously.
For example, assume you do not want to run a database dump (DB_DUMP) and a file
backup (BACKUP) at the same time because such processing would adversely impact
performance. However, you might have a smaller job that can run as long as both of
these resource-intensive jobs are not running. You would specify the smaller job's
dependency as follows:

notrunning(DB_DUMP) AND notrunning(BACKUP)

Managing Job Status

Starting conditions that are based on job status use the current (or most recent)
completion status of the job. The current completion status is defined by the job run,
regardless of when that run occurred.

However, if you want to enforce the concept of time-based processing cycles, where the
completion status of a job for some previous time period should not affect the
processing of this time cycle, there are several options available.

When a box job starts, the status of all the jobs in the box changes to ACTIVATED.
Therefore, subsequent jobs in the box that depend on the completion of jobs performed
earlier in the same box only use the completion statuses from this box run. Placing the
jobs in one processing cycle inside a top-level box and setting the box to start at the
beginning of the processing cycle prevents time-critical jobs from being affected by
invalid information.

Starting Conditions

106 User Guide

When a job is first entered into the database, and before it runs for the first time, its
status is set to INACTIVE. By changing the status of jobs that have completed but whose
completion status should no longer be used in dependent job conditions to INACTIVE,
the completion status from the last run is no longer the current status and it is not used.

Use the sendevent command to change a job status to INACTIVE. Alternatively, you
could create a CA Workload Automation AE job to accomplish this. If you change the
status of a top-level box to INACTIVE, all the jobs in the box also change to INACTIVE.

Deleting and reinserting the job using JIL accomplishes the same thing. However, the
past reporting history on the job is no longer available. Updating a job using JIL does not
change the status of the job.

Job Dependencies Based on Exit Codes

You can use the following syntax to base job dependencies on exit codes that indicate
completed tasks. In this way, you can implement even more specific branching logic for
recovering from job failures.

This method of defining job dependencies has the following format:

exitcode (job_name) operator value

job_name

Defines the name of the job upon which the new job depends.

operator

Specifies one of the following exit code comparison operators:

=

Equal to.

!=

Not equal to.

<

Less than.

>

Greater than.

<=

Less than or equal to.

>=

Greater than or equal to.

Starting Conditions

Chapter 4: Working with Jobs 107

value

Defines the numeric exit code value on which to base the dependency.

For example, if a broken communication line results in JobA failing with an exit code of
4, and you want the system to run a script (JobB) that redials the line when this code is
encountered, you would enter the following for the job dependency specification for
the JobB redial job:

exitcode (JobA) = 4

You can use any job status or exit codes as part of the specification for starting
conditions. You can abbreviate the dependency specification exitcode with the letter e
(uppercase or lowercase).

Exit Codes and Batch Files in Jobs Running on Windows

When you define jobs to run batch files on Windows, you should be aware of and
account for Windows-specific behavior.

Windows programs return any exit values that are programmed in the executable code.
This exit value is the last thing returned to Windows when the program terminates.

Generally, a zero (0) exit code indicates success, while a non-zero exit code indicates an
error. The expected error values should be documented with each individual program,
but some programs can return unexpected exit codes. Modify these programs so that
they return expected values, and use these values when specifying exit code
dependencies.

Jobs are created using standard Windows process creation techniques. After the job is
created, the agent waits for the job to complete. When the job completes, CA Workload
Automation AE gets the program exit code from Windows and stores it in the database
for later use.

When launching programs directly, the exit codes are returned and put in the database.
However, there are some exit code behaviors that you must take into consideration
when using a job to start *.BAT batch files.

Starting Conditions

108 User Guide

The exit code returned from a batch file is the return code from the last operation
executed in that particular batch file. Consider the following example:

REM test batch file

test

if errorlevel 1 goto bad

goto good

:bad

del test.tmp

:good

exit

This sample batch file returns a 0 exit code when the test program exits with a 1 exit
code as long as test.tmp exists. If test.tmp does not exist, the return code is from the del
line and not from the line that runs the test. Therefore, this batch file returns a 0
(successful) exit code, even if test failed to execute as intended.

To help handle situations like this, CA Workload Automation AE supplies a program
called FALSE.EXE. This program resides in the Windows %AUTOSYS/bin directory and
takes only one parameter, which is the exit code you want FALSE.EXE to return on
completion. You can use FALSE.EXE as follows:

REM test batch file

test

if errorlevel 1 goto bad

exit

:bad

del test.tmp

false 1

When test fails with error level 1, this batch file returns an exit code of 1 from
FALSE.EXE, whether the test.tmp file exists or not.

Job Dependencies Based on Global Variables

You can base job dependencies on global variables set using the sendevent command.
When using global variables in this way, the job dependency is satisfied only when the
value of the expression evaluates to TRUE.

This method of defining job dependencies has the following format:

VALUE(global_name) operator value

Starting Conditions

Chapter 4: Working with Jobs 109

global_name

Defines the name of the global variable upon which the job depends.

Limits: This value can be up to 64 characters in length. The following characters are
valid: a-z, A-Z, 0-9, period (.), underscore (_), and hyphen (-). You can include spaces
in a global variable name.

operator

Specifies one of the following exit code comparison operators:

=

Equal to.

!=

Not equal to.

<

Less than.

>

Greater than.

<=

Less than or equal to.

>=

Greater than or equal to.

value

Defines the numeric or text value of the global variable on which to base the
dependency.

Limits: This value can be up to 100 characters in length and cannot contain
quotation marks or spaces. The following characters are valid: a-z, A-Z, 0-9, period
(.), underscore (_), and hyphen (-).

Note: When using JIL, use the condition attribute to enter the above expression in the
appropriate JIL script.

For example, assume that a set of jobs in a box should only run with a manager's
approval. In this case, use the following syntax to set the global variable named
manager-ok to OK, and make the top-level box job dependent on this global variable:

VALUE(manager-ok) = OK

You can abbreviate the dependency specification VALUE with the letter v (uppercase or
lowercase).

Starting Conditions and Boxes

110 User Guide

Starting Conditions and Boxes

When you put a job in a box, it inherits all of the starting conditions of the box.
Therefore, all starting conditions defined for the box must be met and the box must
enter the RUNNING state before the job can run. If there are no additional conditions on
the job, it starts as soon as the box starts. A job runs only once for each box execution.

By default, there is no sequential job processing in a box. For example, if three jobs are
in a box, all three jobs start when the box starts if they have no additional conditions.

To implement a processing sequence for jobs in a box, you must specify additional
starting conditions for each job. For example, you could specify that Job1 has no starting
conditions, Job2 depends on the completion of Job1, and Job3 depends on the
completion of Job2.

Note: Jobs that depend on a job that is ON_ICE status run immediately as if the starting
condition of the ON_ICE has instantly been satisfied. Jobs that depend on a job that is in
ON_NOEXEC status only run when the starting condition of the ON_NOEXEC job has
been satisfied. In this scenario:

■ If Job2 enters the ON_ICE status, Job1 and Job3 start simultaneously when the box
they are in starts running.

■ If Job2 enters the ON_NOEXEC status, CA Workload Automation AE bypasses Job2
and starts Job3 after Job1 completes.

■ If Job2 is in the ON_ICE state, the box completes successfully after Job1 and Job3
complete.

■ If Job2 is in ON_NOEXEC status, the box completes successfully after CA Workload
Automation AE bypasses Job2 and Job1 and Job3 complete.

More Information:

Global Variables (see page 95)

Controlling Jobs in PEND_MACH Status

Chapter 4: Working with Jobs 111

Controlling Jobs in PEND_MACH Status

The scheduler puts a machine in the offline state if it is unable to contact the agent to
run a job. You can manually put a machine in the offline state by issuing the sendevent
command to send a MACH_OFFLINE event. Jobs that are scheduled to start on offline
machines are placed in PEND_MACH status by default.

When an offline machine returns to service, the scheduler immediately starts all jobs in
PEND_MACH status on that machine. Starting too many jobs in PEND_MACH status on
the machine at a time places a heavy demand for resources on both the scheduler and
agent computers. This may introduce performance problems that affect all scheduled
workload.

You can use the GlobalPendMachInterval, GlobalPendMachStatus, or
GlobalPendMachDelay parameters (on UNIX) or the Global Pend Mach Interval, Global
Pend Mach Status, or Global Pend Mach Delay fields (on Windows) to:

■ Control the starting of jobs in PEND_MACH status when an offline machine returns
to service.

■ Control the status of jobs that are scheduled on a machine that is currently offline.

Notes:

■ The values specified in the GlobalPendMachInterval, GlobalPendMachStatus, or
GlobalPendMachDelay parameters (on UNIX) or the Global Pend Mach Interval,
Global Pend Mach Status, or Global Pend Mach Delay fields (on Windows) are
applied at the global level and not at the machine level or job level. That is, these
values apply to all machines that return to service and have jobs in PEND_MACH
status that are scheduled to start on them.

■ If the scheduler changes the status of a job from PEND_MACH to any other valid
status because of the GlobalPendMachStatus parameter (on UNIX) or the Global
Pend Mach Status field (on Windows) setting or a manual CHANGE_STATUS event,
the job is not run when the machine returns to service. Only jobs in PEND_MACH
status are eligible to start on the machine that returns to service.

Controlling Jobs in PEND_MACH Status

112 User Guide

Controlling the Starting of Jobs in PEND_MACH Status

You can control the starting of jobs in PEND_MACH status in the following ways:

■ By defining the time interval (in seconds) that the scheduler waits before starting
jobs in PEND_MACH status when an offline machine returns to service.

■ By defining the burst value. The burst value defines the number of jobs in
PEND_MACH status that the scheduler starts after waiting for the specified interval.

The scheduler starts the specified number of jobs, waits for the specified interval, starts
the specified number of jobs, waits for the specified interval, and so on. This process
repeats until all jobs in PEND_MACH status for that machine are started. On UNIX, you
can configure this setting using the GlobalPendMachInterval parameter in the
configuration file. On Windows, you can configure this setting using the Global Pend
Mach Interval field on the Scheduler window of CA Workload Automation AE
Administrator (autosysadmin).

When an offline machine returns to service, the scheduler updates the status of all jobs
scheduled for that machine from PEND_MACH to ACTIVATED unless the jobs fail their
starting condition checks. If a job fails its starting condition checks, the scheduler
updates its status to INACTIVE, unless it is in a box. All jobs contained in boxes are
placed in the ACTIVATED state, even if they fail their starting condition checks.

Note: You can configure CA Workload Automation AE to skip re-evaluation of starting
conditions for queued jobs. If you use this configuration option, the scheduler
immediately updates jobs in the PEND_MACH state to ACTIVATED when the required
machine returns to service. For more information about this configuration option, see
the Administration Guide or the Online Help.

If the ACTIVATED jobs meet their starting conditions or if CA Workload Automation AE is
configured to skip starting condition evaluation for queued jobs, the scheduler verifies
the following before starting the jobs:

■ Manual changes to the status of the job—If you send a manual CHANGE_STATUS
event for a job and the status of the job is updated, the scheduler detects the status
change and does not run the job on the machine. A message is written in the
scheduler log and the scheduler proceeds with the next job start.

■ Issuing a FORCE_STARTJOB event—If you issue a FORCE_STARTJOB event for a job,
the scheduler detects the status change and does not run the job on the machine. A
message is written in the scheduler log and the scheduler proceeds with the next
job start.

Controlling Jobs in PEND_MACH Status

Chapter 4: Working with Jobs 113

■ Reevaluation of the scheduled machine—The scheduler runs a job on a different
machine (any machine other than the machine that was used to bring the job out of
the PEND_MACH status) during the following situations:

– If a job is defined to run on a virtual machine and one or more component
machines in the virtual machine return to service, the scheduler determines
the best machine for the job from one of the component machines in the
virtual machine. The same applies for jobs that are defined to run against a
comma-separated list of machines. When one or more machines in the
comma-separated list of machines return to service, the scheduler determines
the best machine for the job from one of the machines in the list.

– If a job is initially defined against a single machine and you define a one-time
override against the machine attribute while the job is in PEND_MACH status
and the initial single machine returns to service, the scheduler starts the job on
the machine specified by the override. If the scheduler cannot contact the
machine specified by the override, it puts the job in PEND_MACH status until
the machine specified by the override becomes available.

– If a job is initially defined against a virtual machine and you define a one-time
override against the machine attribute while the job is in PEND_MACH status
and one or more component machines in the initial virtual machine return to
service, the scheduler starts the job on the machine specified by the override. If
the scheduler cannot contact the machine specified by the override, it puts the
job in PEND_MACH status until the machine specified by the override becomes
available.

– If a job is initially defined against a comma-separated list of machines and you
define a one-time override against the machine attribute while the job is in
PEND_MACH status, the scheduler behaves as follows:

– If you define a one-time override to a single machine while the job is in
PEND_MACH status, the scheduler starts the job when the overridden
single machine returns to service.

– If you define a one-time override to a virtual machine while the job is in
PEND_MACH status, the scheduler starts the job when one or more
component machines in the overridden virtual machine return to service.
The scheduler determines the best machine for the job from one of the
component machines in the overridden virtual machine.

Controlling Jobs in PEND_MACH Status

114 User Guide

– If you define a one-time override to a different list of machines while the
job is in PEND_MACH status, the scheduler starts the job when one or
more machines in the overridden list return to service. The scheduler
determines the best machine for the job from one of the machines in the
overridden list.

If the scheduler cannot contact the machine specified by the override, it puts
the job in PEND_MACH status until the machine specified by the override
becomes available.

Note: Overriding the machine attribute of a job in PEND_MACH status does not
cause the scheduler to start the job. The job remains in PEND_MACH status
regardless of the status of the machine specified by the override. The scheduler
only evaluates jobs in PEND_MACH status when it processes the
MACH_ONLINE events.

■ Online machine status—If the scheduler loses contact with the machine, the
machine is put in offline state and all remaining jobs are put back in PEND_MACH
status.

Notes:

■ If you set the interval to 0 (the default value), the scheduler starts all jobs in
PEND_MACH status with no delay between job starts and the burst value is ignored.

■ The order in which the jobs are started depends on the job priority and amount of
time the job has been in PEND_MACH status. For example, if JOB1, JOB2, and JOB3
have the same priority and they enter the PEND_MACH status at 08:00:00 a.m.,
08:00:01a.m., and 08:00:02 a.m. respectively, the order in which they are started is
JOB1, JOB2, and JOB3. Once the scheduler determines the starting order of jobs
that are coming out of the PEND_MACH status, you cannot modify the starting
order by using the sendevent command to send the CHANGE_PRIORITY event. If
you send the CHANGE_PRIORITY event, the job priority changes do not apply to the
run of the job exiting in PEND_MACH status. The job priority changes apply to the
next run of the job.

■ If jobs enter PEND_MACH status at the same time and have the same priority, their
starting order is not guaranteed. If the job priority is set to 0, it overrides the
duration the job has been in PEND_MACH status and starts immediately.

■ For more information about the GlobalPendMachInterval parameter and
controlling the starting of jobs in PEND_MACH status on UNIX, see the
Administration Guide. For more information about the Global Pend Machine
Interval field and controlling the starting of jobs in PEND_MACH status on Windows,
see the Online Help.

Controlling Jobs in PEND_MACH Status

Chapter 4: Working with Jobs 115

Controlling the Status of Jobs Scheduled on an Offline Machine

You can control the status of jobs that are scheduled on a machine that is currently
offline in the following ways:

■ By defining the completion status that the scheduler assigns to jobs that are
scheduled on an offline machine. On UNIX, you can configure this setting using the
GlobalPendMachStatus parameter in the configuration file. On Windows, you can
configure this setting using the Global Pend Mach Status field on the Scheduler
window of CA Workload Automation AE Administrator (autosysadmin). The jobs
temporarily remain in PEND_MACH status before the scheduler assigns the status
specified in the GlobalPendMachStatus parameter (on UNIX) or the Global Pend
Mach Status field (on Windows).

Note: If the scheduler changes the status of a job from PEND_MACH to any other
valid status because of the GlobalPendMachStatus parameter (on UNIX) or the
Global Pend Mach Status field (on Windows) setting or a manual CHANGE_STATUS
event, the job is not run when the machine returns to service. Only jobs in
PEND_MACH status are eligible to start on the machine that returns to service.

■ By defining the time interval (in seconds) that the scheduler waits before updating
the status of the job to the status specified in the GlobalPendMachStatus
parameter (on UNIX) or the Global Pend Mach Status field (on Windows). On UNIX,
you can configure this setting using the GlobalPendMachDelay parameter in the
configuration file. On Windows, you can configure this setting using the Global Pend
Mach Delay field on the Scheduler window of CA Workload Automation AE
Administrator (autosysadmin).

Note: If you use the default value, the scheduler immediately sends a
CHANGE_STATUS event to update the status of jobs in PEND_MACH status to the
status specified in the GlobalPendMachStatus parameter (on UNIX) or the Global
Pend Mach Status field (on Windows). If you specify a value other than the default,
jobs remain in PEND_MACH status until the delay interval expires, and are then
assigned the status specified in the GlobalPendMachStatus parameter (on UNIX) or
the Global Pend Mach Status field (on Windows). If the machine returns to service
within the delay interval, the scheduler does not set the status of the job to the
status specified in the GlobalPendMachStatus parameter (on UNIX) or the Global
Pend Mach Status field (on Windows). Since the job is in PEND_MACH status when
the machine returns to service, the scheduler reschedules it to run on the online
machine based on the interval specified in the GlobalPendMachInterval parameter
(on UNIX) or the Global Pend Mach Interval field (on Windows).

Note: For more information about the GlobalPendMachStatus and
GlobalPendMachDelay parameters and controlling the status of jobs that are scheduled
on an offline machine on UNIX, see the Administration Guide. For more information
about the Global Pend Machine Status and Global Pend Machine Delay fields and
controlling the status of jobs that are scheduled on an offline machine on Windows, see
the Online Help.

Job Run Numbers and Names

116 User Guide

Job Run Numbers and Names

CA Workload Automation AE uses run numbers for jobs. The run number is a unique
integer associated with every run of a job.

Consecutive run numbers are assigned every time a top-level job starts. A top-level job
is a job that is not contained in a box, and these run numbers are inherited by every job
in a box. This means that all jobs in a top-level box have the same run number as the
number used for the run of the box. This design permits runs of nested jobs to be
associated together in the same run.

If a job restarts, the run number remains the same and the ntrys field is incremented. In
the standard reports (autorep command), these two values are displayed in the run
column as run_num/ntry.

The run_num/ntry value is defined in the run-time environment for the job, and is
accessible to shell scripts or executables run as the job's command. This value is
contained in the variable $AUTORUN.

CA Workload Automation AE also maintains a value for each job's name, which is
defined in the runtime environment for the job.

As with $AUTORUN, this value is accessible to shell scripts or executables run as the
job's UNIX command. The value is contained in the variable $AUTO_JOB_NAME.

On Windows, the environment variables are %AUTORUN% and %AUTO_JOB_NAME%.

How Time Dependencies Are Set

If you do not define starting conditions for a job, it only runs when you issue a
sendevent command for it. You can set time dependencies for a job so that it runs
automatically on specific days and at specific times.

Note: For more information, see the Reference Guide.

Example: Set Time Dependencies for a Job

This example shows how to use the date_conditions, days_of_week, and start_times
attributes to set time dependencies for a job.

How Time Dependencies Are Set

Chapter 4: Working with Jobs 117

To set the existing job test_run to run automatically on certain days at a certain time
(such as 10:00 a.m. and 2:00 p.m. on Mondays, Wednesdays, and Fridays), you could
modify the job using the following JIL script:

update_job: test_run

date_conditions: y

days_of_week: mo, we, fr

start_times: "10:00, 14:00"

This JIL script instructs CA Workload Automation AE to do the following:

■ Update the job named test_run.

■ Activate the conditions based on date.

■ Set the job to run on Mondays, Wednesdays, and Fridays.

■ Start the job at 10:00 a.m. and 2:00 p.m. on each of the specified days.

The times shown in the sample script are surrounded by quotation marks because they
contain a colon. You can also use a backslash (\) as an escape character for the colon, as
the following example shows:

start_times: 10\:00, 14\:00

Note: If a job runs daily at the same time (for example, 12:00) and you edit the job
definition and save it at 11:59, the job will not run until the next day at 12:00.

When you save a start time job definition to the database within one minute of the
specified start time, the start time is placed in the future (that is, tomorrow). However,
if the start time is two minutes or more from the save time, the job runs at the next
occurrence of the specified start time (that is, today).

Example: Base Time Settings on a Specific Time Zone

Use the timezone attribute to base the time settings for a job on a specific time zone. If
you specify a time zone that includes a colon, you must surround the time zone name
with quotation marks, as in the following example:

timezone: "IST-5:30"

Example: Run a Job Every Day

To run the job every day, instead of only on specific days, specify the all value instead of
listing the individual day values. For example:

days_of_week: all

Dependent Jobs

118 User Guide

Example: Schedule a Job to Run on Specific Dates

To schedule the job for specific dates, instead of specific days of the week, specify a
custom calendar. Use the autocal_asc command to define the calendar, and then use
the run_calendar attribute to specify the calendar name (for example, weekday_cal) in
the job definition. For example:

run_calendar: weekday_cal

Example: Exclude a Job from Running on Specific Dates

To specify a custom calendar that defines the days on which the job should not run, use
the autocal_asc command to define the calendar, and use the exclude_calendar
attribute to specify the calendar name (for example, holiday_cal) in the job definition.
For example:

exclude_calendar: holiday_cal

Example: Schedule a Job to Run at Specific Times Every Hour

To run the job at specific times every hour instead of at specific times of the day, use the
start_mins attribute to specify the minutes past every hour that the job should run. For
example, to run a job at 15 minutes after and 15 minutes before each hour, add the
following statement to the job definition:

start_mins: 15, 45

Dependent Jobs

Jobs can be dependent on the successful completion of other jobs. The only difference
between a dependent job and a simple job is its dependency on another job. To define
job dependencies, specify the condition attribute in the job definition.

CA Workload Automation AE lets you specify a time limit in the condition attribute that
applies in job dependency evaluations. The job's execution environment is verified
exclusively by the profile, which is sourced immediately before the job starts. On UNIX,
by default the /etc/auto.profile file on the client computer is sourced. On Windows, the
variables set by the installer in the agent’s profile directory are sourced or set. You can
use the profile attribute to override the default profile.

Note: For more information about the condition attribute, see the Reference Guide.

Dependent Jobs

Chapter 4: Working with Jobs 119

Example: Create a Dependent Command Job

This example shows a JIL script that defines a dependent command job named
EOD_post. EOD_post depends on the successful completion of the File Watcher job
named EOD_watch.

insert_job: EOD_post

job_type: cmd

machine: prod

condition: success(EOD_watch)

command: $HOME/POST

This JIL script instructs CA Workload Automation AE to do the following:

■ Add a new job named EOD_post.

■ Define the job as a command job.

■ Run the job on the client computer named prod.

■ Run the job only if the file watcher job named EOD_watch completes with a
SUCCESS status.

■ Source the /etc/auto.profile file (CA Workload Automation AE sources this file by
default), and run the job named POST located in the job owner's home directory.

More information:

Job Profiles (see page 127)

Dependent Jobs

120 User Guide

Look-Back Conditions

CA Workload Automation AE supports look-back conditions. You can use look-back
conditions to base dependencies for a job on the last run of another job. The last run is
defined by the ending time of the last successful run of a job. If the job has run with the
specified result, the condition or predecessor is satisfied and the job starts. If not, the
condition is not satisfied and the job for which the look-back condition is defined does
not start.

To specify a look-back dependency, enter the job name followed by a comma (,) then
HH (hours), period (.) and MM (minutes).

Example: Specifying Look-Back Conditions

This example shows a job definition with look-back conditions.

In the following job definition, the command job test_sample_04 can only start if all of
the following conditions are met:

■ The last run of test_sample_01 completed successfully during the last 12 hours.

■ The last run of test_sample_02 completed with a FAILURE status during the last 24
hours.

■ The last run of test_sample_03 completed successfully at any time.

insert_job: test_sample_04

machine: localhost

command: sleep 10

condition: success(test_sample_01,12.00) AND failure(test_sample_02,24.00) AND

success(test_sample_03)

Specifying One-Time Job Overrides

Chapter 4: Working with Jobs 121

Specifying One-Time Job Overrides

You can use the override_job subcommand to specify an override that changes the
behavior of a specific job during its next run. Job overrides are applied only once. If a
RESTART event is generated because of system problems, CA Workload Automation AE
reissues a job override until the job actually runs once, or until the maximum number of
retries limit is met. After this, CA Workload Automation AE discards the override.

You can modify the following attributes in a job override:

■ auto_hold

■ command

■ condition

■ date_conditions

■ days_of_week

■ exclude_calendar

■ machine

■ max_run_alarm

■ min_run_alarm

■ n_retrys

■ profile

■ run_calendar

■ run_window

■ start_mins

■ start_times

■ std_err_file

■ std_in_file

■ std_out_file

■ term_run_time

■ watch_file

■ watch_file_min_size

■ watch_interval

Specifying One-Time Job Overrides

122 User Guide

JIL will not accept an override if it results in an invalid job definition. For example, if a
job definition has only one starting condition, start_times, JIL will not let you set the
start_times attribute to NULL because removing the start condition makes the job
definition invalid (no start time could be calculated).

One-time job overrides are applied to jobs restarted due to system problems, but are
not applied to jobs restarted because of application failures.

System problems include the following:

■ Machine unavailability

■ Media failures

■ Insufficient disk space

Application failures include the following:

■ Inability to read or write a file

■ Command not found

■ Exit status greater than the defined maximum exit status for success

■ Various syntax errors

Notes:

■ Overriding the machine attribute of a job in PEND_MACH status does not cause the
scheduler to start the job. The job remains in PEND_MACH status regardless of the
status of the machine specified by the override. The scheduler only evaluates jobs
in PEND_MACH status when it processes the MACH_ONLINE events.

■ CA Workload Automation AE does not execute overridden jobs in ON_NOEXEC
status. If you issue a one-time override for a job in this status or put a job in this
status after overriding, the override remains in effect until you issue the
JOB_OFF_NOEXEC event.

Date and Time Attributes and Time Changes

Chapter 4: Working with Jobs 123

How Job Overrides Are Set

To set job overrides, use the override_job subcommand to specify the job and attributes
to override. You can also temporarily delete a job attribute in this manner.

Example: Define a One-time Override for a Job

This example shows how to define a one-time job override. The following script runs the
job RunData with no conditions (where some had been previously specified) and
outputs the results to a different output file:

UNIX:

override_job: RunData

condition: NULL

std_out_file: "tmp\SpecialRun.out"

Windows:

override_job: RunData

condition: NULL

std_out_file: "C:\tmp\SpecialRun.out"

Example: Cancel a Job Override Before it Runs

This example shows how to cancel a job override before it runs. To cancel overrides for
a job, enter the override_job subcommand followed by the job name and the delete
parameter. For example:

override_job: RunData delete

Note: After you submit a JIL script to the database, you cannot view the script or edit an
override. To change the override values, you must submit another JIL script with new
values or use the CA WCC Quick Edit. However, the original override remains stored in
the ujo_overjob table in the database.

Date and Time Attributes and Time Changes

Your operating system might automatically change the system clock to reflect the switch
to either standard time (ST) or daylight time (DT), and the scheduling of time-dependent
CA Workload Automation AE jobs might shift to adjust for the time change. Jobs that are
not time-dependent run as appropriate.

There are two types of time dependencies: absolute and relative.

Date and Time Attributes and Time Changes

124 User Guide

Jobs with absolute time dependencies are defined to run at a specific time of the day
(for example, 9:30 on Thursday or 12:00 on December 25). The following attributes
define absolute time dependencies:

■ days_of_week

■ exclude_calendar

■ must_start_times

■ must_complete_times

■ run_calendar

■ run_window

■ start_times

Relative time dependencies are based either on the current time or relative to the start
of the hour (for example, start a job at 10 and 20 minutes after the hour, or terminate a
job after it has run for 90 minutes). The following attributes define relative time
dependencies:

■ auto_delete

■ max_run_alarm

■ min_run_alarm

■ must_start_times

■ must_complete_times

■ start_mins

■ term_run_time

■ watch_interval

During the time change, absolute time attributes behave differently than relative time
attributes.

Daylight Time Changes

Because the clock loses an hour during the change from standard time to daylight time
in the spring, CA Workload Automation AE cannot schedule any jobs using
time-dependent attributes during that time.

The solution is to schedule jobs with absolute time dependencies for the missing hour to
start during the first minute of the next hour. In this case, because the time change
automatically occurs at 2:00 a.m., a job scheduled to run on Sundays at 2:05 runs at
3:00:05 that day; a job scheduled to run every day at 2:45 runs at 3:00:45. Although it
might not be possible to start a large number of jobs during the first minute of the hour,
this feature does preserve the scheduling order.

Date and Time Attributes and Time Changes

Chapter 4: Working with Jobs 125

If you schedule a job to run more than once during the missing hour (for example, at
2:05 and 2:25), only the first scheduled job run occurs. Additional start times for the
same job in the missing hour are ignored.

Jobs with relative time dependencies run as expected. For example, a job specified to
run at 0, 20, and 40 minutes after the hour is scheduled for 1:00 ST, 1:20 ST, 1:40 ST,
3:00 DT, 3:20 DT, and 3:40 DT.

Run windows are treated differently. When the specified end of the run window falls
during the missing hour, CA Workload Automation AE recalculates its end time, so that
the effective duration of the run window remains the same. For example, the product
recalculates a run window of 1:00 - 2:30 so that the window ends at 3:30 and the run
window still remains open for 90 minutes.

When the run window’s specified start time falls during the missing hour, CA Workload
Automation AE moves the start time to 3:00. The end time does not change, so the run
window is shortened. For example, a run window of 2:45 - 3:45 becomes 3:00 - 3:45,
shortening the run window by 15 minutes.

When the run window’s start and end time both fall during the missing hour, CA
Workload Automation AE moves the start time to the first minute after 3:00 and the
end time to one hour later. Therefore, the resulting run window might be lengthened.
For example, a run window of 2:15 - 2:45 becomes 3:00 - 3:45, or 15 minutes longer.

Date and Time Attributes and Time Changes

126 User Guide

Standard Time Changes

Because the clock gains one hour during the change from daylight time to standard time
in autumn, there are two 1:00-1:59 hours. CA Workload Automation AE only runs jobs
for which the start_time attribute is set to between 1:00 and 1:59 during the second
(standard time) hour. Jobs for which the start_mins attribute is set run in both hours.

For example, a job scheduled to run on Sundays at 1:05 runs only at the second 1:05. A
job scheduled to run every 30 minutes runs at 1:00 DT and 1:30 DT, then again at 1:00
ST and 1:30 ST, and so on, as the following illustration shows:

Jobs that are not time-based but have other dependencies still run during the first hour.

Jobs with relative time dependencies run as expected. For example, if a job is scheduled
to run on Sunday at 0:30 and its term_run_time attribute is set to 120 minutes, the job
would normally terminate at 2:30. On the day of the autumn time change, the job
terminates at 1:30 standard time, which is 120 minutes after the job started.

When testing how the change from daylight time to standard time affects your jobs, you
must set the system clock to a time before 1:00 a.m. and allow the entire hour to pass
before you can observe the time change. If you manually set the time to a period during
the 1:00 a.m. to 2:00 a.m. window, the system assumes that the time change has
already occurred and does not reset at 2:00 a.m.

Run windows are treated differently. When the specified start of a run window is before
the time change and its specified end occurs during the repeated hour, the run window
closes during the daylight time period (the first hour). For example, a run window of
11:30 - 1:30 ends at 1:30 DT, not 1:30 ST (that is, the run window remains open for its
specified two hours, not for three hours). A problem might occur if there are also
associated start times for the job that occur during the repeated hour. If the job in our
example also had a start time of 1:15, the start time would be calculated for 1:15 ST and
the job would not run on the day of the time change.

Job Profiles

Chapter 4: Working with Jobs 127

When the specified opening of the run window falls during the repeated hour, CA
Workload Automation AE moves its start time to the second, standard time hour. The
end time does not change, so the length of the run window remains the same. For
example, a run window of 1:45 - 2:45 becomes 1:45 ST - 2:45 ST.

When both the specified start and end of the run window occur during the repeated
hour, the run window opens during the second, standard time hour.

Job Profiles

A job profile defines the non-system environment variables for a job. When you define a
job, you can assign a job profile to it. Only one profile can be sourced for a job.

Job profiles apply to the following job types:

■ Command jobs

■ File Watcher (FW) jobs that are submitted to the legacy agent

On UNIX, job profiles are shell scripts that typically include the definitions and exports of
environment variables. The command that the job runs can reference these variables.
You can store job profiles on UNIX in any directory. Job profiles on UNIX are always
sourced using the job owner's default shell, which is set for the user in the etc/passwd
file. Therefore, when you create a job profile, you must use the syntax of the owner's
default shell. For example, if the owner's default shell is the Korn shell, you must use
Korn syntax in the profile script.

On Windows, you create job profiles using the Job Profiles window in the CA Workload
Automation AE Administrator utility. These profiles contain variable=value pairs that
define the environment variables. The profiles are stored in the
SystemAgent\agent_name\profiles directory of the CA Workload Automation AE
computer. If you move a job profile to another location, you must specify the full path
when you assign the profile to a job. The agent uses the variable=value pairs in the job
profile to set the environment variables.

Environment Variables

System environment variables are automatically set in the environment of a job.
However, user environment variables are not automatically set. You must define all
other required environment variables using one or both of the following methods:

■ envvars attribute in the job definition

■ Job profile

Job Profiles

128 User Guide

If a job profile is assigned to a job, the agent sources the profile before running the job.
When the agent reads the profile, the environment variables in the profile are
expanded. For example, if Path is a variable in the profile, the following occurs:

■ Any environment variables specified in the value of Path are expanded.

■ That path is used to search for the command.

■ The new value for the %Path% variable is set before running the command.

If you want to specify the full path name, you can use variables set from the job profile
in the path name specification.

The agent reads profile variables in alphabetical order. Therefore, if you plan to expand
variables in the profile itself, you must define the variables so that they are in the
appropriate order when read alphabetically.

Notes:

■ On the agent, you can define environment variables that apply to all jobs at a global
agent level, scheduling manager level, or user level. For example, suppose that you
want to set an environment variable for all jobs that run on an agent under a
specific user (owner). Instead of defining that variable in every job definition using
the envvars attribute or in a job profile, you can define the variable on the agent
using the oscomponent.environment.variable_user_userid parameter. For more
information about setting environment variables on the agent, see the CA Workload
Automation Agent for UNIX, Linux, or Windows Implementation Guide.

■ For more information about the envvars and profile JIL attributes, see the Reference
Guide.

Job Profiles

Chapter 4: Working with Jobs 129

How the Environment for a Job is Sourced

System environment variables are automatically set in the environment for a job. When
the job is submitted, the agent processes the following additional information to source
the environment, in the following order:

1. Variables set during the CA Workload Automation AE installation.

■ On UNIX the auto.profile file is automatically created during CA Workload
Automation AE installation and contains variable definitions such as
AUTOUSER. This file is located on the CA Workload Automation AE computer.

■ On Windows variables are set by the installer in the agent’s profile directory.
The WAAE.txt file contains a set of variables for the product, and an
<instance_name>.txt file contains a set of variables for each instance. Typically,
these files contain the %AUTOROOT%, %AUTOSYS%, %AUTOUSER%, and
%PATH% variables.

2. Environment variables defined using the envvars attribute in the job definition (if
specified)

3. The job profile defined using the profile attribute (if specified)

Note: The environment variables are set before the job profile variables. Therefore, you
can reference system environment variables in job profiles. However, if a variable is set
more than once, the last value read is used.

Create a Job Profile

You can create a job profile to define the non-system environment variables that must
be set for a Command job or for a File Watcher (FW) job that is submitted to a legacy
agent.

To create a job profile, do one of the following:

■ On UNIX, create a shell script file that contains the environment variables you want
to source.

You must use the syntax for the default shell of the job owner. You can store this
script in any directory.

■ On Windows, use the Job Profiles window in the CA Workload Automation AE
Administrator utility.

The job profile is stored in the SystemAgent\agent_name\profiles directory of the
CA Workload Automation AE computer.

Note: For more information about creating, viewing, and deleting job profiles on
Windows, see the Online Help.

Job Profiles

130 User Guide

Assign a Job Profile to a Job

You can assign a job profile to a job to source the non-system environments that must
be set before the job can run.

Follow these steps:

1. Do one of the following:

■ Define a Command job (see page 222).

■ Define a File Watcher job on the legacy agent. (see page 297)

2. Add the following attribute to the job definition:

profile: path_name

Specifies a profile that defines the non-system environment variables for the
job.

Notes:

■ On UNIX, specify the name of the profile script. Alternatively, you can
specify path/profile_name.

■ On Windows, specify the name of the profile that you created in the
Administrator utility. Alternatively, you can specify path\profile_name.

■ You can specify both the computer name and the profile name, which lets
you run the job on one computer while using a job profile defined on
another computer. For example, you can specify the following path on
Windows: \\machine_name\share_name\profile_name.txt

3. Run the job.

The job profile is assigned to Command or File Watcher job.

Notes:

■ Job profiles are instance-specific. You cannot assign a profile defined in one CA
Workload Automation AE instance to a job defined in another.

■ For more information about the profile attribute, see the Reference Guide. You can
also use CA WCC to assign a profile to one or more jobs.

Must Start Times and Must Complete Times

Chapter 4: Working with Jobs 131

Convert Job Profiles to the New Format (Windows Only)

In Unicenter AutoSys JM 4.5.1 and r11 on Windows, job profile information was stored
in the Windows registry. To upgrade to r11.3, Release 11.3.5, or Release 11.3.6, the job
profile information in the registry must be converted to a file format that is compatible
with the new CA Workload Automation Agent for Windows. When you upgrade CA
Workload Automation AE, the upgrade process automatically converts the job profiles.
You can also issue the autoprofm command to manually convert profiles.

Follow these steps:

1. Click Start, Programs, CA, Workload Automation AE, Command Prompt
(instance_name).

The CA Workload Automation AE command prompt opens. The command prompt
presets all the environment variables for the instance.

2. Enter the following command:

autoprofm -P directory [-N agent_name] [-x] [-?]

The job profiles in the Windows registry are converted to the new format and
stored in text files. The new files are stored in the directory specified by the -P
option.

When a job is submitted in r11.3, Release 11.3.5, or Release 11.3.6, the agent refers
to the converted profile specified in the profile attribute and sources the
environment variables.

Note: For more information about the autoprofm command, see the Reference Guide.

Must Start Times and Must Complete Times

You can define the time that a job must start or complete by. If the job does not start by
its must start time or complete by its must complete time, an alert is issued. Defining
must start times and must complete times is helpful when you want to be notified that a
job has not started or completed on time. For example, a must start alarm can alert you
to investigate whether the job's starting conditions have not been satisfied or whether
the job is stuck in the STARTING state.

You can specify more than one must start time or must complete time for a job. If the
job has multiple start times, you must specify the same number of must start times or
must complete times. For example, if the job runs at three different times during the
day, you must specify three must start times, corresponding to each run of the job.

Must Start Times and Must Complete Times

132 User Guide

To define must start times, add the must_start_times attribute to your job definition.

To define must complete times, add the must_complete_times attribute to your job
definition.

You can specify both must_start_times and must_complete_times attributes in the
same job definition.

After the job is defined, you can issue the autorep -q command to display the must start
times and the must complete times. You can issue the autorep -d command to view the
alarms generated. You can also view the scheduler log file (event_demon.$AUTOSERV
on UNIX and event_demon.%AUTOSERV% on Windows) to see which alarms were
issued.

Note: For more information about the syntax for the must_start_times and
must_complete_times attributes, see the Reference Guide.

How Must Start Times and Must Complete Times Work

When you define a job with the must_start_times or must_complete_times attribute,
the job definition and corresponding events are added to the database. The scheduler
checks the events to determine whether to issue alarms.

CA Workload Automation AE uses the following process to track the must start and
must complete times:

■ The job is inserted in the event table in the database.

■ If the job definition includes the must_start_times attribute, a CHK_START event
corresponding to the next must start time is inserted in the event table.

■ If the job definition includes the must_complete_times attribute, the
CHK_COMPLETE event corresponding to the next must complete time is inserted in
the event table.

■ The scheduler checks the CHK_START event to see whether the job has started
successfully.

■ If the job has not started, a MUST_START_ALARM is issued. An alert is written to
the scheduler log file to indicate that the CHK_START criteria has not been satisfied.

■ The scheduler checks the CHK_COMPLETE event to see whether the job has
completed successfully. The scheduler checks for the SUCCESS, FAILURE, or
TERMINATED events.

Must Start Times and Must Complete Times

Chapter 4: Working with Jobs 133

■ If the job has not completed, a MUST_COMPLETE_ALARM is issued. An alert is
written to the scheduler log file to indicate that the CHK_COMPLETE criteria has not
been satisfied.

■ After the job completes, the scheduler calculates the next must start time and must
complete time for the job and inserts the following events in the event table:

– A new STARTJOB event

– A new CHK_START event for the next must start time

– A new CHK_COMPLETE event for the next must complete time

Examples: Specifying Must Start Times and Must Complete Times

The following examples are jobs that have must start times and must complete times
defined:

Example: Specify Absolute Must Start and Must Complete Times

This example defines a job to run every day at 10:00 a.m., 11:00 a.m., and 12:00 p.m.
The job must start by 10:02 a.m., 11:02 a.m., and 12:02 p.m. respectively. The job must
complete by 10:08 a.m., 11:08 a.m., and 12:08 p.m. respectively. Otherwise, an alarm is
issued for each missed start or complete time.

insert_job: test_must_start_complete

command: /opt/StartTransactions.sh

machine: localhost

date_conditions: y

days_of_week: all

start_times: "10:00, 11:00, 12:00"

must_start_times: "10:02, 11:02, 12:02"

must_complete_times: "10:08, 11:08, 12:08"

Note: The number of must start times and must complete times must match the
number of start times. Otherwise, the job cannot be defined. For example, the job
cannot be defined if it has one start time and two must start and complete times, as
follows:

start_times: "10:00"

must_start_times: "10:02, 12:02"

must_complete_times: "10:08, 12:08"

Must Start Times and Must Complete Times

134 User Guide

Example: Specify Absolute Must Start and Must Complete Times on the Next Day

This example defines a job to run every day at 12:00 a.m. Suppose that you want each
job run to start by 10:10 a.m. the next day and end by 10:12 a.m. the next day. You must
specify 34:10 in the must_start_times attribute and 34:12 in the must_complete_times
attribute.

insert_job: job3

command: echo "hello"

machine: localhost

date_conditions: y

days_of_week: all

start_times: "12:00"

must_start_times: "34:10"

must_complete_times: "34:12"

The must start time is calculated as follows:

must start time + 24 hours

= 10:10 + 24 hours

= 34:10

The must complete time is calculated as follows:

must complete time + 24 hours

= 10:12 + 24 hours

= 34:12

If a job run does not start by the must start time, a MUST_START_ALARM is issued to
notify you that the job has not started on time. If a job run does not complete by the
must complete time, a MUST_COMPLETE_ALARM is issued to notify you that the job has
not completed on time.

Example: Specify Relative Must Start and Must Complete Times

This example defines a job to run every day at 10:00 a.m., 11:00 a.m., and 12:00 p.m.
Each job run must start within 3 minutes after each start time (10:03 a.m., 11:03 a.m.,
and 12:03 p.m.). Each job run must complete within 8 minutes after each start time
(10:08 a.m., 11:08 a.m., and 12:08 p.m.). Otherwise, an alarm is issued for each missed
start or complete time.

insert_job: test_must_start_complete

job_type: CMD

machine: localhost

command: /opt/StartTransactions.sh

date_conditions: y

days_of_week: all

start_times: "10:00, 11:00, 12:00"

must_start_times: +3

must_complete_times: +8

Delete Obsolete Job Versions

Chapter 4: Working with Jobs 135

Example: Specify Relative Must Start and Must Complete Times With start_mins

This example defines a job to run every day at 10 minute intervals every hour (for
example, 2:00 p.m., 2:10 p.m., 2:20 p.m., and so on). Each job run must start within 2
minutes after the specified start times and complete within 7 minutes after the
specified start times. Otherwise, an alarm is issued for each missed start or complete
time. For instance, the 2:10 p.m. job run must start by 2:12 p.m. and must complete by
2:17 p.m.

insert_job: test_must_start_complete

job_type: CMD

machine: localhost

command: /opt/StartTransactions.sh

date_conditions: y

days_of_week: all

start_mins: 10, 20, 30, 40, 50, 00

must_start_times: +2

must_complete_times: +7

Delete Obsolete Job Versions

When you update or delete a job definition, previous versions of the definitions are
stored in the database. To prevent the database from being overloaded with job
versions, you can delete obsolete job versions. Job versions are obsolete when the job is
inactive and the database no longer refers to it.

Note: We recommend that you issue the archive_events command before issuing the
archive_jobs command. We also recommend that you run archive_jobs as part of your
usual database maintenance.

Follow these steps:

1. Do one of the following:

■ On UNIX, run the shell that is sourced to use CA Workload Automation AE.

The UNIX operating system prompt is displayed.

■ On Windows, click Start, Programs, CA, Workload Automation AE, Command
Prompt (instance_name).

The CA Workload Automation AE command prompt opens. The command
prompt presets all the environment variables for the instance.

2. Enter the following command:

archive_jobs -j number_of_days [-d "directory_name"] [-A] [-x] [-?]

The obsolete job versions are deleted.

Note: For more information about the archive_jobs command, see the Reference Guide.

Restricting the Runtime Behavior of Jobs

136 User Guide

Example: Delete Obsolete Job Versions

■ This example deletes obsolete job versions older than 7 days:

archive_jobs -j 7

■ This example deletes obsolete job versions older than 7 days and creates the
archive flat file in the $AUTOUSER/archive file (the default):

archive_jobs -j 7 -A

■ This example deletes obsolete job versions older than 7 days and creates the
archive flat file in the /tmp/archive directory:

archive_jobs -j 7 -A -d "/tmp/archive"

Restricting the Runtime Behavior of Jobs

You can define the following environment variables on CA Workload Automation AE to
restrict the runtime behavior of a job:

RESTRICT_FORCE_STARTJOB=1

Restricts a user from running multiple instances of a job while the job is in a
RUNNING state.

RESTRICT_DELETE_JOB=1

Restricts a user from deleting a job when the job is in ACTIVATED, RUNNING, or
STARTING states.

RESTRICT_DELETE_DEPENDENT_JOB=1

Restricts a user from deleting a job if the job has dependencies.

Note: For more information about adding system environment variables, see the Online
Help.

Chapter 5: Application Services Jobs 137

Chapter 5: Application Services Jobs

This section contains the following topics:

Application Services Jobs (see page 137)
Payload Producing and Payload Consuming Jobs (see page 139)
Entity Bean Jobs (see page 140)
HTTP Jobs (see page 145)
JMS Publish and JMS Subscribe Jobs (see page 150)
JMX Jobs (see page 160)
POJO Jobs (see page 176)
RMI Jobs (see page 178)
Session Bean Jobs (see page 181)

Application Services Jobs

Application Services jobs let you manage entity beans, session beans, and MBeans,
publish and consume JMS messages, invoke programs over HTTP, and run other types of
Java-based workload.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

You can define the following Application Services jobs:

Entity Bean

Lets you create an entity bean, update the property values of an existing entity
bean, or remove an entity bean from the database.

HTTP

Lets you invoke a program over HTTP or HTTPS in a similar way to a web browser.
For example, you can use the HTTP job to invoke a CGI script, a Perl script, or a
servlet. The HTTP job sends a URL over HTTP using the GET method or a form over
HTTP using the POST method.

JMS Publish

Lets you send a message to a queue or publish a message to a topic on a JMS
server.

JMS Subscribe

Lets you consume messages from a queue or topic on a JMS server.

Application Services Jobs

138 User Guide

JMX-MBean Attribute Get

Lets you query a JMX server for the value of an MBean attribute. The returned
value is stored on the computer where the Application Services agent plug-in
resides.

JMX-MBean Attribute Set

Lets you change the value of an MBean attribute on a JMX server.

JMX-MBean Create Instance

Lets you create an MBean on a JMX server.

JMX-MBean Operation

Lets you invoke an operation on an MBean on a JMX server.

JMX-MBean Remove Instance

Lets you remove an MBean from a JMX server.

JMX-MBean Subscribe

Lets you monitor an MBean for a single notification or monitor continuously for
notifications.

POJO

Lets you instantiate a class to create a Java object and invoke a method on it. The
job is restricted to classes that take constructors with no arguments (default
constructors). You can use the POJO job to invoke custom Java code on a local
computer.

RMI

Lets you set up interaction between Java objects on different computers in a
distributed network. Using an RMI job, you can access a remote server and invoke a
method on a Java object.

Session Bean

Lets you access a session bean on an application server. This job type can make a
Remote Procedure Call (RPC) to the session bean, invoke a method that defines the
business logic, pass parameters to the method, and have the results returned as
serialized Java output. You can access stateless and stateful session beans using the
Session Bean job.

Payload Producing and Payload Consuming Jobs

Chapter 5: Application Services Jobs 139

Payload Producing and Payload Consuming Jobs

A payload producing job is a job that produces binary output that is persisted as a
serialized Java object.

The following job types are payload producing jobs:

■ JMS Subscribe

Note: The appservices.jms.subscribe.persist parameter must be set to true in the
agent's agentparm.txt file for JMS Subscribe jobs to be payload producing jobs.

■ JMX-MBean Attribute Get

■ JMX-MBean Attribute Set

■ JMX-MBean Operation

■ POJO

■ RMI

■ Session Bean

■ Web Service

By default, the serialized Java object is stored on the agent computer in the spool
directory, using the job name and a numeric suffix as the file name. You can redirect the
output to a destination file.

A payload consuming job is a job that uses the output from a payload producing job as a
parameter's input value.

The following job types are payload consuming jobs:

■ Entity Bean

■ JMS Publish

■ JMX-MBean Attribute Set

■ JMX-MBean Create Instance

■ JMX-MBean Operation

■ POJO

■ RMI

■ Session Bean

■ Web Service

We recommend the payload producing job be a predecessor job to the payload
consuming job although it does not need to be an immediate predecessor.

Entity Bean Jobs

140 User Guide

The following diagram illustrates a job flow in which a payload consuming job named
Job C uses the output produced by payload producing jobs named Job A and Job B. In
this example, Job B is dependent on Job A and Job C is defined to take the output from
Job A as the value for the input parameter named inputParm1 and the output from Job
B as the value for the input parameter named inputParm2.

Entity Bean Jobs

An entity bean represents a data object, such as a customer, an order, or a product.
Entity beans may be stored in a relational database, where each instance of the bean
corresponds to a row in a database table. Each entity bean has a unique identifier
known as a primary key, which is used to find a specific instance of the bean within the
database. For example, a customer entity bean may use the customer number as its
primary key.

Unlike session beans, which are destroyed after use, entity beans are persistent. You
can use an entity bean under the following conditions:

■ The bean represents a business entity, not a procedure. For example, you use an
entity bean to represent an order and use a session bean to represent the
procedure to process the order.

■ The state of the bean must be stored. For example, if the bean instance terminates
or the application server shuts down, the bean's state will still exist in a database.

Entity Bean Jobs

Chapter 5: Application Services Jobs 141

The following diagram shows the functional relationship between the scheduling
manager, CA WA Agent for Application Services, and an entity bean residing on an
application server:

The Entity Bean job lets you create an entity bean, update the property values of an
existing entity bean, or remove an entity bean from the database. To find the entity
bean, the agent uses the bean's Java Naming and Directory Interface (JNDI) name along
with its finder method.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

To define an Entity Bean job, you require the following information:

■ Initial context factory supplied by the JNDI service provider

■ Service provider URL for accessing the JNDI services

■ Entity bean JNDI name

■ Operation type (CREATE, UPDATE, or REMOVE)

■ Finder method name (UPDATE and REMOVE operation types only)

Define an Entity Bean Job

You can define an Entity Bean (ENTYBEAN) job to create an entity bean, update the
property values of an existing entity bean, or remove an entity bean from the database.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: ENTYBEAN

Specifies that the job type is Entity Bean.

machine

Specifies the name of the machine on which the job runs.

bean_name

Specifies the JNDI name of the entity bean.

Entity Bean Jobs

142 User Guide

initial_context_factory

Specifies the initial context factory to use when creating the initial context. The
initial context is required within the Java Naming and Directory Interface (JNDI)
framework. The initial context factory is supplied by a specific provider of the
naming and directory service. The factory acquires an arbitrary initial context
that the application can use to connect to the application server.

operation_type

Specifies the operation to perform on the entity bean: CREATE, UPDATE,
REMOVE.

provider_url

Specifies the JNDI service provider URL.

2. Specify the following attributes if the operation_type attribute is set to CREATE:

create_name

(Optional) Specifies the name of the create method.

create_parameter

(Optional) Specifies create parameters to create an entity bean in a relational
database on your application server.

3. Specify the following attributes if the operation_type attribute is set to UPDATE:

finder_name

Specifies the name of the finder method.

finder_parameter

Specifies the finder parameters.

method_name

Specifies the method to be invoked on the application server.

modify_parameter

(Optional) Specifies the modify parameters.

4. Specify the following attributes if the operation_type attribute is set to REMOVE:

finder_name

Specifies the name of the finder method.

finder_parameter

(Optional) Specifies the finder parameters.

5. (Optional) Specify optional Entity Bean attributes:

■ j2ee_user

■ job_class

Entity Bean Jobs

Chapter 5: Application Services Jobs 143

6. (Optional) Specify common attributes that apply to all job types.

The Entity Bean job is defined. When the job runs, it creates an entity bean, updates
the property values of an existing entity bean, or removes an entity bean from the
database.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Create an Entity Bean

Suppose that you want to create an entity bean that stores information about a
customer such as the customer ID and phone number. The initial context factory
supplied by the JNDI service provider is weblogic.jndi.WLInitialContextFactory. The
service provider's URL is t3://localhost:7001, where localhost is the domain name of the
WebLogic application server and 7001 is the ORB port. When the job runs, the entity
bean instance is created.

insert_job: create

job_type: ENTYBEAN

machine: appagent

initial_context_factory: weblogic.jndi.WLInitialContextFactory

provider_url: "t3://localhost:7001"

bean_name: customer

create_name: createcustomer

operation_type: CREATE

create_parameter: String="customerid", String="800-555-0100"

Entity Bean Jobs

144 User Guide

Example: Update an Entity Bean

Suppose that you want to update the phone number for the Acme company to
800-555-0199. The customer entity bean stores the customer ID and phone number.
The primary key for the customer is the customer ID. To find the entity bean, the job
uses the Acme's customer ID. When the job runs, the Acme company's phone number is
changed.

insert_job: update

job_type: ENTYBEAN

machine: appagent

initial_context_factory: weblogic.jndi.WLInitialContextFactory

provider_url: "t3://localhost:7001"

bean_name: customer

operation_type: UPDATE

method_name: changephone

finder_name: findByPrimaryKey

finder_parameter: String="customerid"

modify_parameter: String="800-555-0199"

Example: Remove an Entity Bean

Suppose that you want to remove the customer record for the Acme customer. The
record is stored in the database by the customer ID. When the job runs, the row in the
customer table that corresponds to the Acme customer ID is removed.

insert_job: remove

job_type: ENTYBEAN

machine: appagent

initial_context_factory: weblogic.jndi.WLInitialContextFactory

provider_url: "t3://localhost:7001"

bean_name: customer

operation_type: REMOVE

finder_name: findByPrimaryKey

finder_parameter: String="customerid"

More information:

Insert a Job Definition (see page 88)

HTTP Jobs

Chapter 5: Application Services Jobs 145

HTTP Jobs

The HTTP job invokes a program over HTTP in a similar way to a web browser. For
example, you can use the HTTP job to invoke a CGI script, a Perl script, or a servlet. The
HTTP job sends a URL over HTTP using the GET method or a form over HTTP using the
POST method. The output of the invocation is returned in the job's spool file.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

The GET method requests data and sends the data as part of the URL. The POST method
submits data and is the preferred method for sending lengthy form data.

To define an HTTP job, you require the following information:

■ URL of the application server

■ Program or servlet to invoke

Note: If your company has a firewall and you must communicate through a proxy server
to access a computer outside the firewall, agent configuration is required. For more
information on configuring the agent for a proxy, see the CA Workload Automation
Agent for Application Services Implementation Guide.

Define an HTTP Job

You can define an HTTP job to invoke a program over HTTP.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: HTTP

Specifies that the job type is HTTP.

machine

Specifies the name of the machine on which the job runs.

provider_url

Specifies the host where the program or servlet you want to invoke resides.

HTTP Jobs

146 User Guide

2. (Optional) Specify optional HTTP attributes:

■ filter

■ invocation_type

■ j2ee_authentication_order

■ j2ee_conn_domain

■ j2ee_conn_origin

■ j2ee_conn_user

■ j2ee_no_global_proxy_defaults

■ j2ee_parameter

■ j2ee_proxy_domain

■ j2ee_proxy_host

■ j2ee_proxy_origin_host

■ j2ee_proxy_port

■ j2ee_proxy_user

■ job_class

■ method_name

3. (Optional) Specify common attributes that apply to all job types.

The HTTP job is defined. When the job runs, it invokes a program over HTTP.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

HTTP Jobs

Chapter 5: Application Services Jobs 147

Example: Define an HTTP Job to Perform a Google Search

Suppose that you want to define a job to perform a Google search and have the results
returned to the job's spool file. In this example, the job uses the HTTP GET method to
perform the Google search on "ca workload automation". When the job runs, the job's
spool file includes all the results of the search.

insert_job: google

job_type: HTTP

machine: appagent

invocation_type: GET

provider_url: "http://google.com/search"

j2ee_authentication_order: BASIC,DIGEST,NTLM

j2ee_parameter: q="ca workload automation"

Example: Define an HTTP Job to Subscribe to a Mailing List

Suppose that you want to define a job to subscribe to a mailing list located on a local
server. You want to add the email address test@abc.com to the list. The servlet path is
/examples/servlets/servlet/TheServlet.

insert_job: subscribe

job_type: HTTP

machine: appagent

invocation_type: POST

provider_url: "http://localhost:8080"

method_name: /examples/servlets/servlet/TheServlet

j2ee_parameter: key1="subscribe", key2="test@abc.com"

More information:

Insert a Job Definition (see page 88)

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

HTTP Jobs

148 User Guide

The following HTTP job attributes have default values:

invocation_type

Specifies whether to send the URL over HTTP using the GET or POST method.

Default: POST

j2ee_conn_origin

Specifies the domain for NTLM connection authentication.

Default: The computer name where the agent is running

j2ee_no_global_proxy_defaults

Specifies whether to use the global proxy configuration specified by the proxy
parameters in the agentparm.txt file.

Default: Y (The job does not use the global proxy configuration specified by the
proxy parameters in the agentparm.txt file.)

j2ee_proxy_domain

Specifies the domain for proxy authentication.

Default: http.proxyDomain agent parameter, if specified

j2ee_proxy_host

Specifies the proxy host name to use for the request.

Default: http.proxyHost agent parameter, if specified

j2ee_proxy_origin_host

Specifies the origin host name for proxy authentication.

Default: The computer name where the agent is running

j2ee_proxy_port

Specifies the proxy port to use for the request.

Default: 80

j2ee_proxy_user

Specifies the user name required for proxy authentication.

Default: http.proxyUser agent parameter, if specified

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

HTTP Jobs

Chapter 5: Application Services Jobs 149

Example: Define an HTTP Job to Send a URL Over HTTP

Several attributes in the following job definition override the default values.

This example performs an HTTP query using the HTTP GET method. The output of the
invocation is returned in the job's spool file. In this example, the job specifies the
connection domain and origin for NTLM authentication, overrides the global proxy
defaults specified in the agentparm.txt file, and specifies the BASIC, DIGEST, and NTLM
protocols for web server authentication.

insert_job: HTTP.CON_USER

job_type: HTTP

machine: appagent

invocation_type: GET

provider_url: "http://host.example.com/protected"

j2ee_conn_origin: host.example.com

j2ee_conn_domain: windows_domain

j2ee_conn_user: myuser@windows_domain

j2ee_no_global_proxy_defaults: Y

j2ee_authentication_order: BASIC,DIGEST,NTLM

j2ee_proxy_domain: "http://host.domain.proxy"

j2ee_proxy_host: proxy.example.com

j2ee_proxy_origin_host: "http://host.origin.proxy"

j2ee_proxy_port: 90

j2ee_proxy_user: user01

JMS Publish and JMS Subscribe Jobs

150 User Guide

JMS Publish and JMS Subscribe Jobs

Java Message Service (JMS) is the standard for enterprise messaging that lets a Java
program or component (JMS client) produce and consume messages. Messages are the
objects that communicate information between JMS clients.

In a JMS system, a messaging server known as the JMS provider acts between two JMS
clients (the publisher and the subscriber). Publishers send messages to the JMS provider
while subscribers receive messages from the JMS provider.

The following diagram shows the functional relationship between the scheduling
manager, the CA WA Agent for Application Services, and a JMS provider:

A queue is an object on the JMS server that holds messages sent by a client that are
waiting to be consumed by another client. The queue retains a message until the
message is consumed or the message expires.

The following diagram shows Client 2 (the subscriber) consuming a message that Client
1 (the publisher) sends to a queue:

A topic is an object a client uses to specify the target of the messages it produces and
the source of the messages it consumes. A client acquires a reference to a topic on a
JMS server, and sends messages to that topic. When messages arrive for that topic, the
JMS provider is responsible for notifying all clients.

JMS Publish and JMS Subscribe Jobs

Chapter 5: Application Services Jobs 151

The following diagram shows two subscribers, Client 2 and Client 3, subscribed to a
topic that the publisher, Client 1, publishes to:

A JMS Publish job lets you send a message to a queue or publish a message to a topic.
Using a JMS Publish job to publish to a topic, you can broadcast a message to any topic
subscriber. A third-party client can consume this message, or a JMS Subscribe job can
listen for a particular message (using a filter).

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

The following diagram shows a JMS Publish job scenario:

A JMS Subscribe job lets you consume messages from a queue or topic. Using a filter
that you define within the job definition, the agent monitors the topic or queue output
for specific data. The scheduling manager then sends the message that meets the filter
criteria to a destination file you specify. You can define the job to continuously monitor
JMS messages.

JMS Publish and JMS Subscribe Jobs

152 User Guide

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

The following diagram shows a JMS Subscribe job scenario:

To define a JMS Publish or JMS Subscribe job, you require the following information:

■ Initial context factory supplied by the Java Naming and Directory Interface (JNDI)
service provider

■ JMS provider URL for accessing the JNDI services

■ Connection factory JNDI name that looks up the referenced topic or queue

■ JNDI name of the topic or queue on the JMS server

■ Java class of the JMS message to send or publish

JMS Publish and JMS Subscribe Jobs

Chapter 5: Application Services Jobs 153

Define a JMS Publish Job

You can define a JMS Publish job to send a message to a queue or publish a message to
a topic.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMSPUB

Specifies that the job type is JMS Publish.

machine

Specifies the name of the machine on which the job runs.

connection_factory

Specifies the connection factory JNDI name. The connection factory contains all
the bindings needed to look up the referenced topic or queue. JMS jobs use the
connection factory to create a connection with the JMS provider.

destination_name

Specifies the JNDI name of the topic or queue. The job uses the JNDI name to
indicate the destination where messages are received.

initial_context_factory

Specifies the initial context factory to use when creating the initial context. The
initial context is required within the Java Naming and Directory Interface (JNDI)
framework. The initial context factory is supplied by a specific provider of the
naming and directory service. The factory acquires an arbitrary initial context
that the application can use to connect to the application server.

j2ee_parameter

Specifies the message to send to a queue or publish to a topic.

message_class

Specifies the Java class of the JMS message.

provider_url

Specifies the JNDI service provider URL.

2. (Optional) Specify optional JMS Publish attributes:

■ j2ee_user

■ job_class

■ use_topic

JMS Publish and JMS Subscribe Jobs

154 User Guide

3. (Optional) Specify common attributes that apply to all job types.

The JMS Publish job is defined. When the job runs, it sends a message to a queue or
publishes a message to a topic.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

JMS Publish and JMS Subscribe Jobs

Chapter 5: Application Services Jobs 155

Example: Publish a Message to the WebSphere Application Server

This example publishes the message "this is my message" to the queue named Queue.
The Java class of the message is String. The initial context factory supplied by the JNDI
service provider is com.ibm.websphere.naming.WsnInitialContextFactory. The service
provider's URL is iiop://172.24.0.0:2809, where 172.24.0.0 is the IP address of the
WebSphere MQ server and 2809 is the ORB port. The job uses the cyberuser JNDI user
name to gain access to the connection factory named ConnectionFactory.

insert_job: publish

job_type: JMSPUB

machine: appagent

initial_context_factory: com.ibm.websphere.naming.WsnInitialContextFactory

provider_url: "iiop://172.24.0.0:2809"

connection_factory: ConnectionFactory

destination_name: Queue

use_topic: FALSE

message_class: String

j2ee_user: cyberuser

j2ee_parameter: java.lang.String="this is my message"

Note: The agent does not support JMS messaging on IBM WebSphere. If you have IBM
WebSphere MQ, your agent administrator can set up the agent plug-in to run JMS
Publish and JMS Subscribe for JMS queues. JMS topics are not supported on IBM
WebSphere MQ.

More information:

Insert a Job Definition (see page 88)

Define a JMS Subscribe Job

You can define a JMS Subscribe job to consume messages from a queue or topic.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMSSUB

Specifies that the job type is JMS Subscribe.

machine

Specifies the name of the machine on which the job runs.

JMS Publish and JMS Subscribe Jobs

156 User Guide

connection_factory

Specifies the connection factory JNDI name. The connection factory contains all
the bindings needed to look up the referenced topic or queue. JMS jobs use the
connection factory to create a connection with the JMS provider.

destination_name

Specifies the JNDI name of the topic or queue. The job uses the JNDI name to
indicate the destination where messages are received.

initial_context_factory

Specifies the initial context factory to use when creating the initial context. The
initial context is required within the Java Naming and Directory Interface (JNDI)
framework. The initial context factory is supplied by a specific provider of the
naming and directory service. The factory acquires an arbitrary initial context
that the application can use to connect to the application server.

provider_url

Specifies the JNDI service provider URL.

2. (Optional) Specify optional JMS Subscribe attributes:

■ continuous

■ destination_file

■ filter

■ j2ee_user

■ job_class

■ job_terminator

■ use_topic

3. (Optional) Specify common attributes that apply to all job types.

The JMS Subscribe job is defined. When the job runs, it consumes messages from a
queue or topic.

JMS Publish and JMS Subscribe Jobs

Chapter 5: Application Services Jobs 157

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Monitor a Queue on a WebLogic Application Server

This example continuously monitors the queue named Queue (residing on WebLogic)
for a message matching the filter criteria. The consumed messages from the queue are
stored in the file /export/home/user1/outputfile1. The service provider's URL is
t3://172.24.0.0:7001, where 172.24.0.0 is the IP address of the WebLogic Application
server and 7001 is the ORB port.

insert_job: monitor

job_type: JMSSUB

machine: appagent

initial_context_factory: weblogic.jndi.WLInitialContextFactory

provider_url: "t3://172.24.0.0:7001"

connection_factory: ConnectionFactory

destination_name: Queue

continuous: Y

filter: abc\s...\s[a-zA-Z]+\sFilter![\sa-z0-9]+

use_topic: FALSE

destination_file: /export/home/user1/outputfile1

j2ee_user: cyberuser

JMS Publish and JMS Subscribe Jobs

158 User Guide

In this example, the regular expression used as the filter criteria can be defined as
follows:

abc\s...\s[a-zA-Z]+\sFilter![\sa-z0-9]+

abc\s

Specifies the text abc, followed by white space.

...\s

Specifies any three characters, followed by white space.

[a-zA-Z]+\s

Specifies at least one letter, followed by white space.

Filter![\sa-z0-9]+

Specifies the text Filter!, followed by at least one of the following: white space or
digit or lower case letter.

Example: abc vvv B Filter! 95

More information:

Insert a Job Definition (see page 88)

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following JMS job attributes have default values:

continuous (JMS Subscribe jobs only)

Specifies whether the job monitors the topic or queue continuously for messages.

Default: N (The job immediately checks for the condition and completes.)

job_terminator (JMS Subscribe jobs only)

Specifies whether to terminate the job if its containing box fails or terminates.

Default: n (The job does not terminate if its containing box fails or terminates.)

destination_file (JMS Subscribe jobs only)

Specifies the output destination file for the consumed messages.

Default: spooldir agent parameter, if specified

JMS Publish and JMS Subscribe Jobs

Chapter 5: Application Services Jobs 159

use_topic

Specifies whether to send or publish messages to a topic or queue.

Default: FALSE (The job sends or publishes messages to a queue.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Specify Optional Attributes in a JMS Subscribe Job

The continuous and destination_file attributes in the following job definition override
the default values.

This example continuously monitors the queue named Queue (residing on WebLogic)
for a message matching the filter criteria. The consumed messages from the queue are
stored in the file /export/home/user1/outputfile1. The service provider's URL is
t3://172.24.0.0:7001, where 172.24.0.0 is the IP address of the WebLogic Application
server and 7001 is the ORB port.

insert_job: monitor

job_type: JMSSUB

machine: appagent

initial_context_factory: weblogic.jndi.WLInitialContextFactory

provider_url: "t3://172.24.0.0:7001"

connection_factory: ConnectionFactory

destination_name: Queue

continuous: Y

filter: abc\s...\s[a-zA-Z]+\sFilter![\sa-z0-9]+

use_topic: FALSE

destination_file: /export/home/user1/outputfile1

j2ee_user: cyberuser

JMX Jobs

160 User Guide

In this example, the regular expression used as the filter criteria can be defined as
follows:

abc\s...\s[a-zA-Z]+\sFilter![\sa-z0-9]+

abc\s

Specifies the text abc, followed by white space.

...\s

Specifies any three characters, followed by white space.

[a-zA-Z]+\s

Specifies at least one letter, followed by white space.

Filter![\sa-z0-9]+

Specifies the text Filter!, followed by at least one of the following: white space or
digit or lower case letter.

Example: abc vvv B Filter! 95

JMX Jobs

Java Management Extension (JMX) technology is included in the Java Standard Edition
(SE) platform, version 5 and higher. JMX lets you remotely access applications, using a
Remote Method Invocation (RMI) connector, for monitoring and management
purposes.

JMX jobs let you access a remote JMX server that advertises MBeans. An MBean is a
managed bean (Java object) that represents an application, a device, or any resource
that you want to manage. An MBean contains a set of attributes and a set of operations
that can be invoked. Some MBeans can send out notifications, for example, when an
attribute changes.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Consider an MBean named Config that represents an application's configuration. The
configuration parameters within that application are represented in Config by a set of
attributes. Getting the attribute named cachesize, for example, returns the current
value of the cachesize. Setting the value updates the cachesize. The Config MBean can
send out a notification every time the cachesize changes. An operation named update,
for example, can save changes to the configuration parameters.

JMX Jobs

Chapter 5: Application Services Jobs 161

The following diagram shows the functional relationship between the scheduling
manager, CA WA Agent for Application Services, and the JMX server:

The JMX jobs provide support for getting and setting JMX MBean attributes, invoking
JMX MBean operations, subscribing to MBean notifications, and creating and removing
instances of MBeans on a JMX server.

You can define the following six types of JMX jobs:

■ JMX-MBean Attribute Get

■ JMX-MBean Attribute Set

■ JMX-MBean Create Instance

■ JMX-MBean Operation

■ JMX-MBean Remove Instance

■ JMX-MBean Subscribe

The JMX-MBean Attribute Set, JMX-MBean Create Instance, and JMX-MBean Operation
jobs support calls to MBeans that can involve passing parameters. Each parameter can
be an actual value or a serialized Java object passed by another job. When the
JMX-MBean Operation job invokes an operation on an MBean that passes parameters,
the parameters are passed to the MBean and the returned serialized Java object is
stored on the agent computer in the spool directory or in a destination file you specify.

To define JMX jobs, you require a URL to connect to the JMX server using an RMI
connector.

Define a JMX-MBean Attribute Get Job

You can define a JMX-MBean Attribute Get job to query a JMX server for the value of an
MBean attribute. The returned value is stored on the computer where the agent
resides. You can specify a success pattern to determine the job's success or failure. If the
returned attribute value matches the success pattern, the job completes successfully;
otherwise, it fails.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

JMX Jobs

162 User Guide

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMXMAG

Specifies that the job type is JMX-MBean Attribute Get.

machine

Specifies the name of the machine on which the job runs.

mbean_attr

Specifies the name of the MBean attribute that you want to query.

mbean_name

Specifies the full object name of an MBean.

URL

Specifies the URL to connect to the JMX server using an RMI connector.

2. (Optional) Specify optional JMX-MBean Attribute Get attributes:

■ job_class

■ jmx_user

■ success_pattern

3. (Optional) Specify common attributes that apply to all job types.

The JMX-MBean Attribute Get job is defined. When the job runs, it queries a JMX
server for the value of an MBean attribute.

JMX Jobs

Chapter 5: Application Services Jobs 163

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Query a JMX Server for the Value of an MBean Attribute

Suppose that you want to know the value of the cachesize attribute for the Config
MBean. The URL for the JMX server is
service:jmx:rmi:///jndi/rmi://localhost:9999/server, where localhost is the host name
and 9999 is the port number.

insert_job: query

job_type: JMXMAG

machine: appagent

URL: "service:jmx:rmi:///jndi/rmi://localhost:9999/server"

mbean_name: "DefaultDomain:index=1,type=Config"

mbean_attr: cachesize

More information:

Insert a Job Definition (see page 88)

JMX Jobs

164 User Guide

Define a JMX-MBean Attribute Set Job

You can define a JMX-MBean Attribute Set job to change the value of an MBean
attribute on a JMX server. You can specify a set value for the attribute or use the
serialized Java object passed by another job. When the attribute is set, the job returns
the original attribute value as output. You can specify a success pattern to determine
the job's success or failure. If the job's output matches the success pattern, the job
completes successfully; otherwise, it fails.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMXMAS

Specifies that the job type is JMX-MBean Attribute Set.

machine

Specifies the name of the machine on which the job runs.

mbean_attr

Specifies the name of the MBean attribute that you want to set.

mbean_name

Specifies the full object name of an MBean.

URL

Specifies the URL to connect to the JMX server using an RMI connector.

2. (Optional) Specify optional JMX-MBean Attribute Set attributes:

■ jmx_parameter

■ jmx_user

■ job_class

■ success_pattern

3. (Optional) Specify common attributes that apply to all job types.

The JMX-MBean Attribute Set job is defined. When the job runs, it changes the
value of an MBean attribute on a JMX server.

JMX Jobs

Chapter 5: Application Services Jobs 165

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Change the Value of an MBean Attribute

Suppose that you want to set the value of the State attribute of the
cdc.jmx.SimpleDynamic MBean to the serialized Java object returned by a JMX-MBean
Attribute Set job named size.

insert_job: change

job_type: JMXMAS

machine: appagent

URL: "service:jmx:rmi:///jndi/rmi://agenttest:5099/jmxserver"

mbean_name: "DefaultDomain:index=1,type=cdc.jmx.SimpleDynamic"

mbean_attr: State

jmx_parameter: payload_job=size

condition: success(size)

More information:

Insert a Job Definition (see page 88)

JMX Jobs

166 User Guide

Define a JMX-MBean Create Instance Job

You can define a JMX-MBean Create Instance job to create an MBean on a JMX server.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMXMC

Specifies that the job type is JMX-MBean Create Instance.

machine

Specifies the name of the machine on which the job runs.

class_name

Specifies the fully qualified Java class of the MBean object.

mbean_name

Specifies the full object name of an MBean.

URL

Specifies the URL to connect to the JMX server using an RMI connector.

2. (Optional) Specify optional JMX-MBean Create Instance attributes:

■ jmx_parameter

■ jmx_user

■ job_class

3. (Optional) Specify common attributes that apply to all job types.

The JMX-MBean Create Instance job is defined. When the job runs, it creates an
MBean on a JMX server.

JMX Jobs

Chapter 5: Application Services Jobs 167

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Create an MBean Instance on a JMX Server

Suppose that you want to create an MBean instance on a JMX server. The job uses the
cdc.jmx.SimpleDynamic class. The constructor of the class takes a single string
parameter with the value "Hello".

insert_job: create

job_type: JMXMC

machine: appagent

URL: "service:jmx:rmi:///jndi/rmi://agenttest:5099/jmxserver"

mbean_name: "DefaultDomain:index=CreateIns1,type=cdc.jmx.SimpleDynamic"

class_name: cdc.jmx.SimpleDynamic

jmx_parameter: java.lang.String="Hello"

More information:

Insert a Job Definition (see page 88)

JMX Jobs

168 User Guide

Define a JMX-MBean Operation Job

You can define a JMX-MBean Operation job to invoke an operation on an MBean. You
can specify one or more parameter values to pass to the operation. You can specify a
success pattern to determine the job's success or failure. If the operation's output
matches the success pattern, the job completes successfully; otherwise, it fails.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMXMOP

Specifies that the job type is JMX-MBean Operation.

machine

Specifies the name of the machine on which the job runs.

mbean_name

Specifies the full object name of an MBean.

mbean_operation

Specifies the operation to be invoked.

URL

Specifies the URL to connect to the JMX server using an RMI connector.

2. (Optional) Specify optional JMX-MBean Operation attributes:

■ jmx_parameter

■ jmx_user

■ job_class

■ success_pattern

3. (Optional) Specify common attributes that apply to all job types.

The JMX-MBean Operation job is defined. When the job runs, it invokes an
operation on an MBean.

JMX Jobs

Chapter 5: Application Services Jobs 169

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Invoke an Operation on an MBean

Suppose that you want to invoke the resetmem operation on the config MBean to reset
the value of the memory parameter to 50.

insert_job: reset

job_type: JMXMOP

machine: agent

URL: "service:jmx:rmi:///jndi/rmi://localhost:9999/server"

mbean_name: "DefaultDomain:index=1,type=Config"

mbean_operation: resetmem

jmx_parameter: Integer=50

JMX Jobs

170 User Guide

Example: Pass Payload Producing Output as Input to Payload Consuming Job

Suppose that you want to use a JMX-MBean Operation job to invoke a method on an
MBean and pass the output of the method as input to another JMX-MBean Operation
job.

In this example, the first job, test_JMXMOP2a, is a payload producing job. It takes a
single input parameter and invokes the reset method on the MBean. The output of this
job is stored as a serialized Java object on the computer where the agent resides.

The second job, test_JMXMOP2b, is a payload consuming job. It takes two input
parameters: the string "Hello" and the serialized Java object produced by the first job.
The two input parameters are passed to the reset method, which is invoked on the
MBean.

insert_job: test_JMXMOP2a

machine: localhost

job_type: JMXMOP

url: "service:jmx:rmi:///jndi/rmi://localhost:9999/server"

mbean_name: "DefaultDomain:type=SimpleStandard,index=1"

mbean_operation: reset

jmx_parameter: String="Hello"

insert_job: test_JMXMOP2b

machine: localhost

job_type: JMXMOP

url: "service:jmx:rmi:///jndi/rmi://localhost:9999/server"

mbean_name: "DefaultDomain:type=SimpleStandard,index=1"

mbean_operation: reset

jmx_parameter: String="Hello", payload_job=test_JMXMOP2a

condition: S(test_JMXMOP2a)

More information:

Insert a Job Definition (see page 88)

JMX Jobs

Chapter 5: Application Services Jobs 171

Define a JMX-MBean Remove Instance Job

You can define a JMX-MBean Remove Instance job to remove an MBean from a JMX
server.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMXMREM

Specifies that the job type is JMX-MBean Remove Instance.

machine

Specifies the name of the machine on which the job runs.

mbean_name

Specifies the full object name of an MBean.

URL

Specifies the URL to connect to the JMX server using an RMI connector.

2. (Optional) Specify optional JMX-MBean Remove Instance attributes:

■ jmx_user

■ job_class

3. (Optional) Specify common attributes that apply to all job types.

The JMX-MBean Remove Instance job is defined. When the job runs, it removes an
MBean from a JMX server.

JMX Jobs

172 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Remove an MBean Instance from a JMX Server

Suppose that you want to remove an MBean instance.

insert_job: remove

job_type: JMXMREM

machine: appagent

URL: "service:jmx:rmi:///jndi/rmi://agenttest:5099/jmxserver"

mbean_name: "DefaultDomain:index=CreateIns1,type=cdc.jmx.SimpleDynamic"

More information:

Insert a Job Definition (see page 88)

Define a JMX-MBean Subscribe Job

You can define a JMX-MBean Subscribe job to monitor an MBean for a single
notification or monitor continuously for notifications. You can filter the notifications the
job monitors by attributes or by type of notifications.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

JMX Jobs

Chapter 5: Application Services Jobs 173

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JMXSUB

Specifies that the job type is JMX-MBean Subscribe.

machine

Specifies the name of the machine on which the job runs.

mbean_name

Specifies the full object name of an MBean.

URL

Specifies the URL to connect to the JMX server using an RMI connector.

2. (Optional) Specify optional JMX-MBean Subscribe attributes:

■ continuous

■ filter

■ filter_type

■ jmx_user

■ job_class

■ job_terminator

3. (Optional) Specify common attributes that apply to all job types.

The JMX-MBean Subscribe job is defined. When the job runs, it monitors an MBean
for a single notification or continuously for notifications.

JMX Jobs

174 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Monitor for a Change to a Specific MBean Attribute

Suppose that you want to monitor for a change to the cachesize attribute of the MBean
named Config. The job filters the notifications the MBean sends by attribute. When the
cachesize attribute changes, the job completes.

insert_job: change

job_type: JMXSUB

machine: agent

URL: "service:jmx:rmi:///jndi/rmi://localhost:9999/server"

mbean_name: "DefaultDomain:index=1,type=Config"

filter_type: Attributes

filter: cachesize

More information:

Insert a Job Definition (see page 88)

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

JMX Jobs

Chapter 5: Application Services Jobs 175

The following JMX Subscribe job attributes have default values:

continuous

Specifies whether the job monitors the MBean continuously for notifications.

Default: N (The job immediately checks for the condition and completes.)

filter_type

Specifies whether to filter notifications by attribute or by notification type.

Default: Attributes (The job filters notifications by attribute.)

job_terminator

Specifies whether to terminate the job if its containing box fails or terminates.

Default: n (The job does not terminate if its containing box fails or terminates.)

destination_file

Specifies the output destination file for the Java serialized object produced by the
job.

Default: spooldir agent parameter, if specified

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Monitor for Changes to Any MBean Attribute

The continuous attribute in the following job definition overrides the default value.

Suppose that you want to set up continuous monitoring for changes to any attribute of
the MBean named Config. Each time an attribute changes, an alert is written to the
scheduler log file.

insert_job: change

job_type: JMXSUB

machine: appagent

URL: "service:jmx:rmi:///jndi/rmi://localhost:9999/server"

mbean_name: "DefaultDomain:index=1,type=Config"

continuous: Y

filter_type: Types

filter: jmx.attribute.change

POJO Jobs

176 User Guide

POJO Jobs

A Plain Old Java Object (POJO) is a Java object that follows the Java Language
Specification only. All Java objects are POJOs.

The POJO job lets you instantiate a class to create a Java object and invoke a method on
it. The job is restricted to classes that take constructors with no arguments (default
constructors).

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and either CA WA Agent for Application Services or CA WA Agent for Web Services.

You can use the POJO job to invoke custom Java code on a local computer. POJO jobs
support method calls that can involve passing parameters. The parameters can be actual
values or a serialized Java object passed by another job. When the POJO job invokes a
method on an object, the parameters, if any, are passed to the object and the returned
values are stored in a Java serialized object file.

To define a POJO job, you require the class name and method you want to call on the
instantiated object.

Note: If you use custom Java code, contact your agent administrator to verify the
required JAR file is available in the jars subdirectory of the agent installation directory.

Define a POJO Job

You can define a POJO job to create a Java object instance with no arguments, invoke a
method on the object instance, and store the method's output.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and either CA WA Agent for Application Services or CA WA Agent for Web Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: POJO

Specifies that the job type is POJO.

machine

Specifies the name of the machine on which the job runs.

class_name

Specifies the Java class to instantiate.

method_name

Specifies the Java method to call on the instance of the Java object.

POJO Jobs

Chapter 5: Application Services Jobs 177

2. (Optional) Specify optional POJO attributes:

■ destination_file

■ j2ee_parameter

■ job_class

3. (Optional) Specify common attributes that apply to all job types.

The POJO job is defined. When the job runs, it creates a Java object instance with
no arguments, invokes a method on the object instance, and stores the method's
output.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Invoke a Method on a Java Object Instance

Suppose that you want to define a POJO job that creates a Java String with value "5" and
calls the parseInt method with the created Java String object as an argument. The
parseInt method returns a Java Integer object.

insert_job: ignore

job_type: POJO

machine: appagent

class_name: java.lang.Integer

method_name: parseInt

j2ee_parameter: java.lang.String=5

RMI Jobs

178 User Guide

More information:

Insert a Job Definition (see page 88)

RMI Jobs

Remote Method Invocation (RMI) is the Java version of a Remote Procedure Call (RPC),
which is a technology that lets a program request a service from another program
located in another address space. That address space could be on the same computer or
on a different one.

RMI jobs let you set up interaction between Java objects on different computers in a
distributed network. Using an RMI job, you can access a remote server and invoke a
method on a Java object. A method is a programmed procedure that is defined as a part
of a Java class.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

RMI jobs support method calls to remote objects that can involve passing parameters.
The parameters can be actual values or a serialized Java object passed by another job.
When the RMI job invokes a method on an object that passes parameters, the
parameters are passed to the remote object and the returned serialized Java object is
stored on the agent computer in the spool directory or in a destination file you specify.

RMI uses a naming or directory service to locate the remote object on the remote
server. To define an RMI job, you require the naming class of the Java object you want
to invoke a method on. That naming class takes a name that is a java.lang.String in URL
format.

The following diagram shows the functional relationship between the scheduling
manager, CA WA Agent for Application Services, and an RMI Server:

RMI Jobs

Chapter 5: Application Services Jobs 179

Define an RMI Job

You can define an RMI job to call a method on a remote server and store the method's
output.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: JAVARMI

Specifies that the job type is RMI.

machine

Specifies the name of the machine on which the job runs.

method_name

Specifies the method of the remote Java class to invoke.

remote_name

Specifies the reference location of the object you want to invoke a method on.

2. (Optional) Specify optional RMI attributes:

■ destination_file

■ j2ee_parameter

■ job_class

3. (Optional) Specify common attributes that apply to all job types.

The RMI job is defined. When the job runs, it calls a method on a remote server and
stores the method's output.

RMI Jobs

180 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Define a Job to Start a Remote Server Immediately

Suppose that you want to invoke a method that starts a remote server using remote
object activation. You want the server to start immediately.

insert_job: start

job_type: JAVARMI

machine: appagent

remote_name: "rmi://remotehost/Test"

method_name: startserver

j2ee_parameter: String="now"

More information:

Insert a Job Definition (see page 88)

Session Bean Jobs

Chapter 5: Application Services Jobs 181

Session Bean Jobs

A session bean represents business logic or action to be taken (for example, charging a
credit card or adding items to an online shopping cart).

Unlike entity beans, which are stored in a database, session beans may be destroyed
after each use. For example, when a session bean is invoked to perform credit card
validation, the application server creates an instance of that session bean, performs the
business logic to validate the credit card transaction, and then destroys the session bean
instance after the credit card transaction has been validated.

You can use a session bean under the following conditions:

■ The bean represents a procedure and not a business entity. For example, you use a
session bean to encrypt data or add items to an online shopping cart.

■ The state of the bean does not have to be kept in permanent storage. For example,
when the bean instance terminates or the application server shuts down, the bean's
state is no longer required.

The following diagram shows the functional relationship between the scheduling
manager, CA WA Agent for Application Services, and a session bean residing on an
application server:

The Session Bean job lets you access a session bean on an application server. This job
type can make a Remote Procedure Call (RPC) to the session bean, invoke a method that
defines the business logic, pass parameters to the method, and have the results
returned as serialized Java output. The output can be stored on the agent computer as
text in the spool file or as a serialized Java object in the spool directory or a destination
file you specify.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

You can access stateless and stateful session beans using the Session Bean job. The job
acts in a similar way for both types of beans. For both stateful and stateless beans, you
can specify parameters to pass to the method. When you define a stateful session bean,
however, you must specify parameters to define the bean. After the method is invoked,
the agent destroys the stateful bean.

Session Bean Jobs

182 User Guide

Use a stateless Session Bean job to invoke a single instance of a method on the bean,
such as encrypting data or sending an email to confirm an order. Use a stateful Session
Bean job to invoke the same method on the bean multiple times, such as adding
multiple items to an online shopping cart.

A Session Bean job requires a dedicated connection between the agent and the
application server. To define a Session Bean job, you require the following information:

■ Initial context factory supplied by the Java Naming and Directory Interface (JNDI)
service provider

■ Service provider URL for accessing the JNDI services

■ Session bean JNDI name

■ Method to be invoked

Define a Session Bean Job

You can define a Session Bean (SESSBEAN) job to access a stateless or stateful session
bean, invoke a method on the bean, and return the results.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Application Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SESSBEAN

Specifies that the job type is Session Bean.

machine

Specifies the name of the machine on which the job runs.

bean_name

Specifies the JNDI name of the session bean.

initial_context_factory

Specifies the initial context factory to use when creating the initial context. The
initial context is required within the Java Naming and Directory Interface (JNDI)
framework. The initial context factory is supplied by a specific provider of the
naming and directory service. The factory acquires an arbitrary initial context
that the application can use to connect to the application server.

method_name

Specifies the method to be invoked on the application server.

Session Bean Jobs

Chapter 5: Application Services Jobs 183

provider_url

Specifies the JNDI service provider URL.

2. Specify the following attributes to access a stateful session bean:

create_method

Specifies the name of the create method.

create_parameter

 Specifies the create parameters.

3. (Optional) Specify optional Session Bean attributes:

■ destination_file

■ j2ee_parameter

■ j2ee_user

■ job_class

4. (Optional) Specify common attributes that apply to all job types.

The Session Bean job is defined. When the job runs, it accesses a stateless or
stateful session bean, invokes a method on the bean, and returns the results.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Session Bean Jobs

184 User Guide

Example: Invoke a Method on a Stateless Session Bean

Suppose that you want to invoke the reverse method on the CybEJBTestBean stateless
session bean. The reverse method has one parameter, with type java.lang.String and
value a23. The output from the reverse method is saved in the C:\Makapt15 file. The
initial context factory supplied by the JNDI service provider is
com.ibm.websphere.naming.WsnInitialContextFactory. The service provider's URL is
corbaloc:iiop://172.24.0.0:2809, where 172.24.0.0 is the IP address of the WebSphere
application server and 2809 is the ORB port. When the job runs, the output of the
reverse method is stored in the output destination file.

insert_job: reverse

job_type: SESSBEAN

machine: appagent

initial_context_factory: com.ibm.websphere.naming.WsnInitialContextFactory

provider_url: "corbaloc:iiop://172.24.0.0:2809"

bean_name: CybEJBTestBean

method_name: reverse

destination_file: "C:\Makapt15"

j2ee_user: cyberuser

j2ee_parameter: java.lang.String="a23"

More information:

Insert a Job Definition (see page 88)

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Session Bean job attributes have default values:

create_method

Specifies the name of the create method.

Default: create

Session Bean Jobs

Chapter 5: Application Services Jobs 185

destination_file

Specifies the output destination file for the Java serialized object produced by the
job.

Default: spooldir agent parameter, if specified

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Invoke a Method on a Stateful Session Bean

The create_method attribute in the following job definition overrides the default value.

Suppose that you want to access a stateful session bean for an online shopping cart. The
createaddbook method creates the Shoppingcart stateful bean for the duration of the
job. The addbook method adds books to the shopping cart using the book's ISBN
number. In this example, the Session Bean job adds two books to the shopping cart with
ISBN numbers 1551929120 and 1582701709. When the job runs, two books are added
to the shopping cart.

insert_job: addbook

job_type: SESSBEAN

machine: appagent

initial_context_factory: com.ibm.websphere.naming.WsnInitialContextFactory

provider_url: "iiop://172.24.0.0:2809"

bean_name: Shoppingcart

create_method: createaddbook

method_name: addbook

create_parameter: String="ISBN"

j2ee_parameter: Integer[2]="1551929120,1582701709"

Chapter 6: Box Jobs 187

Chapter 6: Box Jobs

This section contains the following topics:

Box Jobs (see page 187)
Starting Conditions for Box Jobs (see page 187)
Basic Box Concepts (see page 188)
Box Job Attributes and Terminators (see page 192)
Box Job Flow Examples (see page 199)
Advanced Job Flows (see page 205)
How a Box Job Is Created (see page 212)
Box Job Attributes (see page 212)
How Job Groupings Are Created (see page 213)
How an Existing Job Is Put in a Box (see page 214)
Delete a Box Job (see page 215)

Box Jobs

A Box job (or box) is a container of other jobs. You can use it to organize and control
process flow. The box itself performs no actions, although it can trigger other jobs to
run. An important feature of this type of job is that boxes can contain other boxes. You
can use boxes to contain other boxes that contain jobs related by starting conditions or
other criteria. This feature lets you group the jobs and operate on them in a logical
manner.

Box jobs are powerful tools for organizing, managing, and administering large numbers
of jobs that have similar starting conditions or complex logic flows. Knowing how and
when to use boxes is often the result of some experimentation.

For example, assume you want to schedule a group of jobs to start running when a File
Watcher job completes successfully. Instead of making each job dependent on the File
Watcher job, you can create a Box job that is dependent on the File Watcher job,
remove the File Watcher job dependency from the individual jobs, and put all of those
jobs in the box. When the File Watcher job completes successfully, the Box job starts,
which in turn starts all the jobs it contains.

Starting Conditions for Box Jobs

When no other starting conditions are specified at the job level, a job in a box runs
when the starting conditions for the box are satisfied. When several jobs in a box do not
have job-level starting conditions, they all run in parallel. When any job in a box changes
state, other jobs check if they are eligible to start running.

Basic Box Concepts

188 User Guide

When the priority attribute is set for jobs in a box, they are processed in order of
priority, highest to lowest.

Note: For more information about the priority attribute, see the Reference Guide.

Jobs in boxes run only once for each box execution. If you specify multiple start times
for a job during one box processing cycle, only the first start time is used. This prevents
jobs in boxes from inadvertently running multiple times.

CA Workload Automation AE starts a job when the current time matches, or is later
than, the specified start time. In addition to explicit starting conditions, jobs in boxes
have the implicit condition that the box job itself is running. This means that jobs in a
box start only if the box job is running. However, if a job in a box starts and the box job
is stopped, the started job runs to completion.

Note: Use caution when putting a job with more than one time-related starting
condition in a box. For example, assume that a job that runs at 15 and 45 minutes past
the hour is put in a box that runs at the start of every hour. The first time the box starts,
the job runs at 15 minutes past the hour. A future start is then issued for 45 minutes
past the hour, by which time the box has completed. As a result, the job will not run
until the box runs again at the start of the next hour. At that time, the job runs as soon
as the box starts because it is past its start time. The job runs, another future start job is
issued for 15 minutes past the hour, the box completes, and the cycle repeats itself.

Basic Box Concepts

A box is a container of jobs with similar starting conditions (either date and time
conditions or job dependency conditions). Use boxes to group jobs with similar
scheduling parameters, not to group jobs organizationally. For example, you can group
jobs that run daily at 1:00 a.m. in a box and assign them a daily start condition.
However, you should not group a variety of account processing jobs with diverse
starting conditions in the same box.

Basic Box Concepts

Chapter 6: Box Jobs 189

Default Box Job Behavior

The following default rules apply to boxes:

■ Jobs in a box run only once for each box execution.

■ Jobs in a box start only if the box itself has a status of RUNNING.

■ Boxes are used primarily for jobs with the same starting conditions.

■ A box used to group sequential jobs can contain up to 1,000 jobs.

■ A box remains in RUNNING state until all the jobs it contains have run.

■ A box returns a status of SUCCESS when all the jobs it contains have run and
returned a status of SUCCESS.

■ A box returns a status of FAILURE when all the jobs it contains have run and one or
more of the jobs has returned a status of FAILURE.

■ A box runs until it reaches a status of SUCCESS or FAILURE.

■ Using the sendevent command to change the state of a box to INACTIVE changes
the state of all the jobs it contains to INACTIVE.

More information:

Box Job Attributes and Terminators (see page 192)

Box Job Recommendations

Because all jobs in a box change status when a box starts running, you may want to use
boxes to implement job cycle behavior. However, placing jobs in a box to achieve this
behavior can affect your system adversely because the job status changes put a larger
load on the scheduler when the box starts running.

Do not put jobs in a box solely to run reports on all of them. When you run autorep on a
box, the command generates a report about the box and all the jobs it contains (unless
you use the -L0 option).

Note: Job names can only contain the following characters: a-z, A-Z, 0-9, period (.),
underscore (_), and hyphen (-). You cannot include spaces in a job name.

How a Box Runs

When a box starts running, the status of all the jobs it contains (including subboxes)
changes to ACTIVATED, which means they are eligible to run. Because of this status
change, jobs in boxes do not retain their statuses from previous box cycles.

Basic Box Concepts

190 User Guide

When a box starts running, the system performs the following actions:

■ Analyzes each job for additional starting conditions.

■ Starts all jobs with no additional starting conditions and without any implied order
or priority.

■ Maintains jobs with additional starting conditions in the ACTIVATED state until
those additional dependencies are met.

■ Maintains the box in the RUNNING state as long as there are jobs in it with
ACTIVATED or RUNNING status.

■ Changes the status of the job directly from ACTIVATED to INACTIVE if its containing
box is terminated before the job starts.

Notes:

■ Jobs in a box cannot start unless the box has a status of RUNNING. However, after a
job starts running, it runs to completion even if the box is stopped.

■ When the box is scheduled to run, the statuses of ON_NOEXEC jobs in the box
change to ACTIVATED. If the box is terminated before the jobs start, the jobs return
to ON_NOEXEC status.

■ When a box that is in ON_NOEXEC status is scheduled to run, the status of the box
changes to RUNNING. Jobs in the box with additional starting conditions remain in
the ACTIVATED state until those additional conditions are met. Once CA Workload
Automation AE bypasses the last scheduled job in the box, the box status returns to
ON_NOEXEC.

■ When a box that is in ON_NOEXEC status is scheduled to run, CA Workload
Automation AE bypasses all scheduled jobs in that box and returns them to the
ON_NOEXEC status regardless of manual status changes to individual jobs issued
after the box has been put in ON_NOEXEC status.

After all the jobs in a box have completed successfully, the box completes with a status
of SUCCESS. The status of the box and the jobs it contains remain unchanged until the
next time the box runs.

If a box changes to TERMINATED state (for example, if a user sends a KILLJOB event), it
stays in TERMINATED state until the next time it is started, regardless of any later state
changes of the jobs it contains.

Basic Box Concepts

Chapter 6: Box Jobs 191

Example: Simple Box Job

This example shows the behavior of a simple box job.

The following illustration shows a box named simple_box that contains three jobs
(job_a, job_b, and job_c). job_a and job_b have no starting conditions. The starting
condition for job_c is the success of job_b.

When simple_box starts running, the status of all the jobs changes to ACTIVATED.
Because job_a and job_b have no additional starting conditions, they start running.
When job_b completes successfully, job_c starts. When job_c completes successfully,
the box completes with a SUCCESS status.

If job_b fails, job_c does not start but remains in the ACTIVATED state. Because no
contingency conditions have been defined, simple_box continues running, waiting for
the default completion criteria (that all jobs in the box have run) to be met.

More information:

How Job Status Changes Affect Box Status (see page 191)

How Job Status Changes Affect Box Status

If a box that is not running contains a job that changes status because of a
FORCE_STARTJOB or CHANGE_STATUS event, the new job status could change the
status of its containing box. A status change for the box could then trigger the start of
downstream jobs that are dependent on the box.

If a box contained only one job, and the job changed status, the box status would
change as shown in the following table:

Current Box Status New Job Status New Box Status

SUCCESS TERMINATED or FAILURE FAILURE

SUCCESS SUCCESS or ON_NOEXEC Box status does not change

Box Job Attributes and Terminators

192 User Guide

Current Box Status New Job Status New Box Status

FAILURE SUCCESS or ON_NOEXEC SUCCESS

FAILURE FAILURE Box status does not change

INACTIVE SUCCESS or ON_NOEXEC SUCCESS

INACTIVE TERMINATED or FAILURE FAILURE

TERMINATED Any change Box status does not change

ON_NOEXEC Any change Box status does not change

If another job is dependent on the status of the box, the status change could trigger the
job to start. If the box status does not change, dependent jobs are not affected.

If the box contains other jobs in addition to the job that changed status, the status of
the box is evaluated again according to the success or failure conditions assigned to the
box (either the default or user-assigned). Any jobs in the box with a status of INACTIVE
are ignored when the status of the box is being re-evaluated. For example, consider an
INACTIVE box that contains four jobs, all with a status of INACTIVE (this is typical of a
newly created box). If one of the jobs is forced to start and completes successfully, the
status of the box changes to SUCCESS even though none of the other jobs ran.

Note: When a box that is in ON_NOEXEC status is scheduled to run, CA Workload
Automation AE bypasses all scheduled jobs in the box and returns them to ON_NOEXEC
status regardless of manual status changes made to individual jobs in the box after the
box is placed in ON_NOEXEC status.

Box Job Attributes and Terminators

The following sections describe how to use various job attributes to control the behavior
of box jobs and the jobs they contain.

Note: For more information, see the Reference Guide.

Box Job Attributes and Terminators

Chapter 6: Box Jobs 193

Controlling How CA Workload Automation AE Evaluates the Completion State of a
Box Job

By default, CA Workload Automation AE evaluates the completion state of a box job
when all of the jobs that are contained in that box job complete. You can control how
CA Workload Automation AE evaluates the completion state of box jobs by specifying
the optional box_success and box_failure attributes when you define box jobs.

These attributes define the conditions under which a box job succeeds (enters the
SUCCESS state) and the conditions under which it fails (enters the FAILURE state). You
can define conditions that meet any of the following criteria:

■ Specify that a job that is contained in the box job enters a certain state

CA Workload Automation AE evaluates the overall success or failure of the box job
when the specified job enters the specified state, regardless of the states of other
jobs that are contained in the box job. The condition is not met if the specified job is
not scheduled. In this case, CA Workload Automation AE does not evaluate the
completion state of the box job and it remains in the RUNNING state.

■ Specify that a job that is not contained in the box job enters a certain state

CA Workload Automation AE evaluates the overall success or failure of the box job
when one of the jobs that is contained in the box job completes after the specified
job (which is not contained in the box) enters the specified state.

The condition is not met if all of the jobs that are contained in the box job complete
before the specified job enters the specified state. In this case, CA Workload
Automation AE does not evaluates evaluate the completion state of the box job and
it remains in the RUNNING state.

■ Specify that a job that is defined on an external instance enters a certain state

CA Workload Automation AE evaluates the overall success or failure of the box job
when one of the jobs that is contained in the box completes after the specified
external job enters the specified state. The condition is not met if all of the jobs that
are contained in the box job complete before the specified external job enters the
specified state. In this case, CA Workload Automation AE does not evaluate the box
job and it remains in the RUNNING state.

■ Specify a global variable

CA Workload Automation AE evaluates the overall success or failure of the box job
when one of the jobs that is contained in the box job completes after the global
variable is defined and set to the value that is specified in the condition.

The condition is not met if all of the jobs that are contained in the box job complete
before the global variable is set to the specified value. In this case, CA Workload
Automation AE does not evaluate the completion state of the box job and it
remains in the RUNNING state.

Note: To define a global variable and store it in the database, issue a SET_GLOBAL
event using the sendevent command. For more information about the sendevent
command, see the Reference Guide.

Box Job Attributes and Terminators

194 User Guide

Example: Set the Success of a Specific Job in a Box Job as the Success Condition for
that Box Job

This example defines a box job named box_a, sets the success of the job named job_a as
the success condition for box_a, and defines the jobs named job_a, and job_b as jobs
that are contained in box_a.

insert_job: box_a

job_type: b

box_success: success(job_a)

insert_job: job_a

box_name: box_a

command: sleep 15

machine: machine1

insert_job: job_b

box_name: box_a

command: sleep 60

machine: machine1

CA Workload Automation AE evaluates the success of box_a when job_a completes,
regardless of the state of job_b. box_a enters the SUCCESS state when job_a enters the
SUCCESS state.

The success condition is not met when job_a enters a completion state other than
SUCCESS (such as FAILURE or TERMINATED). In this case, CA Workload Automation AE
evaluates the overall failure according to the default behavior (after job_b also
completes) because the job definition does not specify a failure condition. box_a enters
the FAILURE state because the default failure condition for box_a was met when job_a
entered the FAILURE state.

Example: Set the Failure of an External Job as the Failure Condition for a Box Job

This example defines a box job named box_a, sets the failure of the external job named
job_c^ACE as the failure condition for box_a, and defines the jobs named job_a and
job_b as jobs that are contained in box_a.

insert_job: box_a

job_type: b

box_failure: failure(job_c^ACE)

insert_job: job_a

box_name: box_a

command: sleep 60

machine: machine1

insert_job: job_b

box_name: box_a

command: sleep 300

machine: machine1

Box Job Attributes and Terminators

Chapter 6: Box Jobs 195

CA Workload Automation AE evaluates the overall failure of box_a when either job_a or
job_b completes. box_a enters the FAILURE state when job_c from the external instance
named ACE enters the FAILURE state before CA Workload Automation AE evaluates
box_a.

The failure condition is not met when one of the following situations occur:

■ Job_c enters a completion state other than SUCCESS (such as FAILURE or
TERMINATED), regardless of the completion state of job_a or job_b.

■ Job_c enters the FAILURE state after both job_a and job_b complete.

In these cases, CA Workload Automation AE evaluates the overall success of box_a
according to the default behavior (after job_a and job_b complete) because the job
definition does not specify a the box_success attribute. box_a enters the SUCCESS state
when job_a and job_b both complete and enter the SUCCESS state. box_a remains in a
RUNNING status when either job_a or job_b enters a state other than success because
the neither the failure condition specified in the box_failure attribute nor the default
success condition were met.

Example: Set the Failure of a Specific Job that is not contained in the Box Job as the
Success Condition for that Box Job

This example defines a box job named box_a, sets the success of a job that is outside of
box_a and is named job_d as the success condition for box_a, and defines the jobs
named job_a and job_b as jobs that are contained in box_a.

insert_job: box_a

job_type: b

box_success: failure(job_d)

insert_job: job_a

box_name: box_a

command: sleep 60

machine: machine1

insert_job: job_b

box_name: box_a

command: sleep 300

machine: machine1

insert_job: job_d

command: sleep 5

machine: machine2

CA Workload Automation AE evaluates the overall success of box_a when either job_a
or job_b completes. box_a enters the SUCCESS state when job_d enters the FAILURE
before the job that triggers the evaluation completes.

Box Job Attributes and Terminators

196 User Guide

The success condition is not met when job_d enters a terminal state other than
FAILURE, regardless of whether or not job_a or job_b completes. In this case CA
Workload Automation AE evaluates the overall failure of box_a according to the default
behavior (after job_a and job_b complete) because the job definition does not specify
the box_failure attribute. box_a enters the FAILURE state when the completion state of
either job_a or job_b is not SUCCESS. box_a remains in the RUNNING state when both
job_a and job_b complete and enter the SUCCESS state because the success condition
was not met.

Example: Set a Global Variable as the Failure Condition for a Box Job

This example defines a box job named box_a, sets the global variable named TEST with a
value of ABC as the failure condition for box_a, and defines the jobs named job_a and
job_b as jobs that are contained in box_a.

insert_job: box_a

job_type: b

box_failure: v(TEST) = ABC

insert_job: job_a

box_name: box_a

command: sleep 300

machine: machine

insert_job: job_b

box_name: box_a

command: sleep 600

machine: machine

CA Workload Automation AE evaluates the overall failure of box_a when either job_a or
job_b completes, regardless of the state of the other job that is contained in the box.
box_a enters the FAILURE state when the global variable named TEST evaluates to value
ABC before job_a or job_b completes.

The failure condition is not met when one of the following situations occurs:

■ TEST evaluates to a value other than ABC, regardless of the completion state of
job_a or job_b.

■ TEST evaluates to ABC after both job_a and job_b complete.

In these cases, CA Workload Automation AE evaluates the overall success of box_a
according to default behavior (after job_a and job_b complete) because the job
definition does not specify the box_success attribute. box_a enters the SUCCESS state
when job_a and job_b complete and enter the SUCCESS state. box_a remains in the
RUNNING state when either job_a or job_b enter a completion state other than
SUCCESS because neither the failure condition specified in the box_failure attribute nor
the default success condition were met.

Box Job Attributes and Terminators

Chapter 6: Box Jobs 197

Attributes in a Job Definition

You can use the following attributes in the job definition of a job in a box to force either
the job or the box to stop running:

box_terminator: y

Specifies that if the job completes with a FAILURE or TERMINATED status, the box
terminates. Define additional conditions for the other jobs in the box in case the
box is terminated.

job_terminator: y

Specifies that if the job's containing box completes with a FAILURE or TERMINATED
status, the job terminates. You must add this attribute to each job definition that
you want to terminate upon box failure.

Notes:

■ If a job defined with the job_terminator attribute is in ON_NOEXEC status, the job
does not terminate when the box fails.

■ If a job defined with the box_terminator attribute is in ON_NOEXEC status, then CA
Workload Automation AE bypasses the job and the job's containing box does not
terminate.

More information:

Job Flow with Box Terminator Attribute (see page 204)
Job Flow with Job Terminator Attribute (see page 203)

Time Conditions in a Box

Each job in a box runs only once each time the box runs. Therefore, do not define more
than one time attribute for any job in a box because the job only runs the first time. If
you want to put a job in a box, but you also want it to run more than once, you must
define multiple start time conditions for the box itself, and define no time conditions for
the job.

Note: The box must be running before the job can start. Do not assign a start time for a
job in a box if the box will not be running at that time. If you do, the next time the box
starts, the job starts immediately.

Box Job Attributes and Terminators

198 User Guide

Example: Define Time Conditions for a Box Job

The following illustration shows a scenario with time conditions in a box:

In the illustration, job_a is defined to run repeatedly until it succeeds; job_report has
one starting condition, the success of job_a.

At 3:00 a.m., bx_stat starts running, which causes job_a to start running. If job_a is
successful, job_report runs and also succeeds.

If job_a fails, it will not be able to run again until the next time the box starts because
jobs run only once per box execution. In this situation, the following occurs:

■ Job job_report is still ACTIVATED while it waits for the success of job_a, and the
status of the box is RUNNING.

■ Because job_a is defined as a box terminator, the box then enters into a
TERMINATED state.

■ This change also terminates job job_report because its job_terminator attribute is
set to y.

■ Box bx_stat is now in a state that permits it to run again at 3:00 a.m. the following
day.

If job_a was not defined as a box terminator, the box remains in RUNNING state
indefinitely.

Force Jobs in a Box to Start

You can use the sendevent command to send a FORCE_STARTJOB event to force a job to
start, even if its starting conditions have not been met.

You can also execute the FORCE_STARTJOB command by selecting the Force Start Job
button in the Job Activity Console, which is part of the CA WCC GUI.

Box Job Flow Examples

Chapter 6: Box Jobs 199

Example: Force a Job in a Box to Start

This example defines a sendevent command that sends a FORCE_STARTJOB event to
force a job in a box to run. You could use the following command to force the job
run_stats to start:

sendevent -E FORCE_STARTJOB -J run_stats

In the following illustration, the box job bx_report contains three jobs (job_Fwatch,
run_stats, and report_stats). If the job run_stats fails, the bx_report box job terminates
because run_stats has a box_terminator attribute. If you force start run_stats, and it
completes successfully, report_stats would still not start because the box it is in is not
running.

Box Job Flow Examples

This section contains examples to help explain the flow of box jobs and the jobs they
contain. These scenarios will help provide a clearer understanding of box job flow
concepts.

Default Box Success and Box Failure

This scenario describes the default job flow for box job success and failure.

The box job do_statistics runs every day at 3:00 a.m. It contains three jobs:

update_accounts

Updates files. This job starts when do_statistics starts running. It has no other
starting conditions.

run_stats

Runs statistics. This job starts when update_accounts completes successfully. It has
no other starting conditions.

Box Job Flow Examples

200 User Guide

report_stats

Reports statistics. This job starts when run_stats completes successfully. It has no
other starting conditions.

No conditions for success or failure have been defined for do_statistics; therefore the
default conditions are applied. The box job completes successfully when all the jobs it
contains have run and completed successfully. The box job fails when all jobs in the box
have run and at least one has failed. The box job remains in the RUNNING state until all
the jobs it contains have run.

The following illustration shows this job flow:

box_name “do_statistics"

Box Job Flow Examples

Chapter 6: Box Jobs 201

Explicit Box Success and Box Failure

This scenario provides an example job flow in which specific conditions are defined for
the success or failure of a box job.

The box job do_statistics runs every day at 3:00 a.m. It contains three jobs:

update_accounts

Updates files. This job starts when do_statistics starts running. It has no other
starting conditions.

run_stats

Runs statistics. This job starts when update_accounts completes successfully. It has
no other starting conditions.

report_stats

Reports statistics. This job starts when run_stats completes successfully. It has no
other starting conditions.

The following conditions define the criteria for success or failure of the box job
do_statistics:

■ The box job can complete successfully only when all of the jobs it contains have
completed successfully.

■ The box job fails if any of the jobs it contains fails.

Box Job Flow Examples

202 User Guide

The following illustration shows the job definitions and the job flow:

Box Job Flow Examples

Chapter 6: Box Jobs 203

Job Flow with Job Terminator Attribute

This scenario provides an example job flow in which the job_terminator attribute is
defined for a job in a box job.

The box job daily_accounts runs every day at 3:00 a.m. It contains two jobs:

daily_receipts

Processes receipts. This job runs when daily_accounts starts because it has no other
starting conditions.

daily_payables

Processes payables. This job runs when daily_accounts starts because it has no
other starting conditions. Because daily_payables includes a job_terminator
attribute, daily_account is terminated if this job fails.

A third job, daily_balance, is not contained in daily_accounts and runs only if both
daily_receipts and daily_payables complete successfully.

Because daily_accounts can only complete successfully if both of the jobs it contains
complete successfully, the failure of daily_receipts causes daily_accounts to fail. This in
turn triggers the job_terminator attribute in daily_payables, which terminates the job if
the box that contains it fails.

Box Job Flow Examples

204 User Guide

The following illustration shows the job definitions and the job flow:

Job Flow with Box Terminator Attribute

This scenario provides an example job flow in which the box_terminator attribute is
defined for jobs in a box job.

The box job daily_accounts runs every day at 3:00 a.m. It contains two jobs:

daily_receipts

Processes receipts. This job runs when daily_accounts starts because it has no other
starting conditions. Because daily_receipts includes a box_terminator attribute,
daily_accounts will be terminated if this job fails.

daily_payables

Processes payables. This job runs when daily_accounts starts because it has no
other starting conditions. Because daily_payables includes a box_terminator
attribute, daily_accounts will be terminated if this job fails.

Advanced Job Flows

Chapter 6: Box Jobs 205

A third job, daily_balance, is not contained in daily_accounts and will run only if both
daily_receipts and daily_payables complete successfully.

The following illustration shows the job definitions and the job flow:

Advanced Job Flows

This section contains examples to help explain the flow of box jobs and the jobs they
contain in advanced situations. These scenarios help provide a clearer understanding of
advanced job flow concepts.

Advanced Job Flows

206 User Guide

Job Flow with Time Conditions Running on the First of the Month

This scenario is an example of a job flow that begins on the first of every month.

The job flow consists of three jobs:

job_Fwatch

Waits for a specific file to be created by some mainframe process. This job runs at
1:00 a.m. on the first of every month and waits for 90 minutes before giving up.

job_monthly

Re-indexes, organizes, and purges its records based on the file created by the
mainframe. This job runs at 2:00 a.m. on the first of the month only when
job_Fwatch completes successfully.

job_daily

Generates a report. This job runs daily at 3:00 a.m. when job_monthly completes
successfully.

Advanced Job Flows

Chapter 6: Box Jobs 207

The failure of job_Fwatch causes job_monthly to skip its scheduled run because
job_monthly can only complete successfully if job_Fwatch completes successfully. Job
job_daily only runs if job_monthly completes successfully. By the same logic, job_daily
always runs if job_monthly was able to successfully run at least once.

Note: The first time the cycle is run (for example, January 1), statuses behave as
expected.

Job Flow with Time Conditions Running on the Second of the Month

This scenario builds upon the previous scenario and takes place on the following day.

On days of the month other than the first, job_Fwatch and job_monthly do not run.
They still have a status of SUCCESS in the database from the previous run on the first
day of the month. As a result, job_daily still runs.

Advanced Job Flows

208 User Guide

Job Flow with Time Conditions Running on the First of the Following Month

This scenario builds upon the previous scenario and takes place on the first day of the
following month.

On the first day of the next month (for example, February 1), the file from the
mainframe fails to arrive in the 90 minute wait time; therefore, job_Fwatch
self-terminates. As a result, job_monthly misses its run for the month. However,
because its event status in the database is still SUCCESS from the previous month,
job_daily is able to run every day this month. When job_daily runs, it uses the previous
month's data leading to invalid reports for the month.

Advanced Job Flows

Chapter 6: Box Jobs 209

Resetting a Job Flow with Time Conditions Through INACTIVE Status Change

This scenario builds upon the previous scenario and takes place on the last day of the
month.

To fix time-related statuses, you can use a sendevent command to change them to
INACTIVE at the end of their valid interval. You can create another job to do this
automatically.

Changing the status of job_monthly to INACTIVE at the end of every month allows
job_daily to run only in the months that job_monthly completes successfully. In the
following example, when job_Fwatch fails, job_monthly will not run, job_daily will not
run because its status has been reset to INACTIVE.

Advanced Job Flows

210 User Guide

Resetting a Job Flow with Time Conditions Through Box Job

This scenario builds upon the previous scenarios and takes place on the first day of the
month.

Instead of issuing a sendevent command to change the status of the jobs, you can put
the monthly process in a box, and set the box_failure or box_terminator attribute
appropriately.

The job flow now consists of a box called box_monthly that runs at 1:00 a.m. on the first
day of every month with the following jobs:

job_Fwatch

Waits for a specific file to be created by some mainframe process. This job runs at
1:00am on the first of every month and waits for 90 minutes before giving up.

job_monthly

Re-indexes, organizes, and purges its records based on the file created by the
mainframe. This job runs at 2:00 a.m. on the first of the month only when
job_Fwatch completes successfully.

A third job, job_daily, is not contained in box_monthly and runs only if job_Fwatch and
job_monthly complete successfully.

Advanced Job Flows

Chapter 6: Box Jobs 211

The failure of job_Fwatch causes box_monthly to terminate because box_monthly can
only complete successfully if both of the jobs it contains complete successfully. This in
turn triggers the job_terminator attribute in job_monthly, which terminates the job if
the box that contains it fails.

How a Box Job Is Created

212 User Guide

How a Box Job Is Created

Box jobs are a convenient way to start multiple jobs. When you put jobs in a box, you
only have to start a single job (the box) for all the jobs in the box to start running.

Assume you want to schedule a group of jobs to start running when a file watcher job
completes successfully. Instead of making each job dependent on the file watcher job,
you can create a box job that is dependent on the file watcher job, remove the file
watcher job dependency from the individual jobs, and put all of those jobs in the box.
When the file watcher job completes successfully, the box job starts, which in turn starts
all of the jobs it contains.

Note: For more information, see the Reference Guide.

Example: Creating a Box Job

This example shows how to define a box job named EOD_box that depends on the
success of a file watcher job to run:

insert_job: EOD_box

job_type: box

condition: success(EOD_watch)

This JIL script instructs CA Workload Automation AE to do the following:

■ Add a new job named EOD_box.

■ Define the job as a box job.

■ Run the job only if the file watcher job named EOD_watch completes with a
SUCCESS status.

Box Job Attributes

The following attributes are required for all box job definitions:

box_name

Defines the name used to identify the job to CA Workload Automation AE. This
name is used by other jobs as the name of their parent box.

job_type: BOX

Specifies that the job type is box.

Note: If you omit this attribute, the job type defaults to cmd (Command job).

How Job Groupings Are Created

Chapter 6: Box Jobs 213

condition

Defines the dependency conditions that must be met for the job to run.

Note: The condition attribute is not always required, for example when a job is
always started manually.

How Job Groupings Are Created

Box jobs provide one method of grouping jobs, but are typically used when all the jobs
in the box share the same starting condition. CA Workload Automation AE provides the
group and application attributes so you can logically group sets of jobs and boxes with
unrelated starting conditions or dependencies. By specifying both group and application
attributes in a job definition, you can make the job belong to both a group logical set
and an application logical set.

Note: For more information, see the Reference Guide.

Example: Associate Jobs with Groups and Applications

This example shows how you can associate jobs with specific groups and applications to
control processing.

Assume you want to create a set of jobs that run a suite of applications called
EmployeePay that is used to manage employee salaries. The Accounting and Human
Resources groups each have their own jobs defined to use the EmployeePay
applications. The following JIL script defines two jobs (HR_payroll and
ACCT_salaryreport):

insert_job: HR_payroll

job_type: cmd

...

group: HumanResources

application: EmployeePay

insert_job: ACCT_salaryreport

job_type: cmd

...

group: Accounting

application: EmployeePay

How an Existing Job Is Put in a Box

214 User Guide

This JIL script instructs CA Workload Automation AE to do the following:

■ Add two new command jobs (HR_payroll and ACCT_salaryreport).

■ Associate job HR_payroll with the HumanResources group and the EmployeePay
application.

■ Associate job ACCT_salaryreport with the Accounting group and the EmployeePay
application.

To run a job associated with the EmployeePay application, enter the following:

sendevent -e STARTJOB -I EmployeePay

To run a job associated with the Accounting group, enter the following:

sendevent -e STARTJOB -B Accounting

To run a job associated with both the EmployeePay application and Accounting group
(intersection of both sets), enter the following:

sendevent -e STARTJOB -I EmployeePay -B Accounting

How an Existing Job Is Put in a Box

To place an existing job in a box, verify that the job is not running, and do either of the
following:

■ Use the update_job subcommand to change the current job definition.

■ Use the delete_job subcommand to delete the current job definition, and use the
insert_job subcommand to redefine the job.

This method is useful when the job definition contains many non-default attributes
that you want to deactivate instead of resetting them. However, if you delete and
redefine the job, you must redefine any non-default attributes you want to keep
from the previous definition.

Note: For more information, see the Reference Guide.

Delete a Box Job

Chapter 6: Box Jobs 215

Example: Put an Existing Job in a Box

This example shows how to update the definition of an existing job to include it in a box.

The following JIL script uses the update_job subcommand to change the EOD_post job
to put it in the EOD_box job:

update_job: EOD_post

box_name: EOD_box

This JIL script instructs CA Workload Automation AE to do the following:

■ Update the job named EOD_post.

■ Put the job named EOD_post in the box named EOD_box.

Delete a Box Job

To delete a box and every job it contains, enter the delete_box subcommand followed
by the name of the box job to delete. For example, to delete the box EOD_box and
every job in it, you would enter the following:

delete_box: EOD_box

To delete a box without deleting the jobs it contains, enter the delete_job command
followed by the name of the box job to delete. The jobs in the box become stand-alone
jobs. For example, to delete the box EOD_box without deleting the jobs in it, you would
enter the following:

delete_job: EOD_box

Chapter 7: Command Jobs 217

Chapter 7: Command Jobs

This section contains the following topics:

Command Jobs (see page 217)
The Directory the Job Runs Under (see page 219)
Determining Which Shell is Used (UNIX) (see page 219)
Shell Initialization Files (UNIX) (see page 220)
Define a Command Job (see page 222)
Attributes with Default Values (see page 225)
Verify File Space Before a Job Starts (see page 228)
Pass Positional Arguments in a Command Job (see page 229)
Pass Environment Variables in a Command Job (see page 230)
Define Alternative Error, Input, and Output Sources (see page 233)
Create a Job Blob (see page 234)
Send a User-Defined Exit Code (see page 236)
Specify a Command or Script Name Without the Full Path (see page 237)
Specify a Command or Script Name Using an Environment Variable (UNIX) (see page
239)
Run a Script Under a Specific User Account (UNIX) (see page 240)
Modify Resource Limits (UNIX) (see page 242)
Customize the Run-time Environment for a Korn Shell Script (UNIX) (see page 243)
Customize the Run-time Environment for a Bourne Shell Script (UNIX) (see page 244)
Customize the Run-time Environment for a C Shell Script (UNIX) (see page 245)
Define a Command Job to Run a Perl Script (UNIX) (see page 246)
Run the Windows Command Interpreter (Windows) (see page 247)
Access Network Resources (Windows) (see page 249)

Command Jobs

Command jobs let you run workload on UNIX and Windows client computers. On UNIX,
you can define jobs to run scripts and commands. On Windows, you can define jobs to
run command files and batch files.

Note: To run these jobs, your system requires one of the following:

■ CA WA Agent for UNIX, Linux, or Windows

■ Legacy agent for Unicenter AutoSys Job Management 4.5.1 through r11

Command Jobs

218 User Guide

When you define a Command job, you can specify settings including the following:

Starting Conditions

Defines conditions (for example, date, time, job state, and machine state) that must
be met before a job can start.

Disk Space Criteria

Defines the amount of free space required before a process can start. If the free
space is not available, an alarm is sent and the job is rescheduled.

Job Profile

Specifies a script to be sourced that defines the environment where the command
runs.

Note: On Windows, you can define a job profile using the Job Profiles - CA
Workload Automation AE Administrator window in the Administrator utility.

Environment Variables

Specifies variables that define the local environment where the job runs.

User-defined Exit Codes

Defines exit codes to indicate job success and job failure. By default, an exit code of
0 (zero) indicates job success and any other code indicates job failure. When the job
completes, the exit event (either SUCCESS or FAILURE) and program's exit code are
stored in the database.

Standard I/O Files

Specifies the standard input, output, and error files.

Note: To support chained commands (commands separated by a semicolon) on UNIX,
ensure that the oscomponent.wrapper.exec.force parameter in the agentparm.txt file is
set to false (the default). For more information about supporting chained commands,
see the UNIX Implementation Guide.

The Directory the Job Runs Under

Chapter 7: Command Jobs 219

The Directory the Job Runs Under

The directory that a Command job runs under is determined by the following settings:

oscomponent.initialworkingdirectory Agent Parameter

Specifies the default initial working directory for all scripts. Options are the
following:

■ SCRIPT—Sets the path to where the script resides.

■ USER—Sets the path to the home directory of the owner of the script.

■ PATH—Sets the path to an absolute path to where the script runs.

If you do not specify a value, the parameter defaults to the path where the running
cybAgent resides.

You can specify the oscomponent.initialworkingdirectory parameter in the agent's
agentparm.txt file.

HOME and PWD Environment Variables (UNIX only)

Overrides the oscomponent.initialworkingdirectory default directory. The directory
depends on the following settings:

■ If you specify a value for PWD (Present Working Directory) in the job definition,
the job runs under the PWD you specified.

■ If you specify a value for HOME in the job definition, but you do not specify a
value for PWD, the job runs under the HOME directory.

■ If you specify values for HOME and PWD in the job definition, the job runs
under the PWD directory.

Determining Which Shell is Used (UNIX)

A shell is a program that provides an environment for users to interact with the system.
Shell programs are files that contain a series of user commands that are grouped, using
logic provided by the shell, to accomplish a task.

Shells can be defined by you, the script’s programmer, your agent administrator, and
your UNIX administrator. When you define a job that runs on UNIX, you may want to
know which shell is used to run the script because different shells have different
facilities and characteristics. Some functions are specific to certain shells and may be
incompatible with other shells.

Shell Initialization Files (UNIX)

220 User Guide

The shell the CMD job uses is determined by the following settings in the following
order:

1. The shell attribute (if specified in the job definition)

2. The oscomponent.defaultshell parameter in the agentparm.txt file (if not specified
in the shell attribute)

3. The user default shell defined in the user profile (if one exists on the computer)

4. On UNIX, the shell sourced from the /etc/auto.profile script (if one is specified)

5. The shell directive line (first line) of the script (if one is specified)

Notes:

■ If the shell is defined in the first line of the script, you do not need to include the
shell attribute in the job definition. The shell attribute tells the agent which shell
interpreter to use when launching the command. When the command executes a
script that specifies a shell, the script runs from that point forward under the shell
specified in the script.

■ If the oscomponent.checkvalidshell parameter in the agent's agentparm.txt file is
set to true (the default), all shells that are used must be specified using the
oscomponent.validshell parameter. The path defined in the first line of the script or
in the job definition must match the corresponding path in the
oscomponent.validshell parameter. If the shell you want to use is not defined on
the agent, the job fails. For more information about specifying valid shells, see the
oscomponent.checkvalidshell and oscomponent.validshell parameters in the CA
Workload Automation Agent for UNIX, Linux, or Windows Implementation Guide.

Shell Initialization Files (UNIX)

When you log in to the UNIX operating system, the operating system reads a series of
initialization files depending on the shell you use.

Shell Initialization Files (UNIX)

Chapter 7: Command Jobs 221

C Shell Initialization Files

When you log in to the C shell, it automatically runs a number of files. The first file run is
a system file named /etc/.login, which contains system-wide configuration information
(such as your default path). After these files are run, the C shell reads and runs the
commands from the following files in your home directory:

.cshrc

Establishes variables and operands that are local to a specific shell. Each time you
create a new shell, the C shell reinitializes these variables for the new shell.

The following is a sample .cshrc file:

set noclobber

set ignoreeof

set path = (~/bin $path /usr/games)

alias h history

.login

Contains commands that you want to run once at the beginning of each session. If
the C shell is running as a login shell, it reads and runs the commands in the .login
file in your home directory after login.

The following is a sample .login file:

setenv history 20

setenv MAIL /usr/spool/mail/$user

.logout

Runs when you exit from your login shell.

Korn Shell Initialization Files

The Korn shell supports three startup scripts:

/etc/profile

Contains system-wide startup commands. This file is a login script and runs when
you log in.

Define a Command Job

222 User Guide

$HOME/.profile

Runs when you log in. Use this login script to set options, set the path, and set and
export variable values.

The following is a sample $HOME/.profile file:

set -o allexport

PATH=.:/bin:/usr/bin:$HOME/bin

CDPATH=.:$HOME:$HOME/games

PS1='! $PWD> '

ENV=$HOME/.kshrc

TIMEOUT=0

set +o allexport

The script named in the Korn shell variable ENV

Runs when you create a Korn shell or run a Korn shell script. Use this file to define
aliases and functions and to set default options and variables that you want to
apply to the Korn shell invocation.

Bourne shell initialization files

When you log in to your system, the Bourne shell looks for the /etc/profile file. This file
contains system-wide startup commands for the Bourne shell. Only the system
administrator can change this file.

After running the commands in the /etc/profile file, the Bourne shell runs the
commands in the $HOME/.profile file. Therefore, you can override the system-wide
commands in the /etc/profile file with commands in the $HOME/.profile file.

Define a Command Job

You can define a Command (CMD) job to run workload on UNIX and Windows client
computers. The job can run a script, execute a UNIX command, or run a Windows
command file.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or
Windows.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: CMD

Specifies that the job type is Command.

Note: For backwards compatibility with previous versions of CA Workload
Automation AE, you can specify job_type: c.

Define a Command Job

Chapter 7: Command Jobs 223

machine

Specifies the name of the machine on which the job runs.

command

Specifies the command, executable, UNIX shell script, application, or batch file
to run when all the starting conditions are met.

2. (Optional) Specify optional Command attributes:

■ blob_file

■ blob_input

■ chk_files

■ envvars

■ fail_codes

■ heartbeat_interval

■ interactive

■ max_exit_success

■ shell

■ std_err_file

■ std_in_file

■ std_out_file

■ success_codes

■ ulimit

3. (Optional) Specify common attributes that apply to all job types.

The Command job is defined.

Define a Command Job

224 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

■ To support chained commands (commands separated by a semicolon) on UNIX,
ensure that the oscomponent.wrapper.exec.force parameter in the agentparm.txt
file is set to false (the default). For more information about supporting chained
commands, see the UNIX Implementation Guide.

Example: Run a Command on UNIX

This example runs the /bin/touch command on the file named /tmp/test_run.out. The
job runs on the UNIX client computer named unixagent.

insert_job: test_run

job_type: CMD /* This attribute is optional for Command jobs. CMD is the default. */

machine: unixagent

command: /bin/touch /tmp/test_run.out

Example: Run a Command File on Windows

This example runs the c:\bin\test.bat command on the Windows client computer named
winagent. The command is enclosed in quotation marks because the path contains a
colon.

insert_job: test_run

job_type: CMD /* This attribute is optional for Command jobs. CMD is the default. */

machine: winagent

command: "c:\bin\test.bat"

Attributes with Default Values

Chapter 7: Command Jobs 225

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Command job attributes have default values:

fail_codes

Defines which exit codes indicate job failure.

Default: Any exit code other than 0 (zero) indicates job failure

interactive

(Windows only) Specifies whether to run a Command job in interactive mode or in
batch mode on Windows.

Default: n (The job runs in batch mode.)

max_exit_success

Defines the maximum exit code that the job can exit with and be considered a
success.

Default: 0 (The job interprets only zero as job success.)

owner

Specifies the user ID that the job runs under.

Default: The default owner (the user ID who invokes jil to define the job)

shell

(UNIX only) Specifies the name of the shell used to execute the script or command
file.

Note: Alternatively, you can override the default shell by specifying the shell in the
first line of the script. If a shell is specified in the script and in the job definition, the
job uses the shell specified in the job definition.

Default:

■ oscomponent.defaultshell agent parameter, if specified

■ The user default shell defined in the user profile, if the shell is not specified in
the job definition, script, or oscomponent.defaultshell parameter

Attributes with Default Values

226 User Guide

std_err_file

Defines the path and file name where you want to redirect all standard error
output.

CA WA Agent Default: The agent's spool directory
(installation_directory/SystemAgent/agent_name/spool)

Legacy Agent Default: /dev/null (UNIX) or NULL (Windows)

std_out_file

Defines the path and file name where you want to redirect all standard output.

CA WA Agent Default: The agent's spool directory
(installation_directory/SystemAgent/agent_name/spool)

Legacy Agent Default: /dev/null (UNIX) or NULL (Windows)

success_codes

Defines which exit codes indicate job success.

Default: 0 (The job interprets zero as job success.)

Notes: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Override the Default Shell Using the shell Attribute

This example overrides the default shell using the shell attribute. The job uses the C
shell run the test1.csh script.

insert_job: unix_job1

job_type: CMD

machine: unixagent

command: /mfg/test1.csh

shell: /bin/csh

Note: This job succeeds only if the user's default shell is csh. To set the default shell,
define the following parameters in the agent's agentparm.txt file:

oscomponent.defaultshell=/bin/csh

oscomponent.defaultshell.force=true

Attributes with Default Values

Chapter 7: Command Jobs 227

Example: Override the Default Shell by Specifying the Shell in a Script

This example overrides the default shell with the C shell specified in the following
test1.csh script:

#!/bin/csh -f

if ($LOGNAME != guest) then

echo "User is not guest"

endif

echo $LOGNAME logon

exit 0

The following job definition runs the test1.csh script:

insert_job: unix_job2

job_type: CMD

machine: unixagent

command: /mfg/test1.csh

owner: guest

The shell attribute is not required in the job definition because the shell is specified in
the first line of the script.

Example: Override the Default Background Mode Using the interactive Attribute

This example runs a Command job in interactive mode on Windows. The job opens the
config.txt file in the Notepad application on the Windows desktop.

insert_job: edit_file

job_type: CMD

machine: winagent

description: "Edit/review a configuration file"

command: notepad.exe "c:\run_info\config.txt"

interactive: y

More information:

Determining Which Shell is Used (UNIX) (see page 219)

Verify File Space Before a Job Starts

228 User Guide

Verify File Space Before a Job Starts

You can define a Command job to check if one or more UNIX file systems or Windows
drives have the required amount of available space. At run time, the agent checks
whether the required space is available on the machine where the job runs. If the
requirements are met, the job starts. If the requirements are not met, the agent
generates an alarm and the job does not start. The system tries to verify the file space
again and start the job. The number of tries is determined using the n_retrys attribute. If
the n_retrys attribute is not specified in the job definition, the number of tries is
determined by the MaxRestartTrys parameter in the configuration file (UNIX) or the
Max Restart Trys field in the Administrator utility (Windows). If the required space is still
not available after all the restart attempts, the job fails.

By default, jobs do not check the available file space.

Follow these steps:

1. Define a Command job (see page 222).

2. Add the following attribute to the job definition:

chk_files

Specifies the required amount of space on one or more file systems (UNIX) or
drives (Windows) in kilobytes (KB).

3. Run the job.

The file space is verified before the job starts.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Verify the Available File Space on UNIX

This example checks whether the file system named roots has 100 KB of available space.
This example also checks whether the file system named auxfs1 has 120 KB of available
space. The specified file space must be available before the job can start.

insert_job: unix_chk

job_type: CMD

machine: unixagent

command: /u1/procrun.sh

chk_files: /roots 100 /auxfs1 120

Pass Positional Arguments in a Command Job

Chapter 7: Command Jobs 229

Example: Verify the Available File Space on Windows

This example checks whether the C: drive has 100 KB of available space and the D: drive
has 120 KB of available space. The specified file space must be available before the job
can start.

insert_job: win_chk

job_type: CMD

machine: winagent

command: "C:\Programs\Payroll\pay.exe"

chk_files: "C: 100 D: 120"

Pass Positional Arguments in a Command Job

When running workload, you might need to pass data between jobs and across
platforms. You can pass positional arguments to a command or script in your job
definition. Positional arguments are variables that can be passed to a program at the
time the program is invoked. The arguments are assigned in the order they are passed.

Follow these steps:

1. Define a Command job (see page 222).

2. Add the following attribute to the job definition:

command: file argument...

file

Specifies the command, executable, UNIX shell script, application, or batch file
to run when all the starting conditions are met.

argument...

Specifies one or more arguments to pass to the command or script at run time.

Note: Separate each argument with a space. You must specify each argument
in the order it is expected in the program.

3. Run the job.

The positional arguments are passed to the program.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Pass Environment Variables in a Command Job

230 User Guide

Example: Pass Positional Arguments to a UNIX Script

This example passes three arguments to a UNIX script. The first argument passed is
"user 1". This argument is enclosed with quotation marks because it contains a space.
The second argument passed is 905-555-1212, and the third argument is 749.

insert_job: cmd_job1

job_type: CMD

machine: unixprod

command: addinfo.sh "user 1" 905-555-1212 749

Example: Pass Positional Arguments to a Windows Program

This example passes two data files to a Windows program. The arguments are enclosed
with quotation marks because they contain spaces.

insert_job: cmd_job2

job_type: CMD

machine: winprod

command: "c:\Programs\Payroll\pay.exe" "C:\Pay Data\salary.dat" "C:\Pay

Data\benefits.dat"

Pass Environment Variables in a Command Job

You can specify environment variables to define the local environment the program
runs in. You can modify existing environment variables or create your own.

Follow these steps:

1. Define a Command job (see page 222).

2. Add the following attribute to the job definition:

envvars

Specifies the environment variables that define the local environment.

3. Run the job.

The environment variables are passed to the program.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Pass Environment Variables in a Command Job

Chapter 7: Command Jobs 231

Example: Pass Environment Variables to a UNIX Script

This example includes two envvars attributes that pass environment variables to a script
and a third envvars attribute that defines the Present Working Directory (PWD). The
parameter "user 1" is enclosed with quotation marks because it contains a space.

insert_job: unix_job

job_type: CMD

machine: unixprod

command: /home/scripts/pay

envvars: NAME="user 1"

envvars: JOB=PAYROLL

envvars: PWD=/usr/scripts/dailyrun

In this example, the pay script can reference these variables:

Environment Variable Value Passed

NAME user 1

JOB PAYROLL

PWD /usr/scripts/dailyrun

Note: If the parameter oscomponent.loginshell is set to true in the agent's
agentparm.txt file, the agent invokes the user environment while running the script. To
override the value of a shell variable that is already defined in the user login file,
reassign a value to this variable in the script.

Example: Pass Two Environment Variables to a Windows Command File

This example runs the processrun.exe command file on a Windows computer named
winprod. The job uses two local environment variables named PATH and TEMP.

insert_job: cmd_job1

job_type: CMD

machine: winprod

command: "c:\cmds\processrun.exe"

envvars: PATH="c:\windows\system32"

envvars: TEMP="c:\temp"

UNIX Environment Variables

When a Command job runs under a specific user account on UNIX, the agent can pass
the user's environment variables to the script or program. You can also set up a script's
running environment by overriding the environment variables in the job definition. For
example, you can override the HOME environment variable to run the script under a
user’s login directory.

Pass Environment Variables in a Command Job

232 User Guide

You can pass the following UNIX environment variables in a job definition to override
the variable values:

HOME

Identifies the user's login directory. You can override the HOME value to set up a
user-specific environment by specifying a different login directory in the job
definition.

Example: HOME=/home/guest/bin

Notes:

■ You can set up the script's running environment in the .profile and .login files.

■ You must also set the oscomponent.loginshell parameter to true in the agent's
agentparm.txt file to run the login scripts located in the HOME directory.

PATH

Provides a list of directories that the shell searches when it needs to find a
command. Each directory is separated by a colon. and the shell searches the
directories in the order listed. The PATH variable is the most important
environment variable. You can override the PATH value to set up a user-specific
environment by specifying a different PATH in the job definition.

Note: Overriding the default system path can result in the "command not found"
error.

ENV

Contains the name of the initialization file to run when a new Korn shell starts. You
can override the ENV value to set up a user-specific environment by specifying a
different ENV value in the job definition.

Example: ENV=/home/guest/bin/myenv

Note: The name of the file used to set up the script-running environment must be
.profile. The .profile must be the same file used with the HOME variable.

PWD

Contains the absolute path name of your current directory.

Define Alternative Error, Input, and Output Sources

Chapter 7: Command Jobs 233

Define Alternative Error, Input, and Output Sources

By default, the standard output and standard error output are redirected to the agent's
spool directory. You can define alternative error, input, and output sources in your job
definition that override these defaults.

Follow these steps:

1. Define a Command job (see page 222).

2. Add one or more of the following attributes to the job definition:

std_err_file

Specifies where you want to redirect the standard error output. The output can
be redirected to a file or a blob.

std_in_file

Specifies where you want to redirect standard input from. The input can be a
file or a blob.

std_out_file

Specifies where you want to redirect the standard output. The output can be
redirected to a file or a blob.

3. Run the job.

The alternative sources are defined.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Specify the Standard Input File and Output on UNIX

This example specifies the /tmp/test.in file as the standard input file and /tmp/test.out
as the standard output file .

insert_job: unix_stdin

job_type: CMD

machine: unixagent

command: /usr/common/backup

std_in_file: /tmp/test.in

std_out_file: /tmp/test.out

Create a Job Blob

234 User Guide

Create a Job Blob

You can create a job blob that is associated with the Command job you are defining. The
blob can contain the data that you specify in the job definition (input job blob), the job's
output (output job blob), or the job's error messages (error job blob). Input job blobs
are uploaded to the database when the job is defined. Output and error job blobs are
uploaded to the database after the job runs.

Other jobs on different computers can use the input job blobs and output job blobs.
Jobs cannot use error job blobs as input.

Follow these steps:

1. Define a Command job (see page 222).

2. Add one or more of the following attributes to the job definition:

blob_file

Specifies the file containing the data to insert for the blob.

blob_input

Specifies the text to insert for the blob.

std_err_file

Specifies that the job blob contains the job's standard error messages in textual
or binary data format.

std_out_file

Specifies that the job blob contains the job's standard output messages in
textual or binary data format.

3. Run the job.

The job blob is created.

Notes:

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

■ You can also use the insert_blob subcommand to create an input job blob after a
job is defined.

Create a Job Blob

Chapter 7: Command Jobs 235

Example: Create an Input Job Blob at Job Definition Time

This example defines a CMD job that creates and uses an input job blob. When the job is
defined, a blob is created using the text that is specified in the blob_input attribute.
When the job runs, it uses the created blob as input and treats the blob data as textual
data.

insert_job: test_blob

job_type: CMD

command: cat

machine: unixagent

blob_input: <auto_blobt>multi-lined text data for job blob

</auto_blobt>

std_in_file: $$blobt

owner: produser@unixagent

Example: Create an Input Job Blob Using a File at Job Definition Time

This example defines a CMD job that creates and uses an input job blob. When the job is
defined, a blob is created using the textual data contained in the blob_input_file.txt file.
The blob is associated with the job. When the job runs, it uses the created blob as input
and treats the blob data as textual data.

insert_job: test_blob

job_type: CMD

machine: unixagent

command: cat

blob_file: /blob_input_file.txt

std_in_file: $$blobt

owner: produser@unixagent

Example: Create an Error Input Blob

This example captures the standard error output and stores it as a textual format blob
associated with the job.

insert_job: report_job1

job_type: CMD

machine: localhost

command: myapplication

std_err_file: $$blobt

Send a User-Defined Exit Code

236 User Guide

Example: Create an Output Blob

This example captures the standard output and stores it as a textual format blob
associated with the job.

insert_job: report_job1

job_type: CMD

machine: localhost

command: myapplication

std_out_file: $$blobt

Send a User-Defined Exit Code

By default, the scheduling manager interprets an exit code of 0 (zero) as job success and
any other number as job failure. However, you can map exit codes other than 0 as job
success and you can map specific codes as job failure.

Follow these steps:

1. Define a Command job (see page 222).

2. Add one or more of the following attributes to the job definition:

fail_codes

Defines which exit codes indicate job failure.

success_codes

Defines which exit codes indicate job success.

3. Run the job.

The user-defined exit code is sent.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Define a Range of Exit Codes to Indicate Job Failure

Suppose that you want a job named CMDJOB to run the procjob.exe file. The job is
considered to have failed if the exit code is in the 40-50 range.

insert_job: CMDJOB

job_type: CMD

machine: winagt

command: "c:\temp\procjob.exe"

fail_codes: 40-50

Specify a Command or Script Name Without the Full Path

Chapter 7: Command Jobs 237

Example: Define a Exit Code to Indicate Job Success

This example shows the first and last lines of the payroll.sh script. The script returns the
self-defined exit code 100 to the scheduling manager.

#!/usr/bin/sh

.

.

.

exit 100

The following job definition runs the script. The success_codes attribute defines exit
code 100 as success, indicating successful completion of the script.

insert_job: test_blob

job_type: CMD

machine: unixagent

command: /home/esp/payroll.sh

success_codes: 100

Specify a Command or Script Name Without the Full Path

When defining a Command job, the agent usually requires the full path to the command
or script name you want to run. However, you can specify the command or script name
without the full path if the proper conditions are met.

Follow these steps:

1. Define a Command job (see page 222).

2. Add the following attribute to the job definition:

command

Specifies the command, executable, UNIX shell script, application, or batch file
to run when all the starting conditions are met.

UNIX: To specify a name without the full path, the following conditions must be
met:

■ The agent is running under the root account.

■ The agent is configured to resolve environment variables.

■ The user ID you enter in the owner attribute has the authority to run the
job on the agent. The user default shell is used.

■ The path to the script or command name is set in the PATH system
environment variable for the specified user ID.

Specify a Command or Script Name Without the Full Path

238 User Guide

Windows: To specify a name without the full path, the following conditions
must be met:

■ The agent is configured to search for paths to command or script files.

■ The script or command file is located in one of the following directories:

 - The directory the agent is installed in

 - WINDOWS\system32 directory on the agent computer

 - WINDOWS\system directory on the agent computer

 - WINDOWS directory on the agent computer

 - Any other directory whose path is set in the system path or user path on
the agent computer

3. Run the job.

The command or script name is specified.

Notes:

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

■ To configure the agent to resolve environment variables, ask your agent
administrator to refer to the information about the oscomponent.lookupcommand
parameter in the CA Workload Automation Agent for UNIX, Linux, or Windows
Implementation Guide.

■ Environment variables are not currently supported in the command attribute for
Command jobs that run on Windows.

Example: Run a Script that is Located in a Path Set in the PATH Variable (UNIX)

This example runs a script named procscript.sh. The job runs under the user ID jsmith,
which has the authority to run the script. The path to procscript.sh is set in the PATH
system environment variable for jsmith on the agent computer and the agent is
configured to search for paths to command and script files.

insert_job: unix_job

job_type: CMD

machine: unixagent

command: procscript.sh

owner: jsmith

Specify a Command or Script Name Using an Environment Variable (UNIX)

Chapter 7: Command Jobs 239

Example: Specify a Script Name Without the Full Path (Windows)

This example runs a script named procscript.bat. The path to procscript.bat is set in the
system path on the agent computer and the agent is configured to search for paths to
command and script files.

insert_job: win_job

job_type: CMD

machine: winagent

command: procscript.bat

Specify a Command or Script Name Using an Environment
Variable (UNIX)

When defining a Command job on UNIX, you can specify the command or script name
using an environment variable (for example, $MY_PATH/myscript.sh).

Follow these steps:

1. Define a Command job (see page 222).

2. Add the following attribute to the job definition:

command

Specifies the command, executable, UNIX shell script, application, or batch file
to run when all the starting conditions are met. Include the environment
variable in the name.

Note: To use an environment variable, the following conditions must be met:

■ The agent is running under the root account.

■ The agent is configured to resolve environment variables.

■ The user ID you enter in the owner attribute has the authority to run the
job on the agent computer. The user default shell is used.

■ The environment variable you use, such as $MY_PATH, is set in the
specified user ID's profile file.

3. Run the job.

The command or script name is specified.

Run a Script Under a Specific User Account (UNIX)

240 User Guide

Notes:

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

■ To configure the agent to resolve environment variables, ask your agent
administrator to refer to the information about the oscomponent.lookupcommand
parameter in the CA Workload Automation Agent for UNIX, Linux, or Windows
Implementation Guide.

Example: Run a Script that is Located in a Path Set in a User Environment Variable

In this example, an agent named unixagent runs a script named myscript.sh. The job
runs under the user ID jsmith, which has the authority to run the script. The path to
myscript.sh is set in the user environment variable $MY_PATH, which is defined in the
profile file for jsmith. The agent is configured to search for paths to command and script
files.

insert_job: unix_job

job_type: CMD

machine: unixagent

command: $MY_PATH/myscript.sh

owner: jsmith

Run a Script Under a Specific User Account (UNIX)

You can define a Command job to run a UNIX command or script under a specific user's
account.

Follow these steps:

1. On the client computer where you want to run the job, do one of the following:

■ Start the agent as root.

■ Start the agent as a user other than root.

Note: This user account must have permissions to access the resources that the
job requires. If the job is defined to run under a different user (owner), the user
account the agent is started under must have permissions to switch to that
user. Otherwise, the job fails.

Run a Script Under a Specific User Account (UNIX)

Chapter 7: Command Jobs 241

2. Define a Command job (see page 222).

3. Add the following attribute to the job definition:

owner

Specifies the user ID that the job runs under.

Default: The default owner (the user ID who invokes jil to define the job)

Note: The user ID must have the permissions to access the required directories
and run the commands and scripts located on the agent computer.

4. Run the job.

The script runs under the specified user.

Notes:

■ If the shell is specified in the first line of the script and its path matches the path
defined in the oscomponent.validshell parameter, you do not have to specify the
shell attribute in the job definition to define the shell that you want the agent to
use. For example, you can run a script using the environment defined in a specific
user's account.

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

Example: Run a Script Under a Specific User Account

In this example, if the first line of the script is #!/bin/ksh and the path /bin/ksh is
defined using the oscomponent.validshell parameter, you can use the owner attribute
to run the script under a specific user account, as follows:

insert_job: unix_job

job_type: CMD

machine: unixagent

command: /home/guest/bin/cmd1.ksh

owner: guest

In this example, the agent runs the cmd1.ksh Korn script using the environment defined
in either the $HOME/.login file or the
$HOME/.profile file, depending on which login shell is defined for user guest:

■ If csh is defined, the $HOME/.login file is used.

■ If ksh is defined, the $HOME/.profile file is used.

Modify Resource Limits (UNIX)

242 User Guide

The login shell for user guest does not have to be the Korn shell. For example, the agent
can pick up the following environment variables for user guest:

HOME=/home/guest

LOGNAME=guest

USER=guest

SHELL=/usr/bin/csh

PWD=/home/guest

In this example, user guest has specified the login shell as the C shell. The agent,
therefore, runs the cmd1.ksh script using the environment defined in the $HOME/.login
file.

Modify Resource Limits (UNIX)

When you define a Command job to run UNIX workload, you can set the job to modify
resource limits on the agent computer for a given job. For example, you can define a job
that modifies the maximum core file size and CPU times on the UNIX computer.

Follow these steps:

1. Define a Command job (see page 222).

2. Add the following attribute to the job definition:

ulimit

Specifies one or more resource types and their soft and hard limits. Specify the
attribute as follows:

ulimit: resource_type="soft_value,hard_value"

 [,resource_type="soft_value,hard_value"...]

3. Run the job.

The resource limits on the UNIX computer are modified.

Notes:

■ If the job runs under a non-root user ID, the hard limit will not be modified if the
value in the job definition is greater than the hard limit on the UNIX computer.

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

Customize the Run-time Environment for a Korn Shell Script (UNIX)

Chapter 7: Command Jobs 243

Example: Modify Multiple Resource Limits

This example runs the procrun.sh script on the unixagent computer. The job modifies
the following resource limits on the UNIX computer:

■ The core file size limit is 100 KB (soft limit). The size can be increased to 200 KB
(hard limit).

■ The stack size limit is 250 KB (soft limit). The size can be increased to 300 KB (hard
limit).

■ The CPU time can be up to 4000 seconds.

■ The process virtual size limit is 3332 KB (soft limit). The size can be increased to an
unlimited value.

insert_job: cmd_job

job_type: CMD

machine: unixagent

command: /u1/procrun.sh

ulimit: c=”100,200”, s=”250,300”, t=”4000, unlimited”, m=”3332, unlimited”

Note: The resource limits are modified for the current job definition only. When you run
another job, the default values will be used.

Customize the Run-time Environment for a Korn Shell Script
(UNIX)

When you define a Command job to run a Korn shell script under a user's account, you
can customize the job's run-time environment. The agent runs the job using the
specified user's login environment and the run-time environment you specify.

Follow these steps:

1. Define a Command job (see page 222).

2. Ensure that the oscomponent.loginshell parameter in the agent's agentparm.txt file
is set to true.

3. Add the following attributes to the job definition:

envvars: HOME=/directory_name

envvars: ENV=/directory_name/myenv

4. Run the job.

The run-time environment for the Korn shell script is customized. Before running
the Korn script, the agent runs the /directory_name/.profile file and the
/directory_name/myenv file.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Customize the Run-time Environment for a Bourne Shell Script (UNIX)

244 User Guide

Customize the Run-time Environment for a Bourne Shell Script
(UNIX)

When you define a Command job to run a Bourne shell script under a user's account,
you can customize the job's run-time environment. The agent runs the job using the
specified user's login environment and the run-time environment you specify.

Follow these steps:

1. Define a Command job (see page 222).

2. Ensure that the oscomponent.loginshell parameter in the agent's agentparm.txt file
is set to true.

3. Define a specific environment for the Korn shell.

4. Ask your agent administrator to configure the agent to run the Bourne shell script
using the Korn shell

5. Run the job.

The run-time environment for the Bourne shell script is customized.

Notes:

■ The ENV variable only works for the Korn shell. The Korn shell is a superset of the
Bourne shell. Anything that runs under the Bourne shell runs without modification
under the Korn shell.

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

Example: Customize the Run-time Environment for a Bourne Shell Script

This example runs the cmd1.sh Bourne shell script. Before running the script, the agent
runs the following:

■ The login file for user guest

■ The /esp/myenv file

insert_job: cmd_job

job_type: CMD

machine: unixagent

command: /home/bin/cmd1.sh

shell: /bin/ksh

owner: guest

envvars: ENV=/esp/myenv

Customize the Run-time Environment for a C Shell Script (UNIX)

Chapter 7: Command Jobs 245

Customize the Run-time Environment for a C Shell Script
(UNIX)

When you define a Command job to run a C shell script under a user's account, you can
customize the job's run-time environment. The agent runs the job using the specified
user's login environment and the run-time environment you specify.

Follow these steps:

1. Define a Command job (see page 222).

2. Ensure that the oscomponent.loginshell parameter in the agent's agentparm.txt file
is set to true.

3. Set the environment in a .login file.

4. Add the following attribute to the job definition:

envvars: HOME=login_file

login_file

Specifies the path to the .login file.

5. Run the job.

The run-time environment for the C shell script is customized.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Customize the Run-time Environment for a C Shell Script

In this example, the agent picks up the environment for user root and runs the
/home/bin/.login file before running the cmd1.csh C shell script. The agent is running as
root. Note that the login shell for root is not the C shell.

insert_job: cmd_job

job_type: CMD

machine: unixagent

command: /home/guest/bin/cmd1.csh

envvars: HOME=/home/bin/

Define a Command Job to Run a Perl Script (UNIX)

246 User Guide

Define a Command Job to Run a Perl Script (UNIX)

You can define a Command job to run a Perl script on UNIX.

Follow these steps:

1. Ask your agent administrator to add the path of the Perl interpreter to the
oscomponent.validshell parameter in the agent's agentparm.txt file, as shown in
the following example:

oscomponent.validshell=/usr/bin/sh,/bin/csh,/bin/ksh,/usr/local/bin/perl,/usr

/local/bin/bash

Note: If the oscomponent.checkvalidshell parameter is set to false, you do not need
to perform the first step.

2. Define a Command job (see page 222).

3. Add the command attribute to the job definition using the following syntax:

command: /usr/script

script

Specifies the path to the script you want to run.

Example: cmd1.pl

4. Do one of the following:

■ Specify the path to the Perl interpreter in the first line of the script, as shown in
the following example:

Perl Script cmd1.pl

 #!/usr/local/bin/perl

 print " $0 @ARGV\n";

 while (($var, $value) = each %ENV) {

 print "$var = $value\n";

 }

 $live=$ENV{pick};

 print " user variable pick = $live\n";

■ Specify the path to the Perl interpreter in the job definition, using the shell
attribute, as shown in the following example:

insert_job: perl_job

job_type: CMD

machine: unixagent

command: /bin/cmd1.pl Hello world

shell: /usr/local/bin/perl

owner: guest

Run the Windows Command Interpreter (Windows)

Chapter 7: Command Jobs 247

5. Run the job.

The job runs the Perl script.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Run the Windows Command Interpreter (Windows)

You can schedule a job to run a command, a batch script, program executable using the
Windows command interpreter (cmd.exe).

Follow these steps:

1. Verify the following parameters are set in the agent's agentparm.txt file:

oscomponent.lookupcommand=true

oscomponent.cmdprefix.force=true

2. Define a Command job (see page 222).

3. Add the command attribute to the job definition using the following syntax:

command: command argument...

command

Specifies the cmd.exe command to run.

Examples: copy, dir, echo

argument...

Specifies one or more arguments to pass to the cmd.exe command.

Note: Separate each argument with a space. You must specify each argument
in the order it is expected in the program.

4. Run the job.

The job runs the specified cmd.exe command.

Run the Windows Command Interpreter (Windows)

248 User Guide

Notes:

■ If the agent parameters specified in Step 1 are not set to true, you must explicitly
invoke the command interpreter in the command attribute, as follows:

command: "path\cmd.exe /C command argument..."

path

Specifies the path to cmd.exe. The path to cmd.exe depends on your Windows
operating system version. For example, on Windows NT, the path is
C:\WINNT\system32\cmd.exe.

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

Example: Run a Windows Operating System Command

This example lists the contents of the c:\temp directory. The
oscomponent.lookupcommand and oscomponent.cmdprefix.force parameters in the
agentparm.txt file are set to true, so the path to the command interpreter
(path\cmd.exe /c) is automatically prefixed to the command before running the process

insert_job: cmd_job

job_type: CMD

machine: winprod

command: dir "c:\temp\"

Example: Explicitly Invoke the Command Interpreter

This example uses cmd.exe to copy a file to another location. The
oscomponent.lookupcommand and oscomponent.cmdprefix.force parameters in the
agentparm.txt file are not set to true, so the path to the command interpreter must be
explicitly invoked in the command attribute.

insert_job: cmd_job

job_type: CMD

machine: winprod

command: "C:\Windows\system32\cmd.exe /C copy C:\env.txt C:\test\env.txt"

Access Network Resources (Windows)

Chapter 7: Command Jobs 249

Access Network Resources (Windows)

When your agent runs as a Windows service, you can schedule Windows workload that
accesses network resources. For example, you can specify UNC names and share names
in your job definition.

Usually, when running a Windows program as a service, you are restricted to how you
can access data on remote computers. For example, to access data on a remote
computer as a specified user ID, you must run the Windows service with that user ID.

With the agent, however, those restrictions do not apply. Instead of running the agent
service with a specific user ID, you can specify the user ID with the owner attribute in
your job definition. To use the owner attribute, your agent must run as a Windows
service under the local system account (the default configuration).

Follow these steps:

1. Verify with your agent administrator that the agent is running as a Windows service
under the local system account.

2. Ask your scheduling manager administrator to define a user ID and password on the
scheduling manager that has access to the file on the remote Windows system.

3. Define a Command job (see page 222).

4. Add the following attributes to the job definition:

command

Specifies a command, executable, application, or batch file to run when all the
starting conditions are met.

Notes:

■ You can specify UNC (Universal Naming Convention) names. A UNC name
is the name of a file or other resource that begins with two backslashes
(\\), indicating that it exists on a remote computer.

■ You can specify share names. A share name is an alias for the path the
resource exists in.

■ You can specify the share names C$ and ADMIN$ if the agent service logs
on to a remote Windows server as a user with administrative authority.
The agent can then access remote resources that are not marked as
shared.

owner

Specifies the Windows user ID and the domain the user ID belongs to.

Default: The default owner (the user ID who invokes jil to define the job)

5. Run the job.

The job accesses the specified Windows network resources.

Access Network Resources (Windows)

250 User Guide

Notes:

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

■ Before accessing network resources with your agent, verify that you are complying
with the terms of your agent license agreement. In most situations, you are
permitted to access data on remote computers; however, scripts or executable files
run by an agent should use the CPU and memory of the computer where the agent
resides.

■ Although not recommended, your agent administrator can run the agent as a
Windows service under a local user account (the This Account option). When you
run the service under a local user account, when the service starts, it runs using the
security context of the specified user account. If the user account and password are
valid, the service process has access to network resources.

■ When you access a remote computer from an agent on Windows, the user ID
defined in the owner attribute or in the This Account option is a domain user. If the
local and remote servers are standalone servers, you must have the same user IDs
and passwords defined on both servers.

■ For more information on configuring and running the agent as a Windows service,
see the CA Workload Automation Agent for UNIX, Linux, or Windows
Implementation Guide.

Example: Run a Command on a Remote Server

In this example, the path c:\WINNT\Profiles\Visitor\Desktop\ has the share name
MyDesktop. The command notify.cmd is in that path on the CYBNT server. JDOE is a
user ID in the CYBDOM domain and has access to the notify.cmd command. JDOE's
password is defined on the scheduling manager.

insert_job: exe_job1

job_type: CMD

machine: NT20

command: \\CYBNT\MyDesktop\notify.cmd

owner: CYBDOM\JDOE

Example: Run an Executable in Public Folder on a Remote Server

This example runs calc.exe on the CYBNT server. CYBUSER is a user ID in the CYBDOM
domain. CYBUSER is defined on the scheduling manager and has access permission to
the public folder.

insert_job: exe_job2

job_type: CMD

machine: NT30

command: \\CYBNT\public\calc.exe

owner: CYBDOM\CYBUSER

Access Network Resources (Windows)

Chapter 7: Command Jobs 251

Example: Access a Remote Resource Using the C$ Share Name

In this example, drive C is accessed by an administrator over the network through an
agent. The agent is running under the System Account option. The agent runs the test
application in the c:\working directory on the server CYBNT. The directory c:\working is
not a shared resource. The user admin1 is a valid user on both the local and remote
computers and belongs to the Administrators group. admin1 is also in the CYBDOM
domain.

insert_job: exe_job3

job_type: CMD

machine: NT30

command: \\CYBNT\C$\working\test

owner: CYBDOM\admin1

Specifying a Password for a User ID (Windows)

You can define a Command job to access Windows network resources by specifying the
user ID and the domain name the user ID belongs to using the owner attribute. The
resources are accessed under the specified user ID.

Note: To use the owner attribute in a Command job that runs on Windows, your agent
must run as a Windows service under the local system account.

If the user ID requires a password, your administrator must define the password on the
scheduling manager. For security reasons, you do not define the password in the job
definition. Your administrator must define and store the password in the CA Workload
Automation AE database using the autosys_secure command.

When you specify a user ID that requires a password in a job definition, the scheduling
manager sends the agent the user ID and password pair (the password is encrypted).
The scheduling manager searches the repository for an entry matching the specified
owner. The results from the search, the encrypted password or null, are provided to the
agent to run the job.

The following job types require a user password:

■ Database

■ FTP

■ PeopleSoft

■ SAP

■ Command (for Windows)

Chapter 8: Database Jobs 253

Chapter 8: Database Jobs

This section contains the following topics:

Database Jobs (see page 253)
How Database Trigger Jobs Differ from Database Monitor Jobs (see page 254)
User IDs and Passwords for Database Jobs (see page 254)
Define a Database Monitor Job (see page 255)
Define a Database Trigger Job (see page 258)
Define a Database Stored Procedure Job (see page 266)
Define an SQL Job (see page 270)
Attributes with Default Values (see page 278)

Database Jobs

Database jobs let you automate common database tasks on Oracle, Microsoft SQL
Server, Sybase, and IBM DB2 databases.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Databases.

You can define the following database jobs:

SQL

Lets you run an SQL query against a database.

Database Stored Procedure

Lets you run a stored procedure.

Database Trigger

Lets you monitor for added, deleted, and updated rows in a database table.

Database Monitor

Lets you monitor for added and deleted rows in a database table.

How Database Trigger Jobs Differ from Database Monitor Jobs

254 User Guide

How Database Trigger Jobs Differ from Database Monitor Jobs

You can monitor database changes either by using a Database Trigger job or a Database
Monitor job. The Database Trigger job offers the following advantages over Database
Monitor jobs:

■ You can monitor for more conditions. With Database Trigger jobs, you can monitor
for rows added, deleted, and updated. With Database Monitor jobs, you can only
monitor for rows added and deleted. Database Trigger jobs define triggers to the
underlying database being monitored. Database Monitor jobs poll the database
table for changes in row counts or column values.

■ Database Trigger jobs detect all changes made to the database; Database Monitor
jobs monitor for changes only in 10 second intervals, by default.

Suppose that you want to send a notification when a new row is added. Within a
10-second interval, assume a row is added while another row is deleted. A Database
Trigger job that monitors for an INSERT would complete and send the notification when
the new row is detected. A Database Monitor job that monitors for an INCREASE would
not complete or send a notification because no change in the total number of rows was
detected.

Each Database Trigger job creates a database trigger on the database. The database
trigger templates are provided with the agent. Before using a Database Trigger job,
consult with your database administrator.

Notes:

■ A table being monitored should not be dropped because the Database Trigger or
Database Monitor job remains in the RUNNING status even if the table has been
dropped.

■ For more information about the database trigger templates, see the db.trig.propfile
parameter in the CA Workload Automation Agent for Databases Implementation
Guide.

User IDs and Passwords for Database Jobs

All database jobs require a user ID that has the appropriate permissions to access the
information in the database. The job runs under that user ID. You specify a user ID using
the owner attribute.

These database user IDs and passwords must be defined on CA Workload Automation
AE by using the autosys_secure command. When you define a database job, specify a
database user ID using the owner attribute, or use the default owner value.

Note: For more information about the autosys_secure command, see the Reference
Guide.

Define a Database Monitor Job

Chapter 8: Database Jobs 255

Define a Database Monitor Job

You can define a Database Monitor job to monitor a database table for an increase or
decrease in the number of rows. To monitor the database table for specific changes, you
can add a monitor condition to the job definition. When the condition is met, the job
completes.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Databases.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: DBMON

Specifies that the job type is Database Monitor.

machine

Specifies the name of the machine on which the job runs.

tablename

Specifies the name of the database table to monitor for the changes.

2. Do one of the following:

■ Ensure that a default database resource location is defined in the agent's
agentparm.txt file using the db.default.url parameter.

■ Add the following attribute to the definition:

connect_string

Specifies the database resource location.

 Note: This attribute overrides the db.default.url agent parameter.

3. (Optional) Specify the following attribute:

owner

Specifies the user ID that the job runs under. This value overrides the default
owner of the job.

Default: The user ID who invokes jil to define the job

Note: Windows authentication is not supported.

Define a Database Monitor Job

256 User Guide

4. (Optional) Specify optional Database Monitor attributes:

■ continuous

■ job_class

■ job_terminator

■ monitor_cond

■ monitor_type

■ user_role

5. (Optional) Specify common attributes that apply to all job types.

The Database Monitor job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Monitor a Table for Added Rows

This example monitors for an increase in the number of rows in the staff table. The table
is in a SQL Server database named ORDERS.

insert_job: dbmon_add

job_type: DBMON

machine: dbagent

owner: dbuser@MSSQL

tablename: staff

monitor_type: INCREASE

connect_string: "jdbc:sqlserver://myhost:1433;DatabaseName=ORDERS"

Define a Database Monitor Job

Chapter 8: Database Jobs 257

Example: Monitor a Table for Added or Deleted Rows

This example monitors the STAFF table for a change in the number of rows. When a row
that contains the name Jonson is added or deleted, the job completes. The job connects
to the default database resource location defined on the agent.

insert_job: dbmon_job

job_type: DBMON

machine: dbagent

owner: entadm@myhost

monitor_type: VARIANCE

tablename: staff

monitor_cond: NAME='Jonson'

Example: Monitor a Table for Added Rows With a Condition

This example monitors the emp table for an increase in the number of rows. When a
new row has a sal greater than 100000, the job completes. The job connects to a SQL
Server database named ORDERS. The database user ID is set to the user who invokes jil
to define the job (the default owner).

insert_job: dbmon1

job_type: DBMON

machine: DB_agent

owner: dbuser@MSSQL

monitor_type: INCREASE

monitor_cond: sal>100000

tablename: emp

connect_string: "jdbc:sqlserver://myhost:1433;DatabaseName=ORDERS"

More information:

Insert a Job Definition (see page 88)

Define a Database Trigger Job

258 User Guide

Define a Database Trigger Job

You can define a Database Trigger job to monitor a database table for added, deleted,
or updated rows. To monitor the database table for specific changes, you can add a
condition to the job definition. When the condition is met, the job completes.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Databases.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: DBTRIG

Specifies that the job type is Database Trigger.

machine

Specifies the name of the machine on which the job runs.

dbtype

Specifies the type of the database that the job monitors.

tablename

Specifies the name of the database table to monitor for the changes.

2. Do one of the following:

■ Ensure that a default database resource location is defined in the agent's
agentparm.txt file using the db.default.url parameter.

■ Add the following attribute to the definition:

connect_string

Specifies the database resource location.

 Note: This attribute overrides the db.default.url agent parameter.

3. (Optional) Specify the following attribute:

owner

Specifies the user ID that the job runs under. This value overrides the default
owner of the job.

Default: The user ID who invokes jil to define the job

Note: This user ID must be authorized to create triggers on the database or
schema the table belongs to. For Microsoft SQL Server, this user ID must own
the database table identified by the tablename attribute. The password for the
user must be defined in the database using the autosys_secure command.
Windows authentication is not supported.

Define a Database Trigger Job

Chapter 8: Database Jobs 259

4. (Optional) Specify optional Database Trigger attributes:

■ continuous

■ job_class

■ job_terminator

■ trigger_cond

■ trigger_type

■ user_role

5. (Optional) Specify common attributes that apply to all job types.

The Database Trigger job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Monitor a Table for Added Rows

This example monitors the emp table. The trigger_type attribute is not specified, so the
job monitors for added rows by default. When a row is added, the job completes. The
database resource location is defined on the agent, so the connect_string attribute is
not required in the job definition.

insert_job: dbtrig_job

job_type: DBTRIG

machine: DB_agent

owner: dbuser@ORA

dbtype: Oracle

tablename: emp

Define a Database Trigger Job

260 User Guide

More information:

Insert a Job Definition (see page 88)

Examples: Monitoring Oracle Database Tables

The following examples are Database Trigger Jobs that monitor Oracle database tables:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Monitor an Oracle Database Table for Deleted Rows

This example monitors the emp table for deleted rows. The job runs under the user
named scott, who has the authority to create triggers on the database or schema the
table belongs to. When a row is deleted, the job completes.

insert_job: dbtrig2

job_type: DBTRIG

machine: DB_agent

dbtype: Oracle

trigger_type: DELETE

tablename: emp

owner: scott@orcl

connect_string: "jdbc:oracle:thin:@myhost:1521:orcl"

Example: Monitor an Oracle Database Table for an Added or Deleted Row

This example monitors the emp table for an added row or a deleted row. The job runs
under the user named scott, who has the authority to create triggers on the database or
schema the table belongs to. The job remains in a RUNNING state while waiting for an
added or deleted row. When a row is either added or deleted, the job completes.

insert_job: dbtrig_ora

job_type: DBTRIG

machine: dbagent

dbtype: Oracle

trigger_type: DELETE,INSERT

tablename: emp

owner: scott@orcl

connect_string:"jdbc:oracle:thin:@myhost:1521:orcl"

Define a Database Trigger Job

Chapter 8: Database Jobs 261

Examples: Specify Trigger Conditions for Deleted Rows in an Oracle Database

■ This example monitors the emp table for deleted rows. The job runs under a user
who has the authority to create triggers on the database or schema the table
belongs to. The job connects to the default database resource location defined on
the agent. When a row containing deptno 75 is deleted, the job completes.

insert_job: dbtrig_delete

job_type: DBTRIG

machine: dbagent

dbtype: Oracle

trigger_type: DELETE

trigger_cond: old.deptno=75

tablename: emp

owner: scott@orcl

■ This example monitors the emp table for added rows. The job runs under a user
who has the authority to create triggers on the database or schema the table
belongs to. When a row containing an ename beginning with the letter g is added,
the job completes.

insert_job: dbtrig_insert

job_type: DBTRIG

machine: dbagent

dbtype: Oracle

trigger_type: INSERT

trigger_cond: new.ename like 'g%%'

tablename: emp

owner: scott@orcl

connect_string:"jdbc:oracle:thin:@myhost:1521:orcl"

■ This example monitors the emp table for added or updated rows. The job runs
under a user who has the authority to create triggers on the database or schema
the table belongs to. The job completes when a new or updated row does not
contain a job field equal to sales.

Note: The <> symbol indicates not equal to.

insert_job: dbtrig_insertupdate

job_type: DBTRIG

machine: dbagent

dbtype: Oracle

trigger_type: INSERT,UPDATE

trigger_cond: new.job<>'sales'

tablename: emp

owner: scott@orcl

connect_string:"jdbc:oracle:thin:@myhost:1521:orcl"

Define a Database Trigger Job

262 User Guide

Examples: Monitoring Microsoft SQL Server Database Tables

The following examples are Database Trigger jobs that monitor Microsoft SQL Server
database tables:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Monitor a SQL Server Database Table for a New or Deleted Row

This example monitors the stores table for an added row or a deleted row. The job runs
under the sa user, who owns the table and is authorized to create triggers on the
database or schema the table belongs to. The job remains in a RUNNING state waiting
for an added or deleted row. When a row is either added or deleted, the job completes.

insert_job: dbtrig1

job_type: DBTRIG

machine: DB_agent

trigger_type: DELETE,INSERT

tablename: stores

dbtype: MSSQL

owner: sa@myhost

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

Example: Monitor a SQL Server Database Table for Two Changes

This example monitors the sales table for changes to the ord_date and qty columns. The
job runs under the sa user, who owns the table and is authorized to create triggers on
the database or schema the table belongs to. The job completes only when both
columns have changed.

insert_job: dbtrig_sqlsvr

job_type: DBTRIG

machine: dbagent

dbtype: MSSQL

owner: sa@myhost

connect_string: "jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

tablename: sales

trigger_type: UPDATE

trigger_cond: UPDATE(ord_date) and UPDATE(qty)

Define a Database Trigger Job

Chapter 8: Database Jobs 263

Example: Monitor a SQL Server Database Table for Added Rows with a Trigger
Condition

This example monitors the sales table for added rows. The job runs under the sa user,
who owns the table and is authorized to create triggers on the database or schema the
table belongs to. The job connects to the default database resource location defined on
the agent. When the qty for inserted title ID TC7777 is greater than or equal to 20, the
job completes.

insert_job: dbtrig3

job_type: DBTRIG

machine: DB_agent

dbtype: MSSQL

trigger_type: INSERT

trigger_cond: (select QTY from INSERTED where TITLE_ID='TC7777')>=20

tablename: sales

owner: sa@myhost

Example: Monitor a SQL Server Database Table for Deleted Rows

This example monitors the sales table for deleted rows. The job runs under the sa user,
who owns the table and is authorized to create triggers on the database or schema the
table belongs to. The job completes when a row is deleted.

insert_job: dbtrig4

job_type: DBTRIG

machine: DB_agent

dbtype: MSSQL

trigger_type: DELETE

tablename: sales

owner: sa@myhost

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

Define a Database Trigger Job

264 User Guide

Examples: Monitoring IBM DB2 Database Tables

The following examples are Database Trigger jobs that monitor IBM DB2 Server
database tables:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Monitor an IBM DB2 Database Table for Added Rows with a Trigger
Condition

This example monitors the STAFF table for added rows. The job runs under the entadm
user, who owns the table and is authorized to create triggers on the database or schema
the table belongs to. When the total number of rows is greater than or equal to 37, the
job completes.

insert_job: dbtrig1

job_type: DBTRIG

machine: DB_agent

dbtype: DB2

trigger_type: INSERT

trigger_cond: (select count(*) from STAFF)>=37

tablename: STAFF

owner: entadm@myhost

connect_string:"jdbc:db2://172.31.255.255:50000/SAMPLE"

Example: Monitor an IBM DB2 Database Table for Changes

This example monitors the STAFF table for changes. The job connects to the SAMPLE
database and runs under the entadm user, who is authorized to create triggers on the
database or schema the table belongs to. The job completes when the table has
changed.

insert_job: dbtrig_db2

job_type: DBTRIG

machine: dbagent

dbtype: DB2

owner: entadm@myhost

connect_string:"jdbc:db2://172.31.255.255:50000/SAMPLE"

tablename: STAFF

dbtype: DB2

trigger_type: UPDATE

Define a Database Trigger Job

Chapter 8: Database Jobs 265

Example: Monitoring a Sybase Database Table

The following example is a Database Trigger Job that monitors a Sybase database table:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Monitor a Sybase Database Table for Changes

This example monitors the ap_invoices table for changes. The job connects to the
Sybase database named APDB that is reachable on port 5001 on a host named myhost.
The job completes when the table has changed.

insert_job: db_sqltrig_upd

job_type: DBTRIG

machine: localhost

dbtype: Sybase

connect_string: "jdbc:sybase:Tds:myhost:5001/APDB"

trigger_type: UPDATE

tablename: ap_invoices

owner: admin@myhost

Define a Database Stored Procedure Job

266 User Guide

Define a Database Stored Procedure Job

You can define a Database Stored Procedure job to invoke a procedure stored in a
database. You can add criteria to the job definition to test the procedure’s output. If the
result matches the criteria, the job completes successfully. When the procedure
executes, the output parameter values from the database are returned to CA Workload
Automation AE. You can view the output parameter values in the job’s spool file. By
default, the agent separates the output parameter values in the return string with a
vertical bar (|).

If you are using Oracle or SQL Server, you can also define a Database Stored Procedure
job to run a stored function.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Databases.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: DBPROC

Specifies that the job type is Database Stored Procedure.

machine

Specifies the name of the machine on which the job runs.

sp_name

Specifies the database stored procedure to run.

2. Do one of the following:

■ Ensure that a default database resource location is defined in the agent's
agentparm.txt file using the db.default.url parameter.

■ Add the following attribute to the definition:

connect_string

Specifies the database resource location.

 Note: This attribute overrides the db.default.url agent parameter.

3. (Optional) Specify the following attribute:

owner

Specifies the user ID that the job runs under. This value overrides the default
owner of the job.

Default: The user ID who invokes jil to define the job

Note: Windows authentication is not supported.

Define a Database Stored Procedure Job

Chapter 8: Database Jobs 267

4. (Optional) Specify optional Database Stored Procedure attributes:

■ job_class

■ job_terminator

■ result_type

■ sp_arg

■ success_criteria

■ user_role

5. (Optional) Specify common attributes that apply to all job types.

The Database Stored Procedure job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Invoke a Stored Procedure from a Database

This example invokes the calcproc stored procedure. The default database resource
location is defined on the agent, so the connect_string attribute is not required in the
job definition.

insert_job: sp_default

job_type: DBPROC

machine: DB_agent

owner: dbuser@dbhost

sp_name: calcproc

Define a Database Stored Procedure Job

268 User Guide

Example: Invoke a Stored Procedure from a SQL Server Database

This example invokes the byroyalty stored procedure located in the pubs database.
When the job runs, a value of 40 is passed to the input parameter named percentage.

insert_job: sp1_job

job_type: DBPROC

machine: DB_agent

owner: sa

sp_name: byroyalty

sp_arg: name=percentage, argtype=IN, datatype=INTEGER, value=40

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

Example: Invoke a Stored Procedure with Input and Output Parameters from a SQL
Server Database

This example invokes the following stored procedure located in the pubs database. The
procedure returns a value from the emp table.

CREATE PROCEDURE EMPLOY

(@f_name VARCHAR(20),

@l_name VARCHAR(30),

@pubid CHAR(4) OUTPUT)

AS BEGIN

SELECT

@pubid=pub_id

FROM emp

WHERE

fname=@f_name

and

lname=@l_name

print @l_name+@f_name+@pubid

END

GO

The job returns the pubid that matches the employee named John Doe. The pubid is
recorded in the job’s spool file.

insert_job: sp2_job

job_type: DBPROC

machine: DB_agent

sp_name: EMPLOY

sp_arg: name=f_name, argtype=IN, datatype=VARCHAR, value=John

sp_arg: name=l_name, argtype=IN, datatype=VARCHAR, value=Doe

sp_arg: name=pubid, argtype=OUT, datatype=CHAR

owner: sa

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

Define a Database Stored Procedure Job

Chapter 8: Database Jobs 269

Example: Invoke a Stored Procedure with Input and Output Parameters from an IBM
DB2 Database

This example invokes the following stored procedure under the user entadm:

CREATE PROCEDURE DEPT_MEDIAN

 (IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

 LANGUAGE SQL

 BEGIN

 DECLARE v_numRecords INTEGER DEFAULT 1;

 DECLARE v_counter INTEGER DEFAULT 0;

 DECLARE c1 CURSOR FOR

 SELECT CAST(salary AS DOUBLE) FROM staff

 WHERE DEPT = deptNumber

 ORDER BY salary;

 DECLARE EXIT HANDLER FOR NOT FOUND

 SET medianSalary = 6666;

-- initialize OUT parameter

 SET medianSalary = 0;

 SELECT COUNT(*) INTO v_numRecords FROM staff

 WHERE DEPT = deptNumber;

 OPEN c1;

 WHILE v_counter < (v_numRecords / 2 + 1) DO

 FETCH c1 INTO medianSalary;

 SET v_counter = v_counter + 1;

 END WHILE;

 CLOSE c1;

 END

DEPT_MEDIAN returns the median salary for the department with deptNumber 20 from
the STAFF table. The median salary, 18171.25, is recorded in the job’s spool file.

insert_job: deptmed

job_type: DBPROC

machine: DB_agent

sp_name: ENTADM.DEPT_MEDIAN

sp_arg: name=deptNumber, argtype=IN, datatype=SMALLINT, value=20

sp_arg: name=medianSalary, argtype=OUT, datatype=DOUBLE

owner: entadm

connect_string:"jdbc:db2://172.31.255.255:50000/SAMPLE"

The spool file for this job contains the following output:

--

Output of messages for workload object DEPTMED/DBAPPL.7/MAIN

Start date Thu Aug 31 15:23:44 EDT 2006

--

{ call ENTADM.DEPT_MEDIAN(?, ?) }

medianSalary=18171.25

Define an SQL Job

270 User Guide

More information:

Insert a Job Definition (see page 88)

Define an SQL Job

You can define an SQL job to run an SQL query against an Oracle, SQL Server, Sybase, or
DB2 database. When the job runs, the SQL statement is invoked and the results are
stored in an output file or job spool file. You can also add criteria to the job definition to
test the query result. If the result matches the criteria, the job completes successfully.
Otherwise, the job fails.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Databases.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SQL

Specifies that the job type is SQL.

machine

Specifies the name of the machine on which the job runs.

sql_command

Specifies the SQL statement to run against a database table.

2. Do one of the following:

■ Ensure that a default database resource location is defined in the agent's
agentparm.txt file using the db.default.url parameter.

■ Add the following attribute to the definition:

connect_string

Specifies the database resource location.

 Note: This attribute overrides the db.default.url agent parameter.

3. (Optional) Specify the following attribute:

owner

Specifies the user ID that the job runs under. This value overrides the default
owner of the job.

Default: The user ID who invokes jil to define the job

Note: Windows authentication is not supported.

Define an SQL Job

Chapter 8: Database Jobs 271

4. (Optional) Specify optional SQL attributes:

■ destination_file

■ job_class

■ job_terminator

■ success_criteria

■ user_role

5. (Optional) Specify common attributes that apply to all job types.

The SQL job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Delete a Row from a Table

This example deletes the row for stor_id 6523 from the stores table. The default
database resource location is defined on the agent, so the connect_string attribute is
not required in the job definition.

insert_job: deletejob

job_type: SQL

machine: DB_agent

sql_command: DELETE FROM stores WHERE stor_id='6523'

owner: scott@orcl

Define an SQL Job

272 User Guide

More information:

Insert a Job Definition (see page 88)

Examples: Running SQL Queries Against Oracle Database Tables

The following examples are jobs that run SQL queries against Oracle database tables:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Add a Row to an Oracle Database Table

This example adds a row of data to the emp table.

insert_job: insertjob

job_type: SQL

machine: DB_agent

sql_command: INSERT INTO EMP(EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)

VALUES(2476, 'robert', 'sales', 435, '01-OCT-2011', 65000, 10, 75)

owner: scott@orcl

connect_string:"jdbc:oracle:thin:@myhost:1521:orcl"

Example: Update a Row in an Oracle Database Table

This example updates a record in the emp table and changes the sal to 75,000 for the
employee with ename robert.

insert_job: updatejob

job_type: SQL

machine: DB_agent

sql_command: UPDATE EMP SET SAL=75000 where ENAME='robert'

owner: scott@orcl

connect_string:"jdbc:oracle:thin:@myhost:1521:orcl"

Example: Delete a Row from an Oracle Database Table

This example deletes a row from the emp table for the employee with ename robert.

insert_job: deletejob

job_type: SQL

machine: DB_agent

sql_command: DELETE FROM EMP WHERE ENAME='robert'

owner: scott@orcl

connect_string:"jdbc:oracle:thin:@myhost:1521:orcl"

Define an SQL Job

Chapter 8: Database Jobs 273

Example: Return Data from an Oracle Database Table that Match a Condition

This example queries the emp table for enames that have salaries greater than 40,000.
If the query returns an ename that begins with the letter d, the job completes:

insert_job: selectjob

job_type: SQL

machine: DB_agent

sql_command: SELECT ename FROM emp WHERE sal > 40000

owner: scott@orcl

success_criteria: ENAME=d.*

connect_string:"jdbc:oracle:thin:@myhost:1521:orcl"

destination_file: /emp/salary.txt

For example, the salary.txt file contains the following output:

Output for: SELECT ename FROM emp WHERE sal > 40000

ENAME

donald

Examples: Running SQL Queries Against Microsoft SQL Server Database Tables

The following examples are jobs that run SQL queries against Microsoft SQL Server
database tables:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Add a Row to a SQL Server Database Table

This example adds a row for a new store to the stores table.

insert_job: insertjob

job_type: SQL

machine: DB_agent

sql_command: INSERT INTO stores(stor_id, stor_name, stor_address, city, state, zip)

VALUES('6523', 'BooksMart', '6523 Main St.', 'San Diego', 'CA', '93223')

owner: sa@myhost

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

Define an SQL Job

274 User Guide

Example: Delete a Row from a SQL Server Database Table

This example deletes the row for stor_id 6523 from the stores table.

insert_job: deletejob

job_type: SQL

machine: DB_agent

sql_command: DELETE FROM stores WHERE stor_id='6523'

owner: sa@myhost

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

Example: Update a Row in a SQL Server Database Table

This example updates the row in the sales table that matches ord_num 6871 and
changes the values for the ord_date and qty.

insert_job: updatejob

job_type: SQL

machine: DB_agent

sql_command: UPDATE sales SET ord_date='6/15/2006', qty=10 WHERE ord_num='6871'

owner: sa@myhost

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

Example: Return Data from a SQL Server Database Table that Match a Condition

This example queries the sales table for ord_num that have a qty greater than 20. The
ord_num that match the query appear in the output file ordnum.txt.

insert_job: selectjob

job_type: SQL

machine: DB_agent

sql_command: SELECT ord_num FROM sales WHERE qty > 20

owner: sa@myhost

success_criteria: ord_num=A2976

connect_string:"jdbc:sqlserver://myhost:1433;DatabaseName=pubs"

destination_file: "C:\sales\ordnum.txt"

Define an SQL Job

Chapter 8: Database Jobs 275

The ordnum.txt file contains the following ord_num:

A2976

QA7442.3

P2121

N914014

P3087a

P3087a

X999

P723

QA879.1

The job completes because the query returns an ord_num that matches the job criteria
A2976.

Suppose that we change the success_criteria attribute to the following:

success_criteria: B+[0-9]

In this case, the query would return the same order numbers, but the job fails because it
cannot find a matching ord_num containing the letter B and followed by a number.

Examples: Running SQL Queries Against Sybase Database Tables

The following examples are jobs that run SQL queries against Sybase database tables:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Add a Row to a Sybase Database Table

This example adds a row for a new store to the stores table.

insert_job: insertjob

job_type: SQL

machine: DB_agent

sql_command: INSERT INTO stores(stor_id, stor_name, stor_address, city, state, zip)

VALUES('6523', 'BooksMart', '6523 Main St.', 'San Diego', 'CA', '93223')

owner: sa@myhost

connect_string:"jdbc:sybase:Tds:myhost:5001/APDB"

Define an SQL Job

276 User Guide

Example: Delete a Row from a Sybase Table

This example deletes the row for stor_id 6523 from the stores table.

insert_job: deletejob

job_type: SQL

machine: DB_agent

sql_command: DELETE FROM stores WHERE stor_id='6523'

owner: sa@myhost

connect_string:"jdbc:sybase:Tds:myhost:5001/APDB"

Example: Update a Row in a Sybase Table

This example updates the row in the sales table that matches ord_num 6871 and
changes the values for the ord_date and qty.

insert_job: updatejob

job_type: SQL

machine: DB_agent

sql_command: UPDATE sales SET ord_date='6/15/2006', qty=10 WHERE ord_num='6871'

owner: sa@myhost

connect_string:"jdbc:sybase:Tds:myhost:5001/APDB"

Examples: Running SQL Queries Against IBM DB2 Database Tables

The following examples are jobs that run SQL queries against IBM DB2 database tables:

Note: These examples use optional database attributes. For more information about the
optional attributes and their JIL syntax, see the Reference Guide.

Example: Add a Row to an IBM DB2 Database Table

This example adds a row of data to the STAFF table under the user entadm.

insert_job: insertjob

job_type: SQL

machine: DB_agent

sql_command: INSERT into ENTADM.STAFF(ID, NAME, DEPT, JOB, YEARS, SALARY, COMM)

VALUES(556, 'Jonson', 84, 'Sales', 1, 40500.50, 100)

owner: entadm@myhost

connect_string:"jdbc:db2://172.31.255.255:50000/SAMPLE"

Define an SQL Job

Chapter 8: Database Jobs 277

Example: Update a Row in an IBM DB2 Database Table

This example updates a record in the STAFF table under the user entadm. The job
changes the years to 3 for the employee with the name Jonson.

insert_job: updatejob

job_type: SQL

machine: DB_agent

sql_command: UPDATE ENTADM.STAFF SET YEARS=3 where NAME="Jonson"

owner: entadm@myhost

connect_string:"jdbc:db2://172.31.255.255:50000/SAMPLE"

Example: Delete a Row from an IBM DB2 Database Table

This example deletes a row from the STAFF table under the user entadm for the
employee with the name Jonson.

insert_job: deletejob

job_type: SQL

machine: DB_agent

sql_command: DELETE FROM ENTADM.STAFF where NAME="Jonson"

owner: entadm@myhost

connect_string:"jdbc:db2://172.31.255.255:50000/SAMPLE"

Example: Return Data from an IBM DB2 Database Table that Match a Condition

This example queries the STAFF table under the user entadm for names that have
salaries greater than 40,000. If the query returns a name that begins with the letter J,
the job completes.

insert_job: selectjob

job_type: SQL

machine: DB_agent

sql_command: SELECT NAME FROM ENTADM.STAFF where SALARY > 40000

owner: entadm@myhost

success_criteria: NAME=J.*

connect_string:"jdbc:db2://172.31.255.255:50000/SAMPLE"

destination_file: /staff/salary.txt

For example, the salary.txt file contains the following output:

Output for: SELECT NAME FROM ENTADM.STAFF where SALARY > 40000

NAME

Jonson

Attributes with Default Values

278 User Guide

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Database job attributes have default values:

connect_string

Specifies the database resource location.

Default: db.default.url agent parameter, if specified

Note: If you do not specify the connect_string attribute, the default database
resource location must be defined in the db.default.url parameter in the agent's
agentparm.txt file. Otherwise, the job fails.

destination_file (SQL jobs only)

Specifies the output destination file that stores the SQL query results.

Default: spooldir agent parameter, if specified

monitor_type (Database Monitor jobs only)

Specifies the type of database change to monitor for.

Default: VARIANCE (The job monitors for an increase or a decrease in the number
of rows in the table.)

owner

Specifies the user ID that the job runs under.

Default: The user ID who invokes jil to define the job

Note: Windows authentication is not supported.

trigger_type (Database Trigger jobs only)

Specifies the type of database change to monitor for.

Default: INSERT (The job monitors for an insertion of a row in the table.)

user_role

Specifies the Oracle database user type.

Default: db.default.userType agent parameter, if specified

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Attributes with Default Values

Chapter 8: Database Jobs 279

Example: Override Default Values

Suppose that you want to run an SQL job that queries the NEWORDS table. This job
overrides the default database resource location defined on the agent using the
connect_string attribute. This job also overrides the default owner with the dbuser1
user ID, who is logged in with sysdba privileges. The output is stored in the job's spool
file by default.

insert_job: QRY1

job_type: SQL

machine: dbagent

owner: dbuser1@myhost

user_role: as sysdba

sql_command: SELECT * from NEWORDS

connect_string: "jdbc:oracle:thin:@172.31.255.255:1433:ORDERS"

Chapter 9: File Trigger Jobs 281

Chapter 9: File Trigger Jobs

This section contains the following topics:

File Trigger Jobs (see page 281)
Define a File Trigger Job (see page 282)
Monitor for Other Types of File Activity (see page 284)
Attributes with Default Values (see page 288)
Monitor a File Continuously (see page 290)
Monitor a File that is Owned by a UNIX Owner or Group (see page 291)
Configure the Agent to Run File Trigger Jobs as an External Process (see page 293)
Resolve File Names That Contain Variables (see page 293)
Monitor a File on a Remote UNIX Computer (see page 294)
Monitor a File on a Remote Windows Computer (see page 295)

File Trigger Jobs

File Trigger jobs let you monitor file activity. You can define File Trigger jobs for UNIX,
Linux, Windows, or i5/OS systems.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

The File Trigger job can monitor when a file is created, updated, deleted, expanded, or
shrunk, and when a file exists or does not exist.

Example: Monitor for an Update to a File

Suppose that a File Trigger job named PAYDATA monitors for an update to the
payroll.dat file on a Windows computer. When the file is updated, the job completes
and the scheduling manager releases a job named PAYRUN.

Define a File Trigger Job

282 User Guide

The following diagram shows the scenario:

Define a File Trigger Job

You can define a File Trigger job to monitor when a file is created, updated, deleted,
expanded, or shrunk, and when a file exists or does not exist. By default, File Trigger
jobs monitor for the existence of a file.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or
Windows.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: FT

Specifies that the job type is File Trigger.

machine

Specifies the name of the machine on which the job runs.

watch_file

Specifies the path to and name of one or more files to monitor.

Define a File Trigger Job

Chapter 9: File Trigger Jobs 283

2. (Optional) Specify optional File Trigger attributes:

■ continuous

■ job_class

■ job_terminator

■ watch_file_change_type

■ watch_file_change_value

■ watch_file_groupname

■ watch_file_owner

■ watch_file_recursive

■ watch_file_type

■ watch_file_win_user

■ watch_no_change

3. (Optional) Specify common attributes that apply to all job types.

The File Trigger job is defined. When the job runs, it monitors for the existence of
the specified file.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Monitor for Other Types of File Activity

284 User Guide

Example: Monitor for the Existence of a File

This example monitors for the existence of the batch.input file in the tmp directory. If
the file exists in the directory, the job completes. If the file does not exist in that
directory, the job fails.

insert_job: ft_job

job_type: FT

machine: unixagt

watch_file: /tmp/batch.input

watch_file_type: EXIST

More information:

Insert a Job Definition (see page 88)

Monitor for Other Types of File Activity

A File Trigger job checks for the existence of a file by default. You can define the job to
monitor for other types of file activity.

Follow these steps:

1. Define a File Trigger job (see page 282).

2. Add the following attribute to the job definition:

watch_file_type

Specifies the type of file activity that a File Trigger job monitors for. Choose one
of the following options:

■ CREATE—Indicates that the file trigger occurs when the file is located and
remains unchanged for the amount of time specified in the
watch_no_change attribute. When the watch_no_change attribute is not
specified, the trigger occurs as soon as the file is located. A file that exists
when the job starts is located during the first scan, which occurs 30
seconds after the job starts. Subsequent scans occur every 30 seconds, so
a file that does not exist when the job starts is located a maximum of 30
seconds after it is created.

■ DELETE—Indicates that the file trigger occurs when the file is deleted.

■ EXIST—Indicates that the file trigger occurs if the file exists. If the file does
not exist, the job fails.

Monitor for Other Types of File Activity

Chapter 9: File Trigger Jobs 285

■ EXPAND—Indicates that the file trigger occurs when the file meets the
specified size requirements and then remains unchanged for the amount
of time specified in the watch_no_change attribute. When the
watch_no_change attribute is not specified, the trigger occurs as soon as
the size requirements are met. When the file meets the size requirements
before the job starts, the job detects this during the first scan. In this case,
the trigger occurs 30 seconds after the job starts unless the
watch_no_change attribute is specified. The size requirement is met when
the file is equal to or larger than the specified size or expands by at least
the specified amount, depending on the type of size change that you
specify in the job definition.

■ SHRINK—Indicates that the file trigger occurs when the file meets the
specified size requirements and then remains unchanged for the amount
of time specified in the watch_no_change attribute. When the
watch_no_change attribute is not specified, the trigger occurs as soon as
the size requirements are met. When the file meets the size requirements
before the job starts, the job detects this during the first scan. In this case,
the trigger occurs 30 seconds after the job starts unless the
watch_no_change attribute is specified. The size requirements are met
when the file is equal to or smaller than the specified size or shrinks by at
least the specified amount.

■ UPDATE—Indicates that the file trigger occurs when the file is updated and
then remains unchanged for the amount of time specified in the
watch_no_change attribute. When the watch_no_change attribute is not
specified, the trigger occurs as soon as the file is updated.

■ GENERATE—Indicates that the trigger occurs when the file is created or
updated and then remains unchanged for the amount of time specified in
the watch_no_change attribute. When the watch_no_change attribute is
not specified, the trigger occurs as soon as the file is created or updated.

Note: If the file exists when the job starts and is not updated after the job
starts, no trigger occurs. In this case, the job does not complete and remains in
the RUNNING state indefinitely.

Monitor for Other Types of File Activity

286 User Guide

3. (As applicable) Specify the size change information. Ensure that you specify this
information for any job that monitors for the creation of a file or for a change in the
size of file; otherwise, it is not applicable. To specify size change information, enter
the following attribute arguments:

[watch_file_change_type: {DELTA|PERCENT|SIZE}]

watch_file_change_value: value

[watch_file_change_type: {DELTA|PERCENT}]

(Optional) Specifies the type of size as follows:

By default, the trigger occurs when the file expands to or shrinks to the
specified size. To issue a trigger when a file expands or decreases by a specified
amount, include this argument. You can measure expansion or shrinkage as a
percentage of total size or as a specific amount.

watch_file_change_value: value

Specifies a number of bytes or a percentage depending on the type of size
change you specified. The trigger occurs when the file expands to at least the
specified size or by at least the specified amount, when the file shrinks by at
least the specified amount, or when the file shrinks to the specified size or less.

When monitoring for a specific size or for a change in size that is not a
percentage change, specify the value in bytes. When measuring size change as
a percentage of the total size, specify a value between 1 and 100.

4. Run the job.

The job monitors the file for the specified activity.

Notes:

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

■ By default, the agent scans for the monitored conditions every 30 seconds. If the
file changes more than once between scans, the trigger occurs only once or not at
all. For example, suppose that your job monitors for the creation of a file and that
file is created and deleted between scans. The trigger does not occur because the
file does not exist when the directory is scanned.

Example: Monitor the Creation of a File

This example monitors for the creation of a file named monthly.log. The job completes
when the file is created.

insert_job: ft_job

job_type: FT

machine: ftagt

watch_file: "c:\data\monthly.log"

watch_file_type: CREATE

Monitor for Other Types of File Activity

Chapter 9: File Trigger Jobs 287

Example: Monitor the Creation and Stability of a File

This example monitors for the creation of a file named monthly.log. The job completes
when the file is created and has not changed for consecutive watch_no_change polling
intervals.

insert_job: ft_job

job_type: FT

machine: ftagt

watch_file: "c:\data\monthly.log"

watch_file_type: GENERATE

watch_no_change: 2

Example: Monitor for the Deletion of Files with Names Beginning with Pay

This example continuously monitors the /usr/data/ directory for files that have names
beginning with pay. When all files that have a name beginning with pay are deleted, the
job completes successfully.

insert_job: ftjob

job_type: FT

machine: ftagt

watch_file: /usr/data/pay*

watch_file_type: DELETE

continuous: Y

Example: Monitor for an Increase in File Size by a Specific Amount

This example defines a job named ft_unix_delta to monitor the file named record in the
credit directory and issue a trigger when the file increases in size by at least 200000
bytes and then remains unchanged for 30 minutes.

insert_job: ft_unix_delta

job_type: FT

machine: unixagt

watch_file: /credit/record

watch_file_type: EXPAND

watch_file_change_type: DELTA

watch_file_change_value: 200000

watch_no_change: 30

Attributes with Default Values

288 User Guide

Example: Check that a File Does Not Exist in a Directory

This example defines a job named ft_unix_notexist to search the /start/term/ directory
for a file named vacation and to issue a trigger if the file does not exist.

insert_job: ft_unix_notexist

job_type: FT

machine: unixagt

watch_file: /start/term/vacation

watch_file_type: NOTEXIST

Example: Monitor for a Decrease in File Size to a Specific Amount

This example defines a job named ft_unix_shrink to issue a trigger when the file named
distribute that is located in the /cash/items directory is 1000 bytes or smaller.

insert_job: ft_unix_shrink

job_type: FT

machine: unixagt

watch_file: /cash/items/distribute

watch_file_type: SHRINK

watch_file_change_type: SIZE

watch_file_change_value: 1000

Example: Monitor for Updates to Any of the Files in a Directory and its Subdirectories

This example defines a job named ft_unix_update to monitor the /usr/data/ directory
and all of its subdirectories and to issue a trigger when any file that is located in those
directories is updated and then is not modified again during the next 30 minutes.

insert_job: ft_unix_update

job_type: FT

machine: unixagt

watch_file: "/usr/data/*"

watch_file_type: UPDATE

watch_file_recursive: Y

watch_no_change: 30

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

Attributes with Default Values

Chapter 9: File Trigger Jobs 289

The following File Trigger job attributes have default values:

continuous

Specifies whether the job monitors the file continuously for a specified condition.

Default: N (The job immediately checks for the condition and completes.)

watch_file_recursive

Specifies whether the job monitors for file activity in the specified directory only or
in the specified directory and all of its subdirectories.

Default: N (The job does not monitor subdirectories.)

watch_file_change_type

Specifies the type of change to detect when monitoring a file for an increase or
decrease in size..

Default: SIZE (The job monitors the file to reach a specified size.)

watch_file_type

Specifies the type of file activity to monitor for.

Default: CREATE (The job monitors for the creation of a file.)

watch_no_change

Defines the number of minutes the file must remain unchanged to satisfy the
monitor condition.

Default: 1 (The file must remain unchanged for 1 minute.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Override Default Values

The watch_file_type and watch_no_change attributes in the following job definition
override the default values.

In this example, the unixagt agent monitors the analysis file in the /research directory. If
the file size expands to 1 byte or more and remains unchanged for 120 minutes or more,
the job completes.

insert_job: ft_unix_nochange

job_type: FT

machine: unixagt

watch_file: /research/analysis

watch_file_type: EXPAND

watch_file_change_type: SIZE

watch_file_change_value: 1

watch_no_change: 120

Monitor a File Continuously

290 User Guide

Monitor a File Continuously

You can define a File Trigger job to monitor a file continuously for a CREATE, GENERATE,
EXPAND, UPDATE, DELETE, or SHRINK condition. Each time the condition occurs, an alert
is written to the scheduler log file (event_demon.$AUTOSERV on UNIX and
event_demon.%AUTOSERV% on Windows).

If a job monitors for the deletion of files, the job completes when all the monitored files
are deleted or it is completed manually. For all other conditions, the job continues to
monitor until it is completed manually.

Note: You cannot define File Trigger jobs to monitor a file continuously for the EXIST or
NOTEXIST conditions.

Follow these steps:

1. Define a File Trigger job (see page 282).

2. Add the following attribute to the job definition:

continuous

Specifies whether the job monitors the file continuously for a specified
condition.

3. Run the job.

The specified file is monitored continuously.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

E

Example: Continuously Monitor the Same File Using Multiple File Trigger Jobs

In this example, two File Trigger jobs monitor the same file for a change in size by 10 KB.
One job monitors for an increased change in size and the other job monitors for a
decreased change in size. The jobs are independent and do not relate to each other in
any way.

insert_job: ftjob1

job_type: FT

machine: ftagent

watch_file: "c:\data\totals"

watch_file_type: EXPAND

continuous: Y

watch_file_change_type: DELTA

watch_file_change_value: 10240 /* The value must be entered in bytes (10 x 1024 bytes

= 10240) */

Monitor a File that is Owned by a UNIX Owner or Group

Chapter 9: File Trigger Jobs 291

insert_job: ftjob2

job_type: FT

machine: ftagent

watch_file: "c:\data\totals"

watch_file_type: SHRINK

continuous: Y

watch_file_change_type: DELTA

watch_file_change_value: 10240 /* The value must be entered in bytes (10 x 1024 bytes

= 10240) */

Suppose that the initial file size of totals (c:\data\totals) is 100 KB and it changes as
follows:

100 KB (initial size), 80 KB, 90 KB, 110 KB, 50 KB, 60 KB

The following triggers occur:

■ Because the file trigger type is EXPAND, the first job (ftjob1) writes an alert to the
scheduler log file once when the file size changes from 90 KB to 110 KB.

■ Because the file trigger type is SHRINK, the second job (ftjob2) writes an alert to the
scheduler log file twice. The triggers occur when the file shrinks from 100 KB to 80
KB and then again when the file shrinks from 110 KB to 50 KB.

The jobs end when they are forced to complete.

Monitor a File that is Owned by a UNIX Owner or Group

You can define a File Trigger job to monitor a file that is owned by a specific UNIX owner
or group. If the file is not owned by the specified owner or group, the following occurs:

■ The job continues monitoring if the file trigger type is CREATE or GENERATE.

■ The job completes if the file trigger type is DELETE or NOTEXIST.

■ The job fails if the file trigger type is EXPAND, EXIST, SHRINK, or UPDATE.

Note: You can monitor a file owned by a specific owner or group on i5/OS if the file is
not a QSYS object.

Follow these steps:

1. Define a File Trigger job (see page 282).

2. Add one or more of the following attributes to the job definition:

watch_file_groupname

Specifies the name of the group that owns the file to be monitored.

watch_file_owner

Specifies the user ID that owns the file to be monitored.

Monitor a File that is Owned by a UNIX Owner or Group

292 User Guide

3. Run the job.

The specified file is monitored.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Monitor for the Creation of a File that Is Owned by a Specified UNIX User ID

This example defines a job named ft_job to issue a trigger in the following situations:

■ When a file named payroll with attributes that specify JDOE as the file owner is
created and is not modified within the first 30 minutes of existence.

■ When a file named payroll with attributes that specify JDOE as the file owner exists
before the job starts, is located during the first scan, and is not modified within the
following 30 minutes.

■ When the owner of the file named payroll changes to JDOE and the file is not
modified within the next 30 seconds.

insert_job: ft_job

job_type: FT

machine: ftagt

watch_file: /usr/data/payroll

watch_file_type: CREATE

watch_file_owner: JDOE

■ watch_no_change: 30

Example: Monitor for the Existence of a File that Is Owned by a Specified UNIX Group

Suppose that you want a job to monitor for the existence of the /data/payroll.dat file
that is owned by the UNIX group ACCTS:

■ If the file exists and the file is owned by the group ACCTS when the job is readied,
the job completes immediately.

■ If the file exists and the file is not owned by the group ACCTS when the job is
readied, the job fails.

insert_job: ft_unixgroup

job_type: FT

machine: unixagent

watch_file: /data/payroll.dat

watch_file_type: EXIST

watch_file_groupname: ACCTS

Configure the Agent to Run File Trigger Jobs as an External Process

Chapter 9: File Trigger Jobs 293

Configure the Agent to Run File Trigger Jobs as an External
Process

File Trigger jobs typically run as threads under the CA Workload Automation Agent
process. If you want to monitor files with names that contain variables, or if you want to
monitor a file on a remote computer, you must run the job as an external process.

To configure the agent to run File Trigger jobs as an external process, ask your agent
administrator to set the following parameters in the agent's agentparm.txt file:

filemonplugin.runexternal=true

oscomponent.default.user=user

oscomponent.default.password=password

filemonplugin.runexternal=true

Runs File Trigger jobs run as an external process.

oscomponent.default.user=user

(Optional) Specifies the default operating system user ID that all jobs on the agent
computer run under. This user ID must have access to all files monitored by all File
Trigger jobs.

Note: If this parameter is not set, File Trigger jobs run under the user ID that started
the agent.

oscomponent.default.password=password

(Optional) Specifies the password for the default user ID.

Resolve File Names That Contain Variables

You can define a File Trigger job that monitor a file whose name contains variables. To
resolve the variables in the file name, the agent runs the File Trigger job as an external
process.

Follow these steps:

1. Configure the agent to run File Trigger jobs as an external process (see page 293).

2. Define a File Trigger job (see page 282).

3. Add the following attribute:

watch_file

Specifies the path to and name of one or more files to monitor. You can specify
file names that contain variables.

Example: $AUTOSYS/reports/august2011.out

Monitor a File on a Remote UNIX Computer

294 User Guide

4. Run the job.

The specified files are monitored.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Monitor for the Existence of a File

This example monitors for the existence of the august2011.out file on the unixagt
machine. The job monitors the directory specified by the $MY_PATH variable. The job
runs under the user that started the unixagt agent. The filemonplugin.runexternal agent
parameter is set to true. If the file exists in the directory, the job completes. If the file
does not exist in that directory, the job fails.

insert_job: ft_job

job_type: FT

machine: unixagt

watch_file: $MY_PATH/reports/august2011.out

watch_file_type: EXIST

Monitor a File on a Remote UNIX Computer

You can define a File Trigger job to monitor remote files across a UNIX network using a
specified user ID.

Follow these steps:

1. Configure the agent to run File Trigger jobs as an external process (see page 293).

2. Define a File Trigger job (see page 282).

3. Add the following attribute:

watch_file

Specifies the path to and name of one or more files to monitor. You can specify
file names that contain variables and remote files on a UNIX network.

Example: $AUTOSYS/reports/august2011.out

4. Run the job.

The specified files are monitored.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Monitor a File on a Remote Windows Computer

Chapter 9: File Trigger Jobs 295

Example: Monitor for the Existence of a File

This example monitors for the existence of the august2011.out file on the unixagt
machine. The job monitors the directory specified by the $MY_PATH variable. The job
runs under the user that started the unixagt agent. The filemonplugin.runexternal agent
parameter is set to true. If the file exists in the directory, the job completes. If the file
does not exist in that directory, the job fails.

insert_job: ft_job

job_type: FT

machine: unixagt

watch_file: $MY_PATH/reports/august2011.out

watch_file_type: EXIST

owner: jsmith

Monitor a File on a Remote Windows Computer

You can define a File Trigger job to monitor a file on a remote Windows system if the
agent runs as a Windows service under the local system account.

Follow these steps:

1. Verify with your agent administrator that the agent is running as a Windows service
under the local system account.

2. (Optional) Ask your agent administrator to set the following parameters in the
agent's agentparm.txt file:

oscomponent.default.user=user

oscomponent.default.password=password

oscomponent.default.user=user

Specifies the default operating system user ID that all jobs on the agent
computer run under. This user ID must have access to the monitored files.

Notes:

■ The watch_file_win_user attribute overrides this parameter.

■ If this parameter is not set, you must specify the watch_file_win_user
attribute in the File Trigger job definition.

oscomponent.default.password=password

Specifies the password for the default user ID.

Note: If this parameter is not set, you must specify the watch_file_win_user
attribute in the File Trigger job definition and define the corresponding user ID
and password via autosys_secure.

Monitor a File on a Remote Windows Computer

296 User Guide

3. Ask your CA Workload Automation AE administrator to define a user ID and
password on CA Workload Automation AE that has access to the file on the remote
Windows computer.

4. Define a File Trigger job (see page 282).

5. Add the following attributes to the job definition:

watch_file

Specifies the path to and name of one or more files to monitor. Specify a UNC
(Universal Naming Convention) name. A UNC name is the name of a file or
other resource that begins with two backslashes (\\), indicating that it exists on
a remote computer.

watch_file_win_user

Specifies the user ID and the domain the user ID belongs to. This user ID must
have access to the remote files in the UNC path. This attribute overrides the
oscomponent.default.user parameter on the agent.

6. Run the job.

The specified file on the remote Windows computer is monitored.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Monitor for an Update to a File on a Remote Windows Computer

This example monitors for an update to the payroll.dat file on a remote Windows
computer named CYBNT. The job runs under JSMITH, which is a user ID on CYBNT and is
in the CYBDOM domain. JSMITH is defined on the scheduling manager and has access to
the AccountingFiles directory. The winagent machine must have been defined to CA
Workload Automation AE with the opsys: windows attribute.

insert_job: ft_remotefile

job_type: FT

machine: winagent

watch_file: \\CYBNT\AccountingFiles\payroll.dat

watch_file_type: UPDATE

watch_file_win_user: CYBDOM\JSMITH@CYBDOM

Chapter 10: File Watcher Jobs 297

Chapter 10: File Watcher Jobs

This section contains the following topics:

File Watcher Jobs (see page 297)
Define a File Watcher Job (see page 297)

File Watcher Jobs

A File Watcher job is similar to a Command job. However, instead of starting a
user-specified command on a client computer, a File Watcher job starts a process that
monitors for the existence and size of a specific operating system file. When that file
reaches the specified minimum size and is no longer growing in size, the File Watcher
job completes successfully, indicating that the file has arrived.

Using File Watcher jobs provides a means of integrating events that are external to CA
Workload Automation AE into the processing conditions of jobs. For example, assume a
file must be downloaded from a mainframe, and it is expected to arrive after 2:00 a.m.
After it arrives, a batch job is run to process it, possibly even starting a whole sequence
of jobs.

You could set up a File Watcher job to start at 2:00 a.m., wait for the arrival of the
specified file, and exit. You could also set up the batch job so that the completion of the
File Watcher job is its only starting condition.

Note: To run these jobs, your system requires one of the following:

■ CA WA Agent for UNIX, Linux, Windows, or i5/OS

■ Legacy agent for Unicenter AutoSys JM 4.5.1 through r11

Define a File Watcher Job

You can define a File Watcher job to monitor for the existence and size of a file. CA
Workload Automation AE considers the watched file complete when the file reaches the
minimum file size specified in the watch_file_min_size attribute and the file reaches a
“steady state” during the polling interval. A steady state indicates that the watched file
has not grown during the specified interval.

Note: To run these jobs, your system requires one of the following:

■ CA WA Agent for UNIX, Linux, Windows, or i5/OS

■ Legacy agent for Unicenter AutoSys JM 4.5.1 through r11

Define a File Watcher Job

298 User Guide

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: FW

Specifies that the job type is File Watcher.

machine

Specifies the name of the machine on which the job runs.

watch_file

Specifies the path to and name of one or more files to monitor.

2. (Optional) Specify optional File Watcher attributes:

■ job_class

■ job_terminator

■ watch_file_min_size

Note: The default size to monitor is 0 (zero). If you do not specify the
watch_file_min_size attribute, the job completes if the file exists. You can
specify this attribute to override the default setting.

■ watch_interval

Notes:

– On the legacy agent, if you do not specify the watch_interval attribute, the
job checks the file every 60 seconds (the default). You can specify the
watch_interval attribute to override the default setting.

– On the CA Workload Automation Agent, if you do not specify the
watch_interval attribute, the job checks the file every 30 seconds (or the
time specified in the agent's filemonplugin.sleepperiod parameter). If you
specify this attribute for a FW job that is submitted to an the CA WA agent,
the agent uses the value as a “no-change” or steady interval. The steady
interval means that once the file condition is satisfied the file must remain
steady for the duration specified by the watch_interval attribute.

3. (Optional) Specify common attributes that apply to all job types.

The File Watcher job is defined.

Notes:

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define a File Watcher Job

Chapter 10: File Watcher Jobs 299

Example: Monitor a File Every 120 Seconds

This example monitors the watch_file.log file on the winagent computer. The job
completes when the file reaches 10,000 bytes and maintains a steady state for at least
120 seconds (30 seconds for the agent’s global poll interval plus 90 seconds for the
watch_interval).

insert_job: fw_job

job_type: FW

machine: winagent

watch_file: “c:\tmp\watch_file.log”

watch_file_min_size: 10000

watch_interval: 90

Example: Monitor a File Every 60 Seconds on a Legacy Agent

This example monitors the watch_file.log file on the unixagent computer. The unixagent
is a legacy agent. The job completes when the file reaches 10000 bytes and maintains a
steady state for 60 seconds.

insert_job: fw_job

job_type: FW

machine: unixagent

watch_file: /tmp/watch_file.log

watch_file_min_size: 10000

watch_interval: 60

More information:

Insert a Job Definition (see page 88)

Chapter 11: FTP Jobs 301

Chapter 11: FTP Jobs

This section contains the following topics:

FTP Jobs (see page 301)
Define an FTP Job (see page 304)
Attributes with Default Values (see page 307)
Transfer Files Using SSL FTP (see page 309)
Compress Data for FTP (see page 312)
Send Site-Specific FTP Commands to FTP Servers (see page 313)
Verify the FTP Job Status (see page 314)

FTP Jobs

Using your agent, you can automate File Transfer Protocol (FTP) transfers with an FTP
job. The FTP job can upload data to or download data from an existing FTP server or
another agent running as an FTP server. The FTP job always acts as an FTP client.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

You can use an FTP job to automate the following:

■ Download ASCII, binary, or EBCDIC (i5/OS only) files from a remote FTP server to
your agent computer.

■ Upload ASCII, binary, or EBCDIC (i5/OS only) files from your agent computer to a
remote FTP server.

Your agent administrator can set up the agent to run as an FTP client, FTP server, or
both.

EBCDIC File Transfers

The EBCDIC transfer type applies to CA WA Agent for i5/OS only.

For the QSYS file system on i5/OS systems, you can only transfer members of FILE
objects.

Note: For more information about FTP restrictions on i5/OS systems, see the IBM
documentation.

FTP Jobs

302 User Guide

Wildcard Characters in File Names

You can use wildcards in file names for ASCII, binary, and EBCDIC transfers. The asterisk
(*) is a wildcard for zero or more characters and the question mark (?) is a wildcard for a
single character.

Running the Agent as an FTP Client

If the agent runs as an FTP client, the agent can log in to remote FTP servers and
download files from and upload files to those servers.

The following diagram shows the relationship between an agent running as an FTP
client, the scheduling manager, and an FTP server:

Note: The FTP user ID used to connect to the FTP server must be defined on the
scheduling manager.

When the agent runs as an FTP client only, other FTP clients (such as other agents)
cannot log in to the agent to transfer files. To let other FTP clients log in and transfer
files, the agent administrator needs to set up the agent to run as an FTP server.

FTP Jobs

Chapter 11: FTP Jobs 303

Running the Agent as an FTP Server

The agent supports a built-in FTP server capability. The agent administrator can enable
the agent to act as a generic FTP server in addition to its other roles. This server adheres
to the security rules established for the agent.

If the agent runs as an FTP server, clients can log in to the agent and transfer files.

The following diagram shows the relationship between an agent running as an FTP
server, the scheduling manager, and another agent running as an FTP client:

Note: The FTP user ID used to connect to the agent running as an FTP server must be
defined on that agent and the scheduling manager.

If the agent is configured as an FTP server, the agent can handle ASCII, binary, and
EBCDIC file transfers, wildcard requests, simple GET and PUT requests for single files,
and MGET and MPUT requests for multiple files.

The agent has a secure store of FTP server user IDs and associated passwords. The
ftpusers.txt file, located in the directory where the agent is installed, stores these user
IDs and their corresponding hashed passwords.

The agent running as an FTP server does not support anonymous FTP requests. For audit
purposes, the agent provides a detailed log of all FTP requests.

Note: For more information about enabling the agent to act as a generic FTP server,
contact your agent administrator and see the CA Workload Automation Agent for UNIX,
Linux, or Windows Implementation Guide.

Define an FTP Job

304 User Guide

FTP User IDs and Passwords

All FTP user IDs and passwords must be defined on CA Workload Automation AE by
using the autosys_secure command. When you define an FTP job, you must specify an
FTP user ID using the owner attribute, or use the default owner value. This user ID is
used to connect to the FTP server for the file transfer.

If an agent runs as an FTP server, the FTP user ID and password must also be defined on
that agent.

Note: For more information about the autosys_secure command, see the Reference
Guide. For more information about defining user IDs on the agent, see the CA Workload
Automation Agent for UNIX, Linux, or Windows Implementation Guide.

Define an FTP Job

You can define an FTP job to automate FTP transfers. The output is directed to the spool
file through an FTP server.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: FTP

Specifies that the job type is FTP.

machine

Specifies the name of the machine on which the job runs.

ftp_local_name

Specifies the destination of the file (if downloading) or the source location of
the file (if uploading).

ftp_remote_name

Specifies the source location of the file (if downloading) or the destination of
the file (if uploading).

ftp_server_name

Specifies the DNS name or IP address of a remote server.

Define an FTP Job

Chapter 11: FTP Jobs 305

2. (Optional) Specify optional FTP attributes:

■ ftp_command

■ ftp_compression

■ ftp_local_user

■ ftp_server_port

■ ftp_transfer_direction

■ ftp_transfer_type

■ ftp_use_SSL

■ ftp_user_type

■ job_class

3. (Optional) Specify the following attribute:

owner

Specifies the user ID with the authority to download the file from the remote
FTP server or upload the file to the remote FTP server.

Note: The job runs under the owner of the job. The password associated with
the owner must be defined using autosys_secure.

4. (Optional) Specify common attributes that apply to all job types.

The FTP job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define an FTP Job

306 User Guide

Example: Download a File from a UNIX Computer to a Windows Computer

The FTP job in this example downloads a file from a UNIX server with IP address
172.16.0.0 and port 21 to a Windows computer.

insert_job: FTPT1A

job_type: FTP

machine: ftpagent

ftp_server_name: 172.16.0.0

ftp_server_port: 21

ftp_transfer_direction: DOWNLOAD

ftp_transfer_type: A

ftp_remote_name: /u1/ftpdata/textfile

ftp_local_name: "c:\ftpfiles"

owner: ftpuser@172.16.0.0

Example: Download a Binary File on UNIX

The FTP job in this example uses a binary transfer.

insert_job: FTPBINARY

job_type: FTP

machine: unixagent

ftp_server_name: hpunix

ftp_server_port: 5222

ftp_transfer_direction: DOWNLOAD

ftp_transfer_type: B

ftp_remote_name: /u1/qatest/ftpdata/binaryfile

ftp_local_name: /export/home/qatest/ftpdata/transf.bin

owner: test@hpunix

Example: Download a QSYS EBCDIC-encoded File

This example downloads an EBCDIC-encoded file named DATAFILE in the QSYS file
system from an i5/OS system to another i5/OS system. The file names are specified in
the path format.

insert_job: EBCDIC_FILE

job_type: FTP

machine: I5AGENT

ftp_server_name: i5agent

ftp_server_port: 5222

ftp_transfer_direction: DOWNLOAD

ftp_transfer_type: E

ftp_remote_name: /QSYS.LIB/DATALIB.LIB/DATAFILE.FILE/DATA.MBR

ftp_local_name: /QSYS.LIB/ESPLIB.LIB/DOWNLOAD.FILE/DATA.MBR

owner: test@i5agent

Attributes with Default Values

Chapter 11: FTP Jobs 307

More information:

Insert a Job Definition (see page 88)

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following FTP job attributes have default values:

ftp_compression

Specifies the data compression level (0-9).

Default:

■ 0 (The data is not compressed.)

■ ftp.data.compression agent parameter. This parameter overrides the default 0
setting.

ftp_transfer_direction

Specifies the file transfer direction.

Default: DOWNLOAD (The job transfers files from the remote server to the agent
computer.)

ftp_transfer_type

Specifies the type of data involved in an FTP transfer (B for binary, A for ASCII, or E
for EBCDIC).

Default: B (The job performs a binary data transfer.)

ftp_use_ssl

Specifies whether to transfer the data with Secure Sockets Layer (SSL)
communication or regular communication.

Default:

■ FALSE (The job uses regular communication.)

■ ftp.client.ssl agent parameter. This parameter overrides the default FALSE
setting.

Attributes with Default Values

308 User Guide

ftp_user_type

Specifies how the value of the owner attribute is passed to the FTP server for
authentication.

Default: Simple (The job passes only the user part of the owner attribute value to
the FTP server for authentication.)

owner

Specifies the FTP user ID that the job runs under.

Default: The user defining the job (The FTP transfer runs under the owner of the
job.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Perform an ASCII Data Transfer

The ftp_transfer_type and owner attributes in the following job definition override the
default values. The job transfers an ASCII file under the testuser account.

The FTP job in this example downloads an ASCII file named textfile from the remote
UNIX server to the /export/home/ftpfiles/ftpdata/textfile_dn directory on the agent
computer.

insert_job: DOWNLOAD_SINGLE

job_type: FTP

machine: RAGENT

ftp_server_name: hprsupp

ftp_server_port: 5222

ftp_transfer_direction: DOWNLOAD

ftp_transfer_type: A

ftp_remote_name: /u1/files/ftpdata/textfile

ftp_local_name: /export/home/ftpfiles/ftpdata/textfile_dn/textfile

owner: testuser@hprsupp

Transfer Files Using SSL FTP

Chapter 11: FTP Jobs 309

Transfer Files Using SSL FTP

If the agent FTP server supports SSL FTP and the agent FTP client has SSL FTP configured,
you can securely transfer data using Secure Sockets Layer (SSL) communication.

Follow these steps:

1. Define an FTP job (see page 304).

2. Add the following attribute to the job definition:

ftp_use_ssl

Specifies whether to transfer the data with Secure Sockets Layer (SSL)
communication or regular communication.

3. Run the job.

The files are transferred using the specified communication setting.

Notes:

■ To transfer data using SSL, the FTP server must have SSL FTP enabled and the FTP
client must have SSL configured (SSL FTP can be enabled or disabled).

■ If you do not specify the ftp_use_ssl attribute, the data is transferred using the
default FTP setting (regular FTP or SSL FTP) set on the agent FTP client as follows:

– If the agent FTP client has SSL FTP enabled, all FTP jobs on that agent
automatically use SSL FTP.

Note: If the FTP server does not support SSL FTP, you must set the ftp_use_ssl
attribute to FALSE. Otherwise, the job will fail.

– If the agent FTP client has SSL FTP disabled, all FTP jobs on that agent
automatically use regular FTP.

Transfer Files Using SSL FTP

310 User Guide

Example: Upload a File from a Local Computer to a Remote Windows Server Using SSL
FTP

This example defines a job named FTP_UPLOAD to upload the filename.txt file from the
agent FTP client to the c:\uploaded_files directory on the remote Windows server
named winserver using SSL FTP.

Note:

insert_job:FTP_UPLOAD

job_type: FTP

machine: winagent

owner: user1@winserver

ftp_server_name: winserver

ftp_server_port: 21

ftp_transfer_direction: UPLOAD

ftp_use_SSL: TRUE

ftp_remote_name: "c:\uploaded_files\filename.txt"

ftp_local_name: "d:\files_to_upload\filename.txt"

Transfer Files Using SSL FTP

Chapter 11: FTP Jobs 311

Example: Download a File from a Remote UNIX Server That Does Not Support SSL FTP
to a Local Computer That Supports SSL FTP

In this example, the agent runs on a local computer as an FTP client and has SSL FTP
enabled (all FTP jobs on the agent computer run using SSL FTP by default). The remote
UNIX server does not support SSL FTP.

The following FTP job downloads the filename.txt file from the remote UNIX server to
the d:\downloaded_files directory on the local computer. Because the FTP server does
not support SSL FTP, the ftp_use_SSL attribute is set to FALSE so the job does not fail.

insert_job: FTP_DOWNLOAD

job_type: FTP

machine: winagent

owner: user1@hpunix

ftp_server_name: hpunix

ftp_server_port: 5222

ftp_transfer_direction: DOWNLOAD

ftp_use_SSL: FALSE

ftp_remote_name: /files_to_download/filename.txt

ftp_local_name: "d:\downloaded_files\filename.txt"

Compress Data for FTP

312 User Guide

Compress Data for FTP

When running FTP workload between an FTP client and FTP server that are both run on
the agent software, you can compress the data for the transfer by specifying the
compression level in the job definition.

Note: If the compression level is specified and the FTP server or the FTP client does not
run on the agent, the data will be transferred without compression.

Follow these steps:

1. Define an FTP job (see page 304).

2. Add the following attribute to the job definition:

ftp_compression

Specifies the data compression level. The compression level is a one-digit value
from 0 to 9, where 0 is no data compression and 9 is the best data
compression.

Note: The effectiveness of the compression is dependent upon the data.
Compressing the data may not result in faster transfer times. The overhead of
compressing and uncompressing the data may exceed the time saved from
sending smaller amount of data.

3. Run the job.

The files are transferred using SSL FTP.

Example: Compress a File

The local computer in this example has an agent running as an FTP client. The remote
server has an agent running as an FTP server. Both computers operate on a low
bandwidth network.

The following FTP job downloads a large file named largefile.txt from the remote server
to the FTP client. The computers are on a low bandwidth network, so the data is
compressed at compression level 3.

insert_job: FTPJOB

job_type: FTP

machine: ftpagent

ftp_server_name: aixunix

ftp_server_port: 5222

ftp_transfer_direction: DOWNLOAD

ftp_compression: 3

ftp_remote_name: /files_to_download/largefile.txt

ftp_local_name: "c:\downloaded_files\largefile.txt"

owner: ftpuser@aixunix

Send Site-Specific FTP Commands to FTP Servers

Chapter 11: FTP Jobs 313

Send Site-Specific FTP Commands to FTP Servers

When you define an FTP job, you can specify one or more commands to execute prior to
file transfer. You can use this feature to send site-specific FTP commands to FTP servers.

Follow these steps:

1. Define an FTP job (see page 304).

2. Add the following attribute to the job definition:

ftp_command

Defines a command that is to be executed prior to file transfer.

Note: This value includes commands such as locsite but does not include
commands such as cd or lcd.

3. (Optional) Specify additional ftp_command attributes for each command that you
want to run.

4. Run the job.

The site-specific FTP command is sent to the FTP server.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

E

Example: Send FTP Commands to an FTP Server

This example sends two FTP commands to the FTP server prior to transferring a file.

insert_job: CYBJK.FTP

job_type: FTP

machine: ftpagent

ftp_server_name: ftp.ca.com

ftp_server_port: 21

ftp_transfer_direction: DOWNLOAD

ftp_transfer_type: B

ftp_compression: 8

ftp_remote_name: /pub/cazip.exe

ftp_local_name: /tmp/bla

ftp_command: locsite blksize=FB

ftp_command: locsite automount

owner: user1@ftp.ca.com

Verify the FTP Job Status

314 User Guide

Verify the FTP Job Status

You can verify that the transfer completed successfully without file corruption.

To verify that the transfer completed successfully, check the job's spool file for the
following responses:

■ If the data was transferred using SSL FTP, the spool file contains the following
response:

AUTH TLS

234 AUTH command OK. Initializing SSL connection.

■ If the data was compressed and transferred without file corruption, the spool file
contains a response as follows:

Downloaded 81920/26119 bytes (original/compressed) in 0.161 seconds, 496.89

Kbytes/sec.

■ If the file was downloaded successfully, the spool file contains the following
response:

Download successful

Chapter 12: i5/OS Jobs 315

Chapter 12: i5/OS Jobs

This section contains the following topics:

i5/OS Jobs (see page 315)
Define an i5/OS Job (see page 317)
Attributes with Default Values (see page 319)
Pass Positional Parameters (see page 320)
Use a User's Library List (see page 321)
Pass Keyword Parameters to SBMJOB (see page 321)
Responding to Suspended Jobs that Require Manual Intervention (see page 323)
Returning a Job's Exit Status to CA Workload Automation AE (see page 323)
Specify Data for a Local Data Area (see page 327)

i5/OS Jobs

The i5/OS job lets you run a program or issue a command on an i5/OS system. You can
run i5/OS jobs in the following file systems:

■ Root file system

■ Open systems file system (QOpenSys)

■ Library file system (QSYS)

Note: To run these jobs, your system requires CA WA Agent for i5/OS.

You can specify the following details in an i5/OS job definition:

■ Library name, library list, and current library for running a program

■ The i5/OS job name, options under which the job will run, where it will run, and
which user will run it

■ Ending exit value of the program, such as a severity code

You can define parameter values that you want to pass to a program at the time the
program is invoked.

Note: Default values may be set for certain parameters, such as the i5/OS user ID that
the jobs run under. Contact your agent administrator about the parameters set in the
agentparm.txt file.

i5/OS Jobs

316 User Guide

Running UNIX Workload on a System i5 Computer

In addition to scheduling native i5/OS jobs, you can schedule most UNIX workload, such
as UNIX scripts, in the PASE environment on i5/OS.

To run both native and UNIX jobs on the same i5/OS computer, you must install two
i5/OS agents and configure the oscomponent.targetenvironment parameter in the
agentparm.txt file to handle the appropriate job type. For more information about
configuring the parameter, see the CA Workload Automation AE UNIX Implementation
Guide or Windows Implementation Guide.

Note: For more information about UNIX workload that can run in the PASE
environment, see the IBM i5/OS documentation.

i5/OS Naming Conventions

When specifying i5/OS paths and names in your workload, you can use the following
naming conventions, depending on where the file is located on the i5/OS system:

■ Root file system

To specify a file in the root file system, use UNIX path and file formats.

■ Open systems file system (QOpenSys)

To specify a file in QOpenSys, use UNIX path and file formats. QOpenSys file names
are case-sensitive.

■ Library file system (QSYS)

To specify an object in QSYS, use one of the following formats (unless described
differently in the job definition syntax):

– Path format

/QSYS.LIB/library.LIB/object.type/

To specify *FILE objects, use the following format:

/QSYS.LIB/library.LIB/object.FILE/member.MBR

– i5/OS standard format

library/object/type

To specify *FILE objects, use the following format:

library/object/*FILE(member)

Note: *FILE is optional when member is specified. That is, you can specify a file
member using the following format:

library/object(member)

Define an i5/OS Job

Chapter 12: i5/OS Jobs 317

Notes:

■ The values for library, object, type, and member can be up to 10 characters each.

■ You can use *ALL to match any name.

■ You can use *FIRST for member.

■ You can use generic names for library and object.

Define an i5/OS Job

You can define an i5/OS job to schedule workload to run on an i5/OS system. The job
can run a program or an i5/OS command. You can run i5/OS jobs in the root file system,
open systems file system (QOpenSys), and library file system (QSYS).

Note: To run these jobs, your system requires CA WA Agent for i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: I5

Specifies that the job type is i5/OS.

machine

Specifies the name of the machine on which the job runs.

i5_name

Specifies the program, the source file for the program, or the command that
you want to run.

Note: The value must correspond to the i5_action value. If you do not specify
the i5_action attribute, the job interprets the corresponding i5_name value as
a command by default.

2. (Optional) Specify optional i5/OS attributes:

■ fail_codes

■ i5_action

■ i5_cc_exit

■ i5_curr_lib

■ i5_job_desc

Define an i5/OS Job

318 User Guide

■ i5_job_name

■ i5_job_queue

■ i5_lda

■ i5_lib

■ i5_library_list

■ i5_others

■ i5_params

■ i5_process_priority

■ job_class

■ max_exit_success

■ success_codes

3. (Optional) Specify common attributes that apply to all jobs.

The i5/OS job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Run an i5/OS Command

This example runs the command named DSPJOBLOG on the i5agent computer.

insert_job: i5job_runcmd

job_type: I5

machine: i5agent

i5_name: DSPJOBLOG

Attributes with Default Values

Chapter 12: i5/OS Jobs 319

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following i5/OS job attributes have default values:

i5_action

Specifies whether to run a program or issue a command.

Default: COMMAND (The job interprets the i5_name value to be a command.)

i5_cc_exit

Specifies the type of exit code returned by an i5/OS job.

Default: *SEVERITY (The job sends the ending severity code as the exit code.)

i5_job_desc

Specifies the job description for the submitted program.

Default: os400.default.jobdname agent parameter, if specified

i5_job_queue

Specifies the i5/OS job queue for the submitted program.

Note: os400.default.jobqname agent parameter, if specified

i5_process_priority

Specifies the process priority of the i5/OS job.

Default: NORMAL

owner

Specifies the user ID that the job runs under.

Default: The user ID who invokes jil to define the job (the owner of the job)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Pass Positional Parameters

320 User Guide

Example: Override Default Values

This example runs an i5/OS program. A default job queue is defined in the agent's
agentparm.txt file. The i5_action and i5_job_queue attributes in this job definition
override the default values.

insert_job: i5job_lib

job_type: I5

machine: i5agent

i5_action: RUN_PROGRAM

i5_name: PAYLOAD

i5_job_queue: /QYS.LIB/QBASE.LIB/JQUEUE.JOBQ

Pass Positional Parameters

When running workload, you might need to pass data between jobs and across
platforms. You can pass positional parameters to an i5/OS program in your job
definition. Positional parameters are variables that can be passed to a program at the
time the program is invoked. The parameters are assigned in the order they are passed.

Follow these steps:

1. Define an i5/OS job (see page 317).

2. Add the following attribute to the job definition:

i5_params

Defines the parameter values that you want to pass to the program at the time
the program is invoked.

3. Run the job.

The specified positional parameters are passed to the i5/OS program.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Pass Multiple Parameters to an i5/OS Job

This example passes six parameters to an i5/OS program named PAYJOB. The parameter
VALUE C is enclosed with double quotation marks because it contains a space.

insert_job: i5job_lib

job_type: I5

machine: i5agent

i5_action: RUN_PROGRAM

i5_name: PAYJOB

i5_params: ABC 1 P "VALUE C" X r

Use a User's Library List

Chapter 12: i5/OS Jobs 321

Use a User's Library List

The agent uses the library list in the job's job description by default. However, if the user
is defined, you can set up your job definition to use the user's library list instead.

Follow these steps:

1. Define an i5/OS job (see page 317).

2. Do one of the following:

■ Add the following attribute to the job definition:

i5_curr_lib: (*USRPRF)

Specifies that the job uses the user's current library when it runs.

■ Add the following attributes to the job definition:

i5_job_desc: (*JOBD)

Specifies that the job uses the job description assigned to the user to
access the library list.

i5_library_list: (*USRPRF)

Specifies that the job accesses the user’s library list when it runs.

3. Run the job.

The job uses the user's library list.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Pass Keyword Parameters to SBMJOB

When CA Workload Automation AE submits a job to the i5/OS system, the job must pass
through the SBMJOB command to execute. The following JIL attributes map to
parameters for the SBMJOB command:

JIL Attributes SBMJOB Parameters

i5_user USER

i5_job_desc JOBD

i5_library_list INLLIBL

i5_job_queue JOBQ

i5_curr_lib CURLIB

i5_job_name JOB

Pass Keyword Parameters to SBMJOB

322 User Guide

You can also pass additional keyword parameters, such as OUTQ(*JOBD), to the SBMJOB
command.

Follow these steps:

1. Define an i5/OS job (see page 317).

2. Add the following attribute to the job definition:

i5_others

Specifies SBMJOB command keyword and value combinations.

3. Run the job.

The specified keywords and values are passed to the SBMJOB command.

Notes:

■ The special values for these SBMJOB parameters, such as *USRPRF and *JOBD, also
apply to the JIL attributes. You can use these special values in your job definitions.
For more information about the SBMJOB parameters and their special values, see
the IBM documentation.

■ For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference
Guide.

Example: Specify the Printer and Output Queue for an i5/OS Job

This example runs a program named PAYJOB on an i5/OS system. The printer and
output queue information is taken from the job definition.

insert_job: i5job_lib

job_type: I5

machine: i5agent

i5_action: RUN_PROGRAM

i5_name: PAYJOB

i5_others: PRTDEV=*JOBD,OUTQ=*JOBD

Responding to Suspended Jobs that Require Manual Intervention

Chapter 12: i5/OS Jobs 323

Responding to Suspended Jobs that Require Manual
Intervention

A program run on an i5/OS system can temporarily suspend itself until it receives
additional feedback from the end user. In this scenario, CA WA Agent for i5/OS notifies
the scheduler that a manual response is required. The scheduler sets the job status to
the WAIT_REPLY state. A WAIT_REPLY_ALARM is raised with text containing the query
of the i5/OS program as well as the set of expected responses. For the i5/OS job to
resume program execution, you must send a response to the job. For example, suppose
that you schedule an i5/OS job to save data in a file. If the file already contains data, the
i5/OS program prompts you to confirm that the data in the file can be overwritten.

To respond to suspended jobs that require manual intervention, issue the following
command:

sendevent -J job_name -E REPLY_RESPONSE -r response

The response is sent to the CA WA Agent for i5/OS and the job resumes running.

Returning a Job's Exit Status to CA Workload Automation AE

A job’s exit code indicates whether the job completed successfully or failed. By default,
the agent sends the job’s ending severity code to CA Workload Automation AE when a
job completes. CA Workload Automation AE interprets an exit code of zero (0) as job
success and any other number as job failure.

In addition to sending the job’s ending severity code, you can return a job’s exit status in
other ways. For example, you can send the return code of an ILE program or module as
the exit status or you can specify a user-defined exit code of 100 as success.

You can return a job's exit status to CA Workload Automation AE using the following
methods:

■ Send a program’s return code using the i5_cc_exit attribute

■ Send a user-defined exit code using the success_codes or fail_codes attribute

■ Return an exit status using the EXIT_SUCCESS and EXIT_FAILURE macros

Returning a Job's Exit Status to CA Workload Automation AE

324 User Guide

Send a Program’s Return Code

When a job completes, the agent sends the job’s exit code to CA Workload Automation
AE. By default, the agent sends the job’s ending severity code as the job's exit code.

Instead of sending the job's ending severity code, the agent can send the return code of
one of the following:

■ An ILE program or module

■ An OPM program

For example, if your job runs an ILE C, ILE RPG, OPM RPG, or OPM Cobol program that
contains an exit or return statement, the agent can send that return code as the exit
code.

Follow these steps:

1. Define an i5/OS job (see page 317).

2. Add one of the following attributes to the job definition:

i5_cc_exit: *USER

Specifies that the return code of an ILE program or module is sent as the exit
code.

i5_cc_exit: *PROGRAM

Specifies that the return code of an OPM program is sent as the exit code.

3. Run the job.

The program's return code is sent instead of the job’s ending severity code.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Send an OPM COBOL Program’s Return Code as the Job’s Exit Code

This example runs an OPM COBOL program named PAYROLL. The agent sends the
PAYROLL program’s return code to CA Workload Automation AE.

insert_job: i5job_returnOPM

job_type: I5

machine: i5agent

i5_action: RUN_PROGRAM

i5_name: PAYROLL

i5_cc_exit: *PROGRAM

Returning a Job's Exit Status to CA Workload Automation AE

Chapter 12: i5/OS Jobs 325

Example: Send an ILE C Program's Return Code as the Job's Exit Code

This example runs a C language program named SALARY. The agent sends the SALARY
program’s return code to CA Workload Automation AE. Ending severity codes of 1 or 10
indicate job success.

insert_job: i5job_returnC

job_type: I5

machine: i5agent

i5_action: RUN_PROGRAM

i5_name: SALARY

i5_cc_exit: *USER

success_codes: 1,10

Note: The i5 system always writes the job’s ending severity code to the job’s spool file.
You can check the spool file for the job’s ending severity code for more information
about the job status. For example, suppose that the C program's return code indicates
failure, but the ending severity code shown in the spool file is 10, which might indicate
that the job ran with a minor issue. Assuming that this issue can be ignored, you can
indicate ending severity codes of 10 as job success using the success_codes attribute.

Send a User-defined Exit Code

By default, CA Workload Automation AE interprets an exit code of 0 (zero) as job success
and any other number as job failure. However, you can map exit codes other than 0 as
job success.

Follow these steps:

1. Define an i5/OS job (see page 317).

2. Add one of the following attributes to the job definition:

success_codes

Defines which exit codes indicate job success.

Default: 0 (zero)

fail_codes

Defines which exit codes indicate job failure.

Default: Any non-zero exit code

3. Run the job.

The specified user-defined exit code is sent.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Returning a Job's Exit Status to CA Workload Automation AE

326 User Guide

Example: Send Exit Code 100 as Success

This example runs the PAYPROG program. The program is considered to have completed
successfully if it returns an exit code of 1 or 100.

insert_job: i5job_succ

job_type: I5

machine: i5agent

i5_action: RUN_PROGRAM

i5_name: PAYPROG

i5_cc_exit: *PROGRAM

success_codes: 1,100

Example: Send Exit Code 40 as Failure

This example runs the RECPROG program. The program is considered to have failed if if
it returns an exit code of 40. All other exit codes in the range from 50 to 255 indicate job
success.

insert_job: i5job_fail

job_type: I5

machine: i5agent

i5_action: RUN_PROGRAM

i5_name: RECPROG

i5_cc_exit: *PROGRAM

fail_codes: 40

success_codes: 50-255

Specify Data for a Local Data Area

Chapter 12: i5/OS Jobs 327

Specify Data for a Local Data Area

The local data area is a temporary 1024-byte storage area that exists for the duration of
an i5/OS job. You can use the local data area to pass data to the job and to other
programs that run as part of the job. When the job is submitted, the agent initializes the
local data area with the specified data. When the job completes, the local data area is
destroyed automatically by the operating system.

Follow these steps:

1. Define an i5/OS job (see page 317).

2. Add the following attribute to the job definition:

i5_lda

Specifies data for the local data area in an i5/OS job.

3. Run the job.

The data is specified for a local data area.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Specify Data for the Local Data Area in Hexadecimal Format

This example defines an i5/OS job with data for the local data area. When the job is
submitted, the agent initializes the local data area with the hexadecimal data abcd.
When the job completes, the local data area is destroyed automatically by the operating
system.

insert_job: i5job_lda

job_type: I5

machine: i5agent

i5_action: COMMAND

i5_name: IVP

i5_lda: x'abcd'

Chapter 13: Micro Focus Jobs 329

Chapter 13: Micro Focus Jobs

This section contains the following topics:

Micro Focus Jobs (see page 329)
Define a Micro Focus Job (see page 330)
Attributes with Default Values (see page 332)
Pass Variables as Parameters to a JCL File (see page 334)

Micro Focus Jobs

The Micro Focus Net Express JCL engine lets you run your mainframe JCL and COBOL
programs in a Windows environment.

You can schedule and control your Micro Focus jobs using CA Workload Automation AE
and CA WA Agent for Micro Focus. The agent provides an interface to the Micro Focus
Net Express JCL engine.

Notes:

■ To run a Micro Focus job, your system requires CA WA Agent for Windows and CA
WA Agent for Micro Focus.

■ You must install the CA WA Agent for Windows and CA WA Agent for Micro Focus
on the same computer where the Micro Focus Enterprise server is installed.

■ You must set the oscomponent.cmdprefix.force parameter in the agentparam.txt
file, as follows:

oscomponent.cmdprefix.force=false

Define a Micro Focus Job

330 User Guide

Define a Micro Focus Job

You can define a Micro Focus (MICROFOCUS) job to run your mainframe JCL and COBOL
programs in a Windows environment.

Notes:

■ To run a Micro Focus job, your system requires CA WA Agent for Windows and CA
WA Agent for Micro Focus.

■ You must install the CA WA Agent for Windows and CA WA Agent for Micro Focus
on the same computer where the Micro Focus Enterprise server is installed.

■ You must set the oscomponent.cmdprefix.force parameter in the agentparam.txt
file, as follows:

oscomponent.cmdprefix.force=false

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: MICROFOCUS

Specifies that the job type is Micro Focus.

machine

Specifies the name of the machine on which the job runs.

mf_jcl_name

Specifies the path to and name of a JCL file to run.

mf_server

Specifies the server name or the IP address and port of the Micro Focus
Enterprise Server.

Define a Micro Focus Job

Chapter 13: Micro Focus Jobs 331

2. (Optional) Specify optional Micro Focus attributes:

■ envvars

■ fail_codes

■ job_class

■ job_terminator

■ max_exit_success

■ mf_user

■ mf_version

■ os_user

■ success_codes

3. (Optional) Specify common attributes that apply to all jobs.

The Micro Focus job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Attributes with Default Values

332 User Guide

Example: Pass the JCL by Content

This example passes the contents of the JCL file to the Micro Focus Enterprise Server
with IP address 172.31.255.255 and port 2222. The contents of the if.jcl file is read and
passed to the server.

insert_job: mf_job_by_content

job_type: MICROFOCUS

machine: mfagent

mf_server_address_type: ADDRESS

mf_server: "tcp:172.31.255.255:2222"

mf_jcl_type: CONTENT

mf_jcl_name: "C:\Program Files\micro focus\es-jcldemo\if.jcl"

Example: Pass the JCL by Reference

This example passes the name of the JCL file to the Micro Focus Enterprise Server. The
server reads and submits the named file. The job runs under the Micro Focus user ID
named MFUSER01.

insert_job: mf_job_by_reference

job_type: MICROFOCUS

machine: mfagent

mf_server_address_type: NAME

mf_server: mfprod

mf_jcl_type: REFERENCE

mf_jcl_name: "C:\Program Files\micro focus\es-jcldemo\if.jcl"

mf_user: MFUSER01@mfprod

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Micro Focus job attributes have default values:

fail_codes

Defines which exit codes indicate job failure.

Default: Any exit code other than 0 (The job interprets any code other than zero as
failure.)

Attributes with Default Values

Chapter 13: Micro Focus Jobs 333

job_terminator

Specifies whether to terminate the job if its containing box fails or terminates.

Default: n (The job does not terminate if its containing box fails or terminates.)

max_exit_success

Defines the maximum exit code that the job can exit with and be considered a
success.

Default: 0 (The job interprets only zero as job success.)

mf_jcl_type

Specifies whether to pass the JCL by content or by reference to the Micro Focus
Enterprise Server.

Default: CONTENT (The job passes the contents of the JCL file physically to the
server.)

mf_server_address_type

Specifies whether the mf_server attribute value is the server name or the IP
address and port of the Micro Focus Enterprise Server.

Default: NAME (The job assumes that the name of the Micro Focus Enterprise
Server is specified.)

mf_version

Specifies the environment on the mainframe that manages the job you want to run.

Default: JES2 (The job assumes that the environment is JES2.)

success_codes

Defines which exit codes indicate job success.

Default: 0 (The job interprets zero as success.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Specify the JES3 Environment

This example runs the JCL file in the JES3 environment. The mf_version attribute
overrides JES2, the default environment.

insert_job: mf_job_with_version_jes3

job_type: MICROFOCUS

machine: mfagent

mf_server_address_type: NAME

mf_server: mfprod

mf_jcl_type: REFERENCE

mf_jcl_name: "C:\Program Files\micro focus\es-jcldemo\if.jcl"

mf_version: JES3

Pass Variables as Parameters to a JCL File

334 User Guide

Pass Variables as Parameters to a JCL File

You can pass variables as parameters to a JCL file.

Follow these steps:

1. Define a Micro Focus job (see page 330).

2. Add the following attribute to the job definition:

envvars: parm_name=parm_value[, parm_name=parm_value...]

parm_name

Defines the name of a new environment variable or specifies the name of an
existing environment variable.

parm_value

Specifies the value of the environment variable.

3. (Optional) Add an envvars attribute for each additional variable that you want to
pass.

4. Run the job.

The specified variables are passed as parameters to the Micro Focus program.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Pass SORT and MAX as Parameters to the JCL file

Suppose that you want to pass SORT for symbolic variable VAR1 and MAX for symbolic
variable VAR2 in the following JCL file named mfprog.jcl:

//MFIDSAL1 JOB 'DAVINDER',CLASS=A,MSGCLASS=A,NOTIFY=MFIDSA

//*---

//*

//*---

//STEP1 EXEC PGM=%VAR1,PARM='%VAR2'

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=MFIDSA.DSA.LOAD,DISP=SHR

//SYSPRINT DD SYSOUT=* 00510000

//CEEDUMP DD SYSOUT=* 00520000

//SYSUDUMP DD SYSOUT=* 00530000

//OLDLIB DD DISP=(OLD),DSN=MFE.PROCLIB.L01

Pass Variables as Parameters to a JCL File

Chapter 13: Micro Focus Jobs 335

The parameter values are specified in the job definition using the envvars attribute as
follows:

insert_job: mf_job_with_envars

job_type: MICROFOCUS

machine: mfagent

mf_server_address_type: NAME

mf_server: mfprod

mf_jcl_type: CONTENT

mf_jcl_name: "C:\Program Files\microfocus\es-jcldemo\mfprog.jcl"

mf_user: MFUSER01@mfprod

envvars: VAR1=SORT

envvars: VAR2=MAX

The following JCL is submitted to the Micro Focus Enterprise Server when the job runs:

//MFIDSAL1 JOB 'DAVINDER',CLASS=A,MSGCLASS=A,NOTIFY=MFIDSA

//*---

//*

//*---

//STEP1 EXEC PGM=SORT,PARM='MAX'

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=MFIDSA.DSA.LOAD,DISP=SHR

//SYSPRINT DD SYSOUT=* 00510000

//CEEDUMP DD SYSOUT=* 00520000

//SYSUDUMP DD SYSOUT=* 00530000

//OLDLIB DD DISP=(OLD),DSN=MFE.PROCLIB.L01

Chapter 14: Monitoring Jobs 337

Chapter 14: Monitoring Jobs

This section contains the following topics:

Monitoring Jobs (see page 337)
Define a CPU Monitoring Job (see page 338)
Define a Disk Monitoring Job (see page 344)
Define an IP Monitoring Job (see page 350)
Define a Process Monitoring Job (see page 354)
Define a Text File Reading and Monitoring Job (see page 358)
Define a Windows Event Log Monitoring Job (see page 366)
Define a Windows Service Monitoring Job (see page 371)

Monitoring Jobs

Monitoring jobs let you monitor different aspects of your system.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

You can define the following monitoring jobs:

CPU Monitoring

Lets you monitor CPU usage.

Disk Monitoring

Lets you monitor disk space.

IP Monitoring

Lets you monitor an IP address.

Process Monitoring

Lets you monitor process execution.

Text File Reading and Monitoring

Lets you search a text file for a string.

Windows Event Log Monitoring

Lets you monitor a Windows event log.

Windows Service Monitoring

Lets you monitor the status of Windows services.

Define a CPU Monitoring Job

338 User Guide

Define a CPU Monitoring Job

You can define a CPU Monitoring (OMCPU) job to monitor the CPU usage of the
computer the specified agent is installed on. By default, the job monitors for available
CPU and completes when the specified conditions are met.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OMCPU

Specifies that the job type is CPU Monitoring.

machine

Specifies the name of the machine on which the job runs.

2. (Optional) Specify optional CPU Monitoring attributes:

■ cpu_usage

■ inside_range

■ job_class

■ job_terminator

■ monitor_mode

■ no_change

■ poll_interval

Define a CPU Monitoring Job

Chapter 14: Monitoring Jobs 339

3. Specify at least one of the following attributes if monitor_mode is set to WAIT (the
default) or CONTINUOUS:

■ lower_boundary

■ upper_boundary

Notes:

■ If the monitor_mode is set to WAIT, the job monitors for available CPU on the
specified machine and completes when the CPU usage value falls within the
lower and upper boundaries.

■ If the monitor_mode is set to CONTINUOUS, the job monitors for the
conditions continuously and an alert is written to the scheduler log file.

4. (Optional) Specify common attributes that apply to all job types.

The CPU Monitoring job is defined. When the job runs, it monitors for available CPU
on the specified machine and completes when the CPU usage value falls within the
lower and upper boundaries.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Check Available CPU Immediately

This example monitors available CPU usage on the unixagent computer. The job checks
the CPU usage immediately and reports the value in percent.

insert_job: omcpu_job

job_type: OMCPU

machine: unixagent

monitor_mode: NOW

Define a CPU Monitoring Job

340 User Guide

Example: Monitor When the Available CPU Reaches 50 Percent

This example monitors the CPU available on the unixagent computer. The default
monitor mode is WAIT, so a lower boundary, upper boundary, or both boundaries must
be specified. In this example, the lower boundary is specified and the default upper
boundary (100 percent) is used. When the available CPU usage is within 50 and 100
percent, the job completes.

insert_job: omcpu_job

job_type: OMCPU

machine: unixagent

lower_boundary: 50

CPU Monitoring Modes

When you define a CPU monitoring job, you can define the mode it runs in. Depending
on the mode, CPU monitoring jobs can do the following:

■ Monitor CPU usage and complete when the specified conditions are met (WAIT
mode). This is the default.

■ Record the CPU usage at the time the job runs. In this case, the job runs only once
(NOW mode).

■ Monitor CPU usage and trigger an alert if the CPU usage meets the defined criteria
(CONTINUOUS mode). For example, a job can trigger an alert when the computer is
using between 80 and 100 percent of CPU, and the job continues to run until you
manually terminate it.

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following CPU Monitoring job attributes have default values:

cpu_usage

Specifies whether the job monitors the available or used CPU processing capacity.

Default: FREE (The job monitors for available CPU.)

Define a CPU Monitoring Job

Chapter 14: Monitoring Jobs 341

inside_range

Specifies whether the job completes (or triggers if monitoring continuously) when
the value of CPU usage is inside or outside the specified boundaries.

Default: TRUE (The job completes or triggers if the value of the CPU usage is within
the lower and upper boundaries.)

lower_boundary

Defines the minimum amount of CPU usage to monitor for in percent.

Default: 0 (The job monitors the CPU usage between zero and the upper boundary.)

monitor_mode

Specifies whether the job waits until the monitor conditions are met or tries to
verify them immediately.

Default: WAIT (The job waits until the specified conditions are met before
completing.)

poll_interval

Defines the interval (in seconds) between successive scans of the CPU usage.

Default: objmon.scaninterval agent parameter (This parameter is automatically set
to 10. The job polls the CPU usage every 10 seconds during continuous monitoring.)

upper_boundary

Defines the maximum amount of CPU usage to monitor for in percent.

Default: 100 (The job monitors the CPU usage between the lower boundary and
100 percent.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Monitor CPU Usage Until Condition Successful

This example checks the CPU usage and completes successfully when the used CPU is
within 80 and 95 percent. The cpu_usage, monitor_mode, lower_boundary, and
upper_boundary attributes in this job definition override the default values.

insert_job: omcpu_job

job_type: OMCPU

machine: winagent

cpu_usage: USED

inside_range: TRUE

monitor_mode: WAIT

lower_boundary: 80

upper_boundary: 95

Define a CPU Monitoring Job

342 User Guide

Examples: Monitoring CPU Usage

The following examples are CPU Monitoring Jobs:

Example: Monitor Used CPU

This example monitors the used CPU on the unixagent computer. The job completes
when the used CPU is less than 20 percent or greater than 80 percent.

insert_job: omcpu_job

job_type: OMCPU

machine: unixagent

lower_boundary: 20

upper_boundary: 80

inside_range: FALSE

cpu_usage: USED

Example: Monitor CPU Availability Within a Range

This example continuously monitors the CPU available on the unixagent computer. The
job polls the CPU usage every 60 seconds. Each time the available CPU is within 75 and
95 percent, an alert is written to the scheduler log file. The job continues monitoring the
CPU usage until it is ended manually.

insert_job: omcpu_job

job_type: OMCPU

machine: unixagent

cpu_usage: FREE

inside_range: TRUE

poll_interval: 60

monitor_mode: CONTINUOUS

lower_boundary: 75

upper_boundary: 95

The following table shows when alerts would be triggered with and without the
no_change value:

Time CPU Is the Alert Triggered When
No Change is not specified?

Is the Alert Triggered
When No Change is
specified at 10 percent?

14:00:01 25 percent No. Available CPU must be
below 25 percent or above
75 percent.

No. Available CPU must
be below 25 percent or
above 75 percent.

14:00:02 20 percent Yes. Available CPU is below
25 percent.

Yes. Available CPU is
below 25%.

Define a CPU Monitoring Job

Chapter 14: Monitoring Jobs 343

Time CPU Is the Alert Triggered When
No Change is not specified?

Is the Alert Triggered
When No Change is
specified at 10 percent?

14:00:03 19 percent Yes. Available CPU is below
25 percent.

No. Available CPU
remains below 25
percent, but the change
from the last reading is
only 1 percent.

14:00:04 8 percent Yes. Available CPU is below
25 percent.

Yes. CPU usage has
changed 12 percent from
the last time the alert
was triggered.

14:00:05 19 percent Yes. Available CPU is below
25 percent.

Yes. CPU usage has
changed 11 percent from
the last time the alert
was triggered.

14:00:06 32 percent No. Available CPU must be
below 25 percent or above
75 percent.

No. Although CPU usage
changed by more than 10
percent, it no longer falls
within the range defined
by the lower_boundary
and upper_boundary
fields. It is not below 25
percent or above 75
percent.

Define a Disk Monitoring Job

344 User Guide

Define a Disk Monitoring Job

On UNIX and Windows systems, you can define a Disk Monitoring (OMD) job to monitor
the available or used space on a disk or logical partition. On i5/OS systems, you can
define a Disk Monitoring job to monitor storage space in the file systems mounted on
the i5/OS operating system.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OMD

Specifies that the job type is Disk Monitoring.

machine

Specifies the name of the machine on which the job runs.

disk_drive

Specifies the path to the disk, logical partition, or auxiliary storage pool to be
monitored.

2. (Optional) Specify optional Disk Monitoring attributes:

■ disk_format

■ disk_space

■ inside_range

■ job_class

■ job_terminator

■ monitor_mode

■ no_change

■ poll_interval

Define a Disk Monitoring Job

Chapter 14: Monitoring Jobs 345

3. Specify one or both of the following attributes if monitor_mode is set to WAIT (the
default) or CONTINUOUS:

■ lower_boundary

■ upper_boundary

4. (Optional) Specify common attributes that apply to all job types.

The Disk Monitoring job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Check Available Disk Space Immediately

This example monitors available disk space on a local UNIX partition. The job checks the
disk usage immediately and reports the value in megabytes.

insert_job: unix_freemb

job_type: OMD

machine: unixagent

disk_drive: /export/home

disk_format: MB

monitor_mode: NOW

Define a Disk Monitoring Job

346 User Guide

Example: Monitor When the Available Disk Space Reaches 50 Percent

This example monitors the disk space available in /export/home on the unixagent
computer. The default monitor mode is WAIT, so a lower boundary, upper boundary, or
both boundaries must be specified. In this example, the lower boundary is specified and
the default upper boundary (100 percent) is used. When the available disk space is
within 50 and 100 percent, the job completes.

insert_job: omd_job

job_type: OMD

machine: unixagent

disk_drive: /export/home

lower_boundary: 50

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Disk Monitoring job attributes have default values:

disk_format

Specifies the unit of measurement used to monitor available or used disk space.

Default: PERCENT (The job monitors disk usage by percent.)

disk_space

Specifies whether the job monitors for available or used disk space.

Default: FREE (The job monitors for available disk space.)

inside_range

Specifies whether the job completes (or triggers if monitoring continuously) when
the value of disk usage is within or outside the specified boundaries.

Default: TRUE (The job completes or triggers if the value of the disk usage is within
the lower and upper boundaries.)

monitor_mode

Specifies whether the job waits until the monitor conditions are met or tries to
verify them immediately.

Default: WAIT (The job waits until the specified conditions are met before
completing.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Define a Disk Monitoring Job

Chapter 14: Monitoring Jobs 347

Example: Monitor for Used Disk Space Outside of a Range

The inside_range and disk_space attributes in the following job definition override the
default values.

This example monitors the C drive on a Windows computer for used space. When the
value of disk space used falls below 16 percent or exceeds 95 percent, the job
completes.

insert_job: omd_win

job_type: OMD

machine: winagent

disk_drive: C

disk_format: PERCENT

lower_boundary: 16

upper_boundary: 95

inside_range: FALSE

disk_space: USED

Examples: Monitoring Disk Space

The following examples are Disk Monitoring Jobs:

Example: Monitor Available Space on a UNIX Partition

This example monitors available disk space on a local UNIX partition. The job checks the
disk usage immediately and reports the value in megabytes.

insert_job: unix_freemb

job_type: OMD

machine: unixagent

disk_drive: /export/home

disk_format: MB

monitor_mode: NOW

Define a Disk Monitoring Job

348 User Guide

Example: Continuously Monitor Used Space on a UNIX Partition

This example continuously monitors used disk space on a local UNIX partition. Each time
the used disk space falls between 90 and 100 percent, an alert is written to the
scheduler log file. The job continues monitoring the disk space until it is ended
manually.

insert_job: unix_used

job_type: OMD

machine: unixagent

disk_drive: /export/home

disk_space: USED

disk_format: PERCENT

monitor_mode: CONTINUOUS

lower_boundary: 90

Example: Monitor Used Space on a Windows Drive

This example monitors the used disk space on a local Windows C drive. When the used
disk space falls below 16 percent or exceeds 95 percent, the job completes.

insert_job: win_used

job_type: OMD

machine: winagent

disk_drive: C

disk_format: PERCENT

disk_space: USED

monitor_mode: WAIT

lower_boundary: 16

upper_boundary: 95

inside_range: FALSE

Example: Monitor the System Auxiliary Storage Pool on an i5/OS Computer

This example continuously monitors the system auxiliary storage pool on an i5/OS
computer. Each time the used disk space falls between 90 and 100 percent, an alert is
written to the scheduler log file. The job continues monitoring the disk space until it is
ended manually.

insert_job: i5_used

job_type: OMD

machine: i5agent

disk_drive: /

disk_space: USED

disk_format: PERCENT

monitor_mode: CONTINUOUS

lower_boundary: 90

upper_boundary: 100

Define a Disk Monitoring Job

Chapter 14: Monitoring Jobs 349

Example: Monitor Available Disk Space That Changes by At Least 100 KB

This example continuously monitors the available disk space in kilobytes (KB) on the
local Windows C drive. When the available space is in the 35000000 to 36000000 KB
range, the first alert is written to the scheduler log file.

Subsequently, an alert is triggered each time the available disk space is within the
specified boundaries and the disk usage changes by more than 100 KB. If the amount of
change is less than or equal to 100 KB, the job does not register a change.

insert_job: omd_job

job_type: OMD

machine: winagent

disk_drive: C

disk_space: FREE

disk_format: KB

lower_boundary: 35000000

upper_boundary: 36000000

inside_range: TRUE

no_change: 100

monitor_mode: CONTINUOUS

The following table shows four sequential scans:

Scan Scanned Amount (Kilobytes) Does the Trigger Occur?

1 35018896 Yes.

2 35018900 No. Comparing scan 2 to scan 1, the delta
value is only 4 KB. This scanned amount
will not be included in the next
calculation.

3 35018795 Yes. Comparing scan 3 to scan 1, the delta
value is greater than 100 KB. The delta
value of the next scan will be calculated
using the scan 3 value of 35018795.

4 36000001 No. The scanned amount is outside the
lower and upper boundary range.

Define an IP Monitoring Job

350 User Guide

Define an IP Monitoring Job

You can define an IP Monitoring (OMIP) job to monitor an IP address or a port at an IP
address.

If the port is not specified or it is specified as zero, then while monitoring an IP host, the
agent pings the machine. If the ping is successful, it indicates that the host is RUNNING.
If the ping is unsuccessful, it indicates that the host is STOPPED.

If you specify a host and a non-zero port, the agent tries to connect to the port to check
if an application is listening on it. If the connection is successful, it indicates that the
application on the host is RUNNING. If the connection is unsuccessful, it indicates that
the application on the host is STOPPED.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OMIP

Specifies that the job type is IP Monitoring.

machine

Specifies the name of the machine on which the job runs.

ip_host

Specifies the DNS name or IP address.

Define an IP Monitoring Job

Chapter 14: Monitoring Jobs 351

2. (Optional) Specify optional IP Monitoring attributes:

■ ip_port

■ ip_status

■ job_class

■ job_terminator

■ monitor_mode

3. (Optional) Specify common attributes that apply to all job types.

The IP Monitoring job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Monitor a Device Until it Stops

This example monitors the device APPARCL. When the device stops running, the job
completes.

insert_job: omip_stop

job_type: OMIP

machine: SYSAG

ip_host: APPARCL

monitor_mode: WAIT

Define an IP Monitoring Job

352 User Guide

Monitoring Remote IP Addresses on UNIX

To monitor remote IP addresses through the agent, the agent must run as root (on the
CA WA Agent for UNIX, Linux, or Windows) or under a profile with sufficient authority to
use the system ping command (on the CA WA Agent for i5/OS). If the agent runs as a
user without root privileges, a job that monitors a remote IP address shows complete
but with the following message in the status field and transmitter.log:

Ping (ip address) insufficient privilege

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following IP Monitoring job attributes have default values:

ip_status

Specifies the status of the IP address to monitor.

Default: STOPPED (The job monitors the IP address for a stopped status.)

monitor_mode

Specifies whether the job waits until the monitor conditions are met or tries to
verify them immediately.

Default: NOW (The job checks for the conditions immediately and completes.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Define an IP Monitoring Job

Chapter 14: Monitoring Jobs 353

Example: Monitor for a RUNNING Status Immediately

The ip_status attribute in the following job definition overrides the default value.

This example monitors a device at IP address 172.31.255.255 and port 7510. When the
job runs, it immediately checks if the device is running. If the device is running, the job
completes successfully.

insert_job: omip_job

job_type: OMIP

machine: monagt

ip_host: 172.31.255.255

ip_port: 7510

monitor_mode: NOW

ip_status: RUNNING

Examples: Monitoring an IP Address

The following examples are IP Monitoring Jobs:

Example: Monitor an IP Address for a Stopped Status

This example monitors a device with DNS name myhost. When the device stops running,
the job completes.

insert_job: omip_job

job_type: OMIP

machine: monagt

ip_host: myhost

ip_status: STOPPED

monitor_mode: WAIT

Example: Monitor an Agent IP Address Specified in Dotted Decimal Format

This example checks whether an application at a specific IP address using a specific port
is running. The IP address is 172.24.2.20 and the input port is 9401. When the job runs,
it checks the status immediately and completes if the application is running.

insert_job: omip_job

job_type: OMIP

machine: SYSAG

ip_host: 172.24.2.20

ip_port: 9401

ip_status: RUNNING

monitor_mode: NOW

Define a Process Monitoring Job

354 User Guide

Define a Process Monitoring Job

You can define a Process Monitoring (OMP) job to monitor the status of a process on
the computer where the agent is installed.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OMP

Specifies that the job type is Process Monitoring.

machine

Specifies the name of the machine on which the job runs.

process_name

Specifies the name of the process to be monitored.

2. (Optional) Specify optional Process Monitoring attributes:

■ job_class

■ job_terminator

■ monitor_mode

■ process_status

3. (Optional) Specify common attributes that apply to all job types.

The Process Monitoring job is defined.

Define a Process Monitoring Job

Chapter 14: Monitoring Jobs 355

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Monitor a Running Process

This example monitors the nlnotes process. By default, the job checks if the process is
stopped. If the process is stopped, the job completes successfully. If the process is
running, the job continues monitoring it until it stops.

insert_job: omp_unix

job_type: OMP

machine: unixagt

process_name: nlnotes

monitor_mode: WAIT

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

Define a Process Monitoring Job

356 User Guide

The following Process Monitoring job attributes have default values:

monitor_mode

Specifies whether the job waits until the monitor conditions are met or tries to
verify them immediately.

Default: NOW (The job checks for the conditions immediately and completes.)

process_status

Specifies the status of the process to be monitored.

Default: STOPPED (The job checks if the process is stopped.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Monitor for a STOPPED Status

The monitor_mode attribute in the following job definition overrides the default value.

This example monitors the server.exe process. The job checks the process status
immediately and completes successfully if the process is running. If the process is
running, the job continues monitoring until the process starts.

insert_job: omp_win

job_type: OMP

machine: winagt

process_name: "c:\Program files\Web_Server\server.exe"

process_status: RUNNING

monitor_mode: WAIT

Define a Process Monitoring Job

Chapter 14: Monitoring Jobs 357

Examples: Monitoring Processes

The following examples are Process Monitoring Jobs:

Example: Monitor Multiple Instances

This example monitors the Microsoft SQL Server processes of two instances using the
full path name. When the server process stops, the job monitoring that instance
completes successfully. The first job monitors the sqlserver.exe process in the
…\MSSQL.1\MSSQL\Binn directory. The second job monitors the sqlserver.exe process
in the …\MSSQL.2\MSSQL\Binn directory.

insert_job: mon_sql_server_instance1

job_type: OMP

machine: mssqlserver

process_name: "C:\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL\Binn\sqlservr.exe"

process_status: stopped

monitor_mode: wait

insert_job: mon_sql_server_instance2

job_type: OMP

machine: mssqlserver

process_name: "C:\Program Files\Microsoft SQL

Server\MSSQL.2\MSSQL\Binn\sqlservr.exe"

process_status: stopped

monitor_mode: wait

Example: Monitor the Agent Process on i5/OS

This example monitors the APPLPGM process on an i5/OS computer. The job checks the
process status immediately and completes successfully if the process is running.

insert_job: omp_i5_onejob

job_type: OMP

machine: i5agt

process_name: 123456/PROD/APPLPGM

process_status: RUNNING

monitor_mode: NOW

Define a Text File Reading and Monitoring Job

358 User Guide

Example: Monitor Multiple i5/OS Processes That Have Similar Names

This example monitors all processes running on an i5/OS computer under the JDOE user
profile and whose names start with CALC. When all of these processes stop running, the
job completes successfully.

insert_job: omp_i5

job_type: OMP

machine: i5agt

process_name: *ALL/JDOE/CALC*

process_status: STOPPED

monitor_mode: WAIT

Define a Text File Reading and Monitoring Job

You can define a Text File Reading and Monitoring (OMTF) job to search a text file on a
Windows, UNIX, or i5/OS computer for a text string. For example, you can monitor a log
file for an error message after a script executes.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OMTF

Specifies that the job type is Text File Reading and Monitoring.

machine

Specifies the name of the machine on which the job runs.

text_file_filter

Defines the text string to search for. You can specify the text string as a regular
expression.

text_file_name

Specifies the path to and name of the text file to search.

Define a Text File Reading and Monitoring Job

Chapter 14: Monitoring Jobs 359

2. (Optional) Specify optional Text File Reading and Monitoring attributes:

■ encoding

■ job_class

■ job_terminator

■ lower_boundary

■ monitor_mode

■ text_file_filter_exists

■ text_file_mode

■ time_format

■ time_position

■ upper_boundary

3. (Optional) Specify common attributes that apply to all job types.

The Text File Reading and Monitoring job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define a Text File Reading and Monitoring Job

360 User Guide

Example: Monitor a File for a Specified String

This example monitors the entire transactions.log file for the ERROR MESSAGE string.
The job waits for the string to be found and then completes successfully.

insert_job: textfile_job

job_type: OMTF

machine: monagt

text_file_name: /export/home/logs/transactions.log

text_file_filter: ERROR MESSAGE

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Text File Reading and Monitoring job attributes have default values:

encoding

Specifies the name of the character set used to encode the data in the file.

Default: US-ASCII (The job monitors the file as US-ASCII.)

monitor_mode

Specifies whether the job waits until the monitor conditions are met or tries to
verify them immediately.

Default: WAIT (The job waits until the specified conditions are met before
completing.)

text_file_mode

Specifies the search mode when monitoring a text file.

Default: LINE (The job searches for the text in the specified line boundaries.)

text_file_filter_exists

Specifies whether the job monitors the text file to check if the text string exists or
does not exist.

Default: TRUE (The job checks if the text string exists.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Define a Text File Reading and Monitoring Job

Chapter 14: Monitoring Jobs 361

Example: Search for Text Between Regular Expressions

The text_file_mode attribute in the following job definition overrides the default LINE
monitor mode.

This example searches the /export/home/systemagent/agentparm.txt file. The search
starts at the first line that contains the word "agent" at the beginning of the line (as
specified by \A in the regular expression specified for lower_boundary) and until it finds
the string "level=2" at the end of a line (as specified by \Z in the regular expression
specified for upper_boundary).

insert_job: omtf_unix_line

job_type: OMTF

machine: monagt

text_file_name: /export/home/systemagent/agentparm.txt

text_file_filter: \.0/MAIN$

text_file_mode: REGEX

lower_boundary: \Aagent

upper_boundary: level=2\Z

monitor_mode: NOW

Example: Specify a Data Encoding Value

The encoding attribute in the following job definition overrides the default US-ASCII
data encoding value.

This example monitors a text file that contains data encoded in the ISO Latin Alphabet
No. 1 (also named ISO-LATIN-1). The job checks the text file immediately and completes
successfully if the specified string is found. If the string is not found, the job fails.

insert_job: textfile_job

job_type: OMTF

machine: monagt

text_file_name: /export/home/logs/transactions.log

text_file_filter: ERROR MESSAGE

text_file_mode: LINE

lower_boundary: 1

upper_boundary: 50

encoding: ISO-8859-1

monitor_mode: NOW

Define a Text File Reading and Monitoring Job

362 User Guide

Examples: Monitoring a Text File for Specified Text

The following examples are Text File Reading and Monitoring Jobs:

Example: Search for a Regular Expression

In this example, the text string contains regular expression pattern matching syntax. The
search range is also a regular expression as indicated by the text_file_mode attribute.

insert_job: omtf2

job_type: OMTF

machine: monagt

text_file_name: /export/home/agentdir/agentparm.txt

text_file_filter: ^\w{4,10}\.

text_file_mode: REGEX

lower_boundary: “log*.*”

monitor_mode: now

The regular expression can be interpreted as follows:

■ ^ or \A — match only at the beginning of string (line)

■ \Z or $ — match only at the end of string

■ \w — a word character [a-zA-Z0-9]

■ \W — a non-word character

■ \s — a whitespace character

■ {4,10} — match at least 4 times but not more than 10 times

To illustrate the last item (4, 10), consider the syntax:

text_file_filter: b1{1,3}c

Evaluating this expression yields the following conditions:

■ The line contains the text b1.

■ Numeric 1 should exist at least once, but not more than three times.

■ The specified text string must be followed by the letter c.

Define a Text File Reading and Monitoring Job

Chapter 14: Monitoring Jobs 363

Example: Search for a String in a File Starting at a Specified Line

This example searches the c:\ca\log file in line mode. The job starts searching the
content from line 143 of the file. The upper boundary is not defined, so the job searches
to the last line of the file. The job completes successfully if the ERROR MESSAGE string is
found.

insert_job: omtf_line

job_type: OMTF

machine: monagt

text_file_name: "c:\ca\log"

text_file_filter: ERROR MESSAGE

text_file_mode: LINE

lower_boundary: 143

monitor_mode: NOW

Example: Search for a String in a File When the Search Mode is REGEX

This example searches the c:\ca\log file in regular expression mode. The lower boundary
is not defined, so the job searches the content from the first line of the file to the upper
boundary (a line that contains the word service). The job completes successfully if the
ARCHIVE string is found.

insert_job: omtf_regex

job_type: OMTF

machine: monagt

text_file_name: "c:\ca\log"

text_file_filter: ARCHIVE

text_file_mode: REGEX

upper_boundary: service

monitor_mode: NOW

Define a Text File Reading and Monitoring Job

364 User Guide

Example: Search for a String in a File When the Search Mode is DATETIME

This example searches the /export/home/logs/transmitter.log file in date and time
mode. The job searches the content between May 20, 2010 at midnight and May 27,
2010 at 11:59 p.m. The date and time values are defined using the format specified in
the time_format attribute. The job completes successfully if the transmitted string is
found.

insert_job: omtf_timedate

job_type: OMTF

machine: monagt

text_file_name: /export/home/logs/transmitter.log

text_file_filter: transmitted

text_file_mode: DATETIME

lower_boundary: "Thu May 20 00:00:00.000 EDT 2010"

upper_boundary: "Thu May 27 23:59:59.999 EDT 2010"

time_format: "EEE MMM dd HH:mm:ss.SSS zzz yyyy"

time_position: 12

monitor_mode: NOW

Example: Monitor a Text File Continuously

This example searches the transmitter.log file for the text string "Warning".

insert_job: textfile_job

job_type: OMTF

machine: monagt

text_file_name: /export/home/log/transmitter.log

text_file_filter: Warning

text_file_mode: LINE

lower_boundary: 25

text_file_filter_exists: TRUE

monitor_mode: CONTINUOUS

Define a Text File Reading and Monitoring Job

Chapter 14: Monitoring Jobs 365

When the job first runs, it searches the content between line 25 and the end of the file.
An alert is written to the scheduler log file the first time that the string is found. In other
words, suppose that the file contains multiple occurrences of "Warning" between lines
25 to the end of the file, as follows:

.

.

.

25

26 Warning

27

28 Warning

29

30

31 Warning

.

.

.

EOF

When the job first runs, the trigger only occurs at the first occurrence of the text (line
26). Subsequently, the job continues monitoring only the new data that is appended to
the file. An alert is triggered each time the string is found in the appended data.

Note: Alerts are not triggered for new occurrences of the "Warning" string in the data
that has already been searched. For example, suppose that the job has already searched
lines 25 to 100 of the file. The file is then modified to include "Warning" on line 30.
During continuous monitoring, an alert is not triggered for that occurrence.

This job runs until it is completed manually.

Example: Search for a Text String on an i5/OS Computer

This example searches for a text string in the DATA member of a QSYS file object on an
i5/OS computer. The job searches the content between lines 1 and 20. The job
completes successfully if the string is found.

insert_job: textfile_job3

job_type: OMTF

machine: monagt

text_file_name: /QSYS.LIB/LIBRARY.LIB/RESULTS.FILE/DATA.MBR

text_file_filter: Create file failed

text_file_mode: LINE

lower_boundary: 1

upper_boundary: 20

monitor_mode: NOW

Define a Windows Event Log Monitoring Job

366 User Guide

Example: Check If a String Does Not Exist in a File

This example searches lines 1 to 200 of the transmitter.log file for the text string
"Warning". If the string is not found, the job completes successfully. If the string is
found, the job fails.

insert_job: textfile_job

job_type: OMTF

machine: monagt

text_file_name: /export/home/log/transmitter.log

text_file_filter: Warning

text_file_mode: LINE

lower_boundary: 1

upper_boundary: 200

text_file_filter_exists: FALSE

monitor_mode: NOW

Define a Windows Event Log Monitoring Job

You can define a Windows Event Log Monitoring (OMEL) job to monitor a Windows
event log in the computer where the agent is running. The monitor returns the most
recent event available or continuously monitors for events in a particular Windows
event log.

Note: To run these jobs, your system requires CA WA Agent for Windows.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OMEL

Specifies that the job type is Windows Event Log Monitoring.

machine

Specifies the name of the machine on which the job runs.

win_log_name

Specifies the name of the event log.

Define a Windows Event Log Monitoring Job

Chapter 14: Monitoring Jobs 367

2. (Optional) Specify optional Windows Event Log Monitoring attributes:

■ job_class

■ job_terminator

■ monitor_mode

■ win_event_category

■ win_event_computer

■ win_event_datetime

■ win_event_description

■ win_event_id

■ win_event_op

■ win_event_source

■ win_event_type

3. (Optional) Specify common attributes that apply to all job types.

The Windows Event Log Monitoring job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define a Windows Event Log Monitoring Job

368 User Guide

Example: Monitor an Application Event Log

This example monitors an Application event log. By default, the job waits until an Error
event occurs before it completes.

insert_job: eventlog_job

job_type: OMEL

machine: monagt

win_log_name: Application

Types of Event Logs

The Windows Event Log Monitoring job only monitors event logs maintained by the
operating system and available in the Event Viewer. Windows operating systems record
events in at least three types of logs, including the following:

Application log

The application log contains events logged by applications or programs. For
example, a database program might record a file error in the application log.

System log

The system log contains events logged by the Windows system components. For
example, the failure of a driver or other system component to load during startup is
recorded in the system log.

Security log

The security log can record security events (such as valid and invalid logon
attempts) and events related to resource use (such as creating, opening, or deleting
files).

For more information on Windows logs, select Start, Settings, Control Panel,
Administrative Tools, Event Viewer. Select any of the three log categories and
double-click to view its property page.

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

Define a Windows Event Log Monitoring Job

Chapter 14: Monitoring Jobs 369

The following Windows Event Log Monitoring job attributes have default values:

monitor_mode

Specifies whether the job waits until the monitor conditions are met or tries to
verify them immediately.

Default: WAIT (The job waits until the specified conditions are met before
completing.)

win_event_type

Specifies the event type to monitor in the Windows event log.

Default: ERROR (The job monitors for the Error event type.)

win_event_op

Specifies a comparison operator against the value of a Windows Event ID.

Default: EQ (The job monitors for an Event ID that is equal to the specified value.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Monitor an Event Log Continuously for Info Events

The monitor_mode, win_event_op, and win_event_type attributes in the following job
definition override the default values.

This example monitors the event log for applications continuously for all instances of an
INFO event type, where the event source is LLDSAPNT223, the event description
contains the word started, and the event ID is less than or equal to 4000. Each time the
specified conditions occur, an alert is written to the scheduler log file.

insert_job: eventlog_job

job_type: OMEL

machine: monagt

win_log_name: Application

win_event_source: LLDSAPNT223

win_event_category: None

win_event_type: INFO

win_event_op: LE

win_event_id: 4000

win_event_description: started

monitor_mode: CONTINUOUS

Define a Windows Event Log Monitoring Job

370 User Guide

Examples: Monitoring a Windows Event Log

The following examples are Windows Event Log Monitoring Jobs:

Example: Monitor an Application Log That Occurs on or after a Specified Date

This example monitors an application log that occurs any time on or after January 12,
2010, 6:30 a.m. When the job finds an application log that occurs any time on or after
that date and time, the job completes successfully.

insert_job: win_eventlog

job_type: OMEL

machine: winagent

win_log_name: Application

win_event_type: info

win_event_category: None

win_event_source: LLDSAPNT223

win_event_datetime: "20100112 06:30:00"

Example: Monitor Events with IDs Equal to 0

This example checks for an event ID number less than 1. The job returns the first
application event from the application log that has an event ID equal to 0.

insert_job: eventlog_job

job_type: OMEL

machine: monagt

win_log_name: Application

win_event_op: LT

win_event_id: 1

Example: Monitor a System Event Log

This example monitors a system event log for an event type of WARN, event source of
MrxSmb, and event category of None.

insert_job: eventlog_job

job_type: OMEL

machine: monagt

win_log_name: System

win_event_type: WARN

win_event_source: MrxSmb

win_event_category: None

Define a Windows Service Monitoring Job

Chapter 14: Monitoring Jobs 371

Example: Monitor a Security Event Log for Audit Success Events

In this example, the security log is monitored for a successful audit of a security access
attempt. The event category is System Event, the term succeeded is excluded, but the
words Audit and log are included in the event description.

insert_job: eventlog_job

job_type: OMEL

machine: monagt

win_log_name: Security

win_event_type: AUDITS

win_event_category: System Event

win_event_source: Service Control Manager

win_event_description: "-succeeded +Audit log"

Example: Monitor a System Event Log for Particular Errors

In this example, the event description must include the words conflict and state as
indicated by the plus signs but must exclude the words deny, master, or browser as
indicated by the minus sign. The plus sign is the default and is optional.

insert_job: eventlog_job1

job_type: OMEL

machine: monagt

win_log_name: System

win_event_type: ERROR

win_event_description: "+conflict +state -deny -master -browser"

Example: Monitor an Application Log for Events Indicating Normal Shutdown

In this example, the event description must include the words Normal shutdown. This
example does not use the plus sign, and by default, the specified words are included in
the search.

insert_job: eventlog_job2

job_type: OMEL

machine: monagt

win_log_name: Application

win_event_type: INFO

win_event_description: "Normal shutdown"

Define a Windows Service Monitoring Job

You can define a Windows Service Monitoring (OMS) job to monitor a service on a
Windows computer where the agent is running.

Note: To run these jobs, your system requires CA WA Agent for Windows.

Define a Windows Service Monitoring Job

372 User Guide

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OMS

Specifies that the job type is Windows Service Monitoring.

machine

Specifies the name of the machine on which the job runs.

win_service_name

Specifies the name of the local Windows service to be monitored.

2. (Optional) Specify optional Windows Service Monitoring attributes:

■ job_class

■ job_terminator

■ monitor_mode

■ win_service_status

3. (Optional) Specify common attributes that apply to all job types.

The Windows Service Monitoring job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define a Windows Service Monitoring Job

Chapter 14: Monitoring Jobs 373

Example: Monitor a Windows Service

This example monitors a Windows service named App Server. The win_service_status
attribute is not specified in the job definition, so the job monitors for a RUNNING status
by default. The job completes when the service is running.

insert_job: oms_job2

job_type: OMS

machine: winagt

win_service_name: App Server

monitor_mode: WAIT

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Windows Service Monitoring job attributes have default values:

monitor_mode

Specifies whether the job waits until the monitor conditions are met or tries to
verify them immediately.

Default: NOW (The job checks for the conditions immediately and completes.)

win_service_status

Specifies the status of the Windows Service to be monitored.

Default: RUNNING (The job checks if the Windows service is running.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Define a Windows Service Monitoring Job

374 User Guide

Example: Monitor for a PAUSED Status Immediately

The win_service_status attributes in the following job definition overrides the default
value.

This example monitors a Windows service named Proc Server. The job checks the status
immediately and completes successfully if the service is paused. If the service is not
paused, the job fails.

insert_job: oms_job1

job_type: OMS

machine: winagt

win_service_name: Proc Server

win_service_status: PAUSED

monitor_mode: NOW

Examples: Monitoring Windows Services

The following examples are Windows Services Monitoring Jobs:

Example: Monitor for the Existence of a Windows Service

This example monitors a Windows service named Proc Server. The job completes
successfully if the service exists. By default, the job checks for the condition immediately
and completes, so the monitor_mode attribute is not required in the job definition.

insert_job: oms_job1

job_type: OMS

machine: winagt

win_service_name: Proc Server

win_service_status: EXISTS

Example: Specify a Path to a Windows Service Executable

This example monitors a Windows service named Log App. The job waits until the
service status is CONTINUE_PENDING before it completes.

insert_job: oms_job2

job_type: OMS

machine: winagt

win_service_name: "C:\Program Files\Log App\apptask.exe"

win_service_status: CONTINUE_PENDING

monitor_mode: WAIT

Define a Windows Service Monitoring Job

Chapter 14: Monitoring Jobs 375

Example: Check a Service Status Immediately

This example monitors the schedmanager service for a status of RUNNING. The job
checks the status immediately and completes successfully if the service is running. If the
service is not running, the job fails.

insert_job: oms_job3

job_type: OMS

machine: winagt

win_service_name: schedmanager

win_service_status: RUNNING

monitor_mode: NOW

Chapter 15: Oracle E-Business Suite Jobs 377

Chapter 15: Oracle E-Business Suite Jobs

This section contains the following topics:

Oracle E-Business Suite Jobs (see page 377)
Define an Oracle E-Business Suite Copy Single Request Job (see page 377)
Define an Oracle E-Business Suite Request Set Job (see page 380)
Define an Oracle E-Business Suite Single Request Job (see page 386)
Attributes with Default Values (see page 390)

Oracle E-Business Suite Jobs

You can define jobs to run Oracle E-Business Suite workload.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Oracle E-Business Suite.

You can define the following Oracle E-Business Suite jobs:

Copy Single Request Job

Copies an existing single request defined on Oracle Applications and runs it under
the agent.

Request Set Job

Runs multiple programs in an Oracle Applications application.

Single Request Job

Runs a single program in an Oracle Applications application.

Define an Oracle E-Business Suite Copy Single Request Job

You can define an Oracle E-Business Suite Copy Single Request (OACOPY) job to copy an
existing single request defined on Oracle E-Business Suite and run it under the agent.
When the job runs, it can override values in the original definition with values specified
on the agent or in the job definition. The OACOPY job is useful when you want to reuse
existing job definitions.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Oracle E-Business Suite.

Define an Oracle E-Business Suite Copy Single Request Job

378 User Guide

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OACOPY

Specifies that the job type is Oracle E-Business Suite Copy Single Request.

machine

Specifies the name of the machine on which the job runs.

request_id

Specifies the request ID of the Oracle E-Business Suite request you want to
copy.

2. Do one of the following:

■ Ensure that a default Oracle E-Business Suite user name and responsibility
name are defined in the agent's agentparm.txt file using the oa.default.user
and oa.default.responsibility parameters, respectively.

■ Add the following attributes to the definition:

oracle_user

Specifies the Oracle E-Business Suite user name that the job runs under.

 Note: This attribute overrides the oa.default.user agent parameter.

oracle_resp

Specifies an Oracle E-Business Suite responsibility name.

 Note: This attribute overrides the oa.default.responsibility agent
parameter.

Define an Oracle E-Business Suite Copy Single Request Job

Chapter 15: Oracle E-Business Suite Jobs 379

3. (Optional) Specify optional Oracle E-Business Suite Copy Single Request attributes:

■ job_class

■ job_terminator

■ oracle_custom_property

■ oracle_mon_children

■ oracle_mon_children_delay

■ oracle_notify_display_users

■ oracle_notify_users

■ oracle_output_format

■ oracle_quote_in_default

■ oracle_template_language

■ oracle_template_territory

4. (Optional) Specify common attributes that apply to all jobs.

The Oracle E-Business Suite Copy Single Request job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define an Oracle E-Business Suite Request Set Job

380 User Guide

Example: Copy a Single Request

Suppose that you want to copy an existing single request defined on Oracle E-Business
Suite. In this example, the job copies the single request job with request ID 2255470 and
overrides the Oracle E-Business Suite user name and responsibility name defined in the
agentparm.txt file.

insert_job: oacopy_single

job_type: oacopy

machine: oaagent

request_id: 2255470

oracle_user: SYSADMIN

oracle_resp: System Administrator

Define an Oracle E-Business Suite Request Set Job

You can define an Oracle E-Business Suite Request Set (OASET) job to run a request set
program. You must get the following information from the original Oracle E-Business
Suite request set:

■ Display name or short name of the Oracle E-Business Suite application the request
set belongs to

■ Request set short name or display name

■ User name that the job runs under

■ Responsibility name

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Oracle E-Business Suite.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OASET

Specifies that the job type is Oracle E-Business Suite Request Set.

machine

Specifies the name of the machine on which the job runs.

oracle_appl_name

Specifies the name of the Oracle E-Business Suite application that the request
set belongs to.

oracle_req_set

Specifies the request set short name or display name depending on the
oracle_req_set_type attribute.

Define an Oracle E-Business Suite Request Set Job

Chapter 15: Oracle E-Business Suite Jobs 381

2. Do one of the following:

■ Ensure that a default Oracle E-Business Suite user name and responsibility
name are defined in the agent's agentparm.txt file using the oa.default.user
and oa.default.responsibility parameters, respectively.

■ Add the following attributes to the definition:

oracle_user

Specifies the Oracle E-Business Suite user name that the job runs under.

 Note: This attribute overrides the oa.default.user agent parameter.

oracle_resp

Specifies an Oracle E-Business Suite responsibility name.

 Note: This attribute overrides the oa.default.responsibility agent
parameter.

3. (Optional) Specify optional Oracle E-Business Suite Request Set attributes:

■ job_class

■ job_terminator

■ oracle_appl_name_type

■ oracle_custom_property

■ oracle_mon_children

■ oracle_mon_children_delay

■ oracle_output_format

■ oracle_print_copies

■ oracle_print_style

■ oracle_printer

■ oracle_programdata

■ oracle_quote_in_default

■ oracle_req_set_type

■ oracle_save_output

■ oracle_template_language

■ oracle_template_territory

■ oracle_use_arg_def

■ oracle_use_set_defaults_first

4. (Optional) Specify common attributes that apply to all job types.

The Oracle E-Business Suite Request Set job is defined.

Define an Oracle E-Business Suite Request Set Job

382 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Run a Request Set

This example runs a request set named FNDRSSUB1310. The request set belongs to the
application with the short name BIS in Oracle E-Business Suite. The job uses the default
Oracle E-Business Suite responsibility name and user name defined on the agent.

insert_job: oaset_resp

job_type: oaset

machine: oaagent

oracle_appl_name_type: SHORT

oracle_appl_name: BIS

oracle_req_set: FNDRSSUB1310

Define an Oracle E-Business Suite Request Set Job

Chapter 15: Oracle E-Business Suite Jobs 383

Specify Data for an Individual Program in a Request Set

When you define an Oracle E-Business Suite Request Set (OASET) job, you can specify
data for an individual program in the request set. This data overrides the arguments and
print parameters specified for the entire request set. You can specify the following data
for a program:

■ Program arguments

■ Printer

■ Print style

■ Number of copies to print

■ Whether to save the output from the program

■ List of user names to notify using short or display names

■ Output format

■ Template language and template territory

■ Whether to quote resolved expressions in default values

Follow these steps:

1. Define an Oracle E-Business Suite Request Set job (see page 380).

2. Add the following attribute to the job definition:

oracle_programdata

Specifies data for an individual program in an Oracle E-Business Suite request
set.

3. Run the job.

The data is specified for the program.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Specify Values for Individual Programs in a Request Set

Suppose that you want to run an Oracle E-Business Suite request set named EXTRACTS
on the oaagent agent. The request set belongs to the application with the display name
Application Object Library in Oracle E-Business Suite. The job definition specifies the
following default settings for all programs in the request set:

■ The number of copies to be printed is 1.

■ The print style is LANDSCAPE.

■ The printer is \\printer path\Q8.

Define an Oracle E-Business Suite Request Set Job

384 User Guide

The first oracle_programdata attribute overrides the default values for the first program
in the request set. The first program uses the arguments T23 and R1 and prints two
copies using the \\printer path\Q1 printer in PORTRAIT style.

The second oracle_programdata attribute overrides the default values for the fifth
program in the request set. The fifth program uses arguments R and R1 and prints three
copies using the \\printer path\Q2 printer in PORTRAIT style.

The other programs in the request set use the default values.

insert_job: oaset_prog

job_type: oaset

machine: oaagent

oracle_appl_name_type: DISPLAY

oracle_appl_name: Application Object Library

oracle_req_set: EXTRACTS

oracle_user: SYSADMIN

oracle_resp: System Administrator

oracle_printer: "\\printer path\Q8"

oracle_print_style: LANDSCAPE

oracle_print_copies: 1

oracle_programdata: index=1, args="T23,,R1", printer="\\printer\Q1",

print_style=PORTRAIT, print_copies=2, saveop=Y

oracle_programdata: index=5, args="R,R1,", printer="\\printer\Q2",

print_style=PORTRAIT, print_copies=3, saveop=N

Suppose that you want to run an Oracle E-Business Suite request set named
FNDRSSUB1310 on the local host. The request set belongs to the application with the
short name BIS in Oracle E-Business Suite. The SYSADMIN and ASGUEST users are
notified when the single request completes on QATEST1.

The first oracle_programdata attribute overrides the default values for the first program
in the request set. The first program uses the output format as PDF, the template
language is English, and template territory is US.

The second oracle_programdata attribute overrides the default values for the fifth
program in the request set. The second program uses the output format as EXCEL, the
template language is English, and template territory is US.

Define an Oracle E-Business Suite Request Set Job

Chapter 15: Oracle E-Business Suite Jobs 385

The other programs in the request set use the default values.

delete_job: test_OASET

insert_job: oaset_fmt

job_type: OASET

machine: localhost

oracle_user: SYSADMIN

oracle_resp: System Administrator

oracle_appl_name_type: SHORT

oracle_appl_name: BIS

oracle_req_name_type: DISPLAY

oracle_req_set: FNDRSSUB1310

oracle_use_arg_def: Y

oracle_programdata: index=1, output_format=PDF, template_language=en,

template_territory=US, notify_users="'SYSADMIN','ASGUEST','QATEST1'"

oracle_programdata: index=2, output_format=EXCEL, template_language=en,

template_territory=US, notify_users="'SYSADMIN','ASGUEST','QATEST1'"

group: OA

Specify Argument Values to Pass to a Program in a Request Set

You can pass argument values to an individual program in an Oracle E-Business Suite
Request Set (OASET) job. The job can also use the default values that are defined by the
registered Oracle Applications Concurrent Manager program. When an argument value
is defined in both the job definition and as a default, the argument value in the job
definition overrides the default.

Follow these steps:

1. Define an Oracle E-Business Suite Request Set job (see page 380).

2. Add the following attribute to the job definition:

oracle_programdata

Specifies data for an individual program in an Oracle E-Business Suite request
set.

3. (Optional) Add the following attribute:

oracle_use_arg_def

Specifies whether to use default values for arguments that are not defined
using the oracle_programdata attribute.

4. Run the job.

The argument values are passed to the program in the request set.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Define an Oracle E-Business Suite Single Request Job

386 User Guide

Example: Specify Argument Values for a Program in a Request Set

This example runs an Oracle E-Business Suite Request Set job that uses the argument
defaults in Oracle E-Business Suite and the argument values defined in the job
definition. The second program in the request set has four arguments and you want to
pass T23 as the first value and R1 as the fourth value. The argument string specifies
placeholders for the second and third arguments, so the job uses the default values for
those arguments.

insert_job: oaset_prog

job_type: oaset

machine: oaagent

oracle_appl_name_type: DISPLAY

oracle_appl_name: Application Object Library

oracle_req_set: EXTRACTS

oracle_user: SYSADMIN

oracle_resp: System Administrator

oracle_use_arg_def: Y

oracle_programdata: index=2, args="T23,,R1", printer="\\printer\Q1",

print_style=PORTRAIT, print_copies=2, saveop=Y

Define an Oracle E-Business Suite Single Request Job

You can define an Oracle E-Business Suite Single Request (OASG) job to run a single
request program. You must get the following information from the original Oracle
E-Business Suite single request:

■ Display name or short name of the Oracle E-Business Suite application the single
request belongs to

■ Program short name or display name

■ User name that the job runs under

■ Responsibility name

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Oracle E-Business Suite.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: OASG

Specifies that the job type is Oracle E-Business Suite Single Request.

machine

Specifies the name of the machine on which the job runs.

Define an Oracle E-Business Suite Single Request Job

Chapter 15: Oracle E-Business Suite Jobs 387

oracle_appl_name

Specifies the name of the Oracle E-Business Suite application that the single
request belongs to.

oracle_program

Specifies the single request program short name or display name depending on
the oracle_program_name_type attribute.

2. Do one of the following:

■ Ensure that a default Oracle E-Business Suite user name and responsibility
name are defined in the agent's agentparm.txt file using the oa.default.user
and oa.default.responsibility parameters, respectively.

■ Add the following attributes to the definition:

oracle_user

Specifies the Oracle E-Business Suite user name that the job runs under.

 Note: This attribute overrides the oa.default.user agent parameter.

oracle_resp

Specifies an Oracle E-Business Suite responsibility name.

 Note: This attribute overrides the oa.default.responsibility agent
parameter.

3. (Optional) Specify optional Oracle E-Business Suite Single Request attributes:

■ job_class

■ job_terminator

■ oracle_appl_name_type

■ oracle_args

■ oracle_custom_property

■ oracle_desc

■ oracle_mon_children

Define an Oracle E-Business Suite Single Request Job

388 User Guide

■ oracle_mon_children_delay

■ oracle_notify_display_users

■ oracle_notify_users

■ oracle_output_format

■ oracle_print_copies

■ oracle_print_style

■ oracle_printer

■ oracle_program_name_type

■ oracle_quote_in_default

■ oracle_save_output

■ oracle_template_language

■ oracle_template_territory

■ oracle_use_arg_def

4. (Optional) Specify common attributes that apply to all job types.

The Oracle E-Business Suite Single Request job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define an Oracle E-Business Suite Single Request Job

Chapter 15: Oracle E-Business Suite Jobs 389

Example: Run a Single Request

This example runs a single request program named FNDSCARU. The single request
belongs to the application with the short name ACCOUNTS in Oracle E-Business Suite.
The job runs under the SYSADMIN user with System Administrator responsibility.

insert_job: oasg_short

job_type: oasg

machine: oaagent

oracle_appl_name_type: SHORT

oracle_appl_name: ACCOUNTS

oracle_program: FNDSCARU

oracle_user: SYSADMIN

oracle_resp: System Administrator

Specify Argument Values to Pass to a Program in a Single Request

You can pass argument values to a program in an Oracle E-Business Suite Single Request
(OASG) job. The job can also use the default values that are defined by the registered
Oracle Applications Concurrent Manager program. When an argument value is defined
in both the job definition and as a default, the argument value in the job definition
overrides the default.

Follow these steps:

1. Define an Oracle E-Business Suite Single Request job (see page 386).

2. Add the following attribute to the job definition:

oracle_args

Defines the argument values to pass to an Oracle E-Business Suite single
request.

3. (Optional) Add the following attribute:

oracle_use_arg_def

Specifies whether to use default values for arguments that are not defined
using the oracle_args attribute.

4. Run the job.

The argument values are passed to the program in the single request.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Attributes with Default Values

390 User Guide

Example: Specify Argument Values for a Single Request

Suppose that you want to pass the argument values, T,DefArg2,X23,,DefArg5, to a single
request program. The job uses the argument values that are specified in the job
definition and the default values defined in Oracle E-Business Suite as follows:

■ The first argument, T, and the third argument, X23, are specified in the job
definition.

■ The second argument, DefArg2, and the fifth argument, DefArg5, are defined as
defaults in Oracle E-Business Suite.

■ The fourth argument is not specified in the job definition or defined as a default on
Oracle E-Business Suite, so the agent passes an empty string for that argument.

insert_job: oasg_args

job_type: oasg

machine: oaagent

oracle_appl_name_type: DISPLAY

oracle_appl_name: Application Object Library

oracle_user: SYSADMIN

oracle_resp: System Administrator

oracle_program: FNDSCARU

oracle_use_arg_def: Y

oracle_args: T,,X23,,

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Oracle E-Business Suite job attributes have default values:

oracle_appl_name_type

Specifies whether the name of the Oracle E-Business Suite application is the short
name or the display name.

Default: SHORT

oracle_desc (OASG jobs only)

Defines a description for the Oracle E-Business Suite Single Request job, which is
displayed in the Oracle Concurrent Manager.

Default: oa.default.desc agent parameter, if specified

Attributes with Default Values

Chapter 15: Oracle E-Business Suite Jobs 391

oracle_mon_children

Specifies whether the children of the Oracle E-Business Suite programs are
monitored.

Default: N (The job does not monitor children programs.)

oracle_output_format

Specifies the output format for a single request or request set.

Default: oa.default.outputFormat agent parameter, if specified

oracle_print_style

Specifies an Oracle Applications print style.

Default: oa.default.printStyle agent parameter, if specified

oracle_printer

Specifies the name of a printer to be used by Oracle Applications.

Default: oa.default.printer agent parameter, if specified

oracle_program_name_type (OASG jobs only)

Identifies whether the name of the Oracle E-Business Suite program is the short
name or the display name.

Default: SHORT

oracle_quote_in_default

Specifies whether to quote resolved expressions in default values.

Default: N (The resolved expressions in default values are not quoted.)

oracle_req_set_type (OASET jobs only)

Identifies whether the name of the Oracle E-Business Suite request set is the short
name or the display name.

Default: SHORT

oracle_resp

Specifies an Oracle Applications responsibility name. You must also specify an
Oracle Applications user name using the oracle_user attribute or by setting the
oa.default.user parameter in the agentparm.txt file.

Default: oa.default.responsibility agent parameter, if specified

Note: All Oracle Applications jobs require a responsibility name. If you do not
specify this attribute in the job definition, a default responsibility name must be
defined in the agent's agentparm.txt file using the oa.default.responsibility
parameter. Otherwise, the job fails.

Attributes with Default Values

392 User Guide

oracle_save_output (OASG and OASET jobs only)

Specifies whether to save the output from an Oracle E-Business Suite Single
Request or Request Set job.

Default: N (The job does not save the output.)

oracle_template_language

Specifies the template language for a single request or request set.

Default: oa.default.templateLanguage agent parameter, if specified

oracle_template_territory

Specifies the template territory for a single request or request set.

Default: oa.default.templateTerritory agent parameter, if specified

oracle_use_arg_def (OASG and OASET jobs only)

Specifies whether to use default values for arguments that not defined using the
oracle_args attribute or the oracle_programdata attribute. The default arguments
are defined in Oracle E-Business Suite.

Default: N (The job does not use the default values for the arguments.)

oracle_use_set_defaults_first (OASET job only)

Specifies whether request set defaults take precedence over concurrent program
defaults in Oracle Applications.

Default: N (The concurrent program defaults take precedence over request set
defaults.) or oa.default.useSetDefaultsFirst agent parameter, if specified.

oracle_user

Specifies an Oracle Applications user name that the job runs under.

Default: oa.default.user agent parameter, if specified

Note: All Oracle Applications jobs require a user name. If you do not specify this
attribute in the job definition, a default user must be defined in the agent's
agentparm.txt file using the oa.default.user parameter. Otherwise, the job fails.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Attributes with Default Values

Chapter 15: Oracle E-Business Suite Jobs 393

Example: Override a Default Value in an OASET Job

This example overrides the default responsibility name using the oracle_resp attribute.
The job also overrides the default user that the job runs under using the oracle_user
attribute.

insert_job: oaset_resp

job_type: oaset

machine: oaagent

oracle_appl_name_type: SHORT

oracle_appl_name: BIS

oracle_req_set: FNDRSSUB1310

oracle_user: SYSADMIN

oracle_resp: System Administrator

Chapter 16: PeopleSoft Jobs 395

Chapter 16: PeopleSoft Jobs

This section contains the following topics:

PeopleSoft Jobs (see page 395)
PeopleSoft Exit Codes (see page 396)
PeopleSoft User IDs and Passwords (see page 396)
Define a PeopleSoft Job (see page 397)
Attributes with Default Values (see page 399)
Mapping of PeopleSoft Fields to Job Attributes (see page 401)
Distribute a PeopleSoft Report (see page 403)
Store the Output of a PeopleSoft Job as a Web Report (see page 405)
Send the Output of a PeopleSoft Job to a Printer (see page 407)

PeopleSoft Jobs

PeopleSoft jobs let you run different types of PeopleSoft processes defined in your
PeopleSoft system. For example, you can define PeopleSoft jobs to execute PeopleSoft
programs and report the program status.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for PeopleSoft.

When you define a PeopleSoft job, you can set the output type and format of a report.
For email and web output types, you can set various distribution properties such as the
recipients and message text. You can also pass run control parameter values that will be
stored in the corresponding run control table.

PeopleSoft Exit Codes

396 User Guide

When a PeopleSoft program runs, it modifies its run status (RUNSTATUS) in the
PSPRCSRQST table in the PS database. The following diagram shows the functional
relationship between the scheduling manager, the agent, and the PeopleSoft system:

PeopleSoft Exit Codes

A PeopleSoft (PS) job can return exit codes 9 and 17, which indicate success. When a PS
job terminates with either of these exit codes, CA Workload Automation AE changes the
status of the job to SUCCESS and logs the non-zero exit code.

PeopleSoft User IDs and Passwords

The operator ID sets the authority for running PeopleSoft reports. Your agent
administrator can set defaults for an operator ID and corresponding password using the
ps.default.oprId and ps.default.oprPassword parameters in the agentparm.txt. You can
override the default operator ID by specifying the ps_operator_id attribute in a
PeopleSoft job definition. The ps_operator_id must be defined on CA Workload
Automation AE using the autosys_secure command unless the
ps.skipOprPswdValidation=true parameter is configured in the agentparm.txt file.

Note: For more information about the autosys_secure command, see the Reference
Guide.

Define a PeopleSoft Job

Chapter 16: PeopleSoft Jobs 397

Define a PeopleSoft Job

You can define a PeopleSoft (PS) job to schedule workload to run in PeopleSoft. The job
runs a PeopleSoft process request or a collection of process requests.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for PeopleSoft.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: PS

Specifies that the job type is PeopleSoft.

machine

Specifies the name of the machine on which the job runs.

ps_process_name

Specifies the name of the PeopleSoft report to run. This value corresponds to
the Process Name field in PeopleSoft.

ps_process_type

Specifies the type of PeopleSoft report that you want the job to run.

2. Do one of the following:

■ Ensure that a default run control ID is defined in the agent's agentparm.txt file
using the ps.default.runCntlId parameter.

■ Add the following attribute to the definition:

ps_run_cntrl_id

Specifies the value assigned to the run control identifier. This value
corresponds to the Run Control ID field in PeopleSoft.

 Note: This attribute overrides the ps.default.runCntlId agent parameter.

3. (Optional) Specify optional PeopleSoft attributes:

■ envvars

■ job_class

■ job_terminator

■ ps_args

■ ps_dest_format

■ ps_dest_type

■ ps_detail_folder

Define a PeopleSoft Job

398 User Guide

■ ps_dlist_roles

■ ps_dlist_users

■ ps_email_address

■ ps_email_address_expanded

■ ps_email_log

■ ps_email_subject

■ ps_email_text

■ ps_email_web_report

■ ps_operator_id

■ ps_output_dest

■ ps_restarts

■ ps_run_cntrl_args

■ ps_run_control_table

■ ps_server_name

■ ps_skip_parm_updates

■ ps_time_zone

Note: A PeopleSoft job must have a valid operator ID to run successfully. Check with
your agent administrator to determine whether a default operator ID is set on the
agent. If a default is not set, you must specify this attribute.

4. (Optional) Specify common attributes that apply to all jobs.

The PeopleSoft job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

Attributes with Default Values

Chapter 16: PeopleSoft Jobs 399

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Run a PeopleSoft Process

This example runs an Application Engine process named DDDAUDIT. The job runs on the
agent named psagt.

insert_job: ps_txtfile

job_type: ps

machine: psagt

ps_process_name: DDDAUDIT

ps_process_type: Application Engine

Note: The job uses the default operator ID, output destination format, output
destination type, and run control ID defined on the agent. The PeopleSoft Server that
runs the job is not defined in the job definition or as a default on the agent, so the
PeopleSoft Process Scheduler determines the PeopleSoft Server that will run the job.

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following PeopleSoft job attributes have default values:

ps_dest_format

Specifies the type of format for the report output.

Default: ps.default.outDestFormat agent parameter, if specified

ps_dest_type

Specifies the output destination type for the PeopleSoft report.

Default: ps.default.outDestType agent parameter, if specified

Attributes with Default Values

400 User Guide

ps_email_log

Specifies whether to email job logs with the PeopleSoft report to recipients on a
distribution list.

Default: No (Job logs are not emailed to recipients.)

ps_email_web_report

Specifies whether to email a web report to recipients on a distribution list.

Default: No (A web report is not emailed to recipients.)

ps_operator_id

Specifies the operator ID under whose authority the PeopleSoft reports run.

Default: ps.default.oprId agent parameter, if specified

ps_output_dest

Specifies the output destination for the PeopleSoft request. The destination can be
a file directory or a printer.

Default: If ps_dest_type is PRINTER, the default is one of the following, in the
following order:

■ ps.default.printer parameter in the agent's agentparm.txt file, if specified

■ The default PeopleSoft printer, lpt1

ps_restarts

Specifies whether to disable a restart feature for previously failed jobs from the
point where the job failed.

Default: No (The restart feature is not disabled.)

ps_run_cntrl_id

Specifies a set of PeopleSoft run parameters for a given PeopleSoft process.

Default: ps.default.runCntlId agent parameter, if specified

Note: All PeopleSoft jobs require a run control ID. If you do not specify this attribute
in the job definition, a default run control ID must be defined in the
ps.default.runCntlId parameter in the agent's agentparm.txt file. Otherwise, the job
fails.

Mapping of PeopleSoft Fields to Job Attributes

Chapter 16: PeopleSoft Jobs 401

ps_server_name

Specifies the target server that runs the PeopleSoft job.

Default: ps.default.serverName

Note: If the PeopleSoft Server is not specified as a default on the agent or in the job
definition, the PeopleSoft Process Scheduler determines the PeopleSoft Server that
will run the job.

ps_skip_parm_updates

Specifies whether you want the agent to update job parameters with data in the
PS_PRCSDEFN table.

Default: NO (The agent updates job parameters with data in the PS_PRCSDEFN
table.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Specify a Run Control ID and a Server Name

This example overrides the default run control ID using the ps_run_cntrl_id attribute
and server name using the ps_server_name attribute. The job uses the Application
Engine process type. The job uses the default output destination format and type
defined on the agent. The job overrides the default operator ID using the
ps_operator_id attribute.

insert_job: ps_cst

job_type: ps

machine: psagt

ps_process_name: PAYROLL

ps_server_name: PSPR

ps_process_type: Application Engine

ps_run_cntrl_id: PS_ALL

ps_operator_id: vp1@ps1

Mapping of PeopleSoft Fields to Job Attributes

When you define a PeopleSoft job, you specify JIL attributes that map to your
PeopleSoft process request. The following table maps the PeopleSoft fields to the
attributes:

PeopleSoft Field Name Attribute Name

Format ps_dest_format

Type ps_dest_type

Mapping of PeopleSoft Fields to Job Attributes

402 User Guide

PeopleSoft Field Name Attribute Name

Folder Name ps_detail_folder

ID Type (Role selected)

Distribution ID

ps_dlist_roles

ID Type (User selected)

Distribution ID

ps_dlist_users

Email Address List ps_email_address

Email With Log ps_email_log

Email Subject ps_email_subject

Message Text ps_email_text

Email Web Report ps_email_web_report

Output Destination ps_output_dest

Process Name ps_process_name

Process Type ps_process_type

Run Control Arguments ps_run_cntrl_args

Run Control ID ps_run_cntrl_id

Run Control Table ps_run_control_table

Server Name ps_server_name

Time Zone ps_time_zone

Distribute a PeopleSoft Report

Chapter 16: PeopleSoft Jobs 403

Distribute a PeopleSoft Report

If you specify EMAIL as the output destination type (ps_dest_type), you can distribute a
PeopleSoft report electronically to operators, groups of people, or individuals.

Follow these steps:

1. Define a PeopleSoft job (see page 397).

2. Add the following attributes to the job definition:

ps_dest_type: EMAIL

Sends the output of the PeopleSoft report as an email message. This attribute
corresponds to the Type field in PeopleSoft.

ps_dest_format

Specifies the field name of the output destination format. PeopleSoft stores the
list of output destination formats in the PSXLATITEM table. This value
corresponds to the Format field in PeopleSoft.

3. Add one or both of the following attributes:

ps_dlist_roles

Specifies a distribution list of the roles that represent the individuals who are
receiving the PeopleSoft report. This value corresponds to the ID Type field
(with Role selected) and the Distribution ID field in PeopleSoft.

ps_dlist_users

Specifies a distribution list of operator IDs to send a PeopleSoft report to. This
value corresponds to the ID Type field (with User selected) and the Distribution
ID field in PeopleSoft.

4. (Optional) Add the following attributes:

ps_email_address

Specifies the email addresses of the recipients on a distribution list. This value
corresponds to the Email Address List field in PeopleSoft.

ps_email_subject

Defines an email subject to include in the email. This value corresponds to the
Email Subject field in PeopleSoft.

ps_email_text

Defines the body text of the email. This value corresponds to the Message Text
field in PeopleSoft.

Distribute a PeopleSoft Report

404 User Guide

5. Run the job.

The PeopleSoft report is sent to the specified distribution lists and email addresses.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Distribute a Report to Users

This example runs a Crystal report under the VP3 operator ID. The report is formatted as
PDF and distributed in an email to the VP1, VP2, and VP3 operator IDs.

insert_job: ps_users

job_type: PS

machine: psagt

ps_process_name: XRFWIN

ps_process_type: Crystal

ps_dest_type: EMAIL

ps_dest_format: PDF

ps_dlist_users: VP1,VP2,VP3

ps_operator_id: VP3@ps1

ps_run_cntrl_id: test

Example: Email a PeopleSoft Report

This example runs a Crystal report and emails the output to recipients. The Crystal
report runs under the VP2 operator ID. The output is sent to the email addresses
specified in the ps_email_address attribute. The email includes a subject title.

insert_job: ps_email

job_type: PS

machine: psagt

ps_process_name: XRFWIN

ps_process_type: Crystal

ps_dest_type: EMAIL

ps_dest_format: PDF

ps_operator_id: VP2@ps1

ps_email_address: user1@example.com;user2@example.com

ps_email_subject: PeopleSoft Report Status

ps_email_text: This report is available for distribution.

Store the Output of a PeopleSoft Job as a Web Report

Chapter 16: PeopleSoft Jobs 405

Store the Output of a PeopleSoft Job as a Web Report

You can define a PeopleSoft job to run a process and store the output as a web report to
view later. You can also define the job to email the web report to one or more
recipients.

Follow these steps:

1. Define a PeopleSoft job (see page 397).

2. Add the following attributes to the job definition:

ps_dest_type: WEB

Posts the output of the PeopleSoft report on a website. This attribute
corresponds to the Type field in PeopleSoft.

ps_dest_format

Specifies the field name of the output destination format. PeopleSoft stores the
list of output destination formats in the PSXLATITEM table. This value
corresponds to the Format field in PeopleSoft.

3. (Optional) Add the following attributes:

ps_email_web_report: YES

Specifies that the job emails a web report to the recipients on the distribution
list. This attribute corresponds to the Email Web Report field in PeopleSoft.

ps_email_address

Specifies the email addresses of the recipients on a distribution list. This value
corresponds to the Email Address List field in PeopleSoft.

ps_email_subject

Defines an email subject to include in the email. This value corresponds to the
Email Subject field in PeopleSoft.

ps_email_text

Defines the body text of the email. This value corresponds to the Message Text
field in PeopleSoft.

4. Run the job.

The output of the PeopleSoft job is stored as a web report. The job emails the web
report to recipients if the email attributes are specified.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Store the Output of a PeopleSoft Job as a Web Report

406 User Guide

Example: Format a PeopleSoft Job Output as an HTML Web Report

This example runs the XRFWIN process. The process type is SQR Report and the run
control ID is PS_ALL. The server named PSPR runs the job, and the output is stored as an
HTML web report.

insert_job: ps_htmfile

job_type: ps

machine: psagt

ps_process_name: XRFWIN

ps_process_type: SQR Report

ps_server_name: PSPR

ps_dest_type: WEB

ps_dest_format: HTM

ps_run_cntrl_id: PS_ALL

Example: Distribute a PeopleSoft Web Report in an Email

This example stores the output as a PDF web report. The web report is sent to the email
addresses specified in the ps_email_address attribute. The email includes a subject title
and body text.

insert_job: ps_web

job_type: PS

machine: psagt

ps_process_name: XRFWIN

ps_process_type: Crystal

ps_dest_type: WEB

ps_dest_format: PDF

ps_operator_id: VP2@ps1

ps_email_web_report: YES

ps_email_address: user1@example.com;user2@example.com

ps_email_subject: PeopleSoft Report Status

ps_email_text: This report is available for distribution.

Send the Output of a PeopleSoft Job to a Printer

Chapter 16: PeopleSoft Jobs 407

Send the Output of a PeopleSoft Job to a Printer

You can define a PeopleSoft job to run a process and send the output to a printer.

Follow these steps:

1. Define a PeopleSoft job (see page 397).

2. Add the following attributes to the job definition:

ps_dest_type: PRINTER

Sends the output of the PeopleSoft report to a printer. This attribute
corresponds to the Type field in PeopleSoft.

ps_output_dest

Specifies the network location of the printer including the printer server and
shared printer name. This value corresponds to the Output Destination field in
PeopleSoft.

3. Run the job.

The output of the PeopleSoft job is sent to a printer.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Send a Job's Output to a Specified Printer

This example runs an SQR Report. The report is formatted as PS and outputted to a
printer.

insert_job: ps_printer

job_type: ps

machine: psagent

ps_process_name: XRFWIN

ps_process_type: SQR Report

ps_dest_type: PRINTER

ps_dest_format: PS

ps_output_dest: \\printers\PRINTER1

ps_run_cntrl_id: test

ps_operator_id: VP1@ps1

Chapter 17: Process Automation Jobs 409

Chapter 17: Process Automation Jobs

This section contains the following topics:

Process Automation Jobs (see page 409)
Define a Process Automation Process Execution Job (see page 410)
Define a Process Automation Start Request Form Job (see page 411)
Attributes with Default Values (see page 413)

Process Automation Jobs

Process Automation jobs let you launch CA Process Automation processes and monitor
them to completion.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Web Services.

You can define the following Process Automation jobs:

Process Automation Process Execution

Lets you directly execute a CA Process Automation process.

Process Automation Start Request Form

Lets you submit a Start Request Form to execute a CA Process Automation process.
The Start Request Form sets the values for the current execution of the process.

Define a Process Automation Process Execution Job

410 User Guide

Define a Process Automation Process Execution Job

You can define a Process Automation Process Execution job to execute a CA Process
Automation process.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: PAPROC

Specifies that the job type is Process Automation Process Execution.

machine

Specifies the name of the machine on which the job runs.

endpoint_URL

Specifies the target endpoint address URL in a Web Service or Process
Automation job.

pa_name

Specifies the fully qualified name of the process or Start Request Form in a
Process Automation job.

2. (Optional) Specify optional Process Automation Process Execution attributes.

■ job_class

■ job_terminator

■ owner

■ pa_monitor_progress

■ pa_parameter

■ pa_trace

3. (Optional) Specify common attributes that apply to all jobs.

The Process Automation Process Execution job is defined.

Define a Process Automation Start Request Form Job

Chapter 17: Process Automation Jobs 411

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Execute a CA Process Automation Process

This example executes a CA Process Automation process named /CAWAAE/Test Process
using the agent on the localhost machine and connecting to a CA Process Automation
installation on capamach.It uses the credentials from pamadmin@capamach to
authenticate on the Process Automation installation and passes values for the process
variable named strTestName. It will monitor the process until the process completes
and report success or failure at that time.

insert_job: execproc

job_type: PAPROC

machine: localhost

endpoint_URL: "http://capamach:8080/itpam/soap"

pa_name: "/CAWAAE/Test Process"

owner: pamadmin@capamach

pa_monitor_progress: Y

pa_parameter: param_name="strTestName", param_value="PA Test"

Define a Process Automation Start Request Form Job

You can define a Process Automation Start Request Form job to submit a Start Request
Form to execute a CA Process Automation process. The Start Request Form sets the
values for the current execution of the process.

.

Define a Process Automation Start Request Form Job

412 User Guide

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: PAREQ

Specifies that the job type is Process Automation Start Request Form.

machine

Specifies the name of the machine on which the job runs.

endpoint_URL

Specifies the target endpoint address URL in a Web Service or Process
Automation job.

pa_name

Specifies the fully qualified name of the process or Start Request Form in a
Process Automation job.

pa_path

Specifies the path of the Start Request Form.

Note: The path specified must end in a / character.

2. (Optional) Specify optional Process Automation Start Request Form attributes.

■ job_class

■ owner

■ pa_monitor_progress

■ pa_parameter

■ pa_trace

3. (Optional) Specify common attributes that apply to all jobs.

The Process Automation Start Request Form job is defined.

Attributes with Default Values

Chapter 17: Process Automation Jobs 413

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Submit a Start Request Form

This example submits a Start Request Form named Process A in the /CAWAE/ path. It
uses the credentials of the pamadmin@capamach user to authenticate the user on the
Process Automation installation on capamach.The Start Request Form has a field called
strTestName that will be populated with the value "PA Test" before the form is
submitted. The process will be tracked to completion.

insert_job: runsrf

job_type: PAREQ

machine: localhost

endpoint_URL: "http://capamach:8080/itpam/soap"

pa_name: "Process A"

pa_path: /CAWAAE/

owner: pamadmin@capamach

pa_monitor_progress: Y

pa_parameter: param_name="strTestName", param_value="PA Test"

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

Attributes with Default Values

414 User Guide

The following Process Automation job attributes have default values:

owner

Specifies the Process Automation user. These credentials will be validated on the
Process Automation server.

Default: The user who invokes JIL to define the job

pa_monitor_progress

 Indicates whether the process is tracked to completion.

Default: Y; the process is tracked to completion.

pa_trace

Indicates whether a trace of SOAP messages is written to the spool file.

Default: N (A trace of SOAP messages is not written to the spool file.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Track a Process Automation Process to Completion

The pa_monitor_progress attribute in the following job definition overrides the default
value.

insert_job: pam1

job_type: PAPROC

endpoint_url: "http://canor01-vm2k3c:8080/itpam/soap"

machine: paagent

owner: pamadmin@capamach

pa_name: "/ITPAM Tutorials/S01 Getting started/L01 Creating a Simple Process/L01-2

Running the Process/Running the Process"

pa_monitor_progress: Y

pa_trace: N

Chapter 18: Remote Execution Jobs 415

Chapter 18: Remote Execution Jobs

This section contains the following topics:

Remote Execution Jobs (see page 415)
Define a Remote Execution Job (see page 415)
Attributes with Default Values (see page 417)

Remote Execution Jobs

Remote Execution jobs let you execute commands to a remote UNIX, HP Integrity
NonStop, or OpenVMS computer through Secure Shell (SSH2) or Telnet.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Remote Execution. The CA WA Agent for Remote Execution
supports only remote target environments of UNIX, HP Integrity NonStop, and
OpenVMS.

Define a Remote Execution Job

You can define a Remote Execution (PROXY) job to run commands to a remote UNIX, HP
Integrity NonStop, or OpenVMS computer through Telnet or Secure Shell (SSH2).

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Remote Execution. The CA WA Agent for Remote Execution
supports only remote target environments of UNIX, HP Integrity NonStop, and
OpenVMS.

With the CA WA Agent for Remote Execution, you can define and run remote execution
jobs.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: PROXY

Specifies that the job type is Remote Execution.

machine

Specifies the name of the machine on which the job runs.

remote_command

Specifies a command or script to run on a remote computer.

Define a Remote Execution Job

416 User Guide

remote_target

Specifies the name of the custom properties (remote_target.properties) file
that is created on the agent for the remote system. The file contains the
default user credentials that are used to monitor all jobs run on the target
machine by the agent. The name should not include the .properties extension.

2. (Optional) Specify optional Remote Execution attributes:

■ envvars

■ fail_codes

■ job_class

■ spool_file

■ submit_modifier

■ success_codes

3. (Optional) Specify the following attribute:

owner

Specifies the user ID that the job runs under. This value overrides the default
owner of the job.

Default: The user ID who invokes jil to define the job

4. (Optional) Specify common attributes that apply to all jobs.

The Remote Execution job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Attributes with Default Values

Chapter 18: Remote Execution Jobs 417

Example: Execute the list command on a remote machine

Suppose you want to list the contents of /opt on the remote agent machine.

insert_job: proxy_job

job_type: PROXY

machine:agentmachine

owner: root@remoteagent

remote_target: remoteagent

spool_file: /opt/spool/commandout.out

remote_command: ls /opt

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Default values for some
attributes can be defined on the agent in the custom properties file for the remote
system. If you specify the attribute in the job definition, it overrides the default value
defined on the agent. For more information about possible default values, see the
syntax and notes for the attributes you are using.

If you specify the attribute in a job definition, it overrides the default.

The following Remote Execution job attributes have default values:

fail_codes

Defines which exit codes indicate job failure.

Default: Any exit code other than 0 (The job interprets any code other than zero as
failure.)

spool_file

Specifies the path to the spool file.

Default: spoolHome custom property

owner

Specifies the user ID that the job runs under.

Default: The default owner (the user ID who invokes jil to define the job)

success_codes

Defines which exit codes indicate job success.

Default: 0 (The job interprets zero as success.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Attributes with Default Values

418 User Guide

Example: Override the Default Path to the Spool File

This example overrides the default path to the spool file specified in the custom
properties file for the remote system.

insert_job: ls_cmd

job_type: PROXY

machine: proxyagent

remote_target: hpserver

remote_command: ls

spool_file: >>/home/user1/test/ls.out

Chapter 19: SAP Jobs 419

Chapter 19: SAP Jobs

This section contains the following topics:

SAP Jobs (see page 419)
SAP Connection Attributes (see page 420)
SAP User IDs and Passwords (see page 421)
Define an SAP Batch Input Session Job (see page 421)
Define an SAP BW InfoPackage Job (see page 424)
Define an SAP BW Process Chain Job (see page 427)
Define an SAP Data Archiving Job (see page 428)
Define an SAP Event Monitor Job (see page 430)
Define an SAP Process Monitor Job (see page 432)
Define an SAP Job Copy Job (see page 434)
Define an SAP R/3 Job (see page 437)
Attributes with Default Values (see page 439)
Email an SAP Job's Spool File (see page 441)
Email the Spool File of a Single Step in an SAP Job (see page 442)
Using Success and Failure Messages within an SAP Job Definition (see page 444)

SAP Jobs

SAP jobs let you run SAP workload.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

You can define the following SAP jobs:

SAP Batch Input Session

Imports data from external systems to the SAP system.

SAP Business Warehouse (BW) InfoPackage

Transfers data from a data source to an SAP Business Warehouse system.

SAP Business Warehouse (BW) Process Chain

Creates Process Chains on the SAP system.

SAP Connection Attributes

420 User Guide

SAP Data Archiving

Stores information in an SAP Archiving Object.

SAP Event Monitor

Monitors and triggers SAP events.

SAP Job Copy

Copies an existing SAP R/3 job.

SAP Process Monitor

Monitors for a specific SAP process status.

SAP R/3

Schedules an SAP R/3 job on your SAP system.

SAP Connection Attributes

The following connection attributes are common to SAP job types and may be required
in your job definitions:

sap_rfc_dest

Specifies the SAP system to connect to. This value corresponds to the
destination@properties agent configuration file name containing the SAP
connection information. The sap_rfc_dest value overrides the
sap.default.destination configuration value in the agentparm.txt file.

sap_client

Specifies the client number associated with an SAP instance. An SAP instance can
have multiple clients defined for it. Each client has its own data. Your agent
administrator can define a default SAP client number using the jco.client.client
property in the connection properties file.

sap_lang

Specifies the language required to run a job. Your agent administrator can define a
default language using the jco.client.lang property in the connection properties file.

sap_target_sys

Specifies the host name of an SAP application server where the job is to run.

Note: If the sap_target_sys attribute is not defined, the SAP system will select an
application server based on available resources.

Notes:

■ If a default value is not defined on the agent, you must specify the attribute in the
job definition.

■ For more information about these attributes, see the Reference Guide.

SAP User IDs and Passwords

Chapter 19: SAP Jobs 421

SAP User IDs and Passwords

All SAP user IDs and passwords must be defined on CA Workload Automation AE by
using the autosys_secure command. When you define an SAP job, specify an SAP user ID
using the owner attribute, or use the default owner value. The job runs under this user
ID.

Note: For more information about the autosys_secure command, see the Reference
Guide.

Define an SAP Batch Input Session Job

You can define an SAP Batch Input Session (SAPBDC) job to import large amounts of
data from external systems to the SAP system.

To schedule a BDC job, you first define an ABAP that creates a Batch Input Session (BDC
ABAP) on the SAP system. Next, you schedule an SAP Batch Input Session job in CA
Workload Automation AE to run the BDC ABAP on the SAP system. After the job runs,
the BDC job starts the data transfer.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAPBDC

Specifies that the job type is SAP Batch Input Session.

machine

Specifies the name of the machine on which the job runs.

sap_job_name

Specifies the name of the ABAP job that creates the BDC session on the SAP
system.

sap_step_parms

Defines the SAP R/3 step specifications.

Note: We recommend that you limit the number of steps (ABAPs) to one per
job. If you run a job and one of the ABAPs fails, the job is marked as failed. If
the ABAP fails, you cannot re-run the ABAP without re-running the entire job.

Define an SAP Batch Input Session Job

422 User Guide

2. (Optional) Specify optional SAP Batch Input Session attributes:

■ bdc_err_rate

■ bdc_ext_log

■ bdc_proc_rate

■ bdc_system

■ job_class

■ job_terminator

■ sap_client

■ sap_job_class

■ sap_lang

■ sap_office

■ sap_recipients

■ sap_release_option

■ sap_rfc_dest

■ sap_step_parms

■ sap_target_sys

3. (Optional) Specify common attributes that apply to all job types.

The SAP Batch Input Session job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define an SAP Batch Input Session Job

Chapter 19: SAP Jobs 423

Example: Define an SAP Batch Input Session Job

This example runs the ZBDCTEST ABAP that creates a Batch Input Session (BDC ABAP) on
the default SAP system defined to the agent. The job runs as soon as possible after the
job is defined. After this job runs, the BDC job starts the data transfer.

insert_job: bdcjob

job_type: SAPBDC

machine: sapagent

owner: WAAESAP@sapagent

sap_job_name: ZBDCTEST

sap_release_option: A

sap_step_parms: abap_name="ZBDCTEST"

Example: Define an SAP Batch Input Session Job with Step Parameters

This example runs the SAP Batch Input Session job named ZBDCTEST. When SAPBDC_job
runs, it releases ZBDCTEST immediately on the SAP system. If no free background
processing is available, the ZBDCTEST is not released and stays in the Scheduled SAP job
state.

insert_job: SAPBDC_job

job_type: SAPBDC

machine: localhost

owner: WAAESAP@sapserver

sap_job_name: ZBDCTEST

sap_release_option: I

sap_step_parms: abap_name="ZBDCTEST",banner_page=no,release=no,print_imm=no,

new_spool=no,footer=no

Define an SAP BW InfoPackage Job

424 User Guide

Define an SAP BW InfoPackage Job

You can define an SAP BW InfoPackage (SAPBWIP) job to transfer data from any data
source into an SAP Business Warehouse system. When the job runs, the data is
transferred.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAPBWIP

Specifies that the job type is SAP BW InfoPackage.

machine

Specifies the name of the machine on which the job runs.

sap_info_pack

Specifies the name of the Business Warehouse InfoPackage.

2. (Optional) Specify optional SAP BW InfoPackage attributes:

■ job_class

■ job_terminator

■ sap_client

■ sap_ext_table

■ sap_job_name

■ sap_lang

■ sap_rfc_dest

Define an SAP BW InfoPackage Job

Chapter 19: SAP Jobs 425

3. (Optional) Specify common attributes that apply to all job types.

The SAP BW InfoPackage job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define an SAP BW InfoPackage Job

426 User Guide

Example: Define an SAP BW InfoPackage Job

This example runs the Business Warehouse InfoPackage
0PAK_D2XZMZ1HD5WFVFL3EN1NVIT4V at the SAP destination, SM1.

insert_job: InfoBW2

job_type: SAPBWIP

machine: sapagent

owner: WAAESAP@sapagent

sap_job_name: InfoBW2

sap_rfc_dest: SM1

sap_info_pack: 0PAK_D2XZMZ1HD5WFVFL3EN1NVIT4V

Example: Define an SAP BW InfoPackage Job

This example runs the Business Warehouse InfoPackage
ZPAK_DIBX41NKYK0S7FB1FOV0FQ7BV on the SAP system.

insert_job: bwip_job

job_type: SAPBWIP

machine: localhost

owner: user@sapserver

sap_job_name: BI_BTCHSAP_TEST

sap_rfc_dest: mts

sap_info_pack: ZPAK_DIBX41NKYK0S7FB1FOV0FQ7BV

sap_lang: EN

sap_client: 001

job_class: a

Define an SAP BW Process Chain Job

Chapter 19: SAP Jobs 427

Define an SAP BW Process Chain Job

You can define an SAP BW Process Chain (SAPBWPC) job to run a sequence of
background processes on the SAP system. Some SAP processes trigger events that can
start other processes. An SAPBWPC job runs the individual processes in the chain as job
steps.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAPBWPC

Specifies that the job type is SAP BW Process Chain.

machine

Specifies the name of the machine on which the job runs.

sap_chain_id

Specifies the name of the Business Warehouse Process Chain.

2. (Optional) Specify optional SAP BW Process Chain attributes:

■ job_class

■ job_terminator

■ sap_client

■ sap_lang

■ sap_rfc_dest

3. (Optional) Specify common attributes that apply to all job types.

The SAP BW Process Chain job is defined.

Define an SAP Data Archiving Job

428 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Define an SAP BW Process Chain Job

This example defines the SAPBWPC3 job that runs the DEMO_CHAIN1 Process Chain on
the SAP system. The language used to log in to the SAP system is English.

insert_job: SAPBWPC3

job_type: SAPBWPC

machine: sapagent

owner: WAAESAP@sapagent

sap_chain_id: DEMO_CHAIN1

sap_lang: EN

sap_rfc_dest: SM1

Define an SAP Data Archiving Job

You can define an SAP Data Archiving (SAPDA) job to store information described in an
SAP Archiving Object into an SAP data archive.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAPDA

Specifies that the job type is SAP Data Archiving.

Define an SAP Data Archiving Job

Chapter 19: SAP Jobs 429

machine

Specifies the name of the machine on which the job runs.

arc_obj_name

Specifies the name of the archiving object.

arc_obj_variant

Specifies the name of the archiving object variant.

2. (Optional) Specify optional SAP Data Archiving attributes:

■ arc_parms

■ job_class

■ job_terminator

■ sap_client

■ sap_lang

■ sap_print_parms

■ sap_rfc_dest

■ sap_target_sys

3. (Optional) Specify common attributes that apply to all job types.

The SAP Data Archiving job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define an SAP Event Monitor Job

430 User Guide

Example: Define an SAP Data Archiving Job

This example defines a job that stores information described in the BC_ARCHIVE
Archiving Object into an SAP data archive. The archiving object variant is
BC_ARCVARIANT.

insert_job: SAPDA_job

job_type: SAPDA

machine: sapagent

owner: WAAESAP@sapagent

arc_obj_name: BC_ARCHIVE

arc_obj_variant: BC_ARCVARIANT

sap_print_parms: dest=LP01,prt_arc_mode=PRINT

Define an SAP Event Monitor Job

You can define an SAP Event Monitor (SAPEVT) job to schedule workload based on the
activity of an SAP event or trigger an SAP event at the appropriate time in your
schedule.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAPEVT

Specifies that the job type is SAP Event Monitor.

machine

Specifies the name of the machine on which the job runs.

sap_event_id

Specifies the name of the SAP event to monitor or trigger.

Define an SAP Event Monitor Job

Chapter 19: SAP Jobs 431

2. (Optional) Specify optional SAP Event Monitor attributes:

■ continuous

■ job_class

■ job_terminator

■ sap_client

■ sap_event_parm

■ sap_is_trigger

■ sap_lang

■ sap_rfc_dest

3. (Optional) Specify common attributes that apply to all job types.

The SAP Event Monitor job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define an SAP Process Monitor Job

432 User Guide

Example: Trigger an SAP Event

This example defines an SAPEVT job. The job triggers the SAP_TEST event and the SAP
job dependencies waiting on the SAP_TEST event are satisfied.

insert_job: SAPEVT_job

job_type: SAPEVT

machine: sapagent

owner: WAAESAP@sapagent

sap_event_id: SAP_TEST

sap_rfc_dest: BI1

sap_is_trigger: Y

Example: Monitor an SAP Event

This example defines an SAPEVT job. The sap_is_trigger attribute is set to N, so the job
monitors the SAP_TEST event and remains in RUNNING status.

insert_job: trigger_evt

job_type: SAPEVT

machine: localhost

owner: WAAESAP@sapserver

sap_rfc_dest: BI1

sap_event_id: SAP_TEST

sap_is_trigger: N

sap_event_parm: L L

sap_client: 001

sap_lang: EN

continuous: y

Define an SAP Process Monitor Job

You can define an SAP Process Monitor (SAPPM) job to monitor for a specific SAP
process status and end after detecting a process. You can also use SAP Process Monitor
jobs to set up predecessor or dependent job relationships with other jobs or SAP
processes.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAPPM

Specifies that the job type is SAP Process Monitor.

Define an SAP Process Monitor Job

Chapter 19: SAP Jobs 433

machine

Specifies the name of the machine on which the job runs.

sap_process_status

Specifies the SAP process status to monitor (RUNNING, STOPPED, or WAITING).

2. (Optional) Specify the following optional attributes if sap_process_status is set to
RUNNING or STOPPED:

■ sap_abap_name

■ sap_proc_user

■ sap_process_client

3. (Optional) Specify optional SAP Process Monitor attributes:

■ continuous

■ job_class

■ job_terminator

■ sap_client

■ sap_lang

■ sap_proc_type

■ sap_rfc_dest

■ sap_target_sys

4. (Optional) Specify common attributes that apply to all job types.

The SAP Process Monitor job is defined.

Define an SAP Job Copy Job

434 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Define an SAP Process Monitor Job

This example defines an SAP Process Monitor job that monitors for the ABAP program
ZMYABAP to change to the RUNNING status.

insert_job: test_SAPPM

job_type: SAPPM

machine: sapagent

sap_abap_name: ZMYABAP

sap_process_status: RUNNING

sap_rfc_dest: BI1

owner: WAAESAP@sapagent

Define an SAP Job Copy Job

You can define an SAP Job Copy (SAPJC) job to copy an existing SAP R/3 job.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAPJC

Specifies that the job type is SAP Job Copy.

Define an SAP Job Copy Job

Chapter 19: SAP Jobs 435

machine

Specifies the name of the machine on which the job runs.

sap_job_name

Specifies the name of the SAP R/3 job to be copied.

2. (Optional) Specify optional SAP Job Copy attributes:

■ job_class

■ job_terminator

■ sap_client

■ sap_fail_msg

■ sap_job_count

■ sap_lang

■ sap_mon_child

■ sap_release_option

■ sap_rfc_dest

■ sap_step_num

■ sap_success_msg

■ sap_target_jobname

■ sap_target_sys

3. (Optional) Specify common attributes that apply to all job types.

The SAP Job Copy job is defined.

Define an SAP Job Copy Job

436 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Define an SAP Job Copy Job

This example defines an SAP Job Copy job that copies the AM job with job count
11331500 and runs the new copy.

insert_job: SAPJC_job

job_type: SAPJC

owner: WAAESAP@sapagent

machine: sapagent

sap_job_name: AM

sap_job_count: 11331500

Define an SAP R/3 Job

Chapter 19: SAP Jobs 437

Define an SAP R/3 Job

You can define an SAP R/3 job (SAP) to schedule an SAP R/3 job on your SAP system.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for SAP.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SAP

Specifies that the job type is SAP R/3.

machine

Specifies the name of the machine on which the job runs.

sap_job_name

Specifies the SAP job name that identifies the workload in the SAP system.

sap_step_parms

Defines the SAP R/3 step specifications.

Note: We recommend that you limit the number of steps (ABAPs) to one per
job. If you run a job and one of the ABAPs fails, the job is marked as failed. If
the ABAP fails, you cannot re-run the ABAP without re-running the entire job.

2. (Optional) Specify optional SAP R/3 attributes:

■ job_class

■ job_terminator

■ sap_client

■ sap_fail_msg

■ sap_job_class

■ sap_lang

■ sap_mon_child

■ sap_office

■ sap_recipients

■ sap_release_option

■ sap_rfc_dest

■ sap_success_msg

■ sap_target_sys

Define an SAP R/3 Job

438 User Guide

3. (Optional) Specify common attributes that apply to all job types.

The SAP R/3 job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Define an SAP R/3 Job With One Step

This example runs the SAP R/3 job named BI_WRITE_PROT_TO_APPLLOG. The job runs
the SAP program (ABAP) named RSBATCH_WRITE_PROT_TO_APPLLOG. The owner is
defined in CA Workload Automation AE using the autosys_secure command.

insert_job: test_SAP

job_type: SAP

machine: sapagent

sap_job_name: BI_WRITE_PROT_TO_APPLLOG

sap_rfc_dest: BI1

sap_step_parms: abap_lang=EN,abap_name=RSBATCH_WRITE_PROT_TO_APPLLOG

owner: WAAESAP@sapagent

Attributes with Default Values

Chapter 19: SAP Jobs 439

Example: Define an SAP R/3 Job With Multiple Steps

This example runs an SAP R/3 job named SAP 3 STEPS_@#$. The job runs three steps.
Each step runs the same ABAP but with different parameters.

insert_job: TEST_1

job_type: SAP

machine: localhost

job_class: c

sap_job_name: "SAP 3 STEPS_@#$"

sap_release_option: I

sap_step_parms:abap_name=BTCTEST,variant=test,arc_printer=LP01,copies=2,prt_arc_m

ode=BOTH,arc_obj_type=ARCHIVE,arc_doc_type=ARCHIVE,arc_info=inf,num_lines=65,num_

columns=80

sap_step_parms:abap_name=BTCTEST,variant=test2,arc_printer=LP01,copies=3,prt_arc_

mode=BOTH,print_imm=N,release=N,sap_banner=Y,banner_page=Y,recipient_name=cyber,n

um_lines=65,num_columns=80,arc_obj_type=ARCHIVE,arc_doc_type=ARCHIVE,arc_info=inf

sap_step_parms:abap_name=BTCTEST,variant=test,arc_printer=LP01,copies=1,prt_arc_m

ode=BOTH,sap_banner=Y,banner_page=Y,recipient_name=cyber,num_lines=65,num_columns

=80,authorization=string2,arc_obj_type=ARCHIVE,arc_doc_type=ARCHIVE,arc_info=inf

Attributes with Default Values

Some attributes have default values that automatically apply to all job definitions. Your
agent administrator can also define default values in the agent's agentparm.txt file or
the SAP agent connection properties file. If a default value exists, you do not have to
specify the corresponding attribute in the job definition. However, you can specify the
attribute to override the default.

The following SAP job attributes have default values:

bdc_ext_log (SAPBDC jobs only)

Specifies whether to generate advanced logging of the Batch Input Session (BDC)
running on the SAP system.

Default: N (The job does not generate advanced logging.)

sap_client

Specifies the SAP client within the SAP system.

Default: jco.client.client connection properties parameter, if specified

sap_is_trigger (SAPEVT jobs only)

Specifies whether to trigger or monitor an SAP event.

Default: N (The job monitors an SAP event.)

Attributes with Default Values

440 User Guide

sap_lang

Specifies a character code representing a valid language for SAP.

Default:

■ EN (The default language is English.)

■ jco.client.lang connection properties parameter, if specified. This parameter
overrides the default type (EN).

sap_mon_child (SAPJC and SAP jobs only)

Specifies whether to monitor children jobs.

Default: N (The job does not monitor children jobs.)

sap_office

Specifies whether to save outgoing documents to the SAPoffice outbox of the SAP
user associated with the job.

Default: N (The job does not save outgoing documents.)

sap_release_option (SAPBDC, SAPJC, and SAP jobs only)

Specifies the action to take with a job after it is defined.

Default: A (The job releases the job as soon as possible.)

sap_rfc_dest

Specifies the destination value for the Remote Function Call (RFC) connection and
gateway information.

Default: sap.default.destination agent parameter, if specified

sap_target_jobname (SAPJC jobs only)

Specifies the name of the target job to copy.

Default: The name of the source job

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Email an SAP Job's Spool File

Chapter 19: SAP Jobs 441

Example: Monitor an SAP Event and Override the Default Client ID

The sap_client attribute in the following job definition overrides the default client
specified in the agent connection properties file.

This example defines an SAPEVT job. The sap_is_trigger attribute is set to N, so the job
monitors the SAP_TEST event and remains in RUNNING status.

insert_job: trigger_evt

job_type: SAPEVT

machine: localhost

owner: WAAESAP@sapserver

sap_rfc_dest: BI1

sap_event_id: SAP_TEST

sap_is_trigger: N

sap_event_parm: L L

sap_client: 001

sap_lang: EN

continuous: y

Email an SAP Job's Spool File

You can email the SAP spool file for all steps in an SAP R/3 (SAP) job to recipients. A copy
of the spool file is emailed on job completion or failure. The recipient can be an email
address, an SAPoffice distribution list, or an SAP user.

Follow these steps:

1. Define an SAP R/3 job (see page 437).

2. Add the following attribute to the job definition:

sap_step_parms: abap_name=abap, sap_maillist=value

Specifies one or more recipients on a distribution list and the ABAP name.

3. (Optional) Add one or both of the following attributes:

sap_fail_msg

Specifies a string that indicates the job failed. If the string is found in the job's
spool file, the job is considered failed even if the job succeeds on the SAP
system.

sap_success_msg

Specifies a string that indicates the job completed successfully. If the string is
found in the job's spool file, the job is considered successfully completed even
if the job fails on the SAP system.

Email the Spool File of a Single Step in an SAP Job

442 User Guide

4. (Optional) Add the following attribute:

sap_office

Specifies whether to save outgoing documents to the SAPoffice outbox of the
SAP user associated with the job.

5. Run the job.

The job's spool file is emailed to the recipients.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Email an SAP Job's Spool File

This example emails the SAP spool file for an SAP job to user1@example.com.

insert_job: test_SAP_1

job_type: SAP

machine: sapagent

owner: WAAESAP@sapserver

sap_job_name: BI_WRITE_PROT_TO_APPLLOG

sap_rfc_dest: BI1

sap_step_parms:abap_name=RSBATCH_WRITE_PROT_TO_APPLLOG,sap_maillist="user1@exampl

e.com",variant=TEST,banner_page=no,copies=1,release=no,recipient_name=cybermation

,prt_arc_mode=PRINT,print_imm=no,num_lines=65,num_columns=80,new_spool=no,footer=

no

Email the Spool File of a Single Step in an SAP Job

You can email the SAP spool file for a single step in an SAP R/3 (SAP) or SAP Batch Input
Session (SAPBDC) job to recipients. A copy of the spool file is emailed on step
completion or failure. The recipient can be an email address, an SAPoffice distribution
list, or an SAP user.

Email the Spool File of a Single Step in an SAP Job

Chapter 19: SAP Jobs 443

Follow these steps:

1. Define an SAP R/3 job (see page 437) or SAP Batch Input Session job (see page 421).

2. Add the following attribute to the job definition:

sap_step_parms: abap_name=abap,sap_maillist=address

 [,sap_fail_msg=message]

 [,sap_success_msg=message]

abap_name=abap

Specifies the valid SAP system ABAP name. This keyword corresponds to the
SAPGUI ABAP Program Name field on the Create Step dialog.

sap_maillist=address

Specifies one or more recipients to send the spool list results to.

sap_fail_msg=message

(Optional) Specifies a string that indicates the failure of the step. If the string
matches the SAP ABAP output for the step, the step is considered failed even if
the step succeeds on the SAP system.

Note: This keyword does not apply to SAPBDC jobs.

sap_success_msg=message

(Optional) Specifies a string that indicates the success of the step. If the string
matches the SAP ABAP output for the step, the step is considered successfully
completed even if the step fails on the SAP system.

Note: This keyword does not apply to SAPBDC jobs.

3. (Optional) Add optional parameters to the sap_step_parms attribute.

4. (Optional) Add the following attribute:

sap_office

Specifies whether to save outgoing documents to the SAPoffice outbox of the
SAP user associated with the job.

5. Run the job.

The spool file of a single step is emailed to the recipients.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Using Success and Failure Messages within an SAP Job Definition

444 User Guide

Using Success and Failure Messages within an SAP Job
Definition

You can check an SAP job's output for specific text strings to determine whether the job
is a success or a failure. You specify the text string in the sap_success_msg or
sap_fail_msg attributes in the job definition. For example, suppose when you cancel an
SAP job you want it to complete to release its successor job. You can specify the text
string 'Job canceled' as a success message in the job definition. When you cancel the
job, the agent checks the job's spool file, finds a match for 'Job canceled' and marks the
job as complete.

You can also check the output of a step (ABAP) to determine whether the step is a
success or failure. You specify the text string in the sap_fail_msg=value and
sap_success_msg=value keyword value pairs in the sap_step_parms attribute.

Note: The sap_step_parms: sap_fail_msg and sap_step_parms: sap_success_msg
keywords do not apply to SAP Batch Input Session (SAPBDC) jobs.

For more flexibility, you can specify regular expressions instead of simple text strings
within the success message and failure message fields. For example, you can use a
regular expression to search for multiple strings at the same time. To compose a regular
expression, follow the rules for Java class java.util.regex.Pattern. You can find these
rules using a Google search for java pattern.

Note: To enable regular expression processing, you must configure the agent for the
following parameter: sap.useRegularExpressions=true.

Examples: Using Regular Expressions

■ This expression checks for "TEST" in the job output file. The first .* indicates that
any number of characters can precede TEST. The second .* indicates that any
number of characters can follow it.

.*TEST.*

■ This expression checks whether "not found" or "started" appears in the job output
file.

.*(not found|started).*

■ This expression checks whether "Job canceled" appears in the job output file.

.*Job\scanceled.*

Chapter 20: Secure Copy Jobs 445

Chapter 20: Secure Copy Jobs

This section contains the following topics:

Secure Copy Jobs (see page 445)
Define a Secure Copy Job (see page 445)
Attributes with Default Values (see page 447)

Secure Copy Jobs

You can define a Secure Copy job to transfer binary files between an agent computer
and a remote computer. The Secure Copy job can upload data to or download data from
a remote server. The data is encrypted during the transfer. By default, a Secure Copy job
uses the SFTP protocol. However, you can define the job to use the SCP protocol.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS. The agent must be configured as an FTP client using the Secure Copy Protocol
or the Secure File Transfer Protocol.

Define a Secure Copy Job

You can define a Secure Copy (SCP) job to transfer binary files using the Secure Copy
Protocol.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, Windows,
or i5/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SCP

Specifies that the job type is Secure Copy.

machine

Specifies the name of the machine on which the job runs.

scp_local_name

Specifies a file on the agent computer to be downloaded or uploaded.

Define a Secure Copy Job

446 User Guide

scp_remote_dir

Specifies the file's remote source directory (if downloading) or the file's remote
destination directory (if uploading).

scp_remote_name

Specifies the file's source location (if downloading) or the file's destination (if
uploading).

scp_server_name

Specifies a remote server name.

2. (Optional) Specify optional Secure Copy attributes:

■ job_class

■ scp_local_user

■ scp_protocol

■ scp_server_port

■ scp_target_os

■ scp_transfer_direction

3. (Optional) Specify common attributes that apply to all job types.

The Secure Copy job is defined.

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Attributes with Default Values

Chapter 20: Secure Copy Jobs 447

Example: Upload a File Using the Secure File Transfer Protocol

This example uploads the logs.tar file to the /u/tmp directory on the hpsupport server.
The job uses the Secure File Transfer Protocol (SFTP).

insert_job: sftp_upload

job_type: SCP

machine: WINAGENT

scp_transfer_direction: UPLOAD

scp_server_name: hpsupport

scp_remote_dir: /u/tmp

scp_remote_name: logs.tar

scp_local_name: "D:\temp\logs.tar"

scp_protocol: SFTP

owner: causer@WINAGENT

Note: The owner must be defined on CA Workload Automation AE using the
autosys_secure command.

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Secure Copy job attributes have default values:

scp_local_user

Specifies a user ID on the computer where the agent is installed. This user ID
determines the access permissions on the agent computer.

Default: User that defined the job

scp_protocol

Specifies whether the SCP data transfer uses Secure File Transfer Protocol (SFTP) or
regular Secure Copy (SCP).

Default: SFTP

scp_server_port

Specifies the port number of the remote server.

Default: 22

Attributes with Default Values

448 User Guide

scp_target_os

Specifies the remote operating system type, which is used to determine the path
separator on the remote system.

Default: UNIX

scp_transfer_direction

Specifies the file transfer direction between the agent computer and the remote
server.

Default: DOWNLOAD

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Override the Transfer Direction

The scp_transfer_direction attribute in the following job definition overrides the default
transfer direction.

This example uploads the logs.tar file to the /u/tmp directory on the hpsupport server.
The job uses the Secure File Transfer Protocol (SFTP).

insert_job: sftp_upload

job_type: SCP

machine: WINAGENT

scp_transfer_direction: UPLOAD

scp_server_name: hpsupport

scp_remote_dir: /u/tmp

scp_remote_name: logs.tar

scp_local_name: "D:\temp\logs.tar"

scp_protocol: SFTP

owner: causer@WINAGENT

Chapter 21: SNMP Jobs 449

Chapter 21: SNMP Jobs

This section contains the following topics:

SNMP Jobs (see page 449)
Define an SNMP Value Get Job (see page 450)
Define an SNMP Value Set Job (see page 453)
Attributes with Default Values (see page 456)

SNMP Jobs

The agent supports a built-in SNMP manager capability. You can enable the agent to act
as an SNMP manager to emit and listen for SNMP traps in addition to its other roles. The
agent supports SNMP v1, v2, and v3. After the agent is configured, you can define and
run SNMP job types on the agent.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or
Windows.

You can define the following types of SNMP jobs:

■ Simple Network Management Protocol Value Get (SNMPGET)

■ Simple Network Management Protocol Value Set (SNMPSET)

The SNMP Value Get job queries a network device for the value of a variable that is
assigned to a Management Information Base (MIB) address. You can use the SNMP
Value Get job to retrieve information about a network device to determine whether an
administrator is required to be notified.

The SNMP Value Set job modifies a variable on a network device. The variable is
assigned to the MIB address that you specify. You can use the SNMP Value Set job to
update a variable that reports on the failure or success of a mission-critical policy.

Define an SNMP Value Get Job

450 User Guide

Define an SNMP Value Get Job

You can define a Simple Network Management Protocol Value Get (SNMPGET) job to
retrieve the value of an SNMP variable.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or
Windows. Your agent administrator must configure the agent as an SNMP manager. For
more information about configuring the agent as an SNMP manager, see the CA
Workload Automation Agent for UNIX, Linux, or Windows Implementation Guide.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SNMPGET

Specifies that the job type is SNMP Value Get.

machine

Specifies the name of the machine on which the job runs.

snmp_host

Specifies the host name or IP address of the network device.

snmp_oid

Specifies the SNMP OID (object identifier) in numeric or string format.

Note: If you specify the snmp_oid attribute in string format, you must also
specify the snmp_mib attribute for the job to complete successfully.

2. If your SNMP version is v3, you must specify the following attribute:

snmp_privacy_user

Specifies the user name whose credentials are used for authentication.

3. (Optional) If your SNMP version is v1 or v2, specify the following attribute:

snmp_comm_string

Specifies the community string that is used to authenticate against the network
device.

Define an SNMP Value Get Job

Chapter 21: SNMP Jobs 451

4. (Optional) If your SNMP version is v3, you can specify the following attributes:

snmp_auth_protocol

Specifies the SNMP v3 authentication protocol to use when connecting with
the user specified in the snmp_privacy_user attribute.

snmp_context_engine_id

Specifies the context engine ID in hexadecimal format.

snmp_context_name

Specifies the name of the context that the variable belongs to.

snmp_privacy

Specifies the SNMP v3 privacy protocol to use.

5. (Optional) Specify optional SNMP Value Get attributes:

■ job_class

■ destination_file

■ port

■ snmp_mib

■ snmp_subtree

■ snmp_table_view

■ snmp_version

6. (Optional) Specify common attributes that apply to all job types.

The SNMP Value Get job is defined. When the job runs, it retrieves the value of the
SNMP variable specified in the snmp_oid attribute.

Define an SNMP Value Get Job

452 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definition.
Therefore, you do not have to specify those attributes in the definition. If you
specify the attribute, it overrides the default.

■ For the SNMP job to complete successfully, the SNMP attribute values specified in
the job definition must match the SNMP configuration parameter values in the
agentparm.txt file. For example, if the value of the
management.snmp.agent.version parameter in the agentparm.txt file is set to 2,
you must set the value of the snmp_version attribute in the job definition to 2.
Similarly, if the value of the management.snmp.agent.port parameter in the
agentparm.txt file is set to 161, you must set the port attribute in the job definition
to 161.

■ If your network does not support Internet Protocol version 6 (IPv6), but the IPv6
stack is active on the Windows computer where the agent is running, the IPv6 stack
must be disabled. For more information about disabling IPv6 on Windows, see the
Microsoft Knowledge Base.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Query a Network Device for the Value of an SNMP Variable using SNMP v2

Suppose that you want to know the value of the agentVersion variable hosted by a
network device. In this example, the host name of the network device is
host.example.com and its port is 161. The SNMP version is v2 and the read community
string is public. The name of the MIB file is cybermation.mib, which is located in the
agent installation directory.

insert_job: getvarv2

job_type: SNMPGET

machine: snmpagent

snmp_mib: cybermation.mib

snmp_host: host.example.com

snmp_oid: agentVersion

port: 161

snmp_version: 2

snmp_comm_string: public

Define an SNMP Value Set Job

Chapter 21: SNMP Jobs 453

Example: Query a Network Device for the Value of an SNMP Variable using SNMP v3

Suppose that you want to know the value of a variable hosted by a network device using
SNMP v3. In this example, the job specifies the OID in numeric format, the AES privacy
protocol, and the SHA authentication protocol.

Note: The owner attribute value is the user ID associated with the authentication
password. The snmp_privacy_user attribute value is the user ID associated with the
privacy password. The owner and snmp_privacy_user users and their corresponding
passwords are specified using the autosys_secure command.

insert_job: getvarv3

job_type: SNMPGET

machine: localhost

owner: Administrator@localhost

snmp_oid: .1.3.1.1.3.1.0.0

snmp_host: snmp

snmp_version: 3

snmp_auth_protocol: SHA

snmp_privacy: AES

snmp_privacy_user: user1

More information:

Insert a Job Definition (see page 88)

Define an SNMP Value Set Job

You can define a Simple Network Management Protocol Value Set (SNMPSET) job to set
the value of an SNMP variable.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or
Windows. Your agent administrator must configure the agent as an SNMP manager. For
more information about configuring the agent as an SNMP manager, see the CA
Workload Automation Agent for UNIX, Linux, or Windows Implementation Guide.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: SNMPSET

Specifies that the job type is SNMP Value Set.

machine

Specifies the name of the machine on which the job runs.

Define an SNMP Value Set Job

454 User Guide

snmp_host

Specifies the host name or IP address of the network device.

snmp_oid

Specifies the SNMP OID (object identifier) in numeric or string format.

Note: If you specify the snmp_oid attribute in string format, you must also
specify the snmp_mib attribute for the job to complete successfully.

snmp_value

Specifies the type and value of the variable that you are changing.

2. If your SNMP version is v3, you must specify the following attribute:

snmp_privacy_user

Specifies the user name whose credentials are used for authentication.

3. (Optional) If your SNMP version is v1 or v2, specify the following attribute:

snmp_comm_string

Specifies the community string that is used to authenticate against the network
device.

4. (Optional) If your SNMP version is v3, you can specify the following attributes:

snmp_auth_protocol

Specifies the SNMP v3 authentication protocol to use when connecting with
the user specified in the snmp_privacy_user attribute.

snmp_context_engine_id

Specifies the context engine ID in hexadecimal format.

snmp_context_name

Specifies the name of the context that the variable belongs to.

snmp_privacy

Specifies the SNMP v3 privacy protocol to use.

5. (Optional) Specify optional SNMP Value Set attributes:

■ job_class

■ destination_file

■ port

■ snmp_mib

■ snmp_version

Define an SNMP Value Set Job

Chapter 21: SNMP Jobs 455

6. (Optional) Specify common attributes that apply to all job types.

The SNMP Value Set job is defined. When the job runs, it sets the SNMP variable
specified in the snmp_oid attribute to the value specified in the snmp_value
attribute.

Notes:

■ Attributes that have a default value automatically apply to the job definition.
Therefore, you do not have to specify those attributes in the definition. If you
specify the attribute, it overrides the default.

■ For the SNMP job to complete successfully, the SNMP attribute values specified in
the job definition must match the SNMP configuration parameter values in the
agentparm.txt file. For example, if the value of the
management.snmp.agent.version parameter in the agentparm.txt file is set to 2,
you must set the value of the snmp_version attribute in the job definition to 2.
Similarly, if the value of the management.snmp.agent.port parameter in the
agentparm.txt file is set to 161, you must set the port attribute in the job definition
to 161.

■ If your network does not support Internet Protocol version 6 (IPv6), but the IPv6
stack is active on the Windows computer where the agent is running, the IPv6 stack
must be disabled. For more information about disabling IPv6 on Windows, see the
Microsoft Knowledge Base.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Change the Value of an SNMP Variable Using an Integer Value

Suppose that you want to set the value of the agentLogLevel variable to its highest level
to diagnose a problem. In this example, the host name of the network device is
host.example.com and its port is 161. The SNMP version is v2 and the write community
string is public. The name of the MIB file is cybermation.mib, which is located in the
agent installation directory.

insert_job: setvarint

job_type: SNMPSET

machine: snmpagent

snmp_mib: cybermation.mib

snmp_host: host.example.com

snmp_oid: agentLogLevel

port: 161

snmp_version: 2

snmp_comm_string: public

snmp_value: int=8

Attributes with Default Values

456 User Guide

Example: Change the Value of an SNMP Variable Using an IP Address Value

Suppose that you want to set the value of a variable to an IP address. In this example,
the job specifies the OID in numeric format, the DES privacy protocol, and the MD5
authentication protocol. The credentials of user user1 are used for authorization.

insert_job: setvarip

job_type: SNMPSET

machine: localhost

owner: Administrator@localhost

snmp_oid: .1.3.1.1.2.1.9.3

snmp_host: snmp

snmp_value: addr=172.24.2.20

snmp_version: 3

snmp_auth_protocol: MD5

snmp_privacy: DES

snmp_privacy_user: user1

More information:

Insert a Job Definition (see page 88)

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following SNMP job attributes have default values:

port

Specifies the port of the network device.

Default: 161

snmp_auth_protocol (SNMP v3 only)

Specifies the SNMP v3 authentication protocol to use when connecting with the
user specified in the snmp_privacy_user attribute.

Default: MD5 (The job uses the Message Digest 5 authentication protocol.)

snmp_comm_string (SNMP v1 and v2 only)

Specifies the community string that is used to authenticate against the network
device.

Default: public

Attributes with Default Values

Chapter 21: SNMP Jobs 457

snmp_privacy (SNMP v3 only)

Specifies the SNMP v3 privacy protocol to use.

Default: DES (The job uses the Data Encryption Standard privacy protocol.)

snmp_subtree

Specifies that the job walks the SNMP subtree.

Default: n (The job does not walk the SNMP subtree.)

snmp_table_view

Specifies that the job retrieves the MIB data in table format.

Default: n (The job retrieves the MIB data in the oid=value format.)

snmp_version

Specifies the SNMP version used when connecting to the network device.

Default: 1

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Override the Privacy Protocol and the SNMP Version in an SNMP Value Set
Job

The snmp_privacy and snmp_version attributes in the following job definition override
the default values.

Suppose that you want to set the value of the out456789 variable using SNMP v3. In this
example, the job uses the AES privacy protocol and the MD5 authentication protocol.
The credentials of user user1 are used for authorization.

insert_job: setvarv3

job_type: SNMPSET

machine: snmpagent

snmp_mib: cybermation.mib

snmp_host: host.example.com

snmp_oid: out456789

snmp_version: 3

snmp_privacy: AES

snmp_privacy_user: user1

snmp_auth_protocol: MD5

snmp_value: int=8

Attributes with Default Values

458 User Guide

Example: Use Defaults in an SNMP Value Get Job

The port and snmp_version attributes are not specified in the following job definition,
so default values are used. The port is set to 161 and snmp_version is set to 1. Since
snmp_version is set to 1, snmp_comm_string is also set to public (the default read
community string).

Note: The snmp_auth_protocol, snmp_privacy, and snmp_privacy_user attributes are
not specified because they only apply to SNMP v3.

insert_job: getvarv1

job_type: SNMPGET

machine:localhost

owner: Administrator@localhost

snmp_oid: .1.3.6.1.2.1.1.6.0

snmp_host: snmp

Chapter 22: Wake on LAN Jobs 459

Chapter 22: Wake on LAN Jobs

This section contains the following topics:

Wake on LAN Jobs (see page 459)
Define a Wake on LAN Job (see page 459)
Attributes with Default Values (see page 462)

Wake on LAN Jobs

You can save energy using the agent's Wake on LAN (WOL) feature to automate the
startup and shutdown of your computers. WOL lets you define and schedule WOL jobs
to send a signal to a server to turn it on. When the server is no longer needed, you can
schedule a different command job to power it down.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or
Windows. Your agent administrator must configure the agent to support WOL. For more
information about configuring the agent to support WOL, see the CA Workload
Automation Agent for UNIX, Linux, or Windows Implementation Guide.

Wake on LAN (WOL) is a hardware and software solution that lets you wake up a
computer remotely. The solution requires an ACPI-compliant computer and a special
software program that sends a signal to the computer's network card to wake it up. The
agent provides the AMD magic packet to broadcast the signal to a computer that has
been soft-powered-down (ACPI D3-warm state).

Define a Wake on LAN Job

You can define a Wake on LAN (WOL) job to send a signal to a server to turn it on. The
job can wake up a remote computer that has been soft-powered-down (ACPI D3-warm
state).

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or
Windows. Your agent administrator must configure the agent to support WOL. For more
information about configuring the agent to support WOL, see the CA Workload
Automation Agent for UNIX, Linux, or Windows Implementation Guide.

Define a Wake on LAN Job

460 User Guide

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: WOL

Specifies that the job type is Wake on LAN.

machine

Specifies the name of the machine on which the job runs.

broadcast_address

Specifies the IP address of the LAN or subnet of the computer that receives the
Wake on LAN (WOL) signal.

mac_address

Specifies the Media Access Control (MAC) address of the computer that
receives the Wake on LAN (WOL) signal.

2. (Optional) Specify optional Wake on LAN attributes:

■ job_class

■ ping_host

■ ping_ports

■ ping_timeout

■ wake_password

3. (Optional) Specify common attributes that apply to all job types.

The Wake on LAN job is defined.

Define a Wake on LAN Job

Chapter 22: Wake on LAN Jobs 461

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Wake Up a Server and Ping the Default Port

This example broadcasts the WOL signal to the subnet with the 172.16.255.255 IP
address and the 00-11-43-73-38-DC MAC address. After the agent sends the WOL signal,
the agent pings the default ports at the 172.16.1.101 IP address to verify if these ports
are available. If at least one of these ports is available, the job completes successfully;
otherwise, it fails.

insert_job: wol_default_job

job_type: WOL

machine: agentnme

broadcast_address: 172.16.255.255

mac_address: 00-11-43-73-38-DC

ping_host: 172.16.1.101

Attributes with Default Values

462 User Guide

Example: Wake Up a Server and Ping a Port

This example broadcasts the WOL signal to the subnet identified by the 172.16.255.255
broadcast IP address and the server with the 00-1E-4F-C1-0F-FE MAC address. After the
agent sends the Wake on LAN (WOL) signal, the agent pings port 7 at the 172.16.1.101
IP address to ensure it is available. If port 7 is available, the job completes successfully;
otherwise, it fails.

insert_job: wol_job

job_type: WOL

machine: agentnme

broadcast_address: 172.16.255.255

mac_address: 00-1E-4F-C1-0F-FE

ping_host: 172.16.1.101

ping_ports: 7

Example: Broadcast the WOL Signal Including a Password

This example broadcasts the WOL signal including a password to the subnet with the
172.16.255.255 broadcast IP address and the server with the 11-22-33-44-55-66 MAC
address. If the specified password matches the password stored on the server's network
card, the server wakes up. The job completes successfully after the scheduler sends the
WOL signal without verifying that the machine starts.

insert_job: wol_pwd_job

job_type: WOL

machine: agentnme

broadcast_address: 172.16.255.255

mac_address: 11-22-33-44-55-66

wake_password: AA-BB-CC-DD-EE-FF

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

Attributes with Default Values

Chapter 22: Wake on LAN Jobs 463

The following Wake on LAN job attributes have default values:

port

Specifies the ports to contact after the agent sends the Wake on LAN (WOL) signal.
If you do not enter a value, the agent contacts the defaults ports.

Defaults: 21 (ftp), 22 (ssh), 23 (telnet), 80 (http), 111 (sunrpc), 135 (epmap), 139
(netbios-ssn), 445 (microsoft-ds)

timeout

Specifies the timeout for the ping in seconds.

Default: 120 seconds

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Specify a Timeout Limit When you Broadcast the WOL Signal to a MAC
address

This example broadcasts the WOL signal to the subnet identified by the 172.16.255.255
broadcast IP address and the server identified by the 00-1E-4F-C1-0F-FE MAC address.
After the agent sends the Wake on LAN (WOL) signal, the agent pings port 7 at the
172.16.1.101 IP address to ensure it is available. If port 7 becomes available within 5
minutes (300 seconds), the job completes successfully; otherwise, it exceeds the
timeout limit and fails.

insert_job: wol_job

job_type: WOL

machine: agentnme

broadcast_address: 172.16.255.255

mac_address: 00-1E-4F-C1-0F-FE

ping_host: 172.16.1.101

ping_ports: 7

ping_timeout: 300

Chapter 23: Web Services Jobs 465

Chapter 23: Web Services Jobs

This section contains the following topics:

Web Service Jobs (see page 465)
Define a Web Service Document/Literal Job (see page 466)
Define a Web Service RPC/Encoded Job (see page 469)
Attributes with Default Values (see page 472)

Web Service Jobs

The term web service describes a standardized method for exchanging data between
applications and systems. Web services use XML to code and decode the data and
Simple Object Access Protocol (SOAP) to transfer it.

Web Service Description Language (WSDL) is an XML-based language that describes a
web service and how to access it. A WSDL document specifies the location of the service
and the operations the service exposes.

Universal Description, Discovery and Integration (UDDI) is an XML-based registry for
businesses to list their available web services on the Internet. You can use the UDDI to
access the WSDL.

Web services provide access to applications written in Java and Microsoft©.NET. A web
service lets you invoke operations such as currency conversion, stock exchange quotes,
or product pricing. In an enterprise workload automation environment, a web service
might be used to invoke a business process such as posting accounts payable to the
General Ledger. Some scheduling manager functions are also available as web services.

The following are the web service job types:

Web Service RPC/Encoded

Lets you call an operation within a web service and pass parameters to the
operation using RPC/encoded style binding. The parameters can be actual values or
a serialized Java object passed by another job.

Web Service Document/Literal

Lets you call an operation within a web service and pass parameters to the
operation using document/literal style binding. The parameters represent a
flattened view of the XML document the agent constructs. The values passed into
the XML document can be literal values or a serialized Java object passed by
another job.

Define a Web Service Document/Literal Job

466 User Guide

When the job invokes the web service, the parameters are passed to the operation. The
job's output is stored by default as a serialized Java object in the job's spool directory.
You can also specify a destination file for the output.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Web Services.

The following diagram shows the functional relationship between the scheduling
manager, CA WA Agent for Web Services, and a web service residing on a web server:

Note: If your company has a firewall and you must communicate through a proxy server
to access a computer outside the firewall, agent configuration is required. For more
information on configuring the agent for a proxy, see the CA Workload Automation
Agent for Web Services Implementation Guide.

Define a Web Service Document/Literal Job

Web Service Document/Literal lets you call an operation within a web service and pass
parameters to the operation using document/literal style binding. The parameters
represent a flattened view of the XML document the agent constructs.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: WSDOC

Specifies that the job type is Web Service Document/Literal.

machine

Specifies the name of the machine on which the job runs.

endpoint_URL

Specifies the target endpoint address URL.

port_name

Specifies the WSDL port name.

service_name

Specifies the web service name.

Define a Web Service Document/Literal Job

Chapter 23: Web Services Jobs 467

wsdl_operation

Specifies the operation to be invoked.

WSDL_URL

Specifies the URL to the Web Service Description Language (WSDL) of the web
service to invoke.

2. (Optional) Specify optional Web Service Document/Literal attributes.

■ destination_file

■ job_class

■ job_criteria

■ ws_authentication_order

■ ws_conn_domain

■ ws_conn_origin

■ ws_conn_user

■ ws_global_proxy_defaults

■ ws_parameter

■ ws_proxy_domain

■ ws_proxy_host

■ ws_proxy_origin

■ ws_proxy_port

■ ws_proxy_user

■ ws_security

3. (Optional) Specify common attributes that apply to all jobs.

The Web Service Document/Literal job is defined. When the job runs, it calls an
operation within a web service.

Define a Web Service Document/Literal Job

468 User Guide

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Invoke a Web Service to List All Amazon Buckets Operation

Suppose that you want to invoke an Amazon web service that lists all your Amazon
"buckets". The URL for the WSDL that describes the web service and its location is
http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl. The target endpoint
address URL is https://s3.amazonaws.com/soap. The job calls the operation
ListAllMyBuckets within the AmazonS3 web service. When the job invokes the web
service, information about the list of my buckets is passed to the operation. The
ListAllMyBuckets operation assigns different parameter values.

insert_job: execws

job_type: WSDOC

machine: wsagent

endpoint_URL: "https://s3.amazonaws.com/soap"

wsdl_url: "http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl"

service_name: AmazonS3

port_name: AmazonS3

wsdl_operation: ListAllMyBuckets

ws_proxy_host: 141.202.248.209

ws_proxy_port: 80

ws_proxy_user: causer@tant-a01

ws_proxy_domain: tant-a01

ws_parameter: Name="/ListAllMyBuckets", Value=""

ws_parameter: Name="/ListAllMyBuckets/AWSAccessKeyId", Value="0x0102030405060708"

ws_parameter: Name="/ListAllMyBuckets/Timestamp", Value="2011-08-25T02:24:21"

ws_parameter: Name="/ListAllMyBuckets/Signature", Value="0x0102030405060708"

Define a Web Service RPC/Encoded Job

Chapter 23: Web Services Jobs 469

Define a Web Service RPC/Encoded Job

You can define a Web Service RPC/Encoded job to call an operation within a web
service.

Note: To run these jobs, your system requires CA WA Agent for UNIX, Linux, or Windows
and CA WA Agent for Web Services.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: WBSVC

Specifies that the job type is Web Service RPC/Encoded.

machine

Specifies the name of the machine on which the job runs.

target_namespace

Specifies the target namespace used for the names of messages, port type,
binding, and services defined in the WSDL for the web service. Complex data
types such as arrays require the target namespace.

wsdl_operation

Specifies the operation to be invoked.

2. (Optional) Specify optional Web Service RPC/Encoded attributes:

■ destination_file

■ endpoint_URL

■ job_class

■ one_way

■ port_name

■ return_class_name

■ return_namespace

■ return_xml_name

■ service_name

■ success_pattern

■ web_parameter

■ web_user

■ WSDL_URL

Define a Web Service RPC/Encoded Job

470 User Guide

Notes:

■ In a Web Service RPC/Encoded job, if you specify the WSDL_URL attribute but
not the endpoint_URL attribute, you must specify both the service_name and
port_name attributes. For the job to run successfully without the
endpoint_URL attribute, the agent must be running on the same computer as
the application server such as WebLogic or JBoss. If you specify both the
WSDL_URL and endpoint_URL attributes, then the service_name and
port_name attributes are optional.

■ The agent does not support document/literal styles of web services.

3. (Optional) Specify common attributes that apply to all job types.

The Web Service RPC/Encoded job is defined. When the job runs, it calls an
operation within a web service.

Notes:

■ The one_way attribute is set to FALSE by default. If you do not specify this attribute
in your job definition, the job waits for a response after the agent invokes the
operation before completing. You can override this default setting by specifying the
one_way attribute in your job definition.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Get a Company Stock Quote

Suppose that you want to invoke a web service that returns a company stock quote. The
URL for the WSDL that describes the web service and its location is
http://www.webservicex.com/stockquote.asmx?WSDL. The WSDL port name within the
target namespace http://www.webserviceX.NET is StockQuoteSoap. The target
endpoint address URL is http://www.webservicex.com/stockquote.asmx. The job calls
the operation GetQuote within the StockQuote web service. When the job invokes the
web service, the company's stock symbol is passed to the operation. The GetQuote
operation returns a java.lang.String object, which maps to the XML type string in the
return namespace http://www.webserviceX.NET/. When the job completes, the stock
quote for CA is stored as a serialized Java object in the job's spool directory.

Define a Web Service RPC/Encoded Job

Chapter 23: Web Services Jobs 471

insert_job: quote

job_type: WBSVC

machine: wsagent

target_namespace: "http://www.webserviceX.NET/"

service_name: StockQuote

port_name: StockQuoteSoap

wsdl_operation: GetQuote

one_way: FALSE

WSDL_URL: "http://www.webservicex.com/stockquote.asmx?WSDL"

endpoint_URL: "http://www.webservicex.com/stockquote.asmx"

web_parameter: xsd\:string="CA"

return_class_name: java.lang.String

return_xml_name: string

return_namespace: "http://www.webserviceX.NET/"

Example: Validate an Email Address in a Web Service Job

Suppose that you want to invoke a web service that validates an email address. The URL
for the WSDL that describes the web service and its location is
http://www.webservicex.net/ValidateEmail.asmx?wsdl. The job calls the IsValidEmail
operation within the ValidateEmail web service. When the job invokes the web service,
the email address is passed to the operation. If the email address is valid, the operation
returns true and the job completes successfully. If the email address is invalid, the
operation returns false and the job fails.

insert_job: subscribe

job_type: WBSVC

machine: wsagent

target_namespace: "http://www.webserviceX.NET/"

service_name: ValidateEmail

port_name: ValidateEmailSoap

wsdl_operation: IsValidEmail

WSDL_URL: "http://www.webservicex.net/ValidateEmail.asmx?wsdl"

endpoint_URL: "http://www.webservicex.net/ValidateEmail.asmx"

web_parameter: xsd\:string="john.smith@example.com"

return_class_name: java.lang.Boolean

return_xml_name: boolean

return_namespace: "http://www.webservicex.net"

success_pattern: true

More information:

Insert a Job Definition (see page 88)

Attributes with Default Values

472 User Guide

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following Web Service Document/Literal Job attributes have default values:

ws_global_proxy_defaults

Specifies whether to use the global proxy configuration specified by the proxy
parameters in the agentparm.txt file.

Default: Y (The job uses the global proxy configuration specified by the proxy
parameters in the agentparm.txt file.)

ws_proxy_domain

Specifies the domain for proxy authentication.

Default: http.proxyDomain agent parameter, if specified

ws_proxy_host

Specifies the proxy host name to use for the request.

Default: http.proxyHost agent parameter, if specified

ws_proxy_origin

Specifies the origin host name for proxy authentication.

Default: http.proxyOrigin agent parameter, if specified

ws_proxy_port

Specifies the proxy port to use for the request.

Default: http.proxyPort agent parameter, if specified

ws_proxy_user

Specifies the user name required for proxy authentication.

Default: http.proxyUser agent parameter, if specified

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Attributes with Default Values

Chapter 23: Web Services Jobs 473

Example: Override the Proxy Host, Proxy User, and the Proxy Domain in a Web Service
Document/Literal Job

Several attributes in the following job definition override the default values.

Suppose that the service name and the port name are AmazonS3. In this example,
ws_proxy_host, ws_proxy_port, ws_proxy_user and ws_proxy_domain attributes
override the global proxy defaults specified in the agentparm.txt file. The credentials of
user causer@tant-a01 are used for authorization to the proxy server.

insert_job: execws

job_type: WSDOC

machine: wsagent

endpoint_URL: "https://s3.amazonaws.com/soap"

wsdl_url: "http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl"

service_name: AmazonS3

port_name: AmazonS3

wsdl_operation: ListAllMyBuckets

ws_proxy_host: 141.202.248.209

ws_proxy_port: 80

ws_proxy_user: causer@tant-a01

ws_proxy_domain: tant-a01

ws_parameter: Name="/ListAllMyBuckets", Value=""

ws_parameter: Name="/ListAllMyBuckets/AWSAccessKeyId", Value="0x0102030405060708"

ws_parameter: Name="/ListAllMyBuckets/Timestamp", Value="2011-08-25T02:24:21"

ws_parameter: Name="/ListAllMyBuckets/Signature", Value="0x0102030405060708"

Chapter 24: z/OS Jobs 475

Chapter 24: z/OS Jobs

This section contains the following topics:

z/OS Jobs (see page 475)
Define a z/OS Data Set Trigger Job (see page 476)
Define a z/OS Manual Job (see page 483)
Define a z/OS Regular Job (see page 484)

z/OS Jobs

You can use z/OS jobs to run mainframe workload.

Note: To run these jobs, your system requires CA WA Agent for z/OS.

CA WA Agent for z/OS submits and tracks the z/OS jobs. You can define the following
three types of z/OS jobs:

z/OS Regular

Schedules z/OS jobs.

z/OS Manual

Creates dependencies on z/OS jobs that are submitted outside of the scheduling
manager.

z/OS Data Set Trigger

Creates dependencies on data set activities. You can customize trigger conditions to
define the conditions in which the z/OS Data Set Trigger job completes. You can
specify trigger conditions for the following data set activities:

■ When a data set is created or updated

■ When a specific job, group of jobs, or user ID creates a data set

■ When an explicit data set notification is received (used when the data set
activity does not generate an SMF record)

■ When an FTP file is sent or received successfully

Note: Each data set must have its own individual z/OS Data Set Trigger job. To
create dependencies on multiple data sets, you must create multiple z/OS Data Set
Trigger jobs.

Define a z/OS Data Set Trigger Job

476 User Guide

Define a z/OS Data Set Trigger Job

You can define a z/OS Data Set Trigger job to create dependencies on data set activities.

Note: To run these jobs, your system requires CA WA Agent for z/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: ZOSDST

Specifies that the job type is z/OS Data Set Trigger.

machine

Specifies the name of the machine on which the job runs.

zos_dataset

Specifies the Job Control Language (JCL) library name. The JCL library or JCLLIB
contains the JCL for the z/OS job. The JCLLIB is a z/OS data set name.

2. (Optional) Specify optional z/OS Data Set Trigger attributes:

■ zos_dsn_renamed

■ zos_dsn_updated

■ zos_explicit_dsn

■ zos_ftp_direction

■ zos_ftp_host

■ zos_ftp_userid

■ zos_trigger_by

■ zos_trigger_on

■ zos_trigger_type

3. (Optional) Specify common attributes that apply to all job types.

The z/OS Data Set Trigger job is defined.

Define a z/OS Data Set Trigger Job

Chapter 24: z/OS Jobs 477

Notes:

■ Attributes that have a default value automatically apply to the job definitions;
therefore, they are optional. For example, jobs with no specified job type are
defined as command jobs by default. Other optional attributes specify information
that is not required but affects how or when a job runs, such as attributes that
specify scheduling conditions.

■ Some optional attributes are common to all job types but others apply to certain
jobs types only. Optional attributes that apply to all job types are known as
common optional attributes. For more information about common optional
attributes and the values that you can specify for them (including their default
values when applicable), see the Reference Guide.

■ For information about required attributes and job type specific optional attributes,
see the procedure topics that provide instructions for defining jobs.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Define a z/OS Data Set Trigger Job

This example triggers when the data set PROD.CICS.FILE1602 is closed (created or
updated).

insert_job: PROD.NIGHTLY

job_type: ZOSDST

machine: ZOS1

zos_dataset: PROD.CICS.FILE1602

owner: zosuser

More information:

Insert a Job Definition (see page 88)

Define a z/OS Data Set Trigger Job

478 User Guide

Attributes with Default Values

Attributes that have a default value automatically apply to the job definition. Therefore,
you do not have to specify those attributes in the definition. Your agent administrator
can define some default values on the agent in the agentparm.txt file.

If you specify the attribute in a job definition, it overrides the default.

The following z/OS Data Set Trigger job attributes have default values:

zos_explicit_dsn

Specifies whether the job monitors for an explicit data set.

Default: FALSE (The job does not monitor for an explicit data set.)

zos_dsn_renamed

Specifies whether the job monitors when a data set is renamed.

Default: N (The job does not monitor when the data set is renamed.)

zos_dsn_updated

Specifies whether the job monitors for updates to a data set.

Default: N (The job does not monitor for updates to the data set.)

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Define a z/OS Data Set Trigger Job

Chapter 24: z/OS Jobs 479

Monitor Data Set Activity by a User or Job

You can define a z/OS Data Set Trigger job to monitor when a specific job, group of jobs,
or user ID creates a data set. When the specified condition is met, the job completes.

Follow these steps:

1. Define a z/OS Data Set Trigger job (see page 476).

2. Add the following attributes to the job definition:

zos_trigger_type

Specifies whether the job monitors data set activity by a job or a user ID.

zos_trigger_by

Specifies the name of the job or user who performs the data set activity that
triggers the job.

3. Run the job.

The job monitors for data set activity by the specified user or job.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Example: Restrict the Trigger to Specific Data Sets Created by a Particular User

Suppose that you want the z/OS Data Set Trigger job PROD.PAY_DATA to release its
successors when the user CYB1 creates generation data set USER1.PAYROLL
(USER1.PAYROLL.G-). The agent ZOS1 monitors the data set under user CYBDL01.

insert_job: PROD.PAY_DATA

job_type: ZOSDST

machine: ZOS1

owner: CYBDL01

zos_dataset: USER1.PAYROLL.G-

zos_trigger_type: zos_user_id

zos_trigger_by: CYB1

Define a z/OS Data Set Trigger Job

480 User Guide

Example: Restrict the Trigger to Specific Data Sets Created by a Particular Job

Suppose that you want a z/OS Data Set Trigger job named PROD.PAY_DATA to release
its successors when job ABC creates generation data set USER1.PAYROLL
(USER1.PAYROLL.G-).The agent ZOS1 monitors the data set under user CYBDL01.

insert_job: PROD.PAY_DATA

job_type: ZOSDST

machine: ZOS1

owner: CYBDL01

zos_dataset: USER1.PAYROLL.G-

zos_trigger_type: zos_job_name

zos_trigger_by: ABC

Monitor an FTP Transfer on z/OS

You can define a z/OS Data Set Trigger job to monitor when an FTP file is sent or
received successfully. When the specified condition is met, the job completes.

Follow these steps:

1. Define a z/OS Data Set Trigger job (see page 476).

2. Add the zos_explicit_dsn attribute to the job definition using the following syntax:

zos_explicit_dsn: FALSE

3. Add the following attributes:

zos_ftp_direction

Specifies whether the job monitors for an FTP transfer to a remote computer or
from a remote computer.

zos_ftp_host

Specifies the name of the remote computer involved in the FTP transfer. The
data is transferred to or from the local mainframe computer.

zos_ftp_userid

Specifies the FTP user ID used to connect to a remote computer.

4. Run the job.

The job monitors for the specified FTP transfer.

Note: For more information about JIL job types and other job definition attributes, the
values that you can specify for those attributes, and JIL syntax, see the Reference Guide.

Define a z/OS Data Set Trigger Job

Chapter 24: z/OS Jobs 481

Example: Monitor for a Data Set Sent to a Remote FTP partner

Suppose that you want the z/OS Data Set Trigger job CYBER.XFER to release its
successors when data set CYBER.XFER.001 is successfully sent from the local mainframe
partner to a remote FTP partner. The agent ZOS1 monitors the FTP transfer under user
CYBDL01.

insert_job: CYBER.XFER

job_type: ZOSDST

machine: ZOS1

owner: CYBDL01

zos_dataset: CYBER.XFER.001

zos_ftp_direction: SEND

Example: Restrict Triggering to a Specific Host

Suppose that you want the z/OS Data Set Trigger job CYBER.XFER to release its
successors when a remote FTP partner with IP address 172.16.0.0 successfully transfers
a file creating the data set CYBER.XFER.001. The agent ZOS1 monitors the FTP transfer
under user CYBDL01.

insert_job: CYBER.XFER

job_type: ZOSDST

machine: ZOS1

owner: CYBDL01

zos_dataset: CYBER.XFER.001

zos_ftp_direction: RECEIVE

zos_ftp_host: 172.16.0.0

zos_ftp_userid: CYB1

Define a z/OS Data Set Trigger Job

482 User Guide

Example: Restrict Triggering to a Specific Login ID

Suppose that you want the z/OS Data Set Trigger job CYBER.XFER to release its
successors when a remote FTP partner successfully transfers a file creating the data set
CYBER.XFER.001, assuming that the remote FTP partner logged on to the FTP server with
the CYBER005 user ID. The agent ZOS1 monitors the FTP transfer under user CYBDL01.

insert_job: CYBER.XFER

job_type: ZOSDST

machine: ZOS1

owner: CYBDL01

zos_dataset: CYBER.XFER.001

zos_ftp_direction: RECEIVE

zos_ftp_host: 172.16.0.0

zos_ftp_userid: CYBER005

Example: Restrict the Trigger to an FTP Transfer from a Specific User ID

This example releases the job's successors when a remote FTP partner successfully
transfers a file creating the data set CYBER.XFER.001, assuming that the user ID prefix of
the local FTP partner is CYB (CYB-). The agent ZOS1 monitors the FTP transfer under user
CYBDL01.

insert_job: CYBER.XFER

job_type: ZOSDST

machine: ZOS1

owner: CYBDL01

zos_dataset: CYBER.XFER.001

zos_trigger_type: zos_user_id

zos_trigger_by: CYB-

zos_ftp_direction: RECEIVE

zos_ftp_userid: CYB-

Define a z/OS Manual Job

Chapter 24: z/OS Jobs 483

Define a z/OS Manual Job

You can define a z/OS Manual job to create dependencies on z/OS jobs that are
submitted outside the scheduling manager, such as a job that is submitted manually by
a user.

Note: To run these jobs, your system requires CA WA Agent for z/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: ZOSM

Specifies that the job type is z/OS Manual.

machine

Specifies the name of the machine on which the job runs.

zos_jobname

Specifies the name of the z/OS job that is submitted outside of CA Workload
Automation AE.

2. (Optional) Specify optional z/OS Manual attributes:

■ auth_string

■ job_terminator

■ search_bw

3. (Optional) Specify common attributes that apply to all job types.

The z/OS Manual job is defined.

Notes:

■ The job_terminator attribute is set to N by default. If you do not specify this
attribute in your job definition, the job does not terminate if its containing box
completes with a FAILURE or TERMINATED status. You can override this default
setting by specifying the job_terminator attribute in your job definition.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Define a z/OS Regular Job

484 User Guide

Example: Post a z/OS Manual Job as Complete Based on the User ID

This example posts a z/OS Manual job as complete when the manually-submitted job
ABC runs under user CYBER. The ZOS1 agent monitors job ABC.

insert_job: ABC_job

job_type: ZOSM

machine: ZOS1

zos_jobname: ABC

owner: zosuser

auth_string: CYBER

More information:

Insert a Job Definition (see page 88)

Define a z/OS Regular Job

You can define a z/OS Regular job to schedule a z/OS job.

Note: To run these jobs, your system requires CA WA Agent for z/OS.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: ZOS

Specifies that the job type is z/OS Regular.

machine

Specifies the name of the machine on which the job runs.

jcl_library

Specifies the Job Control Language (JCL) library name. The JCL library or JCLLIB
contains the JCL for the z/OS job.

2. Specify the following attribute if jcl_library is a partitioned data set (PDS):

jcl_member

Specifies the JCL member that contains the JCL for your job. If the jcl_library
attribute specifies a fully qualified data set name, the jcl_member attribute
specifies the zOS job name.

Define a z/OS Regular Job

Chapter 24: z/OS Jobs 485

3. (Optional) Specify optional z/OS Regular attributes:

■ condition_code

■ copy_jcl

■ envvars

■ job_terminator

4. (Optional) Specify common attributes that apply to all job types.

The z/OS Regular job is defined.

Notes:

■ The job_terminator attribute is set to N by default. If you do not specify this
attribute in your job definition, the job does not terminate if its containing box
completes with a FAILURE or TERMINATED status. You can override this default
setting by specifying the job_terminator attribute in your job definition.

■ This guide provides instructions for defining jobs interactively. You also create job
definitions in script files and then import them using the jil command or use CA
WCC to define them. For more information about the JIL command and JIL syntax,
see the Reference Guide. For more information about using CA WCC to define the
job, see the CA Workload Control Center Workload Scheduling Guide.

Example: Store a Working Copy of the JCL that You Submitted

Suppose that the agent ZOS1 submits the JCL in member CYBDL01A in the
CYBDL01.JCLLIB library. If the job fails, you can modify a working copy of the JCL in the
CYBDL01.COPY.JCLLIB data set, and resubmit the job without affecting the JCL source.

insert_job: CYBDL01A

job_type: ZOS

machine: ZOS1

jcl_library: CYBDL01.JCLLIB

jcl_member: CYBDL01A

owner: CYBDL01

copy_jcl: CYBDL01.COPY.JCLLIB

More information:

Insert a Job Definition (see page 88)

Chapter 25: Working with User-defined Job Types 487

Chapter 25: Working with User-defined Job
Types

This section contains the following topics:

User-Defined Job Types (see page 487)
Create a New Job Type (see page 489)
Use a New Job Type (see page 490)

User-Defined Job Types

CA Workload Automation AE lets you define simple user-defined jobs. A user-defined
job type is similar to a command job except that each user-defined job type is
associated with a custom program/script/adaptor. For example, a new job type can be
defined to perform FTP. For this to work, a custom program/script/adaptor has to be
provided which does FTP by taking a few arguments. Jobs using the user-defined job
type may optionally specify arguments to the command defined in the user-defined job
type. For example, if we define FTP job type as '2', a custom program, script, or adaptor
must be provided as part of the definition of type 2.

insert_job_type: 2

command: /home/scripts/myftp

When jobs of type 2 are defined, all of them execute /home/scripts/myftp when those
jobs are run.

insert_job: ftp_test

job_type: 2

machine: localhost

std_in_file: /tmp/ftp_params

When a new version of FTP script is used, only the definition of job type has to be
modified.

You can use the following jil commands to create, update, and delete user-defined job
types.

■ insert_job_type

■ delete_job_type

■ update_job_type

User-Defined Job Types

488 User Guide

Only three attributes are associated with user-defined job types:

job_type

Defines the user-specified job type.

Limits: This value can be a singe-digit number (0-9).

command

Defines the command to associate with the job type.

Limits: This value can be up to 510 characters in length.

The command attribute in the job definition is optional. If you do not specify the
command attribute in the job definition, the job type uses the command attribute
of the job definition. If you specify the command attribute in the job definition, it
appends the command attribute to the job type command.

description

Defines a description of the job type.

Limits: This value can be up to 256 characters in length.

Any other attribute is rejected and JIL fails.

Note: You must define a job type before you can use it to define a job. For more
information, see the Reference Guide.

Example: Use insert_job_type to Add a User-Defined Job Type

This example creates an association between a user-defined job type and an executable.

insert_job_type: 5

description: Web Service Adapter

command:ws.exe

Example: Use delete_job_type to Delete a User-Defined Job Type

This example verifies that no jobs are currently using the specified job type, and deletes
the job type.

delete_job_type: 5

Create a New Job Type

Chapter 25: Working with User-defined Job Types 489

Example: Use update_job_type to Modify a User-Defined Job Type

This example modifies an existing job type, changing the values of the description and
command attributes.

update_job_type: 5

description: WorldView Adapter

command: wv.exe

Example: Pass Arguments To a User-Defined Job Type Command

This example creates a new job type. Two jobs are defined that run with different
arguments. The user-defined job is defined to run the command /bin/sleep. Each job
specifies the sleep time as an arugment that is appended to the command. For example,
the job sleep_5 would be executed with a command /bin/sleep 5.

update_job_type: 7

description: sleep for a spell

command: /bin/sleep

insert_job: sleep_5

description: sleep for 5 seconds

job_type: 7

machine: localhost

command: 5

insert_job: sleep_30

description: sleep for 30 seconds

job_type: 7

machine: localhost

command: 30

Create a New Job Type

You can create new job types. For example, you have an adapter binary and you want to
create 300 jobs that invoke the adapter. You can create 300 command jobs and specify
the command each time or you can define a single job type (for example '0') that
represents the adapter command and define 300 jobs of type '0'.

Follow these steps:

1. Insert_job_type:0.

2. Enter the following command: special_adapter.

3. Enter the following description: This is a job type to run special adapter commands.

The new job type is created.

Use a New Job Type

490 User Guide

Use a New Job Type

After you create a new job type, you must define a job to use it.

Follow these steps:

1. Insert_job:test.

2. Enter job_type:0.

3. Enter machine name: localhost.

The newly created job type can be used.

CA Workload Automation AE also supports delete_job_type and update_job_type. You
can use the delete_job_type to delete a user-defined job type, and the update_job_type
when you want to modify an existing user-defined job type.

Chapter 26: Working with Resources 491

Chapter 26: Working with Resources

This section contains the following topics:

Real Resources (see page 491)
Virtual Resources (see page 494)
Define a Virtual Resource (see page 499)
Update a Virtual Resource (see page 501)
Delete a Virtual Resource (see page 503)
Define Real and Virtual Resource Dependencies in a Job (see page 504)
Update Real and Virtual Resource Dependencies in a Job (see page 506)
Release Renewable Resources (see page 508)
Generate a Report on Current Resource Definitions (see page 509)
Generate a Report to Display a Job's Resource Dependencies (see page 509)
Generate a Report to Monitor Virtual Resource Usage (see page 510)
Generate a Report to Monitor Resource Dependencies (see page 512)

Real Resources

Real resources are system conditions that are directly tied to a physical system (for
example, physical memory). Real resources are predefined to CA Workload Automation
AE and are managed by external resource managers such as CA Automation Suite for
Data Centers. You cannot define or update real resources using CA Workload
Automation AE. If the required resources are not available, the job goes into a RESWAIT
state and is not submitted until the resources are available.

You can specify real resources as dependencies to jobs. A job with resource
dependencies is submitted only when the resources required are available. If the
required resources are not available, the job goes into a RESWAIT state and is not
submitted until the resources are available.

You can specify the following supported real resource types as dependencies:

CPU_IDLE_PCT

Defines the percentage of time over the sample period that the system's CPUs were
idle.

Example: (CPU_IDLE_PCT, VALUE=50, VALUEOP=GT) indicates that the system's
CPUs were idle for at least 50% of the sample period.

Corresponding metric in the CA SystemEDGE agent: cpuTotalIdlePercent

Real Resources

492 User Guide

CPU_LOAD_AVG_15MIN

Defines the load average in the last 15 minutes.

Example: (CPU_LOAD_AVG_15MIN, VALUE=50, VALUEOP=LT) indicates that the
load average was less than 50 in the last 15 minutes.

Corresponding metric in the CA SystemEDGE agent: loadAverage15Min

CPU_LOAD_AVG_5MIN

Defines the load average in the last 5 minutes.

Example: (CPU_LOAD_AVG_5MIN, VALUE=50, VALUEOP=LT) indicates that the load
average was less than 50 in hte last 5 minutes.

Corresponding metric in the CA SystemEDGE agent: loadAverage5Min

MEM_INUSE_PCT

Defines the percentage of the system’s active memory that is in use.

Example: (MEM_INUSE_PCT, VALUE=30, VALUEOP=LTE) indicates that 30% or less
of the system's active memory is in use.

Corresponding metric in the CA SystemEDGE agent: memCapacity

SWAP_INUSE_PCT

Defines the percentage of the system’s total swap that is in use.

Example: (SWAP_INUSE_PCT, VALUE=60, VALUEOP=LT) indicates that less than 60%
of the system's total swap is in use.

Corresponding metric in the CA SystemEDGE agent: swapCapacity

SWAP_SPACE_TOTAL

Defines the total swap space (in KB).

Example: (SWAP_SPACE_TOTAL, VALUE=10240, VALUEOP=GTE) indicates that the
total swap space is 10240 KB or more.

Corresponding metric in the CA SystemEDGE agent: totalSwapSpace

SYSTEM_CPU_COUNT

Defines the total number of CPUs that the job requires.

Example: (SYSTEM_CPU_COUNT, VALUEOP=EQ, VALUE=2) indicates that the job
requires a machine with 2 CPUs.

Corresponding metric in the CA SystemEDGE agent: Number of CPUs

SYSTEM_CPU_SPEED

Defines the system clock speed (in MHz) the job requires.

Example: (SYSTEM_CPU_SPEED, VALUEOP=EQ, VALUE=100) indicates that the job
requires a machine with clock speed of 100MHz.

Corresponding metric in the CA ACM agent: CPU Speed

Real Resources

Chapter 26: Working with Resources 493

SYSTEM_OS_TYPE and VERSION

Specifies the operating system name and version number that the job requires.

Example: (SYSTEM_OS_TYPE, VALUEOP=EQ, VALUE=AIX, VERSION=5.3) indicates
that the job requires a machine with an AIX 5.3 operating system.

Corresponding metrics in the CA SystemEDGE agent: OS Type/OS Version

SYSTEM_PHYSICAL_MEMORY

Defines the total amount of available physical memory (in MB) that the job
requires.

Example: (SYSTEM_PHYSICAL_MEMORY, VALUEOP=GTE, VALUE=200) indicates that
the job requires a machine with at least 200 MB of physical memory.

Corresponding metric in the CA SystemEDGE agent: Physical Memory

SOFTWARE_NAME and VERSION

Specifies the software and version number that the job requires.

Example: (SYSTEM_SOFTWARE_NAME, VALUEOP=EQ, VALUE=Adaptive Enterprise
Server Sybase, VERSION=15.0) indicates that the job requires a machine that has
Adaptive Enterprise Server Sybase 15.0 installed.

Corresponding metrics in the CA ACM agent: SOFTWARE_NAME/VERSION

The previous examples show the syntax for specifying the resource value in a real
resource dependency definition.

Notes:

■ To use real resource dependencies, you must do the following:

■ Install and configure the CA Automation Suite for Data Centers SDK clients on
the CA Workload Automation AE scheduler and application server machines.

■ Install the CA Automation Suite for Data Centers agents (CA SysEdge and CA
ACM agents) on all agent machines that utilize real resources for load
balancing. You must install the CA ACM agent only if you want to utilize
SOFTWARE and SYSTEM_CPU_SPEED metrics.

■ For more information about configuring CA Workload Automation AE to work with
CA Automation Suite for Data Centers, see the UNIX Implementation Guide or
Windows Implementation Guide.

Virtual Resources

494 User Guide

Virtual Resources

Virtual resources can help you control job execution and can improve your
environment's performance. They represent values that can be quantified, but they are
not directly tied to a physical system. CA Workload Automation AE does not check
whether a virtual resource is an actual device that exists or whether it is a device that is
being used by another process.

You can use virtual resources to prevent jobs from running simultaneously and ensure
that a job is submitted only when the minimum number of resources is available. For
example, you can define a virtual resource to represent the maximum number of
floating product licenses available in your enterprise. Each time a qualified job runs, a
unit of that resource is used. When all the units are used, no more jobs can run.

You can define the following types of virtual resources on CA Workload Automation AE:

■ Depletable

■ Renewable

■ Threshold

A virtual resource can be defined for a specific machine, or it can be defined at the
global level. A resource defined for a specific machine is available to jobs submitted to
that machine. A resource may be defined to more than one specific machine. A resource
at the global level is available to all machines controlled by CA Workload Automation
AE. Global resources can help control workload balancing across all machines.

Note: You can define resources for distributed machines only. Before you can define a
resource on a machine, the machine must already be defined on the database.

You can specify virtual resources as dependencies to jobs. A job with resource
dependencies is submitted only when the resources required are available. If the
required resources are not available, the job goes into a RESWAIT state and is not
submitted until the resources are available.

Virtual resources are associated with corresponding resource pools. When jobs with
virtual resource dependencies run, the used resources are temporarily or permanently
removed from the resource pool, depending on the virtual resource type.

CA Workload Automation AE is the resource manager for virtual resources.

Virtual Resources

Chapter 26: Working with Resources 495

Notes:

■ When you force start a job in FAILURE or TERMINATED status that has a virtual
resource dependency with free=Y or free=N and has not released the virtual
resources, the FORCE_STARTJOB event verifies if the job's current status is FAILURE
or TERMINATED and schedules the job using the already held virtual resources.
Before force starting the job, the scheduler does not re-evaluate other resource
dependencies. For more information about the FORCE_STARTJOB event, see the
Reference Guide.

■ When you update a job, you cannot update the resources attribute in the existing
job definition if the job has a resource dependency and has held the resource.

■ Virtual resources are secured using CA EEM (external security mode). The native
security in CA Workload Automation AE does not secure virtual resources. For more
information about securing virtual resources using CA EEM, see the Security Guide.

Depletable Resources

A depletable resource is a consumed resource. When a job that uses this resource is
submitted, the used resource units are permanently removed from the resource pool.
When the resource is completely depleted or jobs require more units than what is
currently available, jobs that need it go into a RESWAIT state and are not submitted until
the resource is available. You can manually replenish the resource using the
update_resource JIL subcommand. After the resource is replenished, other jobs can use
it.

Depletable resources are helpful when you want to represent values that have a limit,
such as the maximum times to run a job. Depletable resources are also helpful when
you want to control how many times a job can run in a specified time period.

Example: Run a Job Only Once a Day

Suppose that a bank wants to post daily transactions to its master database only once a
day at midnight to ensure data integrity and system performance. To run this critical job
only once a day, you can do the following:

1. Define a depletable resource with an amount of 1, as follows:

insert_resource: depletable1

res_type: D

machine: hostname

amount: 1

Virtual Resources

496 User Guide

2. Define the critical job with the following conditions:

■ The job requires one unit of the depletable resource before it can start.

■ The job is scheduled to start at midnight.

The job is defined as follows:

insert_job: ResDepJob

job_type: CMD

command: /tmp/DBIntensiveApp

machine: hostname

owner: root@hostname

resources: (depletable1,QUANTITY=1)

When the job is submitted, one unit of the resource is permanently removed from the
resource pool. If the job fails, CA Workload Automation AE restarts the job (based on
the n_retrys attribute), but the job goes into RESWAIT state because no units of the
resource are available. The RESWAIT state indicates that a potential problem occurred.
You must run the job must manually.

Note: To add additional resources to a depletable resource, use the update_resource
subcommand. For example, the following command adds 15 units to the depletable1
resource:

update_resource: depletable1

machine: hostname

amount: 15

Renewable Resources

A renewable resource is a borrowed resource. When a job that uses this resource is
submitted, the used resource units are temporarily removed from the resource pool.
When the job completes, the resource units are returned to the pool, or the units are
held until they are manually released back to the pool. Renewable resources are helpful
when you want to control jobs that run concurrently or serially.

When the resource is being used, other jobs that need more units than what is currently
available go into a RESWAIT state and are not submitted until the resource is available.
You can change the amount of resource units available using the update_resource JIL
subcommand. After the amount is changed, a greater number of jobs that need the
resource can run concurrently.

Virtual Resources

Chapter 26: Working with Resources 497

Example: Control the Maximum Number of Licenses Used

Suppose that your enterprise has 10 floating licenses for a program. Multiple licenses
can be used on one machine, or they can be used on up to 10 machines. At any time,
you want to ensure that the maximum number of licenses used is 10. To control the
maximum number of licenses being used, you can do the following:

1. Define a renewable resource at the global level with an amount of 10, as follows:

insert_resource: r1

res_type: R

amount: 10

2. Define each job that requires the license with the following conditions:

■ The job requires one unit of the renewable resource before it can start.

■ The job frees the renewable resource whether it completes successfully or not.

The job is defined as follows:

insert_job: jr1

command: sleep 500

machine: hostname

resources: (r1,quantity=1, FREE=A)

When a job is submitted, one unit of the resource is temporarily removed from the
resource pool. Because there are only 10 units, only 10 of these jobs can run
simultaneously on any machine in the enterprise. Other jobs that require a license
cannot be submitted because no resources are available. When a job that is running
completes, one unit of the resource is returned to the resource pool. Another job can be
submitted because a unit is now available.

Threshold Resources

A threshold resource is a sizing resource. For example, if the threshold resource is set to
2, CA Workload Automation AE submits the jobs that require 2 or fewer units. Threshold
resources are helpful when you want to define a boundary that controls which jobs are
submitted to run. The used resource units are not removed from the resource pool.

A job that has a dependency on a threshold resource is only submitted if it requires the
available resource units or fewer. Otherwise, the job goes into a RESWAIT state and is
not submitted until the threshold amount is increased. You can change the threshold
amount using the update_resource JIL subcommand. After the amount is changed, the
jobs that meet the threshold can run.

Virtual Resources

498 User Guide

Example: Prevent Jobs from Running When a Critical Resource is Offline

Suppose that multiple jobs read and write to a disk on a machine named mach1. When
the disk needs to be formatted, you want the jobs to stop running. To prevent the jobs
from running when the disk is offline, you can do the following:

1. Define a threshold resource on the mach1 machine with an amount of 1, as follows:

insert_resource: t1

machine: mach1

res_type: T

amount: 1

2. Define each job that reads and writes to the disk and requires one unit of the
threshold resource before it can start, as follows:

insert_job: jt1

command: readnadwritetodisk

machine: mach1

resources: (t1, quantity=1)

3. Define a job named TRIGGER_JOB that resets the threshold amount to 0 to indicate
that the disk is offline. The trigger job runs the update_resource command as
follows:

update_resource: t1

machine: mach1

amount: 0

When the disk is online, the threshold resource amount is 1, so all jobs that need to
read and write to the disk are submitted (the jobs meet the threshold requirement).
When the disk needs to be formatted, you can run TRIGGER_JOB, which resets the
threshold resource amount to 0. All the jobs that need to read and write to the disk go
into a RESWAIT state and are not submitted until the threshold is set to 1.

Define a Virtual Resource

Chapter 26: Working with Resources 499

Define a Virtual Resource

To use virtual resource dependencies in your jobs, you must first add the virtual
resource definition to the database. You can define virtual resources on distributed
machines only.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following subcommand and attributes:

insert_resource: resource_name

Specifies the virtual resource to be defined.

amount

Defines the number of units to assign to the virtual resource.

res_type

Specifies the virtual resource type (D for depletable, R for renewable, or T for
threshold).

3. Specify the following additional attribute if you want to define the resource for a
machine:

machine

Specifies the name of the machine to define the virtual resource for. The
machine must already be defined on the database, and the type of the machine
cannot be v, w, or p.

Note: If you do not specify the machine attribute, the resource will be available to
all machines (global level resource).

4. (Optional) Specify the following additional attribute:

description

Defines a free-form text description of the virtual resource.

5. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The insert_resource subcommand is issued and the specified virtual resource is
defined.

Define a Virtual Resource

500 User Guide

Notes:

■ The virtual resource name must be unique across all resource types.

■ You cannot define the same virtual resource at the machine level and global level.

■ You can define the same virtual resource on multiple machines.

■ For more information about the syntax for the insert_resource subcommand and
related attributes, see the Reference Guide.

Example: Define a Global Depletable Resource

This example defines a virtual depletable resource named glob_res. The machine
attribute is not specified, so the resource is available to all machines.

insert_resource: glob_res

res_type: D

amount: 50

description: "This resource is permanently consumed."

Example: Define a Machine-Level Threshold Resource

This example defines a threshold resource for the unixagent machine. The resource is
assigned 10 units, so only jobs that require 10 or fewer units of this resource are
submitted to the unixagent machine.

insert_resource: threshold_res

res_type: T

machine: unixagent

amount: 10

Update a Virtual Resource

Chapter 26: Working with Resources 501

Update a Virtual Resource

You can update the amount and description properties of a virtual resource definition in
the database. Updating the resource amount is helpful when you want to change the
number of jobs that can run concurrently or serially.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following subcommand:

update_resource: resource_name

Specifies the virtual resource to be updated. This resource must be defined in
the database.

3. Specify the following additional attribute if the resource is defined for a machine:

machine

Identifies the name of the machine that the virtual resource is defined for.

Note: If you do not specify the machine attribute, CA Workload Automation AE
assumes the resource is a global resource. If the resource is machine-level, but the
machine attribute is not specified, you will get an error.

4. (Optional) Specify the following additional attributes:

amount

Defines the number of units to assign to the virtual resource. The number can
be an absolute value or a relative value.

description

Defines a free-form text description of the virtual resource.

5. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The update_resource subcommand is issued and the specified virtual resource is
updated.

Update a Virtual Resource

502 User Guide

Notes:

■ You cannot update resource types or machine names using the update_resource
subcommand. To update resource types or machine names, you must delete the
resource and add it to database again with the new properties.

■ For more information about the syntax for the update_resource subcommand and
related attributes, see the Reference Guide.

Example: Update a Machine-Level Virtual Resource

This example updates a virtual resource that is associated with the unixagent machine.
The number of units is changed to 35.

update_resource: mach_res

machine: unixagent

amount: 35

Suppose that the amount attribute is defined as follows:

amount: +20

In this situation, the command adds 20 units to the available resource count. For
example, if the resource already has 35 units, the command adds 20 units and the total
would be 55.

Similarly, suppose that the amount attribute is defined as follows:

amount: -20

If the resource has 35 units, the command removes 20 units and the total would be 15.

Delete a Virtual Resource

Chapter 26: Working with Resources 503

Delete a Virtual Resource

You can delete a virtual resource that you no longer use.

Note: You cannot delete a virtual resource if it is referenced as a dependency in a job.
To delete the resource, you must delete all the related job dependencies first. If a
resource is deleted while a job that references it as a dependency is active or running,
the job continues to run and is not affected.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following subcommand:

delete_resource: resource_name

Specifies the virtual resource that you want to delete.

3. Specify the following additional attribute if the resource is defined for a machine:

machine

Identifies the name of the machine that the virtual resource is defined for.

Note: If you do not specify the machine attribute, CA Workload Automation AE
assumes the resource is a global resource. If the resource is machine-level, but the
machine attribute is not specified, you will get an error.

4. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The delete_resource subcommand is issued and the specified virtual resource is
deleted.

Note: For more information about the syntax for the delete_resource subcommand and
related attributes, see the Reference Guide.

Example: Delete a Global Virtual Resource

This example deletes the global virtual resource named glob_resource.

delete_resource: glob_resource

Define Real and Virtual Resource Dependencies in a Job

504 User Guide

Define Real and Virtual Resource Dependencies in a Job

You can define a job to have dependencies on real and virtual resources. A job with
resource dependencies is submitted only when the resources required are available.
Using resource dependencies can help you control job execution and improve your
environment's performance.

Note: You cannot define a resource dependency on a box.

Follow these steps:

1. Insert a job and add the following attribute to the job definition:

resources

Defines one or more real and virtual resource dependencies.

Note: To define a virtual resource dependency, the virtual resource must
already be defined on the database.

2. (Optional) Add the following attribute:

priority

Defines the queue priority of the job. The queue priority establishes the
relative priority of all jobs queued for a given machine. A lower number
indicates a higher priority. Jobs with a higher priority get the required
resources first and run before lower priority jobs.

3. Run the job.

The job is defined with the specified resource dependencies. The job is submitted
when the required resources are available.

Note: For detailed information about the syntax for the resources and priority
attributes, see the Reference Guide.

Define Real and Virtual Resource Dependencies in a Job

Chapter 26: Working with Resources 505

Example: Define a Virtual Resource Dependency that Does Not Free the Resources
After Job Completion

This example defines a Command job that has a dependency on a virtual renewable
resource. Before the job can start running, it needs all the units of the renew_res
resource.

insert_job: no_free_job

job_type: CMD

machine: unixagent

command: /u1/procrun.sh

resources: (renew_res, QUANTITY=ALL, free=N)

After the job completes, the units of the renew_res resource are not freed from the job.
To return the units back to the available resource pool, you must issue the following
command:

sendevent -E RELEASE_RESOURCE -J no_free_job

Suppose that the job is defined with the following attribute:

resources: (renew_res, QUANTITY=5, free=Y)

If the job completes successfully, the resource is added back to the resource pool. This is
the default behavior.

Suppose that the job is defined with the following attribute:

resources: (renew_res, QUANTITY=5, free=A)

The resource is released back to the pool unconditionally.

Update Real and Virtual Resource Dependencies in a Job

506 User Guide

Example: Define Real and Virtual Resource Dependencies

This example defines a Command job that has real and virtual resource dependencies.
Before the job can start running, it needs a machine that satisfies all the following
dependencies:

■ 1 unit of the depletable resource named D1

■ 3 units of the threshold resource named T1

■ 4 units of the renewable resource named R1

■ SYSTEM_OS_TYPE is AIX 5.3

■ SYSTEM_PHYSICAL_MEMORY is greater than 2 GB

insert_job: res_dep_job

job_type: CMD

machine: unixagent

command: /u1/procrun.sh

resources: (D1, QUANTITY=1) AND (T1, QUANTITY=3) AND

(R1, QUANTITY=4, FREE=Y) AND

(SYSTEM_OS_TYPE, VALUEOP=EQ, VALUE=AIX, VERSION=5.3) AND

(SYSTEM_PHYSICAL_MEMORY, VALUEOP=GT, VALUE=2048)

Update Real and Virtual Resource Dependencies in a Job

You can update the real and virtual resource dependencies defined in a job.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following subcommand and attribute:

update_job: job_name

Specifies the job to update.

resources

Specifies one or more real and virtual resource dependencies to update.

Update Real and Virtual Resource Dependencies in a Job

Chapter 26: Working with Resources 507

3. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The update_job subcommand is issued and the specified real and virtual resource
dependencies are updated.

Note: For detailed information about the syntax for the resources attribute, see the
Reference Guide.

Example: Update Real and Virtual Resource Dependencies

This example updates the real and virtual resources in the proc_daily job. RENEW3
virtual resource dependency does not have the free keyword defined, so the resource
units are freed if the job completes successfully (the default).

update_job: proc_daily

resources: (RENEW3, QUANTITY=3) AND (THRESHOLD2, QUANTITY=3) AND (SYSTEM_CPU_COUNT,

VALUEOP=GT, VALUE=2)

Release Renewable Resources

508 User Guide

Release Renewable Resources

When you define a job to have a virtual renewable resource dependency, you can
specify whether the units of the resource are freed after the job completes. If the units
are not freed, you can manually release them back to the resource pool so that other
jobs can use them.

To manually release renewable resources, enter the following command at the UNIX
operating system prompt or the Windows instance command prompt:

sendevent -E RELEASE_RESOURCE -J job_name

job_name

Specifies the job that you want to release the renewable resources from.

The sendevent command is issued and the resources are released from the job.

Note: For more information about the sendevent command, see the Reference Guide.

Example: Release Renewable Resources

Suppose that you defined a virtual renewable resource named ren1 that has two units.
JobA and JobB are also defined with a dependency on ren1. Each job requires one unit
of ren1 before it can run. The jobs release the resource units only if they complete
successfully.

When the jobs are submitted, the required units are temporarily removed from the
resource pool. Suppose that JobA completes successfully and JobB fails. JobA returns
one unit of resource to the resource pool. The other unit used by JobB is held, so the
resource pool only has one unit. Other jobs that require more than one unit go into a
RESWAIT state until the required units are available.

The following command manually releases the one unit of resource held by JobB so that
other jobs can use it:

sendevent -E RELEASE_RESOURCE -J JobB

Generate a Report on Current Resource Definitions

Chapter 26: Working with Resources 509

Generate a Report on Current Resource Definitions

You can generate a report that displays the current resource definitions in a database.
Generating a report is helpful when you want to determine the properties of a resource
and the values that can be specified when defining resource dependencies in jobs.

To generate a report on the current resource definitions, enter the following command
at the UNIX operating system prompt or the Windows instance command prompt:

autorep –V resource_name -q

resource_name

Specifies the virtual resource definition that you want to generate a report on. You
can use wildcard characters.

The autorep command is issued and the report is generated.

Note: For more information about the autorep command, see the Reference Guide.

Generate a Report to Display a Job's Resource Dependencies

You can generate a report that displays a job's current definition, including its resource
dependencies.

To generate a report to display a job's resource dependencies, enter the following
command at the UNIX operating system prompt or the Windows instance command
prompt:

autorep –J job_name -q

job_name

Specifies the job that you want to generate a report for.

The autorep command is issued and the report is generated. The job's resource
dependencies are included in the report.

Note: For more information about the autorep command, see the Reference Guide.

Generate a Report to Monitor Virtual Resource Usage

510 User Guide

Generate a Report to Monitor Virtual Resource Usage

You can generate a report that monitors virtual resource usage. This report is helpful
when you want to check how many units a virtual resource has defined, how many units
are currently available, and which machines are using the resource during run time.

Note: The detail report (-d option) only displays the jobs that are currently using the
resource.

To generate a report to monitor virtual resource usage, enter one of the following
commands at the UNIX operating system prompt or the Windows instance command
prompt:

■ To generate a summary report:

autorep –V resource_name -s

■ To generate a summary report and detail report:

autorep –V resource_name -d [-M machine_name]

-V resource_name

Specifies the virtual resource definition that you want to generate a report for. You
can use wildcard characters.

Note: You can specify ALL to generate a report on all resource definitions.

 -s

Generates a summary report.

-d

Generates a summary report and detail report.

[-M machine_name]

(Optional) Filters the detail report to display only the specified machine. You can
use wildcard characters to match machine names.

Default: ALL (If you do not specify the -M option, the report displays all machines
that are using the resource.)

The autorep command is issued and the report is generated.

Note: For more information about the autorep command, see the Reference Guide.

Generate a Report to Monitor Virtual Resource Usage

Chapter 26: Working with Resources 511

Example: Generate a Summary Report for a Global Virtual Resource

This example generates a summary report for the virtual resource named ren1. The
resource is global, so it is available to all machines.

autorep -V ren1 -s

The report displays the following information:

Name Machine Defined Available

---- ------- ------- ---------

ren1 -- 4 1

The resource has a total of 4 units defined. It has 1 unit available, so 3 units are
currently being used by jobs.

Example: Generate Summary and Detail Reports for a Global Virtual Resource

This example generates a summary report and a detail report for the ren1 virtual
resource. The resource is global, so it is available to all machines.

autorep -V ren1 -d

The resulting report might resemble the following:

Resource Name Type Machine Defined Available

___________________________ ___________ _____________________ _______ _________

ren1 V --- 4 1

/**** Current Resource Usage ****/

ResName JobName Run/Ntry Status Machine Amount in Use

__________________ __________________ ___________ ____________ ___________ _____________

ren1 job1 1/1 RUNNING machine1 1

ren1 job2 1/1 RUNNING machine2 2

The -M option is not specified in the command, so the report displays all the jobs that
are currently using the resource.

Generate a Report to Monitor Resource Dependencies

512 User Guide

Example: Generate Summary and Detail Resource Reports for Individual Machines

Suppose that the virtual renewable resource named res_count is defined on three
different machines (amachine1, machine2, and bmachine3). This example generates a
summary report and a detail report for the res_count resource.

autorep -V res_count -d -M amachine*

The report displays the following information:

Name Machine Defined Available

---- ------- ------- ---------

res_count amachine1 4 0

res_count amachine2 3 1

/**** Current Resource Usage ****/

ResName JobName Run/Ntry Status Machine Amount in Use

------- ------- -------- ------ ------- -------------

res_count Job1 1/1 RUNNING amachine1 4

res_count Job2 2/1 RUNNING amachine2 2

The report displays the jobs that are currently running. The -M option is specified with a
wildcard, so the report only displays the jobs on the machines whose names match the
-M value.

Generate a Report to Monitor Resource Dependencies

You can generate a report that monitors virtual resource dependencies. This report is
helpful when you want to check which resources a job depends on and which of the
resource dependencies are satisfied.

To generate a report to monitor virtual resource dependencies, enter the following
commands at the UNIX operating system prompt or the Windows instance command
prompt:

job_depends -J job_name -r

job_name

Specifies the job that you want to generate a dependency report for.

The job_depends command is issued and the report is generated.

Note: For more information about the job_depends command, see the Reference Guide.

Generate a Report to Monitor Resource Dependencies

Chapter 26: Working with Resources 513

Example: Generate a Report on Virtual Resource Dependencies

Suppose that you define three virtual resources (dep1, ren1, and thr1). The resources
are global, so they are available to all machines.

insert_resource: dep1

res_type: D

amount: 0

insert_resource: ren1

res_type: R

amount: 0

insert_resource: thr1

res_type: T

amount: 1

You also define a job named job1 that belongs to a machine group that includes the M1
and M2 machines. job1 depends on all three virtual resources.

insert_job: job1

job_type: CMD

command: &sleep 500

machine: machineGroup1 /* This machine group includes machines M1 and M2. */

resources: (ren1, QUANTITY=1, FREE=A) AND (dep1, QUANTITY= 1) AND (thr1, QUANTITY=

1)

The following command generates a report on job1's resource dependencies on the M1
and M2 machines:

job_depends -J job1 -r

The report displays the following information:

Job Name Machine

-------- ----------

job1 M1

 Virtual Resources

Resource Type Amount Satisfied?

-------- ---- ---- ----------

ren1 R 1 NO

dep1 D 1 NO

thr1 T 1 YES

Generate a Report to Monitor Resource Dependencies

514 User Guide

Job Name Machine

-------- -------

job1 M2

 Virtual Resources

Resource Type Amount Satisfied?

-------- ---- ---- ----------

ren1 R 1 NO

dep1 D 1 NO

thr1 T 1 YES

Example: Generate a Report on Virtual and Real Resource Dependencies

Suppose that you define a job with virtual and real resource dependencies as follows:

insert_job: jobA

job_type: CMD

command: &sleep 500

machine: M1 /* This is an AIX machine */

resources: (ren1, QUANTITY=1, FREE=A) AND (thr1, QUANTITY= 1) AND (SYSTEM_OS_TYPE,

VALUEOP=EQ, VALUE=AIX)

Generate a Report to Monitor Resource Dependencies

Chapter 26: Working with Resources 515

The following command generates a report on job1's resource dependencies on the M1
machine:

job_depends -J job1 -r

The report displays the following information:

Job Name Machine

-------- ----------

jobA M1

 Virtual Resources

Resource Type Amount Satisfied?

-------- ---- ------ ----------

ren1 R 1 NO

thr1 T 1 YES

Real Resources

Resource Satisfied?

----------- -----------

SYSTEM_OS_TYPE, VALUEOP=EQ, VALUE=AIX YES

Note: If the SysEdge agent is not available (that is, it is not installed or not running) on
the machine M1, all the real resources dependencies are disqualified although they
satisfy the resource dependency criterion. In this example, if the SysEdge agent is not
running, the Satisfied field displays "NO”.

Chapter 27: Working with Binary Large Objects (Blobs) 517

Chapter 27: Working with Binary Large
Objects (Blobs)

This section contains the following topics:

Binary Large Objects (see page 518)
Types of Blobs (see page 519)
Job Blobs (see page 520)
Global Blobs (see page 521)
Manage Blobs Using JIL (see page 521)
Blob Attributes (see page 521)
Create Input Job Blobs (see page 523)
Delete Job Blobs (see page 524)
Create Global Blobs (see page 524)
Delete Global Blobs (see page 525)
Use Blobs in Job Definitions (see page 525)
Generate Blob Reports Using Autorep (see page 528)

Binary Large Objects

518 User Guide

Binary Large Objects

Binary Large Objects (blobs) are binary data of variable length. CA Workload Automation
AE supports blobs in job definitions, and after they are defined, they are stored in the
database. This allows the blob data to be shared by jobs running on multiple computers.

To understand the advantages of using blobs in CA Workload Automation AE
environment, refer to the following example, which explains the process that is used to
share data amongst the jobs that are running on a single computer:

1. When the jobs are running on a single computer, you can define a command job to
run a program that outputs the data to a file using the std_out_file attribute.

2. When the job is completed, a file is created in the location specified by the
std_out_file attribute.

3. All the other jobs that depend on this output data can access this file.

4. You can also define a second command job to run a program that reads the output
data of the previous job, by specifying the file name in the std_in_file attribute.

5. This second command job opens the file specified by the std_in_file attribute and
passes the data to the program, allowing it to complete successfully.

Based on this example, as the output data is stored in a file on one computer, it is not
available to all the other jobs that are scheduled to run on other computers. However,
the use of blobs allows the data that is saved as output by a job on one computer to be
shared by all the other jobs that are running across multiple computers.

Also, you can define a command job to run a program that uploads the output data to
the database as a blob using the std_out_file attribute. You can also define a second
command job to run a program that reads the blob data of the previous job using the
std_in_file attribute. The second command job downloads the blob data specified by
the std_in_file attribute from the database and passes the data to the program, allowing
it to complete successfully.

Types of Blobs

Chapter 27: Working with Binary Large Objects (Blobs) 519

Blob data can be of the following types:

Binary Data

Requires a program that understands the format of the data to interpret the bytes
in binary data. For example:

Multimedia files which include the following:

■ Images

■ Video files

■ Audio files

Textual Data

Requires an operating system that can interpret the bytes in textual data, which
contains the characters that conform to the ASCII standard.

Note: Some operating systems handle the specification of a new line in the textual
data differently. In this instance, you must convert the necessary textual data when
it is copied across operating systems.

CA Workload Automation AE allows you to specify the type of blob data that is
being used and converts the textual data when it is downloaded across multiple
operating systems.

Types of Blobs

CA Workload Automation AE supports the following types of blobs:

■ Job blobs

■ Global blobs

Note: If you install the 64-bit agent using the CA Workload Automation Agent for UNIX,
Linux, or Windows DVD, you cannot run jobs that contain globs or blobs as input or
output. The native CA Workload Automation AE client or SDK runs only in 32-bit mode
and does not support being called by a 64-bit application.

Job Blobs

520 User Guide

Job Blobs

Job blobs are associated with an existing CA Workload Automation AE job and are
referenced by the job name. Job blobs can either be created at the time of the job
definition or after the job has been defined. They are deleted when the job is deleted.

There are three types of job blobs, which include the following:

Input

Contains the input data that is reserved for the job to which they are associated in
textual data format.

Output

Stores the program output messages of a running job in textual or binary data
format.

Error

Stores the error messages of a running job in textual or binary data format.

Input Job Blobs

Input blobs are uploaded to the database using JIL. You can insert an input job blob
multiple times. Each time it is inserted, it acquires a new version number.

When the job starts, the most recent version of the job input blob is used. All the earlier
versions of the blob remain in the database until they are manually deleted. If you
delete an input job blob, only the active version of the input job blob is deleted. The
version which was prior to the deleted version becomes the new active version.

When you run a job, the CA Workload Automation AE agent downloads the active
version of job's input blob from the database into a temporary file on the computer.
This file is then passed into the standard input of the program that is executed by the
job. When the job completes, the temporary file containing the input blob data is
deleted. The blob in the database, however, is not deleted and remains as the active
version for subsequent job runs.

Global Blobs

Chapter 27: Working with Binary Large Objects (Blobs) 521

Output and Error Job Blobs

Output and error job blobs store the program output and error messages of a running
job. When you run a job, the CA Workload Automation AE agent creates temporary files
on the computer that are used to capture the standard output and standard error
messages from the program that was executed by the job. After the job has completed
its run, the agent uploads the files containing the output data as blobs into the
database, overwriting the existing files, and deletes the temporary files. An output job
blob can be used as input by another job. An error job blob, on the other hand, cannot
be used as input by another job.

Global Blobs

Global blobs are general purpose blobs in textual or binary data format. Like the CA
Workload Automation AE global variables, they are referenced by a unique name. You
can either upload the global blobs to the database using JIL or they can be uploaded by
the CA Workload Automation AE agent, after a job has completed its run. After a global
blob is created, it is available to any job as input. Global blobs remain in the database
until they are deleted using JIL.

Manage Blobs Using JIL

The following section describes how to use JIL to do the following:

■ Upload blobs to the database

■ Delete blobs from the database

Note: For more information, see the Reference Guide.

Blob Attributes

The following table lists the subcommands and attributes associated with the definition
or destruction of a blob:

Task Subcommands Attributes

Create input job blob insert_job, update_job blob_input or blob_file

Create input job blob insert_blob blob_input or blob_file

Delete job blob delete_blob blob_type

Blob Attributes

522 User Guide

Task Subcommands Attributes

Create global blob insert_glob blob_mode, blob_input, or
blob_file

Delete global blob delete_glob

The blob_input attribute lets you manually input the contents of a blob containing
textual data. The blob_input attribute has the following format:

blob_input: <auto_blobt>textual data</auto_blobt>

Note: The textual data begins immediately after the auto_blobt XML-style open tag and
may span multiple lines. JIL recognizes the end of the textual data when it reads the
auto_blobt XML-style end tag. This implies that the literal character string
</auto_blobt> cannot form part of the blob_input value. If you want to include this
character string as part of the textual blob data, use the blob_file attribute.

The blob_file attribute allows the user to specify the location and name of a file on the
computer that serves as the input job blob or global blob file. The blob_file attribute has
the following format:

blob_file: filename

Note: If the blob_file attribute is used to specify an input job blob through the
insert_job or insert_blob subcommand, the file is interpreted as a text-based file.

Create Input Job Blobs

Chapter 27: Working with Binary Large Objects (Blobs) 523

Create Input Job Blobs

To create an input job blob in the database using JIL, do the following:

■ Upload an input job blob at the time of the definition of the associated job.

■ Upload an input job blob after you have defined the job.

Note: Input job blobs are referenced by the name of the job.

To create an input job blob at the time of the definition of the associated job, use the
insert_job JIL subcommand and specify either the blob_input or blob_file attributes, as
follows:

insert_job: test_job_with_blob

job_type: cmd

command: sleep 60

machine: juno

owner: jerry@juno

std_in_file: $$blobt

blob_input: <auto_blobt>multi-lined text data for job blob

</auto_blobt>

or

blob_file: /test_job_with_blob_file.txt

To create an input job blob after you have defined the job, use the insert_blob JIL
subcommand and specify either the blob_input or blob_file attributes, as follows:

insert_blob: test_job_with_blob

blob_input: <auto_blobt>multi-lined text data for job blob

</auto_blobt>

or

blob_file: /test_job_with_blob_file.txt

JIL interprets the file name that is specified in the blob_file attribute as a file that
contains the textual data and performs a conversion of the new line character. JIL also
displays the version number of the most recent input job blob.

Delete Job Blobs

524 User Guide

Delete Job Blobs

You can use the JIL delete_blob subcommand to delete the following:

■ Active version of the input job blob

■ Output and error job blobs

You must specify whether to delete the job input or output blob data using the
blob_type attribute.

Note: Job blobs are referenced by the name of the job. JIL displays the version number
of the most recent job input blob.

To delete the most recent version of the input job blob, use the delete_blob JIL
subcommand and specify the blob_type attribute with the value of input, as follows:

delete_blob: test_job_with_blob

blob_type: input

To delete the output and error job blobs, use the delete_blob JIL subcommand and
specify the blob_type attribute with the value of output, as follows:

delete_blob: test_job_with_blob

blob_type: output

Create Global Blobs

You can use the JIL insert_glob subcommand to upload blobs containing textual or
binary data.

As the global blobs are not associated with a job, you must do the following:

■ Provide a unique identifier.

■ Specify the mode of the blob data that is being used in the blob_mode attribute.

Note: If you use the insert_glob JIL subcommand using the same name as an existing
global blob, the blob data is reinserted into the database. In this case, the original blob
data is deleted and the new blob data takes its place.

Delete Global Blobs

Chapter 27: Working with Binary Large Objects (Blobs) 525

To create a global blob containing textual data, use the insert_glob JIL subcommand and
specify the blob_mode attribute with a value of text and either the blob_input or
blob_file attributes, as follows:

insert_glob: my_text_global_blob

blob_mode: text

blob_input: <auto_blobt>multi-lined text data for job blob

</auto_blobt>

or

blob_file: /my_text_global_blob_file.txt

Note: JIL interprets the file name that is specified in the blob_file attribute as a file that
contains textual data and performs a conversion of the new line character.

To create a global blob containing binary data, use the insert_glob subcommand and
specify the blob_mode attribute with a value of binary and the blob_file attribute, as
follows:

insert_glob: my_binary_global_blob

blob_mode: binary

blob_file: /my_binary_global_blob_file

Note: You cannot use the blob_input attribute to create a global blob that contains the
binary data.

Delete Global Blobs

You can use the JIL delete_glob subcommand to delete the existing global blobs.

Note: You must provide a unique identifier because global blobs are not associated with
a job.

To delete a global blob, use the delete_glob JIL subcommand and provide the name of
an existing global blob, as follows:

delete_glob: my_global_blob

Use Blobs in Job Definitions

You can use the std_in_file, std_out_file, and std_err_file attributes of the JIL insert_job,
update_job, or override_job subcommands to reference blobs in addition to files. Based
on the keyword values you specify for these attributes, CA Workload Automation AE
downloads a blob for input or uploads a job’s output as blob to meet the job’s needs.

The keywords are explained in the subsequent sections.

Use Blobs in Job Definitions

526 User Guide

std_in_file Attribute

The keywords that are supported by the std_in_file attribute include the following:

$$blobt

Uses the input job blob of the current job as input and treats the blob data as
textual data.

$$blob.<job name>

Uses the output job blob of the specified job as input and treats the blob data as
binary data.

$$blobt.<job name>

Uses the output job blob of the specified job as input and treats the blob data as
textual data.

$$glob.<global blob name>

Uses the specified global blob as input and treats the blob data as binary data.

$$globt.<global blob name>

Uses the specified global blob as input and treats the blob data as textual data.

Note: You cannot use the keyword $$blob to specify the use of the current job's input
blob.

To define a job that uses the output blob of its previous run as input

1. Define the job so that the job's name is in the std_in_file attribute using either the
$$blob.<job name> or $$blobt.<job name> keyword.

2. Apply a one-time override of the std_in_file attribute, so that the job reads from a
local file on the computer on its first run.

Use Blobs in Job Definitions

Chapter 27: Working with Binary Large Objects (Blobs) 527

std_out_file and std_err_file Attributes

The keywords that are supported by the std_out_file and std_err_file attributes include
the following:

$$blob

Uploads the output or error of the current job as a job blob and treats the data as
binary data.

$$blobt

Uploads the output or error of the current job as a job blob and treats the data as
textual data.

$$glob.<global blob name>

Uploads the output or error of the current job as a global blob with the specified
name and treats the data as binary data.

$$globt.<global blob name>

Uploads the output or error of the current job as a global blob with the specified
name and treats the data as textual data.

Note:

■ You cannot append data to an existing job or global blob.

■ CA Workload Automation AE does not support the use of > or >> character strings
in the std_out_file or std_err_file attributes.

■ Existing blob data is overwritten with the new data after the job run is completed.

Generate Blob Reports Using Autorep

528 User Guide

Generate Blob Reports Using Autorep

You can use the autorep utility to report on and download the input job blobs and global
blobs. To export the job definition using the autorep –J <jobname> -q option includes
exporting all versions of that job’s input blob. If a download path is not specified, the
contents of all input job blobs are displayed along with the job definition. Otherwise,
autorep downloads the input blob to the specified directory and displays the input blob
file names numbered by version along with the job definition. Reports generated against
one or more global blobs are extracted in binary format unless otherwise specified using
the –a command line parameter. If a download path is not specified, autorep downloads
the global blob into a temporary directory.

Options specific to blob and glob data include the following:

-z globname

Specifies a glob name or mask whose contents are to be extracted. ALL may be
specified to extract all globs. Wildcard characters % and _ are also supported.

-a

Specifies that the global blob can be downloaded as textual data.

-f outdir

Specifies the directory name where input job blobs or global blobs are extracted to.
The default value is as follows:

■ UNIX—The /tmp directory.

■ Windows—The directory represented by the environment variable %TEMP%.

Note: For more information about autorep reports, job input, and global blobs, see the
Reference Guide.

Generate Blob Reports Using Autorep

Chapter 27: Working with Binary Large Objects (Blobs) 529

Example: Export Job Definition with Input Blobs

This example uses the autorep command to export a job definition:

autorep -J ALL -q

The output might resemble the following:

insert_job: test_job

job_type: cmd

command: cat

machine: juno

owner: jerry@ca

permission: gx,ge,wx

alarm_if_fail: 1

If the job has one or more input blobs tied to it, in addition to the job definition, the
autorep command extracts each of the job blob definitions, and the output might
resemble the following:

insert_job: test_job_with_blob job_type: cmd

command: cat

machine: juno

owner: jerry@juno

permission:

std_in_file: $$blobt

alarm_if_fail: 1

/* -- test_job_with_blob:insert_blob #1 -- */

insert_blob: test_job_with_blob

blob_input: <auto_blobt>multi-lined text data for job blob 1

</auto_blobt>

/* -- test_job_with_blob:insert_blob #2 -- */

insert_blob: test_job_with_blob

blob_input: <auto_blobt> multi-lined text data for job blob 2

</auto_blobt>

/* -- test_job_with_blob:insert_blob #3 -- */

insert_blob: test_job_with_blob

blob_input: <auto_blobt> multi-lined text data for job blob 3

</auto_blobt>

You can also specify a location to download the blobs using the -f parameter as follows:

autorep -J ALL -q -f /myblobsdir

The output might resemble the following:

insert_job: test_job_with_blob job_type: cmd

command: cat

machine: juno

owner: jerry@juno

permission:

Generate Blob Reports Using Autorep

530 User Guide

std_in_file: $$blobt

alarm_if_fail: 1

/* -- test_job_with_blob:insert_blob #1 -- */

insert_blob: test_job_with_blob

blob_file: /myblobsdir/test_job_with_blob_1.txt

/* -- test_job_with_blob:insert_blob #2 -- */

insert_blob: test_job_with_blob

blob_file: /myblobsdir/test_job_with_blob_2.txt

/* -- test_job_with_blob:insert_blob #3 -- */

insert_blob: test_job_with_blob

blob_file: /myblobsdir/test_job_with_blob_3.txt

Example: Generate a Report for All Global Blobs

This example generates a report that downloads the contents of all global blobs to the
location /myblobsdir as binary data:

autorep -z ALL -f /myblobsdir

The report might resemble the following:

Glob Name File Name

____________ _____________________________

MYGLOB /myblobsdir/MYGLOB

REPORT_CHART /myblobsdir/REPORT_CHART

ARCHIVED_DATA /myblobsdir/ARCHIVED_DATA

JOB_SNAPSHOT /myblobsdir/JOB_SNAPSHOT

This example generates a report that downloads the contents of all global blobs to the
location /myblobsdir as text data:

autorep -z ALL -f /myblobsdir -a

The report might resemble the following:

Glob Name File Name

___________ __________________________________

MYGLOB /myblobsdir/MYGLOB.txt

REPORT_CHART /myblobsdir/REPORT_CHART.txt

ARCHIVED_DATA /myblobsdir/ARCHIVED_DATA.txt

JOB_SNAPSHOT /myblobsdir/JOB_SNAPSHOT.txt

Chapter 28: Cross-Instance Scheduling 531

Chapter 28: Cross-Instance Scheduling

This section contains the following topics:

Bi-Directional Scheduling (see page 531)
CA Workload Automation AE Cross-Instance Job Dependencies (see page 532)
How Cross-Instance Job Dependencies are Processed (see page 534)
Types of External Instances (see page 536)
Creating Cross-Instance Job Dependencies Using CA AutoSys WA Connect Option (see
page 537)
Submitting a Job To and From Another Computer Using CA UJMA (see page 538)
Unsupported Attributes for CA AutoSys WA Connect Option or CA UJMA Jobs (see page
541)
How Job Dependencies are Processed Using CA Workload Automation EE (see page 542)
Cross-Platform Scheduling (see page 545)
Submitting a Job To and From the Mainframe Using CA AutoSys WA Connect Option (see
page 545)
Cross-Platform Interface Messages Logged for CA UJMA (see page 546)
Define an External Instance (see page 548)
Update an External Instance (see page 549)
Delete an External Instance (see page 550)
Start a Job on an External CA Workload Automation AE Instance (see page 551)
Define a Job to Run on an External Instance (see page 552)
Define a Cross-Instance Job Dependency (see page 555)
Generate a Report on an External Instance (see page 557)

Bi-Directional Scheduling

CA Workload Automation AE supports bi-directional scheduling, which lets you start jobs
from remote machines (inbound) or submit jobs on remote machines (outbound).

With inbound job scheduling, CA Workload Automation AE acts as an agent and accepts
job submissions from remote machines or other scheduling managers (such as CA
Jobtrac Job Management and CA Workload Automation SE). The jobs are defined and
run on the CA Workload Automation AE instance that is acting as an agent.

With outbound job scheduling, CA Workload Automation AE acts as a scheduling
manager and sends job submissions to remote machines. The jobs are defined on the CA
Workload Automation AE instance that is acting as a scheduling manager. The jobs run
on the remote machine or other scheduling manager.

CA Workload Automation AE Cross-Instance Job Dependencies

532 User Guide

For example, a Linux Oracle instance can initiate jobs in a Windows Microsoft SQL Server
instance, or a Windows Microsoft SQL Server instance can initiate jobs in a Solaris
Oracle instance. You can add additional instances, such as Solaris Sybase, AIX Oracle, or
HP Oracle instance, to the environment.

The CA Workload Automation AE cross-platform interface controls the bi-directional
scheduling mode. You can configure the cross-platform interface to enable the following
modes:

■ Outbound job scheduling

■ Inbound and outbound job scheduling (bi-directional scheduling)

■ No cross-platform scheduling (the default)

Note: There are no restrictions on platforms, event servers, or number of instances
when running in bi-directional scheduling mode.

CA Workload Automation AE Cross-Instance Job Dependencies

A CA Workload Automation AE instance is one licensed version of CA Workload
Automation AE software running as a server and as one or more clients, on one or more
computers. An instance uses its own scheduler, one or more application servers, and
event server, and operates independently of other instances.

Different instances can run from the same executables and can have the same value for
$AUTOSYS. However, each instance must have different values for $AUTOUSER and
$AUTOSERV. Different instances can also be run on the same computer.

Multiple CA Workload Automation AE instances are not connected, but they can
communicate with one another. This communication lets you schedule workload across
instances in your enterprise. You can define jobs that have dependencies on jobs
running on other instances (cross-instance job dependencies). A CA Workload
Automation AE job with these dependencies conditionally starts based on the status of
the job on the other instance. In this situation, the local instance scheduler acts as a
client and issues sendevent commands to the external instance. The other instance's
application server processes the sendevent request and stores the dependency request
or status update in its database. You can also manually send events from one instance
to another.

When the status of a job with cross-instance dependencies changes, the scheduler
sends a CHANGE_STATUS event to the remote instance event server while the job in the
local instance runs. The scheduler processes incoming events and stores the status
changes in the ujo_ext_job table on the remote instance event server. The scheduler
evaluates condition dependencies for external jobs based on the stored status.

CA Workload Automation AE Cross-Instance Job Dependencies

Chapter 28: Cross-Instance Scheduling 533

The scheduler also sends an equivalent CHANGE_STATUS event to the remote instance
for status changes not resulting from a CHANGE_STATUS event, specifically status
changes resulting from one of the following:

■ Unavailable machine load units, resources or agents prevent a job from running and
the scheduler change the status of the job.

■ The user changes the status by issuing a sendevent command for one of the
following events: JOB_ON_HOLD, JOB_OFF_HOLD, JOB_ON_ICE, JOB_OFF_ICE,
JOB_ON_NOEXEC, JOB_OFF_NOEXEC.

The equivalent CHANGE_STATUS event may also result in changes to job exit codes
stored on the remote instance. This helps ensure that the scheduler accurately
evaluates downstream jobs dependent on the remote jobs, including the job status and
exit code conditions of the dependent jobs.

Notes:

■ The equivalent CHANGE_STATUS event represents the actual status change that
occurs in the local instance, and the event includes text specifying the actual status
change. The remote scheduler log records this information.

■ For more information about the translated status that the local scheduler sends to
the remote instance, see the Administration Guide.

■ Before you can submit jobs on other CA Workload Automation AE instances, you
must define the instances to each other. For more information about configuring
CA Workload Automation AE to support cross-instance scheduling, see the UNIX
Implementation Guide or Windows Implementation Guide.

How Cross-Instance Job Dependencies are Processed

534 User Guide

How Cross-Instance Job Dependencies are Processed

You can associate jobs with more than one CA Workload Automation AE instance. For
example, you can define a job to conditionally start based on the status of a job on
another instance.

The following illustration shows two instances exchanging cross-instance job
dependencies:

Note: If instance ACE’s application server runs on port 9001 and instance PRD’s
application server runs on port 9002, you must verify that both ports are configured
using SSA on both machines. Otherwise, communication with the remote application
server will fail.

The CA Workload Automation AE event server tracks cross-instance job dependencies as
follows:

Each time a job definition with a cross-instance job dependency is submitted to the
database, the event server does the following:

■ Makes an entry in the ujo_ext_job table of the issuing instance. The entries in this
table specify the status of jobs in other instances that the issuing instance has an
interest in.

■ Makes an entry in the ujo_req_job table of the receiving instance. The entries in
this table specify the jobs defined as job dependencies in a job definition on the
issuing instance.

How Cross-Instance Job Dependencies are Processed

Chapter 28: Cross-Instance Scheduling 535

The jobs are entered in the ujo_ext_job and ujo_req_job tables using the following
syntax:

job_name^INSTANCE_NAME

For example, jobB^PRD indicates a job named jobB on the PRD instance.

The use of multiple databases is independent of instances using cross-instance
dependencies. You can have multiple instances that each use dual event servers.

When CA Workload Automation AE encounters a cross-instance dependency, it sends an
EXTERNAL_DEPENDENCY event from the requesting instance. The following process
occurs when one instance cannot send status updates (events) to the other instance:

■ An INSTANCE_UNAVAILABLE alarm is issued.

■ The ujo_asext_config table is updated to indicate that the external instance is
offline.

■ While the job continues to run, all external events to be sent to the external
instance are stored in the ujo_ext_event table.

■ The local instance periodically tries to connect to the external instance.

■ When local instance reconnects successfully to the external instance, all the events
are sent to the external instance, and the external events are deleted from the
ujo_ext_event table.

Types of External Instances

536 User Guide

Types of External Instances

To use external job dependencies, the scheduling manager or remote machine must be
defined as an external instance in the CA Workload Automation AE database.

When you define the external instance, you must identify the type using the xtype JIL
attribute. Options are the following:

xtype: a

Indicates that the external scheduling manager is a CA Workload Automation AE
application server instance.

xtype: c

Indicates that CA AutoSys WA Connect Option is installed with the external
scheduling manager. CA AutoSys WA Connect Option can be installed on the
mainframe and supports cross-instance jobs and job dependencies. It lets you
submit job requests to and receive job submissions from the following mainframe
scheduling managers:

■ CA Jobtrac Job Management

■ CA Scheduler Job Management

■ CA Workload Automation SE

The CA Workload Automation AE scheduler uses CAICCI to communicate with CA
AutoSys WA Connect Option.

xtype: u

Indicates that CA UJMA is installed with the external scheduling manager or on the
remote machine. CA UJMA can be installed on the mainframe, UNIX, and Windows.
It lets you submit job requests to the remote machine where CA UJMA is installed.
It lets you submit job requests to and receive job submissions from the following
scheduling managers:

■ CA Job Management Option

■ CA Jobtrac Job Management

■ CA Scheduler Job Management

■ CA Workload Automation SE

The CA Workload Automation AE scheduler uses CAICCI to communicate with CA
UJMA.

Note: Unlike CA AutoSys WA Connect Option, CA UJMA does not let you define
cross-instance job dependencies on the mainframe. To define cross-instance job
dependencies on the mainframe, you must install CA AutoSys WA Connect Option
on the same computer as the mainframe scheduling manager.

Creating Cross-Instance Job Dependencies Using CA AutoSys WA Connect Option

Chapter 28: Cross-Instance Scheduling 537

xtype: e

Indicates that the external scheduling manager is CA Workload Automation EE. You
can define cross-instance job dependencies.

Note: Bi-directional scheduling is currently not supported between CA Workload
Automation AE and CA Workload Automation EE.

Creating Cross-Instance Job Dependencies Using CA AutoSys
WA Connect Option

CA Workload Automation AE jobs can have dependencies on jobs managed by an CA
AutoSys WA Connect Option and a CA Technologies scheduling manager running on the
mainframe. The mainframe scheduling manager uses CA AutoSys WA Connect Option
and CAICCI to communicate with CA Workload Automation AE. The CA Workload
Automation AE scheduler also uses its cross-platform scheduling interface for
communication.

For example, the following illustration shows a CA Workload Automation AE job defined
on a UNIX or Windows computer. The job's starting condition is the successful
completion of a job running on the mainframe.

Submitting a Job To and From Another Computer Using CA UJMA

538 User Guide

CA Workload Automation AE jobs can be dependent on the status of external jobs
managed by CA AutoSys WA Connect Option, and external jobs can be dependent on
the status of CA Workload Automation AE jobs. CA Workload Automation AE uses the
following process to create cross-instance dependencies:

1. The CA Workload Automation AE scheduler sends a request for the status of a CA
AutoSys WA Connect Option job.

2. CA AutoSys WA Connect Option registers the request.

3. The CA AutoSys WA Connect Option job runs on the mainframe.

4. CA AutoSys WA Connect Option sends the job status to the CA Workload
Automation AE scheduler.

5. The CA Workload Automation AE scheduler communicates the status to the event
server.

6. The CA Workload Automation AE scheduler processes the status and starts the job
that is dependent on the completion of the CA AutoSys WA Connect Option job, if
appropriate.

Note: For more information about the CAICCI components, see the UNIX
Implementation Guide or Windows Implementation Guide.

Submitting a Job To and From Another Computer Using CA
UJMA

CA Workload Automation AE can schedule jobs on a computer that has CA UJMA
installed on it. As job submission requests are processed, the scheduler log file records
events sent between CA Workload Automation AE and CA UJMA. The following
descriptions help you understand the events recorded in the scheduler log file.

Note: CA Workload Automation AE can directly schedule jobs on a computer that is
running a supported workload automation agent. This topic only discusses the
communication with CA UJMA.

Submitting a Job To and From Another Computer Using CA UJMA

Chapter 28: Cross-Instance Scheduling 539

The following diagram shows the components involved in the communication:

The CA Workload Automation AE scheduler communicates directly with CA UJMA using
CAICCI and the CA Workload Automation AE Cross-Platform Interface. The
communication components running on the CA UJMA computer receive information
from the CA Workload Automation AE scheduler and pass it to CA UJMA. Similarly, CA
UJMA passes information through the communication components to the CA Workload
Automation AE scheduler.

CA UJMA does the following:

■ Receives job requests from one or more CA Technologies scheduling managers
(such as CA Job Management Option (JMO), CA Workload Automation AE, and CA
Workload Automation SE). CA UJMA initiates the requested program, script, JCL, or
other unit of work. If you are scheduling to the mainframe, the command or
program to initiate is the job name of the job as defined in the mainframe
scheduling system.

■ Collects status information about job runs.

■ Sends status information to the requesting scheduling manager.

Note: Unlike CA AutoSys WA Connect Option, CA UJMA does not support cross-instance
job dependencies.

Submitting a Job To and From Another Computer Using CA UJMA

540 User Guide

The following process is used to start a job on a CA UJMA computer:

■ You define a job on CA Workload Automation AE that specifies the job to start on
the CA UJMA computer. The mainframe job to start (specified in the command
attribute of the CA Workload Automation AE job definition) must be a named job
known to the CA Workload Automation AE scheduler. The mainframe job to start
cannot be a command or script.

■ The CA Workload Automation AE scheduler sends the job information to CA UJMA.

■ The job changes to STARTING status.

■ CA UJMA starts the job and sends an event to the scheduler. The event sent is
JOBINITU if the job started or JOBFAILU if the job could not start.

■ The scheduler converts the JOBINITU event to RUNNING, puts it in the database,
and updates the job's status to RUNNING. If CA UJMA sent a JOBFAILU event, the
scheduler converts the event to FAILURE and processes it accordingly.

■ If the job completes successfully, CA UJMA sends a JOBTERMU event to the
scheduler.

■ The scheduler converts the JOBTERMU event to SUCCESS, FAILURE, or TERMINATED
based on the exit code of the job. If the job exited with a normal end of job code
(EOJ) the scheduler converts JOBTERMU to SUCCESS or FAILURE. If the job exited
with an abnormal end of job code (AEOJ), the scheduler converts JOBTERMU to
TERMINATED.

CA Workload Automation AE can also receive job submission requests from a CA UJMA
computer. The job to start must be a job defined on CA Workload Automation AE and
cannot be a command or script. If CA Workload Automation AE receives a job
submission request from the mainframe, the job to run (specified by the SUBFILE
parameter of the mainframe job) must be defined as a valid job on the CA Workload
Automation AE computer.

For the CA Workload Automation AE scheduler to communicate with CA UJMA
computers, the scheduler must convert CA Workload Automation AE-based events to
events that CA UJMA can interpret. Similarly, the CA Workload Automation AE scheduler
must convert events returned from CA UJMA back to events the scheduler can interpret.

The following table lists the CA Workload Automation AE and CA UJMA events:

Operation CA Workload Automation
AE

CA UJMA

Starting a job STARTJOB SUBMITU

Job has started and is
running

RUNNING JOBINITU

Unsupported Attributes for CA AutoSys WA Connect Option or CA UJMA Jobs

Chapter 28: Cross-Instance Scheduling 541

Operation CA Workload Automation
AE

CA UJMA

Job has terminated
successfully with an exit
code

SUCCESS or FAILURE JOBTERMU

Job has failed to start FAILURE JOBFAILU

Unsupported Attributes for CA AutoSys WA Connect Option or
CA UJMA Jobs

The following table lists attributes that are not supported for CA AutoSys WA Connect
Option and CA UJMA jobs. If you specify these attributes, they are ignored.

JIL Attribute CA WCC Field

chk_files File system check

heartbeat_interval Heartbeat interval

job_load Job load

job_terminator Terminate on failure of containing box

job_type:f File Watcher (FW) job in either Quick Edit or Application
Editor

n_retrys Times to restart job after failure

priority Priority

profile Profile

std_err_file Standard error file

std_in_file Standard input file

std_out_file Standard output file

term_run_time Minutes to wait before terminating

watch_file File(s) to watch

watch_file_min_size Minimum file size

watch_interval Watch interval

Note: Computers managed by CA UJMA computers cannot be part of a virtual machine.
The max_load and factor attributes are also not supported when defining an external CA
UJMA instance.

How Job Dependencies are Processed Using CA Workload Automation EE

542 User Guide

How Job Dependencies are Processed Using CA Workload
Automation EE

You can define job dependencies between CA Workload Automation AE and an external
CA Workload Automation EE instance running on the mainframe. As job dependencies
are processed, the scheduler log file records events communicated between CA
Workload Automation AE and CA Workload Automation EE. The following descriptions
help you understand the events recorded in the scheduler log file.

A CA Workload Automation AE job can depend on another job on CA Workload
Automation EE as shown in the following diagram:

The job dependency is processed as follows:

■ The job dependency is specified in the condition attribute of the local CA Workload
Automation AE job definition. For example, the following job depends on the
success of the ZOS01 job defined on the CA Workload Automation EE instance
named MSR:

insert_job: MSR1

job_type: CMD

command: sleep 10

machine: localhost

owner: root@hostname.ca.com

condition: s(ZOS01^MSR)

■ When the CA Workload Automation AE job is created or updated, an
EXTERNAL_DEPENDENCY event is created in the CA Workload Automation AE
database. The event contains the information in the condition attribute.

■ The CA Workload Automation AE scheduler sends a job dependency request to CA
Workload Automation EE.

■ As the job runs on the external instance, CA Workload Automation EE sends status
updates to CA Workload Automation AE.

How Job Dependencies are Processed Using CA Workload Automation EE

Chapter 28: Cross-Instance Scheduling 543

■ The CA Workload Automation AE scheduler updates the ujo_ext_job table with the
status updates from CA Workload Automation EE.

■ When the CA Workload Automation AE job is deleted or its condition attribute is
changed, an EXTERNAL_DEPENDENCY event is created in the CA Workload
Automation AE database. The event contains the information required to remove
the external job dependency from the ujo_ext_job table.

■ The CA Workload Automation AE scheduler sends a request to CA Workload
Automation EE to deregister the job dependency on the external instance.

A job on CA Workload Automation EE can depend on a CA Workload Automation AE job
as shown in the following diagram:

The job dependency is processed as follows:

■ When a new generation of an application is started in the external instance, CA
Workload Automation EE sends a job dependency request to CA Workload
Automation AE for a single run of a job.

■ The CA Workload Automation AE scheduler creates an EXTERNAL_DEPENDENCY
event on its behalf.

■ The CA Workload Automation AE scheduler updates the ujo_req_job database table
to record that a CA Workload Automation EE job is dependent on the local job.

■ As the job runs on the local CA Workload Automation AE instance, the CA Workload
Automation AE scheduler sends status updates to CA Workload Automation EE.

■ When the job has its run, the CA Workload Automation AE scheduler deletes the
dependent job entry from the ujo_req_job table.

How Job Dependencies are Processed Using CA Workload Automation EE

544 User Guide

The following process occurs when CA Workload Automation AE cannot send status
updates (events) to CA Workload Automation EE:

■ An INSTANCE_UNAVAILABLE alarm is issued.

■ The ujo_asext_config table is updated to indicate that the external instance is
offline.

■ While the job continues to run, all events to be sent to the external instance are
stored in the ujo_ext_event table.

■ The CA Workload Automation AE scheduler periodically tries to connect to CA
Workload Automation EE.

■ When the CA Workload Automation AE scheduler successfully re-connects to CA
Workload Automation EE, all the events are sent to CA Workload Automation EE,
and the events are deleted from the ujo_ext_event table.

To communicate with CA Workload Automation EE, the CA Workload Automation AE
scheduler converts CA Workload Automation AE-based events to events that CA
Workload Automation EE can interpret. Similarly, the scheduler must convert events
returned from CA Workload Automation EE back to events that the scheduler can
interpret. All converted events are recorded in the scheduler log file to indicate that the
events are from an external instance.

The following table lists the CA Workload Automation AE and CA Workload Automation
EE events:

CA Workload Automation AE Event CA Workload Automation EE Event

STARTING READY

RUNNING EXEC

SUCCESS COMPLETED

FAILURE FAILED

TERMINATED FAILED with a Job Terminated status

ON_ICE COMPLETED with a BYPASSED status

INACTIVE HELD

Notes:

■ CA Workload Automation AE communicates directly with CA Workload Automation
EE. You do not have to install additional products to integrate the scheduling
managers.

■ Bi-directional scheduling is currently not supported between CA Workload
Automation AE and CA Workload Automation EE. You cannot submit jobs to or
receive job requests from CA Workload Automation EE at this time.

Cross-Platform Scheduling

Chapter 28: Cross-Instance Scheduling 545

Cross-Platform Scheduling

Cross-platform scheduling lets you schedule and reroute jobs between CA Workload
Automation AE and other machines running on different platforms, including
mainframe.

To use cross-platform scheduling, required components must be installed on the CA
Workload Automation AE computer and on the external machine that CA Workload
Automation AE works with. The scheduling manager or remote machine must also be
defined as an external instance in the CA Workload Automation AE database.

Note: Before you can submit jobs on other scheduling managers, you must activate the
CA Workload Automation AE cross-platform interface and define the scheduling
manager as an external instance on CA Workload Automation AE. For more information
about configuring CA Workload Automation AE to support cross-platform scheduling,
see the UNIX Implementation Guide or Windows Implementation Guide.

Submitting a Job To and From the Mainframe Using CA AutoSys
WA Connect Option

CA Workload Automation AE lets you schedule workload across distributed and
mainframe platforms. You can submit jobs on the mainframe and receive job
submission requests from the mainframe. Depending on the mainframe scheduling
manager, the mainframe must have the following software installed on it:

■ CA Jobtrac Job Management and CA AutoSys WA Connect Option

■ CA Scheduler Job Management and CA AutoSys WA Connect Option

■ CA Workload Automation EE

■ CA Workload Automation SE and CA AutoSys WA Connect Option

CA Workload Automation AE and the mainframe scheduling manager use CAICCI to
communicate.

When submitting a job to the mainframe, the following process occurs:

■ The CA Workload Automation AE scheduler on the distributed platform interrogates
the start job request, processes it, and transmits it to the scheduling manager
installed on the mainframe.

■ After the scheduling manager receives the request on the mainframe, it submits
and tracks the mainframe job. The job submission and tracking is completed in one
of the following ways:

– Directly by the XPS-enabled mainframe scheduling product

– Through CA AutoSys WA Connect Option

Cross-Platform Interface Messages Logged for CA UJMA

546 User Guide

When CA Workload Automation AE accepts a job submitted from a mainframe system,
CA Workload Automation AE reports its status back to the scheduling manager on the
mainframe.

Note: For more information about submitting the job from an external mainframe
scheduling manager, see the appropriate product documentation.

Cross-Platform Interface Messages Logged for CA UJMA

On UNIX, all messages produced by the cross-platform interface are written to the CA
Workload Automation AE scheduler log, which is located in the $AUTOUSER/out
directory.

On Windows, all messages produced by the cross-platform interface are written to the
CA Workload Automation AE scheduler log, which is located in the %AUTOUSER%\out
directory.

The following message indicates that the scheduler has transferred a job to the
cross-platform interface for submission to a CA UJMA computer:

CAUAJM_I_10073 AutoSys --> Cross Platform Interface:

machine=machine_name job_name=job_name

machine_name

Identifies the CA UJMA computer to which the job is being submitted.

job_name

Identifies the CA Workload Automation AE job name as defined to the event server.

Cross-Platform Interface Messages Logged for CA UJMA

Chapter 28: Cross-Instance Scheduling 547

The following message indicates that an event status has been received from CA UJMA.
The event status is converted to the appropriate CA Workload Automation AE event
status and inserted in the event server.

CAUAJM_I_40263 EVENTU: event_name

EXITCODE: exitcode/dbcode JOB: job_name

event_name

Identifies one of the following events:

JOBINITU

Indicates that a job has started on a CA UJMA computer.

JOBTERMU

Indicates that a job has completed on a CA UJMA computer.

JOBFAILU

Indicates that a job has failed to start on a CA UJMA computer.

SUBMITU

Indicates that a job has been submitted to CA Workload Automation AE.

exitcode/dbcode

Identifies the actual job exit code returned by CA UJMA.

job_name

Identifies the CA Workload Automation AE job name as defined to the event server.

Define an External Instance

548 User Guide

Define an External Instance

To use cross-instance scheduling, you must define the external instance to CA Workload
Automation AE. The external instance can be another CA Workload Automation AE
instance or a scheduling manager running on another platform.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following definition:

insert_xinst: instance_name

xtype: a | c | u | e

xmachine: host_name

xtype: a | c | u | e

Specifies the external instance type. Options include the following:

■ a—Identifies a remote CA Workload Automation AE application server
instance.

■ c—Identifies a CA AutoSys Workload Automation Connect Option instance.

■ u—Identifies a CA Universal Job Management Agent or CA NSM instance.

■ e—Identifies a CA Workload Automation EE instance.

3. (CA Workload Automation AE instances only) Specify the following additional
attributes:

xcrypt_type: NONE | DEFAULT | AES

xkey_to_manager: encryption_key

xport: port_number

4. (CA Workload Automation EE instances only) Specify the following additional
attributes:

xmanager: manager_name

xport: port_number

xcrypt_type: NONE | AES

xkey_to_manager: encryption_key

5. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The insert_xinst subcommand is issued and the specified external instance is
defined.

Update an External Instance

Chapter 28: Cross-Instance Scheduling 549

Notes:

■ For CA Workload Automation EE, the xcrypt_type value must match the encryption
type specified in the AGENTDEF data set.

■ For more information about the syntax for the insert_xinst subcommand and
related attributes, see the Reference Guide.

Example: Define a CA Workload Automation EE Instance

This example defines the CA Workload Automation EE instance named CYB to CA
Workload Automation AE. CYB runs on the CYBHOST computer at port 7550. The CM
manager name is unique to this CA Workload Automation EE instance. The CA Workload
Automation AE scheduler communication alias is defined in the AGENTDEF data set on
CA Workload Automation EE. CA Workload Automation EE is also configured to point to
the CA Workload Automation AE computer on the auxiliary listening port.

insert_xinst: CYB

xtype: e

xmanager: CM

xmachine: CYBHOST

xcrypt_type: NONE

xport: 7550

Update an External Instance

You can update an external instance defined in CA Workload Automation AE. The
external instance can be another CA Workload Automation AE instance or a scheduling
manager running on another platform. You can update the instance definition when the
connection information changes. The connection information must be accurate so that
the scheduling managers can communicate with each other.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following JIL subcommand:

update_xinst: instance_name

Delete an External Instance

550 User Guide

3. Specify the following attributes as appropriate:

xmachine: host_name

xcrypt_type: NONE | DEFAULT | AES

xkey_to_manager: encryption_key

xport: port_number

xmanager: manager_name

4. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The update_xinst subcommand is issued and the specified external instance is
updated.

Note: For more information about the syntax for the update_xinst subcommand and
related attributes, see the Reference Guide.

Example: Update a CA Workload Automation EE Instance

Suppose that an external instance is defined on CA Workload Automation AE for the CA
Workload Automation EE instance named CYB. This example updates the external
instance definition so that CYB points to the CYBHOST2 computer at port 7551.

update_xinst: CYB

xmachine: CYBHOST2

Delete an External Instance

You can delete an external instance that you no longer use from CA Workload
Automation AE.

Follow these steps:

1. Do one of the following:

■ Issue JIL in interactive mode.

■ Open a JIL script in a text editor.

2. Specify the following JIL subcommand:

delete_xinst: instance_name

3. Do one of the following:

■ Enter exit if you are using interactive mode.

■ Redirect the script to the jil command if you are using a script.

The insert_xinst subcommand is issued and the specified external instance is
deleted from CA Workload Automation AE.

Start a Job on an External CA Workload Automation AE Instance

Chapter 28: Cross-Instance Scheduling 551

Note: For more information about the syntax for the delete_xinst subcommand, see the
Reference Guide.

Example: Delete a CA Workload Automation EE Instance

This example deletes the definition of the CA Workload Automation EE instance named
CYB.

delete_xinst: CYB

Start a Job on an External CA Workload Automation AE
Instance

CA Workload Automation AE instances are not connected, but they can communicate
with one another. You can send a STARTJOB event directly from one instance to
another. This helps you integrate your workload across CA Workload Automation AE
instances in your enterprise.

To start a job on an external CA Workload Automation AE instance, enter the following
command at the UNIX operating system prompt or the Windows instance command
prompt:

sendevent -E STARTJOB -J job_name -S autoserv

job_name

Specifies a job defined on the autoserv instance.

autoserv

Specifies the instance's unique, capitalized three-character identifier.

Example: ACE

The sendevent command is issued and the job request is submitted on the external CA
Workload Automation AE instance.

Notes:

■ To use the sendevent -S option, the instance from where you issue the sendevent
command must have a client installed for the external instance. For more
information about configuring cross-instance communication, see the UNIX
Implementation Guide or Windows Implementation Guide.

■ For more information about the syntax for the sendevent command and related
attributes, see the Reference Guide.

Define a Job to Run on an External Instance

552 User Guide

Define a Job to Run on an External Instance

From your local CA Workload Automation AE instance, you can submit a job to run on
an external instance. The external instance is a different scheduling manager installed
on another platform, including mainframe. Submitting external jobs helps you integrate
workload across platforms in your enterprise.

Note: Before you can submit jobs on other scheduling managers, you must activate the
CA Workload Automation AE cross-platform interface and define the scheduling
manager as an external instance on CA Workload Automation AE. For more information
about configuring CA Workload Automation AE to support cross-platform scheduling,
see the UNIX Implementation Guide or Windows Implementation Guide.

Follow these steps:

1. Insert a job and specify the following attributes in the definition:

job_type: CMD

Specifies that the job type is Command.

machine

Specifies the name of the external instance.

Note: The external instance must be defined on CA Workload Automation AE
using the insert_xinst subcommand.

owner

Specifies the user on the external instance that the job runs under. The owner
must be specified as owner@machine.

CA UJMA Note: The specified owner must have an account on the external CA
UJMA computer. The account must match the owner name exactly, and the
owner (user ID and password) must be defined using the autosys_secure
command.

command

Specifies the job to run on the external instance when all the starting
conditions are met.

CA UJMA Limits (UNIX or Windows): Where the operating system permits, CA
UJMA job names on distributed systems can contain up to 64 alphanumeric
characters and can contain both uppercase and lowercase characters. You
cannot use blank spaces and tab characters.

Define a Job to Run on an External Instance

Chapter 28: Cross-Instance Scheduling 553

CA UJMA Limits (mainframe): CA UJMA job names on the mainframe must
follow these guidelines:

■ The first character of a job name must be an uppercase letter (A-Z), a
pound sign (#), an at sign (@), or a dollar sign ($).

■ The remaining characters in the job name can be any combination of
uppercase letters (A-Z), numbers (0-9), pound signs (#), at signs (@), and
dollar signs ($).

■ All letters (A-Z) must be in uppercase.

■ Job names can be up to eight characters in length.

2. (Optional) Specify common attributes that apply to all jobs.

The external job is defined.

Note: For more information about the syntax for the JIL attributes, see the Reference
Guide.

Example: Define a Job to Run on an AS/400 Computer

This example defines a command job to run on an AS/400 computer.

insert_job: as400_a1

job_type: CMD

command: DLYJOB DLY(15)

machine: usprncax

owner: user1@usprncax

permission: gx,wx

date_conditions: 1

days_of_week: all

start_mins: 30

Example: Define a Job to Run Through CA AutoSys WA Connect Option

This example defines a command job to run in CA Workload Automation CA 7 Edition
through CA Workload Automation AE Connect.

insert_job: ca71

job_type: CMD

command: auto_cnct -a A87SOENF -j RYAKEJ01 -c RUN -p SCHEDULE=RYAKE01 -s CA7

machine: A87SOENF

owner: user1@A87SOENF

permission: gx,wx

date_conditions: 1

days_of_week: all

start_mins: 45

Define a Job to Run on an External Instance

554 User Guide

Example: Define a Job to Run Directly in CA Workload Automation SE

This example defines a command job to run directly in CA Workload Automation SE.

insert_job: ca72

job_type: CMD

command: RYAKEJ01

machine: A87SOENF

owner: user1@A87SOENF

permission: gx,wx

date_conditions: 1

days_of_week: all

start_mins: 45

Example: Define a Job to Run in Another CA Workload Automation AE Instance

This example defines a command job to run in another CA Workload Automation AE
instance.

insert_job: ca72

job_type: cmd

command: job_in_other_instance

machine: othermachine

owner: user1@othermachine

permission: gx,wx

date_conditions: 1

days_of_week: all

start_mins: 45

This example uses the following configuration:

■ In the machine definition for othermachine, machine_type was set to u, indicating a
machine that runs CA UJMA.

■ The cross-platform interface was activated on the server (where job ca72 is being
submitted) by setting the CrossPlatformScheduling parameter to 1 (run jobs directly
on a CA UJMA agent). If this instance will receive job submissions from any
scheduling manager in the enterprise, set the CrossPlatformScheduling parameter
to 2 (enable bi-directional scheduling support) instead.

■ The CrossPlatformScheduling parameter for the machine othermachine was set to 2
(enable bi-directional scheduling support).

Define a Cross-Instance Job Dependency

Chapter 28: Cross-Instance Scheduling 555

Example: Define a Job to Run on a UNIX Computer

This example defines a command job to run on a UNIX computer.

insert_job: soljob1

command: “@SYS$LOGIN:SCHEDULE_WAIT.COM “

machine: mysolaris

owner: user1@mysolaris

max_exit_success: 1

Note: A job that runs successfully on a UNIX computer returns an exit code of 1. By
default, CA Workload Automation AE interprets an exit code of 1 as a failure unless the
max_exit_success attribute is properly set in the job definition.

Define a Cross-Instance Job Dependency

You can define a job to be dependent on another job that runs on an external instance.
The external instance can be another CA Workload Automation AE instance or a
scheduling manager running on another platform.

To define a cross-instance job dependency, add the following attribute to your job
definition:

condition: status(JOB_NAME^INS) [AND|OR status(JOB_NAME^INS)...]

status

Specifies the status that the external job must have before your job starts. Options
are the following:

■ done

■ failure

■ notrunning

■ success

■ terminated

Define a Cross-Instance Job Dependency

556 User Guide

JOB_NAME

Specifies the name of the external job that the local job depends on.

Limits: The names of jobs specified as job dependencies between CA Workload
Automation AE and CA AutoSys WA Connect Option must follow these guidelines:

■ The first character of a job name must be an uppercase letter (A-Z), a pound
sign (#), an at sign (@), or a dollar sign ($).

■ The remaining characters in the job name can be any combination of uppercase
letters (A-Z), numbers (0-9), pound signs (#), at signs (@), and dollar signs ($).

■ All letters (A-Z) must be in uppercase.

■ Job names can be up to eight characters in length.

INS

Specifies the name of the external instance that JOB_NAME runs on. The name
must be three uppercase alphanumeric characters. The first character must be a
letter (A-Z).

Notes:

■ You can specify multiple job dependencies in a definition.

■ For detailed information about the syntax for the condition attribute, see the
Reference Guide.

Example: Specify a Cross-Instance Job Dependency

This example defines a job that runs only when the following starting conditions are
met:

■ jobA on the same instance returns SUCCESS

■ jobB on the CA Workload Automation AE instance PRD returns SUCCESS

insert_job: dep_job1

machine: localhost

job_type: CMD

command: sleep 100

condition: success(jobA) AND success(jobB^PRD)

Generate a Report on an External Instance

Chapter 28: Cross-Instance Scheduling 557

Generate a Report on an External Instance

You can generate a report on an external instance to verify the instance configuration is
correct. Generating a report is helpful when you want to check the status of an external
instance during failover. The event details in a report can also help you determine
whether the correct events are waiting for updates from the external instance.

To generate a report on an external instance, enter the following command at the UNIX
operating system prompt or the Windows instance command prompt:

autorep –X external_instance [-q]

-X external_instance

Specifies the external instance you want to generate a report on.

-q

(Optional) Generates a query report, which contains the current job or machine
definition.

The autorep command is issued and the report is generated and displayed.

Note: For more information about the autorep command, see the Reference Guide.

Example: Generate a Report on an External Instance

This example generates a report on the external machine named PRD.

autorep -X PRD

Name Type Server Port

____ ____ _____________________________ ____

PRD a nyc-wall-04 9001

Generate a Report on an External Instance

558 User Guide

Example: Generate a Report on an External Instance

This example generates a query report on the external machine named PRD. The report
displays the machine definition.

autorep -X PRD -q

/* ----------------- PRD ----------------- */

insert_xinst: PRD

xtype: a

xmachine: nyc-wall-04

xport: 9001

xcrypt_type: DEFAULT

Example: Export External Instance Definitions

This example uses the autorep command to export all external instance definitions.

autorep -X ALL -q

The output might resemble the following:

/* ----------------- CCT ----------------- */

insert_xinst: CCT

xtype: c

xmachine: WACNCTHOST

/* ----------------- NSM ----------------- */

insert_xinst: NSM

xtype: u

xmachine: NSMHOST

Generate a Report on an External Instance

Chapter 28: Cross-Instance Scheduling 559

/* ----------------- WAE ----------------- */

insert_xinst: WAE

xtype: a

xmachine: WAAEHOST

xport: 9001

xcrypt_type: DEFAULT

/* ----------------- WEE ----------------- */

insert_xinst: WEE

xtype: e

xmachine: WAEEHOST

xport: 7550

xcrypt_type: NONE

xmanager: WAAEMGR

Example: Generate a Report for All External Instances

This example uses the autorep command to generate a report of all external instances:

autorep -X ALL

The report might resemble the following:

Name Type Server Port

____ ____ _____________________________ ____

CCT c WACNCTHOST 0

NSM u NSMHOST 0

WAE a WAAEHOST 9001

WEE e WAEEHOST 7550

Chapter 29: Monitoring and Reporting on Workflow 561

Chapter 29: Monitoring and Reporting on
Workflow

Monitoring Tools

Monitoring workflow helps you to identify problems with the current or predicted
workflow, so that you can resolve those problems. You can use the following CA
Workload Automation AE tools to monitor workflow:

Forecast Reports

Generate reports that display information about the predicted workflow to identify
problems before they occur.

Note: You can also use forecast reports to plan changes to your workflow in a test
environment.

Monitors

Track events to identify problems as they occur.

Browsers

Generate reports that display information about past events to identify recurring
problems.

You can solve problems before they occur or as they occur when you can identify the
issue that is associated with the problem. When you cannot determine the cause of a
problem, notify the administrator.

To solve a problem that you identify in real time using a monitor, correct the associated
issue and restart the job. To address recurring problems or problems with predicted
workflow that you identify using browsers and forecast reports, correct the associated
issues and use monitors to track the progress of the workflow.

Correcting issues that cause jobs to fail requires modifying workflow objects (job
definitions, machine definitions, and calendar object definitions). You can modify
workflow objects only when you have write access to those objects. When you cannot
solve a problem without modifying a workflow object and you do not have write access
to the problematic object, notify the scheduler.

Important! Modifying workflow objects sometimes has unexpected impacts on the rest
of the workflow. We recommend that you plan changes to the workflow in a test
environment before you implement the changes in the live instance.

Run a Monitor or Browser

562 User Guide

Notes:

■ You can also use the CA WCC Forecast and Monitoring applications to monitor
workflow. For more information about these applications, see the CA WCC
documentation.

■ You can use the sendevent command to restart a job. You can use jil to update job
or machine definitions and the autocal_asc command to update calendar
definitions. For more information about the sendevent, jil, and autocal_asc
commands, see the Reference Guide.

Run a Monitor or Browser

Monitors and browsers help you identify problems with your workflow by tracking
events in real-time (monitors) or generating reports that display historical information
about events (browsers). For example, the scheduler component automatically restarts
jobs that fail, so examining events that change the status of jobs to RESTART helps
identify problems with specific jobs.

Note: By default, CA Workload Automation AE is configured to specify the date and time
using the "MM/dd/yyyy HH:mm[:ss]" format, but you can configure CA Workload
Automation AE to use a different format by changing the value of the DateFormat
parameter in the configuration file. For more information about the parameters in the
configuration file, see the Administration Guide.

Limits:

■ MM: 01-12

■ dd: 01-31

■ yyyy: 1900-current year

■ HH: 00-23

■ mm: 00-59

■ ss: 00-59

Follow these steps:

1. Open the operating system or instance command prompt:

■ (UNIX) Run the shell that is sourced to use CA Workload Automation AE.

The UNIX operating system command prompt opens. The shell that is sourced
to use CA Workload Automation AE presets all of the environment variables for
the instance.

■ (Windows) Click Start, Programs, CA, Workload Automation AE, Command
Prompt (instance_name).

The CA Workload Automation AE instance command prompt opens. The
command prompt presets all of the environment variables for the instance.

Run a Monitor or Browser

Chapter 29: Monitoring and Reporting on Workflow 563

2. Enter the following command:

jil

The JIL command prompt for the local CA Workload Automation AE instance opens.

3. Define the monitor or browser by entering the following jil command and
attributes:

insert_monbro: monbro_name

mode: monitor | browser

[alarm: y|n]

[status_keyword: y]

[status_keyword: y]

[...]

all_status: y|n

all_events: y|n

currun|after_time: date_time

alarm_verif: y|n

Notes:

■ The utility also accepts values of m (for monitor) and b (for browser) in the
mode attribute of the jil monbro definition.

■ For more information about the insert_monbro subcommand and the jil
attributes that you can specify when you define a monitor or browser, see the
Reference Guide.

status_keyword: y

(Optional) Specifies whether or not to track status change events that are
associated with a particular job state. You can set multiple individual status
filters to track status change events that are associated with any combination
of the following job states:

■ RUNNING

■ SUCCESS

■ FAILURE

■ TERMINATED

■ STARTING

■ RESTART

The status keyword is the name of the job state in lower-case letters. To track
status change events that are associated with one of these job states, enter the
corresponding status keyword as the jil attribute and set the value of that
attribute to y.

Run a Monitor or Browser

564 User Guide

Example: To track status change events that are associated with either the
FAILURE state or the TERMINATED state, specify the following attributes and
values:

failure: y

terminated: y

all_status: y|n

Specifies whether to track or report on all status change events. To track or
report on only status change events that are associated with certain job states,
set the value of the attribute to n and specify other status filters. Setting the
value of this attribute to y overrides other status filters.

all_events: y|n

Specifies whether to track or report on all events. To track or report on only
certain types of events, set the value of the attribute to n and specify other
event filters. Setting the value of this attribute to y overrides other event
filters.

currun: y|after_time: date_time

(Browsers) Specifies the historical time frame on which the browser reports. To
display only events that occurred during the most recent job run, set the value
of the currun attribute to y. To display all events that occurred after a particular
date and time, specify the after_time attribute. To specify the after_time
attribute, ensure that the currun attribute is set to the default value of n.

Note: By default, CA Workload Automation AE deletes archived event data that
is older than seven days, but you can configure the product to store data for a
longer period of time by editing the DBMaint script. The location of this script is
specified in the DBMaintCmd parameter of the configuration file. Specify a
value for the after_date attribute that is within the past seven days or edit the
script. For more information about the DBMaintCmd configuration parameter
and the DBMaint script, see the Administration Guide.

Example: To generate a report that displays a list of all processed events that
occurred after January 2, 2012 at 5 p.m., specify the following jil attributes:

currun: n

after_time: "01/02/2012 17:00:00"

Run a Monitor or Browser

Chapter 29: Monitoring and Reporting on Workflow 565

alarm_verif: y|n

(Monitors) Specifies whether the monitor waits for you to acknowledge alarms
that the scheduler issues. This attribute is valid only for monitors that are
defined to track alarms. When you set the value of this attribute to y, you are
prompted to acknowledge any alarms that the scheduler sends.

A monitor is defined to track alarms when the value of the alarms attribute is
set to y or when the value of the all_events attribute is set to y. For monitors
that are defined to prompt you to acknowledge alarms, the monbro utility
pauses, displays the name of the alarm, and issues the following message and
prompts:

Alarm: alarm_name issue MM/dd/yyyy HH:mm:ss Run# run_num

Message Acknowledged by: user_name

Comment:[your_comment]

The utility displays the alarm information and leaves the following two fields
blank. To acknowledge the alarm, enter your user name in the Message
Acknowledged by field. Optionally, you can enter information in the Comment
field (such as "Reported to DB Administrator for follow up").

Important! The monitor cannot resume until you acknowledge the alarm by
entering your user name.

Note: For more information about the monbro utility, see the Reference Guide.

4. Enter the following jil command:

exit

The monitor or browser is inserted into the database, and the jil command prompt
closes.

5. Open the operating system or instance command prompt and enter the following
command:

{monbro -N monbro_name|monbro -N monbro_name -P ss}

-P ss

(Optional, Monitors only) Specifies the frequency, in seconds, at which the
monitor polls for events. The monitor polls for events at the default frequency
when you do not specify this option. The option is not valid with browsers.

Limits: Integers greater than 0

Default: 10

The monitor or browser runs. A monitor polls for events at the specified interval. A
browser generates a report that displays the event information for the specified
period based on the specified event filters.

Run a Monitor or Browser

566 User Guide

Example: Define a Browser

This example defines the browser named job_restarts to generate a report listing all
events that changed the status of a job to RESTART after September 10, 2012 at
midnight.

insert_monbro: job_restarts

mode: browser

restart: y

all_status:n

all_events:n

after_time: "09/10/2012 00:00:00"

Example: Define a Monitor

This example defines the monitor named track_alarms to track alarm events and to
prompt the user to acknowledge all alarms as they occur.

insert_monbro: track_alarms

mode: monitor

alarm: y

all_status: n

all_events: n

alarm_verif: y

Example: Acknowledge an Alarm

This example shows that the operator acknowledged notification of a JOBFAILURE alarm
when the job with run number 33:2 failed at 20:15 29 on 09/24/2012 and that the
operator reported the job failure to the scheduler for follow up and resolution.

Alarm: JOBFAILURE fail 09/20/2012 20:15:29 Run# 33:2

Message Acknowledged by: operator

Comment:Reported to the scheduler for follow up.

Example: Run a Monitor

This example runs the monitor named track_alarms so that it polls the database for
alarm events at 30 second intervals.

monbro -N track_alarms -P 30

Generate a Forecast Report

Chapter 29: Monitoring and Reporting on Workflow 567

Generate a Forecast Report

Forecast reports display information about predicted workflow. Forecast reports help
you identify problems with the predicted workflow to resolve them before they occur or
to plan changes in the workflow.

Note: By default, CA Workload Automation AE is configured to specify the date and time
using the "MM/dd/yyyy HH:mm[:ss]" format, but you can configure CA Workload
Automation AE to use a different format by changing the value of the DateFormat
parameter in the configuration file. For more information about the parameters in the
configuration file, see the Administration Guide.

Limits:

■ MM: 01-12

■ dd: 01-31

■ yyyy: 1900-current year

■ HH: 00-23

■ mm: 00-59

■ ss: 00-59

Follow these steps:

1. Open the operating system or instance command prompt:

■ (UNIX) Run the shell that is sourced to use CA Workload Automation AE.

The UNIX operating system command prompt opens. The shell that is sourced
to use CA Workload Automation AE presets all of the environment variables for
the instance.

■ (Windows) Click Start, Programs, CA, Workload Automation AE, Command
Prompt (instance_name).

The CA Workload Automation AE instance command prompt opens. The
command prompt presets all the environment variables for the instance.

Generate a Forecast Report

568 User Guide

2. Enter the following command:

forecast {-M machine_name| -J job_name [-M machine_name]} -F "mm/dd/yyyy HH:MM

[:ss][-T "mm/dd/yyyy HH:MM [:ss]]" [OPTIONS]

-M machine_name| -J job_name [-M machine_name]

Specifies what predicted workflow information the forecast report displays. To
specify predicted workflow for a particular machine, use the -M parameter. To
specify predicted workflow for a particular job, use the -J parameter.

Notes:

■ The report displays predicted workflow for all jobs that are scheduled to
run on the specified machine when you specify the -M parameter alone.

■ The report displays a predicted workflow that lists runs of the specified job
on all machines when you specify the -J parameter alone.

■ The report displays a predicted workflow that lists runs of the specified job
on the specified machine and excludes runs on other machines when you
specify the -J and -M parameters together.

-F "MM/dd/yyyy HH:mm [:ss]"

Specifies that the forecast report predicts workflow starting on the specified
date.

-T "MM/dd/yyyy HH:mm [:ss]"

(Optional) Specifies that the forecast report predicts workflow ending on the
specified date. This option is required only when you want to forecast
workflow for multiple days.

OPTIONS

(Optional) Specifies optional parameters that you can use to control what
information the forecast report displays.

Note: For more information about these optional parameters, see the
Reference Guide.

The command generates a forecast report that displays information about
predicted workflow.

3. (Optional) Depending on the information that you need, repeat the procedure for
other jobs or machines that are defined within the instance.

The command generates additional forecast reports.

Chapter 30: Maintaining Highly-Available Environments 569

Chapter 30: Maintaining Highly-Available
Environments

How to Maintain Highly-Available Environments

As an operator, it is your responsibility to monitor the environment and address
problems that occur. In highly-available environments, scheduler and database failures
adversely affect, and sometimes disable, high-availability. You can ensure that you
maintain a properly functioning highly-available environment by resolving database and
scheduler failures.

In highly-available cluster environments, use the monitoring tools provided by your
cluster management software and database vendor to monitor the state of the cluster
and the state of the database. We recommend that you also monitor the scheduler log
on the active node. When your cluster or clustered database is not functioning properly,
consult the documentation for your cluster management software or your database
vendor and follow the instructions to restore the environment.

In high-availability and dual event server modes, monitor the scheduler logs for
database and scheduler failures and take appropriate action to return to
high-availability mode when failures occur.

Note: For more information about monitoring tools provided by your cluster
management software and database vendor, see the documentation for those products.

How to Maintain Highly-Available Environments

570 User Guide

The following diagram demonstrates how you can maintain a highly-available
environment:

Follow these steps:

1. Monitor the scheduler log (see page 571).

2. Restore the failed scheduler.

■ On UNIX (see page 572)

■ On Windows (see page 574)

3. Recover the failed database.

■ On UNIX (see page 576)

■ On Windows (see page 581)

How to Maintain Highly-Available Environments

Chapter 30: Maintaining Highly-Available Environments 571

Monitor the Scheduler Log

The scheduler log displays information about alarms and related error messages so that
you know when you need to take action to resolve problems with your CA Workload
Automation AE environment. For example, the scheduler log displays alarm information
when the scheduler issues a database rollover alarm.

■ If you are operating in a highly-available cluster environment, monitor the
scheduler log on the active node. The scheduler log does not display all of the
information that you need to monitor the environment. Ensure that you also use
the monitoring tools that are provided by your cluster manager to monitor the state
of the cluster.

■ If you are operating in high-availability mode, monitor the state of the dormant
scheduler.

The primary scheduler is typically the active scheduler. In this case, the shadow
scheduler begins processing events and issues an alarm when the primary scheduler
fails (EP_ROLLOVER).

If you restore the primary scheduler when the primary failback mode is set to 1, the
shadow scheduler remains active and the primary scheduler runs dormant. In this
case, the primary scheduler resumes processing events and issues an alarm when
the shadow scheduler fails (EP_ROLLOVER).

■ If you are operating in dual event server mode, monitor the active scheduler log.

When a database rollover occurs, CA Workload Automation AE begins operating in
single event server mode and the active scheduler issues a database rollover alarm
(DB_ROLLOVER).

■ If you are operating with a clustered database, use the monitoring tools that are
provided by your cluster manager and database vendor to monitor the state of the
database.

■ In all CA Workload Automation AE environments, monitor the scheduler log for
alarm information and error messages so that you can take appropriate action to
resolve problems with the environment as they occur.

Note: For information about the monitoring tools that are provided by your cluster
manager and database vendor, see the documentation for those products.

Follow these steps:

1. Log in as the root user on the machine or node where the scheduler is installed.

2. Open the operating system or instance command prompt as follows:

■ (UNIX) Run the shell that is sourced to use CA Workload Automation AE.

The operating system command prompt appears.

■ (Windows) Click Start, Programs, CA, Workload Automation AE, Command
Prompt (instance_name).

The instance command prompt appears.

How to Maintain Highly-Available Environments

572 User Guide

3. Enter the following command:

autosyslog -e

The scheduler log appears. When CA Workload Automation AE encounters a
problem, the scheduler issues an alarm. The log displays the alarm information and
related error messages so that you can resolve the problem.

Restore the Failed Scheduler on UNIX

If you are operating CA Workload Automation AE in high-availability mode and the
active scheduler fails, high-availability is disabled. If you are operating in a
highly-available cluster environment, the action that you need to take to return to a
highly-available environment depends on your cluster management software.

In highly-available cluster environments, manual intervention following a failover is
usually not required. The cluster manager may still issue informational messages. When
the cluster manager issues messages indicating that manual intervention is required,
take one of the following actions:

■ Review messages and follow the instructions that they provide.

■ Consult the documentation for your cluster management software and the
instructions for manually recovering the failed cluster node.

■ Contact your network administrator.

If you are operating in high-availability mode and high-availability is disabled because
the active scheduler fails, return to high-availability mode by restoring the failed
scheduler.

Follow these steps:

1. If the primary failback mode is set to 0 and you are restoring the primary scheduler,
stop the shadow scheduler.

Note: By default, the primary failback mode is set to 0 and this step is required.
When the primary failback mode is set to 1 or 2, restart the primary scheduler
without stopping the shadow scheduler.

a. Log in to a machine in the instance with a client installation as the root user.

You can issue commands that execute client utilities.

b. Run the shell that is sourced to use CA Workload Automation AE.

The operating system command prompt appears.

c. Enter the following command:

sendevent –E STOP_DEMON -v ROLE=S

How to Maintain Highly-Available Environments

Chapter 30: Maintaining Highly-Available Environments 573

2. If high-availability mode was disabled because a failover occurred, restore the
primary scheduler.

a. Log in to the machine where the primary scheduler is installed and run the shell
that is sourced to use CA Workload Automation AE.

The operating system command prompt appears.

b. Enter the following command:

eventor

The primary scheduler is restored.

The primary scheduler either runs dormant or resumes processing events,
depending on the primary failback mode. CA Workload Automation AE returns to
high-availability mode.

Important! If the primary failback mode is set to 0, the primary scheduler resumes
processing events as soon as it is restored but CA Workload Automation AE does
not return to high-availability mode. To return to high-availability mode, restore the
shadow scheduler.

If the primary failback mode is set to 1 or 2 CA Workload Automation AE returns to
high-availability mode.

3. If high-availability mode was disabled because of a failback that was not automatic
or manual, use the eventor command to restore the shadow scheduler.

Notes:

■ Automatic failbacks occur when primary failback mode is set to 2 and you
restore the primary scheduler. You can control when a failback occurs by
setting primary failback mode to 1 and initiating a manual failback only when
you want the primary scheduler to resume processing events.

■ The shadow scheduler process restarts itself in a dormant state when an
automatic failback occurs or when you initiate a manual failback. The shadow
scheduler does not stop running when you initiate a manual failback. In both
cases, no action is required to return to high-availability mode.

■ Failbacks also occur when the shadow scheduler fails. In this case,
high-availability mode is disabled until you restore the shadow scheduler.

The primary scheduler continues processing events, the shadow scheduler is restored
but runs dormant, and CA Workload Automation AE returns to high-availability mode.

Note: For more information about setting the Primary Failback Mode, see the UNIX
Implementation Guide.

How to Maintain Highly-Available Environments

574 User Guide

Restore the Failed Scheduler on Windows

If you are operating CA Workload Automation AE in high-availability mode and the
active scheduler fails, high-availability is disabled. If you are operating in a
highly-available cluster environment, the action that you need to take to return to a
highly-available environment depends on your cluster management software.

In highly-available cluster environments, manual intervention following a failover is
usually not required. The cluster manager may still issue informational messages. When
the cluster manager issues messages indicating that manual intervention is required,
take one of the following actions:

■ Review messages and follow the instructions that they provide.

■ Consult the documentation for your cluster management software and the
instructions for manually recovering the failed cluster node.

■ Contact your network administrator.

If you are operating in high-availability mode and high-availability is disabled because
the active scheduler fails, return to high-availability mode by restoring the failed
scheduler.

Follow these steps:

1. If the primary failback mode is set to Off and you are restoring the primary
scheduler, stop the shadow scheduler.

Note: By default, the primary failback mode is set to Off and this step is required.
When the primary failback mode is set to Immediate or Dormat, restart the primary
scheduler without stopping the shadow scheduler.

a. Log in to a machine in the instance with a client installation as the root user.

You can issue commands that execute client utilities.

b. Click Start, Programs, CA, Workload Automation AE, Command Prompt
(instance_name).

The instance command prompt appears.

c. Enter the following command:

sendevent –E STOP_DEMON -v ROLE=S

How to Maintain Highly-Available Environments

Chapter 30: Maintaining Highly-Available Environments 575

2. If high-availability mode was disabled because a failover occurred, recover the
primary scheduler.

a. Log in to the machine where the scheduler is installed and click Start,
Programs, CA, Workload Automation AE, Administrator.

The Instance - CA Workload Automation AE Administrator window opens.

b. Select an instance from the Instance drop-down list in the Settings pane, and
then click the Services icon on the toolbar.

The Services - CA Workload Automation AE Administrator window appears,
displaying a list of services installed on the selected instance.

c. Right click the Scheduler service, and select Start.

Important! If the primary failback mode is set to 0ff, the primary scheduler
resumes processing events as soon as it is restored but CA Workload
Automation AE does not return to high-availability mode. To return to
high-availability mode, restore the shadow scheduler.

If the primary failback mode is set to Dormant or Immediate, CA Workload
Automation AE returns to high-availability mode.

3. If high-availability mode was disabled because a failback occurred, restore the
shadow scheduler.

Notes:

■ Automatic failbacks occur when primary failback mode is set to Immediate and
you restore the primary scheduler. You can control when a failback occurs by
setting primary failback mode to Dormant and initiating a manual failback only
when you want the primary scheduler to resume processing events.

■ The shadow scheduler process restarts itself in a dormant state when an
automatic failback occurs or when you initiate a manual failback. The shadow
scheduler does not stop running when you initiate a manual failback. In both
cases, no action is required to return to high-availability mode.

■ Failbacks also occur when the shadow scheduler fails. In this case,
high-availability mode is disabled until you restore the shadow scheduler.

The primary scheduler continues processing events, the shadow scheduler is
restored but runs dormant, and CA Workload Automation AE returns to
high-availability mode.

The scheduler recovers and CA Workload Automation AE returns to high-availability
mode.

Note: For more information about setting the Primary Failback Mode, see the Windows
Implementation Guide.

How to Maintain Highly-Available Environments

576 User Guide

Recover the Failed Database on UNIX

If you are using dual event server mode as your database failover solution and the
scheduler initiates a database rollover, dual event server mode is disabled.
Highly-available cluster environments do not function properly without a
highly-available database. A database rollover does not disable high-availability mode,
but the risk of down-time and data loss increases without a failover solution for your
database.

Operating without a failover solution to the database increases the risk of downtime
and data loss. To mitigate this risk, restore the failed database.

If you are operating with a clustered database and a database failure occurs, some
cluster managers require manual intervention to recover the failed database. In this
case, take one of the following actions:

■ Review messages issued by the cluster manager and database vendor, and follow
the instructions that the messages provide.

■ Consult the documentation for your cluster management software and your
database software, and the instructions for manually recovering from a database
failure.

■ Contact your database or network administrator.

Notes:

■ You can operate with a clustered database only when you have cluster
management software installed and are using a cluster aware database. Some
cluster managers restore a failed database automatically, so no action is required.
In this case, your cluster manager issues messages indicating that the database is
restored.

■ If you have cluster management software installed, we recommend that you set up
a highly-available cluster environment instead of configuring high-availability mode.

■ When a rollover occurs, CA Workload Automation AE backs up the configuration file
before commenting out the failed event server. You can use the backup file to
restore pre-rollover configuration settings when you reconfigure dual event servers.

If you are using dual event server mode as your database failover solution and the
scheduler rolls over the database, CA Workload Automation AE begins operating in
single event server mode. To return to dual event server mode, recover from the failure
and reconfigure dual event servers.

Follow these steps:

1. Review the scheduler log file to determine the problem that caused the failure.

2. Consult your database software documentation, and follow the instructions for
manually resolving the problem that caused the database failure.

The failed database is recovered, and you can reconfigure dual event servers.

How to Maintain Highly-Available Environments

Chapter 30: Maintaining Highly-Available Environments 577

3. Log in to CA Workload Automation AE machine in the instance with a client
installation, and click Start, CA, Workload Automation AE, Command Prompt.

The operating system command prompt opens.

4. Enter the following command:

sendevent -E STOP_DEMON -v ALL

All server processes that are running on the instance stop.

5. If you want to restore the pre-rollover configuration settings, delete the modified
configuration file and rename the backup file.

a. Delete $AUTOUSER/config.$AUTOSERV.

b. Locate $AUTOUSER/config.$AUTOSERV.rollover and change the name to
$AUTOUSER/config.$AUTOSERV.

c. Repeat these actions on every server machine that is installed in the instance.

6. If you want to specify new configuration settings when you restore the failed event
server, modify the $AUTOUSER/config.$AUTOSERV file.

a. Open the configuration file on the machine where the primary scheduler is
installed and locate the following parameter:

#EventServer_1|#EventServer_2

b. Edit the parameter as follows:

Event_Server_1|EventServer_2

c. Specify the primary event server and the secondary event server:

■ To make the new database the secondary event server, add the following
parameter:

EventServer_2=SYBASE_SVR:SYBASE_DB,DBPORT,DBHOST |

ORACLE_SVR,DBPORT,DBHOST

 SYBASE_DB,DBPORT,DBHOST

 Identifies the Sybase database for the second event server.

 ORACLE_SVR,DBPORT,DBHOST

 Identifies the Oracle database for the second event server.

■ To make the restored database the secondary event server, specify the
active database in the EventServer_1 parameter and the restored database
in the EventServer_2 parameter.

■ To make the new database the primary event server, specify the existing
database that is defined in the EventServer_1 parameter as the secondary
event server by changing it to EventServer_2, then add the following
parameter:

EventServer_1=SYBASE_SVR:SYBASE_DB,DBPORT,DBHOST |

ORACLE_SVR,DBPORT,DBHOST

How to Maintain Highly-Available Environments

578 User Guide

■ To make the restored database the primary event server, verify that the
restored database is specified in the EventServer_1 parameter and the
active database is specified in the EventServer_2 parameter.

d. Specify the database reconnect behavior for the second event server by
modifying the following parameter in the configuration file:

DBEventReconnect=value, value2

value

Identifies the database reconnect behavior for the first event server.

Limits: 0-99

value2

Identifies the database reconnect behavior for the second event server.

Limits: 0-99

Note: During typical installation, CA Workload Automation AE sets the
reconnect value for the single event server to 50 by default. During a custom
installation in which you enable dual event server mode, CA Workload
Automation AE sets the reconnect value for both event servers to 50, 5 by
default. Ensure that you add a reconnect value for the second event server
when you configure CA Workload Automation AE to run in dual event server
mode after running it in single event server mode. Optionally, you can modify
the default reconnect value for the first event server.

The secondary event server is configured on the primary scheduler machine.

7. Repeat the secondary event server configuration on every server machine in the
instance. Ensure that the event server information in the configuration file is the
same on each of these machines.

8. Run the CA Workload Automation AE bulk copy script. The script that you run
depends on your database vendor.

■ Oracle

Open the $AUTOSYS/dbobj/ORA directory and run the following script:

perl autobcpORA.pl source_server target_server source_userid

source_password target_userid target_password dump_file oracle_directory

■ Sybase

Open the $AUTOSYS/dbobj/SYB directory and run the following script:

perl autobcpSYB.pl source_server source_db target_server target_db

source_userid source_password target_userid target_password dump_file

blk_size

How to Maintain Highly-Available Environments

Chapter 30: Maintaining Highly-Available Environments 579

source_server

Defines the name of the source Oracle System ID (for example, AEDB) or
Sybase server name (for example, SourceServer). For Sybase, the source server
name is defined in the interfaces file.

source_db

Defines the source Sybase database (for example, AEDB).

source_userid

Defines the user ID that is used to connect to the source Oracle System ID, or
Sybase server.

Note: On Oracle, use aebadmin as the source user ID.

source_password

Defines the password that corresponds to the user ID that is used to connect to
the source Oracle System ID, or Sybase server.

target_server

Defines the target Oracle System ID (for example, AEDB2), or Sybase server
name (for example, DestinationServer). For Sybase, the target server name is
defined in the interfaces file.

Note: For Oracle, the source server must be different from the target server.

target_db

Defines the target Sybase database (for example, AEDB2).

Note: The autobcpDB script deletes all of the data in the target database and
replaces it with the data in the source database. If you want to save the data in
the target database, archive it before you run the autobcpDB script.

target_userid

Defines the user ID that is used to connect to the target Oracle System ID, or
Sybase server.

Note: On Oracle, use aedbadmin as the target user ID.

target_password

Defines the password that corresponds to the user ID that is used to connect to
the target Oracle System ID, or Sybase server.

How to Maintain Highly-Available Environments

580 User Guide

dump_file

Defines the temporary file that is used in the transfer of data from one
database to the other database.

Note: Specify a file that is local to the computer where this script is running.

oracle_directory

Defines the path to the Oracle home directory.

blk_size

(Optional) Specifies the number of rows that can be inserted from the
dump_file to the destination database at a time.

Default: 5000

Note: The Sybase script uses the default value when you run it in the interactive
mode, or when you do not specify the blk_size value. Do not specify a large value
because the transaction log encounters problems when it becomes too full.

The event servers are synchronized.

9. Restart the server processes for the instance. If you are operating in a
highly-available cluster environment, restart the services on the active node.

a. Open the operating system command prompt, and enter the following
commands:

unisrvcntr start waae_sched.$AUTOSERV

unisrvcntr start waae_server.$AUTOSERV

b. Repeat this action on every server machine in the instance. If you are operating
in a highly-available cluster environment, restart the components on the active
node only.

Note: In highly-available cluster environments, the scheduler and application
server actively execute work on the active node only. The cluster manager
prompts the scheduler or application server on one of the passive nodes to
begin executing tasks only when it detects a failure of the same component on
the active node.

The database is restored.

High-availability is restored. To maintain your highly-available environment, continue
monitoring the scheduler log and recovering from scheduler and database failures when
they occur.

How to Maintain Highly-Available Environments

Chapter 30: Maintaining Highly-Available Environments 581

Recover the Failed Database on Windows

If you are using dual event server mode as your database failover solution and the
scheduler initiates a database rollover, dual event server mode is disabled.
Highly-available cluster environments do not function properly without a
highly-available database. A database rollover does not disable high-availability mode,
but the risk of down-time and data loss increases without a failover solution for your
database.

Operating without a failover solution to the database increases the risk of downtime
and data loss. To mitigate this risk, restore the failed database.

If you are operating with a clustered database and a database failure occurs, some
cluster managers require manual intervention to recover the failed database. In this
case, take one of the following actions:

■ Review messages issued by the cluster manager and database vendor, and follow
the instructions that the messages provide.

■ Consult the documentation for your cluster management software and your
database software, and the instructions for manually recovering from a database
failure.

■ Contact your database or network administrator.

Notes:

■ You can operate with a clustered database only when you have cluster
management software installed and are using a cluster aware database. Some
cluster managers restore a failed database automatically, so no action is required.
In this case, your cluster manager issues messages indicating that the database is
restored.

■ If you have cluster management software installed, we recommend that you set up
a highly-available cluster environment instead of configuring high-availability mode.

If you are using dual event server mode as your database failover solution and the
scheduler rolls over the database, CA Workload Automation AE begins operating in
single event server mode. To return to dual event server mode, recover from the failure
and reconfigure dual event servers.

Follow these steps:

1. Review the scheduler log file to determine the problem that caused the failure.

2. Consult your database software documentation, and follow the instructions for
manually resolving the problem that caused the database failure.

The failed database is recovered, and you can reconfigure dual event servers.

How to Maintain Highly-Available Environments

582 User Guide

3. Log in to CA Workload Automation AE machine in the instance with a client
installation and click Start, Programs, CA, Workload Automation AE, Command
Prompt (instance_name).

The instance command prompt opens.

4. Enter the following command:

sendevent -E STOP_DEMON -v ALL

All server processes that are running in the instance stop.

5. Restore, enable, and reconfigure the failed database (event server).

a. Review the scheduler log file to determine the problem that caused the failure.

b. Consult your database software documentation, and follow the instructions for
manually resolving the problem that caused the database failure.

The status of the failed database changes and you can reconfigure dual event
servers.

c. Click the Event Server icon on the toolbar in any CA Workload Automation AE
Administrator window.

The Event Server - CA Workload Automation AE Administrator window appears.

d. Clear the A Database Rollover Has Occurred check box, verify the event server
configuration settings and make any desired modifications, and then click
Apply.

Important! Ensure that the configuration settings for Event Server 2 are
identical to the configuration settings for Event Server 1.

The failed event server is restored and the configuration settings are saved, but
CA Workload Automation AE does not return to dual event server mode until
you synchronize the event servers.

6. Run the CA Workload Automation AE bulk copy script. The directory and script that
you synchronize the event servers following a database failure are the same as the
directory and script that you use to switch to dual event server mode when you did
not enable dual event servers during installation. The script that you run depends
on your database vendor.

■ Oracle

Open the %AUTOSYS%\dbobj\ORA directory and run the following script:

perl autobcpORA.pl source_server target_server source_userid

source_password target_userid target_password dump_file oracle_directory

■ Sybase

Open the %AUTOSYS%\dbobj\SYB directory and run the following script:

perl autobcpSYB.pl source_server source_db target_server target_db

source_userid source_password target_userid target_password dump_file

blk_size

How to Maintain Highly-Available Environments

Chapter 30: Maintaining Highly-Available Environments 583

■ Microsoft SQL Server

Open the %AUTOSYS%\dbobj\MSQ directory and run the following script:

perl autobcpMSQ.pl source_server source_db target_server target_db

source_userid source_password target_userid target_password dump_file

The event servers are synchronized.

7. Restart the server processes for the instance. If you are operating in a
highly-available cluster environment, restart the services on the active node.

a. Click Start, Programs, CA, Workload Automation AE, Administrator.

The Instance - CA Workload Automation AE Administrator window opens.

b. Select an instance from the Instance drop-down list in the Settings pane.

c. Click the Services icon on the toolbar.

A list of the services that are running on the instance appears.

d. Right-click the scheduler service and select Start, then right-click the
application server service and select start.

e. If you are operating in a highly-available cluster environment, restart the
components on the active node only. Otherwise, repeat these actions on every
server machine in the instance. If you are operating in a highly-available cluster
environment, restart the components on the active node only.

Note: In highly-available cluster environments, the scheduler and application
server actively execute work on the active node only. The cluster manager
prompts the scheduler or application server on one of the passive nodes to
begin executing tasks only when it detects a failure of the same component on
the active node.

The database is recovered and CA Workload Automation AE returns to dual event
server mode.

High-availability is restored. To maintain your highly-available environment, continue
monitoring the scheduler log and recovering from scheduler and database failures when
they occur.

Appendix A: Legacy Agent Considerations 585

Appendix A: Legacy Agent Considerations

This section contains the following topics:

Running Jobs on Computers with Legacy CA Workload Automation AE Agents (see page
585)
How to Run Jobs on Legacy 4.5.1 Agent Computers (see page 585)
How Jobs Are Run On Legacy Agent Computers (see page 589)

Running Jobs on Computers with Legacy CA Workload
Automation AE Agents

CA Workload Automation AE can schedule jobs on a computer that is running a previous
version (or legacy version) of the CA Workload Automation AE agent.

How to Run Jobs on Legacy 4.5.1 Agent Computers

You can set up CA Workload Automation AE to run jobs on a legacy 4.5.1 agent. Because
legacy agents connect directly to the database in order to add job events, CA Workload
Automation AE only works with legacy agents that run on the same database vendor as
the event server. In addition, the CA Workload Automation AE instance identifier
(AUTOSERV) must match the instance identifier of the legacy agent.

To run jobs on a Unicenter AutoSys JM 4.5.1 legacy agent computer, follow these steps:

1. Define a legacy agent computer (see page 586).

2. Define the legacy agent port (see page 588).

3. Verify communication between the legacy agent and the database (see page 588).

4. (Optional) Complete the following steps to allow a password change while jobs are
in a RUNNING state:

■ Set the AUTO_REMOTE_CHECK_PASSWORD=1 variable on the legacy agent
computer.

■ Create the anyone/anything user on the Release 11.3.6 event server.

5. Create and run a job.

How to Run Jobs on Legacy 4.5.1 Agent Computers

586 User Guide

Define Legacy Agent Computers

The CA Workload Automation AE scheduler can run jobs on both CA Workload
Automation AE r11 and 4.5.1 legacy agent computers. Due to the differences in the
communication protocol used by r11 and 4.5.1 legacy agent computers, the scheduler
must know which communication protocol to invoke before contacting the agent
computer. This is done by examining the agent's machine definition type attribute. If the
type attribute is set to either l or L, the scheduler component prepares the job data
using the legacy protocol before sending it to the agent computer.

Before you can run jobs on a legacy agent computer, you must define the computer to
CA Workload Automation AE.

Follow these steps:

1. Open the operating system or instance command prompt as follows:

■ (UNIX) Run the shell that is sourced to use CA Workload Automation AE.

The operating system command prompt appears.

■ (Windows) Click Start, Programs, CA, Workload Automation AE, Command
Prompt (instance_name).

The instance command prompt appears.

2. Enter the following command:

jil

The JIL command prompt appears.

How to Run Jobs on Legacy 4.5.1 Agent Computers

Appendix A: Legacy Agent Considerations 587

3. Enter the following subcommand and attribute-value combinations:

insert_machine: remote_host

type: {l|L}

[insert_machine: remote_host_2

type: {l|L}]

[...]

[insert_machine: remote_host_n

type: {l|L}

remote_host

Defines the name of the legacy agent computer.

l

Indicates a UNIX computer running a CA Workload Automation AE legacy
agent. This machine type lets the scheduler know how to use the legacy
communication protocol to communicate with the agent and is analogous to an
r-type computer for CA Workload Automation AE r11.

L

Indicates a Windows computer running a CA Workload Automation AE legacy
agent. This machine type lets the scheduler know how to use the legacy
communication protocol to communicate with the agent and is analogous to an
n-type computer for CA Workload Automation AE r11.

4. Enter the following subcommand:

exit

The legacy agent computers are defined. The JIL command prompt closes, and the
definitions are saved to the database.

Notes:

■ Legacy agent computers may form part of a virtual machine. The job_load,
max_load, and factor attributes continue to support legacy agent computers.

■ As part of the event server data migration from a previous product version to CA
Workload Automation AE r11, pre-defined machines of type 'r' are converted to
type 'l' and pre-defined machines of type 'n' are converted to type 'L'. For more
details about data migration from a previous product version, see the UNIX
Implementation Guide or Windows Implementation Guide.

Example: Define a Legacy Agent Computer

This example defines the UNIX computer MYLEGACYUNIXAGENT, which is running a
previous version of CA Workload Automation AE:

insert_machine: MYLEGACYUNIXAGENT

type: l

How to Run Jobs on Legacy 4.5.1 Agent Computers

588 User Guide

Define the Legacy Agent Port

In addition to setting the type attribute of the machine definition for each legacy agent
computer, the Legacy Agent Port value must also be set in the CA Workload Automation
AE environment. This value specifies the port number to be used by the scheduler to
communicate with legacy agent computers.

On Windows, you can set the Legacy Agent Port value on the scheduler window of the
Administrator utility. On UNIX, you can set this value by locating and updating the
AutoRemPort parameter in the $AUTOUSER/config.$AUTOSERV file.

Note: Because the CA Workload Automation AE r11 agent has been decoupled from the
UNIX internet daemon (inetd), the installation does not add any service entries to either
the UNIX services (found in /etc/services) or the inetd configuration files
(/etc/inetd.conf).

Verify Communication Between Legacy Agent and Database

You can verify that the legacy agent communicates with the database by issuing the
autoping command to ping the server computer.

Follow these steps:

1. (UNIX only) Run the shell that is sourced to use CA Workload Automation AE.

2. Enter the following command at the operating system prompt or the instance
command prompt:

autoping -m machine_name -S

machine_name

Specifies the name of the machine where the agent runs.

The following messages appear, which indicates that autoping was successful:

CAUAJM_I_50023 AutoPinging Machine [machine_name]

CAUAJM_I_50028 Checking the Agent's connectivity to the Event Server.

CAUAJM_I_50025 AutoPing WAS SUCCESSFUL!

If you do not get these messages, ensure that the interface file or the tnsnames.ora
file includes the correct event server entries for setting up the communication.

How Jobs Are Run On Legacy Agent Computers

Appendix A: Legacy Agent Considerations 589

How Jobs Are Run On Legacy Agent Computers

The process by which CA Workload Automation AE can run jobs directly on a legacy
agent computer is as follows:

■ After evaluating the job start conditions, the scheduler places the job in a STARTING
status.

■ The scheduler recognizes the type of the machine as a computer running a legacy
agent.

■ The scheduler obtains the port number of the legacy agent computer from its
configuration settings.

■ The scheduler initiates communication with the legacy agent computer. On
Windows, the agent service starts the agent process. On UNIX, the internet daemon
(inetd) starts the agent process.

■ The scheduler prepares the job details using the legacy agent communication
protocol. The scheduler then sends the information to the newly started agent
process.

■ The legacy agent completes the communication protocol with the scheduler and
starts the job.

■ The legacy agent puts a RUNNING event directly into the event server.

■ The scheduler processes the RUNNING event.

■ After the job completes, the legacy agent puts a SUCCESS, FAILURE, or TERMINATED
event directly into the event server based on the exit code of the job.

■ The scheduler processes the end status event.

Notes:

■ If the scheduler log reports an error while trying to run a job on a computer with a
legacy Agent, see the Agent log file on the remote computer for details.

■ The legacy agent log may report some database errors while trying to send job
status events even when the scheduler log shows that the job has completed
successfully. The errors are due to the differences between the new database
tables and the tables expected by the legacy agent. These database errors do not
prevent the job event from being sent to the event server and must be ignored.

Index 591

Index

$

$AUTORUN • 116

A

ACTIVATED status • 83
agents

setting job profiles • 127
alarms

overview • 20
alerts • 98
application services jobs

entity bean jobs • 140
HTTP jobs • 145
JMS Publish jobs • 150
JMS Subscribe jobs • 150
JMX jobs • 160
overview • 137
payload consuming jobs • 139
payload producing jobs • 139
POJO jobs • 176
RMI Jobs • 178
session bean jobs • 181
types • 137

attributes
box job • 212
unsupported • 541

audience • 17
automated job control • 18
autorep command

generating blob reports • 528

B

batch files and exit codes • 107
bi-directional scheduling • 531
blobs

attributes • 521
overview • 518
std_in_file attribute • 526
std_out_file and std_err_file attributes • 527
types • 519
working • 517

box jobs
advanced job flow examples • 206, 207, 208,

209, 210

attributes • 193, 197, 212
creating • 212
default behavior • 189
deleting • 215
forcing jobs in a box to start • 198
guidelines • 189
job flow examples • 199, 201, 203, 204
overview • 187, 188
placing jobs in a box • 214
recommendations • 189
running • 189
starting conditions • 110, 187
status changes • 191
time conditions • 197

box_failure attribute • 193
box_success attribute • 193
box_terminator attribute • 197

C

CA UJMA
running jobs • 538

command jobs
accessing network resources • 249
alternative error output and input sources • 233
attributes with default values • 225
creating job blobs • 234
customizing run-time environments • 243, 244,

245
defining • 222
directory on UNIX • 219
modifying resource limits • 242
overview • 217
pass environment variables • 230
pass positional arguments • 229
running command interpreter • 247
running scripts • 240, 246
sending user-defined exit codes • 236
shell used • 219
specifying commands or script names • 237, 239
verifying file space • 228

common job attributes • 82
complete times

examples • 133
overview • 131
working • 132

592 User Guide

components
agent • 18

controlling
job starts • 112
job status • 115

CPU monitoring jobs
attributes with default values • 340
defining • 338
examples • 342
monitoring modes • 340

creating
box job • 212
dependent command job • 118
job definition • 88
job groupings • 213
new job type • 489

creating forecast report • 567
cross-instance

dependencies • 532
cross-platform

dependencies • 555
dependencies (Unicenter AutoSys JM Connect) •

537, 555
interface messages • 546

cross-platform scheduling • 545
customizing run-time environment

bourne shell script • 244
C shell script • 245
korn shell script • 243

D

database jobs
attributes with default values • 278
defining database monitor jobs • 255
defining database stored procedure jobs • 266
defining database trigger jobs • 258
defining SQL jobs • 270
monitoring database tables examples • 260, 262,

264
overview • 253, 254
running SQL queries against database tables

examples • 272, 273, 276
date/time job dependencies • 102
daylight time changes • 124
defining

legacy agent computers • 586
legacy agent port • 588
machines • 42

monitor or report • 562
deleting

box job • 215
job • 92
obsolete job versions • 135

dependencies
cross-platform • 537, 555

dependencies (job)
date/time • 102
exit code • 106
global variables • 108
job status • 103

disk monitoring jobs
attributes with default values • 346
defining • 344
examples • 347

E

entity bean jobs
defining • 141
overview • 140

environment variables
defining • 127
on UNIX • 231
passing in a command job • 230
to restrict runtime behavior of jobs • 136

events
overview • 20

examples
advanced box job flow • 206, 207, 208, 209, 210
box job flow • 199, 201, 203, 204
defining real machine • 46
defining virtual machine • 47

exit codes
batch files • 107
FALSE.EXE • 107
job dependencies • 106, 107

external instances
defining • 548
defining a job to run • 552
deleting • 550
generating a report • 557
starting a job • 551
types • 536
updating • 549

F

factor • 42, 55

Index 593

FAILURE status • 83
FALSE.EXE • 107
file trigger jobs

attributes with default values • 288
configuring • 293
defining • 282
monitoring files continuously • 290
monitoring files on remote UNIX computer • 294
monitoring files on remote Windows computer •

295
monitoring files owned by UNIX owner • 291
monitoring for other types of file activity • 284
overview • 281
resolving file names that contain variables • 293

file watcher jobs
defining • 297
overview • 297

forcing jobs to start • 69
FTP jobs

attributes with default values • 307
compressing data • 312
defining • 304
EBCDIC file transfers • 301
overview • 301
running agents as FTP clients • 302
running agents as FTP server • 303
sending site-specific commands • 313
transfering files using SSL • 309
user IDs and passwords • 304
verifying status • 314

G

global blobs
creating • 524
deleting • 525
overview • 521

global variables • 95
global variables (job dependencies) • 108
GlobalPendMachDelay • 115
GlobalPendMachInterval • 112
GlobalPendMachStatus • 115

H

HTTP jobs
attributes with default values • 147
defining • 145
overview • 145

I

i5/OS jobs
attributes with default values • 319
defining • 317
naming conventions • 316
overview • 315
pass positional parameters • 320
passing parameters to SBMJOB • 321
returning job's exit status • 323
running UNIX workload • 316
sending program's return code • 324
sending user-defined exit code • 325
specifying data for local data area • 327
using user's library list • 321

INACTIVE status • 83
IP monitoring jobs

attributes with default values • 352
defining • 350
examples • 353
monitoring remote IP addresses • 352

J

JIL
adding machines • 39
changing a job • 214
creating a box job • 212
creating dependent command job • 118
creating job definition • 88
creating job groupings • 213
defining a monitor or report • 562
deleting a job • 92, 215
example script • 37
managing blobs • 521
placing jobs in a box • 214
running a job • 93
setting job overrides • 123
setting time dependencies • 116
specifying job overrides • 121
subcommands • 28
syntax rules • 30

JMS Publish jobs
attributes with default values • 158
defining • 153
overview • 150

JMS Subscribe jobs
attributes with default values • 158
defining • 155
overview • 150

594 User Guide

JMX jobs
defining JMX-MBean Attribute Get job • 161
defining JMX-MBean Attribute Set job • 164
defining JMX-MBean Create Instance job • 166
defining JMX-MBean Operation job • 168
defining JMX-MBean Remove Instance job • 171
defining JMX-MBean Subscribe job • 172
overview • 160
subscribe job default values • 174
types • 160

job blobs
creating • 523
deleting • 524
input • 520
output and error • 521

job dependencies
processing • 534
processing using CA Workload Automation EE •

542
job information language • 21
job profiles

assigning • 130
converting to new format(Windows Only) • 131
creating • 129
environment variables • 129

job states • 83
job status • 103, 115
job types

overview • 81
user-defined • 487
using • 490

job_load • 53
job_terminator attribute • 197
jobs

application services jobs • 137
attributes • 212
box jobs • 187
command jobs • 217
database jobs • 253
deleting • 92
dependencies • 103, 106, 108
file trigger jobs • 281
FTP jobs • 301
i5/OS jobs • 315
managing job status • 105
monitoring • 337
Oracle E-Business Suite jobs • 377
overview • 79
PeopleSoft jobs • 395

placing jobs in a box • 214
restricting runtime behavior • 136
run numbers and names • 116
running JIL • 93
SAP jobs • 419
secure copy jobs • 445
setting overrides • 123
setting time dependencies • 116
specifying job overrides • 121
specifying the job owner • 93
starting conditions • 100, 110
states • 83
time/date dependencies • 102
updating • 89
z/OS jobs • 475

L

legacy agents • 19
load balancing • 60, 76
localhost definition

overview • 41
resolving localhost value • 41

log • 546
look-back conditions • 120

M

machines
status • 56

managing job status • 105
max_load • 42, 52
Micro Focus jobs

attributes with default values • 332
defining Microfocus jobs • 330
overview • 329
passing variables as parameters • 334

monitoring jobs
defining CPU monitoring jobs • 338
defining disk monitoring jobs • 344
defining IP monitoring jobs • 350
defining OMEL jobs • 366
defining OMS jobs • 371
defining OMTF jobs • 358
defining process monitoring jobs • 354
overview • 337

monitors • 561
multiple machine queues • 75

Index 595

N

ntrys • 116

O

offline • 56
ON_HOLD status • 83
ON_ICE status • 83
ON_NOEXEC (16) status • 83
online • 57
Oracle E-Business Suite jobs

attributes with default values • 390
defining copy single request jobs • 377
defining request set jobs • 380
defining single request jobs • 386
overview • 377
specifying argument values • 385, 389
specifying data for individual programs • 383

P

parameters in the configuration file
GlobalPendMachDelay • 115
GlobalPendMachInterval • 112
GlobalPendMachStatus • 115

payload consuming jobs • 139
payload producing jobs • 139
PEND_MACH status • 57, 59, 83, 112, 115
PeopleSoft jobs

attibutes with default values • 399
defining • 397
distributing reports • 403
exit codes • 396
mapping PeopleSoft fields • 401
overview • 395
sending job output to a printer • 407
storing job output as a web report • 405
user IDs and passwords • 396

POJO jobs
defining • 176
overview • 176

process automation jobs
attributes with default values • 413
defining process automation process execution

job • 410
defining process automation start request form

job • 411
process monitoring jobs

attributes with default values • 355

defining • 354
examples • 357

Q

QUE_WAIT status • 83
queuing jobs • 71, 72, 74, 75

R

real machines
deleting • 50, 52
load balancing • 68
overview • 39

real resources
defining dependencies in jobs • 504
overview • 491
updating dependencies in jobs • 506

remote execution jobs
attributes with default values • 417
concept • 415
defining • 415

reports • 561
responses

suspending jobs require manual intervention •
323

RESTART status • 83
RMI jobs

defining • 179
overview • 178

run number • 116
run_num/ntry • 116
running jobs on legacy agent computers • 585, 589
RUNNING status • 83

S

SAP jobs
attributes with default values • 439
defining batch input session jobs • 421
defining BW infopackage jobs • 424
defining BW process chain jobs • 427
defining data archiving jobs • 428
defining event monitor jobs • 430
defining process monitor jobs • 432
defining R/3 jobs • 437
defining SAPJC jobs • 434
emailing SAP job's spool file • 441, 442
overview • 419
SAP connection attributes • 420
user IDs and passwords • 421

596 User Guide

using messages in SAP job definitions • 444
schedulers

log • 546
secure copy jobs

attributes with default values • 447
defining • 445
overview • 445

security • 25
session bean jobs

attributes with default values • 184
defining • 182
overview • 181

shell initialization files
bourne shell • 222
C shell • 221
korn shell • 221

SNMP jobs
attributes with default values • 456
defining SNMPGET jobs • 450
defining SNMPSET jobs • 453

specifying passwords • 251
specifying queuing priority • 54
specifying relative process power • 55
standard time change • 126
start times

examples • 133
overview • 131
working • 132

starting conditions • 100, 103
STARTING status • 83
subcommands • 28
submitting a job to and from the Mainframe • 545
SUCCESS status • 83
syntax rules, JIL • 30

T

TERMINATED status • 83
Text File Reading and Monitoring (OMTF) jobs

attributes with default values • 360
defining • 358
examples • 362

time changes
date and time attributes • 123
daylight saving • 124
standard • 126

time dependencies • 102, 116
TZ environment variable • 102

U

UNIX
issuing JIL in interactive mode • 33
using a script • 35

unqualified, machine status • 56
unsupported attributes • 541
user-defined load balancing • 76
utilities • 21

V

verifying
file space • 228

virtual machines
deleting • 51
overview • 40

virtual resources
defining • 499
defining dependencies in jobs • 504
deleting • 503
depletable • 495
generating reports • 509, 510, 512
overview • 494
releasing renewable resources • 508
renewable • 496
threshold • 497
updating • 501
updating dependencies in jobs • 506

W

web service document/literal jobs
attributes with default values • 472
defining • 466

web services jobs
defining • 469

Windows
issuing JIL in interactive mode • 33
using a script • 36

Windows Event Log Monitoring (OMEL) jobs
attributes with default values • 368
defining • 366
examples • 370
types of event logs • 368

Windows Service Monitoring (OMS) jobs
attributes with default values • 373
defining • 371
examples • 374

Index 597

Z

z/OS jobs
attributes with default values • 478
defining data set trigger jobs • 476
defining manual jobs • 483
defining regular jobs • 484
monitoring by user or job • 479
monitoring FTP transfer • 480
overview • 475

	CA Workload Automation AE User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Intended Audience
	Automated Job Control
	Agents and Agent Plug-ins
	agentparm.txt File

	Legacy Agent Replaced by CA Workload Automation Agent
	Jobs
	Events
	Alarms
	Utilities
	Commands
	Issue a Command on UNIX
	Issue a Command on Windows

	Security

	2: Working with JIL
	The jil Command and JIL (Job Information Language)
	JIL Subcommands
	JIL Syntax Rules
	Issue JIL in Interactive Mode on UNIX
	Issue JIL in Interactive Mode on Windows
	Issue JIL Using a Script on UNIX
	Issue JIL Using a Script on Windows
	Example JIL Script

	3: Working with Machines
	Machines
	Real Machines
	Virtual Machines
	Real Machine Pools

	The localhost Definition
	How the localhost Value is Resolved

	Define a Machine
	Examples: Defining Real Machines
	Examples: Defining Virtual Machines
	Examples: Defining Real Machine Pools

	Delete a Real Machine
	Delete a Virtual Machine
	Delete a Real Machine Pool
	Delete a Real Machine from a Virtual Machine or Real Machine Pool
	Specifying Machine Load (max_load)
	Specifying Job Load (job_load)
	Specifying Queuing Priority (priority)
	Specifying Relative Processing Power (factor)
	Machine Status
	Take a Machine Offline Manually
	Put a Machine Online Manually
	How Status Changes Automatically
	How Status Affects Jobs on Virtual Machines

	Load Balancing
	Load Balancing Using Virtual Resource Dependencies
	Load Balancing Using Virtual and Real Resource Dependencies
	Load Balancing Using Real Resource Pools
	Forcing a Job to Start
	Queuing Jobs
	How CA Workload Automation AE Queues Jobs
	Using a Virtual Machine as a Subset of a Real Machine
	Using a Virtual Machine to Combine Subsets of Real Machines

	User-Defined Load Balancing

	4: Working with Jobs
	Jobs
	Job Types
	Common Job Attributes
	Job States
	Defining Jobs
	Insert a Job Definition
	Update a Job Definition
	Defining Jobs to Run on a Cluster

	Delete a Job
	Running a Job After Using JIL
	Specify the Job Owner
	Global Variables
	Alerts
	Starting Conditions
	Date and Time Dependencies
	TZ Environment Variable

	Job Dependencies Based on Job Status
	Managing Job Status
	Job Dependencies Based on Exit Codes
	Exit Codes and Batch Files in Jobs Running on Windows

	Job Dependencies Based on Global Variables

	Starting Conditions and Boxes
	Controlling Jobs in PEND_MACH Status
	Controlling the Starting of Jobs in PEND_MACH Status
	Controlling the Status of Jobs Scheduled on an Offline Machine

	Job Run Numbers and Names
	How Time Dependencies Are Set
	Dependent Jobs
	Look-Back Conditions

	Specifying One-Time Job Overrides
	How Job Overrides Are Set

	Date and Time Attributes and Time Changes
	Daylight Time Changes
	Standard Time Changes

	Job Profiles
	Environment Variables
	How the Environment for a Job is Sourced
	Create a Job Profile
	Assign a Job Profile to a Job
	Convert Job Profiles to the New Format (Windows Only)

	Must Start Times and Must Complete Times
	How Must Start Times and Must Complete Times Work
	Examples: Specifying Must Start Times and Must Complete Times

	Delete Obsolete Job Versions
	Restricting the Runtime Behavior of Jobs

	5: Application Services Jobs
	Application Services Jobs
	Payload Producing and Payload Consuming Jobs
	Entity Bean Jobs
	Define an Entity Bean Job

	HTTP Jobs
	Define an HTTP Job
	Attributes with Default Values

	JMS Publish and JMS Subscribe Jobs
	Define a JMS Publish Job
	Define a JMS Subscribe Job
	Attributes with Default Values

	JMX Jobs
	Define a JMX-MBean Attribute Get Job
	Define a JMX-MBean Attribute Set Job
	Define a JMX-MBean Create Instance Job
	Define a JMX-MBean Operation Job
	Define a JMX-MBean Remove Instance Job
	Define a JMX-MBean Subscribe Job
	Attributes with Default Values

	POJO Jobs
	Define a POJO Job

	RMI Jobs
	Define an RMI Job

	Session Bean Jobs
	Define a Session Bean Job
	Attributes with Default Values

	6: Box Jobs
	Box Jobs
	Starting Conditions for Box Jobs
	Basic Box Concepts
	Default Box Job Behavior
	Box Job Recommendations
	How a Box Runs
	How Job Status Changes Affect Box Status

	Box Job Attributes and Terminators
	Controlling How CA Workload Automation AE Evaluates the Completion State of a Box Job
	Attributes in a Job Definition
	Time Conditions in a Box
	Force Jobs in a Box to Start

	Box Job Flow Examples
	Default Box Success and Box Failure
	Explicit Box Success and Box Failure
	Job Flow with Job Terminator Attribute
	Job Flow with Box Terminator Attribute

	Advanced Job Flows
	Job Flow with Time Conditions Running on the First of the Month
	Job Flow with Time Conditions Running on the Second of the Month
	Job Flow with Time Conditions Running on the First of the Following Month
	Resetting a Job Flow with Time Conditions Through INACTIVE Status Change
	Resetting a Job Flow with Time Conditions Through Box Job

	How a Box Job Is Created
	Box Job Attributes
	How Job Groupings Are Created
	How an Existing Job Is Put in a Box
	Delete a Box Job

	7: Command Jobs
	Command Jobs
	The Directory the Job Runs Under
	Determining Which Shell is Used (UNIX)
	Shell Initialization Files (UNIX)
	C Shell Initialization Files
	Korn Shell Initialization Files
	Bourne shell initialization files

	Define a Command Job
	Attributes with Default Values
	Verify File Space Before a Job Starts
	Pass Positional Arguments in a Command Job
	Pass Environment Variables in a Command Job
	UNIX Environment Variables

	Define Alternative Error, Input, and Output Sources
	Create a Job Blob
	Send a User-Defined Exit Code
	Specify a Command or Script Name Without the Full Path
	Specify a Command or Script Name Using an Environment Variable (UNIX)
	Run a Script Under a Specific User Account (UNIX)
	Modify Resource Limits (UNIX)
	Customize the Run-time Environment for a Korn Shell Script (UNIX)
	Customize the Run-time Environment for a Bourne Shell Script (UNIX)
	Customize the Run-time Environment for a C Shell Script (UNIX)
	Define a Command Job to Run a Perl Script (UNIX)
	Run the Windows Command Interpreter (Windows)
	Access Network Resources (Windows)
	Specifying a Password for a User ID (Windows)

	8: Database Jobs
	Database Jobs
	How Database Trigger Jobs Differ from Database Monitor Jobs
	User IDs and Passwords for Database Jobs
	Define a Database Monitor Job
	Define a Database Trigger Job
	Examples: Monitoring Oracle Database Tables
	Examples: Monitoring Microsoft SQL Server Database Tables
	Examples: Monitoring IBM DB2 Database Tables
	Example: Monitoring a Sybase Database Table

	Define a Database Stored Procedure Job
	Define an SQL Job
	Examples: Running SQL Queries Against Oracle Database Tables
	Examples: Running SQL Queries Against Microsoft SQL Server Database Tables
	Examples: Running SQL Queries Against Sybase Database Tables
	Examples: Running SQL Queries Against IBM DB2 Database Tables

	Attributes with Default Values

	9: File Trigger Jobs
	File Trigger Jobs
	Define a File Trigger Job
	Monitor for Other Types of File Activity
	Attributes with Default Values
	Monitor a File Continuously
	Monitor a File that is Owned by a UNIX Owner or Group
	Configure the Agent to Run File Trigger Jobs as an External Process
	Resolve File Names That Contain Variables
	Monitor a File on a Remote UNIX Computer
	Monitor a File on a Remote Windows Computer

	10: File Watcher Jobs
	File Watcher Jobs
	Define a File Watcher Job

	11: FTP Jobs
	FTP Jobs
	EBCDIC File Transfers
	Wildcard Characters in File Names
	Running the Agent as an FTP Client
	Running the Agent as an FTP Server
	FTP User IDs and Passwords

	Define an FTP Job
	Attributes with Default Values
	Transfer Files Using SSL FTP
	Compress Data for FTP
	Send Site-Specific FTP Commands to FTP Servers
	Verify the FTP Job Status

	12: i5/OS Jobs
	i5/OS Jobs
	Running UNIX Workload on a System i5 Computer
	i5/OS Naming Conventions

	Define an i5/OS Job
	Attributes with Default Values
	Pass Positional Parameters
	Use a User's Library List
	Pass Keyword Parameters to SBMJOB
	Responding to Suspended Jobs that Require Manual Intervention
	Returning a Job's Exit Status to CA Workload Automation AE
	Send a Program’s Return Code
	Send a User-defined Exit Code

	Specify Data for a Local Data Area

	13: Micro Focus Jobs
	Micro Focus Jobs
	Define a Micro Focus Job
	Attributes with Default Values
	Pass Variables as Parameters to a JCL File

	14: Monitoring Jobs
	Monitoring Jobs
	Define a CPU Monitoring Job
	CPU Monitoring Modes
	Attributes with Default Values
	Examples: Monitoring CPU Usage

	Define a Disk Monitoring Job
	Attributes with Default Values
	Examples: Monitoring Disk Space

	Define an IP Monitoring Job
	Monitoring Remote IP Addresses on UNIX
	Attributes with Default Values
	Examples: Monitoring an IP Address

	Define a Process Monitoring Job
	Attributes with Default Values
	Examples: Monitoring Processes

	Define a Text File Reading and Monitoring Job
	Attributes with Default Values
	Examples: Monitoring a Text File for Specified Text

	Define a Windows Event Log Monitoring Job
	Types of Event Logs
	Attributes with Default Values
	Examples: Monitoring a Windows Event Log

	Define a Windows Service Monitoring Job
	Attributes with Default Values
	Examples: Monitoring Windows Services

	15: Oracle E-Business Suite Jobs
	Oracle E-Business Suite Jobs
	Define an Oracle E-Business Suite Copy Single Request Job
	Define an Oracle E-Business Suite Request Set Job
	Specify Data for an Individual Program in a Request Set
	Specify Argument Values to Pass to a Program in a Request Set

	Define an Oracle E-Business Suite Single Request Job
	Specify Argument Values to Pass to a Program in a Single Request

	Attributes with Default Values

	16: PeopleSoft Jobs
	PeopleSoft Jobs
	PeopleSoft Exit Codes
	PeopleSoft User IDs and Passwords
	Define a PeopleSoft Job
	Attributes with Default Values
	Mapping of PeopleSoft Fields to Job Attributes
	Distribute a PeopleSoft Report
	Store the Output of a PeopleSoft Job as a Web Report
	Send the Output of a PeopleSoft Job to a Printer

	17: Process Automation Jobs
	Process Automation Jobs
	Define a Process Automation Process Execution Job
	Define a Process Automation Start Request Form Job
	Attributes with Default Values

	18: Remote Execution Jobs
	Remote Execution Jobs
	Define a Remote Execution Job
	Attributes with Default Values

	19: SAP Jobs
	SAP Jobs
	SAP Connection Attributes
	SAP User IDs and Passwords
	Define an SAP Batch Input Session Job
	Define an SAP BW InfoPackage Job
	Define an SAP BW Process Chain Job
	Define an SAP Data Archiving Job
	Define an SAP Event Monitor Job
	Define an SAP Process Monitor Job
	Define an SAP Job Copy Job
	Define an SAP R/3 Job
	Attributes with Default Values
	Email an SAP Job's Spool File
	Email the Spool File of a Single Step in an SAP Job
	Using Success and Failure Messages within an SAP Job Definition

	20: Secure Copy Jobs
	Secure Copy Jobs
	Define a Secure Copy Job
	Attributes with Default Values

	21: SNMP Jobs
	SNMP Jobs
	Define an SNMP Value Get Job
	Define an SNMP Value Set Job
	Attributes with Default Values

	22: Wake on LAN Jobs
	Wake on LAN Jobs
	Define a Wake on LAN Job
	Attributes with Default Values

	23: Web Services Jobs
	Web Service Jobs
	Define a Web Service Document/Literal Job
	Define a Web Service RPC/Encoded Job
	Attributes with Default Values

	24: z/OS Jobs
	z/OS Jobs
	Define a z/OS Data Set Trigger Job
	Attributes with Default Values
	Monitor Data Set Activity by a User or Job
	Monitor an FTP Transfer on z/OS

	Define a z/OS Manual Job
	Define a z/OS Regular Job

	25: Working with User-defined Job Types
	User-Defined Job Types
	Create a New Job Type
	Use a New Job Type

	26: Working with Resources
	Real Resources
	Virtual Resources
	Depletable Resources
	Renewable Resources
	Threshold Resources

	Define a Virtual Resource
	Update a Virtual Resource
	Delete a Virtual Resource
	Define Real and Virtual Resource Dependencies in a Job
	Update Real and Virtual Resource Dependencies in a Job
	Release Renewable Resources
	Generate a Report on Current Resource Definitions
	Generate a Report to Display a Job's Resource Dependencies
	Generate a Report to Monitor Virtual Resource Usage
	Generate a Report to Monitor Resource Dependencies

	27: Working with Binary Large Objects (Blobs)
	Binary Large Objects
	Types of Blobs
	Job Blobs
	Input Job Blobs
	Output and Error Job Blobs

	Global Blobs
	Manage Blobs Using JIL
	Blob Attributes
	Create Input Job Blobs
	Delete Job Blobs
	Create Global Blobs
	Delete Global Blobs
	Use Blobs in Job Definitions
	std_in_file Attribute
	std_out_file and std_err_file Attributes

	Generate Blob Reports Using Autorep

	28: Cross-Instance Scheduling
	Bi-Directional Scheduling
	CA Workload Automation AE Cross-Instance Job Dependencies
	How Cross-Instance Job Dependencies are Processed
	Types of External Instances
	Creating Cross-Instance Job Dependencies Using CA AutoSys WA Connect Option
	Submitting a Job To and From Another Computer Using CA UJMA
	Unsupported Attributes for CA AutoSys WA Connect Option or CA UJMA Jobs
	How Job Dependencies are Processed Using CA Workload Automation EE
	Cross-Platform Scheduling
	Submitting a Job To and From the Mainframe Using CA AutoSys WA Connect Option
	Cross-Platform Interface Messages Logged for CA UJMA
	Define an External Instance
	Update an External Instance
	Delete an External Instance
	Start a Job on an External CA Workload Automation AE Instance
	Define a Job to Run on an External Instance
	Define a Cross-Instance Job Dependency
	Generate a Report on an External Instance

	29: Monitoring and Reporting on Workflow
	Monitoring Tools
	Run a Monitor or Browser
	Generate a Forecast Report

	30: Maintaining Highly-Available Environments
	How to Maintain Highly-Available Environments
	Monitor the Scheduler Log
	Restore the Failed Scheduler on UNIX
	Restore the Failed Scheduler on Windows
	Recover the Failed Database on UNIX
	Recover the Failed Database on Windows

	A: Legacy Agent Considerations
	Running Jobs on Computers with Legacy CA Workload Automation AE Agents
	How to Run Jobs on Legacy 4.5.1 Agent Computers
	Define Legacy Agent Computers
	Define the Legacy Agent Port
	Verify Communication Between Legacy Agent and Database

	How Jobs Are Run On Legacy Agent Computers

	Index

