

OneClick Customization Guide
Release 9.4

CA Spectrum®

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Spectrum® Infrastructure Manager (CA Spectrum)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: OneClick Directory Structure 9

Existing OneClick Files .. 9

The console/config Directory .. 9

Customizing OneClick .. 11

Save Customized XML Files ... 13

Preserve XML Customizations ... 14

Preserve Custom Images ... 14

Chapter 2: Customizing the OneClick Login Dialog 15

Custom Login Message ... 15

Add a Custom Message to the OneClick Login Dialog .. 15

Chapter 3: Customizing the OneClick Console Menu 17

The custom-menu-config.xml File .. 17

Add a New Menu .. 19

Add a New Menu Item ... 21

Add Toolbar Images .. 23

Define a Keyboard Accelerator ... 23

Perform an Action ... 24

Display the Status of a Launched Application or Script... 37

Chapter 4: Customizing OneClick Alarms 39

Chapter 5: Customizing OneClick Tables 41

Modify Table Columns ... 41

Extend a Factory Default File Using IDREF .. 41

Modify a Table Column ... 43

Display Instanced Attribute Values in Separate Table Rows .. 48

Define How Cells Display in Table Columns ... 49

Use Renderers to Present Data in Column Cells ... 50

Make a Table Column Editable ... 55

Customize the Alarm Table Acknowledge Field .. 55

Customize Alarm Table Row Colors ... 57

Set Up a Default Sort .. 58

Customize the Port Name Column of the Interface Table ... 60

6 OneClick Customization Guide

Sort Interfaces Table by ifIndex .. 61

Chapter 6: Adding Support for Model Types or Model Classes 65

Create a Registration .. 65

Register the Model Type or Model Class in custom-app-config.xml .. 65

Define General OneClick Device Support Based on Model Class .. 66

Define Specific OneClick Device Support Based on Model Type... 68

Define Model Appearance .. 70

Configure Icons for OneClick Themes .. 72

Using the <theme-config> Element to Create Icon Appearance... 74

Design On-Page and Off-Page Reference Icons .. 74

Use <on-page> and <off-page> Elements ... 77

Define the Icon Shape ... 79

Define Pipe Connection Location .. 83

Define Image Components.. 84

Create an Icon Label ... 90

The default-iconlabel-config.xml File .. 91

Adjust Icon Label Background Width .. 93

Default Label Width Settings... 93

Create Fixed Width Icon Labels ... 94

Define Text Components .. 94

Define Selection Components .. 95

Define Model Icon Tooltips .. 98

Chapter 7: Customizing a Model’s Information View 101

Extend or Modify an Information View .. 102

Create an Information Configuration File .. 104

Define the Header ... 105

Define the Subview ... 106

Define a Subview Group .. 118

Associate an Information Configuration File with a Model Class or Model Type .. 119

Chapter 8: Creating a Model’s Performance View 121

Create a New Performance View ... 122

Create a Performance Data Configuration File ... 124

Create a Performance View Configuration File ... 126

Customize an Existing Performance View .. 129

Contents 7

Chapter 9: Creating Custom Privileges 131

Define a Custom Privilege .. 131

Restrict Access to Attribute Values in Model Subviews .. 133

Group Privileges .. 134

Reference a Privilege When Defining a Menu Item, Column, or Subview ... 136

Chapter 10: XML Usage Common to All Customization Files 137

About Parameters .. 137

Acquire Data—Render a Value ... 138

Chapter 11: Customizing OneClick for CA Service Desk 155

Index 157

Chapter 1: OneClick Directory Structure 9

Chapter 1: OneClick Directory Structure

This section explains the directory structure of the XML files used to create the OneClick
interface. You must be familiar with the structure to find the files necessary for
customization and to implement customization in directories that are not overwritten
when you upgrade or reinstall CA Spectrum.

This section contains the following topics:

Existing OneClick Files (see page 9)

Existing OneClick Files

The OneClick user interface is installed with a default layout, panel, menu, toolbar, and
submenu content. The files that reside on the OneClick server controls all of these
features. These files and their locations are identified in this section.

The console/config Directory

The files in the <$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config
directory support menus, topology views, privileges for user interface elements,
branding elements, and other aspects of the OneClick user interface. The files that are
located in this directory are placeholder files that resemble templates for
customizations to OneClick functionality. The files and their functions are described as
follows:

custom-app-config.xml

General OneClick registrations, and topology support for CA Spectrum model types,
including icons and views.

custom-branding-config.xml

Customizes the following UI branding elements of OneClick:

■ Application brand name

■ Application suite name

■ Image to display in the splash screen

■ Image to display as the logo button in the lower-left corner

■ Name of the root node in the tree in the Navigation panel

■ About dialog

Existing OneClick Files

10 OneClick Customization Guide

Note: For information about the XML elements to specify these branding elements,
see the comments in the file that is named custom-branding-config.xml in
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/.

custom-menu-config.xml

OneClick menus and toolbars.

custom-privileges.xml

Registers custom privileges that are applied to the menu items, columns, and
subviews.

To customize the OneClick user interface, copy these files to the
<$SPECROOT>/custom/console/config directory and then edit them.

Important! Do not add customizations to the files in their default location
(<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/). The
customizations in that directory are ignored. In addition, these files are overwritten
when you perform CA Spectrum and OneClick upgrades.

Check the <$SPECROOT>/custom/console/config directory before copying files there.
Some actions, such as creating custom searches in the Explorer, automatically create a
copy of the custom-app-config.xml if one does not exist. If the config files already exist
in the <$SPECROOT>/custom/console/config directory, add your customizations to
those existing files.

More information:

Customizing the OneClick Console Menu (see page 17)
Adding Support for Model Types or Model Classes (see page 65)
Customizing a Model’s Information View (see page 101)
Creating Custom Privileges (see page 131)

The topo/config Directory

The files in this directory create the components of the OneClick topology views. These
components include icons, subviews, and tables that display data.

All of the table files are named after the functionality that they display. For example, the
file that builds the interface table for each model type is
table-common-ifconfig-config.xml.

The common/config Directory

The files in this directory create various topology elements that can be used by all of the
other files that create the OneClick interface. This includes colors, columns for tables,
and tables.

Existing OneClick Files

Chapter 1: OneClick Directory Structure 11

The alarm/config Directory

The files in this directory create the OneClick alarm views and contents, including the
Alarms table and the Alarm Details information tab.

Customizing OneClick

OneClick provides a flexible platform for administrators to modify aspects of the
application to meet specific requirements. For example, you can modify OneClick
behavior to support the unique structure of a site, an enterprise and network
environment, work processes, and software deployments. Make your modifications
using the OneClick UI or by coding the changes in the XML files that are provided for
that purpose.

Important! Do not add customizations to the files in their default location
(<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/). The
customizations in that directory are ignored. In addition, these files are overwritten
when you perform CA Spectrum and OneClick upgrades.

Prerequisites for Customizing OneClick XML Files

Before you attempt to customize OneClick files, be aware of the following requirements:

■ You must be able to create and modify files on the OneClick server.

■ You must be familiar with the fundamentals of XML coding as well as the CA
Spectrum and OneClick directory structure.

■ You must know the following:

■ The file whose functionality you want to extend with your modifications.

■ The directory in the <$SPECROOT>/custom directory structure in which to
create your custom file. For more information, see OneClick Directory Structure
(see page 9).

Extend Factory XML Files

You can extend default XML files to accomplish OneClick customizations without
overriding the entire factory default file. Customized XML files are not removed during a
CA Spectrum/OneClick software upgrade or reinstallation.

To extend the default OneClick XML configuration files, create a file with the same name
as the default file in the appropriate custom directory. Use the XML idref attribute in the
new file to refer to the default OneClick file of the same name. Code the new
functionality in this file. When OneClick parses the XML files, the changes in the new file
are added to the existing factory file referenced using idref.

Existing OneClick Files

12 OneClick Customization Guide

By extending factory files, you are able to take advantage of new features and
functionality available in software updates to the factory XML code while preserving
your customizations.

Although you can still override a factory XML file by creating a copy of it in the
<$SPECROOT>/custom directory and making your changes in the copy, using the IDREF
XML attribute provides the ability to inherit and extend the factory file, while
maintaining customizations in streamlined files.

More information:

Preserve XML Customizations (see page 14)
Save Customized XML Files (see page 13)

Override Factory Files

Override a factory configuration file by copying the original file to the appropriate
custom directory, and then adding new XML code or modifying the existing XML code.
OneClick reads the files in the custom directory first. If the file exists in the custom
directory and does not contain an idref statement referencing the original factory file,
OneClick does not read the original factory file, and the new file overrides the original
factory file.

Important! Do not add customizations to the files in their default location
(<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/). The
customizations in that directory are ignored. In addition, these files are overwritten
when you perform CA Spectrum and OneClick upgrades.

Inherit Features in Factory XML Files

Using idref to extend XML files has applications beyond extending the factory file with
the same name. You can use this technique to inherit or reuse features in any file of the
same type. For example, you can create your own model types that have a customized
details view defined in view-mymtypedetails-config.xml. This model type can also inherit
the default device views configured in view-devicedetails-config using idref. The new
custom file extends the functionality of the default file while also inheriting the views in
the default file.

Existing OneClick Files

Chapter 1: OneClick Directory Structure 13

Example: Extending Factory XML File

The example in the following figure extends the functionality of the factory default
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/
config/view-devicedetails-config.xml file by adding the code for the new subviews in
<$SPECROOT>/custom/topo/config/view-devicedetails-config.xml. The default factory
file view-devicedetails-config is specified in an "idref" statement.

Save Customized XML Files

OneClick customization files must be placed in specific “custom” directories so that
OneClick finds and reads the customized code and associates it with the correct default
factory file. The following lists the custom directories for the OneClick component
categories.

Alarms

<$SPECROOT>/custom/alarm/config/

Common

<$SPECROOT>/custom/common/config/

Important! Do not copy the
<$SPECROOT>/custom/common/config/custom-jnlp-config.xml file to another
computer when you migrate and upgrade CA Spectrum. This file can contain
memory settings that are not compatible with the computer where you are copying
the custom directories.

Existing OneClick Files

14 OneClick Customization Guide

Console components

<$SPECROOT>/custom/console/config/

Event format and probable cause files

<$SPECROOT>/custom/Events/

Images

<$SPECROOT>/custom/images/

Background images

<$SPECROOT>/custom/images/Background/

Stored SSL certificates

<$SPECROOT>/custom/keystore/

Report Manager

<$SPECROOT>/custom/repmgr/config/

Topologies

<$SPECROOT>/custom/topo/config/

Preserve XML Customizations

OneClick does not delete or overwrite files in the custom directory during an upgrade of
CA Spectrum or OneClick.

Customized OneClick XML files may be overwritten in the following situation:

■ Uninstalling SpectroSERVER

■ Reinstalling the same version of SpectroSERVER if you have installed OneClick under
the CA Spectrum installation directory.

In this case, you should save off the customized files to an area unaffected by the
uninstall process, and re-insert them once you have reinstalled SpectroSERVER.

Note: For more information on upgrades and installation of CA Spectrum and OneClick,
see the Installation Guide.

Preserve Custom Images

You must place all image files that you create or customize in the
<$SPECROOT>/custom/images directory. Otherwise, all new or customized images are
deleted or overwritten during an upgrade or reinstallation of CA Spectrum or OneClick.

Chapter 2: Customizing the OneClick Login Dialog 15

Chapter 2: Customizing the OneClick Login
Dialog

This section contains the following topics:

Custom Login Message (see page 15)
Add a Custom Message to the OneClick Login Dialog (see page 15)

Custom Login Message

Custom messages can be added to the Login dialog for the OneClick Console. You can
use this message to inform OneClick users about your usage policies, legal rights,
consequences of unauthorized usage, or other important information they must know
before they log in. The custom message appears in the Login dialog for the OneClick
Console only.

Add a Custom Message to the OneClick Login Dialog

To inform OneClick users about usage policies, legal rights, or other important
information needed before logging in, you can add a custom message to the OneClick
Login dialog.

To add a custom message to the OneClick Login dialog

1. Open the <$SPECROOT>/tomcat/webapps/spectrum/oneclick.jnlp file with
WordPad.

2. Add the following argument into the <application-desc> section:

<argument>-loginTitle Message_Text</argument>

For example, you can replace the Message_Text variable with your own message,
as follows:

<argument>-loginTitle For authorized company use only. Unauthorized users will

be punished to the fullest extent of the law.</argument>

Add a Custom Message to the OneClick Login Dialog

16 OneClick Customization Guide

3. Click File, Save.

Your custom message is added to the OneClick Login dialog.

Chapter 3: Customizing the OneClick Console Menu 17

Chapter 3: Customizing the OneClick
Console Menu

This section describes how to add new menus and new menu items to the OneClick
console. You can use new menu items to launch URLs, third-party applications, and
scripts, and to pass parameters to them.

This section contains the following topics:

The custom-menu-config.xml File (see page 17)
Add a New Menu (see page 19)
Add a New Menu Item (see page 21)

The custom-menu-config.xml File

The
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/custom-menu-conf
ig.xml file contains examples on how to add custom menus and custom menu items to
your OneClick console as shown in the images. You will need to copy this file in to the
<$SPECROOT>/custom/console/config/ directory if the file is not already in this
directory.

The following image shows the Connections menu and its two new menu items: Ping
Local and Launch Diagnostics:

The custom-menu-config.xml File

18 OneClick Customization Guide

The following image shows a new menu item called Launch My Web Page, which has
been added to the existing Tools menu. This menu item has been created to launch a
specified web page.

You create OneClick menus and menu items using the <menu> and <item> XML
elements. The <menu> element can enclose one or more <item> elements that define
the commands that will be available on the menu. The <item> element can enclose
several other elements that define how the menu item appears and behaves. See the
following table for information about these elements.

Element Parent Element Description

<menu>

<root>

Defines the menu. The name attribute is used to
define the name of the menu.

<separator> <menu> Used just before an <item> element to define a
separator line as shown in the first figure in this
section.

<item> <menu> Defines an item on a specific menu. The name
attribute is used to define the name of the item.

<privilege> <item> Associates a privilege to the menu item. If the
user is not given this privilege, the menu item will
not be displayed for that user.

<toolbar-image> <item> Specifies the image to display for the menu item
and its associated toolbar button when the
functionality is available to the user.

<toolbar-image-rollover> <item> Specifies the toolbar image displayed when a user
places the cursor over the toolbar button.

<toolbar-image-disabled> <item> Specifies the toolbar image displayed when the
functionality is disabled (not available to the
user). A typical representation for this state is an
image that is 80% “grayed out.”

Add a New Menu

Chapter 3: Customizing the OneClick Console Menu 19

Element Parent Element Description

<accelerator> <item> Defines a keyboard sequence that executes the
menu item.

<action>

<item>

Defines the action that takes place when the user
clicks on the menu item.

<hot-key> <item> Underlines the first instance of the indicated
letter and enables the user to activate the menu
item using this letter as a keyboard shortcut.

The subsequent sections of this chapter describe how to use the <menu> element to
create a new menu and how to use the <item> element and its child elements to add
menu items to a new or existing menu.

More information:

Existing OneClick Files (see page 9)
Creating Custom Privileges (see page 131)
Add a New Menu Item (see page 21)
Add Toolbar Images (see page 23)
Define a Keyboard Accelerator (see page 23)
Perform an Action (see page 24)

Add a New Menu

The <menu> element is used to create a OneClick console menu.

To add a new menu

1. Open the existing <$SPECROOT>/custom/console/config/custom-menu-config.xml
file.

2. If the file does not exist, copy the file
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/
custom-menu-config.xml into the <$SPECROOT>/custom/console/config directory,
and then open it.

The <root> element is the root element for this file. You must define all new menus
inside the <root> element.

3. Use the <menu> element to create new menus. This element has a single attribute,
name, which defines the name of the menu.

Add a New Menu

20 OneClick Customization Guide

Note: Some of the examples in the custom-menu-config.xml file show a fully
qualified menu name that references a Java class created by OneClick engineers.
For example, com.aprisma.spectrum.app.swing.window.menu.Tool is used as the
value for the name attribute in the <menu> element that defines the Tools menu.
You do not have to use a fully qualified name to create a new menu or to refer to an
existing menu. Simply use the exact text that you would like to appear as the menu
name on the toolbar.

4. Add items to the new menu by specifying them using the <item> element and its
available child elements. If you do not specify menu items for a menu, the menu
will not be visible in the OneClick console.

5. Save the changes you have made to custom-menu-config.xml.

6. To view and test the new menus, restart the OneClick console.

Example: Creating a New Menu

The following lines of XML create the Connections menu shown in The
custom-menu-config.xml File.

<menu name="Connections">

<item name="Ping Local">

 .

 .

 .

</item>

<item name="Launch Diagnostics">

 .

 .

 .

</item>

</menu>

More information:

OneClick Directory Structure (see page 9)
The custom-menu-config.xml File (see page 17)
Add a New Menu Item (see page 21)

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 21

Add a New Menu Item

To add an item to an existing OneClick console menu or to a new menu that you
created, you must create a new <item> element inside the <menu> element that you
are customizing. The <item> element uses the <name> attribute to specify the name of
the menu item.

Note: The new menu item is also added automatically to the right-click menu.

To add a new menu item

1. Open <$SPECROOT>/custom/console/config/custom-menu-config.xml.

2. Find the <menu> element you created in Add a New Menu that defines the menu to
which you want to add items. If the <menu> item does not yet exist, add it using the
name attribute to define either an existing or a new menu.

Note: Some of the examples in custom-menu-config.xml show a fully qualified
menu name that references a Java class created by OneClick engineers. For
example, com.aprisma.spectrum.app.swing.window.menu.Tool is used as the value
for the name attribute in the <menu> element that defines the Tools menu. You do
not have to use a fully qualified name to create a new menu or to refer to an
existing menu. For example, you can use <menu name=“Tools”> to refer to the
Tools menu.

3. Use the <item> element to create each new menu item. This element has one
attribute, name, which defines the name of the menu item.

4. The <item> element has a series of child elements that enable you to define how
the item behaves. These elements are listed in the table in the
custom-menu-config.xml File, and they are further defined in the rest of this
chapter. Use these elements to define the behavior of the menu item you have
added.

5. Save the changes you have made to custom-menu-config.xml.

6. To view the new menu items, restart the OneClick Console.

Add a New Menu Item

22 OneClick Customization Guide

Example: Creating New Menu Items

The following example adds a menu item called Ping Local to a menu called
Connections.

<menu name="Connections">

<item name="Ping Local">

<accelerator modifiers="2">VK_I</accelerator>

<action>

 <filter>

 <has-attribute>AttributeID.NETWORK_ADDRESS</has-attribute>

 </filter>

 <context>com.aprisma.spectrum.app.topo.client.render.ModelContext

</context>

 <context>com.aprisma.spectrum.app.alarm.client.group.AlarmContext

</context>

 <launch-application>

 <platform>

 <os-name>Windows 9x</os-name>

 <command>command.com /c start "Local ping {0}"

cmd.exe /c

 "ping.exe {0} && pause"</command>

 </platform>

 <platform>

 <os-name>Windows</os-name>

 <command>cmd.exe /c start "Local ping {0}" cmd.exe

/c "ping.exe

 {0} && pause"</command>

 </platform>

 <platform>

 <command>/usr/dt/bin/dtterm -e ping -s

{0}</command>

 </platform>

 <param>

<attribute>AttributeID.NETWORK_ADDRESS</attribute>

 </param>

 </launch-application>

</action>

</item>

</menu>

More information:

The custom-menu-config.xml File (see page 17)
Add a New Menu (see page 19)

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 23

Add Toolbar Images

In order to have a toolbar image available for each of the three toolbar image states,
you must specify them in your menu item definition. The elements for toolbar states
are:

■ <toolbar-image>

■ <toolbar-image-rollover>

■ <toolbar-image-disabled>

You can use the following image formats for OneClick toolbar images: .png, .gif, .jpg, and
.jpeg.

The recommended toolbar image size is 24 x 24 pixels. Store custom images in the
<$SPECROOT>/custom/images directory. When you reference an image placed in this
directory, specify the path from the images directory, for example,
images/myimage.png.

The following line of code specifies a toolbar image using the relative path to the image
file.

<toolbar-image>images/hints.gif</toolbar-image>

For a listing of all of the elements used in defining OneClick menu items, see the table in
Contextually Apply the Action.

More information:

Contextually Apply the Action (see page 24)

Define a Keyboard Accelerator

The <accelerator> element specifies a combination of keyboard input that executes a
corresponding menu item.

Specify the code for the accelerator key using the capitalized letter on the keyboard,
preceded by “VK_”.

The modifiers attribute indicates the modifier key combinations as an integer where:

■ 1 = Shift

■ 2 = Ctrl

■ 3 = Ctrl+Shift

■ 8 = Alt

Add a New Menu Item

24 OneClick Customization Guide

■ 9 = Alt+Shift

■ 10 = Ctrl+Alt

You are not required to specify a keyboard accelerator for a customized menu item.

<accelerator modifiers="2">VK_L</accelerator>

In the preceding example, the menu item’s specified action is performed if the 'L' key is
pressed while holding down the Control key (Ctrl+L).

More information:

Perform an Action (see page 24)

Perform an Action

The <action> element specifies the action that is performed when the menu item is
selected. You can use the child elements shown in the table in Contextually Apply the
Action to specify a particular action.

The <context> element specifies the context in which the menu item will be active so
that the action can be executed. This applies to both the standard and the right-click
menu.

More information:

Contextually Apply the Action (see page 24)

Contextually Apply the Action

Actions do not always apply in all situations, such as an action that is applicable only
when the user selects a model. Therefore, you can specify one of the following contexts
for your actions:

■ ModelContext

Indicates that the action should be available when the user selects a model. The
format for this context is as follows:

<context>com.aprisma.spectrum.app.topo.client.render.ModelContext</context>

■ AlarmContext

Indicates that the action should be available when the user selects an alarm. The
format for this context is as follows:

<context>com.aprisma.spectrum.app.alarm.client.group.AlarmContext</context>

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 25

■ TableContext

Indicates that the action should be available when the user selects any table. The
format for this context is as follows:

<context>com.aprisma.spectrum.app.util.table.TableContext</context>

If no table name is specified, context is limited to any table. However, you can also
limit context to a single table using the following format:

<context>com.aprisma.spectrum.app.util.table.TableContext</context>

<table-name>TableName</table-name>

You can specify one or a combination of contexts. If no specified context matches the
current window context, the menu item is disabled. If no contexts are specified, the
menu item is displayed in all contexts.

The following table describes the elements used to implement an action.

Element Parent Element Description

<context>

<action>

Limits the context in which the menu item is
enabled and can perform the action.

<table-name> <action> Used with <context>, specifies the table
name when limiting the action to a single
table. Works with TableContext only.

<column-name> <param> Used with <context> and <command>,
specifies which values in a table column to
pass into a script from a selected row in the
table. Works with TableContext only.

<filter> <action> Limits the availability of menu items.

<has-attribute> <filter> Specifies the attribute on which to filter.

<and>, <or>, <value>, <equals> <filter> Creates an expression that can be used with
a filter.

<launch-browser> <action> Launches a browser.

Add a New Menu Item

26 OneClick Customization Guide

Element Parent Element Description

<launch-sso-browser> <action> Launches a browser and, if single sign-on is
enabled in OneClick, includes a single
sign-on token associated with the current
session in the URL. This token can be used to
reauthenticate the session across integrated
web applications instead of prompting the
user repeatedly for a username and
password.

Note: For information on how to set up
single sign-on in OneClick using CA
SiteMinder® or CA Embedded Entitlements
Manager, see the integration guide for that
application.

<url> <launch-browser> Specifies the URL to launch in the browser.

<launch-application> <action> Launches an application.

<launch-web-server-script> <action> Launches a script available on the web
server.

<display-output> <launch-application>,
<launch-web-server-script>

Displays the output from the launched
script.

<display-exit-status> <launch-application>,
<launch-web-server-script>

Displays the exit status of a launched script.

<command> <launch-application>,
<launch-web-server-script>,
<platform>

Specifies the application or script that the
menu item launches.

<platform> <launch-application> Used with <os-name>, specifies the
application to launch based on the
operating system of the OneClick client.

<validate> <launch-application> Used with the <command> element,
specifies that the menu item should only be
added to the menu if the command exists
on the OneClick client and has execute
permissions. If either condition is found to
be false during OneClick startup, the menu
item is not added to the menu.

If the <validate> element is not used, the
menu item is always added to the menu, but
its state is determined by the value of other
elements.

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 27

Element Parent Element Description

<os-name> <platform> Used with <platform>, specifies the
application to be launched specific to the
operating system of the OneClick client.

<param>

<url>, <command>

Specifies a parameter that is passed to a
browser, executable, or script.

<attribute> <param> Specifies an attribute used as a parameter.

More information:

Limit the Availability of Menu Items (see page 27)
Launch a Browser (see page 29)
Launch an Application From OneClick (see page 33)
Launch a Web Server Script (see page 36)
Manipulate Attribute Output Using Renderers (see page 139)
Important Information About Specifying URLs (see page 30)
Specify a Username (see page 33)
Display the Status of a Launched Application or Script (see page 37)
Pass Table Values to a Script (see page 36)

Limit the Availability of Menu Items

The <filter> element specifies a filter that further restricts the enabled state of the
menu item. You can filter on any attribute of the selected context.

<filter>

<has-attribute>AttributeID.NETWORK_ADDRESS</has-attribute>

</filter>

In the preceding example, the action needs the IP address of the alarmed model.
Therefore, it should only be enabled if the alarmed model has the Network_Address (ID
0x12d7f) attribute.

You can specify complex attribute filters with any combination of nested “and” and “or”
filters.

Add a New Menu Item

28 OneClick Customization Guide

Example: Nesting Filters

The following example enables the item if the selected model has the Network_Address
attribute and the Condition (ID 0x1000a) attribute is RED.

<filter>

<and>

<has-attribute>AttributeID.NETWORK_ADDRESS</has-attribute>

<equals>

 <attribute id="AttributeID.CONDITION">

 <value>3</value> <!--red-->

 </attribute>

</equals>

</and>

</filter>

The file <$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/common/schema/
attribute-filter.xsd contains the complete syntax for attribute filters.

The following table defines commonly used attributes where an attribute ID is expected.

Constant Attribute

AttributeID.NETWORK_ADDRESS

Network Address (ID 0x12d7f)

AttributeID.MTYPE_ID Model Type Handle (ID 0x129ab)

AttributeID.MTYPE_NAME Model Type Name (ID 0x10000)

AttributeID.MODEL_OBJECT Model Handle (ID 0x11f53)

AttributeID.MODEL_NAME Model Name (ID 0x1006e)

AttributeID.MODEL_CLASS Model Class (ID 0x11ee8)

AttributeID.CONDITION Condition (ID 0x1000a)

AttributeID.DOMAIN_ID Landscape Handle (ID 0x129ac)

AttributeID.DOMAIN_NAME Landscape Name (ID 0x11d42)

AttributeID.MAC_ADDRESS

MAC Address (ID 0x110df)

AttributeID.DEVICE_TYPE Device Type (ID 0x23000e)

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 29

You can use the constants defined in the following table for alarm attributes:

Constant Alarm Attribute

AlarmAttrID.ACKNOWLEDGED

Acknowledged (ID 0x11f4d)

AlarmAttrID.ALARM_FILTER_MH Alarm Filter (ID 0x12a56)

AlarmAttrID.ALARM_ID Full Alarm ID (ID 0x11f9c)

AlarmAttrID.INT_ALARM_ID Integer Alarm ID (ID 0x4820067)

AlarmAttrID.ALARM_SOURCE Alarm Source (ID 0x11fc4)

AlarmAttrID.ALARM_STATUS Alarm Status (ID 0x11f4f)

AlarmAttrID.CAUSE_CODE Cause Code (ID 0x11f50)

AlarmAttrID.CAUSE_LIST Cause List (ID 0x12a05)

AlarmAttrID.CAUSE_TITLE Cause Title (ID 0x4820020)

AlarmAttrID.CREATION_DATE Creation Date (ID 0x11f4e)

AlarmAttrID.CLEARED_BY_USER_NAME Cleared By User Name (ID 0x11f51)

AlarmAttrID.IMPACT_SEVERITY Impact Severity (ID 0x1290d)

AlarmAttrID.OCCURRENCES Occurrences (ID 0x11fc5)

AlarmAttrID.ORIGINATING_EVENT Originating Event (ID 0x1296e)

AlarmAttrID.PERSISTENT Persistent (ID 0x12942)

AlarmAttrID.PRIMARY_ALARM Primary Alarm (ID 0x11f54

AlarmAttrID.SEVERITY Severity (ID 0x11f56)

AlarmAttrID.TROUBLESHOOTER Troubleshooter (ID 0x11f57)

AlarmAttrID.TROUBLE_TICKET_ID

Trouble Ticket ID (ID 0x12022)

AlarmAttrID.USER_CLEARABLE User Clearable (ID 0x11f9b)

If you need to use an attribute other than one of the attributes listed in the 2 preceding
tables, specify the attribute using its hexadecimal attribute ID.

Launch a Browser

The <launch-browser> element lets you launch a specified URL in a browser and pass
parameters to the URL. These parameters can be hard-coded values or values from
model attributes.

Add a New Menu Item

30 OneClick Customization Guide

Example: <launch-browser> Code

The following example launches the default browser on the client machine. The <url>
element specifies the URL pattern. You can specify parameters to substitute in the URL
pattern by enclosing the parameter number (starting at 0) in curly braces {}. You then
specify <param> elements for each parameter.

<launch-browser>

<url>http://{0}</url>

<param>

<attribute>AttributeID.NETWORK_ADDRESS</attribute>

</param>

</launch-browser>

CA Spectrum processes the <param> elements in order so the first one corresponds to
the 0th parameter in the URL pattern. A <param> element has a specific syntax. The
most commonly used is the <attribute> element. This element substitutes the value of
the specified attribute for the selected context. In the preceding example, the value of
the Network Address attribute is substituted in the URL pattern. For more complex
parameters, see the definition of <param-type> in the file.

<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/common/schema/basic-config.xsd

More information:

About Parameters (see page 137)

Important Information About Specifying URLs

You must provide the following information when specifying URLs.

Use Standard Characters

Whenever a URL is specified in XML customization code for OneClick, the URL
formatting must adhere to the standards published in the Internet Engineering Task
Force (IETF) RFC 1738. Use of non-standard characters in URLs results in unreliable
browser performance including the browser not locating the specified web page.

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 31

URL Encoding of Spaces and Commas

If you are using spaces or commas, or other "reserved" or "unsafe" characters in URLs
(see the tables later in this section), convert them to their ASCII equivalent value with
the proper URL encoding. URL encoding of a character consists of a "%" symbol,
followed by the two-digit hexadecimal representation (case-insensitive) of the ISO-Latin
code point for the character. Examples for "space" and "comma" are:

■ For spaces, use %20

■ For commas, use %2C

Note: Some browsers may encounter problems processing URLs even when using this
encoding.

Use of Ampersands

If you are using an ampersand in a URL or in XML customization code, you must convert
it to &.

Use CDATA in XML

You can place URLs inside a CDATA section so that they are not parsed. This avoids
possible problems with URLs and the XML parser.

Be sure to follow the requirements for CDATA, including:

■ A CDATA section cannot contain the string "]]>", therefore, nested CDATA sections
are not allowed.

■ Also make sure there are no spaces or line breaks inside the "]]>" string.

URL Unsafe Characters

Some characters can be misunderstood within URLs for various reasons. These
characters should also always be encoded. Unsafe characters and their hexadecimal
encoding are provided in the following table.

Character Code Points (Hex)

Space

20

Quotation marks (") 22

'Less Than' symbol ("<") 3C

'Greater Than' symbol (">") 3E

Pound' character ("#") 23

Percent symbol ("%") 25

Add a New Menu Item

32 OneClick Customization Guide

Character Code Points (Hex)

Left Curly Brace ("{") 7B

Right Curly Brace ("}") 7D

Vertical Bar/Pipe ("|") 7C

Backslash ("\") 5C

Caret ("^") 5E

Tilde ("~") 7E

Left Square Bracket ("[") 5B

Right Square Bracket ("]")

5D

Grave Accent ("`") 60

URL Reserved Characters

URLs use some characters for special use in defining their syntax. When these characters
are not used in their special role inside a URL, they need to be encoded. These
characters and their hexadecimal encoding are provided in the following table.

Character Code Points (Hex)

Dollar ("$")

24

Ampersand ("&") 26

Plus ("+") 2B

Comma (",") 2C

Forward slash/Virgule ("/") 2F

Colon (":") 3A

Semi-colon (";") 3B

Equals ("=") 3D

Question mark ("?")

3F

'At' symbol ("@") 40

More information:

About Expressions (see page 147)

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 33

Specify a Username

You can pass the current user’s OneClick username to an application, web browser, or
executable requiring a username. Use the following expression to specify the logged-in
user’s username:

<param>

<expression>

com.aprisma.spectrum.app.util.context.DefaultApplicationContext.getGlobal

Parameter(com.aprisma.spectrum.app.util.context.ApplicationContext.

USER_PARAMETER_NAME)

</expression>

</param>

Example: Pass Username to Browser

The following example launches a browser to a specified URL and passes the username
to the browser.

<launch-browser>

<url> http://acme.com?user={0}</url>

<param>

<expression>

com.aprisma.spectrum.app.util.context.DefaultApplicationContext.getGlobal

Parameter(com.aprisma.spectrum.app.util.context.ApplicationContext.USER_P

ARAMETER_NAME)

</expression>

</param>

</launch-browser>

Launch an Application From OneClick

The <launch-application> element enables you to launch a specified command or
executable.

Example 1: <launch-application>

The following example launches an application called myapp on the client machine and
passes in the IP address of the selected model. As with the <launch-browser> action,
you can substitute any number of parameters.

<launch-application>

<command>myapp {0}</command>

<param>

<attribute>AttributeID.NETWORK_ADDRESS</attribute>

</param>

</launch-application>

Add a New Menu Item

34 OneClick Customization Guide

The <command> element specifies the command or executable to execute. You can
provide the path to the command or executable in one of two ways:

■ You can specify the path on each client via an environment variable. To do this in
the Solaris environment, use the PATH environment variable. To create an
environment variable in the Windows environment, select My
Computer,Properties,Advanced, and then select the Environment Variables button.

■ You can specify an absolute path to the command or executable. If you do this,
keep in mind that the path must be the same on each OneClick client. Path
statements in the Windows environment should use a double backslash instead of a
single backslash, for example:

C:\\Windows\\system32\\cmd.exe

Note: You can use the <validate> element to verify that the command or executable
exists on the OneClick client and has execute permissions. If either of these conditions is
found to be false during OneClick startup, the associated menu item is not added to the
OneClick menu. (If the <validate> element is not used, the menu item is always added to
the menu, but its state is determined by the value of other elements.)

If you use the <validate> element, you must specify an absolute path in the <command>
element, as shown in the following example:

<launch-application>

<command>c:\\windows\\system32\\notepad.exe</command>

<validate/>

</launch-application>

The <command> element must conform to the following syntax rules:

■ The command arguments are delimited by only spaces. If you would like to have a
space within an argument, you must either place quotes around the argument or
use the escape character '\' prior to the internal space(s).

■ If you would like to embed quotes within an argument, you must place the escape
character '\' prior to the quote.

■ If any of your command arguments contain commas, CA Spectrum will
automatically place the argument within quotes. This is important to know in case
you are going to parse an argument that is a numeric value that contains commas.

■ CA Spectrum replaces arguments that return null or have a string length of zero
with empty quotes (“ ”).

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 35

Example 2: <launch-application>

The following example uses the <platform> element to specify different commands for
different platforms. The <os-name> element specifies the operating system name and
the <command> element specifies the command to execute on that operating system.
The <os-name> element is optional. If you do not specify the <os-name>, the associated
command is the default such that if no other platforms match, the default command is
executed.

<launch-application>

<platform>

<os-name>Windows</os-name>

<command>cmd.exe /c start "ping {0}" cmd /c "ping.exe {0}

&&pause"</command>

</platform>

<platform>

<os-name>SunOS</os-name>

<command>>/usr/dt/bin/dtterm -e ping {0}</command>

</platform>

<param>

<attribute>AttributeID.NETWORK_ADDRESS</attribute>

</param>

</launch-application>

At runtime, CA Spectrum compares the specified OS names to the OS name returned by
the “os.name” Java property. CA Spectrum uses a best-match algorithm so only a prefix
of the OS name need be specified. You may specify any of the following OS names:

■ SunOS for the Solaris platform

■ Windows for all Windows platforms

■ Windows 9x for Windows 95/98

■ Windows 2000 for Windows 2000

■ Windows 2003 for Windows 2003

■ Windows XP for Windows XP

■ Windows Vista for Windows Vista and Windows Server 2008

■ Windows 7 for Windows 7

■ Linux for the Linux platform

■ Mac for the Macintosh platform

If no specified platforms match, the associated menu item will be disabled.

Add a New Menu Item

36 OneClick Customization Guide

Launch a Web Server Script

The <launch-web-server-script> element launches a script on the web server machine.
The <command> element specifies the script to execute. As with the <launch-browser>
action, any number of parameters can be substituted. Since the script resides on the
web server, which is restricted to either a Windows or Solaris machine, you do not use a
<platform> element to denote the platform on which the script is running.

Note: This action can only be used to launch a script; it cannot be used to launch a user
interface.

Example: <launch-web-server-script> Code

The following example launches “myscript” on the web server, passing it the model
name and model type name of the selected model. Note that the path shown in the
<command> element is a path for a Windows web server.

<launch-web-server-script>

 <command>c:/scripts/myscript {0} {1}</command>

 <param>

 <attribute>AttributeID.MODEL_NAME</attribute>

 </param>

 <param>

 <attribute>AttributeID.MTYPE_NAME</attribute>

 </param>

</launch-web-server-script>

Use the <platform> tag with the <launch-web-server-script> as described in Launch an
Application From OneClick.

More information:

Launch an Application From OneClick (see page 33)

Pass Table Values to a Script

Used with the <context> and <command> elements, the <column-name> element lets
you add menu items in OneClick that execute a command using data from a selected
row in a table. With this feature, CA Spectrum eliminates the need to look up attributes
separately to build the logic. Instead, you can build the logic from selected column
headings within a table and pass the values from any row in the table to the script. This
ability to pass values directly from a table is helpful when you need to use the data in an
external script. For example, you can build an interface between CA Spectrum and an
issue-tracking system. Then, you can creates a menu item that creates trouble tickets
from table data in OneClick.

Note: The <column-name> element works with TableContext only in the <context>
element.

Add a New Menu Item

Chapter 3: Customizing the OneClick Console Menu 37

Example: <command> and <column-name> Commands

The following example passes values from three columns (Condition, Status, and Type)
to the "NewTicket" command. The <command> element specifies the command
pattern. You specify parameters to substitute in the command by enclosing the
parameter number (starting at 0) in curly braces {}. You then specify <param> elements
for each column that passes values to the command.

<context>com.aprisma.spectrum.app.util.table.TableContext</context>

<command>$SCRIPT_PATH/NewTicket.exe {0} {1} {2} {3}</command>

<param>

<column-name>Condition</column-name>

</param>

<param>

<column-name>Status</column-name>

</param>

<param>

<column-name>Type</column-name>

</param>

CA Spectrum processes the <param> elements in order so the first one corresponds to
the 0th parameter in the command pattern. By default, CA Spectrum passes the raw
value to the command. To preserve the formatting information from the table, use the
<formatted/> option, as follows:

<param>

<column-name>Condition

<formatted/>

</column-name>

</param>

Note: The formatted option attempts to render the specified column as seen in the
table. However, CA Spectrum cannot pass images as arguments to commands and,
therefore, passes the raw value only.

Display the Status of a Launched Application or Script

Use the <display-exit-status> and <display-output> elements with
<launch-web-server-script> and <launch-application> to display the exit status and the
output from the script or application.

By default <display-exit-status> displays “Success” if the exit code is 0 and “Failed with
error code #” otherwise. You can change the default behavior by specifying <status>
child tags that map an exit code to a custom message to display.

Add a New Menu Item

38 OneClick Customization Guide

Example: <display-exit-status> Code

Examine the following example using <display-exit-status>:

<display-exit-status>

<status code="1">Could not open file</status>

<status code="2">Bad parameter</status>

<status code="3">Could not connect to the server</status>

<status default="true">Unknown error code {0}</status>

</display-exit-status>

This example maps status codes 1, 2, and 3 to specific message strings. The last status
code specifies default=“true”, mapping all other error codes except 0, which by default
maps to “Success”. If exit code 0 does not indicate success, you can override it with a
<status> tag. The {0} in the message string will substitute the exit code.

By default, <display-output> displays both the standard output and standard error
output from the process. You can display only the standard output by specifying:

<display-output stdout="t"/>

or only the standard error output by specifying:

<display-output stderr="t"/>

Note: The <display-exit-status> and <display-output> elements can only be used for
command line applications or scripts and not GUI applications. OneClick waits for the
script to complete before being available to the user again.

Chapter 4: Customizing OneClick Alarms 39

Chapter 4: Customizing OneClick Alarms

You can create custom alarm attributes and add them to the Alarm table and
Information views.

Adding customized alarm attributes that display in OneClick is a multi-step process that
requires using the Model Type Editor and the Alarm Preferences dialog, in addition to
modifying the Alarm table and the Alarm Information view to display the custom alarm
attributes.

To create and view custom alarm attributes

1. Create the custom alarm attributes by adding them to the GlobalAlarm model type
using the Model Type Editor. The attribute group ID value must be set to equal
11f4c.

Note: For information on how to add custom alarm attributes to the GlobalAlarm
model type see, Model Type Editor User Guide (0659). The guide provides complete
instructions on accessing and using the Model Type Editor.

2. Add a column to the Alarm table that displays the new customized alarm attribute
by customizing the alarm-table-config.xml file. Modify Table Columns provides an
example showing how to add a column to a table configuration file.

3. Add a field to the Alarm Details view configuration that displays the alarm attribute
in the alarm’s Information tab by customizing the view-alarmdetails-config.xml file.
Extend or Modify an Information View provides information and examples on how
to add a subview to an existing information view.

You can also apply a custom privilege to the new alarm attribute by customizing the
custom-privileges.xml file. Doing this limits which users or user groups or specific
privileges are required to view the customized alarms. The name of the privilege
must use the following syntax:

alarm-write-<attribute ID in hex>

The following example adds the new privilege to the Alarm Management group.

<alarm-write-ffff0000 type="write">

 <group scope="alarm-manager">alarm-mgmt</group>

 <label>New Alarm Attr</label>

</alarm-write-ffff0000>

4. Save and close the XML files you edited.

5. You must restart the OneClick server in order to apply the new privilege.

6. You must restart the OneClick Console to view the changes made to the Alarms
table and Alarm Information view.

Add a New Menu Item

40 OneClick Customization Guide

More information:

Creating Custom Privileges (see page 131)
Modify Table Columns (see page 41)
Extend or Modify an Information View (see page 102)

Chapter 5: Customizing OneClick Tables 41

Chapter 5: Customizing OneClick Tables

This section discusses some of the ways that you can modify existing tables found in the
OneClick Console. A list of the table elements available in OneClick and their
descriptions are presented in Example: Defining a Table Column. Specific examples for
modifying table columns are presented in the sections listed below.

This section contains the following topics:

Modify Table Columns (see page 41)
Display Instanced Attribute Values in Separate Table Rows (see page 48)
Define How Cells Display in Table Columns (see page 49)
Make a Table Column Editable (see page 55)
Customize Alarm Table Row Colors (see page 57)
Set Up a Default Sort (see page 58)
Customize the Port Name Column of the Interface Table (see page 60)
Sort Interfaces Table by ifIndex (see page 61)

Modify Table Columns

If you want to display additional attributes in a OneClick console table, you can do so by
making modifications to the XML using a customization file. The modifications need to
be made in a separate XML file in the appropriate directory under
<$SPECROOT>/custom/.

Extend a Factory Default File Using IDREF

OneClick requires that you write your customization code in a new file located in the
<$SPECROOT>/custom/topo/config directory that uses the same name as the factory
default file that builds the table you are modifying. Use the IDREF attribute to
“reference” the factory file and extend it with the new customization file. See Create
Customizations for details on creating customization files in OneClick.

Modify Table Columns

42 OneClick Customization Guide

Example: Referencing a Column File from a Table Configuration File

The following example shows a portion of an XML file used to define a table. Rather
than defining each column in the same file that defines the entire table, the example
uses separate files to define the first two columns in the table. The example uses the
idref attribute with each <column> element to link to the file that defines the column.

<table id="table-licenses-config"

xmlns="http://www.aprisma.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aprisma.com

../../common/schema/table-config.xsd">

<swing-row-template>

<enumerated-color idref="alternatingrow-color-config"/>

</swing-row-template>

<swing-table-template>

<show-vertical-lines>true</show-vertical-lines>

<show-horizontal-lines>false</show-horizontal-lines>

</swing-table-template>

<swing-header-row-template>

<static-color idref="row-header-color-config"/>

</swing-header-row-template>

<column-list>

<column idref="column-servicestate-config"/>

<column idref="column-modelname-config">

<default-width>300</default-width>

</column>

</column-list>

.

.

</table>

The first column is defined in the column-servicestate-config.xml file. The beginning
portion of this file is shown below. Note the id attribute used with the <column>
element to define this file as “column-servicestate-config”.

<column id="column-servicestate-config"

xmlns="http://www.aprisma.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aprisma.com

 ../../common/schema/table-config.xsd">

More information:

Customizing OneClick (see page 11)

Modify Table Columns

Chapter 5: Customizing OneClick Tables 43

Modify a Table Column

The following steps describe the general process for modifying table columns in
OneClick. Specific examples are provided in the following sections.

To modify a table column

1. Identify the default factory XML file that builds the table that you want to modify.

Many of the table files used to display data in the OneClick console are located in
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/config. All of the table
files are named for the functionality that they display. For example, the table used
to display interface information for each model is called
table-common-ifconfig-config.xml.

2. Create the file in which to add your modifications.

In this example the default file is
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/
configtable-common-ifconfig-config.xml. Create a file with the same name in the
<$SPECROOT>/custom/topo/config directory. If a file with that name already exists
in this directory, that is an indication that previous customizations have been made
to this table. In this case, add your customized code to the existing file.

3. Open the file in a text editor in order to make the appropriate modifications.

4. Use idref to reference the table configuration you are extending with this new
column configuration (see Step 1).

5. Construct a new column using the XML elements defined in Example: Defining a
Table Column. The example that follows this procedure shows how some of these
elements are used to define a column.

6. Find the <column-list> element in the XML file. The <column-list> element contains
all of the <column> elements used to define each column in the table.

7. Define a <column> element within the <column-list> element. The columns display
in the order they appear within the <column-list> element.

8. Insert the <name> element to define the title of the column.

9. Insert a <content> and an <attribute> element to define the contents you want to
display in the column.

10. (Optional) Use the <default-width> element to define the default width of the
column.

11. Save and close the modified file, and restart the OneClick console to view the
changes.

Modify Table Columns

44 OneClick Customization Guide

Example: Defining a Table Column

<column-list>

 <column>

 <name>Interface</name>

 <content>

 <attribute>0x100c4</attribute>

 </content>

 <default-width>30</default-width>

 </column>

 .

 .

 .

</column-list>

The following table describes the elements used for modifying a table.

Element Parent Element Description

<table>

Not applicable

This is the root element, and encloses all
child elements used to create a table.

<swing-table-template> <table> Used to define the appearance of the
table.

<show-vertical-lines> <swing-table-template> Defines whether to show vertical lines in
the table, values are true or false.

<show-horizontal-lines> <swing-table-template> Defines whether to show horizontal lines
in the table, values are true or false.

<line-color> <swing-table-template> Defines the color of the lines used to
create the table. The default value is
light-background_color. Other values can
be found in the
<$SPECROOT>/tomcat/webapps/spectru
m/WEB-INF/console/common/config/
common-color-config.xml file.

<show-tree-lines> <swing-table-template> Defines whether the table will be shown
with dashed lines connecting tree nodes,
values are true or false.

<preferred-width> <swing-table-template> Defines (in pixels) the default width of
the table.

<preferred-height> <swing-table-template> Defines (in pixels) the default height of
the table.

<swing-header-row-

template>

<table> Used to define the appearance of the
header row of the table.

Modify Table Columns

Chapter 5: Customizing OneClick Tables 45

Element Parent Element Description

<static-color> <swing-header-row-

template>

Specifies the color for the header row.
Use value idref=row-header-color-config
for consistency.

<swing-row-template> <table> Used to define the appearance for the
body rows in the table.

<enumerated-color> <swing-row-template> Used to specify different colors for each
row of the table, the default value used
is alternating row-color-config.

<static-color> <swing-row-template> Used to specify a single color used for all
of the rows in the table.

<column-list> <table> Used to define the list of columns to be
used in the table

<column> <column-list> Used to define a column in the column
list.

<name> <column> The name of the column. The text used
here will appear in the table header for
this column.

<editable> <column> Defines whether the value in the table
can be edited. If this value is set to true,
a set link appears next to the value.

<content> <column> Defines the value placed in the column.
This is the value used for sorting and
filtering. See "Rendering a value" for
information on what child elements can
be specified. The final displayed text can
be further manipulated by defining a
<swing-cell-template> tag. See Define
How Cells Display in Table Columns for
information on <swing-cell-template>.

<renderer> <content> Specifies the renderer to be used for the
content of the column. See Customize
the Port Name Column of the Interface
Table for more information.

<dynamic-renderer> <content> Enables you to specify a renderer
depending on model class or model type.
See About <dynamic-renderer> for
detailed instructions on usage.

Modify Table Columns

46 OneClick Customization Guide

Element Parent Element Description

<expression> <content> Used to define an expression to produce
a value for the column. See XML Usage
Common to All Customization Files for
more information

<message> <content> Used for specifying a plain text value for
the column.

<select> <content> Used to select a value for the column
based on certain criteria. See XML Usage
Common to All Customization Files for
more information.

<attribute> <content> Used to specify an attribute ID. The value
of the attribute will be placed in the
column.

<swing-cell-template> <column> Used to define how the cell in the
column is displayed. See Define How
Cells Display in Table Columns for
detailed information on using this
element.



Design On-Page and Off-Page Reference Icons

Chapter 6: Adding Support for Model Types or Model Classes 89

Example: Icon Configuration File

This icon configuration example generates the image that follows it. The example
assumes that the condition of the model is CRITICAL (3).

<?xml version="1.0" encoding="UTF-8"?>

<icon-config id="oneclick-orgservice-iconbase-config">

<static-color idref="oneclick-default-iconbase-color-config"/>

<shape-rectangle >

<x>0</x>

<y>0</y>

<width>139</width>

<height>84</height>

</shape-rectangle>

<stroke>Invisible</stroke>

<!-- ===

Specify the location of where pipes will connect to the icon.

==-->

<pipe-connection>

<x>73</x>

<y>36</y>

</pipe-connection>

<components>

<!-- ===

Definition of the model label.

== -->

<label-component idref="default-iconlabel-config" index="1">

 <x>0</x>

 <y>77</y>

 <column-list>

 <field-column>

 <column idref="column-modelname-config"/>

 <column idref="column-devicetype-config"/>

 </field-column>

 </column-list>

</label-component>

<!-- ==

Definition of the model's base image. Image color is determined by model condition.

-== -->

<image-component index="2">

 <x>0</x>

 <y>0</y>

 <width>139</width>

 <height>84</height>

 <image idref="oneclick-orgservice-iconbase-image-config"/>

</image-component>

</components>

</icon-config>

Create an Icon Label

90 OneClick Customization Guide

Create an Icon Label
OneClick model or device type icons have labels to identify them to OneClick operators.
Use the <label-component> elements listed in the table in the
default-iconlabel-config.xml file to add labels to the icons you create. The following
figure shows how some of the elements can be used in defining an icon label.

<x>, <y> define

upper left corner

of icon label

“selected” color defined by

<background-highlight>
<background-border> defines

white line around label

<show-background>true

More information:

The default-iconlabel-config.xml File (see page 91)
Adjust Icon Label Background Width (see page 93)
Default Label Width Settings (see page 93)
Create Fixed Width Icon Labels (see page 94)

Create an Icon Label

Chapter 6: Adding Support for Model Types or Model Classes 91

The default-iconlabel-config.xml File

The file
<$SPECROOT>/SPECTRUM/tomcat/webapp/spectrum/WEB-INF/topo/config/default-ico
nlabel-config.xml contains examples and more information on using the
<label-component> element and its attributes to create icon labels.

Example: <label-component> Code

<!-- ===

Definition of the model label.

==-->

<label-component idref="default-iconlabel-config" index="1">

<x>0</x>

<y>67</y>

<column-list>

<field-column>

 <column idref="column-modelname-config"/>

 <column idref="column-devicetype-config"/>

</field-column>

</column-list>

</label-component>

This example defines the model label by extending the functionality of the
default-iconlabel-config.xml file. This example creates a label that displays two fields of
text defined in the two column statements. The column statements create two rows in
the label for the content defined by the column configuration files they reference. This
label displays the model name and device type in the icon label. The code does not
specify a minimum or maximum column width for the label (see the following table), so
it has a fixed width of 95 pixels, the default condition.

Element Parent Element Description

<components>

<icon-config>

Defines all components for the icon.

<label-component> <component> Defines a label component.

The index attribute defines the order that the
label is drawn in with respect to other image,
text, and label components defined for the
same icon. Each index value must be unique. If
you have two
<*-components> with the same index value -
only the second one is drawn.

Index values begin at 1.

<x> <label-component> Defines the x coordinate of the upper left
corner of the label relative to the icon image
component.

Create an Icon Label

92 OneClick Customization Guide

Element Parent Element Description

<y> <label-component> Defines the y coordinate of the upper left
corner of the label relative to the icon image
component.

<column-list> <label-component> Constructs a list of columns used to create the
labels. Only one column is supported.

<field-column> <column-list> Constructs a column of information

<column> <field-column> Defines the data for the <field-column>. The
idref attribute allows you to associate another
XML file with the <column> that defines the
data for the column. The data for the <column>
does not have to reside in another file.

<max-background-width> <label-component> Defines the maximum width of the label
background. The label background expands and
contracts in width based on the longest column
value.

<min-background-width> <label-component> Defines the minimum width of the label
background.

<default-transparency> <label-component> Defines transparency value for label
background when the icon is not selected. 0 -
255; 0=completely transparent,
255=completely opaque.

<selected-transparency> <label-component> Defines transparency value for label
background when the icon is selected. 0 - 255;
0=completely transparent, 255=completely
opaque.

<show-background> <label-component> Indicate whether or not to show the label’s
background.

<enumerated-color> <label-component> Defines the label background color.

<enumerated-color> uses expressions and
enumerations to determine the color.

<static-color> <label-component> Defines the label background color.

<static-color> uses a specific color.

<vertical-spacing> <label-component> Specifies the spacing between rows of text in
pixels.

<border-spacing> <label-component> Defines the border height above the first
column and below the last column in pixels.

Create an Icon Label

Chapter 6: Adding Support for Model Types or Model Classes 93

Element Parent Element Description

<background-border> <label-component> True or False. If true, a one-pixel wide line is
used to outline the label border.

<enumerated-color> <background-border> Defines the color of <background-border>. For
details, see <enumerated-color> in this table.

<static-color> <background-border> Defines the color of <background-border>.

<background-highlight> <label-component> Defines the line that displays at the bottom of
the label when the icon is selected.

<enumerated-color> <background-highlight> Defines label background color when the icon is
selected. For details, see <enumerated-color>
in this table.

<static-color> <background-highlight> Defines the color of <background-highlight>,
the label background that displays when the
icon is selected.

<field-value> <label-component> Defines the values displayed in the icon label.

<enumerated-color> <field-value> Defines the color of text of the icon label.

<static-color>

<field-value>

Defines the color of text of the icon label.

 <field-value> Defines the font used for the icon label text.

Adjust Icon Label Background Width

The icon label background widens and narrows according to the length of the longest
text entry in the label, up to the maximum width specified in <max-background-width>,
and down to the minimum width specified in <min-background-width>. If the label
background is not wide enough to accommodate the length of the label text, increase
the <max-background-width> value.

Default Label Width Settings

When you create an icon label using label-component, the default label size is fixed at
95 pixels. Both <max-background-width> and <min-background-width> have a default
value of 95. This creates a label background with a fixed width of 95. If you do not
specify either of these elements, they assume the default value.

Define Text Components

94 OneClick Customization Guide

Create Fixed Width Icon Labels

To create an icon label that has a fixed width, set <max-background-width> and
<min-background-width> to the same value that provides enough line space for the icon
label text. The following image shows an icon label with a fixed width of 200.

Define Text Components

Refer to versions of this manual for release 8.0 or earlier on the CA Spectrum support
and documentation web site: http://ca.com/support http://www.aprisma.com/manuals

http://www.aprisma.com/manuals
http://www.aprisma.com/manuals

Define Selection Components

Chapter 6: Adding Support for Model Types or Model Classes 95

Define Selection Components

In order to make the icon standout when selected, you may want to specify images that
will appear only during selection. You do this via the <selection-component> element. In
the example below there are two components added that are defined as Selection
Components (image component #2 and #4). If the user selected the component, these
image components would become visible. Otherwise, they remain invisible. The
following figure shows the two selection components:

Define Selection Components

96 OneClick Customization Guide

<?xml version="1.0" encoding="UTF-8"?>

<icon-config id="oneclick-orgservice-iconbase-config">

<static-color idref="oneclick-default-iconbase-color-config"/>

<shape-rectangle >

<x>0</x>

<y>0</y>

<width>139</width>

<height>84</height>

</shape-rectangle>

<stroke>Invisible</stroke>

<!-- ===

Specify the location of where pipes will connect to the icon. -

== -->

<pipe-connection>

<x>73</x>

<y>36</y>

</pipe-connection>

<components>

<!-- ===

Definition of the model text background.

== -->

<image-component index="1">

<x>0</x>

<y>75</y>

<width>94</width>

<height>40</height>



</image-component>

<image-component index="2">

<x>0</x>

<y>75</y>

<width>94</width>

<height>40</height>

<selection-component>true</selection-component>



Define Selection Components

Chapter 6: Adding Support for Model Types or Model Classes 97

</image-component>

<!-- ==

Definition of the model's base image. The color of this image is

determined by the condition of the model.

== -->

<image-component index="3">

<x>0</x>

<y>0</y>

<width>139</width>

<height>84</height>

<image idref="oneclick-orgservice-iconbase-image-config"/>

</image-component>

<!-- ===

Definition of the image to show when the model is selected.

=== -->

<image-component index="4">

<x>8</x>

<y>0</y>

<width>131</width>

<height>72</height>

<selection-component>true</selection-component>



</image-component>

<!--==

Definition of the model name text field.

== -->

<text-component idref="oneclick-default-textfield-config"index="5">

<x>5</x>

<y>97</y>

<width>85</width>

<height>13</height>

<horizontal_alignment>left</horizontal_alignment>

<text>

 <attribute>0x1006e</attribute>

</text>

</text-component>

<!-- ===

Definition of the model type name text.

=== -->

<text-component idref="oneclick-default-textfield-config" index="6">

<x>5</x>

<width>85</width>

Define Model Icon Tooltips

98 OneClick Customization Guide

<height>12</height>

<horizontal_alignment>left</horizontal_alignment>

<text>

 <attribute>AttributeID.DEVICE_TYPE</attribute>

 <expression>

 (value() == null || ((String)value()).length() ==

 0) ? attr(AttributeID.MTYPE_NAME) : value()

 </expression>

</text>

</text-component>

<!-- ==

Definition of the rollup condition symbol.

=== -->

 <image-component index="7">

 <x>0</x>

 <y>54</y>

 <width>19</width>

 <height>19</height>

 <image idref="oneclick-rollup-triangle-image-config"/>

 </image-component>

</components>

</icon-config>

Define Model Icon Tooltips

You can configure the content of a tooltip that displays when a OneClick user moves the
cursor over the model icon. In the contents registry of the custom-app-config.xml file,
the <tooltip-config> element specifies the file that defines the tooltip. The custom
tooltip file, mydevice-tooltip-config.xml must be placed into the
$SPECROOT/custom/topo/config folder.

A tooltip configuration for models of model class 2, 5, 11, and 12 is registered to use the
tooltip that is defined within the mydevice-tooltip-config.xml file. Verify the following
example:

<contents-registry>

<reg-id>device-icon-config</reg-id>

<tooltip-config>mydevice-tooltip-config</tooltip-config>

<model-class>2</model-class>

<model-class>5</model-class>

<model-class>11</model-class>

<model-class>12</model-class>

</contents-registry>

Define Model Icon Tooltips

Chapter 6: Adding Support for Model Types or Model Classes 99

The following example shows the contents of a tooltip file. Each element is explained in
the table with examples.

<?xml version="1.0" encoding="UTF-8"?>

<tooltip-config id="mydevice-tooltip-config"

xmlns ="http://www.aprisma.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aprisma.com../../common/schema/column-config.xsd">

DO NOT USE<![CDATA[

<html><table>

<tr>

<td>{0}</td>

<td>{1}</td>

</tr>

<tr>

<td>{2}</td>

<td>{3}</td>

</tr>

<tr>

<td>{4}</td>

<td>{5}</td>

</tr>

</table></html>

</format>

<param>

<localize>com.aprisma.spectrum.app.util.render.ModelNameColumn</localize>

</param>

<param>

<attribute>AttributeID.MODEL_NAME</attribute>

<renderer>com.aprisma.spectrum.app.util.render.NullRenderer

</renderer>

</param>

<param>

<localize>

com.aprisma.spectrum.app.util.render.NetworkAddressColumn

</localize>

</param>

<param>

<attribute>AttributeID.NETWORK_ADDRESS</attribute>

<renderer>com.aprisma.spectrum.app.util.render.NullRenderer

</renderer>

</param>

<param>

<localize>

com.aprisma.spectrum.app.util.render.MACAddressColumn

</localize>

</param>

<param>

<attribute>AttributeID.MAC_ADDRESS</attribute>

<renderer>com.aprisma.spectrum.app.util.render.NullRenderer

Define Model Icon Tooltips

100 OneClick Customization Guide

</renderer>

</param>

</device-tooltip-config>

Note: The numbers that are used in the curly brackets reference the parameters that
are defined by the following <param> elements. {0} references the first parameter, {1}
references the second parameter and so on.

Element Parent Element Description

<tooltip-config> Not applicable The root element for the file that defines the tooltip.
The id attribute for this element must be set equal to
the value used for the <tooltip-config> element in the
<content-registry> found in the
custom-app-config.xml file.

DO NOT USE <tooltip-config> Use this to define how the data will be displayed in the
tooltip. In the above example, an HTML table is used.
The number in the curly brackets, e.g. {3}, references
the corresponding parameter, for example, the third
parameter defined in the file.

<param> <tooltip-config> Use this to define the value to be displayed.

<localize> <param> Converts the string specified in the parameter to a
localized value. Use this if you are using a parameter
value obtained from a OneClick XML file that shipped
with CA Spectrum and begins with
“com.aprisma.spectrum”.

<renderer> <param> See Customize the Port Name Column of the Interface
Table.

<attribute> <param> Use this to identify the attribute you want to be
displayed.

<message> <param> Use this for specifying a plain text value for a
parameter.

More information:

Define Model Appearance (see page 70)
Customize the Port Name Column of the Interface Table (see page 60)

Chapter 7: Customizing a Model’s Information View 101

Chapter 7: Customizing a Model’s
Information View

Each model displayed in OneClick has an Information view as shown in the following
figure. You access this view using the Information tab in the Component Detail panel.

Information views are constructed from separate XML files called Information
Configuration files. The primary file is the <$SPECROOT>/tomcat/webapps/
spectrum/WEB-INF/topo/config/topo-app-config.xml file. In this file, for each model
type, the <contents-registry> element specifies the <information-config> elements that
link an Information Configuration file to the model type.

Extend or Modify an Information View

102 OneClick Customization Guide

The <contents-registry> in the following example is found in topo-app-config.xml. It links
the 0x2100c (Rtr_Cisco) model type with view-devicedetails-config.xml, which specifies
the format for the Information view.

<contents-registry>

<reg-id>router-icon-config</reg-id>

<tooltip-config>device-tooltip-config</tooltip-config>

<information-config>view-devicedetails-config</information-config>

<performance-config>performance-data-rtrcisco-config</performance-config>

<!-- All Model Types derived from Rtr_Cisco (0x21000c) -->

<model-type>0x21000c</model-type>

<!-- Rtr_Cisco -->

</contents-registry

Several model classes and model types may be specified within the contents or
component details registries. Information views can be reused in one or more
<contents-registry> elements.

This section describes how to add and edit information displayed in the Information
view for a particular model type or model class.

This section contains the following topics:

Extend or Modify an Information View (see page 102)
Create an Information Configuration File (see page 104)
Associate an Information Configuration File with a Model Class or Model Type (see page
119)

Extend or Modify an Information View

You can modify or create an Information view to display information available in a
device MIB that CA Spectrum and OneClick do not support by default. You can decide
whether to add this parameter to one of the existing subviews in the Information view
for that device type, or to create a new subview.

When you create or modify an Information view, you must create a new Information
Configuration file in the <$SPECROOT>/custom/console/config/ directory. This file must
have the same name as the factory default Information Configuration file that you need
to modify. You then associate the Information Configuration file with the appropriate
model type using the <$SPECROOT>/custom/console/config/custom-app.config.xml file.

Note: You must create the file
<$SPECROOT>/custom/console/config/custom-app-config.xml and add your
customization code to it. See Create Customizations (see page 11) for information about
creating and saving customization files, and relating them to their factory default
counterpart files using IDREF. That topic also discusses extending, overriding, or creating
new configuration files.

.

Extend or Modify an Information View

Chapter 7: Customizing a Model’s Information View 103

Follow these steps:

1. If you are modifying or extending an existing Information view for an existing model
type or model class, identify the current Information view configuration file that is
used to create the Information view.

a. Open the
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/config/topo-app-co
nfig.xml file and find the <contents-registry> element for the appropriate
model type or model class. (For an example, see the XML code example at the
start of this chapter.)

Note: OneClick uses the hierarchy that model_type definitions override the
same definition found in a model_class.

b. Find the <information-config> element within the <contents-registry> element,
and note the name of the Information Configuration file that is described by
this element. All of the existing Information Configuration files are located in
the <$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/config directory.

2. To extend an existing information configuration, take the following steps:

a. Create a new file in the <$SPECROOT>/custom/topo/config directory with the
same name as the Information Configuration file determined in the next step.
Use idref to extend the existing factory file with the contents of this new file.

b. Open the file using a text editor and use the XML syntax outlined in Create an
Information Configuration File (see page 104) to build the file.

c. Continue to step 4.

3. To modify an existing information configuration:

a. Copy the Information configuration file identified in step 1 from
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/config directory into
the <$SPECROOT>/custom/topo/config directory.

b. Open the file using a text editor and use the XML syntax outlined in Create an
Information Configuration File (see page 104) to modify the file.

c. Continue to step 4.

4. Save and close the file.

5. Associate the new Information Configuration file with the appropriate model types
or model classes. Follow the instructions in Associate an Information Configuration
File with a Model Class or Model Type (see page 119).

Create an Information Configuration File

104 OneClick Customization Guide

Create an Information Configuration File

The XML that defines the Information Configuration is split up into two major sections:
the header definition and the subview definition. Each define that portion of the
model’s information tab as shown in the following figure.

The XML elements used to build the header and subview in the Information view are
listed in the following table.

Element Parent Element Description

<view> Not applicable This is the root element for the
Information Configuration file. The ID
attribute for this element defines the
value that should be used for the
<information-config> element in the
custom-app-config.xml file.

<view-header> <view> Defines the header portion of the view.

<subviews> <view> Defines the available subviews.

Create an Information Configuration File

Chapter 7: Customizing a Model’s Information View 105

More information:

Associate an Information Configuration File with a Model Class or Model Type (see page
119)
Define the Header (see page 105)
Define the Subview (see page 106)

Define the Header

The Information tab header is identified by the <view-header> element. The header
specifies the model’s graphical depiction and textual information as shown in the image
in Create an Information Configuration File.

Example: Code for Information Tab Header

<view-header>

<show-icon>true</show-icon>

<show-labels>false</show-labels>

<field-column>

<column idref="column-modelname-config"/>

<column idref="column-modeltype-config"/>

</field-column>

</view-header>

Element Parent Element Description

<view-header> <view> Defines the header portion of the view.

<show-icon> <view-header> Indicates whether or not to show the icon.
Values: true or false.

<show-labels> <view-header> Indicates whether or not to show field labels

Values: true or false

<field-column> <view-header> Constructs a column of information.

<column> <field-column> Defines the data for the field column. The
idref attribute enables you to associate
another XML file, which will define the data
for the column. The data for the column does
not have to be in another file, it is done for
organizational purposes only.

Create an Information Configuration File

106 OneClick Customization Guide

More information:

Create an Information Configuration File (see page 104)

Define the Subview

The subview section defines one or more subviews that display in the Information tab as
shown in the image in Create an Information Configuration File. You can define one or
more subviews using the <subviews> element and the child elements shown in the
following table. As shown in the Example: Subview Definition, all subview definitions are
enclosed within one <subviews> element.

Element Parent Element Description

<subviews> <view> Encloses all of the elements which define each type
of subview.

<field-subview> <subviews> Defines a field subview.

<table-subview> <subviews> Defines a table subview.

<application-subview> <subviews> Defines an application subview.

<related-model-subview> <subviews> Defines a related model subview.

<related-model-table-subview> <subviews> Defines a related model table subview.

<subview-group> <subviews> Groups subviews together under one subview.

Create an Information Configuration File

Chapter 7: Customizing a Model’s Information View 107

Example: Subview Definition

<subviews>

<field-subview>

.

.

.

</field-subview>

<application-subview>

.

.

.

</application-subview>

<table-subview>

.

.

.

</table-subview>

</subviews>

More information:

Create an Information Configuration File (see page 104)
Add a Field Subview (see page 108)
Add Field Subviews Using IDREF (see page 110)
Add a Table Subview (see page 110)
Add an Application Subview (see page 113)
Add a Related Model Subview (see page 114)
Add a Related Models Table Subview (see page 115)

Create an Information Configuration File

108 OneClick Customization Guide

Add a Field Subview

Field subviews are used to display a list of non-list attributes available on the selected
device model. The following is an example of XML syntax used to create a field subview.

Example: Field Subview

<field-subview>

<title>General Information</title>

<privilege>

<name>GeneralInfo</name>

</privilege>

<field-column>

<column idref="column-condition-config"/>

<column idref="column-contactstatus-config"/>

<column idref="column-networkaddress-config"/>

<column idref="column-ismanaged-config">

 <editable/>

</column>

<column idref="column-securitystring-config">

 <editable verifier=

 "com.aprisma.spectrum.app.swing.widget.SecStringInputVerifier"/>

</column>

</field-column>

<field-column>

<column idref="column-modelcreationdate-config"/>

<column idref="column-modeltypename-config"/>

<column idref="column-modelclass-config"/>

<column idref="column-lastsuccessfulpoll-config"/>

<column idref="column-landscape-config"/>

<column idref="column-modelnotes-config">

 <editable/>

</column>

</field-column>

</field-subview>

This code generates a subview similar to the one shown in the following figure.

Create an Information Configuration File

Chapter 7: Customizing a Model’s Information View 109

You can use the elements shown in the following table to create a field subview.

Element Parent Element Description

<field-subview> <subviews> Defines a field subview.

If you set the expanded attribute of this element to true,
the subview will be expanded by default.

The idref attribute enables you to associate an XML file
that defines the data for this subview. The data for the
subview does not have to be in another file, it is done for
organizational purposes only.

<title> <field-subview> The title of the subview. In our example above, the title is
“General Information”.

<display-if> <field-subview> Enables the author to specify whether the subview
should be displayed via an expression.

<display-if-app-installed> <field-subview> Enables the author to specify that the defined view only
be added if the specified application is installed.

<privilege> <field-subview> Associates a privilege to the subview. If the user is not
given this privilege, the subview will not be displayed for
that user.

<show-labels> <field-subview> Indicates whether or not to show field labels. Values:
true or false.

<field-column> <field-subview> Constructs a column of information.

<column> <field-column> Defines the data for the field column. The idref attribute
enables you to associate another XML file, which will
define the data for the column. The data for the column
does not have to be in another file, it is done for
organizational purposes only.

<editable> <column> Specifies if the column is editable.

More information:

Creating Custom Privileges (see page 131)

Create an Information Configuration File

110 OneClick Customization Guide

Add Field Subviews Using IDREF

The example in this section shows how to extend the factory default
view-devicedetails-config.xml file with a customized field subview using the IDREF
attribute. The code shown is in the file
<$SPECROOT>/custom/topo/config/view-devicedetails-config.xml, the same name as
the file it extends, but in the /custom directory.

Example: Field Subview using IDREF

<view idref="view-devicedetails-config">

<subviews>

<field-subview >

<title>My Subview</title>

<field-column>

 <column idref="column-networkaddress-config">

 <editable/>

 </column>

</field-column>

</field-subview>

</subviews>

</view>

This example creates a field subview titled My Subview that displays information
defined by the file column-networkaddress-config.xml.

The line <view idref="view-devicedetails-config"> adds the field subview “My Subview”
to the factory default view-devicedetails-config.xml file.

Add a Table Subview

A table subview enables you to display a group of list attributes available from the
selected model. These list attributes are displayed in table format. The following is an
example of XML syntax used to create a table subview.

Create an Information Configuration File

Chapter 7: Customizing a Model’s Information View 111

Example: Table Subview

<table-subview>

<title>Interface Configuration Table</title>

<privilege>

<name>InterfaceConfigurationTable</name>

</privilege>

<swing-header-row-template>

<static-color idref="row-header-color-config"/>

</swing-header-row-template>

<swing-row-template>

</swing-row-template>

<column-list>

<column>

 <name>Interface</name>

 <content><attribute>0x100c4</attribute>

 </content>

 <default-width>30</default-width>

</column>

<column>

 <name>Type</name>

 <content>

 <attribute>0x100c6</attribute>

 <renderer>

 <param name="attrID">0x100c6</param>

 com.aprisma.spectrum.app.util.render.EnumeratedAttrRenderer

 </renderer>

 </content>

 <default-width>100</default-width>

</column>

<column>

 <name>IF Speed</name>

 <content>

 <attribute>0x100c8</attribute> <!-- IfSpeed -->

 <renderer>com.aprisma.spectrum.app.topo.client.

 interfaces.render.IfSpeedRenderer

 </renderer>

 </content>

 <default-width>60</default-width>

</column>

<column>

 <name>Physical Address</name>

 <content>

 <attribute>0x100c9</attribute>

 </content>

 <default-width>90</default-width>

</column>

</column-list>

</table-subview>

Create an Information Configuration File

112 OneClick Customization Guide

The code in this example generates a subview similar to the one shown in the following
image.

You can use the elements shown in the following table to create a table subview.

Element Parent Element Description

<table-subview> <subviews> Adds a table subview.

If you set the expanded attribute of this element to true, the
subview will be expanded by default.

The idref attribute enables you to associate an XML file that
defines the data for this subview. The data for the subview does
not have to be in another file, it is done for organizational
purposes only.

<title> <table-subview> The title for the table.

<privilege> <table-subview> Associates a privilege to the subview. If the user is not given this
privilege, the subview will not be displayed for that user.

Note: All of the elements that can be used to modify a table can be used to create the
table for the table subview.

More information:

Creating Custom Privileges (see page 131)
Modify a Table Column (see page 43)

Create an Information Configuration File

Chapter 7: Customizing a Model’s Information View 113

Add an Application Subview

An application subview enables you to display attributes affiliated with an application
model type related to the selected model type by a specified criteria. The example
below uses CA Spectrum’s PossPrimApp (0x230000) relation.

Example: Application Subview

<application-subview>

<title>SNMP2 IP Routing Table</title>

<model-type>0x230010</model-type>

<subviews>

 <table-subview idref="table-ip2-ip-routingtable-config"/>

</subviews>

</application-subview>

The attribute used within the <model-type> element defines the model type to which
the subview pertains. In the example above, the value 0x230010 is used. This attribute
value corresponds to the SNMP2_Agent Application model type. This means that this
particular table definition applies only to the SNMP2_Agent application. If the current
device does not implement this application, this table will not be visible.

Element Parent Element Description

<application-subview> <subviews> Creates an application subview.

If you set the expanded attribute of this element to
true, the subview will be expanded by default.

The idref attribute enables you to associate an XML
file that defines the data for this subview. The data
for the subview does not have to be in another file, it
is done for organizational purposes only.

<title> <application-subview> The title of the subview.

<model-type> <application-subview> The model type to which the subviews will pertain.

<subviews> <application-subview> Enables you to add a prebuilt table-subview or field-
subview to the detail components that reside within
the application subview. Values: table-subview
and/or field-subview.

<criteria> <application-subview> The search criteria used to find the related models.

<privilege> <application-subview> Associates a privilege to the subview. If the user is not
given this privilege, the subview will not be displayed
for that user.

Create an Information Configuration File

114 OneClick Customization Guide

More information:

Creating Custom Privileges (see page 131)

Add a Related Model Subview

A related model subview enables the user to display the attributes of models related to
the current, selected model via a search criteria, for example, models that are related by
a specific association. The user can then display attributes of the found models in field
or table format. Add a Related Models Table Subview shows how you can display the
attributes in table format.

You can use the elements in the following table to create related model subview.

Element Parent Element Description

<related-model-subview> <subviews> If you set the expanded attribute of this
element to true, the subview will be
expanded by default.

The idref attribute enables you to associate
an XML file that defines the data for this
subview. The data for the subview does not
have to be in another file, it is done for
organizational purposes only.

<title> <related-model-subview> The title of the subview.

<model-type> <related-model-subview> The model type to which the subviews will
pertain.

<subviews> <related-model-subview> Enables you to add a prebuilt table-subview
or field- subview to the detail components
that reside within the subview. Values:
table-subview and/or field-subview.

<criteria> <related-model-subview> The search criteria used to find the related
models.

<privilege> <related-model-subview> Associates a privilege to the subview. If the
user is not given this privilege, the subview
will not be displayed for that user.

Create an Information Configuration File

Chapter 7: Customizing a Model’s Information View 115

More information:

Creating Custom Privileges (see page 131)
Add a Related Models Table Subview (see page 115)

Add a Related Models Table Subview

You can use the <related-models-table-subview> to display a table of models that are
associated with the current selected model based on a specified search criteria.

You can use the elements in the following table to create a related model table subview.

Element Parent Element Description

<related-model-table-subview> <subviews> If you set the expanded attribute
of this element to true, the
subview will be expanded by
default.

The idref attribute enables you to
associate an XML file that defines
the data for this subview. The data
for the subview does not have to
be in another file, it is done for
organizational purposes only.

<title> <related-model-table-subview> The title of the subview.

<privilege> <related-model-table-subview> Associates a privilege to the
subview. If the user is not given
this privilege, the subview will not
be displayed for that user.

<table> <related-model-table-subview> This elements and its
sub-elements define the table. See
the table in Modify a Table
Column for a list of sub-elements.

<criteria> <related-model-table-subview> The search criteria used to find the
related models.

Create an Information Configuration File

116 OneClick Customization Guide

In the example that follows, the <subviews> element is used to place a view within a
view allowing multiple views to be nested within each other. Each column in the table
represents the value of an attribute for each of the models that have passed the search
criteria.

Example: Related-Model-Table Subview (demo-details-config.xml)

<subviews>

<related-models-table-subview>

<title>Demo Table Title</title>

<criteria>demo-search-criteria</criteria>

<table>demo-table-config</table>

</related-models-table-subview>

</subviews>

Example: Referenced Criteria XML (demo-search-criteria.xml)

<search-criteria id="demo-search-criteria"

xmlns="http://www.aprisma.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aprisma.com

../../common/schema/search-criteria-config.xsd">

<child-models>

<relation>Collects</relation>

</child-models>

</search-criteria>

Create an Information Configuration File

Chapter 7: Customizing a Model’s Information View 117

Example: Referenced Table XML (demo-table-config.xml)

<?xml version="1.0" encoding="utf-8"?>

<table id="demo-table-config"

xmlns="http://www.aprisma.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aprisma.com

 ../../common/schema/table-config.xsd">

<swing-header-row-template>

<static-color idref="row-header-color-config"/>

</swing-header-row-template>

<swing-row-template>

<enumerated-color idref="alternatingrow-color-config"/>

</swing-row-template>

<column-list>

<column>

 <name>Model Name</name>

 <content>

 <attribute>AttributeID.MODEL_NAME</attribute>

 </content>

</column>

<column>

 <name>Condition</name>

 <content>

 <attribute>AttributeID.CONDITION</attribute>

 </content>

</column>

</column-list>

</table>

More information:

Creating Custom Privileges (see page 131)
Modify a Table Column (see page 43)

Create an Information Configuration File

118 OneClick Customization Guide

Define a Subview Group

You can group together one or more subviews under a single collapsible group using the
<subview-group> element.

<subview-group>

<title>Subview Group Title</title>

<display-if>

<expression>

 attrInt(AttributeID.MTYPE_HANDLE) == 0x3cc0002

</expression>

</display-if>

<subviews>

<table-subview idref="example-table1-config">

 <title>Example Sub View #1</title>

</table-subview>

<table-subview idref="example-table2-config">

 <title>Example Sub View #2</title>

</table-subview>

</subviews>

</subview-group>

This example generates a subview group similar to the one shown in the following
figure.

Associate an Information Configuration File with a Model Class or Model Type

Chapter 7: Customizing a Model’s Information View 119

Use the elements shown in the following table to create a subview group.

Element Parent Element Description

<subview-group> <subviews> If you set the expanded attribute of this element
to true, the subview will be expanded by default.

The idref attribute enables you to associate an
XML file that defines the data for this subview.
The data for the subview does not have to be in
another file, it is done for organizational purposes
only.

<title> <subview-group> The title of the subview group. In the example
above, this is Subview Group Title.

<privilege> <subview-group> Associates a privilege to the subview group. If the
user is not given this privilege, the subview group
will not be displayed for that user.

<display-if> <subview-group> Adds an expression that will determine whether
or not the group will be visible.

<subviews> <subview-group> Adds any type of subview (besides group) to this
subview group.

More information:

Creating Custom Privileges (see page 131)

Associate an Information Configuration File with a Model Class
or Model Type

Once you have created the Information view with an Information Configuration file, you
must follow the instructions below to associate the Information Configuration file with
the model type or model class.

To associate an Information Configuration File with a Model

1. If it does not already exist there, copy the
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/custom-app-c
onfig.xml to the <$SPECROOT>/custom/console/config directory.

2. Open this file with a text editor.

Associate an Information Configuration File with a Model Class or Model Type

120 OneClick Customization Guide

3. Add the following block of XML code to link the appropriate model type(s) or model
class(es) to the Information Configuration file. Use the XML elements shown to
define the information appropriate to your model type or model class.

 <contents-registry>

 <icon-reg-id>your-icon-registration</icon-reg-id>

 <tooltip-config>your-tooltip-config</tooltip-config>

 <information-config>your-information-config-file</information-

 config>

 <model-class>your-model-class</model-class>

 </contents-registry>

4. Save and close the custom-app-config.xml file.

5. Restart the OneClick client for your changes to take effect.

More information:

Define Model Appearance (see page 70)

Chapter 8: Creating a Model’s Performance View 121

Chapter 8: Creating a Model’s Performance
View

By default, some model types are configured to have a Performance view that shows
changes in attributes, such as CPU utilization or memory, over time. In OneClick, you
access this device view by clicking the Performance tab in the Component Detail panel.

A Performance view is composed of two XML files:

A performance data configuration file

This XML file specifies the data that can be displayed in any of the graphs within the
Performance tab. Typically, this data includes attributes of the associated model
type.

A performance view configuration file

This XML file defines the appearance of each graph available within the
Performance tab. Each graph can display any of the lines defined within the
performance data configuration file.

Create a New Performance View

122 OneClick Customization Guide

If the data or the format of one of the default Performance views does not meet your
requirements, you can customize it for a particular model type or model class. For
example, if you have added support in CA Spectrum for additional MIBs that are
supported by a device, you might want to customize the view to graph some of the data
that is available in the MIB. You can also create your own custom Performance views.

If a Performance view is not configured for the model currently selected in OneClick, the
Performance tab is disabled.

This section contains the following topics:

Create a New Performance View (see page 122)
Customize an Existing Performance View (see page 129)

Create a New Performance View

When you create a Performance view for a model type or model class from scratch, you
should place the configuration files that define the view in the
<$SPECROOT>/custom/topo/config directory. This helps to ensure they are not
overwritten during an upgrade of CA Spectrum.

You associate the view’s performance data configuration file with each applicable model
type or model class in a file named custom-app-config.xml. While you can use either the
<contents-registry> element or the <component-details-registry> element to do this, a
best practice is to use the <component-details-registry> element because it configures
only the Component Detail panel for the given model type or model class. For a
description of the different registries available, see Chapter 5: Add Support for Model
Types or Model Classes.

To create a new Performance view

1. In the <$SPECROOT>/custom/topo/config directory, create the performance data
configuration file that specifies the data to be graphed in the view.

2. In the <$SPECROOT>/custom/topo/config directory, create a performance view
configuration file that defines the appearance of each graph in the view.

Create a New Performance View

Chapter 8: Creating a Model’s Performance View 123

3. In custom-app-config.xml, associate the performance data configuration file with
the appropriate model types or model classes:

a. If it does not already exist there, copy
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/
custom-app-config.xml to the <$SPECROOT>/custom/console/config directory.

Note: Ensure to copy the file to the specified location. Do not modify the
default custom-app-config.xml file that is provided with CA Spectrum because
it is overwritten when you upgrade to a newer version.

b. In custom-app-config.xml, add a block of XML code similar to the following
example using a text editor. This code links the appropriate model types and
model classes to the performance configuration data file.

The following XML code example associates a model type whose ID is
0x3250004 to a performance data configuration file named
<$SPECROOT>/custom/topo/config/
performance-data-ciscovoiceapp-config.xml.

 <component-details-registry>

 <performance-config>performance-data-ciscovoiceapp-config</performan

ce-config>

 <model-type>0x3250004</model-type>

 <!-- CiscoVoiceApp -->

 </component-details-registry>

Note: You can specify several model classes and model types within the
contents or component details registries. You can also reuse Performance
views in one or more <contents-registry> elements.

c. Save and close the custom-app-config.xml file.

4. Restart the OneClick client for your changes to take effect.

More information:

Adding Support for Model Types or Model Classes (see page 65)
Create a Performance Data Configuration File (see page 124)
Create a Performance View Configuration File (see page 126)

Create a New Performance View

124 OneClick Customization Guide

Create a Performance Data Configuration File

The performance data configuration file specifies the data that can be displayed in any
of the graphs within the Performance tab. A recommended naming convention for this
XML file is performance-<descriptor>-data-config.xml.

Use the XML elements described in the following table to create a performance data
configuration file.

Element Parent Element Description

performance-config Not applicable Represents the top-level parent element.

You specify multiple graphs for a Performance view
using multiple instances of the <graph> element in the
performance view configuration file.

display performance-config Specifies the XML file that defines the view for
presenting the graph data.

This name must exactly match the simple file name of
the actual performance view configuration file.

line performance-config Defines a line in the graph.

name line Specifies the label (name) for the line defined by the
<line> parent element as it will be seen in the graph.
The value for name needs to match its corresponding
line definition in the performance graph view
configuration file.

If you are graphing a list attribute, you can also specify
an attr-id attribute for the name element. This
specifies an attribute ID whose value is appended to
the name of each instance in the list. If not specified,
the instance number is appended to the name of each
list instance.

In the following example, attribute 0x12ac6 represents
the list of labels for the multiple lines defined by
<list-content>.

<line>

<name attr-id="0x12ac6">
 Memory Utilization
 </name>
 <list-content>
 <attribute>0x12ac6</attribute>
 </list-content>

</line>

Create a New Performance View

Chapter 8: Creating a Model’s Performance View 125

Element Parent Element Description

content line Specifies scalar data to graph as a single line defined by
the <line> parent element, for example:

<content>

<attribute>0x2100cc</attribute>

</content>

list-content line Specifies list data to graph as multiple lines defined by
the <line> parent element.

In the following example, the attribute 0x12ac6 is an
integer list attribute that represents memory
utilization. There will be a separate line graphed for
each instance in the list.

<line>

<name attr-id="0x12ac6">
 Memory Utilization
 </name>
 <list-content>
 <attribute>0x12ac6</attribute>
 </list-content>

</line>

attribute content,
list-content

Specifies the ID of the attribute to graph as the line
defined by the <line> parent element.

expression content,
list-content

Used to define an expression to produce a value for
the column, for example:

(attrInt(0xd054c) + attrInt(0xd054d))/8

applications line You can also graph data from related application
models. Within the <applications> element, use the
<model-type> element to specify the model type
handle of the related application model. If the model in
context has an application model related to it of this
type, the data is retrieved from that application model.

<applications>

<model-type>0xc40043</model-type>

</applications>

model-type applications The model type handle of the application model from
which the data is retrieved. If no application models of
this type are related to the model in context, the line is
not shown.

Create a New Performance View

126 OneClick Customization Guide

The following example specifies the data to display in a 2-line performance graph that
shows the change in both active and total VoIP calls over time for a Cisco device.

<performance-config id="performance-data-ciscovoiceapp-config">

<display>performance-ciscovoiceapp-config</display>

<line>

<name>Active VoIP Calls</name>

<content>

 <attribute>0x325012b</attribute><!-- VoIP_Current_Calls -->

</content>

</line>

<line>

<name>Total VoIP Calls</name>

<content>

 <attribute>0x3250129</attribute> <!-- VoIP_Total_Calls -->

</content>

</line>

</performance-config>

Note: For additional, more complex examples of performance data configuration files,
see the supporting files for the Performance views included with CA Spectrum. You can
find these files by navigating to the <$SPECROOT>/tomcat/webapps/spectrum/WEB-INF
directory and searching for files named perf*.

More information:

XML Usage Common to All Customization Files (see page 137)
Create a Performance View Configuration File (see page 126)

Create a Performance View Configuration File

The performance view configuration file defines the appearance of each graph available
within the Performance tab. A recommended naming convention for this XML file is
performance-<descriptor>-view-config.xml.

Use the XML elements described in the following table to create a performance view
configuration file.

Element Parent Element Description

performance-view Not applicable Represents the top-level parent element.

Create a New Performance View

Chapter 8: Creating a Model’s Performance View 127

Element Parent Element Description

graph performance-view Within the performance view configuration file, you can
configure multiple graphs. Each graph is denoted by this
<graph> element. The id attribute of this element is used
as the graph title and displayed in the pulldown menu on
the view (which is used for switching between multiple
graphs for a single model).

<graph id="CPU Utilization">

<y-axis-label>Utilization</y-axis-label>
<y-axis-units>%</y-axis-units>
<line>
 <name>CPU Utilization</name>
</line>

</graph>

y-axis-label graph Specifies the label for the Y axis.

y-axis-units graph Specifies the units for the Y axis, for example, % or Bits
per Second.

line graph Defines a line in the graph, for example:

<line color="#ffff00">

Use the color attribute to specify the hexadecimal RGB
value of the color to use.

name line Specifies the label (name) for the line defined by the
<line> parent element.

This value must match the value for the same line in the
performance data configuration file that defines the
view’s data.

If you are graphing a list attribute, you may also specify
an attr-id attribute for the name element. This
represents the attribute id of which the value is
appended to the name of each instance in the list. If not
specified, the instance number is appended to name of
each list instance.

display-if line Specifies the line should be displayed in the graph only if
the expression defined in the <expression> child element
evaluates to TRUE.

expression display-if Used to define an expression to define a complex
condition for whether or not to graph the line.

For more information, see Chapter 9: XML Usage
Common to All Customization Files.

fill line If this element is included, the area below the line is
filled in with color.

Create a New Performance View

128 OneClick Customization Guide

The following example specifies the format for a 2-line performance graph that shows
the change in both active and total VoIP calls over time for a Cisco device.

Note: This is the format for the example graph whose data is defined in Create a
Performance Data Configuration File.

<performance-view id="performance-ciscovoiceapp-config">

<graph id="VoIP Calls Title">

<y-axis-label>Calls</y-axis-label>

<y-axis-units>unit</y-axis-units>

<line>

 <name>Active VoIP Calls</name>

</line>

<line>

 <name>Total VoIP Calls</name>

</line>

</graph>

</performance-view>

Note: For additional, more complex examples of performance view configuration files,
see the supporting files for the Performance views included with CA Spectrum. You can
find these files by navigating to the <$SPECROOT>/tomcat/webapps/spectrum/WEB-INF
directory and searching for files named perf*.

More information:

Create a Performance Data Configuration File (see page 124)

Customize an Existing Performance View

Chapter 8: Creating a Model’s Performance View 129

Customize an Existing Performance View

In general, you customize an existing Performance view by overriding the default
configuration files for the view with versions that contain your customizations.

To customize an existing Performance view

1. Identify the default configuration files that define the Performance view you want
to customize:

a. Open <$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/config/
topo-app-config.xml and find the <contents-registry> or
<component-details-registry> element for the appropriate model type or
model class.

Note: If your model qualifies for both a model type and a model class
registration, the model type registration takes precedence and is applied.
Also, even though you can define the Performance view configuration in both
the contents registry and the component details registry, the component
details registry takes precedence. The contents registry is primarily for model
appearance and typically is applied to only the model class.

b. Find the <performance-config> element within the <contents-registry> or
<component-details-registry> element, and note the name of the specified
performance data configuration file.

Note: All of the default performance configuration files—both the data
configuration files and the view configuration files—are located in the
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/*/config directories.

c. Open the
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/topo/config directory,
and then open the performance data configuration file you identified in the
previous step.

d. Find the <display> element within the <performance-config> element, and note
the name of the specified performance view configuration file.

2. Copy over one or both of the performance configuration files that you identified in
step 1 to the <$SPECROOT>/custom/topo/config directory. You only need to copy
over a file if it requires customizations.

Note: To override the factory default performance configuration files, the copied
files (that will contain your customizations) must have the same names as the
original, default files.

3. If necessary, modify the copied performance data configuration file per your
requirements, and then save and close the file.

4. If necessary, modify the copied performance view configuration file per your
requirements, and then save and close the file.

Customize an Existing Performance View

130 OneClick Customization Guide

5. If necessary, in custom-app-config.xml, change the model types or model classes
that are associated with the performance data configuration file:

a. If it does not already exist there, copy
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/
custom-app-config.xml to the <$SPECROOT>/custom/console/config directory.

Note: Make sure to copy the file to the specified location. Do not modify the
default custom-app-config.xml file that is provided with CA Spectrum because
it is overwritten when you upgrade to a newer version.

b. In custom-app-config.xml, add a block of XML code similar to the following
example using a text editor. This code links the appropriate model types and
model classes to the performance configuration data file.

The following XML code example associates a model type whose ID is
0x3250004 to a performance data configuration file named
<$SPECROOT>/custom/topo/config/
performance-data-ciscovoiceapp-config.xml.

 <component-details-registry>

 <performance-config>performance-data-ciscovoiceapp-config</performan

ce-config>

 <model-type>0x3250004</model-type>

 <!-- CiscoVoiceApp -->

 </component-details-registry>

Note: You can specify several model classes and model types within the
contents or component details registries. You can also reuse Performance
views in one or more <contents-registry> elements.

The <component-details-registry> element within custom-app-config.xml
overrides the equivalent registration for the model type or model class within
an *-app-config.xml file. These registrations are used in the factory XML files in
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/*/config/
*-app-config.xml.

c. Save and close the custom-app-config.xml file.

6. Restart the OneClick client for your changes to take effect.

More information:

Create a Performance Data Configuration File (see page 124)
Create a Performance View Configuration File (see page 126)

Chapter 9: Creating Custom Privileges 131

Chapter 9: Creating Custom Privileges

This section describes how to restrict access to menu items, attributes, and subviews
using privileges.

This section contains the following topics:

Define a Custom Privilege (see page 131)
Reference a Privilege When Defining a Menu Item, Column, or Subview (see page 136)

Define a Custom Privilege

Define each new privilege in the custom-privileges.xml file. This file registers custom
privileges that can be applied to the following components:

■ Menu items

■ Columns

■ Subviews

If an administrator has not assigned the corresponding privilege to a user, that user
cannot access the menu item, column, or subview.

Follow these steps:

1. Copy <$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/console/config/
custom-privileges.xml to the <$SPECROOT>/custom/console/config directory.

2. Open this file with a text editor.

Note: Define all new privileges inside the <privileges> element, which is the root
element for the file.

3. Create the privilege. Use the elements shown in the table that follows this
procedure.

4. Save and close the custom-privileges.xml file.

5. Restart the Tomcat web server, and then restart OneClick so that changes to the
custom-privileges.xml file are available in OneClick.

6. You can now use the privilege to do the following:

■ Create a custom menu item, column, or subview that is accessible to only users
who have the privilege. For more information, see Reference a Privilege When
Defining a Menu Item, Column, or Subview (see page 136).

■ Create a search that is accessible only to users who have the privilege.

Note: For more information, see the Administrator Guide.

Define a Custom Privilege

132 OneClick Customization Guide

You can use the elements in the following table to create a privilege:

Element Parent Element Description

<privileges> Not applicable The root element for the custom-privileges.xml file.

<your_privilege_name> <privileges>
or
<your_group_name>

Defines the privilege. You create an element for each
new privilege. The type attribute for this element
defines the default role to which you assign the
privilege. Possible values for the type attribute are
“read” or “write”.

If you are grouping privileges, place all defined
privileges for that group within the element that
defines your group.

<label> <your_privilege_name> The name of the privilege, which will be shown on
the privilege list.

<desc> <your_privilege_name> The description of the privilege.

<model-view-attr> <privileges> For more information, see Restrict Access to
Attribute Values in Model Subviews (see page 133).

<model-write-attr> <privileges> For more information, see Restrict Access to
Attribute Values in Model Subviews (see page 133).

<group> <your_privilege_name> The new privilege appears in one of the existing
groups if you use the <group> element. The scope
attribute defines group scope.

The following list includes existing groups and their
scope values:

<group scope=“alarm”> alarm-manager </group>

<group scope=“topo”>tools</group>

<group scope=“topo”>model-tab</group>

<group scope=“topo”>model-view-group</group>

<group scope=“topo”>model-write-group</group>

For more information see Group Privileges (see
page 134).

Example: Create a Privilege

Note: When you create a privilege, you are creating a new XML element. In the example
above, the <launch-app> element creates the launch-app privilege. The type attribute
defines the default role to which the privilege is assigned. Two values are possible:
“read” and “write”. A privilege with the “read” type is assigned to the OperatorRO role,
and a privilege with the “write” type is assigned to the OperatorRW role.

Define a Custom Privilege

Chapter 9: Creating Custom Privileges 133

The following example defines the launch-app privilege, as shown in the image:

<privileges>

<launch-app type="write">

<label>Launch Apps</label>

<desc>Ability to launch application from the tools menu.</desc>

</launch-app>

</privileges>

More information:

Customizing the OneClick Console Menu (see page 17)
Customizing a Model’s Information View (see page 101)
Customizing OneClick Tables (see page 41)
Reference a Privilege When Defining a Menu Item, Column, or Subview (see page 136)
Group Privileges (see page 134)
Restrict Access to Attribute Values in Model Subviews (see page 133)

Restrict Access to Attribute Values in Model Subviews

You can restrict a user’s access to certain attributes using the <model-view-attr> and
<model-write-attr> elements, where attr is equal to the attribute ID of the attribute you
want to restrict. These elements are used in the custom-privileges.xml file and regulate
the attributes that show up in the OneClick Privilege list’s Model Management>View
Attributes folder and the Model Management>Model Write folder.

Define a Custom Privilege

134 OneClick Customization Guide

The <model-view-attr> element enables you to create a privilege that determines
whether or not a user can see an attribute. For example, if you added the following XML
to the custom-privileges.xml file, you will create a privilege called Community Name.
This privilege restricts view access to attribute 10024, community name. This privilege
will appear in the Model Management > View Attributes folder as specified with the
<group> element. If the user does not have this privilege in any access group, they will
not be able to see the community name attribute.

<model-view-10024 type=”read”>

<label>Community Name</label>

<group scope=”topo”>model-view-group</group>

</model-view-10024>

The <model-write-attr> element enables you to create a privilege that determines
whether or not a user can edit an attribute. For example, if you added the following
XML to the custom-privileges.xml file, you will create a privilege called Community
Name. This privilege restricts write access to attribute 10024, community name. This
privilege will appear in the Model Management > Model Write folder as specified with
the <group> element. If the user does not have this privilege in any access group, they
will not be able to edit the community name attribute.

<model-write-10024 type=”write”>

<label>Community Name</label>

<group scope=”topo”>model-write-group</group>

</model-write-10024>

Group Privileges

If you want to group privileges together, you can create groups in the
custom-privileges.xml file. To specify a group, nest the element that defines the
privilege (<your_privilege_name>) between the element that defines the group
(<your_group_name>). The group’s <label> element defines the name that represents
the group in the privileges tree (see the image later in this section).

Element Parent Element Description

<privileges>

Not applicable

This is the root element for the
custom-privileges.xml file.

<your_group_name>

<privileges>

This element defines the group. You create a
new element for each group you define.

<label> <your_group_name> The name of the group, which will be shown
on the privilege list.

Define a Custom Privilege

Chapter 9: Creating Custom Privileges 135

Note: In order for changes made to the custom-privileges.xml file to be available in
OneClick, you must restart the Tomcat web server and then restart OneClick.

In the following example, the <my-tools> element creates a group in which privileges
can be nested. The value defined for the group’s <label> is “My-Tools Folder”. This will
create a “My-Tools Folder” group in the privileges list as shown in the image that
follows. The <launch-app> and <launch-web> privileges will appear in this group.

<privilege>

<my-tools>

<label>My-Tools Folder</label>

<launch-app type="read">

 <label>Launch Apps</label>

 <desc>Ability to launch Applications.</desc>

</launch-app>

<launch-web type="read">

 <label>Launch Web</label>

 <desc>Ability to launch Web URLS.</desc>

</launch-web>

</my-tools>

</privilege>

Reference a Privilege When Defining a Menu Item, Column, or Subview

136 OneClick Customization Guide

Reference a Privilege When Defining a Menu Item, Column, or
Subview

When you create a menu item, column, or subview, you can use the <privilege> element
to reference a custom privilege. Custom privileges are defined in the
custom-privileges.xml file. For example, if you have defined the "launch-app" privilege in
the custom-privileges.xml file, you can use the following XML when you define a menu
item, column, or subview:

<privilege>

<name>launch-app</name>

</privilege>

This XML associates the "launch-app" privilege with the menu item, column, or subview.
The user must have an associated role that grants the launch-app privilege in order for
the menu item, column, or subview to be displayed. If granted, the menu item is always
enabled.

Note: For more information, see the Administrator Guide.

Chapter 10: XML Usage Common to All Customization Files 137

Chapter 10: XML Usage Common to All
Customization Files

This section explains common XML elements and strategies that can be used across
customization files.

This section contains the following topics:

About Parameters (see page 137)

About Parameters

You can use the <param> element in a number of different instances to reference
parameter values within a OneClick XML file. Here are several common cases where you
will likely use the <param> element.

■ If you need to pass a parameter to a web page, use the <param> element as a child
element of the <url> element. See Launch a Browser for an example.

■ If you need to pass a parameter to an application, use the <param> element as a
child element of the <launch-application> element. See Launch an Application From
OneClick for an example.

■ If you need to pass a parameter to a command, use the <param> element as a child
element of the <command> element. See Launch a Browser, Launch an Application
From OneClick, and Launch a Web Server Script.

■ If you need to format a series of values, use the <param> element in conjunction
with standard HTML formatting elements. See Define Model Icon Tooltips for an
example.

■ If you need to manipulate the value of an attribute, you may need to use the
<param> element when accessing one of the renderers.

See Acquire Data Render a Value for information on what you can specify using the
<param> tag.

More information:

Launch a Browser (see page 29)
Launch an Application From OneClick (see page 33)
Launch a Web Server Script (see page 36)
Define Model Icon Tooltips (see page 98)
Manipulate Attribute Output Using Renderers (see page 139)
Acquire Data—Render a Value (see page 138)

About Parameters

138 OneClick Customization Guide

Acquire Data—Render a Value

Acquiring data from OneClick about a model type parameter that you then act on is a
fundamental process in customizing the OneClick interface. A set of elements provide
the ability to acquire or render data from OneClick. These elements or tags are used in
acquiring data to display in a table column, a field-subview column, a <param> element
for a menu item, and the <render> element in a <dynamic-renderer>, and are shown in
the following table.

Element Description

<attribute> Used to specify a CA Spectrum attribute

<select> Used to specify something based on the value of another
attribute, parameter, etc.

Used to select a value based on certain criteria being met.
Very generally, <select> this <if>condition1, <select> that
<if> condition2.

<expression> Used to define an arithmetic expression.

<renderer> Used to define or access any number of renderers that
process raw data and refine into a specific format for
presentation to the user.

<dynamic-renderer> Specifies a renderer based on the value of an attribute
criteria filter.

<message> Used for specifying a plain text value for the column.

You can use any number and combination of these elements chained together, with the
output from one element serving as the input to the next element in the chain. The
<attribute> tag must be first in a chain of elements because it yields an attribute value
and does not accept input. The <message> tag must be first in a chain of elements used
to render a value. because it does not accept input.

More information:

Manipulate Attribute Output Using Renderers (see page 139)
Use a Select Case (see page 139)
About Expressions (see page 147)
About <dynamic-renderer> (see page 145)

About Parameters

Chapter 10: XML Usage Common to All Customization Files 139

Use a Select Case

If you want to conditionally display something in the OneClick interface, you may use
the <select> and the <case> elements to create a decision structure similar to those
used in many programming languages. Use the <select> and <case> elements as follows:

<select>

<case>

<expression>the expression to evaluate</expression>

<yield>what to yield if the expression is true</yield>

</case>

<case>

<expression>the expression to evaluate</expression>

<yield>what to yield if the expression is true</yield>

</case>

.

.

.

<default>what to yield if no matches are found</default>

</select>

Example: Image Definition File shows an example of the <select> and <case> elements
used to select the image to be displayed on a OneClick device model icon depending on
the model’s condition.

More information:

Define Image Components (see page 84)

Manipulate Attribute Output Using Renderers

There are several built-in attribute renderers that you can use to manipulate how the
attributes you have specified in a OneClick table are displayed. You use the <renderer>
element to access one of these renderers. The text of the element must be a
fully-qualified Java class name; each allowable Java class name is explained below.

Note: You will need some background in programming to fully understand the renderer
concepts presented below.

You can pass parameters to a renderer using the <param> element. The text of the
<param> element is the parameter value. A <param> element must have a name
attribute that specifies the name of the parameter.

About Parameters

140 OneClick Customization Guide

Example

The following example specifies the BooleanRenderer with parameter trueTag set to No
and parameter falseTag set to Yes. Each renderer has a set of parameters, and each
renderer is defined differently.

<renderer>

<param name="trueTag">Enabled</param>

<param name="falseTag">Disabled</param>

com.aprisma.spectrum.app.util.render.BooleanRenderer

</renderer>

Boolean Renderer

The class name for the boolean renderer is
com.aprisma.spectrum.app.util.render.BooleanRenderer. This renderer outputs an
enumerated String for an input Boolean value. By default, "Yes" is rendered for TRUE
and “No” is rendered for FALSE, but other elements or text may be specified via the
following parameters:

■ trueTag – the tag or text to render for TRUE

■ falseTag - the tag or text to render for FALSE

The following example reverses the TRUE/FALSE output:

<renderer>

<param name="trueTag">No</param>

<param name="falseTag">Yes</param>

com.aprisma.spectrum.app.util.render.BooleanRenderer

</renderer>

If the input value is TRUE, “No” is rendered and if FALSE, “Yes” is rendered.

Commented Text Renderer

The class name for the commented text renderer is
com.aprisma.spectrum.app.util.render.CommentedTextRenderer. This renderer strips
off the HTML-commented prefix that is added by some renderers (for example,
DateRenderer). It searches for the first occurrence of the ending character sequence of
an HTML comment, such as <!---comment text --->, and returns the rest of the string.

About Parameters

Chapter 10: XML Usage Common to All Customization Files 141

Date Renderer

The class name for the date renderer is
com.aprisma.spectrum.app.util.render.DateRenderer. This renderer outputs a date and
time using Java’s DateFormat. If the input to the renderer is a long integer (for example,
of type java.lang.Long), it is assumed to represent the date and time in milliseconds. If
the input is any other numeric type, it is assumed to be an integer representing the date
and time in seconds. Otherwise, the only other valid input type is java.util.Date. The
output string is prefixed by the numeric date and time value enclosed in HTML
comments (<!---comment text --->). An example output would be:

<!--1089808869000-->Jul 14, 2004 8:41:09 AM EDT

You use the numeric value prefix in the comments tag for sorting. Without the prefix, CA
Spectrum would sort on the formatted date and time string, and this would not work
correctly. Therefore, you should only use the DateRenderer in the <content> element
section of a column. To strip off the prefix for display, use the CommentedTextRenderer
in the <swing-cell-template> section. For example:

<content>

<attribute>0x11620</attribute>

<!—an attribute that contains an integer date/time in seconds >

<renderer>

com.aprisma.spectrum.app.util.render.DateRenderer

</renderer>

</content>

<swing-cell-template>

<text>

<renderer>

 com.aprisma.spectrum.app.util.render.CommentedTextRenderer

</renderer>

</text>

</swing-cell-template>

Enumerated Attribute Renderer

Classname: com.aprisma.spectrum.app.util.render.EnumeratedAttrRenderer.

This renderer outputs an enumerated String for an attribute value. The renderer obtains
the enumerations from the CA Spectrum database. You must specify the attribute ID via
the “attrID” parameter. This renderer is most commonly preceded by an <attribute>
element with the same attribute ID as the “attrID” parameter. The following sample
XML renders the enumerated value for the Model_Class attribute (ID 0x11ee8):

<attribute>0x11ee8</attribute>

<renderer>

<param name="attrID">0x11ee8</param>

com.aprisma.spectrum.app.util.render.EnumeratedAttrRenderer

</renderer>

About Parameters

142 OneClick Customization Guide

List Renderer

The classname for the list renderer is
com.aprisma.spectrum.app.util.render.ListRenderer. This renderer outputs the
components of a Java Collection or an array of any type as a comma-separated string.

Null Renderer

Classname: com.aprisma.spectrum.app.util.render.NullRenderer.

This renderer outputs a null input value as an empty string.

Object ID Renderer

This renderer outputs an object identifier (OID). The expected input value is type
CsObjectID.

Classname: com.aprisma.spectrum.app.util.render.ObjectIDRenderer.

Supported parameters:

■ term—an integer value that specifies the index of a particular term of the OID to
render

■ startTerm—an integer value that specifies the index of the first term of the OID to
render

■ endTerm—an integer value that specifies the index of the last term of the OID to
render

The term indices start at 1. If you specify the startTerm without the endTerm, then the
portion of the OID from the startTerm to the last term of the OID is rendered. If you
specify the endTerm without the startTerm, then the portion of the OID from the first
term to the endTerm is rendered.

The ObjectIDRenderer is most commonly used to render the row instance of a MIB
table. You obtain the row instance via the getRowId() method in an <expression>
element. You can then pass the result to the ObjectIDRenderer. For example, the
following column renders the first term of the row instance:

<column>

<name>com.aprisma.spectrum.app.topo.client.ifIndex</name>

<content>

<expression>getRowId()</expression>

<renderer>

 <param name="term">1</param>

 com.aprisma.spectrum.app.util.render.ObjectIDRenderer

</renderer>

</content>

</column>

About Parameters

Chapter 10: XML Usage Common to All Customization Files 143

The following example renders terms 5 through 8:

<column>

<name>com.aprisma.spectrum.app.topo.client.NetworkAddr</name>

<content>

<expression>getRowId()</expression>

<renderer>

 <param name="startTerm">5</param>

 <param name="endTerm">8</param>

 com.aprisma.spectrum.app.util.render.ObjectIDRenderer

</renderer>

</content>

</column>

The following example combines an expression with the ObjectID renderer to enable
you to display the last term of an OID value in a table:

<column>

<name>com.aprisma.spectrum.app.topo.client.ifIndex</name>

<content>

<expression>

 ((com.aprisma.spectrum.global.CsObjectID)value()).get_sub_oid(

 ((com.aprisma.spectrum.global.CsObjectID)value()).get_term_count(

),

 ((com.aprisma.spectrum.global.CsObjectID)value()).get_term_count(

))

</expression>

<renderer>

 <param name="term">1</param>

 com.aprisma.spectrum.app.util.render.ObjectIDRenderer

</renderer>

</content>

</column>

Round Number Renderer

The classname for this renderer is
com.aprisma.spectrum.app.util.render.RoundNumberRenderer. This renderer outputs a
number rounded to the nearest 100th (or 2 decimal places).

System Up Time Renderer

This renderer outputs a numeric time value represented in one hundredths of a second.
The time representation is used in MIB objects such as sysUpTime. The output is
expressed in days, hours, and minutes (for example, 30 days 1 hr 55 min).

Classname: com.aprisma.spectrum.app.util.render.SysUpTimeRenderer

About Parameters

144 OneClick Customization Guide

Byte Renderer

This renderer outputs an integer value in byte units (byte, KB, MB, GB, or TB).

Classname: com.aprisma.spectrum.app.util.render.ByteRenderer

Inet Address Renderer

This renders a MIB object of type InetAddress as defined in RFC-3291.

Classname: com.aprisma.spectrum.app.util.render.InetAddressRenderer

Supported parameters:

■ addressAttrID - the ID of the InetAddress attribute

■ type - the InetAddressType as defined in RFC-3291

■ typeAttrID - the ID of an attribute used to obtain the InetAddressType

List Instance Renderer

Renders the value of a specific instance of a list-type attribute.

Classname: com.aprisma.spectrum.app.util.render.ListInstanceRenderer

Supported parameters:

■ oid—the OID of the instance to render

■ index—the index of the instance to render

You must specify either the oid or index parameter.

Simple Integer Renderer

Renders an integer value without using comma grouping; 123456 instead of 123,456.
Use this to substitute an integer value in a URL used in a menu item where commas are
not acceptable input.

Classname: com.aprisma.spectrum.app.util.render.SimpleIntegerRenderer

Type Prepended Inet Address Renderer

Renders a MIB object of type InetAddress as defined in RFC-4293 with the type added to
the beginning of the address.

Classname: com.aprisma.spectrum.app.util.render.TypePrependedInetAddressRenderer

About Parameters

Chapter 10: XML Usage Common to All Customization Files 145

Supported parameter:

addressAttrID - the ID of the InetAddress attribute

About <dynamic-renderer>

Use the <dynamic-renderer> element to specify a renderer that depends on the value of
an attribute criteria such as <model_class>, <model-type>, or other attribute criteria.
You select an attribute ID as the key and specify one or more <dynamic-renderer>
elements in the custom-app-config.xml file. Each <dynamic-renderer> element defines a
criteria and the renderer to use if the criteria is satisfied.

The structure to use with <dynamic-renderer> is as follows:

<dynamic-renderer>

<attribute><KEY_ATTRIBUTE_ID></attribute>

CRITERIA

<render>

.

.

.

</render>

<default/>

</dynamic-renderer>

The following table describes the elements you can use with <dynamic-renderer>.

Element Usage and Description

<attribute> Specifies the <KEY_ATTRIBUTE_ID> used to bind or tie together a
set of dynamic-renderers.

CRITERIA Defines an attribute filter criteria used to determine which
renderer is used based on the filter output.

<render> Defines what to render.

<default> Specifies the dynamic-renderer to use as the default when none of
the other dynamic-renderer criteria are met.

Attribute Filter Criteria and <dynamic-renderer>

It is common to use <model-class> and <model-type> for attribute filter criteria. You can
use any attribute and any set of complex attribute filters with any combination of
nested “and” and “or” filters. The file
<$SPECROOT>/tomcat/webapps/spectrum/WEB-INF/common/schema/attributefilter.xs
d contains the complete syntax for attribute filters.

About Parameters

146 OneClick Customization Guide

Specify a Default <dynamic-renderer>

You define the default dynamic renderer for use when none of the conditions for using
the <dynamic-renderer> specified in the CRITERIA statement are met. You can specify
only one default dynamic-renderer per dynamic renderer set. Do not specify a filter
criteria for the default.

Example: Using Attribute Filtering Criteria with <dynamic-renderer>

This example creates a column that displays an attribute based on the value of the
model_type attribute. The attribute displayed for the model_type filter criteria
conditions are shown in the following table.

Attribute to display... if model_type is...

<attribute> 0xffff0000 <model-type> 0x12

<attribute> 0xffff0001 <model-type> 0x34 and 0x56

<attribute> 0xffff0002 for all other model types (default)

You must select one of the attributes specified in your filter criteria to be the key. This
example uses 0xffff0002. Add the following <dynamic-renderer> elements to the
custom-app-config.xml file:

<dynamic-renderer>

<attribute>0xffff0002</attribute>

<model-type>0x12</model-type>

<render>

<attribute>0xffff0000</attribute>

</render>

</dynamic-renderer>

<dynamic-renderer>

<attribute>0xffff0002</attribute>

<or>

<model-type>0x34</model-type>

<model-type>0x56</model-type>

</or>

<render>

<attribute>0xffff0001</attribute>

</render>

</dynamic-renderer>

<dynamic-renderer>

<attribute>0xffff0002</attribute>

<render>

<attribute>0xffff0002</attribute>

</render>

<default/>

</dynamic-renderer>

About Parameters

Chapter 10: XML Usage Common to All Customization Files 147

Example: Use a Key Attribute ID with <content>

This example creates a column specifying the <dynamic-renderer> element with the key
attribute ID defined in the <content> element.

<column>

<name>My Column</name>

<content>

<dynamic-renderer>0xffff0002</dynamic-renderer>

</content>

</column>

More information:

Manipulate Attribute Output Using Renderers (see page 139)

About Expressions

When you are customizing the OneClick interface, there are several places where you
may want to use an expression to display a calculated value. For example, you may want
to display a calculated value in a table or subview. The section below explains how to
use expressions to manipulate attribute information.

Note: Expressions are created using standard Java expressions. You must be familiar
with Java code in order to implement the following instructions that create expressions
in the OneClick XML files. If you are not familiar with Java code, you should refer to a
Java reference before attempting to create expressions when customizing OneClick files.

Manipulate Attribute Information

The most common use of an expression is to manipulate attribute information. The
attribute information available is dependent upon the OneClick context in which you are
using the expression.

You can use the methods listed in the following table in the context of an expression to
retrieve attribute information:

java.lang.Object attr (int attrID)

boolean attrBoolean (int attrID)

byte attrByte (int attrID)

char attrChar (int attrID)

double attrDouble (int attrID)

float attrFloat (int attrID)

About Parameters

148 OneClick Customization Guide

java.lang.Object attr (int attrID)

int attrInt (int attrID)

long attrLong (int attrID)

short attrShort(int attrID)

The following example shows a column configuration that displays the contact person
for a device. In this example, an expression displays the attribute 0x23000c
(AttributeID.CONTACT_PERSON) if the attribute 0x10b5a (AttributeID.SYS_CONTACT) is
null or has no value.

Example: Specifying a Contact for a Device Using an Expression

<column id="column-contact-config"

xmlns ="http://www.aprisma.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aprisma.com

../../common/schema/column-config.xsd">

<name>Contact Person</name>

<content>

<expression>

 (attr(AttributeID.SYS_CONTACT) == null ||

 ((String)attr(AttributeID.SYS_CONTACT)).length() == 0) ?

 attr(AttributeID.CONTACT_PERSON) : value()

</expression>

</content>

</column>

Another way to accomplish the same result is to use the attribute renderer to retrieve
the SYS_CONTACT attribute value. You can then access the value returned using an
expression that uses the value() method.

About Parameters

Chapter 10: XML Usage Common to All Customization Files 149

Example: Using Attribute Renderer to Retrieve Attribute Value

<column id="column-contact-config"

xmlns ="http://www.aprisma.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aprisma.com

../../common/schema/column-config.xsd">

<name>Contact Person</name>

<content>

<attribute>AttributeID.SYS_CONTACT</attribute>

<expression>

 (value() == null || ((String)value()).length() == 0) ?

 attr(AttributeID.CONTACT_PERSON) : value()

</expression>

</content>

</column>

The two examples shown above produce the same value for the column.

Append Suffix to Values

Use an expression to append a suffix to values to increase readability of information
displayed in tables.

Example

This example appends a “%” character to a value so that the value displays in a table as
<value>%.

<expression>value().toString() + "%"</expression>

You can use this method to append a “%” character to a “percentage of disk space used”
value, so that the value displays in a table as <percentage of disk spaced used>%, or
64%.

About Parameters

150 OneClick Customization Guide

Precautions for Using Expressions

The following list describes major exceptions to the rules for standard Java code that are
used to create OneClick expressions.

Comparison Operator

You cannot use the comparison operator, &&, due to restrictions on XML
formatting. In place of && you must use &&.

Less Than, Greater Than Operators

You cannot use the less than (<) or greater than (>) operators. Instead, you must
use < and > respectively.

Subtraction Expressions

OneClick processes subtraction expressions using non-standard associativity.
Subtraction is done using a right-to-left associativity instead of the standard
left-to-right associativity.

OneClick processes subtraction as follows:

A - B - C = A - (B - C)

compared with standard subtraction expression processing:

A - B - C = (A - B) - C

Reference XML Files

As you are customizing OneClick XML files, you may find it necessary to split a single
XML file into two or more XML files for the following reasons:

■ Some XML files are so complex that they become unreadable. In this case breaking
the XML file down into two or more files assists you in keeping your code organized
and making it readable and editable in the future.

■ You may want to reuse certain sections of XML code. Putting this XML code in a
separate file allows you to reference it from multiple files instead of copying and
pasting it into new files, or new sections of the same file.

Use the standard XML id and idref attributes to label and reference the split up code.

Note: For information on XML standards, including id and idref, see www.w3.org.

Reference Images

You may need to reference image files from within your XML. When you reference
image files in either the factory <$SPECROOT>/tomcat/webapps/spectrum/images
directory or the custom <$SPECROOT>/custom/images directory, express the path
starting from the images directory, for example, images/myimage.png. See Example:
Icon Configuration File for an example.

About Parameters

Chapter 10: XML Usage Common to All Customization Files 151

You must place all image files that you add or customize in the
<$SPECROOT>/custom/images directory. Otherwise, all new or customized images you
add will be deleted or overwritten during a CA Spectrum or OneClick upgrade or
reinstallation.

More information:

Define Image Components (see page 84)

Verify User Input Using Verifiers

You can verify user input by specifying a verifier class along with the <editable> element
before committing the change. If the input is invalid, an error message is displayed. The
verifiers available are described in the following section.

Specify the <verifier> element inside the <editable> element. Inside the <verifier>, you
specify a verifier Java class and optional parameters to pass to the verifier class.

Example: Using Verifiers

This verifies the input value is from 0-100, inclusive.

<editable>

<verifier>

<class>

 com.aprisma.spectrum.app.swing.widget.IntegerContainedInRangeInpu

tVerifier

</class>

<param name="lowValue">0</param>

<param name="upperValue">100</param>

</verifier>

</editable>

OneClick Input Verifiers

IntegerContainedInRangeInputVerifier

Description: Verifies the input is an integer value within a specified range.

Class:com.aprisma.spectrum.app.swing.widget.IntegerContainedInRangeInputVerifier

Parameters:

■ lowValue - the lower bound of the range

■ upperValue - the upper bound of the range

About Parameters

152 OneClick Customization Guide

AttrIDInputVerifier

Description: Verifies the user input is a valid attribute.

Class: com.aprisma.spectrum.app.swing.widget.AttrIDInputVerifier

DoubleInputVerifier

Description: Verifies the user input is a valid real number.

Class: com.aprisma.spectrum.app.swing.widget.DoubleInputVerifier

IPAddressInputVerifier

Description: Verifies the user input is a valid IP address.

Class: com.aprisma.spectrum.app.swing.widget.IPAddressInputVerifier

IntegerInputVerifier

Description: Verifies the user input is a valid integer.

Class: com.aprisma.spectrum.app.swing.widget.IntegerInputVerifier

LongInputVerifier

Description: Verifies the user input is a valid long integer.

Class: com.aprisma.spectrum.app.swing.widget.LongInputVerifier

MACAddressInputVerifier

Description: Verifies the user input is a valid MAC address.

Class: com.aprisma.spectrum.app.swing.widget.MACAddressInputVerifier

NonEmptyStringInputVerifier

Description: Verifies the user input is a non-empty string.

Class: com.aprisma.spectrum.app.swing.widget.NonEmptyStringInputVerifier

About Parameters

Chapter 10: XML Usage Common to All Customization Files 153

UnsignedIntInputVerifier

Description: Default verifier for all integer attributes; verifies the user input is an
unsigned integer.

Class: com.aprisma.spectrum.app.swing.widget.UnsignedIntInputVerifier

Chapter 11: Customizing OneClick for CA Service Desk 155

Chapter 11: Customizing OneClick for CA
Service Desk

For a CA Spectrum and CA Service Desk integration, you can modify the behavior of
finding and creating Service Desk assets from OneClick. This customization is done by
changing the attribute mapping between CA Spectrum models and Service Desk assets.
Customizing asset reporting lets you prioritize the information used to identify a device
and determine which information to record within Service Desk. How information is
recorded in Service Desk can enhance the user’s efficiency and reporting capabilities to
best suit your organization.

Note: For more information about customizing asset reporting for CA Service Desk, see
the CA Spectrum and CA Service Desk Integration Guide.

Index 157

Index

A

about dialog
customizing • 9

acknowledge field • 55
adding custom message • 15
alarm attributes • 27
AlarmAttrID • 27
AlarmContext • 24
application brand name

customizing • 9
application suite name

customizing • 9

B

brand name
customizing • 9

branding OneClick • 9

C

CA Service Desk
customize OneClick • 155

classic theme • 70
command • 24
commonly used attributes • 27
component details registry • 65
console/config Directory • 9
content registry • 65
custom login message • 15
custom-app-config.xml • 65, 70
custom-branding-config.xml • 9
customizing

alarm table acknowledged field • 55
login dialog • 15

custom-menu-config.xml • 17

D

Directory
alarm/config • 11
common/config • 10
topo/config • 10

E

editing table columns • 55

element
accelerator • 17, 23
action • 17, 24
actionID • 49
add • 49
and • 24
application-subview • 106, 113
archeight • 80
arcwidth • 80
attribute • 24, 27, 41, 98
attrID • 51, 54
background-border • 91
background-highlight • 91
border-spacing • 91
column • 43, 91
column-list • 43, 91
command • 33
components • 74, 84
confirmSuccess • 49
content • 43
context • 24
criteria • 113
default-sort • 43
default-transparency • 91
default-width • 43
desc • 131
direction • 43
disableOnFirstValue • 49
disableOnSecondValue • 49
display-exit-status • 37
display-if • 108, 118
display-if-app-installed • 108
display-output • 37
dynamic-cellicon • 72, 74
dynamic-renderer • 43, 145
editable • 43
enumerated-cellicon • 72, 74
enumerated-color • 91
equals • 24
expression • 43
field-column • 91
field-subview • 106, 108, 110
field-value • 91
filter • 24, 27
firstValueMapping • 49

158 OneClick Customization Guide

font • 91
group • 131
has-attribute • 24
height • 84
hidden-by-default • 43
hot-key • 17
icon • 72, 74
icon-config • 74, 80, 84
icon-reg-id • 72
ifIndex • 61
image • 43, 49, 84
image-component • 84
item • 17, 21
label • 131
label-component • 91
launch-application • 24, 33, 37
launch-browser • 24, 29
launch-sso-browser • 24
launch-web-server-script • 24, 36, 37
line-color • 43
localize • 98
max-background-width • 91
maxRowsToDisplay • 49
menu • 17, 19
message • 41, 98
min-background-width • 91
model-view-attr • 131, 133
model-write-attr • 131, 133
name • 43
numerated-color • 43
off-page • 72
oidPrompt • 49
on-page • 72
or • 24
order • 49
os-name • 24
param • 24, 41, 98, 137
pipe-connection • 74, 83
point • 81
preferred-height • 43
preferred-width • 43
privilege • 17, 108, 110, 113, 118, 131
prompt • 49
promptOnFirstValue • 49
promptOnSecondValue • 49
related-model-subview • 106
related-model-table-subview • 106
remove • 49
renderer • 43, 98

renderer-class • 41, 49
root • 17
secondValueMapping • 49
select • 41
selected-transparency • 91
selection-component • 84
separator • 17
shape • 74, 84
shape-ellipse • 80
shape-line • 82
shape-polygon • 81
shape-rectangle • 79
shape-roundrectangle • 80
show icon • 105
show-background • 91
show-horizontal-lines • 43
show-labels • 105, 108
show-tree-lines • 43
show-vertical-lines • 43
sort-column • 43
sort-column-list • 43
static-cellicon • 72, 74
static-color • 43, 91
stroke • 74
subview criteria • 113
subview-group • 106, 118
subviews • 104, 106, 113, 118
swing-cell-template • 43, 49
swing-header-row-template • 43
swing-row-template • 43
swing-table-template • 43
table • 43
table-subview • 106, 110
text • 43, 49
theme • 72
theme-config • 72, 74
title • 108, 110, 118
toolbar-image • 23
toolbar-image-disabled • 17, 23
toolbar-image-rollover • 17, 23
tooltip format • 98
tooltip-config • 98
toolTipText • 49
url • 24
validate • 24
value • 24
valuePrompt • 49
verifier • 151
vertical spacing • 91

Index 159

view • 104
view-header • 104, 105

show-icon • 105
show-labels • 105

width • 84
x • 91
x1 • 82
x2 • 82
y • 91
y1 • 82
y2 • 82

Ellipse • 80
example

subview-group • 118
expressions • 147

I

Icon Configuration file • 77
icons, configuring • 72
Image components • 84
image types • 23
Images • 150
Instanced Attribute Values • 48
integrations • 155
Interfaces Table • 60, 61

K

keyboard accelerators • 23

L

launching applications • 33
launching browsers • 29
launching scripts • 36
launch-sso-browser • 24
Line • 82
login dialog

customizing • 15
logo

customizing • 9

M

ModelContext • 24
model-view-attr • 133

N

Navigation Panel
customizing • 9

O

off-page reference • 74
OneClick theme • 70
on-page reference • 74

P

parameter • 98
pipe location • 83
platform • 24, 33
Polygon • 81
Port Attribute

COMPONENT_OID • 60
PORT_DESCRIPTION • 60
PORT_TYPE • 60

privilege • 110

R

Rectangle • 79
registries

component details • 65
contents • 65

Renderer • 139
ActionButtonCellRenderer • 49
ActionButtonPanelCellRenderer • 49
AttrToggleButtonCellRenderer • 49
BoldAttributeTableCellRenderer • 49
element defined • 139
ListAttributeOIDRenderer • 49
ListAttributeRenderer • 49
TextAreaCellRenderer • 49

Rounded Rectangle • 80

S

script, pass table values • 36
select case • 139
selection components • 95
Service Desk

customize OneClick for • 155
sort • 58
splash screen

customizing • 9
suite name

customizing • 9

T

table
add a subview • 110

160 OneClick Customization Guide

modify columns • 41
pass values to a script • 36

TableContext • 24
theme configuration • 72
themes

Classic • 70
toolbar

image size • 23
toolbar-image • 17
tooltip • 98

U

URLs, specifying • 30
USER_PARAMETER_NAME • 33
username, specifying • 33
Utility theme • 70

V

validate • 24, 33

X

xml files • 13

Y

y2 • 81

	CA Spectrum OneClick Customization Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: OneClick Directory Structure
	Existing OneClick Files
	The console/config Directory
	The topo/config Directory
	The common/config Directory
	The alarm/config Directory

	Customizing OneClick
	Prerequisites for Customizing OneClick XML Files
	Extend Factory XML Files
	Override Factory Files
	Inherit Features in Factory XML Files
	Example: Extending Factory XML File

	Save Customized XML Files
	Preserve XML Customizations
	Preserve Custom Images

	2: Customizing the OneClick Login Dialog
	Custom Login Message
	Add a Custom Message to the OneClick Login Dialog

	3: Customizing the OneClick Console Menu
	The custom-menu-config.xml File
	Add a New Menu
	Add a New Menu Item
	Add Toolbar Images
	Define a Keyboard Accelerator
	Perform an Action
	Contextually Apply the Action
	Limit the Availability of Menu Items
	Launch a Browser
	Important Information About Specifying URLs
	Specify a Username
	Launch an Application From OneClick
	Launch a Web Server Script
	Pass Table Values to a Script

	Display the Status of a Launched Application or Script

	4: Customizing OneClick Alarms
	5: Customizing OneClick Tables
	Modify Table Columns
	Extend a Factory Default File Using IDREF
	Modify a Table Column

	Display Instanced Attribute Values in Separate Table Rows
	Define How Cells Display in Table Columns
	Use Renderers to Present Data in Column Cells
	TextAreaCellRenderer
	ListAttributeRenderer
	ListAttributeOIDRenderer
	ActionButtonCellRenderer
	ActionButtonPanelCellRenderer
	AttrToggleButtonCellRenderer
	BoldAttributeTableCellRenderer

	Make a Table Column Editable
	Customize the Alarm Table Acknowledge Field

	Customize Alarm Table Row Colors
	Set Up a Default Sort
	Customize the Port Name Column of the Interface Table
	Sort Interfaces Table by ifIndex

	6: Adding Support for Model Types or Model Classes
	Create a Registration
	Register the Model Type or Model Class in custom-app-config.xml
	Define General OneClick Device Support Based on Model Class
	Define Specific OneClick Device Support Based on Model Type
	Define Model Appearance

	Configure Icons for OneClick Themes
	Using the <theme-config> Element to Create Icon Appearance

	Design On-Page and Off-Page Reference Icons
	Use <on-page> and <off-page> Elements
	Define the Icon Shape
	Rectangle
	Rounded Rectangle
	Ellipse
	Polygon
	Line
	Create an Icon Shape
	X and Y Coordinates

	Define Pipe Connection Location
	Define Image Components

	Create an Icon Label
	The default-iconlabel-config.xml File
	Adjust Icon Label Background Width
	Default Label Width Settings
	Create Fixed Width Icon Labels

	Define Text Components
	Define Selection Components
	Define Model Icon Tooltips

	7: Customizing a Model’s Information View
	Extend or Modify an Information View
	Create an Information Configuration File
	Define the Header
	Define the Subview
	Add a Field Subview
	Add Field Subviews Using IDREF
	Add a Table Subview
	Add an Application Subview
	Add a Related Model Subview
	Add a Related Models Table Subview

	Define a Subview Group

	Associate an Information Configuration File with a Model Class or Model Type

	8: Creating a Model’s Performance View
	Create a New Performance View
	Create a Performance Data Configuration File
	Create a Performance View Configuration File

	Customize an Existing Performance View

	9: Creating Custom Privileges
	Define a Custom Privilege
	Restrict Access to Attribute Values in Model Subviews
	Group Privileges

	Reference a Privilege When Defining a Menu Item, Column, or Subview

	10: XML Usage Common to All Customization Files
	About Parameters
	Acquire Data--Render a Value
	Use a Select Case
	Manipulate Attribute Output Using Renderers
	About <dynamic-renderer>
	About Expressions
	Reference XML Files
	Reference Images
	Verify User Input Using Verifiers

	11: Customizing OneClick for CA Service Desk
	Index

