

Event Configuration User Guide
Release 9.4

CA Spectrum®

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the CA Spectrum® Infrastructure Manager (CA Spectrum).

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: CA Spectrum Event and Alarm Concepts 9

About Alarms and Events ... 9

Alerts .. 9

Events ... 10

Event Codes ... 10

Alarms .. 11

Chapter 2: Getting Started with Event Configuration 13

Before You Begin .. 13

Obtaining a Developer ID .. 13

Mapping Traps to CA Spectrum Events ... 14

Preserving Customizations Across Upgrades of CA Spectrum ... 14

Starting the Event Configuration Application .. 15

Overview of the User Interface .. 16

Loading All Events from All Landscapes ... 17

Save Events to Landscapes ... 17

Synchronizing Events in a Distributed Environment .. 19

Synchronize Event Disposition Files on SpectroSERVERs .. 19

Synchronize Event and Alarm Support Files on OneClick Web Servers .. 22

Updating the Overall Alert and Event System for a Landscape.. 23

Add and Remove Columns from the Events Table ... 24

Logging Event-Related Errors ... 24

Chapter 3: Working with Events and Alarms 29

Finding Events .. 29

Create Events from Scratch .. 30

Create Events from a Copy ... 31

About Configuring Events ... 32

Event Messages ... 33

Specify Event Options ... 40

Configure Events to Generate Alarms ... 42

Configure Events to Clear Alarms.. 56

Modify Events... 58

Delete Custom Events .. 59

6 Event Configuration User Guide

Chapter 4: Working with Event Rules 61

Event Rules ... 61

Event Condition Rules ... 61

Event Pair Rules ... 62

Event Rate Rules ... 62

Event Series Rules ... 64

Event Counter Rules .. 64

Heartbeat Rules .. 64

Single Event Rules ... 64

Solo Event Rules .. 65

User-Defined Event Rules ... 65

Create Event Rules ... 65

Configuring Event Condition Rule Settings ... 66

Configuring Event Pair Rule Settings ... 70

Configuring Event Rate Rule Settings .. 73

Configuring Event Series Rule Settings ... 76

Configuring Event Counter Rule Settings .. 79

Configuring Heartbeat Rule Settings ... 82

Configuring Single Event Rule Settings.. 85

Configuring Solo Event Rule Settings .. 88

Copy Variable Values from Contributing Events to the Rule Output Event .. 90

Modifying Event Rules .. 91

Delete Event Rules ... 92

Appendix A: AlertMap Files 93

SNMP Trap Overview ... 93

About Mapping a Trap to a CA Spectrum Event ... 95

About Processing Alerts with AlertMap Files .. 96

AlertMap File Location .. 96

AlertMap File Syntax ... 97

Error Messages .. 100

SNMPv2 Support .. 101

InformRequest Support ... 101

How an SNMPv2 Trap is Mapped to a CA Spectrum Event ... 101

Appendix B: Event Disposition Files 103

About Event Disposition Files ... 103

Location of Event Disposition Files ... 104

File Syntax of Event Disposition Files ... 105

Generating Alarms ... 106

Contents 7

Generating Alarms for Events Based on the Values of Event Variables .. 108

Generating Alarms Unconditionally for Each Event .. 109

Generating Alarms That Users Cannot Clear ... 109

Generating Alarms That Are Not Persistent .. 109

Combining the U, N, and T Flags ... 109

Specify an Event Frequency .. 110

Specify an Event Duration ... 110

Clearing Alarms .. 111

Clear Alarms Created Without Event Discriminators .. 112

Clear Alarms Based on Event Discriminator Values .. 112

Examples of Event Maps That Clear Alarms .. 114

Clearing Alarms Regardless of Event Discriminator Values .. 115

About Defining Event Rules .. 116

Event Rule Syntax .. 116

EventPair Rule ... 117

EventPairTimeAttr Rule ... 118

EventRateWindow Rule .. 118

EventRateWindowAttrParams Rule .. 119

EventRateCounter Rule ... 120

EventSequence Rule .. 120

EventCombo Rule .. 121

EventComboInclusive Rule .. 122

EventCondition Rule .. 123

EventCounter Rule .. 133

Heartbeat Rule .. 134

SoloEvent Rule .. 135

SingleEvent Rule .. 136

Using Multiple Event Rules in a Single EventDisp Entry .. 136

Copy Event Variables from One Event to Another .. 137

Syntax Errors in EventDisp Files ... 143

Add Comments in EventDisp Files .. 143

Appendix C: Event Format Files 145

About Event Format Files ... 145

Location of Event Format Files ... 145

Contents of an Event Format File ... 146

Appendix D: Event Table Files 147

About Event Table Files .. 147

Location of Event Table Files .. 147

Contents of an Event Table File .. 148

8 Event Configuration User Guide

Appendix E: Probable Cause Files 149

About Probable Cause Files .. 149

Location of Probable Cause Files .. 149

Contents of a Probable Cause File .. 150

Glossary 151

Index 153

Chapter 1: CA Spectrum Event and Alarm Concepts 9

Chapter 1: CA Spectrum Event and Alarm
Concepts

This section contains the following topics:

About Alarms and Events (see page 9)
Alerts (see page 9)
Events (see page 10)
Alarms (see page 11)

About Alarms and Events

CA Spectrum is a services and infrastructure management system that notifies you of
faults on managed elements within the network infrastructure. CA Spectrum receives
alerts from problem areas within the managed infrastructure. CA Spectrum converts
alerts into events and alarms, which are displayed in OneClick event and alarm views.
Alerts, events, and alarms let CA Spectrum notify you about significant occurrences in
your IT infrastructure.

Alerts

An alert is an unsolicited message from a managed element on a network. A more
specific definition of an alert depends on the management protocol that is used to
report the alert. In general, CA Spectrum uses SNMP as the management protocol to
communicate with devices on a network. Alerts that an SNMP-compliant device
generates are named traps.

You can configure managed elements that have enabled the SNMP traps to direct their
traps to the host that is running CA Spectrum. The host receives a trap CA Spectrum and
identifies the model in the CA Spectrum database that is associated with the managed
element, using the source IP address. Next, CA Spectrum maps the trap to a CA
Spectrum event. The event is then generated and processed.

CA Spectrum applies special handling to traps that are not mapped to specific CA
Spectrum events. Traps that occur on managed elements that are not modeled at the
time the trap is received are also handled differently. For more information, see the
Modeling and Managing Your IT Infrastructure Administration Guide.

You map the traps from a managed element to specific CA Spectrum events using the
MIB Tools application in OneClick. Perform these mappings before you can create and
modify the events and associated alarms using Event Configuration. For more
information, see the Certification User Guide.

Events

10 Event Configuration User Guide

Events

An event is a CA Spectrum object that indicates that something significant has occurred
within CA Spectrum itself or within the managed environment. Events always occur in
relation to a model. When CA Spectrum receives an alert from a managed element on
the network, in response, it generates a CA Spectrum event for the corresponding
model if the received trap is mapped to an event.

CA Spectrum also generates some events automatically. For example, CA Spectrum
generates an event when models are created or destroyed or when CA Spectrum
connects or disconnects from a device application. CA Spectrum also generates an event
when contact with a managed element is established or lost.

CA Spectrum uses the configuration of the underlying event to process an event
instance. For example, the Archive Manager in the Distributed Data Manager (DDM)
database can log an event instance. Or an event instance can clear an alarm or can
generate another event using an event rule.

Network operators can view the list of current events in a landscape on the OneClick
Events tab. For a specific event, you can also view information such as a description of
the event and the time it was created.

To map the traps from a device to specific CA Spectrum events, use the MIB Tools
application in OneClick. Then complete event customization using Event Configuration.
In Event Configuration, define event processing rules, create the event message to
display to users, and set other parameters.

Event Codes

Every event has a unique event code. The event code is a 4-byte integer that is
expressed in hexadecimal format.

An event code has two parts:

■ The first 2 bytes contain the developer ID of the developer who created the event

■ The last 2 bytes identify the event with a unique number relative to all other event
codes for that developer

CA Spectrum assigns event codes to all events created using MIB Tools or Event
Configuration. The next available event code is always used as the default code. In Event
Configuration, you have the option of overriding the default code and specifying a
different one.

Note: The event code 0x10000 represents a null event. This event cannot be generated.
However, the null event can be used in an event rule that requires an event code as a
parameter.

Alarms

Chapter 1: CA Spectrum Event and Alarm Concepts 11

Alarms

An alarm is a CA Spectrum object that indicates that a user-actionable, abnormal
condition exists in a model. CA Spectrum generates an alarm when a CA Spectrum
event—typically generated as a result of a received trap—specifies an alarm creation.
CA Spectrum can generate an alarm that is based on the results of a watch. CA Spectrum
can also send an event in response to an abnormal situation that did not send an event.
(For example, a model loses the connection to its managed element).

Network operators are alerted to alarms in multiple ways that depend on OneClick
configuration. For example, the icon representing the model of the managed element
(or a container model for the managed element model) can change color. Or an audio
message can announce the new alarm.

Operators can view the current list of alarms in a landscape on the OneClick Alarms tab.
For a specific alarm, you can also view detailed information. For example, you can see
whether a user has acknowledged the alarm, its symptoms, probable causes, and the
recommended corrective actions.

When the abnormal condition that caused the alarm ends, another event automatically
clears the corresponding alarm. You can clear the alarm manually and also send any
Alarm notifications to external third-party or internal CA Spectrum applications as
appropriate.

Alarms

12 Event Configuration User Guide

You can specify whether an event generates an alarm (and alarm severity) in MIB Tools
when you map a trap to an event. However, you use Event Configuration to set more
alarm parameters and to change the alarm severity.

The following figure illustrates the flow of alerts, events, and alarms within CA
Spectrum.

More information:

Probable Cause Files (see page 149)
Event Format Files (see page 145)
Event Disposition Files (see page 103)
AlertMap Files (see page 93)

Chapter 2: Getting Started with Event Configuration 13

Chapter 2: Getting Started with Event
Configuration

This section contains the following topics:

Before You Begin (see page 13)
Preserving Customizations Across Upgrades of CA Spectrum (see page 14)
Starting the Event Configuration Application (see page 15)
Overview of the User Interface (see page 16)
Loading All Events from All Landscapes (see page 17)
Save Events to Landscapes (see page 17)
Synchronizing Events in a Distributed Environment (see page 19)
Updating the Overall Alert and Event System for a Landscape (see page 23)
Add and Remove Columns from the Events Table (see page 24)
Logging Event-Related Errors (see page 24)

Before You Begin

Before you begin using Event Configuration to create events and alarms, follow any of
these steps:

■ Obtain a developer ID (see page 13) from CA.

■ Map the traps to new CA Spectrum events (see page 14) using MIB Tools first, if you
are adding trap support for a device. (Which is not supported by default in CA
Spectrum).

Obtaining a Developer ID

The first 2 bytes of any event code contains a developer ID. By default, this portion of
the event code is the default developer ID that is provided with CA Spectrum. However,
if you are creating events and alarms to support a new device management module, or
you are creating a Southbound Gateway integration; we recommend obtaining a unique
registered developer ID from CA. A registered developer ID lets you specify event codes
for your events that begin with your unique ID. You can easily recognize your custom
code in OneClick and avoid potential conflicts with other CA Spectrum event codes.

To obtain a developer ID, contact CA Support. To be eligible for a developer ID, you must
have purchased the Level 1 Toolkit.

Note: For information about the toolkit, see the Integrator Guide. To activate your
developer ID, use SSdbload with the -d option. For more information, see the Database
Management Guide on loading developer information in.

http://www.ca.com/support
http://www.ca.com/support

Preserving Customizations Across Upgrades of CA Spectrum

14 Event Configuration User Guide

Mapping Traps to CA Spectrum Events

When you are creating a management module for a device not supported by default in
CA Spectrum, we recommend using MIB Tools to map the traps which the device sends
to new CA Spectrum events. The new events are automatically created when the trap
mappings are defined. Follow these steps before you begin using Event Configuration.
You can then launch Event Configuration directly from MIB Tools to complete the
configuration of the events and associated alarms.

If you create new events using Event Configuration instead of MIB Tools, you cannot
then use MIB Tools to map traps to them. Instead, you must manually specify the
mappings in the $SPECROOT/custom/Events/AlertMap file on each SpectroSERVER in
your environment. This rule applies because the process of mapping traps to events
using MIB Tools automatically creates new events with unique event codes. You cannot
use MIB Tools to map traps to existing events that were previously created using Event
Configuration.

AlertMap files are ASCII files that store the following Mappings:

■ Mappings between the traps that a device sends and CA Spectrum events

■ Mappings between the variable bindings that are sent with a trap and the event
variables which CA Spectrum generates on a model when the trap is received.
Variable bindings can store attribute values in a MIB table, OIDs, or integer bit
values.

Note: For more information about using MIB Tools to map traps to events, see the
Certification User Guide.

Preserving Customizations Across Upgrades of CA Spectrum

Several types of event and alarm configuration files support event and alarm processing
in CA Spectrum, such as: alert mapping files, event disposition files, event format files,
event table files, and probable cause files.

The files that are provided with CA Spectrum to support CA-authored events and alarms
are installed in subfolders of the following folders:

<$SPECROOT>/SS/CsVendor

<$SPECROOT>/SG-Support

When you customize CA-authored events and alarms, or create your own events, and
then save the customizations to one or more landscapes; the event, and alarm
configuration files that define your customizations are installed in the following folder or
in one of its subfolders:

<$SPECROOT>/custom/Events

Starting the Event Configuration Application

Chapter 2: Getting Started with Event Configuration 15

This procedure ensures that the support files for your custom events and alarms are not
overwritten or affected when you upgrade to a new version of CA Spectrum.

Starting the Event Configuration Application

You can start Event Configuration from the following locations:

■ OneClick Console

■ MIB Tools

Starting the Event Configuration Application from the OneClick Console

To load all events that are supported in the landscape (or landscapes in a distributed
environment) into the application, start Event Configuration from the OneClick Console.

You can start Event Configuration from the OneClick Console.

Follow these steps:

1. Launch the OneClick Console from the OneClick home page.

2. From the Tools menu, select Utilities, Event Configuration.

Starting the Event Configuration Application from MIB Tools

Use MIB Tools to add trap support for a device that is not currently supported in CA
Spectrum, you map the traps to new CA Spectrum events and specify those events to
generate alarms. After you do the mapping, typically you further customize the events
and alarms, which you must do in Event Configuration. For this reason, you can start
Event Configuration directly from MIB Tools.

When you start Event Configuration from MIB Tools, only the events that are associated
with the traps you select are initially loaded into the application.

You can start Event Configuration from MIB Tools.

Follow these steps:

1. In the Navigation panel in MIB Tools, select the MIB containing the traps that have
been mapped to the events that you want to configure.

Note: Map traps to CA Spectrum events in MIB Tools before you can configure the
associated events in Event Configuration. For more information, see the
information about trap support in the Certification User Guide.

2. In the Contents panel, click the Map tab.

3. In the Trap Support table, select the mapped traps for which you want to configure

events, and click (Edit traps for selected items in the trap support table).

Overview of the User Interface

16 Event Configuration User Guide

The Event Configuration application is started, and the events that are associated
with the traps that you selected display by event code in the Navigation panel.

Note: Click (Reloads the list of events) on the Navigation panel, to load all
events supported in the landscape or landscapes (in a distributed environment).

Overview of the User Interface

You can perform all event and alarm configuration tasks in the Event Configuration main
window.

Loading All Events from All Landscapes

Chapter 2: Getting Started with Event Configuration 17

The window is divided into three panels:

■ Navigation: The Navigation panel lists all of the events that are currently loaded
into Event Configuration.

The Modified column displays a checkmark next to any event that you have created
or modified but not yet saved to a landscape. For more information, see Saving
Events to Landscapes (see page 17).

■ Contents: The Contents panel displays a customizable event message in the Events
tab in OneClick for the event that is selected in the Navigation panel.

■ Details: The Details panel provides access to the configuration information for the
event that is selected in the Navigation panel. If the event generates an alarm, you
can also configure the alarm in this panel.

Note: You can click the server connection icon () to access connection status
information for all landscapes in the environment.

Loading All Events from All Landscapes

In order to, load or reload all of the events that are supported in the landscape (or
landscapes if the environment is distributed).

Click (Reloads the list of events) on the Navigation panel.

Note:Click If you start Event Configuration from MIB Tools to work with a limited set
of events, and now require access to all events supported in all landscapes.

Save Events to Landscapes

When you save new or modified events (and their disposed actions, such as alarms and
event rules) to a landscape, Event Configuration updates the event disposition
(EventDisp) files that define them on the SpectroSERVER. The SpectroSERVER flushes all
existing event and alarm instances and reloads them using the most recent
configuration information.

You can save all events or only selected ones. You can also save the changes to the local
landscape only or, in a distributed environment, to some or all of the landscapes.

Save Events to Landscapes

18 Event Configuration User Guide

If you do not save your changes to one or more landscapes before exiting Event
Configuration the changes are discarded when you exit the application.

Important! The save process flushes and reloads all event rules including those event
rules that are in the middle of processing. As a consequence, the processing of events by
active event rules is aborted, and all associated data (for example, counts for
occurrences of contributing events) is lost.

You can save events to the landscape in a single SpectroSERVER environment.

Follow these steps:

1. Do one of the following:

■ If you want to save all modified or created events (and associated alarms), click
Save All on the File menu.

■ If you want to save only specific events (and associated alarms), select the
events in the table in the Navigation panel, and then click Save Selected on the
File menu.

2. Click Yes.

You can save events to one or more landscapes in a Distributed SpectroSERVER (DSS)
environment.

Follow these steps:

1. Take one of the following steps:

■ To save all modified or created events (and associated alarms), click Save All on
the File menu.

■ To save only specific events (and associated alarms), select the events in the
table in the Navigation panel, and then click Save Selected on the File menu.

If one or more SpectroSERVERs are unavailable, you are notified with a warning, so
you can cancel the process if desired.

Note: If any SpectroSERVERs are unavailable and cannot receive the changes, you
can synchronize the events and alarms on all landscapes later.

2. Click Yes to save the events and alarms to available SpectroSERVERs. Alternatively,
click No to cancel the process.

The Select Landscapes dialog opens. By default, all available SpectroSERVERs are
listed in the left list box, which means that all available SpectroSERVERs receive the
updated events and alarms.

3. If there are available landscapes to which you, do not want to save the changes,
select them in the left list box, and click the right-arrow button to move them to the
right list box.

4. Click OK.

Synchronizing Events in a Distributed Environment

Chapter 2: Getting Started with Event Configuration 19

More information:

Synchronizing Events in a Distributed Environment (see page 19)

Synchronizing Events in a Distributed Environment

If you are running CA Spectrum in a distributed environment, update events and alarms
using Event Configuration and saving them to landscapes, do any of the following tasks:

■ Update the SpectroSERVERs in the environment that do not have the most current
events and alarms. See Synchronizing Event Disposition Files on SpectroSERVERs
(see page 19).

■ Copy the event and alarm support files to all of the OneClick web servers in the
environment. See Synchronizing Event and Alarm Support Files on OneClick Web
Servers (see page 22).

Synchronize Event Disposition Files on SpectroSERVERs

Event and alarm changes are saved to the SpectroSERVERs in a Distributed
SpectroSERVER (DSS) environment only when, for example, a server is unavailable. As a
result, conflicts in event and alarm configurations arise across the landscapes. Resolve
these conflicts by saving the changes to the unavailable servers when they become
available. You can perform this task using the synchronization features in Event
Configuration.

To begin resolving event (and alarm) conflicts across landscapes, first add the Conflict
column to the table of events in the Navigation panel.

Next, examine the Conflict column and note any select marks (). CA Spectrum
detects an event that is configured differently across two or more landscapes because it
finds different event maps for the event in the event disposition files on the
SpectroSERVERs. An event with multiple event maps is loaded into Event Configuration
once for each unique event map in the DSS environment. The select mark notifies you of
each event that has different configurations.

Synchronizing Events in a Distributed Environment

20 Event Configuration User Guide

As an example, note the two instances of event 0xf40004 in the following image.

The image shows the result of customizing a predefined event (event 0xf40004) and
saving the customization to some but not all landscapes.

You can identify the landscapes to which the custom event has been saved. Select the
custom event 0xf40004 and examine the Landscapes tab (displayed automatically in a
DSS environment) in the Details panel.

Synchronizing Events in a Distributed Environment

Chapter 2: Getting Started with Event Configuration 21

Similarly, you can identify the landscapes to which a predefined event has been saved.
Select predefined event 0xf40004 and examine the Landscapes tab. The following image
shows the Landscapes tab for the predefined event.

Compare the following information:

■ The configurations of the conflicting events

■ The landscapes to which the conflicting events have been saved

This information helps you identify the events to save and the landscapes where they
are saved to resolve a conflict. Once you have identified these factors, synchronize the
landscapes.

Synchronizing Events in a Distributed Environment

22 Event Configuration User Guide

Synchronizing the landscapes updates the event disposition (EventDisp) files on one or
more SpectroSERVERs. Once updated, they match the event disposition file on the main
location server in the DSS environment. Use the Save command if the main location
server does not have the event disposition file that you want to use to update the rest
of the SpectroSERVERs. For more information, see Saving Events to Landscapes (see
page 17).

Note: You manually designate a main location server when you install CA Spectrum. For
more information about location servers, see the Distributed SpectroSERVER
Administration Guide.

Follow these steps:

1. Select Synchronize on the File menu.

The landscapes with event disposition files that differ from the file on the main
location server are listed.

2. To synchronize with the main location server, select the landscapes, and click OK.

Note: Synchronize the event and alarm support files on the OneClick web servers in
the environment.

Note: You can also synchronize event and alarm support files between fault-tolerant
servers. For more information, see the Distributed SpectroSERVER Administration Guide.

More information:

Synchronize Event and Alarm Support Files on OneClick Web Servers (see page 22)
Add and Remove Columns from the Events Table (see page 24)

Synchronize Event and Alarm Support Files on OneClick Web Servers

Support files are created when you create and configure events and alarms and save
them to one or more landscapes using Event Configuration.
The following types of files are created and updated automatically on only the OneClick
web server to which you are connected:

Event format files

Store the event messages that are displayed in OneClick. Every event that CA
Spectrum creates has an event format file.

Probable cause files

Store the alarm messages that are displayed in OneClick. Every alarm that CA
Spectrum creates and that appears on the Alarms tab in OneClick has a probable
cause file.

Updating the Overall Alert and Event System for a Landscape

Chapter 2: Getting Started with Event Configuration 23

If you are running multiple OneClick web servers, copy the folders containing the event
format files and the probable cause files to the other OneClick servers in your
distributed environment. Copy the following folders:

$SPECROOT/custom/Events/CsEvFormat

$SPECROOT/custom/Events/CsPCause

Also copy the contents of these same directories to $SPECROOT/SG-Support on all of
the SpectroSERVERs in your environment in the following circumstances:

■ Use the command-line interface (CLI) commands showalarms or showevents.

■ Use CA Spectrum Alarm Notification Manager (SANM).

More information:

Contents of a Probable Cause File (see page 150)
Location of Event Format Files (see page 145)
Contents of an Event Format File (see page 146)
Location of Probable Cause Files (see page 149)

Updating the Overall Alert and Event System for a Landscape

As described in Saving Events to Landscapes (see page 17), you can update only the
events (and their disposed actions, such as alarms or event rules) on one or more
landscapes using the Save commands available on the File menu.

However, to update the overall alert and event system more broadly for a given
landscape, in OneClick, click Update Event Configuration on the SpectroSERVER Control
subview of the Information tab on the VNM model. This action reloads the following:

■ The alert maps that are defined in all custom and predefined AlertMap files.

■ The event maps (including event rules) defined in all custom and predefined event
disposition files.

■ The event procedures that are defined in all custom and predefined event
procedure definition files.

■ The severity maps defined in all custom and predefined severity mapping files
(which are used for alarms that are assigned an alarm severity level of Conditional).

Add and Remove Columns from the Events Table

24 Event Configuration User Guide

■ The event-related resource settings that are defined in the.vnmrc file for the
SpectroSERVER.

Note: For information about these settings, see Logging Event-Related Errors (see
page 24). For more information about the.vnmrc resource file, see the Distributed
SpectroSERVER Administration Guide.

■ The parse maps defined in all custom and predefined parse map files.

Note: For information about parse map files, see the Host System Resources
Management User Guide.

Important! This update process flushes and reloads all event rules, including those
event rules that are in the middle of processing. As a result, the processing of events by
active event rules is aborted, and all associated data (for example, counts for
occurrences of contributing events) is lost.

Add and Remove Columns from the Events Table

You can modify the event information that is displayed in the table of events in the
Navigation panel by adding or removing columns from the table.

For example, if you are working in a Distributed SpectroSERVER (DSS) environment, it
can be helpful to add the Conflict column to the table. This information lets you identify
whether existing events are configured differently on different landscapes.

Note: To filter the events in the table that is based on a specific event property, the
corresponding event property column must be displayed. The filtering mechanism
checks the text string that you specify against only the text in the displayed columns.

Follow these steps:

1. Right-click any column heading.

The Table Preferences dialog opens.

2. Click the Columns tab, and select the columns that you want to display.

Note: You can also change the table sort order and font using the controls on the
Sort and Font tabs.

3. Click OK.

Logging Event-Related Errors

When you create and configure events and alarms using Event Configuration and then
save them to a landscape, the event and alarm processing instructions are written to
configuration files referred to as event disposition files.

Logging Event-Related Errors

Chapter 2: Getting Started with Event Configuration 25

To help you resolve errors in event disposition files, which result in errors in event
processing, you can write errors of different types to log files. You specify which types of
errors to log, and the log files to which to write them, using several parameters in the
VNM resource file (.vnmrc file) for the SpectroSERVER. See the subsections that follow
for details on each parameter.

Several types of errors, such as syntax errors, are typically the result of manual
modifications to event disposition files. To minimize these types of errors, it is
recommended that you use Event Configuration, not a manual process, to create and
configure events and alarms.

Important! If the SpectroSERVER encounters an error in an event map while parsing an
event disposition file, that event map is ignored. The event map cannot therefore be
used to process the associated event.

Note: If you modify the event-related.vnmrc parameters that are described in this
section, you must reload the parameters on the SpectroSERVER using the Update Event
Configuration command on the Information tab of the VNM model for the changes to
take effect. For more information, see Updating the Overall Alert and Event System for a
Landscape (see page 23). Or you can restart the SpectroSERVER, which reloads all of the
parameters in the.vnmrc file, not only the event-related ones. For more information
about the.vnmrc file, see the Distributed SpectroSERVER Administration Guide.

event_disp_error_file

If you set this parameter to the name of a text file, CA Spectrum writes any syntax errors
or other errors that it encounters while parsing an event disposition file to that text file.
Use the following syntax:

event_disp_error_file=<file name>

The text file is created in the $SPECROOT/SS folder.

Or you can set the value as follows:

event_disp_error_file=stderr

This command sends the output to the console window in the CA Spectrum Control
Panel and to the $SPECROOT/SS/VNM.OUT file.

Note: For more information about syntax errors, see Syntax Errors in EventDisp Files
(see page 143).

Logging Event-Related Errors

26 Event Configuration User Guide

event_custom_override_warnings

If you set this parameter to TRUE, when CA Spectrum encounters an event map for an
event in a custom event disposition file, and an event map for the same event also exists
in an event disposition file that is provided with CA Spectrum, it logs a warning to the
text file specified in the event_disp_error_file parameter (if a file is specified). The
default value is FALSE.

Setting this parameter to TRUE can be helpful if you must determine which CA-authored
events are overridden by your custom events, for example, for troubleshooting
purposes. Use the following syntax:

event_custom_override_warnings=TRUE

Note: To set this parameter, you must manually add it to the .vnmrc file.

enable_event_variable_warnings

By default, CA Spectrum does not log any warnings that are encountered while copying
event variable values from one event to another during event rule processing. You can
override this default behavior by setting the value of this parameter to TRUE. Use the
following syntax:

enable_event_variable_warnings=TRUE

Note: To set this parameter, you must manually add it to the.vnmrc file.

event_duplicate_action_warnings

By default, when CA Spectrum encounters identical (and, therefore, duplicate) event
maps for an event within an event disposition file or across multiple event disposition
files on a SpectroSERVER, it logs a warning to the text file specified in the
event_disp_error_file parameter (if a file is specified).

Typically, this default behavior is desirable. However, you can override it by setting the
value of this parameter to FALSE. Use the following syntax:

event_duplicate_action_warnings=FALSE

Note: To set this parameter, you must manually add it to the .vnmrc file.

event_disp_default_log

For events that you create and manage using Event Configuration, you specify whether
they are logged in the Distributed Data Manager (DDM) database using the Store Event
in Historical Database event option in Event Configuration. See Specify Event Options
(see page 40) for more information.

Logging Event-Related Errors

Chapter 2: Getting Started with Event Configuration 27

By default, events that do not have event maps in event disposition files are logged in
the DDM database. You can override this default behavior by setting the value of this
parameter to FALSE. Use the following syntax:

event_disp_default_log=FALSE

Typically, most events have event maps in event disposition files. However, in rare
situations, this is not the case. For example, if you mapped a trap to a CA Spectrum
event manually instead of using the recommended method of using MIB Tools, and then
you inadvertently neglected to define an event map for the event in an event
disposition file, the event is still logged in the DDM database depending on the value of
this.vnmrc parameter.

procedure_error_file

If you set this parameter to the name of a text file, CA Spectrum writes any errors that it
encounters while parsing a procedure file to that text file. Use the following syntax:

procedure_error_file=<file name>

The text file is created in the $SPECROOT/SS folder.

Alternatively, you can set the value as follows:

procedure_error_file=stderr

This sends the output to the console window in the CA Spectrum Control Panel and to
the $SPECROOT/SS/VNM.OUT file.

If the event_disp_error_file parameter is set, the errors that are encountered in
procedures that are executed from events are written to the file specified in
event_disp_error_file instead of to the file specified in this parameter. Errors that are
encountered in other types of procedures, for example, in those procedures used for
diagnostics, are still written to the file specified in this parameter.

Note: To set this parameter, add it to the.vnmrc file manually.

Chapter 3: Working with Events and Alarms 29

Chapter 3: Working with Events and Alarms

This section contains the following topics:

Finding Events (see page 29)
Create Events from Scratch (see page 30)
Create Events from a Copy (see page 31)
About Configuring Events (see page 32)
Modify Events (see page 58)
Delete Custom Events (see page 59)

Finding Events

To find an event, you can filter the list of events in the Navigation panel to include only
events with displayed property values that include a specific text string. For example, if
the Type column is displayed, you can enter “timeout” to filter the list to include only
events that generate alarms that include the word (in uppercase or lowercase) in the
alarm type text string (alarm title).

An event that is mapped to a Trap has the Trap Event column checked.

To find events.

1. If necessary, click (Reloads the list of events) to update the event table in the
Navigation panel to include all events in the distributed environment.

Note: Typically, you must reload the list of events if you started Event Configuration
from MIB Tools. Starting Event Configuration in this manner only loads into Event
Configuration the specific events you selected in MIB Tools.

2. Verify that the event properties that you want to search against are displayed in the
events table. If not, add the appropriate table columns as described in Adding and
Removing Columns from the Events Table (see page 24).

Note: Only visible table columns are included in the filtering process.

3. In the Filter field, enter the text string to search for in the event table.

The list of events in the table is filtered to include only those events that have the
text string you specified in the displayed property values.

Create Events from Scratch

30 Event Configuration User Guide

Create Events from Scratch

You can create new events from scratch.

Note: Creating a management module for a device that CA Spectrum does not support
by default; use MIB Tools to map traps sent by the device to new CA Spectrum events
before using Event Configuration. (Events are automatically created when you define
the trap mappings). You can then launch Event Configuration directly from MIB Tools to
configure the events and associated alarms.

For more information, see Mapping Traps to CA Spectrum Events (see page 14).

To create a new event.

1. In the Navigation panel, click (Creates an event).

The Create Event dialog appears.

2. Enter an event code or accept the default event code.

Note: The event code is a 4-byte integer that is expressed in hexadecimal format.
The first 2 bytes contain the developer ID, and the last 2 bytes identify the event
with a unique number. While the default code is unique, it is recommended that
you enter a code beginning with your CA-assigned developer ID. This ID lets you
easily recognize your custom code in OneClick and prevents potential conflicts with
other CA Spectrum event codes. The event code 0x10000 represents a null event.
This event cannot be generated. However, the null event can be used in an event
rule that requires an event code as a parameter.

3. Enter an event message as described in Entering an Event Message (see page 33).
(You can also modify the message after the event is created.)

Remember that most of the information that a OneClick user receives about an
event is through the message text that is affiliated with that event. For this reason,
provide as much information about the event as possible in the message.

e

4. (Optional) Enter the Vendor to specify the developer, vendor, or manufacturer.

Note: The Vendor is available in the directory under <$SPECROOT>/custom/Events
that contains the EventDisp (see page 104) file. The event options (and other event
processing information) are stored in event configuration files referred to as event
disposition files.

5. Click OK.

The new event is added to the table of events in the Navigation panel. The event is
displayed in bold. The Modification column displays New.

Note: The event is marked New. However, the event is not saved. You can make
more updates such as create more events, modify existing events, or delete events,
and save all the updates at one time.

6. Configure the event, as described in Configuring Events (see page 32).

Create Events from a Copy

Chapter 3: Working with Events and Alarms 31

7. (Optional) Add event rules to the event, as described in Creating an Event Rule (see
page 65).

8. Save the changes to one or more landscapes, as described in Saving Events to
Landscapes (see page 17).

The events appear in the normal font and are not marked in the Modification
column.

Create Events from a Copy

You can create new events by copying existing events.

Note: Creating a management module for a device that CA Spectrum does not support
by default, use MIB tools to map the traps sent by the device to new CA Spectrum
events (automatically created when the trap mappings are defined) before using Event
Configuration. You can then launch Event Configuration directly from MIB Tools to
configure the events and associated alarms.

For more information, see Mapping Traps to CA Spectrum Events (see page 14).

To create an event from a copy.

1. In the Navigation panel, select the event that you want to copy, and click
(Copies the selected event).

The Copy Event dialog opens.

2. Enter an event code or accept the default event code.

3. Note: The event code is a 4-byte integer that is expressed in hexadecimal format.
The first 2 bytes contain the developer ID, and the last 2 bytes identify the event
with a unique number. Though the default code is unique (even regarding the event
that you are copying), it is recommended that you enter a code beginning with your
CA-assigned developer ID. This ID lets you easily recognize your custom code in
OneClick and prevents potential conflicts with other CA Spectrum event codes. The
event code 0x10000 represents a null event. This event cannot be generated.
However, the null event can be used in an event rule that requires an event code as
a parameter.

4. Revise the event message as appropriate for the new event, as described in
Entering an Event Message (see page 33). (You can also modify the message after
the event is created.)

Remember that most of the information that a OneClick user receives about an
event is through the message text which is affiliated with that event. For this
reason, provide as much information about the event as possible in the message.

About Configuring Events

32 Event Configuration User Guide

5. Click OK.

The new event is added to the table of events in the Navigation panel. The event
displays in bold. The Modification column displays New.

Note: The event is marked New. However, the event is not saved. You can make
more updates such as create more events, modify existing events, or delete events,
and save all the updates at one time.

6. Configure the event, as described in Configuring Events (see page 32).

7. (Optional) Add event rules to the event, as described in Creating an Event Rule (see
page 65).

8. Save the changes to one or more landscapes, as described in Saving Events to
Landscapes (see page 17).

The events appear in the normal font and are not marked in the Modification
column.

About Configuring Events

To configure an event, specify the following:

■ The message that is displayed to users in OneClick when the event occurs. See
Entering an Event Message (see page 33).

■ The scope of the event (global or model type-specific) and whether the event is
logged in the Distributed Data Manager (DDM) database by the Archive Manager
for historical and reporting purposes. See Specifying Event Options (see page 40).

■ Whether the event generates an alarm. See Configuring Events to Generate Alarms
(see page 42).

■ Whether the event clears one or more alarms. See Configuring Events to Clear
Alarms (see page 56).

Note: You can also create event rules that are activated (triggered) by an event. For
example, some types of events can be tolerated and do not indicate problems if the
frequency at which they are generated does not reach a specific threshold, within a
specific amount of time. You can create a rule that watches for this scenario, and when
it occurs, generates another event (and associated alarm) in response.

More information:

Specify Event Options (see page 40)
Event Messages (see page 33)
Configure Events to Generate Alarms (see page 42)
Configure Events to Clear Alarms (see page 56)
Working with Event Rules (see page 61)

About Configuring Events

Chapter 3: Working with Events and Alarms 33

Event Messages

The event message is the message that is displayed on the Events tab in OneClick when
the event occurs.

When you compose an event message, you can use plain text and variables that
reference specific data about the generated event. For the descriptions of each variable
and the proper syntax to use when including them, see the subsections that follow.

Note: The event messages are stored in event configuration files referred to as event
format files.

More information:

About Event Format Files (see page 145)

Variable Descriptions and Syntax

This section provides information about the event variables that you can use when you
define event messages. When you include an event variable in a message, use the
syntax that is defined here.

In the sections that follow, the # sign represents the event variable ID that is mapped to
the OID of the variable binding that is sent with the trap. This assignment is made in the
OID map in an AlertMap file that MIB Tools automatically creates when you map a trap
to an event.

About Configuring Events

34 Event Configuration User Guide

You can construct any type of message using event variable IDs. The only requirement is
that the variables that you use in the message are of the proper data type.

Note: 0x12a63 is a reserved event variable ID that is used for a web context URL.

{d “%w- %d %m-, %Y - %T”}

This is the variable for the date string. It must be included in every event message.
By including this variable exactly as shown, you tell CA Spectrum to capture the
time and date that the alert is received.

Note: You do not need to include this variable if you are entering the event
message using Event Configuration, as the application automatically inserts the
variable in the event format file that it creates when you save the event to a
landscape.

Date/Time specifier options:

%u

Use GMT time not local time. Must appear first in format.

%%

 Writes % to buffer.

%d

 Writes day-of-month 01..31 to buffer.

%d-

Writes day-of-month 1..31 to buffer.

%D

 Writes date dd/mm/yy to buffer.

%H

 Writes hour-of-day 00..23 to buffer.

%h

Same as %m.

%j

Writes day-of-year 1..366 to buffer.

%m+

Writes full month name to buffer.

%m-

Writes abbreviated month name to buffer.

%m*

Writes month index 1..12 to buffer.

About Configuring Events

Chapter 3: Working with Events and Alarms 35

%m

Writes month index 01..12 to buffer.

%M

Writes minute 00..59 to buffer.

%S

Writes second 00..59 to buffer.

%T

Writes time hh:mm:ss to buffer.

%w+

Writes full weekday name to buffer.

%w-

Writes abbreviated weekday name to buffer.

%w

Writes weekday index 1..7 to buffer.

%y

Writes year 00..99 to buffer.

%Y

Writes year 0000..9999 to buffer.

{t}

This variable inserts the model type name in the message. The (t) variable is defined
internally and is not configurable.

{m}

This variable inserts the model name in the message. The (m) model name variable
is defined internally and is not configurable.

{e}

This variable inserts the event code in the message. The (e) variable is defined
internally and is not configurable.

{u}

This variable inserts the user name in the message. The (u) variable is defined
internally and is not configurable.

About Configuring Events

36 Event Configuration User Guide

{T <event table file name> #}

Inserts a text string that is associated with a MIB table attribute value. The
association between the attribute value and the text string is defined in an event
table file that MIB Tools creates automatically when you map the trap to the event.
For more information, see Referencing Attribute Values in a MIB Table (see
page 37).

{Y <event table file name> #}

Inserts a text string that is associated with an OID. The association between the
attribute value and the text string is defined in an event table file that MIB
Tools creates automatically when you map the trap to the event. For more
information, see Referencing OIDs (see page 38).

{Z <event table file name> #}

Inserts a text value that is associated with an integer bit value. The association
between the integer bit value and the text string is defined in an event table file
that MIB Tools creates automatically when you map the trap to the event. For more
information, see Referencing Integer Bit Values (see page 39).

{o #}

Inserts an object ID.

{O #}

Inserts an octet string.

{X #} or {x #}

Inserts an octet string that is displayed in hexadecimal format.

{S #}

Inserts a text string.

{B #}

Inserts a Boolean value. Zero denotes false. Any other value denotes true.

{I #}
Inserts an integer. string that is displayed.

{L #}

Inserts a Counter64 counter.

{U #}

Inserts an unsigned integer or Counter64 counter.

{R #}

Inserts a real number in the range: 10E37 to 10E37.

{H #}

Inserts a 32-bit hex number with a 0x prefix.

About Configuring Events

Chapter 3: Working with Events and Alarms 37

{K #}

Converts a DateAndTime attribute value from an octet string to a text string, and
inserts the formatted text string.

{G #}

Calculates and inserts the device up time that is based on the value of the event
variable (#). The value is displayed as days+hours:mins:secs.

{D #}

Used with an event variable (#), which contains an integer representing the number
of seconds since 1969. Converts that value to a string that represents the date and
time.

Referencing Attribute Values in a MIB Table

If a variable binding that is sent with a trap contains an attribute value from a MIB table,
you can use it in an event message. To do so, you must use the proper syntax and must
reference the following:

■ The event variable to which the OID of the variable binding is mapped.

■ The event table file that contains the enumerated attribute values and the
associated text strings to use in event messages. (MIB Tools automatically creates
the Event table files when you map traps to new CA Spectrum events.)

As an example, assume that you have an event table file that is named BeaconType that
associates the following attribute values with corresponding text strings:

0x00000001 Reconfiguration

0x00000002 Signal-Loss

0x00000003 Bit-Streaming

0x00000004 Contention-Streaming

0x000000ff None

To reference these values in an event message, use the following syntax:

{T BeaconType 2}

T

Indicates that you are inserting a MIB table attribute whose values are enumerated
in an event table file.

BeaconType

Specifies the name of the event table file that contains the enumerated values.

About Configuring Events

38 Event Configuration User Guide

2

Specifies the event variable number that is mapped (in the AlertMap file) to the OID
of the variable binding that is sent with the trap. CA Spectrum takes the value of the
event variable and retrieves the corresponding text string that is defined in the
event table file. For example, if the event variable above, 2, stored the value 3, the
text “Bit-Streaming” would be rendered in the event message.

More information:

About Event Table Files (see page 147)

Referencing OIDs

If a variable binding that is sent with a trap contains an OID, you can use it in an event
message. To do so, you must use the proper syntax and must reference the following:

■ The event variable to which the OID of the variable binding is mapped.

■ The event table file that contains the enumerated OID values and the associated
text strings to use in event messages. (MIB Tools automatically create Event table
files when you map traps to new CA Spectrum events.)

As an example, assume that you have an event table file that is named NewTable that
associates the following attribute values with corresponding text strings:

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.6 dot6

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.5 dot15

1.3.6.1.4.1.1563.1.2.1.1.3.2 dot7

To reference these values in an event message, use the following syntax:

{Y NewTable 2}

Y

Indicates that you are inserting the value of a variable binding whose possible OID
values are enumerated in an event table file.

NewTable

Specifies the name of the event table file that contains the enumerated values.

2

Specifies the event variable number that is mapped (in the AlertMap file) to the OID
of the variable binding that is sent with the trap. CA Spectrum takes the value of the
event variable and retrieves the corresponding text string that is defined in the
Event Table file. For example, if the event variable above, 2, stored the value
1.3.6.1.4.1.1563.1.2.1.1.3.2, the text “dot7” would be rendered in the event
message.

About Configuring Events

Chapter 3: Working with Events and Alarms 39

More information:

About Event Table Files (see page 147)

Referencing Integer Bit Values

If a variable binding that is sent with a trap contains an integer bit value, you can use it
in an event message. To do so, you must use the proper syntax and must reference the
following:

■ The event variable to which the OID of the variable binding is mapped.

■ The event table file that contains the enumerated integer bit values and the
associated text strings to use in event messages.

Note: When you map traps to new CA Spectrum events MIB Tools automatically
created Event table files.

As an example, assume that you have an event table file that is named NewBitTable that
associates the following integer bit values with corresponding text strings:

1 dsx1NoAlarm

2 dsx1RcvFarEndLOF

3 dsx1XmtFarEndLOF

4 dsx1RcvAIS

To reference these values in an event message, use the following syntax:

{Z NewBitTable 2}

Z

Indicates that you are inserting the value of a variable binding whose possible
integer bit values are enumerated in an event table file.

NewBitTable

Specifies the name of the event table file that contains the enumerated values.

2

Specifies the event variable number that is mapped (in the AlertMap file) to the OID
of the variable binding that is sent with the trap. CA Spectrum takes the value of the
event variable and retrieves the corresponding text string that is defined in the
Event Table file. For example, if the event variable above, 2, stored the value 4, the
text “dsx1RcvAIS” would be rendered in the event message.

More information:

Event Table Files (see page 147)

About Configuring Events

40 Event Configuration User Guide

Example Event Message

The following message is a sample event message:

{d "%w- %d %m-, %Y - %T"} A device {m} of type {t} has reported a Firewall trap has

occurred. {S 1} contains the name of the last trap sent via fw. - (event [{e}])

When the message is displayed on the Events tab in OneClick, it is rendered as follows:

■ {d "%w- %d %m-, %Y - %T"} is replaced with the date and time

■ {m} is replaced with the model name

■ {S 1} is replaced with a string value (S for string data type) from a variable binding

■ {t} is replaced with the model type

■ {e} is replaced with the event code.

Specify Event Options

You can specify the following options for an event:

■ Whether the event is logged in the Distributed Data Manager (DDM) database by
the Archive Manager for historical and reporting purposes.

Events for a model that are not logged in the DDM database are displayed on the
Events tab in OneClick only if they are generated while the Events tab for that
model is displayed.

■ Whether the event is global or specific to one or more model types.

Global events are those that are generated for all models of all model types
regardless of the developer who created the model type. Examples of global events
include “link down” or “cold start” events.

If an event is specific to a model type, it is generated only for models of specific
model types (for example, for a device model type that supports a proprietary MIB).

■ The Vendor field appears only for those events that are defined for a vendor. It
appears as read-only only for events that are defined under a vendor directory. It is
configurable for a new event until the event has been saved, then it appears as
read-only.

Note: Event options (and other event processing information) are stored in event
configuration files referred to as event disposition files.

To specify options for an event.

1. Select the event in the Navigation panel.

2. In the Details panel, click the Event Options tab.

3. If you want the event to be logged in the Distributed Data Manager (DDM) database
by the Archive Manager, select Store Event in Historical Database.

About Configuring Events

Chapter 3: Working with Events and Alarms 41

4. Under Scope, specify the scope of the event:

■ If the event is global, select Global.

■ If the event is specific to a model type, select Model Type. Then, in the Select
Model Type dialog, select the name of one or more model types to which the
event applies, and click OK. (Use the CTRL key to select multiple model types.)

Note: Changing the scope of an event does not modify the event; instead, a
duplicate event with the same event code but a different event scope is
automatically created. As a result, when you save both events to a landscape, two
event maps in two different event disposition files are created. This lets you specify
event processing for the event and apply those instructions globally, and then
override those processing instructions, for the same event, for specific model types.
When an event is processed by CA Spectrum, the event maps in model type-specific
event disposition files take precedence over the event maps for the same events in
global event disposition files. If you change the scope of an event, and you do not
require the original event, you can delete it if it is a custom event.

More information:

About Event Disposition Files (see page 103)

About Configuring Events

42 Event Configuration User Guide

Configure Events to Generate Alarms

You can specify that the currently selected event generates an alarm, and you can
configure the alarm itself using the Alarms tab in the Details panel. The Details panel is
shown in the following image:

When you configure an event to generate an alarm and then save that change to a
landscape, you create a mapping between the event and the alarm in a configuration
file, an event disposition file.

About Configuring Events

Chapter 3: Working with Events and Alarms 43

Follow these steps:

1. Select the event in the Navigation panel, and then click the Alarms tab in the Details
panel.

Note: Under Generated Alarm, the value for Severity is None, indicating that the
event does not generate an alarm.

2. Select an alarm severity other than None from the Severity list. For more
information, including descriptions of the different severity levels, see Specifying an
Alarm Severity (see page 45).

3. (Optional) For Cause Code, change the alarm cause code (the 8-digit, hexadecimal
code that identifies the cause of the alarm). For more information, see Specifying
an Alarm Cause Code (see page 47).

Events that generate alarms typically use their event codes as alarm cause codes.
The event code of the event is therefore the default alarm cause code of the alarm.

4. For Event Variable Discriminators, enter a comma-separated list of event variable
IDs if you want to use the values of the variables in the event to determine whether
to generate the alarm. You must enter each ID; ranges of IDs are not supported.

Note: By default, CA Spectrum does not generate a new alarm each time the same
event occurs if an alarm already exists for that event on the model. You can use
event discriminators or alarm options to change this default behavior.

For example, if the event generates alarm 0x3b10011, and you enter “1,3” for Event
Variable Discriminators, then if an existing alarm 0x3b10011 already exists on the
model, another alarm is not generated unless the values for both event variables 1
and 3 are different in the new event instance when compared to current alarms on
the model generated from the same event.

For more help with this step, see Using Event Variable Discriminators to Generate
Alarms (see page 50).

5. For Type, enter a text string that identifies the type of the alarm, for example, “BAD
LINK DETECTED.”

About Configuring Events

44 Event Configuration User Guide

The text string that you enter for Type is displayed as the alarm title in OneClick, as
shown in the following image. For enhanced readability in OneClick, enter the text
string in capital letters.

6. Specify the symptoms, probable causes, and recommended corrective actions for
the alarm, respectively, on the Symptoms, Probable Causes, and Recommended
Actions tabs. This information is displayed on the Alarm Details tab in OneClick, as
shown in the preceding image.

Note: For more information, see Specifying Symptoms, Causes, and Recommended
Actions (see page 49).

7. Click the Alarm Options tab, and specify advanced options for the alarm. For more
information, see Specifying Alarm Options (see page 49).

8. To configure the selected event to also clear one or more alarms, specify the alarms
in the Cleared Alarms area of the Contents panel.

For more information, see Configuring an Event to Clear Alarms (see page 56).

More information:

About Event Disposition Files (see page 103)

About Configuring Events

Chapter 3: Working with Events and Alarms 45

Specify an Alarm Severity

The following lists the alarm severity levels used in CA Spectrum. Each severity level is
associated with a color-coded condition that is displayed on the model. When an alarm
of the specified severity is asserted on a model, the condition color is displayed on the
model’s icon to reflect the alarm status.

Normal (0)

Color-coded condition: Green

Indicates that contact has been made with the device, and the device is operating
normally. There are no alarms associated with the device. If an event generates an
alarm, but a severity for the alarm is not specified (for example, if you have created
the supporting EventDisp configuration file manually and inadvertently omitted a
severity), CA Spectrum assigns the alarm a severity of Normal.

Minor (1)

Color-coded condition: Yellow

Indicates that an abnormal situation exists, but no immediate action is required.
This level of severity is also used for alarms created only to convey information,
such as “Duplicate IP."

Major (2)

Color-coded condition: Orange

Indicates that a loss of service has occurred or is impending. Action is required
within a short period of time.

Critical (3)

Color-coded condition: Red

Indicates that a loss of service has occurred and immediate action is required.

Maintenance (4)

Color-coded condition: Brown

Indicates that the device has been taken offline for maintenance purposes.

Suppressed (5)

Color-coded condition: Gray

Indicates that the device cannot be reached due to a known error condition that
exists on another device.

Initial (6)

Color-coded condition: Blue

Indicates that contact with the device has not yet been established.

About Configuring Events

46 Event Configuration User Guide

Variable

Color-coded condition: N/A; evaluates to a severity that has a color-coded
condition.

Lets you assign an alarm severity that is based on the value of a variable binding.
For example, if the value of the variable binding is 1, then the alarm is assigned a
severity level of Minor.

To use this option, do the following:

– For Severity, select Variable.

– For Event Variable, specify the ID of the event variable that stores the variable
binding value to use to determine the severity level of the alarm. You must
specify a variable whose possible values are enumerated and directly
correspond to the numeric severity levels used by CA Spectrum (identified in
the first column in this table).

Conditional

Color-coded condition: N/A; evaluates to a severity that has a color-coded
condition.

Lets you assign an alarm severity that is based on the value of a variable binding.
You can also select the set of enumerated values and corresponding CA Spectrum
alarm severity levels to use. The Color coded condition is useful if, for example, the
variable binding defines a set of alarm severity levels that differ from those used in
CA Spectrum.

To use this option, do the following:

■ For Severity, select Conditional.

■ For Event Variable, specify the ID of the event variable that stores the variable
binding value to use to determine the severity level of the alarm. You must
specify a variable whose possible values are enumerated. The actual value in
the event variable is used as the key to look up a corresponding CA Spectrum
alarm severity level in a severity mapping file.

■ Below the severity level drop-down list, select the file that contains the
user-defined mappings of variable binding values and CA Spectrum alarm
severity levels.

More information:

Create Alarm Severity Mappings for the Conditional Severity Level (see page 52)
Modifying Alarm Severity Mappings for the Conditional Severity Level (see page 54)
About Event Disposition Files (see page 103)

About Configuring Events

Chapter 3: Working with Events and Alarms 47

Enable or Disable Alarms of a Severity Type

Alarms use a large amount of resources such as memory and processing time. CA
Spectrum lets you disable an alarm of a severity type to reduce the impact on system
performance. The disabled alarm is available internally but you cannot view it in the
user interface. The disabled alarm does not support alarm attributes like discriminators.
By default, alarm types with severity levels Initial and Suppressed are set as disabled. All
other alarm types continue to exist as regular alarms.

Note: Normal severity alarms do not support discriminators.

To disable an alarm of a severity type

1. Select the VNM Model.

2. Click the Information tab and expand the Alarm Management section.

3. Right-click the alarm and select Disable.

The alarm is disabled and the change takes effect immediately. The existing alarms
of the selected severity type continue to be regular or internal alarms until they are
cleared.

To enable an alarm of a severity type

1. Select the VNM Model.

2. Click the Information tab and expand the Alarm Management section.

3. Right-click the alarm and select Enable.

The alarm is enabled and the change takes effect immediately. The existing alarms
of the selected severity type continue to be regular or internal alarms until they are
cleared.

Notes:

■ Even after enabling alarms, you must verify that the client-side filters are adjusted
before you can view the alarm in the client applications.

■ We do not recommend enabling the Suppressed alarm type as it can affect
performance adversely .

Specify an Alarm Cause Code

An alarm cause code is an 8-digit, hexadecimal code that identifies the probable cause
of the alarm. As you save the event and associated alarm to a landscape, a mapping
between the event code and the associated alarm code is added to the event
configuration file that determines how to process the event, referred to as the event
disposition file. This mapping is the mechanism by which CA Spectrum identifies if an
alarm is to be generated for an event, and if so, which one.

About Configuring Events

48 Event Configuration User Guide

As a convention, events that generate alarms typically use their event codes as alarm
cause codes, and for this reason, the event code of the event is the default alarm cause
code of any alarm. However, you can change the alarm cause code if desired. For
example, you might want to change the alarm cause code if you have an existing, more
generic alarm that you want to be generated whenever the event occurs.

The alarm cause code is also used to name the underlying probable cause file that
contains the alarm-related messages (symptoms, causes, and recommended actions) to
display in OneClick when the alarm occurs. Each probable cause file is named
Prob<alarm_cause_code>, where <alarm_cause_code> is the code you specify on the
Alarms tab in Event Configuration.

To specify an alarm cause code, do one of the following:

■ Accept the default code, which readily identifies the alarm with the event that
generates it. If the supporting probable cause file does not exist, it will be created
automatically by Event Configuration when you save the event and alarm changes
to a landscape.

■ Click Browse, and in the Select Alarm Cause Code dialog, select an existing code.
The displayed list includes all of the alarm cause codes for all loaded events that
generate alarms. In this case, the supporting probable cause file will be updated
automatically when you save the event and alarm changes to a landscape.

■ Enter a new 8-digit, hexadecimal value. If the supporting probable cause file does
not exist, it will be created automatically by Event Configuration when you save the
event and alarm changes to a landscape.

Note: If you create an alarm-generating event and save it to one or more landscapes,
and you later change the alarm cause code to a new code and then save that change to
the landscapes, Event Configuration automatically creates a new probable cause file
that is named based on the new alarm cause code. However, to remove the probable
cause file named using the old code (if it is not used by any other alarm-generating
events), you must do so manually.

More information:

About Event Disposition Files (see page 103)
Contents of a Probable Cause File (see page 150)
Probable Cause Files (see page 149)
Save Events to Landscapes (see page 17)

About Configuring Events

Chapter 3: Working with Events and Alarms 49

About Specifying Symptoms, Causes, and Recommended Actions

If an event generates an alarm, you need to supply several plain text messages that
describe the symptoms, probable causes, and recommended corrective actions for the
alarm. These messages are displayed on the Alarm Details tab in OneClick, as shown in
the following image.

The text messages that you enter for the symptoms, probable causes, and
recommended corrective actions for an alarm are stored in an alarm configuration file
referred to as a probable cause file. The fields that support traps get auto-populated, .
For example, when you create a new alarm, the trap specific Alarm Title is auto-
populated assuming the MIB in which the trap is defined is found in the MIB database.

More information:

About Probable Cause Files (see page 149)

Specify Alarm Options

You can specify the following advanced options for an alarm:

Alarm is Persistent

If selected, the alarm is retained in memory if the SpectroSERVER is shut down and
then restarted.

About Configuring Events

50 Event Configuration User Guide

Alarm is User Clearable

If selected, the alarm can be cleared by users.

Generate a Unique Alarm for Each Event

If selected, a unique alarm is generated each time that the event occurs. By default,
CA Spectrum does not generate a new alarm each time the same event occurs if an
alarm already exists for the event on the model; selecting this option changes this
default behavior.

Using Event Variable Discriminators to Generate Alarms

When an event triggers an alarm in a model, CA Spectrum does not generate a separate
alarm if the same event recurs on the model. This default behavior prevents an event
that can occur multiple times due to the same condition. You can however, configure
multiple alarms to occur when the conditions of the event change. You can specify this
behavior using event variable discriminators.

Event variable discriminators are numeric values that refer to the IDs of the event
variables in an event. In turn, the event variable IDs are mapped (in the AlertMap file) to
the OIDs of the variable bindings that are sent with the trap. The discriminators let CA
Spectrum determine to generate alarms for multiple instances of the same event, that is
based on the values of variable bindings that are sent with the traps.

You can configure an event to generate an alarm and also specify one or more
discriminators. The alarm is generated when the values of the referenced event
variables are different. You can thus, specify alarms to be generated for distinct event
instances (with the same event code) in spite of an existing alarm in the model.

For example, to generate alarm 0x3b10011 you have configured event 0x3b10011, and
have specified that event variables 1 and 3 are event variable discriminators. This
configuration means that, if an alarm 0x3b10011 already exists on the model, another
alarm is not generated.

However if the following condition is met, a new alarm is generated:

The values for both event variables 1 and 3 in the new event instance are different
compared to current alarms on the model that is generated from the same event.

When you are configuring an alarm, specify the event variable discriminators by
entering a comma-separated list of IDs, for example:

1,3,5

You must enter each ID; ranges of IDs are not supported.

Note: The Event discriminators cannot be specified for normal, maintenance,
suppressed, or initial severity alarms.

About Configuring Events

Chapter 3: Working with Events and Alarms 51

Creating Dynamic Alarm Title

The alarm title is taken from the PCause files ($SPECROOT/SG-Support/CsPCause).

In OneClick, whenever the dynamic alarm title attribute has any value, the dynamic
string is displayed instead of the static alarm title from the probable cause file. The
static alarm title is displayed by default, if there is no value in the dynamic alarm title
attribute.

You can use the dynamic alarm title variable to create a dynamic alarm title. The
dynamic varbind id is 76620 (or 0x12b4c). Once you set the dynamic alarm title variable,
you see more information about the alarm in the title. To use the functionality, you can
create an event which has that varbind set to any value e.g. by mapping a trap variable
to that ID in an alert map file. You can also copy some other event variable through an
event rule, and then map the event to an alarm using that ID as a discriminator.

Example: Create a Dynamic Alarm Title

You can either create 0x050e1106 through an alert map or through the condition rule.
This example maps an alert to an event, copying over one alert variable (1.3.6.1.10.1.2)
as a dynamic alarm title. The dynamic varbind id is 76620 (or 0x12b4c).

1.3.6.1.4.4.1.6.3 0x050e1106 1.3.6.1.4.1.10.1.1(1,0)\ 1.3.6.1.4.1.10.1.2(76620,0)

You can also use an event rule to copy over a varbind (here ID 7 from event 0xffff0000)
to be used as dynamic title id in the new event (0x050e1106).

0xffff0000 E 50 R CA.EventCondition, “default”, “0x050e1106 7:76620”

For both cases, you can create a minor alarm which will show the dynamic title,
discriminating on the dynamic value ID. This shows an individual alarm for each value.

0x050e1106 E 50 A 1,0x050e1106,76620

Example: Clear a Dynamic Alarm Title

This example shows how to clear a dynamic alarm title using the Dynamic ID value.

0x050e1107 E 50 C 0x050e1106,76620

Note: You do not have to use the dynamic alarm title attribute as discriminator. In this
case, there is only one alarm, with one title, with the value from the first event which
created the alarm. All subsequent events are attached to that alarm, even when you
have different dynamic title values. If they use the discriminator, then they get one
alarm per title value. This uses the regular discriminator feature.

About Configuring Events

52 Event Configuration User Guide

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)

Configuring Alarm Severity Mappings for the Conditional Severity Level

A severity mapping file is an ASCII file that is used to determine the actual severity of an
alarm instance to generate when the alarm configuration specifies an alarm severity of
Conditional.

The Conditional alarm severity lets you assign the alarm severity that is based on the
value of a variable binding sent with the trap that triggered the event. Moreover, it also
lets you select the set of mappings between values and alarm severity levels to use
when determining the actual alarm severity.

The severity mapping file defines the mappings between possible variable binding
values and CA Spectrum alarm severity levels. You can create severity mapping files and
can customize the ones that are provided by default with CA Spectrum.

More information:

Create Alarm Severity Mappings for the Conditional Severity Level (see page 52)
Modifying Alarm Severity Mappings for the Conditional Severity Level (see page 54)

Create Alarm Severity Mappings for the Conditional Severity Level

If you create a severity mapping file, it is installed in the following location when you
save the change to a landscape:

<$SPECROOT>/custom/Events/<vendor_directory>/SeverityMaps/<file name>

where <vendor_directory> is the directory and <file_name> is the file name that you
specified when you created the mapping file using Event Configuration. If you do not
specify a directory while creating the file, it is installed in the following folder instead:

<$SPECROOT>/custom/Events/CA/SeverityMaps/<file name>

Important! Custom severity mapping files override those provided with CA Spectrum,
the latter of which are located in
<$SPECROOT>/SS/CsVendor/<vendor_directory>/SeverityMaps.

About Configuring Events

Chapter 3: Working with Events and Alarms 53

To create an alarm severity mapping file

1. Display the event that generates the alarm, and click the Alarms tab.

2. If you have not already done so, do the following:

a. For Severity, select Conditional.

b. For Event Variable, enter or select the event variable that contains the variable
binding value to use to determine the alarm severity.

3. Select any severity mapping file and click Configure.

The Configure Conditional Alarm Severity dialog opens, displaying the contents of
the selected severity mapping file.

4. Click .

The severity mapping file add dialog opens.

5. Complete the fields as follows:

Directory

Specifies the directory in which to save the severity mapping file.

Name

Specifies a name for the severity mapping file; ideally the name of the variable
binding whose values are enumerated in the file.

About Configuring Events

54 Event Configuration User Guide

6. Add the mappings between the string representations of the variable binding values
and CA Spectrum alarm severity levels (described in Specifying an Alarm Severity
(see page 45)) as follows:

■ To add a mapping, enter a unique string value for String, select a severity for
Severity, and click Add.

If you want the alarm to be cleared—instead of generated—if the
corresponding variable binding value is sent, select Clear.

■ To change a mapping, select the mapping, change the value for String or for
Severity (or both), and click Modify.

■ To remove a mapping, select the mapping, and click Remove.

7. Click OK twice.

Modifying Alarm Severity Mappings for the Conditional Severity Level

You can modify your custom severity mapping files and the mapping files provided by
default with CA Spectrum at any time.

If you modify a severity mapping file provided with CA Spectrum, a customized version
of the file is installed in the following location when you save the change to a landscape:

<$SPECROOT>/custom/Events/<vendor_directory>/SeverityMaps/<file name>

Important! Custom severity mapping files override those provided with CA Spectrum,
the latter of which are located in
<$SPECROOT>/SS/CsVendor/<vendor_directory>/SeverityMaps.

To modify an alarm severity mapping file

1. Display the event that generates the alarm, and click the Alarms tab.

2. If you have not already done so, do the following:

a. For Severity, select Conditional.

b. For Event Variable, enter or select the event variable that contains the variable
binding value to use to determine the alarm severity.

3. Select the severity mapping file to use to determine the actual severity level of the
alarm, and click Configure.

The Configure Conditional Alarm Severity dialog opens, displaying the contents of
the selected severity mapping file.

About Configuring Events

Chapter 3: Working with Events and Alarms 55

4. Click .

The severity mapping file edit dialog opens.

5. Modify the mappings between the string representations of the variable binding
values and CA Spectrum alarm severity levels as follows:

■ To change a mapping, select the mapping, change the value for String or for
Severity (or both), and click Modify.

Select Clear to clear the alarm—instead of generating it—if the corresponding
variable binding value is sent.

■ To add a mapping, enter a unique string value for String, select a severity for
Severity, and click Add.

■ To remove a mapping, select the mapping, and click Remove.

6. Click OK twice.

About Configuring Events

56 Event Configuration User Guide

Configure Events to Clear Alarms

You can specify that the currently selected event clears one or more alarms using the
Alarms tab in the Details panel, which is shown in the following image.

When you configure an event to clear alarms and then save that change to a landscape,
you create a mapping between the event and the alarms to be cleared in a configuration
file referred to as an event disposition file.

About Configuring Events

Chapter 3: Working with Events and Alarms 57

Follow these steps:

1. Select the event in the Navigation panel, and then click the Alarms tab in the Details
panel.

2. Under Cleared Alarm(s), click (Adds an alarm to the list).

The Add Cleared Alarm dialog displays the alarm cause codes for all alarms that are
loaded into Event Configuration.

3. Click Browse, and in the Select Alarm Cause Code dialog, select the alarm cause
code of the alarm to clear.

To help you identify the desired alarm, enter a text string in the Filter text box. The
list is filtered to include only the alarms with displayed properties that contain the
text string.

4. Click OK.

5. If the alarm that you want to clear was generated based on event variable
discriminators, select Clear Options, and then specify how the alarm is cleared.
Select one of the following options:

All Alarms

The event clears all existing instances of the alarm, regardless of whether the
values in the alarm-clearing event match the values stored in the alarm
instances.

Event Variable Discriminators

The event clears existing instances of the alarm based on the values of the
alarm variables (which are copied from the alarm-generating event to the
alarm when the alarm is generated). Then enter a comma-separated list of
event variable IDs (for example: 1,3,5). You must enter each ID; ranges of IDs
are not supported.

The alarm is cleared by the alarm-clearing event if the values in event match
the values stored in the alarm.

For examples of using event discriminators to clear alarms, see Clearing Alarms
(see page 111).

6. Click OK.

7. (Optional) Repeat the preceding steps to add additional alarms to be cleared.

More information:

About Event Disposition Files (see page 103)

Modify Events

58 Event Configuration User Guide

Modify Events

You cannot delete the events that CA authors and provides with CA Spectrum. However,
you can customize them to meet your requirements simply as you would any other
events.

In addition, you can undo any customizations that you make to a CA-authored event by
deleting the event. For CA-authored events only, this action does not delete the event
but instead reverts it to its default configuration.

When you delete (revert) a CA-authored event, the author of the event changes from
“Custom” back to “CA.” To identify the author of an event, add the Author column to
the table of events in the Navigation panel, as described in Adding and Removing
Columns from the Events Table (see page 24).

To modify events.

1. Select the event in the Navigation panel.

The event details are displayed in Contents and Details panels.

2. Modify the event details.

The event is displayed in bold. The Modification column displays Edited.

Note: The event is marked Edited. However, the event is not saved. You can make
more updates such as create more events, modify existing events, or delete events,
and save all the updates at one time.

3. Do one of the following:

a. Go to File, Save All.

All marked events in the Navigation panel are saved.

b. Select the desired events in the Navigation panel, and go to File, Save Selected.

Note: You can select multiple events using the Shift key.

The selected events are saved.

The events are modified. The events appear in the normal font and are not marked
in the Modification column.

Delete Custom Events

Chapter 3: Working with Events and Alarms 59

Delete Custom Events

You can delete any event that CA did not author. To identify the author of an event, add
the Author column to the table of events in the Navigation panel.

Important! Do not delete an event until you are certain it is no longer required. If you
delete an event that generates a needed alarm, CA Spectrum is unable to inform you
about a problem in the network infrastructure.

To delete events.

1. To delete events, select the event in the Navigation Panel, and click (delete).

The event is displayed in italics. The Modification column displays Deleted.

Note: The event is marked Deleted. However, the event is not deleted until you
save the changes. You can make more updates such as create more events, modify
existing events, or delete events, and save all the updates at one time.

2. Do one of the following:

a. Go to File, Save All.

All marked events in the Navigation panel are saved.

b. Select the desired events in the Navigation panel, and go to File, Save Selected.

Note: You can select multiple events using the Shift key.

The selected events are saved.

The events are deleted. The events appear in the normal font and are not marked in
the Modification column.

More information:

Add and Remove Columns from the Events Table (see page 24)

Chapter 4: Working with Event Rules 61

Chapter 4: Working with Event Rules

This section contains the following topics:

Event Rules (see page 61)
Create Event Rules (see page 65)
Modifying Event Rules (see page 91)
Delete Event Rules (see page 92)

Event Rules

Event Rules let you specify the evaluation logic determining how CA Spectrum processes
those events to which you are applying the rules. You can also specify what actions to
perform in response to the events.

An event rule stipulates the conditions under which an event condition, a pattern of
events, a combination of events in a particular order, or over a specific period, sets the
generation of another event.

You can create multiple rules for a single event.

The Event rules are stored in event configuration files referred to as event disposition
files.

Event Condition Rules

An event condition rule creates an event when specific conditions are satisfied. The
input to the rule is a list of conditions and associated events. Each condition is evaluated
until one condition evaluates to TRUE, and then the corresponding event is created.

The following parameters are applicable:

■ The event that starts the evaluation of the rule

■ A conditional expression to evaluate

■ If the conditional expression is true, the event to generate

An event condition rule can include multiple conditional expressions and corresponding
output events.

More information:

Configuring Event Condition Rule Settings (see page 66)

Event Rules

62 Event Configuration User Guide

Event Pair Rules

In some cases, you expect events to happen in pairs, and if the second event does not
occur, it could indicate a problem in the computing infrastructure. Based on such a
scenario the event pair rule creates an event. If one of two expected events are
generated but the second event does not follow the first, a new event is generated in
response. You can specify the amount of wait time that can elapse before the new event
is generated.

Note: Other unrelated events can be generated between the first and the second event.
They do not affect the execution of this rule.

More information:

Configuring Event Pair Rule Settings (see page 70)

Event Rate Rules

Some types of events do not indicate a problem unless the frequency at which they are
generated reaches a specific threshold within a specific amount of time. An event rate
rule creates an event based on this scenario. When a number of events of the same type
that is, with the same event code are created within a given time period, a new event is
created in response.

Note: Other, unrelated events do not affect rule execution.

Event rate rules never terminate. Once the conditions of the rule are met and a new
event is created in response, the rule remains active. However, no additional event is
created as long as the frequency at which the evaluated events remains at or above the
specified rate in the rule. If the frequency drops below the specified rate, and then
subsequently exceeds that rate again, a new event is generated.

An event rate rule can use either of the following methods to define the window of time
in which the events must occur:

Sliding Window: With this type of time window, if the specified number of events (or
more) ever occurs in any window of the specified time period, the output event is
created in response. This type of time window is best suited for accurately detecting a
short burst of events.

Event Rules

Chapter 4: Working with Event Rules 63

For example, the following illustration shows the sliding time windows that are active
for a rule that watches for five instances of a given event (e) within a specified time
period.

When a sliding time window is used for a rule, if the rule generates a rule output event,
all active time windows are terminated, and a new time window automatically begins.

Sequential Window: When the rule uses this type of time window, non-overlapping
time windows are examined, one after another, to determine if the requisite number of
events has occurred within the time window. This type of time window is best suited for
detecting a long, sustained train of events.

For example, the following illustration shows the sequential time windows that are
opened and closed for a rule that watches for five instances of a given event (e) within a
specified time period.

If the current time window closes due to time period expiration, or if the rule creates an
output event in response, the window is not opened next time until a new event
occurrence is detected.

Event Rules

64 Event Configuration User Guide

More information:

Configuring Event Rate Rule Settings (see page 73)

Event Series Rules

An event series rule creates an event when a specific event. triggers one or more other
events in an ordered or unordered sequence. The combination of events which must
occur include any number and type of event. You can specify also the amount of wait
time to elapse during which the sequence of events must occur.

Note: Other, unrelated events can be generated during the wait time. They do not
affect the execution of a rule.

More information:

Configuring Event Series Rule Settings (see page 76)

Event Counter Rules

An Event Counter rule counts events. The rule watches for two events, one increasing
the count, the other one decreasing it again. An event is generated whenever the count
is higher than a threshold, and also once it falls below the set threshold. The Event
Counter rule remains instantiated and counts events and does not terminate.

Heartbeat Rules

The Heartbeat rule watches for a periodic heartbeat event, and generates a new event
when the heartbeat event is missing. You can stop the rule instance using a separate
event.

Single Event Rules

The Single Event rule watches for a single occurrence of a target event. The Single Event
rule reduces an event stream where one event ('up' event) occurs multiple times, before
a reset ('down') event is observed. Instead of the multiple 'up' events, a single event
which can be reused in other rules, denoting the condition ('up' or 'down')is set. An
event is generated the first time the target event is seen. The rule triggers only when
the clearing event is seen again. The rule then resets the behavior to the initial state. If
needed, a separate event can be generated when the clearing event is seen.

Create Event Rules

Chapter 4: Working with Event Rules 65

Solo Event Rules

The Solo Event rule finds an instance of target event which does not follow or precede
any other user-defined event in a defined period.

The time periods are configurable, and there is a separate event to stop the rule.

User-Defined Event Rules

Most of the CA-shipped event rules are supported on the Event Configuration User
Interface. However, in some cases, CA can create a special rule or can customize a rule
for an individual customer. A customer can also create a rule.

The Event Configuration Editor does not support Event disposition entries using such
rules. The displayed event rule is read-only. The rule entry must be edited in a text
editor and reloaded in the event disposition files. Such custom event rule entries must
have the correct vendor code and rule name, depending on which vendor supplied the
rule. For example, a custom rule entry for a rule that is named MyOwnRule' from
vendor 'MyOwnVendor' has the following syntax:

0xfff00002 E50 R MyOwnVendor.MyOwnRule, <rule parameters>

Note: The xml rule definition file is at $SPECROOT/SS/CsVendor/<Vendor
Name>/EventRules/<RuleName>.xml.

Create Event Rules

We recommend that you start the application and examine the rules that CA provides
for various events, before creating an event rule.

You can create an event rule in two ways:

■ From scratch.

■ By copying an existing event rule and modifying the copy. This method is only useful
in case the same event triggers the new rule that you want to copy.

Note: Event rule definitions are stored in event configuration files referred to as event
disposition files.

Create Event Rules

66 Event Configuration User Guide

To create an event rule:

1. In the Navigation panel, select the event that activates (triggers) the event rule.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. Click (list) and select the type of event to create from the drop-down list.

The configuration dialog for the selected type of event rule opens.

4. Configure the event rule as required.

5. Click OK to save the event rule to the event.

To create an event rule from a copy:

1. In the Navigation panel, select the event that has the event rule that you want to
copy.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. To copy an event rule, select the desired rule and click (copy).

The event rule configuration dialog opens.

4. Modify the configuration of the event rule as required.

5. Click OK to save the event rule to the event.

More information:

Configuring Event Pair Rule Settings (see page 70)
Configuring Event Condition Rule Settings (see page 66)
Configuring Event Rate Rule Settings (see page 73)
Configuring Event Series Rule Settings (see page 76)
Configuring Event Counter Rule Settings (see page 79)
Configuring Heartbeat Rule Settings (see page 82)
Configuring Single Event Rule Settings (see page 85)
Configuring Solo Event Rule Settings (see page 88)

Configuring Event Condition Rule Settings

To create an event condition rule, create one or more conditions to evaluate the event
for which you are creating the rule. For each condition, define an event that CA
Spectrum generates if the given condition is met. Optionally, you can also specify that
one or more values of the event that triggered the rule is copied to the rule output
event.

Create Event Rules

Chapter 4: Working with Event Rules 67

As an example, assume you want to create the following event condition rule
(expressed in pseudo code) for event 0x210c0e:

If event 0x210c0e occurs, evaluate the following:

if event variable 2 = 2 or event variable 2 = 2, then generate 0x0021001c,

else if event variable 2 = 3 or event variable 2 = 4, then generate 0x0021001b,

else if event variable 2 = 5, then generate 0x0021001a,

else, generate 0x00210017.

This rule requires the four conditional expressions that are shown in the following rule
configuration dialog.

In the dialog, use the buttons above the list of conditions to add new conditions and to
modify, copy, and delete a selected condition. To change the sequence in which the
conditions are evaluated, use the up and down arrows below the list of conditions.

The rule output event (generated event <Z>) that corresponds to the first condition that
evaluates to TRUE is generated.

Note: Event variable discriminators are a general feature available for all types of rules.
However, while you can specify discriminators for an event condition rule, a rule of this
type currently does not use them during rule processing.

Create Event Rules

68 Event Configuration User Guide

When you add or modify a condition, you define the conditional expression using the
following dialog.

The settings in the dialog include the following options:

Condition <C>

The condition to evaluate. To create the expression, use the controls in the top
section of the dialog.

For information about conditional expression syntax, see Event Condition Rule (see
page 61).

Generated Event <Z>- Generate Event

If the associated condition evaluates to TRUE, the event code of the event to create
in response.

To specify the event code, click Browse, select the event in the Select Event dialog,
and then click OK.

Create Event Rules

Chapter 4: Working with Event Rules 69

Generated Event <Z> - Copy Event Variables

To copy the values of any event variables in that event which activated the rule to
the generated event <Z>, select Copy Event Variables and then do any of the
following steps:

■ Select Copy All to copy the values of all of the event variables into the
generated event <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values must be copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information about using the proper syntax when specifying variable IDs or
ranges of IDs using Event Configuration, see Copying Variable Values from
Contributing Events to the Rule Output Event (see page 90).

Note: To create a default condition in the condition configuration dialog evaluating to
TRUE; select DEFAULT for Operator and click Insert Criterion.

Create Event Rules

70 Event Configuration User Guide

Configuring Event Pair Rule Settings

The Event Pair dialog provides the following settings:

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to evaluate as
a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported.

Event <Y> - Event Code

The event code of the event that, within the specified time period, should follow
the event that activates (triggers) the rule. Event <Y> is the second event in the pair
of events.

To specify the event code, click Browse, select the event in the Select Event dialog
(which displays all of the events loaded into Event Configuration), and click OK.

Create Event Rules

Chapter 4: Working with Event Rules 71

Time <T> - Time Interval

The period of time that begins when the first event is created and during which the
second event (event <Y>) should occur.

Get Time From Attribute

Select this option to use the value of any time attribute whose value is a quantity of
time, such as like the polling _interval attribute (0x1134e). The value of the selected
time attribute becomes the value of Time <T>. The time unit is seconds.

The format would resemble the following:

if Event X occurs and is not followed by Event Y within the time specified in the
time- specific Attribute Y, then generate Event Z.

Generated Event <Z> - Generate Event

The event code of the event to create in response if the second event (event <Y>)
does not follow the first event within the specified time interval.

To specify the event code, click Browse, select the event in the Select Event dialog
(which displays all of the events loaded into Event Configuration), and click OK.

Generated Event <Z> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <Z>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into generated event
<Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information on the proper syntax to use when specifying variable IDs or
ranges of IDs using Event Configuration, see Copying Variable Values from
Contributing Events to the Rule Output Event (see page 90).

Event Variable Discriminators in Event Pair Rules

The use of discriminators not only lets multiple instances of the rule to be generated
due to the same event, but also affects rule processing and termination. More
specifically, if discriminators are used, the following occurs:

When the event is generated, if there are active instances of the rule, another instance
of the rule is created only if the values of the specified variables are different in the new
event when compared to the events that activated the existing rule instances. (If you do
not specify any discriminators for a rule, if a single instance of the rule is active,
subsequent instances of the rule are never generated when subsequent instances of the
event occur.)

Create Event Rules

72 Event Configuration User Guide

To terminate the rule without generating the rule output event, the values of all of the
specified event variables must be the same in both the first event (that triggered the
rule) and the second event (for which the rule is watching) in the pair.

As an example, assume you create an event pair rule that watches for a port down
event followed by a port up event, and you specify the event variable that stores the
interface ID of the port as an event variable discriminator. As a result, if device A has
ports 1 and 2, and port 1 goes down, a rule instance for the event is generated. If port 2
subsequently goes down, another rule instance is also generated due to the same event
because the interface ID in the second instance of the event is different. There are now
2 active instances of the rule due to port down events related to 2 different ports.

To continue the example, if port 2 goes up within the specified time period, the
associated rule will immediately terminate without generating the rule output event if
the port up event that is generated stores the interface ID of port 2 in the same event
variable (that is, the IDs of the event variables in the first event and second event in the
pair that store the interface ID are the same). If a similar event is not generated for port
1 within the specified time period, the associated rule will terminate by generating the
rule output event.

Note: To use event variable discriminators effectively in an event pair rule, the IDs of
the event variables in the contributing events must match. That is, the same event
variables must store the same variable binding data. If this is not the case, you can
create an event condition rule that is activated by the first event and that copies the
data to event variables that have the appropriate IDs in the rule output event; you can
then use the rule output event as the second event in the pair.

Create Event Rules

Chapter 4: Working with Event Rules 73

Configuring Event Rate Rule Settings

Use the following dialog to configure an event rate rule:

The dialog offers the following settings:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables that are included in the
event. Events in the list are evaluated as a part of the rule.

Enter individual IDs; ranges of IDs are not supported.

Create Event Rules

74 Event Configuration User Guide

The use of discriminators not only lets multiple instances of the rule to be
generated due to the same event, but also affects rule processing. More
specifically, if discriminators are used, the following occurs:

■ When the event is generated, if there are active instances of the rule, another
instance of the rule is created only if the values of the specified variables are
different in the new event when compared to the events that activated the
existing rule instances. (If you do not specify any discriminators for a rule, if a
single instance of the rule is active, subsequent instances of the rule are never
generated when subsequent instances of the event occur.)

■ To generate the rule output event, the values of the variables must be the
same in all instances of the same event (and all other rule conditions must be
met).

Event Rate - Occurrences <N>

The number of instances of the same event that must be created within the
specified time period for the rule to generate the output event.

Event Rate - Time <T>

The period of time during which <N> occurrences of the same event are required
for the rule to generate the output event.

Event Rate - Sliding Window

The type of time window to use. Select a Sliding Window, or clear Sliding Window
to use a sequential window of time. For a description of both, see Event Rate Rules
(see page 62).

Generated Event <Z> - Generate Event

The event code of the event to create if <N> occurrences of the same event occur
within the specified period of time.

To specify the event code, click Browse, select the event in the Select Event dialog,
and click OK.

Generated Event - Copy Event Variables

To copy the values of any event variables in the event that activated the rule into
generated event <Z>, select Copy Event Variables and do one of the following:

■ Select Copy All to copy the values of all of the event variables into generated
event <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information on the proper syntax for specifying variable IDs or ranges of
IDs using Event Configuration, see Copying Variable Values from Contributing
Events to the Rule Output Event (see page 90).

Create Event Rules

Chapter 4: Working with Event Rules 75

Low Rate Event

(Optional) Generates a low rate event <L> if the frequency drops below the
threshold. The rule generates the high rate event again only when the frequency
threshold is crossed again.

Stop Event

(Optional) Stops the rule with an event. The rule runs continuously unless you set
the stop event. In many cases, letting it run continuously is the desired behavior.

Note: An event rate rule can also generate a different rule output event when the rate
of the trigger event drops below the specified threshold. Manually modify the rule in
the event disposition file and specify that rule output event. For more information, see
EventRateWindow Rule (see page 118).

Create Event Rules

76 Event Configuration User Guide

Configuring Event Series Rule Settings

You can configure an event series rule using the following dialog.

Create Event Rules

Chapter 4: Working with Event Rules 77

The settings in the dialog include the following options:

Event Variable Discriminators

A comma-separated list of IDs of event variables in the event to evaluate as a part
of the rule. Enter each ID manually, ranges of IDs are not supported.

To allow multiple instances of the rule to be generated due to the same event, use
discriminators . The use of discriminators also affects processing and termination of
rules. The following conditions apply occur if discriminators are used:

■ In case, there are active instances of the rule during event generation, another
instance of the rule is created only if the values of the specified variables are
different in the new event as compared to the events activating the existing
rule instances. Subsequent instances of the rule are generated when a single
instance of the rule is active, only when you specify any discriminators for a
rule.

■ To generate the rule output event, the values of the variables must be the
same in all contributing events (that is, both, in the event that activated the
rule, and in all events that are specified in the series).

To use event variable discriminators effectively in an event series rule, the IDs of
the event variables in the contributing events must match. That is, the same event
variables must store the same variable binding data. Alternately, you can create an
event condition rule that a given event triggers and copies the data to event
variables having the appropriate IDs in the rule output event. You can then use the
rule output event in the series.

Events <S> - Event List

Select Ordered if the list (series) of events must occur in a specific sequence to
trigger creation of the response event. Select Not Ordered if the events in the series
can occur in any order.

Events <S> - Event Code

The series of events that must follow the event that activated the rule for the rule
to generate the output event. If the events in the series must occur in a specific
order, list them in that order.

To add, modify, copy, and remove events from the list use the buttons above the
table.

To move an event up or down in the list, select the event, and click the up or down
arrow.

You can add an event to the series, and can specify that one or more of the values
in its event variables be copied to the rule output event (generated event <Z>). To
select the event in the dialog to add to the series, do any of the following actions:

■ Select Copy All to copy the values of all of the event variables to the rule output
event.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values you want to copy. Ranges of IDs are also supported, for example, “1-4”.

Create Event Rules

78 Event Configuration User Guide

Time <T> - Time Interval

The period during which the series of events must occur for the rule to generate the
output event.

Generated Event <Z> - Generate Event

The event code of the event to create, in response to a series of events occurring
within the specified period and in the specified order.

To specify the event code, click Browse, select the event in the Select Event dialog
(displaying all events that are loaded into Event Configuration), and click OK.

Generated Event <Z> - Copy Event Variables

To copy the values of any event variables in that event which first activated the rule to
the generated event <Z>, select Copy Event Variables, and perform any of the following
steps:

■ Select Copy All to copy the values of all of the event variables into the
generated event <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values are copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information about the proper syntax to use when specifying variable IDs or
ranges of IDs using Event Configuration, see Copying Variable Values from Contributing
Events to the Rule Output Event (see page 90).

To generate an event in response to a specific series of events, where one of several
events triggers that same series first. To satisfy this scenario, create the same event
series rule for all events that triggers the series.

Alternatively, you want to watch for any combination of a series of events and in any
order, inclusive of the event that triggers the series. To satisfy this scenario, we
recommend that you create the following rules:

Event that triggers the
rule (event to which
rule is applied)

Events in the series (not
ordered)

Rule output event
(generated event <Z>)

0x0001002a

0x0001002b, 0x0001002c

0x0001002f

0x0001002b

0x0001002a, 0x0001002c

0x0001002f

0x0001002c 0x0001002a, 0x0001002b 0x0001002f

Using this set of rules, any combination of events 0x0001002a, 0x0001002b, and
0x0001002c occurring in any order generates event 0x0001002f.

Create Event Rules

Chapter 4: Working with Event Rules 79

Configuring Event Counter Rule Settings

You configure an event counter rule using the following dialog:

Create Event Rules

80 Event Configuration User Guide

The settings in the dialog include the following:

The event for which the rule is defined is the one that counts up the event. The first
event initiates a new rule instance and counts (count will be 1).

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to evaluate as
a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event variable
discriminators are a general feature available for all types of rules.

Count down event <D> - Event Code

Sets the event code that counts down by one. To specify the event code, click
Browse, select the event in the Select Event dialog which displays all of the events
loaded into Event Configuration, and click OK.

Count down event <D> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <D>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Count down event
<D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information on the proper syntax to use when specifying variable IDs or
ranges of IDs using Event Configuration, see Copying Variable Values from
Contributing Events to the Rule Output Event (see page 90).

Counter Event Threshold <N>

Sets a certain threshold that when reached, generates a new event. The rule will
also generate another event when the count is lower then the threshold again.

Threshold violated event <V> - Event Code

Is generated when the count threshold is reached. To specify the event code, click
Browse, select the event in the Select Event dialog (which displays all of the events
loaded into Event Configuration), and click OK.

Threshold violated event <V> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <V>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Threshold violated
event <V>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Create Event Rules

Chapter 4: Working with Event Rules 81

Threshold reset event <R> - Event Code

Generates when the count is below the threshold again. To specify the event code,
click Browse, select the event in the Select Event dialog (which displays all of the
events loaded into Event Configuration), and click OK.

Threshold reset event <R> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event Reason:, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Threshold reset
event Reason:.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Create Event Rules

82 Event Configuration User Guide

Configuring Heartbeat Rule Settings

You configure heartbeat rule using the following dialog.

Create Event Rules

Chapter 4: Working with Event Rules 83

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to evaluate as
a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event variable
discriminators are a general feature available for all types of rules.

Heartbeat Event <H> - Event Code

Sets the Heartbeat Event code. To specify the event code, click Browse, select the
event in the Select Event dialog (which displays all of the events loaded into Event
Configuration), and click OK.

Heartbeat Event <H> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <H>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Heartbeat Event
<H>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information on the proper syntax to use when specifying variable IDs or
ranges of IDs using Event Configuration, see Copying Variable Values from
Contributing Events to the Rule Output Event (see page 90).

Heartbeat Period <P>

Sets the time gap between individual heartbeats.

Generate event on missing heartbeat <Z> - Event Code

Generates an event when the heartbeat event is missed. To specify the event code,
click Browse, select the event in the Select Event dialog (which displays all of the
events loaded into Event Configuration), and click OK.

Create Event Rules

84 Event Configuration User Guide

Generate event on missing heartbeat <Z> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <Z>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables to Generate event on
missing heartbeat <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

(Optional) Heartbeat Rule Stop Event <S> - Event Code

The Heartbeat Rule Stop Event stops the Heartbeat event rule.To specify the event
code, click Browse, select the event in the Select Event dialog (which displays all of
the events loaded into Event Configuration), and click OK.

Create Event Rules

Chapter 4: Working with Event Rules 85

Configuring Single Event Rule Settings

You configure a single event rule using the following dialog.

Create Event Rules

86 Event Configuration User Guide

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to evaluate as
a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event variable
discriminators are a general feature available for all types of rules.

Generate single event <S> - Event Code

It is generated the first time the trigger event is seen either when the rule is
instantiated, or the first time the trigger event occurs after the reset event is seen.
To specify the event code, click Browse, select the event in the Select Event dialog
(which displays all of the events loaded into Event Configuration), and click OK.

Generate single event <S> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <D>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Count down event
<D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information on the proper syntax to use when specifying variable IDs or
ranges of IDs using Event Configuration, see Copying Variable Values from
Contributing Events to the Rule Output Event (see page 90).

Reset rule event <R> - Event Code

Sets the reset event. To specify the event code, click Browse, select the event in the
Select Event dialog (which displays all of the events loaded into Event
Configuration), and click OK.

Reset rule event <R> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <D>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Count down event
<D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Create Event Rules

Chapter 4: Working with Event Rules 87

(Optional) Reset rule notify event <N> - Event Code

It is generated when the reset event is seen. To specify the event code, click
Browse, select the event in the Select Event dialog (which displays all of the events
loaded into Event Configuration), and click OK.

Reset rule notify event <N>- Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <D>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Count down event
<D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Create Event Rules

88 Event Configuration User Guide

Configuring Solo Event Rule Settings

You configure a solo event rule using the following dialog.

Create Event Rules

Chapter 4: Working with Event Rules 89

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to evaluate as
a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event variable
discriminators are a general feature available for all types of rules.

Prevent period before Solo Event

Sets the time period before the solo event where none of the 'prevent' events may
occur (in seconds).

Solo Event <S>- Event Code

Specifies the Solo event. To specify the event code, click Browse, select the event in
the Select Event dialog (which displays all of the events loaded into Event
Configuration), and click OK.

Solo Event <S>- Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <D>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Count down event
<D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”.

Note: For information on the proper syntax to use when specifying variable IDs or
ranges of IDs using Event Configuration, see Copying Variable Values from
Contributing Events to the Rule Output Even (see page 90)

Prevent period after Solo Event Action:

Sets the time period after the solo event where none of the 'prevent' events may
occur.

Generated Event <Z> - Event Code

Defines the event that will be generated when the rule triggers (when just the 'solo'
event is seen). To specify the event code, click Browse, select the event in the Select
Event dialog (which displays all of the events loaded into Event Configuration), and
click OK.

Create Event Rules

90 Event Configuration User Guide

Generated Event <Z> - Copy Event Variables

If you want to copy the values of any event variables in the first event that activated
the rule to generated event <D>, select Copy Event Variables, and do one of the
following:

■ Select Copy All to copy the values of all of the variables into Count down event
<D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs whose
values should be copied. Ranges of IDs are also supported, for example, “1-4”

Prevent Events <P>

Defines a list of 'prevent' events. In the dialog, use the buttons above the list of
prevent events to add new events and to modify, copy, and delete a selected event.

Stop Event <X> - Event Code

The Stop Event stops the Solo Event rule. To specify the event code, click Browse,
select the event in the Select Event dialog which displays all of the events loaded
into Event Configuration, and click OK.

Copy Variable Values from Contributing Events to the Rule Output Event

When you use event rules, the event that is generated might be generated only after
multiple, contributing events occur or after certain conditions are met.

By default, a rule output event has no event variables. However, you can specify
optional processing. The values of the event variables in the events that contribute to
the rule processing can be copied to the output event. You can then use event variable
discriminators to specify event processing behaviors for the rule output event based on
those values. And because the values of event variables in events that generate alarms
are also stored in those alarms, you can use event discriminators to specify alarm
processing (generation or clearing of alarms) based on the values. For an example of this
usage, see Event Variable Copying and Event Discriminators (see page 142).

You can specify that all of the event variables in a contributing event are copied to the
rule output event, or you can specify variable IDs. Use the event variable IDs that are
mapped (in the AlertMap file) to the OIDs of the variable bindings that are sent with the
trap.

Modifying Event Rules

Chapter 4: Working with Event Rules 91

To copy only specific variable binding values from a contributing event to the rule
output event, enter a comma-separated list of the IDs or ranges of IDs. This
configuration is shown in the following image:

Use the first text box to specify the contributing event variables that you want to copy.
Use the second text box to specify the event variables in the output event where the
values are copied. The first ID in the “source” text box is copied into the first ID in the
“target” text box, and so on.

You can copy the value of one source variable into a target variable that has a different
ID. For example, the preceding image specifies that source variable 1 is copied into
target variable 1, source variable 2 is copied into target variable 3, and source variables
3, 4, and 5 are copied into target variables 4, 5, and 6, respectively.

More information:

AlertMap Files (see page 93)

Modifying Event Rules

You can modify event rules.

To modify event rules

1. In the Navigation panel, select the event that activates (triggers) the event rule.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. Select the event rule to modify, and click (edit).

4. Modify the configuration of the event rule as required.

5. Click OK.

Delete Event Rules

92 Event Configuration User Guide

More information:

Configuring Event Pair Rule Settings (see page 70)
Configuring Event Condition Rule Settings (see page 66)
Configuring Event Rate Rule Settings (see page 73)
Configuring Event Series Rule Settings (see page 76)

Delete Event Rules

You can delete event rules.

To delete event rules

1. In the Navigation panel, select the event that activates (triggers) the event rule.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. Select the event rule to delete, and click (delete).

4. Click OK to confirm the deletion.

Appendix A: AlertMap Files 93

Appendix A: AlertMap Files

More information:

SNMP Trap Overview (see page 93)
SNMPv2 Support (see page 101)
AlertMap File Syntax (see page 97)
About Mapping a Trap to a CA Spectrum Event (see page 95)

SNMP Trap Overview

An SNMP trap is sent out as a trap PDU (Protocol Data Unit). The PDU contains the
following pieces of information:

Enterprise OID

Identifies the company responsible for a device sending the trap. For example,
1.3.6.1.4.1.X is an enterprise OID where X identifies the enterprise (for example,
Sun). The numbers preceding the X represent a hierarchy of global bodies
responsible for the management of information. The Internet Assigned Numbers
Authority (IANA) allocates the enterprise level numbers that identify companies and
their management MIBs on the MIB tree. For more information, see their website,
http://www.iana.org.

Network Address

Specifies the network address of the managed element initiating the trap.

Generic Trap Identifier

This can be a value from 0 through 6. There are six standard industry traps within
the SNMP protocol. These traps have a generic trap identifier of 0-5. The number 6
indicates that the trap is an enterprise-specific trap. Enterprise specific traps are
proprietary traps created for developer-specific types of managed nodes. These
traps are defined by proprietary MIBs.

Specific Trap

Specifies the specific trap number as listed in the trap definition of the trap MIB.

Time Stamp

Specifies the time at which the trap was created.

Variable Bindings

Specifies the variables and values that are defined in the trap. These variables are
generally pointers to other MIB objects.

SNMP Trap Overview

94 Event Configuration User Guide

For example, when a redundant power supply fails in a Cisco router or switch, the
following information is sent in the trap PDU:

■ Network address of the device

■ Timestamp of the trap

■ Enterprise OID: 1.3.6.1.4.1.9

■ Generic Trap ID: 6

■ Specific Trap ID: 5

■ Variable Binding(s): 1.3.6.1.4.1.9.9.13.1.5.1.2,
1.3.6.1.4.1.9.9.13.1.5.1.3

The network address and the timestamp information vary depending on the device and
the time that the trap was sent.

The enterprise OID identifies the vendor company using the last two digits. In this
example, 9 indicates a trap generated by a Cisco device.

The generic trap ID of 6 indicates that this trap is an enterprise-specific trap defined by a
proprietary MIB. The specific trap ID of 5 is the number assigned to the trap in the
referenced Cisco MIB. The following portion of the Cisco environment monitoring MIB
(CISCO-ENVMON-MIB) defines this trap.

ciscoEnvMonRedundantSupplyNotification TRAP-TYPE

-- Reverse mappable trap

 ENTERPRISE ciscoEnvMonMIBNotificationPrefix

 VARIABLES {

 ciscoEnvMonSupplyStatusDescr, ciscoEnvMonSupplyState }

-- Status

-- mandatory

 DESCRIPTION

 "A ciscoEnvMonRedundantSupplyNotification is sent if the

 redundant power supply (where extant) fails. Since such a

 notification is usually generated before the shutdown state is

 reached, it can convey more data and has a better chance of being

 sent than does the ciscoEnvMonShutdownNotification."

 ::= 5

This trap definition has two variables (ciscoEnvMonSupplyStatusDescr and
ciscoEnvMonSupplyState) that are sent as variable bindings. Such variables are actually
references to other managed objects defined by the MIB. The OIDs sent in the variable
bindings represent these managed objects.

About Mapping a Trap to a CA Spectrum Event

Appendix A: AlertMap Files 95

The following excerpts from the MIB define ciscoEnvMonSupplyStatusDescr and
ciscoEnvMonSupplyState:

ciscoEnvMonSupplyStatusDescr OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..32))

-- Rsyntax OCTET STRING(SIZE(0..32))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Textual description of the power supply being instrumented.

 This description is a short textual label, suitable as a human-

 sensible identification for the rest of the information in the

 entry."

 ::= { ciscoEnvMonSupplyStatusEntry 2 }

ciscoEnvMonSupplyState OBJECT-TYPE

 SYNTAX CiscoEnvMonState

-- Rsyntax INTEGER {

-- normal(1),

-- warning(2),

-- critical(3),

-- shutdown(4),

-- notPresent(5),

-- notFunctioning(6)

-- }

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The current state of the power supply being instrumented."

 ::= { ciscoEnvMonSupplyStatusEntry 3 }

The ciscoEnvMonSupplyStatusDescr variable will have a string value describing the
power supply, and the ciscoEnvMonSupplyState variable can have a value of 1, 2, 3, 4, 5
or 6 depending on its status. The current value for each variable is detected using the
variable bindings in the trap PDU.

About Mapping a Trap to a CA Spectrum Event

When CA Spectrum receives a trap, it must be associated with a specific CA Spectrum
event for CA Spectrum to use the trap information. This association is made in an
AlertMap file.

CA Spectrum can receive SNMP traps from devices that have been modeled using the
Pingable model type. To enable this, you must set the enable_traps_for_pingables
variable in the CA Spectrum .vnmrc file to TRUE. For information about how to do this,
see the Distributed SpectroSERVER Administrator Guide. The AlertMap file for the
Pingable model type is located in the <$SPECROOT>\SS\CsVendor\Cabletron\Pingable
directory.

About Mapping a Trap to a CA Spectrum Event

96 Event Configuration User Guide

About Processing Alerts with AlertMap Files

The IP address of the managed element issuing the trap is sent as a part of the trap
information. CA Spectrum uses the IP address to identify the model that represents the
managed element issuing the trap. From this information, CA Spectrum is able to
identify the model type associated with the managed element.

To process the trap correctly, CA Spectrum refers to the AlertMap file. Depending on
where they reside, AlertMap files can be applied globally (that is, to all CA Spectrum
model types) or only to models of a specific model type.

Thus, if you want to change the trap mapping for a particular model type only, you
should modify the AlertMap file for that model type. If an AlertMap file at the model
type level does not exist, you must create one and make your changes there.

If you want to change how an alert is mapped globally (that is, for all model types), you
will need to find all AlertMap files that specify a mapping for that trap, and make your
changes to each one of these files.

Note: Global AlertMap files apply to all vendor model types, not just those created by
the vendor who created the file.

AlertMap File Location

Default trap mappings are located in the <$SPECROOT>/SS/CsVendor directory while
MIB Tools customized trap mappings are located in the
<$SPECROOT>/custom/Events/AlertMap directory. MIB Tools’ customized trap
mappings are preserved when you upgrade CA Spectrum, and they take precedence
over any existing default trap mappings. For more information about working with
custom trap mappings and default trap mappings, see Map Tab.

Global AlertMap files are located in
<$SPECROOT>/SS/CsVendor/<developername>/AlertMap, where <developername> is
usually the name of the vendor, manufacturer, or developer associated with the model
type.

In some instances, CA may use something other than the developer name for the
directory. For example, the IETF directory contains the AlertMap file that maps standard
RFC traps.

About Mapping a Trap to a CA Spectrum Event

Appendix A: AlertMap Files 97

If the AlertMap file is specific to the model type, it is located in
<$SPECROOT>/SS/CSVendor/<developername>/
<model_type_name>AlertMap, where:

<developername> is the name of the vendor, manufacturer, or developer associated
with the model type (for example, Compaq). If you are developing your own
management module, your developer name is used here.

<model_type_name> is the name of the model type.

If a mapping for a trap exists in both a model type AlertMap file and a global AlertMap
file, the model type AlertMap file takes precedence for that particular model type.

When you map traps using MIB Tools, entries are generated in the following file on all
SpectroSERVERs in your DSS environment:

<$SPECROOT>/custom/Events/AlertMap

The mapping information for a trap in these files overrides any mapping information
that previously existed for that same trap in other files or directories on the
SpectroSERVER.

The name of every AlertMap file is always “AlertMap.” No file extension is used in the
Windows environment.

Note: For more information about managing MIBs and traps, see the Certification User
Guide.

AlertMap File Syntax

If the appropriate AlertMap file is found, CA Spectrum looks for an entry matching the
trap. Each entry in the Alert Map file has three components: the alert code, the event
code, and the OID map.

Alert Code

The alert code consists of three pieces of information from the trap: the Enterprise OID
string, the generic trap identifier, and the specific trap identifier.

About Mapping a Trap to a CA Spectrum Event

98 Event Configuration User Guide

1.3.6.1.4.1.9: Enterprise OID (in this case indicating a Cisco device).

6: The Generic Trap Identifier (in this case the 6 indicates an Enterprise specific trap).

5: Specific Trap Identifier (in this case 5).

Event Code

The event code is a 4-byte integer expressed in hexadecimal format. Each event code
has two parts: the first two bytes contain the developer ID of the developer who
created the file, and the last two bytes identify the event with a unique number relative
to all other event codes for that particular developer.

If the event code is zero, an event will not be generated for that particular alert.

If the event code is non-zero, CA Spectrum will map the alert variables to event
variables using the OID map.

OID Map

The trap you are mapping may include one or more pieces of variable information,
known as variable bindings. Each of these variable bindings provides information about
the trap. You can choose to map these bindings to event variables so that the
information can be used by CA Spectrum.

Variable bindings and the information about how CA Spectrum should map them are
specified in the OID map section of the alert map entry. A single alert map entry may
have multiple OID maps associated with it indicating that there were many variable
bindings sent with the SNMP trap. These OID maps should be separated by the
backslash (\) character and a new line as in the following example.

1.3.6.1.4.1.9.6.5 0x180000 1.3.6.1.4.1.9.9.13.1.5.1.3(1,2)\

1.3.6.1.4.1.9.9.13.1.5.1.2(4,0)

As shown in the following example, the OID map can be broken down into three parts:
the OID, the value variable ID, and the instance variable ID.

The OID identifies the specific variable being sent with the trap. The previous OID
references the ciscoEnvMonSupplyState variable in the Cisco Environment monitoring
MIB (CISCO-ENVMON_MIB).

About Mapping a Trap to a CA Spectrum Event

Appendix A: AlertMap Files 99

The value variable ID stores the value of the variable sent in the variable binding. Any
integer value can be used here; however, it must be different from the integer used for
the instance variable ID. A value of zero indicates that you do not want to store the
value of the variable binding.

The instance variable ID stores the instance portion of the OID. If your variable binding
identifies a particular object from a table variable within the trap MIB, it will likely
include an instance ID. Any integer value can be used here; however, it must be
different from the integer used for the value variable ID. A value of zero indicates that
you do not want to store the value of the instance variable.

Important! There are no spaces between the OID, the value variable ID, and the
instance variable ID.

Comments

There are two comment identifiers that allow you to add comments to the AlertMap
file: # or //. Text entered after one of these identifiers and before the start of the next
line is ignored when processing the AlertMap file.

For example:

#Comment

0.0 0x10306 #Comment

1.0 0x10307 //Comment

2.0 0x220001 1.3.6.1.2.1.2.2.1.1(1,2)

3.0 0x220002 1.3.6.1.2.1.2.2.1.1(1,2)\

 1.3.6.1.2.1.2.2.1.3(4,0)

//Comment

//Comment

4.0 0x1030a

5.0 0x1030b

1.3.6.1.4.1.45.6.271 0x1060f 1.3.6.1.4.1.45.1.2.1.9.2.1.2(3,4) #Comment

As shown in OID Map (see page 98), the backslash (\) character is used as a line
continuation character. You can also use comments when using the line continuation
character.

For example:

3.0 0x220002 1.3.6.1.2.1.2.2.1.1(1,2)\ #Comment

 1.3.6.1.2.1.2.2.1.2(3,0)\

 //Comment

 1.3.6.1.2.1.2.2.1.3(4,0)

Note: Inline and multiline comments are not supported.

About Mapping a Trap to a CA Spectrum Event

100 Event Configuration User Guide

How CA Spectrum Maps Alert Variables to Event Variables

CA Spectrum maps alert variables to event variables as follows:

1. CA Spectrum scans the AlertMap file entry to find an OID Map whose OID either
exactly matches the trap variable’s OID, or is a prefix of the trap variable’s OID.

2. If more than one OID map has an OID that is a prefix of the trap variable’s OID, CA
Spectrum chooses the OID with the longest prefix (best match).

3. If an OID map is found, CA Spectrum examines its value variable ID to decide
whether to translate the trap variable’s value into an event variable. If an OID map
is not found, CA Spectrum ignores the alert variable.

4. If the value variable ID is zero, CA Spectrum ignores the trap variable’s value.
Otherwise, the type, length, and value of the event variable are obtained from the
trap variable, and an event variable is constructed. The value variable ID can then
be used to represent the value of the variable binding in an Event Format file.

5. CA Spectrum examines the OID Map to decide whether to translate the trap
variable’s instance ID into an event variable. If the OID in the OID Map exactly
matches the trap variable’s OID, there is no instance ID to translate. If the instance
variable ID in the parameter is zero, the instance OID is ignored. If the instance ID
exists and the instance variable ID is non-zero, an event variable is constructed. The
instance variable ID can then be used to represent the value of the OID instance in
an Event Format file.

More information:

Event Format Files (see page 145)

Error Messages

If CA Spectrum is unable to identify the model for a given IP address, an event is
generated on behalf of the VNM model indicating that a trap was received from an
unknown SNMP device (event 0x00010802). Contained within this event are details
about the trap, including the agent IP address, enterprise OID, trap code, community
name, and variable binding data.

If CA Spectrum can properly identify the model for the trap source, but it cannot find an
entry for the specific trap code in the AlertMap file, an event indicating that an
unknown alert was received (event 0x00010801) is generated on behalf of that model.
Contained within the event are details about the trap, including the agent IP address,
device type, device time, trap type, and variable binding data.

SNMPv2 Support

Appendix A: AlertMap Files 101

SNMPv2 Support

CA Spectrum supports the receipt and processing of SNMPv2 format InformRequests
and traps as defined by RFC 2576, “Coexistence between Version 1, Version 2, and
Version 3 of the Internet-Standard Network Management Framework.”

InformRequest Support

When CA Spectrum receives an SNMPv2 InformRequest, it is decoded and converted to
SNMPv1 format as specified in RFC 2576. A response to the InformRequest is generated
and sent back to the inform originator.

How an SNMPv2 Trap is Mapped to a CA Spectrum Event

If you are mapping SNMPv2 traps to CA Spectrum events, you will need to reference the
translated trap in the AlertMap file.

The following is an overview of how an SNMPv2 trap is translated. For complete
information about this process, see RFC 2576. Section 3.2 of the RFC explains how an
SNMPv2 trap is translated into an SNMPv1 trap so that it can be used in an SNMPv1
environment.

1. The SNMPv1 enterprise OID for the trap is determined as follows:

a. If the SNMPv2 snmpTrapOID parameter is one of the standard traps (defined in
RFC 1907), then set the value of the SNMPv1 enterprise parameter to the value
of the snmpTrapEnterprise.0 variable binding if it exists. If it does not exist, set
the value to snmpTraps.

b. If the SNMPv2 snmpTrapOID parameter is not a standard trap, the following
criteria is used:

If the next-to-last sub-identifier of the snmpTrapOID is 0, then find the
enterprise number by removing the last two sub-identifiers.

snmpTrapOID = 1.3.6.1.4.1.1916.4.1.0.1

Enterprise number = 1.3.6.1.4.1.1916.4.1

If the next-to-last number is not 0, then find the enterprise number by
removing the last sub-identifier.

snmpTrapOID = 1.3.6.1.4.1.5486.1.3.8

Enterprise number = 1.3.6.1.4.1.5486.1.3

SNMPv2 Support

102 Event Configuration User Guide

2. The SNMPv1 generic trap identifier for the trap is determined as follows:

a. If the SNMPv2 snmpTrapOID parameter is a standard trap as defined in RFC
1907, use the standard generic trap parameter for that trap (0-5).

standard trap = 1.3.6.1.6.3.1.1.5.1 (cold start)

generic trap identifier = 0

b. If the SNMPv2 snmpTrapOID parameter is not a standard trap, set the
generic-trap parameter to 6.

snmpTrapOID = 1.3.6.1.4.1.5486.1.3.8

generic trap identifier = 6

3. The SNMPv1 specific trap parameter is determined as follows:

a. If the SNMPv2 snmpTrapOID parameter is a standard trap as defined in RFC
1907, set the specific-trap parameter to 0.

standard trap = 1.3.6.1.6.3.1.1.5.1 (cold start)

specific trap parameter = 0

b. If the SNMPv2 snmpTrapOID parameter is not a standard trap, set the
specific-trap parameter to the last sub-identifier of the SNMPv2 snmpTrapOID
parameter.

snmpTrapOID = 1.3.6.1.4.1.5486.1.3.8

specific trap parameter = 8

4. The SNMPv2 variable bindings are converted directly to SNMPv1 bindings. As noted
in RFC 2576, variable bindings of type Counter64 cannot be translated.

Example:

If you are sending the following SNMPv2 snmpTrapOID to the SpectroSERVER:
1.3.6.1.4.1.5486.1.3.8

You should use the following OID as the alert code (see page 97) in the AlertMap file:
1.3.6.1.4.1.5486.1.3.6.8.

Enterprise OID: 1.3.6.1.4.1.5486.1.3

Generic Trap Number: 6

Specific Trap Number: 8

Appendix B: Event Disposition Files 103

Appendix B: Event Disposition Files

This section contains the following topics:

About Event Disposition Files (see page 103)
Location of Event Disposition Files (see page 104)
File Syntax of Event Disposition Files (see page 105)
Generating Alarms (see page 106)
Clearing Alarms (see page 111)
Clearing Alarms Regardless of Event Discriminator Values (see page 115)
About Defining Event Rules (see page 116)
Syntax Errors in EventDisp Files (see page 143)
Add Comments in EventDisp Files (see page 143)

About Event Disposition Files

When an SNMP trap is received by CA Spectrum and mapped to a CA Spectrum event
that is generated for the model, an event disposition file is used to determine how to
process the event. The processing instructions in an event disposition file (an ASCII text
file) can include any of the following information:

■ Whether the event is logged

■ The severity of the event

■ Whether the event generates an alarm of a specific severity

■ Whether the event clears one or more alarms

■ Whether the event triggers an event rule (a series of events that are monitored and
that trigger another event when they occur in a specific pattern or time frame)

CA Spectrum predefined events all have processing instructions that are defined in
global and model type-specific event disposition files. In addition, whenever you create
a new, custom event (either using MIB Tools, to map a trap to a new event, or later,
using Event Configuration), a custom event disposition file is automatically created.
Typically manual creation of the event disposition file is not required.

Important! A few types of modification, such as adding event-processing procedures to
event maps, must be done in a text editor. For most other event modifications, we
recommend specifying the processing instructions using Event Configuration. The Event
Configuration utility can save your customizations to one or more landscapes.

Location of Event Disposition Files

104 Event Configuration User Guide

If you are adding trap support for a new device, first use MIB Tools to map the traps to
new CA Spectrum events and specify basic event settings. Then launch Event
Configuration (it can be launched directly from MIB Tools) and complete the event
configuration. This workflow avoids most manual modifications to event disposition
files. However, we have provided reference information about the proper syntax to use
if manual modifications are required.

More information:

File Syntax of Event Disposition Files (see page 105)
Location of Event Disposition Files (see page 104)

Location of Event Disposition Files

The name of every event disposition (EventDisp) file is always EventDisp.

Note: In the Windows environment, no file extension is used.

The EventDisp files that support the events provided with CA Spectrum are installed in
the following directories:

■ $SPECROOT/SS/CsVendor/vendor_directory

An EventDisp file in this location defines the processing for all events created by the
developer that are global in scope. The vendor_directory variable is the name of the
developer, vendor, or manufacturer for which the EventDisp file is used.

Note: In some instances, CA uses something other than the developer name for the
developer-specific directory; for example, the IETF directory contains the EventDisp
file that specifies the processing for events that result from standard RFC traps.

■ $SPECROOT/SS/CSVendor/vendor_directory/model_type_name

An EventDisp file in this location defines the processing for all events that are
created by the developer whose scope is limited to the model type represented by
model_type_name. In this case, vendor_directory is the name of the developer,
vendor, or manufacturer for which the model type was created (for example,
Cisco).

Note: If an event map entry exists in both a global EventDisp file and a model
type-specific EventDisp file, the event map entry in the model type-specific file takes
precedence.

File Syntax of Event Disposition Files

Appendix B: Event Disposition Files 105

If you customize the event processing for the CA Spectrum predefined events, or if you
create new, custom events using MIB Tools or Event Configuration, a custom EventDisp
file is created in the following directory or in one of its subdirectories:

$SPECROOT/custom/Events

Note: The event map entries in a custom EventDisp file override those in the predefined
CA Spectrum EventDisp files.

File Syntax of Event Disposition Files

Each line in an event disposition (EventDisp) file is called an event map, and each event
map can specify one or more event processing behaviors, such as whether the event
should be logged or whether it should generate an event. The following syntax is used
for an event map:

<eventcode> E <eventseverity> <processing parameters> S <sbgw processing flag>

<eventcode>

Specifies the event code of the CA Spectrum event for which the processing
behavior is being defined. The event code is defined in the AlertMap file that maps
the trap to the event, or it is specified within the code that generates the event. The
event code must be specified for CA Spectrum to process the event.

E

(Optional) Indicates that the event data should be logged by the Archive Manager
to the Distributed Data Manager (DDM) database. If the E flag is not used, the event
data is temporarily logged, but it is not preserved when the SpectroSERVER is shut
down and then restarted.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is the
least severe and 100 is the most severe. If a value for event severity is not specified,
CA Spectrum uses a default value of 0.

Note: The event severity parameter is not currently used by the event management
system. However, if you are logging the event, you are advised to assign an event
severity value since use of this parameter may be incorporated into event
processing in the future. If you are not logging the event, an event severity value
should not be assigned.

<processing parameters>

Specifies additional event processing behaviors, such as whether the event
generates an alarm or clears one or more alarms. The topics in this section provide
detailed information on the proper syntax for various event processing behaviors.

Generating Alarms

106 Event Configuration User Guide

S <sbgw processing flag>

(Optional) Specifies whether an event should be registered for Southbound
Gateway processing or not. It applies to modeltype specific entries only and only
those modeltypes derived from the southbound modeltype fragment. The S is
followed by either of the following sbgw processing flags:

■ + (process for Southbound Gateway: S+)

■ - (do not process for Southbound Gateway: S-)

Because the default sbgw processing flag setting is '+', an entry without the 'S' flag
present will always be processed by the Southbound Gateway. Setting any entry to 'S-'
adds a modeltype specific EventDisp action without it being processed by the
Southbound Gateway.

While an event does not require an event map in an EventDisp file, most events have
one. If an event does not have an event map in an EventDisp, the event is logged in the
DDM database by default (which means it is preserved when the SpectroSERVER is shut
down and then restarted), but no additional processing takes place. If an event does
have an event map, the event is processed according to the event map.

Note the following about EventDisp files:

■ Empty lines in the EventDisp file are ignored.

■ If a single event map spans more than one line, a backslash ‘\’ at the end of each
line must be used to help ensure that CA Spectrum considers the next line as a part
of the event map.

Generating Alarms

The following syntax is used to generate an alarm:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>

A

Indicates that an alarm should be generated when the specified event occurs.

<alarmseverity>

Specifies a number between 0 and 6 that identifies the severity of the alarm:

■ 0 (Normal)

■ 1 (Minor)

■ 2 (Major)

■ 3 (Critical)

■ 4 (Maintenance)

Generating Alarms

Appendix B: Event Disposition Files 107

■ 5 (Suppressed)

■ 6 (Initial)

Each severity in the preceding list is associated with a color-coded condition. When
an alarm is asserted on a model, the associated condition color is displayed on the
model’s icon to reflect the alarm status.

You can also specify an alarm severity of Variable or Conditional, each of which
evaluates to one of the numeric severity levels. The following syntax is used to
indicate a severity level of Variable:

{ v <event_variable_ID> }

<event_variable_ID>

Specifies the ID of the event variable in the event to evaluate to determine the
alarm severity level.

Similarly, the following syntax is used to indicate a severity level of Conditional:

{ v <event_variable_ID> <folder_name>.<file_name> }

 <event_variable_ID>

Specifies the ID of the event variable in the event to evaluate.

 <folder_name>

Specifies the severity mapping file to use to determine the alarm severity level.

<file_name>

 Specifies the severity mapping file to use to determine the alarm severity level.

Note: If a severity is not specified in the event map, CA Spectrum uses a default
value of 0 (Normal).

<alarmcause>

Specifies a number that is used to identify the probable cause file that contains the
messages associated with the alarm.

Example:

The following event map serves as an example:

0x3e00002 E 50 A 2,0x3e00003

Generating Alarms

108 Event Configuration User Guide

The example specifies the following about an event with an event code of 0x3e00002:

■ It is logged in the Distributed Data Manager (DDM) database by the Archive
Manager for historical and reporting purposes.

Note: Events for a model that are not logged in the DDM database are displayed on
the Events tab in OneClick only if they are generated while the Events tab for that
model is displayed.

■ It has a severity level of 50.

■ It generates a major (orange) alarm whose alarm cause code is 0xe00003.

More information:

Specify an Alarm Severity (see page 45)

Generating Alarms for Events Based on the Values of Event Variables

Event discriminators are references to event variables that let you to generate alarms
for events based on the values of the variables.

The following syntax is used to generate an alarm using event discriminators:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,<eventdiscriminators>

where <eventdiscriminators> is a comma-separated list of one or more event variable
IDs that indicate the event variables to examine to determine whether to generate an
alarm. These are the event variable IDs that are mapped (in the AlertMap file) to the
OIDs of the variable bindings sent with the trap.

The following event map serves as an example:

0x3b10011 E 70 A 1,0x3b10011,1,3

This example specifies that when an event with an event code of 0x3b10011 is
generated, if an existing alarm with an alarm cause code of 0x3b10011 already exists on
the model, another alarm for the same event is generated only if the values for both
event variables 1 and 3 are different in the new event when compared to current alarms
on the model generated from the same event.

The values of event variables are also stored in the alarms that are generated based on
events. This means you can also use event discriminators to differentiate multiple
occurrences of an alarm and clear alarms based on the values of the variables.

Generating Alarms

Appendix B: Event Disposition Files 109

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)
Clearing Alarms (see page 111)

Generating Alarms Unconditionally for Each Event

By default, if an alarm exists on a model for a given event, CA Spectrum does not
generate a new alarm each time the same event occurs. However, the U flag can be
used to change the default behavior and generate a new alarm unconditionally each
time the same event occurs. The syntax is as follows:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,U

This following event map serves as an example:

0x3dc0000 E 50 A 1,0x3dc0000,U

Generating Alarms That Users Cannot Clear

By default, users can clear alarms. However, the N flag can be used to change the
default behavior so that an alarm cannot be cleared by users. The syntax is as follows:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,N

The following event map serves as an example:

0x3dc0000 E 50 A 1,0x3dc0000,N

Generating Alarms That Are Not Persistent

By default, alarms are persistent, that is, they are retained in memory if the
SpectroSERVER is shut down and restarted. However, the T flag can be used to change
the default behavior so that an alarm is not persistent. The syntax is as follows:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,T

The following event map serves as an example:

0x3dc0000 E 50 A 1,0x3dc0000,T

Combining the U, N, and T Flags

Any combination of the U, N, and T flags can be used within an event map.

Generating Alarms

110 Event Configuration User Guide

As an example, the following event map generates a unique alarm for each event that
has an event code of 0x3dc0000. The alarm cannot be cleared by users, and it is not
persistent.

0x3dc0000 E 50 A 1,0x3dc0000,U,N,T

The N flag and the T flag can be used with event discriminators as shown in the
following example, which is a variation of the event map described in Generating Alarms
for Events Based on the Values of Event Variables (see page 108).

0x3b10011 E 70 A 1,0x3b10011,1,3,N,T

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)

Specify an Event Frequency

The F flag can be used to detect if an event is occurring with abnormal frequency within
a specified period of time. Use event rate rules to generate events for this purpose. The
syntax described in this section is supported only to preserve compatibility with
EventDisp files created for versions of CA Spectrum prior to version 6.5.

The syntax for using the F flag in an event map is as follows:

<EventCode> E <EventSeverity> F <OccurenceLimit> <Duration> <FrequencyEventCode>

F

Indicates how frequently the event is evaluated.

<OccurenceLimit>

Specifies the number of times that the event must occur.

<Duration>

Specifies the amount of time in seconds in which the number of events specified in
<OccurenceLimit> must occur to generate an event.

<FrequencyEventCode>

Specifies the event code of the event to generate if the specified number of events
occurs within the specified period of time.

Specify an Event Duration

You can use the D flag to detect that a second event in what was expected to be a pair
of events did not occur within a specified period of time.

Clearing Alarms

Appendix B: Event Disposition Files 111

Note: Use event pair rules to generate events for this purpose. The syntax described in
this section is supported only to preserve compatibility with EventDisp files created for
versions of CA Spectrum prior to version 6.5.

The syntax for using the D flag in an event map is as follows:

<FirstEventCode> E <EventSeverity> D <SecondEventCode> <Duration>

<DurationEventCode>

D

Indicates that the duration of the time between events is evaluated.

<SecondEventCode>

Specifies the event code of the second event that should occur.

<Duration>

Specifies the amount of time in seconds to wait for the second event to occur.

<DurationEventCode>

Specifies the event code of the event to generate if the second event does not
occur within the specified period of time.

More information:

EventPair Rule (see page 117)

Clearing Alarms

You can specify that an event should clear any of the following types of alarms:

■ An alarm with a specific alarm cause code that was created without event
discriminators.

■ All alarms with a specific alarm cause code that were created based on event
discriminators if their variable values match those in the alarm-clearing event.

■ All alarms with a specific alarm cause code that were created based on event
discriminators regardless of whether their variable values match those in the
alarm-clearing event.

More information:

Clear Alarms Based on Event Discriminator Values (see page 112)
Examples of Event Maps That Clear Alarms (see page 114)
Clear Alarms Created Without Event Discriminators (see page 112)

Clearing Alarms

112 Event Configuration User Guide

Clear Alarms Created Without Event Discriminators

The following syntax is used to clear an alarm that was not created with event
discriminators (which means there is only one instance of the alarm, and it does not
contain copies of the event variables):

<eventcode> E <eventseverity> C <alarmtobecleared>

<eventcode>

Specifies the event code of the event.

E

Indicates the event data should be logged by the Archive Manager to the
Distributed Data Manager (DDM) database.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is the
least severe and 100 is the most severe.

C

Indicates that an alarm should be cleared when the specified event occurs.

<alarmtobecleared>

Specifies the alarm cause code of the alarm to clear.

Example:

0xfffff0000 A 1, 0xffff0000

0xfffff0001 C 0xffff0000

The first event map generates alarm 0xffff0000 when event 0xfffff0000 occurs. The
second event map clears alarm 0xffff0000 when event 0xfffff0001 occurs.

More information:

Clearing Alarms Regardless of Event Discriminator Values (see page 115)
File Syntax of Event Disposition Files (see page 105)
Clear Alarms Based on Event Discriminator Values (see page 112)
Examples of Event Maps That Clear Alarms (see page 114)

Clear Alarms Based on Event Discriminator Values

In the context of clearing alarms, event discriminators are the IDs of the event variables
to examine in the alarm-clearing event and an alarm to determine whether to clear the
alarm as a result of the event.

Clearing Alarms

Appendix B: Event Disposition Files 113

Recall that the event variable IDs are mapped (in the AlertMap file) to the OIDs of the
variable bindings sent with the trap, and their values are copied from the
alarm-generating event to the alarm if the alarm is generated as a result of examination
of their values.

Because the values of event variables are also stored in the alarms that are generated
based on events, you can use event discriminators to differentiate multiple occurrences
of an alarm and clear alarms based on the values of the variables. More specifically, the
alarm can be cleared if the values in the alarm-clearing event match the values stored in
the alarm.

The following syntax is used to clear an alarm based on event discriminator values:

<eventcode> E <eventseverity> C <alarmtobecleared>,<eventdiscriminators>

<eventcode>

Specifies the event code of the event.

E

Indicates that the event data should be logged by the Archive Manager to the
Distributed Data Manager (DDM) database.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is the
least severe and 100 is the most severe.

C

Indicates that an alarm should be cleared when the specified event occurs.

<alarmtobecleared>

Specifies the alarm cause code of the alarm to clear.

<eventdiscriminators>

Specifies a comma-separated list of one or more event variable IDs that indicate the
variables to examine to determine whether to clear the alarm.

Example:

0xfffff0000 A 1, 0xffff0000, 1, 2

0xfffff0001 C 0xffff0000, 1, 2

Alarm 0xffff0000 is cleared only if the values of event variables 1 and 2 in the
alarm-clearing event (0xffff0001) have the same values as those stored in the alarm,
which are copied from the alarm-generating event (0xffff0000) when the alarm is
generated. If the alarm-clearing event does not contain these event variables, the alarm
is not cleared.

Clearing Alarms

114 Event Configuration User Guide

You can also use the following syntax to specify that a single event should clear multiple
types of alarms:

<eventcode> C <alarmtobecleared>,<eventdiscriminators> C

<alarmtobecleared>,<eventdiscriminators>,...

More information:

File Syntax of Event Disposition Files (see page 105)
Examples of Event Maps That Clear Alarms (see page 114)

Examples of Event Maps That Clear Alarms

In the following example, the first event map specifies that event 0x3dc0004 generates
alarm 0x3dc0001. The second event map specifies that event 0x3dc0002 clears alarm
0x3dc0001.

0x3dc0004 E 50 A 2,0x3dc0001

0x3dc0002 C 0x3dc0001

The following two event maps are the same as those above except both use event
discriminators. The first event map specifies that a new alarm is generated for each
0x3dc0004 event that has unique values for both event variables 1 and 3. The second
event map clears all alarms with the alarm cause code of 0x3dc0001 if the values in the
alarm for variables 1 and 3 match the values for the same variables in event 0x3dc0002.

0x3dc0004 E 50 A 1,0x3dc0001,1,3

0x3dc0002 C 0x3dc0001,1,3

If the event map that creates the alarm uses event discriminators, but the event map
that clears the alarm does not, the event discriminators are still considered when
clearing the alarm.

The following event maps use the same logic as the example above even though the
event discriminators are not explicitly stated in the event map that clears the alarm.
Collectively, the event maps specify that all alarms with an alarm cause code of
0x3dc0001 should be cleared if the values in the alarm for variables 1 and 3 match the
values for the same variables in event 0x3dc0002.

0x3dc0004 E 50 A 1,0x3dc0001,1,3

0x3dc0002 C 0x3dc0001

Clearing Alarms Regardless of Event Discriminator Values

Appendix B: Event Disposition Files 115

The following event map uses the U flag to generate a unique alarm each time that
event 0x3dc0004 occurs. The event that clears the alarm, event 0x3dc0002, clears all
alarms that have an alarm cause code of 0x3dc0001.

0x3dc0004 E 50 A 1,0x3dc0001,U

0x3dc0002 C 0x3dc0001

In the following example, the first two event maps generate alarms. The third event
map uses event 0x3dc0009 to clear alarms with different alarm cause codes. All alarms
with an alarm cause code of 0x3dc00010 are cleared, and all alarms with an alarm cause
code of 0x3dc00011 are cleared if their values for variables 1 and 3 match the values for
the same variables in event 0x3dc0009.

0x3dc0006 E 50 A 2,0x3dc00010

0x3dc0007 E 50 A 1,0x3dc00011,1,3

0x3dc0009 C 0x3dc00010 C 0x3dc00011,1,3

Clearing Alarms Regardless of Event Discriminator Values

Use the following syntax to clear all instances of an alarm that were generated based on
event discriminators regardless of whether the values in the alarm-clearing event match
the values stored in the alarm instances:

<eventcode> E <eventseverity> C <alarmtobecleared>,A

<eventcode>

Specifies the event code of the event.

E

Indicates that the event data should be logged by the Archive Manager to the
Distributed Data Manager (DDM) database.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is the
least severe and 100 is the most severe.

C

Indicates that an alarm should be cleared when the specified event occurs.

<alarmtobecleared>

Specifies the alarm cause code of the alarm to clear.

A

Specifies that all alarm instances should be cleared regardless of the values of the
variables stored in the events.

About Defining Event Rules

116 Event Configuration User Guide

Example:

0xffff0000 E 50 A 1,0xffff0000,1,2,3

0xffff0002 E 50 C 0xffff0000,A

In this example, all instances of alarm 0xffff0000 are cleared when event 0xffff0002
occurs regardless of whether event 0xffff0002 contains event variables 1, 2, and 3, and,
even if it does, regardless of whether their values match those stored in the alarms.

More information:

File Syntax of Event Disposition Files (see page 105)

About Defining Event Rules

Event rules let you to specify a complex decision making system to indicate how an
event should be processed. An event rule looks for a series of events to occur on a
model in a certain pattern or time frame. If the events occur as the rule specifies,
another event is generated for the given model, and that new event must be defined in
the EventDisp file so it can be processed appropriately by CA Spectrum.

Important! While you can create event rules manually, it is strongly recommended that
you use the Event Configuration application to do so. This section is provided merely as
a reference of the underlying syntax used to define rules in EventDisp files.

Event Rule Syntax

Event rules are implemented via event maps using the following syntax:

<EventCode> E <EventSeverity> R {<event_discriminators>} <event_rule_name>,

<event_rule_parameter1>, ...<event_rule_parameterN>

R

Indicates that an event rule is used.

{<event_discriminators>}

(Optional) Comma-separated list of one or more event variable IDs that indicate the
variables to examine to determine whether to generate the rule output event.
These are the event variable IDs that are mapped (in the AlertMap file) to the OIDs
of the variable bindings sent with the trap.

Note: Event discriminators apply to each contributing event in the event rule. For
examples of using event discriminators with event rules, see EventRateCounter Rule
and EventCombo Rule (see page 121).

About Defining Event Rules

Appendix B: Event Disposition Files 117

<event_rule_name>

 Is expressed using the following syntax:

CA.<RuleName>

<RuleName> specifies one of the following types of rules:

■ EventPair

■ EventRateWindow

■ EventRateCounter

■ EventSequence

■ EventCombo

■ EventCondition

■ EventCounter

■ Heartbeat

■ SingleEvent

■ SoloEvent

<eventruleparameter>

Varies depending on which type of rule is being used.

More information:

EventRateCounter Rule (see page 120)
EventCombo Rule (see page 121)
Event Rules (see page 61)

EventPair Rule

The syntax of an event pair rule is as follows:

<FirstEventCode> R CA.EventPair, <SecondEventCode>, <GeneratedEventCode>, <time>

For example, the following event pair rule generates event 0x0001002f when event
0x0001002a occurs but is not followed by event 0x0001002b within 60 seconds:

0x0001002a R CA.Eventpair, 0x0001002b, 0x0001002f, 60

To also log event 0x0001002a and assign it a severity level of 50, the following syntax is
used:

0x0001002a E 50 R CA.Eventpair, 0x0001002b, 0x0001002f, 60

About Defining Event Rules

118 Event Configuration User Guide

More information:

Event Pair Rules (see page 62)

EventPairTimeAttr Rule

The EventPairTimeAttr Rule is similar to EventPair Rule. The difference is that it the
Attribute ID is the third parameter instead of the Time window.

The syntax of an event pair rule is as follows:

<FirstEventCode> R CA.EventPairTimeAttr, <SecondEventCode>, <GeneratedEventCode>,

<Attribute ID>

Attribute ID

Specifies an attribute on the current model (the one where the event was
generated one), which holds the time value for the pair rule. It can be used to set
individual, model-specific time values for the rule instead of globally defined
hardcoded ones.

EventRateWindow Rule

An EventRateWindow rule is an event rate rule that uses a sliding window (see
definition on page 152) of time.

The syntax of an EventRateWindow rule is as follows:

<TriggerEventCode> R CA.EventRateWindow, <NumberofOccurrences>, <time>,

<GeneratedHighRateEventCode>, <GeneratedLowRateEventCode>

where <GeneratedHighRateEventCode> is the event to generate if the trigger event
occurs at the specified frequency in the specified time frame. If you also specify an
event for <GeneratedLowRateEventCode>, which is an optional parameter, if the
frequency drops below the threshold, the rule generates the low rate event. The rule
generates the high rate event again only when the frequency threshold is crossed again.

As an example, the following EventRateWindow rule generates event 0x0001002f if five
events of type 0x0001002a occur within 60 seconds:

0x0001002a R CA.EventRateWindow, 5, 60, 0x0001002f, 0x000100030

Once the frequency threshold is crossed and the high rate event (0x001002f) is
generated, another rule output event is not generated until the frequency drops below
5 events within 60 seconds. At this point, the low rate event (0x000100030) is
generated. The high rate event is not generated again until the frequency threshold is
crossed again.

About Defining Event Rules

Appendix B: Event Disposition Files 119

More information:

Event Rate Rules (see page 62)

EventRateWindowAttrParams Rule

An EventRateWindowAttrParams rule is an event rate rule that uses a sliding window
(see definition on page 152) of time.

The syntax of an EventRateWindowAttrParams rule is as follows:

<TriggerEventCode> R CA.EventRateWindow, <Attribute containing

NumberofOccurrences>, <Attribute containing time window>,

<GeneratedHighRateEventCode>, <GeneratedLowRateEventCode>,

<GeneratedStopEventCode>

where <GeneratedStopEventCode> is the event that is generated to stop the rule.
Update the attributes for the model and then generate this stop event to stop the rule
instance on that model. The next rate window event starts a new rule instance, which
reads and uses the new attribute values.

The EventRateWindowAttrParams rule is similar to the EventRateWindow rule.
However, this rule accepts attribute ids instead of direct values for the event occurrence
parameter and the time window parameter. These attributes must be present on the
model where the event is generated and should contain integer values.

The EventRateWindowAttrParams rule is most useful for detecting an event that is not
significant if it happens occasionally, but is significant if it happens frequently. If the
event occurs above a certain rate, this rule generates another event. No additional
events are generated as long as the rate stays at or above the threshold. But if the rate
drops below the threshold and then subsequently exceeds the threshold, another event
is generated.

An event can also be generated when the rate drops below the threshold.

Note: See EventRateWindow Rule (see page 118) for descriptions of the
<GeneratedHighRateEventCode> and <GeneratedLowRateEventCode> events.

More information:

Event Rate Rules (see page 62)

About Defining Event Rules

120 Event Configuration User Guide

EventRateCounter Rule

An EventRateCounter rule is an event rate rule that uses a sequential window (see
definition on page 152) of time.

The syntax of an EventRateCounter rule is as follows:

<TriggerEventCode> R CA.EventRateCounter, <NumberofOccurrences>, <time>,

<GeneratedEventCode>

As an example, the following EventRateCounter rule generates event 0x0001002f if 5
events of type 0x0001002a occur within 60 seconds:

0x0001002a R CA.EventRateCounter, 5, 60, 0x0001002f

To also log event 0x0001002a and assign it a severity level of 50, the following syntax is
used:

0x0001002a E 50 R CA.EventRateCounter, 5, 60, 0x0001002f

Example: Using Event Discriminators with an EventRateCounter Rule

The following example shows two event discriminators used in an EventRateCounter
rule:

0x10001 E 50 R {1,2} CA.EventRateCounter, 3, 60, 0xffff0000

The event discriminator list, {1,2}, contains variable IDs 1 and 2. Therefore, in order for
event 0xffff000 to be generated, event 0x10001 must occur 3 times within 60 seconds,
and all 3 instances must contain the same values for variable IDs 1 and 2.

For example, if event 0x10001 occurred 3 times in 60 seconds, and each time variable ID
1 had a value of 10.253.40.57 and variable ID 2 had a value of 65, then event 0xffff0000
would be generated. However, if event 0x10001 occurred 3 times in 60 seconds but the
first 2 times variable ID 1 had a value of 10.253.30.57 and the third time it had a value of
10.253.89.60, then 0xffff0000 would not be generated.

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)
Event Rate Rules (see page 62)

EventSequence Rule

An EventSequence rule is an event series rule that requires the series of events to occur
in a specific sequence.

About Defining Event Rules

Appendix B: Event Disposition Files 121

The syntax for the EventSequence rule is as follows:

<FirstEventCode> R CA.EventSequence, <GeneratedEventCode>, <time>,

<SecondEventCode>, <ThirdEventCode>,…<NthEventCode>

As an example, the following EventSequence rule generates event 0x0001002f when
events 0x00010002a, 0x0001002b and 0x0001002c occur, in that order, within 60
seconds.

0x0001002a R CA.EventSequence, 0x0001002f, 60, 0x0001002b, 0x0001002c

To also log event 0x0001002a and assign it a severity level of 50, the following syntax is
used:

0x0001002a E 50 R CA.EventSequence, 0x0001002f, 60, 0x0001002b, 0x0001002c

More information:

Event Series Rules (see page 64)

EventCombo Rule

An EventCombo rule is an event series rule that requires the series of events to occur
but the order of occurrence does not matter.

The syntax of an EventCombo rule is as follows:

<FirstEventCode> R CA.EventCombo, <GeneratedEventCode>, <time>, <EventCodeA>,

<EventCodeB>, …<EventCodeN>

As an example, the following EventCombo rule generates event 0x0001002f if event
0x0001002a occurs, and it is followed by at least one instance each of event
0x0001002b and event 0x0001002c within 60 seconds and in any order.

0x0001002a R CA.EventCombo, 0x0001002f, 60, 0x0001002b, 0x0001002c

To specify that the new event should be generated but one of several events can first
trigger the rule, create a series of n rules where n is the number of events in the
combination, and where each rule uses a different event for the trigger. For example,
consider the following three rules:

0x0001002a R CA.EventCombo, 0x0001002f, 60, 0x0001002b, 0x0001002c

0x0001002b R CA.EventCombo, 0x0001002f, 60, 0x0001002a, 0x0001002c

0x0001002c R CA.EventCombo, 0x0001002f, 60, 0x0001002a, 0x0001002b

About Defining Event Rules

122 Event Configuration User Guide

Using this set of rules, any combination of events 0x0001002a, 0x0001002b, and
0x0001002c occurring at least once within 60 seconds and in any order would generate
event 0x0001002f.

To also log event 0x0001002a and assign it a severity level of 50, the following syntax
can be used:

0x0001002a E 50 R CA.EventCombo, 0x0001002f, 60, 0x0001002b, 0x0001002c

Example: Using Event Discriminators with the EventCombo Rule

The following example shows two event discriminators used in an EventCombo rule:

0x10001 E 50 R {1} CA.EventCombo, 0xffff0000, 60, 0x10002

The event discriminator list, {1}, contains variable ID 1. Therefore, event 0x10001 must
occur, and then event 0x10002 must occur within 60 seconds, and each must contain
the same values for variable ID 1 in order for event 0xffff000 to be generated.

For example, if event 0x10001 occurred and had 10.253.40.57 as a value for variable ID
1, and event 0x10002 occurred 45 seconds later and had a value of 10.253.40.57 for
variable ID 1, then event 0xffff0000 would be generated. However, if event 0x10001
occurred and had 10.253.40.50 as a value for variable ID 1, and event 0x10002 occurred
45 seconds later and had a value of 10.253.40.57 for variable ID 1, then event 0xffff0000
would not be generated.

More information:

Event Series Rules (see page 64)

EventComboInclusive Rule

The EventComboInclusive rule is similar to the EventCombo rule. The difference is that it
registers all the combo events, and not just the one which the rule is defined for.

The syntax of an EventComboInclusive rule is as follows:

<FirstEventCode> R CA.EventComboInclusive, <GeneratedEventCode>, <time>,

<EventCodeA>, <EventCodeB>, …<EventCodeN>

T

As an example, the following EventComboInclusive rule generates event 0x0001002f if
either of event 0x0001002a, 00x0001002b or event 0x0001002c occurs:

0x0001002a R CA.EventComboInclusive, 0x0001002f, 60, 0x0001002b, 0x0001002c

About Defining Event Rules

Appendix B: Event Disposition Files 123

More information:

EventCombo Rule (see page 121)

EventCondition Rule

The conditional expressions in an EventCondition rule can compare a variable binding
value or a CA Spectrum attribute value to a user-specified value using standard
comparison operators as follows:

<FirstEventCode> R CA.EventCondition, “<conditional expression 1>”, <event to

generate when 1 is TRUE>,“<conditional expression n>”, <event to generate when n is

TRUE>, “default”, <default event>

“<conditional expression x>”

Consists of one or more expressions comparing a variable binding value or a CA
Spectrum attribute value to a user-defined value (x represents any value from 1 to
n).

<event to generate when x is TRUE>

Specifies the event that is generated if the conditional expression evaluates to
TRUE.

“default”, <default event>

(Optional) Specifies a default event that is generated if none of the conditions are
met. For example, if the following syntax was included at the end of the rule, event
0xffff1234 would be generated if none of the other conditions expressed in the rule
were met:

“default”, 0xffff1234

Note: Default can be expressed as “DEFAULT”, “default”, or “Default”.

Conditional expressions are evaluated from left to right and, with some simplification,
follow C programming-style evaluations. If the whole condition evaluates to TRUE, then
the event is generated.

Condition Syntax

The conditional text is always enclosed in quotation marks as follows:

“condition”

A simple condition is made up of data or objects and comparison operators or methods.

About Defining Event Rules

124 Event Configuration User Guide

Data or Objects

Each data element or object to be compared in the condition must be contained within
curly brackets and must have both a type and a value:

{ TYPE VALUE }

For example, a comparison that involves an integer value of 2 is expressed as { I 2 }.

The following lists the supported types and their meanings:

Short
Symbol

Alternate Names Meaning Type Values Examples

A

Addr

ADDR

address

IP Addr

IP Address

IP_ADDRESS

Contains an IP address

XXX.XXX.XXX.XXX

where each XXX subterm
is a number from 0 to
255, and the whole term
forms a valid IP address

{ Addr 192.168.1.1 }

a attr

ATTR

attribute

ATTRIBUTE

References a model
attribute of the model
for which the event
rule is being processed.

When evaluated, the
attribute’s current
value is read. The
attribute’s type is used
to determine if
comparison is valid.

An attribute ID, specified
as a hex number. The
leading 0x is optional. The
letters a-f may be lower-
or uppercase.

The reading of table
attributes using an object
ID or variable data as an
index is also supported
(see examples).

{ attr 0x11564 }

{ Attribute A00044 }

{ attr 0xffff0001 obj
1.1.6.8.0.1 }

would read table attribute
0xffff0001, with
"1.1.6.8.0.1" as the OID
suffix (index).

{ attr 0xffff0001 VARDATA
2 }

would read table attribute
0xffff0001 using the object
id contained in the second
variable binding as the OID
suffix (index).

B BOOL

Bool

Boolean

boolean

A boolean value False, true

This value is not
case-sensitive

{ B True }

{ boolean false }

H HEX

Hex

Hex_ID

HEX Id

A hex attribute ID
value (this is just a
value, not an attribute
reference, use ‘a’ for
that purpose)

An attribute ID, specified
as hex number. The
leading 0x is optional. The
letters a-f may be
lowercase or uppercase.

{ Hexid 0xffff0123 }

{ H ABCD }

{ HEX 0X91 }

About Defining Event Rules

Appendix B: Event Disposition Files 125

Short
Symbol

Alternate Names Meaning Type Values Examples

I Int

integer

INTEGER

INT

An integer value Any number within the
range of -214783648 to
214783647

{ Int 10 }

{ I 98765 }

{ integer -300 }

L Unsigned long int

LONG

long

UNSIGNED_LONG
_INTEGER

LongInt

An unsigned long 64 bit
integer

Any number within the
range of 0 to
18446744073709551615

{ L 0 }

{ LongInt 123456789098}

o Object ID

obj

obj_id

OBJECT

An object ID X

X.X

X.X.X and so on where X is
an unsigned integer (>= 0)

{ o 1.2.3.4.5.6 }

{ object_id 1.3.6.1.2.1 }

{ OBJ 100000.4.5 }

O Octet
Octet String
Decimal Octet
String
DEC Oct_Str
Dec_OCTET_str

A tagged octet string
comprised of decimal
values

#.#.#....

where # is any number
between 0 and 255

{ Oct Str 1.2.3.4 }

{ OCTET_STR 255.0.1.20 }

{ OCTSTR 10.20.30.40.50 }

R REAL

real

Real

A real number (double) Any number containing a
‘.’ , and possibly followed
by an exponent:

E|e +|- EXP

EXP any number

{ R 1. }

{ Real 3.1415 }

{ REAL -2.843E-17 }

{ R .00001e+20 }

S String

str

Str

STRING

A string Any characters enclosed
in double quotes

{ S \” a string \” }
{ String \”another string\” }
{ str \”12345a@b?c*\” }
{ S \”\” }

U unsigned

unsigned long

unsigned long int

ULONG

U INT

U_long_integer

An unsigned long
integer

Any number in the range
from 0 to 4294967295

{ uint 1234567890 }
{ UNSIGNED INT 0 }

About Defining Event Rules

126 Event Configuration User Guide

Short
Symbol

Alternate Names Meaning Type Values Examples

v

variable data

VARDATA

Var_DATA

EventAttr

event_attr

References an event
attribute (variable
data) from the current
event.

Like a model attribute
reference, this is
evaluated when
needed, and the event
attribute type is used
to check if the
comparison is valid

A unsigned integer (> 0)

{v 1 }

{ VARDATA 2 }

{ event attr 3 }

X Hex octet string
HEXOCT_STR
Hex_Octet
HEXOctet

A tagged hexadecimal
octet string

XX.XX.XX.....

Where XX is a hex
number from 0 to FF

{ X 12.01.AB.EF }

{ HEXOCT AB.CD.EF.01 }

{ Hex octet string 2.3 }

{ X a.b.c }

Using the Escape Character

In addition to enclosing the entire condition within quotation marks, you must also
enclose a string in quotations marks. Also, to help ensure that the entire condition is
parsed properly, the opening and closing quotation marks enclosing the string both
must be preceded by a backslash. The following condition, which includes string xyz,
serves as an example:

“{ S \“xyz\” } == { v 1 }”

If you want to include a backslash '\' or a double quote in the string itself, you need 3
backslashes before each of these characters, as shown in the following example where:

■ Backslash 3 represents the escape for the literal backslash or quote

■ Backslash 2 represents the escape character needed to escape backslash 3 within
the string

■ Backslash 1 represents the escape character needed to escape backslash 2

About Defining Event Rules

Appendix B: Event Disposition Files 127

This same logic holds true for a double quote example.

Regular expressions also use the backslash ‘ \’ as an escape character. Because the
regular expression can be used in a condition, the backslash used within the regular
expression as the escape character must be preceded by several backslashes.

Comparing Strings

The strcmp method is used to compare characters in a string (for example, in strings,
octet strings, IP Addresses, and so on). Note that the implementation of this method
differs slightly from the standard C implementation of strcmp. This method returns
TRUE if the two strings are equal, and it returns FALSE if the strings are not equal.

To make use of this method, use the following format:

“strcmp({ TYPE <string> }, { TYPE <string> })”

For example, the following condition compares an IP Address with a CA Spectrum
attribute whose value is an IP Address. If the two strings are the same, the condition
returns TRUE.

“strcmp({ A 179.82.253.01 }, { attr 0x00011aec })”

Note the following in the example:

■ Each type/string pair to be compared is enclosed in curly brackets

■ The two type/string pairs are separated by a comma and enclosed in parenthesis

■ The name of the method, strcmp, is placed on the left hand side of the parenthesis

■ The entire condition is enclosed in quotes

Regular Expressions

The regexp or REGEXP method is used to compare a string to an input pattern. To do
this, regular expressions use a series of meta-characters that let you express the pattern
of characters that you are looking for. The method returns TRUE if the regular
expression input pattern matches the input string; otherwise, it returns FALSE.

About Defining Event Rules

128 Event Configuration User Guide

To make use of this method, use the following format:

“regexp({ TYPE <string> }, { TYPE <input pattern> })”

The EventCondition rule supports the syntax of the Perl Compatible Regular Expression
(PCRE) package. The following are some of the basic meta-characters supported by the
PCRE package and examples of their usage:

Meta-character Meaning Example

^

Indicates the beginning of a line.

The following example searches for the string “CA”
occurring at the beginning of a line in event variable 1:

“regexp({ VARDATA 1 }, { S \“^CA\” })”

$ Indicates the end of a line. The following example searches for lines ending with
the string “CA” in event variable 1:

“regexp({ VARDATA 1 }, { S \“CA$\” })”

[] Encloses a character class. A
character class shows some
literal text that you would like to
let at a certain point within the
string.

This example searches for the string “port” followed by
a value of 1, 2 or 3 in event variable 1:

“regexp({ VARDATA 1 }, { S \“port *1-3] \” })”

* Indicates zero or more of the
specified preceding characters.

This example searches for zero or more occurrences of
172 in the value of the attribute 0x00011aec:

“regexp({ attr 0x00011aec }, { S \“(172)*\” })”

+ Indicates one or more of the
specified preceding characters.

This example searches for one or more occurrences of
172 in the value of the attribute 0x00011aec:

“regexp({ attr 0x00011aec }, { S \“(172)+\” })”

. Represents any single character
except for a new line character.

This example searches for an occurrence of the word
“port” followed by a space and then any single
character within event variable 1:

“regexp({ VARDATA 1 }, { S \“port . \” })”

About Defining Event Rules

Appendix B: Event Disposition Files 129

|

Separates alternative patterns.

“regexp({ VARDATA 1 }, { S\“interface|port\” })”

This example searches for either the word interface or
the word port within the event variable 1.

\ Used as a general escape
character letting you to use the
literal meaning of a
meta-character. When you use
the escape character within the
regular expression, you must be
sure to also consider the
necessary escape characters to
be used within the context of
the string and the condition..

This example searches for the string “172.55” within
event variable 1:

“regexp({ VARDATA 1 }, { S\“172\\\\.55\” })”

Because the . character is usually treated as a
meta-character within a regular expression, it is
necessary to use the escape character (a backslash) to
indicate that you would like the . to be treated literally.
At the regular expression level, this yields the following
syntax: 172\.55.

However, since you are using this regular expression
within a string, you must precede the backslash with an
additional backslash. Reading the expression from left
to right, the first backslash represents the escape
character needed to escape the second backslash
within the string. This yields the following syntax:
172\\.55.

Additionally, you are using the string within the context
of the condition, therefore each existing \ must have a
corresponding backslash to be used as an escape. This
yields the following syntax: 172\\\\.55.

Comparison Operators

The following comparison operators are supported for numeric or boolean values:

==

equal to

!=

not equal to

>

greater than

<

less than

About Defining Event Rules

130 Event Configuration User Guide

<=

less than or equal to

>=

greater than or equal to

Most numeric values can be compared with each other even if they are not of the same
type. For example, the following condition compares the integer 2 to the value of a CA
Spectrum attribute:

“{ I 2 } = = { attr 0x000117dc }”

Exists Operator

You can use the exists operator to check for the existence of a variable binding value or
other value:

exists(<expression>)

This can be useful, for example, when you want to evaluate a value if it exists, and exit
the event condition rule if it does not. The following spelling variants are supported:

exists

Exists

EXISTS

An exists conditional expression returns TRUE when the expression is valid and contains
a value. For example, “exists({ v 1 })” returns TRUE when event variable 1 exists and
contains any value.

To terminate an event condition rule without action when an exists conditional
expression returns FALSE, you can use the “no action” action (which sends the
0x00010000 null event). The following spelling variants are supported in either all lower
case, all upper case, or initial capital letters:

no action

no-action

no_action

About Defining Event Rules

Appendix B: Event Disposition Files 131

As an example, the following event condition rule checks whether event variable 1
exists in event 0xffff0000. If it does not exist, no action is taken. If it does exist, event
0xffff0001 is generated.

0xffff0000 E 50 R CA.EventCondition, \

 " ! Exists({ v 1 })", “No-Action", \

 " { v 1 } == { I 1 } ", 0xffff0001

The Logical NOT (!)

You can use the logical NOT (!) operator to reverse the logical value of an expression.
Apply the logical NOT (!) in the same way as you would when writing C++ code. For
example, the following condition compares variable binding 1 and variable binding 2.
The logical NOT (!) is applied to the outcome of the comparison. Thus, if variable binding
1 is equal to variable binding 2, the entire expression evaluates to false.

“! ({ v 1 } = = { v 2 })”

Complex Conditions

More complex conditions can be created which use logical operators and parenthesis to
combine simple conditions. Valid logical operators are the following:

&&, which represents AND

||, which represents OR

The following condition includes several subconditions enclosed in braces and linked
together using logical operators.

“({ I 2 } = = { I 2 }) && ({ I 2 } != { I 3 })”

For this condition to evaluate to TRUE, both of the subconditions on either side of the
&& must evaluate to TRUE. Since an integer value of 2 is equal to an integer value of 2,
the left side of the condition is TRUE. Since an integer value of 2 is not equal to an
integer value of 3, the right side of the condition also evaluates to TRUE. This means
that the whole condition evaluates to TRUE.

“({ I 3 } = = { I 4 }) || ({ I 4 } > { I 2 })”

For this condition to evaluate to TRUE, the subcondition on the left hand side of the ||
or the subcondition on the right hand side of the || must evaluate to TRUE. Since 3 is
not equal to 4, but 4 is greater than 2, the entire expression evaluates to TRUE.

Multiple subconditions can be used to create the necessary expression. For example,
the following condition evaluates to TRUE since 4 is greater than 2, and 3 is less than 8.

“({ I 3 } = = { I 2 } || { I 4 } > { I 2 }) && ({ I 3 } < { I 8 } || { I 2 } = = {

I 4 })”

About Defining Event Rules

132 Event Configuration User Guide

Nested Conditions

Although simple conditions can be combined together using logical operators to create
complex conditions, you cannot use simple conditions as a part of other expressions. A
simple condition can have only one comparison operator in it.

For example, the following syntax is not supported. The result of a strcmp() cannot be
used as the argument for an equals (==) operator:

“strcmp ({ S \“a\” }, {S \“a” }) = = { B TRUE }”

Example: Basic EventCondition Rule

The following example shows a basic EventCondition rule that uses some of the
condition syntax described in the previous sections. The first condition that evaluates to
TRUE is used, and the event code immediately following that condition is generated.

0x00045678 R CA.EventCondition,

 \

 “regexp({ VARDATA 1 }, { S \“port [1-3] \” })”,

\

 0x00012345,“{ VARDATA 2 } == { attr0x000117dc }”,

 \

 0x00012344, “strcmp({ A 179.82.253.01 }, \{ attr 0x00011aec } \

)”, \

0x00122334

Example: (Complex EventCondition Rule) Generating an Event Based on a Variable
Binding Value

The following example shows an EventCondition rule that generates an alarm based on
the value of one of the variable bindings sent with the trap. The event condition rule
generates a second event, 0xffff0000, if the value of variable binding 1 is equal to any of
the following values: DAT0005, DAT0006, DAT0007, DAT0008, DAT0011, DAT0012,
DAT0013, DAT0014, DAT0021, DAT0022, or DAT0023.

0x1030f E 50 R CA.EventCondition, \

 "regexp({ v 1 }, \

 { S \"DAT00(05|06|07|08|11|12|13|14|21|22|23) \" } \

)", \

 "0xffff0000 -:-"

There is a space at the end of the regular expression, which indicates that each pattern
must end with a space.

The regular expression first looks for a match between variable binding 1 and DAT00
combined with any of the choices in the brackets (05 , 06 , 07 , etc.).

About Defining Event Rules

Appendix B: Event Disposition Files 133

There is a -:- at the end of the event condition. This symbol specifies that all of the
variable binding values from the originating event (0x1030f) should be copied to the
new event (0xffff0000).

To generate an alarm when the event condition evaluates to true, an event map for the
new event (0xffff0000) that specifies to generate an alarm is needed in the EventDisp
file.

More information:

Event Condition Rules (see page 61)
Copy Event Variables from One Event to Another (see page 137)

EventCounter Rule

The EventCounter rule implements a counter, counting up for 'up' and down for 'down'
events. The rule creates an event if a certain threshold is reached.

The syntax of EventCounter rule is as follows:

<CountUpEventCode> R CA.EventCounter, <CountDownEventCode>, <threshold>,

<ThresholdBreachedEventCode>, <ThresholdResetEventCode>

CountUpEventCode

Counts up by one. The first one also initiates the counter rule.

CountDownEventCode

Counts down by one.

threshold

The counter threshold (integer number). Once the count reaches (equals) that
threshold, the target event is generated

ThreaholdBreachedEventCode

Generates when the count threshold is reached

ThresholdResetEventCode

Generates when the count is below the threshold again

Example: EventCounter rule

0x0f420001 E 50 R CA.EventCounter, 0x0f420002, 3, 0x0f420003, 0x0f420004

Use events 0x0f420001 to count up, and events 0x0f420002 to count down. When the
counter is greater or equal to 3, event 0x0f420003 will be generated. Once the count
falls below 3 again, event 0x0f420004 will be generated.

About Defining Event Rules

134 Event Configuration User Guide

Heartbeat Rule

The Heartbeat rule is set to watch a 'heartbeat' event. The event is seen at a regular
interval. In case any instance of the heartbeat is found missing, the rule creates an
event.

<TriggerEventCode> R CA.Heartbeat, <HeartbeatEventCode>,

<MissingHeartbeatEventCode>, <timeout>, <StopEventCode>

TriggerEventCode

Instantiates the heartbeat event rule

HeartbeatEventCode

The heartbeat event code

MissingHeartbeatEventCode

The event generated in case a heartbeat is missing

timeout

The time gap between individual heartbeats (in seconds)

StopEventCode

(Optional) The event code that stops the rule. The rule instance is running forever,
looking for a heartbeat until stopped

Example: Heartbeat Rule

0x0f440001 E 50 R CA.Heartbeat, 0x0f440002, 0x0f440003, 10, 0x0f440004

Event 0x0f440001 instantiates the heartbeat rule. Next, it will look for event 0x0f440002
to occur at least once every 10 seconds. If a heartbeat event is found missing, the rule
creates event 0x0f440003. Use event 0x0f440004 to stop the heartbeat rule instance.

About Defining Event Rules

Appendix B: Event Disposition Files 135

SoloEvent Rule

The SoloEvent rule finds an instance of the target event that is not followed by or
preceded by any other event in a defined time window. The events that are in the
prevent list may not occur. Other events will not affect the Solo event.

As an example, you may want to have a rule triggered when event A occurred, but only
none of events B, C or D (the 'prevent' events) occurred within five minutes before or 10
minutes after it.

The syntax of the SoloEvent Rule is as follows:

<TriggerEventCode> R CA.SoloEvent, <StopEventCode>, <SoloEventCode>,

<prePreventPeriod>, <postPreventPeriod>, <TargetEventCode>, <PreventCode 1>,

<PreventCode 2 (optional), … , <PreventCode N (optional)>

TriggerEventCode

Initiates the 'solo' event rule.

StopEventCode

Stops the rule. The rule will run endlessly, unless you set the stop event.

SoloEventCode

Sets the solo event.

prePreventPeriod

Sets the time period before the solo event where none of the 'prevent' events may
occur (in seconds).

postPreventPeriod

Sets the time period after the solo event where none of the 'prevent' events may
occur.

TargetEventCode

Defines the event that will generate when the rule triggers (when just the 'solo'
event was seen).

PreventCode 1 to PreventCode N

Defines a list of 'prevent' events.

Example: SoloEvent Rule

The following example will create event code 0x0f400005 if the solo event 0x0f400003
was seen, and none of the events 0x0f400006, 0x0f400007, 0x0f400008 or 0x0f400009
were seen within 20 seconds before or after it. The first event 0x0f400001 will have to
be generated to instantiate the rule. Event 0x0f400002 is available to stop the rule.

0x0f400001 E 40 R CA.SoloEvent, 0x0f400002, 0x0f400003, 20, 20, 0x0f400005,

0x0f400006, 0x0f400007, 0x0f400008, 0x0f400009

About Defining Event Rules

136 Event Configuration User Guide

SingleEvent Rule

The SingleEvent rule reduces an event stream where one event ('up' event) may occur
multiple times, before a reset ('down') event is seen. Instead of the multiple 'up' events,
a single event is set that can be reused in other rules, denoting the condition ('up' or
'down').

The syntax of SingleEvent rule is as follows:

<TriggerEventCode> R CA.SingleEvent, <ResetEventCode>, <SingleTargetEventCode>,

<SingleResetTargetEventCode>

TriggerEventCode

Occurs multiple times and should be converted into a 'single' occurrence. This will
also trigger the rule to be instantiated when it occurs the first time.

ResetEventCode

Sets the reset event. When this event is seen, the rule is ready to create another
single event again.

SingleTargetEvent

Generates the first time the trigger event is seen either when the rule is
instantiated, or the first time the trigger event occurs after reset event is seen.

SingleResetTargetEvent

(Optional) Generates when the reset event is seen.

Example: SingleEvent Rule

0x0f430001 E 50 R CA.SingleEvent, 0x0f430002, 0x0f430003, 0x0f430004

Generates event 0x0f40003 every time event 0x0f430001 is seen for the first time. The
SingleEvent is instantiated either at initial rule creation, each time after the trigger is
seen the first time or after the reset event 0x0f430002 was seen. Event 0x0f430004 will
also be generated when the reset event has been seen.

Using Multiple Event Rules in a Single EventDisp Entry

You can specify that a single event be processed using multiple event rules. For
example, the following event disposition entry specifies that event 0x0001002a be
processed using both the EventSequence rule and the EventPair rule:

0x0001002a R CA.EventSequence, 0x0001002c, 60, 0x0001002d,0x0001002e \

 R CA.EventPair, 0x0001002b, 0x0001002f, 60

This entry specifies that event 0x0001002c will be generated when events 0x0001002a,
0x0001002d, and 0x0001002e occur in that order within 60 seconds, and event
0x0001002f will be generated if event 0x0001002a occurs, but is not followed by event
0x0001002b within 60 seconds.

About Defining Event Rules

Appendix B: Event Disposition Files 137

The backslash character is used at the end of the line to show that the event disposition
entry continues onto the next line.

Note: Multiple rules must be specified within a single event disposition entry. If you
were to create two separate event disposition entries for an event, only the first event
disposition entry would be processed.

More information:

Syntax Errors in EventDisp Files (see page 143)

Copy Event Variables from One Event to Another

You can trigger events using event rules. However, sometimes the event is generated
only after multiple contributing events occur or certain complex conditions are met.

By default, a rule output event does not have any event variables. You can however
specify that, the values of the event variables in the events that contribute to the
processing of the rule, be copied to the rule output event. Copying the event variables
lets you specify event processing behaviors for the rule output event based those
values, which you can do using event variable discriminators. Moreover, because the
values of event variables in events that generate alarms are also stored in those alarms,
you can also use event discriminators to specify alarm processing (generation or clearing
of alarms) based on the values of the copied variables.

This section provides reference information about event variable copying syntax.

More information:

Event Variable Copying and Event Discriminators (see page 142)
Generating Alarms for Events Based on the Values of Event Variables (see page 108)
Clearing Alarms (see page 111)

Event Variable Copying Syntax

Consider the following EventCombo rule which generates event 0xa000f, when events
0x10002, 0x10003, and 0x10004 are all received within 10 seconds of event 0x10001:

0x10001 R CA.EventCombo, 0xa000f, 10, 0x10002, 0x10003, 0x10004

About Defining Event Rules

138 Event Configuration User Guide

Now assume that the contributing events have variable bindings that have values, some
of which you want to copy to event 0xa000f as follows:

Contributing Event Event Variables to Copy Event Variables in 0xa000f to
Receive the Copies

0x10001

2, 3

1, 2

0x10002 1, 5 3, 4

0x10003

none

none

0x10004 2, 3, 4, and 5 5, 6, 7, and 8

Note: An event generated by an event rule does not have any event variables unless
they are copied from contributing events.

To copy the event variables as specified in the preceding table, the following event
variable copying syntax is used:

0x10001 R CA.EventCombo, "0xa000f 2-3:1-2", \

 10, \

 "0x10002 1:3, 5:4", \

 0x10003, \

 "0x10004 2-5:5-8"

This syntax copies event variables 2 and 3 in 0x10001 to event variables in 0xa000f,
copies event variables 1 and 5 in 0x10002 to event variables 3 and 4 in 0xa000f, and
copies event variables 2, 3, 4, and 5 in 0x10004, respectively, to event variables 5, 6, 7,
and 8 in 0xa000f.

Event Parameters and Variable IDs

Event parameters specify the event variables to copy from a contributing event to the
event generated by the rule. This information is associated with the contributing event,
and it is entered after the event ID. To specify that the event copy information is part of
the event parameter and not the next rule parameter, the event ID and the copy
information need to be enclosed in double quotes, as shown:

"0x10002 1:3"

About Defining Event Rules

Appendix B: Event Disposition Files 139

Event Variable Copy Information

The event variable copy information section of an event parameter can consist of
several parts, each separated by a comma. Each part specifies a source variable ID or
range of IDs. followed by a target variable ID or range of IDs. A colon separates the
source IDs from the target IDs, as shown:

"0x10001 1:1, 2:3"

If the source IDs and the target IDs are the same, either can be left empty.

Variable IDs

A single event variable is identified by its ID, which typically is a small number.

To copy a specific source event variable, enter its ID in the source position (left of the
colon) in the copy information section. Similarly, to copy to a specific event variable,
enter its ID in the target position (right of the colon).

For example, the following syntax copies variable 1 in event 0x10001 to variable 1 in the
rule-generated event:

"0x10001 1:1"

Similarly, the following syntax copies variables 1 through 5 in event 0x10003 to variables
with the same IDs in the rule-generated event:

"0x10003 1:1, 2:2, 3:3, 4:4, 5:5"

Variable IDs Using Ranges

Ranges of source and target variable IDs can be specified using a start ID followed by the
dash ('-') character and then a stop ID. The start and stop IDs are included in the range.

The start ID, the stop ID, or both IDs can be left out. An entry with no start ID copies all
of the IDs in the range from 1 to the stop ID, inclusive. An entry with no stop ID copies
all of the variables with IDs equal to or greater than the start ID. An entry without either
the start ID or the stop ID copies all of the variables (the dash can be left out too).

The number of variables in the source and target ranges need to be the same. If the
numbers do not match, the number of IDs in the smaller range is used to copy variables,
and a warning is generated.

As examples, the following 3 rule fragments are all equivalent. Each copies variables 1
through 73 in event 0x10004 to variables with the same IDs in the rule-generated event:

"0x10004 1 - 73 : 1 - 73"

"0x10004 1-73 :"

"0x10004 :1-73"

About Defining Event Rules

140 Event Configuration User Guide

To copy variables 1 through 3 in event 0x10005 to the rule-generated event using new
IDs 6 through 8:

"0x10005 1-3:6-8"

To copy all variables up to and including variable 5 to the rule-generated event using
new IDs beginning with 1:

"0x10006 -5:1-"

To copy variables 2 through 5 to new IDs 1 through 4, and to also copy all remaining
variables beginning with ID 7 using the same target IDs in the rule-generated event:

"0x10007 2-5:1-4, 7-:7-"

To copy all of the variables in event 0x10008 to the rule-generated event, use any of the
following:

"0x10008 -:-"

"0x10008 -:"

"0x10008 :-"

"0x10008 :"

"0x10008 1-:1-"

The following example copies variables 3 to 5 from event 0x10009 to the rule-generated
event where the source event has fewer variable entries then the target event. This
example will succeed, but a warning will be generated:

"0x10009 3-5:3-"

Copying Variables from the Initial Event

Copying variables from the initial event (the event that the event disposition entry is for)
is a special case. In this case, the copy information for the initial event is attached to the
event to be generated rather than the source event.

As an example, consider the following EventCombo rule and EventRate rule, both of
which watch for event 0x10001. If event 0x10001 occurs in combination with event
0x10002, its event variable 1 is important; if it occurs frequently, its event variable 3 is
of interest:

0x10001 R CA.EventCombo, "0xa000f 1:1", 10, 0x10002 \

 R CA.EventRateCounter, 10, 3600, "0xa000e 3:1"

Different types of rules specify the event to generate in different parameter positions. In
the preceding example, the EventCombo rule uses the first variable position, and the
EventRateCounter rule uses the third variable position.

About Defining Event Rules

Appendix B: Event Disposition Files 141

Multiple Event Occurrence

When two event rules watch for multiple occurrences of an event (for example, an
EventRateWindow rule and an EventRateCounter rule), the final occurrence of the event
is used to copy the event variables, since they are the most current.

As an example, assume that event 0x10001 is a security alert from an intrusion
detection system that holds information about the severity of a potential intrusion. Also
assume that the following event rate rule exists, which generates event 0xa000f when
event 0x10001 is received at least 5 times during a 100 second interval:

0x10001 R CA.EventRateCounter, 5, 100, "0xa000f 1:1"

A possible sequence of contributing events might be as follows:

Note: For readability, the severity event variable is shown as a text string.

0x10001 Warning

0x10001 High

0x10001 Warning

0x10001 Critical

0x10001 Critical

where the fifth 0x10001 event received triggers the generation of the rule output event,
creating event 0xa000f with its variable 1 set to “Critical.”

As an alternative and more specific approach, the following EventCondition rule could
be used so that the rule output event is only generated in response to five critical
0x10001 events (instead of in response to five 0x10001 events of any severity):

0x10001 R CA.EventCondition, \

 "regexp ({ variable 1 } , { S \"Critical\" })", "0xa0001 1:1"

0xa0001 R CA.EventRateCounter, 5, 100, "0xa000f"

More information:

Variable Descriptions and Syntax (see page 33)
Event Variable Copying and Event Discriminators (see page 142)

About Defining Event Rules

142 Event Configuration User Guide

Event Variable Copy Example

Having reviewed Event Variable Copying Syntax (see page 142) for information about
how to copy event variables from contributing events to rule-generated events,
examine again the following event variable copy example:

0x10001 R CA.EventCombo, "0xa000f 2-3:1-2", \

 10, \

 "0x10002 1:3, 5:4", \

 0x10003, \

 "0x10004 2-5:5-8"

When this EventCombo rule generates event 0xa000f, the event variables in the
contributing events are copied as shown in the following table:

Source Event Source
Variable ID

0xa000f (Target)
Variable ID

0x10001

2

1

0x10001 3 2

0x10002 1 3

0x10002 5 4

0x10004 2 5

0x10004 3 6

0x10004

4

7

0x10004 5 8

Event Variable Copying and Event Discriminators

The event copying syntax can be used in conjunction with event discriminators to
differentiate events that generate alarms. For example, assume alarm 0xffff0000 should
be generated when event 0x10001 is received, and event variable 1 contains the index
of the board that failed. Event variable 1 can be used as the alarm discriminator. Also
assume that the device sometimes falsely reports errors, and the alarm should be
cleared if supporting event 0x10002 is not received within 10 seconds. The following
event maps satisfy these requirements:

0x10001 E 50 \

 A 2, 0xffff0000, 1 \

 R CA.EventPair, 0x10002, "0xa000f 1:1", 10

0xa000f C 0xffff0000, 1

Syntax Errors in EventDisp Files

Appendix B: Event Disposition Files 143

The EventPair rule is used to watch for the second event and issue the clearing event
containing the correct variable needed to clear the alarm. Note the use of the event
discriminator to determine whether to generate and to clear the alarm, as well as the
copy information contained in the rule.

Syntax Errors in EventDisp Files

All of an event’s processing syntax must exist as a single event map. An EventDisp file
that lists the same event code twice as the first entry on a line is considered to be
improperly formatted. In this situation, the first line that applies to a particular event
code is processed, and any additional entries are discarded.

The following example illustrates incorrect syntax:

0x3e00002 E 50

0x3e00002 A 2,0x3e00002

The following example illustrates correct syntax:

0x3e00003 E 50 A 2,0x3e00003

In the incorrect example, only the first event map is processed. Thus, when event
0x3e00002 is received, it is logged with an event severity of 50. However, no alarm is
generated.

The correct example shows how to specify that CA Spectrum should log an event, assign
an event severity to it, and generate an alarm as a result of the event.

More information:

Logging Event-Related Errors (see page 24)

Add Comments in EventDisp Files

You can add comments to an EventDisp file using the # identifier. Any text that follows
this identifier on a line is ignored when the EventDisp file is processed.

You must enter the # identifier as the first character on the line. Do not enter a space
and then #, as this produces an error when the EventDisp file is processed. If the
comment must span multiple lines, enter the # identifier as the first character on each
line.

Add Comments in EventDisp Files

144 Event Configuration User Guide

The following example shows proper usage:

This is a valid comment.

This is a valid comment.

0x3dc0004 E 50 A 2,0x3dc0001

0x3dc0002 C 0x3dc0001

Appendix C: Event Format Files 145

Appendix C: Event Format Files

This section contains the following topics:

About Event Format Files (see page 145)
Location of Event Format Files (see page 145)
Contents of an Event Format File (see page 146)

About Event Format Files

An event format file contains the message about the event that is displayed to users on
the Events tab in OneClick when the event occurs. The message can contain references
to the event variables that hold data retrieved from the variable bindings of the trap.
There exists an event format file for each event generated by CA Spectrum.

The events provided with CA Spectrum all have event format files that define
appropriate event messages. In addition, whenever you create a new, custom event
(either using MIB Tools when you are mapping a trap to the new event or later using
Event Configuration) the associated event format file is automatically created. This
means that typically you should not need to manually create an event format file.

Important! It is recommended that you create and modify all event messages using
Event Configuration, which updates the appropriate event format files on (only) the
OneClick web server to which you are connected when you save the changes to a
landscape. However, this appendix provides reference information on event format files
if manual modifications are ever required.

Location of Event Format Files

The event format files that support the events provided with CA Spectrum are installed
in the following folder:

<$SPECROOT>/SG-Support/CsEvFormat

Custom event format files that are created by MIB Tools or Event Configuration are
installed in the following folder:

<$SPECROOT>/custom/Events/CsEvFormat

Each event format file is named Event<event_code>, where <event_code> is the 4-byte,
hexadecimal event code assigned to the event. For example, an event with an event
code of 0x12345678 has an event format file named Event12345678.

Contents of an Event Format File

146 Event Configuration User Guide

Contents of an Event Format File

If you modify an event format file manually, note the following:

■ As you compose the event message, keep in mind that most of the information that
a OneClick user receives about an event is via the message text that is associated
with the event. For this reason, provide as much information about the event as
possible in the message.

■ An event message can consist of plain text and variables that reference specifics
about the instance of the individual event. For information on the correct syntax for
including variables, see Variable Descriptions and Syntax (see page 33).

■ If there exists an event format file for an event, but no event map for the event
exists in an event disposition file, the contents of the event format file are still
displayed on the Events tab in OneClick when the event occurs.

■ If no event format file exists for an event, a default message indicating this is
displayed on the Events tab in OneClick.

Appendix D: Event Table Files 147

Appendix D: Event Table Files

This section contains the following topics:

About Event Table Files (see page 147)
Location of Event Table Files (see page 147)
Contents of an Event Table File (see page 148)

About Event Table Files

An event table file does the following:

■ Enumerates the possible values of a variable binding that is sent with a trap. The
values can be attribute values in MIB tables, OID values, and integer bit values.

■ Provides corresponding text values for the enumerated values.

When a trap is mapped to a CA Spectrum event, the variable bindings sent with the trap
are mapped to event variables. This means that by referencing an event variable and the
event table file for the appropriate variable binding you can define event messages that
include the text values for the variable binding values. In turn, this means that the event
message that is displayed to users in OneClick contains data that is specific to the trap
that is sent.

You do not need to manually create event table files. All of the events provided with CA
Spectrum that are mapped to traps that contain variable bindings with enumerated
definitions in the MIB have supporting event table files. In addition, whenever you add
trap support for a device that is not supported by default in CA Spectrum, and you map
the traps to new, custom events using MIB Tools, an event table file is automatically
created for each variable binding that meets this same criterion.

Note: This appendix provides reference information on the proper syntax for an event
table file. However, typically you should not need to modify these files.

Location of Event Table Files

The event table files that support the events provided with CA Spectrum are installed in
the following folder:

<$SPECROOT>/SG-Support/CsEvFormat/EventTables

Contents of an Event Table File

148 Event Configuration User Guide

Custom event table files created by MIB Tools are installed in the following folder:

<$SPECROOT>/custom/Events/CsEvFormat/EventTable

Each event table file is named based on the associated device and variable binding.

Contents of an Event Table File

Event table files are used to enumerate the possible attribute values, OID values, or
integer bit values in a variable binding sent with a trap, and to associate those values
with corresponding text values that can be used in event messages.

Associate the Attribute Values in a MIB Table with Text Values

To associate an attribute value in a MIB table with a text value, the file must iterate
each possible value in hexadecimal format and its associated text value, as shown in the
following example:

0x00000001 Reconfiguration

0x00000002 Signal-Loss

0x00000003 Bit-Streaming

0x00000004 Contention-Streaming

0x000000ff None

Associate OID Values with Text Values

To associate an OID value with a text value, the file must iterate each possible OID value
and its associated text value, as shown in the following example:

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.6 dot6

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.5 dot15

1.3.6.1.4.1.1563.1.2.1.1.3.2 dot7

Associate Integer Bit Values with Text Values

To associate an integer bit value with a text value, the file must iterate each possible
integer bit value and its associated text value, as shown in the following example:

1 dsx1NoAlarm

2 dsx1RcvFarEndLOF

3 dsx1XmtFarEndLOF

4 dsx1RcvAIS

Appendix E: Probable Cause Files 149

Appendix E: Probable Cause Files

This section contains the following topics:

About Probable Cause Files (see page 149)
Location of Probable Cause Files (see page 149)
Contents of a Probable Cause File (see page 150)

About Probable Cause Files

A probable cause file is an ASCII text file that defines the symptoms, probable causes,
and recommended corrective actions for an alarm. When an alarm is generated as a
result of an event, the text in the associated probable cause file is displayed on the
Alarm Details tab in OneClick. In this way, OneClick users are provided with information
that can assist in resolving the abnormal condition. There exists a probable cause file for
each alarm generated due to a CA Spectrum event.

The events provided with CA Spectrum that generate alarms all have probable cause
files that define appropriate alarm-related messages. In addition, whenever you create a
new, custom event that generates an alarm (either using MIB Tools when you are
mapping a trap to the new event or later using Event Configuration) the associated
probable cause file for the alarm is automatically created. This means that typically you
should not need to manually create a probable cause file.

Important! It is recommended that you create and modify all alarm-related messages
using Event Configuration, which updates the appropriate probable cause files on (only)
the OneClick web server to which you are connected when you save the changes to a
landscape. However, this appendix provides reference information on the proper syntax
to use if manual modifications are ever required.

Location of Probable Cause Files

The probable cause files that support the events and alarms provided with CA Spectrum
are installed in the following folder:

<$SPECROOT>/SG-Support/CsPCause

Custom probable cause files that are created by MIB Tools or Event Configuration are
installed in the following folder:

<$SPECROOT>/custom/Events/CsPCause

Contents of a Probable Cause File

150 Event Configuration User Guide

Each probable cause file is named Prob<alarm_cause_code>, where
<alarm_cause_code> is an 8-digit (including leading zeros), hexadecimal code that
identifies the probable cause of the alarm.

As a convention, events that generate alarms typically use their event codes as alarm
cause codes.

Contents of a Probable Cause File

The contents of a probable cause file should include text only. On the first line, specify
the cause of the alarm in all capital letters; this information is displayed as the alarm
type (or title) on the Alarm Details tab. Also provide one section each on the following:

■ The symptoms of the alarm

■ The probable causes

■ Recommended corrective actions

If there are multiple items under a category, enter the information in numbered list
format.

Example: Probable Cause File Using Appropriate Syntax

UNKNOWN USER

SYMPTOMS:

The user's SMTP mail transaction failed with error code 550 - unknown user.

PROBABLE CAUSES:

1) The user may have entered an invalid SMTP mail login.

2) The SMTP server login account information may be incorrect.

RECOMMENDED ACTIONS:

1) Have the user check their username and try again.

2) If the username is correct, check the SMTP server login account information.

Glossary 151

Glossary

alarm
An alarm is a CA Spectrum object that indicates that a user-actionable, abnormal
condition exists in a model.

alert
An alert is an unsolicited message sent out by a managed element on a network. A more
specific definition of an alert depends on the management protocol that is used to
report the alert. In general, CA Spectrum uses SNMP as the management protocol to
communicate with devices on a network.

event
An event is a CA Spectrum object that indicates that something significant has occurred
within CA Spectrum itself or within the managed environment. Events always occur in
relation to a model. When CA Spectrum receives an alert from a managed element on
the network, in response, it generates a CA Spectrum event for the corresponding
model if the received trap is mapped to an event.

event discriminators
Event discriminators are references to event variables that let you to generate alarms
for events based on the values of the variables.

event format file
An event format file contains the message about the event that is displayed to users on
the Events tab in OneClick when the event occurs.

event message
The event message is the message that is displayed on the Events tab in OneClick when
the event occurs.

probable cause file
A probable cause file is an ASCII text file that defines the symptoms, probable causes,
and recommended corrective actions for an alarm.

152 Event Configuration User Guide

sequential window

A sequential window is a type of type time window in which non-overlapping time
windows are examined, one after another, to determine if the requisite number of
events has occurred within the time window. This type of time window is best suited for
detecting a long, sustained train of events.

sliding window
A sliding window is a type of time window where if the specified number of events (or
more) ever occurs within any window of the specified time period, the output event is
created in response. This type of time window is best suited for accurately detecting a
short burst of events.

trap
A trap is an alert that is generated by an SNMP-compliant device.

Index 153

Index

A

A flag • 106, 115
about mapping to events • 95
alarm severity mapping

creating • 52
defined • 52
modifying • 54

alarm severity parameter • 106
alarms

alarm cause codes • 47
defined • 11
generating using event discriminators • 50
persistent • 49
recommended actions • 49
severity levels • 45
severity mapping files • 52
unique • 49
user-clearable • 49

AlertMap files • 14
alert codes • 97
comments • 99
defined • 93
error messages and • 100
location • 96
mapping variables • 100
OID map in • 98
processing alerts with • 96
syntax • 97

alerts • 9

C

C flag examples • 112, 114
CA-authored events, modifying • 58
columns, modifying • 24
conditional alarm severity • 45
conditional alarm severity mappings

creating • 52
defined • 52
modifying • 54

D

D flag • 110
developer IDs, obtaining • 13

E

E flag • 105
enable_event_variable_warnings parameter • 24
errors in event disposition file syntax • 143
event codes • 98
event condition rules

configuring • 66
defined • 61

Event Configuration
overview of the user interface • 16
starting from MIB Tools • 15
starting from OneClick • 15

event counter rules
configuring • 79
defined • 64

event discriminators • 108
event disposition files

comments in • 143
defined • 103
location of • 104
synchronizing across landscapes • 19
syntax • 105
syntax errors in • 143

event format files
contents • 146
defined • 145
location • 145

event messages
defined • 33
event messages, example • 40
referencing attribute values in a MIB table • 37
referencing integer bit values • 39
referencing OIDs • 38

event pair rules
configuring • 70
defined • 62

event rate rules
configuring • 73
defined • 62
sequential window • 62
sliding window • 62

event rules
creating • 65
deleting • 92

154 Event Configuration User Guide

modifying • 91
syntax • 116

event series rules
configuring • 76
event series rules • 64

event table files
attribute values in MIB tables • 148
contents • 148
defined • 147
integer bit values • 148
location • 147
OID values • 148

event variables
copying to rule output events • 90
file syntax for copying • 137

event_custom_override_warnings parameter • 24
event_disp_default_log parameter • 24
event_disp_error_file parameter • 24
event_duplicate_action_warnings parameter • 24
EventCombo rule syntax • 121
EventCondition rule syntax • 123
EventCounter rule syntax • 133
EventPair rule syntax • 117
EventRateCounter rule syntax • 120
EventRateWindow rule syntax • 118
EventRateWindowAttrParams rule syntax • 119
events

clearing alarms with • 56
configuring • 32
creating from scratch • 30
defined • 10
error handling • 24
generate alarms from • 42
refreshing • 17
saving to landscapes • 17
searching for • 29
specify options for • 40

EventSequence rule syntax • 120

F

F flag • 110
filtering events • 24

G

generic trap identifier • 93

H

Heartbeat rules

configuring • 82
defined • 64
syntax • 134

I

initial alarm severity • 45

L

landscapes • 19

M

maintenance alarm severity • 45
major alarm severity • 45
MIB Tools • 9, 10, 14
minor alarm severity • 45

N

N flag • 109
normal alarm severity • 45

P

probable cause files
contents • 150
defined • 149
location of files • 149

procedure_error_file parameter • 24

R

R flag • 116
Critical alarm severity level • 45

S

sequential window • 62
severity levels, alarm • 45
Single Event Rules

configuring • 85
defined • 64

sliding window • 62
SNMPv2 InformRequest • 101
SNMPv2 support • 101
Solo Event Rules

defined • 65
Solo Event Rules, configuring • 88

suppressed alarm severity • 45

T

T flag • 109

Index 155

traps
defined • 9, 93
mapping SNMPv2 traps to CA Spectrum events •

101
mapping to events • 14, 95

U

U flag • 109
user-defined event rule • 65

V

variable alarm severity • 45

	CA Spectrum Event Configuration User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: CA Spectrum Event and Alarm Concepts
	About Alarms and Events
	Alerts
	Events
	Event Codes

	Alarms

	2: Getting Started with Event Configuration
	Before You Begin
	Obtaining a Developer ID
	Mapping Traps to CA Spectrum Events

	Preserving Customizations Across Upgrades of CA Spectrum
	Starting the Event Configuration Application
	Overview of the User Interface
	Loading All Events from All Landscapes
	Save Events to Landscapes
	Synchronizing Events in a Distributed Environment
	Synchronize Event Disposition Files on SpectroSERVERs
	Synchronize Event and Alarm Support Files on OneClick Web Servers

	Updating the Overall Alert and Event System for a Landscape
	Add and Remove Columns from the Events Table
	Logging Event-Related Errors
	event_disp_error_file
	event_custom_override_warnings
	enable_event_variable_warnings
	event_duplicate_action_warnings
	event_disp_default_log
	procedure_error_file

	3: Working with Events and Alarms
	Finding Events
	Create Events from Scratch
	Create Events from a Copy
	About Configuring Events
	Event Messages
	Variable Descriptions and Syntax
	Referencing Attribute Values in a MIB Table
	Referencing OIDs
	Referencing Integer Bit Values
	Example Event Message

	Specify Event Options
	Configure Events to Generate Alarms
	Specify an Alarm Severity
	Enable or Disable Alarms of a Severity Type
	Specify an Alarm Cause Code
	About Specifying Symptoms, Causes, and Recommended Actions
	Specify Alarm Options
	Using Event Variable Discriminators to Generate Alarms
	Creating Dynamic Alarm Title
	Configuring Alarm Severity Mappings for the Conditional Severity Level
	Create Alarm Severity Mappings for the Conditional Severity Level
	Modifying Alarm Severity Mappings for the Conditional Severity Level

	Configure Events to Clear Alarms

	Modify Events
	Delete Custom Events

	4: Working with Event Rules
	Event Rules
	Event Condition Rules
	Event Pair Rules
	Event Rate Rules
	Event Series Rules
	Event Counter Rules
	Heartbeat Rules
	Single Event Rules
	Solo Event Rules
	User-Defined Event Rules

	Create Event Rules
	Configuring Event Condition Rule Settings
	Configuring Event Pair Rule Settings
	Event Variable Discriminators in Event Pair Rules

	Configuring Event Rate Rule Settings
	Configuring Event Series Rule Settings
	Configuring Event Counter Rule Settings
	Configuring Heartbeat Rule Settings
	Configuring Single Event Rule Settings
	Configuring Solo Event Rule Settings
	Copy Variable Values from Contributing Events to the Rule Output Event

	Modifying Event Rules
	Delete Event Rules

	A: AlertMap Files
	SNMP Trap Overview
	About Mapping a Trap to a CA Spectrum Event
	About Processing Alerts with AlertMap Files
	AlertMap File Location
	AlertMap File Syntax
	Alert Code
	Event Code
	OID Map
	Comments
	How CA Spectrum Maps Alert Variables to Event Variables

	Error Messages

	SNMPv2 Support
	InformRequest Support
	How an SNMPv2 Trap is Mapped to a CA Spectrum Event

	B: Event Disposition Files
	About Event Disposition Files
	Location of Event Disposition Files
	File Syntax of Event Disposition Files
	Generating Alarms
	Generating Alarms for Events Based on the Values of Event Variables
	Generating Alarms Unconditionally for Each Event
	Generating Alarms That Users Cannot Clear
	Generating Alarms That Are Not Persistent
	Combining the U, N, and T Flags
	Specify an Event Frequency
	Specify an Event Duration

	Clearing Alarms
	Clear Alarms Created Without Event Discriminators
	Clear Alarms Based on Event Discriminator Values
	Examples of Event Maps That Clear Alarms

	Clearing Alarms Regardless of Event Discriminator Values
	About Defining Event Rules
	Event Rule Syntax
	EventPair Rule
	EventPairTimeAttr Rule
	EventRateWindow Rule
	EventRateWindowAttrParams Rule
	EventRateCounter Rule
	Example: Using Event Discriminators with an EventRateCounter Rule

	EventSequence Rule
	EventCombo Rule
	EventComboInclusive Rule
	EventCondition Rule
	EventCounter Rule
	Heartbeat Rule
	SoloEvent Rule
	SingleEvent Rule
	Using Multiple Event Rules in a Single EventDisp Entry
	Copy Event Variables from One Event to Another
	Event Variable Copying Syntax
	Event Parameters and Variable IDs
	Event Variable Copy Information
	Variable IDs
	Variable IDs Using Ranges
	Copying Variables from the Initial Event
	Multiple Event Occurrence

	Event Variable Copy Example
	Event Variable Copying and Event Discriminators

	Syntax Errors in EventDisp Files
	Add Comments in EventDisp Files

	C: Event Format Files
	About Event Format Files
	Location of Event Format Files
	Contents of an Event Format File

	D: Event Table Files
	About Event Table Files
	Location of Event Table Files
	Contents of an Event Table File
	Associate the Attribute Values in a MIB Table with Text Values
	Associate OID Values with Text Values
	Associate Integer Bit Values with Text Values

	E: Probable Cause Files
	About Probable Cause Files
	Location of Probable Cause Files
	Contents of a Probable Cause File

	Glossary
	Index

