

Command Line Interface User Guide
Release 9.4

CA Spectrum®

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This guide references CA Spectrum®.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction to Command Line Interface (CLI) 9

Overview .. 9

CLI Commands ... 10

CLI in Shell Scripts ... 10

CLI Components .. 10

CLI Environment Variables .. 11

CLI Architecture .. 12

The Startup File ... 13

The CLI Local Server .. 14

Error Checking .. 14

Chapter 2: Working with Command Line Interface 15

Start a CLI Session on UNIX .. 15

Start a CLI Session on Windows using DOS Prompt ... 15

Start a CLI session on Windows using Bash Prompt ... 16

Example Usage ... 17

Create a User Model ... 17

Modify a Model Attribute ... 18

Create and Modify a Model in One Step ... 20

Sample CLI Script File–Create a New User .. 20

Event Report Generation ... 22

Model Switch .. 23

Create a Troubleshooter Model ... 23

Assign an Alarm to a Troubleshooter .. 24

Create a Global Collection .. 25

Suppress Headers in CLI Output ... 26

Chapter 3: Command Descriptions 29

Command Descriptions Overview .. 29

ack alarm–Acknowledges Alarm .. 29

connect–Connects to SpectroSERVER .. 30

Considerations when Using connect Command ... 32

create–Create Object ... 33

create alarm .. 33

create association ... 34

create event .. 34

6 Command Line Interface User Guide

create model ... 35

current–Sets Model or Landscape ... 36

destroy–Destroys Object .. 38

destroy alarm .. 38

destroy association ... 38

destroy model ... 39

disconnect–Disconnects from SpectroSERVER .. 39

jump–Jumps to Saved Model or Landscape ... 40

seek–Locates a Model .. 41

setjump–Saves Model and Landscape ... 43

show–Displays Object .. 45

show alarm .. 47

show association ... 48

show attributes ... 48

show children .. 52

show devices ... 52

show enumerations .. 53

show events .. 53

show inheritance ... 54

show landscapes ... 55

show models ... 55

show parents ... 56

show relations ... 56

show rules ... 57

show types .. 57

show watch ... 59

stopShd–Terminates CLI Local Server .. 60

update–Updates Model and Model Attributes .. 62

Appendix A: Sample Scripts 67

Sample Scripts Overview .. 67

active_ports Script ... 67

app_if_security Script ... 68

cli_script Script ... 68

database_tally Script .. 69

update_mtype Script .. 69

active_ports Script ... 70

Contents 7

Appendix B: Error Messages 71

Appendix C: UNIX to DOS Conversion 91

Index 93

Chapter 1: Introduction to Command Line Interface (CLI) 9

Chapter 1: Introduction to Command Line
Interface (CLI)

This section contains the following topics:

Overview (see page 9)
CLI Architecture (see page 12)
Error Checking (see page 14)

Overview

The CA Spectrum Command Line Interface (CLI) is a core CA Spectrum component and is
installed with the core CA Spectrum product.

You can access CA Spectrum data and can execute CA Spectrum operations from the
OneClick user interface. However, if you prefer to execute CA Spectrum operations from
the command line, you can use the CLI. For those tasks that you cannot execute in
OneClick, CLI is the only CA Spectrum resource available to you.

CLI is a powerful tool, but it does not provide the safeguards that OneClick does,
especially related to modeling. CLI must be used by CA Spectrum administrators who
understand the potentially harmful effects of haphazardly creating and destroying
models and modifying model attributes on a network modeling scheme.

CLI is a flexible option. You can open a CLI session and issue commands from any of the
command prompts that are available on your system, such as UNIX, DOS, and Bash.

Overview

10 Command Line Interface User Guide

CLI Commands

CLI commands are similar to UNIX commands, and they can be used with UNIX or DOS
commands, especially grep (find), pipes, and redirect symbols. Some CLI commands,
however, can conflict with UNIX commands of the same name. For example, the CLI
update command can conflict with the UNIX update command.

To avoid conflicts, use ./update from within the vnmsh directory. When using a script,
use the full pathname for the CLI command, for example,
<$SPECROOT>/vnmsh/update.

Note: The CLI update command always provides a response, either a confirmation that
the update was successful or a message that the update failed. If you receive no
response from CLI when using the update command, type "which update". The system
likely responds with:

/etc/update

More information:

Command Descriptions (see page 29)

CLI in Shell Scripts

CLI commands can be incorporated into shell scripts or menu systems to give you a
more powerful and versatile method of accessing CA Spectrum data.

Each CLI command sends output reporting the success or failure of the command to
standard error. Normal output that is expected as the result of the success of a
command, however, is sent to standard output. Each of the commands also generates a
return code of zero on success and a non-zero error code on failure. Return codes
enable shell scripts using the CLI commands to proceed according to the success or
failure of each command.

CLI Components

CLI components are described in this guide as follows:

■ Executable commands

■ Four environment variables

■ The daemon that maintains communication with a SpectroSERVER

■ The set of sample shell scripts that incorporate CLI commands

Overview

Chapter 1: Introduction to Command Line Interface (CLI) 11

More information:

Command Descriptions (see page 29)
CLI Environment Variables (see page 11)
The CLI Local Server (see page 14)
Sample Scripts (see page 67)

CLI Environment Variables

You can set the following four environment variables for CLI:

CLIMNAMEWIDTH

Displays a model name. By default, the create, seek, and show commands each
display a maximum of 16 characters for a model name. However, with the
environment variable CLIMNAMEWIDTH, you can specify up to 1024 characters to
display for model names. For example, using the C shell:

setenv CLIMNAMEWIDTH 32

You can set this variable in your .login file, in a script, or simply before you issue a
command. You can set or change any number of times in a CLI session, depending
on the length of the model names.

CLISESSID

Represents the ID for use in scripts. Set the CLISESSID variable to <$$>, which
represents the process ID of the running shell script. This variable is necessary when
using cron to run CLI scripts concurrently. For example, using the bash shell:

CLISESSID=<$$>; export CLISESSID

Also, setting the CLISESSID environment variable to a unique value for each CLI
session is required if you run CLI on Windows using the bash shell instead of DOS.
You can give a unique timestamp to each bash shell, for example:

export CLISESSID='date +%s'

CLI Architecture

12 Command Line Interface User Guide

SPECROOT

Displays the alarm or event description. The SPECROOT environment variable is
required for the show alarms or show events commands when the -x option is
specified. This variable gets the description of the alarm or event from the
SG-Support directory tree if it can be located so that the output from the
commands is expanded.

On UNIX, you can specify the SPECROOT variable in your login shell and can set this
variable to the CA Spectrum home directory. For example:

SPECROOT=/home/CA Spectrum; export SPECROOT

On Windows, see your system documentation for details about setting environment
variables.

CLIPATH

Displays the path of the <$SPECROOT>/vnmsh directory and the scripts require to
use CLI commands.

CLI Architecture

The following image depicts the CLI architecture:

CLI Architecture

Chapter 1: Introduction to Command Line Interface (CLI) 13

The CLI Local Server, which uses .vnmshrc at startup, performs the following major
functions:

■ Maintaining a constant network connection with SpectroSERVER. The CLI Local
Server prevents disconnection when a command is executed each time. This server
maintains a single connection to SpectroSERVER regardless of the number of CLI
users that are connected to the daemon. The socket connects and disconnects are
expensive as far as time and resource usage are concerned.

■ Maintaining state information for each CLI user. The 'current' and setjump
commands, for example, require the CLI Local Server to store state information. The
current command stores a model handle and a landscape handle for use in future
commands. The setjump command stores a text string to identify the current
position of users in a CA Spectrum landscape.

The Startup File

The .vnmshrc file, the CLI Local Server startup file, is located in the
<$SPECROOT>/vnmsh directory. This file contains several parameters that control how
vnmsh communicates with the SpectroSERVER. These parameters are described in the
following list:

vnm_hostname

Specifies the host name of the SpectroSERVER to connect to.

client_handshake_timeout

Specifies the number of milliseconds the client waits for server ID information,
when setting up a connection.

Default: 900

server_handshake_timeout

Specifies the number of milliseconds the server waits for client ID information,
when setting up a connection.

Default: 900

connect_time_limit

Specifies the maximum number of milliseconds to wait for a connection to the
SpectroSERVER.

Default: 1000

listen_backlog

Specifies the number of client requests to the SpectroSERVER held in queue while
waiting for prior ones to complete.

Default: 10

Error Checking

14 Command Line Interface User Guide

vnm_tcp_port

Specifies the TCP port that the vnmsh is using to communicate with the
SpectroSERVER when the vnmsh is a SpectroSERVER client.

vsh_tcp_port

Specifies the TCP port where the vnmsh listens for TCP messages when the vnmsh is
acting as a server to the client requests such as show, update.

debug_file

Specifies the file to which CLI writes error messages.

max_show_event_length

Specifies the maximum number of characters that are shown when the show
events -x command is used to display an event message.

Default: 512

The CLI Local Server

The first user to issue the connect command automatically starts the CLI Local Server
(VnmShd daemon) on that workstation and establishes a connection to a
SpectroSERVER. Only one CLI Local Server per workstation can be running, and that
daemon makes only one connection to a SpectroSERVER.

After the CLI Local Server has been started on a workstation, all subsequent users who
connect to CLI on that workstation use the same CLI Local Server.

More information:

CLI Environment Variables (see page 11)

Error Checking

CA Spectrum enforces certain rules when you perform tasks in OneClick. For example,
rules control the allowable actions when you create or move device models in the
different views.

CLI does not enforce these rules and cannot perform any error checking. As a result, CLI
lets users create models and place them wherever they want without performing error
checking. You see an error if you attempt to use a CLI command in a manner that does
not conform to its format.

Chapter 2: Working with Command Line Interface 15

Chapter 2: Working with Command Line
Interface

This section contains the following topics:

Start a CLI Session on UNIX (see page 15)
Start a CLI Session on Windows using DOS Prompt (see page 15)
Start a CLI session on Windows using Bash Prompt (see page 16)
Example Usage (see page 17)
Event Report Generation (see page 22)
Model Switch (see page 23)
Create a Troubleshooter Model (see page 23)
Create a Global Collection (see page 25)
Suppress Headers in CLI Output (see page 26)

Start a CLI Session on UNIX

On a UNIX platform, you can start a CLI session from the shell prompt.

Note: You can use a script to pack up CLI so that it can be sent to another server. For
more information, see the CA Spectrum Distributed SpectroSERVER Administrator Guide.

Follow these steps:

1. Start the SpectroSERVER to which you want to connect.

2. Navigate to the vnmsh directory in the CA Spectrum installation directory:

$ cd <$SPECROOT>/vnmsh

3. Open the connection:

$ connect

You are connected to the CLI session.

Start a CLI Session on Windows using DOS Prompt

On the Windows platform, you can start a CLI session from the DOS prompt.

Note: You can use a script to pack up CLI so that it can be sent to another server. For
more information, see the CA Spectrum Distributed SpectroSERVER Administrator Guide.

Start a CLI session on Windows using Bash Prompt

16 Command Line Interface User Guide

For all instances of UNIX (as opposed to CLI) commands in this guide, substitute the
equivalent DOS command when necessary. For example, use find instead of grep.

Follow these steps:

1. For DOS prompt, select Start, Programs, Command Prompt.

The DOS prompt appears, ready to accept CLI commands.

2. Start the SpectroSERVER to which you want to connect.

3. Navigate to the vnmsh directory in the CA Spectrum installation directory:

$ cd <$SPECROOT>/vnmsh

4. Open the connection:

$ connect

You are connected to the CLI session.

More information:

UNIX to DOS Conversion (see page 91)

Start a CLI session on Windows using Bash Prompt

On the Windows platform, you can also start a CLI session from a bash shell prompt.

Note: You can use a script to pack up the CLI program so that it can be sent to another
server. For more information, see the CA Spectrum Distributed SpectroSERVER
Administrator Guide.

Follow these steps:

1. Click Start, Programs, and Command Prompt.

The DOS prompt appears.

2. From the DOS prompt, type bash.

3. Click Start, Run, and type bash -login.

You can start a CLI session from a bash shell prompt.

4. Start the SpectroSERVER to which you want to connect.

Example Usage

Chapter 2: Working with Command Line Interface 17

5. Navigate to the vnmsh directory in the CA Spectrum installation directory:

$ cd <$SPECROOT>/vnmsh

6. Open the connection:

$ connect

You are connected to the CLI session.

Example Usage

The following examples demonstrate how to use CLI commands for common tasks in CA
Spectrum.

Create a User Model

A User model gives a user access to CA Spectrum. Users are identified by login IDs.

Note: Before you start a CLI session, verify that the User Model is created and the
SpectroSERVER to connect is started.

Follow these steps:

1. Connect to the SpectroSERVER.

$ cd <$SPECROOT>/vnmsh

$./connect

You are connected to the SpectroSERVER.

Note: If you have trouble connecting, verify for error messages. For more
information, see Error Messages (see page 71).

2. Determine the model type handle for the model type you want to create using the
show command. In this case, it is a model of type User. Enter this command:

$./show types | grep User

Note: The “./” is important. Some UNIX systems use the show command for reading
email. If the “.” is not the first path in the users environment, then "./" are required.

A list of model types that include the string 'User' appears with the User model type
listed first.

Handle Name Flags

0x10004 User V,I,D

0x1040a UserGroup V,I,D

0x1040f DefUserGroup V,I,N,U,R

0xaa000d GenSwUserPort V,I,D

0xf000d ForeUserAgen V,I,D

0xaf000c ForeUserApp V,I,D

Example Usage

18 Command Line Interface User Guide

3. List the attributes using the show command for the User model type and determine
the attribute ID for the model name attribute. You need this attribute ID to create
the model. Enter this command:

$./show attributes mth=0x10004 | grep -i name

A list of User model type attributes including the model name attribute appears.

Id Name Type Flags

0x10000 Modeltype_Name Text String R,S,M

0x1006e Model_Name Text String R,W,G,O,M,D

0x10074 User_Full_Name Text String R,W,O,D

0x1155f gib_mtype_nameText String R,W,S,D

0x11560 gib_mtype_name_menu Text String R,W,S,D

0x11561 gib_model_name Text String R,W,D

0x11563 gib_model_name_menu Text String R,W,D

0x1197d WatchNames Tagged Octet R,W,D

4. Create the model using the create command with model type handle, the attribute
ID for the model name, and the value (the login ID name) for the user. In this
example, the user login ID is j_doe. Enter this command:

$./create model mth=0x10004 attr=0x1006e,val=j_doe

A system message resembling the following command confirms that the model is
created:

created model handle = 0xbe0001b

Note: All handles and IDs used in these examples are fictitious. The model handle
for the model that you created is different; model handles are created by the
system.

More information:

Error Messages (see page 71)

Modify a Model Attribute

This section provides an example to change the value of a model attribute using CLI
commands. In particular, this example demonstrates how to change the community
string attribute value for the model (j_doe) created in a User Model. For more
information, see Create a User Model (see page 17).

Example Usage

Chapter 2: Working with Command Line Interface 19

Follow these steps:

1. Determine the j_doe model handle, and then set j_doe as the current model:

a. $./show models | grep j_doe

The following information about the j_doe model appears:

0xbe0001b j_doe(Active) 0x10004 User

b. $./current mh=0xbe0001b

The system confirms that j_doe is the current model:

current model is 0xbe0001b

current landscape is 0xbe00000

2. Determine the ID for the community string attribute.

Note: For the sake of brevity, this step shows a known portion (community string)
of the attribute name as an argument to the grep command. If you do not know the
name of the attribute, you can show and scan all attributes for the model to
determine the correct attribute name and its attribute ID.

3. Enter this command:

$./show attributes | grep -i community_string

The attribute ID, the attribute name, and the community string value appear:

0x1007a User_Community_String ADMIN,0

CA Spectrum assigns a default value of ADMIN,0 to all user models when they are
created. ADMIN,0 confers full administrative privileges in CA Spectrum to user
models.

4. Change the administrative permission level from ADMIN,0 to example permission
level ADMIN,5 (read-only) for the j_doe model using the update command. Enter
this command:

$./update attr=0x1007a,val=Subnet3,5

An entry showing the change in the attribute value is returned:

Id Name Iid Value

0x1007a User_Community_String ADMIN,5

The Iid attribute has no value here because it applies only to list attributes. For
more information, see the CA Spectrum Administrator Guide.

Example Usage

20 Command Line Interface User Guide

Create and Modify a Model in One Step

This section provides an example of how to create a model and replace a default
attribute value with another value in a single command string. You can only execute a
complex command of the type shown in this section if you know the values of the
relevant model identifiers that are provided for the command before you attempt to
execute.

The following example uses the parameter values introduced in Creating a User Model
and Modifying a Model Attribute:

$./create model mth=0x10004 attr=0x1006e,val=j_doe attr=0x1007a,val=ADMIN,5

More information:

Create a User Model (see page 17)
Modify a Model Attribute (see page 18)

Sample CLI Script File–Create a New User

You can execute shell scripts that incorporate CLI commands from the bash prompt in
the Windows platform simply as you execute the command from the shell command
prompt on UNIX.

This following example demonstrates how a script can be used to create a CA Spectrum
user model.

Check to see if CLIPATH is set. If it is not then we will have to create it.

Setup a variable to point to the /install_area/vnmsh directory so we can

find the commands we need.

if [-z "$CLIPATH"]

then

 CLIPATH=/usr/data/spectrum/7.0/vnmsh

 export CLIPATH

fi

Example Usage

Chapter 2: Working with Command Line Interface 21

Test to make sure the CLIPATH points to a valid directory

if [! -d $CLIPATH]

then

 echo "ERROR: could not find $CLIPATH"

 echo "Please find the correct path to the vnmsh directory and set"

 echo "the CLIPATH environment variable to it."

 exit 0

fi

Now check to see how many command line arguments there are. If there are

none, then echo a usage message. If there is one, that is all we really

need to create a new user... If there is a second argument then we can

set the Community_String at the same time.

This setup is only for creating a user on the local system or what the

.vnmshrc file points to for the vnm_hostname. A third field could be

added that accepts the vnm_hostname to connect to.

Optionally, the getopts shell command can be used to parse "switches" to

the script: -n for name, -c for community string and -v for vnm_hostname.

(NOTE: getopts should be located in /usr/bin/getopts if the script is

done in bourne shell (sh). k-shell has a built in getopts function)

if [$# -eq 0]

then

 echo "Usage: $0 username [Community_String]"

 exit 1

elif [$# -eq 1]

then

 command="attr=0x1006e,val=$1"

 flag=0

elif [$# -eq 2]

then

 command="attr=0x1006e,val=$1 attr=0x1007a,val=$2"

 flag=1

fi

Okay, we should be all set now to go ahead and create the new user.

The first thing we have to do is connect.

$CLIPATH/connect

Event Report Generation

22 Command Line Interface User Guide

Now let's check the exit status of the connection to see if we got in...

if [$? -ne 0]

then

 echo "ERROR: could not connect to SpectroSERVER. $0 exiting"

 exit 0

fi

Okay if we made it this far then we have a connection. Let's try the

create command.

$CLIPATH/create model mth=0x10004 $command

Now we check the exit status again and see if we actually created a model.

if [$? -ne 0]

then

 echo "ERROR: could not create a new user. $0 exiting"

 exit 0

else

 echo -n "New user $1 created"

 if [$flag -eq 1]

then

 echo " Community_String was set to $2"

fi

 echo "Successfully created new model... exiting."

fi

$CLIPATH/disconnect

exit 1

Event Report Generation

The CLI keeps a list of the 2000 most current events that occur on a landscape.
However, if many events occur on a landscape, the most recent events are
approximately one hour old.

You can set the SPECROOT environment variable when using the -x option with the
show events command. The following command is an example of to run event reports
using CLI:

$./show events | more

$ SPECROOT=/home/spectrum; export SPECROOT

$./show events -x > event_rpt

Model Switch

Chapter 2: Working with Command Line Interface 23

Model Switch

The jump and setjump commands are useful in scripts where you can move back and
forth between different models. The setjump command lets you assign a text string to
represent a model handle and its corresponding landscape handle. Then you can use the
jump command with that text string to retrieve that information as the current model
handle. For example:

■ $./current mh=0xb6000f8

current model is 0xb6000f8

current landscape is 0xb600000

■ $./setjump emme

model 0xb6000f8 and landscape 0xb600000 stored under emme

■ $./jump emme

current model is 0xb6000f8

current landscape is 0xb600000

Create a Troubleshooter Model

You can create and associate Troubleshooter models with User models using the CLI.
Once created and associated, these troubleshooters can be assigned alarms and receive
email notification that they must investigate and resolve the alarms.

The following procedure describes how to create a TroubleShooter model and associate
it with a User model. The User model that is created in Create a User Model (see
page 17) is used as an example.

Follow these steps:

1. Navigate to the <$SPECROOT>/vnmsh directory.

2. Connect to the SpectroSERVER by typing the following command at a command
prompt (example from a bash shell with a $ prompt):

$./connect

3. Determine the TroubleShooter model type. Enter this command:

$./show types | grep -i trouble

The TroubleShooter model type entry is returned.

0x10372 TroubleShooter V,I

Create a Troubleshooter Model

24 Command Line Interface User Guide

4. Determine the TroubleShooter model type EmailAddress attribute ID. Enter this
command:

$./show attributes mth=0x10372 | grep -i email

The EmailAddress entry appears:

0x11d24 EmailAddress TextString R,W,D

5. Create a TroubleShooter model using the CLI create command:

$./create model mth=0x10372

attr=0x1006e,val=j_doe_fixit

attr=0x11d24,val=j_doe@aprisma.com

A system message resembling the following command confirms that the model is
created:

$ created model handle = 0xbe0001c

Note: All handles and IDs used in examples are fictitious. The model handle for the
model you created are different. It is whatever your system creates for it.

6. Create the association between the j_doe User model (mh=0xbe0001b) and the
j_doe_fixit TroubleShooter model (mh=0xbe0001c) using the CLI create command:

$./create association rel=Is_Assigned lmh=0xbe0001b rmh=0xbe0001c

A system message similar to the following command confirms that the association
was created:

$ create association successful

Assign an Alarm to a Troubleshooter

This section describes how to list alarms and assign an alarm to a troubleshooter using
CLI commands.

Follow these steps:

1. List alarms using the show command.

This step shows how to find only those alarms with an alarm_severity of MAJOR.

$./show alarms | grep MAJOR

A list of MAJOR alarms appears. For example:

7509 09/27/2000 14:46:44 0xd80008 0xa6000df duncan 9E133_36 MAJOR No

7645 09/27/2000 14:47:16 0xd80008 0xa60025e infinity 9H422_12 MAJOR No

7518 09/27/2000 14:47:01 0xd80008 0xa6000eb rugone 9E132_15 MAJOR No

7979 09/27/2000 14:53:12 0xf40002 0xa600161 FDDI2 FddiMAC MAJOR No

8018 09/27/2000 14:53:13 0xf40002 0xa6003da FDDI FNB FddiMAC MAJOR No

7512 09/27/2000 14:46:47 0xd80008 0xa6000af ruthere 9A426_02 MAJOR No

2. Select an alarm to which you want to assign a troubleshooter. In this example,
alarm ID 7512 for the 9A426-02 device is selected.

Create a Global Collection

Chapter 2: Working with Command Line Interface 25

3. Select a troubleshooter to assign to the alarm. In this example, the j_doe_fixit
TroubleShooter model that was created in Create a Troubleshooter Model (see
page 23) is selected.

Note: Use the TroubleShooter model handle, 0xa600722, rather than the
TroubleShooter model name, j_doe_fixit, to specify the troubleshooter in the
update command in the next step.

4. Assign the alarm to the troubleshooter using the update command:

$./update alarm aid=7512 assign=0xa600722

A system message similar to the following example confirms that the
troubleshooter was assigned to the alarm:

$ update: successful

The person who is represented by the j_doe_fixit model has now been assigned to
the alarm. This person receives an email notification of the alarm assignment.

Create a Global Collection

You can create a global collection and can set the search criteria in a CLI session using
GUID. A unique identifier (GUID) is a key attribute to create global collection. The GUID
is required for global collection to function properly. You can obtain a GUID through an
action to the VNM model.

Note: A global collection without a GUID in the CLI is invalid. When a global collection is
created using OneClick, a GUID is automatically created. For more information, see the
CA Spectrum Modeling and Managing Your IT Infrastructure Administrator Guide.

Follow these steps:

1. Enter the following command:

update action=(Action to get a unique identifier) 0x10474 mh= (VNM Model Handle)

A GUID is created.

Note: The action to get a new GUID is 0x10474, which is the same as the global
collection model type.

2. Enter the following command to create the global collection using GUID:

create model mth=(Model Type for global collection) 0x10474 attr=(GUID) 0x12e56,

val=(Previous value you received) 4a85b9af-0d52-1000-017f-0013727f8c0a

The Global Collection is created and appears in the Navigation pane under global
collections.

Suppress Headers in CLI Output

26 Command Line Interface User Guide

Example: Create a global collection with or without XML string

Enter the following command to create a global collection with or without XML string:

update action=(Action to get GUID)0x10474 mh=(Landscape)

Printed:

update action: successful

Response has 1 attributes:

 0) Attribute 0x0 text: EXAMPLE GUID(4a85b9af-0d52-1000-017f-0013727f8c0a)

create model mth=(Model Type for global collection)0x10474

attr=(GUID)0x12e56,val=(Previous value you

received)4a85b9af-0d52-1000-017f-0013727f8c0a

attr=(dynamicCriteriaXML)0x12a6a,val=(XMLString)'<search-criteria><filtered

models><equals-ignore-case><model-name>sometext</model-name></equals-ignore-c

ase></filtered-models></search-criteria>'

Printed:

created model handle = New model handle(0x78101069)

Note: You can specify the dynamicCriteriaXML (0x12a6a) attribute with the create
command or you can update the model later.

More information:

Command Descriptions (see page 29)

Suppress Headers in CLI Output

To suppress the headers in CLI output, you can create a file that includes the functions
provided in the following section and can refer this file at the top of each script.

Suppress Headers in CLI Output

Chapter 2: Working with Command Line Interface 27

The functions in the following procedure call CLI commands and strip the header
information from the output of the commands.

Follow these steps:

1. Create a file named StripHeaders in your scripts directory.

2. Include the following functions in the StripHeaders file:

tcreate() # only needed for the createalarm

{ # and create event commands

$CLIPATH/create $@ | tail +2

}

tseek()

 {

 $CLIPATH/seek $@ | tail +2

 }

tshow()

{

$CLIPATH/show $@ | tail +2

}

tupdate()

{

$CLIPATH/update $@ | tail +2

}

3. Include the name StripHeaders at the top of your CLI script as follows:

. StripHeaders

4. Call the tcreate(), tseek(), tshow(), and tupdate() functions instead of the
corresponding CLI command whenever you want to strip the headers from CLI
output.

For example, the following line generates the output of the show models command
without the CLI header information:

tshow models

Chapter 3: Command Descriptions 29

Chapter 3: Command Descriptions

This chapter provides descriptions of CLI commands and output.

This section contains the following topics:

Command Descriptions Overview (see page 29)
ack alarm–Acknowledges Alarm (see page 29)
connect–Connects to SpectroSERVER (see page 30)
create–Create Object (see page 33)
current–Sets Model or Landscape (see page 36)
destroy–Destroys Object (see page 38)
disconnect–Disconnects from SpectroSERVER (see page 39)
jump–Jumps to Saved Model or Landscape (see page 40)
seek–Locates a Model (see page 41)
setjump–Saves Model and Landscape (see page 43)
show–Displays Object (see page 45)
stopShd–Terminates CLI Local Server (see page 60)
update–Updates Model and Model Attributes (see page 62)

Command Descriptions Overview

You can make changes to the CA Spectrum knowledge base without the safeguards that
are available in CA Spectrum using the CLI. A system crash or database corruption can
result if you specify incorrect information. Therefore, proceed with caution when you
use the create, destroy, or update commands.

Note: Use the CLI command parameters for creating and managing response time tests
with CLI.

For more information, see the CA Spectrum Service Performance Manager User Guide.

ack alarm–Acknowledges Alarm

The ack alarm command acknowledges the alarm specified by alarm_id in the landscape
that is specified by landscape_handle. If landscape_handle is not specified, the
command acknowledges the alarm that is specified by alarm_id in the current
landscape.

Acknowledging one alarm for a model means that you acknowledge only that alarm and
no other alarm for that model.

connect–Connects to SpectroSERVER

30 Command Line Interface User Guide

The command has the following format:

ack alarm aid=<alarm_id> [lh=<landscape_handle>]

If ack alarm is entered with a valid alarm_id and a valid landscape_handle, the following
message is displayed:

ack alarm: successful

Example: ack alarm

$ ack alarm aid=42 lh=0x400000

ack alarm: successful

connect–Connects to SpectroSERVER

The connect command connects the user of the CA Spectrum Command Line Interface
to the SpectroSERVER running on host system, hostname. This command also sets the
landscape that is specified by landscape_handle to be the current landscape. If the CLI
Local Server is not already running, the connect command starts it.

The command has the following format:

connect [<hostname>] [lh=<landscape_handle>][vnmsocket=<vnmsocket>]

hostname

(Optional) If hostname is not specified, the command connects the user to the host
specified in the CLI resource file .vnmshrc.

Note: CA Spectrum Command Line Interface does not support localhost or the
127.0.0.1 option. To connect to localhost, you can specify the actual hostname or
do not specify any parameter.

landscape_handle

(Optional) If landscape_handle is not specified, the command sets the current
landscape to the landscape of the host name specified.

vnmsocket

(Optional) If vnmsocket is not specified, the command connects to the
SpectroSERVER using the socket specified in the .vnmshrc file. You can use
vnmsocket to connect to another SpectroSERVER on a different port connection
that is defined by vnmsocket.

On Unix, error messages that are reported by the CLI Local Server are displayed in the
console window. On Windows, these errors are displayed in the user bash shell window.

connect–Connects to SpectroSERVER

Chapter 3: Command Descriptions 31

Example: connect

#! /usr/bin/sh

A sample script to get alarms of a specific

severity and set the CLISESSID

if [$# !=1]

then

echo “Usage: $0 <alarm severity>”

exit 0

fi

CLISESSID=$$

$SPECROOT/vnmsh/connect

$SPECROOT/vnmsh/show alarms | grep -i $1

$SPECROOT/vnmsh/disconnect

exit 0

If the command is successful, the following message is displayed:

connect: successful hostname

current landscape is <landscape_handle>

Hostname is the user-entered SpectroSERVER host or the host that is specified in the
.vnmshrc file. landscape_handle is the user-entered landscape or the landscape for the
host.

More information:

CLI Environment Variables (see page 11)
The Startup File (see page 13)

connect–Connects to SpectroSERVER

32 Command Line Interface User Guide

Considerations when Using connect Command

The following are important considerations when using the connect command:

■ The user on a terminal must use the connect command to initiate communications.
The same user must use the disconnect command to terminate communication
with the SpectroSERVER.

■ Once the first user has entered the connect command, the CLI Local Server is
connected to the SpectroSERVER.

■ Other CLI users using the same CLI Local Server can connect only to those
SpectroSERVERs that are in the landscape map of the initial SpectroSERVER. Once
all users have disconnected, use the connect command to connect to
SpectroSERVERs in a different landscape map.

■ To successfully connect to the SpectroSERVER, the first user of the connect
command must be defined as a user in the CA Spectrum database of the original
SpectroSERVER.

■ Windows users running CLI in the bash shell must also define CLISESSID.

■ The terminal device for a particular user is determined using the ttyslot(3V)
function.

■ Cron scripts are not attached to a ttyslot. As a result, the ttyslot function returns 0
for all cron scripts. That is, two CLI scripts running as cron scripts at the same time
appear as one CLI user to the CLI Local Server, which leads to unpredictable results.
Therefore, you must insert a line at the top of the script to export the environment
variable CLISESSID. Set CLISESSID to a unique numeric value. CLI can now distinguish
between the different cron scripts.

The following example defines a unique CLI session ID within a script:

CLISESSID=$$; export CLISESSID

■ This example sets the CLISESSID as the process ID of the shell running the script. CLI
uses CLISESSID to identify a user when the ttyslot function returns zero. Set
CLISESSID once for each CLI session. If a CLI script that is running as a cron script
calls other CLI scripts, only the top-level script will set the CLISESSID environment
variable. The other CLI scripts run under the same process ID unless you invoke a
new shell (#!/bin/sh) at the top of the script. To invoke a new shell in the other
scripts, export the CLISESSID and then connect and disconnect again.

■ In some environments or configurations, even when the command is entered from
a command line, the ttyslot function may return zero. In such a case, the connect
command returns the following error:

connect: variable CLISESSID not set

In this situation, set CLISESSID either from the command line or from .cshrc or other
startup file.

create–Create Object

Chapter 3: Command Descriptions 33

■ The CLI uses the user name and terminal device to identify each CLI user. A user
running multiple scripts from a terminal device at one time will appear to CLI as
same user. The CLI can give unpredictable results if a script is running in the
background and another script is running in the foreground, or multiple scripts are
running in the background.

For example, Script A1 sets the current model to be Model A. Script B1, which is run
by the same user from the same terminal device, sets the current model to be
Model B. If Script A1 performs an update command on Model A, the update
command is also performed on Model B of Script B1.

Run only one CLI session from a particular terminal device at one time. To run
multiple CLI sessions at once, run them from separate terminal device, or run them
using the at(1) or batch(1) commands with the CLISESSID environment variable set
to a unique value for each.

create–Create Object

Use the create command to create an object.

Note: For information about how to create a model in a secure domain, run ./create to
display a usage statement.

The command has the following format:

create model ip=<IP Address | Low_IP-High_IP>

[sec_dom=Secure_Domain_Address][comm=Community_Name] [to=Time_Out] [tc=Try_Count]

[lh=landscape_handle] |

create model mth=model_type_handle [attr=attribute_id,val=value ...]

[lh=landscape_handle] |

create association rel=relation lmh=left_model_handle rmh=right_model_handle

create alarm [-nr] sev=alarm_severity cause=probable_cause_id [mh=model_handle] |

create event type=event_type text=event_text [mh=model_handle|lh=landscape_handle]

More information:

CLI Environment Variables (see page 11)

create alarm

The command create alarm creates an alarm with severity alarm_severity and cause
probable_cause_id for the model with model_handle. Valid alarm severity options are:
CRITICAL, MAJOR, MINOR, OK, MAINTENANCE, SUPPRESSED, or INITIAL. By default, the
new alarm replaces an existing alarm.

create–Create Object

34 Command Line Interface User Guide

If create alarm is entered with a valid alarm_severity, a valid probable_cause_id, and a
valid model_handle, the created entry in the alarm table is displayed. The create time is
displayed in hh:mm:ss format.

Example: create

$ create alarm sev=CRITICAL cause=0x10308 mh=0x400134

ID Date Time PCauseID MHandle MName MTypeName Severity Ack

984 05/11/2000 12:33:27 0x10308 0x400134 12.84 Bdg_CSI_CN CRITICAL No

create association

The command create association, creates an instance of the relation (an association)
between the model with left_model_handle and the model with right_model_handle.

If create association is entered with a valid relation between a valid left_model_handle
and right_model_handle, the following message is displayed:

create association: successful

Example: create association

$ create association rel=Collects lmh=0x400009 rmh=0x400134

create association: successful

create event

The create event command, creates an event with type event_type and text event_text
for the model that is specified by model_handle. If a landscape_handle is specified, the
event is created for the user model that created the event.

Note: In previous versions of the CLI, the event was created for the landscape model.

If model_handle or landscape_handle is not specified, the event is created for the user
model that created the event. Or the the event is created for the current model if one
has been specified. Some events in CA Spectrum lack an associated model. For example,
when an application connects to the SpectroSERVER, no model is associated with the
event.

If create event is entered with a valid event_type, valid event_text, and a valid
model_handle or landscape_handle (if present), the entry appears in the event table.
The create time is displayed in hh:mm:ss format.

create–Create Object

Chapter 3: Command Descriptions 35

The event_type command (also named an event code in CA Spectrum) is a 4-byte
hexadecimal number. The two most significant bytes specify the developer ID for the
event (0001 for CA Spectrum-generated event codes), and the two least significant
bytes are a unique event identifier. Not all event types include user-entered text.
Examples of such event types are those that include the variable {S 0} in their event
format files. For those event types that do not include user-entered text, the event_text
parameter is ignored but must still be present on the command line.

For more information, see the CA Spectrum Certification User Guide.

Example: create event

$ create event type=0x1061a text=“fan down” mh=0x40013

Date Time Type MHandle MName MTypeName

05/11/2000 12:39:42 0x1061a 0x400134 12.84 Bdg_CSI_CNB20

create model

You can specify create model with an IP address or with a model type handle. In either
case, the system creates the model in the landscape that is specified by
landscape_handle. If landscape_handle is not specified, the command creates the
model in the current landscape.

Note: The model_name attribute is required only when creating a User model.

■ If you specify create model with an IP address, the system finds the object at the
specified ip_address and creates a model for it. The model has all of the properties
of that object including any associated children. For example, if the object is a hub,
the create model command creates a model of a hub with all of its ports.

■ You can specify an IPv4 address or an IPv6 address. IPv6 ranges are not supported
and this command does not support the setting of attribute IDs.

■ To create several models at once, you can define a range of IP addresses with the
create model command. Specify the Low_IP and High_IP parameters, separated by
“-”. If the Community_Name is not specified, the newly created model is of type
"Pingable". If the Community_Name is specified, the device is modeled to the
appropriate model type. The Try_Count and Time_Out options are similar to
options in the OneClick 'Create Model by IP' dialog.

■ If you specify the create model command with a model type handle, the system
creates a model of type model_type_handle. You can then set the value of one or
more attributes for the created model.

■ When you specify the create model command with a model type handle, you can
also specify multiple attributes in that one command. Specify multiple 'attribute_id,
value' pairs, separating each pair from adjacent pairs by a space.

current–Sets Model or Landscape

36 Command Line Interface User Guide

■ The attribute values that the user specifies when creating a model of a particular
model type while using OneClick should be specified in the create model command.
Otherwise, Inference Handler errors can occur within a SpectroSERVER when the
model is created. For example, when creating a Hub_CSI_IRM3 model using
OneClick, a window is displayed in which you can enter values for Model Name,
Network Address, Community String. Specify values for these attributes when using
the create model command to create a model of the same type using the CLI.

■ If create model is specified with a valid model_type_handle and valid attribute_id,
value pairs (if present), the created model handle is displayed.

■ If create model is specified with a valid ip_address, the created model handle is
displayed.

Example: create model

$ create model mth=0x102d attr=0x12d7f,val=132.177.12.84

attr=0x1006e,val=12.84lh=0x400000

created model handle = 0x400134

$ create model ip=206.61.231.1-206.61.231.5

Creating model for IP=206.61.231.1

created model handle = 0x9a00259

Creating model for IP=206.61.231.2

create model: DCM device unreachable

Creating model for IP=206.61.231.3

create model: DCM device unreachable

Creating model for IP=206.61.231.4

create model: DCM device unreachable

Creating model for IP=206.61.231.5

created model handle = 0x9a0025a

Note: By default, the create command displays a maximum of 16 characters for the
model name. However, with the environment variable, CLIMNAMEWIDTH, you can
specify a different number of characters (up to 1024) to be displayed for model names.

current–Sets Model or Landscape

The current command sets the model that is specified by model_handle to be the
current model. Or this sommand sets the landscape that is specified by
landscape_handle to be the current landscape. If the model_handle and the
landscape_handle are not specified, current displays the current model handle and the
current landscape handle.

When the user sets a current model, the CLI sets the current landscape to the landscape
that contains the model. When a user sets the current landscape, the CLI sets the
current model as undefined.

current–Sets Model or Landscape

Chapter 3: Command Descriptions 37

Separate current model and current landscape values are maintained for each session
that is connected to the CLI Local Server.

The current command retains state information, the current model and the current
landscape, for example, only for the session that named it.

This command has the following format:

current [mh=<model_handle>|lh=<landscape_handle>]

■ If a valid model_handle is specified as input, the following message is displayed:

current model is <model_handle>

current landscape is <current_landscape_handle>

■ If a valid landscape_handle is specified as input, the following message is displayed:

current model is undefined

current landscape is <landscape_handle>

■ If model_handle and landscape_handle are not specified, the following message is
displayed:

current model is <current_model_handle>

current landscape is <current_landscape_handle>

■ If model_handle and landscape_handle are not specified and current model is not
defined, the following message is displayed:

current model is undefined

current landscape is <current_landscape_handle>

Examples: current

$ current mh=0x400142

current model is 0x400142

current landscape is 0x400000

$ current lh=0x500000

current model is undefined

current landscape is 0x500000

$ current

current model is undefined

current landscape is 0x500000

Note: The current landscape always contains a value because it is set by the connect
command.

destroy–Destroys Object

38 Command Line Interface User Guide

destroy–Destroys Object

Use the destroy command to destroy an object. This command has the following
format:

destroy model [-n] mh=model_handle |

destroy association [-n] rel=relation lmh=left_model_handle rmh=right_model_handle|

destroy alarm [-n] aid=alarm_id [lh=landscape_handle]

-n

If the -n (no prompt) option is specified with the destroy command, the system
does not prompt for confirmation. This option is useful in CLI scripts.

Unless the -n option is specified, one of the following messages is always displayed:

destroy model: are you sure?

destroy association: are you sure?

destroy alarm: are you sure?

Valid responses are y, yes, Y, Yes, n, no, N, and No.

destroy alarm

Destroys the alarm specified by alarm_id in the landscape that is specified by
landscape_handle. Unless the -n option is specified, destroy alarm prompts you for
confirmation before destroying the alarm. If the landscape_handle is not specified, the
command destroys the alarm that is specified by alarm_id in the current landscape. Use
the show alarms command to determine the alarm_ids for a model.

If the destroy alarm command is entered with a valid alarm_id and a valid
landscape_handle, the following message is displayed:

destroy alarm: successful

Examples: destroy alarm

$ destroy alarm aid=300

destroy alarm: are you sure? y

destroy alarm: successful

destroy association

Destroys the association (instance of the relation) between the model with
left_model_handle and the model with right_model_handle. Unless the -n option is
specified, destroy association prompts you for confirmation before destroying the
association.

disconnect–Disconnects from SpectroSERVER

Chapter 3: Command Descriptions 39

If destroy association is entered with a valid relation between a valid left_model_handle
and right_model_handle, the following message is displayed:

destroy association: successful

Example: destroy association

$ destroy association rel=Lost_and_Found lmh=0x400001 rmh=0x40h0142

destroy association: are you sure? y

destroy association: successful

destroy model

Destroys the model with the specified model_handle. Unless the n option is specified,
destroy model prompts you for confirmation before destroying the model.

If destroy model is entered with a valid model_handle, the following message is
displayed:

destroy model: successful

Example: destroy model

$ destroy model mh=0xa600715

Following model will be destroyed:

Model_Handle -> 0xa600715

Model_Type_Handle -> 0x10004

Model_Name -> garciaparra

Model_Type_Name -> User

destroy model: are you sure? y

destroy model: successful

disconnect–Disconnects from SpectroSERVER

Use the disconnect command to disconnect the CLI user from the currently connected
SpectroSERVER.

This command has the following format:

disconnect

If the command is successful, the following message is displayed, where host name is
the name of the SpectroSERVER host to which the user was connected:

disconnect: successful from <hostname> or <IP address> - connected for xx hours, yy

minutes

jump–Jumps to Saved Model or Landscape

40 Command Line Interface User Guide

More information:

stopShd–Terminates CLI Local Server (see page 60)

jump–Jumps to Saved Model or Landscape

The jump command jumps to the previously saved model and landscape. The jump
command sets the current model and the current landscape to be the model and
landscape that were saved under the label text_string by the setjump command. If
text_string is not specified, a list of text_strings that were given in previous setjump
commands is displayed.

The command has the following format:

jump [<text_string>]

■ If jump is entered with a valid text_string that has been previously defined, the new
current model and the current landscape are displayed:

current model is <current_model_handle>

current landscape is <current_landscape_handle>

■ If jump is entered without a text_string, a list of the currently defined text_strings is
displayed. For example:

text_string1

text_string2

--

■ If jump is entered and the new current model is undefined, the following message is
displayed:

current model is undefined

current landscape is <current_landscape_handle>

Example: jump

$ jump tutorial

current model is 0x400142

current landscape is 0x400000

More information:

setjump–Saves Model and Landscape (see page 43)

seek–Locates a Model

Chapter 3: Command Descriptions 41

seek–Locates a Model

Use the seek command to locate a model. The seek command finds the model(s) in the
landscape that is specified by landscape_handle that possess the specified value for the
attribute that is specified by attribute_id. If landscape_handle is not specified, the
command finds the model(s) in the current landscape that possess a value for the
attribute with the specified attribute_id. You can also use a wildcard (*) with seek to
find instances of models that contain a specified substring. If you enter a null value, you
can find all models that have no name (for example, attr=0x1006e).

You cannot search for a one-character attribute value using the seek command.
Attempting such a search returns an error.

The command has the following format:

seek [-i] [-s] attr=attribute_id,val=value [lh=landscape_handle]

The options can be used in any order, for example, -i -s, or -s -i.

-i

If the -i (ignore case sensitivity) option is specified with the seek command, then the
model information that is specified with the val parameter is returned without
regard to case.

-s

If the -s (substrings allowed) option is specified with the seek command, the model
information that is specified with the val parameter is returned with substrings, if
applicable.

If seek is entered with a valid attribute_id and a valid value, all matching models are
displayed in the following format:

MHandle MName MTypeHnd MTypeName

modelhandle name modeltypehandle name

If no matching models are found, the following message is displayed:

seek: no models found

Note: By default, the seek command displays a maximum of 16 characters for the model
name. However, with the environment variable CLIMNAMEWIDTH, you can specify a
different number of characters (up to 1024) to be displayed for model names.

Examples: seek

$ seek attr=0x1006e,val=CA Spectrum

MHandle MName MTypeHnd MTypeName

0xb100018 spectrum 0x1004 User

0xb10008d spectrum 0x820000 ScmConfig

seek–Locates a Model

42 Command Line Interface User Guide

$ seek attr=0x1006e,val=CA Spectrum

MHandle MName MTypeHnd MTypeName

0xb100018 spectrum 0x820000 ScmConfig

$ seek attr=0x1006e,val=SPE

seek: no models found

$ seek attr=0x1006e,val=spe lh=0xb100000

seek: no models found

$ seek -i attr=0x1006e,val=CA Spectrum

MHandle MName MTypeHnd MTypeName

0xb10018 spectrum 0x10004 User

0xb1008c spectrum 0x820000 ScmConfig

0xb1008d spectrum 0x820000 ScmConfig

$ seek -i -s attr=0x1006e,val=CA Spectrum

MHandle MName MTypeHnd MTypeName

0xb10018 spectrum 0x10004 User

0xb10089 spectrum 0x820000 ScmConfig

0xb1008c spectrum 0x820000 ScmConfig

0xb1008d spectrum 0x820000 ScmConfig

$ seek -i -s attr=0x1006e,val=CA Spectrum lh=0xb100000

MHandle MName MTypeHnd MTypeName

0xb10018 spectrum 0x10004 User

0xb10089 spectrum 0x820000 ScmConfig

0xb1008c spectrum 0x820000 ScmConfig

0xb1008d spectrum 0x820000 ScmConfig

$ seek -s attr=0x1006e,val=CA Spectrum

MHandle MName MTypeHnd MTypeName

0xb10008c spectrum 0x820000 ScmConfig

$ seek attr=0x110df,val=0.0.C.18

seek: no models found

$ seek -s attr=0x110df,val=0.0.C.18

MHandle MName MTypeHnd MTypeName

0xb100070 frog10 0x210022 Rtr_CiscoIGS

0xb100072 frog10_1 0x220011 Gen_IF_Port

0xb10005b cisco rtr 0x210022 Rtr_CiscoIGS

0xb100070 frog10_2 0x220011 Gen_IF_Port

0xb100070 cisco rtr_1 0x220011 Gen_IF_Port

0xb100070 cisco rtr_2 0x220011 Gen_IF_Port

setjump–Saves Model and Landscape

Chapter 3: Command Descriptions 43

$ seek attr=0x1006e,val=spe*

MHandle MName MTypeHnd MTypeName

0xb10018 spectrum 0x10004 User

0xb10089 spectrum 0x820000 ScmConfig

0xb1008d spectrum 0x820000 ScmConfig

$ seek attr=0x1006e,val=

MHandle MName MTypeHnd MTypeName

0xd00258 0x102c8 Physical_Addr

0xd002f8 0x102c8 Physical_Addr

0xd00368 0x820000 ScmConfig

0xd00259 0x102c8 Physical_Addr

0xd002f9 0x102c8 Physical_Addr

0xd00301 0x102c8 Physical_Addr

$ seek attr=0x12d7f,val=192.168.93.*

MHandle MName MTypeHnd MTypeName

0x28000190 192.168.93.14 0xd0004 HubCSIEMME

0x28000190 192.168.93.14 0xd0004 HubCSIEMME

0x280001a0 192.168.93.14_Sy 0x23001c System2_App

0x28000198 192.168.93.14_St 0x590006 RMONApp

0x28000191 192.168.93.14_A 0xd000a CSIIfPort

0x280001a1 192.168.93.14_IC 0x230012 ICMP_App

0x28000199 192.168.93.14_E 0x590013 RMONEthProbe

0x280001a2 192.168.93.14_UD 0x230019 UDP2_App

0x280001c2 DLM App 0x830001 DLM_Agent

0x2800019a 192.168.93.14_E 0x590013 RMONEthProbe

0x28000192 192.168.93.14_B 0xd000a CSIIfPort

0x2800019b 192.168.93.14_E 0x590013 RMONEthProbe

More information:

CLI Environment Variables (see page 11)
show–Displays Object (see page 45)

setjump–Saves Model and Landscape

The setjump command saves the current model handle and current landscape handle
under the label text_string. The user can later use the jump command with text_string
to set the current model handle and the current landscape handle back to the one
stored under text_string. The user is prompted for verification if the same text_string is
used in two setjump commands.

setjump–Saves Model and Landscape

44 Command Line Interface User Guide

Separate setjump values are maintained for each session that is connected to the CLI
Local Server. The setjump command retains information, that is, the session-assigned
setjump text strings, only for the session that named it.

The command has the following format:

setjump [-n] <text_string>

-n

If the -n (no prompt) option is specified with the setjump command, then the
system does not prompt if text_string has been used before.

■ If setjump is entered with a new <text_string> and a current model exists, the
following message is displayed:

model <current_model_handle> and landscape

<current_landscape_handle> stored under <text_string>

where <current_model_handle> is the handle of the current model and
<current_landscape_handle> is the handle of the current landscape.

■ If setjump is entered with a new <text_string> and a current model does not exist,
the following message is displayed:

model undefined and landscape <current_landscape_handle>

stored under <text_string>

■ If setjump is entered with a text_string that has already been defined in a previous
setjump command, the following message is displayed:

setjump model: <text_string> already used. Overwrite?

Valid responses are y, yes, Y, Yes, n, no, N, and No.

Example: setjump

$ current mh=0x400142

current model is 0x400142

current landscape is 0x400000

$ setjump -n tutorial

model 0x400142 and landscape 0x400000 stored under tutorial

More information:

current–Sets Model or Landscape (see page 36)
jump–Jumps to Saved Model or Landscape (see page 40)

show–Displays Object

Chapter 3: Command Descriptions 45

show–Displays Object

To display objects, use the show command.

The command has the following format:

show models [mhr=low_model_handle-high_model_handle]

 [mth=model_type_handle][mname=model_name][lh=landscape_handle] |

devices [lh=landscape_handle]|

landscapes |

types [mthr=low_mth-high_mth] [mtname=mt_name]

 [flags=V|I|D|N|U|R] [lh=landscape_handle] |

relations [lh=landscape_handle] |

associations [mh=model_handle] |

parents [rel=relation] [mh=model_handle] |

children [rel=relation] [mh=model_handle] | attributes [-e]

 [attr=attribute_id[,iid=instance_id][,next]...|

 [attrr=low_attr-high_attr] [attrname=attr_name]]

 [mh=model_handle] |

attributes [-c] [-e]

 [attr=attribute_id[,iid=instance_id][,next]...|

 [attrr=low_attr-high_attr] [attrname=attr_name]]

 [mh=model_handle]|

attributes mth=model_type_handle [attrr=low_attr-high_attr]

 [attrname=attr_name] [flags=E|R|W|S|T|G|O|M|D|P|L|V]

 [lh=landscape_handle] |

alarms [-a] [-x] [-t] [-s] [-d]

 [mh=model_handle|lh=landscape_handle] |

events [-x] [-a | -n no_events]

 [mh=model_handle|lh=landscape_handle] |

inheritance mth=model_type_handle [lh=landscape_handle] |

rules rel=relation [lh=landscape_handle] |

enumerations [attr=attribute_id] [mth=model_type_handle]

 [lh=landscape_handle] |

watch [mh=model_handle]

-a

If the -a (all) option is specified, show alarms do not perform any masking and
displays all CRITICAL, MAJOR, MINOR, MAINTENANCE, SUPPRESSED, and INITIAL
alarms.

-x

If the -x (expand) option is specified (and the variable $SPECROOT is set), the output
of the show alarms command displays the text for the probable causes at the end of
the output. The output of the show events command displays event formats. The
number of characters displayed by the show events -x command is controlled by
the .vnmshrc resource file parameter.

-d

show–Displays Object

46 Command Line Interface User Guide

If the -d option is specified, the output of the show alarms command displays the
"Title" for every alarm listed. This option also displays all that the option -x displays.

max_show_event_length

If you are using a SpectroSERVER-only workstation to run CLI, the -x option does not
provide the normal alarm cause or event format information because the CsPCause
and CsEvFormat files do not exist in the SG-Support directory. Possible errors
messages are:

■ No cause information available (associated with show alarms)

■ No event format information available (associated with show events)

To remedy this problem, copy the SG-Support/CsPCause and
SG-Support/CsEvFormat directories and files to the <$SPECROOT>/SG-Support
directory on the SpectroSERVER workstation.

Default: 512

-e

If the -e (enumerations) option is specified, the output of the show attributes
command displays database enumeration strings.

-c

If the -c (Read Most Current) option is specified, the attribute Read Mode is set to
Read Most Current. This mode uses the attribute value from the latest user
interface poll, which is updated every 5 seconds. If this flag is not set, the Read
Most Available mode is used. This mode uses the latest value stored in the database
by the last CA Spectrum poll. Polling frequency is a user-defined interval.

-n

If the -n (number of events) option is specified, the output of the show events
command displays the specified number of events.

-t

If the -t (trouble ticket id) option is specified, the output of the show alarms
command displays the trouble ticket id field.

-s

If the -s (impact severity) option is specified, the ouput of the show alarms
command displays the impact severity field.

For the show alarms and show events commands to work with the -x option, which
displays probable cause messages for alarms and expanded event messages, OneClick
must be installed on the local server, and the SPECROOT environment variable must be
set to the path of the spectrum support root directory. For example, if the SG-Support
files are in /usr/spectrum/SG-Support, set SPECROOT to /usr/spectrum.

show–Displays Object

Chapter 3: Command Descriptions 47

More information:

The Startup File (see page 13)
current–Sets Model or Landscape (see page 36)
seek–Locates a Model (see page 41)

show alarm

The show alarms command shows all alarms for the model that is specified by
model_handle. Or it shows only the most severe alarm (if the alarm is CRITICAL, MAJOR,
or MINOR) for each model in the landscape that is specified by landscape_handle. If
landscape_handle is specified, show alarms masks any models that have INITIAL,
SUPPRESSED, or MAINTENANCE alarms. As a result, only models with CRITICAL, MAJOR,
or MINOR alarms are displayed. If neither model_handle nor landscape_handle is
specified, show alarms also performs masking and shows only the most severe alarm (if
the alarm is CRITICAL, MAJOR, or MINOR) for each model in the current landscape.

The Ack field indicates whether the alarm has been acknowledged. The possible values
for this field are Yes and No. The Stale field indicates whether an alarm is stale. The
possible values for this field are Yes and No. The Assignment and Status fields show the
alarm troubleshooter information and the alarm status, respectively. The alarm creation
time is displayed in hh:mm:ss format.

The show alarms command displays information in the following format:

Id Date Time PCauseId MHandle MName MTypeName Severity Ack Stale Assignment Status

id mm/dd/yyyy hh:mm:ss cause_id handle name name severity ack stale assignment status

If show alarms is used with the -x option, a table of cause codes and probable cause text
messages is displayed after the last alarm. For example:

0x10402 DUPLICATE PHYSICAL ADDRESS0x10302 SpectroSERVER has lost contact with
this device.

Note: The show command displays a maximum of 16 characters for the model name.
However, with the environment variable CLIMNAMEWIDTH, you can specify a different
number of characters (up to 1024) to be displayed for model names.

show–Displays Object

48 Command Line Interface User Guide

Example: show alarms

The show alarms command displays information in the following format:

$ show alarms lh=0x110000

ID Date Time PCauseId MHandle MName MTypeName Severity Ack Stale

Assignment Status

928 05/11/2000 02:33:22 0x10c04 0x110000c infinity VNM CRITICAL No No

McDonald Working on it

More information:

Command Descriptions (see page 29)
CLI Environment Variables (see page 11)

show association

The show associations command shows all instantiated relations (associations) that are
defined for the model with model_handle. If model_handle is not specified, show
associations shows all instantiated relations for the current model.

The show associations command displays information in the following format:

LMHandle LMName Relation RMHandle RMName

handle name relation handle name

Example: show associations

The show associations command displays information in the following format:

$ show associations mh=0x400141

LMHandle LMName Relation RMHandle RMName

0x400001 LostFound Lost_and_Found 0x400141 12.77-bridge

show attributes

The show attributes command shows the attributes specified by attr=attribute_id for
the model with model_handle. If no attribute_id is specified, show attributes lists all
attributes and their values for the model with model_handle.

show–Displays Object

Chapter 3: Command Descriptions 49

If model_handle is not specified, show attributes shows all applicable attributes for the
current model. You can specify a range of attributes using attr=low_attr-high_attr. The
instance ID for an attribute can be specified in instance_id when displaying a single
attribute or a list of attributes for a particular model. The instance_id must be a
sequence of positive integers separated by periods. Instance IDs can only be specified
for list attributes. List attributes are attributes that have the list flag set.

The following rules apply to list attributes:

■ To display all attribute values and instance IDs for a list attribute, do not enter an
instance_id with the attribute_id. Enter an attribute_id only.

■ To display the first attribute value and instance ID for a list attribute, enter the
following command after the attribute_id:

,next

■ To display a specific attribute value and instance ID for a list attribute, enter an
instance_id with the attribute_id.

■ To display the next attribute value and instance ID after a specific instance ID of a
list attribute, enter the following command after the instance_id:

,next

■ An instance ID cannot be specified when displaying all the attributes of a model, for
the following reasons:

– An instance ID only applies to list attributes (for example, board and port
attributes of a hub)

– The instance ID for certain attributes of a model may differ from the instance
ID of other attributes within the same model.

■ The show attributes command shows all attributes (by ID, name, type, and flags) for
model_type_handle in the landscape specified by landscape_handle. If
landscape_handle is not specified, this command shows all model types that are
defined in the current landscape. The Flags field lists the abbreviations of each
attribute flags (separated by commas) that is currently set. If a flag is not set, its
abbreviation is not inlcuded in the list.

The following list includes the attribute flags and their abbreviations:

– External = E

– Readable = R

– Writable = W

– Shared = S

– List = T

– Guaranteed = G

– Global = O

show–Displays Object

50 Command Line Interface User Guide

– Memory = M

– Database = D

– Polled = P

– Logged = L

– Preserve Value = V

Note: For a more detailed description of the attribute flags, see the Model Type Editor
User Guide.

The show attributes command displays information in the following format:

Id Name Iid Value

id name iid value

The show attributes mth command displays information in the following format:

Id Name Type Flags

id name type flags

Example: show attributes

$ show attributes mh=0xcd00011

Id Name Iid Value

0xd0000 Modeltype_Name User

0x10000 Modeltype_Handle 0x10004

0x10004 Contact_Status 1

0x10009 Security_String ADMIN

0x1000a Condition 0

$ show attributes -e mh=0xcd00011

Id Name Iid Value

0xd0000 Modeltype_Name User

0x10000 Modeltype_Handle 0x10004

0x10004 Contact_Status Established

0x10009 Security_String ADMIN

0x1000a Condition Normal

$ show attributes -e attr=0x1000-0x11fff attrname=status mh=0xcd00011

Id Name Iid Value

0x10004 Contact_Status Established

0x110ed Dev_Contact_Status 2

0x111a56 ContactStatusEventSwitc FALSE

show–Displays Object

Chapter 3: Command Descriptions 51

$ show attributes attr=0x1006e mh=0x400165

Id Name Iid Value

0x1006e Model_Name 142.77

$ show attributes attr=0x100d4 mh=0x400165

Id Name Iid Value

0x100d4 If_Out_Ucast_Pkts 1 1169585

0x100d4 If_Out_Ucast_Pkts 2 1227557

0x100d4 If_Out_Ucast_Pkts 3 1227557

0x100d4 If_Out_Ucast_Pkts 4 8624873

$ show attributes attr=0x100d4,next mh=0x400165

Id Name Iid Value

0x100d4 If_out_Ucast_Pkts 1 1169589

$ show attributes attr=0x100d4,iid=2 mh=0x400165

Id Name Iid Value

0x100d4 If_Out_Ucast_Pkts 2 1227569

$ show attributes attr=0x100d4,iid=2,next mh=0x400165

Id Name Iid Value

0x100d4 If_out_Ucast_Pkts 3 1227573

$ show attributes mth=0x10004 lh=0xd00000

Id Name Type Flags

0xd0000 namingTree Group ID S,D

0x10000 Modeltype_Name Text String R,S,M,K

0xd0200 upsBatteryCapacityInteger E,R

$ show attributes mth=0x3d0002 attrname=port

Id Name Type Flags

0x10023 Agent_Port Integer R,W,M,D

0x112e3 IF_Port_Types Octet String R,W,S,D

0x11554 Create_IF_Port Boolean R,S,D

0x11d28 PortLinkDownEventCode Counter R,S,D

0x11d29 PortLinkUpEventCode Counter R,S,D

0x11d3d support_ICMP Boolean R,W,D

0x11d41 Poll_Linked_Ports Boolean R,W,M,D

0x11e24 TelnetPortNum Integer R,W,G,D

show–Displays Object

52 Command Line Interface User Guide

$ show attributes mth=0x3d0002 attrname=port flags=rwmd

Id Name Type Flags

0x10023 Agent_Port Integer R,W,M,D

0x11d41 Poll_Linked_Ports Boolean R,W,M,D

$ show attributes -e attrname=port mh=0xcd00023

Id Name Iid Value

0x10023 Agent_Port 161

0x112e3 IF_Port_Types 11.0.22.0

0x11554 Create_IF_Port TRUE

0x11d28 PortLinkDownEventCode 66312

0x11d29 PortLinkUpEventCode 66313

0x11d3d support_ICMP TRUE

0x11d41 Poll_Linked_Ports TRUE

0x11e24 TelnetPortNum 0

show children

The show children command shows the children in relation to the model with
model_handle. If relation is not specified, show children shows the children in all
relations. If model_handle is not specified, the command shows the children for the
current model.

The show children command displays information in the following format:

MHandle MName MTypeHn MTypeName Relation

handle name handle name relation

Example: show children

$ show children mh=0x400009

MHandle Name MTypeHnd MTypeName Relation

0x40000d 12.84 0x100d6 Bdg_CSI_CNB2 Collects

show devices

The show devices command shows a listing of all device models in the landscape that is
specified by the landscape_handle.

The show devices command displays information in the following format:

MHandle MName MTypeHnd MTypeName

Handle Name Handle Name

show–Displays Object

Chapter 3: Command Descriptions 53

Example: show devices

$ show devices lh=0x400000

MHandle MName MTypeHnd MTypeName

0x1005c0 10.253.32.101 0x3d002 GnSNMPDev

0x100030 10.253.2.10 0x2c60021 RstonesSwRtr

show enumerations

The show enumerations command shows enumerated string value mapping for the
corresponding enumerated value specified.

The show enumerations command displays information in the following format:

Id String Value

id string value

The show enumerations mth command displays information in the following format:

MHandle String Value

HandLE string value

Example: show enumerations

$ show enumerations attr=0x10004

ID String Value

0x10004 Lost 0

0x10004 Established 1

0x10004 INITIAL 2

$ show enumerations mth=0x10004

ID String Value

0x10004 Lost 0

0x10004 Established 1

0x10004 INITIAL 2

show events

The show events command shows the events for the model with model_handle or the
events for all models in the landscape that is specified by landscape_handle. By default
the show events command shows the 2,000 most recent events for the model that is
specified by model_handle or landscape_handle. If the -a option is specified, this
command shows a maximum of 10,000 events for the model which is specified by
model_handle or landscape_handle.

show–Displays Object

54 Command Line Interface User Guide

If the -n option is specified with an explicit no_events statement, the specified number
of events is displayed for the model which is specified by model_handle or
landscape_handle. If neither model_handle nor landscape_handle is specified, this
command shows events for all models in the current landscape. If the -x option is
specified, the CLI displays text messages explaining the event types. The event time is
displayed in hh:mm:ss format.

The show events command displays information in the following format:

Date Time Type MHandlE MName MTypeName

mm/dd/yyyy hh:mm:ss type handle name name

If show events is used with the -x option, the events displayed do not have a fixed
format. The following is an example of typical output:

Thur 11 May, 2000 - 8:04:01 - Alarm number 10 generated for device AntLAN of type

LAN_802_3.

Current condition is INITIAL(DEFAULT).

(event [00010701])

Example: show events

$ show events lh=0x400000

Date Time Type MHandle MName MTypeName

04/25/1999 13:27:38 0x10302 0x4000f9 1.3 Host_IBM

04/25/1999 13:27:38 0x10202 0x400131 qa1sgi Host_SGI

$ show events -n

Date Time Type MHandle MName MTypeName

08/21/1999 11:30:02 0x100090xcd00067 els100-01.india RMONApp

08/21/1999 11:25:33 0x100090xcd00067 els100-01.india RMONApp

08/21/1999 11:20:17 0x100090xcd00067 els100-01.india RMONApp

08/21/1999 11:15:52 0x100090xcd00067 els100-01.india RMONApp

08/21/1999 11:10:27 0x100090xcd00067 els100-01.india RMONApp

show inheritance

The show inheritance command shows the model type inheritance for the model type
that is specified by model_type_handle in the landscape that is specified by
landscape_handle. If the landscape_handle is not specified, the current landscape is
used. The possible values for this field are Base or Derived.

The show inheritance command displays information in the following format:

MHandle MName Flags Inheritance

handle name flags inheritance

show–Displays Object

Chapter 3: Command Descriptions 55

Example: show inheritance

$ show inheritance mth=0x1037b lh=0x400000

Handle Name Flags Inheritance

0x10000 Root V,D Base

0x103ad BanVinesFS V,I,U Derived

show landscapes

The show landscapes command shows all landscapes that are defined for each
SpectroSERVER. The landscape map that is displayed is the map of the initial
SpectroSERVER.

The show landscapes displays information in the following format:

SSName Precedence Port Service LHandle

ssname precedence port service handle

Example: show landscapes

$ show landscapes

SSName Precedence Port Service LHandle

devsgi 10 0xbeef 0x10101 0x28000000

devibm 10 0xbeef 0x10101 0x11f00000

show models

The show models command shows all models that are defined in the landscape, which is
specified by landscape_handle. If landscape_handle is not specified, this command
shows all models that are defined in the current landscape. A range of model handles
can be specified by the following command:

mhr=low_model_handle-high_model_handle

Specific models can be searched for by specifying mname=model_name.

User models are identified by the show models command as either (Active) or (Not
Active). If the user model status is (Not Active), the user cannot yet connect to the
server. Once the user model status is (Active), the user can connect to the server.

The show models command displays information in the following format:

MHandle MName MTypeHnd MTypeName

handle name handle name

show–Displays Object

56 Command Line Interface User Guide

Example: show models

$ show models lh=0x400000

MHandle MName MTypeHnd MTypeName

0x400004 World 0x10040 World

0x4000d9 0x10020 AUI

$ show models mname=

MHandle MName MTypeHnd MTypeName

0xcd00016 0x1120002 AppDataServer

0xcd00022 0x1006b SnmpPif

0xcd00030 0x1028f IcmpPif

$ show models mhr=0xcd00000-0xcd000ff mth=0x230018 mname=india lh=0xcd00000

MHandle MName MTypeHnd MTypeName

0xcd000a3 hplaser.zeitnet.India.com 0x230018 TCP2_App

0xcd0002b desire.zeitnet.India.com 0x230018 TCP2_App

show parents

The show parents command shows the parents in relation to the model with
model_handle. If relation is not specified, it shows the parents in all relations. If
model_handle is not specified, show parents shows the parents for the current model.

The show parents command displays information in the following format:

MHandle MName MTypeHnd MTypeName Relation

handle name handle name relation

Example: show parents

$ show parents mh=0x40000d

MHandle MName MTypeHnd MTypeName Relation

0x400009 auto-lan-30x1003c LAN_802_3 Collects

show relations

The show relations command shows all relations that are currently defined in the
landscape specified by landscape_handle. If landscape_handle is not specified, this
command shows all relations that are defined in the current landscape.

The show relations command displays information in the following format:

Name Type

relation_name relation_type

show–Displays Object

Chapter 3: Command Descriptions 57

Example: show relations

$ show relations

Name Type

Passes_Through MANY_TO_MANY

Lost_and_Found ONE_TO_MANY

Owns ONE_TO_MANY

Contains ONE_TO_MANY

show rules

The show rules command shows the rules for a relation. The relation is specified in the
landscape that is specified by landscape_handle. If landscape_handle is not specified,
the current landscape is used.

The show rules command displays information in the following format:

LMTHandle LMTName RMTHandle RMTName

handle name handle name

Example: show rules

$ show rules rel=Owns lh=0x400000

LMTHandle LMTName RMTHandle RMTName

0x102da Org_Owns 0x10043 Site

0x102da Org_Owns 0x210023 Rtr_CiscoMGSshow

show types

The show types command shows all model types that are currently defined in the
landscape that is specified by landscape_handle. If landscape_handle is not specified,
this command shows all model types defined in the current landscape. The Flags field
lists the abbreviations for each of six attribute flags that are currently set. If a flag is not
set, its abbreviation is not included in the list.

The following list includes the model type flags and their abbreviations:

■ Visible = V

■ Instantiable = I

■ Derivable = D

■ No Destroy = N

■ Unique = U

■ Required = R

show–Displays Object

58 Command Line Interface User Guide

The show types command [mth=low_mth-high_mth] shows all model types within the
range between low_mth and high_mth.

Note: For more information about model type flags, see Model Type Editor User Guide.

The show types command displays information in the following format:

Handle Name Flags

handle name flags

Example: show types

$ show types lh=0x400000

Handle Name Flags

0x10000 Root V,D

0x10080 Gen_Rptr_Prt V,D

$ show types mthr=0x10002-0x10008

Handle Name Flags

0x10002 Network_Entity

0x10003 VNM V,I,D,N,U,R

0x10004 User V,I,D

0x10005 VIB

0x10007 DataRelay V,D

$ show types mthr=0x210020-0x21002f mtname=Rtr_Cisco lh=0xcd00000

Handle Name Flags

0x210020 Rtr_CiscoAGS V,I,D

0x210021 Rtr_CiscoCGS V,I,D

0x210022 Rtr_CiscoIGS V,I,D

0x210023 Rtr_CiscoMGS V,I,D

0x210024 Rtr_CiscoMIM V,I,D

0x21002b Rtr_Cisco2500 V,I,D

0x21002c Rtr_CiscoMIM3T V,I,D

0x21002d Rtr_Cisco3000 V,I,D

0x21002e Rtr_Cisco4000 V,I,D

0x21002f Rtr_Cisco7000 V,I,D

show–Displays Object

Chapter 3: Command Descriptions 59

$ show types flags=VIDNUR lh=0xcd00000

Handle Name Flags

0x25e0000 MgmtInventory V,I,D,N,U,R

0x10040 World V,I,D,N,U,R

0x102cf Top_Org V,I,D,N,U,R

0x10003 VNM V,I,D,N,U,R

0x102be LostFound V,I,D,N,U,R

0x25e0001 TopologyWrkSpc V,I,D,N,U,R

0x10091 Universe V,I,D,N,U,R

show watch

The show watch command lists applicable watch data for a model that is specified by
model_handle.

The show commands use the following defaults when landscape_handle and
model_handle are not specified:

Command Default

show alarms

current landscape

show associations current model

show attributes current model

show attributes mth current landscape

show children current model

show devices current landscape

show enumerations current landscape

show enumerations mth current landscape

show events current landscape

show inheritance current landscape

show models current landscape

show parents current model

show relations current landscape

show rules current landscape

show types

current landscape

show watch current model

stopShd–Terminates CLI Local Server

60 Command Line Interface User Guide

Note: The ‘show alarms’ and ‘show events’ commands can work with the x option to
display probable cause messages for alarms and expanded event messages.

Verify the following prerequisites:

■ OneClick is installed on the local server.

■ The environment variable SPECROOT is set to the path of the root directory
(SG-Support).

For example, if the SG-Support files are in/usr/spectrum/SG-Support, set SPECROOT
to /usr/spectrum.

The show watch command displays information in the following format:

Watch_Id Watch_Name Watch_Type Watch_Status

watch_id watch_name watch_type watch_status

Example: show watch

$ show watch mh=0xc600015

Watch_Id Watch_Name Watch_Type Watch_Status

0xffff0001 watch798 Calc Active

stopShd–Terminates CLI Local Server

Use the stopShd command to terminate the CLI Local Server (VnmShd daemon). The
stopShd command disconnects all CA Spectrum CLI users from the currently connected
SpectroSERVER and terminates the CLI Local Server. This command prompts the user for
confirmation before disconnecting users and shutting down the server. (You can also
shut down the daemon by using the kill -2 command.)

stopShd–Terminates CLI Local Server

Chapter 3: Command Descriptions 61

The command has the following format:

stopShd [-n]

-n

Specifies 'no prompt'. Include this option with the stopShd command to disable
confirmation prompts.

Otherwise, the following message is always displayed:

stopShd: n users are connected, are you sure?

The 'n' represents the number of connected users, including yourself.

Valid responses are y, yes, Y, Yes, n, no, N, No.

If the command is successful, the following message is displayed:

stopShd: successful

When stopShd terminates the CLI Local Server, the following message is displayed
on the system console:

VnmShd: stopShd executed. Exiting...

Example: stopShd

$ stopShd

stopShd: 2 users are connected, are you sure? y

stopShd: successful

More information:

disconnect–Disconnects from SpectroSERVER (see page 39)

update–Updates Model and Model Attributes

62 Command Line Interface User Guide

update–Updates Model and Model Attributes

Use the update command to update model and model type attributes.

The command has the following format:

update [mh=modelhandle]

attr=attribute_id[,iid=instance_id],val=value

 [attr=attribute_id[,iid=instance_id],val=value...] |

 [mh=modelhandle]

 attr=attribute_id,iid=instance_id,remove

 [attr=attribute_id,iid=instance_id,remove...] |

 [-n] mth=model_type_handle |

attr=attribute_id,val=value [attr=attribute_id,val=value ...]

 [lh=landscape_handle] |

alarm [-r] aid=alarm_id <assign=troubleshooter |

 status=status_text | ticket=troubleticketID |

 ack=(true|false)> [lh=landscape_handle] |

action=action_code [watch=watch_id] [mh=modelhandle]

-n

If the -n (no prompt) option is specified with the update command, then the system
does not prompt for confirmation. This option is useful in CLI scripts.

-r

The -r (replace status text/replace trouble ticket ID) option can be specified with
the update alarm command when using the status or the ticket arguments. When
the -r option is used, the existing alarm status text or alarm trouble ticket ID is
replaced with the text specified by the status argument or the ticket argument.
When the -r option is not used, the new values are appended to the existing values.

action_code

■ reconfig, 0x1000e, or 65550 to reconfigure a model

■ activate, 0x00480003, or 4718595 to activate a watch

■ deactivate, 0x00480004, or 4718596 to deactivate a watch

■ reconfigure_apps, 0x210008, or 2162696 to reconfigure application models on
Cisco and Wellfleet devices

■ reload_event_disp, 0x000100a2, or 65698 to update the SpectroSERVER with
changes to EventDisp and AlertMap files

Note: The watch = <watch_id> parameter is applicable only for the following actions:
activate (or the hexadecimal equivalent 0x00480003) and deactivate (or the
hexadecimal equivalent 0x00480004).

update–Updates Model and Model Attributes

Chapter 3: Command Descriptions 63

The following points describe the features of update command:

■ The update command updates the attribute specified by attribute_id value either
for model with model_handle or for all models with the model type
model_type_handle in the landscape specified by landscape_handle.

■ Multiple attributes can be updated with one update command by specifying
multiple attribute_id, value pairs, each pair that is separated from adjacent pairs by
a space.

■ The remove option removes instances that are specified from a list attribute.

■ If landscape_handle is not specified when updating model type attributes, the
current landscape is used. If model_handle is not specified, then the specified
attribute of the current model is updated.

■ When you are updating model type attributes, remember that only shared
attributes can be updated. Shared attributes are attributes that have the shared
flag set. Use the show attributes command to see if an attribute is shared.

■ Security-sensitive attributes, such as User_Community_String and
Model_Security_String, can be updated through CLI. However, the current user
model cannot update its own User_Security_String or Security_String, but it can
update those of other models.

■ The update command also lets the user specify an instance ID when changing a
single attribute value. When updating a list of attribute values, an instance ID can
be specified for each attribute on the list. instance_id is the instance ID for the
corresponding attribute. The instance_id must be a positive integer, or sequence of
dot-separated positive integers.

■ If an instance ID is not specified, the update command uses the first valid instance
that it finds for the attribute. If no valid instances are found, an error message is
displayed:

update: no valid instance for list attribute <attr_id>

■ The update alarm command updates the alarm specified by alarm_id with the value
specified by the Troubleshooter (Troubleshooter model handle or Troubleshooter
name), status_text, troubleticketID, or ack parameter. To clear the existing alarm
values for Troubleshooter, Status text, or Trouble Ticket ID, you can set the
appropriate parameter to have no value (status=, ticket=, or assign=). The
landscape_handle parameter specifies the landscape in which the alarm will be
found.

update–Updates Model and Model Attributes

64 Command Line Interface User Guide

■ The update action command performs an action specified by action_code on a
device specified by model_handle. With action_code reconfig, any device of model
type GnSNMPDev, or of any model type that inherits from GnSNMPDev, can be
reconfigured. The activate or deactivate action_code update a watch status on a
device of a specified model_handle. When the activate action object is sent, there
may be a short delay between the time the watch status changes from INITIAL to
ACTIVE, depending upon the intelligence that is built into the selected model. The
watch_id of the watch slated to have its status updated can be obtained by using
the show watch command. The reconfigure_apps action_code update application
model types for Cisco and Wellfleet device models. The reload_event_disp
action_code update the SpectroSERVER with changes made to EventDisp or
AlertMap files.

■ Use caution when using the update action command. As with any CLI command,
you can corrupt the SpectroSERVER database if you use this command incorrectly.
For example, inadvertently reconfiguring a critical router can cause unpredictable
results on your network.

■ If update is entered with a valid model_handle or valid model_type_handle, valid
attribute_id(s), and valid values, the modified attributes and their values are
displayed in the following format:

Id Name Value

Id Name Value

■ If you do not use the -n option when updating models of a specified model type, the
following confirmation message is displayed:

update: all models of this type will be updated, are you sure?

Valid responses are y, yes, Y, Yes, n, no, N, No.

■ If the update alarm command is successful, the following message is displayed:

update:successful

■ If the update action command is successful, the following message is displayed:

update action: successful

Examples: Update

■ In the following example, the update command with an instance_id is used to
disable port 7 on board 5 of the Hub represented by model handle 0x4001f6:

$ update mh=0x4001f6 attr=0x10ee0,iid=5.7,val=1

Id Name Iid Value

0x10ee0 CsPortAdminState 1

■ In the following example, the update command is used with the remove option to
remove an IP address (iid) from the deviceIPAddressList (attr) for a particular model
(mh).

$ update mh=0xc600018 attr=0x12a53,iid=10.253.8.65,remove

update: successful

update–Updates Model and Model Attributes

Chapter 3: Command Descriptions 65

■ In the following example, the update command is used to update the attribute
named AutoPlaceStartX on all models of the model type represented by model type
handle 0x10059.

$ update mth=0x10059 attr=0x118f2,val=100 lh=0x400000

update: all models of this type will be updated, are you sure? y

Id Name Value

Id AutoPlaceStartX 100

■ In the following example, the update alarm command is used to update an alarm
troubleshooter assignment.

$ update alarm aid=928 assign=0xa600722

update: successful

■ In the following example, the update alarm command is used to update alarm
status. The -r option is used to overwrite the existing status.

$ update alarm -r aid=928 status='Working on it'

update: successful

■ In the following example, the update alarm command is used to update the alarm
Trouble Ticket ID. The -r option is used to overwrite the existing value for Trouble
Ticket ID.

$ update alarm -r aid=928 ticket='Ax1009'

update: successful

■ In the following example, the update alarm command is used to clear the existing
value for Trouble Ticket ID.

$ update alarm aid=928 ticket=

update: successful

■ In the following example, the update alarm command is used to acknowledge the
alarm.

$ update alarm aid=928 ack=TRUE

update: successful

update–Updates Model and Model Attributes

66 Command Line Interface User Guide

■ In the following example, the update command is used to restrict updating of the
User_Community_String.

$ update mh=0x9a000ff attr=0x1007a,val=AA,11

update: successful

■ In the following example, the update action command is used to reconfigure a Cisco
router.

$ update action=reconfig mh=0xc600030

update action: successful

$ update action=activate watch=0xffff0001 mh=0xc600015

Watch_Id MHandle Watch_Status

0xffff0001 0xc600015 INITIAL

$ update action=0x480004 watch=0xffff0001 mh=0xc600015

Watch_Id MHandle Watch_Status

0xffff0001 0xc600015 INACTIVE

Appendix A: Sample Scripts 67

Appendix A: Sample Scripts

Sample Scripts Overview

The sample scripts included with CLI demonstrate how CLI commands can be
incorporated into UNIX shell scripts so that you can automate your CLI sessions. You can
find some of these scripts, or some of the functions within them, useful for your own
work.

CLI includes the following scripts, and a readme file that describes the scripts in the
<$SPECROOT>/vnmsh/sample_scripts directory:

■ active_ports

■ app_if_security

■ cli_script

■ database_tally

■ update_mtype

■ octet_to_ascii.pl

Review the following prerequisites when you work with CLI scripts:

■ Each script has an internal variable named CLIPATH. To use a script, set the CLIPATH
variable to the pathname of the directory where CLI executables are located.

■ The CLIPATH variable and the other environment variables that are pathnames can
be full or relative pathnames depending on how the script is run. Use full
pathnames for the CLIPATH and other environment variables when you run a
sample script as a cron script. Otherwise, you can use relative pathnames for these
variables.

■ Except for update_mtype, you can run all the CLI scripts as cron scripts.

Note: Do not run update_mtype as a cron script because it prompts the user for
input.

■ When you run CLI scripts, specify the correct names for the vnm_hostname variable
in the .vnmshrc file.

active_ports Script

Use the active_ports script to identify all ports for each board of an IRM2 hub and to
identify the active ports on each board.

app_if_security Script

68 Command Line Interface User Guide

The active_ports script places a report for the hub with the name hub_name in a file
with the name output_file. This report lists all the ports for each board. An asterisk (*) in
the ON column of the report shows you which ports are active.

This script has the following format:

active_ports <hub_name> <output_file>]

app_if_security Script

Use the app_if_security script to update the Security_String attribute value in all the
interface and application models in the CA Spectrum database. The app_if_security
script does update by copying the attribute value from the parent model. The script
does not update any models if the recipient model (child) already has a value for the
Security_String attribute or if the parent does not have a Security_String attribute value.
After updating a models security string, administrators can use this script to update the
security string of the models children.

This script has the following format:

app_if_security

cli_script Script

Use cli_script to execute most of the CLI commands in batch mode when you provide a
data file as input. The CLI sample data file, named datafile, contains switches that
indicate the command to execute and also the necessary parameters to pass to the
command. The script verifies that each command is executed successfully and also
maintains a runtime log.

One advantage of this script is that you can create batch files using names instead of
handles. For example, you can use a model type name, rather than the hexadecimal
model type handle. While this makes the files easier to create and read, the real
advantage comes when you want to perform subsequent actions on a model that you
have created. Instead of assigning hexadecimal model handles to the model, you can
refer to the model by name.

This script has the following format:

cli_script datafile

database_tally Script

Appendix A: Sample Scripts 69

The cli_script uses two files, datafile and clean.awk, that are also located in the
sample_scripts directory.

datafile

Contains the input for cli_script. It contains each CLI command currently
implemented in cli_script. See the cli_script header information for instructions
about the format and syntax of this file.

clean.awk

Contains the input used in execution. The .awk files are used for formatting what
data appears to the console.

Consider the following points when working with cli_script:

■ Remember to change the “dummy” Network_Address (255.255.255.255) in the
sample datafile to a real address.

■ If you move the cli_script to another directory, you must update the environment
variable SPECROOT to the support root directory (SG-SUPPORT).

For example, if the SG-SUPPORT files are in /usr/spectrum/SG-Support, set
SPECROOT to /usr/spectrum.

database_tally Script

Use this script to determine how many models of each type are currently in the
database. Administrators may find this script useful when evaluating system
performance. The script displays a list of all the model types and the number of models
of each model type in the database.

This script has the following format:

database_tally <vnm-name>

update_mtype Script

Use this script to update a specific attribute for all models of a model type. If the
attribute is a shared attribute of the model type, the script does not update the model's
attribute. One advantage of this script is that you can use the model and attribute
names at the prompt rather than their hexadecimal ID handles.

Note: Set the CLIMNAMEWIDTH environment variable to 256. The high value prevents
truncation of model names that can cause false matches when running the script.

active_ports Script

70 Command Line Interface User Guide

This script has the following format:

update_mtype <model_name> \ <model_typename>[<attribute_name> | <attribute_id>

<value>]

model_name | model_type_name

Specifies a model name, or part of a model name, for a model of the model type for
which the attribute update is done. You can specify any model of the model type in
the command.

The script then displays a listing of all model types that have models with names
containing the model name argument that you entered. The script asks you to
select a model type from the list.

If you use the model name instead of the model type name, the script updates all
models whose names include the string entered on the command line or at the
prompt. In this case, all models of a given model type are not updated as described
above.

Note: We recommend using the model name or model type name at the prompt
and not handle.

attribute_name | attribute_id

If you do not specify these arguments initially, the script prompts for attribute
name or attribute id, when it runs. At this point, you must specify either the
attribute name or part of the attribute name. The script then asks you to select
from a list of attributes containing the text that you entered. You can run the entire
script, therefore, without prior knowledge of the hexadecimal model type handles
or attribute handles.

More information:

CLI Environment Variables (see page 11)

active_ports Script

Use this script to convert Octet_String format XX.YY.ZZ to its ASCII string representation.

Appendix B: Error Messages 71

Appendix B: Error Messages

ack alarm: <alarm_id>: invalid alarm id

Reason:

The alarm ID that you entered is invalid.

Action:

Enter the ack alarm command again, using a valid alarm_id.

ack alarm: <landscape_handle>: invalid landscape handle

Reason:

The landscape handle that you entered for the alarm is invalid.

Action:

Enter the ack alarm command again, using a valid landscape_handle.

command: failed to connect with VnmShd, please run connect first

Reason:

You attempted to run other commands before running the connect command.

Action:

Begin a CLI session with the connect command.

connect: already connected to <hostname> since <date/time>

Reason:

The attempt to connect is unnecessary. You are already connected to a SpectroSERVER
host.

Action:

None.

active_ports Script

72 Command Line Interface User Guide

connect: cannot open resource file <pathname>/.vnmshrc

Reason:

The connect command cannot find the CLI resource file .vnmshrc.

Action:

The .vnmshrc resource file must be in the same directory as the connect command
itself.

More information:

The Startup File (see page 13)

connect: can only connect to SpectroSERVERs in <hostname> landscape map - other user(s)
already connected

Reason:

The connect command has already been used to connect to a particular SpectroSERVER.
You can connect only to a SpectroSERVER that is in the landscape map of the original
SpectroSERVER.

Action:

None

connect: ERROR: No such CA Spectrum user as <username>

Reason:

The first user of the connect command is not defined as a CA Spectrum user.

Action:

Reconnect to the SpectroSERVER as a CA Spectrum user.

connect: <hostname> not responding or not permitting access

Reason:

The connect command cannot connect to SpectroSERVER because the hostname is
incorrect, the SpectroSERVER is not running, or the user has no user model.

Action:

Verify that the hostname is correct, that SpectroSERVER is running, and that the user
has a user model.

active_ports Script

Appendix B: Error Messages 73

connect: <landscape_handle>: invalid landscape handle

Reason:

The landscape_handle specified by the user is not valid for the specified hostname, or
the handle cannot be accessed by your VNM.

Action:

Verify that the landscape_handle is valid for the specified hostname, and verify that the
handle can be accessed by your VNM.

connect: incompatible SpectroSERVER <version>

Reason:

The user is attempting to connect to a SpectroSERVER host whose version is
incompatible with the CLI version.

Action:

Update the version of CLI that you are using.

connect: invalid <value> for CLISESSID

Reason:

The connect command is used within a cron script or the windowing system returns 0
for ttyslot and the environment variable CLISESSID is set to a non-numeric value.

Action:

Use the connect command outside of a cron script and set CLISESSID to a numeric value.

connect: variable <CLISESSID> not set

Reason:

You have attempted to use the connect command within a cron script without first
setting the CLISESSID environment variable.

Action:

When using connect within a cron script, set the environment variable CLISESSID.

active_ports Script

74 Command Line Interface User Guide

create: user not permitted to create alarm

Reason:

You are not permitted to create an alarm.

Action:

Verify your user permissions.

create: user not permitted to create association

Reason:

You are not permitted to create an association.

Action:

Verify your user permissions.

create: user not permitted to create event

Reason:

You are not permitted to create an event.

Action:

Verify your user permissions.

create: user not permitted to create model

Reason:

You are not permitted to create a model.

Action:

Verify your user permissions.

create alarm: <probable_cause_id>: invalid alarm cause

Reason:

The create alarm command was entered with an invalid probable_cause_id.

Action:

Re-enter the create alarm command with a valid probable_cause_id.

active_ports Script

Appendix B: Error Messages 75

create alarm: <alarm_severity>: invalid alarm severity

Reason:

The create alarm command was entered with an invalid alarm_severity.

Action:

Re-enter the create alarm command with a valid alarm_severity.

create alarm: <model_handle>: invalid model handle

Reason:

The create alarm command was entered with an invalid model_handle.

Action:

Re-enter the create alarm command with a valid model_handle.

create association: <left_model_handle>: invalid model handle

Reason:

The create association command was entered with an invalid left_model_handle.

Action:

Re-enter the create association command with a valid left_model_handle.

create association: models belong to different landscapes

Reason:

The create association command was entered with a left_model_handle and a
right_model_handle in different landscapes.

Action:

Use the same landscape for both handles.

create association: rel=<relation>: invalid relation

Reason:

The create association command was entered with an invalid relation.

Action:

Re-enter the create association command with a valid relation.

active_ports Script

76 Command Line Interface User Guide

create association: <right_model_handle>: invalid model handle

Reason:

The create association command was entered with an invalid right_model_handle.

Action:

Re-enter the create association command with a valid right_model_handle.

create event: <event_type>: invalid event type

Reason:

The create event command was entered with an invalid event_type.

Action:

Re-enter the create event command with a valid event_type.

create event: <landscape_handle>: unknown landscape

Reason:

The create event command was entered with an invalid landscape_handle.

Action:

Re-enter the create event command with a valid landscape_handle.

create event: <model_handle>: invalid model handle

Reason:

The create event command was entered with an invalid model_handle.

Action:

Re-enter the create event command with a valid model_handle.

create model: <attribute_id>: invalid attribute id

Reason:

No model is created because the create model command was entered with an invalid
attribute_id.

Action:

Re-enter the create model command with a valid attribute_id.

active_ports Script

Appendix B: Error Messages 77

create model: DCM device unreachable

Reason:

No model was created because the create model command was entered with an invalid
ip_address. The DCM (Device Communication Manager) issues this error message.

Action:

Re-enter the create model command with a valid ip_address.

create model: Device limit exceeded

Reason:

No model was created because the Branch Manager SpectroSERVER (50 device model
limit) or the Site Manager SpectroSERVER (250 device model limit) contains the
maximum number of device models it can contain.

Action:

Verify that the number of device models on the SpectroSERVER have not met the
prescribed limits. If they have, you may need to delete some and then re-enter the
create model command.

create model: <landscape_handle>: invalid landscape handle

Reason:

No model was created because the create model command was entered with an invalid
landscape_handle.

Action:

Re-enter the create model command with a valid landscape_handle.

create model: <model_type_handle>: invalid model type handle

Reason:

No model is created because the create model command was entered with an invalid
model_type_handle.

Action:

Re-enter the create model command with a valid model_type_handle.

active_ports Script

78 Command Line Interface User Guide

create model: <value>: invalid value

Reason:

No model is created because the create model command was entered with an invalid
value.

Action:

Re-enter the create model command with a valid value.

create model: <value>: No community name

Reason:

The community name provided in the create request was incorrect.

Action:

Re-enter the create command with a valid community name.

current: <model_handle>: invalid model handle current model is <current_model_handle>

Reason:

An invalid model_handle was specified so the current model and the current landscape
are unchanged.

Action:
Re-enter a valid model_handle if you want to modify the current model and current
landscape.

current: <landscape_handle>: invalid landscape handle current landscape is
<current_landscape_handle>

Reason:

Since an invalid landscape_handle was specified, the current model and the current
landscape are unchanged.

Action:

Re-enter a valid landscape_handle if you want to modify the current model and current
landscape.

active_ports Script

Appendix B: Error Messages 79

current: <landscape_handle>: not responding or not permitting access current model is
<current_model_handle>

Reason:

A landscape_handle was specified and the OneClick for the landscape was down or the
user did not have a user model on that landscape.

Action:

Verify that the OneClick for the landscape in question is running; verify that you have a
user model on the landscape in question; and then re-enter the landscape_handle.

current: <landscape_handle>: not responding or not permitting access current landscape is
<current_landscape_handle>

Reason:

A model_handle was specified and the SpectroSERVER for the landscape containing that
model was down or the user did not have a user model on that landscape.

Action:

Verify that the SpectroSERVER for the landscape in question is running; verify that you
have a user model on the landscape in question; and then re-enter the model_handle.

destroy: user not permitted to destroy alarm

Reason:

You are not permitted to destroy an alarm.

Action:

Verify your user permissions.

destroy: user not permitted to destroy association

Reason:

You are not permitted to destroy an association.

Action:

Verify your user permissions.

active_ports Script

80 Command Line Interface User Guide

destroy: user not permitted to destroy model

Reason:

You are not permitted to destroy a model.

Action:

Verify your user permissions.

destroy alarm: aid=<alarm_id>: invalid alarm id

Reason:

The destroy alarm command was entered with an invalid alarm_id.

Action:

Re-enter the destroy alarm command with a valid alarm_id.

destroy alarm: <landscape_handle>: invalid landscape handle

Reason:

The destroy alarm command was entered with an invalid landscape_handle.

Action:

Re-enter the destroy alarm command with a valid landscape_handle.

destroy association: rel=<relation>: invalid relation

Reason:

The destroy association command was entered with an invalid relation.

Action:

Re-enter the destroy association command with a valid relation.

destroy association: <left_model_handle>: invalid model handle

Reason:

The destroy association command was entered with an invalid left_model_handle.

Action:

Re-enter the destroy association command with a valid left_model_handle.

active_ports Script

Appendix B: Error Messages 81

destroy association: <right_model_handle>: invalid model handle

Reason:

The destroy association command was entered with an invalid right_model_handle.

Action:

Re-enter the destroy association command with a valid right_model_handle.

destroy association: association does not exist between given models

Reason:

An attempt was made to destroy an association between two models that do not exist.

Action:

Verify the existence of the two models belonging to the association you are attempting
to destroy.

destroy association: models belong to different landscapes

Reason:

The destroy association command was entered with a left_model_handle and a
right_model_handle in different landscapes.

Action:

Re-enter the destroy association command using a left_model_handle and a
right_model_handle from the same landscape.

destroy model: <model_handle>: invalid model handle

Reason:

The destroy model command was entered with an invalid model_handle.

Action:

Re-enter destroy model command with a valid model_handle.

disconnect: failed

Reason:

The disconnect command failed.

Action:

Re-try the disconnect command.

active_ports Script

82 Command Line Interface User Guide

disconnect: failed to connect with VnmShd, please run connect first

Reason:

An attempt was made to run disconnect when the CLI Local Server was not running.

Action:

None. You are already disconnected.

disconnect: not connected

Reason:

The disconnect command failed since the user was not connected to the
SpectroSERVER.

Action:

None. You are already disconnected.

jump: <text_string>: text string not defined

jump:<text_string>: text string not defined

where text_string1, text_string2... are the currently defined text strings.

Reason:

The jump command was entered with an undefined text_string.

Action:

Re-enter the jump command using any of the defined text strings.

<pathname>/VnmShd: not found

<pathname>/VnmShd: not found

connect: failed

where pathname represents the path to the directory in which CLI attempted to execute

VnmShd.

Reason:

The connect command cannot find the CLI Local Server.

Action:

Make sure VnmShd and connect are in the same directory and then re-enter the
connect command.

active_ports Script

Appendix B: Error Messages 83

Please connect first

Reason:

After connect executed, you ran disconnect or stopShd and then attempted to run
another command.

Action:

Reissue the connect command first.

seek: <attribute_id>: invalid attribute id

Reason:

The seek command was entered with an invalid attribute_id.

Action:

Re-enter the seek command with a valid attribute_id.

seek: <error>: attribute not keyed

Reason:

The seek command was entered with the attribute_id of an attribute that was not
keyed.

Action:

Re-enter the seek command with an attribute_id of a keyed attribute.

seek: <value>: invalid value

Reason:

The seek command was entered with an invalid value.

Action:

Re-enter the seek command with a valid value.

show attributes: <attribute_id>: non list attribute

Reason:

The show attributes command was entered with an instance_id for a non list
attribute_id.

Action:

Re-enter the show attributes command with an instance_id for a list attribute_id.

active_ports Script

84 Command Line Interface User Guide

show attributes: <attribute_id>: invalid attribute id

Reason:

The show attributes command was entered with an invalid attribute_id.

Action:

Re-enter the show attributes command with a valid attribute_id.

show attributes: <instance_id>: invalid instance id

Reason:

The show attributes command was entered with an invalid instance_id. An instance_id
is invalid if it does not consist of a sequence of non-negative integers or if it does not
exist for the specified attribute.

Action:

Re-enter the show attributes command with a valid instance_id.

show attributes: <model_type_handle>: invalid model type handle

Reason:

The show attributes command was entered with an invalid model_type_handle.

Action:

Re-enter the show attributes command with a valid model_type_handle.

show: <landscape_handle>: invalid landscape handle

Reason:

A show command that uses an optional landscape_handle was entered with an invalid
landscape_handle.

Action:

Re-enter the show command with a valid landscape_handle.

show: <model_handle>: invalid model handle

Reason:

A show command that uses an optional model_handle was entered with an invalid
model_handle.

Action:

Re-enter the show command with a valid model_handle.

active_ports Script

Appendix B: Error Messages 85

show: no current model defined

Reason:

A show associations command that uses an optional model_handle was entered but no
model_handle was specified and no current model was defined.

Action:

Re-enter the show associations command, including both a model_handle and current
model.

show alarms: no cause information available

Reason:

The show alarms command was used with the -x option, and the CA Spectrum alarm
files containing the probable cause text messages are not available.

Action:

For the show alarms command to work with the -x option, which displays probable
cause messages for alarms and expanded event messages, OneClick must be installed
on the local server, and the environment variable SPECROOT must be set to the path of
the Support root directory (SG-Support). For example, if the SG-Support files are in the
following directory:

/usr/spectrum/SG-Support, set SPECROOT to /usr/spectrum.

show children: <relation>: invalid relation

Reason:

The show children command was entered with an invalid relation.

Action:

Re-enter the show children command with a valid relation.

active_ports Script

86 Command Line Interface User Guide

show events: no event format information available

Reason:

The show events command was entered with the -x option, and the CA Spectrum event
files containing the event format text messages are not available.

Action:

For the show events command to work with the -x option, which displays probable
cause messages for alarms and expanded event messages, OneClick must be installed
on the local server, and the environment variable SPECROOT must be set to the path of
the Support root directory (SG-Support). For example, if the SG-Support files are in the
following directory:

/usr/spectrum/SG-Support, set SPECROOT to /usr/spectrum

show parents: <relation>: invalid relation

Reason:

The show parents command was entered with an invalid relation.

Action:

Re-enter the show parents command with a valid relation.

show rules: <relation>: invalid relation

Reason:

The show rules command was entered with an invalid relation.

Action:

Re-enter the show rules command with a valid relation.

show inheritance: <model_type_handle>: invalid model type handle

Reason:

The show inheritance command was entered with an invalid model_type_handle.

Action:

Re-enter the show inheritance command with a valid model_type_handle.

active_ports Script

Appendix B: Error Messages 87

stopShd: VnmShd not running

Reason:

An attempt was made to run stopShd when the CLI Local Server was not running.

Action:

Start the CLI Local Server.

stopShd: failed

Reason:

The stopShd command failed.

Action:

Try connecting again, and then execute stopShd. If this does not work, kill the VnmShd
process manually.

update: <attribute_id>: Attribute not writable

Reason:

No update occurred because an attempt was made to update model attributes that are
non-writable.

Action:

Verify that the model attributes you want to update are writable and then re-enter the
update command.

update: <attribute_id>: invalid attribute id

Reason:

No update occurred because the update command was entered with an invalid
attribute_id.

Action:

Re-enter the update command with a valid attribute_id.

active_ports Script

88 Command Line Interface User Guide

update: <attribute_id>: non shared attribute

Reason:

The update command was used for a model type and an attribute_id of a non-shared
attribute was entered.

Action:

Re-enter the update command for the model type, this time using an attribute_id for a
shared attribute.

update: <instance_id>: invalid instance id

Reason:

No update occurred because the update command was entered with an invalid
instance_id.

Action:

Re-enter the update command with a valid instance_id.

update: <landscape_handle>: invalid landscape handle

Reason:

No update occurred because the update command was entered with an invalid
landscape_handle.

Action:

Re-enter the update command with a valid landscape_handle.

update: <model_handle>: invalid model handle

Reason:

No update occurred since the update command was entered with an invalid
model_handle.

Action:

Re-enter the update command with a valid model_handle.

active_ports Script

Appendix B: Error Messages 89

update: <model_type_handle>: invalid model type handle

Reason:

No update occurred because the update command was entered with an invalid
model_type_handle.

Action:

Re-enter the update command with a valid model_type_handle.

update: <value>: invalid value

Reason:

No update occurred because the update command was entered with an invalid value or
values.

Action:

Re-enter the update command with valid values.

update: <action_code>: invalid action code

Reason:

No update occurred because the update command was entered with an invalid
action_code.

Action:

Re-enter the update with a valid action_code.

VnmShd: Error: Failed to connect to SpectroSERVER

Reason:

The CLI Local Server failed to connect to the SpectroSERVER.

Action:

Verify that the SpectroSERVER is running.

active_ports Script

90 Command Line Interface User Guide

VnmShd: Error: Lost connection with SpectroSERVER

Reason:

The CLI Local Server, detecting that the SpectroSERVER to which it was connected has
terminated, terminates.

Action:

Restart the SpectroSERVER and then run the CLI Local Server.

Appendix C: UNIX to DOS Conversion 91

Appendix C: UNIX to DOS Conversion

On the UNIX platform, CLI commands are typically used with UNIX commands in a
terminal window. On the Windows platform, you can use CLI commands with DOS
commands in a native DOS window. This appendix lists commonly used UNIX commands
and their DOS equivalents.

Note: The appendix is intended to be a quick reference of UNIX and DOS commands
rather than an exhaustive list. See your UNIX, DOS, or Windows documentation for
more information about commands and their functions.

UNIX DOS

rem

cat type

cd cd

chdir chdir

clear cls

cmp, diff comp, fc

cp copy

cp -r xcopy

cpio, dump, tar, ufsdump cpio, dump, tar, ufsdump

cpio, restore, tar, ufsrestore restore

csh, sh command

date date, time

echo echo

ed edlin

exit exit

exportfs, share share

fdformat, format format

format fdisk

format->analyze scandisk

fsck chkdsk

goto (csh) goto

active_ports Script

92 Command Line Interface User Guide

UNIX DOS

grep find

if if

ln -s subst

lp, lpr print

ls dir

ls -l attrib

man help

mkdir md, mkdir

more more

mv move, ren, rename

print (sh) echo

rm del, erase

rm -r deltree

rmdir rd, rmdir

set path= (csh), PATH= (sh) path

set prompt= (csh), PS1= (sh) prompt

set var= (csh), var= (sh) set

shift shift

showrev ver

sort sort

stty mode

textedit, vi

edit

uncompress, unpack expand

Index 93

Index

.

.vnmshrc • 12, 30

A

ack alarm command • 29
alarms

probable causes • 45

B

bash shell
invoking from a DOS prompt • 16
running under Windows • 20

C

CLI
and UNIX commands • 10
architecture • 12
environment variables • 11
Local Server • 30
scripts • 10, 67
sessions, running more than one at once • 30
using to reconfigure devices • 62

CLIPATH • 11, 67
CLISESSID

and bash shell on NT • 30
using within a shell script • 30

commands
ack alarm • 29
connect- rules for • 30, 32
create • 33
current • 36
destroy • 38
destroy warnings about • 29
disconnect • 39
jump • 40
seek • 41
seek using wildcard with • 41
setjump • 43
show • 45
stopShd • 60
update • 62
update warnings about • 29

connect command • 30
constant network connection • 12

create command • 33
cron script • 30, 32
current command • 36

D

destroy command • 38
disconnect command • 39
DOS/UNIX command conversions • 91

E

-e option • 45
enumerated text strings, displaying mappings with

show command • 45
error checking • 14
errors

locations • 71
event codes • 33

F

flags
attribute flags • 45
model type flags • 45

G

global collection • 25

H

headers
suppressing • 26

hostname
when not specified • 30, 32

I

-i option • 41
instance IDs • 45

J

jump command • 40

L

landscape handle
when not specified • 30, 32

list attributes • 45

94 Command Line Interface User Guide

M

max_show_event_length • 45

N

-n option • 38, 43, 60, 62
-nr option • 33

O

output
suppressing headers in • 26

R

-r option • 62
return codes (zero, non-zero) • 10

S

-s option • 41
scripts

active_ports • 67
app_if_security • 67
cli_script • 67
database_tally • 67
update_mtype • 67

secure domain, create model in • 33
seek command • 41
seek, using wildcard with • 41
setjump command • 43
show command defaults • 45
show devices • 45
SPECROOT • 67, 71
state information • 12
stopShd command • 60

T

troubleshooter
assigning alarms to • 24
creating • 23
model handle • 24
update for alarm • 62

ttyslot function • 30, 32

U

update command • 62

V

VnmShd • 12, 14

W

watches
listing applicable data with CLI • 45
starting and stopping with CLI • 62

Windows NT
running shell scripts under • 20

Windows, accessing CLI from • 15, 16

X

-x option • 45

	CA Spectrum Command Line Interface User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction to Command Line Interface (CLI)
	Overview
	CLI Commands
	CLI in Shell Scripts
	CLI Components
	CLI Environment Variables

	CLI Architecture
	The Startup File
	The CLI Local Server

	Error Checking

	2: Working with Command Line Interface
	Start a CLI Session on UNIX
	Start a CLI Session on Windows using DOS Prompt
	Start a CLI session on Windows using Bash Prompt
	Example Usage
	Create a User Model
	Modify a Model Attribute
	Create and Modify a Model in One Step
	Sample CLI Script File–Create a New User

	Event Report Generation
	Model Switch
	Create a Troubleshooter Model
	Assign an Alarm to a Troubleshooter

	Create a Global Collection
	Suppress Headers in CLI Output

	3: Command Descriptions
	Command Descriptions Overview
	ack alarm–Acknowledges Alarm
	Example: ack alarm

	connect–Connects to SpectroSERVER
	Example: connect
	Considerations when Using connect Command

	create–Create Object
	create alarm
	create association
	create event
	create model

	current–Sets Model or Landscape
	Examples: current

	destroy–Destroys Object
	destroy alarm
	Examples: destroy alarm

	destroy association
	destroy model

	disconnect–Disconnects from SpectroSERVER
	jump–Jumps to Saved Model or Landscape
	Example: jump

	seek–Locates a Model
	Examples: seek

	setjump–Saves Model and Landscape
	show–Displays Object
	show alarm
	Example: show alarms

	show association
	Example: show associations

	show attributes
	Example: show attributes

	show children
	show devices
	show enumerations
	show events
	show inheritance
	show landscapes
	show models
	show parents
	show relations
	show rules
	show types
	show watch

	stopShd–Terminates CLI Local Server
	update–Updates Model and Model Attributes

	A: Sample Scripts
	Sample Scripts Overview
	active_ports Script
	app_if_security Script
	cli_script Script
	database_tally Script
	update_mtype Script
	active_ports Script

	B: Error Messages
	C: UNIX to DOS Conversion
	Index

