

Policy Configuration Guide
12.52

CA SiteMinder® Web Services

Security

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA SiteMinder®

■ CA SiteMinder® Web Services Security (formerly CA SOA Security Manager)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introducing CA SiteMinder® Web Services Security 9

CA SiteMinder® Web Services Security Overview .. 9

CA SiteMinder® Web Services Security Architecture and Components ... 9

Web Service Request Processing .. 14

Authentication Schemes ... 15

Authentication Service Models .. 16

How the Single-Step Authentication Model Works .. 17

How the Multistep Authentication Model Works ... 17

How the Chain Authentication Service Model Works ... 19

Multistep and Chain Authentication Using SiteMinder Session Tickets ... 21

How to Develop and Deploy CA SiteMinder® Web Services Security Protected Web Services 22

Chapter 2: Configure Authentication Schemes to Verify User Identities
Obtained from Web Service Requests 23

Authentication Scheme Overview .. 23

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML
Request Messages .. 24

Configure the XML DCC Authentication Scheme .. 24

How to Configure XML DCC Field Mappings ... 25

XML DCC XPath Mapping Examples .. 28

How to Configure XML DSIG Authentication to Verify User Identities Associated with X.509 Certificates 36

Verify Required XML Document Elements for XML-DSIG Authentication .. 37

Configure the XML DSIG Authentication Scheme ... 37

Configure a Certificate Mapping ... 39

WS-Security Authentication ... 40

XML Encryption ... 40

Message Timestamps .. 43

XML Signature Scope... 43

SOAP Actor/Role Attributes in Messages with Multiple WS-Security Headers .. 44

Username and Password Digest Token Age Restrictions .. 44

How to Configure WS-Security Authentication to Verify User Identities Obtained from WS-Security
Headers ... 45

How to Configure SAML Session Ticket Authentication to Verify User Identities Obtained from SAML
Session Ticket Assertions ... 47

Review Information About How Multiple SAML Session Ticket Assertions are Processed................................. 49

Configure a SAML Session Ticket Authentication Scheme .. 50

6 Policy Configuration Guide

Chapter 3: (Optional) Configure Responses to Generate SAML Session
Tickets or WS-Security Headers for Outgoing Messages 51

Responses Overview .. 51

Response Attribute Types ... 52

Web Agent Response Attributes ... 53

Responses and Directory Mappings .. 57

WS-Security Header Production Overview ... 57

How SAML Session Ticket Responses are Used .. 61

How to Configure Responses to Produce WS-Security Headers .. 62

Verify Certificate Requirements .. 63

Review Supported Authentication Schemes for Producing Different WS-Security Header Types 64

Configure CA SiteMinder® Web Services Security to Generate SAML Assertions .. 65

Configure a Response to Produce WS-Security Headers .. 69

WS-Security Response Examples .. 79

How to Configure Responses to Produce SAML Session Tickets .. 81

Verify Certificate Requirements .. 82

Configure a Response to Produce a SAML Session Ticket ... 82

SAML Session Ticket Response Examples ... 86

Chapter 4: How to Define the Security Policy for One or More Related Web
Services from a WSDL File 89

Verify Your Administrative Rights .. 91

Create an Application Object for the Web Services That You Want to Protect ... 91

(Optional) Configure Responses to Associate With Web Service Resources ... 93

Generate the Security Policy from the Web Service Definition Contained in a WSDL File .. 94

Modify the Default Role Created By the Wizard to Define User Access Rights ... 96

Create Additional Roles to Define User Access Rights ... 97

Modify Role Assignments in the Security Policy .. 99

Chapter 5: Configure Security Policies Using Domain-based Policy
Management 101

Domain-based Policy Management Overview ... 101

How to Identify a Web Service Resource by Agent, Realm, and Rule .. 101

How a SiteMinder WSS Agent for Web Servers Identifies Web Service Resources .. 102

How Other SiteMinder WSS Agent Types Identify Web Service Resources .. 102

Resource Identification Policy Examples ... 103

Unprotected Realms, Rules, and Policies .. 105

Guided Example: Create Security Policies from a WSDL File ... 105

Contents 7

Chapter 6: Variables 109

eTelligent Rules .. 109

CA SiteMinder® eTelligent Rules Benefits ... 109

eTelligent Rules Configuration .. 110

Variables Overview... 113

Variable Types ... 113

Variable Use in Policies ... 115

Message-based Authorization Using Variables ... 115

Variable Use in Responses .. 116

Create a Variable .. 116

Create a SAML Assertion Variable... 116

Create a Transport Variable .. 118

Create an XML Agent Variable .. 119

Create an XML Body Variable.. 120

Create an XML Envelope Header Variable ... 121

Create a Static Variable ... 122

Create a Request Context Variable ... 123

Create a User Context Variable ... 124

Create a Form Post Variable ... 125

Configure Message-based Authorization Using an XPath Query in XmlToolkit.properties 125

Index 127

Chapter 1: Introducing CA SiteMinder® Web Services Security 9

Chapter 1: Introducing CA SiteMinder® Web
Services Security

This section contains the following topics:

CA SiteMinder® Web Services Security Overview (see page 9)
Authentication Service Models (see page 16)
How to Develop and Deploy CA SiteMinder® Web Services Security Protected Web
Services (see page 22)

CA SiteMinder® Web Services Security Overview

CA SiteMinder® Web Services Security is a policy-based access management system for
Service Oriented Architecture (SOA) environments. With CA SiteMinder® Web Services
Security, you can protect "big" (XML transaction-processing) web services that are
implemented in the following ways:

■ Implemented as a servlet or Active Server Page (ASP) and exposed by a web server
or an application server.

■ Implemented using the JAX-RPC binding and deployed on an IBM WebSphere
Application Server or Oracle WebLogic Server

■ Implemented using the JAX-RPC or JAX-WS binding and deployed on a JBoss
Application Server.

CA SiteMinder® Web Services Security protects XML resources in much the same way as
CA SiteMinder protects HTML resources, allowing entitlement data to be obtained from
any layer of the XML message, depending upon the authentication and authorization
needs of the back-end applications.

CA SiteMinder® Web Services Security Architecture and Components

CA SiteMinder® Web Services Security extends SiteMinder® technology, using CA
SiteMinder® Web Services Security (WSS) Agents and the Policy Server to protect web
service resources hosted on web and application servers.

CA SiteMinder® Web Services Security Overview

10 Policy Configuration Guide

The following illustration shows a simple CA SiteMinder® Web Services Security
environment in which a SiteMinder WSS Agent is deployed into a web or application
server that is hosting web services.

More complex architectures can also be configured to support multiple web service
implementations where SiteMinder WSS Agents are optionally deployed on web service
endpoints to provide an additional layer of security.

Note: This guide describes only how to configure Policy Server infrastructure and policy
objects to protect web service resources with CA SiteMinder® Web Services Security.
For further information about configuring the Policy Server, see the CA SiteMinder®
Policy Server Configuration Guide.

CA SiteMinder® Policy Server

The CA SiteMinder® 12.52 Policy Server provides a centralized, policy-based security
management operating environment for securing your web resources. The CA
SiteMinder® 12.52 Policy Server integrates with SiteMinder WSS Agents to secure
SOAP-based web services and other CA SiteMinder® agent types to secure web
applications and other resources. As such, the CA SiteMinder® 12.52 Policy Server can
serve as the Policy Decision Point (PDP) in a CA SiteMinder® or CA SiteMinder® Web
Services Security environment.

Note: The CA SiteMinder® 12.51 Policy Server was the first to include the CA
SiteMinder® Web Services Security extensions that are required to integrate with
SiteMinder WSS Agents to secure web services. Previously, only the CA SOA Security
Manager Policy Server could integrate with SiteMinder WSS Agents.

CA SiteMinder® Web Services Security Overview

Chapter 1: Introducing CA SiteMinder® Web Services Security 11

The Policy Server provides the following features:

Authentication

The Policy Server supports a range of authentication methods.

Authorization

The Policy Server is responsible for managing and enforcing access control rules
that are established by the Policy Server administrator. These rules define the
operations that are allowed for each protected resource.

Administration

The Policy Server is configured using the CA SiteMinder® Administrative UI. The
Administration service of the Policy Server allows the Administrative UI to record
configuration information in the Policy Store.

Accounting

The Policy Server generates log files that contain auditing information about the
events that occur within the system. These logs can be printed in the form of
predefined reports, so that security events or anomalies can be analyzed.

Health Monitoring

The Policy Server provides features for monitoring activity throughout a CA
SiteMinder® Web Services Security deployment.

In a CA SiteMinder® Web Services Security implementation, a web service client sends a
web service request in the form of an XML/SOAP message. At the target server, an
SiteMinder WSS Agent intercepts that request. The SiteMinder WSS Agent determines
whether the resource is protected, and if so, gathers user credentials from the request
and passes them to the Policy Server.

The Policy Server authenticates the user against native user directories, then verifies if
the authenticated user is authorized for the requested resource using rules and policies
that are contained in the policy store. Once a user is authenticated and authorized, the
Policy Server grants access to protected resources and delivers permission and
entitlement information.

Web Services Security (WSS) Agents

SiteMinder WSS Agents are the Policy Enforcement Points (PEPs) in the CA SiteMinder®
Web Services Security environment, responsible for enforcing the policies defined on
the Policy Server. Deployed at the end-points (web and application servers), they
protect web services deployed in your SOA infrastructure.

CA SiteMinder® Web Services Security Overview

12 Policy Configuration Guide

SiteMinder WSS Agent for Web Servers

The SiteMinder WSS Agent for Web Servers is an XML-enabled version of the CA
SiteMinder Web Agent. The SiteMinder WSS Agent integrates with a supported web
server to authenticate and authorize requests for access to "big" web services bound to
URLs served by that web server.

The SiteMinder WSS Agent for Web Servers recognizes requests that meet the following
criteria as web service requests for CA SiteMinder® Web Services Security to handle:

■ Agent action—POST; all XML message requests are posted. However, CA
SiteMinder® Web Services Security also provides two other agent actions,
ProcessSOAP and ProcessXML, that allow you to create rules that fire for posted
requests according to the XML message format.

■ Message MIME type—text/xml by default; configurable using the
XMLSDKMimeTypes Agent parameter.

All other requests are handled using the core Web Agent functionality of the Web
Agent, letting you also protect other resources on a web server.

Note: For more information about protecting web resources using CA SiteMinder, see
the CA SiteMinder Web Agent Configuration Guide.

SiteMinder WSS Agent for IBM WebSphere

The SiteMinder WSS Agent for IBM WebSphere is a container-native agent for J2EE
application servers that can be used to authenticate and authorize request messages
sent over HTTP(S) transport to JAX-RPC resources hosted an IBM WebSphere
Application Server.

The SiteMinder WSS Agent recognizes requests that meet the following criteria as web
service requests for CA SiteMinder® Web Services Security to handle:

■ Agent action—POST; all XML message requests are posted. However, CA
SiteMinder® Web Services Security also provides two other agent actions,
ProcessSOAP and ProcessXML, that allow you to create rules that fire for posted
requests according to the XML message format.

■ Message MIME type—text/xml by default; configurable using the
XMLSDKMimeTypes Agent parameter.

Note: For more information about the SiteMinder WSS Agent for IBM WebSphere, see
the CA SiteMinder WSS Agent for IBM WebSphere Guide.

CA SiteMinder® Web Services Security Overview

Chapter 1: Introducing CA SiteMinder® Web Services Security 13

SiteMinder WSS Agent for Oracle WebLogic

The SiteMinder WSS Agent for Oracle WebLogic is a container-native agent for J2EE
application servers that can be used to authenticate and authorize request messages
sent over HTTP(S) or JMS transports to JAX-RPC resources hosted on an Oracle
WebLogic Server.

The SiteMinder WSS Agent recognizes requests that meet the following criteria as web
service requests for CA SiteMinder® Web Services Security to handle:

■ Agent action—POST; all XML message requests are posted. However, CA
SiteMinder® Web Services Security also provides two other agent actions,
ProcessSOAP and ProcessXML, that allow you to create rules that fire for posted
requests according to the XML message format.

■ Message MIME type—text/xml by default; configurable using the
XMLSDKMimeTypes Agent parameter.

Note: For more information about the SiteMinder WSS Agent for Oracle WebLogic, see
the CA SiteMinder WSS Agent for Oracle WebLogic Guide.

SiteMinder Agent for JBoss

The SiteMinder Agent for JBoss provides access control for web application and web
service resources hosted on the JBoss Application Server, providing the following
security interceptors:

SiteMinder WSS Agent Security Interceptor

When configured into a CA SiteMinder® Web Services Security environment, the
SiteMinder WSS Agent Security Interceptor provides a SiteMinder WSS Agent
solution that provides CA SiteMinder® Web Services Security access control for
JAX-WS and JAX-RPC web service resources.

CA SiteMinder® Agent Security Interceptor

When configured into a SiteMinder environment, the SiteMinder Agent Security
Interceptor provides a SiteMinder Agent solution that provides SiteMinder access
control for web application resources (including servlets, HTML pages, JSP, image
files) and EJBs.

Note: The SiteMinder Agent for JBoss is sold separately and not included in the CA
SiteMinder® installation kit. To obtain SiteMinder Agent for JBoss, contact your CA
account representative. For more information about the SiteMinder Agent for JBoss, see
the CA SiteMinder Agent for JBoss Guide.

CA SiteMinder® Web Services Security Overview

14 Policy Configuration Guide

Web Service Request Processing

CA SiteMinder® Web Services Security supports content-level, XML-based security for
"big" web services. The following illustration illustrates the flow of data in a simple,
single web service implementation secured with CA SiteMinder® Web Services Security.

The data in the previous illustration flows as follows:

1. A web service consumer (client) application creates a web service request in the
form of an XML document and sends it to the web service provider site. An example
document could be a purchase order. Credentials and authorization entitlements
can be inserted in the message envelope or message body.

2. At the web service provider’s site, the SiteMinder WSS Agent intercepts the
request, based on its action and content type in the HTTP header, as shown in the
following XML sample:

POST /CreditRating HTTP/1.1

Content-Type: text/xml

Content-Length: nnnn

SOAPAction:“someURI:CreditRating#GetCreditRating"

<SOAP-ENV:Envelope>

 <!-- request -->

</SOAP-ENV:Envelope>

3. The SiteMinder WSS Agent gathers the sender’s credentials from the XML message
and passes this information to the CA Policy Server for authentication and
authorization.

4. The authorized message is passed to the back-end business application for
processing.

CA SiteMinder® Web Services Security Overview

Chapter 1: Introducing CA SiteMinder® Web Services Security 15

5. Optionally, the back-end application returns a response to the web service
requester with the status of the payload (for example, indicating that the purchase
order has been accepted and is being processed).

Authentication Schemes

Authentication schemes that require user intervention are generally not appropriate for
securing web services. CA SiteMinder® Web Services Security provides four
transport-level and message-level authentication schemes that do not require user
intervention.

XML Document Credential Collector

Validates XML messages using credentials gathered from the message itself by
mapping fields within the document to fields within a user directory.

XML Digital Signature

Validates XML documents digitally signed with valid X.509 certificates.

WS-Security

Validates XML messages using credentials gathered from WS-Security headers in a
message’s SOAP envelope.

CA SiteMinder® Web Services Security can produce and consume WS-Security
tokens. This enables you to use the WS-Security authentication scheme to deploy a
multiple-web service implementation across federated sites.

SAML Session Ticket

Validates XML messages using credentials obtained from CA SiteMinder® Web
Services Security synchronized-sessioning SAML assertions (which contain an
encrypted combination of a CA SiteMinder session ticket and a CA SiteMinder user’s
public key) placed in a message’s HTTP header, SOAP envelope, or a cookie.

CA SiteMinder® Web Services Security can generate and consume SAML Session
Ticket assertions. This enables you to use the SAML Session Ticket authentication
scheme to deploy a multiple-web service implementation within a single Policy
Server domain.

Deciding which authentication scheme or schemes you intend to use to secure your web
services is integral to how you design and implement your web services and is best
made as part of the broader context of choosing an authentication service model.

More information:

Authentication Service Models (see page 16)
WS-Security Authentication (see page 40)

Authentication Service Models

16 Policy Configuration Guide

Authentication Service Models

The ability of CA SiteMinder® Web Services Security to obtain security information from
XML documents without user interaction and produce WS-Security headers, SAML
Session Ticket assertions, and SiteMinder session cookies lets you securely deploy web
services using a number of service models.

Single-step Authentication Service Model

All requests are authenticated and handled by a single web service.

Multistep Authentication Service Model

All requests are sent to a web service responsible for authentication, which then
returns the message and authentication data back to the web service consumer.
The web service consumer application can then send requests containing this
authentication data to other related web services within or across domains.

Chain Authentication Service Model

All requests are received by a web service responsible for authentication and then
passed, with authentication data, to one or more other web services for handling.
That is, message and authentication data always flows from the authentication web
service directly to the next required web service, and from there to the next web
service and so on, without further interaction from the web service consumer.

Choosing the appropriate authentication service model is the first, and probably most
significant, decision you must make when designing a web service implementation. Your
choice of service model also plays a significant role in determining the most appropriate
CA SiteMinder® Web Services Security authentication schemes to use.

Authentication Service Models

Chapter 1: Introducing CA SiteMinder® Web Services Security 17

How the Single-Step Authentication Model Works

The single-step service model is the simplest possible model for web services—requests
from a web service consumer are authenticated and handled by a single web service.
The following diagram shows the process by which web services consumers are
authenticated using this simple model:

Appropriate authentication schemes for use in the single-step authentication model are
as follows:

■ XML Document Collector Authentication Scheme

■ XML Digital Signature Authentication Scheme

How the Multistep Authentication Model Works

The multistep authentication model is like the CA SiteMinder cookie-based single
sign-on implementation, in which WS-Security headers or SAML Session Ticket
assertions take the place of the cookie.

In the multistep authentication model, a single web service is responsible for
authenticating all incoming web service requests. This authentication service verifies a
web service consumer’s identity and returns an XML message with authentication data
in the form of WS-Security headers or a SAML Session Ticket assertion. The web service
consumer can then use this to add to subsequent requests to facilitate authentication
by other associated web services.

Authentication Service Models

18 Policy Configuration Guide

The process that the web service consumer goes through when making a request has
two phases:

1. Obtaining the authentication data

2. Using the authentication data to access other web services

The following illustration shows how request are processed in the multistep
authentication service model:

1. The web service consumer sends a request for access to a protected web Service in
the form of an XML document.

2. The SiteMinder WSS Agent receives the request, extracts credentials and passes
them to the Policy Server, which authenticates the web service request with an
appropriate authentication scheme.

After authentication, the request goes through the authorization process. A
response attribute associated with the authorizing policy causes the Policy Server to
generate a response which it sends to the SiteMinder WSS Agent, instructing it to
return authentication data to the web service.

3. The web service returns the authentication data back to the web service consumer
(typically in an XML document, but synchronized sessioning SAML assertions can
also be returned in HTTP headers or a cookie).

4. For subsequent requests, the web service consumer passes XML messages that
include the authentication data it received from the authentication service to other
associated web services.

Authentication Service Models

Chapter 1: Introducing CA SiteMinder® Web Services Security 19

5. The requests are allowed access without having to reauthenticate because the
authentication data is supplied with the request message (in effect, providing single
sign-on).

Appropriate authentication schemes for initial authentication by the authentication web
service in the multistep authentication model are as follows:

■ XML Document Collector Authentication Scheme

■ XML Digital Signature Authentication Scheme

The authorizing policy for the authentication web service should trigger one of the
following response types:

■ WS-Security Responses (appropriate for web services protected by more than one
policy store or at multiple sites)

■ SAML Session Ticket Responses (appropriate for web services protected by the
same policy store)

These responses instruct the SiteMinder WSS Agent to pass authentication data in the
form of WS-Security headers or SAML Session Ticket assertions (as appropriate) back to
the web service consumer for use in requests to associated web services. The associated
web services should be protected using the corresponding authentication scheme:

■ WS-Security Authentication Scheme

■ SAML Session Ticket Authentication Scheme

More information:

Multistep and Chain Authentication Using SiteMinder Session Tickets (see page 21)

How the Chain Authentication Service Model Works

The chain authentication model is appropriate for solutions that require XML messages
to flow between multiple web services without further intervention from the requesting
web service consumer.

In the chain authentication service model, a single web service is responsible for
authenticating all incoming web service requests. This authentication service verifies a
web service consumer’s identity, and then adds authentication data in the form of
WS-Security headers or a SAML Session Ticket assertion to the XML message. It then
passes the document to downstream web services for processing.

Authentication Service Models

20 Policy Configuration Guide

The following illustration shows the flow of data in the chain authentication model.

1. The web service consumer sends a request for access to a protected web Service in
the form of an XML document.

2. The SiteMinder WSS Agent receives the request, extracts credentials and passes
them to the Policy Server, which authenticates the web service request with an
appropriate authentication scheme.

3. After authentication, the request goes through the authorization process. A
response attribute associated with the authorizing policy causes the Policy Server to
generate a response which it sends to the SiteMinder WSS Agent, instructing it to
return authentication data to the authentication web service.

4. The authentication web service sends the XML message and authentication data to
the next web service downstream.

5. Downstream web services are configured so that each passes the XML message and
authentication data to the next web service in the chain. The requests are allowed
access without having to reauthenticate because of the authentication data
supplied with the request message.

The most appropriate authentication schemes for initial authentication of requests from
the web service consumer by the authentication web service in the chain authentication
model are as follows:

■ XML Document Collector Authentication Scheme

■ XML Digital Signature Authentication Scheme

Authentication Service Models

Chapter 1: Introducing CA SiteMinder® Web Services Security 21

The authorizing policy for the authentication web service should trigger one of the
following responses:

■ WS-Security Responses (appropriate for web services protected by more than one
policy store or at multiple sites)

■ SAML Session Ticket Responses (appropriate for web services protected by the
same policy store)

These responses instruct the SiteMinder WSS Agent to add WS-Security headers or
SAML Session Ticket assertions (as appropriate) to the XML request passed to the next
downstream web service in the chain, which should then be protected using the
corresponding authentication scheme:

■ WS-Security Authentication Scheme

■ SAML Session Ticket Authentication Scheme

More information:

Multistep and Chain Authentication Using SiteMinder Session Tickets (see page 21)

Multistep and Chain Authentication Using SiteMinder Session Tickets

Although CA SiteMinder® Web Services Security is primarily designed to provide
message content-based security for web services, it also provides limited support for CA
SiteMinder® session ticket-based session management. A CA SiteMinder® session cookie
contains basic information about the user account that is associated with a request and
authentication information for that user. The session cookie can be used to identify a
user session across all sites within a single cookie domain in your WSS environment..

SiteMinder WSS Agents always add session cookies to HTTP request headers upon
successful authentication and authorization. SiteMinder WSS Agents that have access to
HTTP header information can be configured to authenticate a request using a session
cookie in the HTTP request header. In this case, there is no need to configure responses
to generate other token types at the authentication web service.

For example, in the following environment, session cookies can be used without the
need to configure WS-Security or SAML Session Ticket responses at the authentication
web service:

■ An authentication web service is configured to validate incoming requests using
XML Digital Signature authentication.

■ All the other web services in the chain authentication implementation reside within
the same cookie domain.

■ All the SiteMinder WSS Agents that protect web services beyond the authentication
web service are configured to accept session cookies.

How to Develop and Deploy CA SiteMinder® Web Services Security Protected Web Services

22 Policy Configuration Guide

To configure SiteMinder WSS Agents to validate requests using associated session
tickets, set the XMLSDKAcceptSMSessionCookie agent configuration parameter. See the
SiteMinder WSS Agent documentation for details.

How to Develop and Deploy CA SiteMinder® Web Services
Security Protected Web Services

To develop a web service implementation protected with CA SiteMinder® Web Services
Security, do the following:

1. Determine how many web services, locally or at federated sites, will be used to
perform the required functionality.

2. Choose an authentication service model by determining the following:

■ How security information is to be obtained from a request and, in a
multiple-web service environment, how that information is to be passed
between web services.

■ In a multiple-web service environment, the flow of data between web services.

3. For each web service in your web service implementation, determine the following:

a. Define the service interface. The simplest form of interface for a web service
can be specified as a set of XML schemas. These schemas dictate the type of
XML document to be sent to the web service and what type of document the
sender can expect in return.

b. Build the web service implementation to accommodate an incoming XML
document of the type specified in the interface and turn that XML document
into a meaningful set of calls to the integrated back-end systems that the web
service exposes.

c. Deploy your web service implementation to a web server or application server
protected by a SiteMinder WSS Agent. You direct consumers of your web
service to send their XML message requests to this URI to access the web
service.

d. Configure CA SiteMinder® Web Services Security policies to determine how the
SiteMinder WSS Agent should authenticate, authorize, and process the XML
message before it passes it onto the web service implementation for handling.

Once it receives a message from the SiteMinder WSS Agent, the web service
should return an applicable XML response to the calling web service consumer
application or the next.

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 23

Chapter 2: Configure Authentication
Schemes to Verify User Identities Obtained
from Web Service Requests

This section contains the following topics:

Authentication Scheme Overview (see page 23)
How to Configure XML DCC Authentication to Verify User Identities Using Credentials
Gathered from XML Request Messages (see page 24)
How to Configure XML DSIG Authentication to Verify User Identities Associated with
X.509 Certificates (see page 36)
WS-Security Authentication (see page 40)
How to Configure SAML Session Ticket Authentication to Verify User Identities Obtained
from SAML Session Ticket Assertions (see page 47)

Authentication Scheme Overview

CA SiteMinder® Web Services Security authentication schemes provide a way to collect
credentials from an XML message request sent to a protected web service and
determine the identity of the user represented by those credentials.

Authentication schemes must be configured using the Administrative UI. During
authentication, SiteMinder WSS Agents communicate with the Policy Server to
determine the proper credentials that must be retrieved from the request message.

This chapter discusses general information for working with authentication schemes in
the Administrative UI, then provides separate sections that explain how to configure
each supported scheme using authentication scheme templates. These templates
provide the Policy Server with most of the information it needs to process a scheme. An
administrator must complete the configuration of an authentication scheme by
supplying implementation specific information, such as server IP addresses, or shared
secrets required to initialize a scheme.

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

24 Policy Configuration Guide

How to Configure XML DCC Authentication to Verify User
Identities Using Credentials Gathered from XML Request
Messages

Configure an XML Document Credential Collector (XML DCC) authentication scheme to
validate user credentials obtained from incoming web service request documents.

To configure CA SiteMinder® Web Services Security to validate user identities using XML
DCC authentication, complete the following process:

1. Configure the XML DCC authentication scheme (see page 24).

2. Configure XML DCC field mappings (see page 25).

Configure the XML DCC Authentication Scheme

To obtain authentication information from an incoming XML document, configure the
XML DCC authentication scheme.

Follow these steps:

1. Click Infrastructure, Authentication.

2. Click Web Services Authentication Schemes, Create Authentication Scheme.

The Create Authentication Scheme pane opens.

Authentication scheme settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Enter a name and a description for the scheme in the General group box.

4. Select XML Document Credential Collector from the Authentication Scheme Type
list.

5. Specify a protection level.

6. Configure XML DCC field mappings (see page 25) in the Scheme Setup section.

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 25

7. (Optional) Select the Require Secure Transport Layer check box to require that
authentication only take place over an SSL connection.

Important! The Policy Server expects the information in the XML document to be in
clear text. To enforce security, we recommend that you configure this
authentication scheme over an SSL connection.

8. Click Submit.

The authentication scheme is saved. You can now assign it in application object
components or realms.

More information:

(Optional) Configure Other Field Mappings (see page 27)
Configure the Required "user" Mapping (see page 25)

How to Configure XML DCC Field Mappings

To create XML DCC mappings in the Administrative UI, map a user store field name to an
XPath string that identifies an element of an XML document. Create these field
mappings by browsing a specific XML schema file (.xsd or .dtd) or by entering an XPath
query language string directly.

The XML DCC authentication scheme requires only one mapped field—"user"—to
identify the XML document element that identifies the user to authenticate. To meet
this requirement, the Field Mapping dialog forces the first field mapping that you create
to be named "User". The only other specific field mapping name is "Password." To
authenticate users by username and password, configure a second mapping named
"Password."

To configure XML DCC field mappings, complete these procedures:

1. Configure the required "user" mapping (see page 25)

2. (Optional) Configure other field mappings (see page 27)

Configure the Required "user" Mapping

The required "user" mapping entry maps the user name field in the user store. The
"user" mapping is created when you create an XML DCC authentication scheme. Before
you configure any further mappings, map this value to a field in the XML document.

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

26 Policy Configuration Guide

Two methods for creating mappings are as follows:

■ Open a schema and select elements from it that you want to map to the user store.
This method is easier because CA SiteMinder® Web Services Security builds the
XPath query for you as you select fields for mappings.

■ Use the Advanced XPath query option to build more complex XPath queries
manually.

Follow these steps:

1. Locate the Scheme Setup section on the Create Authentication Scheme pane and
click the Edit button beside the "user" field mapping entry.

Field mapping settings open.

2. Do one of the following:

– Type an XPATH query defining the mapping for "user" in the XPath field.

– Load a schema (.xsd) file and select the element to map to "user" by browsing
using the following procedure:

a. Unset the Advance XPath query option.

b. If the schema file you require is remote (for instance, if it is typically
accessed over HTTP using its URL), download it to a local drive.

c. Click Browse and navigate to a schema file in the File Upload dialog that
appears.

d. Click Upload XSD File.

 The schema is uploaded.

e. Select the schema element that you want to map to the 'user" field name
in the Select a node group box.

 The Select a node group box displays the selected schema using a standard
tree-style hierarchical view. Click the plus sign (+) next to an element to
expand it. Click the minus sign (-) beside an expanded element to contract
it. Elements marked with an asterisk (*) are repeatable within the XML
document (that is, incoming XML documents may contain multiple
instances of that element).

3. (Optional) Specify the XPath function (count, div, index, mod, sum) that you want to
apply to the mapping by choosing it from the Function drop-down list.

The Function option lets you create more complex mappings by processing
functions that further evaluate the XML document. For more information about
these functions, navigate to the XPath specification at http://www.w3.org.

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 27

4. Specify whether the mapped information is located relative to the message body or
message header by selecting the Message Body or Message Header option button.

This defines the root of the XML document and tells XPath where to search for the
relevant information. If the document has multiple headers, XPath uses the value of
the first header that resolves.

5. Click OK to save your changes and return to the Create Authentication Scheme
pane.

(Optional) Configure Other Field Mappings

Aside from the "user" mapping, you can define any number of other XML DCC field
mappings.

 Two methods for creating mappings are as follows:

■ Open a schema and select elements from it that you want to map to the user store.
This method is easier because CA SiteMinder® Web Services Security builds the
XPath query for you as you select fields to map.

■ To build more complex XPath queries manually, use the Advanced XPath query
option.

Follow these steps:

1. Locate the Scheme Setup section on the Create Authentication Scheme pane and
click Add.

Field mapping settings open.

2. Enter the name of a field in the user store, such as "email" in the Name field. This
specifies the name of the field to which you are mapping the XML element.

Note: This name must match an entry in the user store; it is not case-sensitive.

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

28 Policy Configuration Guide

3. Do one of the following tasks:

– Type an XPATH query defining the mapping in the XPath field.

– Load a schema (.xsd) file and browse to the element to map to the specified
field name using the following procedure:

a. Unset the Advance XPath query option.

b. Click Browse.

c. Navigate to a schema file in the File Upload dialog that appears.

d. Click Upload XSD File.

 The schema is uploaded.

e. Select the schema element that you want to map to the specified field
name in the Select a node group box.

 The Select a node group box displays the selected schema using a standard
tree-style hierarchical view. To expand an element, click the plus sign (+)
next to it. To contract an element, click the minus sign (-) next to it.
Elements marked with an asterisk (*) are repeatable within the XML
document (that is, incoming XML documents can contain multiple
instances of that element).

Note: A loaded schema is not persistent; even when creating multiple mapping
from the same schema file, you must reload the schema for each mapping.

4. (Optional) Specify the XPath function (count, div, index, mod, sum) that you want to
apply to the mapping by choosing it from the Function drop-down list.

The Function option lets you create more complex mappings by processing
functions that further evaluate the XML document. For more information about
these functions, see the XPath specification at http://www.w3.org.

5. Specify whether the mapped information is located relative to the message body or
message header by selecting the Message Body or Message Header option button.

This setting defines the root of the XML document and tells XPath where to search
for the relevant information. If the document has multiple headers, XPath uses the
value of the first resolved header.

6. Click OK to save your changes and return to the Create Authentication Scheme
pane.

XML DCC XPath Mapping Examples

The following examples show XPath expressions to perform complex mappings.

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 29

Example Namespace-aware XPath Query

In the following XML file, the username and password are in the SOAP body, and the
first element below the body is prefixed by a namespace. It would not therefore be
possible to obtain these elements using the schema browsing method.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <env:Header>

 </env:Header>

 <env:Body>

 <n1:sayHello testnum="purchaseOrder11c"

xmlns:n1="http://www.xyz.com/examples/Trader">

 <BillingInformation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\data\CredentialHeader.xsd">

 <CustomerCredentials>

 <username>Robm</username>

 <password>password</password>

 <PIN>String</PIN>

 </CustomerCredentials>

 </BillingInformation>

 </n1:sayHello>

 </env:Body>

</env:Envelope>

To obtain the username, specify the following XPath query:

/*[local-name()='sayHello' and

namespace-uri()='http://www.xyz.com/examples/Trader']/BillingInformation/Customer

Credentials/username

To obtain the password, specify the following XPath query:

/*[local-name()='sayHello' and

namespace-uri()='http://www.xyz.com/examples/Trader']/BillingInformation/Customer

Credentials/password

Example XPath Query to Obtain Credentials From Embedded XML Documents

Required credentials can be present in a SOAP body payload, but the XML screened
from the parser by a CDATA section or by replacement of angle brackets by entity
references.

The following XPath queries will work for either CDATA or entity-reference screened
XML.

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

30 Policy Configuration Guide

XPath query for username

The following XPath query can be used to obtain a username mapping from the CDATA
section or from entity-reference screened XML:

 substring-before(substring-after(/*[local-name()='sayHello' and

namespace-uri()='http://www.bea.com/examples/Trader']/text(),'<username>'),'</use

rname>')

XPath query for password

The following XPath query can be used to obtain a password mapping from the CDATA
section or from entity-reference screened XML:

 substring-before(substring-after(/*[local-name()='sayHello' and

namespace-uri()='http://www.bea.com/examples/Trader']/text(),'<password>'),'</pas

sword>')

Sample document containing credentials in CDATA section

The following sample XML document shows username and password credentials that
are screened by a CDATA section.

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Header>

<BillingInformation>

 <CustomerCredentials>

 <username>Robm</username>

 <password>password</password>

 </CustomerCredentials>

</BillingInformation>

</env:Header>

<env:Body>

<n1:sayHello testnum="purchOrder05-cdata"

xmlns:n1="http://www.bea.com/examples/Trader">

<![CDATA[<!--Sample XML file generated by XMLSpy v2005 rel. 3 U

(http://www.altova.com)-->

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 31

<BillingInformation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\data\CredentialHeader.xsd">

 <CustomerCredentials>

 <username>Robm</username>

 <password>password</password>

 <PIN>String</PIN>

 </CustomerCredentials>

</BillingInformation>

]]>

</n1:sayHello>

</env:Body>

</env:Envelope>

Sample document containing credentials in entity-referenced screened XML

The following sample XML document shows username and password credentials that
are screened by the use of replacement of angle brackets by entity references.

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Header>

<BillingInformation>

 <CustomerCredentials>

 <username>Robm</username>

 <password>password</password>

 </CustomerCredentials>

</BillingInformation>

</env:Header>

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

32 Policy Configuration Guide

<env:Body>

<n1:sayHello testnum="purchaseOrder04"

xmlns:n1="http://www.bea.com/examples/Trader">

<!--Sample XML file generated by XMLSpy v2005 rel. 3 U

(http://www.altova.com)-->

<BillingInformation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\data\CredentialHeader.xsd">

 <CustomerCredentials>

 <username>Robm</username>

 <password>password</password>

 <PIN>String</PIN>

 </CustomerCredentials>

</BillingInformation>

</n1:sayHello>

</env:Body>

</env:Envelope>

Example XPath Query to Obtain Credentials with a Default Namespace for all Elements

In the following XML file, the sayHello element has a default namespace specified by
xmlns="http://www.xyz.com/examples/Trader".

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <env:Header>

 </env:Header>

 <env:Body>

 <sayHello testnum="purchaseOrder11c"

xmlns="http://www.xyz.com/examples/Trader">

 <BillingInformation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\data\CredentialHeader.xsd">

 <CustomerCredentials>

 <username>Robm</username>

 <password>password</password>

 <PIN>String</PIN>

 </CustomerCredentials>

 </BillingInformation>

 </sayHello>

 </env:Body>

</env:Envelope>

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 33

This following XPath query searches for the element "username" with the namespace
"http://www.xyz.com/examples/Trader" anywhere in the document:

/*[local-name()='username' and

namespace-uri()='http://www.xyz.com/examples/Trader']

Example XPath Query that Explicitly Specifies the Namespace Prefix

To extract the username and password (without namespace prefix) from a SOAP
message, you can use an XPath query with an explicit tag including the namespace
prefix and colon (:) as a simple text string.

For example, you could use the following XPath query to extract the username and
password (without namespace prefix) from the sample SOAP message.

Example XPath query with explicit tag

This XPath query could be used to extract the username and password (without
namespace prefix) from the sample SOAP message that follows.

//*[name()='wsu:dccuser']

//*[name()='wsu:dccpwd']

Sample SOAP message

The preceding XPath query could be used to extract the username and password
(without namespace prefix) from this sample SOAP message.

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-se

cext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-uti

lity-1.0.xsd">

 <soap:Header>

<wsa:Action>http://example.com/services/XMLProcess_WebReq_portWebReq/Operation_1<

/wsa:Action>

 <wsa:MessageID>urn:uuid:e0b940b0-7d44-4e1e-b391-2e65c5b1de3f</wsa:MessageID>

 <wsa:ReplyTo>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa

:Address>

 </wsa:ReplyTo>

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

34 Policy Configuration Guide

<wsa:To>http://ex01/XMLProcess_Proxy/XMLProcess_WebReq_portWebReq.asmx</wsa:To>

 <wsse:Security>

 <wsu:Timestamp wsu:Id="Timestamp-cedeb96e-9b12-45e6-bdf1-6e6c323a24cb">

 <wsu:Created>2006-04-12T18:31:33Z</wsu:Created>

 <wsu:Expires>2006-04-12T18:36:33Z</wsu:Expires>

 <wsu:dccuser>catest1</wsu:dccuser>

 <wsu:dccpwd>msimsi</wsu:dccpwd>

 </wsu:Timestamp>

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 <Operation_1 xmlns="http://example.com/services">

 <XMLClaim MemberID="123456789" SubscriberID="987654321" TimeStamp="20060412

13:31:32:952" TranNumber="270" ControlID="1" xmlns="http://Example.Claim_XML" />

 </Operation_1>

 </soap:Body>

</soap:Envelope>

Example XPath Query With Namespace and Element-by-Element Navigation

Use the following XPath query, with namespace and element-by-element navigation:

/*[local-name()='Security' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri

ty-secext-1.0.xsd'][1]/*[local-name()='Timestamp' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri

ty-utility-1.0.xsd'][1]/*[local-name()='dccuser' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri

ty-utility-1.0.xsd'][1]

/*[local-name()='Security' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri

ty-secext-1.0.xsd'][1]/*[local-name()='Timestamp' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri

ty-utility-1.0.xsd'][1]/*[local-name()='dccpwd' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri

ty-utility-1.0.xsd'][1]

/*[local-name()='Security' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse

curity-secext-1.0.xsd'][1]

/*[local-name()='Timestamp' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse

curity-utility-1.0.xsd'][1]

/*[local-name()='dccuser' and

namespace-uri()='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse

curity-utility-1.0.xsd'][1]

How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request
Messages

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 35

To extract the username and password from the following SOAP message:

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-se

cext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-uti

lity-1.0.xsd">

< so ap:He ad e r>

<wsa:Action>http://example.com/services/XMLProcess_WebReq_portWebReq/Operation_1<

/wsa:Action>

 <wsa:MessageID>urn:uuid:e0b940b0-7d44-4e1e-b391-2e65c5b1de3f</wsa:MessageID>

 <wsa:ReplyTo>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa

:Address>

 </wsa:ReplyTo>

<wsa:To>http://ex01/XMLProcess_Proxy/XMLProcess_WebReq_portWebReq.asmx</wsa:To>

 <wsse:Security>

 <wsu:Timestamp wsu:Id="Timestamp-cedeb96e-9b12-45e6-bdf1-6e6c323a24cb">

 <wsu:Created>2006-04-12T18:31:33Z</wsu:Created>

 <wsu:Expires>2006-04-12T18:36:33Z</wsu:Expires>

 <wsu:dccuser>catest1</wsu:dccuser>

 <wsu:dccpwd>msimsi</wsu:dccpwd>

 </wsu:Timestamp>

 </wsse:Security>

 </soap:Header>

<soap:Body>

 <Operation_1 xmlns="http://example.com/services">

 <XMLClaim MemberID="123456789" SubscriberID="987654321" TimeStamp="20060412

13:31:32:952" TranNumber="270" ControlID="1" xmlns="http://Example.Claim_XML" />

 </Operation_1>

 </soap:Body>

</soap:Envelope>

How to Configure XML DSIG Authentication to Verify User Identities Associated with X.509 Certificates

36 Policy Configuration Guide

How to Configure XML DSIG Authentication to Verify User
Identities Associated with X.509 Certificates

Configure an XML Digital Signature (XML DSIG) authentication scheme to verify user
identities that are associated with the X.509 certificates used to sign XML request
messages.

To use an X.509 certificate to identify a user, the XML DSIG authentication scheme uses
a certificate mapping to compare a certificate with a user in a user directory. A
certificate mapping defines how data in the certificate is mapped to form a user
Distinguished Name (DN), which the Policy Server uses to authenticate the client.

To configure CA SiteMinder® Web Services Security to validate user identities using XML
DSIG authentication, complete the following process:

1. Verify required XML document elements for XML-DSIG authentication (see page 37)

2. Configure the XML DSIG authentication scheme

3. Configure a certificate mapping (see page 39)

How to Configure XML DSIG Authentication to Verify User Identities Associated with X.509 Certificates

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 37

Verify Required XML Document Elements for XML-DSIG Authentication

For the XML-DSIG authentication scheme to work, the XML document sent by the web
service consumer must contain the following elements:

<Signature>

As the parent element for the XML signature, it specifies all information relevant to
the digital signature.

To verify the signature, CA SiteMinder® Web Services Security requires that an
X.509 certificate be part of the <Signature> element in the XML document.

Because the Policy Server does not interact with a Certificate Authority for this
scheme, you must configure a certificate mapping that maps the Issuer DN in the
certificate to a corresponding entry in the referenced user store. For LDAP user
directories only, you can configure the certificate mapping to require that a copy of
the certificate is in the user store to be compared against the certificate in the
document.

<KeyInfo>

This element specifies the key needed to validate the signature. This information
may include keys, names, and certificates for the sender.

For the Policy Server to authenticate a client, this element must have enough
information to determine the public key that created the signature.

<KeyName>

This is a child element of <KeyInfo>; it contains a string value that identifies the key
to the recipient of the XML document. This string could be a key index, a
distinguished name (DN), or an email address, for example.

The Policy Server maps the value of this element to an entry in the user store.

Configure the XML DSIG Authentication Scheme

To obtain authentication information from digital signatures associated with incoming
XML documents, you configure the XML DSIG authentication scheme.

How to Configure XML DSIG Authentication to Verify User Identities Associated with X.509 Certificates

38 Policy Configuration Guide

Follow these steps:

1. Click Infrastructure, Authentication.

2. Click Web Services Authentication Schemes, Create Authentication Scheme.

The Create Authentication Scheme pane opens.

Authentication scheme settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Enter a name and a description for the scheme in the General group box.

4. Select XML Digital Signature from the Authentication Scheme list.

5. Specify a protection level.

6. In the Scheme Setup group box, select how much of the XML document content is
signed. A digital signature can apply only to one portion of an XML document. The
choices are as follows:

■ Must cover the entire document

■ Must cover the body of the message

■ Only needs to apply to headers

Note: If the XML document uses raw XML, select the Must cover entire document
option, because the entire document is the payload. With raw XML, no envelope
headers or body tags exist to distinguish the payload from other content.

7. To perform authentication over an SSL connection, select the Require Secure
Transport Layer check box.

8. Click Submit.

The authentication scheme is saved. You can now assign it in application object
components or realms.

9. Configure certificate mapping for the XML-DSIG scheme.

A certificate mapping defines how data in the certificate is mapped to form a user
Distinguished Name (DN), which the Policy Server uses to authenticate the client.

How to Configure XML DSIG Authentication to Verify User Identities Associated with X.509 Certificates

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 39

Configure a Certificate Mapping

Configure a certificate mapping that lets CA SiteMinder® determine how to compare
user certificate information with the information stored in the user directory.

To configure a certificate mapping

1. Click Infrastructure, Directory.

2. Click Certificate Mappings.

The Certificate Mappings page appears.

3. Click Create Certificate Mapping.

The Create Certificate Mapping page appears.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

4. Type the Issuer DN exactly as it appears in the certificate. Do not add any additional
spaces or characters.

When entering the DN, escape reserved special characters with a backslash (\).
Special characters include:

■ semicolons (;)

■ quotes (")

■ backslashes (\)

■ plus character (+)

■ greater than character (>)

■ less than character (<)

More information about reserved special characters for DNs exists at
http://www.faqs.org/rfcs/rfc2253.html.

Note: If you use a relational database as a policy store, Issuer DNs cannot exceed
255 characters. If you use an LDAP directory as a policy store, verify the character
limit for your specific directory.

5. Select the directory type against which the certificate is mapped.

For LDAP directories only, you can configure the Policy Server to verify that the
certificate the user presents matches the certificate stored in the user record in the
user directory. The Certificate Required in Directory option lets you require this
verification.

Note: The attribute in the user record where the certificate is stored is named
usercertificate.

WS-Security Authentication

40 Policy Configuration Guide

6. Specify how to map X.509 user certificate information to a user entry in the user
directory. The Policy Server can apply a mapping using a single attribute, a custom
mapping expression, or the entire Subject Name from the user certificate to locate
the correct user entry.

7. Select an attribute name from the list.

8. Click Test to test the certificate mapping.

9. (Optional) Select Perform CRL Checks and specify the CRL settings.

If you do not select CRLs, you can use OCSP.

10. Click Submit.

The certificate is mapped with the selected user directory.

Note: For more information about certificate mapping, including how to test a mapping
and configure custom mapping expressions, see Certificate Mapping for X.509 Client
Authentication Schemes in the Policy Server Configuration Guide.

WS-Security Authentication

The WS-Security standard defines a set of SOAP header extensions that provide
mechanisms for securely passing authentication data and protecting message content
between web services, particular those at federated enterprises. WS-Security allows
web service implementers to do the following:

■ Send authentication data as part of a message using one of several supported
security token types.

■ Ensure message integrity using digital signatures.

■ Ensure message confidentiality using XML encryption.

These mechanisms can be used independently (for example, to pass authentication data
in a security token) or in combination (for example, signing and encrypting a message
and providing authentication data in a security token).

For more information about the WS-Security standard, see the OASIS Standard, Web
Services Security: SOAP Message Security 1.0.

XML Encryption

CA SiteMinder® Web Services Security supports encryption and decryption of any
combination of WS-Security message header elements and body elements using XML
encryption compliant with OASIS Standard 200401, Web Services Security: SOAP
Message Security 1.0.

WS-Security Authentication

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 41

XML encryption of WS-Security messages provides end-to-end security for web service
applications that require secure exchange of structured data. XML encryption provides
security functionality that cannot be provided by point-to-point security protocols such
as SSL. Specifically, it allows you to:

■ Encrypt only part of the data being exchanged

■ Secure sessions between more than two parties

How CA SiteMinder® Web Services Security Obtains Credentials from Encrypted WS-Security
Documents

The WS-Security authentication scheme automatically attempts to decrypt any
XML-encrypted elements in incoming WS-Security messages for CA SiteMinder® Web
Services Security to use for authentication/authorization. No additional configuration is
required.

Note: Where an incoming SOAP message contains multiple WS-Security header
elements, each is identified by a unique SOAP actor/role attribute. In such cases, CA
SiteMinder® Web Services Security attempts to decrypt only XML-encrypted elements
specified in the header from which the WS-Security authentication scheme is configured
to obtain security tokens.

More information:

SOAP Actor/Role Attributes in Messages with Multiple WS-Security Headers (see page
44)

Configure CA SiteMinder® Web Services Security to Perform Encryption and Decryption of
WS-Security Documents

CA SiteMinder® Web Services Security can encrypt any WS-Security message that
contains the recipient’s X.509 certificate in a WS-Security header. CA SiteMinder® Web
Services Security extracts the recipient’s public key from their X.509 certificate and uses
this to encrypt a symmetric key, which it then uses to encrypt the desired header and
message elements. Multiple encryption algorithms are available; different encryption
algorithms can be used for encryption of the symmetric key and header/message
elements.

Configure CA SiteMinder® Web Services Security to perform XML encryption on
elements of outgoing messages by adding appropriate response attribute variables to a
response configured to generate WS-Security headers.

WS-Security Authentication

42 Policy Configuration Guide

Although the WS-Security authentication scheme automatically decrypts encrypted
elements in incoming messages, the default behavior of CA SiteMinder® Web Services
Security is to deliver messages to the recipient web service in encrypted form. However,
you can configure CA SiteMinder® Web Services Security to deliver decrypted versions
of incoming encrypted WS-Security messages by configuring a response with the
TXM_WSSEC[_SAML]_ENCRYPT_DECRYPT response attribute variable and associating it
with the authorizing policy.

XML Encryption and Decryption Service Use Case

In multistep and chain authentication service models, encryption or decryption may be
considered part of message preparation before sending to the ultimate destination.
Thus, the CA SiteMinder® Web Services Security XML encryption and decryption
functionality might typically be used to implement a WS-Security encryption or
decryption web service.

For example, consider a business relationship between two companies—Company A
and Company B. Company A wants to end detailed bids on contracts to Company B
without unauthorized personnel at Company B seeing the message (as would be the
case if it was simply sent over an SSL link).

To implement this business logic using CA SiteMinder® Web Services Security-protected
web services, Company A develops the following:

■ A web service consumer application that takes the bid, places it in XML format and
wraps it with SOAP headers, placing Company B’s X.509 certificate in a WS-Security
header. The application then sends it to Company A’s encryption web service.

■ An encryption web service protected by the WS-Security authentication scheme
and an authorization policy configured to do the following:

– Obtain the intended recipient's public key certificate (in this case Company B's
certificate) from the message headers

– Encrypt the required header and message elements.

The encryption web service then forwards the encrypted message to a decryption
web service at Company B.

Company B develops a Decryption web service protected by the WS-Security
authentication scheme and an authorization policy configured to deliver the decrypted
version of message header/body elements.

WS-Security Authentication

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 43

Encryption Algorithms

CA SiteMinder® Web Services Security supports the following XML encryption
algorithms:

■ Key transport algorithms (used to encrypt the symmetric key):

– rsa-1_5

– rsa-oaep-mgf1p

■ Block Encryption algorithms (used to encrypt message data):

– tripledes-cbc

– aes128-cbc

– aes256-cbc

– aes192-cbc

Message Timestamps

Regardless of the particular security token used by any WS-Security document, a utility
timestamp element, which specifies the expiry time of a message, can be specified. If
this element is covered by an XML signature, then the timestamp provides a protection
against replay attacks for the entire XML document (different from the replay attack
defense provided by the Username and Password Digest token) by giving an indication
of the document's “freshness.”

Note: The expiry feature does not completely address the problems introduced by
unsynchronized clocks. The receiving party in a WS-Security message exchange may
receive a document before the timestamp's created time; the issue of acceptable skew
is a receiving policy issue, while the expiry offset is a creation policy issue.

XML Signature Scope

CA SiteMinder® Web Services Security provides three options for defining what
elements of an incoming SOAP message are digitally signed when configuring
WS-Security authentication using either Username and Password Digest or X509v3
tokens:

■ Signature must cover the entire document

■ Signature must cover the body of the message

■ Signature need apply only to headers

WS-Security Authentication

44 Policy Configuration Guide

Notes:

For the Username and Password Digest token, XML digital signatures are optional.

If the authentication scheme is configured to require the timestamp element, the digital
signature must cover that timestamp.

SAML token authentication has its own requirements for what elements of a SOAP
message must be digitally signed; these are defined implicitly based on the subject
confirmation methods that you require.

SOAP Actor/Role Attributes in Messages with Multiple WS-Security Headers

If a SOAP document has multiple WS-Security headers (intended for different
recipients), the WS-Security specification requires that each be identified uniquely using
the SOAP actor/role attribute (at most, one header can omit the SOAP actor attribute).

The WS-Security authentication scheme lets you specify the value of the SOAP
actor/role attribute that identifies the header element from which CA SiteMinder® Web
Services Security should obtain security tokens.

Note: If a message has only one WS-Security header, it does not need to include a SOAP
actor attribute. However, if you specify an actor/role attribute when configuring the
authentication scheme, a matching actor attribute must be present in the document to
allow successful authentication.

Username and Password Digest Token Age Restrictions

The WS-Security authentication scheme provides protection against replay attacks using
Username and Password Digest tokens by imposing a "freshness" restriction (60
minutes by default) on the age of the token. That is, if a token was created more than 60
minutes ago according to its <wsu:Created> timestamp, authentication fails.

The token age restriction for Username and Password Digest Tokens can be configured
at the agent level. For more information, see the SiteMinder WSS Agent Configuration
Guide.

WS-Security Authentication

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 45

How to Configure WS-Security Authentication to Verify User Identities Obtained
from WS-Security Headers

Configure a WS-Security authentication scheme to verify user identities using
credentials obtained from WS-Security tokens in the SOAP header of a request message.
The WS-Security authentication scheme can also validate digital signatures and decrypt
XML encrypted headers as necessary..

To configure CA SiteMinder® Web Services Security to validate user identities using
WS-Security authentication, complete the following process:

1. Verify that certificates required to validate signed tokens are present in the
certificate data store (see page 45)

2. Configure the WS-Security authentication scheme

Verify That Certificates Required to Validate Signed Tokens are Present in the Certificate Data
Store

CA SiteMinder® Web Services Security uses the public key certificates of trusted issuers
to validate signed WS-Security tokens.

Public key certificates are stored in the certificate data store (CDS). The certificate data
store is collocated with the policy store. All Policy Servers that share a common view
into the same policy store have access to the same certificates.

Note: For more information about the CDS and how to store certificates in it, see the CA
SiteMinder® Policy Server Configuration Guide.

The following table shows the certificates that must be present in the CDS to handle
your WS-Security validation requirements.

Token Type Required Certificates

SAML Assertion; Sender-vouches Certificate of issuing web service
consumer application

SAML Assertion; Holder-of-key Certificates of XML request subject and
issuing web service consumer application.

WS-Security Authentication

46 Policy Configuration Guide

Token Type Required Certificates

X.509v3; Username (if signed) Certificate of trusted issuer

Configure the WS-Security Authentication Scheme

To obtain security information from WS-Security headers in incoming XML messages,
configure the WS-Security authentication scheme.

Follow these steps:

1. Click Infrastructure, Authentication.

2. Click Web Services Authentication Schemes, Create Authentication Scheme.

The Create Authentication Scheme pane opens.

Authentication scheme settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Enter a name and a description for the scheme in the General section.

4. Select WS-Security from the Authentication Scheme Type list.

5. Specify a protection level.

6. In the Scheme Setup section, select one of the following required Security Token
Types:

■ Username and Password Digest (the default). Also valid for Username and
Password tokens (clear text).

■ X509v3 Certificate

■ SAML Assertion

If you select Username and Password Digest or X509v3 Certificate, the XML
Signature Restrictions section is displayed. If you select SAML Assertion, the SAML
Token Restrictions section is displayed.

7. If you selected the Username and Password Digest or X509v3 Certificate security
token type, specify how restrictions should be applied in the XML Signature
Restrictions section.

8. If you selected the SAML Assertion security token type, complete the options in the
SAML Token Restrictions section to specify how token restrictions should be
applied.

How to Configure SAML Session Ticket Authentication to Verify User Identities Obtained from SAML Session Ticket
Assertions

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 47

9. (Optional) For messages with multiple WS-Security headers, specify the value of the
SOAP actor (role) attribute that identifies the header element from which CA
SiteMinder® Web Services Security should obtain security tokens in the SOAP Role
field (located in the Advanced group box). For example:

http://www.example.com/soap/MySOAPRole

10. (Optional) To prevent authentication errors caused by clock skew between token
producer and consumer systems, specify the maximum allowable skew time in the
Timestamp Skew Time field (located in the Advanced group box).

Default: 30 seconds

11. Click Submit.

The authentication scheme is saved. You can now assign it in application object
components or realms.

(Optional) Strip Standard Prefixes from XPath Queries That Identify WS-Security SAML
Assertion Attributes

When specifying an XPath expression to identify a SAML assertion attribute that
specifies the user identity for WS-Security authentication in the Attribute Name/XPATH
field, you may need to strip standard prefixes to return the attribute value itself. The
XPath substring-after function provides a standard method to perform this operation.

For example, consider a SAML assertion created by the CA SiteMinder SAML Assertion
Generator. This assertion contains an attribute “username” that specifies the user
identify that you want to use for authentication in the following format:

header:uid=username

To remove the unwanted prefix, “header:uid=”, use the XPath substring-after function
in the XPath query in which you specify the target attribute. For example the following
Xpath query will return “username” rather than the whole string
“header:uid=username”:

substring-after(//SMprofile/NVpair[1]/text(),"header:uid=")

How to Configure SAML Session Ticket Authentication to Verify
User Identities Obtained from SAML Session Ticket Assertions

The SAML Session Ticket authentication scheme provides a mechanism for single
sign-on across web services that are protected by the same policy store. The scheme
authenticates XML messages using credentials that are obtained from SAML Session
Ticket assertions in an HTTP header, a SOAP envelope, or a cookie. SAML Session Tickets
are strongly secure assertions that a SiteMinder WSS Agent in the same Policy Server
domain generates after initial authorization of the request.

How to Configure SAML Session Ticket Authentication to Verify User Identities Obtained from SAML Session Ticket
Assertions

48 Policy Configuration Guide

A SAML Session Ticket assertion is a data structure that contains a SiteMinder session
ticket and a public key (both encrypted). The SAML Session Ticket authentication
scheme uses the assertions to do the following operations:

■ Verify that a valid SiteMinder session exists.

■ Ensure the integrity of the signed XML document.

By including the session ticket and the public key in the assertion, a web service
consumer can access web services protected by SOA Agents in the same Policy Server
domain without being rechallenged for credentials.

To configure CA SiteMinder® Web Services Security to validate user identities using
SAML Session Ticket authentication, complete the following process:

1. Review information about how multiple SAML Session Ticket assertions are
processed (see page 49)

2. Configure a SAML Session Ticket authentication scheme (see page 50)

How to Configure SAML Session Ticket Authentication to Verify User Identities Obtained from SAML Session Ticket
Assertions

Chapter 2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests 49

Review Information About How Multiple SAML Session Ticket Assertions are
Processed

SAML Session Ticket assertions can be placed the in a SOAP document, in an HTTP
header separate from the XML document, or in a cookie as shown in the following
illustration:

If a request message contains more then one associated assertion, assertions found
within assertion cookies take precedence over assertions in the SOAP envelope or HTTP
header. The SiteMinder WSS Agent first collects all SAML Session Ticket assertions from
the cookie and the header or envelope as specified in the authentication scheme. The
agent then tests each assertion until it finds the first one with a valid session ticket (that
is, it can be decrypted with the agent key) and valid signatures, if they are required.
Authentication is then performed using this assertion.

Note: If the authentication fails later in the authentication process because the first
valid session ticket is found to be expired or revoked, authentication will fail—potential
session tickets included in other assertions are not subsequently evaluated.

How to Configure SAML Session Ticket Authentication to Verify User Identities Obtained from SAML Session Ticket
Assertions

50 Policy Configuration Guide

Configure a SAML Session Ticket Authentication Scheme

To obtain security information from SAML Session Ticket assertions in an HTTP header, a
SOAP envelope, or a cookie that is associated with an incoming message, configure the
SAML Session Ticket authentication scheme.

Follow these steps:

1. Click Infrastructure, Authentication.

2. Click Web Services Authentication Schemes, Create Authentication Scheme.

The Create Authentication Scheme pane opens.

Authentication scheme settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Enter a name and a description for the scheme in the General group box.

4. Select SAML Session Ticket from the Authentication Scheme Type list.

5. Enter a protection level.

6. In the Scheme Setup group box, set the following options, as required:

■ Specify where the SAML assertion is located by selecting one of the following
options:

– Envelope Header

– HTTP Header

■ (Optional) To require that incoming messages are signed, set the Require
signature on XML message option. If this option is set, the following statements
must be true for authentication to occur:

– The document must be signed and the signature must be valid.

– If the assertion is signed, it must also be valid.

■ (Optional) To require that incoming messages are sent over an SSL connection,
set the Require Secure Transport Layer option.

7. Click Submit.

The authentication scheme is saved. You can now assign it in application object
components or realms.

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 51

Chapter 3: (Optional) Configure Responses
to Generate SAML Session Tickets or
WS-Security Headers for Outgoing
Messages

This section contains the following topics:

Responses Overview (see page 51)
How to Configure Responses to Produce WS-Security Headers (see page 62)
How to Configure Responses to Produce SAML Session Tickets (see page 81)

Responses Overview

A response is a container for one or more response attributes which the Policy Server
sends to a SiteMinder WSS Agent after processing the response. The Policy Server
supports several types of response corresponding to different Agent types, each of
which provides a different set of attributes, which take the form of name/value pairs.

SiteMinder WSS Agents accept only accept Web Agent responses, which provide
attributes (name/value pairs) that can be used by SiteMinder WSS Agents and other CA
SiteMinder® agents.

Policies contains rules and responses which are bound to users and user groups. In a
policy, responses are bound to specific rules or rule groups. When a rule fires, the
associated response returns information to a SiteMinder WSS Agent, such as user
attributes, DN attributes, static text, or customized active responses. Responses can also
be used to instruct a SiteMinder WSS Agent to generate WS-Security headers and SAML
Session Tickets.

Responses Overview

52 Policy Configuration Guide

Response Attribute Types

CA SiteMinder® supports different types of response attributes. The types of response
attributes determine where the Policy Server finds the proper values for the response
attributes.

You can specify the following types of response attributes when you add response
attributes to a CA SiteMinder® response:

 Static

Returns data that remains constant.

Use a static attribute to return a string as part of a CA SiteMinder® response. This
type of response can be used to provide information to a Web application. For
example, if a group of users has specific customized content on a Web site, the
static response attribute, show_button = yes could be passed to the application.

 User Attribute

Returns profile information from a user’s entry in a user directory.

This type of response attribute returns information associated with a user in a
directory. A user attribute can be retrieved from an LDAP, WinNT, Microsoft SQL
Server or Oracle user directory.

Note: In order for the Policy Server to return values from user directory attributes
as response attributes, the user directories must be configured on the CA
SiteMinder® User Directory pane.

 DN Attribute

Returns profile information from a directory object in an LDAP, Microsoft SQL
Server or Oracle user directory.

This type of response attribute is used to return information associated with
directory objects to which the user is related. Groups to which a user belongs, and
Organizational Units (OUs) that are part of a user DN, are examples of directory
objects whose attributes can be treated as DN attributes.

For example, you can use a DN attribute to return a company division for a user,
based on the user’s membership in a division.

Note: In order for the Policy Server to return values from DN attributes as response
attributes, the user directories must be configured on the CA SiteMinder® User
Directory pane.

Responses Overview

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 53

 Active Response

Returns values from a customer supplied library that is based on the CA
SiteMinder® Authorization API.

An Active Response is used to return information from an external source. An
Active Response is generated by having the Policy Server invoke a function in a
customer-supplied shared library. This shared library must conform to the interface
specified by the Authorization API (available separately with the Software
Development Kit; if installed, see the API Reference Guide for C for more
information).

Note: It is up to you to make sure the value returned by an active response is valid.
For example, if an active response returns a numeric type, the library and function
must return a string whose value is a number.
When you configure a response attribute, the correct Value Type for the response
attribute is displayed on the Response Attribute pane.

Variable Definition

Returns the value of the specified variable at runtime.

Select Variable Definition when you want to select and use a variable from a list of
already-defined variables.

Web Agent Response Attributes

Web Agent response attributes are response attributes that CA SiteMinder® agents can
interpret and pass on to other applications. The following list describes the generally
available Web Agent response attributes:

WebAgent-HTTP-Authorization-Variable

Indicates an attribute that is reserved for future use.

WebAgent-HTTP-Cookie-Variable

Generates a SetCookie header, which then sets a nonpersistent cookie in a web
browser. The cookies only exist in the cookie domain where the agent is configured.
You can enter multiple WebAgent-HTTP-Cookie-Variables.

Limits: Use in accept or reject responses. Multiple instances of this attribute are
allowed per response.

Responses Overview

54 Policy Configuration Guide

WebAgent–HTTP–Header–Variable

Specifies an arbitrary dynamic name/value pair for use by a web application. You
can enter multiple WebAgent-HTTP-Header-Variables.

The agent does not include header variables in the responses that it sends back to a
web browser. Instead, these responses reside in the request headers of the web
server.

Consequently, the header variables are not visible in the debug logs that you can
enable from the Policy Server Management Console.

Limits: Use in accept or reject responses. Multiple instances of this attribute are
allowed per response.

WebAgent-HTTP-Open-Format-Cookie

Generates a response with an open format cookie that is then set in a web browser.
The open format cookie provides identity information about a user. You can select
multiple identity attributes to include specific identity information in the cookie.

Options: Use in an OnAuthAccept or OnAccessAccept response. Multiple instances
of this attribute are allowed per response.

WebAgent-OnAccept-Redirect

Defines one of the following URLs, depending on the type of response in which it is
used:

■ In an authorization response, a URL to direct the user to if the user is allowed
access to a resource.

■ In an authentication response, a URL to direct the user to if the user was
authenticated for a security realm.

To specify whether an authorization response or authentication response, include it
in a policy with a rule that specifies an OnAuthAccept or OnAccessAccept event
action.

Limits: Use in accept responses. Only one instance of this attribute is allowed per
response.

Responses Overview

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 55

WebAgent-OnAccept-Text

Specifies text that the Web Agent puts in the HTTP_ONACCEPT_TEXT environment
variable when it redirects the user after a successful authorization or authentication
attempt.

Limits: Use in accept responses. Only one instance of this attribute is allowed per
response.

Note: When configuring a Web Agent OnAcceptText response, set the FCC
Compatibility Mode parameter (fcccompatmode) corresponding to the Web Agent
to yes. This action ensures that user authentication takes place at the Web Agent
and that the text is available for display in the browser. If the FCC Compatibility
Mode parameter is set to no, user authentication takes place at the Forms
Credential Collector (FCC). The response is triggered, but the text in the response is
lost.

WebAgent-OnAuthAccept-Session-Idle-Timeout

Overrides the number of seconds a user session can be idle. When this limit is
reached, the user is forced to authenticate again. Associate this response with a
rule configured with an OnAuthAccept authentication event.

Limits: Use in accept responses. Only one instance of this attribute is allowed per
response.

WebAgent-OnAuthAccept-Session-Max-Timeout

Overrides the total number of seconds a user session can be active. When this limit
is reached, the user session is terminated and the user is forced to authenticate
again. Associate this response with a rule configured with an OnAuthAccept
authentication event.

Limits: Use in accept responses. Only one instance of this attribute is allowed per
response.

WebAgent-OnAuthAccept-Session-AuthContext

Specifies an AuthContext response attribute for an authentication scheme. The
value of this response attribute is added to the session ticket as the value of the
SM_AUTHENTICATIONCONTEXT user attribute. The value is not returned to the
client as a user response.

Note: The response attribute value is truncated to 80 bytes in length.

Limits: Used in accept responses. Only one instance of this attribute is allowed per
response.

WebAgent-OnAuthAccept-Session-Variable

Stores a particular Session Variable in the session store when an administrator has
decided against persisting all authentication data.

Limits:Used in accept responses. Persistent Sessions are enabled.

Responses Overview

56 Policy Configuration Guide

WebAgent-OnReject-Redirect

Defines one of the following URLs:

■ In an authorization response, a URL to direct the user to if the user is denied
access to a resource.

■ In an authentication response, a URL to direct the user to if the user has failed
to authenticate for a security realm.

To specify an authorization response or authentication response, include it in a
policy with a rule that specifies an OnAuthReject or OnAccessReject event action.

Limits: Use in reject responses. Only one instance of this attribute is allowed per
response.

WebAgent-OnReject-Text

Specifies text that the Web Agent puts in the HTTP_ONREJECT_TEXT environment
variable when it redirects the user after a failed authorization or authentication
attempt.

Limits: Use in reject responses. Only one instance of this attribute is allowed per
response.

WebAgent-OnValidate-Redirect

Generates a response that specifies that the requested resource is sensitive and
requires that a user must validate their identity before being granted access. This
validation is required each time the user requests access, even if they have a valid
session.

Options: Use in accept responses. Only one instance of this attribute is allowed per
response.

The following response attributes are also available but only applicable for use with CA
SiteMinder® Web Services Security WSS Agents:

WebAgent-SAML-Session-Ticket-Variable

Provides Policy Server data that the SiteMinder WSS Agent uses to generate a SAML
assertion. The data is inserted into an XML message HTTP or SOAP envelope header
or a cookie (as specified by associated response attributes).

When you configure a SAML Session Ticket response, the Policy Server generates
the response data. This data instructs the SiteMinder WSS Agent how to build the
assertion. The SiteMinder WSS Agent encrypts a session ticket (and optionally, the
public key from a web service consumer) and the response data. The agent then
generates the assertion. The agent delivers the assertion to the web service. The
token can only be encrypted and decrypted by the SiteMinder WSS Agent using its
Agent key.

Responses Overview

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 57

WebAgent-WS-Security-Token

Provides Policy Server data that the SiteMinder WSS Agent uses to generate
WS-Security Username, X509v3, or SAML tokens (as specified by associated
response attributes). These tokens are added to a SOAP message header.

When you configure a WS-Security response, the Policy Server generates the
response data. This data instructs the SiteMinder WSS Agent how to build the
token. The agent then generates and adds the token to the SOAP request and
delivers it to the web service.

Responses and Directory Mappings

Directory mappings let you specify a separate authorization user directory in application
object component or a realm. When you define a separate authorization directory, a
user is authenticated based on the information contained in one directory, but
authorized based on the information contained in another directory.

When you create a response and associate it with a authentication (OnAuth) event, any
information retrieved from a user directory is retrieved from the authentication
directory. If you create an authorization (OnAccess) event, any information retrieved
from a user directory is retrieved from the authorization directory.

WS-Security Header Production Overview

How WS-Security Responses are Used

WS-Security responses are typically used to instruct the SiteMinder WSS Agent
protecting an authentication web service to create WS-Security headers and, optionally,
to perform XML encryption on those headers and the message content.

The following illustration shows the response process in such an environment.

Responses Overview

58 Policy Configuration Guide

1. A web service consumer sends a request (in the form of an XML message) to the
authentication web service.

2. The SiteMinder WSS Agent obtains credentials and passes them to the Policy
Server. Authentication is handled by any supported authentication scheme.

Note: Although any authentication scheme can be configured to obtain credentials
from a request, not every authentication scheme is suitable for creating every type
of WS-Security token.

3. After the web service consumer is authenticated, the client is authorized. The policy
that authorizes the consumer has a WS-Security response configured with it, which
instructs the SiteMinder WSS Agent to generate WS-Security headers.

4. The SiteMinder WSS Agent generates the WS-Security headers and delivers them,
together with the request message, to the authentication web service.

However, for a web service that receives requests with XML-encrypted elements, but
that does not have the logic to decrypt those requests internally, WS-Security responses
can be used to instruct the SiteMinder WSS Agent to pass the web service decrypted
versions of those requests (see TXM_WSSEC_ENCRYPT_PUB_KEY_ROLE).

More information:

Review Supported Authentication Schemes for Producing Different WS-Security Header
Types (see page 64)

How WS-Security Headers Are Produced

WS-Security headers are generated by a SiteMinder WSS Agent (or a third-party security
application) after initial authorization of the request, making the WS-Security
authentication scheme the ideal basis for multiple web services at federated
enterprises.

For CA SiteMinder® Web Services Security to produce WS-Security headers, a web
service consumer request must first be authorized by the Policy Server using an
appropriate authentication scheme (not every authentication scheme obtains
everything that is required from the incoming request to create any type of token). The
authorizing policy must have a response configured with it that issues WS-Security
response data. This data is used by the SiteMinder WSS Agent to generate WS-Security
headers. These headers are inserted into the SOAP message header and delivered to the
protected web service application. The web service may then pass these headers to the
following locations:

■ Back to web service consumer applications that can then use them in further
requests to gain access to other web services protected by the WS-Security
authentication scheme.

■ Downstream to further web services protected by the WS-Security authentication
scheme.

Responses Overview

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 59

More information:

Review Supported Authentication Schemes for Producing Different WS-Security Header
Types (see page 64)

WS-Security Token Types

CA SiteMinder® Web Services Security can produce SOAP messages with WS-Security
headers containing the following supported token types:

■ Username and Password Digest Token (see page 59)

■ Username and Password Token (Clear Text) (see page 60)

■ X509v3 Certificate Token (see page 60)

■ SAML Assertion Token (see page 61)

Username and Password Digest Token

The Username and Password Digest token provides password element confidentiality
without requiring channel-level security for the entire document.

The Username token includes a username and password, a cryptographic nonce (a
parameter that varies with time) and, optionally, a timestamp. The password is hashed
as an SHA1 digest using the nonce, timestamp, and password:

password_digest = SHA1[nonce + timestamp + password]

When a timestamp is included, creating SHA1 password digests provides protection
against replay attacks that prevents an eavesdropper from cutting out and replaying the
<wsse:UsernameToken> element in a different document at a later time. Also, hashes of
the same password along with the same nonce still resolve to different digest values,
assuming that the timestamp has been updated.

The Username and Password Digest Token authentication scheme provides protection
against replay attacks (where an eavesdropper might cut out and replay the token at a
later time) by imposing a limit (60 minutes by default) on the age of the token. That is, if
a token was created more than 60 minutes ago according to its <wsu:Created>
timestamp, authentication fails.

Note: The Username and Password Digest token is supported only with LDAP and
ODBC-based user directories. For LDAP user directories, CA SiteMinder® Web Services
Security must be configured (using the Credentials and Connection tab in the Policy
Server User Interface) to connect to the user store using an LDAP administrative identity
if the directory implementation requires such credentials to return the userPassword
attribute. For ODBC user directories, a “password” user property must be added to the
SQL query scheme used by the directory.

Responses Overview

60 Policy Configuration Guide

Note: The password storage schemes used by the Username token-generating site must
be consistent with the password storage scheme used by the Username
token-consuming site. For instance, if the generating site uses SHA-1 password hashes in
its user directory, then the consuming site must do the same.

Username and Password Token (Clear Text)

The Username and Password token provides the token subject’s username and
clear-text password.

Note: The password storage schemes used by the Username and Password
token-generating site must be consistent with the password storage scheme used by the
Username token-consuming site. For instance, if the generating site uses SHA-1
password hashes in its user directory, then the consuming site must do the same.

Important! CA recommends that you always use Username and Password tokens with
digital signatures or XML encryption to prevent malicious parties from intercepting the
message and obtaining the username and password from it.

More information:

(Mandatory) Response Attribute Variable for Specifying the Generated WS-Security
Token Type (see page 70)

X509v3 Certificate Token

The X509v3 certificate security token provides the token subject’s X.509v3 certificate in
a SOAP document.

When configured to require X509v3 certificate tokens, the WS-Security authentication
scheme provides basically the same functionality as the XML Digital Signature
authentication scheme, but without requiring certificate mapping, since the signature
and key information are contained in standard header elements.

Using the X509v3 certificate token enables the SiteMinder WSS Agent to do the
following:

■ Verify the signature

■ Ensure that the signature is signed by using a trusted certificate

■ Confirm that the document has not been altered.

Responses Overview

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 61

After the signature is verified, the Policy Server does the following:

■ Uses the digital signature and other information in the user store entry to confirm
that the XML document is actually from a trusted client.

■ Checks that the web service consumer has a valid entry in the user store.

When generating X.509v3 tokens, CA SiteMinder® Web Services Security uses the host
web service enterprise’s certificate, which it obtains from the certificate data store
(CDS).

WS-Security SAML Assertion Token

The SAML assertion token specification (see OASIS Working Draft 14, Web Services
Security: SAML Token Profile, July 12, 2004) extends the token-independent processing
model defined by the core WS-Security specification, allowing SAML assertions to be
used to provide secure authentication data.

The SAML assertion includes the identity of the web service consumer (typically as its
subject) and, optionally, other associated attributes. Additionally, the SAML token
specification provides for the use of digital signatures to guarantee the integrity and
authenticity of the SAML assertion, its issuer, and the subject of the assertion, using one
of the following:

■ The Enterprise certificate/public key of the assertion issuer (a trusted site where
the request is authenticated and the SAML token generated) to sign the assertion
and its contents.

■ The Enterprise private key of the assertion subject (the organization being
represented by the web service consumer making the request) or the assertion
issuer to sign the SOAP document (depending on the subject confirmation method.

So, when using the WS-Security authentication scheme to authenticate requests with
SAML assertion tokens, CA SiteMinder® Web Services Security validates the request, to
ensure that the assertion comes from a trusted source, by authenticating the assertion
subject and the assertion issuer. For example, in a multiple web service implementation
using SAML tokens, CA SiteMinder® Web Services Security would validate the assertion
subject (the web service consumer that made the initial web service request) and the
assertion issuer (a CA SiteMinder® Web Services Security-protected authentication
service configured to produce SAML WS-Security tokens).

How SAML Session Ticket Responses are Used

The SAML Session Ticket response provides the data that the SiteMinder WSS Agent
uses to create an assertion. The only authentication scheme that can evaluate the
assertion is the SAML Session Ticket authentication scheme.

How to Configure Responses to Produce WS-Security Headers

62 Policy Configuration Guide

When an XML assertion document arrives at a web service protected by the SAML
Session Ticket authentication scheme, the SiteMinder WSS Agent does the following:

■ Extracts the encrypted session ticket from the assertion

■ Decrypts the session ticket using the agent key

■ Signs the document using the public key from the assertion

The binding of the session ticket and the public key ensures that the XML document
is signed by a client that is authenticated by CA SiteMinder® Web Services Security
and that has a valid session.

Then, if the Agent does not have the session ticket in its cache, the Policy Server
validates the client with the session ticket from the assertion. If the Agent does have the
session ticket in its cache, the Policy Server is not invoked.

Note: The web service that returns the assertion is not protected by the SAML Session
Ticket authentication scheme. Only subsequent services in the single sign-on
environment require this authentication scheme.

The following illustration shows the response process.

1. Client sends a request.

2. SiteMinder WSS Agent passes credentials to Policy Server. Authentication handled
by any CA SiteMinder-supported authentication scheme.

3. After the client is authenticated, the client is authorized. The policy that authorizes
the client has a SAML response configured with it, which generates a session ticket
and, optionally, a public key.

4. SiteMinder WSS Agent generates the assertion and delivers it to the web service.

How to Configure Responses to Produce WS-Security Headers

To configure CA SiteMinder® Web Services Security to produce WS-Security headers,
create a response and associate it with resources in a web service security policy. This
response data is used by the SiteMinder WSS Agent to generate WS-Security headers.
The SiteMinder WSS Agent then inserts these headers into the SOAP message header
and delivers them to the protected web service.

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 63

Use variable types, if needed, to pass data back to the web service. Variables are
resolved by the Policy Server at run time, when it generates the response.

To configure responses to produce WS-Security Headers for outgoing messages, do the
following procedures:

1. Verify certificate requirements (see page 63).

2. Review supported authentication schemes for producing different WS-Security
token types (see page 64).

3. If required, configure CA SiteMinder® Web Services Security to produce SAML
assertions (see page 65).

4. Configure a response to produce WS-Security headers (see page 69).

More information:

Review Supported Authentication Schemes for Producing Different WS-Security Header
Types (see page 64)

Verify Certificate Requirements

Before you configure a response to produce WS-Security headers, verify that the
following requirements are met:

■ To produce signed WS-Security tokens, verify that your enterprise private key and
certificate chain are present in the certificate data store (CDS).

■ To produce WS-Security X509v3 tokens, verify that your enterprise private key and
certificate chain are present in the certificate data store (CDS).

How to Configure Responses to Produce WS-Security Headers

64 Policy Configuration Guide

Review Supported Authentication Schemes for Producing Different WS-Security
Header Types

You can configure responses to produce any type of WS-Security token upon successful
authorization of a request. However, not every authentication scheme gathers all the
necessary information (username, clear text password, SOAP message) from an
incoming request to create every type of token.

If a response is configured to create a token that requires anything that the configured
authentication scheme does not provide, header creation fails. Verify that the
authentication method that you plan to use is suitable to produce the WS-Security
token that you want to produce in response.

The following table shows which WS-Security tokens can be produced for each
authentication method.

WS-Security Token Types That Can be Produced

Authentication Method Username and
Password

Username and
Password Digest

SAML X.509

Basic (SiteMinder WSS
Agent for Web Servers

only)

 No Yes No No

XML-DCC Yes Yes Yes Yes

XML-DSIG No No Yes Yes

SAML Session Ticket No No Yes Yes

WS-Security Username
and Password Token

 Yes Yes Yes Yes

WS-Security Username
and Password Digest
Token

 No Yes Yes Yes

WS-Security SAML Token No No Yes Yes

WS-Security X.509 Token No No Yes Yes

SiteMinder Session
(SMSESSION) Cookie

 No No No No

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 65

Configure CA SiteMinder® Web Services Security to Generate SAML Assertions

If you are configuring CA SiteMinder® Web Services Security to add WS-Security headers
containing SAML assertions tokens to outgoing messages, you must first perform some
additional configuration in the Administrative UI

.

In all SAML token generation situations, you must create an Affiliate domain.
Additionally, you must perform the following steps depending on the version of SAML
tokens you need to generate:

■ To create SAML 1.1 assertions, configure the SAML 1.x Assertion Generator
properties file and add Affiliate objects to the Affiliate domain.

■ To create SAML 2.0 assertions, add SAML 2.0 Service Provider objects to the
Affiliate domain.

Note: Affiliate domains and related SAML token functionality are implemented as part
of CA SiteMinder® Federation Security Services on the Policy Server. For more
information, see Federation Manager Guide: Legacy Federation and Federation
Manager Guide: Partnership Federation.

SAML 1.x Assertion Generator

If you are configuring CA SiteMinder® Web Services Security to add WS-Security tokens
containing SAML 1.x assertions to SOAP documents for consumption by other web
services, you must configure the SAML Assertion Generator to produce the SAML 1.1
assertions that will be used in those tokens.

Note: The SAML Assertion Generator is a component of CA SiteMinder Federation
Security Services on the Policy Server. For more information, see the CA SiteMinder
Federation Security Services Guide.

The SAML Assertion Generator uses static configuration data from two sources to
determine how to construct assertions:

SAML Assertion Generator Properties File

Specifies domain-wide SAML assertion generation parameters

Affiliate Objects

Define a set of parameters for the SAML Assertion Generator

Once configured, the SAML Assertion Generator is triggered to generate an assertion
when a WS-Security SAML response (which specifies the affiliate to use to generate the
assertion and dynamic information about how the assertion and message should be
signed) is triggered by an authorizing policy.

How to Configure Responses to Produce WS-Security Headers

66 Policy Configuration Guide

Configure the AMAssertionGenerator.properties File

The AMAssertionGenerator.properties file contains domain-wide configuration
parameters required for generating SAML assertions.

To configure the AMAssertionGenerator.properties file for CA SiteMinder® Web
Services Security

1. Navigate to the following location: policy_server_home/config/properties

2. Open the AMAssertionGenerator.properties file in a text editor.

3. Modify the following parameters:

AssertionIssuerID

Specifies the URL of the authentication web service that is issuing the assertion.
Must match the Issuer DN in the enterprise certificate. This value is used for
unsigned assertions. For example:

AssertionIssuerID = http://www.acmewidget.com/ordering

SecurityDomain

Specifies the domain name of the enterprise issuing the assertion. For example:

SecurityDomain = www.example.com

SourceID

Not used by CA SiteMinder® Web Services Security.

4. Save the file and exit the text editor.

5. Restart the Policy Server. (Changes made to the AmAssertionGenerator.properties
file will not be picked up by the Policy Server until it is restarted.)

Configure Affiliate Domains and Affiliate Objects

You require an affiliate domain containing and affiliate object to configure the SAML
Assertion Generator produce SAML 1.x assertions in WS-Security SAML tokens.

To configure affiliate domains and affiliate objects, follow the associated procedures in
Federation Manager Guide: Legacy Federation. However, because CA SiteMinder® Web
Services Security does not use the affiliate object to define an affiliate organization, you
do not need to specify all the options.

Note: Affiliate objects configured for CA SiteMinder® Web Services Security do not
define the affiliate organization for which the assertion is intended. Assertions
generated for CA SiteMinder® Web Services Security can be sent to any web service
protected by the WS-Security authentication scheme (or similarly capable third-party
security application).

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 67

The following list summarizes the affiliate configuration parameters that CA SiteMinder®
Web Services Security uses to generate WS-Security SAML tokens. The wizard may
require you to enter values for other parameters, but these are not used by CA
SiteMinder® Web Services Security.

General page

General section: Name

Specifies the name of the affiliate object (must be unique across all affiliate
domains).

This name is referenced by WS-Security policy responses (by defining a
txm_wssec_saml_affiliate attribute whose value matches the name of the affiliate
object).

General section: Active

Activates the affiliate object.

This option must be set for CA SiteMinder® Web Services Security to produce SAML
1.x assertions.

Restrictions section: Time

(Optional) Specifies times when assertion can be issued.

Restrictions section: IP Address

(Optional) Specifies IP addresses that are allowed to generate SAML assertions.

User page

Add Members

Specifies the users and groups (from the user directory or directories defined in the
affiliate domain) for whom assertions should be generated.

Assertions page

General section: Audience

(Optional) Specifies the URI of a document that describes the terms and conditions
of the agreement between the token issuer and consumer. This value is added to
the assertion and can be used for authentication purposes. (If a request’s assertion
token contains an audience value, that value must match one specified in the
WS-Security scheme for the request to be authenticated.)

Additionally, the web service can parse the actual audience document to obtain
additional information.

General section: Validity Duration Second(s)

(Optional) Specifies the amount of time, in seconds, that the assertion will be valid.

How to Configure Responses to Produce WS-Security Headers

68 Policy Configuration Guide

General section: Skew Time Second(s)

(Optional) Specifies the difference, in seconds, between the system clock time of
the SAML assertion producer and the system clock time of the SAML assertion
consumer.

Session section: Shared Sessioning

Not used by CA SiteMinder® Web Services Security (leave option unset).

Attributes section: Add

(Optional) If specified, an attribute statement will be included in the assertion that
can be used for use in authentication and authorization decisions.

Configure SAML 2.0 Service Providers

SAML Service Provider objects define parameters used by the SAML Assertion Generator
to produce SAML 2.0 assertions for use in WS-Security SAML tokens.

Note: When you configure a service provider object for use by CA SiteMinder® Web
Services Security, you are not defining a service provider organization for which the
assertion is intended. Assertions generated for CA SiteMinder® Web Services Security
can be sent to any web service protected by the WS-Security authentication scheme (or
similarly capable third-party security application).

To configure SAML Service Provider objects, generally follow the associated procedures
in the CA SiteMinder Federation Security Services Guide. However, because CA
SiteMinder® Web Services Security does not use the affiliate object to define a service
provider organization, you do not need to specify all the options. Fields whose use is
different for use by CA SiteMinder® Web Services Security are described below.

Name

Specifies the name of the service provider object (must be unique across all affiliate
domains). This name is referenced by WS-Security policy responses (by defining a
txm_wssec_saml_affiliate attribute whose value matches the name of the affiliate
object).

Enabled

Sets the Enabled check box to activate the service provider object. This option must
be set for CA SiteMinder® Web Services Security to produce SAML 2.0 assertions.

Authentication URL

Not used by CA SiteMinder® Web Services Security. However, a valid value is
required. CA recommends using "http:\\localhost\"

Application URL

Not used by CA SiteMinder® Web Services Security.

SSO Tab: Bindings

Choose the HTTP-Post option.

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 69

Configure a Response to Produce WS-Security Headers

To define the properties of WS-Security headers you want CA SiteMinder® Web Services
Security to produce, create a WS-Security header response in an application security
policy.

Note: If you are using the domain security model, create a WS-Security header response
in the web service domain.

Follow these steps:

1. Create an application object or modify an existing application object that defines
the security policy for a web service.

2. Click the Response tab.

3. Click Create Response.

The Create Application Response pane opens.

4. Type the response name in the General section.

5. Add response attributes that define the properties of the WS-Security headers, by
doing the following steps:

a. Click Create Response Attribute. The Create Response Attribute pane that
opens

b. Select the WebAgent-WS-Security-Token response attribute type from the
Attribute drop-down list in the Attribute Type section.

Note:

c. Select the attribute type (Static, User Attribute, DN Attribute, or Active
Response) in the Attribute Kind section.

The fields on the Attribute Fields group box are updated to match the specified
attribute type.

d. Specify a required name/value pair (listed in the following sections) in the
Attribute Fields section. Enter values directly in the Variable Name and Variable
Value fields or populate those fields with valid values from the Select a Name
and Select a Value drop-down lists.

How to Configure Responses to Produce WS-Security Headers

70 Policy Configuration Guide

e. Specify Cache Value or Recalculate value every ... seconds on the Attribute
Caching group box.

f. Click Submit.

The Create Response Attribute Task is submitted for processing, and the
response attribute is added to the Attribute List on the Create Response
Attribute pane.

6. Create further response attributes as required.

7. Click OK.

The Create Response Task is submitted for processing and you are returned to the
Responses tab.

Note:

More information:

(Mandatory) Response Attribute Variable for Specifying the Generated WS-Security
Token Type (see page 70)
Response Attribute Variables for Encrypting/Decrypting WS-Security Messages (see
page 76)
Response Attribute Variables for Handling WS-Security Headers (see page 78)

(Mandatory) Response Attribute Variable for Specifying the Generated WS-Security Token Type

The TXM_WSSEC_TOKEN_TYPE variable name/value pair determines the WS-Security
token type to generate. A response attribute that defines TXM_WSSEC_TOKEN_TYPE is
required in all WS-Security header responses.

TXM_WSSEC_TOKEN_TYPE

Specifies the type of WS-Security token the SiteMinder WSS Agent should create
and add to the WS-Security header for message authentication:

Attribute kind: Static

Variable value: One of the following:

– password—Creates a Username and Password Digest token, providing for
password digest message authentication. For this token type, the
TXM_WSSEC_USER_
PASSWORD response variable must also be configured.

– password_nodigest—Creates a Username and Password token, providing clear
text password message authentication. For this token type, the
TXM_WSSEC_USER_
PASSWORD response variable must also be configured.

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 71

– X509—Creates an X509v3 token.

– SAML—Creates a SAML token, providing for SAML message authentication. For
this token type, the TXM_WSSEC_SAML_AFFILIATE response variable must also
be configured.

More information:

Review Supported Authentication Schemes for Producing Different WS-Security Header
Types (see page 64)

Response Attribute Variables for Generating Username and Password and X.509 Certificate
Tokens

The following table describes the response variable name/value pairs for generating
username and password (digest or clear text) and X.509 certificate tokens in
WS-Security headers. That is, if the TXM_WSSEC_TOKEN_TYPE response attribute
variable is set to password, password_nodigest, or X509.

Variable Name Variable Value Attribute
Type

Meaning

TXM_WSSEC_USER_PASS
WORD

(Required)

userpassword

(Value most common for
LDAP user directories -- if you
have used a custom naming
scheme for your LDAP
directory, the value will be

different.)

User
Attribute

Specifies the LDAP query string that
the SiteMinder WSS Agent uses to
retrieve the web service consumer’s
password from the user store. This

value is then placed in the token.

Or

password

Static Specifies a static password value to be
used in the token.

TXM_WSSEC_ROLE

(Optional)

token_role_name Static Specifies the value of a SOAP role
attribute that identifies the
WS-Security header element
containing the Username and

Password or X.509 token.

TXM_WSSEC_TIMESTAMP

 (optional)

■ True

■ False

Static If True, tells the agent to add a
wsu:Timestamp element to the
WS-Security SOAP header that
specifies the time that the message
was created

How to Configure Responses to Produce WS-Security Headers

72 Policy Configuration Guide

Variable Name Variable Value Attribute
Type

Meaning

TXM_WSSEC_TIMESTAMP
_EXPIRY

(Valid only if
TXM_WSSEC_TIMESTAMP

is True)

message lifespan in seconds Static Tells the agent to add a wsu:Expires
element to the wsu:Timestamp
element in the WS-Security SOAP
header. The value of the wsu:Expires
element is an absolute time based on
the time of message creation and the

specified message lifespan.

TXM_WSSEC_SIGNATURE

 (optional)
■ all

■ body_ts

■ body

■ headers

Static For WS-Security tokens of type
password or X509, tells the agent to
retrieve the enterprise private key
from the certificate data store (CDS)
and use it to digitally sign all or part of

the SOAP document:

■ all—the generated signature will
cover the entire SOAP envelope.

■ body_ts—the generated signature
will cover the SOAP body and the
generated <wsu:Timestamp>
element. If a timestamp response
attribute is not configured, a
message will be logged and the
signature will cover only the SOAP
body.

■ body—the generated signature
will cover the SOAP body.

■ headers—the generated signature
will cover the SOAP header
containing the
generated/modified WS-Security
element.

By default, tokens are signed using

RSA-SHA1.

TXM_WSSEC_SIGNATURE_
ALG

(Valid only if
TXM_WSSEC_SIGNATURE
is set)

■ rsa-sha1 (default)

■ rsa-sha256

Static ■ For WS-Security tokens of type
password or X509, defines the
signature algorithm the agent uses
to sign the part of the SOAP
document defined by
TXM_WSSEC_SIGNATURE.

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 73

More information:

Username and Password Digest Token (see page 59)
Review Supported Authentication Schemes for Producing Different WS-Security Header
Types (see page 64)

Response Attribute Variables for Generating SAML Tokens

The following table describes the response attribute variable name/value pairs for
generating SAML tokens in WS-Security headers. That is, if the
TXM_WSSEC_TOKEN_TYPE response attribute variable is set to SAML.

Variable Name Variable Value Attribute
Type

Meaning

TXM_WSSEC_SAML20_ASSE
RTION

(Required for SAML 2.0)

■ Yes

■ No (default)

Static Specifies whether the generated SAML
assertion token is SAML 2.0 compliant.

TXM_WSSEC_SAML20_SPID

(required for SAML 2.0)

SAML_20_audience

_value

Static Specifies the value of the <saml:Audience>
element in a generated SAML 2.0 assertion

token.

TXM_WSSEC_SAML_AFFILIA
TE

(Required)

affiliate_or_service
_provider_object_n
ame

Static Identifies the affiliate (SAML 1.x) or service
provider (SAML 2.0) object that configures how
SAML assertions will be produced for inclusion

in SAML tokens.

TXM_WSSEC_
SAML_ROLE

 (optional)

SAML_assertion_to
ken_role_name

Static Specifies the value of a SOAP role attribute
that identifies the WS-Security header element
containing the SAML assertion token.

How to Configure Responses to Produce WS-Security Headers

74 Policy Configuration Guide

Variable Name Variable Value Attribute
Type

Meaning

TXM_WSSEC_SAML_SIG_RE
QUIRED

■ HK

■ SV

■ SVS

Static Specifies how the assertion and document
should be signed:

■ HK (for holder-of-key)—Only the assertion
will be signed (enveloped).

■ SV (for sender-vouches with SSL-based
issuer confirmation)—Both assertion and
document will be signed (external).

■ SVS (for sender-vouches with
signature-based issuer
validation)—Assertion is explicitly signed
(enveloped) in addition to SV signing. (This
option is only supported for SAML 1.x
assertions.)

Any other value or no value results in the
default—an assertion with a bearer

confirmation method.

TXM_WSSEC_

SAML_USER_CERT_SRC

(Required for holder-of-key

signing)

■ XMLDSIG

■ Client_Cert

■ User_Store

Static If TXM_WSSEC_SAML_SIG_REQUIRED is set to
HK, this value specifies where CA SiteMinder®
Web Services Security should obtain the web

service consumer’s public key:

■ XMLDSIG—The public key will be retrieved
from a signed request sent to a web
service protected by the XML DSIG
authentication scheme.

■ Client_Cert—The public key will be
retrieved from SSL.

■ User_Store—the public key should be
retrieved from an associated user store. If
this value is set, the
TXM_WSSEC_SAML_USER_CERT response
variable must also be configured.

Note: If TXM_WSSEC_SAML_SIG
_REQUIRED is set to SV, this option is ignored

because no user public key is required.

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 75

Variable Name Variable Value Attribute
Type

Meaning

TXM_WSSEC_
SAML_USER_CERT

(Required if web service
consumer public key is
obtained from a user store

for signing)

usercertificate

This value is the
most common for
LDAP user
directories. If you
have used a custom
naming scheme for
your LDAP
directory, the value
will be different.

User
Attribute

If TXM_WSSEC_SAML_USER_
CERT_SRC is set to User_Store, specifies the
LDAP query string that the SiteMinder WSS
Agent uses to retrieve the web service
consumer’s public key from the user store for
signing SAML assertion tokens.

Note: CA SiteMinder® Web Services Security
automatically completes the query string using
the value you specify.

TXM_WSSEC_
SAML_TIMESTAMP

 (optional)

■ True

■ False (default)

Static A value of True causes a timestamp to be
generated for use in SAML assertions.

Note: If TXM_WSSEC_SAML_SIG
_REQUIRED is set to SV or SVS, the timestamp

is signed.

TXM_WSSEC_
SAML_TIMESTAMP _EXPIRY

(optional)

message
_lifespan_in_secon

ds

Static Tells the agent to add an expiry element to the
timestamp used in SAML assertions. The value
of this expiry element is an absolute time
based on the time of assertion creation and

the specified message lifespan.

More information:

WS-Security SAML Assertion Token (see page 61)
Configure CA SiteMinder® Web Services Security to Generate SAML Assertions (see page
65)
Review Supported Authentication Schemes for Producing Different WS-Security Header
Types (see page 64)

How to Configure Responses to Produce WS-Security Headers

76 Policy Configuration Guide

Response Attribute Variables for Encrypting/Decrypting WS-Security Messages

The following table describes response attribute variable name/value pairs that can be
configured to tell the SiteMinder WSS Agent to encrypt message elements or to pass a
decrypted version of a message to the recipient web service.

Note: There are two versions of each XML encryption-related name/value pair—use the
former for use with messages with username/password or X.509 tokens, use the latter
for use with messages with SAML tokens.

Variable Name Variable Value Attribute
Type

Meaning

TXM_WSSEC_ENCRYPT_PUB_
KEY_ROLE

 or

TXM_WSSEC_SAML_ENCRYPT

_PUB_KEY_ROLE

 (required)

name_of_WS-Secu
rity_token_consum

er

Static Specifies the value of a SOAP role attribute
that identifies the WS-Security header
element containing the recipient's X.509
certificate. The public key in this certificate is
used to encrypt the symmetric key. The
corresponding private key must be held by the

intended message recipient.

This element is required. If no role is specified,
the variable must be declared with a null
value; CA SiteMinder® Web Services Security
will then obtain the key in the WS-Security
header with no role, of which only one is
allowed.

TXM_WSSEC_ENCRYPT_
DECRYPT

or

TXM_WSSEC_SAML_ENCR

YPT_DECRYPT

■ True

■ False (default)

Static Specifies whether the SiteMinder WSS Agent
should pass an incoming encrypted message
to the web service in its encrypted or

decrypted form.

If True, the SiteMinder WSS Agent will replace
the current message with the decrypted

version of the message, if available.

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 77

Variable Name Variable Value Attribute
Type

Meaning

TXM_WSSEC_ENCRYPT_
ELEMENT

or

TXM_WS
SEC_SAML_ENCRYPT_ELEME

NT

■ UsernameTok
en

■ Assertion

■ Body

Static Identifies the message element to be
encrypted.

You should add one such name value/pair for
each element you want encrypted. For
example, configure one name/value pair for
the message body and one name/value pair
for the token.

For TXM_WSSEC_ENCRYPT_

ELEMENT:

If UsernameToken, Username and Password
and Username and Password Digest tokens

will be encrypted.

If Body, the message body will be encrypted.

For TXM_WSSEC_SAML_

ENCRYPT_ELEMENT:

If Assertion, SAML assertion token will be
encrypted.

If Body, the message body will be encrypted.

TXM_WSSEC_ENCRYPT_
OR_SIGN_FIRST

or

TXM_WSSEC_SAML_
ENCRYPT_OR_SIGN_FIRST

■ Sign (default)

■ Encrypt

Static Indicates whether encryption or signing
should be performed first.

TXM_WSSEC_ENCRYPT_
ALG_KEY

or

TXM_WSSEC_SAML_ENC
RYPT_ALG_KEY

■ rsa-1_5
(default)

■ rsa_oaep

Static Indicates the encryption algorithm to use to
encrypt the symmetric encryption key.

TXM_WSS
EC_ENCRYPT_ALG_DATA

or

TXM_WSSEC_SAML_ENC

RYPT_ALG_DATA

■ tripledes-cbc
(default)

■ aes128-cbc

■ aes256-cbc

■ aes192-cbc

Static Indicates the encryption algorithm to use to
encrypt the data element or elements that
have been specified using
TXM_WSSEC_ENCRYPT[_SAML]

_ELEMENT variables.

How to Configure Responses to Produce WS-Security Headers

78 Policy Configuration Guide

Response Attribute Variables for Handling WS-Security Headers

The following table describes response attribute variable name/value pairs that can be
configured to tell the SiteMinder WSS Agent how to handle the mustUnderstand
attribute in WS-Security request , or to remove the mustUnderstand or the entire
security token from messages passed to the recipient web service.

Variable Name Variable
Value

Attribute
Type

Meaning

TXM_WSSEC_MUST_UN
DERSTAND

(optional)

■ True

■ False

■ Not set
(default)

Static Determines how the SiteMinder WSS Agent behaves
with respect to the mustUnderstand attribute when
consuming and producing messages.

For specifics of the behavior of this variable when
consuming and producing headers, see
TXM_WSSEC_MUST_UNDERSTAND Response Variable
Effect Detail (see page 78).

TXM_WSSEC_REMOVE

(optional)
■ True

■ False
(default)

Static Determines whether the SiteMinder WSS Agent removes
WS-Security headers from messages.

■ If True, the WS-Security header for a specified
actor/role (or the default header if no actor/role is
defined) is removed from the inbound document.
This setting effectively scrubs credentials.

■ (Default) If False, no change is made to the request
document.

More information:

TXM_WSSEC_MUST_UNDERSTAND Response Variable Effect Detail (see page 78)

TXM_WSSEC_MUST_UNDERSTAND Response Variable Effect Detail

The following table describes the exact behavior of the SiteMinder WSS Agent when
consuming and producing WS-Security tokens with different values of the
TXM_WSSEC_MUST_UNDERSTAND response variable name/value pair.

TXM_WSSEC_MUST_UNDE
RSTAND Value

Behavior when Consuming WS-Security
Tokens

Behavior when Producing WS-Security
Tokens

Not set If present in the WS-Security header,
leaves mustUnderstand="1".

Places mustUnderstand="1" in the
generated WS-Security header

False If present in the WS-Security header,
removes mustUnderstand="1"

Does not place mustUnderstand="1" in
the generated WS-Security header

How to Configure Responses to Produce WS-Security Headers

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 79

TXM_WSSEC_MUST_UNDE
RSTAND Value

Behavior when Consuming WS-Security
Tokens

Behavior when Producing WS-Security
Tokens

True If present in the WS-Security header,
leaves mustUnderstand="1".

Places mustUnderstand="1" in the
generated WS-Security header

WS-Security Response Examples

The following examples show how you can use WS-Security responses.

Example 1

This example shows how to create a response that generates a Username and Password
Digest token and uses the enterprise private key to digitally sign the message’s SOAP
envelope.

The following table shows the response attributes you must add to the response (all
attributes are of type WebAgent-WS-Security-Token):

Variable Name Variable Value Attribute Type

TXM_WSSEC_TOKEN_TYPE password Static

TXM_WSSEC_USER_PASSWORD userpassword User Attribute

TXM_WSSEC_SIGNATURE all Static

Example 2

This example shows how to create a response that generates an X509v3 token and uses
the enterprise private key to digitally sign the message’s SOAP envelope.

The following table shows the response attributes you must add to the response (all
attributes are of type WebAgent-WS-Security-Token):

Variable Name Variable Value Attribute Type

TXM_WSSEC_TOKEN_TYPE X509 Static

How to Configure Responses to Produce WS-Security Headers

80 Policy Configuration Guide

Example 3

This example shows how to create a response that generates a SAML assertion token
using the holder-of-key subject confirmation method, retrieving the subject’s public key
from an associated user store.

The following table shows the response attributes you must add to the response (all
attributes are of type WebAgent-WS-Security-Token):

Variable Name Variable Value Attribute Type

TXM_WSSEC_TOKEN_TYPE SAML Static

TXM_WSSEC_SAML_AFFILIATE affiliate1 Static

TXM_WSSEC_SAML_SIG
_REQUIRED

hk Static

TXM_WSSEC_SAML_USER_CERT_SRC User_Store Static

TXM_WSSEC_SAML_USER_CERT usercertificate User attribute

Example 4

This example shows how to create a response that encrypts an incoming document and
deliver the encrypted document to the web service.

The response generates a SAML assertion token using the sender vouches subject
confirmation method and encrypts the SAML assertion and message body. The token
and other related information are placed in a WS-Security header identified by the SOAP
actor/role samlrole.

The SAML assertion and the message body are encrypted using the public key certificate
found in the WS-Security header with the role pubkeyrole. The rsa-1_5 algorithm should
be used to encrypt the symmetric encryption key; the tripledes-cbc algorithm should be
used to encrypt the assertion and body data.

The document should be signed before encryption; the document and assertion should
also be signed with a sender-vouches signature.

The following table shows the response attributes you must add to the response (all
attributes are of type WebAgent-WS-Security-Token):

Variable Name Variable Value Attribute Type

TXM_WSSEC_TOKEN_TYPE SAML Static

How to Configure Responses to Produce SAML Session Tickets

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 81

Variable Name Variable Value Attribute Type

TXM_WSSEC_SAML_AFFILIATE affiliate2 Static

TXM_WSSEC_SAML_ROLE samlrole Static

TXM_WSSEC_SAML_SIG
_REQUIRED

sv Static

TXM_WSSEC_SAML_ENCRYPT_PUB_KEY
_ROLE

pubkeyrole Static

TXM_WSSEC_SAML_ENCRYPT_ALG_KEY rsa-1_5 Static

TXM_WSSEC_SAML_ENCRYPT_ALG_DAT
A

tripledes-cbc Static

TXM_WSSEC_SAML_ENCRYPT_ELEMENT Assertion Static

TXM_WSSEC_SAML_ENCRYPT_ELEMENT Body Static

TXM_WSSEC_SAML_ENCRYPT_OR_SIGN
_FIRST

sign Static

Example 5

This example shows how to create a response that decrypts an incoming encrypted
message and passes it to the associated web service in a message with a SAML assertion
token.

Variable Name Variable Value Attribute Type

TXM_WSSEC_TOKEN_TYPE SAML Static

TXM_WSSEC_SAML_AFFILIATE affiliate2 Static

TXM_WSSEC_SAML_ENCRYPT
_DECRYPT

yes Static

How to Configure Responses to Produce SAML Session Tickets

To configure CA SiteMinder® Web Services Security to produce SAML Session Tickets,
create a response and associate it with resources in a web service authorization policy.
This response data is used by the SiteMinder WSS Agent to generate SAML Session
Tickets. The SiteMinder WSS Agent then delivers the SAML Session Ticket to the
protected web service.

How to Configure Responses to Produce SAML Session Tickets

82 Policy Configuration Guide

Use variable types, if needed, to pass data back to the web service. Variables are
resolved by the Policy Server at run time, when it generates the response.

To configure responses to produce WS-Security Headers for outgoing messages, do the
following procedures:

1. Verify certificate requirements (see page 82).

2. Configure a response to produce SAML Session Tickets (see page 82).

More information:

Review Supported Authentication Schemes for Producing Different WS-Security Header
Types (see page 64)

Verify Certificate Requirements

If the public keys used in assertions are going to be stored in the user directory, define
an attribute in your directory to store these public keys, and make sure it is available to
the Policy Server.

Note: This is not required if the public key is included in the client’s submitted XML
document or obtained from a certificate over the SSL link.

Configure a Response to Produce a SAML Session Ticket

To define the properties of the SAML Session Ticket you want CA SiteMinder® Web
Services Security to produce, create a SAML Session Ticket response in an application
security policy.

Note: If you are using the domain security model, create a SAML Session Ticket
response in the web service domain.

How to Configure Responses to Produce SAML Session Tickets

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 83

Follow these steps:

1. Create an application object or modify an existing application object that defines
the security policy for a web service.

2. Click the Response tab.

3. Click Create Response.

The Create Application Response pane opens.

4. Type the response name in the General section.

5. Add response attributes that define the properties of the SAML Session Ticket, by
doing the following steps:

a. Click Create Response Attribute. The Create Response Attribute pane that
opens

b. Select the WebAgent-SAML-Session-Ticket response attribute type from the
Attribute drop-down list in the Attribute Type section.

c. Select the attribute type (Static, User Attribute, DN Attribute, or Active
Response) in the Attribute Kind section.

The fields on the Attribute Fields group box are updated to match the specified
attribute type.

d. Specify a required name/value pair (listed in the following sections) in the
Attribute Fields section. Enter values directly in the Variable Name and Variable
Value fields or populate those fields with valid values from the Select a Name
and Select a Value drop-down lists.

e. Specify Cache Value or Recalculate value every ... seconds on the Attribute
Caching group box.

f. Click Submit.

The Create Response Attribute Task is submitted for processing, and the
response attribute is added to the Attribute List on the Create Response
Attribute pane.

6. Create further response attributes as required.

7. Click OK.

The Create Response Task is submitted for processing and you are returned to the
Responses tab.

Note:

How to Configure Responses to Produce SAML Session Tickets

84 Policy Configuration Guide

More information:

(Mandatory) Response Attribute Variable for Specifying the Generated WS-Security
Token Type (see page 70)
Response Attribute Variables for Encrypting/Decrypting WS-Security Messages (see
page 76)
Response Attribute Variables for Handling WS-Security Headers (see page 78)

SAML Session Ticket Response Attribute Variables

The following table lists the response attribute variable name/value pairs specific to the
WebAgent-SAML-Session-Ticket-Variable attribute. You can use these variables to build
assertions.

Note: You can configure other response variables with the SAML Session Ticket
attribute; however, they are ignored by CA SiteMinder® Web Services Security for the
assertion and are handled as standard response attributes by CA SiteMinder®.

Variable Name Variable Value Attribute
Kind

Meaning

TXM_SAML_Location

(required)
■ Envelope_Header

(default)

■ HTTP_Header

■ Cookie_Header

Static Instructs the SiteMinder WSS Agent to
insert the assertion into the SOAP
envelope message header, an HTTP

header, or a cookie header.

If Envelope_Header is the value, the client
must provide an XML message for the

assertion.

If HTTP_Header is the value, an HTTP
header named tmsamlsessionticket is
added to the HTTP headers delivered to

the web service

If Cookie_Header is the value, the
assertion is inserted into a cookie named
tmsamlsession and returned to the caller
in an HTTP Set-Cookie header. The cookie
can also be read by the web service
application at the URI protected by CA

SiteMinder® Web Services Security.

Note: Do not attempt to place more than
one signature in a cookie—a 4 KB limit on
the size of cookies that can be returned
by the SiteMinder WSS Agent results in no
cookie being generated if it would be
greater than 4KB.

How to Configure Responses to Produce SAML Session Tickets

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 85

Variable Name Variable Value Attribute
Kind

Meaning

TXM_Force_Logon

 (optional)

Yes or No Static Forces the client to authenticate using the
authentication scheme for the target

realm.

This variable is useful if a client tries to get
an assertion when logging on with only a
cookie. The client is allowed access to the
web service, but does not receive an
assertion because the client has only a

cookie.

To inform the user that they have to
logoff and then get rechallenged to obtain
the assertion, the web service can be set
up to redirect the client to a log-off URI.
The user can then come back to the web
service and be challenged again to obtain

the assertion.

Note: To find out how to set up a log-off
URI, see the Web Agent Configuration

Guide.

TXM_Issuer

 (optional)

URI Static Indicates the issuer of the assertion. Value
is placed in the issuer URI field in the

generated assertion.

If the assertion is sent to a third party, the
third party can use this variable to
validate the assertion by sending it back

to the specified URI.

TXM_Namequalifier

(optional)

 Domain name Static Indicates the domain name of the subject

of the assertion.

TXM_Sign

 (optional)

Yes or No Static Tells the SiteMinder WSS Agent to sign
the SOAP document payload with the
private key dynamically generated by the
Policy Server.

NOTE: If you use this variable, do not use

the TXM_Public_Key variable.

TXM_Sign_Assertion

 (optional)

Yes or No Static Tells the SiteMinder WSS Agent to sign
the assertion that is part of the SOAP
document. This ensures that no one can

alter the assertion.

How to Configure Responses to Produce SAML Session Tickets

86 Policy Configuration Guide

Variable Name Variable Value Attribute
Kind

Meaning

TXM_Public_Key

 (optional)
■ XMLDSIG

■ Client_Cert

■ User_Store

Static Tells the SiteMinder WSS Agent where to
get the public key that it binds to the

session ticket.

XMLDSIG—Tells SiteMinder WSS Agent to
get the key from the document with the
digital certificate. (Web service must be
protected by the XML Digital Signature
authentication scheme.)

Client_Cert—Indicates the client
certificate sent over the SSL connection

User_Store—Tells SiteMinder WSS Agent

to get the key from the user store.

Note: Do not use this variable with

TXM_Sign.

TXM_User_Cert

 LDAP user directories only

(optional)

usercertificate

This value is the most
common for LDAP user
directories. If you have
used a custom naming
scheme for your LDAP
directory, the value will be
different.

User

Attribute

Specifies the LDAP query string that the
SiteMinder WSS Agent uses to retrieve

the public key from the user store.

This variable is required when

TXM_Public_Key is set to User_Store.

Note: Do not use the SAML assertion, XML Body, XML Agent, and XML Envelope Header
variables that you can choose from the Variables policy object in a policy domain. These
variables are for use exclusively in policy expressions, not with the SAML Session Ticket
response.

Enter these variables by typing the name and value in the appropriate fields in the
Response Attribute dialog.

SAML Session Ticket Response Examples

You can use assertion variables to help the SiteMinder WSS Agent build the assertion.

Example 1

If the web service is protected by the XML-DSIG authentication scheme, create an
attribute that extracts the client’s public key from the certificate and adds it to the
SAML assertion. To instruct the SiteMinder WSS Agent to get the public key from the
digital certificate, enter the variable TXM_Public_Key with the value XMLDSIG.

How to Configure Responses to Produce SAML Session Tickets

Chapter 3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing
Messages 87

The following table shows the properties of the primary response attribute:

Field Value

Attribute WebAgent-SAML-Session-Ticket-Variable

Attribute Kind Static

Variable Name TXM_Public_Key

Variable Value XMLDSIG

If the public key is coming from the user directory, two response attributes are required.
The properties of the first required response attribute would be as follows:

Field Value

Attribute WebAgent-SAML-Session-Ticket-Variable

Attribute Kind User Attribute

Variable Name TXM_User_Cert

Variable Value usercertificate

The properties of the second required response attribute would be as follows:

Field Value

Attribute WebAgent-SAML-Session-Ticket-Variable

Attribute Kind Static

Variable Name TXM_Public_Key

Variable Value User_Store

Example 2

To ensure that the assertion is placed in the SOAP envelope message header, the
properties of the required response attribute would be as follows:

Field Value

Attribute WebAgent-SAML-Session-Ticket-Variable

Attribute Kind Static

Variable Name TXM_SAML_Location

How to Configure Responses to Produce SAML Session Tickets

88 Policy Configuration Guide

Field Value

Variable Value Envelope_Header

Chapter 4: How to Define the Security Policy for One or More Related Web Services from a WSDL File 89

Chapter 4: How to Define the Security
Policy for One or More Related Web
Services from a WSDL File

To protect web services in your organization, you create application security policies.
These policies define the resources you want protected and specify who is allowed
access to the protected application.

Application objects provide an intuitive method of defining a complete security policy
for one or more related web services. Application objects associate resources with user
roles to specify entitlement policies that determine what web service users can access
what web service application resources. Roles identify the set of users who have access
to a resource or group of resources in terms of a named or unnamed expression.

How to Configure Responses to Produce SAML Session Tickets

90 Policy Configuration Guide

This scenario describes how a policy administrator defines the security policy for web
service resources from their associated Web Service Definition Language (WSDL) files.

To define the security policy for one or more related web services from a WSDL file, do
the following procedures:

1. Verify your administrative rights (see page 91).

2. Create an application object for the web service resources that you want to protect
(see page 91).

3. (Optional) Configure responses to associate with web service resources (see
page 93).

4. Generate the security policy from the web service definition contained in a WSDL
file (see page 94).

Verify Your Administrative Rights

Chapter 4: How to Define the Security Policy for One or More Related Web Services from a WSDL File 91

5. Modify the default role created by the wizard to define user access rights (see
page 96).

6. (Optional) Create additional roles to define user access rights (see page 97).

7. Repeat Steps 4, 5, and 6 for any additional web services defined in other WSDL files
that you want to protect in the same application.

8. Modify role assignments in the security policy (see page 99).

Verify Your Administrative Rights

To implement application security policies, you require the necessary administrative
rights. An administrator can be assigned the following application-related rights:

Application administration

The application administration right lets you create, modify, and delete an
application and its components.

Policy administration

The policy administration right lets you define the resources, roles, and policies that
are associated with an application.

If you do not have the necessary rights, contact the CA SiteMinder® superuser.

Create an Application Object for the Web Services That You
Want to Protect

The application object you create for one or more related web services must specify the
top-level location of the resources that you want to protect, and a directory of users
who are authorized to use the resources.

To identify the application and select the directory server

1. Log in to the Administrative UI

2. Click Policies, Application

3. Click Applications.

4. Click Create Application.

The Create Application pane opens.

Create an Application Object for the Web Services That You Want to Protect

92 Policy Configuration Guide

5. Enter values for the fields in the General group box. Choose distinctive values that
help you remember its purpose or function, as shown in the following examples:

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

Name

Name of the application

Description

(Optional) A description of the application.

6. In the Components group box, specify values for a default component description.

Note: These fields are mandatory, but the component they define is not used;
component definitions for your web services will be created from their WSDL files.

Agent Type

Web Agent

Agent

Any SiteMinder WSS Agent.

Resource Filter

*

7. Accept the defaults for the remaining settings.

8. In the User Directories group box, click Add/Remove.

The Choose User Directories dialog opens.

9. Select one or more directories that contain the the users that you want to be access
the web service resources then click the right arrow to move the selected directory
or directories from the Available members column to the Selected Members
column.

10. Click OK.

You return to the General tab.

11. Click Submit.

The application is identified and the directory selected.

(Optional) Configure Responses to Associate With Web Service Resources

Chapter 4: How to Define the Security Policy for One or More Related Web Services from a WSDL File 93

(Optional) Configure Responses to Associate With Web Service
Resources

To include a response (for example, to generate WS-Security headers) in the application
security policy you generate from a WSDL file, first configure the response.

Follow these steps:

1. Log in to the Administrative UI

2. Open the application object that defines the security policy for web service
resources in an editable state.

3. Click the Response tab.

4. Click Create Response.

The Create Application Response pane opens.

5. Type the name of the response in the General group box.

6. Click Create Response Attribute to create a response attribute, then complete the
following steps on the Create Response Attribute pane that opens:

a. Select a response attribute type from the Attribute drop-down list in the
Attribute Type section.

To configure a response to produce WS-Security headers, select
WebAgent-WS-Security-Token. To configure a response to produce SAML
Session Tickets, select WebAgent-SAML-Session-Ticket-Variable.

b. Select an attribute type in the Attribute Kind (one of Static, User Attribute, DN
Attribute, and Active Response) section.

The fields on the Attribute Fields group box are updated to match the specified
attribute type.

c. Complete the fields in the Attribute Fields section to specify required Variable
Name/Variable Value pairs.

Note: For WebAgent-SAML-Session-Ticket-Variable and
WebAgent-WS-Security-Token attributes, you can either enter values directly in
the Variable Name and Variable Value fields or populate those fields with valid
values from the Select a Name and Select a Value lists that appear.

Generate the Security Policy from the Web Service Definition Contained in a WSDL File

94 Policy Configuration Guide

d. Specify Cache Value or Recalculate value every ... seconds on the Attribute
Caching group box.

e. Click Submit.

The Create Response Attribute Task is submitted for processing, and the
response attribute is added to the Attribute List on the Create Response
Attribute pane.

7. Create further response attributes as required.

8. Click OK.

The Create Response Task is submitted for processing and you are returned to the
Responses tab.

More information:

How to Configure Responses to Produce WS-Security Headers (see page 62)
How to Configure Responses to Produce SAML Session Tickets (see page 81)

Generate the Security Policy from the Web Service Definition
Contained in a WSDL File

After you create the application object, you generate the security policy to protect web
service resources from their associated WSDL file.

Follow these steps:

1. Log in to the Administrative UI

2. Click Policies, Application.

3. Click Secure Web Services from WSDL.

The Secure Web Services from WSDL: Select Application pane appears.

4. Select the application to secure from the Choose an Existing Application list.

5. Click Next.

The Secure Web Services from WSDL: Input WSDL pane appears.

6. Specify whether you want to open a WSDL file that resides on your local system or
at a specific URL by selecting the File or URL option, and identifying the file
accordingly as follows:

■ If you chose FILE, click Browse and navigate to its location.

■ If you chose URL, type the URL.in the Enter the WSDL URL field. For example,

http://example.com/WSDL/my-wsdl.wsdl

Generate the Security Policy from the Web Service Definition Contained in a WSDL File

Chapter 4: How to Define the Security Policy for One or More Related Web Services from a WSDL File 95

7. Click Next.

The Secure Web Services from WSDL: Define Policies pane appears, displaying a
selectable table of the web services (ports) defined in the WSDL file.

8. Define the web service or services to protect in the Define Web Service Protection
Policy table:

■ Select the web service or services that you want to protect in the Port Name
column.

■ Assign the SiteMinder WSS Agent that will protect each protected web service
from the Agent list.

■ Assign an authentication scheme to use to protect each web service from the
Authentication Scheme list.

■ (Optional) Choose a response to bind to a web service from the Response list.

9. (Optional) Set the Propagate Authentication Scheme of Web Service to all its
operations option to apply the authentication scheme you assigned to protect each
web service to all of its constituent operations.

10. Click on a web service entry in the Port Name column to drill down to see its
constituent operations in the Define Web Service Protection Policy table and select
individual operations to protect, authentication schemes to use, and optionally,
response bindings.

(To return to the top-level WSDL view, click the All Web Services link at the top-left
corner of the table.)

11. When your policy definitions are complete, click Next.

The Secure Web Services from WSDL: Summary pane opens, displaying a summary
of the components, subcomponents, and resources that will be created according
to your selections.

12. If the summary is correct, click Finish.

The Administrative UI creates component and resource definitions corresponding to
your settings for all specified web service ports and operations, a default
application role (that defines no user access), and a security policy that binds that
default role with resources.

However, if you assigned different authentication schemes to a web service port
and any of its operations, you must manually create a resource definition for that
web service port:

a. Click Policies, Application, Modify Application.

The Modify Application pane opens

b. Specify search criteria, and click Search.

A list of applications that match the search criteria opens.

Modify the Default Role Created By the Wizard to Define User Access Rights

96 Policy Configuration Guide

c. Select your application from the list, and click Select.

The Modify Object: Name pane opens.

d. Click on the Resources Tab.

e. Choose the appropriate entry for the web service port from the Select a
context root pulldown. No resources should be listed.

f. Click Create.

The Create Application Resource pane opens.

Specifiy a name for the resource, accept the default resource filter (/*) and
select the ProcessSOAP and ProcessXML Web Agent actions.

g. Click OK.

h. Click Submit.

The Administrative UI creates component and resource definitions corresponding to
your settings for all specified web service ports and operations, a default role (that
defines no user access), and a security policy that binds that default role with resources.

The web services you chose to protect are now secure. No access requests will be
authorized until you modify the default role to define access privileges or create more
roles and bind them to resources in the authorization policy.

Note: You can repeat this procedure to add the resources from multiple WSDL files to
the same application. However, the Secure Web Services from WSDL operation is only
intended for initial generation of policy objects from a particular WSDL file; if a web
service changes or you must enable other operations from a previously loaded WSDL file
you must delete the previously created application or edit it manually.

Modify the Default Role Created By the Wizard to Define User
Access Rights

Roles associate resources with groups of users must be created.The Secure Web
Services from WSDL wizard creates a default role that allows no access when it secures
web services from a WSDL file. You must modify this role to define a group of users that
can access a resource to which the role is assigned.

Create Additional Roles to Define User Access Rights

Chapter 4: How to Define the Security Policy for One or More Related Web Services from a WSDL File 97

To create a new role

1. Log in to the Administrative UI

2. Click Policies, Application,

3. Click Applications.

4. Click Modify Application.

The Modify Application pane opens

5. Specify search criteria, and click Search.

A list of applications that match the search criteria opens.

6. Select your application from the list, and click Select.

The Modify Object: Name pane opens.

7. Click the Roles tab.

8. Click the Edit button beside the default role.

9. Ensure the Create a new object of type Role button is selected, and then click OK.

The Modify Role pane opens.

10. Define the groups, organizations, and user attribute expressions that define the
members of the role by making selections in the Users Setup group box.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

11. Click OK.

The role is modified.

Create Additional Roles to Define User Access Rights

Roles associate resources with groups of users must be created. The Secure Web
Services from WSDL wizard creates a default role which is assigned to all resources in
when it secures web services from a WSDL file. If required, you can create additional
roles.

Note: The following procedure assumes that you are creating an object. You can also
copy the properties of an existing object to create an object. For more information, see
Duplicate Policy Server Objects.

Create Additional Roles to Define User Access Rights

98 Policy Configuration Guide

To create a new role

1. Log in to the Administrative UI

2. Click Policies, Application

3. Click Applications.

4. Click Modify Application.

The Modify Application pane opens

5. Specify search criteria, and click Search.

A list of applications that match the search criteria opens.

6. Select your application from the list, and click Select.

The Modify Object: Name pane opens.

7. Click the Roles tab.

8. Click Create Role.

9. Verify that the Create a new object of type Role button is selected, and then click
OK.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

10. Enter a name and optionally, a description for the role.

11. Specify whether the role applies to All Users or Selected Users in the configured
user directories.

Note: The Users Setup and Advanced sections do not apply when the All Users
option is set and are no longer displayed.

12. Define the groups, organizations, and user attribute expressions that define the
members of the role by making selections in the Users Setup group box.

13. Click OK.

The role is created.

14. Repeat steps 8 through 13 for each additional required role.

Modify Role Assignments in the Security Policy

Chapter 4: How to Define the Security Policy for One or More Related Web Services from a WSDL File 99

Modify Role Assignments in the Security Policy

The Secure Web Services from WSDL wizard generates an application security policy
that binds the web service resources specified in a WSDL to a default. You can modify
this policy to change the roles assigned to resources to allow different groups of users to
access different resources protected by the application.

Follow these steps:

1. Log in to the Administrative UI

2. Click Policies, Application

3. Click Applications.

4. Click Modify Application.

5. Specify search criteria, and click Search.

A list of applications that match the search criteria opens.

6. Select your application from the list, and click Select.

The Modify Object: Name pane opens.

7. Click the Policies tab.

The Policies pane opens and displays a table listing the configured resources and
available roles. This table lets you quickly see which roles can be granted access to
which resources.

8. Place or remove checks in the role column to set the required role assignments for
each web service resource.

For example, if you had a human resources application that secures a web service
for benefits management and another for performance appraisals and separate
roles for employees and managers, you could:

a. Check the Employees role beside the rows of resources that protect the
benefits management operations to create a policy that allows employees to
manage their benefits.

b. Check the Managers beside the rows of resources that protect the
performance appraisals to create a policy that allows only managers to access
the performance appraisals web service.

9. Click Submit.

Security policies are created for each role assigned.

Note: If you need to edit resources or roles, you must make the changes on the
respective tabs and not on the Policies pane.

Chapter 5: Configure Security Policies Using Domain-based Policy Management 101

Chapter 5: Configure Security Policies Using
Domain-based Policy Management

This section contains the following topics:

Domain-based Policy Management Overview (see page 101)
How to Identify a Web Service Resource by Agent, Realm, and Rule (see page 101)
Guided Example: Create Security Policies from a WSDL File (see page 105)

Domain-based Policy Management Overview

Domain-based policy management using policy domains and domain objects allows you
to perform manual configuration of security policies for web service resources.
Domain-based policy management is required to create policies that implement
content-based authorization using variables.

The remainder of this chapter gives advice about how to best define domain-based
policies to protect web service resources. The following chapters describe all the policy
object types and how to configure them in detail.

More information:

Variables Overview (see page 113)

How to Identify a Web Service Resource by Agent, Realm, and
Rule

The Resource field in a CA SiteMinder® Web Services Security rule specifies the resource
that is the subject of the rule. The complete resource specification (shown by the
Effective Resource field on the Rule dialog box) is a concatenation of the values of the
Agent, the Resource Filter of the parent realm (or realms in a nested realm
environment), and the Resource field of the rule itself:

[agent] [realm_resource_filter] [rule_resource]

agent

Specifies a SiteMinder WSS Agent that monitors a server or gateway that contains
one or more realms of protected web service resources.

How to Identify a Web Service Resource by Agent, Realm, and Rule

102 Policy Configuration Guide

realm_resource_filter

Specifies a string that specifies the resources covered by the realm. If the realm is a
top-level realm, specify the resources relative to the server that serves up the files
or application. If the realm is nested, specify the resources relative to the parent
realm.

rule_resource

Specifies a string or regular expression that specifies the resources to which the rule
applies. Specify the resources relative to the realm containing the resource. You can
use wildcards (for example, "*") to broaden the specification of a rule.

How a SiteMinder WSS Agent for Web Servers Identifies Web Service Resources

By default, the SiteMinder WSS Agent for Web Servers identifies a web service being
requested by extracting the binding URL and name of the web service and
concatenating them as follows:

[agent] [/web_service_URL] [/web_service_name]

However, the SiteMinder WSS Agent for Web Servers can be configured to perform
fine-grain resource identification, in which case it additionally identifies the web service
operation being requested:

[agent] [/web_service_URL] [/web_service_name] [/web_service_operation]

How Other SiteMinder WSS Agent Types Identify Web Service Resources

This topic describes how the following SiteMinder WSS Agent types identify web service
resources:

■ SiteMinder WSS Agent for IBM WebSphere

■ SiteMinder WSS Agent for Oracle WebLogic

■ SiteMinder Agent for JBoss SiteMinder WSS Agent Security Interceptor

If a request is received over HTTP(S) transport, these SiteMinder WSS Agent types
identify the web services being requested by extracting the binding URL, the name of
the web service, and the name of the web service operation and concatenating them as
follows:

[agent] [/web_service_URL] [/web_service_name] [/web_service_operation]

How to Identify a Web Service Resource by Agent, Realm, and Rule

Chapter 5: Configure Security Policies Using Domain-based Policy Management 103

If a request is received over JMS transport, these SiteMinder WSS Agent types identify
the web services being requested by extracting the JMS queue or topic name and the
name of the web service operation and concatenating them as follows

[agent] [/queue_or_topic_name] [/web_service_operation]

Resource Identification Policy Examples

Coarse-Grain Resource Identification Over HTTP Example

Say you want to protect a resource with the following properties.

■ The resource is hosted on an IIS web server on host soap in domain example.com
that is protected by a SiteMinder WSS Agent called MySoaAgent.

■ MyIISSoaAgent is configured to provide coarse-grain resource identification

■ The resource is accessible over HTTP transport

■ Web service URL is services/soap2.

■ Web service name is ExampleSearchService.

■ ExampleSearchService provides two operations:

– KeywordSearchRequest

– PowerSearchRequest

To protect ExampleSearchService, configure the following:

■ A realm for ExampleSearchService with Resource Filter value
"/services/soap2/ExampleSearchService"

■ A single rule in the ExampleSearchService realm with Resource value "*"

Fine-Grain Resource Identification Over HTTP Example

Say you want to protect a resource with the following properties.

■ The resource is hosted on an IBM WebSphere Application Server on host soap in
domain example.com that is protected by a SiteMinder WSS Agent called
MyWSSoaAgent.

■ MyWSSoaAgent provides fine-grain resource identification

■ The resource is accessible over HTTP transport

■ Web service URL is services/soap2.

How to Identify a Web Service Resource by Agent, Realm, and Rule

104 Policy Configuration Guide

■ Web service name is ExampleSearchService.

■ ExampleSearchService provides two operations:

– KeywordSearchRequest

– PowerSearchRequest

To protect ExampleSearchService, configure the following:

■ A realm for ExampleSearchService with Resource Filter value
"/services/soap2/ExampleSearchService"

■ One rule in the ExampleSearchService realm for each operation:

■ A rule for the KeywordSearchRequest operation with Resource value
"/KeywordSearchRequest"

■ A rule for the PowerSearchRequest operation with Resource value
"/PowerSearchRequest"

Fine-Grain Resource Identification Over JMS Example

Say you want to protect a resource with the following properties.

■ The resource is hosted on BEA WebLogic Server on host soap in domain
example.com that is protected by a SiteMinder WSS Agent called
MyWebLogicSoaAgent.

■ MyWebLogicSoaAgent provides fine-grain resource identification

■ The resource is accessible over JMS transport

■ JMS queue name is ExampleQueue

■ Web service name is ExampleSearchService.

■ ExampleSearchService provides two operations:

– KeywordSearchRequest

– PowerSearchRequest

To protect ExampleSearchService, configure the following:

■ A realm for ExampleSearchService with Resource Filter value "/ExampleQueue"

■ One rule in the ExampleSearchService realm for each operation:

■ A rule for the KeywordSearchRequest operation with Resource value
"/KeywordSearchRequest"

■ A rule for the PowerSearchRequest operation with Resource value
"/PowerSearchRequest"

Guided Example: Create Security Policies from a WSDL File

Chapter 5: Configure Security Policies Using Domain-based Policy Management 105

Unprotected Realms, Rules, and Policies

By default a realm is created in a protected state. In most cases, you should use
protected realms instead of changing a realm to an Unprotected state. In a protected
realm, all resources are protected against access. To allow access, a rule must be
defined, then included in a policy.

When you create a realm in an unprotected state, you must configure rules before CA
SiteMinder® Web Services Security protects the resources in the realm. If you create a
rule for resources in the unprotected realm, only the specified resources are protected.
Once the resource is protected, the rule must be added to a policy to allow users to
access the resource. You may want to use an unprotected realm if only a subset of the
resources in a realm need to be protected from unauthorized access.

The following is an example of the actions required when setting up an Unprotected
realm:

Action Protection State

Create unprotected realm called Realm1
with the Resource Filter: /dir.

Resources contained in /dir and
subdirectories are not protected.

Create Rule1 in Realm1 for the resource:

getCachedQuote.asp.

The /dir/getCachedQuote.asp resource is
protected, but the rest of the contents of

/dir are not protected.

Create Policy1 and bind Rule1 and User1
to the Policy.

User1 can access
/dir/getCachedQuote.asp. All other users

cannot access the protected file.

Guided Example: Create Security Policies from a WSDL File

Deployed web services are typically described in an associated Web Services Description
Language (WSDL) file. One way of getting started creating security policies using
tradtional policy management, especially in terms of creating realms, rules, and the
resource mappings they define, is to work from the WSDL file associated with a
deployed web service.

Guided Example: Create Security Policies from a WSDL File

106 Policy Configuration Guide

To create security policies from the WSDL file for a deployed web service

1. Parse the WSDL file for the web service you want to secure. Look for <service>
elements. A <service> element contains the web service <port> elements which
need to be secured. The name attribute of a <port> element identities the port type
(and hence contains a reference to a <portType> element). A <port> element also
contains the binding URL which refers to the URL where the web service is located.
The web service port is protected by creating a realm whose Resource Filter is the
combination of the binding URL and port name.

In the following snippet from ExampleSearch.wsdl, the web service port to secure is
ExampleSearchPort. This port is bound to the URL
http://api.example.com/search/beta2.

 <service name="ExampleSearchService">

 <port name="ExampleSearchPort" binding="typens:ExampleSearchBinding">

 <soap:address location="http://api.example.com/search/beta2"/>

 </port>

 </service>

2. To protect the ExampleSearchPort web service, create a realm named
ExampleSearchRealm whose Resource Filter is /search/beta2/. Choose a SiteMinder
WSS Agent and authentication scheme with which to secure this realm as
appropriate.

3. Repeat Step 2 (create a realm) for every <port> element contained within the
<service> element in the WSDL file.

4. Look for all the web service operations that are available under the above web
service port by looking for the <portType> element whose name matches the name
of the <port> element.

In the following snippet, the three web service operations to secure are
doGetCachedPage, doSpellingSuggestion and doExampleSearch. All these three
operations are children of ExampleSearchPort which has been secured by the realm
named ExampleSearchRealm.

 <portType name="ExampleSearchPort">

 <operation name="doGetCachedPage">

 <input message="typens:doGetCachedPage"/>

 <output message="typens:doGetCachedPageResponse"/>

 </operation>

 <operation name="doSpellingSuggestion">

 <input message="typens:doSpellingSuggestion"/>

 <output message="typens:doSpellingSuggestionResponse"/>

 </operation>

Guided Example: Create Security Policies from a WSDL File

Chapter 5: Configure Security Policies Using Domain-based Policy Management 107

 <operation name="doExampleSearch">

 <input message="typens:doExampleSearch"/>

 <output message="typens:doExampleSearchResponse"/>

 </operation>

 </portType>

5. To configure fine-grain authorization policies, you must secure every child
<operation> element. Create a rule under the ExampleSearchRealm realm for each
operation with the following properties:

Resource Filter: “/Web Service Operation Name"

Action: Post, ProcessSOAP and ProcessXML Web Agent actions

6. Create a policy containing the rules you created for every web service operation in
the WSDL; assign users to the policy, as required.

Chapter 6: Variables 109

Chapter 6: Variables

This section contains the following topics:

eTelligent Rules (see page 109)
Variables Overview (see page 113)
Create a Variable (see page 116)
Configure Message-based Authorization Using an XPath Query in XmlToolkit.properties
(see page 125)

eTelligent Rules

You can use eTelligent Rules to define variables that enable fine-grained access-control
criteria known as policy expressions.

Policy expressions are implemented as policy attributes. They include operators and
customer-defined variables that are evaluated at runtime, when a user actually needs to
access a protected resource on a Web site.

Variables can store local information that is within the enterprise or remote information
that is provided by various Web Services.

The variables provided by eTelligent Rules are available in the Administrative UI. You can
define variable objects and incorporate them into policy logic through policy
expressions. You can also include variables in CA SiteMinder® response objects.

CA SiteMinder® eTelligent Rules Benefits

■ Reduce complexity and eliminate the need for custom code.

Authorization access is defined by the CA SiteMinder® administrator in policy
expressions, using graphical tools rather than application code. There is no need to
integrate and reconcile backend business applications’ access control information,
because that information is centralized in the CA SiteMinder® Policy Server.

■ Use business data dynamically in security policies.

Defining access control to secure resources is based on local user information and
incoming information, such as the amount of a purchase order placed by the user.

■ Combine various types of information for authorization decisions.

Web browser forms data, user-context data (stored locally in the Policy Server), and
remote data (obtained through a service bureau) can be flexibly combined in policy
expressions.

eTelligent Rules

110 Policy Configuration Guide

■ Make transactional decisions online.

There is no need to go back to a backend business application each time
authorization is needed to access a protected resource.

■ Rely on XML-based third-party security data.

eTelligent Rules use a standard XML protocol to communicate with trusted service
bureaus, thus increasing the choice of web services providers.

■ Use Boolean logic.

Policy expressions are defined by CA SiteMinder® security administrators, using
variables together with logical operators.

■ Minimize the number of policies required.

Due to the use of policy expressions based on logic, fewer policies are necessary,
thus keeping policy administration to a minimum.

eTelligent Rules Configuration

The tasks require to configure eTelligent Rules are as follows:

■ Configure variables

■ Configure policy expressions that use the eTelligent Rules variables

Variables and policy expressions are configured using the Administrative UI.

■ Modify the eTelligent Rules properties files, which are:

– JVMOptions.txt

– LoggerConfig.properties

You can modify only the LoggerConfig.properties file.

More information:

Variables Overview (see page 113)
eTelligent Rules Properties Files (see page 111)

eTelligent Rules

Chapter 6: Variables 111

eTelligent Rules Properties Files

The following properties files are for eTelligent Rules:

■ JVMOptions.txt

This is a required file for eTelligent Rules. The installed location of this file is:
policy_server_home/config/

■ LoggerConfig.properties

This file is required to configure logging for eTelligent Rules. The installed location
of this file is:

policy_server_home/config/properties

More information:

JVMOptions.txt File (see page 111)
Modify the LoggerConfig.properties File (see page 111)

JVMOptions.txt File

The JVMOptions.txt file contains the settings that the Policy Server uses when creating
the Java Virtual Machine that is used to support eTelligent Rules.

If you encounter errors related to missing classes, you may need to modify the classpath
directive in the JVMOptions.txt file. For complete information about the settings
contained in the JVMOptions.txt file, see your Java documentation.

Modify the LoggerConfig.properties File

On the Policy Server, the LoggerConfig.properties file allows you to specify logging
features that are used when you start the SiteMinder service from a command line. The
properties contained in this file are not used when the service is started from the Policy
Server Management Console. The settings in this file are generally only used for
debugging purposes.

eTelligent Rules

112 Policy Configuration Guide

You may want to modify this file to obtain more output for debugging purposes.

The following shows an example of a LoggerConfig.properties file.

// LoggingOn can be Y, N

LoggingOn=Y

// LogLevel can be one of LOG_LEVEL_NONE, LOG_LEVEL_ERROR,

LOG_LEVEL_INFO, LOG_LEVEL_TRACE

LogLevel=LOG_LEVEL_TRACE

// If LogFileName is set Log output will go to the file named

LogFileName=affwebserv.log

// AppendLog can be Y, N. Y means append output to LogFileName if

specified

AppendLog=Y

// AlwaysWriteToSystemStreams can be Y, N.

// Y means log messages are written to System.out

// or System.err regardless of what the logger streams are

// set to. If the logger streams are set to System.out

// or System.err log messages will be written multiple times.

// This facilitates logging messages to System.out/System.err

// and a file simultaneously.

AlwaysWriteToSystemStreams=N

// DateFormatPattern can be any valid input to java.text.DateFormat

constructor.

// See the Java documentation for java.text.DateFormat for details

// If not specified, the default format for the default locale is used

DateFormatPattern=MMMM d, yyyy h:mm:ss.S a

The settings in this file are:

LoggingOn

Enables or disables logging. Set this parameter to Y to enable logging. Set this
parameter to N to disable logging.

LogLevel

Indicates the level of detail contained in logs. The LogLevel can be one of the
following:

LOG_LEVEL_NONE

No messages will be logged.

LOG_LEVEL_ERROR

Only records error messages.

Variables Overview

Chapter 6: Variables 113

LOG_LEVEL_INFO

Records error messages and warnings.

LOG_LEVEL_TRACE

Records error messages, warnings, and general processing information that
may be useful for tracking problems.

LogFileName

If LogFileName is set, all log output will go to the file named in this parameter.

AppendLog

Indicates whether log information should be appended to an existing file at startup
or a new file should be created at startup. Set this parameter to Y to append output
to the file specified in the LogFileName parameter. Set this parameter to N if a new
file should be created at startup.

AlwaysWriteToSystemStreams

Set this parameter to Y to log messages to System.out or System.err regardless of
what the logger streams are set to. If the logger streams are set to System.out or
System.err, log messages will be written multiple times. This facilitates logging
messages to System.out/System.err and a file simultaneously.

DateFormatPattern

DateFormatPattern can be any valid input to java.text.DateFormat constructor. See
the Java documentation for java.text.DateFormat for details.

If not specified, the default format for the default locale is used.

Variables Overview

In the context of Policy Server, variables are objects that can be resolved to a value
which you can incorporate into the authorization phase of a request. The value of a
variable object is the result of dynamic data and is evaluated at runtime. Variables
provide a flexible tool for expanding the capabilities of policies and responses.

Variable Types

The following types of variables are available:

■ Static Variables (see page 114)

■ Request Context Variables (see page 114)

■ User Context Variables (see page 114)

■ Form Post Variables (see page 114)

■ Web Services Variables

Variables Overview

114 Policy Configuration Guide

Static Variables

Static variables consist of a simple name/value pair of a particular type, such as string,
boolean, and others. The key benefit of a static variable is to implement good
programming practices. Instead of repeating the value of a constant each time it’s used
in a policy, a static variable provides a single piece of data that can be used throughout
multiple policies.

Request Context Variables

Each request processed by CA SiteMinder® establishes a request context. This context
identifies the following:

Action

Indicates the type of action specified in the request, such as GET or POST.

Resource

Indicates the requested resource, such as /directory_name/.

Server

Indicates the full server name specified in the request, such as server.example.com.

A request context variable may capture any of this information and make it available for
inclusion in a policy expression or response. The key benefit of this type of variable is to
provide fine-grained request context information without any programming logic.

User Context Variables

When the Policy Server authenticates a user against an entry in a directory, a user
context is created. The user context consists of information about the user directory and
the contents of the directory that pertain to the authenticated user.

User context variables can be based on an attribute of a directory connection, or based
on the contents of the directory. The key benefit of this type of variable is to provide
flexibility in defining rules based on particular user context without any programming
logic.

Form Post Variables

HTML forms are often used to collect information required by back-end applications.
Form Post variables can be used to capture any information entered in an HTML form
and POSTed. For example, if the business logic associated with an application requires a
purchase order amount specified on a HTML form used for logging into the application,
you can create a Form Post variable object that collects the value of the purchase order
supplied by a user. The variable can then be used in policies.

Important: Form Post variables are not supported by EJB or Servlet Agents. Do not use
Form Post variables in policies enforced by EJB or Servlet Agents.

Variables Overview

Chapter 6: Variables 115

The key benefit of this type of variable is that it allows the Policy Server to use POST
data as a part of a policy expression rather than forcing enterprises to build security
logic into back end server applications. Using HTTP POST variables results in efficient
network usage between Agents and Policy Servers. The Agent only needs to extract the
HTTP variable information from the HTTP stream so that the information can be used
during authorization processing by the Policy Server.

Variable Use in Policies

Variables allow you to include business logic in policies by capturing a wide range of
dynamic data that can be built into policy expressions. When you define variable objects
in the Administrative UI, you may use those variables in expressions in the Policy dialog
on the Expression tab. You can build expressions that use multiple variable objects and
boolean operators to capture very complex business logic in your policies.

For example, a policy may contain an expression that requires the value of a user’s
account type and a credit score in order to allow access to an application. An expression
can be defined in the policy so that only users whose account type is “gold”, and whose
credit score is greater than a specific value may have access to a resource. This example
requires two variables, which must be combined in an expression.

Note: Variables can only be used in policy expressions when using traditional (policy
domain-based) policy management. They are not available when using enterprise
(application-based) policy management.

Message-based Authorization Using Variables

Variables are objects that can be resolved to a value, which you can incorporate into the
authorization phase of a request. The value of a variable object is the result of dynamic
data and is evaluated at run time.

To make authorization decisions based on the transport header, SOAP envelope header,
XML payload, or SAML assertions, you can define specific CA SiteMinder® Web Services
Security variables and add them to policies in the form of policy expressions. The Policy
Server can use a policy expression as an additional criterion when determining if a client
should be permitted access to a web service.

CA SiteMinder® Web Services Security provides five variables types that represent
dynamic, context-sensitive data from any layer (transport, message envelope, or
message body) of an XML message. All of these variables can be used in policy
expressions.

■ SAML Assertion—Lets you obtain information from SAML assertions.

■ Transport—Lets you to obtain HTTP header values from the web service request.

Create a Variable

116 Policy Configuration Guide

■ XML Agent—Lets you obtain information about the web server whose resources
the SiteMinder WSS Agent is protecting.

■ XML Body—Lets you obtain information from any element in the body (or payload)
of an incoming XML message.

■ XML Envelope Header—Lets you obtain information from any element in the SOAP
envelope (including WS-Security headers) of an incoming XML message.

Once defined, these variables can be used in policy expressions to make authorization
decisions. For example, you could define an XML body variable called ShipToZipCode
that corresponds to an XML query that obtains the ship-to ZIP code from a purchase
order XML document.

Variable Use in Responses

Variables may be used in responses. When you define variable objects in the
Administrative UI, you can use those variables in responses. The value of the response is
created at runtime by the Policy Server as it resolves the value of a variable object.

Create a Variable

You create a variable to make it available for use in policies or responses. Variables are
domain objects. You create them within a specific policy domain, or import them into a
domain using the smobjimport tool.

More information about importing objects into policy domains exists in the Policy Server
Administration guide.

Create a SAML Assertion Variable

SAML Assertion variables let you obtain information from any SAML assertion and use
this information in policy expressions to authorize a client. The assertion may be
included in a SOAP envelope or HTTP header of an incoming XML message. For example,
you can create a variable that enables the Policy Server to check who issued the
assertion before permitting access to a web service.

SAML assertion variables are resolved to the value of an XPath string. The string
identifies an element (and optionally, an operation to perform on that element) of a
SAML assertion.

Create a Variable

Chapter 6: Variables 117

Note: For more information about XPATH, see the XPATH specification available at
http://www.w3.org/TR/xpath.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

6. Select SAML Assertion from the Variable Type list.

SAML Assertion variable settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

7. Specify the data type in which the value of the specified XPATH query should be
returned by choosing one of the following options from the Return Type list:

– Boolean

– Number

– String (the default)

8. Type in an XPath query that you want to resolve to the variable value in the Query
box.

9. Optionally, set the SAML Authentication Scheme Required box if the web service is
protected by the SAML Session Ticket authentication scheme.

10. If the web service is not protected by the SAML Session Ticket authentication
scheme, specify whether the SiteMinder WSS Agent should look for the SAML
assertion in the Envelope Header or HTTP Header by selecting the appropriate
SAML Assertion Location option.

11. Click Finish.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create a Variable

118 Policy Configuration Guide

Create a Transport Variable

Transport variables let you obtain HTTP header values from the web service request.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

6. Select Transport from the Variable Type list.

Transport variable settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

7. Enter information in the following fields:

Description

(Optional) Specifies a brief description of the variable.

Limits: No more than 1KB.

Return Type

Specifies the data type in which the value of the transport header data should
be returned:

– Boolean

– Date

– Number

– String (the default)

Transport Data Name

Specifes the name of the HTTP header (for example, SOAPAction) that will
provide the value of the variable.

8. Click Finish.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create a Variable

Chapter 6: Variables 119

Create an XML Agent Variable

XML Agent variables let you obtain information about the web server whose resources
the XML Agent is protecting for use in policy expressions or responses.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

6. Select XML Agent from the Variable Type list

XML Agent variable settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

7. Enter information in the following fields:

Description

(Optional) Specifies a brief description of the variable.

Limits: No more than 1KB.

Property

Specifies the XML Agent property that will provide the value of the variable:

– Server Product Name—String representation of the web server product
name—for example, iPlanet Web Server. Value is obtained from the
ServerProductName Agent Configuration parameter.

– Server Vendor—String representation of the web server vendor—for
example, Sun. Value is obtained from the ServerVendor Agent
Configuration parameter.

– Server Version—String representation of the web server product
version—for example, 6.0 SP2.

8. Click Finish.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create a Variable

120 Policy Configuration Guide

Create an XML Body Variable

XML Body variables let you obtain information from any element in the body (or
payload) of an incoming XML message for use in policy expressions and responses.

Specifically, XML Body variables are resolved to the value of an XPath string that
identifies an element (and optionally, an operation to perform on that element) of an
XML document.

Note: For more information about XPATH, see the XPATH specification available at
http://www.w3.org/TR/xpath.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

6. Select XML Body from the Variable Type list.

7. XML Body variable settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

8. Enter information in the following fields:

Description

(Optional) Specifies a brief description of the variable.

Limits: No more than 1KB.

Return Type

Specifies the data type in which the value of the specified XPATH query should
be returned:

– Boolean

– Date

– Number

– String (the default)

Create a Variable

Chapter 6: Variables 121

9. Do one of the following:

– Load a schema (.xsd) file and select the element to map to the specified field
name by browsing using the following procedure:

a. Click Browse and navigate to the schema file.

b. Click Upload XSD File.

 The schema is uploaded.

c. Select the schema element that you want to map to the specified field
name in the Select a node group box.

 The Select a node group box displays the selected schema using a standard
tree-style hierarchical view. Click the plus sign (+) next to an element to
expand it. Click the minus sign (-) beside an expanded element to contract
it. Elements marked with an asterisk (*) are repeatable within the XML
document (that is, incoming XML documents may contain multiple
instances of that element).

– Unset the Advance XPath query option and type an XPATH query defining the
mapping in the XPath field.

10. Optionally, if you are working from a loaded schema in the Select a node group box,
specify an XPath function (count, div, index, mod, sum) that you want to apply to a
repeatable schema element, by choosing it from the Function drop-down list.

The Function option lets you create more complex mappings by processing
functions that further evaluate the XML document.

Note: For more information about these functions, go to the XPATH specification at
http://www.w3.org/TR/xpath.

11. Click Finish.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create an XML Envelope Header Variable

XML Envelope Header Variables let you obtain information from any element in the
SOAP envelope header (including WS-Security headers) of an incoming XML message,
for use in policy expressions or responses.

Specifically, XML Envelope Header variables are resolved to the value of an XPath string
that identifies a SOAP envelope header element (and optionally, an operation to
perform on that element) of an XML document.

Note: For more information about XPATH, see the XPATH specification available at
http://www.w3.org/TR/xpath.

Create a Variable

122 Policy Configuration Guide

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

6. Select XML Header from the Variable Type list.

XML Header variable settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

7. Specify the data type in which the value of the specified XPATH query should be
returned by choosing one of the following options from the Return Type list:

– Boolean

– Number

– String (the default)

8. Type in an XPath query that you want to resolve to the variable value in the Query
box.

9. Click Finish.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create a Static Variable

You create a static variable to make it available for use in policies or responses.

Note: The value of the resolved variable must not be greater than 1K.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

Create a Variable

Chapter 6: Variables 123

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

6. Select Static from the Variable Type list.

Static variable settings open.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

7. Specify the data type and value of the variable in the Variable Information group
box.

8. Click Submit.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create a Request Context Variable

You create a request context variable to make it available for use in policies or
responses.

Note: The value of the resolved variable must not be greater than 1K.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

Note: Request Context variable names must begin with the percent character (%).

Example: %REQUEST_ACTION

6. Select Request Context from the Variable Type list.

Request context settings open.

Create a Variable

124 Policy Configuration Guide

7. Select the variable value from the Property list.

8. Click OK.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create a User Context Variable

You create a user context variable to make it available for use in policies or responses.

Note: The value of the resolved variable must not be greater than 1K.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

Note: User Context variable names must begin with the percent character (%).

Example: %SM_USERPATH

6. Select User Context from the Variable Type list.

User context settings open.

7. Select the portion of the user context that provides the value of the variable from
the Property list.

The return type value appears as either string or boolean depending on the value
you selected from the Property list.

8. (Required for User Property and Directory Entry) Enter the name of the directory or
user attribute that provides the variable value in the Property field.

9. (Required for User Property and Directory Entry) Enter the size of the buffer (in
bytes) that is to store the variable in the Buffer field.

10. (Required for Directory Entry) Enter the distinguished name of the directory entry in
the DN field.

Configure Message-based Authorization Using an XPath Query in XmlToolkit.properties

Chapter 6: Variables 125

11. Click Submit.

12. The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions or responses.

Create a Form Post Variable

You create a Form Post variable to make it available for use in policies.

Note: The value of the resolved variable must not be greater than 1K.

To create a variable

1. Open the domain to which to you want to add a variable.

2. Click the Variables tab.

A table lists the variables associated with the domain.

3. Click Create Variable.

The Create Variable screen appears.

4. Verify that Create a new object is selected, and click OK.

Variable settings open.

5. Type the variable name in the Name field.

6. Select Post from the Variable Type list.

Form post settings open.

7. Enter the name of the POST variable contained in the form in the Form Field Name
field.

8. Click OK.

The variable appears in the Variables tab of the domain. The variable can now be
used in policy expressions.

Configure Message-based Authorization Using an XPath Query
in XmlToolkit.properties

You can configure message content-based authorization based on information in
incoming XML messages by configuring variables and policy expressions to extract the
required information and trigger authorization decisions based on the obtained values.

Configure Message-based Authorization Using an XPath Query in XmlToolkit.properties

126 Policy Configuration Guide

Alternatively, you can configure an XPath query in the target SiteMinder WSS Agent's
XMLToolkit.properties file that extracts a value from each incoming message and
incorporates it into your policy's resource value.

Note: To find out the location of the XMLToolkit.properties file for each SiteMinder WSS
Agent type, see the respective SiteMinder WSS Agent Guide..

To configure content-based resource processing

1. Open the XmlToolkit.properties file in a text editor.

2. Make the following changes in XmlToolkit.properties:

■ Add an ResourceXpathQuery parameter whose value is a valid XPath query that
identifies the required XML message element, for example:

ResourceXPathQuery=/SOAP-ENV:Envelope/SOAP-ENV:Header/method

■ (Optional) Add a NodeProperty parameter which specifies a property of an
element or attribute to be returned from the XPath query and passed by the
SOAP envelope handler to the XPath evaluate method.

3. Save and close the XmlToolkit.properties file.

4. Restart the target SiteMinder WSS Agent.

Notes:

■ XPath query processing is namespace aware.

■ The XPath query must be rooted at the document root—not at the header or body.

■ You can configure only one XPath query per agent instance.

■ If the XPath query fails, the target URL will be used as the resource.

■ The XPath query is loaded at SiteMinder WSS Agent startup; if it is changed, you
must restart the agent.

Index 127

Index

No index entries found.

	CA SiteMinder Web Services Security Policy Configuration Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introducing CA SiteMinder Web Services Security
	CA SiteMinder Web Services Security Overview
	CA SiteMinder Web Services Security Architecture and Components
	CA SiteMinder Policy Server
	Web Services Security (WSS) Agents
	SiteMinder WSS Agent for Web Servers
	SiteMinder WSS Agent for IBM WebSphere
	SiteMinder WSS Agent for Oracle WebLogic
	SiteMinder Agent for JBoss

	Web Service Request Processing
	Authentication Schemes

	Authentication Service Models
	How the Single-Step Authentication Model Works
	How the Multistep Authentication Model Works
	How the Chain Authentication Service Model Works
	Multistep and Chain Authentication Using SiteMinder Session Tickets

	How to Develop and Deploy CA SiteMinder Web Services Security Protected Web Services

	2: Configure Authentication Schemes to Verify User Identities Obtained from Web Service Requests
	Authentication Scheme Overview
	How to Configure XML DCC Authentication to Verify User Identities Using Credentials Gathered from XML Request Messages
	Configure the XML DCC Authentication Scheme
	How to Configure XML DCC Field Mappings
	Configure the Required "user" Mapping
	(Optional) Configure Other Field Mappings

	XML DCC XPath Mapping Examples
	Example Namespace-aware XPath Query
	Example XPath Query to Obtain Credentials From Embedded XML Documents
	Example XPath Query to Obtain Credentials with a Default Namespace for all Elements
	Example XPath Query that Explicitly Specifies the Namespace Prefix
	Example XPath Query With Namespace and Element-by-Element Navigation

	How to Configure XML DSIG Authentication to Verify User Identities Associated with X.509 Certificates
	Verify Required XML Document Elements for XML-DSIG Authentication
	Configure the XML DSIG Authentication Scheme
	Configure a Certificate Mapping

	WS-Security Authentication
	XML Encryption
	How CA SiteMinder Web Services Security Obtains Credentials from Encrypted WS-Security Documents
	Configure CA SiteMinder Web Services Security to Perform Encryption and Decryption of WS-Security Documents
	XML Encryption and Decryption Service Use Case
	Encryption Algorithms

	Message Timestamps
	XML Signature Scope
	SOAP Actor/Role Attributes in Messages with Multiple WS-Security Headers
	Username and Password Digest Token Age Restrictions
	How to Configure WS-Security Authentication to Verify User Identities Obtained from WS-Security Headers
	Verify That Certificates Required to Validate Signed Tokens are Present in the Certificate Data Store
	Configure the WS-Security Authentication Scheme
	(Optional) Strip Standard Prefixes from XPath Queries That Identify WS-Security SAML Assertion Attributes

	How to Configure SAML Session Ticket Authentication to Verify User Identities Obtained from SAML Session Ticket Assertions
	Review Information About How Multiple SAML Session Ticket Assertions are Processed
	Configure a SAML Session Ticket Authentication Scheme

	3: (Optional) Configure Responses to Generate SAML Session Tickets or WS-Security Headers for Outgoing Messages
	Responses Overview
	Response Attribute Types
	Web Agent Response Attributes
	Responses and Directory Mappings
	WS-Security Header Production Overview
	How WS-Security Responses are Used
	How WS-Security Headers Are Produced
	WS-Security Token Types
	Username and Password Digest Token
	Username and Password Token (Clear Text)
	X509v3 Certificate Token
	WS-Security SAML Assertion Token

	How SAML Session Ticket Responses are Used

	How to Configure Responses to Produce WS-Security Headers
	Verify Certificate Requirements
	Review Supported Authentication Schemes for Producing Different WS-Security Header Types
	Configure CA SiteMinder Web Services Security to Generate SAML Assertions
	SAML 1.x Assertion Generator
	Configure the AMAssertionGenerator.properties File
	Configure Affiliate Domains and Affiliate Objects

	Configure SAML 2.0 Service Providers

	Configure a Response to Produce WS-Security Headers
	(Mandatory) Response Attribute Variable for Specifying the Generated WS-Security Token Type
	Response Attribute Variables for Generating Username and Password and X.509 Certificate Tokens
	Response Attribute Variables for Generating SAML Tokens
	Response Attribute Variables for Encrypting/Decrypting WS-Security Messages
	Response Attribute Variables for Handling WS-Security Headers
	TXM_WSSEC_MUST_UNDERSTAND Response Variable Effect Detail

	WS-Security Response Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	How to Configure Responses to Produce SAML Session Tickets
	Verify Certificate Requirements
	Configure a Response to Produce a SAML Session Ticket
	SAML Session Ticket Response Attribute Variables

	SAML Session Ticket Response Examples

	4: How to Define the Security Policy for One or More Related Web Services from a WSDL File
	Verify Your Administrative Rights
	Create an Application Object for the Web Services That You Want to Protect
	(Optional) Configure Responses to Associate With Web Service Resources
	Generate the Security Policy from the Web Service Definition Contained in a WSDL File
	Modify the Default Role Created By the Wizard to Define User Access Rights
	Create Additional Roles to Define User Access Rights
	Modify Role Assignments in the Security Policy

	5: Configure Security Policies Using Domain-based Policy Management
	Domain-based Policy Management Overview
	How to Identify a Web Service Resource by Agent, Realm, and Rule
	How a SiteMinder WSS Agent for Web Servers Identifies Web Service Resources
	How Other SiteMinder WSS Agent Types Identify Web Service Resources
	Resource Identification Policy Examples
	Unprotected Realms, Rules, and Policies

	Guided Example: Create Security Policies from a WSDL File

	6: Variables
	eTelligent Rules
	CA SiteMinder eTelligent Rules Benefits
	eTelligent Rules Configuration
	eTelligent Rules Properties Files
	JVMOptions.txt File
	Modify the LoggerConfig.properties File

	Variables Overview
	Variable Types
	Static Variables
	Request Context Variables
	User Context Variables
	Form Post Variables

	Variable Use in Policies
	Message-based Authorization Using Variables
	Variable Use in Responses

	Create a Variable
	Create a SAML Assertion Variable
	Create a Transport Variable
	Create an XML Agent Variable
	Create an XML Body Variable
	Create an XML Envelope Header Variable
	Create a Static Variable
	Create a Request Context Variable
	Create a User Context Variable
	Create a Form Post Variable

	Configure Message-based Authorization Using an XPath Query in XmlToolkit.properties

	Index

