

Web Agent Configuration Guide
12.51

CA SiteMinder®®

3rd Edition

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2015 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA SiteMinder®

■ CA Introscope
®
 (formerly CA Wily Introscope)

■ CA IdentityMinder
™

 (formerly CA Identity Manager)

■ CA SiteMinder® Web Services Security (formerly CA SOA Security Manager)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

■ How to Set Up Error Handling (see page 131)—Corrected URL examples to resolve
CQ170498, STAR Issue # 21389742-01.

■ Prevent Session Cookie Creation or Updates (see page 106)—Added a new ACO
parameter.

■ Prevent Caching of Server Responses Containing Cookies (see page 268)—Added a
new ACO parameter to resolve CQ171158, CQ171396, STAR Issue # 21407131:01

■ Prevent Re-Challenges After Realm Timeouts When Multiple Valid Sessions Exist
(see page 112)—Added a new parameter, compatRealmtimeouts. (CQ160965,
158664, STAR Issue # 21025754:01

■ Enable Legacy Variables for HTTP Headers (see page 128)—Added a note for the
Apache 2.4.x web servers. (CQ178440. STAR Issue #: 21545697)

Contents 5

Contents

Chapter 1: Web Agents 15

How Web Agents Secure Resources... 16

How Web Agents and the Policy Server Work Together .. 18

Considerations for Web Agents and Policy Servers in Different Time Zones .. 20

How the Agent Reads CA SiteMinder® Cookies ... 21

Web Agents and Dynamic Key Rollovers .. 22

Key Stores.. 22

Framework and Traditional Agent Architectures ... 23

Parameters Requiring a Server Restart when Changed ... 24

Multiple Agent for IIS Directory Structures .. 27

Chapter 2: Agent Configuration Methods 29

Central Configuration ... 29

Implement Central Configuration ... 30

Local Agent Configuration .. 31

WebAgent.conf File Locations .. 32

WebAgent.conf file for Framework Agents .. 33

LocalConfig.conf File Locations (Framework Agents) ... 34

Parameters Found Only in Local Configuration Files .. 35

Implement Local Configuration ... 36

Central and Local Configuration Together ... 40

Chapter 3: Configuration Files used by the Web Agent 41

Agent Connection Manager Configuration File .. 41

Connection API Configuration File ... 42

Local Agent Configuration File ... 43

Trace Configuration File ... 44

Web Agent Trace Configuration File .. 45

CA SiteMinder® Host Configuration File... 46

Web Agent Configuration File .. 47

Chapter 4: Basic Agent Setup and Policy Server Connections 49

Default Settings of Web Agent Configuration Parameters .. 49

Set the AgentName and DefaultAgentName Values .. 50

Restrict Changes to Local Configuration Parameters ... 52

6 Web Agent Configuration Guide

Ensure that Agent Names Match ... 53

Encrypt the Agent Name .. 53

How to Manage Web Agent and Policy Server Communication .. 53

Accommodate Network Latency .. 54

Manage Web Agents with Multiple Web Server Instances .. 55

Set the ServerPath Parameter for Windows Systems ... 56

Set the ServerPath Parameter for UNIX Systems .. 56

Additional Configurations Requiring the ServerPath Parameter .. 57

Set Log Files, and Command-line Help to Another Language .. 57

Determine the IANA Code for Your Language .. 59

Environment Variables .. 59

Chapter 5: Starting and Stopping Web Agents 63

Enable a Web Agent ... 63

Disable a Web Agent .. 64

Starting or Stopping Most Apache-based Agents with the apachectl Command .. 64

Chapter 6: User Protection 65

Change How Often an Agent Checks for Policy or Key Updates .. 65

User Tracking and URL Monitoring .. 66

Track User Identity Across Anonymous Realms .. 66

Track User Activities or Application Usage with Auditing ... 67

URL Monitoring Overview ... 67

Help Prevent Attacks .. 68

Protect Web Sites Against Cross-Site Scripting ... 69

Prevent Cross-Site Scripting Attacks in Web Agent FCC Pages ... 70

Configure the Web Agent to Check For Cross Site-Scripting ... 71

Protect J2EE Applications against Cross-Site Scripting Attacks ... 71

Override the Default CSS Character Set .. 72

Specify Bad Query Characters ... 73

Specify Bad URL Characters .. 75

Enable Bad Form Characters ... 77

Help Prevent DNS Denial Of Service Attacks ... 78

Protect Resources Without Extensions ... 78

Disable POST Preservation .. 79

Secure Applications ... 79

Ensure Custom Responses Comply with X-Frame Options ... 80

Verify IP Addresses ... 80

Resolve Agent Identity by IP Address .. 81

Compare IP Addresses to Prevent Security Breaches ... 81

SiteMinder Browser Cookies .. 82

Contents 7

Require Cookies for Basic Authentication ... 83

Safeguard Information in Cookies with HTTP-Only Attribute ... 83

Set Secure Cookies .. 84

Control Identity Cookies .. 84

Set Persistent Cookies ... 85

Specify the Cookie Path for Agent Cookies ... 86

Force the Cookie Domain .. 88

Implement Cookie Domain Resolution ... 89

How CookiePathScope Settings Work ... 89

Configure Support for SDK Third-Party Cookies .. 90

Define HTTPS Ports ... 91

Decode Query Data in a URL .. 91

How to Protect Resources Without Periods or Extensions .. 92

Handle Complex URIs ... 93

Chapter 7: Use Platform for Privacy Preferences (P3P) Compact Policies
with CA SiteMinder® Agents 95

How to Support a P3P Compact Policy with your CA SiteMinder® Web Agent ... 95

Configure your Web Agent to Accommodate P3P Compact Policies ... 96

Chapter 8: Session Protection 97

Apply CA SiteMinder® Behavior to a Web Application Client .. 97

Web Application Client Response Introduced .. 98

Cookie Providers and the Web Application Client Response .. 100

How to Apply the Web Application Client Response to a Web Application ... 100

Modify the Session Grace Period ... 103

Modify the Session Update Period ... 104

Protect Session Cookies from Misuse with Validation Periods and Expired Cookie URLs 105

Prevent Session Cookie Creation or Updates ... 106

Prevent Session Cookie Creation or Updates Based on Method and URI .. 107

Store Session Cookies on the Session Store for Improved Security ... 108

Validate a Session Cookie Domain ... 109

Redirect a User after a Session Time-out ... 110

Enforce Timeouts across Multiple Realms ... 111

Prevent Re-Challenges After Realm Timeouts When Multiple Valid Sessions Exist .. 112

Chapter 9: Web Application Protection 113

Application Protection Methods .. 113

REMOTE_USER Variable ... 113

Configure the Web Agent to set the REMOTE_USER Variable .. 114

8 Web Agent Configuration Guide

IIS Web Servers and the REMOTE_USER Variable ... 115

How Response Attributes Work with Web Agents .. 116

Use SM_AGENT_ATTR_USRMSG Response for a Forms Challenge .. 117

Cache Response Attributes ... 118

CA SiteMinder® Default HTTP Headers .. 119

HTTP Header and Cookie-Variables .. 121

Header Variables and End-User IP Address Validation ... 122

Preserve HTTP Headers ... 124

Custom Error Handling For Applications ... 130

Chapter 10: Configure Virtual Servers 135

How to Set Up Virtual Server Support .. 136

Assign Web Agent Identities for Virtual Servers .. 137

Specify Virtual Servers for the Web Agent to Ignore ... 138

Chapter 11: Forms Authentication 141

How Credential Collectors Process Requests ... 141

MIME Types for Credential Collectors ... 142

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication.. 143

Configure Basic FCC Operation ... 145

Map URLs for FCC Redirects with a Domino Web Agent .. 149

Configure POST Preservation .. 149

Configure Advanced FCC Settings ... 153

Tune the Performance of the FCC ... 168

Specify an NTLM Credential Collector .. 171

Using Credential Collectors Between 4.x Type and Newer Type Agents ... 171

Configure Credential Collectors in a Mixed Environment ... 172

Use FCCs and NTCs in a Mixed Environment .. 173

Use SCCs in a Mixed Environment .. 176

Configure Apache-based Agents for FCC-based Password Services in Japanese Environments 177

Chapter 12: Agents and Password Services 179

How to Configure FCC Password Services .. 179

Password Services Implementations .. 179

FCC Password Services and URL Query Encryption ... 180

How to Localize FCC-based Password Services Change Forms ... 181

Use a Fully Qualified URL for Password Services Redirects .. 182

Configure SecureID Authentication with FCC Password Services ... 183

How to Enable User-Initiated Password Changes with FCCs .. 184

How to Enable User-Initiated Password Changes with FCCs (SecureURLs=Yes) ... 186

Contents 9

How to Enable User-Initiated Password Changes when using the CA SiteMinder® X.509 Certificate
and Basic Authentication Scheme ... 188

Chapter 13: Single Sign-On (SSO) 191

Allow Automatic Access to Resources that use the OPTIONS Method .. 191

How Single Sign-on Works in a Single Domain ... 192

Single Sign-On Across Multiple Domains ... 193

Hardware Load Balancers and Single Sign-On Across Multiple Cookie Domains ... 194

Single Sign-On and Authentication Scheme Protection Levels .. 196

Single Sign-on and Agent Key Management .. 196

How to Configure Single Sign-On ... 197

Restrict Cookie Provider Functions ... 198

Prevent Cookie Provider Replay Attacks ... 199

Set RequireCookies Parameter for Single Sign-On .. 200

Enabling Persistent Cookies for Single Sign-On ... 201

Specify the Cookie Domain ... 202

Enable IP Address Validation for Single Sign-On Environments .. 203

Modify the Session Update Period .. 204

Set Secure Cookies Across Multiple Domains ... 204

Ignore the Cookie Provider for Unprotected Resources ... 205

Ignore the Cookie Provider for POST Requests ... 205

Configure SecureUrls with Single Sign-on ... 206

Specify the Cookie Provider .. 207

Disable Cookie Providers ... 208

Chapter 14: Comprehensive Log Out 209

How Full Logoff Works ... 209

Configure Full Logoff .. 210

How to Configure Full Logoff for Single Sign-on ... 211

Configure Comprehensive Log Out using FCC Forms ... 213

Chapter 15: SSO Security Zones 215

Security Zones Overview .. 215

Security Zone Definitions .. 216

Security Zones Benefits ... 216

Security Zone Basic Use Case .. 217

User Sessions Across Security Zones ... 218

Trusted Zone Order ... 218

The Default Single Sign-On Zone and Trusted Zone List ... 220

Request Processing with Multiple User Sessions .. 220

10 Web Agent Configuration Guide

Transitive Relationships Across Zones .. 221

Other Cookies Affected by Single Sign-On Zones .. 221

Single Sign-On Zones and Authorization ... 222

Configure Security Zones.. 223

Specify the Single Sign-on Zone for the Agent .. 225

The Order of Trust and Failover .. 226

Chapter 16: Advanced Configuration Settings 227

Agents and Proxy Servers ... 227

Configure Agents that Sit behind Proxy Servers ... 228

Customize the Cache-Control and ExpireForProxy Header Settings ... 230

Proxy Header Usage Notes.. 232

Security Considerations .. 233

Agents and Reverse Proxy Servers ... 234

How Reverse Proxy Servers Work with CA SiteMinder® .. 234

CA SiteMinder® Secure Proxy Server .. 235

CA SiteMinder® IIS 7.x Web Servers and Application Request Routing (ARR) .. 236

CA SiteMinder® Reverse Proxy Deployment Considerations .. 244

HTTP Header Settings ... 250

Remove the Server HTTP Header if Using the URLScan Utility ... 250

URL Settings ... 250

Specify Redirect URL Protocols with Lowercase Characters ... 251

Decode Query Data in a URL ... 251

Set a Maximum URL Size ... 252

IIS Web Server Settings .. 252

Configure Agents for IIS to Obtain User Credentials Without Redirecting to an NTLM Credential
Collector (NTC) .. 252

Record the User Name and Transaction ID in IIS Server Logs ... 254

Use the NetBIOS Name or UPN for IIS Authentication ... 256

Configure Agents for IIS to Support NT Challenge/Response Authentication .. 256

How to Implement an Information Card Authentication Scheme .. 262

Configure an FCC Template for an Information Card Authentication Scheme ... 263

Control IIS 7.x Module Execution Order when using the CA SiteMinder® Agent for IIS 264

Use an IIS Proxy User Account (IIS Only) ... 266

Enable Anonymous User Access ... 267

Disable Windows Security Context on Agents for IIS .. 267

Prevent Caching of Server Responses Containing Cookies ... 268

Chapter 17: Apache Web Server Settings 269

Use the HttpsPorts Parameter on Apache 2.x Servers .. 269

Use Legacy Applications with an Apache Web Agent ... 270

Contents 11

Use the HTTP HOST Request for the Port Number ... 270

Record the Transaction ID in Apache Web Server Logs .. 271

Choose How Content Types are Transferred in POST Requests ... 272

Restrict IPC Semaphore-Related Message Output to the Apache Error Log .. 272

Delete Certificates from Stronghold (Apache Agent Only) ... 273

Oracle iPlanet Web Server Settings.. 273

Restrict Directory Browsing on an Oracle iPlanet Web Server ... 274

Handle Multiple AuthTrans Functions for Oracle iPlanet Web Servers .. 274

Record the Transaction ID in Oracle iPlanet Web Server Logs .. 275

Domino Web Server Settings ... 277

Domino Agents Overview ... 278

Domino URL Syntax ... 279

Domino Aliases .. 280

Configure the Domino Web Agent .. 281

Configure Domino-Specific Agent Functions ... 281

Specify User Directories for Domino ... 281

Guidelines for Creating Policies on Domino Servers ... 282

Configure Policies for Domino .. 282

Create Rules for Domino Server Resources .. 283

Authenticate Users with the Domino Server .. 285

Authenticate as the Domino Super User... 286

Authenticate as the Actual User or the Default User .. 287

Modify the Domino Default User and the Domino Super User .. 287

Use Encryptkey to Set the Domino Default or Super User.. 288

Force CA SiteMinder® to Authenticate Users ... 289

Use a CA SiteMinder® Header for Authentication .. 290

Disable Domino Session Authentication ... 290

Use an Anonymous CA SiteMinder® Authentication Scheme with Domino ... 291

Enable a Domino Agent to Collect Credentials for Authentication ... 291

Map URLs for FCC Redirects with a Domino Web Agent .. 291

Disable URL Normailization ... 292

Control Access to Lotus Notes Documents ... 293

Convert Notes Document Names ... 294

Configure Full Logoff Support for Domino Agents .. 295

Use a Domino Agent with a WebSphere Application Server .. 296

Force Domino Server to Authenticate Unprotected CA SiteMinder® Resources ... 296

Backward Compatibility Settings .. 296

Accommodate Legacy URL Encoding .. 297

Choose How Content Types are Transferred in POST Requests ... 297

Accommodate Testing Tools that do not send HOST Headers ... 298

Agent Setting for Federation Domains ... 299

How to Modify the Sample Code to Remove Open Format Cookies When Users Log Out 300

12 Web Agent Configuration Guide

Obtain the Cookie Information .. 301

Modify the Sample JavaScript Code with the Cookie Information... 302

Copy the Modified JavaScript Code to Your Logout Page .. 304

Chapter 18: Performance 305

Set a Time-out for Saved Credentials ... 305

Web Agent Caches ... 306

Cache Anonymous Users ... 307

Set the Maximum Resource Cache Size .. 308

Set the Maximum User Session Cache Size ... 309

Control How Long Resource Enteries Remain Cached .. 310

Disable the Resource Cache .. 310

Monitoring Web Agents ... 310

Monitor Web Agents with the OneView Monitor... 311

Use CA Wily Introscope to Monitor Web Agents .. 311

Ignore Unprotected Resources .. 312

Reduce Overhead by Ignoring File Extensions of Unprotected Resources ... 313

Specify Virtual Servers for the Web Agent to Ignore .. 314

Ignore Query Data in a URL ... 316

Allow Un-restricted Access to URIs ... 317

Chapter 19: Logging and Tracing 319

Logs of Start-up Events ... 319

Error Logs and Trace Logs... 320

Parameter Values Shown in Log Files ... 321

Set Up and Enable Error Logging ... 322

Enable Transport Layer Interface (TLI) Logging ... 324

Limit the Number of Log Files Saved ... 324

How to Set Up Trace Logging ... 325

Configure Trace Logging .. 326

Trace Log Components and Subcomponents .. 328

Trace Message Data Fields .. 330

Trace Message Data Field Filters ... 333

Determine the Content of the Trace Log .. 333

Limit the Number of Trace Log Files Saved ... 335

Collect Detailed Agent Connection Data with an Agent Connection Manager Trace Log 336

Chapter 20: Troubleshooting Agent Configuration 339

Agent for IIS Troubleshooting Log .. 339

Duplicate LLAWP Error Appears in Log File .. 339

Contents 13

Custom Error Pages not Appearing .. 340

Unable to initialize tracing message .. 341

Enable KeepAlives When Agents and Policy Servers are Separated a Firewall .. 342

Japanese Pages Rendered Improperly (153202, 153609) .. 343

Non-english Input Characters Contain Junk Characters ... 343

Chapter 21: Agent Error Codes 345

00-0001 ... 345

00-0002 ... 346

00-0004 ... 346

00-0005 ... 346

00-0006 ... 347

00-0007 ... 347

00-0008 ... 347

00-0009 ... 348

00-0010 ... 348

00-0011 ... 348

00-0012 ... 349

00-0013 ... 349

00-0014 ... 350

00-0015 ... 350

00-0016 ... 350

00-0017 ... 351

10-0001 ... 351

10-0002 ... 351

10-0003 ... 351

10-0004 ... 352

10-0005 ... 352

10-0007 ... 352

20-0001 ... 353

20-0002 ... 353

20-0003 ... 354

30-0026 ... 354

Appendix A: Agent Parameters 355

List of Agent Configuration Parameters ... 355

Index 363

Chapter 1: Web Agents 15

Chapter 1: Web Agents

This section contains the following topics:

How Web Agents Secure Resources (see page 16)
How Web Agents and the Policy Server Work Together (see page 18)
How the Agent Reads CA SiteMinder® Cookies (see page 21)
Framework and Traditional Agent Architectures (see page 23)
Parameters Requiring a Server Restart when Changed (see page 24)
Multiple Agent for IIS Directory Structures (see page 27)

How Web Agents Secure Resources

16 Web Agent Configuration Guide

How Web Agents Secure Resources

A CA SiteMinder® Web Agent is a software component that controls access to any
resource that can be identified by a URL. The Web Agent resides on a web server and
intercepts requests for a resource to determine whether or not the resource is
protected by CA SiteMinder®. The Web Agent then interacts with the Policy Server to
authenticate and authorize users who request access to the protected web server
resources.

Web Agents perform the following tasks:

■ Intercept access requests for protected resources and work with the Policy Server
to determine whether or not a user should have access.

■ Provide information to a Web application that dictates how content is presented to
the user (policy-based personalization) and how to deliver access privileges.

■ Ensure a user’s ability to access information quickly and securely. Web Agents store
contextual information about user access privileges in a session cache. You can
optimize performance by modifying the cache settings.

■ Enable single sign-on across Web servers in a single cookie domain or across
multiple cookie domains without requiring users to re-authenticate.

For a list of CA SiteMinder® Web Agents and supported Web server platforms, go to
Technical Support and search for CA SiteMinder® Support Matrix.

Web Agents reside on web servers as illustrated in the following diagram:

http://www.ca.com/support

How Web Agents Secure Resources

Chapter 1: Web Agents 17

P o lic y

S to re

U s e r

D ire c to r ie s

P ro te c te d

R e s o u rc e s

W e b a p p lic a t io n s

A c tiv e s e rv e r p a g e s

S c r ip ts

H T M L p a g e s

P o lic y S e rv e r

W e b S e rv e r

A c c o u n tin g

L o g s

W e b A g e n t

How Web Agents and the Policy Server Work Together

18 Web Agent Configuration Guide

How Web Agents and the Policy Server Work Together

To enforce access control, the Web Agent interacts with the Policy Server, where all
authentication and authorization decisions are made.

The Web Agent intercepts user requests for resources and checks with the Policy Server
to see if the requested resource is protected. If the resource is unprotected, the access
request proceeds directly to the web server. If the resource is protected, the following
occurs:

1. The Web Agent checks which authentication method is required for this resource.
Typical credentials are a name and password, but other credentials, such as a
certificate or a token card PIN, may be required.

2. The Web Agent challenges the user for credentials.

The user responds with the appropriate credentials.

3. The Web Agent passes the credentials to the Policy Server, which determines if the
credentials are correct.

4. If the user passes the authentication phase, the Policy Server determines if the user
is authorized to access the resource. Once the Policy Server grants access, the Web
Agent allows the request to proceed to the web server.

The Web Agent also receives user-specific attributes, in the form of a response, to
enable Web content personalization and session management. A response is a
personalized message or other user-specific information returned to the Web Agent
from the Policy Server after authorizing the user. It consists of name-value attribute
pairs that are added to HTTP headers by the Web Agent for use with Web applications.
Examples of responses include the following:

■ After authorizing a user to access a Web application, the Web Agent could also send
information to the Web application dictating how long the user session can last.

■ If the user is returning to a site where he or she previously registered, the Web
Agent could return information about that user’s buying preferences.

The following diagram shows the communication between the Web Agent and the
Policy Server:

How Web Agents and the Policy Server Work Together

Chapter 1: Web Agents 19

Y e s

W e b A g e n t

in te rc e p ts

a c c e s s re q u e s t

R e s o u rc e

p ro te c te d ?

W e b B ro w s e r

W e b A g e n t

a llo w s re q u e s t

th ro u g h to th e

W e b s e rv e r

N o

Y e s

A c c e s s d e n ie d N o

W e b S e rv e r

d e liv e rs re s o u rc e

to b ro s w e r

W e b A g e n t

c h e c k s P o lic y

S e rv e r fo r

a u th o r iz a t io n

U s e r

a u th o r iz e d ?

Y e s

N oA c c e s s d e n ie d

U s e r

a u th e n t ic a te d ?

W e b A g e n t a s k s

P o lic y S e rv e r if

re s o u rc e is

p ro te c te d

Y e s

A re th e re

c re d e n t ia ls ?

N o

W e b A g e n t

c h a lle n g e s u s e r

fo r c re d e n t ia ls

W e b A g e n t

p a s s e s

c re d e n t ia ls to

P o lic y S e rv e r

How Web Agents and the Policy Server Work Together

20 Web Agent Configuration Guide

Considerations for Web Agents and Policy Servers in Different Time Zones

By default, the Policy Server and Web Agent calculate time relative to Greenwich Mean
Time (GMT). Therefore, for each system that has a Policy Server or Web Agent installed,
the system clock must be set for the time zone appropriate to that system’s
geographical location.

The following illustration shows how the Policy Server executes a policy relative to time.
A resource is stored on a web server in Massachusetts and is protected by a Policy
Server in California. The policy allows access to the resource between 9:00 AM and 5:00
PM. However, the user in Massachusetts can still access the resource at 6:00 PM
because the policy is based on the Policy Server’s time zone, Pacific Standard Time
(PST), which is three hours behind the Web Agent’s time zone, Eastern Standard Time
(EST).

Note: For Windows systems, both the time zone setting and the time of day (set in the
Date/Time control panel) must agree. For example, to reset a system in the U.S. from
Eastern time to Pacific time, perform the following tasks in the order shown:

1. Set the time zone to Pacific time.

2. Verify that the system clock displays the correct time (three hours earlier than
Eastern time).

Note: If these settings differ, single sign-on across multiple domains and agent key
management will not work properly.

How the Agent Reads CA SiteMinder® Cookies

Chapter 1: Web Agents 21

How the Agent Reads CA SiteMinder® Cookies

Web Agents use agent keys to encrypt and decrypt CA SiteMinder® cookies so the data
they contain can be read. The Agent uses the key to encrypt cookies before sending
them to a user’s browser and to decrypt cookies received from other Web Agents.

All Web Agents need to be aware of the same keys, and the keys must be set to the
same value for all Agents communicating with a Policy Server. This rule is particularly
important for Agents in a single sign-on environment. To ensure that the keys remain
secure, the Policy Server performs a key rollover. A key rollover is the process of
generating new keys, encrypting them, and distributing them to all Web Agents within a
CA SiteMinder® environment.

When a Web Agent starts up and makes a management call request, the Policy Server
supplies the current set of keys. Each time the Web Agent polls the Policy Server, the
agent again makes the management call. The Web Agent receives the updated keys.

The Policy Server provides the following types of keys:

Dynamic Keys

Refers to a key that is generated by a Policy Server algorithm and distributed to
other connected Policy Servers and their associated Web Agents. Dynamic keys can
be rolled over automatically at a regular interval, or they can be changed manually
by using the Administrative UI.

Static Keys

Refers to a key that remains the same indefinitely, and can be generated by a Policy
Server algorithm or configured manually. CA SiteMinder® uses this type of key for a
subset of features that requires information to be stored in cookies over extended
periods.

Automated key changes ease the process of managing agent keys for large CA
SiteMinder® installations that share a single key store. A key store is a storage location
for all key information. Policy Servers access the key store to obtain the current keys,
which are then passed on to the Web Agents. For Agents that are configured for single
sign-on, the key store must be replicated and shared across all Policy Servers in the
single sign-on environment. Automating key changes also ensures the integrity of the
keys.

Note: For more information, see the Policy Server documentation.

How the Agent Reads CA SiteMinder® Cookies

22 Web Agent Configuration Guide

Web Agents and Dynamic Key Rollovers

You can use the Administrative UI to configure dynamic Agent key rollover. Web Agents
poll the Policy Server for key updates at regular intervals. If keys have been updated,
Web Agents pick up the changes during polling. The default polling time is 30 seconds,
but you can customize it by changing the value of the PSPollInterval parameter for a
Web Agent.

When a Web Agent detects that a key rollover has occurred, the Agent retrieves new
values for the following Agent keys:

Old Key

Contains the last value used for the dynamic Agent key before the current value.

Current Key

Contains the value of the current dynamic Agent key.

Future Key

Contains the next value that will be used as the current key in a dynamic Agent key
rollover.

Static Key

Contains a long-term key that the Agent can use for CA SiteMinder® features that
need to identify a user and maintain this information for long periods. Static keys
also support cookie encryption for single sign-on when dynamic keys are not
enabled.

Web Agents require multiple keys to preserve cookie data and ensure a smooth
transition between old keys and new keys.

More information:

Change How Often an Agent Checks for Policy or Key Updates (see page 65)

Key Stores

When the Policy Server generates dynamic keys, it saves and maintains these keys in the
key store. The key store is a repository from which all Policy Servers retrieve the most
current keys. Web Agents obtain the current keys from the Policy Servers. The key store
may be part of a CA SiteMinder® policy store or maintained as a stand-alone key store.

Note: If an administrator issues multiple agent key rollovers in rapid succession, this
action may invalidate all cookies issued for single sign-on and may disrupt single sign-on
for all users currently logged in. After these users re-authenticate, single sign-on will
operate normally.

Framework and Traditional Agent Architectures

Chapter 1: Web Agents 23

Framework and Traditional Agent Architectures

All CA SiteMinder® agents are based on one of the following architectures:

■ Traditional agents are based on the original CA SiteMinder® agent architecture.

■ Framework Agents were introduced with CA SiteMinder® version 5.x QMR 6.

Agent Features are primarily the same regardless of the architecture, but some minor
differences exist. For example, framework agents use a different WebAgent.conf file
and a LocalConfig.conf file. Traditional agents do not use those files.

Traditional agents are installed on the following web servers:

■ Domino (all supported versions)

Framework Agents are installed on the following web servers:

■ Microsoft Internet Information Services (IIS) 7.0, 7.5

■ Apache 2.0.54, 2.2.x, and other Apache 2.0-based servers, such as the IBM HTTP
Server and the HP Apache server

■ Oracle iPlanet Web Server versions 6.1 and above.

Note: The Oracle iPlanet Web Server was previously named "Sun Java Systems" or
"SunONE".

More information:

Enable Post Preservation between Framework and Traditional Agents (see page 150)

Parameters Requiring a Server Restart when Changed

24 Web Agent Configuration Guide

Parameters Requiring a Server Restart when Changed

Some Agent parameters be updated dynamically. You must restart the web server to
apply any changes to the following parameters:

AgentConfigObject

Defines the name of an Agent Configuration Object (stored on a policy server)
in a local agent configuration file. This parameter is not used in Agent
Configuration Objects.

Default: no default

 CacheAnonymous

Specifies if the Web Agent caches anonymous user information. You may want
to set this parameter in any of the following situations:

■ If your web site gets mostly anonymous users and you want to store their
session information.

■ If your web site gets a mix of registered and anonymous users.

 You may want to disable this parameter to keep the anonymous user
information from filling the cache and leaving no room for registered
users.

Default: No

HostConfigFile

Specifies the path to the SMHost.conf file (in an IIS 6.0 or Apache agent) that is
created after a trusted host computer has been successfully registered with a
Policy server. All Web Agents on a computer share the SMHost.conf file.

Default: No default

MaxResourceCacheSize

Specifies the maximum number of entries that the Web Agent keeps in its
resource cache. An entry contains the following information:

■ A Policy Server response about whether a resource is protected

■ Any additional attributes returned with the response

When the maximum is reached, new resource records replace the oldest
resource records.

If you set this value to a high number, be sure that sufficient system memory is
available.

Parameters Requiring a Server Restart when Changed

Chapter 1: Web Agents 25

If you are viewing Web Agent statistics using the OneView Monitor, you may
notice that the value shown for the ResourceCacheCount is greater than the
value you specified for the MaxResourceCacheSize parameter. This is not an
error. The Web Agent uses the MaxResourceCacheSize parameter as a
guideline and the values may at times differ because the
MaxResourceCacheSize parameter represents the maximum number of
average-sized entries in the resource cache. The actual cache entries are most
likely larger or smaller than the pre-determined average size; therefore, the
effective maximum number of entries may be more or less than the value
specified.

Note: For Web Agents that use shared memory, such as the framework Agents,
the cache is pre-allocated to a constant size based on the
MaxResourceCacheSize value and will not grow.

Default: (Domino web servers) 1000

Default: (IIS and Sun Java System web servers) 700

Default: (Apache web servers) 750

MaxSessionCacheSize

Specifies the maximum number of users the Agent maintains in its session
cache. The session cache stores the session IDs of users who authenticate
successfully. Authenticated users accessing other resources within the realm
during a session, are authenticated using the session cache instead of the
Policy Server. When the maximum number is reached, the Agent replaces the
oldest user records with new user records.

Base the value of this parameter on the number of users that you expect to
access and use resources for a sustained period. If you set this value to a high
number, verify that sufficient system memory is available.

Note: Regardless of the cache size, all entries in the session cache of the Web
Agent expire automatically after one hour.

Default: (Domino web servers) 1000

Default: (IIS and Oracle iPlanet web servers) 700

Default: (Apache web servers) 750

PostPreservationFile

Enables the transfer of POST preservation data between Traditional and
Framework Agents by specifying the path to one of the following
POST-preservation-template files:

■ tr2fw.pptemplate—Indicates that resources hosted on a server running a
Traditional agent are protected by an FCC running on a Framework agent.

■ fw2tr.pptemplate—Indicates that resources hosted on a server running a
Framework agent are protected by an FCC running on a Traditional agent.

Default: No default

Parameters Requiring a Server Restart when Changed

26 Web Agent Configuration Guide

Example: web_agent_home/samples/forms/fw2tr.pptemplate

ResourceCacheTimeout

Specifies the number of seconds that resource entries remain in the cache. If a
user tries to access a protected resource after the time interval has been
exceeded, the Web Agent removes the cached entries and contacts the Policy
server.

Default: 600 (10 minutes)

Multiple Agent for IIS Directory Structures

Chapter 1: Web Agents 27

Multiple Agent for IIS Directory Structures

The directory structure added to your IIS web server for your Agent files varies
according to the operating environment of your IIS web server. The following directory
structures exist:

■ CA SiteMinder® Agents for IIS use the directory structure shown in the following
illustration:

Multiple Agent for IIS Directory Structures

28 Web Agent Configuration Guide

■ CA SiteMinder® Agents for IIS installed on 64-bit operating environments use the
directory structure shown in the following illustration:

Chapter 2: Agent Configuration Methods 29

Chapter 2: Agent Configuration Methods

This section contains the following topics:

Central Configuration (see page 29)
Local Agent Configuration (see page 31)
Central and Local Configuration Together (see page 40)

Central Configuration

A central agent configuration manages one or more Web Agents from an Agent
Configuration Object in the Policy Server. The Agent Configuration Object that resides in
the Policy Server contains the parameters used by the Web Agents. One advantage of
central configuration is that you can update the parameter settings of several agents at
once. Most parameter changes occur dynamically, but some Framework parameters
require a web server restart after they are changed.

You create and edit an Agent Configuration Object with the Administrative UI. Each Web
Agent communicating with the Policy Server must be associated with an Agent
Configuration Object, but many Web Agents can use a single Agent Configuration
Object.

Note: For more information about creating an Agent Configuration Object, see the
Policy Server documentation.

More Information

Parameters Requiring a Server Restart when Changed (see page 24)

Central Configuration

30 Web Agent Configuration Guide

Implement Central Configuration

Central configuration is enabled by default. The agent uses the configuration settings
from the existing Agent Configuration Object that you specified when you configured
the agent with the configuration wizard. You can change the settings of the parameters
to suit your needs at any time.

Follow these steps:

1. Log in to the Administrative UI.

The Welcome screen appears.

2. Click Infrastructure, Agent Configuration Objects.

A list of agent configuration objects appears.

3. Click the modify icon in the row of Agent Configuration Object you want.

The Modify Agent Configuration window appears.

4. Verify that the value of the AllowLocalConfig parameter is set to no.

5. Use the Administrative UI to modify the settings of any other parameters according
to your needs.

6. Click Submit.

The Modify Agent Configuration window closes, and a confirmation message
appears.

7. (Optional) Enter any comments about the change in the comment field for future
reference.

8. Click Yes.

A confirmation message appears. Central configuration is implemented. Most
parameter changes occur dynamically, but some changes require a web server
restart to take effect.

More information:

Parameters Requiring a Server Restart when Changed (see page 24)

Local Agent Configuration

Chapter 2: Agent Configuration Methods 31

Local Agent Configuration
Local Configuration

A local agent configuration manages a Web Agent using local files that are
installed on the system hosting the web server. The parameter settings in the
local file override any settings stored in an Agent Configuration Object on the
Policy Server. The settings in the Agent Configuration Object do not change.
Situations to consider local agent configuration include the following:

■ When you have three Apache Web Agents, and the first two (A and B) use
identical parameter settings, but you want the third Apache Agent (C) use
the most of the settings from A and B while acting as a reverse proxy. To
accomplish this, use central agent configuration for Apache Agents A and
B, but use local configuration for Apache Agent C.

■ When the Policy Server administrator is not the same person (or group) who
configures an Agent. For example, the information technology department in a
company maintains the Policy Server, but the finance department uses an Agent to
control access to an accounting application. Someone from the information
technology department enables local configuration for the Agent on the Policy
Server, but another person from the finance department controls the specific
configuration settings for the Agent that protects the accounting application.

Framework Web Agents use the following files for local configuration:

WebAgent.conf

Contains the core settings that the Framework Web Agent uses to start and connect
to a Policy Server.

LocalConfig.conf

Contains the configuration settings for the Framework Web Agents.

Traditional Web Agents use the following file for local configuration:

WebAgent.conf

Contains all of the configuration settings for traditional Web Agents.

Local Agent Configuration

32 Web Agent Configuration Guide

WebAgent.conf File Locations

The following table shows the locations of the WebAgent.conf file on various web
servers:

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with CA SiteMinder® Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

Web Server File Location

IIS web_agent_home\bin\IIS

Oracle iPlanet
(iPlanet/SunOne)

Oracle_iPlanet_server_home/https-hostname/config

where Oracle_iPlanet_home is the location in which
theOracle iPlanet web server is installed and hostname
is the name of the server.

Apache,

IBM HTTP Server

Oracle HTTP Server

web_server_home/conf

where web_server_home is the installed location of the
web server

Domino Windows: c:\lotus\domino

UNIX: $HOME/notesdata

More information:

Enable a Web Agent (see page 63)
Disable a Web Agent (see page 64)

Local Agent Configuration

Chapter 2: Agent Configuration Methods 33

WebAgent.conf file for Framework Agents

In addition to the AgentConfigObject, HostConfigFile, and EnableWebAgent parameters,
the following parameters are also added to the WebAgent.conf file of Framework
Agents:

Important! Do not modify any sections of the file that refer to other CA SiteMinder®
products other than the Web Agent. However, you can change the values of the Web
Agent parameters in the file.

LocalConfigFile

Specifies the location of the LocalConfig.conf file, where most of Agent
configuration settings reside.

ServerPath

Identifies the web server directory (of Apache 2.0 and Oracle iPlanet web servers)
to the Agent.

LoadPlugin

Specifies which plug-ins are loaded for Framework Agents. The plug-ins support
different types of Agent functions. The following plug-ins are available:

HttpPlugin

Specifies whether the Web Agent operates as an HTTP agent.

Default: Enabled

SAMLAffiliatePlugin

Allows communication between the Web Agent and a SAML Affiliate Agent (if
you have purchased Federation Security Services).

Default: Disabled

Affiliate10Plugin

Allows communication between the Web Agent and a 4.x Affiliate Agent.

Default: Disabled.

Limits: The SAML affiliate agent does not use this plug-in.

OpenIDPlugin

Lets the web agent use the OpenID authentication scheme (OIAS).

Default: Disabled

To enable the other LoadPlugin entries, remove the pound symbol (#) from the
beginning of the line.

Local Agent Configuration

34 Web Agent Configuration Guide

AgentIdFile

Specifies the path of the AgentId file which stores the unique ID string of the agent.
The agent automatically generates the AgentId file, which must not be modified.
Both on Windows and UNIX, the agent must have write permission to update the
AgentId file. On Windows, the Web Agent configuration wizard grants the write
permission automatically.

Default name: Agentid.dat

Path: WebAgent.conf directory/AgentId.dat

More Information

Manage Web Agents with Multiple Web Server Instances (see page 55)

LocalConfig.conf File Locations (Framework Agents)

When you install a Framework Web Agent, the CA SiteMinder® installation program
creates a LocalConfig.conf file in the following directory:

Windows

web _agent_home\config

UNIX

web _agent_home/config

Important! This file contains all of the default settings. Do not modify this file. We
recommend creating a backup copy of this file for future reference or for recovery
purposes.

When you configure the Web Agent, the configuration wizard copies the
LocalConfig.conf file to the following directory:

 IIS web server

web_agent_home\bin\IIS

Oracle iPlanet web server

Oracle_iPlanet_home/https-hostname/config

Apache web server

Apache_home/conf

The Web Agent retrieves its configuration settings from this copy of the
LocalConfig.conf file.

Local Agent Configuration

Chapter 2: Agent Configuration Methods 35

Parameters Found Only in Local Configuration Files

For central Agent configurations, most of the parameters in the local configuration file
are also in an Agent Configuration Object. The following parameters are used in the
local configuration file only and are not found in Agent Configuration Objects:

AgentConfigObject

Defines the name of an Agent Configuration Object (stored on a policy server)
in a local agent configuration file. This parameter is not used in Agent
Configuration Objects.

Default: no default

EnableWebAgent

Activates a Web Agent and allows it to communicate with the Policy server. Set
this parameter to yes only after you have finished changing all of the
configuration parameters.

Default: No

HostConfigFile

Specifies the path to the SMHost.conf file (in an IIS 6.0 or Apache agent) that is
created after a trusted host computer has been successfully registered with a
Policy server. All Web Agents on a computer share the SMHost.conf file.

Default: No default

Local Agent Configuration

36 Web Agent Configuration Guide

Implement Local Configuration

You can control whether local configuration is allowed with the following parameter:

AllowLocalConfig

Instructs the Agent Configuration Object on the Policy Server to read the local
configuration file to obtain configuration parameters for the agent. This parameter
is used only in Agent Configuration Objects.

Add multiple values for this parameter in the Agent Configuration Object to control
which parameters can be changed in a local configuration file. When multiple
values are set for this parameter, they are processed in the following order:

■ If yes is used, all parameters can be set locally.

■ No takes precedence over a list of parameters. No also overrides yes when
both values are set together. This option lets you quickly disable local
configuration entirely without having to remove any of the other configuration
parameters from the Agent Configuration Object.

Default: No (local configuration prohibited).

Example: No, EnableAuditing, EnableMonitoring (all local configuration prohibited).

Example: No, Yes (all local configuration prohibited).

Example: EnableAuditing, EnableMonitoring (allows local control of the only
the two previous parameters).

Follow these steps:

1. Log in to the Administrative UI.

2. Click Infrastructure, Agent Configuration Objects.

3. Click the modify icon in the row of the agent configuration object you want.

The Modify Agent Configuration dialog appears.

4. Click the edit icon to the left of the AllowLocalConfig parameter.

The Edit Parameter dialog appears.

5. Change the text in the Value field to yes, and then click OK.

The Edit Parameter dialog closes.

6. Click Submit.

7. (Optional) Enter any remarks about the change in the comment field for future
reference.

8. Click Yes.

Local configuration is enabled.

9. Open the appropriate local configuration file on your web server and change the
parameter settings you want.

Local Agent Configuration

Chapter 2: Agent Configuration Methods 37

10. For traditional agents only, set the value of the EnableWebAgent parameter to yes.

11. Save and close the local configuration file.

12. For Framework agents only, do the following steps:

a. Open the WebAgent.conf file.

b. Set the value of the EnableWebAgent parameter to yes.

c. Save and close the WebAgent.conf file.

13. Restart the web server.

Local configuration is enabled and any updated parameters are changed.

More information:

Enable a Web Agent (see page 63)
Parameters Requiring a Server Restart when Changed (see page 24)

Local Agent Configuration

38 Web Agent Configuration Guide

How to Edit an Agent Configuration File

The agent configuration file controls the settings of a locally configured Web Agent. To
change those settings, use the following process:

1. Create a backup copy of WebAgent.conf (for a traditional agent) or the
LocalConfig.conf file (for a Framework agent).

2. Open the original copy of the agent configuration file with a text editor.

3. Enable or disable parameters by doing any of the following tasks:

■ Removing the pound sign (#) from the beginning of the line to enable a
parameter.

■ Adding the pound sign (#) to the beginning of the line to disable a parameter.

4. Change the values of parameters using the following guidelines:

– Do not add spaces between the parameter names, the equal sign (=), and
the parameter values.

– Surround the parameter values with quotation marks.

– The WebAgent.conf and LocalConfig.conf files are not case-sensitive. You
do not have to match the case shown in the sample file that is installed
with the agent.

– Many values are shown in the file as descriptive variables, such as <Agent
Name>,<IP Address>. Replace the angle brackets and text with the values
you want.

– In cases where the value is Empty, a blank is valid as the default. A default
value applies only if there is no pound sign (#) preceding the parameter.

5. Set EnableWebAgent to yes only when you are done. Then save and close the file.

All local configuration changes are effective. If you make more changes after an
Agent has been enabled, restart your web server to apply those changes.

Local Agent Configuration

Chapter 2: Agent Configuration Methods 39

Restrict Changes to Local Configuration Parameters

With central agent configuration, you can restrict the configuration parameters which
local web server administrators modify. We recommend this method when the CA
SiteMinder® administrator and the web server administrator are different people.

Follow these steps:

1. Log in to the Administrative UI.

The Welcome screen appears.

2. Click the Infrastructure, Agent Configuration Objects.

A list of Agent Configuration objects appears.

Click the edit icon in the line Agent Configuration Object you want.

The Modify Agent Configuration dialog appears.

3. Click the edit icon to the left of the AllowLocalConfig parameter.

The Edit Parameter dialog appears.

4. Erase the text in the Value field, and then click the multivalue option button.

5. Click Add.

An empty field appears.

6. Type the name of the parameter to which you want to allow access in the field.
Separate multiple parameters with commas. Only those parameters in the list can
be changed locally.

Example: The following example shows how to allow only the EnableAuditing
and EnableMonitoring parameters to be set on the local web server:

AllowLocalConfig=EnableAuditing,EnableMonitoring

7. (Optional) Repeat Steps 5 and 6 to add more parameters.

8. Click OK.

The Edit Parameter dialog closes, and the Modify Agent Configuration dialog
appears.

9. Click Submit.

The Modify Agent Configuration dialog closes, and a confirmation message appears.

10. (Optional) Enter any remarks about the change in the Comment field for future
reference.

11. Click Yes.

Your changes will be applied the next time the Web Agent polls the Policy Server.

Central and Local Configuration Together

40 Web Agent Configuration Guide

Central and Local Configuration Together

If you have a large number of Web Agents that you want to configure centrally, but the
settings of a few of those Web Agents need to be different than the others, you can use
a combination of central and local configuration together.

For example, if you need to configure multiple cookie domain single sign-on across a CA
SiteMinder® network without configuring the Agents individually, you can use a central
configuration for all of the agents, and local configuration settings for the smaller group
that needs the different settings.

In the previous example, suppose the CookieDomain parameter in the Agent
Configuration Object is set to example.com. However, for one Web Agent in your
network, you want to set the CookieDomain parameter to .example.net, while still using
all the other parameter values set in the Agent Configuration Object.

To implement the example configuration

1. With the Administrative UI, create an Agent Configuration Object with all the
parameters that you want for your environment. Set the CookieDomain parameter
to .example.com

2. Set the AllowLocalConfig parameter of the Agent Configuration Object to yes.

3. At one Web Agent, change only the local configuration file (on the web server) to
use example.net as the value of the CookieDomain parameter. Do not modify any
other parameters.

The value for the CookieDomain parameter in the lone Agent's local configuration file
overrides the value in the Agent Configuration Object, while the Agent Configuration
Object determines the settings for all the other parameters.

Chapter 3: Configuration Files used by the Web Agent 41

Chapter 3: Configuration Files used by the
Web Agent

CA SiteMinder® Web Agents use configuration files for certain settings. Some of these
configuration files are installed on the web server with the Web Agent. Other
configuration files are created the web server by the CA SiteMinder® Web Agent
Configuration Wizard where the Web Agent files are associated with the particular web
server product installed on the computer hosting your web server.

For example, if you install a Web Agent on a 32-bit Windows system that runs an
Apache Web Server, the Web Agent Configuration Wizard makes the changes in your
Apache Web Server configuration required by the CA SiteMinder® Web Agent..

Agent Connection Manager Configuration File

The Web Agent installation wizard installs the Agent Connection Manager Configuration
file (AgentConMgr.conf), in the following location:

web_agent_home/config

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS only]):
C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64 with CA
SiteMinder® Web Agents for IIS only]): C:\Program Files (x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

The Agent Connection Manager Configuration file lets you create detailed trace logs
about the connections the Web Agent makes while operating.

More information:

Collect Detailed Agent Connection Data with an Agent Connection Manager Trace Log
(see page 336)

Connection API Configuration File

42 Web Agent Configuration Guide

Connection API Configuration File

The Connection API file (conapi.conf) is used to configure services through the
Connection API. These services include the OneView Monitor.

The Web Agent Installation wizard creates the Connection API Configuration file in the
following location:

web_agent_home/config

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with CA SiteMinder® Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

Note: More information about using the OneView Monitor exists in the DNA Always
Current Scheduler.

Local Agent Configuration File

Chapter 3: Configuration Files used by the Web Agent 43

Local Agent Configuration File

The Web Agent Installation wizard installs a Local Agent Configuration File
(LocalConfig.conf) in the following location:

web_agent_home/config

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS only]):
C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64 with CA
SiteMinder® Web Agents for IIS only]): C:\Program Files (x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

This file lets you set the Web Agent configuration parameters on the same web server
where the Web Agent is installed, instead of using the parameter settings stored in the
Agent Configuration Object on the associated Policy Server.

For IIS Web Agents, the Web Agent Configuration Wizard makes a duplicate copy of the
Local Agent Configuration file in the following location:

web_agent_home\bin\IIS

More information:

Local Agent Configuration (see page 31)
LocalConfig.conf File Locations (Framework Agents) (see page 34)

Trace Configuration File

44 Web Agent Configuration Guide

Trace Configuration File

The Trace Configuration File (trace.conf) lets you configure trace logs for the following
items:

■ Connection API

■ IPC provider

■ TCP/IP transport

■ Monitoring API

The Web Agent Installation Wizard creates the Trace Configuration file in the following
location:

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS only]):
C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64 with CA
SiteMinder® Web Agents for IIS only]): C:\Program Files (x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

More information:

Restrict IPC Semaphore-Related Message Output to the Apache Error Log (see page 272)

Web Agent Trace Configuration File

Chapter 3: Configuration Files used by the Web Agent 45

Web Agent Trace Configuration File

The Web Agent Trace Configuration file lets you create trace logs for various aspects of
the Web Agent operations. For example, you can create a trace log of any Web Agent
operations related to the CA SiteMinder® single-sign on (SSO) feature.

The Web Agent Installation wizard creates the Web Agent Trace Configuration file in the
following location:

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS only]):
C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64 with CA
SiteMinder® Web Agents for IIS only]): C:\Program Files (x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

More information:

How to Set Up Trace Logging (see page 325)

CA SiteMinder® Host Configuration File

46 Web Agent Configuration Guide

CA SiteMinder® Host Configuration File

The Web Agent Configuration wizard creates a Host Configuration File (SmHost.conf) on
every web server on which you configure a CA SiteMinder® Web Agent in the following
location:

web_agent_home/config

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS only]):
C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64 with CA
SiteMinder® Web Agents for IIS only]): C:\Program Files (x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

The SmHost.conf file contains information that the Web Agent uses to make initial
connections to the Policy Servers to which it is associated.

Web Agent Configuration File

Chapter 3: Configuration Files used by the Web Agent 47

Web Agent Configuration File

The CA SiteMinder® Web Agent Configuration Wizard creates a Web Agent
Configuration file (WebAgent.conf) on every web server on which you configure a CA
SiteMinder® Web Agent in the following location:

web_agent_home\conf

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS only]):
C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64 with CA
SiteMinder® Web Agents for IIS only]): C:\Program Files (x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

This file is used to enable or disable (start or stop) the Web Agent.

For IIS Web Agents, the Web Agent Configuration Wizard makes a duplicate copy of the
Local Agent Configuration file in the following location:

web_agent_home\bin\IIS

More information:

Enable a Web Agent (see page 63)
Disable a Web Agent (see page 64)

Chapter 4: Basic Agent Setup and Policy Server Connections 49

Chapter 4: Basic Agent Setup and Policy
Server Connections

This section contains the following topics:

Default Settings of Web Agent Configuration Parameters (see page 49)
Set the AgentName and DefaultAgentName Values (see page 50)
Restrict Changes to Local Configuration Parameters (see page 52)
Ensure that Agent Names Match (see page 53)
Encrypt the Agent Name (see page 53)
How to Manage Web Agent and Policy Server Communication (see page 53)
Accommodate Network Latency (see page 54)
Manage Web Agents with Multiple Web Server Instances (see page 55)
Set Log Files, and Command-line Help to Another Language (see page 57)

Default Settings of Web Agent Configuration Parameters

The default settings for the Web Agent configuration parameters are always used unless
a different value is specified.

If a parameter does not exist in the Agent Configuration Object or local configuration
file, the default value is used.

Set the AgentName and DefaultAgentName Values

50 Web Agent Configuration Guide

Set the AgentName and DefaultAgentName Values

The AgentName parameter specifies the identity of the agent. The Policy Server uses
this identity to tie policies to a Web Agent. You can define the name of an agent with
the following parameters:

AgentName

Defines the identity of the web agent. This identity links the name and the IP
address or FQDN of each web server instance hosting an Agent.

The value of the DefaultAgentName is used instead of the AgentName
parameter if any of the following events occur:

■ The AgentName parameter is disabled.

■ The value of AgentName parameter is empty.

■ The values of the AgentName parameter do not match any existing agent
object.

Note: This parameter can have more than one value. Use the multivalue option
when setting this parameter in an Agent Configuration Object. For local
configuration files, add each value to a separate line in the file.

Default: No default

Limit: Multiple values are allowed, but each AgentName parameter has a 4,000
character limit. Create additional AgentName parameters as needed by adding
a character to the parameter name. For example, AgentName, AgentName1,
AgentName2.

Limits: Must contain 7-bit ASCII characters in the range of 32-127, and include
one or more printable characters. Cannot contain the ampersand (&) and
asterisk (*) characters. The value is not case-sensitive. For example, the names
MyAgent and myagent are treated the same.

Example: myagent1,192.168.0.0 (IPV4)

Example: myagent2, 2001:DB8::/32 (IPV6)

Example: myagent,www.example.com

Example (multiple AgentName parameters): AgentName1, AgentName2,
AgentName3. The value of each AgentNamenumber parameter is limited to
4,000 characters.

Set the AgentName and DefaultAgentName Values

Chapter 4: Basic Agent Setup and Policy Server Connections 51

DefaultAgentName

Defines a name that the agent uses to process requests. The value for
DefaultAgentName is used for requests on an IP address or interface when no
agent name value exists in the AgentName parameter.

If you are using virtual servers, you can set up your CA SiteMinder®
environment quickly by using a DefaultAgentName. Using DefaultAgentName
means that you do not need to define a separate agent for each virtual server.

Important! If you do not specify a value for the DefaultAgentName parameter,
then the value of the AgentName parameter requires every agent identity in its
list. Otherwise, the Policy Server cannot tie policies to the agent.

Default: No default.

Limit: Use only one value.Multiple values are prohibited.

Limits: Must contain 7-bit ASCII characters in the range of 32-127, and include
one or more printable characters. Cannot contain the ampersand (&) and
asterisk (*) characters. The value is not case-sensitive. For example, the names
MyAgent and myagent are treated the same.

If you are configuring virtual server support, specify a value for either the AgentName or
the DefaultAgentName parameter.

Follow these steps:

1. Specify an AgentName value by doing either of the following steps:

■ For central agent configurations, open the Agent Configuration Object on the
Administrative UI, and then add the values that you want to the AgentName
parameter.

■ For local agent configurations, open the local configuration file on your web
server. Add the values that you want on separate lines in the file.

2. Specify a DefaultAgentName identity by doing either of the following steps:

■ For central agent configurations, open the Agent Configuration Object on the
Administrative UI, and then add the value that you want to the
DefaultAgentName parameter.

■ For local agent configurations, open the local configuration file on your web
server. Add the values that you want to the DefaultAgentName parameter.

The AgentName and DefaultAgentName values are set.

More Information

How to Set Up Virtual Server Support (see page 136)

Restrict Changes to Local Configuration Parameters

52 Web Agent Configuration Guide

Restrict Changes to Local Configuration Parameters

With central agent configuration, you can restrict the configuration parameters which
local web server administrators modify. We recommend this method when the CA
SiteMinder® administrator and the web server administrator are different people.

Follow these steps:

1. Log in to the Administrative UI.

The Welcome screen appears.

2. Click the Infrastructure, Agent Configuration Objects.

A list of Agent Configuration objects appears.

Click the edit icon in the line Agent Configuration Object you want.

The Modify Agent Configuration dialog appears.

3. Click the edit icon to the left of the AllowLocalConfig parameter.

The Edit Parameter dialog appears.

4. Erase the text in the Value field, and then click the multivalue option button.

5. Click Add.

An empty field appears.

6. Type the name of the parameter to which you want to allow access in the field.
Separate multiple parameters with commas. Only those parameters in the list can
be changed locally.

Example: The following example shows how to allow only the EnableAuditing
and EnableMonitoring parameters to be set on the local web server:

AllowLocalConfig=EnableAuditing,EnableMonitoring

7. (Optional) Repeat Steps 5 and 6 to add more parameters.

8. Click OK.

The Edit Parameter dialog closes, and the Modify Agent Configuration dialog
appears.

9. Click Submit.

The Modify Agent Configuration dialog closes, and a confirmation message appears.

10. (Optional) Enter any remarks about the change in the Comment field for future
reference.

11. Click Yes.

Your changes will be applied the next time the Web Agent polls the Policy Server.

Ensure that Agent Names Match

Chapter 4: Basic Agent Setup and Policy Server Connections 53

Ensure that Agent Names Match

CA SiteMinder® rules and policies are tied to Agent names. If a request is made to a host
with an Agent name that is unknown to the Policy Server, the Policy Server cannot
implement policies. Therefore, the value for the Web Agent’s DefaultAgentName or
AgentName parameter must match the name of an Agent entry defined at the Policy
Server.

You define an Agent at the Policy Server using the Administrative UI. The value you
enter in the Name field of the Agent Properties dialog box is the value that must match
the name defined for the DefaultAgentName or AgentName setting, whether the Web
Agent is configured locally (Agent configuration file) or centrally from the Policy Server
(Agent Configuration Object).

Encrypt the Agent Name

The Web Agent, by default, adds its name to the URL that redirects a user to a forms,
SSL, or NTLM credential collector. You can control whether the Agent encrypts its name
in the URL and whether the credential collector decrypts the name when it receives the
URL with the EncryptAgentName parameter.

The default setting for the EncryptAgentName parameter is yes. You should set this
parameter to no in either of the following situations:

■ If a third-party application is working with the credential collector and it must be
able to read the Agent name for processing.

■ If you configure a Web Agent as a Forms Credential Collector (FCC) for forms
authentication, and direct users to a single resource to be authenticated. The
procedure to configure a single resource target requires an un-encrypted Agent
name.

To encrypt the Web Agent name, set the EncryptAgentName parameter to yes.

More Information

Configure the FCC to Use a Single Resource Target (see page 146)

How to Manage Web Agent and Policy Server Communication

You can manage the communication between agents and the Policy Server using any of
the following procedures:

■ Accommodate network latency issues (see page 54).

■ Manage agents with multiple web server instances (see page 55).

Accommodate Network Latency

54 Web Agent Configuration Guide

More information:

Monitoring Web Agents (see page 310)

Accommodate Network Latency

When network latency issues exist, the Web Agent cannot connect with the Policy
Server. To avoid this problem, use the following parameter in the Agent Configuration
Object or local configuration file:

AgentWaitTime

Specifies the number of seconds that the agent waits for the Low-level agent
Worker process (LLAWP) to become available. When the interval expires, the
agent tries to connect to the Policy Server.

Setting this parameter can help to resolve agent start-up errors that are related
to the LLAWP connections. We recommend starting with the default value and
then increasing the interval 5 seconds each time until the agent starts
successfully.
If you are using local configuration, set this parameter in the WebAgent.conf
file instead of the agent configuration object.

Default: 5

Example: Calculate a suggested value with the following formula:

(The_number_of_Policy_Servers x 30) + 10 = value of the AgentWaitTime
parameter (in seconds).

For example, if you have five Policy Servers, then set value of the
AgentWaitTime parameter to 160. [(5x30) + 10 = 160] (seconds).

Limit: (FIPS-compatability and FIPS-migration modes) minimum of 5.

Limit: (FIPS-only mode) minimum of 20.

Use a higher setting only if network latency issues exist. A high setting possibly causes
unexpected web server behavior.

To accommodate any network latency, enable the AgentWaitTime parameter in your
Agent Configuration Object or local configuration file. Then specify the number of
seconds you want.

Manage Web Agents with Multiple Web Server Instances

Chapter 4: Basic Agent Setup and Policy Server Connections 55

Manage Web Agents with Multiple Web Server Instances

If you configure a Web Agent on multiple web server instances, each server instance
requires its own Web Agent cache, log file, and health monitoring resources. To verify
that resources are unique, configure the following parameter in the WebAgent.Conf file:

ServerPath

Specifies a unique path to each web server instance when a Web Agent is
configured to use multiple instances of a web server. The ServerPath creates a
unique identifier for the caching, logging, and health-monitoring resources that
the agents use.

This value must be an alphanumeric string unique among server instances
running on the system. For example, if you have two server instances, the value
of the ServerPath parameter for one instance could be MyAgent1 and the value
for the second instance could be MyAgent2.

Default: Empty

Example: If there are four web server instances, each loading an agent, then
set the ServerPath parameter in the WebAgent.conf file of each server instance
to a unique value. You can set the ServerPath parameter to the directory where
the log file of each server instance is stored, such as server_instance_root/logs.

To configure a Web Agent on multiple server instances, add a unique path to the
ServerPath parameter in each WebAgent.conf file.

Manage Web Agents with Multiple Web Server Instances

56 Web Agent Configuration Guide

Set the ServerPath Parameter for Windows Systems

If there are multiple server instances in your Windows operating environment, specify a
value for the following parameter in the WebAgent.conf file:

ServerPath

Specifies a unique path to each web server instance when a Web Agent is
configured to use multiple instances of a web server. The ServerPath creates a
unique identifier for the caching, logging, and health-monitoring resources that
the agents use.

This value must be an alphanumeric string unique among server instances
running on the system. For example, if you have two server instances, the value
of the ServerPath parameter for one instance could be MyAgent1 and the value
for the second instance could be MyAgent2.

Default: Empty

Example: If there are four web server instances, each loading an agent, then
set the ServerPath parameter in the WebAgent.conf file of each server instance
to a unique value. You can set the ServerPath parameter to the directory where
the log file of each server instance is stored, such as server_instance_root/logs.

Note: Do not use a backslash (\) in the string you specify for the ServerPath parameter;
all other characters are permitted.

The ServerPath parameter is not required for the following Windows platforms:

■ IIS servers (there is always only one server instance).

■ Apache 2.0 servers if there is only one web server instance. The parameter is
supported on these systems, but it serves no purpose.

■ The Oracle iPlanet or Domino web servers.

These servers do not run in multiprocess mode on Windows.

Set the ServerPath Parameter for UNIX Systems

The ServerPath parameter is located in the WebAgent.conf file.

For web servers on UNIX platforms, we recommend that each server instance has its
own Agent resources.

Set the ServerPath parameter for the following servers on UNIX:

■ Any Apache 2.0 (including any Apache 2.0-based servers, such as IBM HTTP Server)

■ Any Oracle iPlanet web server instance

Set Log Files, and Command-line Help to Another Language

Chapter 4: Basic Agent Setup and Policy Server Connections 57

Note: The ServerPath is not required for Domino web servers on UNIX systems.

The value you set for the ServerPath parameter must be an alphanumeric string unique
among the server instances running on the system. For example, if you have two server
instances, the value of the ServerPath parameter for one instance could be MyAgent1
and the value for the second instance could be MyAgent2.

Additional Configurations Requiring the ServerPath Parameter

The following list describes other use cases for requiring the ServerPath parameter:

■ The Web Agent tracks shared memory using a semaphore. A semaphore is a value
in operating system (or kernel) storage. Process running on the system examine this
value to verify resource availability. Because the semaphore is not unique, multiple
Agents would try to point to the same area of memory. Naming a server path gives
the root of an instance, and the Agent finds the files that are used for creating
unique keys for semaphores.

■ For multiple server instances (all platforms except Windows), the Agent fails to
execute one of the following operations:

■ To encrypt value of the AgentName parameter (00-0012 error).

■ To encrypt SMSESSION or SMIDENTITY cookies.

■ To update the agent encryption keys when the agent starts.

■ With Apache (all platforms except Windows), the Agent does not release its six
shared memory segments (semaphores) when Apache is restarted.

■ If each Web Agent is configured for a different web server type on the same
system, such as an Apache 2.0 server and an Oracle iPlanet server. Specify a unique
ServerPath value for the configuration of each server. Different web server types
cannot share agent resources.

Set Log Files, and Command-line Help to Another Language

The following components support log files, and command-line help in other languages:

■ The Policy Server

■ The Web Agent

■ The Report Server

■ The CA SiteMinder Agent for SharePoint

■ The CA SiteMinder® SPS

■ [set AGENT value for your book]s

■ Any custom software that is created with the CA SiteMinder® SDK.

Set Log Files, and Command-line Help to Another Language

58 Web Agent Configuration Guide

The following graphic describes the work flow for setting log files, and command-line
help to another language:

Follow these steps:

1. Determine the IANA code for your language (see page 59).

2. Create the environment variable for your operating environment using one of the
following procedures:

■ Set the locale variable on Windows operating environments (see page 60).

■ Set the locale variable on UNIX or Linux operating environments (see page 62).

3. (Optional) Verify the locale variable setting on windows operating environments
(see page 61).

4. (Optional) Repeat Steps 1 through 3 to set any other components in your
environment to the same language.

Set Log Files, and Command-line Help to Another Language

Chapter 4: Basic Agent Setup and Policy Server Connections 59

Determine the IANA Code for Your Language

Each language has a unique code. The Internet Assigned Numbers Authority (IANA)
assigns these language codes. Adding a language code to a locale variable changes the
language that the software displays. Determine the proper code for the language that
you want before creating the locale variable.

The following table lists the IANA codes that correspond to the languages supported by
the software:

Language IANA Code

Brazilian Portuguese pt_BR

French fr

German de

Italian it

Japanese ja

Korean ko

Simplified Chinese zh-Hans

Spanish es

Note: A list of IANA language codes is available from this third-party website.

Environment Variables

The environment variables are settings by which users can customize a computer to suit
their needs. Examples of environment variables include the following items:

■ A default directory for searching or storing downloaded files.

■ A username.

■ A list of locations to search for executable files (path).

Windows operating environments allow global environment variables, which apply to all
users of a computer. The environment variables on UNIX or Linux operating
environments must be set for each user or program.

To set the locale variable, pick the procedure for your operating environment from the
following list:

■ Set the locale variable on Windows operating environments (see page 60).

■ Set the locale variable on UNIX or Linux operating environments (see page 62).

http://www.roseindia.net/tutorials/i18n/locales-list.shtml

Set Log Files, and Command-line Help to Another Language

60 Web Agent Configuration Guide

Set the Locale Variable on Windows Operating Environments

The following locale variable specifies the language settings for the software:

SM_ADMIN_LOCALE

Create this variable and set it to the language that you want. Set this variable on each
component for which you want to use another language. For example, suppose you
want to have a Policy Server and an agent that is set to French. Set this variable on both
of those components to French.

Note: The installation or configuration programs do not set this variable.

Follow these steps:

1. Click Start, Control Panel, System, Advanced system settings.

The system properties dialog appears.

2. Click the Advanced tab.

3. Click Environment Variables.

4. Locate the System variables section, and then click New.

The New System Variable dialog opens with the cursor in the Variable name: field.

5. Type the following text:

SM_ADMIN_LOCALE

6. Click the Variable name: field, and then type the IANA language code (see page 59)
that you want.

7. Click OK.

The New System Variable dialog closes and the SM_ADMIN_LOCALE variable
appears in the list.

8. Click OK twice.

The locale variable is set.

9. (Optional) Repeat Steps 1 through 8 to set other components to the same language.

Set Log Files, and Command-line Help to Another Language

Chapter 4: Basic Agent Setup and Policy Server Connections 61

Verify the Locale Variable Value on Windows Operating Environments

You can very the value to which the locale variable is set at any time. You can do this
procedure after setting the variable to confirm that it is set correctly.

Note: Instructions for verifying the variable value on UNIX and Linux are in the setting
procedure (see page 62).

Follow these steps:

1. Open a command-line window with the following steps:

a. Click Start, Run.

b. Type the following command:

cmd

c. Click OK.

A command-line window opens.

2. Enter the following command:

echo %SM_ADMIN_LOCALE%

The locale appears on the next line. For example, when the language is set to
German, the following code appears:

de

The value of the locale variable is verified.

Set Log Files, and Command-line Help to Another Language

62 Web Agent Configuration Guide

Set the Locale Variable on UNIX or Linux Operating Environments

The following locale variable specifies the language settings for the software:

SM_ADMIN_LOCALE

Create this variable and set it to the language that you want. Set this variable on each
component for which you want to use another language. For example, suppose you
want to have a Policy Server and an agent that is set to French. Set this variable on both
of those components to French.

Note: The installation or configuration programs do not set this variable.

Follow these steps:

1. Log in to the computer that is running the component that you want.

2. Open a console (command-line) window.

3. Enter the following command:

export SM_ADMIN_LOCALE=IANA_language_code

The command in the following example sets the language to French:

export SM_ADMIN_LOCALE=fr

The locale variable is set.

4. (Optional) Verify that the locale variable is set properly by entering the following
command:

echo $SM_ADMIN_LOCALE

The locale appears on the next line. For example, when the language is set to
German, the following code appears:

de

5. (Optional) Repeat Steps 1 through 4 to set other components to the same language.

Chapter 5: Starting and Stopping Web Agents 63

Chapter 5: Starting and Stopping Web
Agents

More information:

WebAgent.conf File Locations (see page 32)

Enable a Web Agent

Configure your agent parameters and then enable the agent to protect the resources on
the web server.

Note: No resources are protected until you also define policies in the CA SiteMinder®
Policy Server.

Follow these steps:

1. Open the WebAgent.conf file with a text editor.

Note: Agents for IIS installed on 64-bit operating environments have two
WebAgent.conf files. One file for 32-bit Windows applications. The other file is for
64-bit Windows applications. Modify both WebAgent.conf files when starting or
stopping the Agent for IIS.

2. Change the value of the EnableWebAgent parameter to yes.

3. Save and close the WebAgent.conf file.

4. Restart the web server (the web server itself, not the computer on which it runs).

The Web Agent is enabled.

Disable a Web Agent

64 Web Agent Configuration Guide

Disable a Web Agent

To stop the Web Agent from protecting the resources on your web server and stop
communicating with the Policy Server, disable the Web Agent.

Follow these steps:

1. Open the WebAgent.conf file with a text editor.

Note: Agents for IIS installed on 64-bit operating environments have two
WebAgent.conf files. One file for 32-bit Windows applications. The other file is for
64-bit Windows applications. Modify both WebAgent.conf files when starting or
stopping the Agent for IIS.

2. Change the value of the EnableWebAgent parameter to no.

3. Save and close the WebAgent.conf file.

4. Restart the web server (the web server itself, not the computer on which it runs).

The Web Agent is disabled.

More information:

WebAgent.conf File Locations (see page 32)

Starting or Stopping Most Apache-based Agents with the
apachectl Command

Starting or stopping most Apache-based agents with the apachectl command on UNIX or
Linux operating environments requires setting the environment variables for the
product first.

Note: The Apache-based agents do not support the apachectl -restart option. This
procedure does not apply to Apche-based IBM HTTP servers. Use this procedure
instead.

Follow these steps:

1. For UNIX/Linux operating environments, set the environment variables by running
the following script:

./ca_wa_env.sh

2. Use one of the following commands:

apachectl -stop

apachectl -start

Chapter 6: User Protection 65

Chapter 6: User Protection

This section contains the following topics:

Change How Often an Agent Checks for Policy or Key Updates (see page 65)
User Tracking and URL Monitoring (see page 66)
Help Prevent Attacks (see page 68)
Verify IP Addresses (see page 80)
SiteMinder Browser Cookies (see page 82)
Define HTTPS Ports (see page 91)
Decode Query Data in a URL (see page 91)
How to Protect Resources Without Periods or Extensions (see page 92)
Handle Complex URIs (see page 93)

Change How Often an Agent Checks for Policy or Key Updates

The Web Agent polls the Policy Server at regular intervals to check for the following
items:

■ Updated management information

■ Updated policies

■ Dynamically updated agent keys

You can change this interval according to your needs with the following parameter:

PSPollInterval

Specifies how often (in seconds) the Web Agent contacts the Policy Server to
retrieve information about policy changes or dynamically updated keys. Higher
numbers (longer intervals) decrease network traffic. Lower numbers (shorter
intervals) increase network traffic.

Default: 30

Limit: 1

To change how often a Web Agent checks the Policy Server for updates, change the
number of seconds in the PSPollInterval parameter.

Important! Increasing the PSPollInterval parameter also affects how quickly the Agents
enforce CA SiteMinder® policy changes. For example, suppose you change a Policy to
revoke access for a terminated employee at 10:30, and your PSPollInterval parameter
has a value of 3600 (the number of seconds in an hour). The Web Agents would not
enforce the changed policy until as late as 11:30.

User Tracking and URL Monitoring

66 Web Agent Configuration Guide

More information:

Web Agents and Dynamic Key Rollovers (see page 22)

User Tracking and URL Monitoring

CA SiteMinder® agents can track users and can monitor URLs using the parameters
described in the following procedures:

■ Track user identity across anonymous realms (see page 66).

■ Track user activities or application usage (see page 67).

■ Overview of URL monitoring (see page 67).

Track User Identity Across Anonymous Realms

When an anonymous user accesses resources, that user is assigned an SMIDENTITY
(anonymous) cookie. When the user moves to another domain, the user is challenged,
logs in successfully, and is assigned an SMSESSION (logged in) cookie.

As this user accesses protected and "anonymous" resources, that is, resources in a
realm that do not require a user to present credentials, the user may enter a domain
that contains both cookies for a user. For resources protected by Web Agents starting at
5.x QMR 3 , the Web Agent uses the SMSESSION cookie to identify the user, not the
SMIDENTITY cookie.

If the user goes from a thoroughly upgraded domain to a domain where older Agents
use the SMIDENTITY cookie to identify the user, the cookie used depends on the version
of the Web Agent handling the request.

Regarding separate cookie domains, when a master cookie domain contains protected
resources and a second domain contains anonymous resources, a user who does the
following tasks continues to be treated as an anonymous user in the anonymous
domain:

1. Accesses the anonymous domain first

2. Moves to the master domain and logs in

3. Moves back to the anonymous domain

User Tracking and URL Monitoring

Chapter 6: User Protection 67

Track User Activities or Application Usage with Auditing

You can measure how often applications on your web site are used, or track user
activities with auditing. Auditing is controlled with the following parameter:

EnableAuditing

Specifies whether the Web Agent logs all successful authorizations that are
stored in the user session cache. When enabled, user authorizations are logged
even when the Web Agent uses information from its cache instead of
contacting the Policy Server. Web Agents log user names and access
information in native web server log files when users access resources.

To track user activity or application usage with auditing, set the value of the
this parameter to yes.

Default: No

The Policy Server and the Web Agent audit user activity. The Web Agent sends a
message to the Accounting service each time a user is authorized from cache to access
resources. This action ensures that the Accounting service is tracking successful
authorizations for the Web Agent and the Policy Server. If the Web Agent cannot
successfully send an audit message to the Accounting service for an authorization,
access to the resource is denied. You can then run an activity report from the
Administrative UI. The reports from the Policy Server show user activity for each
session.

Note: For more information, see the Policy Server documentation.

URL Monitoring Overview

The Web Agent can prevent attacks by malicious users trying to halt normal operation
of a Web site or circumvent a site’s security mechanisms to gain illegal access to
information.

The Web Agent monitors URLs in resource requests and enforces the security policies
for these resources. CA SiteMinder® Web Agents interpret and parse URLs differently
from the web servers where the resources reside. These differences can result in subtle
performance and security issues that potentially allow unauthorized users to gain access
to resources. You need to consider these issues in the design of your Web site and the
configuration of the CA SiteMinder® Web Agent.

Help Prevent Attacks

68 Web Agent Configuration Guide

Help Prevent Attacks

CA SiteMinder® agents can help prevent attacks using the parameters described in the
following procedures:

■ Protect web sites against cross-site scripting (see page 69).

■ Configure the agent to prevent cross-site scripting (see page 71).

■ Protect J2EE applications against cross-site scripting (see page 71).

■ Define valid target domains (see page 147)

■ Protect J2EE applications against cross-site scripting attacks (see page 71)

■ Override the default CSS character set (see page 72).

■ Prohibit certain characters in the query string portion of a URL (see page 73).

■ Prohibit certain characters in a URL (see page 75).

■ Prohibit certain characters in a form (see page 77).

■ Help prevent DNS denial of service attacks (see page 78).

■ Protect resources or files that do not have extensions (see page 78).

■ Disable POST preservation (see page 79).

■ Secure applications (see page 79).

■ Ensure custom responses comply with X-Frame options (see page 80)

Help Prevent Attacks

Chapter 6: User Protection 69

Protect Web Sites Against Cross-Site Scripting

A Cross Site Scripting (CSS) attack can occur when the input text from the browser
(typically, data from a post or data from query parameters on a URL) is displayed by an
application without being filtered for characters that may form a valid, executable script
when displayed at the browser.

An attack URL can be presented to unsuspecting users. When a user clicks on the URL,
an application may return a display to the browser that includes the input characters,
along with an error message about bad parameters on the query string. The display of
these parameters at the browser can lead to an unwanted script being executed on the
browser.

For example, when a user types news into a search engine web page, the application
normally might return a blank field, or a response, such as:

Your search for news returned the following:

In response to an attack URL, the browser might receive a response, such as:

news<script>BadProgram</script>

The BadCSSChars parameter does not interpret the double quotation mark (") if it is
entered as an ASCII character. To include the double quotation mark as a bad cross-site
scripting character, enter the hexidecimal equivalent of the ASCII character, which is
%22. For example:

BadCSSChars="%22"

Help Prevent Attacks

70 Web Agent Configuration Guide

Prevent Cross-Site Scripting Attacks in Web Agent FCC Pages

To prevent cross-site scripting attacks against the web agent FCC pages, use HTML
encoding to ensure that your FCC variable data is rendered correctly.

HTML encoding ensures that the characters are treated as their literal value and not as
HTML syntax. Encoding ensures that the damaging cross-site scripting syntax is rendered
as literal text as it must appear and that the browser does not execute the code while
rendering the HTML form. You can encode all the syntax that could be misused during
an attack.

The fcchtmlencoding parameter instructs an agent to apply an HTML encoding
algorithm to all the values inserted into the FCC variables that have the following syntax:

$$varname$$

If the characters that are traditionally blocked are necessary in the FCC data, then
enable the fcchtmlencoding parameter.

fcchtmlencoding

Specifies whether the HTML encoding is enabled to prevent Cross-Site Scripting
attacks against web agent FCC pages. This parameter does not block any characters.

Values: Yes and No.

Default: No

The fcchtmlencoding parameter applies to all the variable substitutions for all the FCC
forms. An agent using this parameter can serve one or more FCC forms. To apply the
HTML encoding to a specific variable in an FCC file, use the following function:

HTMLENCODE

Fetches the specific variable values, applies the HTML encoding, and substitutes the
actual variable values with the encoded values in an FCC file.

The HTMLENCODE function has the following syntax:

$$htmlencode(varname)$$

Important! To use the HTMLENCODE function, the fcchtmlencoding parameter must be
set to No.

Help Prevent Attacks

Chapter 6: User Protection 71

Configure the Web Agent to Check For Cross Site-Scripting

To instruct the Web Agent to check a URL for characters that may be part of an
executable script, set the CSSChecking parameter to yes. By enabling this parameter,
the Web Agent scans a full URL, including the query string, for escaped and unescaped
versions of the following default character set:

■ left and right angle brackets (< and >)

■ single quote (')

Protect J2EE Applications against Cross-Site Scripting Attacks

You can prevent an attacker from bypassing cross-site scripting protection by using
noncanonical (overlong) unicode characters in a request.

Follow these steps:

1. Set the value of the CSSChecking parameter to yes.

2. Set the value of the following parameter to yes:

DisallowUTF8NonCanonical

Prevents attackers from sending noncanonical (overlong) Unicode (utf-8)
characters in requests and attempting to bypass cross-site scripting protection.
When the value of this parameter is yes, the agent blocks requests for URLs
containing noncanonical (overlong) Unicode characters.

Default: No

Help Prevent Attacks

72 Web Agent Configuration Guide

Override the Default CSS Character Set

By default, the agent checks for the following default cross-site scripting character set:

■ Left and right brackets (, <, > and)

■ Apostrophe '

To override this default character set, specify a BadCSSChars agent parameter that
defines a character set of your choice.

BadCSSChars

If specified, overrides the default cross-site scripting character set with the
characters of your choice. Include the entire string of characters that you want.

Default: (<,',>)

Example: <,> (In which case, the agent scans only for the left and right angle
brackets)

Limits:

■ You can specify the characters literally.

■ You can specify a maximum number of 4096 characters (including commas
that are used for separating the characters).

■ You can specify ranges of characters that are separated with hyphens. The
syntax is: starting_character-ending_character. For example, you can enter
a-z as a range of characters.

■ Specify the quotes (") with the URL-encoded equivalent of %22. Do not use
ASCII.

If the agent detects a problem related to the character set, it returns an Access Denied
message to the user, and the logs the following message in the Agent error log:

Caught Possible Cross Site Scripting Violation in URL. Exiting with HTTP 403 ACCESS

FORBIDDEN.

Some applications require the use of the quote characters in the query string,
irrespective of the web server platform. For example, some Domino applications, such
as iNotes Web Access, require the use of single quotes.

To use applications that require quotes in the query string, remove quotation marks
from the BadCssChars parameter.

Help Prevent Attacks

Chapter 6: User Protection 73

Specify Bad Query Characters

To prevent certain characters the query string portion of a URL, set the following
parameter:

BadQueryChars

Specifies characters that the Web Agent prohibits in the query string portion
(following the '?') in a URL.

Default: Empty (any characters allowed in query strings)

Limits:

■ The default hexadecimal numbers apply to English characters. For other
languages, remove any hexadecimal values that correspond to the
characters of the language that you want to allow. Examples of such
languages include (but are not limited to), Brazilian Portuguese, French,
Japanese, and Chinese.

■ You can specify characters literally. You can also enter the URL-encoded
form of that character. For example, you can enter the letter a, or you can
enter the encoded equivalent of %61.

■ You can specify a maximum number of 4096 characters (including commas
that are used for separating characters).

■ You can specify ranges of characters that are separated with hyphens. The
syntax is: starting_character-ending_character. For example, you can enter
a-z as a range of characters.

■ Specify any quotation marks (") with the URL-encoded equivalent of %22.
Do not use ASCII.

Example: %25 blocks URL-encoded characters in queries.

Help Prevent Attacks

74 Web Agent Configuration Guide

Web Agents search for prohibited characters in query strings by comparing the
characters in the query string of the URL with the ASCII values of the characters defined
in the BadQueryChars parameter. For an example, see the following process;

1. The BadQueryChars parameter contains the URL-encoded value for the percent
symbol (%) as shown in the following example:

%25

2. The Web Agent receives an HTTP request that contains the following query string:

xxx=%0d

3. The Web Agent examines the URL in the previous example, but does not decode the
URL-encoded values. For example, the Web Agent interprets the previous example
(in Step 2) as the literal string %0d, and not as a carriage return.

4. The Web Agent examines the values in the BadQueryChars parameter, and converts
them to their ASCII values. For example, the %25 in Step 1 is converted to a percent
symbol (%).

5. The Web Agent compares each character in the URL against the decoded ASCII
values from the BadQueryChars parameter.

6. The Web Agent blocks the request, because the ASCII percent symbol (%) exists in
both of the following places:

■ The query string of the URL.

■ The decoded (ASCII) value in the BadQueryChars parameter.

To block certain characters from query strings, set the value of the BadQueryChars
parameter to include the characters you want to block.

Help Prevent Attacks

Chapter 6: User Protection 75

Specify Bad URL Characters

You can list a set of character sequences that cannot be part of a URL request. These are
treated by the Agent as bad URL characters. The Web Agent will refuse URL requests
that contain any of the characters or strings of characters that you include in this list.
The checking is done on the URL before the "?" character. The Web Agent rejects URL
requests that include such characters because a malicious Web client might use such
characters to evade CA SiteMinder® rules.

When a Web Agent refuses a URL request containing a Bad URL character, the web
server responds with one of the following messages:

■ Internal Server Error

■ Web Page not Found (404) Error

Check your Web Agent logs for information on how the Agent is handling requests.

You specify the characters with the following parameter:

BadUrlChars

Specifies the character sequences that cannot be used in URL requests. The
Web Agent checks the characters in the URL that occur before the "?"
character against the list in this parameter. If any of the specified characters
are found, the Web Agent rejects the request.

You can specify the following characters:

■ a backward slash (\)

■ Two forward slashes (//)

■ Period and a forward slash (./)

■ Forward slash and a period (/.)

■ Forward slash and an asterisk (/*)

■ An asterisk and a period (*.)

■ A tilde (~)

■ %2d

■ %20

■ %00-%1f

■ %7f-%ff

■ %25

Separate multiple characters with commas. Do not use spaces.

You can use the bad URL characters in CGI parameters if the question mark (?)
precedes the bad URL characters.

Help Prevent Attacks

76 Web Agent Configuration Guide

Default: Disabled (all characters are allowed).

Limits:

■ The default hexadecimal numbers apply to English characters. For other
languages, remove any hexadecimal values that correspond to the
characters of the language that you want to allow. Examples of such
languages include (but are not limited to), Brazilian Portuguese, French,
Japanese, and Chinese.

■ You can specify characters literally. You can also enter the URL-encoded
form of that character. For example, you can enter the letter a, or you can
enter the encoded equivalent of %61.

■ You can specify a maximum number of 4096 characters (including commas
that are used for separating characters).

■ You can specify ranges of characters that are separated with hyphens. The
syntax is: starting_character-ending_character. For example, you can enter
a-z as a range of characters.

■ Specify any quotation marks (") with the URL-encoded equivalent of %22.
Do not use ASCII.

To specify Bad URL characters, edit the value of the BadURLChars parameter to include
the characters that you want to block.

Note: When configuring the Apache 2.0 Reverse Proxy Server and Outlook Web Access
(OWA), be sure to turn off the BadURLChars parameter. OWA allows unrestricted
characters in the email subject that might be listed in the BadURLChars parameter.

Help Prevent Attacks

Chapter 6: User Protection 77

Enable Bad Form Characters

The following characters are commonly used in cross-site scripting attacks:

■ Left and right brackets (< >)

■ ampersand (&)

■ quotation marks (")

If you want to use scripting code for presenting forms to a user during an authentication
challenge, enable the following parameter to configure the Web Agent to block any
special characters before sending them to an HTML form:

BadFormChars

Specifies the characters that the Web Agent blocks before using them as output on
a form. If enabled and if the agent name part of the URL has one or more characters
that are specified in this parameter, then the login page returns the following error
message:

Internal Server Error

Default: Disabled (characters are not blocked)

Examples: <, >, &, %22

Limits:

■ You can specify the characters literally.

■ You can specify a maximum number of 4096 characters (including commas
that are used for separating the characters).

■ You can specify ranges of characters that are separated with hyphens. The
syntax is: starting_character-ending_character. For example, you can enter
a-z as a range of characters.

■ Specify the quotes (") with the URL-encoded equivalent of %22. Do not use
ASCII.

Follow these steps:

1. Log in to the Administrative UI.

2. Open the Agent Configuration Object in which you want to enable this parameter.

3. Enable the BadFormChars parameter by removing the # character in front of it.

The BadFormChars parameter is enabled with the default values.

4. (Optional) Remove any characters that you do not want to use from the list. You
can add any other character to this list. Verify that the characters are separated
from one another by a comma.

Help Prevent Attacks

78 Web Agent Configuration Guide

Help Prevent DNS Denial Of Service Attacks

If a web server receives HTTP requests with false IP addresses, the Web Agent tries to
resolve the IP addresses to fully qualified domain names. For large volumes of HTTP
requests, a denial-of-service condition could affect the Web Agent and possibly the DNS
servers. The following parameter controls whether the Web Agent performs DNS
lookups:

DisableDNSLookup

Prevents the Web Agent from performing DNS lookups.

Follow these steps:

1. Verify that the DisableDNSLookup parameter does not end with an s. Some earlier
versions of the ACO templates and LocalConfig.conf files possibly contain this error.
The correct parameter ends with a p.

2. Set the value of the DisableDNSLookup parameter to yes.

Important! When the value of this parameter is set to yes, fully qualified domain names
are required for cookie-based functions to work properly.

Protect Resources Without Extensions

To prevent unauthorized users from gaining access to resources without extensions, you
can use the following parameter:

OverrideIgnoreExtFilter

Specifies a list of strings you want the Web Agent to match against all URIs. This
helps you protect resources whose extensions are normally ignored by the
Web Agent, or any files or applications that do not have extensions. If the URI
matches one of the strings in the list, the Web Agent checks with the Policy
Server to determine if the resource is protected.

It is better to specify more general strings instead of exact paths. You can also
include a partial string to protect a group of resources. For example, the string
/servlet/ protects the following resources:

■ /dira/app1/servlet/app

■ /dirb/servlet/app1

■ /dirc/mydir/servlet/app2

Default: No default

To protect resources without extensions, add strings for the resources (without periods)
that you want to protect to the value of the OverrideIgnoreExtFilter parameter. If you
are using an Agent Configuration Object, use the multi-value option to add the strings. If
you are using a local configuration file, add each string on its own line.

Help Prevent Attacks

Chapter 6: User Protection 79

Disable POST Preservation

If you do not need to use POST preservation, you may disable it with the following
parameter:

PreservePostData

Specifies whether the Web Agent preserves POST data when redirecting
requests. When the user is challenged for advanced authentication, such as
forms or certificate authentication, the post data is preserved during the
authentication phase.

Default: Yes

To disable POST preservation, set the value of the PreservePostData parameter to no.

Secure Applications

An unauthorized user can append a false file name that contains an extension that the
Web Agent is configured to ignore to the end of a URL . The Agent then allows the
unauthorized user access to the resource. To have the Web Agent deny access to such
attempts, use the following parameter:

SecureApps

Prevents the Agent from authorizing URLs from an unauthorized user. If your
Web Agent is configured to ignore requests for files ending with certain
extensions, an attacker may attempt to access resources by creating a false
URL.

For example, if you have a resource with the following URL:

/scripts/myapp

An attacker may attempt to gain access by creating a false URL like the one in
the following example:

/scripts/myapp/junk.jpg

If the value of the SecureApps parameter is set to no, the request for
/scripts/myapp/junk.jpg would be automatically authorized if the Web Agent
was set to ignore requests for .jpg files.

If the value of the SecureApps parameter is set to yes, the Web Agent attempts
to discover if the resource is legitimate or if the URL is false.

Default: No

To secure applications, set the value of the SecureApps parameter to yes.

Verify IP Addresses

80 Web Agent Configuration Guide

Ensure Custom Responses Comply with X-Frame Options

If you use the X-Frame-Options response header in your web applications, you can
ensure that any customized responses from your agent return this header properly. The
setting in the X-frame options header determines if the browser renders a page with
content between a <frame> or an <iframe> tag.

You can determine whether the custom responses from your agent comply with
X-frame-options with the following parameter:

XFrameOptions

Specifies whether custom responses comply with the x-frame-options response
headers. Setting this parameter sets any custom responses with the correct
x-frame-options header.

Default: None

Example: SAMEORIGIN

To ensure that your custom responses comply with x-frame options, set the value of the
XFrameOptions parameter to yes.

Verify IP Addresses

CA SiteMinder® agents can verify IP addresses using the parameters described in the
following procedures:

■ Resolve agent identity by IP address (see page 81).

■ Compare IP addresses to prevent security breaches (see page 81).

Verify IP Addresses

Chapter 6: User Protection 81

Resolve Agent Identity by IP Address

On virtual web servers, when IP addresses and host names are used to resolve the
Agent name, the Web Agent can potentially use an incorrect value for AgentName to
evaluate the request. This situation would allow unauthenticated users to access
protected resources.

You can force the Web Agent to resolve the Agent name based on the physical IP
address of the virtual server, with the following parameter:

UseServerRequestIp

Instructs the Web Agent to resolve the AgentName according to the physical IP
address of a virtual web server. Use this parameter to increase security if a web
server uses IP addresses for virtual server mappings. If this parameter is set to
no, the Web Agent resolves the AgentName according to the host name in the
HTTP Host header of the client's request.

For Domino servers, this parameter is supported only for Domino 6.x. If this
parameter is enabled for an Agent on other Domino versions, the Web Agent
uses the default Agent name.

For IIS Web Agents configured for SSL communication and virtual hosts, you
must set this parameter to yes. IIS does not allow virtual host mappings using
host names with SSL enabled.

Default: No

To resolve a Web Agent's identity using the IP Address, set the UseServerRequestIp
parameter to yes.

Compare IP Addresses to Prevent Security Breaches

An unauthorized system can monitor packets, steal a cookie, and use that cookie to gain
access to another system. To prevent a breach of security by an unauthorized system,
you can enable or disable IP checking with persistent and transient cookies.

The IP checking feature requires agent to compare the IP address stored in a cookie
from the last request against the IP address contained in the current request. If the IP
addresses do not match, the agent rejects the request.

The two parameters that are used to implement IP checking are PersistentIPCheck and
TransientIPCheck. Set them as follows:

■ If you enabled PersistentCookies, set PersistentIPCheck to yes.

■ If you did not enable PersistentCookies, set TransientIPCheck to yes.

CA SiteMinder® identity cookies are unaffected by IP checking.

SiteMinder Browser Cookies

82 Web Agent Configuration Guide

More Information

Set Persistent Cookies (see page 85)
Control Identity Cookies (see page 84)

SiteMinder Browser Cookies

To manage the cookies that are associated with the CA SiteMinder® agent, use the
parameters in any of the following procedures:

■ Require cookies for the basic authentication scheme (see page 83).

■ Safeguard information in cookies with the HTTP-only attribute (see page 83).

■ Set secure cookies within a domain (see page 84).

■ Control identity cookies (see page 84).

■ Set persistent cookies (see page 85).

■ Specify the cookie path for agent cookies (see page 86).

■ Force the agent to use a cookie domain (see page 88).

■ Implement cookie domain resolution (see page 89).

■ How cookie path scope settings work (see page 89).

SiteMinder Browser Cookies

Chapter 6: User Protection 83

Require Cookies for Basic Authentication

You can control whether CA SiteMinder® requires cookies with the following parameter:

RequireCookies

Specifies whether CA SiteMinder® requires cookies. CA SiteMinder® requires
cookies for the following functions:

■ Securing single sign-on environments.

■ Enforcing session timeouts.

■ Enforcing idle timeouts.

When the value of this parameter is yes, the agent requires one of the
following cookies to process HTTP requests:

■ SMCHALLENGE

■ SMSESSION

When the value of this parameter is no, the following conditions could occur:

■ Users are challenged for credentials unexpectedly.

■ Timeouts are not strictly enforced.

Important! If the agent requires cookies, instruct your users to accept HTTP
cookies in their browsers. Otherwise, the users are denied access to all
protected resources.

Default: Yes

To require cookies, set the value of the RequireCookies parameter to yes.

Safeguard Information in Cookies with HTTP-Only Attribute

To help protect against cross-site scripting attacks, you can make the Web Agent set the
HTTP-Only attribute for any cookies it creates using the following parameter:

UseHTTPOnlyCookies

Instructs the Web Agent to set the HTTP-only attribute on the cookies it
creates. When a Web Agent returns a cookie with this attribute to a user's
browser, the contents of the cookie cannot be read by a script, even a script
from the web site which originally set the cookie. This helps prevent any
sensitive information in the cookie from being sent to an unauthorized third
party through a script.

Default: No

To safeguard the information in cookies, set the value of the UseHTTPOnlyCookies
parameter to yes.

SiteMinder Browser Cookies

84 Web Agent Configuration Guide

Set Secure Cookies

You can specify that session cookies are only sent between a protected web server and
the requesting browser over secure (HTTPS) connections using the following parameter:

UseSecureCookies

Sends cookies to web servers using secure (HTTPS) connections. Enable this
parameter to increase security between browsers and web servers.

When this setting is enabled, users in single sign-on environments who move
from an SSL web server to a non-SSL web server will have to reauthenticate.
Secure cookies cannot be passed over traditional HTTP connections.

Default: No

To send cookies over SSL connections, set the UseSecureCookies parameter to yes.

More information:

Set Secure Cookies Across Multiple Domains (see page 204)

Control Identity Cookies

The TransientIDCookies parameter specifies whether or not the Agent identity cookie
(SMIDENTITY) is transient or persistent.

Persistent cookies are written to a client system’s hard disk. Prior to Web Agent 5.x
QMR1, persistent cookies remained valid for 7 days. Beginning with Web Agent 5.x
QMR1, persistent cookies remain valid for the configured maximum session timeout
plus 7 days. (The maximum session timeout is set in the Administrative UI.) Typically, a
persistent cookie is deleted from a Web browser’s cookie file after the cookie expires;
however, browsers may handle persistent cookies differently. By default, the Web
Agent does not use persistent cookies. It uses transient cookies.

If you want to use single sign-on for multiple browser sessions, use persistent cookies. If
you set persistent cookies, a user can end their browser session before a CA
SiteMinder® session expires then start a new browser session and still have single
sign-on capability.

Whereas persistent cookies are written to a hard disk, transient cookies are not written
to the hard disk and they are not subject to configured session time-outs. Transient
cookies will remain in your cookie folder.

Set TransientIDCookies to no, if you want the identity cookie to be persistent. Leave the
default value set to yes, if you want the identity cookie to be transient.

Be sure to set the corresponding IP Check.

SiteMinder Browser Cookies

Chapter 6: User Protection 85

More Information

Compare IP Addresses to Prevent Security Breaches (see page 81)

Set Persistent Cookies

If you want to use single sign-on for multiple browser sessions, use persistent cookies.
The following steps describe one possible use for persistent cookies:

1. Users authenticate with CA SiteMinder®, but end their browser sessions before the
CA SiteMinder® session expires.

2. Users start new browser sessions later, but the persistent cookie maintains their
single-sign on capability.

Persistent cookies remain valid for the configured maximum session time-out plus seven
days. Many browsers delete the cookie file of the web browser after the cookie expires.
Some browsers possibly handle persistent cookies differently.

Follow these steps:

1. Set the PersistentCookies parameter to yes.

The SMSESSION cookies are persistent.

2. Set the TransientIDCookies parameter to no.

The SMIDENTITY cookies are persistent.

SiteMinder Browser Cookies

86 Web Agent Configuration Guide

Specify the Cookie Path for Agent Cookies

When a Web Agent creates a cookie, the web agent automatically uses the root (/)
directory as the cookie path. The domain and path attributes of cookies are compared
to the URL of a request. If the cookie is valid for the domain and the path, the client
sends the cookie to the server. When the cookie path uses the root value, the client
sends the cookie to the server with all requests in the domain.

You can set CA SiteMinder® cookies to a given set of paths to eliminate the web traffic
caused when cookies are sent for unprotected resources. For example, if a cookie path
is set to /mypackage, the client only sends the cookie for requests in a particular
package in the domain.

To specify the cookie path for agent cookies

1. Open your Agent Configuration Object or your local agent configuration file.

2. Set the Cookie Path for the Cookie Provider in the following parameter:

MasterCookiePath

Specifies the path for the primary-domain session cookies created by the
cookie provider. For example, if this parameter is set to /siteminderagent, all
session cookies that the cookie provider creates will have the /siteminderagent
path. If this parameter is not set in the Cookie Provider Agent, the default value
is used.

Default: / (root)

3. Set the cookie path for the secondary agents in the following parameter:

CookiePath

Specifies the cookie path for the following secondary agent browser cookies:

■ xxSESSION

■ xxIDENTITY

■ xxDOMINODATA

■ xxCHALLENGE (including SSL_CHALLENGE_DONE)

■ xxDATA

■ xxSAVEDSESSION

For example, setting this parameter to /BasicAuth, all of the secondary agents
in the previous list are created using /BasicAuth as the path. If not specified,
the default value is used.

The CookiePath is not added to credential cookies (such as xxxxCRED) to
maintain backwards compatibility with 4.x agents.

The following cookies will always use the root (/) path:

■ ONDENIEDREDIR

SiteMinder Browser Cookies

Chapter 6: User Protection 87

■ TRYNO

If the CookiePathScope parameter is greater than zero, the CookiePath
parameter settings are overriden.

Default: / (root)

4. (Optional) If you want the Web Agent to extract the cookie path from the URL
instead of using the CookiePath value, set the following parameter to a number
greater than zero:

CookiePathScope

Specifies the scope of the cookie path for the following secondary agent
cookies:

■ xxSESSION

■ xxIDENTITY

■ xxDOMINODATA

■ xxCHALLENGE (including SSL_CHALLENGE_DONE)

■ xxDATA

■ xxSAVEDSESSION

Using a CookiePathScope greater than zero in this parameter overrides the
setting of the CookiePath parameter.

Default: 0

More information:

Configure Full Logoff (see page 210)

SiteMinder Browser Cookies

88 Web Agent Configuration Guide

Force the Cookie Domain

Using fully qualified domain names helps ensure that cookies work properly. You can
force the agent to append its cookie domain to the host name in a URL request that
meets either of the following conditions:

■ The request does not specify a domain.

■ The request contains only an IP address.

■ Agents can be forced to use a cookie domain by setting the following parameters:

ForceCookieDomain

Forces the Web Agent to append its cookie domain to the host name in a URL
request that does not specify a domain or contains only an IP address. This
parameter works together with the ForceFQHost parameter for added
functionality.

Default: No

ForceFQHost

Forces an agent to use a fully qualified domain name. This parameter uses
configured Domain Name System (DNS) services to append the cookie domain
to the host name in a URL request through DNS services and not an Agent. If
the Web Agent receives a request containing a partial URL, then the agent
redirects the request back to the same destination resource specified in the
original URI. The redirect request uses the fully qualified host name, which the
agent determines using the configured DNS services. Use this parameter with
the ForceCookieDomain parameter for added functionality.

Default: No

Example: When the agent receives a request from http://host1/page.html, it
responds with http://host1.myorg.com/page.html. If the agent receives a
request such as http://123.113.12.1/page.html, it responds with
http://host1.myorg.com/page.html.

Note: These examples only work with proper DNS lookup tables. Request
containing partial domain names that DNS cannot resolve could possibly
generate errors.

Follow these steps:

1. Set the value of the ForceCookieDomain parameter to yes.

2. Set the value of the ForceFQHost parameter to yes.

The agent appends its cookie domain to the host name when necessary.

SiteMinder Browser Cookies

Chapter 6: User Protection 89

Implement Cookie Domain Resolution

To implement automatic domain resolution, comment out the CookieDomain
parameter or set it to none to cause the Web Agent to create cookies that are good only
for the server from which they were issued.

You can further define the cookie domain by adding a value to the CookieDomainScope
parameter. The scope determines the number of sections, separated by periods, that
make up the domain name. (A domain always begins with a ".")

A CookieDomainScope value of 0 instructs the agent to use the most specific scope for a
given host. A value of 1 (resulting, for example, in a cookie domain of .com) is not
allowed by the HTTP specification. The value 2 instructs the agent to use the most
general scope.

The following table shows some domain names and CookieDomainScope values.

Domain Name Cookie Domain
Scope value

Cookie Domain

server.myorg.com 2 .myorg.com

server.division.myorg.com 3

2

.division.myorg.com

.myorg.com

server.subdivision.division.myorg.c
om

4

3

2

.subdivision.division.myorg.com

.division.myorg.com

.myorg.com

For example, the domain division.myorg.com has a scope of 3. By default, the Web
Agent assumes a scope of 2; cookie domains cannot have a scope of 1.

How CookiePathScope Settings Work

The following table shows how the value of the CookiePathScope parameter works with
the following settings:

■ A URL such as http://fqdn/path1/path2/path3/path4/index.html

■ A CookiePath parameter value of /BasicA

If the CookiePath value is: And the CookiePathScope
value is:

Then the following path is
used:

/BasicA 0 /BasicA

SiteMinder Browser Cookies

90 Web Agent Configuration Guide

If the CookiePath value is: And the CookiePathScope
value is:

Then the following path is
used:

/BasicA 1 /Path1

/BasicA 2 /Path1/Path2

/BasicA 3 /Path1/Path2/Path3

/BasicA 4 /Path1/Path2/Path3/Path4

/BasicA 5 /Path1/Path2/Path3/Path4

/BasicA 99 /Path1/Path2/Path3/Path4

/ or "undefined" 0 /

/ or "undefined" 1 /Path1

/ or "undefined" 2 /Path1/Path2

/ or "undefined" 3 /Path1/Path2/Path3

/ or "undefined" 4 /Path1/Path2/Path3/Path4

/ or "undefined" 5 /Path1/Path2/Path3/Path4

/ or "undefined" 99 /Path1/Path2/Path3/Path4

These settings also affect simple SSO. For example, if the value of the CookiePathScope
is set to 1 or higher,users will get challenged for credentials for both /BasicA/Index.html
and /BasicB/Index.html since the SESSION cookie with a path /BasicA will not be valid
for /BasicB/Index.html request.

Configure Support for SDK Third-Party Cookies

If you use non-CA SiteMinder® Web Agents in your organization, you can configure
them to support single sign-on with the following parameter:

AcceptTPCookie

Allows the Web Agent to accept session (SMSESSION) cookies created by
third-party (non-CA SiteMinder®) Web Agents. Third-party agents generate and
read SMSESSION cookies using the CA SiteMinder® SDK.

Default: No default

Note: For more information, see the programming documentation.

To allow the Web Agent to accept session cookies created by non-CA SiteMinder® Web
Agents, set the AcceptTPCookie parameter to yes.

Define HTTPS Ports

Chapter 6: User Protection 91

Define HTTPS Ports

If you are using an SSL connection to the web server (HTTPS) to keep your requests
more secure, specify the HTTPS port numbers with the following parameter:

HttpsPorts

Specifies the secure ports the Web Agent listens on if you are using an SSL
connection to the web server. If you specify a value for this parameter, you
must include all the ports for all the web servers that serve secure requests. If
you do not specify a value, the Web Agent reads the HTTP scheme from the
web server's context.

If a server is behind an HTTPS accelerator (which converts HTTPS to HTTP), the
requests are treated as SSL connections by your browser.

Default: Empty

Example: 443

Example: (multiple ports) 443,7002

To define your HTTPS ports, set the value of the HttpsPorts parameter to the port
numbers that use SSL. Use commas to separate multiple port numbers.

Decode Query Data in a URL

To have the Web Agent’s Base64 algorithm decode a URL’s query data before calling the
Policy Server (so the Policy Server sees the proper resource), use the following
parameter:

DecodeQueryData

Specifies whether the Web Agent decodes the query data in a URL before
calling the Policy Server. Set this parameter to yes if you need do any of the
following tasks in your environment:

■ If you need to ensure the rules filer acts against the proper string.

■ If you need to or write rules against the data in a query string.

Default: No

To have the Web Agent decode the query data in a URL before calling the Policy Server,
set the value of the DecodeQueryData parameter to yes.

How to Protect Resources Without Periods or Extensions

92 Web Agent Configuration Guide

How to Protect Resources Without Periods or Extensions

Some URLs, such as servlets, do not have peroids. Other URLs may not have extensions.
Both of these situations pose security risks. The following process demonstrates these
risks:

1. Your environment contains a directory called /mydir/servlets that is a protected
resource.

2. Your Web Agent is configured to ignore requests for resources with the .gif
extension.

3. An unauthorized user appends the name of a nonexistent file along with a .gif
extension to the end of the URL as shown in the following example:

/mydir/servlets/file.gif

4. The Web Agent ignores the .gif extension and grants the unauthorized user access
to the /mydir/servelets directory.

If you are most concerned about the security risks, do not allow the Agent to ignore any
extensions, but consider the following consequences:

■ Performance may decrease because the Web Agent will evaluate every image URL
on a page.

■ Behavior of your Web site may change because users may be challenged for
resources that formerly did not require authentication.

The following options are available to protect URLs that do not have periods:

■ Configure the Agent to use the OverrideIgnoreExtFilter feature.

■ Make sure that protected resources do not have extensions that the Web Agent is
configured to ignore.

Handle Complex URIs

Chapter 6: User Protection 93

Handle Complex URIs

The DisableDotDotRule parameter determines whether or not the Web Agent
automatically authorizes a URI that contains two dots separated by a slash (/).

Default: No

If the DisableDotDotRule is set to yes, the Agent does not apply the double dot rule. For
example, if the URI is:

■ /dir1/app.pl/file1.gif

The Web Agent uses the IgnoreExt parameter to determine if the resource should
be automatically authorized.

■ /dir1/okay.button.gif

The Agent can ignore this URI because the two dots are not separated by a slash (/).
The double-dot rule is not applicable in this case.

If the DisableDotDotRule is set to no, the default, the Web Agent applies the double-dot
rule. The Web Agent challenges requests for the following URIs, passing the request to
the Policy Server:

■ /dir1/app.pl/file1.gif

This URI falls under the double-dot rule because the two dots are separated by a
slash.

The web server may consider /dir1/app.pl as the target resource, and /file1.gif as
extra path information, typically viewable in CGI headers as PATH_INFO.

■ /dir1/okay.button.gif

The Agent may ignore this URI because even though the double-dot rule is being
enforced, the two dots are not separated by a slash (/), so the rule is not applicable.

Important! Avoid creating the possibility for unauthorized access when you use the
IgnoreExt and DisableDotDotRule parameters together. For example, if you want to
protect /dir1/app.pl, but you set the DisableDotDotRule parameter to yes, the Agent
ignores the URI /dir1/app.pl/file1.gif because you have disabled the double-dot rule and
included .gif in the IgnoreExt parameter. Consequently, an unauthorized user may
access the protected application /dir1/app.pl.

Chapter 7: Use Platform for Privacy Preferences (P3P) Compact Policies with CA SiteMinder® Agents 95

Chapter 7: Use Platform for Privacy
Preferences (P3P) Compact Policies with CA
SiteMinder® Agents

CA SiteMinder® agents can support P3P compact policies using the parameters
described in the following procedures:

■ How to support P3P compact policies (see page 95).

■ Configure your agent to support P3P compact policies (see page 96).

How to Support a P3P Compact Policy with your CA SiteMinder®
Web Agent

CA SiteMinder® supports P3P Compact policies on all types of Web Agents, except for
the Domino agent.

Note: For more information about P3P, see the P3P page of the World Wide Web
Consortium web site.

To configure your Web Agent to support a P3P Compact policy, use the following
process:

1. Configure a P3P Compact policy on your web server.

Note: For more information, see the documentation provided by your web server
vendor.

2. Configure your Web Agent to accommodate your P3P Compact policy.

http://www.w3.org/P3P/

Configure your Web Agent to Accommodate P3P Compact Policies

96 Web Agent Configuration Guide

Configure your Web Agent to Accommodate P3P Compact
Policies

You can determine whether the custom responses from your Web Agent comply with
P3P response headers with the following parameter:

P3PCompactPolicy

Determines whether custom responses comply with the Platform for Privacy
Preferences Project (P3P) response headers. P3P compact policies use tokens
representing the specific elements from the P3P terminology. If you set the
P3PCompactPolicy parameter to the appropriate policy syntax, it ensures that
custom responses are set with the correct P3P response header when a P3P
compact policy is specified for the Web Agent.

Default: No default

Example: NON DSP COR CURa TAI (these represent: none, disputes, correct,
current/always, and tailoring, respectively)

To accommodate P3P compact policies, add an appropriate policy syntax to the
P3PCompactPolicy parameter.

Chapter 8: Session Protection 97

Chapter 8: Session Protection

This section contains the following topics:

Apply CA SiteMinder® Behavior to a Web Application Client (see page 97)
Modify the Session Grace Period (see page 103)
Modify the Session Update Period (see page 104)
Protect Session Cookies from Misuse with Validation Periods and Expired Cookie URLs
(see page 105)
Prevent Session Cookie Creation or Updates (see page 106)
Prevent Session Cookie Creation or Updates Based on Method and URI (see page 107)
Store Session Cookies on the Session Store for Improved Security (see page 108)
Validate a Session Cookie Domain (see page 109)
Redirect a User after a Session Time-out (see page 110)
Enforce Timeouts across Multiple Realms (see page 111)
Prevent Re-Challenges After Realm Timeouts When Multiple Valid Sessions Exist (see
page 112)

Apply CA SiteMinder® Behavior to a Web Application Client

Some web applications use script engines, which execute in the context of a web
browser, to request resources and display content. Similar to requests standard web
browsers send, the requests originating from the script engine can trigger CA
SiteMinder® generated behavior, such as HTTP redirects or challenges.

Unless properly integrated with the web application, this behavior can result in the web
application client reaching an indeterminate state.

The web application client response (WebAppClientResponse) ACO parameter lets you:

■ Configure CA SiteMinder® to identify requests originating from the script engine
that is executing in the context of the web browser.

■ Use a customized response to integrate CA SiteMinder® generated behavior,
including a challenge, with the functionality of the web application client.

Note: If you are using the WebAppClientResponse parameter to integrate the
session management features ofCA SiteMinder® (such as idle or session timeouts),
configure the OverLookSessionFor ACO parameter also.

While the OverLookSessionFor parameters prevent web application client requests
from keeping user sessions active indefinitely, the WebAppClientResponse
parameter lets you integrate the required CA SiteMinder® functionality to redirect
users after a session timeout.

Apply CA SiteMinder® Behavior to a Web Application Client

98 Web Agent Configuration Guide

More information:

Redirect a User after a Session Time-out (see page 110)
Prevent Session Cookie Creation or Updates Based on Method and URI (see page 107)

Web Application Client Response Introduced

You use the WebAppClientResponse ACO parameter to implement the functionality of
the web application client, while maintaining CA SiteMinder® security.

The parameter is comprised of the following default attributes:

Resource=|Method=|Status=|Body=|ContentType=|Charset=

Consider the following factors:

■ This ACO parameter requires at least one attribute with a valid value.

■ All additional attributes are optional.

■ If you must identify requests from multiple web applications, a single ACO
parameter can include multiple values for each attribute.

■ Web Application Client Response functionality does not work with Basic
authentication schemes.

Example: WebAppClientResponse ACO parameter

The example shows the parameter with a valid value for each attribute. A description of
each attribute follows the example:

WebAppClientResponse:Resource=/web20/dir/*|Method=GET,POST|Status=200

|Body=C:\location\custombody_1.txt|Content–Type=application/xml|Charset=us–ascii

Resource

Specifies the URI to which the web application client is making requests. If the URI
of a request matches this value, CA SiteMinder® identifies the request as originating
from the web application client. The resource can contain a wildcard (*) for prefix
and suffix matching.

Default: No value. If this value is omitted, all resources that the Web Agent is
protecting apply to the parameter.

Limit: Regular expressions are not supported.

Example: Resource=/web20/dir/*

Example: Resource=/web20/dir/*.xml

Apply CA SiteMinder® Behavior to a Web Application Client

Chapter 8: Session Protection 99

Method

Specifies the HTTP method with which the web application client is making the
request. If the HTTP method of a request matches this value, CA SiteMinder®
identifies the request as originating from the web application client.

Default: No value. If this value is omitted, the parameter applies all HTTP methods.

Separate multiple methods with a comma (,).

Example: GET, POST

Status

Specifies the HTTP status that CA SiteMinder® must send back to the web
application client request.

Default: No value. If this value is omitted, an HTTP status of 200 applies to the
parameter.

Body

Specifies the fully qualified name of the file containing the custom body that is to
function as the response to the web application client request. This file resides on
the Web Agent host system and can:

■ Be text–based or contain binary data.

■ Contain any custom body that is designed by the application owner.

■ Contain a custom body that can be used to forward a CA SiteMinder® reason
and redirect URL.

Default: No value. If this value is omitted, CA SiteMinder® forwards the response to
the web application client without a body.

ContentType

Specifies the MIME type of the data present in the file that contains the response.

Default: No value. If this value is omitted, a MIME type of text/plain applies to the
parameter.

If the custom body contains CA SiteMinder® generated responses, the content type
of the data must be one of the following types:

■ text/*

■ application/xml

■ application/*+xml

Charset

Specifies the character set of the data present in the body file.

Default: No value. If this value is omitted, the parameter applies a character set
type of us–ascii.

Apply CA SiteMinder® Behavior to a Web Application Client

100 Web Agent Configuration Guide

Cookie Providers and the Web Application Client Response

Considering the following factors when setting the WebAppClientResponse parameter:

■ If a user accesses a Web 2.0 resource, CA SiteMinder® does not update the session
cookie on the cookie provider.

■ When a user accesses a non–Web 2.0 resource, such as .html, .jsp, .asp, and .cgi, CA
SiteMinder® updates the session cookie on the cookie provider as normal.

How to Apply the Web Application Client Response to a Web Application

Applying the web application client response with a web application lets you implement
the functionality of the web application client, while maintaining CA SiteMinder®
security. Complete the following steps to apply the web application client response:

1. Configure the web application client response (WebAppClientResponse) ACO
parameter.

2. Configure a custom response.

3. Configure the web application to handle a custom response.

Configure a Web Application Client Response

Configure the Web Application Client Response to implement the functionality of the
web application client.

Follow these steps:

1. Do one of the following tasks:

■ Open the Agent Configuration Object (ACO) in the Administrative UI and
uncomment WebAppClientResponse.

■ Open the local agent configuration file and uncomment
WebAppClientResponse.

2. Enter a value for one or more of the following default attributes:

■ Resource

■ Method

■ Status

■ Body

■ Content–Type

■ Charset

Apply CA SiteMinder® Behavior to a Web Application Client

Chapter 8: Session Protection 101

Note: Consider the following limitations:

■ This ACO parameter requires a valid value in at least one attribute.

■ All additional attributes are optional.

■ If you must identify requests from multiple web applications, a single ACO
parameter can include multiple values for each attribute.

3. Do one of the following tasks:

■ Save the ACO in theAdministrative UI.

■ Save the local agent configuration file.

Configure a Customized Response

The application owner configures a customized response in the body of a file that
resides on the Web Agent host system. When a web application client request triggers
CA SiteMinder® functionality, the Web Agent returns the body as a response to the web
application client.

Consider the following factors:

■ The file can contain any custom body as designed by the application owner.

■ The file can be text–based. If the file is text–based, CA SiteMinder® parses the body
of the file for $$Reason$$ and $$URL$$ before sending the response to the web
application client.

If the response is to include a CA SiteMinder® generated behavior:

■ The content MIME type of the data must be one of the following types:

– text/*

– application/xml

– application/*+xml

■ The following placeholder values must appear in the body:

SiteminderReason=$$Reason$$

SiteminderRedirectURL=$$URL$$

CA SiteMinder® parses the body for these values and inserts the triggered CA
SiteMinder® functionality and redirect URL. The following parameters or policy
response types define the functions and URLs:

– IdleTimeoutURL

– MaximumTimeoutURL

– ForceFQHost

– LogOffRedirectURL

– ExpiredCookieURL

Apply CA SiteMinder® Behavior to a Web Application Client

102 Web Agent Configuration Guide

– OnAuthAcceptRedirect

– OnAuthRejectRedirect

– OnAccessAcceptRedirect

– OnAccessRejectRedirect

– Challenge

Example: Suppose that a web application client request triggers an idle
timeout. CA SiteMinder® replaces the placeholder values with IdleTimeoutURL
and the URL specified in the value of the IdleTimeoutURL parameter.

■ The file can contain binary data. If the file contains binary data, CA SiteMinder®
forwards the body of the file to the web application client without parsing it.

Configure the Web Application to Handle a Custom Response

If the custom response includes a CA SiteMinder® reason and redirect URL, configure
the web application separately to handle the custom response.

The Web Agent installation wizard installs sample applications in
web_agent_home/samples. Extrapolate from the samples for your specific environment
and situation.

web_agent_home

Specifies the Web Agent installation path.

Modify the Session Grace Period

Chapter 8: Session Protection 103

Modify the Session Grace Period

Web pages usually consist of many resources, all of which are potentially protected by
the Web Agent. For each resource associated with a single request, a session cookie is
generated. To eliminate the overhead of generating multiple session cookies for a single
user request, set the following parameter:

SessionGracePeriod

Specifies the number of seconds during which a CA SiteMinder® session
(SMSESSION) cookie will not be regenerated. Cookies are not regenerated
when all of the following conditions are met:

■ There is no URL SMSESSION cookie.

■ The difference between the current time and the last access time of the
received SMSESSION cookie is less than or equal to the
SessionGracePeriod.

■ The amount of time between the current time and the time when the
received cookie would have been idle exceeds two grace periods. For
example, if your grace period is 25 minutes and the idle time-out is 60
minutes, CA SiteMinder® regenerates a session cookie after 10 minutes,
because then there are less than two grace periods (50 minutes) of time
left before the session goes idle.

Default: 30

To modify the session grace period

1. Change the value of the SessionGracePeriod parameter.

2. If you increased the setting for the SessionGracePeriod parameter in Step 1, use the
Administrative UI to ensure both of the following values in all of your realms do not
exceed the value of the SessionGracePeriod parameter:

■ Session timeout value

■ Idle timeout value

The session grace period is changed.

Note: Session timeouts are part of configuring a realm, which you do using the
Administrative UI. For further instructions on configuring session timeouts, see the
Policy Server documentation.

Modify the Session Update Period

104 Web Agent Configuration Guide

Modify the Session Update Period

You can specify how often the Web Agent redirects a request to the Cookie Provider to
set a new cookie with the following parameter:

SessionUpdatePeriod

Specifies how often (in seconds) a Web Agent redirects a request to the Cookie
Provider to set a new cookie. Refreshing the master cookie decreases the
possibility that it will expire due to an idle time-out of the CA SiteMinder®
session.

Default: 60

To modify the session update period

1. Make sure the CookieProvider parameter is defined.

2. Change the number of seconds in the SessionUpdatePeriod parameter to reflect the
interval you want.

The session update period is changed.

Protect Session Cookies from Misuse with Validation Periods and Expired Cookie URLs

Chapter 8: Session Protection 105

Protect Session Cookies from Misuse with Validation Periods
and Expired Cookie URLs

CA SiteMinder® uses time-based session cookie parameters that can substantially
reduce the possibility of a CA SiteMinder® session cookie being compromised by
administrators or other users who have access to the following items:

■ Web server logs

■ CA SiteMinder® Web Agent logs

■ Potentially compromised proxy servers sitting between domains in the case of
cross-domain single sign-on

These time-based session cookie parameters add the concept of "born dates" to session
cookies. Agents receiving a session cookie as a result of a redirect (URL session cookie)
will look for the cookie born date name/value pair and compare this value with the
value set for the CookieValidationPeriod configuration parameter. If the value of the
born date and the CookieValidationPeriod parameter value exceed the current time, the
cookie is rejected.

To protect session cookies from misuse, set the following parameters:

CookieValidationPeriod

Specifies the time period (in seconds) in which the receiving agent will accept
the session cookie. After this time passes, the session cookie will not be
accepted. If this field is not used or is set to zero, the session cookie expires
when the Idle Timeout and Max Session Timeout values are met.

Default: Empty.

ExpiredCookieURL

(Optional) Specifies a URL that the agent redirects the user to after any session
cookie has expired. If neither the born date nor the CookieValidationPeriod are
configured, the agent ignores the settings and processes the cookie as usual
(backwards compatibility).

Prevent Session Cookie Creation or Updates

106 Web Agent Configuration Guide

Prevent Session Cookie Creation or Updates

Some Web applications, such as Microsoft Outlook Web Access, make HTTP requests
behind the scenes even when a user is not actively using the application. For example,
the Web Access application makes HTTP requests even when the user is not actively
checking for new email on the server.

These requests may update the SMSESSION cookie so that the session never expires,
even though the user has been idle. You can prevent the Web Agent from creating or
updating session cookies during these background requests so that sessions expire
normally.

Configure the following parameters:

OverlookSessionForMethods

Specifies whether the Web Agent compares the request method of all HTTP
requests against the methods listed in this parameter. If a match occurs, the
Web Agent does not create or update an SMSESSION cookie. Also, cookie
providers (if configured) are not updated for that request.

Default: No default

OverlookSessionForUrls

Specifies whether the Web Agent compares the URLs from all HTTP requests
against the URLs listed in this parameter. If a match occurs, the Web Agent
does not create or update an SMSESSION cookie. Also, cookie providers (if
configured) are not updated for that request.

Default: No default

Example: Use a relative URL, such as /MyDocuments/index.html. Do not use an
absolute URL (http://fqdn.host/MyDocuments/index.html)

Note: If you configure both of the previous parameters, the methods are processed
before the URLs.

OverlookSessionAsPattern

If enabled, the Web Agent does not create cookies for any of the URLs under
the directory that is specified in OverlookSessionForUrls.

Default: No

Values: Yes, No

Example: If you specify /siteminder in OverlookSessionForUrls and if you set
OverlookSessionAsPattern to Yes, then cookies are not generated for any
/siteminder/* requests.

Prevent Session Cookie Creation or Updates Based on Method and URI

Chapter 8: Session Protection 107

Prevent Session Cookie Creation or Updates Based on Method
and URI

Some Web applications, such as Microsoft Outlook Web Access, make HTTP requests
behind the scenes even when a user is not actively using the application. For example,
the Web Access application makes HTTP requests even when the user is not actively
checking for new email on the server.

These requests update the SMSESSION cookie so that the session never expires, even
though the user has been idle. You can prevent the Web Agent from creating or
updating session cookies during these background requests so that sessions expire
typically.

To prevent creation or updates based on method and URI

1. Set all the following parameters:

OverlookSessionForMethods

Specifies whether the Web Agent compares the request method of all HTTP
requests against the methods listed in this parameter. If a match occurs, the
Web Agent does not create or update an SMSESSION cookie. Also, cookie
providers (if configured) are not updated for that request.

Default: No default

OverlookSessionForMethodUri

Specifies whether the Web Agent compares the method and the URI from all
HTTP requests against the method and URI listed in this parameter. If a match
occurs, the Web Agent does not create or update an SMSESSION cookie. Cookie
providers (if configured) are not updated for that request.

Default: No default.

Limits: Specify a relative URI. Do not add spaces between the comma and the
URL.

Example: POST,/directory/file prevents updates to the SMSESSION cookie for
POST requests to /directory/resource.

Note: Methods are processed before URIs.

Store Session Cookies on the Session Store for Improved Security

108 Web Agent Configuration Guide

Store Session Cookies on the Session Store for Improved
Security

Session cookies are stored on the client computer of the end user. You can increase the
security of your environment by having CA SiteMinder® create session cookies that are
stored in the CA SiteMinder® session store. Storing session cookies in the CA
SiteMinder® session store prevents anyone with access to the following items from
copying a session cookie from a client computer and then attempting a replay attack:

■ Web server logs.

■ CA SiteMinder® Web Agent logs.

■ Potentially compromised proxy servers sitting between domains (with single-sign
on across multiple domains).

You can control where CA SiteMinder® stores its session cookies by setting the following
parameter:

 StoreSessioninServer

Specifies whether session cookies are stored on the client computer, or in the
CA SiteMinder® session store. When the value of the StoreSessioninServer
parameter is yes, a session cookie is created and stored on the session store.
Cookie providers and Web Agents access the cookie from the session store.

Cookie providers and Web Agents replace the session cookie in a URL with a
GUID that corresponds to the session cookie stored on the session store.

When the value of the StoreSessioninServer parameter is no, the session
cookie is passed directly in the URL.

Default: No

Follow these steps:

1. Verify that your environment meets the following conditions:

■ Upgrade your Web Agents and cookie providers to use CA SiteMinder® 6.0 SP5
QMR1 or higher.

■ Use a value for the DefaultAgentName parameter in the Web Agents and
cookie provider.

■ Your Policy Server is configured with a valid session store.

2. In your Web Agents and cookie provider, set the value of the StoreSessioninServer
parameter to yes.

Validate a Session Cookie Domain

Chapter 8: Session Protection 109

Validate a Session Cookie Domain

You can reduce the risk that unauthorized users may hijack and attempt to reuse CA
SiteMinder® session cookies by having CA SiteMinder® validate the domain of a session
cookie with the following parameter:

TrackSessionDomain

Instructs the Web Agent to encrypt and store the intended domain of a session
cookie within the session cookie itself. During subsequent requests, the Web
Agent compares the intended domain stored within the session cookie against
the domain of the requested resource. If the domains do not match, the Web
Agent rejects the request.

For example, when the value of this parameter is set to yes, session cookies
intended for operations.example.com are rejected when presented at
finance.example.com.

In CA SiteMinder® environments using SSO, set this parameter on the Web
Agent that creates the encrypted session cookie. For example, suppose your
SSO environment has domains named a.example.com and b.example.com. If
the Web Agent protecting a.example.com encrypts the session cookie, set the
value of the TrackSessionDomain parameter of the associated Web Agent.
When the Web Agent protecting b.example.com receives the cookie, it
compares the intended domain stored in the cookie against the domain of the
requested resource.

Default: No

To have CA SiteMinder® validate the domain of a session cookie, set the value of the
TrackSessionDomain parameter to yes.

Redirect a User after a Session Time-out

110 Web Agent Configuration Guide

Redirect a User after a Session Time-out

Session time-outs are set when you configure a realm with the Administrative UI. When
a user’s CA SiteMinder® session times out, the Web Agent does one of the following
actions:

■ Rechallenges the user for credentials

■ Redirects the user to another URL

If a redirect URL is specified, the user is sent to that destination page. If the page is
unprotected, the user is granted direct access to that page. If the page is protected, the
user is challenged for credentials before being granted access to the page. If no
redirection URL has been specified, the Web Agent rechallenges the user for credentials
after a session time-out.

You can redirect users whose sessions time out to a URL with a customized web page,
which explains why their session has been terminated and how they can reestablish it.
For example, you can create a custom web page that displays a message such as, "You
have been logged out automatically as a security precaution. Please login again to
continue."

If the user is not redirected to another page after a session times out, CA SiteMinder®
challenges the user again. This may confuse users because they may not understand
why they are being asked to reauthenticate.

To redirect users to different URLs after session time-outs

1. Add the following parameters to your Agent Configuration Object or your local
configuration file:

IdleTimeoutURL

Specifies the URL where the Web Agent should redirect the user when the idle
time-out for the session occurs.

Example: http://example.mycompany.com/sessionidletimeoutpage.html

Note: IdleTimeoutURL should only be used for non-persistent sessions; it has
no effect if configured for persistent sessions.

MaxTimeoutURL

Specifies the URL where the Web Agent should redirect the user when the
maximum time-out for the session occurs.

Example: http://example.mycompany.com/maxtimeoutpage.html

Default: No default

2. Enter one URL for each of the previous parameters. You can use the same URL for
all of the parameters, or you may use different URLs for each.

Enforce Timeouts across Multiple Realms

Chapter 8: Session Protection 111

If the idle timeout and maximum timeout values for a session (set in the Policy
Server) occur at the same time and the IdleTimeoutURL and MaxTimeoutURL
parameters are set, the user is redirected to the URL specified in the
MaxTimeoutURL parameter when a time-out occurs.

Enforce Timeouts across Multiple Realms

User session timeouts are governed by the realm that the user first logs into. If a user
enters a new realm through single sign-on, the time-out values for the new realm are
still governed by the session that was established by the initial login at the first realm. If
you have different time-out values for different realms, and you want to have each
realm use its own time-out values, you can override the time-outs of the original realm.

A user who has already timed out cannot log in to another realm without being
rechallenged. For example, if the Idle Timeout in Realm1 is 15 minutes and the Idle
Timeout in Realm2 is 30 minutes, a user who accumulates 20 idle minutes in Realm1 will
be challenged upon logging in to Realm2.

To override the time-outs of the original realm, configure your Web Agent and realms as
described in the following process:

1. Set the value of the EnforceRealmTimeouts parameter to yes.

2. Use the Administrative UI to do the following tasks:

a. For each realm where you want to supersede the original time-outs (any realm
that SSO functionality allows the user to access), do the following:

■ To override the Maximum Timeout value, create a response using the
WebAgent-OnAuthAccept-Session-Max-Timeout response attribute.

■ To override the Idle Timeout value, create a response using the
WebAgent-OnAuthAccept-Session-Idle-Timeout response attribute.

b. Bind each of the previous responses to an OnAuthAccept rule.

Note: For information about creating responses, see the Policy Server Configuration
Guide.

Prevent Re-Challenges After Realm Timeouts When Multiple Valid Sessions Exist

112 Web Agent Configuration Guide

Prevent Re-Challenges After Realm Timeouts When Multiple
Valid Sessions Exist

The previous versions of CA SiteMinder® automatically re—challenged users for their
credentials when a realm timeout occurred. This challenge occurred even when multiple
sessions existed on the Policy Server.

This version offers an option of having the Policy Server examine all of the sessions in its
list before challenging the user.

The following parameter controls this option:

compatRealmtimeouts

Specifies whether the Policy Server challenges users for their credentials after a
realm timeout occurs. This challenge occurs because the first session in the
Policy Server expires. The Policy Server does not examine the other associated
sessions in its list. When the value of this parameter is yes, the Policy Server
checks only the first session in the list. Then the user is challenged. When the
value of this parameter is no, the Policy server checks all the sessions in its list
before challenging users.

Default: No (all sessions are checked upon a realm timeout)

To examine only the first session in the list when a realm timeout occurs, change the
value of the compatRealmtimeouts parameter to yes.

Chapter 9: Web Application Protection 113

Chapter 9: Web Application Protection

This section contains the following topics:

Application Protection Methods (see page 113)
REMOTE_USER Variable (see page 113)
How Response Attributes Work with Web Agents (see page 116)
CA SiteMinder® Default HTTP Headers (see page 119)

Application Protection Methods

CA SiteMinder® provides the following methods for protecting web applications:

■ REMOTE_USER variable for passing the authenticated user name to applications
(see page 113).

■ Response attributes (see page 116).

■ HTTP headers (see page 119).

■ Custom error pages (see page 130).

REMOTE_USER Variable

The REMOTE_USER variable holds the name of the user authenticated by the web
server. When the agent is installed on a web server, CA SiteMinder® replaces the native
authentication of the web server. The REMOTE_USER variable is blank.

If your applications use the REMOTE_USER variable, then set REMOTE_USER variable is
set.

If your web server does not use the REMOTE_USER variable, the HTTP_SM_USER header
provides an alternate method of passing a user name to an application.

More Information

Configure the Web Agent to set the REMOTE_USER Variable (see page 114)

REMOTE_USER Variable

114 Web Agent Configuration Guide

Configure the Web Agent to set the REMOTE_USER Variable

Configure the Web Agent to set the REMOTE_USER variable as follows:

■ To set the REMOTE_USER to the value of the CA SiteMinder® log-in user name, set
the Web Agent’s SetRemoteUser parameter to yes.

The default for this parameter is no, which leaves the REMOTE_USER variable
blank.

Note: Prior to CA SiteMinder® Web Agent 5.x QMR 2, the SetRemoteUser
parameter affected only IIS web servers; Apache and Oracle iPlanet Agents always
set REMOTE_USER to the CA SiteMinder® logged-in user name. If you install or
upgrade from Agents prior to 5.x QMR 2, note that REMOTE_USER is no longer
enabled by default.

■ To set the REMOTE_USER variable based on a specific user account instead of the
logged-in user’s credentials:

■ Enable the SetRemoteUser parameter by setting it to yes.

■ Set the RemoteUserVar parameter. This parameter instructs the Agent to
populate the REMOTE_USER variable based on the value from an
HTTP-WebAgent-Header-Variable response attribute. Use this to integrate with
legacy applications.

To configure the RemoteUserVar parameter, enter only the name of the
response variable. For example, to return an HTTP-WebAgent-Header-Variable
such as "user=ajohnson", set the RemoteUserVar parameter to the value user.

■ Bind the header variable to an OnAuthAccept rule. Do not use an existing HTTP
header variable response; create a new one.

Note: For more information, see the Policy Server documentation.

■ To revert to the default, which leaves REMOTE_USER blank, return the
SetRemoteUser parameter to no.

Note: Be sure to take security consequences into consideration before configuring
SetRemoteUser or RemoteUserVar.

REMOTE_USER Variable

Chapter 9: Web Application Protection 115

IIS Web Servers and the REMOTE_USER Variable

Your IIS web server requires basic authentication to use the REMOTE_USER variable
with CA SiteMinder®.

When Basic authentication is enabled and a user requests a CA SiteMinder®-protected
resource, the agent attempts to set the HTTP_Authorization header of the IIS web
server with a user name only. Not with a password.

The Basic authentication mechanism of the IIS web server takes precedence over any
other authentication challenge when an HTTP_Authorization header is used. Therefore,
the IIS web server thinks that the user is responding to its own challenge.

If your agent operates as an ISAPI filter (using the Classic Pipeline mode for IIS), the
agent does the following tasks:

■ Sets the user context of the request.

■ Sets a value for the REMOTE_USER header.

The Agent populates the REMOTE_USER header when the value of the SetRemoteUser
parameter is yes and any of the following settings are used:

■ DefaultUsername and DefaultPassword—together these parameters control the
(privileged) proxy user account that the agent uses for most activities.

■ ForceIISProxyUser—overrides the normal behavior and forces the agent to instruct
the IIS web server to run as the proxy user.

■ UseAnonAccess—instructs the agent to provide no user context for the request at
all, leaving any existing user context unchanged.

■ Run in Authenticated User's Security Context—the agent instructs the IIS web
server to use the credentials stored in the persistent session.

Be cautious when using the SetRemoteUser parameter and the UseAnonAccess
parameter together.

The following table shows how these parameters work together:

If these parameters are set
as follows:

Then this result occurs...

SetRemoteUser=yes

UseAnonAccess=yes

The REMOTE_USER variable cannot be set because the
agent does not pass along a user security context.

The lack of a user security context forces the IIS web
server to use the credentials from the
HTTP_Authorization header that the agent modified. But
this header is incomplete because it only contains the
user name.

How Response Attributes Work with Web Agents

116 Web Agent Configuration Guide

If these parameters are set
as follows:

Then this result occurs...

SetRemoteUser=yes

UseAnonAccess=no

The agent can pass along a user context of some type,
depending on how other parameters are set, such as
DefaultUserName, DefaultPassword, or
ForceIISProxyUser.

If the agent passes a security context to the IIS web
server, then the IIS web server uses the credentials of the
agent. The IIS web server ignores the incomplete
HTTP_Authorization header.

How Response Attributes Work with Web Agents

CA SiteMinder® response attributes instruct applications how to collect user data and
apply that information to display personalized content for each user.

CA SiteMinder® provides configurable response attributes as a means of delivering data
to applications and customizing the user experience.

You configure responses using the Administrative UI, and then associate them with
specific rules in a policy. When a request triggers a rule with a configured response, the
Policy Server sends the response data to the Agent, which interprets the information
and makes it available to Web applications.

When you configure a response, you associate the response with an Agent action. You
can associate HTTP header and cookie response attributes with the actions GET and
POST. These attributes can also be tied to Authentication or Authorization events. The
Policy Server can send a response if the user is accepted or rejected for either of these
events.

Note: When configuring response attributes note that the maximum buffer size for the
web server for agent responses is 32 KB. There is no length limit of a response other
than the total buffer size.

Response attributes other than the header and cookie attributes can only be used when
an authentication or authorization event occurs (whether or not the user is accepted or
rejected for either of these events). For example, you can select an Authorization event
action for a rule and then configure a WebAgent-OnReject-Redirect response attribute.
If a user is rejected during the authorization process by CA SiteMinder®, the Agent
redirects the user to another page that could display a message indicating why that user
was rejected.

How Response Attributes Work with Web Agents

Chapter 9: Web Application Protection 117

The following illustration shows how response attributes are sent from the Policy Server
to the web server:

To simplify the task of maintaining responses, define a separate response for each type
of event. For example, define one response for an OnAccept event and another
response for an OnReject event. Creating a separate response makes it easier to find
attributes when you need to modify response values.

Use SM_AGENT_ATTR_USRMSG Response for a Forms Challenge

The SM_AGENTAPI_ATTR_USERMSG response enables developers of custom CA
SiteMinder® authentication schemes to return custom text to their client applications,
as part of a user challenge or for some other purpose.

Beginning with v5 QMR3, the Web Agent has the ability to convert the text from an
SM_AGENTAPI_ATTR_USERMSG response to an SMUSRMSG cookie when performing a
forms challenge.

How Response Attributes Work with Web Agents

118 Web Agent Configuration Guide

To ensure the SMUSRMSG cookie is removed after the challenge is complete, the FCC
consumes the cookie (deletes it from the browser) after a successful POST request, as
follows:

■ In native CA SiteMinder® mode, the Agent deletes the cookie after a successful
login, while redirecting back to the target URL.

■ In CA SiteMinder® 4.x compatibility mode, the Agent deletes the cookie after
generating the FORMCRED cookie, while redirecting back to the target URL.

Note: The SMUSRMSG cookie will be stored for a period of time in the user's browser,
and could possibly be transmitted over non-secure HTTP connections. As a result,
sensitive data should be avoided.

Web Agents will URL-encode text that is placed in the SMUSRMSG cookie during a forms
challenge, to make it safe for HTTP transmission, eliminating spaces and other harmful
characters. The FCC decodes this text before making it available to the environment for
use in custom FCC functionality.

Note: URL encoding is not implemented unless the text is placed in the SMUSRMSG
cookie.

To implement the new functionality, custom authentication scheme developers must
generate custom forms-based authentication schemes. When an Sm_AgentApi_Login()
call returns SM_AGENTAPI_CHALLENGE, the Agent challenges the requesting user by
redirecting to the authentication scheme URL provided by the response to
Sm_AgentApi_IsProtected().

When the Web Agent handles an authentication scheme that uses the HTML Forms
authentication scheme template, the Agent looks for a
SM_AGENTAPI_ATTR_STATUS_MESSAGE response attribute. If the attribute is found,
the Agent generates the appropriate SMUSRMSG cookie, while redirecting to the
authentication scheme URL. The FCC may then use this cookie during form generation, if
appropriate directives are placed in the desired .FCC source file.

Note: For more information, see the Policy Server documentation.

Cache Response Attributes

You can instruct a CA SiteMinder® Agent to cache response attributes or expire
attributes that contain dynamic data, forcing the Agent to contact the Policy Server and
update the information. If you configure a static response attribute, the Policy Server
only allows you to cache the value. By definition, static values do not change, so there is
no need to recalculate them. If you configure user, DN, or active attributes, you can
either cache the value or recalculate the value at specific intervals to ensure that the
data is current.

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 119

CA SiteMinder® Default HTTP Headers

CA SiteMinder® default HTTP headers instruct applications how to collect user data and
apply that information to display personalized content for each user.

As part of the Web application environment, the CA SiteMinder® Agent submits default
HTTP headers to the web server, and the web server makes them available for Web
applications. You can use these headers to include functions and enable your Web
applications to personalize content. Headers can store information such as a user’s
name and the type of action a user is authorized to perform.

The Agent sends these headers regardless of whether or not they are called from a Web
application; however, you can disable some of these headers so that they do not use up
header space.

The following CA SiteMinder® default HTTP headers are available for Web Agents:

HTTP_SM_AUTHDIRNAME

Indicates the name of the directory against which the Policy Server authenticates
the user. The administrator specifies this directory with the Administrative UI.

HTTP_SM_AUTHDIRNAMESPACE

Identifies the directory namespace against which the Policy Server authenticates
the user. The administrator specifies this namespace with the Administrative UI.

HTTP_SM_AUTHDIROID

Indicates the directory object identifier (OID) from the Policy Server database.

HTTP_SM_AUTHDIRSERVER

Indicates the directory server against which the Policy Server authenticates the
user. The administrator specifies this directory server with the Administrative UI.

HTTP_SM_AUTHREASON

Indicates the code the Web Agent returns to the user after a failed authentication
attempt or secondary authentication challenge.

HTTP_SM_AUTHTYPE

Indicates the type of authentication scheme the Policy Server uses to verify the
user’s identity.

CA SiteMinder® Default HTTP Headers

120 Web Agent Configuration Guide

HTTP_SM_DOMINOCN

Identifies the user’s Domino canonical name if a Domino LDAP directory is used to
authenticate users.

Example: HTTP_SM_DOMINOCN="CN=jsmith/O=netegrity."

HTTP_SM_REALM

Indicates the CA SiteMinder® realm in which the resource exists.

HTTP_SM_REALMOID

Indicates the realm object ID that identifies the realm where the resource exists.
This ID is may be used by third party applications to make calls to the Policy Server.

HTTP_SM_SDOMAIN

Indicates the Agent’s local cookie domain.

HTTP_SM_SERVERIDENTITYSPEC

Indicates the Policy Server identity ticket that keeps track of the user identity. The
Web Agent uses this to access content protected by anonymous authentication
schemes so that it can personalize the content for the user.

HTTP_SM_SERVERSESSIONID

Indicates a unique string that identifies a user session.

HTTP_SM_SERVERSESSIONSPEC

Indicates the ticket that contains user session information. Only the Policy Server
knows how to decode this information.

HTTP_SM_SESSIONDRIFT

Indicates the amount of time the Web Agent can keep a session active using the
information in its cache before validating the session with the Policy Server. The
session server at the Policy Server must be enabled and a session validation period
must be configured for this header to be set.

HTTP_SM_TIMETOEXPIRE

Indicates the amount of time remaining for a CA SiteMinder® session.

HTTP_SM_TRANSACTIONID

Indicates the agent-generated unique ID for each user request.

HTTP_SM_UNIVERSALID

Identifies the Policy Server-generated universal user ID. This ID is specific to the
customer and identifies the user to the application, but it is not the same as the
user login.

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 121

HTTP_SM_USER

Indicates the login name of the authenticated user. If a user does not provide a user
name at log in, such as certificate-based authentication, then this variable is not set.

HTTP_SM_USERDN

Identifies an authenticated user’s distinguished name as determined by the Policy
Server.

For anonymous authentication schemes, this returns a Globally Unique Identifier
(GUID).

HTTP_SM_USERMSG

Identifies the text that the Agent presents to the user after an authentication
attempt. Some authentication schemes supply challenge text or a reason why an
authentication has failed.

More Information

Disable Default HTTP Header Variables (see page 129)

HTTP Header and Cookie-Variables

The HTTP-Header-Variable and HTTP-Cookie-Variable attributes enable a Web Agent to
pass a static or dynamic list of name/value pairs to a Web application. The name/value
pairs are specific to the user requesting a resource, which enables the application to
customize what the user sees.

For example, an administrator configures the WebAgent-HTTP-Header-Variable
response attribute to store the full name of the user. When the user is authorized to
access the protected resource, the Web Agent passes the user’s full name to the Web
application. The user’s name is then displayed by the application, which helps to
establish a relationship with the customer.

Be aware that in a Web application environment, the HTTP-Header-Variable response
attribute appears as an HTTP_attribute_name variable, where attribute_name is the
name of the HTTP variable, for example USERFULLNAME. You do not have to have an
underscore in the name as the underscores cause problems with some application
servers.

Note: The server may convert any dash (-) in the attribute name to an underscore (_),
and all alphabetic characters to uppercase.

CA SiteMinder® Default HTTP Headers

122 Web Agent Configuration Guide

Header Variables and End-User IP Address Validation

When a CA SiteMinder® Web Agent receives a request that follows an initial request by
that same user, the Agent validates the session cookie sent with the subsequent request
by comparing the IP address of the requesting user with the IP address encrypted inside
the session cookie. The address inside the cookie is generated by the Agent during the
user’s initial request.

Mechanisms used to balance and manage incoming network traffic, such as firewalls,
load balancers, cache devices, and proxies can alter the user’s IP address or make it
appear as if all incoming requests are coming from a single or small group of IP
addresses. As a result, the Web Agent’s IP checking becomes ineffective. The Web Agent
can now perform IP checking in these network environments using a custom HTTP
header and a configurable list of safe proxy IP addresses.

The following table lists the terminology for new IP checking functionality.

Term Definition

HTTP Request Header A name/value pair that describes a single element of an
HTTP request.

Custom IP Header A user-defined HTTP request header used by intermediate
HTTP network applications or hardware devices to store the
requestor’s IP address.

IP Checking Feature that enables the Web Agent to check requests for
authenticity by comparing the REMOTE_ADDR in the
request with the REMOTE_ADDR value stored in the
SMSESSION cookie, after an initial request. This feature is
also known as IP validation.

REMOTE_ADDR web server variable representing the IP address of the HTTP
client making a request to the web server. Also known as
REMOTE_IP or CLIENT_IP. This differs from the Requestor IP
Address when a proxy server, NAT firewall, or other
network service or device sits between the requestor and
the target web server.

Requestor The initiator of an HTTP request, typically a user at a
browser.

Requestor IP Address The IP address of the user making the original HTTP
request.

Single Sign-on Feature that requires a user to enter credentials for secure
access to a protected Web site only once during a session.

SMSESSION cookie HTTP mechanism used by Web Agents to track single
sign-on state.

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 123

How Custom Headers Validate IP Addresses

The Web Agent can now use a custom HTTP header to determine a user’s IP address
instead of using the REMOTE_ADDR variable. If a proxy or other device sets a custom
client IP header and the Web Agent is configured to look for that header on an incoming
request, the Agent uses that header as the source of the client IP information.

In addition to configuring a custom header, you can set up a list of proxy IP addresses. If
the REMOTE_ADDR matches an address in the proxy list, the Web Agent retrieves the
user’s IP address from the custom header. Otherwise, the user’s IP address is obtained
from the REMOTE_ADDR.

After the Web Agent resolves the requestor’s IP address, the address is stored and used
for request processing. If an address cannot be resolved, the IP address is set to
unknown.

The Web Agent logs where the client IP address was resolved from to facilitate any
debugging that may be necessary.

Configure IP Address Validation

You can implement IP-address checking using the following parameters:

CustomIpHeader

Specifies an HTTP header for which the agent searches to find the IP address of
the requestor. If no value is specified for this parameter, the default is an
empty string. No maximum length is enforced and the value can be any string
that contains a valid HTTP header value.

Default: No

Example: HTTP_ORIGINAL_IP

ProxyDefinition

Specifies the IP address of a proxy (such as a cache device) that requires the
use of a custom HTTP header. This custom header helps the agent resolve the
IP addresses of the requester.

Default: No default

Limits: The string must contain an IP address. Do not use server names or fully
qualified DNS host names.

CA SiteMinder® Default HTTP Headers

124 Web Agent Configuration Guide

RequireClientIP

Specifies if the agent validates the IP address of the client. When this value is
set to yes, the agent validates that the IP address in the browser cookie
matches the IP address of the client. If the addresses do not match, a 403 error
message appears in the browser of the user. If the cookie does not contain an
IP address, then users are prompted for their credentials.

Default: No (client IP addresses not validated).

Note: These settings are independent of the TransientIPCheck and
PersistentIPCheck parameters.

IP Address Validation with Previous Web Agent Releases

In an environment of 6.x QMR 2 or 3 Web Agents and older Agents, single sign-on may
be affected if IP checking is configured.

Web Agents prior to v6.x QMR 2 and 5.x QMR 7 will not be able to resolve the requestor
IP address and as a result, SMSESSION cookies created by those Web Agents may be
discarded by 6.x QMR 2 or 3 Web Agents. This includes custom Agents using the SDK to
generate SMSESSION cookies, Application Server Agents, and any other CA SiteMinder®
Agents in a single sign-on environment that use SMSESSION cookies.

Conversely, 6.x QMR 2 and 3 Web Agents may resolve a requestor’s IP address, which
then differs from the address resolved by an older Agent.

Preserve HTTP Headers

You can configure the Web Agent to save existing HTTP headers instead of replacing
them when new headers are created. This feature is useful for applications that
generate multiple CA SiteMinder® responses with the same name but with different
values, and need to be included in headers. If there are multiple instances of the same
HTTP header, the web server handles this by generating a single header with all the
relevant header values separated by commas.

By default, the Web Agent does not preserve headers as a precaution against
applications using the wrong header values. For Oracle iPlanet, Domino, and Apache
Web Agents to preserve HTTP headers, set the PreserveHeaders parameter to yes. The
default value is no.

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 125

Control How HTTP Header Resources are Cached

You can control how the Web Agent handles cache-related request headers by setting
the following parameter:

AllowCacheHeaders

Specifies whether the web agent removes the following cache-related HTTP
headers from protected-resource requests before passing those requests to the
web server:

■ if-modified-since

■ if-none-match

This setting affects whether a browser uses cached pages. This setting does not
affect auto-authorized resources (including values in the IgnoreExt parameter). The
settings of the web server and browser determine whether auto-authorized
resources are cached.

This parameter uses the following values:

■ Yes—The agent does not remove any cache-related HTTP headers. The
SMSESSION cookies are still tracked to validate the session. When the session
expires, the web agent sends an updated SMSESSION cookie with a 304 "not
modified" response. This response is applied to the unmodified resources that
are stored in the cache. The time indicated in the if-modified-since HTTP
header determines when this behavior occurs.

Important! When this parameter is set to yes, pages of personalized
applications lacking the appropriate cache control headers could possibly be
cached. This situation introduces unexpected behavior and allows a browser to
save sensitive data to the disk.

■ No—The agent removes the cache-related HTTP headers only from protected
resource-requests only. The web server treats the request as unconditional.
The contents of the cache are not validated.

■ None—The Web agent removes all cache-related headers for protected and
unprotected resources.

For terminated sessions, the browser does not use cached content. The value of the
AllowCacheHeaders parameter is ignored.

The settings of this parameter affect the following parameter:

■ LogOffUri—Set the value of the AllowCacheHeaders parameter to no when
using the LogOffUri parameter. Otherwise these sessions do not terminate
properly. A cached log-out page could possibly be served to a user.

■ Default: No

■ Limits: Yes, No, None

To remove all cache related headers from protected and unprotected resources, set the
value of the AllowCacheHeaders parameter to none.

CA SiteMinder® Default HTTP Headers

126 Web Agent Configuration Guide

Note: For more information about HTTP 1.1 caching mechanisms, see RFC 2616, Section
13 "Caching in HTTP."

Set the HTTP Header Encoding Spec

The HTTPHeaderEncodingSpec setting affects the encoding of all HTTP header values
and all custom HTTP-COOKIE responses.

Use this parameter to support the web applications expecting localized text in specific
encodings. Since the cookies pass back and forth between the browser and portal
through the HTTP protocol, use the RFC-2047 HTTPWrapSpec if your chosen encoding
puts characters that HTTP traffic considers illegal into the cookies.

For example, some Shift-JIS characters can cause undesirable results if not further
encoded by RFC-2047.

For the Kanji characters, you can use SECP932, which is a superset of SHIFT-JIS. Though
SHIFT-JIS can be used for most Kanji encoding and decoding, CP932 covers an even
larger character set.

When HTTPWrapSpec is used, first the data is encoded according to the
HTTPHeaderEncodingSpec, then the data is further encoded following the RFC-2047
specification.

http://www.ietf.org/rfc/rfc2616.txt

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 127

The syntax for the parameter is:

encoding_spec, wrapping_spec

The encoding_spec is a text string that represents one of the following encoding types:
UTF-8, Shift-JIS, EUC-J, or ISO-2022 JP. Specify the encoding type that you want the
Agent to use.

The wrapping_spec is the wrapping specification, which must be RFC-2047. Although
this variable is optional, we strongly recommend that you include the wrapping
specification because the encoding type you select may generate byte codes that are
not compatible with the HTTP protocol.

This is especially true if you use custom HTTP Cookie responses that contain double-byte
encoded data. For example, some Shift-JIS characters cause undesirable results if they
are not further encoded by RFC-2047. The wrapping also tells the receiving application
that the type and nature of the encoding so the application can better interpret the
encoded text. For example, set the parameter to Shift-JIS,RFC-2047.

When RFC-2047 is used, the Agent first encodes the data based on the chosen encoding
specification and then further encodes the data following the RFC-2047 specification.

Note: If you leave the HTTPHeaderEncodingSpec setting blank, the default is UTF-8 with
no wrapping.

Important! Set the following value for the HTTPHeaderEncodingSpec ACO parameter in
the proxy computer in which the agent is installed, in the following cases:

UTF-8,RFC-2047

■ If you protect the Administrative UI with a CA SiteMinder® agent.

■ If the DN values for administrators have non-English characters.

Disable Conformance to RFC 2047

By default, the Web Agent conforms to RFC 2047. However, you can disable this
conformance by setting the ConformToRFC2047 parameter to no.

If this parameter does not exist or is set to yes, the Web Agent conforms to RFC 2047.

CA SiteMinder® Default HTTP Headers

128 Web Agent Configuration Guide

Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)

If you have server applications that are case-sensitive, you can specify the case of the
Agent’s HTTP headers. The Web Agent defaults to lower case headers.

For example, Oracle iPlanet web servers, by default, provide the HTTP header variables
in lower-case, such as http_sm_user.

Note: IIS Web Agents do not benefit from this feature, because IIS forces all headers to
an upper case format.

To use lower case headers, set the LowerCaseHTTP parameter to yes. If you require
upper-case header variables, set LowerCaseHTTP to no.

More information:

Record the Transaction ID in Oracle iPlanet Web Server Logs (see page 275)

Enable Legacy Variables for HTTP Headers

You can specify which naming convention the Web Agent uses for the HTTP headers
with the following parameter:

LegacyVariables

Specifies if the Web Agent uses underscores in HTTP header names. With some
web servers (such as the Sun Java System), using the underscore character in
the HTTP headers causes problems with some applications.

When this parameter is set to no, the HTTP headers will not have underscores,
as shown in the following example:

SMHeaderName

When this parameter is set to yes, the HTTP headers will use underscores, as
shown in the following example:

SM_HeaderName

Default: (traditional agents) Yes

Default: (framework agents) No

To enable legacy variables and have the Web Agent use underscores in the HTTP header
names, set value of the LegacyVariables parameter to yes.

Note: For Apache 2.4.x web servers, set the LegacyVariables parameter to No to see the
CA SiteMinder® default headers such as SMUSER, SMUSERDN.

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 129

Disable Default HTTP Header Variables

Many system platforms have an HTTP header limit of 4096 bytes. To avoid exceeding
this limit and to allow space for custom response variables, you can disable some of CA
SiteMinder®’s default HTTP header variables.

The default variables are grouped into the following categories:

Note: You cannot disable individual variables. You can only disable a category of
several variables.

■ Authentication source variables

– SM_AUTHDIRNAME

– SM_AUTHDIRSERVER

– SM_AUTHDIRNAMESPACE

– SM_AUTHDIROID

■ User Session variables

– SM_SERVERSESSIONID

– SM_SERVERSESSIONSPEC

– SM_SERVERIDENTITYSPEC

– SM_SESSIONDRIFT

– SM_TIMETOEXPIRE

■ User Name variables

– SM_USER

– SM_USERDN

– SM_DOMINOCN

To disable the default use of HTTP header variables do any of the following tasks:

■ To disable authentication source variables, set the value of the DisableAuthSrcVars
parameter to yes.

■ To disable user session variables, set the value of the DisableSessionVars parameter
to yes.

Default: No

■ To disable user name variables, set the value of the DisableUserNameVars
parameter to yes.

Note: If you are using CA Identity Manager, or any application that might use the
variables in this category, ensure the value of this parameter is set to no (enabled).

CA SiteMinder® Default HTTP Headers

130 Web Agent Configuration Guide

Custom Error Handling For Applications

Custom error handling allows you to make error information relevant to your
application. To customize applications for users, you can add the HTML text displayed by
HTTP 500, HTTP 401, and HTTP 403 error pages or, with the exception of 401 errors, you
can redirect the user to a URL that points to a custom error page or application.

You can configure customized handling for the following types of errors:

■ Server errors—the Agent uses the ServerErrorFile for error pages that result from
HTTP 500 web server errors. These error codes are passed to the custom error
pages and include:

■ Problems because the Web Agent cannot read values from required HTTP
headers.

■ Advanced authentication cookies cannot be parsed or contain an error status.

■ Connectivity problems between the Web Agent and the Policy Server.

■ Access Denied errors—the Agent uses the file specified in the following parameter:

Custom401ErrorFile

Specifies the customized HTML page to display when users receive a 401
(insufficient privileges) browser error. These errors occur when a user does not
have the appropriate privileges to access a resource.

Note: Some web servers append text of their own to the custom text that you
choose. So the response pages for these servers are not customizable.

Default: No default (blank).

■ Require cookies errors—if the RequireCookies parameter is set, the Web Agent sets
a cookie during basic authentication. If this cookie is not returned by the browser
with the basic credentials, the error page designated by the ReqCookieErrorFile
parameter is returned, and the Agent denies the user access to the web server.

■ Cross-site scripting errors—the Agent uses the file specified in the CSSErrorFile
parameter for error pages that result from HTTP 403 cross-site scripting errors.
Cross-site scripting can compromise the security of a Web site.

After you create these HTML files or applications, direct the Web Agent to the custom
error pages or URLs.

Note: For an Apache server being used as a proxy or reverse proxy server, the Apache
Agent will not return custom CA SiteMinder® error pages, but will return the standard
Apache HTTP 500 and 403 error pages.

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 131

How to Set Up Error Handling

To customize how your applications display error messages for users, do any of the
following tasks:

■ Add HTML text that the browser displays for the following HTTP errors:

– 500

– 401

– 403

■ Redirect the user to a URL that points to a custom error page or application.

For HTTP 500 and 403 errors only: If you configure the agent to redirect the user to a
URL, the agent appends the error code to the URL. See the following example of an
appended URL:

?SMError=error_code,

If you add standard HTML error text, you can only specify HTML code between the
following tags:

<body>

</body>

To direct the agent to the custom error pages or URLs, do one of the following tasks:

■ Specify the path where the text files reside.

 Enter the URL in the value of the respective agent configuration parameter.

Errors and other events and the respective agent configuration parameters are listed in
the following table:

Set a custom response for this type of
error:

With the value of this configuration
parameter:

Server errors ServerErrorFile

Access denied errors Custom401ErrorFile

Cookie required
errors

ReqCookieError
File

CSS characters errors CSSErrorFile

CA SiteMinder® Default HTTP Headers

132 Web Agent Configuration Guide

The error files can reside anywhere in your application.

Important! Leave any URL you configure as a custom error page unprotected.

Note: If the URLs of your applications require HTML tags, encode the characters in the
tags. For information about encoding HTML characters, see:
http://www.cert.org/tech_tips/.

The following examples show a file path and a URL to an error file. The syntax in the
example is for a local configuration file. You can also set these parameters in an agent
configuration object.

File Path:

CSSErrorFile="C:\error\error.txt"

ReqCookieErrorFile="C:\custompages\error.txt"

ServerErrorFile="C:\error\error.txt"

Custom401ErrorFile="C:\error\accessdenied.txt"

URL:

CSSErrorFile="http://www.mycompany.com/error.jsp"

ReqCookieErrorFile="http://www.myorg.com/error.asp"

ServerErrorFile="http://www.mycompany.com/error.jsp"

More Information

Custom Error Handling For Applications (see page 130)

Notes for Custom 401 Pages

■ Do not set the Custom401errorfile parameter to a URL.

■ If a value (usable or not) for Custom401errorfile exists, the Agent will check every
60 seconds to see if the file has changed. However, the response is intended to be
static in nature. You cannot, for example, insert a "user_name denied" type of
dynamic message.

Because re-checking is triggered by the existence of the Custom401errorfile value
rather than its usability, you can correct an error without restarting the agent. The
correction will be picked up on the next check.

■ The customized message file text will not be exposed by other errors. The file
pathname will be logged at startup and in the case of error.

CA SiteMinder® Default HTTP Headers

Chapter 9: Web Application Protection 133

■ The extent of customization may be limited by the web server, which may add text
of its own to the response.

■ The size of the customized text file is limited only by the system file size limit.

Chapter 10: Configure Virtual Servers 135

Chapter 10: Configure Virtual Servers

This section contains the following topics:

How to Set Up Virtual Server Support (see page 136)
Assign Web Agent Identities for Virtual Servers (see page 137)
Specify Virtual Servers for the Web Agent to Ignore (see page 138)

How to Set Up Virtual Server Support

136 Web Agent Configuration Guide

How to Set Up Virtual Server Support

A virtual server is a logical entity that you configure on a physical server. This logical
entity acts as an independent server. Virtual servers let you host multiple websites on
one physical server. For example, using virtual servers, you could set up a server to host
both www.mysite.com and www.yoursite.com.

You can assign any of the following to a virtual server:

■ A unique IP address

■ An IP address that is shared with the physical server

■ An IP address that is shared with another virtual server

Although you configure only one Web Agent per web server, you can configure Agent
identities to protect your virtual servers. If one user accesses the server through
www.mysite.com and another user accesses the server through www.yoursite.com,
each server is protected by an agent identity. The advantage of creating an agent
identity for each virtual server is that you can define unique realms and rules for each
site.

The settings that you define for the Web Agent apply to all virtual servers that you
define for that web server instance; however, each virtual server processes requests
independently and the Policy Server treats each virtual server request separately. For
more information about virtual servers and how to configure them, see the
documentation for your web server.

To configure support for virtual servers, do one of the following tasks:

■ Define and add an Agent identity for each virtual server, specify a value for the
AgentName parameter, and assign it the IP address or host header name of a virtual
server.

■ Define an Agent identity only for virtual servers that need to be uniquely identified.

■ Set a Default Agent Name.

Note: If you have more than one instance of the Oracle iPlanet web server, such as a
server for HTTP communication and a server for HTTPS communication, two
WebAgent.conf files exist. Each file can have multiple agent identities. (The name Oracle
iPlanet refers to the web server that was formerly called Sun ONE and iPlanet.)

Assign Web Agent Identities for Virtual Servers

Chapter 10: Configure Virtual Servers 137

Assign Web Agent Identities for Virtual Servers

Additional Web Agents for each virtual server are not actually defined, but are assigned
a Web Agent identity. To protect virtual servers that have unique access requirements
or to protect distinct realms, assign each server a unique Agent identity and use the
default agent name for all other virtual servers. The advantage of this option is that you
can configure your CA SiteMinder® installation quickly, yet still guard virtual servers
hosting realms that require separate protection.

The AgentName parameter and its associated IP address provide mapping for web
server interfaces to agent names as defined in the policy store. Web Agents need to
make Agent API calls in the proper agent name context in order for the correct set of
rules and policies to apply. If no Agent name or IP address is assigned for mapping to the
policy store, then the Web Agent uses the value of the DefaultAgentName parameter
only for a virtual server.

To protect virtual servers using unique Agent identities, add a Web Agent for each
virtual server in the AgentName parameter. Adding separate Web Agents for each
virtual server lets you define unique realms and rules for each virtual server.

To assign a Web Agent identity

1. Enter the name of the agent and the IP address, separated by a comma.

2. Specify the port number associated with the IP address (for example:
112.12.12.1:8080) if your virtual servers share the same IP address, but use
different ports. If you are using default ports, port numbers are not required.

3. To add more than one Agent, put each entry on a separate line, as in the following
example:

agentname="agent1,123.123.12.12:8080"

agentname="agent2,123.123.12.12:8081"

agentname="agent3,123.123.12.13"

4. If you add an Agent Identity, you must define it in the Administrative UI with the
same configuration. Make sure that the Agent Identity is defined in Administrative
UI exactly as it is defined for the Agent configuration.

If it finds no entries in the AgentName parameter, CA SiteMinder® uses the value of the
DefaultAgentName only for a virtual server.

Note: If you change the DefaultAgentName, make sure that it is defined in the
Administrative UI exactly as it is defined for the Agent.

Specify Virtual Servers for the Web Agent to Ignore

138 Web Agent Configuration Guide

Specify Virtual Servers for the Web Agent to Ignore

If a web server at your site supports several virtual servers, there may be resources on
these virtual servers that you do not want to protect with the Web Agent. To simplify
how the Web Agent distinguishes which portions of a web server's content it protects,
use the following parameter:

IgnoreHost

Specifies the fully qualified domain names of any virtual servers that you want
the web Agent to ignore. Resources on such virtual servers will be
auto-authorized, and the Web Agent always grants access to them regardless
of which client makes the request. The authorization decision is based on the
configuration of the Web Agent instead of being based on a policy.

The list of ignored hosts is checked first before any other auto-authorization
checks, such as the IgnoreExt and IgnoreURL settings. Therefore, the
double-dot rule will not trigger an authorization call to the Policy Server for
resources on an ignored host but would not be ignored by extension.

The host portion of the URL entries for the IgnoreHost parameter must exactly
match what the Web Agent reads for the host header of the requested
resource.

Note: This value is case-sensitive.

If the URL uses a specific port, then the port must specified.

For centrally-managed agents, use a multi-value parameter in the Agent
Configuration Object to represent several servers. For agents configured with a
local configuration file, list each host on a separate line in the file.

Example: (URL shown with port specified)

IgnoreHost="myserver.example.org:8080"

Example: (local configuration file)

IgnoreHost="my.host.com"

IgnoreHost="your.host.com"

Default: No default

To specify virtual servers for the Web Agent to Ignore, do either of the following tasks:

■ For central configuration, add the servers you want to ignore to your agent
configuration object. For more than one server, use the multi-value setting for
the parameter.

■ For local configuration, add a separate line for each server in the local
configuration file.

Resources using the specified URLs are ignored by the Web Agent and access to
those resources is granted automatically.

Specify Virtual Servers for the Web Agent to Ignore

Chapter 10: Configure Virtual Servers 139

More Information

Handle Complex URIs (see page 93)

Chapter 11: Forms Authentication 141

Chapter 11: Forms Authentication

This section contains the following topics:

How Credential Collectors Process Requests (see page 141)
MIME Types for Credential Collectors (see page 142)
How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication (see
page 143)
Specify an NTLM Credential Collector (see page 171)
Using Credential Collectors Between 4.x Type and Newer Type Agents (see page 171)
Configure Apache-based Agents for FCC-based Password Services in Japanese
Environments (see page 177)

How Credential Collectors Process Requests

The following illustration describes how forms credential collectors (FCCs) process
requests for protected resources:

Note: Cookie providers use a different process for single-sign on.

MIME Types for Credential Collectors

142 Web Agent Configuration Guide

The process shown in the previous illustration describes the following steps:

1. A user requests access to a resource.

2. The agent contacts the Policy Server to determine whether the resource is
protected.

3. The Policy Server informs the agent that a credential collector protects the
resource, and specifies the type of credential collector in use.

4. The agent adds query data, the target resource and an encrypted agent name to
the URL of the credential collector. The agent then redirects the user to the
appropriate credential collector.

5. One of the following actions occurs, depending on the type of credential collector:

■ The FCC displays the form and then collects the credentials of the user.

■ The NTC collects the NT credentials of the user.

■ The SCC collects the credentials of the user.

■ If no certificate is available, the SFCC displays the form. The SFCC collects the
user credentials.

6. The credential collector logs the user directly in to the Policy Server. The Policy
Server creates a session.

7. The agent validates the session and grants the user access to the resource.

Note: For more information about SSL Authentication Schemes, see the Policy Server
documentation.

MIME Types for Credential Collectors

Associated with each credential collector is a MIME type. The MIME type indicates
which collector presents the authentication challenge when a user requests a resource.
The following table shows each type.

Credential Collector MIME Type

Forms Credential Collector .fcc

SSL Credential Collector .scc

Cookie Provider .ccc

NTLM Credential Collector .ntc

SSL Forms Credential Collector .sfcc

Kerberos Credential Collector .kcc

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 143

When you configure an authentication scheme that uses a credential collector, or set up
single sign-on across multiple cookie domains, the relevant MIME type is used as a file
extension for a file referenced by the authentication scheme or single-sign-on
configuration, for example:

■ When configuring single sign-on across multiple cookie domains, you enter a URL
like the following to identify the cookie provider:

http://myserver.company.com:80/siteminderagent/SmMakeCookie.ccc

SmMakeCookie.ccc is the default cookie provider name. You can use this name or
create a name of your own; however, it must have the .ccc extension to initiate
single sign-on.

■ For Windows authentication, the default target file to enable this scheme is:

/siteminderagent/ntlm/creds.ntc

Again, you must use a file with the correct MIME type as the extension.

The FCC and SFCC are the only credential collectors that require actual files to exist on
the web server where the Agent is installed. These collectors are for forms-based
authentication schemes. The .fcc and .sfcc templates are required to define the HTML
form presented to the user.

How to Configure a CA SiteMinder® Agent to Support HTML
Forms Authentication

To configure CA SiteMinder® to validate user identities using HTML Forms
authentication, the policy administrator and agent owner must both perform
configuration processes. This scenario describes the process that an agent owner must
perform when a policy administrator informs you that HTML Forms authentication
support is required on one or more agents.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

144 Web Agent Configuration Guide

Note: For more information about how the policy administrator configures HTML Forms
authentication, see the companion scenario: Configure HTML Forms Authentication.

1. Configure basic FCC authentication (see page 145)

2. Map URLs for FCC redirects on Domino web servers (see page 149)

3. Configure POST preservation (see page 149)

4. Configure advanced FCC settings (see page 153)

5. Tune the performance of the FCC (see page 168)

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 145

Configure Basic FCC Operation

Perform some basic configuration procedures to configure the Forms Credential
Collector (FCC) component of any agent that secures resources that are protected by an
HTML Forms authentication scheme.

1. Configure a MIME type mapping for the FCC (see page 145) if you are using an IIS
web server or a Domino web server.

Note: The agent configuration wizard automatically sets up the proper MIME types
that CA SiteMinder® credential collectors use for the following types of web
servers:

■ Apache and Apache-based web servers.

■ Oracle iPlanet web servers.

2. Map your agent identities and web servers for use by FCCs.

3. Configure the following additional settings, as required:

■ Enable FCCs and SCCs to use Agent Names as fully qualified host names (see
page 146).

■ Configure the FCC to use a single resource target (see page 146).

■ Use a relative target for credential collector redirects (see page 147).

■ Define valid target domains (see page 147).

■ Define valid federation target domains (see page 148).

Configure a MIME Type Mapping for the FCC on IIS and Domino Web Servers

On IIS and Domino web servers, specify the FCCExt agent configuration parameter to
configure a MIME type mapping for the FCC in your Web Agent configuration. The MIME
type mapping is represented as a file extension. We recommend using the default value.

FCCExt

Specifies a MIME type mapping for the FCC.

Default: .fcc

Limits: A valid file extension.

Example: .myfcc

Note: If you do not want to use the default extension or the default is already in use,
enter the extensions that you want instead. For example, if you set FCCExt to .myfcc for
the FCC, and rename the FCC template to use this extension (such as login.myfcc), the
agent recognizes URLs ending in .myfcc as HTML Forms authentication requests.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

146 Web Agent Configuration Guide

Enable FCCs and SCCs to Use Agent Names as Fully Qualified Host Names

To enable the forms and SSL credential collectors to use the fully qualified host name of
the target URL as an Agent name, define the AgentNamesAreFQHostNames
configuration parameter.

For example, if the AgentNamesAreFQHostNames parameter is set to Yes, the
www.nete.com portion of the following URL string serves as the Web Agent name:

url?A=1&Target=http://www.nete.com/index.html

The credential collector uses this parameter in the following situations:

■ If no Agent name is appended to the URL from the target agent. (Sometimes the
case with third-party agents.)

■ You have not configured agent-to-host name mappings in the AgentName
parameter.

If the AgentNamesAreFQHostNames parameter is set to No, the credential collector
uses the value of the DefaultAgentName parameter as the name of the target Web
Agent.

Configure the FCC to Use a Single Resource Target

To configure the FCC to direct users to a single resource, hard-code the target in the
login.fcc template file.

Follow these steps:

1. Open the login.fcc file, which is located in agent_home/Samples.

2. Add @target=target_resource to the FCC.

3. Add the following entry:

@smagentname=agent_name_protecting_resource

For example: @smagentname=mywebagent

4. Set the EncryptAgentName parameter to no. This parameter is required because no
method exists to encrypt the agent name after you hard code it in the file.

5. Set the EncryptAgentName to no for any other agent using this FCC.

Note: For more information, see the Policy Server documentation.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 147

Use a Relative Target for Credential Collector Redirects

Optionally, instruct an agent to use a relative URI instead of a fully qualified URL when
directing requests to a credential collector and target resource. Using a relative URI
prevents credential collectors on other systems with Web Agents from processing
requests.

Note: This setting applies to all credential collectors except the cookie credential
collector (CCC). The CCC must use a fully-qualified domain name for this parameter.
OnAuthAccept responses will not work properly with a CCC if a relative URI is used.

Typically, a fully qualified URL is appended to the credential collector URL. For example:

url?A=1&Target=http://www.nete.com/index.html.

To use only a relative URI, set the TargetAsRelativeURI parameter to yes. If set to yes,
the target parameter that is appended to the credential collector URL is a relative
target, such as url?A=1&Target=/index.html. In turn, when the credential collector
redirects back to the Web Agent protecting the target resource, it is a relative redirect.
Also, the Web Agent rejects any target that does not begin with a forward slash (/).

The default value for this parameter is no, so a fully qualified URL is always used.

Define Valid Target Domains

To configure CA SiteMinder® Agents to help protect your resources from phishing
attempts that could redirect users to a hostile website, set the following configuration
parameter:

ValidTargetDomain

Specifies the domains to which a credential collector is allowed to redirect
users. If the domain in the URL does not match the domains set in this
parameter, the redirect is denied.

Default: No.

All advanced authentication schemes, including forms credential collectors (FCCs)
support this parameter.

The ValidTargetDomain parameter identifies the valid domains for the target during
processing. Before the user is redirected, the agent compares the values in the redirect
URL against the domains in this parameter. Without this parameter, the agent redirects
the user to targets in any domain.

The ValidTargetDomain parameter can include multiple values, one for each valid
domain.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

148 Web Agent Configuration Guide

For local Web Agent configurations, specify an entry, one entry per line, for each
domain, for example:

validtargetdomain=".xyzcompany.com"

validtargetdomain=".abccompany.com"

Define Valid Federation Target Domains

If CA SiteMinder® is acting as a legacy federation SP, you can configure the Identity
Provider Discovery (IPD) profile for SAML 2.0 transactions. IPD lets a user select which
IdP generates an assertion for an authentication request.

During the discovery process, you can prevent a user from being redirected to a
malicious website. Configure the Web Agent to validate the domain of the IdP that
satisfies the authentication request.

To enable the validation process, set the value of the following parameter:

ValidFedTargetDomain

(Federation only–SAML 2.0). Lists all valid domains for your federated
environment when implementing Identity Provider Discovery.

When the CA SiteMinder® Identity Provider Discovery (IPD) Service receives a
request, it examines the IPDTarget query parameter in the request. This query
parameter lists a URL where the Discovery Service must redirect to after it
processes the request. For an IdP, the IPDTarget is the SAML 2.0 Single Sign-on
service. For an SP, the target is the requesting application that wants to use the
common domain cookie.

Federation Web Services compares the domain of the IPDTarget URL to the list
of domains specified for the ValidFedTargetDomain parameter. If the URL
domain matches one of the configured domains in the ValidFedTargetDomain,
the IPD Service redirects the user to the designated URL in the IPDTarget
parameter. This redirect is to a URL at the SP.

If there is no domain match, the IPD Service denies the user request and they
receive a 403 Forbidden in the browser. Additionally, errors are reported in the
FWS trace log and the affwebservices log. These messages indicate that the
domain of the IPDTarget is not defined as a valid federation target domain.

If you do not configure the ValidFedTargetDomain setting, no validation is done
and the user is redirected to the target URL.

Limits: Valid domains within the federated network

Default: No default

Specify a valid domain in the ValidFedTargetDomain parameter. This setting is a
multivalue parameter, so you can enter multiple domains.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 149

If you are modifying a local configuration file, list the domains separately, for example:

validfedtargetdomain=".examplesite.com"

validfedtargetdomain=".abccompany.com"

For more information about the Identity Provider Discovery profile, see the Federation
Security Services Guide.

Map URLs for FCC Redirects with a Domino Web Agent

To protect Domino view (.nsf) resources with a forms authentication scheme, map the
URLs before they are redirected to the forms credential collector.

Follow these steps:

1. Set the value of the DominoNormalizeUrls parameter to yes.

2. Set the value of the DominoMapUrlForRedirect parameter to yes.

Domino URLS are mapped before redirection to the FCC.

Configure POST Preservation

CA SiteMinder® automatically preserves the data that a user posts to an FCC form. This
preservation mechanism prevents the data on the form from loss if a timeout or other
interruption occurs during the POST operation.

If you are using a combination of traditional and framework agents in your environment,
the following additional configuration steps are required:

■ Enable POST preservation between Framework and Traditional agents (see
page 150)

■ Customize the POST preservation page (see page 151)

If you do not want to use POST preservation, you can disable (see page 79) it.

POST preservation is not supported in the following situations:

■ ACE authentication.

■ Any custom authentication scheme that posts to an FCC.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

150 Web Agent Configuration Guide

Enable Post Preservation between Framework and Traditional Agents

Framework Agents handle POST preservation data differently than Traditional Agents
do. If your CA SiteMinder® environment uses a combination of Framework and
Traditional agents, and resources hosted by one type of Agent are protected by Forms
Credential Collectors (FCCs) hosted on the other type of agent, you must specify the
proper template file with the following parameter:

PostPreservationFile

Enables the transfer of POST preservation data between Traditional and
Framework Agents by specifying the path to one of the following
POST-preservation-template files:

■ tr2fw.pptemplate—Indicates that resources hosted on a server running a
Traditional agent are protected by an FCC running on a Framework agent.

■ fw2tr.pptemplate—Indicates that resources hosted on a server running a
Framework agent are protected by an FCC running on a Traditional agent.

Default: No default

Example: web_agent_home/samples/forms/fw2tr.pptemplate

To enable post preservation between Framework and Traditional agents

1. Determine which resources are protected by FCCs running on a different type of
Agent.

a. Create a list of Traditional Agents hosting resources that are protected by FCCs
running on Framework Agents.

b. Create a list of Framework Agents hosting resources that are protected by FCCs
running on Traditional Agents.

2. For any traditional Agents hosting resources (those you listed previously in step 1a),
set the value of the PostPreservationFile parameter to the path of the
tr2fw.pptemplate file.

3. For any Framework Agents hosting resources (those you listed previously in step
1b), set the value of the PostPreservationFile parameter to the path of the
fw2tr.pptemplate file.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 151

4. For all of your Framework Web Agents that communicate with Traditional Agents,
set the value of the following parameter to yes:

LegacyPostPreservationEncoding

Specifies whether the Web Agent encodes any POST preservation data in a way
that is compatible with the older, Traditional, Web Agents, or with the newer,
Framework Web Agents. When the value of this parameter is set to yes, the
encoding is compatible with the Traditional Web Agents. When the value of
this parameter is set to no, the encoding is compatible only with the
Framework Web Agents.

Default: No

5. Restart the web servers hosting your resources.

POST preservation is between Framework and Traditional agents is enabled.

Customize the POST Preservation Page

When a timeout or other interruption occurs during a POST operation, the POST
preservation page is displayed. In most cases, the POST preservation page appears for
less than a second. However, the Post Preservation page can be displayed for as long as
5 seconds when the amount of form data being posted is large.

By default, the POST preservation page displays the following text:

This page is used to hold your data while you are being authorized for your request.

You will be forwarded to continue the authorization process. If this does not happen

automatically, please click the Continue button below.

The POST preservation page also displays a Continue button that allows the user to
repost the data to the application.

To customize the POST preservation page, create a POST preservation template file.

The general structure of the default page is as follows:

<HTML><HEAD><TITLE></TITLE></HEAD><BODY onLoad="document.AUTOSUBMIT.submit();">

This page is used to hold your data while you are being authorized for your

request.

You will be forwarded to continue the authorization process. If this does not happen

automatically, please click the Continue button below.

<FORM NAME="AUTOSUBMIT" METHOD="POST" ACTION="$$smpostlocation$$">

<$$smpostdata$$>

<INPUT TYPE="SUBMIT" VALUE="Continue">

</FORM></BODY></HTML>

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

152 Web Agent Configuration Guide

The POST preservation template must include the following two elements which the
Web Agent expands when rendering the POST preservation page:

$$smpostlocation$$

Expanded to the credential collector URL during the first phase of POST
preservation. Expanded to the protected resource URL during the second phase of
POST preservation.

$$smpostdata$$

Expanded to contain HTML which results in the correct form data being posted to
either location respective to the phase of POST preservation.

Do not remove or alter these elements.

However, you can change other elements. For example, to remove the Continue button,
remove the <INPUT> element that defines that button:

<INPUT TYPE="SUBMIT" VALUE="Continue">

Two sample POST preservation template files, fw2tr.pptemplate and tr2fw.pptemplate,
are included in the following location:

■ UNIX: web_agent_home/samples_default/forms/

■ Windows: web_agent_home\samples_default\forms\

web_agent_home

Indicates the directory where the Web Agent is installed on your web server.

To configure the Web Agent to use your POST preservation template file, define the
PostPreservationFile agent configuration parameter to specify the path of the template
file.
For example:

PostPreservationFile="/app/netegrity/webagent/samples_default/forms/nosubmitbutto

n.pptemplate"

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 153

Disable POST Preservation

If you do not need to use POST preservation, you may disable it with the following
parameter:

PreservePostData

Specifies whether the Web Agent preserves POST data when redirecting
requests. When the user is challenged for advanced authentication, such as
forms or certificate authentication, the post data is preserved during the
authentication phase.

Default: Yes

To disable POST preservation, set the value of the PreservePostData parameter to no.

Configure Advanced FCC Settings

You can configure any of the following advanced credential collector settings to suit
your needs:

■ Specify the protocol portion of URLs using lowercase characters (see page 154).

■ Encrypt Query Strings in redirection URLs (see page 155).

■ FCC directive for encoding query strings in redirection URLs (see page 156).

■ Configure the FCC to allow Windows authentication (see page 159).

■ Using Application Request Routing with FCCs (see page 156).

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

154 Web Agent Configuration Guide

Specify Redirect URL Protocols with Lowercase Characters

If you protect legacy applications that do not confirm to RFC 2396 with a forms-based
authentication scheme, and you need the protocol portions of URLs to be lowercase,
then set the following parameter:

LowerCaseProtocolSpecifier

Specifies whether the scheme (protocol) portion of a redirect URL uses only
lowercase characters. This configuration parameter accommodates legacy
applications that do not confirm to RFC 2396. This RFC states that applications must
handle the protocol portion of a URL in both uppercase and lowercase. Change this
parameter in any of the following situations:

■ You use legacy applications that do not confirm to RFC 2396.

■ Your redirect URLS contain query data.

■ You use an HTML-forms (FCC) authentication scheme.

Default: No (uppercase characters are used HTTP, HTTPS).

Example: Yes (lowercase characters are used http, https).

To specify lowercase protocols for the URLs in your environment, set the value of the
LowerCaseProtocolSpecifier parameter to yes.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 155

Encrypt Query String Parameters in Redirection URLs

The following parameter enables the Web Agent to encrypt all CA SiteMinder® query
parameters in a redirect URL:

SecureURLs

Specifies whether the Web Agent encrypts the CA SiteMinder® query
parameters in a redirect URL. You can use this setting to provide additional
security for requested resources protected by an advanced authentication
scheme, Password Services, or when a request invokes the Cookie Provider.

Important! The Web Agent only encrypts data sent between CA SiteMinder®
components. The data sent for redirects to non-CA SiteMinder® applications is
not encrypted.

The following CA SiteMinder® credential collectors and applications support
the SecureUrls functionality:

■ HTML Forms authentication

■ Cert And Forms authentication

■ SSL Authentication

■ Cert or Forms authentication

■ NTLM authentication

■ ACE authentication

■ SafeWord authentication

■ User self registration

■ Multi-domain Single Sign-on with Cookie Provider

■ FCC-based Password Services (not CGI- or JSP-based)

Default: No

Follow these steps:

1. Set the value of the SecureURLs parameter to yes.

2. To encrypt query string parameters in redirection URLs within a single sign-on
environment, ensure that all Web Agents in the single sign-on environment have
the SecureURL parameter set to the same value.

3. If you are using custom FCCs, add the smquerydata directive with the other FCC
directives (such as TARGET) to the custom FCC.

Query string parameters are encrypted in CA SiteMinder® redirection URLs.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

156 Web Agent Configuration Guide

FCC Directive for Encoding Query Strings of Redirect URLs

You can encrypt the query strings of redirect URLs for credential collectors. The
credential collectors provide the keys that are used to encrypt the query data.

For forms authentication schemes, the query string directive, smquerydata, is part of
the FCC template. The agent serving the FCC uses this directive to send the encrypted
query data to the target agent when the FCC is posted.

The following directive is used:

<INPUT type='hidden' name='smquerydata' value='$$smquerydata$$>

Note: If you are using custom FCCs, add the smquerydata directive with other FCC
directives, such as TARGET to the custom FCC.

CA SiteMinder® 12.51 agents with the SecureUrls parameter enabled can operate only
with credential collectors served from other agents that support this functionality.

How to Configure Application Request Routing (ARR) for HTML Forms Authentication

Application Request Routing (ARR) is an optional feature that is available for Microsoft
Internet Information Services (IIS). ARR directs requests to other servers, much like a
proxy server.

The IIS web server processes cookies differently with ARR. This configuration affects
how CA SiteMinder® cookies are processed with FCC authentication schemes.

This scenario describes the additional configuration settings that <stmdnr> agents
require in any of the following situations:

■ ARR is used with FCC.

■ ARR is used with CA SiteMinder® and Arcot.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 157

The following illustration shows how a system administrator configures CA SiteMinder®
for ARR with FCC:

To configure your CA SiteMinder® agents to use ARR and FCCs together, follow these
steps:

1. Verify that your environment meets the prerequisites (see page 158).

2. Set the parameter values for ARR and FCC (see page 159).

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

158 Web Agent Configuration Guide

Verify Prerequisites

The following illustration describes the components and prerequisites of your
environment:

Verify that your CA SiteMinder® and CA DataMinder environments meet the following
requirements:

■ A complete CA SiteMinder® environment is installed and configured, with the
following components:

– Policies to protect resources on web servers that are deployed behind an IIS
web server running ARR.

– (Optional) CA Arcot components that are installed and configured.

■ An IIS web server with the following items installed and configured:

– Application Request Routing (ARR) configured to forward requests to web
servers.

– A CA SiteMinder® Agent for IIS installed and configured on the server running
ARR.

– An FCC authentication scheme.

■ Determine if your agents use central or local configuration.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 159

Set the Parameter Values for ARR and FCC

To set the parameter values for ARR and FCC, follow these steps:

1. Perform the task from the following list that corresponds to your agent
configuration method:

■ For central configuration, open your agent configuration object (see page 30).

■ For local configuration, open the local configuration file on your web server
(see page 34).

2. Locate the FCCCompatMode parameter, and then change its value to yes.

3. Locate the CookieDomain parameter, and then change its value to none (do not
leave the value blank).

How to Configure the FCC to Allow Windows Authentication

The CA SiteMinder® Forms Credential Collector (FCC) is designed to enable CA Services
to trigger custom authentication schemes securely. As such, the FCC can authenticate
users against any authentication scheme. However, the FCC does not authenticate
against Windows authentication schemes by default. This behavior prevents an attacker
from exploiting the FCC to generate a CA SiteMinder® session for any valid Windows
user in certain configurations.

If your environment requires the FCC to authenticate against the Windows
authentication scheme, you can enable it by specifying the EnableFCCWindowsAuth
agent configuration parameter. However, before you enable FCC support for Windows
authentication, review the risks of doing so and be aware of configurations that expose
the vulnerability.

1. Review the risks of enabling the FCC to allow Windows authentication (see
page 159).

2. Configure the FCC to allow Windows authentication (see page 160).

Risks of Enabling the FCC to Allow Windows Authentication

By default, the FCC does not authenticate against Windows authentication schemes.
You can enable the FCC to allow Windows authentication. However, doing so exposes a
vulnerability whereby an attacker could use an FCC to generate a CA SiteMinder®
session for any valid Windows user in certain configurations.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

160 Web Agent Configuration Guide

The vulnerability is present in configurations in which the same CA SiteMinder® Agent
name or Agent group name is used in both an HTML Forms-protected realm and a
Windows-protected realm. For example, a configuration in which a single Web Agent is
configured to protect different realms that are configured with HTML Forms and
Windows authentication.

Consider the following example scenario:

■ Resource A is configured in a realm protected using HTML Forms authentication.
The FCC challenges users accessing Resource A with an HTML form.

■ Resource B is configured in a realm protected using Windows authentication. Users
accessing Resource B complete Windows authentication.

■ Both resources are hosted on the same IIS Server and are protected by the same
Web Agent. Both realms are therefore configured with the same Agent name.

The attack occurs as follows:

1. The attacker modifies the TARGET parameter in the HTML form from "Resource A"
to "Resource B."

2. The attacker submits the form with any valid Windows username.

3. The FCC passes the username to the Policy Server for authentication. CA
SiteMinder® executes the Windows authentication scheme instead of the HTML
Forms authentication scheme and the username is validated.

The result is a CA SiteMinder® session returned to the user which enables single sign-on
for all following requests where the new session is considered valid. The attacker is now
impersonating the user whose Windows username was submitted to the FCC.

Configure the FCC to Allow Windows Authentication

You configure the FCC to allow Windows authentication by specifying the following
agent configuration parameter:

EnableFCCWindowsAuth

Specifies whether an agent, acting as an FCC, can authenticate users against
resources that the CA SiteMinder® Windows authentication scheme protects.

This parameter uses the following values:

■ Yes—FCCs can authenticate against a Windows authentication scheme.

Important! When this parameter is set to Yes, an attacker can potentially
exploit the FCC to impersonate Windows users without providing required
credentials.

■ No—FCCs cannot authenticate against a Windows authentication scheme.

Default: No

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 161

How to Allow the NTC to Encode URLs During Redirects to Protected Resources

CA SiteMinder® can protect resources using Windows credential collectors (NTCs). Users
submit their credentials to the NTC, then the NTC logs the user in to the IIS web server.
The IIS web server authenticates the user. The NTC redirects the user to the protected
(TARGET) resource after authentication.

The NTC normally encodes the characters in the TARGET portion of the URL during the
request, but not during the redirect after authentication. You can change your agent
configuration so that the TARGET portion of the URL is encoded during the redirect. The
following illustration describes this behavior:

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

162 Web Agent Configuration Guide

The following illustration shows the process of allowing the NTC to encode URLs during
requests for protected resources:

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 163

To allow the NTC to encode URLs during re–directs to protected resources, follow these
steps:

1. Choose the procedure that matches your agent configuration method from the
following list:

■ For agents using an Agent Configuration object (ACO) on a Policy Server, follow
these steps:

a. Open the Administrative UI (see page 163).

b. Open your Agent configuration object (ACO), and then change the value of
the DisableI18N parameter (see page 164).

■ For agents using a local configuration file on a web server, follow these steps:

a. Open the LocalConfig.conf file on your web server with a text editor, and
then change the value of the DisableI18N parameter (see page 166).

2. For agents using local configuration, repeat Step 1c for each web server.

The NTC uses encoded URLs during redirects to protected resources.

Change the Policy Server Objects

Change the objects on your Policy Server by opening the Administrative UI.

Follow these steps:

1. Open the following URL in a browser.

https://host_name:8443/iam/siteminder/adminui

host_name

Specifies the fully qualified Administrative UI host system name.

2. Enter your CA SiteMinder® superuser name in the User Name field.

3. Enter the CA SiteMinder® superuser account password in the Password field.

Note: If your superuser account password contains dollar-sign ($) characters,
replace each instance of the dollar-sign character with $DOLLAR$. For example, if
the CA SiteMinder® superuser account password is $password, enter
$DOLLAR$password in the Password field.

4. Verify that the proper server name or IP address appears in the Server drop-down
list.

5. Select Log In.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

164 Web Agent Configuration Guide

Change the Value of the DisableI18N parameter in your Agent Configuration Object

You can configure Windows credential collectors to process HTTP encoded characters in
target URLs for centrally configured web agents. Centrally–configured web agents use
parameter settings stored in an Agent Configuration object on the Policy Server.

Follow these steps:

1. Click the Infrastructure, Agent Configuration Objects.

A list of Agent Configuration objects appears.

Click the edit icon in the line Agent Configuration Object you want.

The Modify Agent Configuration dialog appears.

2. Click the edit icon to the left of the following parameter:

DisableI18N

Specifies how the Windows credential collector (NTC) processes the TARGET
URL during authentication when the characters of the TARGET URL use HTTP
encoding. When the value of this parameter is no, any characters in the URL
are decoded during authentication. The decoded characters are used in the
redirect to the TARGET resource. When the value of this parameter is yes,
characters in the TARGET URL are not decoded during authentication. Any
characters using HTTP encoding remain encoded before and after
authentication.

Default: No.

The Edit Parameter dialog appears.

3. Change the text in the Value field to yes.

4. Click OK.

The Edit Parameter dialog closes, and the Modify Agent Configuration dialog
appears.

5. Click the edit icon to the left of the following parameter:

BadUrlChars

Specifies the character sequences that cannot be used in URL requests. The
Web Agent checks the characters in the URL that occur before the "?"
character against the list in this parameter. If any of the specified characters
are found, the Web Agent rejects the request.

You can specify the following characters:

■ a backward slash (\)

■ Two forward slashes (//)

■ Period and a forward slash (./)

■ Forward slash and a period (/.)

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 165

■ Forward slash and an asterisk (/*)

■ An asterisk and a period (*.)

■ A tilde (~)

■ %2d

■ %20

■ %00-%1f

■ %7f-%ff

■ %25

Separate multiple characters with commas. Do not use spaces.

You can use the bad URL characters in CGI parameters if the question mark (?)
precedes the bad URL characters.

Default: Disabled (all characters are allowed).

Limits:

■ The default hexadecimal numbers apply to English characters. For other
languages, remove any hexadecimal values that correspond to the
characters of the language that you want to allow. Examples of such
languages include (but are not limited to), Brazilian Portuguese, French,
Japanese, and Chinese.

■ You can specify characters literally. You can also enter the URL-encoded
form of that character. For example, you can enter the letter a, or you can
enter the encoded equivalent of %61.

■ You can specify a maximum number of 4096 characters (including commas
that are used for separating characters).

■ You can specify ranges of characters that are separated with hyphens. The
syntax is: starting_character-ending_character. For example, you can enter
a-z as a range of characters.

■ Specify any quotation marks (") with the URL-encoded equivalent of %22.
Do not use ASCII.

The Edit Parameter dialog appears.

6. Remove the following text from the Value field:

,%25

7. Click OK.

The Edit Parameter dialog closes, and the Modify Agent Configuration dialog
appears.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

166 Web Agent Configuration Guide

8. Click Submit.

The Modify Agent Configuration dialog closes, and a confirmation message appears.

9. (Optional) Enter any remarks about the change in the Comment field for future
reference.

10. Click Yes.

Your changes will be applied the next time the Web Agent polls the Policy Server.

Change the Value of the DisableI18N parameter in your LocalConfig.conf File

You can configure Windows credential collectors to process HTTP encoded characters in
target URLs. Locally–configured web agents use parameter settings stored in a
configuration file on each web server.

Follow these steps:

Locate the LocalConfig.conf file on your web server. Use the examples in the
following list to locate the file on your type of web server:

IIS web server

web_agent_home\bin\IIS

Oracle iPlanet web server

Oracle_iPlanet_home/https-hostname/config

Apache web server

Apache_home/conf

1. Open your LocalConfig.conf file with a text editor, and then locate the following
parameter:

DisableI18N

Specifies how the Windows credential collector (NTC) processes the TARGET
URL during authentication when the characters of the TARGET URL use HTTP
encoding. When the value of this parameter is no, any characters in the URL
are decoded during authentication. The decoded characters are used in the
redirect to the TARGET resource. When the value of this parameter is yes,
characters in the TARGET URL are not decoded during authentication. Any
characters using HTTP encoding remain encoded before and after
authentication.

Default: No.

2. Change the value of the DisableI18n parameter to yes.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 167

3. Locate the following parameter:

BadUrlChars

Specifies the character sequences that cannot be used in URL requests. The
Web Agent checks the characters in the URL that occur before the "?"
character against the list in this parameter. If any of the specified characters
are found, the Web Agent rejects the request.

You can specify the following characters:

■ a backward slash (\)

■ Two forward slashes (//)

■ Period and a forward slash (./)

■ Forward slash and a period (/.)

■ Forward slash and an asterisk (/*)

■ An asterisk and a period (*.)

■ A tilde (~)

■ %2d

■ %20

■ %00-%1f

■ %7f-%ff

■ %25

Separate multiple characters with commas. Do not use spaces.

You can use the bad URL characters in CGI parameters if the question mark (?)
precedes the bad URL characters.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

168 Web Agent Configuration Guide

Default: Disabled (all characters are allowed).

Limits:

■ The default hexadecimal numbers apply to English characters. For other
languages, remove any hexadecimal values that correspond to the
characters of the language that you want to allow. Examples of such
languages include (but are not limited to), Brazilian Portuguese, French,
Japanese, and Chinese.

■ You can specify characters literally. You can also enter the URL-encoded
form of that character. For example, you can enter the letter a, or you can
enter the encoded equivalent of %61.

■ You can specify a maximum number of 4096 characters (including commas
that are used for separating characters).

■ You can specify ranges of characters that are separated with hyphens. The
syntax is: starting_character-ending_character. For example, you can enter
a-z as a range of characters.

Specify any quotation marks (") with the URL-encoded equivalent of %22. Do
not use ASCII.

4. Remove the following values from the BadURLChars list:

,%25

5. Save the changes to your LocalConfig.conf file, and then close the text editor.

6. Repeat Steps 1 through 5 on all web servers which you want to change.

Windows credential collectors are allowed to process HTTP encoded characters in
TARGET URLs.

Tune the Performance of the FCC

You can configure any of the following settings to help improve the performance of your
credential collectors:

■ Disable the FCC realm context confirmation to improve performance (see
page 169).

■ Use the forms cache (see page 169).

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

Chapter 11: Forms Authentication 169

Disable FCC Realm Context Confirmation to Improve Performance

During forms authentication, the Web Agent makes an IsProtected call to the Policy
Server to determine if the requested resource is protected. After this first call, the Web
Agent typically makes an additional IsProtected call to the Policy Server. This second call
establishes a realm context so that the Web Agent can log a user in with an FCC to
access a protected resource. You can control whether the Web Agent makes this
additional call using the following parameter:

FCCForceIsProtected

Specifies whether the Web Agent makes an additional IsProtected call to the
Policy Server to establish a realm context so that the Web Agent can log a user
in to access a protected resource.

When this parameter is set to no, the Web Agent uses the realm information
obtained from its initial IsProtected call to the Policy Server instead.

Default: Yes

To improve performance by disabling the FCC realm context confirmation, set the value
of the FCCForceIsProtected parameter to no.

Forms Cache

The forms cache stores form template data. Storing template data improves
performance because the agent no longer reads the .fcc files multiple times for the
same data. When a resource with an FCC extension is accessed, the FCC reads and
processes the corresponding template file. An agent performs hundreds of these read
operations each second.

The form cache relieves the FCC by storing form template files in memory where they
can be read easily. Because virtual memory access is faster than disk access, allowing
FCC components to process forms more quickly with reduced strain on the host server.

The improved processing time increases the capacity of the FCC for serving requests for
each web server. Forms authentication becomes more efficient.

How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication

170 Web Agent Configuration Guide

Form Cache Data

The data stored in the form cache consists of the form template text, which is parsed
beforehand into data structures. These data structures optimize FCC processing.

These data structures include:

■ Form locale data for internationalization

■ An ordered list of data objects containing raw text in UTF-8 format, template
directive information and function/variable information for substitution from the
request environment.

Directives, functions, and variables are processed from the top of the FCC file down.

Configure the Form Cache

Forms can be cached to improve performance and reduce unnecessary network traffic.
You can control the settings of form cache with the following parameters:

EnableFormCache

Controls the forms template cache. Setting this parameter to yes, improves the
performance of forms authentication. To disable the cache, set this parameter
to no.

Default: Yes

FormCacheTimeout

Specifies the number of seconds that an object may reside in cache before
being considered invalid. When the timeout interval expires, the date and time
of the form template file is compared against the time that the cache object
was created. If the object in the cache is stored more recently than the file on
disk, the timeout is reset for another interval. Otherwise, the object is removed
from the cache.

Default: 600

Follow these steps:

1. Set the value of the EnableFormCache parameter to yes.

2. If you want to change the timeout interval for the form cache, set the value of the
FormCacheTimeout value to the number of seconds you want.

The form cache is configured.

Specify an NTLM Credential Collector

Chapter 11: Forms Authentication 171

Specify an NTLM Credential Collector

The NTLM credential collector (NTC) is an application within the Web Agent. The NTC
collects NT credentials for resources that the Windows authentication scheme protects.
This scheme applies to resources on an IIS web server that are accessed by Internet
Explorer browsers.

Each credential collector has an associated MIME type. For IIS, the NTC MIME TYPE is
defined in the following parameter:

NTCExt

Specifies the MIME type that is associated with the NTLM credential collector.
This collector gathers NT credentials for resources that the Windows
authentication scheme protects. This scheme applies to resources on IIS web
servers that only Internet Explorer browser users access.

You can have multiple extensions in this parameter. If you are using an Agent
Configuration Object, select the multivalue option. If you are using a local
configuration file, separate each extension with a comma.

Default: .ntc

If your environment already uses the default extension that the NTCExt parameter
specifies, you can specify a different MIME type.

To change the extension that triggers the credential collector, add a different file
extension to the NTCExt parameter.

Using Credential Collectors Between 4.x Type and Newer Type
Agents

Older versions of the CA SiteMinder® agent objects used a security model that featured
a shared secret that is stored on the Policy Server and in the WebAgent.conf file. These
agents are named 4.x type agents. You can specify support for 4.x agent functions when
creating an agent object in the CA SiteMinder® Administrative UI.

Later versions of CA SiteMinder® use a trusted host object on the Policy Sever instead of
the shared secret security model.

CA SiteMinder® supports using credential collectors between 4.x type and later agents.
This usage of credential collectors is named mixed mode. Additional configuration steps
are required for mixed mode deployments.

Using Credential Collectors Between 4.x Type and Newer Type Agents

172 Web Agent Configuration Guide

Configure Credential Collectors in a Mixed Environment

From CA SiteMinder® r6.x to CA SiteMinder® 12.51, the credential collectors operate
differently than the older 4.x type credential collectors do. 4.x type credential collectors
placed a cookie in the browser of the user, and then redirected the user back to the
original agent.

In the newer CA SiteMinder® versions, the credential collector logs the user in to the
Policy Server on behalf of the agent protecting the requested resource. Cookies are not
used.

Note: We recommend using credential collectors to log users in directly rather than
setting cookies. Using credential collectors to log users in better secures user credentials
because these credentials are not being passed around the network in cookies.

A credential collector requires the following information to log a user in:

■ The name of the agent protecting the requested resource.

■ The credentials that are supplied by the user.

To learn the Agent name, a credential collector uses the following process:

1. Use the SMAGENTNAME query parameter that the original Agent adds to the query
string of the URL as it redirects to the credential collector.

2. If no Agent name is appended to the URL, use the mappings defined in the
AgentName configuration parameter that is associated with the credential
collector.

Each mapping in the AgentName parameter specifies the name and IP address of a
host using that collector for its protected resources.

3. If no Agent name mappings are configured, use the fully qualified host name of the
target URL as the Agent name. This behavior is determined by enabling the
AgentNamesAreFQHostNames configuration parameter.

This parameter is disabled by default, so the credential collector uses the value of
the DefaultAgentName parameter as the agent name.

Consider the previous implications before configuring credential collectors in a mixed
environment.

Using Credential Collectors Between 4.x Type and Newer Type Agents

Chapter 11: Forms Authentication 173

Use FCCs and NTCs in a Mixed Environment

To process requests, the FCC and NTC rely on the user credentials and the name of the
Web Agent that is protecting the requested resource. However, 4.x agents and
third-party agents posting to the FCC and NTC do not pass the Agent name on the URL
they send.

The following configuration options help FCCs and NTCs to operate with 4.x Web
Agents:

Use Compatibility Mode—to enable a r5.x, r6.x, or 12.51 FCC/NTC to serve up forms for
resources that are protected by 4.x agents or third-party applications, then enable the
FCCCompatMode parameter. Traditional Web Agents have the FCCCompatMode
parameter is enabled by default. Framework Agents have the FCCCompatMode
parameter is disabled by default.

Enabling this parameter makes a r5.x, r6.x, or 12.51 Agent handle forms and NTLM
credential collection like a 4.x Agent. This setting which means that a form or NTLM
credential cookie is written to the browser of the user is redirected back to the
Agent before logging in. This configuration permits the agents to interoperate.

When the value of the FCCCompatMode parameter is set to no, compatibility with
4.x Agents is disabled. In an 12.51 environment, set the value of the parameter to
no.

Important! Setting this parameter to no removes support for version 4.x of the
Netscape browser.

■ Specify Agent name mappings—FCC only: If you disable backward compatibility,
map the AgentName parameter to the name and IP address of each host using that
FCC for its protected resources. Set up these mappings in the configuration settings
of the FCC.

Example mappings:

myagent, 123.1.12.1

myagent, www.sitea.com

■ Use Host Names as Agent Names—FCC only: If the first two options in the algorithm
are not optimal, you can set the value of the AgentNamesAreFQHostNames
parameter to yes. This setting instructs the FCC to use the fully qualified host name
in the target URL as the Agent name. For example, if the URL string includes:

url?A=1&Target=http://www.nete.com/index.html

The www.nete.com portion of the Target string serves as the Agent name.

By default, this parameter is set to no. Consequently, the value of the
DefaultAgentName parameter is used as the Agent name.

The following tables list guidelines for configuring r5.x, r6.x, or 12.51 and 4.x FCCs and
NTCs, and describes how each behaves in a mixed environment:

Using Credential Collectors Between 4.x Type and Newer Type Agents

174 Web Agent Configuration Guide

Notes:

■ NTLM credential collectors can redirect users from non-IIS Web Servers to IIS Web
Servers.

■ For framework Web Agents, refer only to the instructions where FCC compatibility
mode is disabled.

Web Agent Protecting
Resources

r5.x, r6.x, or 12.51 FCC in
FCC Compatibility Mode

r5.x, r6.x, or 12.51 FCC -
FCC Compatibility Mode
Disabled

r5.x, r6.x, or 12.51 ■ FCC issues a
credential cookie.

■ Certificate and Forms
authentication are
disabled.

■ Certificate or Forms
authentication are
disabled.

■ FCC issues a session
cookie

■ Certificate and
Forms
authentication
works.

■ Certificate or Forms
authentication
works.

Web Agent Protecting
Resources

4.x QMR 2/3/4 FCC

4.x QMR 5 or

4.x QMR 6
■ Agent issues a credential cookie

■ Certificate and Forms authentication are
disabled.

■ Certificate or Forms authentication works

r5.x, r6.x, or 12.51 ■ Agent issues a credential cookie

■ Certificate and Forms authentication are
disabled.

■ Certificate or Forms authentication works

Note: For more information about SSL Authentication Schemes, see the Policy Server
documentation.

Web Agent Protecting
Resources

r5.x, r6.x, or 12.51 FCC in
FCC Compatibility Mode

r5.x, r6.x, or 12.51 FCC -
FCC Compatibility Mode
Disabled

4.x QMR 5 or

4.x QMR 6
■ NTC issues a

credential cookie.
■ NTC issues a session

cookie

Using Credential Collectors Between 4.x Type and Newer Type Agents

Chapter 11: Forms Authentication 175

Web Agent Protecting
Resources

r5.x, r6.x, or 12.51 FCC in
FCC Compatibility Mode

r5.x, r6.x, or 12.51 FCC -
FCC Compatibility Mode
Disabled

r5.x, r6.x, or 12.51 ■ NTC issues a
credential cookie.

■ NTC issues a session
cookie

Web Agent Protecting
Resources

4.x QMR 2/3/4 NTC

4.x QMR 5, 4.x QMR 6 ■ Agent issues a credential cookie

r5.x, r6.x, or 12.51 ■ Agent issues a credential cookie

Using Credential Collectors Between 4.x Type and Newer Type Agents

176 Web Agent Configuration Guide

Use SCCs in a Mixed Environment

To enable 4.x type Web Agents and r5.x, r6.x, or 12.51 SCCs to interoperate, do one of
the following tasks:

■ Specify Agent name mappings: Map the AgentName parameter to the host name
and IP address of each host using that SCC for its protected resources. Create these
mappings in the agent configuration parameters of the SCC.

■ Use Host Names as Agent Names: If you do not specify Agent name mappings, you
can set the AgentNamesAreFQHostNames parameter to Yes. This setting instructs
the SCC to use the fully qualified host name in the target URL as the Agent name.

For example, if the URL string is:

url?A=1&Target=http://www.nete.com/index.html

The www.nete.com portion of the Target string serves as the Agent name.

By default, this parameter is set to no. Consequently, the value of the
DefaultAgentName parameter is used as the Agent name.

The following table shows how 4.x and r5.x, r6.x, or 12.51 Agents acting as SCCs operate
in a mixed environment:

Web Agent Version 4.x QMR 2/3/4 SCC r5.x, r6.x, or 12.51 SCC

4.x QMR 5 or
4.x QMR 6

■ Agent issues an SSL
credential cookie.

■ Certificates cannot be
collected without
redirecting requests, even
if the original connection
from the browser to
server is over SSL.

■ Create mappings in the
AgentName parameter or
set
AgentNamesAreFQHostNa
mes to Yes.

■ SCC issues a session cookie

■ Certificates cannot be
collected without
redirecting requests, even
if the original connection
from the browser to server
is over SSL.

r5.x, r6.x, or 12.51 ■ Agent issues an SSL
credential cookie.

■ Certificates can be
collected without
redirecting requests.

■ SCC issues a session cookie

■ Certificates can be
collected without
redirecting requests.

Note: For more information about SSL Authentication Schemes, see the Policy Server
documentation.

Configure Apache-based Agents for FCC-based Password Services in Japanese Environments

Chapter 11: Forms Authentication 177

Configure Apache-based Agents for FCC-based Password
Services in Japanese Environments

The smpwservices.fcc file that is used in Japanese operating environments has the
wrong coding settings. This incorrect setting causes web pages to appear with incorrect
characters. Correct this problem by adding a directive to the httpd.conf file of the
Apache-based web server.

Follow these steps:

1. Log in to your Apache-based web server.

2. Open the httpd.conf file with a text editor.

3. Add a blank line at the end of the file.

4. Add the following directive to the blank line:

BrowserMatch ".*" suppress-error-charset

5. Save the httpd.conf file and close the text editor.

6. Stop the Apache-based web server.

7. Start the Apache-based web server.

Chapter 12: Agents and Password Services 179

Chapter 12: Agents and Password Services

This section contains the following topics:

How to Configure FCC Password Services (see page 179)
Password Services Implementations (see page 179)

How to Configure FCC Password Services

To configure password services, follow these steps:

1. Open the Administrative UI

2. Create password policies that are associated with a user directory in your CA
SiteMinder® environment. Use the following path in the Redirection URL field:

/siteminderagent/forms/smpwservices.fcc

Note: For more information, see the Policy Server documentation.

Password Services Implementations

CA SiteMinder® uses forms credential collectors (FCCs) to support password services.

Password services help you do the following tasks:

■ Encrypt the query strings in password services URLs (see page 180).

■ Support password services in multiple languages (see page 181).

■ Redirect password services users to a fully qualified URL (see page 182).

■ Support SecureID authentication with password services (see page 183).

■ Allow users to change their own passwords. Use whichever of the following
procedures applies to your situation:

– Password changes when the SecureURLs parameter is no (see page 184).

– Password changes when the SecureURLs parameter is yes (see page 186).

– Password changes when using the Basic Authentication or X.509 Certificate
authentication schemes (see page 188).

Password Services Implementations

180 Web Agent Configuration Guide

FCC Password Services and URL Query Encryption

The FCC Password Services application enables query data on the URL to be encrypted,
further securing Agent interactions. You can only encrypt query data with FCC Password
Services. FCC Password Services files include:

■ smpwservices.fcc

This FCC is installed with the Web Agent and is located at:

web_agent_home/samples/forms

If Password Services is invoked and there is no password policy configured, the CA
SiteMinder® Administrator at the Policy Server should set the environment variable
NETE_PWSERVICES_REDIRECT to a relative path for smpwservices.fcc.

The path is:

/siteminderagent/forms/smpwservices.fcc

The new FCC displays the Password Services form based on the FCC directives
authreason and username.

■ smpwservices.unauth

This file handles errors that occur during GET/POST actions of the Password
Services forms.

This file is similar to other FCC unauthorized files that are invoked if there is a
failure processing the request during the POST. This FCC handles error conditions,
such as an empty TARGET variable. The error reporting is intended to be
synchronized with the CGI-based Password Services and for handling any other
unknown errors caused by an FCC POST.

■ smpwservicesUS-EN.properties

This properties file is used by smpwservices.fcc to display the user-friendly
messages on the Password Services forms.

This properties file has the user-friendly messages, which an administrator can
modify depending on what he wants to display on the Password Services forms. The
format for the message is name=value.

Password Services Implementations

Chapter 12: Agents and Password Services 181

How to Localize FCC-based Password Services Change Forms

To localize the user messages for FCC-based Password Services for another locale follow
these steps:

1. Create an FCC folder on the web server for a new locale or use an existing folder if
appropriate for your locale. The typical naming convention for the folder is
formslocale.

Note: The directories and file names that are shown could be case-sensitive,
depending on your operating environment and the type of web server in use.

2. Place a copy of the relevant Password Services files in the new folder.

3. Modify the files to accommodate the locale, such as changing the English messages
to the language for your locale. Repeat this step with all the files for the locale.

4. In the Administrative UI, change the value of the Redirection URL field in the
Password Policy.

For example, to use FCC Password Services for Japanese users, put a copy of the
following files in the folder formsja, which is located in web_agent_home/samples:

■ smpwservices.fcc, located in web_agent_home/samples/forms

■ smpwservices.unauth, located in web_agent_home/samples/forms

■ A new properties file, smpwservicesja.properties

Password Services Implementations

182 Web Agent Configuration Guide

Use a Fully Qualified URL for Password Services Redirects

When you use password services you can instruct a Web Agent to create a fully qualified
domain name (FQDN) to where users are redirected. Use the following parameter:

ConstructFullPwsvcUrl

Instructs the agent to add the server name (FQDN) of the system that is hosing the
password services before redirecting the user. You define this server name in the
password policy on the Policy Server.

For example, suppose that the value of this parameter is yes, and your password
policy points to siteminderagent/forms/smpwservices.fcc. the Web Agent redirects
to the following URL:

HTTP://server_name.example.com/siteminderagent/forms/smpwservices.fcc

The Web Agent uses the value that is defined in your password policy when the
value of this parameter is no. For example, if your password policy only points to a
subdirectory, the Web Agent redirects users to that subdirectory.

Default: No.

Example: No (redirects to the /siteminderagent/forms/smpwservices.fcc defined in
your password policy).

Example: Yes (adds HTTP://server_name.example.com to the
/siteminderagent/forms/smpwservices.fcc defined in your password policy).

The default URL for password policies in the Administrative UI does not contain a server
name. The Web Agent redirects users to whatever URL exists in the password policy
when the value of the previous parameter is set to yes.

Use the examples in the following table as a guide for setting the ConstructFullPwsvcURl
parameter:

To: Add this URL to your password
policy in the Administrative UI:

Set the value of
the
ConstructFullPwsv
cURl to:

Host the password services
on a specific server.

http://server_name.example.com:
80/siteminderagent/forms/smpws
ervices.fcc

No

Host the password services
on the same server as the
Web Agent using a relative
URL.

siteminderagent/forms/smpwservi
ces.fcc

No

Password Services Implementations

Chapter 12: Agents and Password Services 183

To: Add this URL to your password
policy in the Administrative UI:

Set the value of
the
ConstructFullPwsv
cURl to:

Host the password services
on the same server as the
Web Agent using an FQDN.

siteminderagent/forms/smpwservi
ces.fcc

Yes

Configure SecureID Authentication with FCC Password Services

You must modify the SecureID HTML Form template using the Administrative UI if you
are using SecureID as your authentication scheme and both of the following conditions
exist in your environment:

■ The FCC Password Services feature is configured

■ The value of the SecureUrls parameter for the Web Agent is set to yes

SecureID is implemented using Password Services, which is why you must modify the
authentication scheme's template.

To configure SecureID Authentication with FCC password services, add the path to the
smpwservices.fcc file in the Target field of the SecureID template, as shown in the
following example:

/siteminderagent/forms/smpwservices.fcc

Password Services Implementations

184 Web Agent Configuration Guide

How to Enable User-Initiated Password Changes with FCCs

You can configure the FCC Password services features of CA SiteMinder® to allow users
to change their own passwords whenever they want.

Note: Use the following process only if your CA SiteMinder® Web Agent configuration
also has the value of the SecureURLs parameter that is set to no.

To enable user-initiated password changes with FCCs, use the following process:

1. Confirm that your user directory contains attributes that support Password Policies.

2. Use the Administrative UI to do the following tasks:

a. Create an FCC-based password policy and protect the resources that you want.

b. Configure the password policy to allow authorized users to change their
passwords.

3. Create a password change URL that includes the following parts:

■ The FQDN of the logon server (example: http:logonserver.example.com).

■ The URI of the FCC-based Password services (example:
siteminderagent/forms/smpwservices.fcc?).

■ The name of the CA SiteMinder® Web Agent (SMAGENTNAME)

■ One of the following target URLs:

– For password-change URLs embedded in FCC pages, use the relative values for
the (SMAGENTNAME) and (TARGET) sections, as shown in the following
example:

<a

href="http:logonserver.example.com/siteminderagent/forms/smpwservices.fcc

?SMAUTHREASON=

34&SMAGENTNAME=$$smencode(smagentname)$$&TARGET=$$smencode(target)$$">Cha

nge Password

– For password-change URLs not embedded in FCC pages, hard-code the name of
your CA SiteMinder® Agent for the (SMAGENTNAME) section. Then hard-code a
fully qualified domain name value for the (TARGET) section, as shown in the
following example:

<a

href="http://logonserver.example.com/siteminderagent/forms/smpwservices.f

cc?SMAUTHREASON=34&SMAGENTNAME=Agent1&TARGET=https://logonserver.example.

com/protected/myprotectedpage.html">Change Password

4. Embed the password-change URL (from Step 3) as a link in one or more
unprotected web pages.

5. Test the password change function with the following steps:

a. Display a web page that has the password change link you created in Step 3.

Password Services Implementations

Chapter 12: Agents and Password Services 185

b. Click the password change link.

The password change form appears.

c. Fill out the password change form and submit it.

If the password change is successful, a confirmation page appears with a link to
the protected target resource.

d. Click the link and verify that the resource appears.

e. Close and reopen your browser. Try to access the protected resource using
your new password.

If you can access the resource with your new password, the password change is
successful.

Password Services Implementations

186 Web Agent Configuration Guide

How to Enable User-Initiated Password Changes with FCCs (SecureURLs=Yes)

You can configure the FCC Password services features of CA SiteMinder® to allow users
to change their own passwords whenever they want.

Note: Use the following process only if your CA SiteMinder® Web Agent configuration
also has the value of the SecureURLs parameter that is set to yes.

To enable user-initiated password changes with FCCs, use the following process:

1. Confirm that your user directory contains attributes that support Password Policies.

2. Use the Administrative UI to do the following tasks:

a. Create an FCC-based password policy and protect the resources that you want.

b. Configure the password policy to allow authorized users to change their
passwords.

c. Set the value of the ValidTargetDomain parameter to the domain of the target
resource you want to protect.

3. Create a password change URL that includes the following parts:

■ The FQDN of the logon server (example: http:logonserver.example.com).

■ The URI of the FCC-based Password services (example:
siteminderagent/forms/smpwservices.fcc?).

■ The name of the CA SiteMinder® Web Agent (SMAGENTNAME)

■ One of the following target URLs:

– For password-change URLs embedded in FCC pages, use the relative values for
the (SMAGENTNAME) and (TARGET) sections, as shown in the following
example:

<a

href="http:logonserver.example.com/siteminderagent/forms/smpwservices.fcc

?SMAUTHREASON=

34&SMAGENTNAME=$$smencode(smagentname)$$&TARGET=$$smencode(target)$$">Cha

nge Password

– For password-change URLs not embedded in FCC pages, hard-code the name of
your CA SiteMinder® Agent for the (SMAGENTNAME) section. Then hard-code a
fully qualified domain name value for the (TARGET) section, as shown in the
following example:

<a

href="http://logonserver.example.com/siteminderagent/forms/smpwservices.f

cc?SMAUTHREASON=34&SMAGENTNAME=Agent1&TARGET=https://logonserver.example.

com/protected/myprotectedpage.html">Change Password

4. Embed the password-change URL (from Step 3) as a link in one or more
unprotected web pages.

Password Services Implementations

Chapter 12: Agents and Password Services 187

5. Open the following file on your web server:

web_agent_home/samples/forms/smpwservices.fcc

a. Locate the following line:

@smpwselfchange=0

b. Change the 0 (zero) at the end of the previous line to 1 (one), as shown in the
following example:

@smpwselfchange=1

c. Save and close the smpwservices.fcc file.

6. Embed the URL you created in Step 3 as a link in one or more unprotected web
pages.

7. Test the password change function with the following steps:

a. Display a web page that has the password change link you created in Step 3.

b. Click the password change link.

The password change form appears.

c. Fill out the password change form and submit it.

If the password change is successful, a confirmation page appears with a link to
the protected target resource.

d. Click the link and verify that the resource appears.

e. Close and reopen your browser. Try to access the protected resource using
your new password.

If you can access the resource with your new password, the password change is
successful.

Password Services Implementations

188 Web Agent Configuration Guide

How to Enable User-Initiated Password Changes when using the CA SiteMinder®
X.509 Certificate and Basic Authentication Scheme

You can configure the FCC Password services features of CA SiteMinder® to allow users
to change their own passwords. The CA SiteMinder® X.509 Certificate and Basic
authentication scheme requires a password-change URL that starts with the HTTPS
protocol.

Follow these steps:

1. Confirm that your user directory contains attributes that support Password Policies.

2. Use the Administrative UI to do the following tasks:

a. Create an FCC-based password policy and protect the resources that you want.

b. Configure the password policy to allow authorized users to change their
passwords.

3. Create a password change URL that includes the following parts:

■ The HTTPS scheme (protocol).

■ The FQDN of the logon server (example: http:logonserver.example.com).

■ The URI of the FCC-based Password services (example:
siteminderagent/forms/smpwservices.fcc?).

■ The name of the CA SiteMinder® Web Agent (SMAGENTNAME).

■ One of the following target URLs:

– For password-change URLs embedded in FCC pages, use the relative values for
the (SMAGENTNAME) and (TARGET) sections, as shown in the following
example:

<a

href="https:logonserver.example.com/siteminderagent/forms/smpwservices.fc

c?SMAUTHREASON=

34&SMAGENTNAME=$$smencode(smagentname)$$&TARGET=$$smencode(target)$$">Cha

nge Password

– For password-change URLs not embedded in FCC pages, hard-code the name of
your CA SiteMinder® Agent for the (SMAGENTNAME) section. Then hard-code a
fully qualified domain name value for the (TARGET) section, as shown in the
following example:

<a

href="https://logonserver.example.com/siteminderagent/forms/smpwservices.

fcc?SMAUTHREASON=34&SMAGENTNAME=Agent1&TARGET=https://logonserver.example

.com/protected/myprotectedpage.html">Change Password

4. Embed the password-change URL (from Step 3) as a link in one or more
unprotected web pages.

5. Test the password change function with the following steps:

Password Services Implementations

Chapter 12: Agents and Password Services 189

a. Display a web page that has the password change link you created in Step 3.

b. Click the password change link.

The password change form appears.

c. Fill out the password change form and submit it.

A confirmation page appears with a link to the protected target resource.

d. Click the link and verify that the resource appears.

e. Close and reopen your browser. Try to access the protected resource using
your new password.

If you can access the resource with your new password, the password change is
successful.

Chapter 13: Single Sign-On (SSO) 191

Chapter 13: Single Sign-On (SSO)

This section contains the following topics:

Allow Automatic Access to Resources that use the OPTIONS Method (see page 191)
How Single Sign-on Works in a Single Domain (see page 192)
Single Sign-On Across Multiple Domains (see page 193)
Hardware Load Balancers and Single Sign-On Across Multiple Cookie Domains (see page
194)
Single Sign-On and Authentication Scheme Protection Levels (see page 196)
Single Sign-on and Agent Key Management (see page 196)
How to Configure Single Sign-On (see page 197)

Allow Automatic Access to Resources that use the OPTIONS
Method

The CA SiteMinder® Web Agent still challenges authenticated users who attempt to
access resources that use the OPTIONS method. Some examples of resources that use
the OPTIONS method include (but are not necessarily limited to) the following:

■ Microsoft
®
 Word documents

■ Microsoft
®
 Excel

®
 spreadsheet documents

This challenge occurs because the application associated with the resource sends a
request using the OPTIONS method to the web server. Because this request does not
include a CA SiteMinder® cookie, the Web Agent issues a challenge.

To prevent users from being challenged for these resources

1. Set the value of the following parameter to yes:

autoauthorizeoptions

Automatically authorizes any requests for resources which use the HTTP
OPTIONS method.

If you set the value of this parameter to yes, also set the value of the
PersistentCookies parameter to no.

Limits: yes, no

2. Set the value of the PersistentCookies parameter to no.

How Single Sign-on Works in a Single Domain

192 Web Agent Configuration Guide

How Single Sign-on Works in a Single Domain

CA SiteMinder® provides single sign-on functionality across single and multiple cookie
domains. This simplifies using applications across different Web servers and platforms,
and improves the user experience because the users do not have to re-authenticate as
they move across a single sign-on environment.

A single domain is an environment where all resources exist in the same cookie domain.
Multiple Web Agents in the same cookie domain can be configured for single sign-on if
you specify the same cookie domain in each Web Agent’s configuration.

If single sign-on is enabled, it uses the following process:

1. The user authenticates once.

2. The Web Agent caches the successful authentication, and then issues a single
sign-on cookie to the user’s browser.

3. The single sign-on cookie provides the session information, so that users can access
the following types of resources without reauthenticating:

■ Protected resources in other realms with an equal or lower protection level

■ Another web server within this cookie domain

Users who try to access resources with a higher protection level must
re-authenticate before they are granted access.

The following illustration shows single sign-on in a single cookie domain:

Note: If you are using replicated user directories with non replicated policy stores, the
user directory must be named identically for all policy stores. Also, the session ticket
key, which encrypts session tickets, must be the same for all key stores in the SSO
environment. The session ticket determines the duration of a valid user session.

Single Sign-On Across Multiple Domains

Chapter 13: Single Sign-On (SSO) 193

Single Sign-On Across Multiple Domains

Without single sign-on, users are often required to log on and enter their credentials
multiple times as they access different applications and resources on separate servers in
different cookie domains. The ability to pass single sign-on information across multiple
cookie domains enables a user to authenticate at a site in one cookie domain, and then
go to a site in another cookie domain without being rechallenged for credentials. For
the user, this seamless navigation makes related sites easier to use.

The following illustration shows single sign-on across multiple cookie domains.

Hardware Load Balancers and Single Sign-On Across Multiple Cookie Domains

194 Web Agent Configuration Guide

Hardware Load Balancers and Single Sign-On Across Multiple
Cookie Domains

CA SiteMinder® implements single sign-on across multiple cookie domains using a CA
SiteMinder® Web Agent configured as a cookie provider.

The cookie domain where the cookie provider Web Agent resides is named the cookie
provider domain. All the other Web Agents from the other cookie domains within the
single sign-on environment, point to one cookie provider.

CA SiteMinder® cookie providers work using the following process:

1. A user requests a protected resource in a domain within the single-sign on
environment, and is challenged for credentials.

2. When the user is authenticated, the following cookies are set in the browser of the
user:

■ The local cookie for the domain where the user has authenticated.

■ The cookie provider sets the cookie.

3. The user can navigate between the domains in the single-sign on environment
without being rechallenged until either of the following events occur:

■ The session of the user times out.

■ The user ends the session (usually by closing the browser).

Will the Agents in your single-sign on environment use load-balancing?

All agents in an SSO environment must refer to a single cookie provider domain. Add a
load-balancer between the web servers in your cookie provider domain and the other
cookie domains in your SSO environment. The following illustration shows an example:

Hardware Load Balancers and Single Sign-On Across Multiple Cookie Domains

Chapter 13: Single Sign-On (SSO) 195

The Web Agent in the example.org cookie domain points and the Web Agent in the
example.com cookie domain both point to the same cookie provider domain of
example.net. A load-balancer distributes the traffic evenly between all the web servers
in the example.net cookie provider domain.

Note: You do not have to use the same user directory to implement SSO across multiple
cookie domains. However, if you are using replicated user directories with nonreplicated
policy stores, name the user directory identically for all policy stores. Also, the session
ticket key, which encrypts session tickets, must be the same for all key stores in the SSO
environment. The session ticket determines the duration of a valid user session.

Single Sign-On and Authentication Scheme Protection Levels

196 Web Agent Configuration Guide

Single Sign-On and Authentication Scheme Protection Levels

With single sign-on, authenticated users of one realm can access a resource in another
realm without re-authenticating as long as the second realm is protected by an
authentication scheme with an equal or lower protection level. If a user tries to access a
resource protected by an authentication scheme with a higher protection level, CA
SiteMinder® prompts the user to re-enter their credentials.

CA SiteMinder® lets administrators assign protection levels to authentication schemes
with the Administrative UI. Protection levels range from 1 through 20, with 1 being the
least secure and 20 being the most secure. These protection levels enable
administrators to implement authentication schemes with an additional measure of
security and flexibility for a single sign-on environment.

For example, a set of resources that is available to all users has a Basic authentication
scheme with a protection level of 1. Another set of resources that should only be
available to corporate executives, uses an X.509 certificate scheme with a protection
level of 15. If a user authenticates with the Basic theme, then tries to access the
resources protected by a certificate scheme, they will be required to re-authenticate.

Note: For more information, see the Policy Server documentation.

Single Sign-on and Agent Key Management

Web Agents use keys to encrypt and decrypt cookies that pass information between
Web Agents. When an Agent receives a CA SiteMinder® cookie, the key allows the Agent
to decrypt the contents of the cookie. Keys must be set to the same value for all Web
Agents communicating with a Policy Server.

To ensure the keys remain secure, the Policy Server can generate these keys, encrypt
them, and distribute them to all the Web Agents within a CA SiteMinder® environment.
Automated key changes make agent key management easy to implement for large CA
SiteMinder® installations that share the same key store, which holds all the key
information. Automating key changes also ensures the integrity of the keys.

How to Configure Single Sign-On

Chapter 13: Single Sign-On (SSO) 197

How to Configure Single Sign-On

To set up your single sign-on environment, follow these steps:

1. Decide which cookie domains you want in your single sign-on environment.

2. Select a cookie domain within your single sign-on environment (from Step 1) to act
as the cookie provider domain.

3. If your agents use central configuration, open the Agent Configuration Object (using
the Administrative UI). For agents using local configuration, open the Web Agent
configuration file (on each web server).

4. For your agent that is the cookie provider, modify the configuration parameters as
shown in the following steps:

a. Restrict the cookie provider functions for better security (see page 198).

b. Prevent cookie provider replay attacks (see page 199).

c. Verify that the value of the RequireCookies parameter is yes (see page 200).

d. (Optional) If you want the cookies to remain valid until the configured session
timeout, enable persistent cookies (see page 201). Without persistent cookies,
the browser cookies are transient. Transient cookies remain valid for only one
browser session.

e. Verify that the value of the CookieDomain parameter specifies the local cookie
domain of the system on which the agent is installed (see page 202).

f. To validate IP addresses, set one of the following parameters (see page 203):

■ If you are using persistent cookies, set the PersistentIPCheck parameter.

■ If you are using transient cookies, set the TransientIPCheck parameter.

5. (Optional) Modify any of the following single sign-on parameter settings:

■ Modify the session update period (see page 104).

■ Set secure cookies across multiple domains (see page 204).

■ Ignore the cookie provider for unprotected resources (see page 205).

■ Ignore the cookie provider for POST requests (see page 205).

■ Configure Secure URLs with single sign-on (see page 206).

6. For all other agents in your SSO environment that (all agents that are not a cookie
provider) set the configuration parameters as shown in the following steps:

a. Set the value of the CookieProvider parameter to the name of your cookie
provider domain. Use the fully qualified domain name of the web server
hosting the agent which is acting as the cookie provider (see page 207).

Use the syntax shown in the following example:

http://server.example.com:port/siteminderagent/SmMakeCookie.ccc

How to Configure Single Sign-On

198 Web Agent Configuration Guide

Note: The cookie provider name requires the .ccc extension, as shown in the
previous example.

b. Disable the cookie provider functions for better security (see page 208).

7. If you edited parameters by modifying the agent configuration file, restart the web
server, so that the changes take effect.

Restrict Cookie Provider Functions

All agents have cookie-provider functions that are enabled by default. Unauthorized
users with stolen CA SiteMinder® SSO cookies could exploit cookie providers and
attempt to use a session cookie from one domain to forge session cookies in another
cookie domain. These forged session cookies could allow unauthorized access to
protected SSO domains.

You can eliminate the potential for stolen SSO cookies to exploit cookie providers and
forge session cookies with the following parameter:

LimitCookieProvider

Specifies how the CA SiteMinder® agent acting as a cookie provider handles
cookie provider SET requests (.ccc resources). When the value of this
parameter is yes, the SET request is ignored unless a cookie exists in the
domain of the cookie provider. The cookie provider redirects the user to the
TARGET URL without setting a new cookie. When the value of this parameter is
no, the SET request is processed and a new cookie is always set during the
redirect back to the TARGET URL.

Default: No.

Default: (after using smpolicy-secure.xml to create your Policy Store) Yes.

Agents acting as cookie providers and the other agents operating in your SSO
environment could possibly require specific configuration for optimum security.

For example, suppose that your SSO environment contains three domains. A cookie
provider in example.com, and two SSO domains named example.org and example.net.
The following table describes the agent configuration settings for each domain:

Example.com (Cookie
Provider Domain)

Example.org (SSO Cookie
Domain)

Example.net (SSO Cookie
Domain)

CCCExt = .ccc CookieProvider =
http://server1.example.co
m:80/siteminderagent/Sm
MakeCookie.ccc

CookieProvider =
http://server1.example.co
m:80/siteminderagent/Sm
MakeCookie.ccc

IgnoreExt = (verify that list
of extensions includes .ccc)

CCCExt = .ccc CCCExt = .ccc

How to Configure Single Sign-On

Chapter 13: Single Sign-On (SSO) 199

EnableCookieProvider =
yes

IgnoreExt = (verify that list
of extensions includes .ccc)

IgnoreExt = (verify that list
of extensions includes .ccc)

LimitCookieProvider = yes EnableCookieProvider = no EnableCookieProvider = no

TracksSessionDomain = yes TracksSessionDomain =
yes

TracksSessionDomain = yes

 TrackCPSessionDomain =
yes

Prevent Cookie Provider Replay Attacks

You can prevent the cookie provider from being vulnerable to replay attacks with the
following parameter:

TrackCPSessionDomain

Validates that the cookie domain of the session cookie matches the cookie
domain of the cookie provider. Different cookie domains could indicate a
possible replay attack.

Default: No (The domain of cookie provider is not validated).

To prevent cookie provider replay attacks, set the value of the TrackCPSessionDomain
parameter to yes.

The agent compares cookie domains and rejects requests when the domains do not
match.

How to Configure Single Sign-On

200 Web Agent Configuration Guide

Set RequireCookies Parameter for Single Sign-On

You can control whether CA SiteMinder® requires cookies with the following parameter:

RequireCookies

Specifies whether CA SiteMinder® requires cookies. CA SiteMinder® requires
cookies for the following functions:

■ Securing single sign-on environments.

■ Enforcing session timeouts.

■ Enforcing idle timeouts.

When the value of this parameter is yes, the agent requires one of the
following cookies to process HTTP requests:

■ SMCHALLENGE

■ SMSESSION

When the value of this parameter is no, the following conditions could occur:

■ Users are challenged for credentials unexpectedly.

■ Timeouts are not strictly enforced.

Important! If the agent requires cookies, instruct your users to accept HTTP
cookies in their browsers. Otherwise, the users are denied access to all
protected resources.

Default: Yes

To require cookies, set the value of the RequireCookies parameter to yes.

How to Configure Single Sign-On

Chapter 13: Single Sign-On (SSO) 201

Enabling Persistent Cookies for Single Sign-On

If you want to use single sign-on for multiple browser sessions, use persistent cookies.
The following steps describe one possible use for persistent cookies:

1. Users authenticate with CA SiteMinder®, but end their browser sessions before the
CA SiteMinder® session expires.

2. Users start new browser sessions later, but the persistent cookie maintains their
single-sign on capability.

Persistent cookies remain valid for the configured maximum session time-out plus seven
days. Many browsers delete the cookie file of the web browser after the cookie expires.
Some browsers possibly handle persistent cookies differently.

Follow these steps:

1. Set the PersistentCookies parameter to yes.

The SMSESSION cookies are persistent.

2. Set the TransientIDCookies parameter to no.

The SMIDENTITY cookies are persistent.

How to Configure Single Sign-On

202 Web Agent Configuration Guide

Specify the Cookie Domain

The CookieDomain parameter defines the cookie domain of the server where you
installed the agent. You can modify the domain by setting the following parameter:

CookieDomain

Defines the cookie domain of the agent. Use a fully qualified domain name with
at least two periods. For example, the setting .example.com cookie domain
matches the following servers:

■ w1.example.com

■ w2.example.com

■ w3.sales.example.com

All web servers in this domain can exchange cookies with a browser. Servers in
the same cookie domain use cookies to verify the credentials of a user.

When the parameter value is none, the agent generates cookies only for its
own server. For example, myserver.example.com.

If the value is blank (or contains "" in a local configuration file), the agent uses
the domain information in the HTTP_HOST header. The agent then bases the
value using the setting in the CookieDomainScope parameter.

Default: Empty

Example: .example.com

Limits: This value is case-sensitive. This value requires a fully qualified domain
name with at least two periods, as shown in the previous example.

Note: This value is case-sensitive.

How to Configure Single Sign-On

Chapter 13: Single Sign-On (SSO) 203

Follow these steps:

1. Set the value of the CookieDomain parameter.

2. (Optional) Set the value of the CookieDomainScope parameter.

CookieDomainScope

Specifies the number of sections (characters with periods between them) in the
domain name.

When the value is set to 0, the default, the agent chooses the most specific
cookie domain for the host without making a server-only cookie. This means
that the cookie domain myserver.example.com yields a domain of
example.com, and myserver.metals.example.org yields a domain of
.metals.example.org.

If the CookieDomainScope parameter is set to 2, the cookie domain would be
.example.com and .example.org respectively.

Default: 0

Example: Suppose that your cookie domain is division.example.com. To set the
scope of the cookie domain for server.division.example.com, set the value of
the CookieDomainScope parameter to 3.

Enable IP Address Validation for Single Sign-On Environments

An unauthorized system can monitor packets, steal a cookie, and use that cookie to gain
access to another system. To prevent a breach of security by an unauthorized system,
you can enable or disable IP checking with persistent and transient cookies.

The IP checking feature requires agent to compare the IP address stored in a cookie
from the last request against the IP address contained in the current request. If the IP
addresses do not match, the agent rejects the request.

The two parameters that are used to implement IP checking are PersistentIPCheck and
TransientIPCheck. Set them as follows:

■ If you enabled PersistentCookies, set PersistentIPCheck to yes.

■ If you did not enable PersistentCookies, set TransientIPCheck to yes.

CA SiteMinder® identity cookies are unaffected by IP checking.

How to Configure Single Sign-On

204 Web Agent Configuration Guide

Modify the Session Update Period

You can specify how often the Web Agent redirects a request to the Cookie Provider to
set a new cookie with the following parameter:

SessionUpdatePeriod

Specifies how often (in seconds) a Web Agent redirects a request to the Cookie
Provider to set a new cookie. Refreshing the master cookie decreases the
possibility that it will expire due to an idle time-out of the CA SiteMinder®
session.

Default: 60

To modify the session update period

1. Make sure the CookieProvider parameter is defined.

2. Change the number of seconds in the SessionUpdatePeriod parameter to reflect the
interval you want.

The session update period is changed.

Set Secure Cookies Across Multiple Domains

Setting the UseSecureCookies parameter configures a Web Agent to only return a local
cookie to a requesting browser session if the connection between them is secure
(HTTPS); if the Web Agent is also configured as a cookie provider, UseSecureCookies
does not apply to redirected requests for access to resources in other cookie domains.

To configure a Web Agent acting as a cookie provider to only return cookies to a Web
Agent in another cookie domain if that Web Agent is also configured to use secure
cookies, you must enable UseSecureCookies and also configure the following
parameter:

UseSecureCPCookies

If UseSecureCPCookies is set to Yes, the cookie provider will only send a cookie
to a Web Agent in another cookie domain that is also configured to use secure
cookies (that is, UseSecureCookies is enabled).

When this setting and UseSecureCookies are both enabled, users in a multiple
domain single sign-on environment who move from an SSL web server to a
non-SSL web server in another cookie domain will have to reauthenticate.
Secure cookies cannot be passed over traditional HTTP connections.

Default: No

To send cookies over SSL connections across multiple domains, set the
UseSecureCookies and UseSecureCPCookies to yes on the cookie provider.

How to Configure Single Sign-On

Chapter 13: Single Sign-On (SSO) 205

More information:

Set Secure Cookies (see page 84)

Ignore the Cookie Provider for Unprotected Resources

Agents forward all requests to the cookie provider by default. If you have unprotected
resources, you can reduce network traffic with the following parameter:

IgnoreCPForNotprotected

Prevents the cookie provider from being queried for unprotected resource
requests. When this parameter is set to no, all requests are directed to the
cookie provider by the Web Agent. For traditional (nonframework) Agents,
configure a cookie provider so that value of this parameter appears in the Web
Agent log file.

Default: No

To prevent an agent from contacting the cookie provider when unprotected resources
are requested, set the value of the IgnoreCPForNotprotected parameter to yes.

Ignore the Cookie Provider for POST Requests

The following parameter enables these behaviors:

■ This setting allows traditional agents to act as cookie providers.

■ This setting prevents POST requests from being sent to cookie providers (in all
environments).

LegacyCookieProvider

Controls whether an agent sends a POST request to a cookie provider. When
the agents send POST requests to a traditional agent (operating as a cookie
provider), the redirected request becomes a GET. This conversion causes
errors. When set to no, the agent sends the POST request to the cookie
provider. When set to yes, the agent does not send the POST request to the
cookie provider.

If you are using central agent configuration, add this parameter to your agent
configuration object. This parameter exists in local configuration files.

Default: No (POST requests sent)

Set the value of the LegacyCookieProvider parameter to yes to enable the following
behaviors:

■ Use traditional agents as cookie providers.

■ Prevent any POST requests from being sent to cookie providers.

How to Configure Single Sign-On

206 Web Agent Configuration Guide

Configure SecureUrls with Single Sign-on

If your single sign-on network has a Web Agent that supports SecureUrls functionality
and another Agent that does not, this could result in internal server error messages
when a user requests a protected single sign-on resource.

The log for the Web Agent with SecureUrls support shows the reason for the server
error, such as the following:

Error. Unable to process request, SecureUrls is disabled.

Note: All Web Agents in a single sign-on environment must have the SecureUrls
parameter set to the same value. CA SiteMinder® does not support interoperability
between Web Agents with the SecureUrls parameter set to different values.

How to Configure Single Sign-On

Chapter 13: Single Sign-On (SSO) 207

Specify the Cookie Provider

To have the other agents in your SSO environment use a cookie provider, specify the
location of the agent that is acting as a cookie provider with the following parameter:

CookieProvider

Specifies the URL of the web server where the agent that is acting as the cookie
provider resides.

A cookie provider is an agent in a single sign-on environment. The cookie
provider sets a browser cookie for the local domain in which it exists. After this
cookie is set, users can navigate throughout the single sign-on environment
without reauthenticating.

The cookie provider name requires a .ccc extension, as shown in the following
examples:

■ For IIS, Oracle iPlanet, and Domino web servers, the URL syntax is as
follows:

 http://server.domain:port/siteminderagent/SmMakeCookie.ccc

■ For Apache and Apache-based web servers, the URL syntax is as follows:

 http://server.domain:port/SmMakeCookie.ccc

This parameter also affects the following parameters:

■ CCCExt

■ SessionUpdatePeriod

Default: No default

Example: (IIS, Oracle iPlanet, and Domino web servers)
http://server1.example.com:80/siteminderagent/SmMakeCookie.ccc

Example: (Apache and Apache-based web servers)
http://server1.example.com:80/SmMakeCookie.ccc

Limits: This parameter requires a fully qualified domain name.

Follow these steps:

1. Set the CookieProvider parameter to the URL of the web server that is acting as a
cookie provider.

2. Verify that the value of the CCCExt parameter is set to .ccc

3. Add the .ccc extension to the values in the IgnoreExt parameter.

4. (Optional) Modify the session update period.

5. Repeat Steps 1 through 4 on all web agents in your SSO environment that are not
cookie providers.

The cookie provider is specified.

How to Configure Single Sign-On

208 Web Agent Configuration Guide

Disable Cookie Providers

All CA SiteMinder® agents can act as cookie providers by default. This setting makes
configuring an SSO environment easier. For increased security, you can disable the
built-in cookie provider functionality with the following parameter:

EnableCookieProvider

Specifies how the agent handles requests from cookie providers (.ccc). When
this parameter value is yes, the agent processes the requests. When this
parameter value is no, the agent ignores the requests from the cookie provider.
The agent denies access to the requested resource. To increase security, set
this parameter value to no.

Default: Yes.

Default: (after using smpolicy-secure.xml to create your Policy Store) No.

To prevent an agent from processing requests from cookie providers, set the value of
the EnableCookieProvider parameter to no.

If you do not use cookie providers for SSO in your environment, use the agent
configuration settings shown in the following table for all of your agents:

Set the configuration parameters of all agents to the following values:

EnableCookieProvider = no

Chapter 14: Comprehensive Log Out 209

Chapter 14: Comprehensive Log Out

This section contains the following topics:

How Full Logoff Works (see page 209)
Configure Full Logoff (see page 210)
How to Configure Full Logoff for Single Sign-on (see page 211)
Configure Comprehensive Log Out using FCC Forms (see page 213)

How Full Logoff Works

Full logoff support enables a Web developer to make sure that a user is completely
logged off from a user session. This protects resources because it gives users a way to
end a session without exiting the Web browser and prevents an unauthorized person
from assuming control of an open session.

A full logoff uses the following process:

1. A user clicks a button to log off.

2. The Web Agent redirects the user to a customized logoff page that you created.

3. The Web Agent removes the session and authentication cookies from a user’s
browser.

4. The Web Agent also removes the session cookie from the local cookie domain and
the cookie provider domain, which you specify for single sign-on environments.

5. The Web Agent calls the Policy Server and instructs the Policy Server to remove any
session information.

The user is completely logged off.

More information:

Configure Full Logoff Support for Domino Agents (see page 295)

Configure Full Logoff

210 Web Agent Configuration Guide

Configure Full Logoff

The full log-out feature uses a custom log-out page that you create with the following
parameter:

LogOffUri

Enables the full log-out function by specifying the URI of a custom web page. This
custom web page appears to users after they are successfully logged off. Configure
this page so that it cannot be stored in a browser cache. Otherwise, a browser could
possibly display a log-out page from its cache without logging the user off. If this
situation happens, unauthorized users could possibly have an opportunity to
assume control of a session.

Note: When the CookiePath parameter is set, the value of the LogOffUri parameter
must point to the same cookie path. For example, if the value of your CookiePath
parameter is set to example.com, then your LogOffUri must point to
example.com/logoff.html

Default: (all agents except the CA SiteMinder Agent for SharePoint r12.0.3.0) No
default

Limits: Multiple URI values permitted. Do not use a fully qualified URL.Use a relative
URI.

Example:(all agents except the CA SiteMinder Agent for SharePoint r12.0.3.0) /Web
pages/logoff.html

Follow these steps:

1. Create a custom HTTP application that logs the user off. For example, add an Exit or
Sign Off button that redirects the user to a URL you specify.

2. Set up the log-out page so it cannot be cached in web browsers. This setting
increases security because the page is always served from the web server, and not
the cache of the browser. For example, for HTML pages, you can add the following
meta tags to the page:

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<META HTTP-EQUIV="Expires" CONTENT="-1">

Important! Some web browsers do not support meta tags. Use a cache-control
HTTP header instead.

3. Configure the LogOffUri parameter with the following steps:

a. Delete the pound sign (#), if necessary.

b. Enter the URI of the custom HTTP file that will log the user off. Do not use a
fully qualified URL.

The full log-out feature is configured.

How to Configure Full Logoff for Single Sign-on

Chapter 14: Comprehensive Log Out 211

More information:

Specify the Cookie Path for Agent Cookies (see page 86)

How to Configure Full Logoff for Single Sign-on

In a single sign-on environment, the session cookies are removed only from the local
cookie domain and the cookie provider domain associated with the Web Agent. For
single sign-on across multiple cookie domains, the full log-off feature of CA SiteMinder®
does not automatically log a user off across all the cookie domains that the user has
visited.

To configure log-offs across multiple cookie domains, use the following process:

1. Create one centralized log-off page that contains separate frames (or iframes) for
the other cookie domains in your SSO environment. These frames can be a small
size, such as 1x1 pixels.

2. For each frame of the centralized log-off page in Step one, add a hyperlink to the
Logoff Uri of the associated cookie domain. For example, if you have two other
cookie domains, example.org and example.net, you would do the following steps:

■ Add a hyperlink to the Logoff Uri of example.org to one frame.

■ Add a hyperlink to the Logoff Uri of example.net to the other frame.

3. Configure the LogoffUri of the cookie provider domain to point to the centralized
log-off page. When the web server loads this log off page, the frames in the
centralized log-off page call the logoff pages from the other cookie domains. The
user is logged off from all the cookie domains at once.

How to Configure Full Logoff for Single Sign-on

212 Web Agent Configuration Guide

The following illustration shows an example of using a centralized log-off page:

Note: You can also place the hyperlinks inside <iframe> tags instead of <frame> tags.

Configure Comprehensive Log Out using FCC Forms

Chapter 14: Comprehensive Log Out 213

Configure Comprehensive Log Out using FCC Forms

If you use FCC forms to authenticate your users, you can configure a comprehensive log
out with your FCC form. This method provides an alternative to the LogoffUri
parameter.

Follow these steps:

1. Open the .fcc file that you are using to authenticate your users with a text editor.
FCC files are located in the following directory:

web_agent_home/samples/forms

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with CA SiteMinder® Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

2. Add the following text to the top of your FCC page (before the <_html> tag):

@smlogout=true

@target=http://server_name.example.com/directory/your_logout_page.html

Note: your_logout_page indicates a custom html page you create to inform users
that they have logged out.

Comprehensive logout using FCC forms is configured.

Chapter 15: SSO Security Zones 215

Chapter 15: SSO Security Zones

This section contains the following topics:

Security Zones Overview (see page 215)
Configure Security Zones (see page 223)

Security Zones Overview

Users have the ability to define single sign-on security zones within the same cookie
domain, representing a single zone, or across multiple cookie domains, representing
different zones. As a result, users have single sign-on within the same zone, but may be
re-challenged when entering a different zone, depending on the trust relationship
defined between the zones. Zones included in a trusted relationship will not
re-challenge a user that has a valid session in any zone in the group.

Single sign-on security zones are implemented entirely by CA SiteMinder® Web Agents.
Each zone must reside on a separate Web Agent instance. Multiple zones cannot be
created on the same Agent instance.

A security zone is identified by cookies generated by the Web Agent. By default, the
Web Agent generates two cookies, a session cookie named SMSESSION and an identity
cookie named SMIDENTITY. When you configure security zones, the Web Agent can
generate session cookies and identity cookies with unique names so that the zone
affiliation is reflected in the cookie names.

Security Zones Overview

216 Web Agent Configuration Guide

Security Zone Definitions

The following terms apply to single sign-on (SSO) security zones:

CAC (Centralized Agent Configuration)

Identifies a mechanism by which a Web Agent borrows its configuration properties
from a Web Agent configuration object defined in the policy store.

Cookie Provider

Identifies a mechanism by which single sign-on is implemented in Web Agents
across multiple domains. One of the domains is designated as the master domain,
and the Web Agents from the other domains are re-directed to a Web Agent in the
master domain to provide them with the cookies in that domain.

SSO (Single Sign-On)

Identifies a mechanism by which a user authenticated once will not be rechallenged
for credentials.

SSO Zone

Identifies a sub-set of SSO, defined by an arbitrary identifier (zone name) used to
segment application SSO within a single cookie domain. All applications in the same
SSO zone allow SSO amongst themselves. SSO to and from other SSO zones may or
may not be allowed as defined by zone trust relationships.

Trusted SSO Zone

Identifies a foreign zone trusted by a local zone for SSO.

Security Zones Benefits

The SSO Security Zones feature is intended for use in situations where CA SiteMinder®
administrators wish to segment their single sign-on environments within the same
cookie domain. For example, consider the CA.COM domain. Under standard CA
SiteMinder® functionality, all CA SiteMinder® protected applications in CA.COM would
use the cookie SMSESSION to manage single sign-on. Consider the following scenario in
which SSO Security Zones do not exist:

1. A user accesses an application (APP1). The user is challenged by CA SiteMinder®,
logs in to CA SiteMinder®, and creates an SMSESSION cookie.

2. The user accesses a second application (APP2) and is once again challenged by CA
SiteMinder®. (Rules prevent SSO from occurring because the user does not have
access to APP2 using the APP1 user credentials.) The user logs in and creates a new
SMSESSION cookie overwriting the old one with the new logged in session for APP2.

3. The user now returns to APP1 and is challenged yet again, since the user lost the
original APP1 session and the APP2 session might not be accepted for APP1.
Therefore, SSO does not occur between APP1 and APP2, causing a very frustrating
situation.

Security Zones Overview

Chapter 15: SSO Security Zones 217

With SSO Security Zones, APP1 can be placed in zone Z1 and APP2 can be placed in zone
Z2. Now logging into APP1 creates a Z1SESSION cookie and access to APP2 results in a
Z2SESSION cookie. With different names, the cookies no longer overwrite each other so
there is only one login per application now, not one for each time the user moves
between the applications as in the example above.

Prior to the SSO Security Zones feature, the only way to perform the same grouping of
SSO for applications was to create different network domains and therefore different
cookie domains (CA1.COM, CA2.COM, and so on), and use various multi-cookie domain
configurations with cookie providers. This is not desirable in most enterprises, since
using multiple network domains has certain IT maintenance and support consequences.

Security Zone Basic Use Case

Single sign-on can, on a controlled basis, be broken into several security zones that have
configurable trust relationships. For example, consider Zone A and Zone B:

■ Zone A has only one trusted zone, its own Zone A.

■ Zone B has two trusted zones, its own Zone B as well as Zone A.

The trust relationship in the above illustration is indicated by the arrow, meaning that
the user sessions established in Zone A can be used for single sign-on in Zone B.

In this example, Zone A might be an administrator-only zone, while Zone B might be a
common access zone. An administrator authenticated in Zone A gains access to Zone B
without being rechallenged. However, a user authenticated in Zone B is re-challenged
when trying to access Zone A.

User sessions in different zones are independent of each other. Suppose a user
authenticates in Zone A first, and then authenticates again in Zone B. Two different
sessions are created. In fact, the user may have different identities in both sessions.
When the user returns to Zone A, the session established in that zone is used.

Consider what would happen if a user is validated using single sign-on in a zone where
that user does not yet have a session. If the user authenticates in Zone A and then visits
Zone B for the first time, then a user session is created in Zone B, based on the session
information in Zone A, possibly updated by the Policy Server. Note that the user session
in Zone A is not updated until the user returns to Zone A.

Security Zones Overview

218 Web Agent Configuration Guide

User Sessions Across Security Zones

Single sign-on security zones do not need to all belong to the same domain. In fact,
zones can be spanned over multiple domains. However, Web Agents only search for
trusted zone cookies in their local cookie domain. If no suitable cookies are found, Web
Agents continue to redirect to cookie providers only for their own zone.

Trusted Zone Order

A single sign-on security zone is defined by a pair of parameters:

■ the security zone name

■ an ordered list of trusted zones

The order in which the trusted zones are listed is important. Consider the following
example.

Security Zones Overview

Chapter 15: SSO Security Zones 219

In this illustration, Zone C trusts both Zone A and Zone B. Neither Zone A nor Zone B
trusts any other zone, but all zones trust themselves.

When a user makes a request in Zone C, the Web Agent looks for a session or identity
cookie in the trusted zones, in the order in which the zones are listed. In this example,
Zone C has a list of trusted zones that include C, A, and B.

The following is an order of events that might occur:

1. The Web Agent first checks to see if the user has a session in Zone C.

2. If no session is found, the Web Agent checks to see if the user has a session in Zone
A.

3. If no session is found, the Web Agent checks to see if the user has a session in Zone
B.

4. The session specification from each cookie that is found is used to process
authentication requests until a successful login occurs.

5. After a successful authentication, the Web Agent proceeds to authorization.

6. If no cookies are found or no cookies pass authentication, the agent challenges the
user for credentials as usual.

Note that the user experience may depend on the order in which the zones are
accessed. In this example, if the user accesses Zone B first followed by Zone C, the user’s
identity in Zone B is also used in Zone C. If the user accesses Zone A first followed by
Zone B and Zone C, the user’s identity in Zone A is used, despite the fact that the user
was re-challenged in Zone B before going to Zone C.

This will also be the case when sessions with different max and idle session timeouts
begin to expire. In the current example, a user with valid cookies in Zone A and Zone C
will first get access with the Zone C cookie. If the Zone C cookie expires, the Zone A
cookie will be used if it has not expired. Therefore, the user’s identity could change from
a Zone C identity to a Zone A identity without a credential challenge occurring.

Two or more Web Agents may have different lists of trusted zones but still use a
common trusted zone name. In this case, the agents implicitly trust each other but will
not trust the same foreign zones. This functionality enables applications to be
segmented for single sign-on. A Web Agent supports only a single sign-on zone name.
All session, identity, and state cookies generated by that agent use the same single
sign-on zone name. Therefore, if two applications do not share the same single sign-on
trust requirements, they must be hosted on separate web servers each with its own
Web Agent and list of trusted zones.

Note: Foreign zones refer to zones other than the one supported by a given Web Agent.
For example, if an agent is configured with SSOZoneName=”Z1”, then any other zone
would be foreign to it. This includes the default zone “SM”.

Security Zones Overview

220 Web Agent Configuration Guide

The Default Single Sign-On Zone and Trusted Zone List

Web Agents that do not specify a security zone name (such as all pre-CA SiteMinder® 6.x
QMR 5 Web Agents) are considered to belong to the default zone. For backwards
compatibility, the default zone is implicitly assumed to have a zone name of SM. This
allows CA SiteMinder® 12.51 Web Agents to support SMSESSION and SMIDENTITY by
default with no configuration changes.

Web Agents that do not specify a list of trusted zones trust only their own single sign-on
zone (either a specified zone name or default zone if no zone name has been specified).

A Web Agent can be configured to trust other zones in addition to the default zone. It
can also use a specified zone name and list no other trusted zone. Agents always trust
their own zone first, regardless of whether or not additional trusted zones are specified.
In order for a Web Agent using a non-default zone to trust the default zone as well, it
must list "SM" in its trusted zone list.

Request Processing with Multiple User Sessions

Web Agents look up user sessions in the order of trusted zones. If a valid user session is
found, the Web Agent uses the session information to process the user request. If no
valid session is found, the Web Agent fails over to the next valid user session in the
order of trust.

Responses from failed validations are ignored if there is another session to check.
Otherwise, they are processed as normal. This means that if the Web Agent finds three
trusted sessions to process and the first two fail to validate, only the responses from
validating the third and final session are processed.

In the case of a successful validation, the Web Agent stops processing sessions and
immediately begins processing the responses from the successful validation. If the agent
has three sessions to validate and the first session validates successfully, the remaining
two are ignored and the agent moves on to process the responses for the first
successful validation.

More Information

Trusted Zone Order (see page 218)

Security Zones Overview

Chapter 15: SSO Security Zones 221

Transitive Relationships Across Zones

The trust relationship between single sign-on zones is not fully transitive. If Zone A is
trusted by Zone B, and Zone B is trusted by Zone C, Zone A may not necessarily be
trusted by Zone C, as illustrated in the following diagram.

Other Cookies Affected by Single Sign-On Zones

CA SiteMinder® uses state cookies to manage the various events surrounding
authentication and authorization. All of these cookies by default begin with the default
single sign-on security zone prefix SM. If a new single sign-on zone name is specified,
then these cookies are also named to reflect the specified non-default zone name.
Below is a list of cookies that are affected by defining a new single sign-on zone:

■ SMCHALLENGE

■ SMDATA

■ SMIDENTITY

■ SMONDENIEDREDIR

■ SMSESSION

■ SMTRYNO

If a zone name of Z1 is specified, for example, the Web Agent begins creating
Z1CHALLENGE=YES cookies for Basic authentication. This allows administrators to create
islands of CA SiteMinder® application single sign-on in a single cookie domain (for
example, ca.com) where agents will not interfere with each other. The single sign-on
trusted zone list then allows single sign-on to occur between these isolated single
sign-on zones in a predictable fashion.

Security Zones Overview

222 Web Agent Configuration Guide

Single Sign-On Zones and Authorization

With single sign-on zones, authorization proceeds normally after a successful
authentication without change. Once the validation process identifies a valid session,
the session is used for the remainder of request processing and any other sessions
identified in the request are ignored. If authorization fails, the user is challenged
regardless of whether or not other sessions are available that might authorize
successfully.

The first trusted session that passes validation is the session passed to authorization. If
this session fails authorization, the user is challenged for credentials.

Configure Security Zones

Chapter 15: SSO Security Zones 223

Configure Security Zones

Two single sign-on parameters have been added to the Web Agent configuration objects
in the policy store. These settings may also be used in local configuration files and are
added to the sample local configuration files laid down during installation.

Note: All Web Agents configured through the same agent configuration object belong to
the same single sign-on zone.

SSOZoneName

Specifies the (case-sensitive) name of the single sign-on security zone a Web
Agent supports. The value of this parameter is prepended to the name of the
cookie a Web Agent creates. This setting helps you associate cookies with their
respective cookie domains. When this parameter is not empty, CA SiteMinder®
generates cookies using the following convention:

ZonenameCookiename.

Default: Empty (uses SM as a zone name, which gives the following default
names to the cookies):

■ SMSESSION

■ SMIDENTITY

■ SMDATA

■ SMTRYNO

■ SMCHALLENGE

■ SMONDENIEDREDIR

Limits: Single-valued. This parameter supports English-language characters
only.

Example: Setting the value to Z1 creates the following cookies:

■ Z1SESSION

■ Z1IDENTITY

■ Z1DATA

■ Z1TRYNO

■ Z1CHALLENGE

■ Z1ONDENIEDREDIR

Configure Security Zones

224 Web Agent Configuration Guide

SSOTrustedZone

Defines an ordered (case-sensitive) list of trusted SSOZoneNames of trust for a
single sign-on security zone. Use SM to add the default zone if necessary.
Agents always trust their own SSOZoneName above all other trusted single
sign-on zones.

Default: Empty (SM or the SSOZoneName if provided)

Limits: Multi-valued

Configure Security Zones

Chapter 15: SSO Security Zones 225

Specify the Single Sign-on Zone for the Agent

SSOZoneName

Specifies the (case-sensitive) name of the single sign-on security zone a Web
Agent supports. The value of this parameter is prepended to the name of the
cookie a Web Agent creates. This setting helps you associate cookies with their
respective cookie domains. When this parameter is not empty, CA SiteMinder®
generates cookies using the following convention:

ZonenameCookiename.

Default: Empty (uses SM as a zone name, which gives the following default
names to the cookies):

■ SMSESSION

■ SMIDENTITY

■ SMDATA

■ SMTRYNO

■ SMCHALLENGE

■ SMONDENIEDREDIR

Limits: Single-valued. This parameter supports English-language characters
only.

Example: Setting the value to Z1 creates the following cookies:

■ Z1SESSION

■ Z1IDENTITY

■ Z1DATA

■ Z1TRYNO

■ Z1CHALLENGE

■ Z1ONDENIEDREDIR

Use the SSOZoneName parameter to enter the name of the single sign-on zone a Web
Agent is to support. This parameter is case sensitive. If not specified, it defaults to SM. If
the value of the SSOZoneName parameter is non-empty, the Web Agent generates
cookies with the naming convention:

zone_namecookie_name

where zone_name is the parameter value and cookie_name is the general name of the
cookie being created.

Cookies affected by this convention include:

■ SESSION

■ IDENTITY

Configure Security Zones

226 Web Agent Configuration Guide

■ DATA

■ TRYNO

■ CHALLENGE

■ ONDENIEDREDIR

If the user is validated in a single sign-on zone in which that user has not yet established
a session, the session specification returned by the Policy Server is used to create a new
session cookie for that zone.

When a new cookie is created, its zone parameter is set to the zone name, in order to
prevent the user from swapping cookies from different zones by simply renaming them.
The cookie validation engine verifies if the zone name matches the prefix used in the
cookie's name. This applies only to SESSION and IDENTITY cookies.

To specify the name of the single sign on zone you want the Web Agent to support, add
the name of the zone to the SSOZoneName parameter.

The Order of Trust and Failover

Use the SSOTrustedZone parameter to specify the single sign-on zone's order of trust.
When processing a request, the Web Agent looks for a SESSION or IDENTITY cookie for
each zone in the order they appear in the list.

Any cookies found are validated as usual (decrypted, and tested for a valid host name,
single sign-on zone name, and timeouts), then stored in an ordered list of trusted
sessions if valid. Prior to authentication, the user's active session (and therefore user
identity) are considered the first session in the ordered list of valid sessions.

During authentication, the Web Agent will call validate using the first session in the list.
If the validation succeeds, the agent moves on and establishes user identity and affirms
the active accordingly. If validation fails, the next session is used in a new validation call,
and so forth until validation succeeds or the agent runs out of sessions. If no session
validates, the agent challenges the user as usual.

Once validated, the agent ignores all other sessions and instead sticks only to the
session that validated for the remainder of request processing. This means that should
authorization fail, the user is challenged immediately. Any other existing sessions in the
request are not used.

Chapter 16: Advanced Configuration Settings 227

Chapter 16: Advanced Configuration
Settings

This section contains the following topics:

Agents and Proxy Servers (see page 227)
Agents and Reverse Proxy Servers (see page 234)
HTTP Header Settings (see page 250)
URL Settings (see page 250)
IIS Web Server Settings (see page 252)
Apache Web Server Settings (see page 269)
Oracle iPlanet Web Server Settings (see page 273)
Domino Web Server Settings (see page 277)
Backward Compatibility Settings (see page 296)
Agent Setting for Federation Domains (see page 299)
How to Modify the Sample Code to Remove Open Format Cookies When Users Log Out
(see page 300)
Obtain the Cookie Information (see page 301)
Modify the Sample JavaScript Code with the Cookie Information (see page 302)
Copy the Modified JavaScript Code to Your Logout Page (see page 304)

Agents and Proxy Servers

Use any of the following settings to manage your CA SiteMinder® agents running on
proxy servers:

■ Configure agents that sit behind proxy servers (see page 228).

■ Customize cache-control and expireforproxy header settings (see page 230).

■ Proxy header usage notes (see page 232).

■ Security considerations (see page 233).

Agents and Proxy Servers

228 Web Agent Configuration Guide

Configure Agents that Sit behind Proxy Servers

If a Web Agent will be installed behind a proxy server, you can configure the Web Agent
to work with proxy servers using the following parameters:

ProxyTrust

Instructs the agent on a destination server to trust authorizations received
from a CA SiteMinder® agent on a proxy server. A destination server is a server
that is behind a reverse proxy server. Setting this value to yes increases
efficiency because only the agent on the proxy server contacts the Policy Server
for authorization. The agent operating on the destination server does not
contact the Policy Server again reauthorize users.

Default: No

ExpireForProxy

Prevents a client from caching content (pages and potentially headers or
cookies). When the value of this parameter is set to yes , the Web Agent inserts
one of the following HTTP headers into the HTTP response:

■ Expires

■ Cache-control

If content is not cached, subsequent requests continue to be forwarded.

When the ExpireForProxy parameter is set to yes, the Web Agent inserts the
strings specified in the appropriate ProxyHeaderssuffix_name parameter into
the HTTP response based upon what type of request the Agent performed.

For HTTP/1.1 requests, the Agent inserts the values of the following
parameters as headers in the response:

■ ProxyHeadersAutoAuth

■ ProxyHeadersProtected

■ ProxyHeadersUnprotected

For HTTP/1.0 requests, the Agent inserts the values of the following
parameters as headers in the response:

– ProxyHeadersAutoAuth10

– ProxyHeadersProtected10

■ ProxyHeadersUnprotected10

Default: No

Note: Although this parameter name contains the word 'proxy,' the settings of
this parameter also affect the behavior of web browsers, or any other client
that connects to a web server on which any CA SiteMinder® Agents using this
parameter setting operate.

Agents and Proxy Servers

Chapter 16: Advanced Configuration Settings 229

To tell the proxy not to cache the pages, the Web Agent adds an Expires header for the
page. This header is set to a date in the past, which prevents the page from being
cached by a proxy, as dictated by the HTTP 1.0 specification. On 302 redirects, a
cache-control: no-cache header is set instead. Although this prevents caching of
content, this has the negative consequence of affecting the browsing experience for an
Internet Explorer (IE) browser, as described by Microsoft Support.

With the use of cache-control: no-cache for 302 redirects, the ActiveX component that
manages in-place document viewing in IE relies on the browser’s cache to locate the file.
Because this header instructs the browser not to cache the file, the ActiveX component
cannot locate the file and fails to display the request properly. Further, when you set
the Web Agent’s ExpireForProxy setting to yes, the back-end server tells the proxy not
to cache the resource.

To configure Agents that sit behind proxy servers

1. Set the ProxyTust parameter to yes.

2. Set the ExpireForProxy parameter to yes.

3. (Optional) Customize values the cache-control and ExpireForProxy (HTTP) headers.

The Agents behind the proxy servers are configured.

More information:

Customize the Cache-Control and ExpireForProxy Header Settings (see page 230)

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q297822

Agents and Proxy Servers

230 Web Agent Configuration Guide

Customize the Cache-Control and ExpireForProxy Header Settings

You can customize the cache-control and ExpireForProxy headers to secure Web
resources without affecting in-place activation of application files (.doc, .pdf, and so on).
You can set specific HTTP headers for the following types of content independently to
control how that content is cached by a web browser or proxy server:

■ Auto-Authorized

■ Unprotected

■ Protected

Important! We recommend using the default settings unless you are familiar with the
ramifications of changing these settings in accordance with RFC 2068. If you plan to
change the default settings, note that the CA SiteMinder® session cookie is updated on
access of an unprotected page once a user has a session in order to track idle timeout.
Therefore, unprotected pages should not be cached on a proxy that caches HTTP
headers.

The following characteristics apply to setting headers to prevent caching by proxies:

■ All redirects set a Cache-Control: no-cache header, regardless of agent activity.

■ The web server sends the appropriate headers back to the proxy/client based on
the HTTP protocol used (1.0 or 1.1 and higher).

All parameters should be configured using multi-value strings to suit the use of multiple
headers, such as cache-control: private and cache-control: max-age=60.

The following is the new configuration:

1. ProxyHeadersDefaultTime - defaults to 60 seconds

2. ProxyHeadersTimeoutPercentage – defaults to 10 percent

3. The following cache-control headers are available:

ProxyHeadersAutoAuth

Specifies the value of an HTTP 1.1 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the auto-authorized resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Example (suggested setting): "Cache-control: max-age=60"

Agents and Proxy Servers

Chapter 16: Advanced Configuration Settings 231

ProxyHeadersAutoAuth10

Specifies the value of an HTTP 1.0 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the auto-authorized resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Example (suggested setting): "Expires: Thu, 01 Dec 1994 16:00:00 GMT"

ProxyHeadersProtected

Specifies the value of an HTTP 1.1 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the protected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested settings): "Cache-Control: private"

ProxyHeadersProtected="Cache-Control: max-age=60"

ProxyHeadersProtected10

Specifies the value of an HTTP 1.0 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the protected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested settings): "Expires: Thu, 01 Dec 1994 16:00:00 GMT"

ProxyHeadersUnprotected

Specifies the value of an HTTP 1.1 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the unprotected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested setting): ProxyHeadersUnprotected="Cache-Control:
private"

ProxyHeadersUnprotected="Cache-Control: max-age=60"

Agents and Proxy Servers

232 Web Agent Configuration Guide

ProxyHeadersUnprotected10

Specifies the value of an HTTP 1.0 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the unprotected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested setting): "Expires: Thu, 01 Dec 1994 16:00:00 GMT"

When configuring multiple headers, (for example, the cache-control headers in the
suggested setting for unprotected HTTP/1.1 content), note the following:

■ You must have multiple occurrences of the configuration parameter and you cannot
separate these with a comma (,) or the plus-sign (+).

■ As the values for these configuration parameters are HTTP response headers, they
must comply with RFC 2616 (for HTTP/1.1), RFC 1945 (for HTTP/1.0) and RFC 822.
Both HTTP/1.1 and HTTP/1.0 specify the format for an HTTP Header as that of an
RFC 822 message, namely "Name: Value" (Name, followed by a colon, white space
and then a value).

If you do not configure the Web Agent to set the appropriate cache expiration headers
when a user accesses unprotected resources, then by default, the Web Agent will not
set these headers, thereby allowing a web browser or proxy server to cache an
SMSESSION cookie. This cached cookie can be re-used by the web browser or
proxy-server after the user has initiated a different session (and therefore a different
user context), causing an unauthorized impersonation.

More information:

Configure Agents that Sit behind Proxy Servers (see page 228)

Proxy Header Usage Notes

■ To prevent the Web Agent from sending any proxy headers, blank out the
ProxyHeadersUnprotected value. For example:

ProxyHeadersUnprotected=""

Note: To get a double quote character (“) to appear, use a single quote (‘). The
Web Agent automatically converts it to a double quote.

■ The value, %% or %d (treated identically) may appear within a ProxyHeaders line.
This value is replaced with either the smaller of the IdleTimeout and
SessionTimeout multiplied by the ProxyHeadersTimeoutPercentage, or, if the
timeouts are not set, the ProxyHeadersDefaultTime is used.

Agents and Proxy Servers

Chapter 16: Advanced Configuration Settings 233

■ Ensure that values for the standard (1.1 and higher) and HTTP 1.0 headers are set
properly for requests to the back-end server.

■ ExpireForProxy="YES" will expire cookie provider redirects carrying the SMSESSION
cookie in the query string.

Security Considerations

Browser sessions can persist after logout, so removing the SMSESSION cookie does not
prevent a user from using the same browser session to view previously cached files. This
problem occurs because the proxy server is not aware of the logout request and retains
any protected/unprotected content in cache for the cache-control: private user until it
timed out (cache-control: max-age=60). Thus, such a request would result in a page
returned with a valid SMSESSION cookie. The only way to ensure security is to disable
keep-alives or close the browser.

Further, the local browser cache is affected by the private/max-age combination since it
observes local cache across sessions. For this reason, the max-age time for protected
resources should be as short as possible.

Employing the if-modified-since and if-none-match request headers when the
allowcacheheaders="FALSE" configuration setting is used (default) does not prevent the
proxy server from observing these headers. Thus, these observed headers take effect on
the request according to the proxy server.

You could work around this issue by installing:

■ a Web Agent on the proxy server.

■ another filter that removes these headers from the request.

Since HTTP 1.0, HTTP 1.1, or higher use different headers for specifying instructions to
caching proxies, these versions should be configured in a way to ensure the most
appropriate handling based on the type of connection.

Agents and Reverse Proxy Servers

234 Web Agent Configuration Guide

Agents and Reverse Proxy Servers

See any of the following topics to manage your CA SiteMinder® agent that is deployed
on reverse proxy servers:

■ Learn how reverse proxy servers work with CA SiteMinder® (see page 234).

■ Set the SM_PROXYREQUEST HTTP Header for the CA SiteMinder® Secure Proxy
Server (see page 236).

■ Implement Application Request Routing (ARR) on IIS web servers (see page 236).

■ Learn about the reverse proxy deployment factors. (see page 244)

■ Configure an Apache-based web server as a reverse proxy (see page 245).

■ Configure an Oracle iPlanet 7.0 server as a reverse proxy (see page 249).

How Reverse Proxy Servers Work with CA SiteMinder®

A reverse proxy server is a proxy server that acts on behalf of an enterprise to forward
requests to the internal network of an organization. The reverse proxy server allows
clients to access resources on backend servers (those servers behind a firewall).

Reverse proxy servers provide the following advantages:

■ Users within a cookie domain can access resources on backend servers without
reauthenticating. Users from other domains must authenticate through the reverse
proxy server and typically, a firewall before gaining access to those same backend
servers.

■ Users can access different resources that are hosted on several backend servers
using the same domain name.

■ Reverse proxy agents support the same features as other CA SiteMinder® agents.

■ Protection resources that are on servers for which a CA SiteMinder® agent is not
supported. In this situation, deploy a reverse proxy server before the backend
server. The supported agent protects the resources hosted on the backend server.
The backend server does not require a CA SiteMinder® agent.

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 235

CA SiteMinder® agents that are installed on the reverse proxy server can protect
resources on backend servers. The following illustration shows a network with a reverse
proxy server using a CA SiteMinder® agent:

CA SiteMinder® Secure Proxy Server

For users who require a more sophisticated reverse proxy solution, CA SiteMinder® SPS
provides the following benefits over the Apache or Oracle iPlanet-based CA SiteMinder®
Reverse Proxy Agent:

■ An embedded and fully supported web server, including SSL accelerator card
support and a GUI tool for managing keys and certificates

■ Support for multiple session schemes (cookie-based, and cookie-less)

■ Support for flexible proxy rules, such as the following:

– Support for rules that are based on HTTP headers and CA SiteMinder®
responses, in addition to URLs.

– Ease of use for complex rules.

Agents and Reverse Proxy Servers

236 Web Agent Configuration Guide

SM_PROXYREQUEST HTTP Header for CA SiteMinder® Processing with Secure Proxy Server

CA SiteMinder® SPS introduces a new layer in the traditional CA SiteMinder®
architecture. This layer forwards or redirects all requests to destination servers in the
enterprise.

When CA SiteMinder® SPS processes a request, the URL requested by the user is
preserved in an HTTP header variable named SM_PROXYREQUEST. Other applications
that require the original URL requested by a user before CA SiteMinder® SPS proxied the
request can use this header.

CA SiteMinder® IIS 7.x Web Servers and Application Request Routing (ARR)

The CA SiteMinder® 12.51 Agent for IIS supports the Application Request Routing
feature of IIS 7.x. The following configurations are supported:

■ An IIS 7.x web server running both ARR and the CA SiteMinder® Agent for IIS in a
DMZ, as shown in the following illustration (see page 242):

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 237

■ Multiple IIS 7.x web servers running CA SiteMinder® Web Agents for IIS behind
another IIS 7.x server in the DMZ running ARR. This configuration is shown in the
following illustration (see page 243):

■ An IIS 7.x web server running both ARR and the CA SiteMinder® Agent for IIS in a
DMZ, and multiple IIS 7.x web servers running the CA SiteMinder® Agent for IIS
behind the the ARR server. This configuration is shown in the following illustration
(see page 238):

Agents and Reverse Proxy Servers

238 Web Agent Configuration Guide

How to Set up an IIS 7.x Server with ARR and CA SiteMinder® in your DMZ with other CA
SiteMinder® Agents for IIS Operating Behind the DMZ

The CA SiteMinder® Agent for IIS protects your entire IIS environment with the following
configuration:

■ An IIS 7.x web server with Application Request Routing (ARR) and a CA SiteMinder®
Agent for IIS in your DMZ (as a front-end server).

■ Multiple IIS 7.x web servers behind the ARR server in the DMZ, with each using the
CA SiteMinder® Web Agent or Agent for IIS.

Note: Only certain CA SiteMinder® Web Agents support operating as a
reverse-proxy server. However any web server hosting a supported CA SiteMinder®
Web Agent or Agent for IIS can accept traffic from a reverse proxy server running
CA SiteMinder®. For more information, see the Platform Support Matrix.

To implement the previous configuration, use the following multi-step process:

1. Install and configure ARR on the IIS 7.x web server in your DMZ (front end).

Note: For more information about Application Request Routing (ARR), go to the IIS
website, and search for the phrase, "Application Request Routing."

2. Install and configure a CA SiteMinder® Agent for IIS on your IIS 7.x web server in
your DMZ (front-end).

Note: For more information, see the Web Agent Installation Guide for IIS.

3. Set the Web Agent Configuration parameters for the CA SiteMinder® Agent for IIS in
your DMZ (see page 239).

4. Install and configure a CA SiteMinder® Agent for IIS on your first IIS 7.x web server
behind your DMZ (back-end). For more information, see the Web Agent Installation
Guide for IIS.

Note: In this context, the first server refers to the IIS web server in a farm where
the shared configuration information is stored. A node refers to any other IIS web
servers in the farm which read the shared configuration from the first server.

5. Install and configure a CA SiteMinder® Agent for IIS on your other IIS 7.x web server
nodes behind your DMZ (back-ends).

6. Set the Web Agent Configuration Parameters for all of your IIS 7.x Servers using CA
SiteMinder® behind the DMZ (see page 241). Include the first web server and all
nodes.

http://learn.iis.net/

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 239

Set the CA SiteMinder® Web Agent Configuration Parameters for your IIS 7.x ARR Server in the
DMZ

This section describes how to set the Web Agent Configuration parameters running the
CA SiteMinder® Agent for IIS in the following situation:

■ An IIS 7.x Web Server operates in the DMZ using ARR and the CA SiteMinder® Agent
for IIS (front end).

■ Other IIS 7.x Web servers behind the DMZ receive requests from the ARR server,
but do not use the CA SiteMinder® Agent for IIS (back end).

Follow these steps:

1. Verify the following items:

■ ARR 2.0 is installed and configured on the web server in the DMZ.

■ The CA SiteMinder® 12.51 Agent for IIS is installed and configured on the web
server in the DMZ.

2. Open the Administrative UI.

3. Open the Agent Configuration Object (ACO) associated with your CA SiteMinder®
Agent for IIS (the front–end running in the DMZ).

4. Locate the following parameter:

ProxyTrust

Instructs the agent on a destination server to trust authorizations received
from a CA SiteMinder® agent on a proxy server. A destination server is a server
that is behind a reverse proxy server. Setting this value to yes increases
efficiency because only the agent on the proxy server contacts the Policy Server
for authorization. The agent operating on the destination server does not
contact the Policy Server again reauthorize users.

Default: No

5. Verify that the value set in the ProxyTrust parameter is no.

6. Locate the following parameter:

ProxyAgent

Specifies if a Web Agent is acting as a reverse proxy agent.

When the value of this parameter is yes, the CA SiteMinder® agent on the
front-end server preserves the original URL that the user requested in the
SM_PROXYREQUEST HTTP header. This header is created whenever protected
and unprotected resources are requested. The back-end server can read this
header to obtain information about the original URL.

Default: No

7. Change the value of the ProxyAgent parameter to yes.

8. Submit your changes to the Agent Configuration Object.

Agents and Reverse Proxy Servers

240 Web Agent Configuration Guide

The Web Agent Configuration parameters are set.

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 241

Set the Web Agent Configuration Parameters for your IIS 7.x Servers using CA SiteMinder®
Behind the DMZ

This section describes how to set the Web Agent Configuration parameters running the
CA SiteMinder® Agent for IIS in the following situation:

■ An IIS 7.x server operates in the DMZ using ARR (front end).

■ Other IIS 7.x servers behind the DMZ receive requests from the ARR server. Those
servers also use the CA SiteMinder® Agent for IIS (back end).

Follow these steps:

1. Verify the following items:

■ ARR 2.0 is installed and configured on the web server in the DMZ.

■ The CA SiteMinder® 12.51 Agent for IIS is installed and configured on the first
web server and all the nodes behind your DMZ.

2. Open the Administrative UI.

3. Open the Agent Configuration Object (ACO) associated with the first IIS server
deployed behind the DMZ.

4. Locate the following parameter:

ProxyTrust

Instructs the agent on a destination server to trust authorizations received
from a CA SiteMinder® agent on a proxy server. A destination server is a server
that is behind a reverse proxy server. Setting this value to yes increases
efficiency because only the agent on the proxy server contacts the Policy Server
for authorization. The agent operating on the destination server does not
contact the Policy Server again reauthorize users.

Default: No

5. Change the value of the ProxyTrust parameter to yes.

6. Locate the following parameter:

ProxyAgent

Specifies if a Web Agent is acting as a reverse proxy agent.

When the value of this parameter is yes, the CA SiteMinder® agent on the
front-end server preserves the original URL that the user requested in the
SM_PROXYREQUEST HTTP header. This header is created whenever protected
and unprotected resources are requested. The back-end server can read this
header to obtain information about the original URL.

Default: No

7. Verify that the value of the ProxyAgent parameter is set to no.

8. Submit your changes to the Agent Configuration Object.

Agents and Reverse Proxy Servers

242 Web Agent Configuration Guide

9. Open the Agent Configuration Object (ACO) associated with an IIS server node
deployed behind the DMZ.

10. Repeat Steps 5 through 10 on each IIS web server node, until all the nodes behind
the DMZ are configured.

The Web Agent Configuration parameters are set.

How to Set Up an IIS 7.x Server with ARR and CA SiteMinder® in your DMZ

To set up an IIS 7.x web server with Application Request Routing (ARR) and a CA
SiteMinder® Agent for IIS in your DMZ (as a front-end server), use the following
multi-step process:

1. Install and configure ARR on the IIS 7.x web server in your DMZ (front end).

Note: For more information about Application Request Routing (ARR), go to the IIS
website, and search for the phrase, "Application Request Routing."

2. Install and configure a CA SiteMinder® Agent for IIS on your IIS 7.x web server in
your DMZ (front-end).

Note: For more information, see the Web Agent Installation Guide for IIS.

http://learn.iis.net/

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 243

How to Set up your IIS 7.x Servers with CA SiteMinder® When Operating Behind an ARR Server
in a DMZ

The CA SiteMinder® Agent for IIS supports the following configuration using Application
Request Routing (ARR):

■ Operating several back-end web servers behind a DMZ-based IIS 7.x web server
running ARR.

■ Protecting those back end servers with CA SiteMinder® Web Agents or Agents for
IIS.

Note: Only certain CA SiteMinder® Web Agents support operating as a
reverse-proxy server. However any web server hosting a supported CA SiteMinder®
Web Agent or Agent for IIS can accept traffic from a reverse proxy server running
CA SiteMinder®. For more information, see the Platform Support Matrix.

To implement this configuration, use the following multi-step process:

1. Install and configure ARR on the IIS 7.x web server in your DMZ (front end).

Note: For more information about Application Request Routing (ARR), go to the IIS
website, and search for the phrase, "Application Request Routing."

2. Install and configure a CA SiteMinder® Agent for IIS on your first IIS 7.x web server
behind your DMZ (back-end). For more information, see the Web Agent Installation
Guide for IIS.

Note: In this context, the first server refers to the IIS web server in a farm where
the shared configuration information is stored. A node refers to any other IIS web
servers in the farm which read the shared configuration from the first server.

3. Install and configure a CA SiteMinder® Agent for IIS on your other IIS 7.x web server
nodes behind your DMZ (back-ends).

http://learn.iis.net/

Agents and Reverse Proxy Servers

244 Web Agent Configuration Guide

CA SiteMinder® Reverse Proxy Deployment Considerations

Typically, when you deploy an Apache or Oracle iPlanet reverse proxy Agent, a firewall is
located between the Apache or Oracle iPlanet Web Agent and the servers hosting the
protected resources. The Policy Server should also be located behind the firewall.

The following illustration shows a CA SiteMinder® reverse proxy deployment.

Firewall

Apache or Sun Java

System Proxy Server/

Web Agent

Internet user

 Policy Server

User

Store

Policy

Store

Marketing

Resources

IIS

Payroll

Resources

IIS (SSL)

Finance

Resources

Oracle Application Server

Intranet user

Internet

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 245

When deploying a CA SiteMinder® reverse proxy Agent, consider the following:

■ If a policy has been configured to return response attributes, the variables are sent
to both the reverse proxy server and the backend web server on which the
protected resource resides. When a request is made for a protected resource, the
Policy Server first sends response attributes (CGI or HTTP variables) to the Agent on
the Apache or Oracle iPlanet server. The Agent then puts the response attributes in
the request that is sent to the backend server.

■ If any of the backend servers or protected applications provide their own
authentication functionality, the authentication must be disabled. Disabling the
backend authentication ensures that CA SiteMinder®’s authentication takes
precedence.

Important! When configuring the cache for the reverse proxy be aware that all
cookies are cached, including the SMSESSION cookie. For assistance see your
Apache or Oracle iPlanet web server documentation.

More Information

Define HTTPS Ports (see page 91)

How to Configure an Apache Reverse Proxy Server

You can configure an Apache web server to function as a reverse proxy server with any
CA SiteMinder® agent. The following process lists the steps for configuring an Apache
reverse proxy server:

1. Update the Apache web server configuration file (see page 246).

2. Update the agent configuration parameters for a CA SiteMinder® agent (see
page 248).

Agents and Reverse Proxy Servers

246 Web Agent Configuration Guide

Update the Apache Web Server Configuration File

Update the configuration file of Apache web server to make the Apache web server
function as a reverse proxy server with a CA SiteMinder® agent.

Follow these steps:

1. Open the httpd.conf file available at the following location:

/etc/httpd/conf/httpd.conf

2. Add the following directives to the httpd.conf file:

ProxyPass

Allows mapping of remote servers to the local server. The values in this
directive use the following format:

/local_virtual_path partial_URL_of_remote_server

Example: ProxyPass /realma/ http://server.example.org/realma/

ProxyPassReverse

Allows adjustment of the location header by the Apache server on HTTP
redirect responses. The values in this directive use the following format:

/local_virtual_path partial_URL_of_remote_server

Example: ProxyPassReverse /realma/ http://server.example.org/realma/

For the Apache web server, add the following Proxy Pass settings to the
configuration file.

SiteMinder Administrative UI

<Location "/iam/siteminder/">

 <IfModule proxy_module>

 ProxyPass http://hostname:port/iam/siteminder/

 ProxyPassReverse http://hostname:port/iam/siteminder/

 </IfModule>

 # Alternate unavailable page

 ErrorDocument 503 /siteminderagent/adminui/HTTP_SERVICE_UNAVAILABLE.html

</Location>

CA Styles r5.1.1

<Location "/castylesr5.1.1/">

 <IfModule proxy_module>

 ProxyPass http://hostname:port/castylesr5.1.1/

 ProxyPassReverse http://hostname:port/castylesr5.1.1/

 </IfModule>

</Location>

Note: hostname:port refers to the host and port of the application server running
the Administrative UI.

3. Uncomment the following line in the configuration file.

LoadModule proxy_module modules/mod_proxy.so

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 247

4. Save and close the configuration file.

5. Restart the Apache web server.

Agents and Reverse Proxy Servers

248 Web Agent Configuration Guide

Update the Agent Configuration Parameters for a SiteMinder Agent

For Apache-based servers behind the Apache reverse proxy server, update the following
agent configuration parameters.

Follow these steps:

1. Set the value of the following parameter to yes:

ProxyAgent

Specifies if a Web Agent is acting as a reverse proxy agent.

When the value of this parameter is yes, the CA SiteMinder® agent on the
front-end server preserves the original URL that the user requested in the
SM_PROXYREQUEST HTTP header. This header is created whenever protected
and unprotected resources are requested. The back-end server can read this
header to obtain information about the original URL.

Default: No

2. Set the following parameter:

ProxyTimeout

Specifies the number of seconds the reverse proxy server waits for the CA
SiteMinder® agent that is deployed behind it to respond to a request.

Default: 120

Note: This parameter applies to Apache-based agents only.

3. (Optional) Set the following parameter:

ProxyTrust

Instructs the agent on a destination server to trust authorizations received
from a CA SiteMinder® agent on a proxy server. A destination server is a server
that is behind a reverse proxy server. Setting this value to yes increases
efficiency because only the agent on the proxy server contacts the Policy Server
for authorization. The agent operating on the destination server does not
contact the Policy Server again reauthorize users.

Default: No

4. Edit the BadURLChars parameter by removing all occurrences of the following value
from the list:

%

5. Set the httpsports parameter to indicate to the Apache server which port is set up
for SSL.

6. Restart the Apache web server.

Note: For more information about modifying agent configuration parameters, see
the Policy Server Configuration Guide.

Agents and Reverse Proxy Servers

Chapter 16: Advanced Configuration Settings 249

Configure an Oracle iPlanet 7.0 Reverse Proxy Server

You can use a Oracle iPlanet 7.0 web server as a reverse proxy with CA SiteMinder®.

Note: The CA SiteMinder® Agent Configuration wizard only modifies the default obj.conf
file on the Oracle iPlanet (formerly Sun Java System) web server. To protect other
instances or reverse proxy deployments with CA SiteMinder®, copy the CA SiteMinder®
settings from the default obj.conf file to any respective instance_name-obj.conf files.
For example, your web server created an obj.conf file when you installed it, but you
later added a server instance named my_server.example.com. To protect resources on
my_server.example.com with CA SiteMinder®, copy the CA SiteMinder® settings the
wizard added from the obj.conf file to the my_server.example.com-obj.conf file.

Follow these steps:

1. Add the following directive to the instance_name-obj.conf file:

NameTrans

Specifies the local and remote virtual paths using the following format:

NameTrans fn="map" from="local_virtual_path"

name="reverse-proxy-/local_virtual_path" to="remote_virtual_path"

Example:

NameTrans fn="map" from="/realma" name="reverse-proxy-/reamla"

to="http://server.example.org/realma/"

2. Add the following directives at the end of the obj.conf file:

Object name

Specifies the name of the local virtual path and the URL of the remote virtual
path used in the NameTrans directive, using the following format:

<Object name="reverse-proxy-/local_virtual_path">

Route fn="set-origin-server" server="http://remote_server_URL:port"

</Object>

Example:

<Object name="reverse-proxy-/realma">

Route fn="set-origin-server" server="http://server.example.org:port"

</Object>

Object ppath

Specifies the partial path that is given to the server by the client.

Example:

<Object ppath="http:*">

Service fn="proxy-retrieve" method="*"

</Object>

3. Restart the web server.

HTTP Header Settings

250 Web Agent Configuration Guide

The reverse proxy is configured.

HTTP Header Settings

Use any of the following settings to control URL processing:

■ Remove the Server HTTP header to accommodate the URLScan utility (see
page 250).

Remove the Server HTTP Header if Using the URLScan Utility

If you want to use the URLScan utility from Microsoft to remove the Server HTTP Header
from the responses your IIS Web server sends, you also need to set the following
parameter for your IIS Web Agent:

 SuppressServerHeader

Prevents an IIS Web Agent from returning the Server HTTP Header in its
responses. When the value of this parameter is set to no, the Web Agent sends
the Server header with its responses and the IIS Web server passes it along to
the client. When the value of this parameter is set to yes, the web agent does
not send the Server header in its responses.

Default: No

The URLScan utiltiy removes the header from the IIS server's responses, while hte
SuppressServerHeader parameter removes the header from the Web Agent's responses.
Both the utility and the parameter must be set to prevent the Server header from being
sent to the client in all responses.

To keep the Web Agent from sending the Server header in responses, set the value of
the SuppressServerHeader parameter to yes.

URL Settings

Use any of the following settings to control how URLs are processed:

■ Specify the protocol using lowercase characters (see page 154).

■ Decode query data in a URL (see page 91).

■ Set a maximum URL size (see page 252).

URL Settings

Chapter 16: Advanced Configuration Settings 251

Specify Redirect URL Protocols with Lowercase Characters

If you protect legacy applications that do not confirm to RFC 2396 with a forms-based
authentication scheme, and you need the protocol portions of URLs to be lowercase,
then set the following parameter:

LowerCaseProtocolSpecifier

Specifies whether the scheme (protocol) portion of a redirect URL uses only
lowercase characters. This configuration parameter accommodates legacy
applications that do not confirm to RFC 2396. This RFC states that applications must
handle the protocol portion of a URL in both uppercase and lowercase. Change this
parameter in any of the following situations:

■ You use legacy applications that do not confirm to RFC 2396.

■ Your redirect URLS contain query data.

■ You use an HTML-forms (FCC) authentication scheme.

Default: No (uppercase characters are used HTTP, HTTPS).

Example: Yes (lowercase characters are used http, https).

To specify lowercase protocols for the URLs in your environment, set the value of the
LowerCaseProtocolSpecifier parameter to yes.

Decode Query Data in a URL

To have the Web Agent’s Base64 algorithm decode a URL’s query data before calling the
Policy Server (so the Policy Server sees the proper resource), use the following
parameter:

DecodeQueryData

Specifies whether the Web Agent decodes the query data in a URL before
calling the Policy Server. Set this parameter to yes if you need do any of the
following tasks in your environment:

■ If you need to ensure the rules filer acts against the proper string.

■ If you need to or write rules against the data in a query string.

Default: No

To have the Web Agent decode the query data in a URL before calling the Policy Server,
set the value of the DecodeQueryData parameter to yes.

IIS Web Server Settings

252 Web Agent Configuration Guide

Set a Maximum URL Size

You can increase the maximum URL size that a Web Agent can handle with the following
parameter:

MaxUrlSize

Specifies the maximum size (in bytes) of a URL that a Web Agent can handle.
Because different web servers have different limitations on URL length, check
the documentation from your web server vendor before setting this parameter.

Default: 4096 B

To change the maximum URL size, change the number of bytes specified in the
MaxUrlSize parameter.

IIS Web Server Settings

Use any of the following settings to manage your Agent for IIS:

■ Remove integrated windows authentication (IWA) redirection with the
InlineCredentials parameter (see page 252).

■ Record the user name and transaction ID in IIS server logs (see page 254).

■ Use the NetBIOS name or UPN for IIS authentication (see page 256).

■ Configure NT Challenge/Response authentication (see page 256).

■ Implement an information card authentication scheme (see page 262).

■ Configure an FCC template for an information card authentication scheme (see
page 263).

■ Control IIS 7.x module execution order (see page 264).

■ Use an IIS proxy user account (see page 266).

■ Enable anonymous user access (see page 267).

■ Disable Windows security context on an Agent for IIS (see page 267).

■

Configure Agents for IIS to Obtain User Credentials Without Redirecting to an
NTLM Credential Collector (NTC)

By default, CA SiteMinder® Agents redirect requests for resources protected by the
Windows authentication scheme to an NTLM credential collector (NTC) to retrieve their
Windows credentials.

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 253

You can configure CA SiteMinder® Agents for IIS to obtain the credentials of the user
from the HTTP request inline (that is, without redirecting to an NTC).

The following illustration describes the differences between the two credential
collection methods:

To configure an agent to obtain credentials of the user from the HTTP request without
redirecting to an NTC, set the InlineCredentials configuration parameter as follows:

InlineCredentials

Specifies how the Agent for IIS handles user credentials. When the value of this
parameter is yes, the Agent for IIS reads the credentials directly from the HTTP
request. When the value of this parameter is no, the Agent redirects to an NTC
credential collector.

Default: No

Note: If any CA SiteMinder® Agents in your environment are configured to use NTC
redirects, configure NT challenge/response authentication.

More information:

Configure Agents for IIS to Support NT Challenge/Response Authentication (see page
256)

IIS Web Server Settings

254 Web Agent Configuration Guide

Record the User Name and Transaction ID in IIS Server Logs

The Web Agent generates a unique transaction ID for each successful user authorization
request. The Agent adds the ID to the HTTP header. The ID is also recorded in the
following logs:

■ Audit log

■ Web server log (if the server is configured to log query strings)

■ Policy Server log

You can track user activities for a given application using the transaction ID.

Note: For more information, see the Policy Server documentation.

The transaction ID appears in the log as a mock query parameter in the log that is
appended to the end of an existing query string. The following example shows
transaction ID (in bold) appended to a query string (which ends with STATE=MA):

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realm/index.html,

STATE=MA&SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1

If no query parameters are in the URL, the Agent adds the transaction ID at the end of
the web server log entry. For example:

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realma/index.html,

SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1.

Note: Web Agents log user names and access information in native web server log files
when users access resources.

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 255

Agents protecting resources on IIS servers do not record the CA SiteMinder® transaction
ID and authenticated user name in the IIS server logs by default. Because these agents
can operate as ISAPI extensions (in Classic Pipeline mode), the server would have
already logged a transaction. You can force the agent to add this information with the
following parameters:

AppendIISServerLog

Instructs the agent to add the authenticated user name and CA SiteMinder®
transaction ID to the cs-uri-query field of the IIS server log. For URLs containing
query strings, commas separate the query string, CA SiteMinder® transaction
ID, and username in the cs-uri-query field of the IIS server log.

Default: No

SetRemoteUser

Specifies a value for the REMOTE_USER HTTP header variable which legacy
applications could possibly require.

Default: No

To record the transaction ID and user name in the IIS server log.

1. Set the value of the AppendIISServerLog parameter to yes.

2. Set the value of the SetRemoteUser parameter to yes.

The user name and transaction ID appears in the IIS server logs.

IIS Web Server Settings

256 Web Agent Configuration Guide

Use the NetBIOS Name or UPN for IIS Authentication

In an IIS network, you may have a NetBIOS name that is different than the domain name
for the location of a requested resource. When a user tries to access a protected
resource and there are multiple domain controllers, user authentication fails and the
web server log shows an "IIS logon failure." You can control whether the UPN or
NetBIOS name is sent to the IIS web server with the following parameter:

UseNetBIOSforIISAuth

Specifies whether the IIS 6.0 Web Agent sends the user principal name (UPN)
or the NetBIOS name to the IIS 6.0 web server for IIS user authentication.

Note: This parameter is valid only if an Active Directory user store is associated
with the Policy Server.

If you enable this parameter, the Policy Server extracts the UserDN, the UPN,
and the NetBIOS name from the Active Directory during CA SiteMinder®
authentication, and sends this data back to the IIS 6.0 Web Agent.

Depending on whether or not you selected the Run in Authenticated User's
Security Context option for the user directory with the Administrative UI and
how you set the UseNetBIOSforIIAuth parameter, a user's logon credentials are
sent as follows:

■ When the UseNetBIOSforIISAuth parameter is set to no, the IIS 6.0 Web
Agent sends the UPN name.

■ When the UseNetBIOSforIISAuth parameter is set to yes, the Web Agent
sends the NetBIOS name.

The IIS web server authenticates the user with the credentials it receives from
the Web Agent.

Default: No

To have the Web Agent use the NetBIOS name for IIS authentication, set the
UseNetBIOSAuth parameter to yes.

Configure Agents for IIS to Support NT Challenge/Response Authentication

If any CA SiteMinder® Agents in your environment are configured to use NTC redirects,
configure NT challenge/response authentication.

With NT challenge/response authentication, the IIS web server challenges the Internet
Explorer browser of a user when that user requests access to a resource.

Note: NT challenge/response authentication only works with Internet Explorer
browsers.

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 257

You can implement NT challenge/response authentication in either of the following
ways:

■ Challenge users when they try to access protected resources. Users in single-sign on
environments are only challenged the first time that they request a resource.

■ Have your users configure the automatic logon feature of their Internet Explorer
browser.

The automatic logon feature allows users to access a resource without being
challenged. The authentication process still takes place, but the NT
challenge/response process between the browser and the server is transparent to
the user. Automatic logon is typically used for Intranets where security is less strict
and you want users to have seamless access to resources. We do not recommend
using the Automatic logon feature for communication across the Internet.

CA SiteMinder® Agents use credential collectors to gather the Windows credentials of
users for the NT challenge/response authentication scheme. The agent supports the
NTC extension for collecting NTLM credentials.

Note: Set the NTCEXT only if you want to change this default behavior.

To make CA SiteMinder® operate with NT challenge/response authentication, use the
following process:

1. Set up the NT Challenge response authentication for the IIS web server with the
following tasks:

a. Map the .ntc file extension (see page 258).

b. Create and configure the virtual directory, and then verify that it requires the
NT challenge and response credentials (see page 258).

2. Configure the Windows authentication scheme for NT challenge/response
authentication in the Administrative UI (see page 260).

3. Specify an NTLM credential collector (see page 171).

4. Configure policies for NT Challenge/Response authentication using the
Administrative UI.

Note: For more information, see the Policy Server Configuration Guide.

5. (Optional) Have your users configure the automatic logon feature of their Internet
Explorer browser (see page 261).

The NT Challenge Response Authentication for IIS is configured.

More Information

Configure Agents for IIS to Obtain User Credentials Without Redirecting to an NTLM
Credential Collector (NTC) (see page 252)

IIS Web Server Settings

258 Web Agent Configuration Guide

Map the .NTC File Extension

Map the .NTC file extension to the ISAPIWebAgent.dll application to configure NT
Challenge/Response Authentication on the IIS Web Server.

To map the .NTC file extension

1. Open the Internet Services Manager.

2. Right-click Web Sites in the left pane, and then right-click Default Web Site in the
right pane and select Properties.

The Default Web Site Properties dialog appears.

3. Click the Home Directory tab.

4. In the Application Settings section, click Configuration.

The Application Configuration dialog appears.

5. Click Add.

The Add/Edit Application Extension Mapping dialog opens.

a. In the Executable field, click Browse and locate the following file:
web_agent_home/bin/ISAPIWebAgent.dll.

b. Click Open.

c. In the Extension field, enter .ntc.

6. Click OK three times.

The Add/Edit Application Extension Mapping dialog, the Application Configuration
dialog and the Default Web Site Properties dialog close. The .ntc file extension is
mapped.

Create and Configure the Virtual Directory for Windows Authentication Schemes (IIS 7.5)

To use the CA SiteMinder® Windows authentication scheme, configure a virtual
directory on the IIS 7.x web server. The virtual directory requires Windows challenge
and response for credentials.

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 259

Follow these steps:

1. Open the Internet Information Services (IIS) Manager.

2. In the left pane, expand the following items:

■ The web server icon

■ The Sites folder

■ The Default Web Site icon

3. Right-click the siteminderagent virtual directory, and then select Add Virtual
Directory.

The Add Virtual Directory dialog appears.

4. In the Alias field, type the following value:

ntlm

5. Click the Browse button (next to the Physical Path field), and then locate the
following directory:

web_agent_home\samples

The virtual directory is created.

6. Configure the virtual directory with one of the following steps:

■ To protect all the resources on the entire website with the CA SiteMinder®
Windows authentication scheme, click the Default Web Site icon.

■ If you do not want to protect the entire website, with the CA SiteMinder®
Windows authentication scheme, click the ntlm virtual directory (you created in
Step 4).

7. Double-click the Authentication icon.

 The Authentication dialog appears.

8. Do the following steps:

a. Right-click Anonymous Authentication, and then select Disable.

b. Right-click Windows Authentication, and then select Enable.

The virtual directory for Windows authentication schemes is configured.

Note: Reboot the web server for these changes to take effect.

IIS Web Server Settings

260 Web Agent Configuration Guide

Configure the Windows Authentication Scheme for Challenge/Response Authentication

To implement NT Challenge/Response authentication, provide the policy administrator
responsible for configuring the Windows authentication scheme with the following
values:

Server Name

The fully qualified domain name of the IIS web server, for example:

server1.myorg.com

Target

 /siteminderagent/ntlm/smntlm.ntc

Note: The directory must correspond to the virtual directory already configured by
the installation. The target file, smntlm.ntc, does not need to exist and can be any
name that ends in .ntc or the custom MIME type that you use in place of the
default.

Libra!ry

smauthntlm

More Information

MIME Types for Credential Collectors (see page 142)

Specify an NTLM Credential Collector

The NTLM credential collector (NTC) is an application within the Web Agent. The NTC
collects NT credentials for resources that the Windows authentication scheme protects.
This scheme applies to resources on an IIS web server that are accessed by Internet
Explorer browsers.

Each credential collector has an associated MIME type. For IIS, the NTC MIME TYPE is
defined in the following parameter:

NTCExt

Specifies the MIME type that is associated with the NTLM credential collector.
This collector gathers NT credentials for resources that the Windows
authentication scheme protects. This scheme applies to resources on IIS web
servers that only Internet Explorer browser users access.

You can have multiple extensions in this parameter. If you are using an Agent
Configuration Object, select the multivalue option. If you are using a local
configuration file, separate each extension with a comma.

Default: .ntc

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 261

If your environment already uses the default extension that the NTCExt parameter
specifies, you can specify a different MIME type.

To change the extension that triggers the credential collector, add a different file
extension to the NTCExt parameter.

Configure Automatic Logon for Internet Explorer

To authenticate users without the agent challenging them for their credentials, Internet
Explorer browser users must configure the Automatic Logon browser security setting.

Follow these steps:

1. Start the Internet Explorer browser.

2. Open the Internet Options dialog. (Refer to the Internet Explorer online help to find
out how to open the dialog for your version of the browser).

3. Click the Security tab.

4. Click the correct security zone.

5. Click Custom Level.

6. Scroll down to the User Authentication section. Under the Logon option, click the
Automatic Logon with current username and password option.

7. Apply the changes.

The Security Settings dialog and the Internet Options dialog close. Your settings are
saved, and automatic login is configured.

IIS Web Server Settings

262 Web Agent Configuration Guide

How to Implement an Information Card Authentication Scheme

CA CA SiteMinder® supports an Information Card Authentication Scheme (ICAS) that
implements Windows CardSpace. Users who request access to protected resources can
select an authentication card. CA SiteMinder® uses the information contained in the
card to verify the identity of the user.

Implementing an ICAS requires configuration changes on the following CA SiteMinder®
components:

■ The server hosting the CA SiteMinder® Web Agent

■ The CA SiteMinder® Policy Server

■ The smkey database

Follow these steps:

1. Do the following tasks on the web server:

a. Enable SSL communication on the IIS web server.

Note: For more information, see your Microsoft documentation, or go to
http://support.microsoft.com/

b. Export the web server certificate as a .pfx file.

c. Customize the CA SiteMinder® InfoCard.fcc template.

2. Do the following tasks on the Policy Server:

a. Install the JCE on the Policy Server.

b. Update the java.security file on the Policy Server.

c. Update the config.properties file on the Policy Server.

d. If you do not already have an smkey database, Create one with the Policy
Server Configuration wizard.

e. Add the .pfx file certificate from the web server to the smkey database.

f. Configure the user directory in the Policy Server.

g. Create a custom authentication scheme for CardSpace using the Administrative
UI.

h. (Optional) Store the claims in the session store to use in responses.

i. (Optional) Enable personalization by allowing the retrieval of claim values from
the session store.

j. (Optional) Configure an active response to retrieve a stored claim value.

http://support.microsoft.com/

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 263

Configure an FCC Template for an Information Card Authentication Scheme

The CA SiteMinder® Web Agent includes a Forms Credential Collector (FCC) template
that you can use to implement an ICAS in CA SiteMinder®.

Follow these steps:

1. Open the following default FCC file with a text editor:

web_agent_home\samples_default\forms\InfoCard.fcc

2. Save a copy of the file to the following directory (creating a copy preserves the
default FCC settings in case you need them later):

web_agent_home\samples\forms\

3. Record the following information from your copy of the FCC file:

Important! The Policy Server needs this information for its configuration.

■ The fully qualified domain name of the IIS web server that hosts the Web
Agent.

■ The name of the FCC file you saved in Step 2.

■ The value (without quotation marks) of the requiredClaims parameter tag in
the FCC file from Step 2. See the following example:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonaliden

tifier

■ (Optional) The value of Level of Assurance (LOA) requiredClaims parameter tag
when White List processing is done. See the following example:

< param name="requiredClaims" value="

http://idmanagement.gov/icam/2009/09/imi_1.0_profile#assurancelevel1 ”/>

The URIs for the various LOA’s are

http://idmanagement.gov/icam/2009/09/imi_1.0_profile#assurancelevel1

http://idmanagement.gov/icam/2009/09/imi_1.0_profile#assurancelevel2

http://idmanagement.gov/icam/2009/09/imi_1.0_profile#assurancelevel3

4. (Optional) Use the text editor to make any of the following changes in copy of the
FCC file.

■ To use a custom logo, replace the netegrity_logo.gif file with your own graphic
and update the following link in the FCC file accordingly:

IIS Web Server Settings

264 Web Agent Configuration Guide

Control IIS 7.x Module Execution Order when using the CA SiteMinder® Agent for
IIS

When you install and configure the CA SiteMinder® Agent for IIS on an IIS web server,
the Agent for IIS executes before any other modules. If your IIS environment requires
another module to execute first, you can change the number set the following location
in the Windows Registry:

HKLM\SOFTWARE\Wow6432Node\Netegrity\SiteMinder Web Agent\Microsoft

IIS\RequestPriority

For example, suppose another module in your IIS 7.x web server (like UrlScan) is
assigned the same execution priority as the CA SiteMinder® Agent for IIS. Use this
setting to control when the CA SiteMinder® module executes.

Follow these steps:

1. Open the Windows Registry Editor on your IIS web server.

2. Expand the following keys:

HKLM\SOFTWARE\Wow6432Node\Netegrity\SiteMinder Web Agent\Microsoft IIS

3. Locate the following value:

RequestPriority

4. Change the value of RequestPriority to the number which corresponds to the
following value you want:

PRIORITY_ALIAS_FIRST

Executes the CA SiteMinder® Agent for IIS before any other modules on your IIS
web server. This setting is the default.

Example: 0 (First)

Default: 0

PRIORITY_ALIAS_HIGH

Executes the CA SiteMinder® Agent for IIS module after any modules set to
execute first, but before any modules set to execute with medium, low or last
priority.

Example: 1 (High)

PRIORITY_ALIAS_MEDIUM

Executes the CA SiteMinder® Agent for IIS module after modules set to execute
first and high, but before modules set to execute with low or last priority.

Example: 2 (Medium)

PRIORITY_ALIAS_LOW

Executes the CA SiteMinder® Agent for IIS module after modules set to execute
first, high, and medium, but before modules set to execute with last priority.

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 265

Example: 3 (Low)

PRIORITY_ALIAS_LAST

Executes the module for the CA SiteMinder® Agent for IIS after all other
modules.

Example: 4 (Last)

5. Save your changes and close the registry editor.

6. Test your settings and verify that the module you want executes before the Agent
for IIS module executes.

IIS Web Server Settings

266 Web Agent Configuration Guide

Use an IIS Proxy User Account (IIS Only)

If users try to access resources on an IIS web server protected by CA SiteMinder®, the
Web Agent may deny access if those users lack sufficient IIS privileges for those
resources. For example, if users are stored in an LDAP user directory on a UNIX system,
those users may not have access to the Windows system with the IIS web server.

The IIS web server has a default proxy account that has sufficient privileges for users
who are granted access by CA SiteMinder®. The Web Agent uses the values of the
DefaultUserName and DefaultPassword parameters as credentials even if the user has a
valid Windows security context.

Follow these steps:

1. Set the value of the ForceIISProxyUser parameter to one of the following values:

■ If access to the applications on the IIS server is based on the users' credentials
themselves, set the value of the ForceIISProxyUser parameter to yes.

■ If access to the applications on the IIS server is based on a specific account
(such as a proxy) which acts on behalf of the users, set the value of the
ForceIISProxyUser parameter to no.

Default: No

2. If you are not using either of the following Windows features, continue with Step 3:

■ The Windows authentication scheme

■ The Windows User Security Context

3. Enter the user name for the proxy user account in the DefaultUserName parameter.
If you are using a domain account, and the local machine is not a part of that
domain, use the syntax shown in the following example:

DefaultUserName=Windows_domain\acct_with_admin_privilege

Otherwise, specify just the user name.

4. Enter the password associated with the existing Windows user account in the
DefaultPassword parameter.

Important! We recommend setting this parameter in your Agent Configuration
Object because you can encrypt it. If you set it in a local configuration file, the value
is stored unencrypted in plain text.

The IIS Proxy account is configured.

IIS Web Server Settings

Chapter 16: Advanced Configuration Settings 267

Enable Anonymous User Access

If you do not want users to have access as the proxy user, you can set the following
parameter:

UseAnonAccess

Instructs the IIS Web Agent to execute the web application as an anonymous
user, instead of using credentials of the proxy user.

Default: No

Note: This parameter applies to IIS Web Agents only.

To enable anonymous user access, set the UseAnonAccess parameter to yes.

Disable Windows Security Context on Agents for IIS

The CA SiteMinder® Policy Server obtains the Windows security context from the
session of the user. In most situations, this environment is acceptable for single-sign on
because the session information is available to all agents.

The following situation provides an example of a situation where different settings are
required for single-sign on:

■ One CA SiteMinder® agent uses the Windows security context.

■ Another CA SiteMinder® agent does not use the Windows security context.

This situation is shown in the following illustration:

IIS Web Server Settings

268 Web Agent Configuration Guide

To permit SSO between a Windows domain using Windows security context and a
Windows workgroup not using Windowssecurity context, set the following parameter:

DisableWindowsSecurityContext

Disables the Windows security context for the agent. When the value of this
parameter is yes, the agent ignores the Windows security context of the user.
When the value of this parameter is false or no, the agent uses the Windows
security context contained in the session of the user. This parameter allows
single-sign on between Windows environments which use the security context
Windows environments that do not.

Default: False

Limits: Yes, No

Prevent Caching of Server Responses Containing Cookies

IIS web servers use output caching to store their responses. Responses to agents contain
cookies. If the IIS web server sends an authentication response from its output cache, a
different user could receive the authentication cookie in the cached response.

For example, user one authenticates successfully and the IIS server caches the response
with the cookie. If user two accesses the same resource as user one, the IIS web server
could possibly return the response for user one to user two.

The product disables the IIS output cache for items containing cookies by default. To
revert to the behavior of the previous versions of the product for backward
compatibility, change the value of the following parameter to no:

IISCacheDisable

Specifies if the IIS web server stores responses containing cookies in an output
cache. The IIS web server sends cached responses before CA SiteMinder®
processing occurs. Disabling the output cache forces IIS to authenticate and
authorize each transaction. Setting the value of the parameter to yes prevents
one user from accidentally receiving authentication or authorization responses
that are meant for another user.

Default: Yes (cache disabled)

Chapter 17: Apache Web Server Settings 269

Chapter 17: Apache Web Server Settings

This section contains the following topics:

Use the HttpsPorts Parameter on Apache 2.x Servers (see page 269)
Use Legacy Applications with an Apache Web Agent (see page 270)
Use the HTTP HOST Request for the Port Number (see page 270)
Record the Transaction ID in Apache Web Server Logs (see page 271)
Choose How Content Types are Transferred in POST Requests (see page 272)
Restrict IPC Semaphore-Related Message Output to the Apache Error Log (see page 272)
Delete Certificates from Stronghold (Apache Agent Only) (see page 273)

Use the HttpsPorts Parameter on Apache 2.x Servers

More web server configuration is required of all of the following conditions exist:

■ You use an SSL accelerator or any intermediate device that changes the value
of the HTTP_HOST header with an Apache 2.x Web server.

■ You use the HttpsPorts parameter.

Follow these steps:

1. Open the httpd.conf file of your Apache Web server, and then make the following
changes:

■ Change the value of the UseCanonicalName parameter to on.

■ Change the value of the ServerName parameter to the following format:

server_name:port_number

server_name

Specifies the host name of the SSL accelerator.

2. For your Web Agent, change the value of the GetPortFromHeaders parameter to
yes.

IIS Web Server Settings

270 Web Agent Configuration Guide

Use Legacy Applications with an Apache Web Agent

If you have legacy applications (that do not support HTTP 1.1), and you want to run
them on an Apache Web Server, you can set the following parameter:

LegacyTransferEncodingBehavior

Specifies the type of message encoding used by the Web Agent. When the value of
this parameter is set to no, transfer-encoding is supported.

When the value of this parameter is set to yes, content encoding is used. The
transfer-encoding header is ignored and only the content-length header is
supported.

Default: No

To use legacy applications with an Apache Web Server, set the value of the
LegacyTransferEncodingBehavior parameter to yes.

Important! If you set the value of this parameter to yes, these features will not
work: Federation; preservation of POST data longer than 4 KB; and large certificates
may not be recognized.

Use the HTTP HOST Request for the Port Number

If you have applications that perform load balancing by redirecting traffic to specific web
servers without modifying the actual HTTP headers, you should configure the Web
Agent to redirect users back to the proper external port (instead of the port used by the
load balancer) with the following parameter:

GetPortFromHeaders

Directs the Web Agent to obtain the port number from the HTTP HOST request
header instead of obtaining it from the web server service structures.

Default: No

Note: This parameter is required for Apache Web Agents.

IIS Web Server Settings

Chapter 17: Apache Web Server Settings 271

Record the Transaction ID in Apache Web Server Logs

The Web Agent generates a unique transaction ID for each successful user authorization
request. The Agent adds the ID to the HTTP header. The ID is also recorded in the
following logs:

■ Audit log

■ Web server log (if the server is configured to log query strings)

■ Policy Server log

You can track user activities for a given application using the transaction ID.

Note: For more information, see the Policy Server documentation.

The transaction ID appears in the log as a mock query parameter in the log that is
appended to the end of an existing query string. The following example shows
transaction ID (in bold) appended to a query string (which ends with STATE=MA):

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realm/index.html,

STATE=MA&SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1

If no query parameters are in the URL, the Agent adds the transaction ID at the end of
the web server log entry. For example:

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realma/index.html,

SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1.

Note: Web Agents log user names and access information in native web server log files
when users access resources.

You can record the CA SiteMinder® transaction ID in the Apache web server logs
SMTRANSACTIONID header variable.

Follow these steps:

1. Open the httpd.conf file.

2. Add the SM_TRANSACTIONID header variable to the LogFormat directive.

For example:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{SM_TRANSACTIONID}i\"" common

Note: For more information about the httpd.conf file and the LogFormat directive,
see your Apache web server documentation.

3. Restart the server to apply the change.

The transaction ID is recorded in the Apache web server logs.

IIS Web Server Settings

272 Web Agent Configuration Guide

Choose How Content Types are Transferred in POST Requests

If you are using an Apache web server, you can control how content is transferred to the
server during POST requests with the following parameter:

LegacyStreamingBehavior

Specifies how content will be transferred to the server during POST requests.
When the value of this parameter is set to yes, all content types are streamed,
except for the following:

■ text/xml

■ application/x-www-form-urlencoded

When the value of this parameter is set to no, all content types are spooled.

Default: No

To stream most types of content in POST requests, change the value of the
LegacyStreamingBehavior parameter to yes.

Restrict IPC Semaphore-Related Message Output to the Apache Error Log

By default the Apache Web Agent logs all levels (informational and error) of IPC
semaphore-related messages to the Apache error log, regardless of the configured
Apache logging level.

To restrict the verbosity of Web Agent IPC semaphore-related output to the Apache
error log, add the following parameter in the trace.conf file located in web
_agent_home/config:

nete.stderr.loglevel

Specifies the level of IPC semaphore-related messages the Web Agent logs to the
Apache error log. Accepts the following values:

off

The Web Agent logs no IPC semaphore-related messages to the Apache error
log.

error

The Web Agent logs only IPC semaphore-related error messages to the Apache
error log.

info

(Default) The Web Agent logs IPC semaphore-related error and informational
messages to the Apache error log.

Oracle iPlanet Web Server Settings

Chapter 17: Apache Web Server Settings 273

Example: Define the nete.stderr.loglevel parameter in trace.conf

In the following snippet from trace.conf, the nete.stderr.loglevel parameter is
configured to restrict the Web Agent to log only IPC semaphore-related error messages
to the Apache error log:

CA Web Agent IPC logging levels

nete.stderr.loglevel=error

Delete Certificates from Stronghold (Apache Agent Only)

Stronghold web servers write client certificates to a local, temporary file, which the Web
Agent uses for certificate-based authentication. The Stronghold server uses this file to
make information in the client certificate available for authentication. As users visit a
website, these certificate files increase, taking up space on your server. You can
configure the Web Agent to delete a certificate file after the Agent has finished using it.

To delete certificate files, set the DeleteCerts parameter to yes.

Oracle iPlanet Web Server Settings

Use any of the following settings to manage your CA SiteMinder® Agent Oracle iPlanet
servers:

■ Restrict directory browsing (see page 274).

■ Handle multiple AuthTrans functions (see page 274).

■ Record the transaction ID in the Oracle iPlanet web server log (see page 275).

Oracle iPlanet Web Server Settings

274 Web Agent Configuration Guide

Restrict Directory Browsing on an Oracle iPlanet Web Server

To help ensure that users who try to browse the directories of a Oracle iPlanet web
server are challenged by CA SiteMinder®, you can set the following parameter:

DisableDirectoryList

Specifies whether the Web Agent allows a user to view or browse the contents
of a directory without challenging them first. This occurs when all of the
following conditions are true:

■ The realm is set to protect a root resource (/)

■ The default web page in the directory (such as index.html) is renamed or
deleted.

Default: No

To restrict directory browsing on a Oracle iPlanet server

1. Add the DisableDirectoryList parameter to your Agent Configuration object or your
local configuration file.

2. Set the value of the DisableDirectoryList parameter to yes.

Directory browsing is restricted. CA SiteMinder® challenges users who try to browse
directories.

Handle Multiple AuthTrans Functions for Oracle iPlanet Web Servers

AuthTrans functions are directives that initialize the Oracle iPlanet web server. The
Oracle iPlanet web server executes AuthTrans functions in the order that they are listed
in the obj.conf file. The Oracle iPlanet server reads through the AuthTrans functions
until it finds a function that returns a REQ_PROCEED command. Once a REQ_PROCEED
command executes, no other AuthTrans functions are executed.

By default, CA SiteMinder® is the first AuthTrans function and it returns a
REQ_PROCEED. To allow other AuthTrans functions to execute, you need to add the
EnableOtherAuthTrans parameter and set the value to yes.

The default value for this parameter is no. To enable multiple AuthTrans functions set
the EnableOtherAuthTrans parameter to yes.

By adding this parameter, you permit the CA SiteMinder® Web Agent to exist with other
functions.

Be sure the CA SiteMinder® Agent function is the first entry in the obj.conf file for the
AuthTrans directive. The entry should read:

AuthTrans fn="SiteMinderAgent"

Oracle iPlanet Web Server Settings

Chapter 17: Apache Web Server Settings 275

Record the Transaction ID in Oracle iPlanet Web Server Logs

Valid on Solaris

The Web Agent generates a unique transaction ID for each successful user authorization
request. The Agent adds the ID to the HTTP header. The ID is also recorded in the
following logs:

■ Audit log

■ Web server log (if the server is configured to log query strings)

■ Policy Server log

You can track user activities for a given application using the transaction ID.

Note: For more information, see the Policy Server documentation.

The transaction ID appears in the log as a mock query parameter in the log that is
appended to the end of an existing query string. The following example shows
transaction ID (in bold) appended to a query string (which ends with STATE=MA):

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realm/index.html,

STATE=MA&SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1

If no query parameters are in the URL, the Agent adds the transaction ID at the end of
the web server log entry. For example:

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realma/index.html,

SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1.

Note: Web Agents log user names and access information in native web server log files
when users access resources.

Oracle iPlanet Web Server Settings

276 Web Agent Configuration Guide

You can record the CA SiteMinder® transaction ID in the Oracle iPlanet web server logs.

Follow these steps:

1. Open the magnus.conf file.

2. Add the following header variable to the existing list of HTTP server variables that
you want to log when the web server initializes:

%Req->headers.SM_TRANSACTIONID%"

Note: Enter the header variable in uppercase unless the value of the
LowerCaseHTTP parameter is set to yes in your Agent Configuration Object or local
configuration file.

The following example shows the SMTRANSACTIONID header variable in bold at the
end of an existing entry. However, you can place it anywhere in the list of variables.

Init fn="flex-init" access="D:/iPlanet/server4/https-orion/logs/access"

format.access="%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%] \"

%Req->srvhdrs.clf-status% %Req-srvhdrs.content-length% %Req->headers.-

SM_TRANSACTIONID%"

3. Restart the Oracle iPlanet Server to apply the change.

The transaction ID appears in the Oracle iPlanet web server logs. The following
example shows a web server log entry with the transaction ID in bold:

11.22.33.44 - user1 [21/Nov/2003:16:12:24 -0500] "GET /Anon/index.html HTTP/1.0"

200 748 3890b4b9-58f8-4a74df53-07f6-0002df88

More information:

Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)
(see page 128)

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 277

Domino Web Server Settings

Domino servers sometimes require special CA SiteMinder® agent parameters. These
parameters are used only for Domino servers unless otherwise indicated. Use the topics
in the following categories to protect your Domino resources:

■ For general information, see the following topics:

– Domino agents overview (see page 278).

– Domino URL syntax (see page 279).

– Domino aliases (see page 280).

■ For basic configuration information, see the following topics:

– Configure the Domino agent (see page 281).

– Configure Domino-specific agent functions (see page 281).

– Specify user directories for Domino (see page 281).

– Guidelines for creating policies on Domino servers (see page 282).

– Configure policies for Domino (see page 282).

– Create rules for Domino server resources (see page 283).

■ For information about CA SiteMinder® authentication, see the following topics:

– Authenticate users with the Domino server (see page 285).

– Authenticate as the Domino superuser (see page 286).

– Authenticate as the actual user or default user (see page 287).

– Modify the Domino default user and Domino superuser (see page 287).

– Use the Encryptkey tool to set the Domino default user or superuser (see
page 288).

– Coordinate CA SiteMinder® and Domino authentication.

– Force CA SiteMinder® to authenticate users (see page 289).

– Use a CA SiteMinder® header for authentication (see page 290).

– Disable Domino session authentication (see page 290).

– Use an anonymous CA SiteMinder® authentication scheme with Domino (see
page 291).

■ For information about using CA SiteMinder® forms credential collectors (FCCs), see
the following topics:

– Enable a Domino agent to collect credentials for authentication (see page 291).

– Map URLs for FCC redirects with a Domino agent (see page 149).

– Disable URL normalization (see page 292).

Domino Web Server Settings

278 Web Agent Configuration Guide

■ For information about managing access to Lotus Notes documents, see the
following topics:

– Control access to Lotus Notes documents (see page 293).

– Convert Lotus Notes document names (see page 294).

■ For information about subjects not covered in the previous lists, see the following
topics:

– Configure full log out support for Domino agents (see page 295).

– Use a Domino agent with a WebSphere application server. (see page 296)

Domino Agents Overview

The Domino Application Server is a messaging and Web application platform that offers
secure access for Lotus Notes clients. The Domino Web Agent protects only the HTTP
interface of the Domino Application Server, controlling access to HTML, JAVA, CGI, and
other Web resources, such as Notes served over the web. It does not protect the Notes
server.

The following illustration shows how the Domino Web Agent integrates with the
Domino server.

Domino stores data in groups of Notes databases. Resources in a Notes database can be
a variety of objects, such as documents, views, forms, and navigators. These objects can
include text, video, graphics, and audio content.

Notes objects are opened using a URL. To make Notes objects available for the Web,
Domino dynamically creates Web pages from the objects in the Notes database. In the
case of database views, Domino also creates URL links to the documents in a view. The
dynamic creation of pages from the Notes database provides users with the most
current information.

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 279

Domino URL Syntax

Access to resources on a Domino server is based on the URL. Domino servers use a
specific URL syntax.

Domino servers can interpret standard URLs, such as one shown in the following
example:

http://www.example.com/index.html

Domino URL commands can use the following syntax:

http://host/database.nsf/Domino_object?Action_Argument

Host

Indicates the DNS entry or IP address of the server.

Database

Specifies the database file name with the path relative to the notes \data
directory or the database Replica ID.

Domino_object

Specifies the object in the database, for example, a view, document, form, or
navigator.

Action

Identifies the operation that performed on the Notes object. For example:
?OpenDatabase, ?OpenView, ?OpenDocument, ?OpenForm, ?ReadForm,
?EditDocument. If no action is specified in the URL, the default is used.

Default: ?Open.

Argument

Defines how the Domino server delivers an object. For example, if the action
and argument is?OpenView&Expand=5, this argument specifies the number of
rows displayed in an expanded format.

The following example shows a URL to access a view in a Notes database
named financials.nsf:

http://www.example.com/financials.nsf/reports?OpenView

Domino Web Server Settings

280 Web Agent Configuration Guide

Domino Aliases

One of the Notes database conventions is to create aliases for objects. For example, the
alias might identify a resource by its Notes ID or Replica ID instead of the object name.
Using aliases makes programming easier for developers because the names of the Notes
resources can change without requiring code changes.

The following Domino URLs access the same resource though the resource is identified
by its aliases:

■ http://www.domino.com/85255e01001356a8852554c20756?OpenView

■ http://www.domino.com/85267E00075A80C/people?OpenView

■ http://www.domino.com/__852567E00075A80C.nsf/people?OpenView

Regardless of how a resource is identified, the Domino Web Agent converts all Domino
naming conventions into a standard URL based on the name of the database resource.
This simplifies data entry into the CA SiteMinder® policy store.

For example, the following Domino URLs are pointing to the people view in the
names.nsf database. The database and view are referred to by Replica ID and Notes ID:

■ http://www.domino.com/85255e01001356a8852554c20756?OpenView

■ http://www.domino.com/85267E00075A80C/people?OpenView

The Domino Web Agent converts these URLs to a standard URL, as follows:

■ http://www.domino.com/names.nsf/people?OpenView

The following illustration shows the conversion of aliases to a named object.

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 281

Configure the Domino Web Agent

The Domino Web Agent uses all the standard Web Agent settings to do the following:

■ Configure the Web Agent to communicate with the Policy Server

■ Add and remove Agent identities for virtual servers

■ Modify Web Agent settings

■ Configure single sign-on

■ Configure error message logging

You can configure these centrally at the Policy Server or locally in the Agent
configuration file.

In addition to the standard functions, there are Domino-specific parameters you can set.

More Information

Configure Domino-Specific Agent Functions (see page 281)

Configure Domino-Specific Agent Functions

In addition to the standard Web Agent settings, there are specific Domino configuration
parameters that you can set only for the Domino Web Agent. These settings determine
how Domino authenticates and authorizes a user with CA SiteMinder®. You can
configure these settings centrally in the Agent Configuration Object on the Policy Server
or locally in the Agent configuration file on the web server.

Note: The Domino Web Agent does not support the auditing feature used to track user
activity.

Specify User Directories for Domino

The Domino Directory is integrated with every Domino server. You can enable LDAP
service for the Domino server so that Policy Server can use the Domino Directory to
authenticate and authorize users. If you enable Domino’s LDAP service, you do not need
to configure a separate user directory for authentication.

To enable LDAP service, see your Domino Server documentation.

More information:

Contact CA Technologies (see page 3)

Domino Web Server Settings

282 Web Agent Configuration Guide

Guidelines for Creating Policies on Domino Servers

Use the following guidelines when creating CA SiteMinder® policies for the Domino
server:

■ A user can open a form with a parent document to view default values for the form.
The parent document is the original form that is used to create the document. To
prevent unauthorized users from viewing default values for forms on which they do
not have access, set the SkipDominoAuth parameter to no.

■ If you replicate databases on the same computer, create a duplicate set of rules to
protect each database.

■ If the Domino Agent cannot associate an alias for a Notes document with a form,
then each document requires its own rule for protection.

■ The Domino server uses special identifiers in URL commands for certain database
documents, for example, $DefaultView, $DefaultForm, $DefaultNav, and
$SearchForm. The Domino agent converts these identifiers to a standard URL to
access the document.

For $defaultNav, the Domino Agent performs an action of ?OpenDatabase. You do
not need to create additional rules for these types of identifiers.

■ Aliases in the Notes database protect their associated resources. If no alias exists,
the resource name or comment protects the associated resource.

■ The Lotus Notes software allows multiple objects of different types to have the
same name and alias. If you create a rule that uses a wildcard with the ?Open
action, such as, ?Open*, be aware that this rule protects different types of
resources that share an alias or name.

■ Forms protect the documents that they create. The action that is used with the
form is ?ReadForm.

■ The Domino Agent protects files with the .nsf extension. Do not add this extension
to the IgnoreExt parameter.

Configure Policies for Domino

The Domino server can represent the same Notes object in different ways. An object
can be identified using the name, ReplicaID, UniversalID, and alias.

For the Domino Web Agent to communicate effectively with the Domino server, the
Domino Agent processes access requests to Notes resources using only the object
name. This enables the CA SiteMinder® policy store to understand the entry.

Expressed as a URL, the access method to any resource would be:

http://host/database.nsf/resource_name?Open

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 283

Create Rules for Domino Server Resources

Actions for the Notes database resources should be considered when you create rules.
Any resource not specified with an action will default to the action ?Open. The rules that
are included in a CA SiteMinder® policy must account for the default action, ?Open, and
equivalent actions for ?Open, such as ?OpenDatabase, ?OpenView, ?OpenDocument,
?OpenFrameset.

The Domino Web Agent enables a policy administrator to create one rule for many
aliases that point to the same resource. You only need one rule because the Domino
Agent converts Domino’s multiple representations of a resource into one URL. This
function of the Domino Agent is important to consider when creating rules for CA
SiteMinder® policies.

You create realms and rules using the Administrative UI.

Note: For more information, see the Policy Server documentation.

In the following illustration, the URL is a link to Acme’s Domino server, with a Notes
database called db1.nsf. This database contains two files: page1 and page2.

Domino Web Server Settings

284 Web Agent Configuration Guide

Example 1: Protecting one document and all its aliases.

For access to page1 and all its aliases, you create only one rule for the realm db1.nsf.
The Domino Agent is able to interpret all the different naming conventions and convert
them to a one standard URL format.

For your realms and rules, do the following:

■ When creating a realm you would specify a resource filter for the database where
page1 resides. For example, to protect all files in the database you would configure
the following:

Resource filter: /db1.nsf/

To protect not only page1 but all its aliases, you would configure the following:

Resource filter: /db1.nsf/page1

■ To create a rule that protects any action on page1, enter an asterisk (*) in the
Resource field of the Rule Properties dialog box. For example:

Resource: *

This * wildcard indicates that any action, such as ?Open, ?EditDocument can be
performed on page1 by the users that are bound to the policy.

Example 2: Protecting different documents in the same database.

To protect page2 in the db1.nsf database in addition to page1, you need to create a
second rule.

Resource Filter: /db1.nsf/page2

Resource: *

Example 3: Protecting different actions on a single resource

To protect individual actions on a resource, for example, if you wanted only some users
to perform the action ?EditDocument and all users to perform the action ?ReadForm,
each action would require its own rule for each resource, as follows:

■ Rule 1

Resource Filter: /db1.nsf/page1

Resource: ?OpenView

■ Rule 2

Resource Filter: /db1.nsf/page1

Resource: ?EditDocument

You could also use one rule as follows:

Resource Filter: /db1.nsf/page

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 285

Resource: ?Open*

Note: In the Resource field, there is no forward slash (/) before ?Open.

Even if there are aliases for this resource, the one rule would protect the original page
and all its aliases.

Instead of creating several rules for different actions, you could specify a single rule
and use wildcards to cover all actions, for example:

Resource filter: /db1.nsf/page

Resource: ?Open*

With the rule, you are then protecting the resource:

http://www.acme.com/db1.nsf/page*?Open*

Note: If you want a rule to be literal, write a regular expression.

Authenticate Users with the Domino Server

The Domino server must authenticate and authorize users even if CA SiteMinder® has
already gone through this process. CA SiteMinder® works with Domino’s authentication
process by providing the Domino server with a user identity that is also configured in
the Domino Directory, which is the list of users and their privileges. The Domino server
uses this identity to authenticate and authorize the user for access to database
resources.

Note: A user name must be resolved unambiguously, or else the Domino Agent denies
the authentication request. This may require some adjustments in your user directory.

The Domino Web Agent identifies the user to the Domino server as one of the following:

■ Super user

■ Actual user

■ Default user

Domino Web Server Settings

286 Web Agent Configuration Guide

To determine which identity the Domino Web Agent uses when communicating with the
Domino server, you configure the following parameters:

SkipDominoAuth

Determines which name to pass to the domino server for server
authentication.

DominoSuperUser

Identifies a user who has access to all resources on the Domino server.

DominoDefaultUser

Identifies a user with default access to the Notes database, which means this
person has general access privileges.

Note: You can configure the DominoSuperUser and DominoDefaultUser locally, in the
Agent configuration file, or centrally, in the Agent Configuration Object. In the Agent
configuration file, these settings have encrypted values. In the Agent Configuration
Object, you have the choice of encrypting these values or leaving them in plain text.

More Information

Force CA SiteMinder® to Authenticate Users (see page 289)
Authenticate as the Actual User or the Default User (see page 287)
Authenticate as the Domino Super User (see page 286)

Authenticate as the Domino Super User

A Domino Super User is a user who has access to all resources on the Domino server. If
your Web site or portal is designed with CA SiteMinder® in mind, you are securing
resources and applications by implementing CA SiteMinder® policies. As a result, the
Domino server does not have to restrict user access based on its own security. In this
case, users can be identified as the Super User for Domino’s authentication purposes.

To identify the user as the Super User, you enable the SkipDominoAuth parameter and
specify a value for the DominoSuperUser parameter. This action makes sure that CA
SiteMinder® and not Domino authenticates users. The user that you specify must also
be in the Domino Directory.

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 287

Authenticate as the Actual User or the Default User

If a user is defined in the Domino Directory, Domino authenticates that user with their
user name. However, if the user is not in the Domino Directory, and they have been
authenticated by CA SiteMinder® against another user directory, then the Domino Web
Agent identifies that user to the Domino server as the DominoDefaultUser.

The default user has default access to the Notes database, which means this person
should have general access privileges such as Domino’s depositor, reader, or author
level of access, configured in ACLs.

For the Domino Agent to use this value, set the SkipDominoAuth parameter to no.

There may be some Notes databases that do not require protection from CA
SiteMinder®. Resources that are not protected by CA SiteMinder® are not authenticated
as the default Domino user. Instead, the Domino server prompts users for their
credentials (if anonymous access is disabled).

Modify the Domino Default User and the Domino Super User

To modify the DominoDefaultUser and DominoSuperUser parameters, do one of the
following:

■ Change it in the Agent Configuration Object, if configuring centrally

You can modify the DominoDefaultUser and DominoSuperUser settings in the
Agent Configuration Object. You can choose whether the values are encrypted or in
plain text.

Note: For more information, see the Policy Server documentation.

■ Modify the parameters in the Agent configuration file using the encryptkey tool.

In the Agent configuration file, the DominoDefaultUser and DominoSuperUser
values must be encrypted. Consequently, you have to modify these values using the
encryptkey tool.

Important! Do not edit these settings directly in the Agent configuration file.

Domino Web Server Settings

288 Web Agent Configuration Guide

Use Encryptkey to Set the Domino Default or Super User

To set or change the value of DominoSuperUser or DominoDefaultUser in the Agent
configuration file

1. Do one of the following:

■ UNIX: Navigate to the Domino Agent's bin directory. For example:

/$HOME/ca/SiteMinder/Web Agent/bin

■ Windows: Open a command prompt window and navigate to the Domino
Agent's Bin directory. For example:

C:\Program Files\ca\SiteMinder Web Agent\Bin

2. Run the encryptkey tool, using the following arguments:

■ For DominoSuperUser:

 encryptkey -path path_to_Agent_config_file

 -dominoSuperUser new_value

■ For DominoDefaultUser:

 encryptkey -path path_to_Agent_config_file

 -dominoDefaultUser new_value

For example:

encryptkey -path "c:\program files\ca\SiteMinder Web Agent\Bin\Lotus
Domino5\webagent.conf"

-dominoSuperUser admin

Note: The path to the Agent configuration file must contain the file name, such as,
webagent.conf. Also, if any value in the path contains spaces, the entire path must
be surrounded by quotation marks.

Note: The encryptkey tool is not provided as a part of the CA SiteMinder® Web
Agent kit. However, the tool remains useful to Domino users who can manipulate it
to generate encrypted DominoSuperUser settings for local configuration. You can
contact Support to download a copy of this tool.

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 289

Force CA SiteMinder® to Authenticate Users

To have CA SiteMinder® (and not Domino) authenticate users, set the SkipDominoAuth
parameter to yes.

With SkipDominoAuth set to yes and a Super User defined, CA SiteMinder® first
identifies and authorizes the user. The Domino Web Agent then identifies that user to
the Domino Server as the Super User. As a Super User, the user has access to any
resource on the Domino server, assuming the user has the appropriate ACLs.

You should also set SkipDominoAuth parameter to yes when users are not stored in the
Domino Directory because Domino will not have an identity to use for authorization
privileges.

If you set SkipDominoAuth to no, Domino authenticates users on its own using the
actual user name or the default user name.

The following table shows how the setting of the SkipDominoAuth parameter affects
how the user is identified.

SkipDominoAuth Value

Identified to the
Domino Server As

Notes

yes Super User Super User must be defined in
the Domino Directory

no Actual User User must be in the Domino
Directory

no Default User User must be in the Domino
Directory

no Super User The requested resource is
automatically authorized,
meaning that no authentication
challenge will be presented to
the user

More Information

Authenticate as the Actual User or the Default User (see page 287)

Domino Web Server Settings

290 Web Agent Configuration Guide

Use a CA SiteMinder® Header for Authentication

The DominoUseHeaderForLogin and DominoLookUpHeaderForLogin parameters can be
used to identify a Domino user for authentication.

DominoUseHeaderForLogin

Instructs the Domino Web Agent to pass the CA SiteMinder® header value to the
Domino Web Server. The Domino server uses the header data to identify a user in
its user directory.

Set this parameter to a header name. For example, if you specify
DominoUseHeaderForLogin="HTTP_SM_USER", the Web Agent passes the user’s
login name to the Domino server.

DominoLookUpHeaderForLogin

Instructs the Domino Web Agent to ask the Domino Web Server if the user
requesting access to a resource is unique or ambiguous within the Domino user
directory. This check is useful if a user named Jones tries accessing a resource and
there are several users named Jones in the user directory. If this parameter is set to
no, the Domino Web Agent does no checking with the Domino Web Server.

Default: Yes

Disable Domino Session Authentication

CA SiteMinder® provides authentication and authorization functionality; therefore, the
Domino session authentication feature is not needed. It should be disabled if the Web
Agent is installed.

Under some conditions, having Domino session authentication enabled causes the user
session to behave differently. This change in behavior does not affect security on a CA
SiteMinder®-enabled site. It reflects the intersection of CA SiteMinder® and Domino
session management rules.

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 291

Use an Anonymous CA SiteMinder® Authentication Scheme with Domino

To use an anonymous CA SiteMinder® authentication scheme with a Domino agent, set
the following parameter:

DominoUserForAnonAuth

Specifies a value for anonymous users. This value is sent to the Domino server
when users access Domino resources that are protected with an anonymous CA
SiteMinder® authentication scheme.

Default: No (anonymous authentication scheme not used)

Example: Anonymous (use with anonymous authentication schemes)

The previous parameter applies only when using an anonymous CA SiteMinder®
authentication scheme with Domino. Do not change its value for other authentication
schemes or server types.

Enable a Domino Agent to Collect Credentials for Authentication

A credential collector is an application within the Web Agent, which gathers user
credentials for forms, SSL, and Windows authentication schemes, and for single sign-on
across multiple cookie domains. The credentials gathered by the credential collector are
based on the type of authentication scheme configured for a particular group of
protected resources.

For a Domino Web Agent to act as a credential collector, you have to configure various
MIME types, represented as file extensions in the Agent configuration file.

Credential collectors are generally auto-authorized, that is, when you add a file
extension to these parameters, they are, by default, included in the IgnoreExt
parameter. Domino Server cannot correctly process URLs that include files with these
extensions, so the Domino Agent has to ignore these files.

Note: For more information, see the Policy Server documentation.

Map URLs for FCC Redirects with a Domino Web Agent

To protect Domino view (.nsf) resources with a forms authentication scheme, map the
URLs before they are redirected to the forms credential collector.

Follow these steps:

1. Set the value of the DominoNormalizeUrls parameter to yes.

2. Set the value of the DominoMapUrlForRedirect parameter to yes.

Domino URLS are mapped before redirection to the FCC.

Domino Web Server Settings

292 Web Agent Configuration Guide

Disable URL Normailization

The process of URL normalization modifies URLs from a Domino representation to a URL
format used by a typical web browser. The Domino Web Agent relies on the Domino
web server APIs to normalize a Domino URL.

During the normalization process, the Domino Server APIs periodically return a URL with
a carriage return (0x0D in hex) and/or a line feed character (0x0A in hex) added to the
normalized URL. The addition of these characters appears to be related to specific Notes
database (.nsf) files and access patterns within these files.

The following example shows a normalized URL with an added carriage return:

■ URL:
http://server.ca.com:80/agentrunner.nsf/be68f4545348400461332?OpenView

■ URL is mapped to:
http://server.ca.com:80/agentrunner.nsf/AgentContext?OpenView

■ URL is normalized to:
http://xxxxx.ca.com:port/agentrunner.nsf/0x0d/AgentContext?OpenView

If necessary, you can ensure that URLs with Domino resource IDs are not normalized
with the following parameter:

DominoNormalizeUrls

Specifies if the CA SiteMinder® Web Agent converts Domino URLs to a
URL-friendly name before redirecting them to a Forms Credential Collector.

The MapUrlsForRedirect parameter must also be set to yes for the Domino
URLs to be converted.

If the DominoNormalizeUrls parameter is set to no, URLs will not be
normalized, even if the MapUrlsForRedirect parameter is set to yes.

Important! If you set the DominoNormalizeUrls parameter to no, you cannot
protect individual documents within a Notes database; you can only protect
the entire database or subdirectories of the Domino Web server.

Default: Yes

To turn off normalization and ensure that URLs are not altered, set the
DominoNormalizeUrls parameter to no.

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 293

Control Access to Lotus Notes Documents

The Web Agent offers a finer level of granularity for protecting Lotus Notes documents
on Domino. The folloiwng parameter controls this protection:

DominoLegacyDocumentSupport

Specifies how a Web Agent handles user requests for protected Lotus Notes
documents in a Domino environment. Setting this parameter to yes grants
users ReadForm permission only for the requested document.

Default: No

Use the DominoLegacyDocumentSupport parameter to configure the Web Agent to
process user-requested actions when accessing Notes documents. This offers a finer
granularity of protection on Domino.

Notes documents do not have names. They are saved to the database with a reference
to the form used to create them. When a user requests a Notes document, the Domino
Web Agent finds the form for that document by converting the request into a URL. This
URL includes the original Domino action. If no form is found, then nothing is used.

For example:

"http://server.domain.com/db.nsf?OpenDocument"

in the URL To ensure that the Web Agent performs the user-requested Domino action
on the document that is specified in the URL, such as ?OpenDocument or
?EditDocument, set the DominoLegacyDocumentSupport parameter to no.

For example, if the URL request is:

http://www.dominoserver.com/names.nsf/93487309489389877857843958809820
3985798349?EditDocument

The Domino Agent converts the preceding URL to:

http://www.dominoserver.com/names.nsf/Person?EditDocument

where Person is the name of the form used to create the document identified by the
NotesID in the original URL.

To force the Domino Web Agent revert back to its pre-4.6 operation for accessing Notes
documents, which means that only the action ?ReadForm is permitted, set this
parameter to yes. With the legacy document support enabled, the Domino Agent would
convert the URL in the previous example to:

http://www.dominoserver.com/names.nsf/Person?ReadForm

Domino Web Server Settings

294 Web Agent Configuration Guide

Convert Notes Document Names

Unlike views and forms, Notes documents do not have names; they are saved to the
database with a reference to the form that was used to create the document. If a user is
trying to access a document and the Domino Web Agent cannot convert it to a readable
name, the Agent uses the name of the form that generated the document to create a
URL. This applies only to documents. If there is no original form, the Agent uses the
embedded form. If neither apply, the document is protected using the Domino identifier
$defaultForm.

For example, if the incoming URL is:

http://www.domino.com/names.nsf/8567489d60034we50938450098?OpenDocum
ent

The Agent uses:

http://www.domino.com/names.nsf/Person?ReadForm

In this example, Person is the name of the document.

Domino Web Server Settings

Chapter 17: Apache Web Server Settings 295

Configure Full Logoff Support for Domino Agents

The full log-out feature uses a custom log-out page that you create with the following
parameter:

LogOffUri

Enables the full log-out function by specifying the URI of a custom web page. This
custom web page appears to users after they are successfully logged off. Configure
this page so that it cannot be stored in a browser cache. Otherwise, a browser could
possibly display a log-out page from its cache without logging the user off. If this
situation happens, unauthorized users could possibly have an opportunity to
assume control of a session.

Note: When the CookiePath parameter is set, the value of the LogOffUri parameter
must point to the same cookie path. For example, if the value of your CookiePath
parameter is set to example.com, then your LogOffUri must point to
example.com/logoff.html

Default: (all agents except the CA SiteMinder Agent for SharePoint r12.0.3.0) No
default

Limits: Multiple URI values permitted. Do not use a fully qualified URL.Use a relative
URI.

Example:(all agents except the CA SiteMinder Agent for SharePoint r12.0.3.0) /Web
pages/logoff.html

Follow these steps:

1. Create a custom HTTP application that logs the user off. For example, add an Exit or
Sign Off button that redirects the user to a URL you specify.

2. Set up the log-out page so it cannot be cached in web browsers. This setting
increases security because the page is always served from the web server, and not
the cache of the browser. For example, for HTML pages, you can add the following
meta tags to the page:

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<META HTTP-EQUIV="Expires" CONTENT="-1">

Important! Some web browsers do not support meta tags. Use a cache-control
HTTP header instead.

3. Configure the LogOffUri parameter with the following steps:

a. Delete the pound sign (#), if necessary.

b. Enter the URI of the custom HTTP file that will log the user off. Do not use a
fully qualified URL.

The full log-out feature is configured.

Backward Compatibility Settings

296 Web Agent Configuration Guide

More Information

How Full Logoff Works (see page 209)

Use a Domino Agent with a WebSphere Application Server

A Domino web server acts as the front end to a WebSphere Application Server by
providing a filter plug-in that intercepts requests before forwarding them to the
WebSphere server.

Force Domino Server to Authenticate Unprotected CA SiteMinder® Resources

Suppose you have resources on your Domino server that you not want to protect with
CA SiteMinder®. You can still protect those resources with your Domino server instead.
To protect these resources, set the following parameter:

UseDominoUserForUnprotected

Specifies if the Domino server authenticates requests with a Domino user for
resources that only the Domino server (not CA SiteMinder®) protects.

If the value of this parameter is yes, the agent passes the Domino user to the
Domino server. The Domino server authenticates the user. If the value of this
parameter is no (or the parameter is disabled), the agent does not pass the
Domino user to the Domino server. The Domino server does not authenticate
the user.

Default: Disabled

Follow these steps:

1. Locate the previous parameter.

2. Remove the # (comment) character in front of the parameter.

3. Change the value of the parameter to yes.

Backward Compatibility Settings

Use any of the following settings to manage the backward comparability of your CA
SiteMinder® Agent:

■ Accommodate legacy URL encoding (see page 297).

■ Determine how content types are transferred in POST requests (see page 272).

■ Accommodate testing tools that do not send HOST headers (see page 298).

Backward Compatibility Settings

Chapter 17: Apache Web Server Settings 297

Accommodate Legacy URL Encoding

The legacy URL encoding used by CA uses dollar sign ($) characters. If the dollar signs
cause problems, you can make the Web Agent use hyphen (-) characters instead of
dollar signs with the following parameter:

LegacyEncoding

Forces the Web Agent to replace any dollar sign ($) characters in legacy URLs
with a hyphen (-). This also ensures backwards comparability with MSR,
Password Services, and DMS. When this parameter is set to no, a Web Agent
converts the string SM to -SM-. When this parameter is set to yes, the Web
Agent does not convert the dollar sign ($) character.

Default: (Framework Agents) No

Default: (Traditional Agents) Yes

To encode legacy URLs using hyphens instead of dollar signs, set the value of the
LegacyEncoding parameter to no.

Choose How Content Types are Transferred in POST Requests

If you are using an Apache web server, you can control how content is transferred to the
server during POST requests with the following parameter:

LegacyStreamingBehavior

Specifies how content will be transferred to the server during POST requests.
When the value of this parameter is set to yes, all content types are streamed,
except for the following:

■ text/xml

■ application/x-www-form-urlencoded

When the value of this parameter is set to no, all content types are spooled.

Default: No

To stream most types of content in POST requests, change the value of the
LegacyStreamingBehavior parameter to yes.

Backward Compatibility Settings

298 Web Agent Configuration Guide

Accommodate Testing Tools that do not send HOST Headers

The CA SiteMinder® Web Agent uses the value of the HOST header in an HTTP request
to determine the following settings:

■ Agent name

■ Server name

■ Server IP address

CA SiteMinder® Web Agents only accept HTTP version 1.1 requests, because HTTP
versions 0.9 and 1.0 do not use HOST headers. This poses problems for some testing
tools that do not send HOST headers, because the Web Agent rejects those requests.

CA SiteMinder® 12.51 supports a new Agent Configuration parameter that lets you
define a HOST header value. The Web Agent uses this value in any request that does not
contain a HOST header.

To accommodate testing tools that do not send HOST headers

1. Open one of the following items:

■ If you are using Central Configuration, open your Agent Configuration Object.

■ If you are using Local Configuration, open your LocalConfig.conf file.

2. Add the following parameter:

DefaultHostName

Defines a value for the HOST header. Add this parameter to your Agent
Configuration Object or LocalConfig.conf file to use a testing or performance
tool that sends HTTP version 0.9 or version 1.0 requests (without HOST
headers). If this parameter is not set, the Web Agent only accepts HTTP 1.1
requests.

Default: None (blank)

Example: webserver.example.com

3. Set the value of the previous parameter to the host name you want. See the
previous example.

4. Save and close one of the following items:

■ If you are using Central Configuration, save and close your Agent Configuration
Object.

■ If you are using Local Configuration, save and close your LocalConfig.conf file.

The Web Agent substitutes the DefaultHostName value for any HTTP request
without a HOST header.

Agent Setting for Federation Domains

Chapter 17: Apache Web Server Settings 299

Agent Setting for Federation Domains

If CA SiteMinder® is acting as a legacy federation SP, you can configure the Identity
Provider Discovery (IPD) profile for SAML 2.0 transactions. IPD enables a user to select
which IdP generates an assertion for an authentication request.

During the discovery process, you can prevent a user from being redirected to a
malicious web site. Configure the Web Agent to validate the domain of the IdP that
satisfies the authentication request.

To enable the validation process, set the value of the following parameter:

ValidFedTargetDomain

(Federation only–SAML 2.0). Lists all valid domains for your federated
environment when implementing Identity Provider Discovery.

When the CA SiteMinder® Identity Provider Discovery (IPD) Service receives a
request, it examines the IPDTarget query parameter in the request. This query
parameter lists a URL where the Discovery Service must redirect to after it
processes the request. For an IdP, the IPDTarget is the SAML 2.0 Single Sign-on
service. For an SP, the target is the requesting application that wants to use the
common domain cookie.

Federation Web Services compares the domain of the IPDTarget URL to the list
of domains specified for the ValidFedTargetDomain parameter. If the URL
domain matches one of the configured domains in the ValidFedTargetDomain,
the IPD Service redirects the user to the designated URL in the IPDTarget
parameter. This redirect is to a URL at the SP.

If there is no domain match, the IPD Service denies the user request and they
receive a 403 Forbidden in the browser. Additionally, errors are reported in the
FWS trace log and the affwebservices log. These messages indicate that the
domain of the IPDTarget is not defined as a valid federation target domain.

If you do not configure the ValidFedTargetDomain setting, no validation is done
and the user is redirected to the target URL.

Limits: Valid domains within the federated network

Default: No default

Specify a valid domain in the ValidFedTargetDomain parameter. This setting is a
multi-value parameter, so you can enter multiple domains.

How to Modify the Sample Code to Remove Open Format Cookies When Users Log Out

300 Web Agent Configuration Guide

If you are modifying a local configuration file, list the domains separately, for example:

validfedtargetdomain=".examplesite.com"

validfedtargetdomain=".abccompany.com"

For more information about the Identity Provider Discovery profile, see the Federation
Security Services Guide.

How to Modify the Sample Code to Remove Open Format
Cookies When Users Log Out

CA SiteMinder® does not recognize, process, or delete open format cookies. Create your
own client-side script that removes the open format cookies when your users logout.

Follow these steps:

1. Obtain the cookie information (see page 301).

2. Modify the sample JavaScript code with the cookie information (see page 302).

3. Copy the modified JavaScript code to your logout page (see page 304).

Obtain the Cookie Information

Chapter 17: Apache Web Server Settings 301

Obtain the Cookie Information

A client-side logout script requires the following information about your open format
cookies:

■ The name of the open format cookie (for example, SMOFC)

■ The path of the cookie (for example, / [a forward slash indicates the root directory
of the open format cookie])

■ The domain under which the cookie is created (such as, .example.com)

Obtain this information from your agent owner or web server administrator.

Modify the Sample JavaScript Code with the Cookie Information

302 Web Agent Configuration Guide

Modify the Sample JavaScript Code with the Cookie
Information

Modify the sample JavaScript code after obtaining the information about your open
format cookies.

Follow these steps:

1. Copy the sample JavaScript code into a text editor:

<html>

 <head>

 <META HTTP-EQUIV="Pragma" CONTENT="no-cache">

 <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">

 <META HTTP-EQUIV="Expires" CONTENT="-1">

 <!-- JavaScript to remove cookie from browser -->

 <script>

 // This function takes the cookie name, path and domain

 // and constructs a expired cookie so that the browser removes the

cookie from its store

 function eraseCookie(name, path, domain)

 {

 if (name)

 {

 var delCookie = name + '=; expires=Thu, 01-Jan-70 00:00:01

GMT';

 if (path && path.length > 0) delCookie += ';path=' + path;

 if (domain && domain.length > 0) delCookie += ';domain=' +

domain;

 document.cookie = delCookie;

 }

 }

 function showCookie(name)

 {

 var ckVal = null;

 var tC = document.cookie.split('; ');

 for (var i = tC.length - 1; i >= 0; i--)

 {

 var x = tC[i].split('=');

 if (name == x[0] && x[1])

 {

 ckVal = unescape(x[1]);

 break;

 }

 }

Modify the Sample JavaScript Code with the Cookie Information

Chapter 17: Apache Web Server Settings 303

 if (ckVal)

 alert(name + ' = ' + ckVal);

 else

 alert('Cookie ' + name + ' does not exist');

 }

 </script>

 </head>

 <body>

 <p>Click to show

Open Format Cookie

 <p><a href="javascript:eraseCookie('SMOFC', '/', 'example.com')"

class="page">Click to remove Open Format Cookie

 </body>

</html>

2. Replace the all occurrences of the following default values with the values of your
open cookie format:

Name

Replace with your open format cookie name.

Example: SMOFC

Path

Replace with your open format cookie path.

Example: \

Domain

Replace with your open format cookie domain.

Example: example.com

3. Make any other changes to the sample JavaScript that your environment requires.

4. Save the modified JavaScript and close the text editor.

Copy the Modified JavaScript Code to Your Logout Page

304 Web Agent Configuration Guide

Copy the Modified JavaScript Code to Your Logout Page

Update your logout pages with the modified JavaScript code. This code removes the
open format cookies when the users log out.

Follow these steps:

1. Open the logout page of your web server using a text editor.

2. Copy the modified JavaScript code to the logout page.

3. Save the changes to the page and close the text editor.

4. Repeat Steps 1 through 3 for each web server.

Chapter 18: Performance 305

Chapter 18: Performance

This section contains the following topics:

Set a Time-out for Saved Credentials (see page 305)
Web Agent Caches (see page 306)
Monitoring Web Agents (see page 310)
Ignore Unprotected Resources (see page 312)

Set a Time-out for Saved Credentials

When a user chooses to have credentials saved, the Policy Server instructs the Web
Agent to create a persistent cookie containing the user’s credentials. The cookie allows
Web Agents to authenticate a user based on the credentials saved in the cookie, instead
of challenging the user to authenticate. You can control how long the persistent cookie
remains with the following parameter:

SaveCredsTimeout

Specifies the number of hours that a persistent cookie containing the user
credentials will be saved. During this time interval, the Web Agent
authenticates the user with the data stored in the cookie. After this time
interval expires, the cookie is removed and the Web Agent challenges the user
again.

Default: 720 (30 days)

To set a timeout for saved credentials, enter the number of hours you want in the
SaveCredsTimeout parameter.

Note: For more information, see the Policy Server documentation.

Web Agent Caches

306 Web Agent Configuration Guide

Web Agent Caches

The Web Agent stores user session and resource information in cache memory. This
technique improves the Web Agent efficiency because the Web Agent does not have to
retrieve information from the Policy Server each time a user requests access.

By configuring the cache settings, you can manage how this information is stored. The
number of entries in the cache determines the size of the cache. The total number of
entries in each cache cannot exceed the maximum cache size specified.

Note: Restart the Web Server for changes in the Web Agent cache settings to take
effect.

The following guidelines apply to cache management:

■ When a cache is full, new entries replace the least recently used entries.

■ For the resource cache, entries are removed when the value of the
ResourceCacheTimeout parameter is reached.

■ For the user session cache, entries are removed based on the session timeout
values that you set for each realm.

CA SiteMinder® empties cached resource information when you modify a policy. You
can also empty the user and resource caches manually from the Administrative UI.

Note: For more information, see the Policy Server documentation.

Use the following parameters to manage the caches of your agent:

■ Cache anonymous users (see page 307).

■ Set the size of the maximum resource cache (see page 308).

■ Set the size of the maximum user session cache (see page 309).

■ Control how long resource entries remain cached (see page 310).

■ Disable the resource cache (see page 310).

Web Agent Caches

Chapter 18: Performance 307

Cache Anonymous Users

You can configure the Web Agent to store anonymous user information in a cache with
the following parameter:

CacheAnonymous

Specifies if the Web Agent caches anonymous user information. You may want
to set this parameter in any of the following situations:

■ If your web site gets mostly anonymous users and you want to store their
session information.

■ If your web site gets a mix of registered and anonymous users.

 You may want to disable this parameter to keep the anonymous user
information from filling the cache and leaving no room for registered
users.

Default: No

To store anonymous user information in cache, set the value of the CacheAnonymous
parameter to yes.

Web Agent Caches

308 Web Agent Configuration Guide

Set the Maximum Resource Cache Size

You can set a maximum on the number of resource cache entries, such as Web pages,
that the Web Agent tracks with the following parameter:

MaxResourceCacheSize

Specifies the maximum number of entries that the Web Agent keeps in its
resource cache. An entry contains the following information:

■ A Policy Server response about whether a resource is protected

■ Any additional attributes returned with the response

When the maximum is reached, new resource records replace the oldest
resource records.

If you set this value to a high number, be sure that sufficient system memory is
available.

If you are viewing Web Agent statistics using the OneView Monitor, you may
notice that the value shown for the ResourceCacheCount is greater than the
value you specified for the MaxResourceCacheSize parameter. This is not an
error. The Web Agent uses the MaxResourceCacheSize parameter as a
guideline and the values may at times differ because the
MaxResourceCacheSize parameter represents the maximum number of
average-sized entries in the resource cache. The actual cache entries are most
likely larger or smaller than the pre-determined average size; therefore, the
effective maximum number of entries may be more or less than the value
specified.

Note: For Web Agents that use shared memory, such as the framework Agents,
the cache is pre-allocated to a constant size based on the
MaxResourceCacheSize value and will not grow.

Default: (Domino web servers) 1000

Default: (IIS and Sun Java System web servers) 700

Default: (Apache web servers) 750

To set the maximum resource cache size

1. Set the value of the MaxResourceCacheSize parameter to the maximum number of
resources you want.

2. For framework agents, you must restart the web server to apply the change.

The maximum resource cache size is changed.

Web Agent Caches

Chapter 18: Performance 309

Set the Maximum User Session Cache Size

You can set a maximum for the number of users the Agent maintains in the session
cache with the following parameter:

MaxSessionCacheSize

Specifies the maximum number of users the Agent maintains in its session
cache. The session cache stores the session IDs of users who authenticate
successfully. Authenticated users accessing other resources within the realm
during a session, are authenticated using the session cache instead of the
Policy Server. When the maximum number is reached, the Agent replaces the
oldest user records with new user records.

Base the value of this parameter on the number of users that you expect to
access and use resources for a sustained period. If you set this value to a high
number, verify that sufficient system memory is available.

Note: Regardless of the cache size, all entries in the session cache of the Web
Agent expire automatically after one hour.

Default: (Domino web servers) 1000

Default: (IIS and Oracle iPlanet web servers) 700

Default: (Apache web servers) 750

To set a maximum size of the user session cache

1. Set the value of the MaxSessionCacheSize parameter to the maximum number of
users you want.

2. For framework agents, you must restart the web server to apply the change.

The maximum user session cache size is changed.

Monitoring Web Agents

310 Web Agent Configuration Guide

Control How Long Resource Enteries Remain Cached

You can change the amount of time that resource entries will remain in the cache with
the following parameter:

ResourceCacheTimeout

Specifies the number of seconds that resource entries remain in the cache. If a
user tries to access a protected resource after the time interval has been
exceeded, the Web Agent removes the cached entries and contacts the Policy
server.

Default: 600 (10 minutes)

Note: If you change the value of this parameter, you must restart the web
server to apply the change.

To change how long the resource entries remain cached, set the ResourceCacheTimeout
parameter to the number of seconds you want.

Disable the Resource Cache

If you are protecting an application that uses dynamic, unique URLs, you may want to
disable the resource cache. Since the URLs used by the application are unique, then they
will not be read from the cache.

To disable the resource cache, change the value of the MaxResourceCacheSize to zero.

Monitoring Web Agents

Use any of the following methods to monitor the performance of your agents:

■ Monitor agents with the OneView monitor (see page 311).

■ Use CA Wily Introscope to monitor agents (see page 311).

More information:

How to Manage Web Agent and Policy Server Communication (see page 53)

Monitoring Web Agents

Chapter 18: Performance 311

Monitor Web Agents with the OneView Monitor

The CA SiteMinder® OneView monitor reports cache statistics and other information to
the Policy Server, which administrators can use to analyze and fine-tune the Web Agent.
You control the CA SiteMinder® OneView monitor with the following parameter:

EnableMonitoring

Specifies whether the agent sends monitoring information to the Policy Server.

Default: Yes.

To have the Web Agent use the CA SiteMinder® OneView Monitor, set the
EnableMonitoring parameter to yes.

Note: For more information, see the Policy Server documentation.

Use CA Wily Introscope to Monitor Web Agents

If you are already using CA Wily Introscope in your organization, you can monitor the
health of your CA SiteMinder® Web Agents with the following parameter:

EnableIntroscopeApiSupport

Collects information about the agent and sends it to CA Introscope
®
 using a

plug-in. This parameter uses the following settings:

■ When set to yes, the plug-in calls an API to collect the data.

■ When set to no, the plug-in creates an HTTP header with the data.

■ When set to both, the plug-in calls the API to collect the data and creates
an HTTP header with the data.

■ When set to none, data not collected.

Default: No.

Limits: Yes, Both, No, None.

Example: (HTTP header) sm-wa-perf-counters =
server_name.example.com:6180,86117203,86118343,1,0,0,1,0,0,1,0,0,0,0,0,1,
0,0,0,0,0,0,0,1125,0,15,1,1,750,750,

To use CA Wily Introscope to monitor the health of your Web Agents, set the value of
the EnableIntroscopeApiSupport parameter to one of the following:

■ Yes

■ Both

■ No

Ignore Unprotected Resources

312 Web Agent Configuration Guide

Ignore Unprotected Resources

You can improve the performance of CA SiteMinder® by ignoring requests for resources
that you do not want to protect. The following parameters are available:

■ Reduce overhead by ignoring certain file extensions (see page 313).

■ Specify which virtual servers the agent ignores (see page 138).

■ Ignore query data in URLs (see page 316).

■ Allow unrestricted access to URIs (see page 317).

Ignore Unprotected Resources

Chapter 18: Performance 313

Reduce Overhead by Ignoring File Extensions of Unprotected Resources

You can reduce CA SiteMinder® overhead by instructing the Web Agent to ignore
requests for certain types of resources with the following parameter:

IgnoreExt

Specifies the types of resources for which the Web Agent passes requests to
the web server without checking CA SiteMinder® policies.The Web Agent
allows access to the items specified by this parameter even if they exist in a
realm that is protected by a CA SiteMinder® policy.

Requests for resources that meet either of the following conditions may be
ignored:

■ The resource ends in one of the extensions that you configure the Web
Agent to ignore.

■ The URI of the protected resource contains a single period (.).

 For example, if a URI for a requested resource is /my.dir/ the Web Agent
passes the request directly to the web server.

Default: .class, .gif, .jpg, .jpeg, .png, .fcc, .scc, .sfcc, .ccc, .ntc

Important! Use caution when setting the IgnoreExt parameter. There are some
security issues that you may want to consider.

By default, the Agent does not ignore requests for resources that contain two or more
periods separated by a slash (/). Web Agents handle requests for resources using the
process shown in the following example:

1. The .gif extension is added to the IgnoreExt parameter. Requests for resources with
the .gif extension are be ignored by the Web Agent.

2. A request is made for the following URI:

/dir1/app.pl/file1.gif,

3. The Web Agent checks /dir1/app.pl/file1.gif against the policy server because some
web servers will execute /dir1/app.pl as an application instead of serving the
file1.gif resource.

Granting access to /dir1/app.pl/file1.gif without consulting the web server may
have caused a security breach.

To reduce overhead by ignoring the file extensions of unprotected resources, add the
extensions of the resources you want to ignore to the value IgnoreExt parameter.

Ignore Unprotected Resources

314 Web Agent Configuration Guide

Specify Virtual Servers for the Web Agent to Ignore

If a web server at your site supports several virtual servers, there may be resources on
these virtual servers that you do not want to protect with the Web Agent. To simplify
how the Web Agent distinguishes which portions of a web server's content it protects,
use the following parameter:

IgnoreHost

Specifies the fully qualified domain names of any virtual servers that you want
the web Agent to ignore. Resources on such virtual servers will be
auto-authorized, and the Web Agent always grants access to them regardless
of which client makes the request. The authorization decision is based on the
configuration of the Web Agent instead of being based on a policy.

The list of ignored hosts is checked first before any other auto-authorization
checks, such as the IgnoreExt and IgnoreURL settings. Therefore, the
double-dot rule will not trigger an authorization call to the Policy Server for
resources on an ignored host but would not be ignored by extension.

The host portion of the URL entries for the IgnoreHost parameter must exactly
match what the Web Agent reads for the host header of the requested
resource.

Note: This value is case-sensitive.

If the URL uses a specific port, then the port must specified.

For centrally-managed agents, use a multi-value parameter in the Agent
Configuration Object to represent several servers. For agents configured with a
local configuration file, list each host on a separate line in the file.

Example: (URL shown with port specified)

IgnoreHost="myserver.example.org:8080"

Example: (local configuration file)

IgnoreHost="my.host.com"

IgnoreHost="your.host.com"

Default: No default

To specify virtual servers for the Web Agent to Ignore, do either of the following tasks:

■ For central configuration, add the servers you want to ignore to your agent
configuration object. For more than one server, use the multi-value setting for
the parameter.

■ For local configuration, add a separate line for each server in the local
configuration file.

Resources using the specified URLs are ignored by the Web Agent and access to
those resources is granted automatically.

Ignore Unprotected Resources

Chapter 18: Performance 315

More Information

Handle Complex URIs (see page 93)

Ignore Unprotected Resources

316 Web Agent Configuration Guide

Ignore Query Data in a URL

The IgnoreQueryData parameter affects the way Web Agents treat URLs. If you do not
want the Web Agent cache the entire URL and send the URIs with their query strings to
the Policy Server for rule processing, you improve performance with the following
parameter:

IgnoreQueryData

Specifies whether the Web Agent will cache the entire URL (including the query
strings) and send the entire URI to the Policy Server for rule processing. A full
URL string contains a URI, a hook (?), and some query data, as shown in the
following example:

URI?query_data

URLs that have been the subjects of requests are cached by default.
Subsequent requests search the cache for a match. If requests for the same URI
contain different query data, the match fails. Ignoring the query data improves
performance.

When the IgnoreQueryData parameter is set to yes, the following occurs:

■ The URL is truncated at the hook. Only the URI is cached and sent to the
Policy Server. The query data is maintained elsewhere, for the purpose of
maintaining the proper state for redirects.

■ Only the part before the hook is sent to the Policy Server for rule
processing.

■ Both URIs in the following example are handled as the same resource:

 /myapp?data=1

 /myapp?data=2

When the IgnoreQueryData parameter is set to no, the following occurs:

■ The entire URL is cached.

■ The entire URI is sent to the Policy Server for rule processing.

■ The URIs in the following example are handled as different resources:

 /myapp?data=1

 /myapp?data=2

Default: No

To have the Web Agent send only URIs to the Policy Server for processing, set the value
of the IgnoreQueryData parameter to yes.

Important! Do not enable this setting if you have policies which depend on URL
query data.

Ignore Unprotected Resources

Chapter 18: Performance 317

Allow Un-restricted Access to URIs

If you have URIs that you do not want to protect with CA SiteMinder®, you can direct
the Web Agent to ignore and allow un-restricted access to those URIs by setting the
following parameter:

IgnoreUrl

Specifies a URI within a URL that will not be protected. Users attempting to
access the resource associated with the URI will not be challenged. The Web
Agent ignores the URI portion of the string after three forward slashes. For
example, if you set this parameter to the following value:

http://www.example.com/directory

The Web Agent ignores the following URI:

directory

The Web Agent ignores the specified URI wherever it occurs, even if it is under
a different domain. For example, the Web Agent ignores the URI shown
previously in all of the following URLs:

http://www.example.com/directory

http://www.example.net/directory

http://www.example.org/directory

Note: This value is case-sensitive.

Default: No default.

Example: (multiple URIs in local configuration file)

IgnoreUrl="http://www.example.com/directory"

IgnoreUrl="http://www.example.com/directory2"

Example: (using a URI only, without specifying a domain)

IgnoreUrl="/resource/"

To allow un-restricted access to URIs, do either of the following tasks:

■ For central configuration, add the fully qualified domain names with the URIs
that you want to ignore to your agent configuration object. For more than one
URI, use the multi-value setting for the parameter.

■ For local configuration, add a separate line for each fully qualified domain
name and URI in the local configuration file.

Resources using the specified URIs are ignored by the Web Agent and access to
those resources is granted automatically.

Chapter 19: Logging and Tracing 319

Chapter 19: Logging and Tracing

This section contains the following topics:

Logs of Start-up Events (see page 319)
Error Logs and Trace Logs (see page 320)
How to Set Up Trace Logging (see page 325)

Logs of Start-up Events

To assist in debugging, startup events are recorded in a log. Each message may provide
clues about the problem. These logs are stored in the following locations:

■ On Windows systems, these events are recorded in the Windows Application Event
log.

■ On UNIX systems, these events are sent to STDERR. Apache servers map STDERR to
the Apache error_log file, so these events are also recorded in that log.

Error Logs and Trace Logs

320 Web Agent Configuration Guide

Error Logs and Trace Logs

You can use the Web Agent logging function to monitor the performance of the Web
Agent and its communication with the Policy Server. The logging feature provides
accurate and comprehensive information about the operation of CA SiteMinder®
processes to analyze performance and troubleshoot issues.

A log is a record of events that occur during program execution. A log consists of a series
of log messages, each one describing some event that occurred during program
execution. Log messages are written to log files.

Note: IIS Agents create log files only after the first user request is submitted. Apache 2.0
Web Agents create log files when the Apache server starts.

The Web Agent uses the following log files:

Error log

Contains program and operational-level errors. One example is when the Web
Agent cannot communicate with Policy Server. The level of detail output in this log
cannot be customized. Error logs contain the following types of messages:

Error messages

Contain program-level errors, which indicate incorrect or abnormal program
behavior, or an inability to function as expected due to some external problem,
such as a network failure. There are also operational-level errors. This type of
error is a failure that prevents the operation from succeeding, such as opening
a file or authenticating a user.

Informational messages

Contain messages for the user or administrator that some event has occurred;
that is, that a server has started or stopped, or that some action has been
taken.

Warning messages

Contain warnings for the user or administrator of some condition or event that
is unusual or indicative of a potential problem. This does not necessarily mean
there is anything wrong.

Trace log

Contains detailed warning and informational messages, which you can configure.
Examples include trace messages and flow state messages. This file also includes
data such as header details and cookie variables. Trace logs contain the following
messages:

Error Logs and Trace Logs

Chapter 19: Logging and Tracing 321

Trace messages

Provide detailed information about program operation for tracing and/or
debugging purposes. Trace messages are ordinarily turned off during normal
operation. In contrast to informational, warning, and error messages, trace
messages are embedded in the source code and can not easily be localized.
Moreover, trace messages may include significant data in addition to the
message itself; for example, the name of the current user or realm.

You specify the location of both the error and trace log files when you configure the
Web Agent. Use the error and trace logs to help solve any issues that may prevent the
Web Agent from operating properly.

Note: For Agents on Windows platforms, set the EnableWebAgent parameter to yes to
ensure that the Web Agent log gets created. If you leave EnableWebAgent set to no (the
default) and set the logging parameters, the Agent log gets created only for Agents on
UNIX platforms.

More Information

Set Up and Enable Error Logging (see page 322)
Configure Trace Logging (see page 326)

Parameter Values Shown in Log Files

Web Agents list configuration parameters and their values in the Web Agent error log
file, but there are differences between the ways that Traditional and Framework agents
do this.

Framework agents record the configuration parameters and their values in the log file
exactly as you entered them in the Agent Configuration Object or the local configuration
file. All of the parameters, including those which may contain an incorrect value, are
recorded in the log file.

Traditional agents process the parameter values before recording them. If the
parameter has a proper value, the parameter and its value are recorded in the log file.
Parameters with incorrect values are not recorded in the log file.

Error Logs and Trace Logs

322 Web Agent Configuration Guide

Set Up and Enable Error Logging

Error logs require the following settings:

■ Logging is enabled.

■ A location for the log file is specified.

The parameters that enable error logging and determine options such as appending log
data are defined in a local configuration file or an Agent Configuration Object at the
Policy Server.

Agents that are installed on an IIS or Apache web servers do not support dynamic
configuration of log parameters that are set locally in a local configuration file. The
changes take effect when the Agent is restarts. However, these log settings can be
stored and updated dynamically in an agent configuration object at the Policy Server.

Note: IIS Agents create log files only after the first user request is submitted. Apache 2.0
Web Agents create log files when the Apache server starts.

Follow these steps:

1. If you do not have a log file already, create a log file and any related directories.

2. Set the value of the LogFile parameter to yes.

Note: Setting the value of this parameter to yes in a local configuration file of a web
server overrides any of the logging settings that are defined on the Policy Server.
For example, suppose that the value of this parameter is set to yes in a
LocalConfig.conf file. The agent creates log files even though the value of the
AllowLocalConfig parameter in the corresponding agent configuration object is set
to no. You can also set the related logging parameters in the LocalConfig.conf file
also to override any other settings in the agent configuration object.

3. Specify the full path to the error file, including the file name, in any of the following
parameters:

LogFileName

Specifies the full path (including the file name) of the log file.

Default: No

Example: (Windows) web_agent_home\log\WebAgent.log

Example: (UNIX/LInux)
/export/iPlanet/servers/https-jsmith/logs/WebAgent.log

LogFileName32

Specifies the full path of a log file for a CA SiteMinder® Web Agent for IIS (on
64-bit Windows operating environments protecting 32-bit applications). The
32-bit applications run in Wow64 mode on the 64-bit Windows operating
environment. If logging is enabled but this parameter is not set, the Web Agent
for IIS appends _32 to the log file name.

Error Logs and Trace Logs

Chapter 19: Logging and Tracing 323

Default: No

Limits: For Windows 64-bit operating environments only. Specify the file name
at the end of the path.

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\log\WebAgent32.log.

4. (Optional) Set the following parameters (in the Agent Configuration Object on the
Policy Server or in the local configuration file):

LogAppend

Adds new log information to the end of an existing log file. When this
parameter is set to no, the entire log file is rewritten each time logging is
invoked.

Default: No

LogFileSize

Specifies the size limit of the log file in megabytes. When the current log file
reaches this limit, a new log file is created. The new log file uses one of the
following naming conventions:

■ For framework agents, the new log file has a sequence number that is
appended to the original name. For example, a log file named myfile.log is
renamed to myfile.log.1 when the size limit is reached.

■ For traditional agents, the new log files are named by appending the date
and timestamp to the original name. For example, a log file named
myfile.log, is renamed to myfile.log.09-18-2003-16-07-07 when the size
limit is reached.

Archive or remove the old files manually.

Default: 0 (no rollover)

Example: 80

LogLocalTime

Specifies whether the logs use Greenwich Mean Time (GMT) or local time. To
use GMT, change this setting to no. If this parameter does not exist, the default
setting is used.

Default: Yes

If you use a local configuration file, your settings resemble the following
example:

LogFile="yes"

LogFileName="/export/iPlanet/servers/https-myserver/logs/errors.log"

LogAppend="no"

LogFileSize="80"

LogLocalTime="yes"

Error logging is enabled.

Error Logs and Trace Logs

324 Web Agent Configuration Guide

Enable Transport Layer Interface (TLI) Logging

When you want to examine the connections between the agent and the Policy Server,
enable transport layer interface logging.

To enable TLI logging

1. Add the following environment variable to your web server.

SM_TLI_LOG_FILE

2. Specify a directory and log file name for the value of the variable, as shown in the
following example:

directory_name/log_file_name.log

3. Verify that your agent is enabled.

4. Restart your web server.

TLI logging is enabled.

Limit the Number of Log Files Saved

You can limit the number of log files that an agent keeps. For example, if you want to
save disk space on the system that stores your agent logs, you can limit the number of
log files using the following parameter:

LogFilesToKeep

Specifies the number of agent log files that are kept. New log files are created
in the following situations:

■ When the agent starts.

■ When the size limit of the log file (specified by the value of the LogFileSize
parameter) is reached.

Changing the value of this parameter does not automatically delete any
existing logs files which exceed the number that you want to keep. For
example, If your system has 500 log files stored, and you decide to keep only 50
of those files, the agent does not delete the other 450 files.

Setting the value of this parameter to zero retains all the log files.

Default: 0

Follow these steps:

1. Archive or delete any existing log files from your system.

2. Set the value of the LogAppend parameter to no.

3. Change the value of the LogFilesToKeep parameter to the number of log files that
you want to keep.

How to Set Up Trace Logging

Chapter 19: Logging and Tracing 325

How to Set Up Trace Logging

To set up trace logging, use the following process:

1. Set up and Enable Trace logging.

2. Determine what you want to record in the trace log by reviewing the following lists:

■ Trace Log Components and Subcomponents

■ Trace Message Data Fields

■ Data Field Filters

3. Duplicate the default Trace Configuration File.

4. Modify the duplicate file to include the items you want to record.

5. Restart the agent.

How to Set Up Trace Logging

326 Web Agent Configuration Guide

Configure Trace Logging

Before you can use trace logging, you must configure it by specifying a name, location,
and parameters for the trace log file. These settings control the size and format of the
file itself. After trace logging is configured, you determine the content of the trace log
file separately. This lets you change the types of information contained in your trace log
at any time, without changing the parameters of the trace log file itself.

To configure trace logging

1. Locate the WebAgentTrace.conf file on your web server. Duplicate the file.

Note: If you are running the CA SiteMinder® Agent for IIS and protecting 32-bit
applications on a 64-bit system (WoW64 mode), create two duplicates. There are
separate directories for 32 and 64-bit applications on 64-bit Windows operating
environments.

2. Open your Agent Configuration Object or local configuration file.

3. Set the TraceFile parameter to yes.

Note: Setting the value of this parameter to yes in a local configuration file of a web
server overrides any of the logging settings that are defined on the Policy Server.
For example, suppose that the value of this parameter is set to yes in a
LocalConfig.conf file. The agent creates log files even though the value of the
AllowLocalConfig parameter in the corresponding agent configuration object is set
to no. You can also set the related logging parameters in the LocalConfig.conf file
also to override any other settings in the agent configuration object.

4. Specify the full path to the trace log files in following parameters:

TraceFileName

Specifies the full path to the trace log file.

Default: No default

Limits: Specify the file name in this parameter.
Example: web_agent_home\log\trace.log

TraceFileName32

Specifies the full path to the trace file for the CA SiteMinder® Agent for IIS is
running on a 64-bit Windows operating environment and protecting 32-bit
applications. Set this parameter if you have a CA SiteMinder® Agent for IIS
installed on a 64-bit Windows operating environment and protecting a 32-bit
Windows application. The 32-bit applications run in Wow64 mode on the 64-bit
Windows operating environment. If trace logging is enabled but this parameter
is not set, the Web Agent for IIS appends _32 to the file name.

Default: No default.

Limits: For Windows 64-bit operating environments only. Specify the trace file
name at the end of the path.

How to Set Up Trace Logging

Chapter 19: Logging and Tracing 327

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\log\WebAgentTrace32.log.

5. Specify the full path to the duplicate copies of WebAgentTrace.conf file (you
created in Step 1) in the following parameters:

TraceConfigFile

Specifies the location of the WebAgentTrace.conf configuration file that
determines which components and events to monitor.

Default: No default

Example: web_agent_home\config\WebAgentTrace.conf

TraceConfigFile32

Specifies the location of the WebAgentTrace.conf configuration file that
determines which components and events to monitor. Set this parameter if you
have a CA SiteMinder® Agent for IIS installed on a 64-bit Windows operating
environment and protecting a 32-bit Windows application. The 32-bit
applications run in Wow64 mode on the 64-bit Windows operating
environment. If logging is enabled but this parameter is not set, the Web Agent
for IIS appends _32 to the file name.

Default: No default.

Limits: For Windows 64-bit operating environments only. Specify the
configuration file name at the end of the path.

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\config\WebAgentTrace32.conf.

Note: This file is not used until the web server is restarted.

6. Define the format of the information in your trace log file by setting the following
parameters in your Agent Configuration Object or local configuration file:

TraceAppend

Adds new logging information to the end of an existing log file instead of
rewriting the entire file each time logging is invoked.

Default: No

IIS Agents create log files only after the first user request is submitted. Apache
2.0 Web Agents create log files when the Apache server starts.

How to Set Up Trace Logging

328 Web Agent Configuration Guide

TraceDelimiter

Specifies a custom character that separates the fields in the trace file.

Default: No default

Example: |

TraceFileSize

Specifies (in megabytes) the maximum size of a trace file. The Web Agent
creates a new file when this limit is reached.

Default: 0 (a new log file is not created)

Example: 20 (MB)

LogLocalTime

Specifies whether the logs use Greenwich Mean Time (GMT) or local time. To
use GMT, change this setting to no. If this parameter does not exist, the default
setting is used.

Default: Yes

7. Edit the WebAgentTrace.conf file to have Web Agent monitor the activities you
want.

Framework Web Agents do not support dynamic configuration of log parameters
set locally in the Agent configuration file. Consequently, when you modify a
parameter, the change does not take effect until you restart the web server.
However, these log settings can be stored and updated dynamically if you configure
them in an Agent configuration object on the Policy Server.

Note: IIS Agents create log files only after the first user request is submitted.
Apache 2.0 Web Agents create log files when the Apache server starts.

8. Restart the web server so the Web Agent uses the new trace configuration file.

Trace Log Components and Subcomponents

The CA SiteMinder® Agent can monitor specific CA SiteMinder® components. When you
monitor a component, all of the events for that component are recorded in the trace
log. Each component has one or more subcomponents that the agent can also monitor.
If you do not want the agent to record all of the events for a component, you can
specify only those subcomponents you want to monitor instead.

For example, if you want to record only the single sign-on messages for an agent on a
web server, you would specify the WebAgent component and the SSO subcomponent.

How to Set Up Trace Logging

Chapter 19: Logging and Tracing 329

The following components and subcomponents are available:

AgentFramework

Records all Agent framework messages. (Applies only to framework agents.) The
following subcomponents are available:

■ Administration

■ Filter

■ HighLevelAgent

■ LowLevelAgent

■ LowLevelAgentWP

AffiliateAgent

Records web Agent messages related to the 4.x Affiliate Agent, which is part of
Federation Security Services, a separately-purchased product. (Applies only to
framework agents.) The following subcomponent is available:

■ RequestProcessing

SAMLAgent

Web Agent messages related to the SAML Affiliate Agent. (Applies only to
framework agents.) The following subcomponent is available:

■ RequestProcessing

WebAgent

Records all Web Agent log messages. Applies to all Agents except IIS 6.0 or Apache
2.0 Agents. The following subcomponents are available:

■ AgentCore

■ Cache

■ authentication

■ Responses

■ Management

■ SSO

■ Filter

Agent_Functions

Records all Agent API messages. The following subcomponents are available:

■ Init

■ UnInit

■ IsProtected

■ Login

How to Set Up Trace Logging

330 Web Agent Configuration Guide

■ ChangePassword

■ Validate

■ Logout

■ Authorize

■ Audit

■ FreeAttributes

■ UpdateAttributes

■ GetSessionVariables

■ SetSessionVariables

■ DeleteSessionVariables

■ Tunnel

■ GetConfig

■ DoManagement

Agent_Con_Manager

Records messages related to internal processing of the Agent API. The following
subcomponents are available:

■ RequestHandler

■ Cluster

■ Server

■ WaitQueue

■ Management

■ Statistics

Trace Message Data Fields

You can define what each trace message for a specific component contains by specifying
which data fields to include in the message.

Data fields use the following syntax:

data:data_field1,data_field2,data_field3

How to Set Up Trace Logging

Chapter 19: Logging and Tracing 331

Some data fields are shown in the following example:

data:message,date,time,user,agentname,IPAddr

There may not be data for fields in each message, so blank fields my occur. For example,
if you select RealmOID as a data field, some trace messages will display the realm's OID
while others will not.

The following data fields are available:

Message

Includes the actual trace message

SrcFile

Includes the source file and line number of the trace message

Pid

Includes the process ID

Tid

Includes the thread ID

Date

Includes the date

Time

Includes the time

PreciseTime

Includes the time, including milliseconds

Function

Includes the function in the code containing the trace message

User

Includes the name of the user

Domain

Includes the CA SiteMinder® domain

Realm

Includes the CA SiteMinder® realm

AgentName

Includes the Agent name being used

How to Set Up Trace Logging

332 Web Agent Configuration Guide

TransactionID

Includes the transaction ID

DomainOID

Includes the CA SiteMinder® domain OID

IPAddr

Includes the client IP address

RequestIPAddr

Includes the trace file displays the IP of the server where Agent is present

IPPort

Includes the client IP port

CertSerial

Includes the certificate serial number

SubjectDN

Includes the subject DN of the certificate

IssuerDN

Includes the Issuer DN of the certificate

SessionSpec

Includes the CA SiteMinder® session spec

SessionID

Includes the CA SiteMinder® session ID

UserDN

Includes the User DN

Resource

Includes the requested resource

Action

Includes the requested action

RealmOID

Includes the realm OID

ResponseTime

Includes the average response time in milliseconds of the Policy Servers associated
with a CA Web Agent or SDK Agent and API application

How to Set Up Trace Logging

Chapter 19: Logging and Tracing 333

Note: To output the ResponseTime to a trace log, include the component
Agent_Con_Manager along with the data field ResponseTime in the
WebAgentTrace.conf file or other file specified in the Policy Server Configuration
Object (ACO) and restart the Policy Server. The Agent_Con_Manager component, or
Agent API Connection Manager, calculates the ResponseTime each time a response
is received from a Policy Server and keeps a running average. To locate the
ResponseTime in the trace log, search for [PrintStats].

Trace Message Data Field Filters

To focus on a specific problem, you can narrow the output of the trace log by specifying
a filter based on the value of a data field. For example, if you are having problems with
an index.html page, you can filter on resources with an html suffix by specifying
Resource:==/html in the trace configuration file. Each filter should be on a separate line
in the file.

Filters use the following syntax:

data_field:filter

The following types of filters are available:

■ == (exact match)

■ != (does not equal)

The filters use boolean logic as shown in the following examples:

Action:!=get (all actions except get)

Resource:==/html (all resources ending in /html)

Determine the Content of the Trace Log

The WebAgentTrace.conf file determines the content of the trace log. You can control
which components and data items appear in your trace log by modifying the settings of
the WebAgentTrace.conf file on your web server. The following factors apply when
editing the file:

■ Entries are case-sensitive.

When you specify a component, data field, or filter, the values must match exactly
the options in the WebAgentTrace.conf file instructions.

■ Uncomment the configuration settings lines.

■ If you modify the WebAgentTrace.conf file before installing a new agent over an
existing agent, the file is overwritten. Rename or back up the file first. After the
installation, you can integrate your changes into the new file.

How to Set Up Trace Logging

334 Web Agent Configuration Guide

Follow these steps:

1. Open the WebAgentTrace.conf file.

Note: We recommend duplicating the original file and changing the copy. Modifying
the copy preserves the default settings.

2. Add components and subcomponents using the following steps:

a. Find the section that matches your type of agent. For example, if you have an
Apache 2.0 Agent that is installed on your server, look for a line resembling the
following example:

For Apache 2.0, Apache 2.2, IIS 7.0 and SunOne Web Agents

b. Locate the following line in that section:

#components:

c. Uncomment the line. Then add the component names that you want after the
colon. Separate multiple components commas as shown in the following
example:

components: AgentFramework, HTTPAgent

d. (Optional) Follow the component name with the name of a subcomponent you
want. Separate the subcomponent name with a slash as shown in the following
example:

components: AgentFramework/Administration

3. Add data fields and filters using the following steps:

a. Locate the following line in the appropriate section:

#data:

b. Uncomment the line. Then add the data fields that you want after the colon.
Separate multiple data fields with commas as shown in the following example:

data: Date, Time, Pid, Tid, TransactionID, Function, Message, IPAddr

c. (Optional) Add filters to your data fields by following the data field with a
colon, the Boolean operator and the value you want. The values you specify for
the filters must match exactly. The following example shows a filter which logs
activities for a specific IP address:

data: Date, Time, Pid, Tid, TransactionID, Function, Message,

IPAddr:==127.0.0.1

Note: Each filter must be on a separate line in the file.

4. Save your changes and close the file.

5. Restart the web server to apply your changes.

The content of the trace log has been determined.

How to Set Up Trace Logging

Chapter 19: Logging and Tracing 335

Limit the Number of Trace Log Files Saved

You can limit the number of trace logs that a CA SiteMinder® agent keeps. For example,
if you want to save disk space on the system that stores your agent logs, you can limit
the number of trace logs using the following parameter:

TraceFilesToKeep

Specifies the number of CA SiteMinder® agent trace log files that are kept. New
trace logs are created in the following situations:

■ When the agent starts.

■ When the size limit of the trace log (specified by the value of the
TraceFileSize parameter) is reached.

Changing the value of this parameter does not automatically delete any
existing trace logs which exceed the number that you want to keep. For
example, If your system has 500 trace logs stored, and you decide to keep only
50 of those files, the agent does not delete the other 450 trace logs.

Setting the value of this parameter to zero retains all the trace logs.

Default: 0

Follow these steps:

1. Archive or delete any existing trace logs from your system.

2. Set the value of the TraceAppend parameter to no.

3. Change the value of the TraceFilesToKeep parameter to the number of trace logs
that you want to keep.

How to Set Up Trace Logging

336 Web Agent Configuration Guide

Collect Detailed Agent Connection Data with an Agent Connection Manager Trace
Log

To collect detailed information about the connections between a Web Agent and Policy
Server, you create a Trace Log file that contains information gathered by the Agent
Collection Manager.

To collect detailed web agent connection data

1. Open your Agent Configuration object or local configuration file.

2. Set the value of the TraceFile parameter to yes.

Note: Setting the value of this parameter to yes in a local configuration file of a web
server overrides any of the logging settings defined on the Policy Server. For
example, when the value of this parameter is set to yes in a LocalConfig.conf file log
files are generated even if the value of the AllowLocalConfig parameter in the
corresponding Agent Configuration object on the Policy Server is set to no.
Additionally, set the related trace logging parameters (that define the file name,
size, and so on) in the LocalConfig.conf file to override any Policy Server trace log
settings.

3. Specify the full path to the trace log file for your Agent Connection Data in the
TraceFileName parameter. This is the file that contains the trace log output.

4. Set the value of the TraceConfigFile parameter to the full path of the following file:

web_agent_home/config/AgentConMgr.conf

web_agent_home

Indicates the directory where the CA SiteMinder® Agent is installed.

Default (Windows 32-bit installations of CA SiteMinder® Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [CA SiteMinder® Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with CA SiteMinder® Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

5. Define the format the trace log file for your Agent Connection Data by setting the
following parameters:

TraceAppend

Adds new logging information to the end of an existing log file instead of
rewriting the entire file each time logging is invoked.

Default: No

TraceDelimiter

How to Set Up Trace Logging

Chapter 19: Logging and Tracing 337

Specifies a custom character that separates the fields in the trace file.

Default: No default

Example: |

TraceFileSize

Specifies (in megabytes) the maximum size of a trace file. The Web Agent
creates a new file when this limit is reached.

Default: 0 (a new log file is not created)

Example: 20 (MB)

TraceFormat

Specifies how the trace file displays the messages. Choose one of the following
options:

■ default—uses square brackets [] to enclose the fields.

■ fixed—uses fields with a fixed width.

■ delim—uses a character of your choice to delimit the fields.

■ xml—uses XML-like tags. A DTD or style sheet is not provided with the Web
Agent.

Default: default (square brackets)

LogLocalTime

Specifies whether the logs use Greenwich Mean Time (GMT) or local time. To
use GMT, change this setting to no. If this parameter does not exist, the default
setting is used.

Default: Yes

6. Restart your web server so the new settings take effect.

Detailed information about the Web Agent connections will be collected.

Note: For CA SiteMinder® 12.51, the BusyHandleCount and FreeHandleCount
attributes are not used.

Chapter 20: Troubleshooting Agent Configuration 339

Chapter 20: Troubleshooting Agent
Configuration

Agent for IIS Troubleshooting Log

Symptom:

Is there an IIS 7.x log file that can help me troubleshoot the CA SiteMinder® Agent for
IIS?

Solution:

Open the following log file:

web_agent_home\log\IIS70Trace.log

This log file contains the following types of information:

■ Application pool id

■ Application pool pipeline mode

■ Filter type (native HTTP module as opposed to ISAPI filter)

■ 32-bit or 64-bit

Duplicate LLAWP Error Appears in Log File

Symptom:

My log file shows the following error:

Duplicate LLAWP

Solution:

This error occurs when an application pool recycles. The application pool tries to start
new LLAWP processes before the current LLAWP processes are fully shut down.

To prevent this error, configure the application pools in your IIS web server to disallow
overlapping rotation. This setting forces the application pool to wait for the current
LLAWP processes to stop before any new ones are started.

Note: For more information, go the IIS website and search for the phrase,
"DisallowOverlappingRotation"

http://learn.iis.net/

Custom Error Pages not Appearing

340 Web Agent Configuration Guide

Custom Error Pages not Appearing

Valid on Oracle Directory Enterprise Edition (formerly Oracle iPlanet Directory Server
Enterprise Edition)

Symptom:

I set either of the following configuration parameters, but users receive a generic error
message from the server instead:

CSSErrorFile

Specifies the location of a custom-error message file or URL that you want to
display to the users if they try to open a URL that contains possible cross-site
scripting characters.

Default: No default

ServerErrorFile

Instructs the Web Agent to display a custom error page to users who encounter
server errors. Specify a file path or URL for this parameter.

Default: No default

Solution:

Do the following steps:

1. Open the instance_name-obj.conf file on your web server.

2. Locate the following line:

AuthTrans fn="SiteMinderAgent"

3. Add UseOutputStreamSize="0"to the end of the previous line, as shown in the
following example:

AuthTrans fn="SiteMinderAgent" UseOutputStreamSize="0"

4. Save the file, and then restart the web server.

Unable to initialize tracing message

Chapter 20: Troubleshooting Agent Configuration 341

Unable to initialize tracing message

Valid on IIS 7.x

Symptom:

I am running 32-bit and 64-bit agents on the same IIS web server. I want to record trace
logs for the 32-bit agent, but I'm seeing the following message instead:

[INFO] LLAWP: Unable to initialize tracing.

The 64-bit agent trace log is not affected.

Solution:

Verify that the following configuration parameters are defined for your agent:

TraceConfigFile32

Specifies the location of the WebAgentTrace.conf configuration file that
determines which components and events to monitor. Set this parameter if you
have a CA SiteMinder® Agent for IIS installed on a 64-bit Windows operating
environment and protecting a 32-bit Windows application. The 32-bit
applications run in Wow64 mode on the 64-bit Windows operating
environment. If logging is enabled but this parameter is not set, the Web Agent
for IIS appends _32 to the file name.

Default: No default.

Limits: For Windows 64-bit operating environments only. Specify the
configuration file name at the end of the path.

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\config\WebAgentTrace32.conf.

LogFileName32

Specifies the full path of a log file for a CA SiteMinder® Web Agent for IIS (on
64-bit Windows operating environments protecting 32-bit applications). The
32-bit applications run in Wow64 mode on the 64-bit Windows operating
environment. If logging is enabled but this parameter is not set, the Web Agent
for IIS appends _32 to the log file name.

Default: No

Limits: For Windows 64-bit operating environments only. Specify the file name
at the end of the path.

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\log\WebAgent32.log.

Enable KeepAlives When Agents and Policy Servers are Separated a Firewall

342 Web Agent Configuration Guide

TraceFileName32

Specifies the full path to the trace file for the CA SiteMinder® Agent for IIS is
running on a 64-bit Windows operating environment and protecting 32-bit
applications. Set this parameter if you have a CA SiteMinder® Agent for IIS
installed on a 64-bit Windows operating environment and protecting a 32-bit
Windows application. The 32-bit applications run in Wow64 mode on the 64-bit
Windows operating environment. If trace logging is enabled but this parameter
is not set, the Web Agent for IIS appends _32 to the file name.

Default: No default.

Limits: For Windows 64-bit operating environments only. Specify the trace file
name at the end of the path.

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\log\WebAgentTrace32.log.

Enable KeepAlives When Agents and Policy Servers are
Separated a Firewall

Symptom:

I use a firewall between my agent and Policy Server. Sometimes the agent returns a 500
error when I try to access a page.

Solution:

Enable Keepalives on the agent by doing the following steps:

1. Locate the following environment variable on the computer hosting the web agent:

 SM_ENABLE_TCP_KEEPALIVE

2. Set the value of the previous environment variable to 1.

Japanese Pages Rendered Improperly (153202, 153609)

Chapter 20: Troubleshooting Agent Configuration 343

Japanese Pages Rendered Improperly (153202, 153609)

Symptom:

When a user is redirected to another page for one of the following reasons, content in
the resulting page is not rendered properly.

■ New registration

■ Change the password

■ Password expired

Solution:

Add the following line to the http.conf file of your Apache web server:

“BrowserMatch ".*" suppress-error-charset”

Save the http.conf file and restart your web server for this setting to take effect.

Non-english Input Characters Contain Junk Characters

Valid on UNIX/Linux

Symptom:

Some non-English input characters are not displayed correctly in the console window.

Solution:

Verify the terminal settings of your console window. Confirm that the console does not
clear high (eight) bit of input characters. Execute the following command:

stty –istrip

Chapter 21: Agent Error Codes 345

Chapter 21: Agent Error Codes

This section contains the following topics:

00-0001 (see page 345)
00-0002 (see page 346)
00-0004 (see page 346)
00-0005 (see page 346)
00-0006 (see page 347)
00-0007 (see page 347)
00-0008 (see page 347)
00-0009 (see page 348)
00-0010 (see page 348)
00-0011 (see page 348)
00-0012 (see page 349)
00-0013 (see page 349)
00-0014 (see page 350)
00-0015 (see page 350)
00-0016 (see page 350)
00-0017 (see page 351)
10-0001 (see page 351)
10-0002 (see page 351)
10-0003 (see page 351)
10-0004 (see page 352)
10-0005 (see page 352)
10-0007 (see page 352)
20-0001 (see page 353)
20-0002 (see page 353)
20-0003 (see page 354)
30-0026 (see page 354)

00-0001

Reason:

Unable to resolve the agent name from an IP address

Action:

Check the agent configuration and ensure that each HOST address served by the web
server has a corresponding AgentName mapped to it or that DefaultAgentName is set
properly.

Non-english Input Characters Contain Junk Characters

346 Web Agent Configuration Guide

00-0002

Reason:

Illegal Characters exist in a URL or characters defined in the BadUrlChars parameter
have been detected in a URL.

Action:

Do one of the following:

■ Remove the offending characters from the URL

■ Remove the characters from the list in the BadUrlChars parameter so they will no
longer be blocked.

00-0004

Reason:

An SSLCRED cookie contains a status of error.

Action:

Investigate the Web Agent acting as the secure credential collector (SCC) and verify its
configuration.

Typically, this error occurs only when the SCC agent cannot acquire credentials from its
environment. This indicates a possible configuration error.

00-0005

Reason:

A FORMCRED cookie contains a status of error.

Action:

Investigate the Web Agent acting as the forms credential collector (FCC) and verify its
configuration.

Typically, this error occurs only when the FCC agent cannot acquire credentials from its
environment. This indicates a possible configuration error.

Non-english Input Characters Contain Junk Characters

Chapter 21: Agent Error Codes 347

00-0006

Reason:

An NTLM Protected Resource was not found in the resource cache as expected.

Action:

Investigate the Windows authentication scheme setup to verify the configuration.

00-0007

Reason:

An ASCII encoding error exists. This is an internal Web Agent error.

Action:

Investigate the web server and Web Agent to diagnose possible service instability.

Contact Customer Support with the Web Agent log and configuration files available for
review.

More information:

Contact CA Technologies (see page 3)

00-0008

Reason:

SSL Authentication failed. This error indicates a bad certificate or that the user is not
authenticated.

Action:

Try a different certificate or investigate the SSL authentication scheme configuration for
possible issues.

Non-english Input Characters Contain Junk Characters

348 Web Agent Configuration Guide

00-0009

Reason:

Bad or Missing SSL credentials.

Action:

Try a different certificate or username and password pair. Investigate the SSL
authentication scheme configuration for possible issues.

00-0010

Reason:

Access Denied. This error indicates a general failure that resulted in blocked access.

Action:

Investigate the Web Agent and Policy Server logs to determine the root cause of the
failure.

00-0011

Reason:

Credential Collector Error.This indicates that a general failure in Forms or SSL-based
advanced authentication resulted in blocked access.

Action:

Do the following:

■ Check the Web Agent and Policy Server logs to determine the root cause of the
failure.

■ Investigate the advanced authentication scheme setup for issues.

Non-english Input Characters Contain Junk Characters

Chapter 21: Agent Error Codes 349

00-0012

Reason:

Encryption Error. This indicates an internal Web Agent error.

Action:

Do the following:

■ Investigate the web server and Web Agent to diagnose a possible service instability.

■ Review Key Store setup to verify that proper Agent Keys are in use.

■ Contact Customer Support and send the Web Agent log and configuration files for
review.

More information:

Contact CA Technologies (see page 3)

00-0013

Reason:

Agent Configuration Error. One or more errors occurred during startup preventing valid
configuration of the Web Agent.

Action:

Do the following:

■ On Windows, check the Application Event Log for more information.

■ For Apache agents, check the Apache error log for more information.

■ For Oracle iPlanet UNIX agents, start Oracle iPlanet from a shell prompt and look for
possible errors displayed there through STDERR.

■ Check that SmHost.conf file exists (host is registered properly) and contains valid
entries.

■ Check that Agent Configuration file contains a valid HostConfigFile entry that points
to a valid SmHost.conf file.

■ Check that AgentConfigObject contains a valid value.

Non-english Input Characters Contain Junk Characters

350 Web Agent Configuration Guide

00-0014

Reason:

Could not Log the user out.

Action:

Check the following files for more information:

■ Web Agent log file

■ Web Agent trace file

■ Policy Server log file

■ Policy Server trace file

00-0015

Reason:

CA SiteMinder® accounting server answered SM_AGENTAPI_NO to auditing request.

Action:

Check the following files for more information:

■ Policy Server log file

■ Policy Server trace file

00-0016

Reason:

Unable to resolve the FQ host name.

Action:

Check the Web Agent logs to determine the host name that the Agent is trying to
resolve. If the host name is correct, check the DNS settings of the web server on which
the agent runs.

Non-english Input Characters Contain Junk Characters

Chapter 21: Agent Error Codes 351

00-0017

Reason:

Invalid redirect target found.

Action:

Examine the log file of the Web Agent which is reporting this message to locate the URL
being processed (usually an FCC or other advanced authentication URL) and determine if
the value of the TARGET CGI parameter appears valid.

10-0001

Reason:

Unable to read the 'SERVER_NAME' HTTP variable.

Action:

Check that the web browser and web server are HTTP 1.0-compliant.

10-0002

Reason:

Unable to read the 'URL' HTTP variable.

Action:

Check that the web browser and web server are HTTP 1.0-compliant.

10-0003

Reason:

Unable to read the 'method' HTTP variable.

Action:

Check that the web browser and web server are HTTP 1.0-compliant.

Non-english Input Characters Contain Junk Characters

352 Web Agent Configuration Guide

10-0004

Reason:

Unable to read the 'host' HTTP variable.

Action:

Check that the web browser and web server are HTTP 1.0-compliant.

10-0005

Reason:

Unable to read the 'URI' HTTP variable.

Action:

Check that the web browser and web server are HTTP 1.0-compliant.

10-0007

Reason:

The URL is too long.

Action:

Increase setting of the MaxUrlSize parameter; the default setting is 4096 bytes.

More information:

Set a Maximum URL Size (see page 252)

Non-english Input Characters Contain Junk Characters

Chapter 21: Agent Error Codes 353

20-0001

Reason:

Unable to reach CA SiteMinder® accounting server or an unexpected Policy Server error
occurred.

Action:

Do the following:

■ Check the Policy Server logs for more detailed information on the error.

■ Check connectivity between the Web Agent and the Policy Server by pinging the
Policy Server. If a firewall is configured between the Agent and the Policy Server,
check that it is not blocking the following service ports:

– 44441 (accounting)

– 44442 (authentication)

– 44443 (authorization)

20-0002

Reason:

Unable to reach CA SiteMinder® authentication server or an unexpected Policy Server
error occurred.

Action:

Do the following:

■ Check Policy Server logs for more detailed information on the error.

■ Check connectivity between the Web Agent and the Policy Server by pinging the
Policy Server. If a firewall is configured between the Agent and the Policy Server,
check that it is not blocking the following service ports:

– 44441 (accounting)

– 44442 (authentication)

– 44443 (authorization)

Non-english Input Characters Contain Junk Characters

354 Web Agent Configuration Guide

20-0003

Reason:

Unable to reach CA SiteMinder® authorization server or an unexpected Policy Server
error occurred.

Action:

Do the following:

■ Check Policy Server logs for more detailed information on the error.

■ Check connectivity between the Web Agent and the Policy Server by pinging the
Policy Server. If a firewall is configured between the Agent and the Policy Server,
check that it is not blocking the following service ports:

– 44441 (accounting)

– 44442 (authentication)

– 44443 (authorization)

30-0026

Reason:

The Password Services Redirect URL is not available.

Action:

Check that you have configured the redirection URL for password services.

Appendix A: Agent Parameters 355

Appendix A: Agent Parameters

This section contains the following topics:

List of Agent Configuration Parameters (see page 355)

List of Agent Configuration Parameters

The following table lists the agent configuration parameters:

To set this parameter: See this procedure:

AcceptTPCookie Configure Support for SDK Third-Party Cookies (see page 90)

AgentConfigObject Parameters Found Only in Local Configuration Files (see page 35)

AgentName Set the AgentName and DefaultAgentName Values (see page 50)

AgentNamesAreFQHostNames Configure Credential Collectors in a Mixed Environment (see page 172)

AgentWaitTime Accommodate Network Latency (see page 54)

AllowCacheHeaders Control How HTTP Header Resources are Cached (see page 125)

AllowLocalConfig Implement Local Configuration (see page 36)

Restrict Changes to Local Configuration Parameters (see page 39)

AppendIISServerLog Record the User Name and Transaction ID in IIS Server Logs (see
page 254)

autoauthorizeoptions Allow Automatic Access to Resources that use the OPTIONS Method (see
page 191)

BadCSSChars Protect Web Sites Against Cross-Site Scripting (see page 69)

BadFormChars Specify Bad Form Characters

BadQueryChars Specify Bad Query Characters (see page 73)

BadUrlChars Specify Bad URL Characters (see page 75)

CacheAnonymous Cache Anonymous Users (see page 307)

CCCExt Specify the Cookie Provider (see page 207)

ConformToRFC2047 Disable Conformance to RFC 2047 (see page 182)

ConstructFullPwsvcUrl Use a Fully Qualified URL for Password Services Redirects (see page 182)

CookieDomain How to Configure Single Sign-On (see page 197)

CookieDomainScope Implement Cookie Domain Resolution (see page 89)

List of Agent Configuration Parameters

356 Web Agent Configuration Guide

To set this parameter: See this procedure:

CookiePath Specify the Cookie Path for Agent Cookies (see page 86)

CookiePathScope Specify the Cookie Path for Agent Cookies (see page 86)

CookieProvider How to Configure Single Sign-On (see page 197)

CookieValidationPeriod Protect Session Cookies from Misuse with Validation Periods and Expired
Cookie URLs (see page 105)

CSSChecking Configure the Web Agent to Check For Cross Site-Scripting (see page 71)

CSSErrorFile How to Set Up Error Handling (see page 131)

Custom401ErrorFile How to Set Up Error Handling (see page 131)

CustomIpHeader Configure IP Address Validation (see page 123)

DecodeQueryData Decode Query Data (see page 91)

DefaultAgentName Set the AgentName and DefaultAgentName Values (see page 50)

DefaultHostName Accommodate Testing Tools that do not send HOST Headers (see
page 298)

DefaultPassword Use an IIS Proxy User Account (see page 266)

DefaultUsername Use an IIS Proxy User Account (see page 266)

DeleteCerts Delete Certificates from Stronghold Servers (see page 273)

DisableAuthSrcVars Disable Default HTTP Header Variables (see page 129)

DisableDirectoryList Restrict Directory Browsing on a Sun Java System Server (see page 274)

DisableDNSLookups Help Prevent DNS DOS Attacks (see page 78)

DisableDotDotRule Handle Complex URIs (see page 93)

DisableSessionVars Disable Default HTTP Header Variables (see page 129)

DisableUserNameVars Disable Default HTTP Header Variables (see page 129)

DisableWindowsSecurityContext Disable Windows Security Context on Agents for IIS (see page 267).

DisallowUTF8NonCanonical Protect J2EE Applications against Cross-Site Scripting Attacks (see
page 71)

DLPExclusionList Exclude Resources from the DLP Content Classifications

Note: For more information, see the CA SiteMinder® Implementation
Guide.

DLPSupportEnabled Modify the SharePoint Agent Configuration Object

Note: For more information, see the CA SiteMinder® Implementation
Guide.

DominoDefaultUser Authenticate Users with the Domino Server (see page 285)

List of Agent Configuration Parameters

Appendix A: Agent Parameters 357

To set this parameter: See this procedure:

DominoLegacyDocumentSupport Handle User-Requested Actions on Lotus Notes Documents (see
page 293)

DominoLookUpHeaderForLogin Use a SiteMinder Header for Authentication (see page 290)

DominoMapUrlForRedirect Map URLs for FCC Redirects with a Domino Web Agent (see page 149)

DominoNormalizeUrls Map URLs for FCC Redirects with a Domino Web Agent (see page 149)

DominoSuperUser Authenticate as the Domino Super User (see page 286)

DominoUseHeaderForLogin Use a SiteMinder Header for Authentication (see page 290)

DominoUserForAnonAuth Use an Anonymous CA SiteMinder® Authentication Scheme with Domino
(see page 291)

EarlyCookieCommit Determine when the Agent for IIS Sets Cookies

EnableAuditing Configure Auditing to Track User Activity (see page 67)

EnableCookieProvider Disable Cookie Providers (see page 208)

EnableFCCWindowsAuth Configure the FCC to allow Windows authentication (see page 159)

EnableFormCache Configure the Form Cache (see page 170)

EnableIntroscopeApiSupport Use CA Technologies Wily Introscope to Monitor Web Agents (see
page 311)

EnableMonitoring Monitor Web Agents with the OneView Monitor (see page 311)

EnableOtherAuthTrans Handle Multiple AuthTrans Functions (see page 274)

EnableWebAgent Enable a Web Agent (see page 63)

EncryptAgentName Encrypt the Agent Name (see page 53)

EnforceRealmTimeouts How to Enforce Timeouts across Multiple Realms (see page 111)

ExpiredCookieURL Protect Session Cookies from Misuse with Validation Periods and Expired
Cookie URLs (see page 105)

ExpireForProxy Configure Agents that Sit behind Proxy Servers (see page 173)

FCCCompatMode Use FCCs and NTCs in a Mixed Environment (see page 173)

FCCExt Set Up Credential Collectors for IIS and Domino web servers

FCCForceIsProtected Force an FCC to Establish Realm Context for Forms Authentication (see
page 169)

Fcchtmlencoding Prevent Cross-Site Scripting Attacks in Web Agent FCC Pages (see
page 70)

ForceCookieDomain Force the Cookie Domain (see page 88)

ForceFQHost Force the Cookie Domain (see page 88)

List of Agent Configuration Parameters

358 Web Agent Configuration Guide

To set this parameter: See this procedure:

ForceIISProxyUser Use an IIS Proxy User Account (see page 266)

FormCacheTimeout Configure the Form Cache (see page 170)

GetPortFromHeaders Use the HTTP HOST Request for the Port Number (see page 270)

HostConfigFile Parameters Found Only in Local Configuration Files (see page 35)

HTTPHeaderEncodingSpec Set the HTTP Header Encoding Spec

HttpsPorts Define HTTPS Ports (see page 91)

IdleTimeoutURL Redirect a User after a Session Time-out (see page 110)

IgnoreCPForNotprotected Ignore the Cookie Provider for Unprotected Resources (see page 205)

IgnoreExt Reduce Overhead by Ignoring File Extensions of Unprotected Resources
(see page 313)

IgnoreHost Specify Virtual Servers to be Ignored by the Web Agent (see page 138)

IgnoreQueryData Ignore Query Data (see page 316)

IgnoreUrl Allow Unrestricted Access to URIs (see page 317)

IISCacheDisable Prevent Caching of Server Responses Containing Cookies (see page 268)

LegacyCookieProvider Disable FCC Realm Context Confirmation to Improve Performance (see
page 169)

LegacyEncoding Accommodate Legacy URL Encoding (see page 297)

LegacyStreamingBehavior Choose How Content Types are Transferred in POST Requests (see
page 272)

LegacyTransferEncodingBehavior Use Legacy Applications with an Apache Web Agent (see page 270)

LegacyVariables Enable Legacy Variables for HTTP Headers

LimitCookieProvider Restrict Cookie Provider Functions (see page 198)

LoadPlugin WebAgent.conf file for Framework Agents (see page 33)

localconfigfile WebAgent.conf file for Framework Agents (see page 33)

LogAppend Set Up and Enable Error Logging (see page 322)

LogFile Set Up and Enable Error Logging (see page 322)

LogFileName Set Up and Enable Error Logging (see page 322)

LogFileSize Set Up and Enable Error Logging (see page 322)

LogFilesToKeep Limit the Number of Log Files Saved (see page 324)

LogLocalTime Set Up and Enable Error Logging (see page 322)

LogoffUri How to Configure Full Logoff for Single Sign-on (see page 211)

List of Agent Configuration Parameters

Appendix A: Agent Parameters 359

To set this parameter: See this procedure:

LowerCaseHTTP Use Lower Case HTTP in Headers (see page 128)

LowerCaseProtocolSpecifier Specify URL Protocols with Lowercase Characters (see page 154)

MasterCookiePath Specify the Cookie Path for Agent Cookies (see page 86)

MaxResourceCacheSize Set the Maximum Resource Cache Size (see page 308)

MaxSessionCacheSize Set the Maximum User Session Cache Size (see page 309)

MaxTimeoutURL Redirect a User after a Session Time-out (see page 110)

MaxUrlSize Set a Maximum URL Size (see page 252)

NTCExt Specify an NTLM Credential Collector (see page 171)

OverlookSessionAsPattern Prevent Session Cookie Creation or Updates

OverlookSessionForMethods Prevent Session Cookie Creation or Updates

OverlookSessionForMethodUri Prevent Session Cookie Creation or Updates Based on Method and URI
(see page 107)

OverlookSessionForUrls Prevent Session Cookie Creation or Updates

OverrideIgnoreExtFilter Protect Resources Without Extensions (see page 78)

P3PCompactPolicy Configure your Web Agent to Accommodate P3P Compact Policies (see
page 96)

PersistentCookies Set Persistent Cookies (see page 85)

PersistentIPCheck Compare IP Addresses to Prevent Security Breaches (see page 81)

PostPreservationFile Enable Post Preservation between Framework and Traditional Agents
(see page 150)

PreserveHeaders Preserve HTTP Headers (see page 124)

PreservePostData Enable or Disable POST Preservation (see page 79)

ProxyAgent CA SiteMinder® Reverse Proxy Deployment Considerations (see
page 244)

ProxyDefinition CA SiteMinder® Reverse Proxy Deployment Considerations (see
page 244)

ProxyHeadersAutoAuth Customize the Cache-Control and ExpireForProxy Header Settings (see
page 230)

ProxyHeadersAutoAuth10 Customize the Cache-Control and ExpireForProxy Header Settings (see
page 230)

ProxyHeadersProtected Customize the Cache-Control and ExpireForProxy Header Settings (see
page 230)

List of Agent Configuration Parameters

360 Web Agent Configuration Guide

To set this parameter: See this procedure:

ProxyHeadersProtected10 Customize the Cache-Control and ExpireForProxy Header Settings (see
page 230)

ProxyHeadersUnprotected Customize the Cache-Control and ExpireForProxy Header Settings (see
page 230)

ProxyHeadersUnprotected10 Customize the Cache-Control and ExpireForProxy Header Settings (see
page 230)

ProxyTimeout CA SiteMinder® Reverse Proxy Deployment Considerations (see
page 244)

ProxyTrust Configure Agents that Sit behind Proxy Servers (see page 228)

PSPollInterval Change How Often an Agent Checks for Policy or Key Updates (see
page 65)

RemoteUserVar Configure the Web Agent to set the REMOTE_USER Variable (see
page 114)

ReqCookieErrorFile Set Up Error Handling (see page 131)

RequireClientIP Configure IP Address Validation (see page 123)

RequireCookies Require Cookies for Basic Authentication (see page 83)

ResourceCacheTimeout Control How Long Resource Enteries Remain Cached (see page 310)

SaveCredsTimeout Set a Timeout for Saved Credentials (see page 305)

SCCExt Set Up Credential Collectors for IIS and Domino Web Servers

SecureApps Secure Applications (see page 79)

SecureURLs Configure SecureUrls with Single Sign-on (see page 206)

ServerErrorFile Set Up Error Handling (see page 131)

SessionGracePeriod Modify the Session Grace Period (see page 103)

SessionUpdatePeriod Modify the Session Update Period (see page 104)

SetRemoteUser Configure the Web Agent to set the REMOTE_USER Variable (see
page 114)

SFCCExt Set Up Credential Collectors for IIS and Domino Web Servers

SkipDominoAuth Authenticate Users with the Domino Server (see page 285)

SSOTrustedZone The Order of Trust and Failover (see page 226)

SSOZoneName Configure Security Zones (see page 223)

StoreSessioninServer Enable Single Use Session Cookies (see page 108)

SuppressServerHeader Remove the Server HTTP Header if Using the URLScan Utility (see
page 250)

List of Agent Configuration Parameters

Appendix A: Agent Parameters 361

To set this parameter: See this procedure:

TargetAsRelativeURI Use a Relative Target for Credential Collector Redirects (see page 147)

TraceAppend Configure Trace Logging (see page 326)

TraceConfigFile Configure Trace Logging (see page 326)

TraceDelimiter Configure Trace Logging (see page 326)

TraceFile Configure Trace Logging (see page 326)

TraceFileName Configure Trace Logging (see page 326)

TraceFileSize Configure Trace Logging (see page 326)

TraceFilesToKeep Limit the Number of Trace Log Files Saved (see page 335)

TraceFormat Configure Trace Logging (see page 326)

TrackCPSessionDomain Prevent Cookie Provider Replay Attacks (see page 199)

TrackSessionDomain Validate a Session Cookie Domain (see page 109)

TransientIDCookies Control Identity Cookies (see page 84)

TransientIPCheck Compare IP Addresses to Prevent Security Breaches (see page 81)

UseAnonAccess Enable Anonymous User Access (see page 267)

UseDominoUserForUnprotected Force the Domino server to authenticate unprotected resources (see
page 296)

UseHTTPOnlyCookies Safeguard Information in Cookies with HTTP-Only Attribute (see page 83)

UseNetBIOSforIISAuth Use the NetBIOS Name or UPN for IIS Authentication (see page 256)

UseSecureCookies Set Secure Cookies (see page 84)

UseSecureCPCookies Set Secure Cookies Across Multiple Domains (see page 204)

UseServerRequestIp Resolve Agent Identity by IP Address (see page 81)

ValidFedTargetDomain Define Valid Federation Target Domains (see page 148)

ValidTargetDomain Define Valid Target Domains (see page 147)

WebAppClientResponse Apply CA SiteMinder® Behavior to a Web Application Client (see page 97)

XFrameOptions
Ensure Custom Responses Comply with
X-Frame Options (see page 80)

Index 363

Index

P

Parameters
AcceptTPCookie • 90
AgentConfigObject • 24, 35
AgentNamesAreFQHostNames • 146
AgentWaitTime • 54
AllowCacheHeaders • 125, 233
AllowLocalConfig • 30, 36, 39, 40, 336
AppendIISServerLog • 254
BadQueryChars • 73
BadUrlChars • 75, 245
CacheAnonymous • 24, 307
ConformToRFC2047 • 127
ConstructFullPwsvcUrl • 182
CookieDomain • 202
CookieDomainScope • 202
CookiePath • 86
CookiePathScope • 86
CookieProvider • 207
CookieValidationPeriod • 105
CSSChecking • 71
Custom401ErrorFile • 130, 131, 132
CustomIpHeader • 123
DecodeQueryData • 91
DefaultAgentName • 50, 53, 108, 137, 146, 172,

173, 176
DefaultHostName • 298
DefaultPassword • 115, 266
DefaultUsername • 115, 266
DeleteCerts • 273
DisableAuthSrcVars • 129
DisableDirectoryList • 274
DisableDNSLookups • 78
DisableDotDotRule • 93
DisableSessionVars • 129
DisableUserNameVars • 129
DominoLegacyDocumentSupport • 293
DominoLookUpHeaderForLogin • 290
DominoMapUrlForRedirect • 149
DominoNormalizeUrls • 292
DominoUseHeaderForLogin • 290
DominoUserForAnonAuth • 291
EnableAuditing • 67
EnableFormCache • 170

EnableIntroscopeApiSupport • 311
EnableMonitoring • 311
EnableOtherAuthTrans • 274
EncryptAgentName • 53
EnforceRealmTimeouts • 111
ExpiredCookieURL • 105
ExpireForProxy • 228
FCCForceIsProtected • 169
ForceCookieDomain • 88
ForceFQHost • 88
ForceIISProxyUser • 115, 266
FormCacheTimeout • 170
GetPortFromHeaders • 270
HttpsPorts • 91, 244
IdleTimeoutURL • 110
IgnoreCPForNotprotected • 205
IgnoreExt • 313
IgnoreHost • 138
IgnoreQueryData • 316
IgnoreUrl • 317
LegacyCookieProvider • 205
LegacyEncoding • 297
LegacyStreamingBehavior • 272
LegacyTransferEncodingBehavior • 270
LogAppend • 322
LogFile • 322
LogFileName • 322
LogFileSize • 322
LogFilesToKeep • 324
LogLocalTime • 322, 326, 336
LogOffUri • 210
LowerCaseHTTP • 128
LowerCaseProtocolSpecifier • 154
MasterCookiePath • 86
MaxResourceCacheSize • 24, 308
MaxSessionCacheSize • 24, 309
MaxTimeoutURL • 110
MaxUrlSize • 252
NTCExt • 171
OverlookSessionForMethods • 107
OverlookSessionForMethodUri • 107
OverrideIgnoreExtFilter • 78
P3PCompactPolicy • 96
PersistentCookies • 81, 85
PersistentIPCheck • 81, 123

364 Web Agent Configuration Guide

PostPreservationFile • 24, 150
PreserveHeaders • 124
PreservePostData • 79
ProxyAgent • 239, 241, 245
ProxyDefinition • 123
ProxyTimeout • 245
ProxyTrust • 228, 239, 241, 245
PSPollInterval • 65
RemoteUserVar • 114
ReqCookieErrorFile • 130, 131
RequireCookies • 83
ResourceCacheTimeout • 24, 310
SaveCredsTimeout • 305
SecureApps • 79
SecureURLs • 155
ServerErrorFile • 340
ServerPath • 55, 56
SessionGracePeriod • 103
SessionUpdatePeriod • 104
SetRemoteUser • 254
SkipDominoAuth • 282, 285, 286, 287, 289
SSOTrustedZone • 223
SSOZoneName • 223, 225
StoreSessioninServer • 108
SuppressServerHeader • 250
TargetAsRelativeURI • 147
TraceAppend • 326, 336
TraceConfigFile • 326
TraceDelimiter • 326, 336
TraceFile • 326
TraceFileName • 326
TraceFileSize • 326, 336
TraceFilesToKeep • 335
TraceFormat • 326, 336
TrackSessionDomain • 109
TransientIDCookies • 84, 85
TransientIPCheck • 81
UseAnonAccess • 267
UseHTTPOnlyCookies • 83
UseNetBIOSforIISAuth • 256
UseSecureCookies • 84
UseServerRequestIp • 81
ValidTargetDomain • 147

	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	Chapter 1: Web Agents
	How Web Agents Secure Resources
	How Web Agents and the Policy Server Work Together
	Considerations for Web Agents and Policy Servers in Different Time Zones

	How the Agent Reads CA SiteMinder® Cookies
	Web Agents and Dynamic Key Rollovers
	Key Stores

	Framework and Traditional Agent Architectures
	Parameters Requiring a Server Restart when Changed
	Multiple Agent for IIS Directory Structures

	Chapter 2: Agent Configuration Methods
	Central Configuration
	Implement Central Configuration

	Local Agent Configuration
	WebAgent.conf File Locations
	WebAgent.conf file for Framework Agents
	LocalConfig.conf File Locations (Framework Agents)
	Parameters Found Only in Local Configuration Files
	Implement Local Configuration
	How to Edit an Agent Configuration File
	Restrict Changes to Local Configuration Parameters

	Central and Local Configuration Together

	Chapter 3: Configuration Files used by the Web Agent
	Agent Connection Manager Configuration File
	Connection API Configuration File
	Local Agent Configuration File
	Trace Configuration File
	Web Agent Trace Configuration File
	CA SiteMinder® Host Configuration File
	Web Agent Configuration File

	Chapter 4: Basic Agent Setup and Policy Server Connections
	Default Settings of Web Agent Configuration Parameters
	Set the AgentName and DefaultAgentName Values
	Restrict Changes to Local Configuration Parameters
	Ensure that Agent Names Match
	Encrypt the Agent Name
	How to Manage Web Agent and Policy Server Communication
	Accommodate Network Latency
	Manage Web Agents with Multiple Web Server Instances
	Set the ServerPath Parameter for Windows Systems
	Set the ServerPath Parameter for UNIX Systems
	Additional Configurations Requiring the ServerPath Parameter

	Set Log Files, and Command-line Help to Another Language
	Determine the IANA Code for Your Language
	Environment Variables
	Set the Locale Variable on Windows Operating Environments
	Verify the Locale Variable Value on Windows Operating Environments

	Set the Locale Variable on UNIX or Linux Operating Environments

	Chapter 5: Starting and Stopping Web Agents
	Enable a Web Agent
	Disable a Web Agent
	Starting or Stopping Most Apache-based Agents with the apachectl Command

	Chapter 6: User Protection
	Change How Often an Agent Checks for Policy or Key Updates
	User Tracking and URL Monitoring
	Track User Identity Across Anonymous Realms
	Track User Activities or Application Usage with Auditing
	URL Monitoring Overview

	Help Prevent Attacks
	Protect Web Sites Against Cross-Site Scripting
	Prevent Cross-Site Scripting Attacks in Web Agent FCC Pages
	Configure the Web Agent to Check For Cross Site-Scripting
	Protect J2EE Applications against Cross-Site Scripting Attacks
	Override the Default CSS Character Set
	Specify Bad Query Characters
	Specify Bad URL Characters
	Enable Bad Form Characters
	Help Prevent DNS Denial Of Service Attacks
	Protect Resources Without Extensions
	Disable POST Preservation
	Secure Applications
	Ensure Custom Responses Comply with X-Frame Options

	Verify IP Addresses
	Resolve Agent Identity by IP Address
	Compare IP Addresses to Prevent Security Breaches

	SiteMinder Browser Cookies
	Require Cookies for Basic Authentication
	Safeguard Information in Cookies with HTTP-Only Attribute
	Set Secure Cookies
	Control Identity Cookies
	Set Persistent Cookies
	Specify the Cookie Path for Agent Cookies
	Force the Cookie Domain
	Implement Cookie Domain Resolution
	How CookiePathScope Settings Work
	Configure Support for SDK Third-Party Cookies

	Define HTTPS Ports
	Decode Query Data in a URL
	How to Protect Resources Without Periods or Extensions
	Handle Complex URIs

	Chapter 7: Use Platform for Privacy Preferences (P3P) Compact Policies with CA SiteMinder® Agents
	How to Support a P3P Compact Policy with your CA SiteMinder® Web Agent
	Configure your Web Agent to Accommodate P3P Compact Policies

	Chapter 8: Session Protection
	Apply CA SiteMinder® Behavior to a Web Application Client
	Web Application Client Response Introduced
	Cookie Providers and the Web Application Client Response
	How to Apply the Web Application Client Response to a Web Application
	Configure a Web Application Client Response
	Configure a Customized Response
	Configure the Web Application to Handle a Custom Response

	Modify the Session Grace Period
	Modify the Session Update Period
	Protect Session Cookies from Misuse with Validation Periods and Expired Cookie URLs
	Prevent Session Cookie Creation or Updates
	Prevent Session Cookie Creation or Updates Based on Method and URI
	Store Session Cookies on the Session Store for Improved Security
	Validate a Session Cookie Domain
	Redirect a User after a Session Time-out
	Enforce Timeouts across Multiple Realms
	Prevent Re-Challenges After Realm Timeouts When Multiple Valid Sessions Exist

	Chapter 9: Web Application Protection
	Application Protection Methods
	REMOTE_USER Variable
	Configure the Web Agent to set the REMOTE_USER Variable
	IIS Web Servers and the REMOTE_USER Variable

	How Response Attributes Work with Web Agents
	Use SM_AGENT_ATTR_USRMSG Response for a Forms Challenge
	Cache Response Attributes

	CA SiteMinder® Default HTTP Headers
	HTTP Header and Cookie-Variables
	Header Variables and End-User IP Address Validation
	How Custom Headers Validate IP Addresses
	Configure IP Address Validation
	IP Address Validation with Previous Web Agent Releases

	Preserve HTTP Headers
	Control How HTTP Header Resources are Cached
	Set the HTTP Header Encoding Spec
	Disable Conformance to RFC 2047
	Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)
	Enable Legacy Variables for HTTP Headers
	Disable Default HTTP Header Variables

	Custom Error Handling For Applications
	How to Set Up Error Handling
	Notes for Custom 401 Pages

	Chapter 10: Configure Virtual Servers
	How to Set Up Virtual Server Support
	Assign Web Agent Identities for Virtual Servers
	Specify Virtual Servers for the Web Agent to Ignore

	Chapter 11: Forms Authentication
	How Credential Collectors Process Requests
	MIME Types for Credential Collectors
	How to Configure a CA SiteMinder® Agent to Support HTML Forms Authentication
	Configure Basic FCC Operation
	Configure a MIME Type Mapping for the FCC on IIS and Domino Web Servers
	Enable FCCs and SCCs to Use Agent Names as Fully Qualified Host Names
	Configure the FCC to Use a Single Resource Target
	Use a Relative Target for Credential Collector Redirects
	Define Valid Target Domains
	Define Valid Federation Target Domains

	Map URLs for FCC Redirects with a Domino Web Agent
	Configure POST Preservation
	Enable Post Preservation between Framework and Traditional Agents
	Customize the POST Preservation Page
	Disable POST Preservation

	Configure Advanced FCC Settings
	Specify Redirect URL Protocols with Lowercase Characters
	Encrypt Query String Parameters in Redirection URLs
	FCC Directive for Encoding Query Strings of Redirect URLs
	How to Configure Application Request Routing (ARR) for HTML Forms Authentication
	Verify Prerequisites
	Set the Parameter Values for ARR and FCC

	How to Configure the FCC to Allow Windows Authentication
	Risks of Enabling the FCC to Allow Windows Authentication
	Configure the FCC to Allow Windows Authentication

	How to Allow the NTC to Encode URLs During Redirects to Protected Resources
	Change the Policy Server Objects
	Change the Value of the DisableI18N parameter in your Agent Configuration Object
	Change the Value of the DisableI18N parameter in your LocalConfig.conf File

	Tune the Performance of the FCC
	Disable FCC Realm Context Confirmation to Improve Performance
	Forms Cache
	Form Cache Data
	Configure the Form Cache

	Specify an NTLM Credential Collector
	Using Credential Collectors Between 4.x Type and Newer Type Agents
	Configure Credential Collectors in a Mixed Environment
	Use FCCs and NTCs in a Mixed Environment
	Use SCCs in a Mixed Environment

	Configure Apache-based Agents for FCC-based Password Services in Japanese Environments

	Chapter 12: Agents and Password Services
	How to Configure FCC Password Services
	Password Services Implementations
	FCC Password Services and URL Query Encryption
	How to Localize FCC-based Password Services Change Forms
	Use a Fully Qualified URL for Password Services Redirects
	Configure SecureID Authentication with FCC Password Services
	How to Enable User-Initiated Password Changes with FCCs
	How to Enable User-Initiated Password Changes with FCCs (SecureURLs=Yes)
	How to Enable User-Initiated Password Changes when using the CA SiteMinder® X.509 Certificate and Basic Authentication Scheme

	Chapter 13: Single Sign-On (SSO)
	Allow Automatic Access to Resources that use the OPTIONS Method
	How Single Sign-on Works in a Single Domain
	Single Sign-On Across Multiple Domains
	Hardware Load Balancers and Single Sign-On Across Multiple Cookie Domains
	Single Sign-On and Authentication Scheme Protection Levels
	Single Sign-on and Agent Key Management
	How to Configure Single Sign-On
	Restrict Cookie Provider Functions
	Prevent Cookie Provider Replay Attacks
	Set RequireCookies Parameter for Single Sign-On
	Enabling Persistent Cookies for Single Sign-On
	Specify the Cookie Domain
	Enable IP Address Validation for Single Sign-On Environments
	Modify the Session Update Period
	Set Secure Cookies Across Multiple Domains
	Ignore the Cookie Provider for Unprotected Resources
	Ignore the Cookie Provider for POST Requests
	Configure SecureUrls with Single Sign-on
	Specify the Cookie Provider
	Disable Cookie Providers

	Chapter 14: Comprehensive Log Out
	How Full Logoff Works
	Configure Full Logoff
	How to Configure Full Logoff for Single Sign-on
	Configure Comprehensive Log Out using FCC Forms

	Chapter 15: SSO Security Zones
	Security Zones Overview
	Security Zone Definitions
	Security Zones Benefits
	Security Zone Basic Use Case
	User Sessions Across Security Zones
	Trusted Zone Order
	The Default Single Sign-On Zone and Trusted Zone List
	Request Processing with Multiple User Sessions
	Transitive Relationships Across Zones
	Other Cookies Affected by Single Sign-On Zones
	Single Sign-On Zones and Authorization

	Configure Security Zones
	Specify the Single Sign-on Zone for the Agent
	The Order of Trust and Failover

	Chapter 16: Advanced Configuration Settings
	Agents and Proxy Servers
	Configure Agents that Sit behind Proxy Servers
	Customize the Cache-Control and ExpireForProxy Header Settings
	Proxy Header Usage Notes
	Security Considerations

	Agents and Reverse Proxy Servers
	How Reverse Proxy Servers Work with CA SiteMinder®
	CA SiteMinder® Secure Proxy Server
	SM_PROXYREQUEST HTTP Header for CA SiteMinder® Processing with Secure Proxy Server

	CA SiteMinder® IIS 7.x Web Servers and Application Request Routing (ARR)
	How to Set up an IIS 7.x Server with ARR and CA SiteMinder® in your DMZ with other CA SiteMinder® Agents for IIS Operating Behind the DMZ
	Set the CA SiteMinder® Web Agent Configuration Parameters for your IIS 7.x ARR Server in the DMZ
	Set the Web Agent Configuration Parameters for your IIS 7.x Servers using CA SiteMinder® Behind the DMZ
	How to Set Up an IIS 7.x Server with ARR and CA SiteMinder® in your DMZ
	How to Set up your IIS 7.x Servers with CA SiteMinder® When Operating Behind an ARR Server in a DMZ

	CA SiteMinder® Reverse Proxy Deployment Considerations
	How to Configure an Apache Reverse Proxy Server
	Update the Apache Web Server Configuration File
	Update the Agent Configuration Parameters for a SiteMinder Agent

	Configure an Oracle iPlanet 7.0 Reverse Proxy Server

	HTTP Header Settings
	Remove the Server HTTP Header if Using the URLScan Utility

	URL Settings
	Specify Redirect URL Protocols with Lowercase Characters
	Decode Query Data in a URL
	Set a Maximum URL Size

	IIS Web Server Settings
	Configure Agents for IIS to Obtain User Credentials Without Redirecting to an NTLM Credential Collector (NTC)
	Record the User Name and Transaction ID in IIS Server Logs
	Use the NetBIOS Name or UPN for IIS Authentication
	Configure Agents for IIS to Support NT Challenge/Response Authentication
	Map the .NTC File Extension
	Create and Configure the Virtual Directory for Windows Authentication Schemes (IIS 7.5)
	Configure the Windows Authentication Scheme for Challenge/Response Authentication
	Specify an NTLM Credential Collector
	Configure Automatic Logon for Internet Explorer

	How to Implement an Information Card Authentication Scheme
	Configure an FCC Template for an Information Card Authentication Scheme
	Control IIS 7.x Module Execution Order when using the CA SiteMinder® Agent for IIS
	Use an IIS Proxy User Account (IIS Only)
	Enable Anonymous User Access
	Disable Windows Security Context on Agents for IIS
	Prevent Caching of Server Responses Containing Cookies

	Chapter 17: Apache Web Server Settings
	Use the HttpsPorts Parameter on Apache 2.x Servers
	Use Legacy Applications with an Apache Web Agent
	Use the HTTP HOST Request for the Port Number
	Record the Transaction ID in Apache Web Server Logs
	Choose How Content Types are Transferred in POST Requests
	Restrict IPC Semaphore-Related Message Output to the Apache Error Log
	Delete Certificates from Stronghold (Apache Agent Only)
	Oracle iPlanet Web Server Settings
	Restrict Directory Browsing on an Oracle iPlanet Web Server
	Handle Multiple AuthTrans Functions for Oracle iPlanet Web Servers
	Record the Transaction ID in Oracle iPlanet Web Server Logs

	Domino Web Server Settings
	Domino Agents Overview
	Domino URL Syntax
	Domino Aliases
	Configure the Domino Web Agent
	Configure Domino-Specific Agent Functions
	Specify User Directories for Domino
	Guidelines for Creating Policies on Domino Servers
	Configure Policies for Domino
	Create Rules for Domino Server Resources
	Authenticate Users with the Domino Server
	Authenticate as the Domino Super User
	Authenticate as the Actual User or the Default User
	Modify the Domino Default User and the Domino Super User
	Use Encryptkey to Set the Domino Default or Super User
	Force CA SiteMinder® to Authenticate Users
	Use a CA SiteMinder® Header for Authentication
	Disable Domino Session Authentication
	Use an Anonymous CA SiteMinder® Authentication Scheme with Domino
	Enable a Domino Agent to Collect Credentials for Authentication
	Map URLs for FCC Redirects with a Domino Web Agent
	Disable URL Normailization
	Control Access to Lotus Notes Documents
	Convert Notes Document Names
	Configure Full Logoff Support for Domino Agents
	Use a Domino Agent with a WebSphere Application Server
	Force Domino Server to Authenticate Unprotected CA SiteMinder® Resources

	Backward Compatibility Settings
	Accommodate Legacy URL Encoding
	Choose How Content Types are Transferred in POST Requests
	Accommodate Testing Tools that do not send HOST Headers

	Agent Setting for Federation Domains
	How to Modify the Sample Code to Remove Open Format Cookies When Users Log Out
	Obtain the Cookie Information
	Modify the Sample JavaScript Code with the Cookie Information
	Copy the Modified JavaScript Code to Your Logout Page

	Chapter 18: Performance
	Set a Time-out for Saved Credentials
	Web Agent Caches
	Cache Anonymous Users
	Set the Maximum Resource Cache Size
	Set the Maximum User Session Cache Size
	Control How Long Resource Enteries Remain Cached
	Disable the Resource Cache

	Monitoring Web Agents
	Monitor Web Agents with the OneView Monitor
	Use CA Wily Introscope to Monitor Web Agents

	Ignore Unprotected Resources
	Reduce Overhead by Ignoring File Extensions of Unprotected Resources
	Specify Virtual Servers for the Web Agent to Ignore
	Ignore Query Data in a URL
	Allow Un-restricted Access to URIs

	Chapter 19: Logging and Tracing
	Logs of Start-up Events
	Error Logs and Trace Logs
	Parameter Values Shown in Log Files
	Set Up and Enable Error Logging
	Enable Transport Layer Interface (TLI) Logging
	Limit the Number of Log Files Saved

	How to Set Up Trace Logging
	Configure Trace Logging
	Trace Log Components and Subcomponents
	Trace Message Data Fields
	Trace Message Data Field Filters
	Determine the Content of the Trace Log
	Limit the Number of Trace Log Files Saved
	Collect Detailed Agent Connection Data with an Agent Connection Manager Trace Log

	Chapter 20: Troubleshooting Agent Configuration
	Agent for IIS Troubleshooting Log
	Duplicate LLAWP Error Appears in Log File
	Custom Error Pages not Appearing
	Unable to initialize tracing message
	Enable KeepAlives When Agents and Policy Servers are Separated a Firewall
	Japanese Pages Rendered Improperly (153202, 153609)
	Non-english Input Characters Contain Junk Characters

	Chapter 21: Agent Error Codes
	00-0001
	00-0002
	00-0004
	00-0005
	00-0006
	00-0007
	00-0008
	00-0009
	00-0010
	00-0011
	00-0012
	00-0013
	00-0014
	00-0015
	00-0016
	00-0017
	10-0001
	10-0002
	10-0003
	10-0004
	10-0005
	10-0007
	20-0001
	20-0002
	20-0003
	30-0026

	Appendix A: Agent Parameters
	List of Agent Configuration Parameters

	Index

