CA SiteMinder®

Programming Guide for C
12.51

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2015 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

CA SiteMinder®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
® Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs

Contents

Chapter 1: API Overview 23
SIEMINAET SDK OVEIVIEW ...eeiuviiiiieeitieesite ettt este e sttt e sttt e sate e sttt e sabeesateesateessseesabeesaseesabeesaseesabeessseesaseesaseesaseassseesaseesseens 23
)0 Q1 7 =1 Te T P PSPPSR 24
Custom Applications and Policy SErver EXLENSIONSccc.eiiiuieriiiiiiieiiee ettt sttt st eeesb e sneesbeeenee e 24
OB SAMPIES ...ttt ettt e b ettt e bt e bt e e bt e bt e e b et e bt e e b et e bt e e bt e e bt e s bt e e bt e s b et e bee s beeennee e beeennee et 25
0] o) oJo] o o ol OV 1y o 3 1 6o o [N SRS 25
Chapter 2: Adent API Guidance For C 27
FAY = oY A o O YT VT YOS 27
ADOUL the SIEEMINAEN ABENTeiiiiiiee ettt ere e e e st e e e e ettt e e e s tb e e e e ataeeeeasaaeesabaeeeanstaeeeassaaeesssaeaeassaeesanseeas 27
AGENT INTLIATIZATION 1.ttt ettt et e sa bt e s at e e sab e e sab e e sab e e e abeesabeesaseesabeeeabeesabeesnneess 28
ABENT DISCOVETY ..etiiiiiiieiiiiie ettt et e st e e ettt e s be e e sbe e e e e a bt e e s ab e e e e s be e e s e s s e e e s sbee e e sab et e s easne e e sannneeesanaeesennraeesannneas 28
How to Access a Resource USiNg the AENT APo ittt ettt ettt sbe e e e nees 32
Compile and Link @ CUSEOM AZENT ...ceciiiiieeeiiiiecciiee et e et e e ettt e e e ste e e e e tte e e eeaaeeesabeeaeastaeeeansaaessaasaeeesssseseanssaeesnssees 34
Central HOST CONTIGUIATION.......uii ittt e e e et e e e st e e e e ata e e eeaaaeeesatbeeaesstaeeeansaaeesssaseeassaeeeanssaeesnnseens 34
CoNFIGUratioN REGUINEMENTS ..c..ueiitieiiiieitie ettt ettt ettt et s e et e st e bt e s bt e s bt e sabe e s bt e sabeeesseesabeeenneesbeeennnenane 35
OB REGUITEMEBNTS .. eteeitieetieetee ettt et ettt et e eb et et e sttt e bt e sttt e bt e sabe e e bee s beesbeesabeesabeesabeeeaseesabeesaseesabeeanseenane 36
U] T={ g To [T [a1 AV (=1 | U PPUN 36
Pyl 01| BT =Y [UT=Y o ol U RPRRNt 37
R0 a] o] (SR OV E o o gAY=L =T o | O PURRNt 37
FAY (T o A o BT oV o] TP PPPRTRPIN 37
SESSION SEIVICES ueteieiiiiiee ettt et e st e e ettt e s et e e s b et e s e sb et e s e e e e e sab et e s enre e e samsneeesaneeesenreeesannneeesnneeeann 38
AULNOTIZAtION SEIVICES ...eiiiiiiie ettt e e ettt e s ettt e e s bt e e e e abe e e seabbeeesabbeeeeabaeesaasaeassaneeeenns 40
Y TaF T =Y e o 1=] o LAY = VA (ol Y PPt 41
TUNNEI SEIVICES .ttt ettt et e e e sttt e s e bttt e s btt e e e abe e e s e abbe e e sabteesaabeeeeaasbeeesatbbeesaabbeeeenbaeesnnneeas 42
R OeT oL g Y= AN a1 U =PSRRI 42
Custom Agents and SINGIE SIZN-ON ...ccoiiiiiiiiiee ettt et e e e e e e eaee e e saaeeeesstaeesassaeeessnseeeesnsseeesnnseeesnnsnes 43
N T e E Yo Y=< o A U] o] oo o U USURROt 43
LOgin Through @ CUSTOM AZENT.....uiiiiiiiiiiiiieee e e e e et e e e e e e tta e e e e e e s e s sbaaaeeeeeesssbsasaeaaeesaassstrnneeessnansnsens 44
Login Through @ Standard AZENT.......coicciiii e eciee e e eeree st e e et e e e ee e e st e e e e s taeeeensseeesnseeeesnsseesensseeesnnsees 45
[V =Y aaTeT VN B TT 1] o or- d I SRR 45
AENT APl DAta STIUCLUIES () uuvreieiiiieieiiireeetie e ettt e e ettt e e st e e e st e e e s saeteeessnaeeeesteeesenseeeesssseeeansseeesanssaeesnsseesannseeesnnnnes 45
SM_AZENTAPI _AZENTIDISCOVEIY T it eeaeees 46
N == oY 7N oI Y a1] o TV o SRR UUURUOt 47
T Y= L= o1 7Y o L 1oV A U USPPRRROt 51
SM_AgentApPi_ManagemeENTCONTEXT_Tttt et e e s s et ee e e e s s e ssbbaeeeeeesesssrereeeaeessesnsnsens 52

Contents 5

SN _ABENTAPI _REAIM_T ..ttt st s e st e st e st e e sab e e sa bt e e ab e e sabeeeaneesareeearee s 54

SM_AGENtAPI_RESOUICECONTEXE T..iiiiiiiiiiiiiiiiiiiie ettt s e s e e s nne e s snaeeeeas 55
SIM L ABEN AP _SEIVEI Tttt e et e e e e et e e e e et et e e et et e e et et et et e e et et et e e et e e et et e e eearanens 56
SIM_ABENTAPI_SESSION_T ciiiiiiiiiiiiiiiiii e e e e e e e et e e et et e e e e et et et et et et et et et et et e e eeeeaeanens 58
SM_AgentApi_TUNNEISEIrVICEREQUEST T...iicuiiiiiiiieeeciie e ceiiee ettt e e ere e st e e e sate e e s eaaaeeesatreeeesssaeeennsaaeesnsreeenns 59
SM_AGENTAPI_USErCredentials_t.......o ettt st s s e e s 60
Agent APl FUNCEION DECIAIATIONS (C) .viieviiiiieiieeiieeetee st este e sttt e stteesteestaeesateesaseesateessseesaseassseesaseasssessnseasnsessnseesnseenn 61
FUNCLION RELEUIN COUBS .. eiuiieiiiiriieeiieestee sttt e st e st e st e st e s bee st e e s beesabe e s beesabeesbaesabeessaesabaesbaesabeeenssesbaesnnseeses 62
] TV =T NN oI L PSS 63
SM_AZENTADPI_AUTNOTIZE() vt ettt ettt ettt et st st e s bt e bt et e eabesae e s bt e be e beeabesaeesaeesaes 64
SM_AZENTAPI_AUTNOTIZEDLP() c..eieietiettete ettt ettt ettt et ettt e sbe e bt et e eatesaeesbeesbe e beebesabesneesaes 65
SM_AZENTAPI_ChangEPasSWOIT() ... ueiueiiereeriierit ettt ettt testestesheesteeste e teestesatesaeesbe e beesbeenbesnsesneesanesas 67
SM_AENTAPI_CreateSSOTOKEN() ..veeeeiiiieeeiiee e iitiee e ettt e eette e e sttt e e et e e e eetaeeesbbeeeesstaeeseasseeessseeeenssseseasaseesssrenaans 68
SM_AENtAPI_DECOESSOTOKEN() .ueeieiuriieieiieeeiitiie e ettt e eette e e sette e e estteeeeetaeeestaeeeesstaeeseasseeesssaeeanssseseassseesssrenanns 70
SmM_AgentApi_DelSessionNVariables()ceiiiriiriieieeierereeste ettt sttt ettt ettt et s ee e e 73
SM_AgeNtAPI_DOMANAZEMENT() c.verureruieiierieerieeitt ettt stt e st et et e testestesaeesaee st eteentesseesseesseenseenbeenseensesnsesaeesees 75
SM_AZENTAPI_FrE@ATIIDUTES() . eeveeeerieiieieeie ettt ettt ettt sa e te et et sat e s st e sbeesbeesbe e beenbesneesaneses 76
SN _ABENTADI _FIEESEIVEIS() cuvveeiitieeeeiiiieeeiie e e sttt e e ettt e eetaeeesetaeeeesttaeeeasaeeessseaaaastaeesanssaeesssaseeassaeeeassasesassenanns 77
Sm_AgentApi_GetAgentApPiUpPdateVersion() ..oocuee e ciieecciee ettt e st e e e ste e e e eaae e e streeeesabaeeeeabaeeesraeeaans 77
Sm_AgentApi_GetAllowedTUNNEIBUTSIZE()....coviirtiiiiriiriereeeetee ettt ettt ettt ettt s saee e 77
SM_AZENTAPI_GETCONTIG() +eeuveemrerrerieiie ettt ettt ettt et st s tesa e s bt e s be e bt eateeatesaeesbeenbeenbeensesnsesaeesaeenes 79
Sm_AgentApi_GetMaxXTUNNEIBUTSIZE() .. iiiecreeeiiiie et e et et e e e te e e st e e e stte e e seatbe e e stbeeeesabaeeeensaeeessreeanns 81
SM_AgentApi_GetSesSiONVaAriablESs().....uieiciieeiiiieee et ectee ettt e eere e e st e e e e sabe e e eetbeeestree e e ataeeeeaaaeeetreaaans 82
SN ABENTADT _INTE() cvrreeeitiiiieiitie e ettt e st e e ettt e e eeta e e e s tbee e e abeeeeeasaeeesbseaeaastasesanssseesasbaseenssseeeansaaeessreaanns 85
Y O Y=Y 0 7 Yo T K 2 o =Tt =T [IR URSRN 87
Y O V4= a7 Yo T K e o =Tt =Te | T I 2 TSRS 88
SM_ABENTADI _LOGIN().eeetriieeiiiie ittt et e sttt e e ettt e ee b ae e e s tbeeeesateeeeeabaeeesbseaeeastasesaasaeeeaasseseestseesansaaeesasrenanns 89
SM_ABENTADPI _LOZOUL() c.vreeeeiiieiiiiee ettt ettt e et e e et e e e st e e e e abeeeeeabaeeesbbeeeeasbaeesaasaeeesasseseessaeeeansaaeessrenanns 92
Sm_AgentApi_MakeCertificCatEHASN()ccecceei et e e e e et e et e e e et e e e e aaa e e eareaaans 93
Sm_AgentApi_SetAgentINSTANCEINTO() .. iuiiiii e i et e e s e st e e sreeebeeeree s baeesaeesaeenrneenes 94
Sm_AgentApi_SetDefaUItAZENTIA()....cviicieeiie ettt e et e e et e e s teesta e e steeebaeesee s taeenseeesaeenseeenes 95
SM_AgentApi_SetSesSiONVAriables() ..c..ueeecciee ettt e e ee e e st e e e et e e e e eta e e e etbe e e enataeeeeaaaeeearaaaans 96
SM_AZENTAPI _TUNNEI() c.vveeeeiiee ettt e et e e et e e e et e e e e abeeeeebaeeesbbeaeeasbaeesansaaeesasbeaeeassseeeansaaeessreeanns 99
Y L Y=Y 0 Yo IO L T S 101
SM_AgentAPi_UpPdateATIIIDULES() oeeoerrieieiie et e rtee e s e e e e s e e e e ere e e saraeeeesteeeeennreeesnneeeans 102
Chapter 3: Configuring Custom Adent Types 105
CUSTOM AZENT TYPE OVEIVIEW ...eeviieiieieieiiiiiieeee e ee sttt eeeeseseabeteeeeesssaabarteeeeessasssataeatesssasssssanaeesssassstsneeessssssssssraneees 105
ABENT TYPE WOTKSNEET.....ceiceeiii ettt e e e e e st e e e et t e e e s saeeeesntaeeeassteeesnseeeesnseeesannreeesnnneens 105
(0o a1 F=qU =R o I Y=d =T A Y o TP 106
AGENT TYPE ATLITOULES ..eeieeiieeeeeee et e e e e e e e e e sttt e s eeeesesasbaaseeaeeesasbaaseaeeeesanssassaeseaesenssenns 106

6 Programming Guide for C

MOITY AN ABENT TYPE .ttt ettt ettt e s et e et e st e et esa bt e e bt e sab e e e bt e s bt e eabeesabeeeabeesabeeenseesabaeenseenane 108

Chapter 4: Policy Management API Guidance 109
Policy ManagemeENnt APl OVEIVIEWceiiiiriiiiiieeieeiitee et e st e et e st e e bt e sabeeebeesabe e s bt e sabeesbeesabeeeaseesabaeeneesbaeenseesane 109
POlICY ManagemMENT SEEUP ..coutieiiieiiieeiee ettt st ettt e e st e et e st e s bt e st e e eabeesabeesneesabeeeneesane 109
(0] o =Tot f 3=y { TNV Z | B 0T Vot o T TSRS 110
(0] o) =Tot @1 7=T-Y d oY o I SLU | o Vot 4o o L3RS 111
ObjeCt DElEtioN FUNCHIONS. .. .ciitiiiiieit ittt ettt ettt e e st e et e st e sabee st e e eabeesabeesaseesabeesaneens 111
OBJECE ASSOCIATIONS ...ttt ettt ettt e e bt e st e e bt e sab e e sabeesa b e e eabeesabeeeabeesabeenaneesabeeenneesn 112
OBJECE IAENTIFIEIS ettt ettt ettt e e bt e s bt e et esa b e e sabee st e e eabeesabeesabeesabeeenneenn 112
Directory SEarch Order FUNCLIONScociieeeiieee et e e sciee e ettt e e e tte e e stteeeestteeeseataeeesataeeeestaeesenssaeeanssaeeannsaeesnnseens 113
Performance ENNANCEMENTiiiiiiiiieciee st te e st e e st e e sbe e s beesabeesabeesabeesseesabaesseesnne 113
Memory, Cache, and Agent Key ManagemeNntcoccueeriieiieeiiieeiee sttt sttt sttt ettt st esneesabeesneesane 114
(0] o =Tt Y oo o 1 IR E O P OO P O P O O P PO SPRRUSPPPRRT 114
o Te [T 1o o 1A = PSSR 115
SAML ASSEITIONS ..ttt ee ettt e e ettt e e e ettt e e e e se e bt et e e e s eann b et e e e e e se s nn b e e e e eeeee s nbeneeeeeeeaannnreeeeeeeseannnaee 116
R AN PSPPSR 116
R Y 1Y O USSP 118
{TLY A =T 1= o= o o TSR 124
Policy Management APl Data SEIUCTUIESccueeeeiiiieeeiieeeeeiieeeeetteeeesiteeeeetraeeesataeeeearaeessasaaessbseasanssaeesessseesnssenaans 125
] 4T o1 1177y o LYo [o 11 T USRS 125
Y T o1 117 Y o T 1 L L < USRS 127
Y oI oY Lol 7Y o N 1L =Y Y o ol PRSP 130
SM_PolicyApi_AffilIatEDOMAIN_t ..ciiiiiiiiieiie ettt e e e e e eee e e s e e e e e s te e e s anaeeesrseeeenstaeeeenreeesnreeeans 131
] g T o] LYY o T Y= L=T oL A PR UPPRRROE 132
SM_POlICYAPI_ABENTCONTIZ Tuuiiiiiiiiiieiiiie ettt e e e st e e e et e e e s tbe e e e eataeeeetbee e s abaaeeenbbeaeestaeesnnsaeas 133
] g T o] YN o T V== oLl Y/ oY= SRR UPPROE 134
SM_POlICYAPI_AZENTTYPEATLE _t.uuiiiiiiiiii ittt e e e e e e s te e e sttt e e s snte e e s nsaeeesaseeeeeanseeesanseeesnsseeeans 135
Y 00 I o] [TolV7:Y o T XY Yo Yol - 4o [SRR 136
SM_POlICYAPI _AUTNAZIMIAD T ..eiiiiiiiii it e e e et e e e e e et eaba e e e e e e e e s sbaareaaeeesenssstseeeesesenssnnns 137
] g T e 1YY o I 0= o d Y =T T PR USSR 138
Y oo I e [TotV7:Y o 0 L] o o - 1 1o T SRR 141
Y 00 J o] [Tot V7Y o G e YU« T SRR 142
Y 00 J o] Lot V7Y o T o1y o Yo = SRS 143
SIM_POLICYAPT _IPAAAIESS T .nniiiiiiiiee ettt e e et e e e e e st e e e e e e s e s sbaaeeeeeee s sbaareeeeeesanssssseesesesenssrnns 144
Sm_PolicyApi_ManagementCommand Tcoociiiiiiiiii e e e e e s e e e e e e e aaar e e e e e e e eannaaes 145
Sm_PolicyApi_ODBCQUEIYSCNEME _t ..eiiieeiii e ciiiee ettt e et e ettt e e st e e et e e s neae e e snsseeeestaeessnneaeesnseeeans 146
Y 00 T o Lot V72 oY o I SR 148
Sm_PolicyApi_PassWOrdMSEFIEIA _tccccuiiiiiieeeece et e s e e e e e s ere e e s e e e e snte e e e enntaeesnneeeans 149
SM_POlICYAPI_PassSWOIAPOIICY T...ciiiiiiiiiiiiiiie et e e e e e st e e e e e e s e abaae e e e e e e s e aataeeeaeesennnenes 150
SN POLICY AP _POLICY t ittt e et e e e e e e st e e e e e e s e s sbaaeeaeeeeseasbaaseeeeeesassasseeeesesennsenns 156

Contents 7

SM_POlICYAPI_POLICYLINK Tttt sttt st e st e st e st esabeesareesareesanee s 159

SM_POIICYAPI_REAIM _t .ttt st b e et e st e e e bt e s bt e sabeesabeesaneesabeesnneens 160
Sm_PolicyApi_RegistratioNSCREME Tccuuiiiiiiieeece et e e et e e e e rrta e e seaneaeesanreaeans 162
SM_PoliCyApPi_REZUIAIEXPIrESSION _T...uiiiiiiiiiieiiiiee et et e st e e et e e e etae e e ste e e e e ate e e s nsaeeesasseeeastaeeeanssaeessseeeans 163
SN _POlICY AP _RESPONSE_T...uiiiiiiiieeiiiiieeeitee e sttt e e ettt e e e et e e e sta e e e e tteeeseasaeeessseeeastaeesansseeesasseaeassaeesansresessseenans 164
SM_POlICYAPI_RESPONSEALEr t...ei ittt ettt ettt e et e st e st e e st e e e bt e s beesaneesabeesanee s 165
SMN_POLICYAPI_RUIB_T ..ttt et e e st e et e s bt e st e e st e e eabeesabeesaneesabeeeaneens 167
SM_POliCyAPi_SAMLAFTIIAION _tuuiiiiiiiiii et e e e e st e e e e rete e e s araeeesatseeeentaeeeannraeesnneeeans 169
SM_POliCYAPi_SAMLPIOVIAEIPIOP T ..uiiiiiiiiiieiiiiee ettt e eeree sttt e e et e e e etae e e s taeeeesateeessnsaeeesasseaeaassaeesassaeesnseeeans 170
SM_POliCyApPi_SAMLREQUESTEIATEI T ..eiiiiiiiiiiiie ittt ettt s e st st e sareesbeesanee s 181
SM_POIICYAPI_SAMLSP _t ittt ettt et s bt et e st e et e st e e s bt e st e e eabeesabeesaneesabeesnneenn 182
Sm_PolicyApi_SAMLSPASSErtionCONSUMEISEIVICE_t ..cciviiiiieriiieieenieeeiee sttt sttt et esreesbeesanee s 183
SM_POIICY AP _SAMULSPALLE T ..iiiiiiiiie ettt ettt e et e et e e e st e e e e ettae e staeaeesataeeeessaeesansaaeesnsseeeastaeeennsaens 184
] T o1 11077 Y LYol 1= o V=T USRS 185
SM_PolicyApi_SharedSeCretPOliCY _t.......cceiiiiiiieeiiieee ettt ettt et e s e s beeenee s 187
SN _POIICY AP _SEIVEI . .eiiiieeiie ettt ettt et ettt et e st e et e s bt e s bt e sa bt e sabeesabeesabeesabeesaseesabeesnneenn 188
SM_POlICYAPI_TIUSTEAHOST _t...utiiiiiiiiiieitieitee ettt ettt st e et e st e st e st e e eaneesabeesaneesabeesnneenn 189
] T o1 1177 Y o LI O £ =T o SRR 190
] T o1 1107 Y o T U R =] o] A= A USRS 191
SN _POIICYAPI_USEIDIF_t ..eeiiieiiiieiieeiee ettt ettt ettt ettt e et e st e e bt e st e e eabeesabeesaseesabeesabeesabeesaseesaseesaneens 192
SM_PolicyApi_UsSerPassWordSTate_t.......ciiiiiiiieriiieiie ettt st st s e st e s e e sbeeeanee s 196
SM_POIICYAPI_Variabl_t..ci ittt e e e e e st e e e e bt a e e s tte e e e e ataeeeeaae e e e sbaaeeaataeeeennraeeenaaeas 197
SM_POlICYAPI_VariablETYPE T .eiiiiiieeeciiie ettt et e et e e e et e e st e e e e e ataeeeeatae e e abaaeeeatbeeeenraeesnnneens 202
SM_PolicyApi _WSFEDPIrOVIAEIPIOP .. .uiiiiiiiiiiiciiiiiei ettt e e e e e st e e e e e e s abaae e e e e e e senansaseeseeesennnnnnes 204
SM_PolicyApi_WSFEDRESOUICEPAITNEI _T..uuiiiiiiiieeiiiieceiiee e ctee e ettt e et e e st e e e st e e s aae e e sraeeeesnteeesenneeeesnnseeeans 213
g oo T =To I NV oY RS 213
AdMINISTIAtOr RIGNES ..uviiiiiii i e e e s e s e e e e s et eaba e e e e e e eeseasbaaaeaaeeesanssstseeeeeesansnsnns 213
F N T =l N a d | YU N (=T RV o T USRS 216
F AN g | oTUN LI\ FoTe [Y o YT PR UPPRROE 216
Authentication and Authorization MapPPiNg TYPES ..c.uueieeeciiieicieeeerieeeesree e sree e e stre e e e srae e e ssbeeeesbaeeessnseeesnnneeas 216
Certificate MapPing AtTrDULE TYPES....uii i iie ettt esee e st e e e sate e e ssraeeesreeeeessteeesaseeeesnseaeans 217
Certificate MapPiNg DIFECLOIY TYPES ..vvieeciiieeiitiiee ettt e eeite e e ettt e e esteeeestteeesetaeeeesstaeeeasaeesssseaeaassaeesassaeesasseeaans 217
Certificate Mapping FIags DefiNitioNScccuuii ittt e e e ete e e e bb e e e st e e e esataeeeennaaeesnreeaans 217
[T o YA OF: T T-1 o 11 1 1= SR 218
[4 F= Y10 T - =€ SRS 220
GIOUP TYPES cooeeeieieieeeieieeeseeeeeseeesesesesesesesesesesesesasssssssasasasasasasasasasasesasssssssssssasssssssasssssssnsssnsasssnsasssnsssssnsssesnsesesnnnns 220
[P AQAIESS TYPES coeieeiiiiiieeee e e e ettt et e e e e e sebteeeeeeeesettbtaeaaaaesaasstaeseaaesaaastaaaeaaesesanssaasaaseeesaassssaeesaassensstsanaaaesenan 221
MaNageMENt COMMANUS . .ciiiiiiiiiiiieeee ettt e e e e et e e e e e e e ettt e e e e eeeeessastaaseaaesesaastaaseeaeessaassssseeaaesseasstannaaessannns 222
PASSWOIT IMESSAZES ..eeecuereeeeiuiieeeeiteeesitteeeesttteeeatteeesasaeeeesstaeeeasseeeessseeeasseeesansseeesssseeeasteeesasseesesssseesansseeesnnnnnes 223
[o] o AV T oY O =Y [LSS 225
PassWOrd MESSAZE FIEIA TYPES .eeeueiiiieiieeectiieeete e st e et e e et e e e ste e e et e e seaeee e e ssaeeeestaeessnseeeesnssaeeannsaeesnnnnes 225
PassWOrd POliCY BENAVIOE FIQESuueieiiiiiiiiiiie ettt e ettt e e e e e e st a e e e e e e s abbaaeeaeaeseenntaaneeaesennns 226

8 Programming Guide for C

POIICY FLaS «enneeeitteeite ettt sttt st e et s bt e e bt e st e st e s b e e e bt e s b e e e bt e s bt e e bt e s beeennee s beeenneenane
Policy Management APl INitialization FIAgScoouiiiiieiiiiiie ettt e
[1ToaV A @] oY =Tox ol 1 SRS
o 1oV =YY LU T o L3RRS
RETUIN COUBS ... iutitiiieeitie ettt s e ettt s e e st e st e e sabe e sabeesabeesabeesabeesabeesabaesabeesabeesabeesabaesabeesabaesnaaesnbaessaesase
SAMLLX REAITECT URL TYPES..ceuttiiiieitieeitteette et st et sb e et sat e et e st e e bt e st e e sabeesabeesaseesabeesabeesabeesaseesabeesnneens
SAML Assertion Consumer Service Bindings
SAML Attribute Name FOrmat Idenifiersoouieiiiiiiieiiieee e sttt esbaesbee s
SAML PrOFIlES .nveeeiei ittt ettt ettt st e st e st e st e e s be e sa b e e s be e sk e e e be e sa b e e e bee st eeeabeesabeenabeesbaeeree s
SCNEIME TYPES .ttt ettt et e st e st e st e e e bt e s a bt e e abeesa b e e eabeesab e e eabeesa b e e eabeesabeeeabeesabeeeabeesabeesnneenn
Shared Secret Rollover Parameters
Structure IDS ..o,
] oUW o i I o] [TV AN o] o] [oF= | o SRSt
Functions by Category in the Policy Management APlcueeeiiiiieeeiiii e ccieee ettt e et e e e evee e s tae e e e satae e e e naae e snreeaens 243
REQUITEA FUNCELIONS ..ottt sttt ettt st s e st e e bt e s b e e et e e sabeeeabeesabeeeaseesabeesneesabeeeneenane
Fi¥o oY1 a1 A =1 T ol S U] ot o o T3 TSR
Agent FUNCLIONS ...ocvveeviiiieeeiieecee

Agent Configuration Functions
Authentication/Authorization IMap FUNCLIONScccueeiiieiie e ccee et st sreeetre s aeeeareesaveeeaseesaseeeaseesaneennnes 247
Authentication SChEME FUNCLIONS ...coouiiiiiiir ettt e e e s e e e s ate e e sabeeeesnbaeeeennseeesnnnneas 248
Certificate MappPing FUNCLIONSccouiiiiiieiieetee ettt ettt et e e st e s b e s bt e s b e sabeesaseesabeeeaneens 248
Domain Functions
Federation Functions

LCT=T (T 1] oY [Tt U] Tt 4 o o - SRR 251
LG o107 o JN o U1 o ot T o - PP PPPP RPN 251
(0]5] 2] ol @ TUT=T VYol o 1=Ya d VTN ST o Yot 4 o I3RS 252
Password Policy Functions

o] [otV U s Tt 4 Fo] o -3 USSR
REAIM FUNCHIONS ..ttt ettt e e sttt e s ettt e s bt e e e e aabe e e s abbeeesabbeeeeaabeeesabbeeesabbeeeannbaeesnaneeas

RO T d = Yo o I Yol a =T o Tl U o Vot o T o SRR 254
Regular EXPression FUNCLIONSiiiiiiiciiieesieesesies e setee e et e e ee e e e sae e e e st e e seneaeeesntaeeessteeesnnseeeesnsseeeannseeesnnnnes 254
[o Lo T TY=IN U1 s [o] o KSRt 255
RUIE FUNCEIONS ...ttt et ettt e ettt e e sttt e e e bt e e e s eabbe e e sabbeeeeaabeeesnbaeessabbeeeennbaeesnaneeas 256
SAMLIL.X CoNfigUration FUNCLIONS ...ocuiiiiiiiie ettt st e e et e et ee e e s tae e e e snte e e s nsaeeesnsseeesnssaeeesnnseeesnseeeans 256
SAML 2.0 Attribute AUthOrity FUNCLIONSuiiiiiiieecciie ettt e s e e e e e e e e s e e e esnte e e ssnnreeesnnneeeans 257
SAML 2.0 Configuration FUNCHIONSciiieiiii e ciieee ettt e e et e e etee e e s e e e e sate e e s nsaeeesasseaeastaeeeannreeesnseeeans 257
SAML 2.0 Indexed ENdPoint FUNCLIONSociiiiiiciiiiei ettt e e e e st e e e e e e s ebrae e e e e e e seaaataeeeaeesennnnnnes 259
WL DI T=Tot o] VAl U1 T o] o TS N 260
User and USEr State FUNCHIONS ...couii ittt ettt ettt et st e sat e e sab e e sabeesabeesaseesabaesaseesn 261
User PassWord State FUNCHIONSuiiiieiiii ettt et esab e e st e e sabeesabeesabeesabaesanee s 262

Utility Functions

VTR E o1 =R R [ot { oY L PSRRIt 263

Contents 9

N AR E=To =l = o a T 2V o1 £ o] o -t 264

Function Declarations for the Policy Management APlcooiiiiiiiieiiie ettt sttt 265
Y oo B oY [Ter V7. o X To VYo iy Y § RSN 266
Sm_PolicyApi_AddAdMIinTOAFfiliateDOomMaIN() ...eeeeeiiiee et ere e et e e e e e rare e e e eaeaa e e saraeeeans 267
Sm_Policy Api_AddAdMINTODOMAIN{() ..eeeeeeurieeiiiieeeiiie e et e e sree e e e e e etre e e streeeeseteeessnsseeessseeeanssseesassaeesssseeeans 268
SM_POlICYAPI_ADAATTIIIATE() veeuvernreriierieerteeit ettt ettt sttt ettt e sbe e s bt e b e e be e besatesatesaeesbeebeenteens 269
Sm_PolicyApi_AddATfIlIatEDOMAIN{)..eueerreereeeiieieeierte ettt sttt ettt et e b e e be st e satesaeesaeesbeebeeareeas 270
SM_POlICYAPI_AGUAZENT() c.evveeeiiiieeiiiie e ectee et e et ee e e e e e st e e e e tt e e e s etaeeesaseeeastaeesansseeesasseeeassaeesansseeessseeaans 272
Sm_Policy Api_AddAZENTCONTIZ() .veeeeeeriieieiiie ittt ettt e e e e rre e e st e e e e sate e e e asaeeesarseeeessaeeeannsaeesnseeeans 273
Sm_PolicyApi_AddAgentConfigASSOCIATION()....ccuiruiiriieieeieeie ettt ettt ettt st st be et eaeeeas 274
Sm_PolicyApi_AddAssertionConsumerServicCeTOSAMLSPcociiiiiiiiiiiiee ittt sttt st 276
Sm_PolicyApi_AddATEriDUTETOAFIIATE() veerveerieieeierieee ettt st st sae e aeete e ens 277
Sm_PolicyApi_AddAttribUtETOSAMLSCNEME() .uveieeiiiieieiiee ettt et e e e e tre e e st e e e ata e e eeaaaaeesaraeaeans 278
Sm_Policy Api_AddATLIDULETOSAMLSP() ..vveieiiiieeeiie ettt e e tte e e st e e e e sate e e e abae e e sbbeeesstaeesensaaeessreeaans 279
SM_POlICYAPI_AJADOME@IN() -verureriieiiieitieriieie et ete st ee st et et stesttesaeesaeesaeeseeatesatesaeesseenbeensesnsesnsesaeesaeesseensesnsenns 280
SM_POliCyAPi_AdAGIODAIPOIICY() ..veiveeteetteiteieeieeiiestte ettt sttt ettt ettt esaee st e e beenbesatesaeesaeesaeesaeenteenseens 281
SM_PolicyApi_AddGIODAIRESPONSE() ..veereiiieiieiiieiienteeie et ettt sttt e sttt et st e saeesbe e be e besatesaeesaeesaeesseenteensenns 282
Ny oI e 1otV Y o TN [o 1€ Lo o 111U [=T § I PRSP 284
Y oI e [Ter Y7 o TN [o 1€ o TUT o | ISP 285
SM_POliCYyAPi_AdAHOSTCONTIZ() +evverveereeertieieeiieieeiestees ettt sttt ettt ettt e saee s bt e beesbesntesatesaeesaeesseenteenseens 286
Sm_PolicyApi_AddMessageConsumerPluginTOSAMLIXSChEME() . .ciueerueeriiiiiiiiinieniteieeie et 288
Sm_PolicyApi_AddOneTimeUsePropTOAFIIALE() ...cc.ureiciiee ettt e e are e e saree e 289
SM_PolicyApPi_AddPasSWOIAPOICY() c.uvvieeeiiieeiiiieeeiiie e eeiiee et e e ettt e e e etae e e s ta e e e e sate e e seasaeeesbbeeeenssaeesessaeessseeanns 290
SM_POlICYAPI_AAAPOIICY() c.erreeeiiiieeeiiii ettt ettt e e e e et e e e e tae e e stbeeeesataeeeeasaeeesbseaeaassaeeeansaaeessseaaans 291
SM_POlICYAPI_AdAPOIICYLINK() c.vveereeitiieiie it ecite st e etee st e et e st eeste e st e e eteesabeeebeesabeesnseesntaeenseesnseeanseesnsaeenseenn 292
Y (oI oY LotV o I X [o 12T s o) SRR 294
Sm_PolicyApi_AddRedirectURLTOSAMLIXSCREME() vueieiurieeeiiiieeeiitiee ettt ettt e e et e e tte e e et e e e e eta e e e eaaaeeeabeaeens 296
Sm_PolicyApi_AddRegistratioNSCNEME().....eiiiiuiiieeiiiee ettt et e e e ete e e e br e e e str e e e esabaeeeeabaeeessbeaaans 297
Sm_PolicyApi_AddRegularExpressionToPassWOrdPONCY() ...ccveeeeciiieieiiie ettt e 298
SM_POlICYAPI_AAARESPONSE() cuvveerrerriieitieiiireieeeiteeeiteesteeesteesteeesseesateeeseesseeaseesaseeasseessseeassessseessessnsassnsennn 299
SM_POliCyAPi_AdARESPONSEATLI() veeeureieirieiiieeiieeitee et e st e et e steeerteesteeebeesbeeeseesateeanseesntaeanseessseesnsesssaeanseenn 300
Y I oY Lot o X [o | 2N =Y PR PRUP 302
Sm_Policy Api_AdASAMULATFIIATION() c..vveeeeiieeeiiiie ettt tee e et e e e e ete e e e baee e sbbeeeesabaeesenraeessseeaans 303
SM_POliCyAPi_AdASAMLSCREME() veeiuriiiiieciie ettt e e te e st e e be e s beeeabeesateesaseesabeeenseesnsaeenseean 304
Sm_PolicyApi_AddSAMLSErVICEPTOVIAEI() .uveiieeeeeeeiieeeeiiee sttt e ettt e eetee e s ae e e e rete e e e ssee e e steeeeesnteeessnnreeesnnneeeans 306
Y 0o I o] Lot V72 o Y e [KT o 1= o 1Y) S 308
Sm_PolicyAPl_AddTargetConfigTOSAMLIXSCREMEuviiiiieieceee e e e et e e e e s braaeeeeas 309
SM_POlICYAPI_AQATOGIOUPD() eeeeirreeeeiuiiieeeitiie e ettt e e eeteeeeeitteeeeetteeeeetbeeeeeisasaesaaseaeeastasaaassseeaasseaesassssseasssssesasseeaans 310
SM_POlicyApPi_AdATIUSTEAHOSE() .veeeeeriieieiiieeiiee e et et e e e e e eee e e s e e s e te e e e nsreeesanseaeessaeeeannseeesnseeenns 312
Sm_PolicyApi_AddUserDirTOAffiliateDOmMain() ...ccccveeieeeieriiiieeeeciie e eeree e srte e e e e e ere e s e e et e e eenere e e sanneeeens 313
Sm_PolicyApi_AddUSerDirTODOMAIN() ...cccuvereirieeeeiiieeeeiieresiteeeesieeesseeeeesraeeeesseeeessnsresessseeeasssesesssssesesssseeenns 315
Sm_PolicyApi_AddUseSecure AuthPropTOAFFIIAtE()cccceeeeiiiee et ettt earee e 316

10 Programming Guide for C

Sm_PolicyApi_AddUSErsTOAFFIATE() .oveerveerieeiieiietieteete ettt ettt ettt sttt e b e s beenbeeaeeeas 317

SM_POliCyAPi_AdAUSEISTOPOICY() +eeevereireeiiieeitieiiiseiteesiteeertee st e esteesteesteessbeeebeesabeesnseesnseesnseessseesnsesssensnsennn 318
Sm_PolicyApi_AddUsersTOSAMLSEIVICEPIOVIAEI() ..vveeeeureeeiiieeeeiiieeeeiteeesteeeesie e e seereeesrreeeesstaeeesnsaeesnseeeans 320
Sm_PolicyApi_AddUsersTOWSFEDRESOUICEPAITNEI() ..ccuveeeiereeeeiiiieeeitee e steeeerte e e eeere e e streeeseereeeensaeeesnneeeans 322
Y oI e [Tor Y7 Y o T X [o AV = T A = o] C=T | TSRS 323
Sm_PolicyApi_AddWSFEDRESOUICEPAITNET() ...eouveruiertieieeieeieeite sttt ettt sttt ettt et st st e sbeesbeeteeaeeeas 324
SM_POlicyApi_AdAWSFEDSCREME() . eeiueeteiiieiieiteeiteste ettt ettt ettt et ettt s bt et e b e besatesaeesaeesaeesbeebeenneens 326
Sm_PolicyApi_ConvertFromLEeZaCyAZENT().....ccveeeeiiieeeeree e ciee e et eere e sre e e e rte e e s bae e e streeeesstaeesenneeeesanneeeans 328
Sm_PolicyApi_ConvertTOLEZACYAZENT() ..cuviiiiciieeeiiieeeetee st e e ettt e e e e e e ste e e e sate e e s asaeeesatseeeastaeesanssaeesnseeeans 329
SM_PolicyApi_CreateAUTNAZIIAD()....cieerieeie ettt ettt ettt bt e bt e b e et s et e st e saeesaeesbeenbeenteens 330
SM_POlICYAPI_Creat@CEITIVIAR() .ievveeerereiteeiieeeiieesiteeerteesteeeteesteeesteesateeasseesaseeesseessteaanseesnseesnsessnseesnsessnsassnsensn 331
Sm_PolicyApi_CreateODBCQUEIYSCREME()utiiiruieriieieeieeiesie st siee sttt et st e st e st e beebestesaeesaeesaeesseentesnseens 332
SM_POlICYAPI_Creat@USEIDIN) vieieuveeeeiiiieeeiiieeciieeeectteeee e e e e rtte e e e s beeeeebbaeesataeeeeastaeeeessseesssaseessseseessaeesnnseens 333
SM_POlICYAPI_DEIETEAGMIN() .eviiiiiieeeiiiie ettt ettt e et e et e e e st e e e e bt a e e stbeeeesataeeeestseesssaaaesnsseseansaeesnnsnens 336
SM_POliCYAPi_DelEtEAFTIIATE() veruvereeereeertieit ettt ettt sttt ettt e te st e s ee st e saeesaeeteenneeas 337
Sm_PolicyApi_DeleteAffiliateDOM@IN() «..eevveeiieieriertieeeie ettt ettt et sttt e st et e et s te st st e sae e aeete et eas 338
SMN_POlICYAPI_DEIETEAZENT() .eureuieiuieriieriteit ettt ettt et ste st e saeesae e bt s atesatesate st e e beentesabesntesaeesaeesseenteensenns 339
Sm_PolicyApi_DeleteAgENtCONTIZ() ..cccvrieieiiii ettt eee e e s te e e e st a e e e e tte e e eabaeeesataeeeestaeeennnaeas 340
SM_PolicyApi_Delet@AUTNAZIMIAD() . .cccviieeeiiie ettt ettt e et e e e et e e e s tae e e e e abaeeeesatse e e abaeeesasbeeeesraeesnnnaeas 341
SM_POlICYADI_DEIETECEITIMAP().eeverueerreerteetteteeiesttesteente et etesitesteesteesaeebesaeesatesseesseenbesnsesasesasesaeesaeesseensesnsenns 342
SM_POliCYAPi_DElEEDOMAIN() -veruveruierieeriieieeit ettt ettt eteste st e steeste e bt e atesaeesaeesseenbeensesatesneesaeesaeesseentesnsenns 343
SM_PolicyApi_Delet@HOSTCONTIZ() ..veeeiriieeeiiii et ettt et e et e e e s tte e e e et a e e eette e e eabaeeesatbeeeenraeesnnnneas 344
SM_POlICYADPI_DEIETEGIOUP()-rreeeirrreeeiiiieieiieeeeiieeeestteeeeitte e e srtbreeesbeeeeessaeesassaeaeastaeeeaassseesansaseessseseenssaeesnnssens 345
Sm_PolicyApi_DeleteODBCQUENYSCREME() . .uiiiuiieeeiiiieeeiiee ettt e e ettt e eeete e e ettt e e e eta e e e e stte e e eeabaaeesabaeeeesraeesnneeas 347
Sm_PolicyApi_DeletePassWOrdPOICY() . .ccueicrireiieriieieieestiecieesctee et e steeeteesteeebeesateesnseesstaesnseessseesssesssaennseenn 348
SM_POlICYAPI_DEIETEPOICY() veouvveeveeeiiieitie it estee st e et et e et e st eete e s beeebeesabeeebeesateesnseesntaeenseesnseeanseessaeenseenn 349
SM_POlICYAPI_DEIETEREAIM()..eeiiiiiieeeieiiie ettt ettt e e et e e e et e e e e tbe e e e eabaeeeeabae e s abaaeeeasbeseenraeesnnsaens 350
Sm_PolicyApi_DeleteRegistratioNSCREME().....cccuieiiiiiie ettt e e e e e e sate e e e be e e e sabaeeeearaeeennaeas 351
SM_POlICYADPi_DEIETERESPONSE() .vvreeeiuriieieiieieiiiieeeetteeeeitte e e eetteeeestaeeeetreeesetseseeasbaesaaassseeeasbaaaessssaeenssaeesnnseens 352
SM_POlICYAPI_DEIETERUIE()..vrereirreeieiiiieeeiiie ettt e et e et e st e e ettt e e e sate e e saaeeeessteeeesnsaeeesnsseaeansseeesanseeeesssnenans 353
Sm_PolicyApi_DeleteSAMLATTIATION() ..ccveierieeiieiiieeeieesitee et e scee et e st eerte e s beeeteesbeesbeesateeenseesaseesnsessnsaeenseenn 354
Sm_PolicyApi_DeleteSAMLSEIVICEPIOVIAEI() ..cccuuieeeiiieeeeciiee ettt e ettt e ettt ee e e e et e e eestte e e e abaaeesabbeeeenraeesnneeas 355
SM_POlICYAPI_DEIETESCREME()uviieeeeiiie ettt ettt et e e e st e e e et e e e s etbe e e e eabaeeeeabsee e sbaaeesnbbeeeestaeesnnsaens 356
SM_PolicyApi_DeleteTrUuSTEAHOST() .oovvieirieiiiiieiieciieetee st e et e st e et e s e e e e e st e e ebeesabeesnseesnteeeaseesateeenseesnsaeenseenn 357
SM_POliCYAPi_DElETEUSEIDII()....vveeeeierireieirieeiiieeeseeeeete e e streeeestteeeesteeeessaeeeassteeesanssesessseaeassseeeeassesessnseeeans 358
SM_POlicyApi_DeleteVariable() ...ceeccuiieieiie ettt e e et e e s e e e e e e e e st e e e e nnta e e e enraeeenreeeans 359
Sm_PolicyApi_DeleteWSFEDRESOUICEPAITNEI() ..uveiiirieeeeiiieeeeeiiieeeciteeeeeite e e ettt e e e etaeeeesabeeeeeabeeeesabseeeesreeeennneeas 360
SM_POIICYAPI_DISADIEUSEI() «.vveeeiiiieeeeitiee ettt ettt ettt e ettt e e e ettt e e e etbe e e e tbeeaeeabaeeeeasbeeeeeabasaeesseeeentaeeennneens 361
Y oI oY Lot V7 o X 0 F=1 o110 LY =T o RN 362
SM_POlICYAPI_FIUSNREAIM() ..veeeieeieeieiiiieceies ettt e et e e e e eae e e s ta e e e e s te e e s nsaeeesnnseeeastaeesannneeesnnnnenans 363
SM_POlICYAPI_FIUSNUSEI() .evveeeieiieeeiiieeeeiee ettt ee et e st e e et e e e st e e e s na e e e esnte e e s nsaeeesnnseaeastaeeeansneeesnnnenans 364
SM_POIICYAPI_FrEEMEMOIY() wveeeiiiieeeeiiie ettt e et eeet et e e ettt e e ettt e e e e beeeeeatbeeeeetseeaeesbaeeeeasbseeeassasaeasresaentaeeennseens 365

Contents 11

SM_POlICYAPI_Fre@MEMOIYEX()..ieeueeitireitieiiieeieeeieseiteesteeesteesteeesteesabeesseessbeeesseessteaanseesnseesnsessnseesnsessnsessnsennn 366

SN _POIICYAPI _FIrEESTING() .euveeuteeuieriieitterte ettt ettt ettt et sttt e she e s bt et et e s atesbeesb e e beeabeeabesaeesaeesbeenbeentesanenas 367
SM_POlICYAPI_Fre@SIIINGATITAY() vveeeeiiiieeeiiee ittt e ettt e e e st e e ettt e e e staeeestaeeeessteeessnsaaeesasseaeasssaeesassseesnnseeeans 367
Y oo I oY LotV o I CT=] Yo Yo ISR 368
Sm_Policy Api_GetAdMINBYNAME() c..uuviiieiiie ettt e e ree e st e e e e rate e e e asaeeesasseeeestaeeesnnraeesnseeeans 369
SM_POlICYAPI_GEEAFTITIATE() ..veeuveeeiertieieerte ettt ettt ettt be e bt e b e be st e satesheesbeenbeeteeaeeeas 370
Sm_PolicyApi_GetAffilIat@BYNAME() .oveerteeiiiiiiieeee ettt et ettt b ettt sheesbeesbe et et eas 371
Sm_PolicyApi_GetAffiliateDOMAIN() c..vveeeeerieeiciieeecie e ceree s e e e e e rtae e e sa e e e e rate e e s sreeesrreeeesstaeeeenraeesnreeeans 372
Sm_PolicyApi_GetAffiliateDomainByNaME()......eeeeiiiiiiieiieeeiiieeeesitee ettt e e seree e e ste e e serreeessseeeesstaeesensaaeesnnaeeeans 373
Sm_PolicyApi_GetAffiliateDomaiNODJECES()veeeeruiertieieeieeie ettt ettt ettt ettt esbe et et eareeas 374
Sm_PolicyApi_GetAffiliateDomainUserDirSearchOrder()ccoueieereereeiieeieeteeitesieesie ettt e e see e 376
Sm_PolicyApi_GetAffiliatedSAMLAULNSCNEMES()....cirvieiieiieieiie ittt ettt st e e e e eas 377
Sm_PolicyApi_GetAffiliatedSAMLSEIrVICEPTOVIAEIS() .vvveeeiereeeiiiieeeiiiee ettt e eette e e eteeeeesare e e eebee e e streeeearaeeeennaeas 378
SM_POlICYAPI_GELATFIlIATEUSEIS() vvreeeieriieieiiiieiiiieeectte e e ettt e e ettt eeeste e e e etreeesetaeeeesabaeeeesstseesssesaesssseeeenssaeesnnseens 379
SN _POIICYADI_GEEAGENT() veeuveeureruieriiereertt et ettt st e st et e teeatesateseeesaeesaeesseeseesaeesaeesseenbeensesnsesasesaeesaeenseensesnsens 380
SM_POlicyApi_GEtAZENTBYNGIME() «.ueeiueeiiiiieiieieeiiestte ettt sttt et e sae et e sate st e saeesbe e beentesatesatesaeesaeesseenteensenns 381
SM_POlicyApi_GEtAZENTCONTIZ() .. veiueerueertieiteiie ettt ettt ettt ettt ettt st e saee st e e be e besntesatesaeesaeesseenteenseens 382
Sm_PolicyApi_GetAgentConfigBYNAME() ..cc.uviiiiiiee ettt et e e et e e e e rtte e e eabe e e e sabaeeeesraeeennaeas 383
Sm_PolicyApi_GetAgentConfigASSOCIAtIONS()..cccureeeiriieeeiieeeceiee e e sttt e eesre e e et e e e ete e e e e stte e e sabeeeesabaeeeenraeesnseeas 384
SM_POlICYAPI_GELAZENTTYPE() veeverueerteertieitettete et test et et etesate st e steesae e bt satesatesaeesseenbeensesasesasesaeesaeesseenseensenns 385
Sm_PolicyApi_GetAgeNntTYPEBYNGME()....eiiuieiieieeiiertieteeie ettt sttt e sttt et saee st e e beebesabesaeesaeesaeesseenseensenns 386
SM_POliICYAPI_GELAZGENTTYPEATLI() .eeeeieiieeeeiiiieeciite e ettt e ettt e e et e e e str e e e etree e setbeeeesataeeeeassseeesbaaeesssreseessaeesnnseens 387
Sm_PolicyApi_GetAgentTypeAttrBYNAME() ...ccccuiee ettt ettt e e et e e e ate e e e abe e e e sataeeeenraeesnnnneas 388
Sm_PolicyApi_GetAlAffiliateALIIIDULES() coovveeeiiiiee et eeabe e e e st ae e e e are e e eenaaeas 389
SM_POliCYAPI_GETAIAFTIIIATES() veeerreerereiieiitieeiie et eeree st e erte e s e et e s e e e te e st e e ebeesabeeenseesntaesnseesnseeenseessaeenseenn 390
Sm_PolicyApi_GetAlISAMLATFIIATIONS() ..veeirieeerieiiieeiiesiee ettt e e e e e ste e e te e sbeeebeesbaeenseesrteesaseesnsaesnseean 391
Sm_PolicyApi_GetAlISAMLSChEeMEATLIDULES() c..vveeeiriieeeiiee ettt e e care e e et e e e sarae e e earae e enaeeas 392
Sm_PolicyApi_GetAlISAMLSEIVICEPIOVIAEIS() .ocuueeeiiriieeeciiee et e e ettt e ettt e e et e e e e ta e e eeeate e e e abaeeesabaeeeenraeesnsaeas 393
Sm_PolicyApi_GetAlISAMLSPASSertionConSUMErSEIVICE() ...cicuireeiiiieeeeiiiieceieeeeciteeeeete e e eetee e e streeeeearaeeeeanaeas 394
Sm_PolicyApi_GetAIISAMLSPATLIDULES() ..ecveeeerieiiieeitiecieeeiteeetee et et eete e ste e e te e s e e ebeesbeeenseeseteesaseesnsaesnseean 395
Sm_PolicyApi_GetAlIWSFEDRESOUICEPAITNEIS() .ocvvieiueeirieeiieesitieeiteesteeeiteesteeeteesteesseesreesseessseesssesssaesseens 397
SM_POliCYAPi_GELAULNAZIVIAD() .uvvieeeieiiieeeiiee ettt e ettt e ee ettt e ettt e e e st e e e eetta e e setbeeeeeabaeeeesbseesesbaaeeensbeeeansaeesnnsaens 398
SM_POlICYAPI_GELCEITIMAP() -vvreeiriieeeiiiieeeiiee e ettt e e e sttt eeeeette e e e etteeeesbaeeeeabaeesetsesaeastaesaassseesaasaseeassseeeessaeesanseens 399
Y 0 oY (o1 Y7: Vo I TN (@ a1 e [=T o U 400
Sm_PolicyApi_GetDireCtoryCONTENTS() ..eceevveeeirrieeeiiieeeeitee e srieeeestee e e see e e sreeeessteeeesnsreeessseeeassseeessssesesnnseeenns 401
Sm_PolicyApi_GetDisabledUSErSTate()ccueiiceiieeiiiieceiee e cee et eere e st e e e e e e s seae e e ste e e e ssnteeessnneeeesnneeeens 402
SM_POIICYAPI_GEEDOM@IN{) c.uvriieiitiieeeiiiieeeiteeeeeieeeeeteeeeeetteeeeetteeaesbeeaeesssaeeeassesaeantsseeaasssseeassasaesntseaeesrasesassaens 404
Sm_PolicyApi_GetDOMaINBYNAME()vviiieiiiieiiiie et e ettt e ettt e e et e e e eetbe e e eetaeeeeeabaeeeessbeeeeesbaeeesatseaeanraeeennneens 405
Y 0o I o] [TetV7: Y o T CT= o Do o g =11 0[] o] =T ot o) RN 406
Y oo I o] [Tet V7Y o T CT= (€] o] o =1 (@] o [Tt £ | R 407
Sm_PolicyApi_GetGlobalPOliCYBYNGME() ..uveeeirrieeeiiieeeciiee sttt e et e e eeeee e saee e e st e e esnsreeesnaeeesssteeessnneesesnneeeans 408
Sm_PolicyApi_GetGlobalResSpoNSEBYNAME() ...cc.ueeiiiriieeeiiie et eecite e eeete e et e e e ete e e eestte e e eeabeeeesabaeeeesreeesnneeas 409

12 Programming Guide for C

Sm_PolicyApi_GetGlobalRUIEBYNGME() ...eeiiiiiiieiiiieiie sttt ettt et e e e st e et e st esbe e s beesaveessteesaseesnbaeenseean 410

SN _POIICYAPI_GEEGIOUP() +euverureruieiuierieenteete ettt e st e bt e bt et satesatesheesbeesbe e bt s atesaeesbee bt enbeenbesabesatesaeesbeenseentesnsenas 411
Sm_PolicyApi_GetGroUPBYNAME() ...uuvieieiieeeiiiiee ettt et e e e e e ette e e st e e e e sate e e s nsaeeessseeeesssaeeeannsaeesnseeeans 413
SM_POliCYyAPi_GETGIOUPOIAS() cuvreeeeruriieeeirieeiitieeeiieeeeetreeestteeeestteeesstaeeesaseeeasssaeessnssesessseasaassseesassseesssseeeans 415
SM_POlicyApPi_GETHOSTCONTIZ() ...vreeeeiiiieieiie ettt ettt e e e ree e e st e e e sate e e s asaeeesarseeeesstaeeeannraeesnnneeeans 416
Sm_PolicyApi_GetHOoStCONTIGBYNAME() ...eeviiiiiiiiiiieeteete ettt ettt ettt sttt ettt st esbeesbeebeeneeeas 417
Sm_PolicyAPI_GetMessageConsumerPluginFromSAMLIXSChEME() ...ccveeviiiiriinieniieieeieeie et 419
Sm_PolicyApi_GetODBCQUENYSCREME()...eirriiiriieriieiiieriteeiee sttt esiee st e sreesbeesbeesabeesbeesbeesbeesabeesaseesbaesaseens 420
Sm_PolicyApi_GetODBCQUErySChemMEBYNAME() ...veierueeriieiiieriieeiiee sttt eiiee st e steesbeesreesbaesreesbeesareesbaesasees 421
Sm_PolicyApi_GetOneTimeUsePropFromAFfiliate()cccceeereeriieeiie et et e b e evee s 422
SM_POliCyAPi_GEtPaSSWOTTMSE() ..veeieeieiiieii ettt ettt ettt sttt ettt ettt s bt e bt e b e e besabesatesaeesaeesbeenbeenteeas 423
SM_POliCyAPi_GEtPaSSWOTAPOICY() .. eveerteeeteiiiiertientteiee it ete et e st e sttt st st e saeesbe e be e besntesaeesaeesaeesaeenseensenns 425
Sm_PolicyApi_GetPasswordPoliCyBYNAME()eeeeiiiieiiiiee e ciiee ettt e e et e e e tte e e stveeeesabeeesensaaeesasaeaaans 426
Y oI oY LotV o T CT=] o ado] [TV § ISP 427
SM_POlicyApi_GEtPOIICYBYNGME() «.ueeteetieiieiieieetiest ettt ettt ettt rte ettt s e saeesbe e beesbeentesatesaeesaeesseenteenseens 428
SM_POlICYAPI_GEPOIICYLINKS() -vevverueeiieeriieie ettt ettt st sttt ettt et e st e st et e e besatesaeesaeesaeesseenteensenns 429
SM_POlICYAPI_GEPOIICYUSEIS() .euvveeeerieeieeiteie ettt ettt et sttt e ste ettt e et e st e satesbe e beenbesatesatesaeesaeesseentesnsenns 430
SM_POlICYAPI_GEIREAIM() .uvreieiiiieee e e e e e et e e e st e e e e ata e e s abaaeesabaeaeestaeesenseaeesasanaaans 432
Sm_PolicyApi_GetReaIMBYNGAME() ..c.uviiieiiie ettt et e e ertee e s tae e e e tte e e e abaeeesabbeeesstaeeeesraeessreeaans 433
Sm_PolicyAPI_GetRedireCtURLFrOMSAMLIXSCNEME()...veevirierieriieriienieeie et etesitestee e eieste e seeesaee e eneeeeeens 435
Sm_PolicyApi_GetRegistratioNSCREME() ..ccveeii ittt st st s e et eeeeas 436
Sm_PolicyApi_GetRegistrationSchemeBYNamME()ueeicuieiiiiiie ettt e et ee e e ra e e e aae e e eabeeeens 437
Sm_PolicyApi_GetRegUIArEXPIrESSIONS() couvvreiieiiieeeiiie e eeiiee et e e ettt e eetae e e stre e e e sate e e e baeeesbbeaeenstaeeeensaaeessreeaans 438
SM_POlICYAPI_GETRESPONSE() ceeiuvreeeiiiiiieeeitiie e ettt e e ettt e eettee e streeeestbeeeeebaaeesatbeaeesstaseeassaaesssseaeaassaeseassaeesasseaaans 439
Sm_PolicyApi_GetReSPONSEBYNAME() .iccueeeirieeiieeiiieeitieiteeeiteestee et e steeeteesbeesseessteesnseesstaesnseessseesnsesssaesnsennn 440
SM_POliCYAPI_GETRESPONSEALLIS() veervrreireeirireirieiitieeitesiteeeiteesteeesseesteeeseesbeeeseesaseeaseesssaessesssseesnsessnsasanseenn 441
SM_POLICYAPI_GEIRUIE() weeeeereeeeiiiee ettt et e e et e e e et e e e e e tae e e s tbeeeesataeeeessaaeesabseaeestaeesansaaeessanaaans 442
SM_POliCYyAPi_GETRUIEBYNAME() .eeeiiiiiiieeiiie e ittt e ettt e ettt e ettt e e et e e e etae e e stbeeeesateeeeeasaeeesbseseeassseeeessaeesasseaaans 443
Sm_PolicyApi_GEtSAMLATFIIATION().c..vvieeeirieee ittt ettt e et e e e etee e e sta e e e e tteeesebaeeesbbeeeesssaeeeesraeessseaaans 444
Sm_PolicyApi_GetSAMULAFTHIAtIONBYIA()...eeivereereeeiieeiiectieeeee et e et e e e erre e ste e e te e s beeere e st e e enseesrteesaseesraeenseean 445
SM_POliICYAPI_GEISAMLSCNEME()..veeitiieitieiieeeeee ettt ertee et ete e s e e e rte e st e e e aeesbaeebeesataesnseesntaesnseesnseeanseesnsaeenseenn 446
Sm_PolicyApi_GetSAMLSEIVICEPIOVIAGI() uveeeiiiieeeiiieeeeiiee ettt e eete e e eette e e setbeeeestteeeeeraeeesbseaeesasaeesenssaeesasseaaans 448
Sm_PolicyApi_GetSAMLSErviceProViderBYIA()ccccveeeeeiieeeiiiiee et e eettee e ettee e et e e e tre e e streeeesabaeeeensaeeesasaeaans 449
Sm_PolicyApi_GetSAMLSErvViCEPrOVIAEIUSEIS() ..eiveierreeirieeiieeiieeeiteesiteeeiteesteeeteesteeeseesteeenseesrseessseessaesnseess 450
Y 00 I oY LotV o CT=] Yo o 1= o =Y (SR 451
Sm_PolicyApi_GetSCheMEBYNAME() ...viiieeeeeeiiiieeeiiieeeetee e sttt e e e stee e e seae e e saeeeessteeeesnsaeeessseeeanstaeesannsesesnnseeeans 452
Sm_PolicyApi_GetSharedSECretPOlICY()....cuueiiciieeeeiie ettt ettt e e et e e et e e e e etreeeesabeeeeeasaeaeeareaaans 453
Sm_PolicyApi_GetTargetConfigFromSAMLIXSChEMEuvviiiiiiieeee e e e e s 454
Y oo I o] [Tot V72 o I CT=] o I8 =Y L o1y S 455
Sm_PolicyApi_GetTrustedHOSIBYNGME() ...ueeeivreeeeiiireeeiieeertieee ettt e eseteeesaeeeesseeeessnsaeeessseeeessseeessssesesnnseeeans 456
Sm_PolicyApi_GetUseSecure AuthPropFromAFfiliate() ...coeeeeceeeeeiiiie e e 457
SM_POlICYAPI_GELUSEITONTEXE() .veeeeeeriieeeiiiie e it e ettt e eette e e ettt e e eette e e eetaeeestbeeeesabeeaeesaeeessseaeeassaeeeassaaesasseaaans 458

Contents 13

SM_POlICYAPT_GELUSEIDII() vveeurrreireeiiireitieiieeeieesteeesteesteeeteesteeaaeessteeeseessbeeasseessseesnseesnseessseessseessseesnsenssseens 460

SM_PolicyApi_GetUSErDIrBYNAME()eerueeruieiieitentierteeteeie ettt st este e sttt et st e sbe e st e e beeabesatesatesaeesaeesbeebeentenns 461
Sm_PolicyApi_GetUserDirCapabiliti®s()....ccuueeicreeeeiiieeeeiee sttt es e eeeee st e e e re e e s ere e e str e e e estaeesennraeesnneeeans 462
Sm_PolicyApi_GetUserDirSEarchOIdEI()uueiicieeeeiieee e et e e ettt e e sre e e e ste e e s aae e e stbeeeestaeessnsraeesnseeeans 463
SM_POlICYAPi_GETUSEIGIOUPS() «vveeeererrieeeiireeeiiieeeeiieeeesiteeestreeeestteeesssaeeesaseeeasssaeesanssesesssessasssseesasssssesssseeeans 464
SM_PolicyApi_GetUSErPassWordSTate()coueeuieierierieeieeie ettt sttt ettt ettt ettt et st e satesaeesaeesbeebeenreeas 465
Sm_PolicyApi_GetUsersFromWSFEDRESOUICEPAITNET()......eeueruierieriienieeie ettt ettt sttt e st 467
Y oI e [ol Y7 Y o T CT= AV T g -1 o] L= IR 468
Sm_PolicyApi_GetVariableBYNamME().....ccccuiiiiiieeeiie ettt e e e e e e e e ar e e e str e e e e nrta e e eenraeeenaeeeans 469
SM_PolicyApi_GetVariablIETYPE() cvueicviieiieiiie ettt sttt e et e st e et e e st eeeabe e s beesabeesrbeeeaseesntaeenreean 470
Sm_PolicyApi_GetVariableTYPeBYNAME() ...cuuiiiueeiciiieiie ettt eree ettt e st eebe e st esveeseteesaseesnbeeenseean 471
Sm_PolicyApi_GetWSFEDRESOUICEPAITNEN()eeueruietieieeieeiesiestesite st enteetestesteesteebeetesntesaeesaeesaeesseensesnsenns 473
SM_POliCyApPi_GETWSFEDSCREME() c..vvviiieiiieeiiiie e et e ettt e e stte e e ettt e e e etae e e s taeeeesataeseensaeeesabseaeenssaeeeessaeesnssesaans 474
Y oo T oY [Ter V7Y o Y L1 I SRR 475
SN _POICYADT _INIEEX() weuveenteeieeieeiieieesteerte ettt ettt et e e e e sate st e st e saeesae e bt eaeesaeesaeesbeenbeensesatesaeesaeesaeeseensesnsenns 476
SN _POIICYADI _ISGIOUP()eeuteeureeureruierieerteerteete et ettestteste e bt estesatesatesaeesaeesaeenseensesasesseesseenseensesnsesasesaeesaeenseensesnsenns 477
SN _POIICYADI _LOGIN() +eeutteutteieeiieeiieitieste ettt ettt et et e e e bt eatesatesaeesaeesaeenseeaeesatesseenseenbeensesntesasesaeesaeenseensesnsenns 479
SIMN_POLICYADPI_LOZOUL() +vreeeeurrieeiiiieeiiieeeeeiteee e sttt e e estteeeeetaeeestaeeeasstaeeeaasaseesssaaesssaesaanssaeesassaaeaassasesassasesassneaans 481
Sm_PolicyApi_LOOKUPDIr@CLOIYENTIY() .eeeeueeeeiiiieeeiiie e eeitee ettt e et e e e tte e e s tvee e e eate e e e araee e sabbeeesastaeeeensaaeessseeaans 482
Sm_PolicyApi_ManagementCoOmMMANG()c.eeouieirrieriereeieetesteseestee st steete st e steesteesbeebesntesaeesaeesaeenseenseensenns 485
SN _POIICYADI_REIEASE() +euveeureeueeriieitierieete ettt ettt et et et stesate st e saeesae e st eatesatesaeesbeenbeensesatesaeesaeesaeenseentesnsenns 486
Sm_PolicyApi_RemoveAdminFromAffiliateDomain()cceeeicieeeeiiiie ettt e e et e e e e s are e 487
Sm_PolicyApi_RemoveAdminFromDOMAIN().......ccciuireiiiieeeiiieee ettt e eeitteeesereeeesreeesesreeestreeessssaeesessaeessseeaans 488
Sm_PolicyApi_RemoveAgentConfigASSOCIAtioN() ...cc.ueiieiuieee e e ettt e et et e et e e e eta e e e earee e eareaeens 489
Sm_PolicyApi_RemoveAssertionConsumerServiceFroMSAMLSP()ccvveeceeicieeeieeiieeeiree e eree e e sreesveeeeee s 490
Sm_PolicyApi_RemoveAttributeFroOMATFTIlIatE() ..ecceeeceeieieciie e re e s e e eaaee s 491
Sm_PolicyApi_RemoveAttributeFromSAMLSCNEME()uviiiiiiieeeiie ettt e e e are e e eareeeens 492
Sm_PolicyApi_RemoveAttribUtEFrOMSAMLSP() ..cccciiiieeeiee ettt et e e et e e tr e e e s tb e e e esabeeeeeabaeeesabaeaens 493
SM_PolicyApPi_REMOVEFITOMGIOUP()..uvrreeerrieeiiiiieeeiieeeeeitteeeeitteeeestteeeeetaeeesasseaeassreeesessaeesasseseasssssesasssssesssseeaans 495
Sm_PolicyApi_RemoVvePolicyLINKFrOMPOIICY() cvvevcvereirieiiieeieeciee et st e eee sttt steeeve e st eeveeseteesaseesraesnnee s 497
Sm_PolicyApi_RemoveRegularExpressionFromPassWOrdPOlCY()ceecvereieieeeeiiiieeieiee e sreeeesiee e eeeee e svaee e 498
Sm_PolicyApi_REMOVERESPONSEALLI() .oeeeuvrieiiiiieeeiiie e ettt e ettt e e eete e e eette e e etbeeeesateeeeeasbeeesbseaeesssaeeeenssseesasseaaans 499
Sm_PolicyApi_RemoveUserDirFromAffiliateDomain()cceccuveeeeiiieeeciiee e cciee e et e eeire e st e e e sera e e eearae e eareaeens 500
Sm_PolicyApi_RemoveUserDirFromDOMaIN()c.cueereeiirieeiieesiieeeieesiteeesteesreeeteesteesseessraesseesseesssesssessseenn 501
Sm_PolicyApi_RemoveUsersFromAFfilIate()cceeeecrireieiiee ettt e s e e e e e e snaeeeeas 502
Sm_PolicyApi_RemoveUsersFromMPOIICY() ..ueeiicreeeeiiieieciie sttt esee e eetee e stee e e e s ere e e srr e e e essteeessnneeeesnnneeeans 503
Sm_PolicyApi_RemoveUsersFromSAMLSErviCEProVIAEr()c.ueeeeiuieeeeiee e eiee e ettt e e e e are e e eareeeens 505
Sm_PolicyApi_RemoveUsersFromWSFEDRESOUICEPAITNEI() ...cececvieeeeiiiieeeiieeeeeieeeeetteeeeetreeeesireeeeeaeeeeeareeaens 507
SM_PolicyApPi_RENAMEODJECE() .vvreeereiiieieiiii it e ettt s s e e e e e e ete e e e s e e e e e sate e e e nsaeeesnsseaeassseeeesnnseeesnseeeans 508
Sm_PolicyApi_SetAffiliateDomainUserDirSearChOrder()cccceeecveeeeeceeeesiee e e ree e sree e e e eeee e e snneeeens 509
Sm_PolicyApi_SetDisabledUSErSTate()......cceeiicieieeiiiieeciee st e e e e e e s e e e e e e eae e e srr e e e e snteeeesnnreeesnneeeans 510
SM_POlICYAPI_SEIPASSWOI() .eeeiviieeiiiiieeeitiie e ettt e ettt e eett e e e ettt e e e et e e e eetteeeetbeeeesabaeaeessseaesssaaeeassaeeeassseesasseaaans 514

14 Programming Guide for C

Sm_PolicyApi_SetResponSeINPOIICYLINK() . ccoverierieiieiieieerie ettt sttt et sbe e nbe s 516

Sm_PolicyApi_SetSharedSECretPOlICY() . .o.eereeierie ettt st st sae ettt sbe e b enbean 517
Sm_PolicyApi_SetUsSerDirSEarChOIrUEr().....c.uuiiicueeeeiiiee ettt e e sttt e et e e sere e e e sta e e e e sate e e sateeeesasaeeeesraeesnnnnens 518
SM_PolicyApi_SetUSErPassWOrdSTate()ccuueeicuieeeiiieeeeiiee e eriee e sttt e eetre e e srte e e e satreeeesateeesnseeeesntseeeenssaeesnnnnens 519
SM_PolicyApi_ValidateDir€CtOrYENTIY()..ee e reeeieieeeeiiieeeeciee e ertee e e sttt e e ertte e e srae e e e sataeeeestseesnseeeesnsaeeeenssaeesnnnnens 521
Authentication Scheme CoNfIGUIatioNoi it et sane e 522
ANONYMOUS TEMPIAEE ettt ettt ettt et e bt e e st e e bt e e sa b e e bt e e s abe e bt e e sabe e bt e e smneenneeesnneenees 523
2T (ol @V =Y ST M =T 0T] - | SRS 524
2 Lol =T 0o o] F= 1 o SRS 525
CUSEOM TEMPIATE ...ttt ettt b e st e et e s bt e e bt e sa b e e eabeesabeeeabeesabeesaseesabeeenneesn 526
HTIML FOPM TEMPIAEE «.eeeeeeieieiieetee ettt sttt st e st e skt e et esab e e e bt e sabeeeabeesabeeeneesabeeenseenane 528
IMPErSONAtIoON TEMPIATE . ..iiiiiiiiie ettt e bt e st e et e st e e e bt e st e e sabeesabeeeneesabeesneesane 529
RADIUS CHAP/PAP TEMPIATE ...ecuveeeieieieiiesieeite et ete et e et esteete e tesstesseessaesaeesseesseesseensesssesssesseesssesseessenssesssesseesnes 531
RV D LU YT V= g =T 1 4T o] =1 o USSP 532
SafeWord HTML FOrmM TeMPIAte.....ciiiiiiiieiiee ettt sttt st st st e st esbeesareesabeeeanee s 533
SAfEWOIA TEMPIALE ..ottt et st e et e st e e bt e st e e saseesabeesaseesabeeenseesabeesaneenn 534
SAML Artifact TEMPIALE ...eiieieeiie ettt sa bt e et e st e e e bt e sabe e s bt e sabeesaseesabeesaneesn 535
YN T 0 1 B =1 Y o] = USRS 537
YN O I =T 0] - YU SRS 540
SECUrID HTML FOrM TEMPIALE ..eeiiiiiiiiietieetee ettt ettt ettt ettt e et e st esabee s beesaneesabeesaneesabeesnneenn 541
SECUTIID TOMPIGELE ettt ettt et s e bt e sttt e bt e s bt e e bt e sabeeeabeesabeeeaseesabeesaseesabeesnseesabaesaneesn 543
SMaUthetsso aULhENtICAtION SCNEMEccuiiiiiiiiie e bbb esbe e s e e sabe e sbaesabee s 544
LT I =T 00T o] P 1o SRS URSNS 546
Windows Authentication TEMPIATEeuviiiiii e e e e e e s brar e e e e e e s abatreeeeeesennnnnnns 547
ATV E=Te [o= Yo o T T2 Y] - TSR 549
X.509 Client Cert and BasiC TEMPIATEciieuiiiiiciiee ettt e e rree e s e e e st e e e s srte e e snbeeeesnbaeesennseeesnnneens 551
X.509 Client Cert and FOrm TemMPIateuuviiiiii ittt e e e s e e e e e e s baaeeeeeeeseasaareeeeeesennnnnns 552
X.509 Client Cert or BasiC TEMPIAteeiiiieeie e e e e e s e e e e e e s baareeeeeeseasatreeeeeesenssnnnes 553
X.509 Client Cert or FOrm TEeMPIAteuuuiiiieiee e e e et e e e e s e s brae e e e e e e senasaaaeeeeeesensnnnnns 555
DO 0L I O 1= o} Tl =T 4T - TS 556
Chapter 5: Customizing the Policy Server 559
Work with Authentication and AULhOrIZation APISoceeiiiiiie et 559
AULNENTICATION HOOKeiiiiiiiii ettt ettt st bt e st e e bt e e s bt e e bt e e sabe e bt e e saneesaees 560
AULNOTIZAtION HOOK ..ceeiiiiiiieiiee ettt e e sttt e sttt e e e s abte e s s abeeesabaeessabaeeesnbaeesnnnaeas 560
CUSTOM DAta HOOK ..eeiiiiiieeiiiee ettt ettt e e sttt e e et e e s e bt e e e s bt e e e e s bt e e s abbeeesabbeeessbaeesansraeessseeanns 560
SHEEIMINAET EVENES ettt ettt st e s e st e st e s bt e sabeesabeesabeesabeesabeesabeesabeesnseesabaesaneenn 560
Saving Data Between Module INVOCATIONSeiieiiiiiciiiee e ettt e seee e e e e s re e e s e e e e sateeessnneaeesanneeeans 561
WEll-KNOWN USEI ALEFDULES ...eieiiiiiieiieeie ettt et e sa et s it e e bt e st e e sate e sabeesabeesaneesaees 562
RELIIEVING @ PASSWOIT ...uiiiiiiieiiciiiiee e ettt e e e e ettt e e e e e s ettt a e e e e e e eesastaaseeaeseaaasbbaseeseeesassssaneaaassaasstaenaaaesenes 566
Integration With the WED AGENTe e et e e e e e st e e e e e e e e e abbaaeeeeaesenssataeeeaeesennnnrans 567

Contents 15

Chapter 6: Context Structures 569

SN _ AP _APPSPECHTICCONTEXE Turiiiiiiiiiiiiiie ittt st sit e e sb et e s bt e e bt e e s bt e e bt e e smbeeeneeesmneeneas 569
Y A o T e oL =) q S OSSOSO TPON 572
SIM_API_REGUESTCONTEXE T 1uitiiiiiiiiiiiiiiiiiiiiiiiit it a e et e baae e babsba s bebabebsbabs e bebsbebsbabassssbasnbnbesnbnbnen 574
SM_API_TUNNEICONTEXE T .ureiiiiiieeeiiiieeeiiee e ettt e este e e ettt e e s teeeesateeeessseeesassaaeesssseeaasssaeesssseeasssseeeanssseesnssaseanssaneennes 575
SN _API_USEICONTEXT Tttt st e s e s e b e e e s ar e e e s b e e e s ena e e e sna e e e s s r e e e s eanee 576
MUlti-Valued AEFDULES IN LDAPci ettt ettt st e e st e e s te e e ssatee e s sbaeeesabeeessasaeessstaeesnasaeesnnneeas 581
SM_AULhADPT_USEICredentials_T.......uieieciiie s ceeeestee et e st e e ettt e e st e e e st eeeeataeesaaeeeesataeeeansseeesssaeeesnsaeennnnes 582
Chapter 7: Authentication API for C 585
AULNENTICATION API OVEIVIEW ...viiiiiiiiieiiite ittt st e sttt e sttt ettt siaeestee e saeeesaeeessteesbseesateesbaeessseesbeeessseenseeesssesnsseenssesnsens 585
Install an Authentication SChemME LIDIaryooocuiii it e e e e et e e e ta e e e e are e s eennaeas 586
Load an AUthentication SChEMEooo i e e e st e e et e e s saaee e s sbbeeeesabaeesnnneeas 587
O LY =T g Oe] gL (<) g AT 587
F XU gLl o Tor= o o T V=T o) £ TSR 587
[20Te [T =Tl 4] o FR O P T O PP TP SO P PO PP PR PPPPRROP 588
0] o) oJo] g d=Te @ g =Te [=T ol -] K USRS 588
Create a Custom Authentication SCheme LIDrary ..ot st st 589
Y000 YU d =T o A= o ISP 590
1Y 00 Y014 1L 11 SR 592
] 127U L0 T =T oY/ ISR 593
] 12T T U= [T LY =T | U USSR 597
Chapter 8: Authorization API for C 599
AULNOTIZAtION APIOVEIVIEW ...ttt ettt ettt e e sttt e st e e s sa bt e e e eaabeeesasateeesabbeeseasbeeesanseeesanbeeenaanee 599
INCIUAE FlE ettt s e st e st e s a bt e s ab e e sabeesabeesabeesabeesabeeeabeesabeeenneesabeeeneesane 600
FXo AVl o d o =T (o] o PP SPTPPPRTRRIIN 600
How SiteMinder Interprets ACtive EXPreSSIONS. ... iiiiiii et e e e e st e e e e e e seabrar e e e e e e sesaantaaeaeaesennns 600
DEFINE ACLIVE RUIBS ..viiiiiiiiieiitieeie sttt st s e st s e st esbeesabe e s abeesabeesabeesabaessbeesabeeenseesabeeensaesabeesnseesataeenseesns 601
DEfINE ACTIVE RESPONSES ..ueeiiitiieeetiiieeiieeeesteeeeeetteeesetteeeesteeeeesaseesassaseaastasasasssseessaaseastaseeassasseanssaesanstasesnssenas 602
DEfiNE ACTIVE POLICIES ...ttt ettt st e st s bt e e bt e st e e e beesabeesabeesabeeeaseesabeeeneesabeesneenane 602
Pass HTTP Headers and COOKIES tO POIICY SEIVETcuuiiiiiiiee ettt et e e e e s eae e e s e e e s are e s snneeas 602
Authorization FUNCLION DECIAIAtIONS .cc.uiiiiiiiiiieiiiee ettt sttt e e et e e saat e e e s abteessabeeessaseeessabaeeenanee 603
USEr-DefiN@d FUNCLION .ooieeiiii ettt ettt e st e e e sttt e s s bt e e e s bt eeeesabaeessasteeesabbaeesanbaeesnnnes 603
K] 141 LUT=T VAV /=T 5] o T 604
ACLIVE EXPreSSiON EXGMPIESuveiiiiiiieicciee ettt st s e e st e e st e e s et e e e s eaaa e e e sat e e e sansteeessaeeeessseeeeansseeesnseeeennsenenannes 605
EXaMPIE OF @N ACHIVE RUIB ... eieeeeeee ettt e et e e s e e e e st e e s aet e e e sasaeeeasteeeesseeeesnsaeesanseeesnnnneas 606
EXample Of an ACLIVE RESPONSE ...uuviiieiiieiiiiie ettt e e e et e e e e e e st b e e e e e e e e seabataeeaeaeseanntbaneeaesennas 608

16 Programming Guide for C

Chapter 9: Tunnel Service API Guidance

TUNNEI SEIVICE AP OVEIVIEW ... eevieiiiiieeeiiiee e ettt e ettt e ssite e e staeesssateeessaateeesnbbeesensbeeesaaseeeesabaeessnsseeesnnsees
Develop a CUSTOM TUNNEI SEIVICEuiiiiiiee e ceie ettt e e et e e e rtae e e st e e e e ata e e seaaaeeesasaeeeesnaeesennees
T Yol [N To T | T OO PP PP
TUNNEl SErVICE API REFEIENCE ..eiiuiiiiiiectee et s sab e s be e sbe e saeesaees
Y 0[O LU =T YAV A=Y £y [o RS SR
SINTUNNEINTE() 1euvteeitieeeee ettt et e et e e s e e e ta e e s aaeesaae e aaeesaeesseeessseessseenseeesaseesaeas
SMTUNNEIREIEASE()..vveeeeueriieiiiiie ettt ettt eete e ettt e e et e e e ete e e e st taeeeeataeessaseeeesstseesesseeessseeeessseeananes
USer-DefiNed FUNCLIONoiiiiiiiieeiii ettt ettt ettt e e st e sabeesabeesabeesanee e

Chapter 10: Event API Guidance

EVENT AP OVEIVIEW ..ottt ettt e ettt et e e e sttt et e e e s e be et e e e e sesannreneeeeesesannrenneeeesenan
EVENT AP SEEUD ..ttt e e s e e e
EVENT ProVIAEr SEIUCTUIES ...viiiiiiiie ettt ett e et e s et e e ssaaae e s st eeeeeateeessnaeeesnsaeeeesneessnsees
SMLOG_ ACCESS Tttt st e s s e e e s s annes
SIMLOE_EIMS T ettt e s e e e e eaeaees
] 121 oY= @ o [PSSP
SMLOG_SYSTEM T e ettt e e
Y= oL A o I Y=Y oY =Y o o PSR
ACCESS EVENT TYPE .o
Y S ST o) A Y o = TP PP PPPPPPPPPPPPPPPRS
(0] Y=o A ST o1 A Y] TSR USPNt
I] gl AT o A Y o O O P PP PPPPPPPPPPP
SMLOGACCESSEVENT_AUTNACCEPT ..veiieiiiieieieeectie ettt s st e st e e et e e s re e s et e e esaaae e e snaeeeenreeesnnnes
SMLOGACCESSEVENT _AULNREJECT ..vviiiiiiieiiiiieec et e e e e et e e e e s e s nraaeeeeeaeean
SMLOGACCESSEVENT _AULNATLEMPL..ciiiiiiiiiiiiee e e e e e e e e e e s nbaareeeeeeean
SmLogAccessEvent _AUthCRhallENEEeeiiiieeie e e e e e e e e
SMLOBACCESSEVENT _AZACCEPT .o
SMLOGACCESSEVENT_AZREJECT ..vviiiiiiiiiiiiiiiee ettt e e e s s are e e e e e s se st aeeeeessessannes
SMLOGACCESSEVENT _AAMINLOZIN ..eiiiiiiiiiiiiiiee et e e e e e e sraer e e e e s e s anraaaaeaaeeean
SmLogAccessEveNt _AdMINLOZOUL ...ccooeiiiiiiiec ettt e e e e et e e e e e e e s nraaneeeeaeean
SMLOGACCESSEVENT _AAMINREJECT .oeiiiiiiiiiiiiee ettt e e e e et e e e e e e e e s esbraaaeeeeeaan
SMLOGACCESSEVENT_AULNLOZOUL ...eeiiiiiiiciiiee ettt e s e e et e e eaae e e s e e e e s nre e e snnees
SMLOGACCESSEVENT_Validat@ACCEPT......viii ettt e e et e e e e e snaeeeesntaeeennns
SmLogAccessEvent ValidatEREJECT..........uuiiiieiiieieteeee e et e e e e e rare e e e e e ean

SmLogEmsEvent_CreateUser, SmLogEmsEvent_DeleteUser, SmLogEmsEvent_ModifyUser

SMLOGEMSEVENt_PassWOrdMOQifycuuiiiiiiee ettt e et e e e s e e e sntaeeenes
SmLogEmsEvent_AssignUserRole, SmLogEmsEvent_RemoveUserRoleccccoecvveeieveeeeniveennns
SmLogEmsEvent_EnableUser, SmLogEmsEvent_DisableUSercccccveveiieeevciieeeeciee e eriee s
SmLogEmsEvent_CreateOrg, SmLogEmsEvent_DeleteOrg, SmLogEmsEvent_ModifyOrg.............

SmLogEmsEvent_CreateRole, SmLogEmsEvent_DeleteRole, SmLogEmsEvent_ModifyRole

Contents 17

SmLogEmsEvent_CreateObject, SmLogEmsEvent_DeleteObject, SmLogEmsEvent_ModifyObject................. 642

SmLogEmsEvent_Login, SMLOGEMSEVENT_LOGOULciiiiiiiiiiiiiiiieiiii et 642
SMLOGEMSEVENT_AULNFAIL.....oiiieiiecee e et e e st e e e te e e e et e e e satbeeeestaeeeanseeeesanaeeaans 643
SMLOZEMSEVENT _SESSIONTIMEOUL...ccieiiieieieieieieeeeeee e se s e s e sese s e s e s e s e sesssssesesesssesasasnsssssesesssnsesnsnsnns 643
Y00 WoT {0 oY V=T Al O - | USSR 644
SMLOGODTEVENT_UPAALE ..ttt ettt et e et e st e et e e st e e s bt e sabeesareesabeeeaneens 645
SMLOGODTEVENT_DEIBLE ...eeiiiieiiiieteeet ettt ettt e st e st e st e e e bt e st e e e bt e sabeesaseesabeeeaneenn 645
Y00 WoT={@] oY Y=Y Al Mo {1 PR 646
SmLogObjEvent_FailedLoginAttemMPISCOUNTcccciiiii e ctee e et e e e e e rtr e e e ere e e s tr e e e esstaeeeenseeeesanaeeaans 646
SMLOGODTEVENT_LOGOUL ...eeiuiiiiiiiiiieiite ettt ettt ettt et e s e et e st e et e st e e eabee s e bt e sabeesabeesabeesabeesnneens 647
SMLOZODJEVENT_LOGINREJECL ...ttt sttt ettt e st e st e e bt e s bt e saneesabeeeanee s 647
SMLOGODBTEVENT_FIUSRAIL ...ttt et ettt st e st e st e e s bt e sabeesaseesabeesnnee s 648
SMLOGODTEVENT _FIUSRUSETocceeieeeeeee ettt et e et e e et e e e st e e e s atae e s abaaeesabbeeeestaeesanseaeesasaeaaans 648
SMLOGODTEVENT _FIUSRUSEIS....cc. ittt e et e e e et e e e st e e e e ata e e s abaaeesabbeeeestaessenseaeessaeeaans 649
SMLOZODJEVENT_FIUSNREAIMS ...ttt st ettt e st s e s b e s beesareesbeeeanee s 649
SMLOgObJEVENt_ChangeDyNamiCKEYS.cciviiiiieriiieite ettt sttt ettt ettt e st e st e st e sab e sneesabeesareesabaesaneens 650
SMLOogObJEVENt_ChangePersisteNTKEYc.eiiuiiiiiiiiieriie ettt sttt s bt et e s e sbeeeanee s 650
SMLOGODJEVENT_ChangeSESSIONKEYcccccuiiiiiiiiee et e ettt e sttt e e et e e e etae e e staeeeesttaeeseasaaeestseaesassseesessaeessseeaans 650
SMLOEODJEVENt_ChangEUSEIPASSWOITccicuiiieeiiieeeeiiee e citeeeeeteeeeettee e stbeeessataeeseasaeeesatseseesssaeesenssasesasseeaans 651
SMLOZODEVENT_Creat@USEISUCCESS. .. eiitieiuiiieieeetee ettt ettt e et e st e st e st eeabee s bt e sabeesabeesaseesabeesaseesabaesaneess 651
SMLOZODJEVENT_DelEtEUSEISUCCESS. .. ciiueieriiiiiieeeiee ettt ettt et s e et e st e et e s bt e sabee s beesabeesabeesaseesabaesaneesn 652
SmLogObjEvent_ChangeDisabledUSErSTatecccciiiiiiieeiiiiee ettt e e et e e e tre e e s tre e e s sara e e seaaaeeesaraeeeans 653
SMLOGODIEVENT _IMOAifYUSEISUCCESS .. .eiicuviieeiiiiee ettt e ettt e e st e e et e e e etae e e staeeeesatae e e asaeeesbbeaeeassaeesassaeessseeaans 653
SMLOGODTEVENT_Creat@USEIFaAluiiiiieiiee et e e e e s e st e e e e e e e e s asbaaaeeeeeesnnnnraneeaens 654
SMLOGODJEVENT_DEIEtEUSEIFQII ...eeiiieieiiciiie ettt et s e e e s e e s aae e e sbaeaeesntaeeeenneeeesnseeeens 654
Y00 WeTe{@] oY V=T fl Y, Fo T IV U LY =Y o o 11 RSP 655
SMLOESYSTEMEVENT _SEIVEIINIT e e e s e s e s e s s e e s e s e s e s e se s e e e e e sesesesesesesasanans 656
SMLOESYStEMEVENT_SErVEIINILFQIl......uviiiiiiiiiiiiieee e e e s et e e e e e e s sbaa e e e e e e e ssnsaaaeeeeas 656
) a1 ey A =T AV o YT V=T U o E TP PP 657
SMLOZSYSTEMEVENT_SEIVEIDOWN ... s s e s e s e s e s e s e se s e s e s e s e s e s e seseseaesesesesesasasasennss 657
SmLogSystemEVeNnt_LOGFIlE@OPENFAI]cccueiiiiieeeecie ettt e seaae e e st e e et e e e eeaeeeeenreeeens 657
SMLogSystemMEVENt_ServerHEArthEatcoo i e e e s e e e s 657
SMLOGSYStEMEVENT _AGENTINTO ..eeiiiiiiii et e e et e e e ette e e e baee e sbbeaeeeabaeeeeseaeessbeaaans 658
SmLogSystemEvent_AgentCoONNECTIONSTAITuuiiiiiiiieiiiiee et e e s et e e e e s s sabree e e e s s e sssrnneeeeess 659
SmLogSystemEvent_AgentConNECtiONFAIlcoieiiiiiiiiie e e e e e e e e snaeeeeas 659
SmLogSystemEvent_AgentConNECIONENGoiiiiiiiiiiiie et e e e e e ere e e st e e e snte e e e nnre e e sanneeeeas 659
SMLOESYStEMEVENT _DBCONNECTttt e e e e e ettt e e e e e e s e e attaeeeeeeeesasbaaaeeeeeesansaaaeeaens 660
SmLogSystemEVEeNt _DBCONNECLFQIL.......coiiiiiieiiiee e e e e e e e e st ar e e e e e e s aaaaaeeae s 660
SMLOESYStEMEVENT_LAGPCONNECTeiiiieeiie e ciieee ettt e eete ettt e e et e e e eete e e e st e e e e sate e e e nsaeeesnsseaeasseeeesnssesesnseeeans 661
SmLogSystemEvent_LdapConneCtFailoooicuiiiieiiiee et e e e e s e e et e e e nae e e snneeeens 661
SmLogSystemEvent_AmbiguoUSRESOUIrCEMAtCN........ccccuiiiiiiieece e e 662
SmLogSystemEvent_AmbigUoUSRAIUSIMATCRNcciiiiiiiieieee e e e e rrae e e 662

18 Programming Guide for C

SmLogSystemEvent_AgentHEartbheatooi i e 662

EVENT FUNCLION DECIAIATIONS oivieiiiiiiiiieiiies ettt st e e st e e sttt e s atee e s s bt e e e sabeeesaasaeessnbeeeesnsbaeesasseeesssseeenns 663
SIMEVENTINIE() e uvreeiitieee et ettt e e et e e et e e e s te e e et b e e e e e eteeestaeee e ataeeeasssaeessseeeaassseeeasssaeessseaesansseeeanssaeesnnnnes 663
Y 141 YT =T oo o [TS 664
Y 101 YT =T 1o L =T SRS 665
EXamMPIe Of @N ACEIVE POLICY ...eeiueiiiiieiieteee ettt st ettt e st e s bt e s bt e s bt e e bt e sabeeebeesabeeeneesane 666
Configuring the Policy Server for the Event Handler............cooiiiiiiiiiiiiee e 668
Chapter 11: DMS Workflow API 669
DMS WOTKFIOW APT GUIG@NCEeeieiiiiieeieiiet e eitee ettt e s ettt settt e e s st e e e s ate e e saeteessabeeeessbeeesaaseeesanbeeesestaeesansneessnsseesans 669
D1V Y =E1 [] o PSP P PRSPPI 670
DIMS WOTKFIOW .vvtieieeiieesite ettt s st s e st s e st e st esabe e sabeesabeesabeesabeesabeessbeesabeesnseesabeesnsaesabeesneesnbaeenseesnse 670
WOTKFIOW EVENTS c...evteeeiiieee ettt eetee ettt eete e sttt e e ettt e e st e e sttt e e e s s baeeesasteeessaeeeeassaeesansseeessseeeesnsaeesennseeesnnnnens 671
PrEPIOCESS EVENTS . e e s e e s st e e e s s ar et e s e e e s 672
POSTPIOCESS EVENTS. ...t e e st e e s e ar e et e e e e 672
DIMS WOTKFIOW API REFEIENCEeiiiiieiieiiieeee sttt st s e st e s be e st e e s beesabeesbeesabaessbeesabeesnseesabassnseesans 672
SIM_ AP _DMSCONTEXE L ittt eaaeees 674
SM_DMSWOrKFIOW_ATEFIDULE_t oottt st s st e b e eanee s 676
SMDMSWOTKFIOWINTE() 1eeuveeitieeiie ettt et et e st e et e st e e te e st e e eaeesabeeesbeesateeenseesnseeanseessseansseesnsaesnseenn 677
SMDMSWOTKIIOWPOSTPIOCESS()..euvveeeeiuiiieieiiiieciiee e ettt e ee e e e ettt e e e s te e e eebtaeestbeeeesataeeeessseeesseseesnsseseessaeesnnseens 677
SMDMSWOTKFIOWPTEPIOCESS() veeeuvvieeiiiiiie ittt ettt e e e e e st e e e et e e e stbeeeeeabaeeeessseessbaaeesssseeeensaeesnnsenas 679
SMDMSWOTIKFIOWREIEASE()....uvveeeiiiieeeciiiee ettt ettt ettt e e e st e e e e bt a e e s tbeeeesabaeeeesteeessbaaeesataeeeensraeesssnens 680
Chapter 12: Directory API Guidance 681
PUIPOSE Of The DIFECLONY APl... ..ottt ettt e e et e e e et e e e e tte e e e eabaeeesabaeeeestaeasaasasasaabsesaastaeesassaeeesasreaaans 681
Before YOU Use the DIrECLONY APlooe ettt ttee ettt e e ettt e e et e e s eaaee e e st eeesateeeseasaeeesnbaeaeennsaeesanseeessnnseaeans 682
[Lo XV o T U Lo d o [BT =Y o VA Y o SR 682
S TUT 1o I T DT g=Tor o] AV Yo o] | ot | d Lo o TSR USTRN 683
o T mu=Te I oL TUT o o T=T o L d oY o LSS UURTRN 683
General Data TYPeSs @aNd STFUCTUIESoiiiieiiieiieee ettt et e e et e e e stee e e sta e e e e snte e e e nsaeeesasaeeeennteeesanseeesnnseeeens 686
Initialization and RelIEase FUNCLIONSciiiiiiiieiiieeiee sttt ettt sttt e st e s bt e st eebeesabe e e saeesbeeeneesane 687
L3 V2 ST o Tt [o TSPt 688
OPErationNs ON the DIFECLOINY ...uviiii ittt e eecr e e e e e e et e e e e e e s e st taaeeeeesesastaeeeeseeessssasaeeeeeesaansraneeaens 689
Operations 0N @ DIr€CtOry ENTIY (USEI)ueii ettt ettt e ettt e e e e te e e e e tae e e etbeeeeeabaeeeenseaaeenreeaans 691
DY o) YA A ad B Y=Y =Y =T o ol SR 692
R 441117 ¥o Lo | 3 0 Y7 RS 695
Y 101117 Yo fo 1V 1=Ta Y oY= gl Ko T € g 1 U | SR 697
SMDIrADAMEMBDEITOROIE() . .uvviieiiiieeeiiii ettt et e ee e e ettt e e e st e e e eetbeeeeetbeeeeeabaeeaessbeeeeesbaaeesnbseaeesreeesassaens 698
SN AUTNENTICATEUSEI() 1eeeeeeiie e ettt e ettt eete e ettt e e et e e e ettt e e e s taeeeetbeeeeetsaseeasbaeeeeassaeeeessaeaeaasseeeastaeesnsseens 699
SMDIrChangEUSEIPASSWOIT() ..veeccuveeeeiiiieieiiireiiiteeestteese e e e srtteeeesataeeessteeessseeeesssaeeeasseeesssseeessnsseesennseeesnsnnees 702
SIMDITENUMEIATE() couvvverieeeeeeiiiitieee e e ettt et e e e eeettreeeeeeeeesaaraereeeesessssrsareeeeeesastasseeeeeesasstsaseeeeeesansssseeseeesenssnrees 704

Contents 19

Y00 D11 TR o= USSR 705

SN DITFIEESTIINGATTAY() c.veeveeeeete ettt ettt ettt sh e e bttt et e eaeesbeesb e e b e e beeabesatesatesheesbeebeeabesatesaeesbeanbeenbenn 705
Y 10101 g €=y D11 o] o o =Tt o] o) 1P 706
Y 121 DI Ty DT @] o 1] e | RS 707
] 101 DT T L T oYU o1V 1T 0] o T=T o R 708
Y 0] DT T I T 1V £ = PR 709
SMDIFGETROIEMEMDEIS() ..veevrieieiieeii ettt sttt e e st e e st e e st e e staeesabeessbeesaaeesaeessseesseesssaensseessseensnes 710
Y 101 € AU =T Y TSRS 711
SMDIrGELUSEIATIIIMIUITI() 1veeeeevreeeiiiiee et e eete e st e et ee e e e re e e s rtae e e e st e e e estaeestaeeeesssaeeeanssaeeennsaaeesssseeeansreeesnnsnens 712
Y 0] D[AU =T 0 T T | PR 713
N 0 D[ST U =T g DT o] 1=Te K] =Y (USRS 714
SIMNDITGETUSEIGIOUDS() cvveeereeereeeireesiteeaiteesteeesseesteeasseessseeaseesssaeasseesssesaseesssesassessssesassesssseesssesssesssseesnsessssesn 717
SMDIrGELUSEIPIOPEITIES() coeevveeeiitiieeeiiiieeeite e e eetee e e sttt e e e e ctte e e ertaeeeestbaeeeessaeesassaseeastaeeaassseesssasasssssessassasesnsseens 718
] 101 DT T U =T o] L=T | USSR 719
1Y 01 L1 SR 720
Y11 B Fa VA DT LT = ool =T | TSR 722
SMNDIFINIEUSEIINSTANCE() c.vveeveeerieeiteeiteeeiteesteeeseesteeerteesbeeesteesateeeseesabeeasseesaseeasseesaseeanseesnsaeansesssseessseessanssennn 725
] 141011 Moo UT o | U UU RS 727
SMDITQUETYVEISION() 1eeetrieeeeiiee e ittt e e ettt e eeete e e sttt eeestbeeeeertteeesstbaeeesabaeaeassaeesasssseeassaeeeasssessssasasassssseansraeesnnseens 728
Y] BT =1 1T T U 729
SMDIFREIEASEINSTANCE() c.veeeveeeurieeiiieeieeeiteestee et e et e e rteeebeeeaeesteeeseesateeasseesaseeanseesateeanseesnsaeansessnseasnseesnsaesnseenn 730
SMDITREMOVEENTIY().eeeiitieiieiiie ettt ettt ettt eete e e ettt e e e e tte e e e stbeeeesabaeeeebsaee s sseaeaassaeeeassseessseaeeansaeseansraeesnnsrens 731
SMDIrReMOVEMEMDEIFrOMGIOUP()..ccuvveeeeiieieiiiieeeitieeeeiteeeerteeeesteeeeestreeesetaeeeesstaeeeesssseeesseseesssaeseenssaeesnnseens 732
SMDIrRemMOVEMEMDBEIFIOMROIE() . eiiiuiiieieiiie et ettt e e st e e e et e e e eetbe e e e e baeeeessbseeeesbaeeesasseeeensaeesnnsaens 733
Y01 T=T= T el o T PR RRRO 734
SMDIrSEAICNCOUNT() ceeevreeeeeteie e et e ettt ettt e et e eet e e eeae e e e e areeeeeateeeeeaaeeeeeaaeeeessteeeeessseessnsseeeeasseeeeesseeeensneeeens 736
SIMDIISETUSEIATII() «vveeeeiriieieitiee e et e e ettt e e ettt e e ettt e e e sttt e e eetteeeeetbeeeesbaeaeessaeesassaseeasbaeeaassseesasbaaaesntssesanstaeesnnsenns 738
SMDIrSELUSEIATIIIMIUITI() .veeeeeeieeeiiiiee ettt e ettt e ettt e e e tte e e ettt eeesabaeeeetbaeesatseeaeastaeeeassseeeasbaaeesatseaeanssaeesnssnens 739
SMDirSetUSerDiSabledSTate()cicuieeeiiiie ettt ettt ee e et e e e st e e e et e e e setbeeeeeabaeeeesabeeeeasbaseeenbbeeeenraeeennsaens 740
SMDIrVAlIAAtEINSTANCE() «oeeevvveeeiieieeeetee ettt ettt eeee e et e e e et eeeetaeeeeeaaeeeeesteeeeesseeeesetseeeensseeeeeseeeessneeeens 743
SMDIrVAlIAATEUSEIDIN()..eeeeeueeeeeiieeeeeeree ettt ettt eete e e eeaeeeeetae e e eeateeeeeaaeeeetaeeeessteeeeeseeeesnsseeeeasseeeeesreeesnsneeeens 744
SMDIrValidatEUSEINMAME() coeevveeeiiiiieeeiiieeeeciie et e e e sttt e eeette e e e etteeeestbaeeeettaeesatsaeaeastaeseassseesasbaaeesasaeaeansraeesnsseens 745
SmDirValidateUserPolicyRelatioNSNiP() ...ccccueeeeiciieeeiiiee ettt eerte e ettt e e e et e e e e sate e e eeabaeeesataeeeennraeeennnaeas 746
Structures Used in the Sample Directory APPliCationc.eeeeiiieeieiiir e e et e e s neeeas 748
(1Yo oY YA [1y = T T oI o F= o Vo |1 P 749
[T oY VA o FeXYiTo [Tl o - T o | =SS 750
Directory Entry (User) INStance HANAIEooeeiiiiiiiee ettt et e e ettt e et e e e s br e e e e atae e eeaaaeas 750
How To Distinguish between Handle TYPES . ..o ettt et e e e e e st e e e e e e e s e eaataeeeaaeeeenns 751
Chapter 13: Common Data Types and Structure 753
o T u=Te I oL oYU o =T d To o LU UPSPPRNE 753

20 Programming Guide for C

SM_API_DiSablETREASON_T . .eeiiiiiiiiieiieee ettt sttt b et e b et e saa e e ne e aneeneas 753

SN _API_REASON_T .ttt st s bt e s a e s r e e snnae s 755
] 44 T o1 1Y =TT] LU o T o N SRS 757
COMIMON SEFUCTUIE ...ttt e e e e e et e e e e e st r et e e e s e s n e r e e et e e e sasmnren et e e e seannnreneeeeesesnnnnnnnneeess 759
Chapter 14: Event Log Formats 759
AACCESS EVENTS ettt e e st e e e e st r et e e e s e r e e e e e e s e nr e e e e e e e e e a e nr e e e teeeeesannnnereeeeeseannneee 759
Authentication and AUthorization FOrMat........ccuiiiiiiiiiiiee ettt e e s e e are e e snanaeas 760
Fi¥o Ia oYl a TR - Ta oY T o] o o - | R TSP 763
ODBJECE EVENTS ..ttt ettt ettt et s e e bt e st e et esab e e s bt e s ab e e eabeesa b e e eabeesa b e e embeesabeeeabee s beeeabeesabeesanee s 764
AdMINCRANEE FOIMAT ...uiiiiiiiie e ciee ettt ete e e e st e e e et e e e staee e e s abaeeeebtaeesssaaeeastaeeaassseeessasaesssssseanssaeesansaens 764
Management ComMMaAaNd FOIMAT.......uuiiii i e et e e e e e s et e e e e e e s e artaeeeeessesanstaneeeeseessnntanneeeesennes 765
EIMIS EVENES . et e e e e e e e e et e e et e e et e e e e e e et e e e e e e e e aaaeees 766
EMS LOG FOIMAT ..t e et e s s s ar et e e e e st ar e e e e e e e s eaas 766
Appendix A: SAML 2.0 Property Reference 769
ADOUL The SAML 2.0 PrOPEIri®S .cuueiiiiiiiiieiiteeeite ettt sttt ettt ettt et e sa e st e e s bt e e sabeesbe e e sabeeabeeessbeeebeeesanessbeeesnneennees 769
YN T O oY oY= o YA Y=Y Y =T o [l USRSt 769
Index 817

Contents 21

Chapter 1: API Overview

This section contains the following topics:

SiteMinder SDK Overview (see page 23)

SDK Installation (see page 24)
Custom Applications and Policy Server Extensions (see page 24)

Code Samples (see page 25)
Support for Custom Code (see page 25)

SiteMinder SDK Overview

The CA SiteMinder Software Development Kit (SDK) includes a set of documented
application programming interfaces (APIs) that let you integrate and extend the
capabilities of SiteMinder within your specific environment.

The following graphic shows how SiteMinder implements the APIs:

Custom
Administrative
Interfaces

Custom
Agents

Directory
Interfaces

A 4
Policy
Management

API

Agent
API

r Directory SiteMinder Policy Engine Tunnel Service\ Tunnel Service
API AP N Library

Event
API

(

Authorization
AP

)

3
I

)
|

Event
Handlers

Paolicy
Extensions

|
Authentication
API

Custom
Authentication
Schemes

The SiteMinder SDK includes the following APlIs:

® Policy Management API—use to develop a custom Administrative Ul application, or
to customize selected components of policy objects such as rules, policies, and
responses within the application. Users of this APl will be able to perform most of
the data manipulations that users of the native Administrative Ul can perform.

m Agent API—use to create custom agent applications for leveraging the
authentication and authorization capabilities of the Policy Server. Using this API,
you can also construct a secure communication tunnel to transmit
application-specific data.

m Authentication API—use to develop custom authentication schemes and integrate
the custom schemes. Policy Server plug-in.

Chapter 1: API Overview 23

SDK Installation

m Authorization API—use to develop modules for performing custom authorization
functions. Modules that you develop using this API can be configured in the
Administrative Ul with active rules, active policies, and active responses. Policy
Server plug-in.

m Event API—use to build custom event handlers that handle SiteMinder events.
Policy Server plug-in.
m Tunnel Service API—use to develop plug-in tunnel services that communicate with

agents to transfer data securely. Policy Server plug-in.

m DMS Workflow APl—use to create pre- and post-process workflow for DMS events.
Policy Server plug-in.

Directory API—use to mange user directories that use a custom namespace. Policy
Server plug-in.

SDK Installation

The SDK is installed to the following location:
= UNIX platforms: <install_path>/sdk

m Windows platforms: <install_path>\sdk
<install_path> refers to the installation path where you installed the SDK software.

Note: For information about the installed directory structure, see the SDK Overview. For
SDK installation instructions, see the SDK Release Notes.

Custom Applications and Policy Server Extensions

Note the following points when you build custom applications and Policy Server
extensions:

m No SiteMinder processes need to be running on the machine where you build
custom applications and Policy Server extensions.

® |n most cases, the SDK does not need to be installed on the same machine as the
Policy Server when you build those applications and extensions.

m The Policy Server is required for running the applications and extensions that you
build with the SiteMinder SDK.

24 Programming Guide for C

Code Samples

m Some of the application and extension runtime files need to be local to the Policy
Server, while others can be remote.

®m An application built with the Policy Management APl must run as the same user
who installed the Policy Server (for example, smuser on UNIX platforms).

m The C APl cannot make JNI calls. There is no synchronization in the Policy Server to
support such calls. It is possible, however, to spawn off a separate process that
invokes Java and communicates back to the main process by using sockets

Code Samples

The SiteMinder SDK includes tested samples of C code for SiteMinder client applications
and extensions. The source files for these samples are located as follows:

m Windows platforms:
<install_path>\sdk\samples\<api-name>
m UNIX platforms:

<install_path>/sdk/samples/<api-name>

Support for Custom Code

CA supports the Software Development Kit (SDK) as part of the standard offerings. Code
written by customers or partners, however, is not supported. You are responsible for
the code you write. If you require assistance designing or implementing SDK-based
code, contact your CA customer account team.

Chapter 1: API Overview 25

Chapter 2: Adent API Guidance For C

This section contains the following topics:

Agent AP| Overview (see page 27)

About the SiteMinder Agent (see page 27)

Agent Initialization (see page 28)

Agent Discovery (see page 28)

How to Access a Resource Using the Agent API (see page 32)
Compile and Link a Custom Agent (see page 34)
Central Host Configuration (see page 34)

Agent Call Sequence (see page 37)

Sample Custom Agent (see page 37)

Agent API Services (see page 37)

Response Attributes (see page 42)

Custom Agents and Single Sign-On (see page 43)
Memory Deallocation (see page 45)

Agent API Data Structures (C) (see page 45)
Agent API Function Declarations (C) (see page 61)

Adent API Overview

The Agent API works with the Policy Server to simplify application development and
make applications more scalable. Developers creating applications that are built using
the Agent API either directly or indirectly (through another agent) are shielded from the
following implementation-specific details:

m User namespaces such as LDAP directories, SQL databases, or NT domains

m Authentication methods as simple as user name and password, or as complex as
PKI systems

m Authorizations based on group membership, or individual profile data

Additional benefits provided by the Agent APl include full session management support,
automatic encryption key rollover, and real-time policy updates.

About the SiteMinder Agent

A SiteMinder Agent is a client of the Agent API. The agent enforces access control
policies provided by the Policy Server. The Policy Server is a general-purpose policy
engine with no information about resources. Agents establish resource semantics and
act as gate keepers to protect resources from unauthorized users.

Chapter 2: Agent API Guidance For C 27

Agent Initialization

Different agent types protect different kinds of resources. Some agent types are
pre-defined, standard agents that are shipped as part of the SiteMinder product—for
example, the Web Agent, which provides HTTP access control for Web Servers. You can
also use the Agent APl to implement custom agents.

When you create an application using the Agent API, you can create a custom agent to
authenticate and authorize users in a variety of ways, depending on the context. For
example, you could create an agent for FTP transfers that implements the following
functionality:

m Certificate-based authentication instead of basic name and password credentials
m Uploads and downloads based on an individual user’s authorization level

When you build a custom agent with the SDK, you must run the custom agent against
the version of the SiteMinder Policy Server that corresponds to the version of the SDK.

Adent Initialization

Before an agent can perform work on behalf of its users, it must initialize connections to
one or more Policy Servers by calling Sm_AgentApi_lInit(). Calling Sm_AgentApi_Init()
lets you specify connection parameters such as failover mode and connection pool size.
This call creates TCP connections and typically does not need to be done more than
once per agent instance.

It is possible to initialize more than one API instance (for example, when working with
Policy Servers that use separate policy stores).

Immediately after initialization, the agent should communicate its version information
to the Policy Server by calling Sm_AgentApi_DoManagement() with the command
SM_AGENTAPI_MANAGEMENT_SET_AGENT_INFO set in the structure
Sm_AgentApi_ManagementContext_t. The actual information can be any string
containing enough information about the agent, such as the build number and version
number. The string is recorded in the Policy Server logs.

Agent Discovery

Agent discovery lets CA SiteMinder® administrators track instances of different types of
agents, including agents that have been deployed over a number of years. An agent
instance can be any type of agent, for example, Web agent, custom agent, or ERP agent.
To come under the purview of agent discovery, the agent must be active and in
communication with the Policy Server.

28 Programming Guide for C

Agent Discovery

Only 5.x agents and later can be tracked. For agents created before r12.5, the
combination of the IP address and trusted host are used to identify the agent. Any
change in this combination for the same agent results in multiple entries for the same
agent.

A unique GUID identifies each r12.5 agent instance, which is stored in a configuration
file. The Sm_AgentApi_SetAgentinstancelnfo() function plays a pivotal role in the
process of agent discovery. The Sm_AgentApi_SetAgentinstancelnfo() function
determines whether the configuration has a specified GUID for the agent instance. If a
GUID is found, the agent has already been discovered and can be tracked. Otherwise,
the function creates a GUID for the agent instance and writes it to the configuration file
for subsequent invocations. Multiple agent instances cannot share a configuration file.

Chapter 2: Agent API Guidance For C 29

Agent Discovery

The Agent APl provides the following for registering agent info:

int SM_EXTERN Sm AgentApi_SetAgentInstanceInfo (
const void* pHandle,
Sm AgentApi AgentDiscovery t arrParams[], int nCount);

m pHandleis a handle generated by Sm_AgentApi_lInit, used by all agent api calls.

m arrParamsl[] is an array of name/value pairs defined by the
m_AgentApi_AgentDiscovery_t data type.

m nCountis the number of elements passed in arrParams.
The following macros in SmAgentAPi.h define the supported named elements that can

be passed in arrParams. These are all optional, and an agent provides as much, or as
little, information as it relevant.

#define SM_AGENT_INSTANCE_AGENTPRODUCTTYPE "AGENTPRODUCTTYPE"

Example: WebAgent

#define SM _AGENT_INSTANCE_AGENTPRODUCTVERSION "AGENTPRODUCTVERSION"

Example: 1.0

#define SM AGENT INSTANCE AGENTPRODUCTSUBTYPE "AGENTPRODUCTSUBTYPE"

Example: lIS

#define SM AGENT INSTANCE AGENTPRODUCTOSTYPE "AGENTPRODUCTOSTYPE"

Example: Linux

#define SM _AGENT_INSTANCE AGENTIDFILE "AGENTIDFILE"

Valid path to a text file with write permission, used to store a unique GUID. Ifa
path to an empty file is passed, the agent API will generate a new GUID and
write it to this file. In the future, this GUID can be read and used to uniquely
identify the agent instance.

#define SM AGENT_ INSTANCE ACONAME "ACONAME"

A value ACO name used by the agent.

#define SM _AGENT INSTANCE HCONAME "HCONAME"

30 Programming Guide for C

Agent Discovery

A valid HCO name used by the agent

#define SM_AGENT_INSTANCE_FIPSMODE "FIPSMODE"

The value store in SmHost.conf if host registration is used by the agent.

After Sm_AgentApi_SetAgentlinstancelnfo is called successfully, the AgentAPI will make
periodic calls to the Policy Server in the back ground like a heartbeat. Calling this API for
the first time from an agent results in a new unique record created in the Agent
Discovery table used by the policy server. If a GUID is available, this record is indexed by
the GUID. It is best to provide an Agent ID file so that a valid GUID is used. Without this
value, the agent instance cannot be tracked and maintained as a unique entity in the
SiteMinder agent ecosystem.

The correct calling sequence is:

Sm_AgentApi Init
Sm AgentApi SetAgentInstanceInfo

other calls to PS
Sm_AgentApi Uninit

Here is a source example that assumes Sm_AgentApi_Init has been called previously to
establish pAgentApiHandle:
Sm_AgentApi AgentDiscovery t arrParams[8] = {
{SM_AGENT INSTANCE AGENTPRODUCTTYPE,
"CustomAgent"},
{SM_AGENT INSTANCE AGENTPRODUCTVERSION, "1.0"},
{SM_AGENT INSTANCE AGENTPRODUCTSUBTYPE, "IIS"},
{SM_AGENT INSTANCE AGENTPRODUCTOSTYPE,
"Windows"},
{SM_AGENT INSTANCE AGENTIDFILE, "c:\idfile.txt"},
{SM_AGENT INSTANCE ACONAME, "MyACO0"},
{SM_AGENT INSTANCE HCONAME, "MyHCO"},
{SM_AGENT INSTANCE FIPSMODE, "COMPAT"}};
int nCount = 8;

// Call the Agent API to send the data
int nResult = Sm AgentApi SetAgentInstanceInfo(pAgentApiHandle, arrParams,
nCount);

switch (nResult)

{
case SM AGENTAPI NOCONNECTION:
case SM AGENTAPI FAILURE:
case SM AGENTAPI TIMEOUT:

Chapter 2: Agent API Guidance For C 31

How to Access a Resource Using the Agent API

{
// put error handling here
break;
}
case SM AGENTAPI NO:
{
// The call was refused - probably not properly formatted. This return
indicates
// that the call ran on the PS and returned an explicit NO response, as
opposed to

// some other connection or protocol error that might generate the
conditions above.

break;
}
case SM AGENTAPI YES:
{
// Success
break;
}

} // switch (nResult)
(new related group 1)

Sm_AgentApi_AgentDiscovery t (see page 46)
Sm_AgentApi_SetAgentinstancelnfo() (see page 94)

How to Access a Resource Using the Agent API

After the Agent API has been initialized, the agent can start accepting requests from its
users, such as receiving GET requests for URLs.

32 Programming Guide for C

How to Access a Resource Using the Agent API

The following steps describe what is required for an agent to grant access to a resource.
The outcome of most steps can be cached to improve agent performance. The agent can
choose to cache as little as possible or as much as possible.

To grant user access to a resource

1.

Accept a user request to access a resource. This is the application-specific request.
For example, the Web Agent can accept a user’s GET request for a URL.

Determine if the requested resource is protected by calling
Sm_AgentApi_IsProtected(). If the resource is protected, the Policy Server returns
the required credentials that must be obtained from the user to validate the user’s
identity. If the resource is not protected, access to the requested resource should
be allowed. The outcome of this step can be cached.

Collect the required credentials from the user and authenticate the user by calling
Sm_AgentApi_Login(). After successful authentication, the Policy Server creates a
session and returns response attributes including the unique session ID and session
specification. These response attributes are policy driven and may include user
profile data, static or dynamic privileges, a number of pre-defined authentication
state attributes, or any other data that was designated by a policy administrator.
The agent can now perform session management by caching user session
information and keeping track of session expiration.

Validate that the user has access to the requested resource by calling
Sm_AgentApi_Authorize(). After successful authorization, the Policy Server returns
response attributes, including resource-specific privileges. These response
attributes are policy driven and can include user profile data, static or dynamic
privileges or any other data that was designated by a policy administrator. The
user’s authorization information for the requested resource is available and can be
cached to speed up future requests.

(Optional) Log the transactions for authentication and authorization by calling
Sm_AgentApi_Audit() if the agent performs authorizations out of its cache.

Allow the user to access the resource when the user’s identity is known,
authorization has been verified and the required entitlements obtained.

(Optional) Issue a management request by calling Sm_AgentApi_DoManagement().
This is an optional step that is used to poll the Policy Server for update commands.
In response to a command, agents can update encryption keys or flush caches.

Release all APl instances by calling Sm_AgentApi_Unlnit() for each APl instance. This
closes TCP connections to all Policy Servers.

The Agent API does not provide a facility for caching in a manner that enforces session
validity. By choosing to cache user sessions or resource-specific privileges, the agent
becomes obligated to perform its own session management during each user request,
because caching on the agent removes the need to contact the Policy Server to perform
session validation or resource authorizations or both.

Chapter 2: Agent API Guidance For C 33

Compile and Link a Custom Agent

Compile and Link a Custom Adgent

To enable your custom agent to interact with SiteMinder, compile your agent
application with SmAgentAPI.h and link to the platform-specific library listed following.
On UNIX platforms you must add the library to the environment variable that specifies
the library search path. The variable takes a colon-separated list of directories and are
also listed following.

Platform Library Directory Variable Name

Windows SmAgentAPl.lib <install_path>\sdk\lib\win32\

Solaris libsmagentapi.so <install_path>/sdk/bin LD_LIBRARY_PA
TH

HP-UX libsmagentapi.so <install_path>/sdk/bin SHLIB_PATH

AIX libsmagentapi.so <install_path>/sdk/bin LIBPATH

Linux libsmagentapi.so <install_path>/sdk/bin LD_LIBRARY_PA
TH

Note: If you are building the agent API application using Microsoft Visual C++, make sure
you link with ws2_32.lib.

Central Host Configuration

SiteMinder agents, including custom agents, connect to a Policy Server through the
Agent API. SiteMinder recognizes two different types of agents, based on the way that
connection parameters are provided:

m v4.x agents. Connection parameters required to connect to a Policy Server are
agent-specific. They include the agent’s name, the name or IP address of the host
machine where the agent resides, and the shared secret. These parameters are
provided when you define an agent object on the Policy Server. Connection
parameters defined for a v4.x agent apply to that agent only.

34 Programming Guide for C

Central Host Configuration

v5.x and later agents. Connection parameters required to connect to the Policy
Server can apply to multiple agents on the host machine where the agents reside.
With v5.x and later agents, the host machine is called a trusted host.

The information required to initialize the connection to a Policy Server is stored in
an SmHost.conf file on the host machine. Additional information that determines

how the Policy Server interacts with its agents is defined on the Policy Server in a

host configuration object.

Host configuration object parameters (such as failover and clustering instructions)
apply to all agents associated with the host configuration object. They are centrally
managed in the Administrative Ul.

Custom v5.x and later agents support central host configuration (which determines the
way a Policy Server and its agents interact), but not central agent configuration (which
determines the way an agent operates). You cannot define an agent configuration
object for a custom agent in the Policy Server. Configuration parameters for the
operation of a custom agent are defined in the WebAgent.conf file (or in the case of IIS
6.0 agents, in the LocalConfig.conf file).

Confiduration Requirements

To configure a custom agent through a host configuration object on the Policy Server,
you must complete the following steps:

1.

Register the client machine where the agent resides as a trusted host.

You register a trusted host with the smreghost tool. This tool is installed in directory
<install_path>/sdk/bin.

Registering a trusted host creates the following items:

m A host configuration object on the Policy Server. The host configuration object
can be modified in the Administrative Ul at any time.

m The file SmHost.conf on the client. This file includes the parameter
hostconfigobject, which references the host configuration object on the Policy
Server.

The information in SmHost.conf is used to initialize the connection between
the Policy Server and its agents, through the Agent API. Once the connection is
initialized, the information in the host configuration object determines how the
Policy Server and its agents interact.

Define an agent object on the Policy Server.

An agent object establishes a unique identity for your custom agent by defining a
name and other information that is specific to your custom agent.

The name assigned to the custom agent must match the name that the custom
agent passes programmatically to SiteMinder.

Chapter 2: Agent API Guidance For C 35

Central Host Configuration

Code Requirements

For a custom agent to be configured through a central host configuration object on the
Policy Server, the agent must do the following:

Upgrade an Adent

Initialize agent configuration through Sm_AgentApi_GetConfig().

This function lets you pass to SiteMinder the name and path of the SmHost.conf file
that resides on the trusted host. This file references the host configuration object
on the Policy Server.

Alternatively, you can pass the name and path of the WebAgent.conf file if it
contains a reference to SmHost.conf.

After the trusted host connects to the Policy Server, the interaction between the
Policy Server and the agents on the trusted host is determined by the host
configuration object on the Policy Server.

Note: When you call Sm_AgentApi_GetConfig(), SiteMinder populates the
Sm_AgentApi_Init_t structure. With central host configuration, you do not populate
the structure directly.

Pass the agent’s name through Sm_AgentApi_SetDefaultAgentld().

The name that the custom agent passes to SiteMinder in this function must match
the name of the agent object that establishes a unique identity for your custom
agent on the Policy Server.

Call Sm_AgentApi_SetDefaultAgentld() after calling Sm_AgentApi_Init() and before
making any other Agent API calls. This allows you to specify your custom agent
name to SiteMinder without sending the name with each transaction.

To upgrade an existing v4.x agent

1.

If the host machine where the v4.x agent resides is not currently registered with the
Policy Server as a trusted host, run smreghost to register it.

Registration creates an SmHost.conf file on the trusted host and a host
configuration object on the Policy Server.

Call Sm_AgentApi_GetConfig() to initialize the structure Sm_AgentApi_Init_t with
the information in SmHost.conf.

Call Sm_AgentApi_lInit() to connect to the Policy Server.

Call Sm_AgentApi_SetDefaultAgentld() to set the default name of the custom agent.

36 Programming Guide for C

Agent Call Sequence

Adent Call Sequence

A custom agent usually calls Agent API functions in the in the following order:

Sm_AgentApi GetConfig() // Required with central host configuration
Sm_AgentApi Init()

Sm_AgentApi SetAgentInstanceInfo() For agent discovery (12.5 agents and later)
Sm_AgentApi SetDefaultAgentId() // Central host configuration only
Sm_AgentApi DoManagement()

Sm_AgentApi IsProtected()

Sm_AgentApi Login()

Sm_AgentApi Authorize()

/...

// Call other Agent API functions here, including
// periodic calling of Sm AgentApi DoManagement()

Sm_AgentApi Logout()
Sm_AgentApi Uninit()

Sample Custom Adent

Sample source code for the Agent API is provided in smagentexample.cpp. This file is
installed in <install_path>/sdk/samples/smagentapi.

The Agent APl sample can connect to the Policy Server as a v5.x or later agent (using
central host configuration). When you run the sample, you are prompted to select the
Agent Interface (v4.x-type or v5.x-type) before initializing the connection.

Adent API Services

The Agent API provides a rich set of services that let you develop sophisticated, secure,
and robust agents. Building an agent involves using these services:

m Session Services

m Authorization Services

m Auditing Services

m Management Services (key encryption, cache updates)

® Tunnel Services

Chapter 2: Agent API Guidance For C 37

Agent API Services

Session Services

A session is created after a successful user login. Once created, a user session persists
until it is terminated. To maintain consistent user sessions in a multi-tiered application
environment, a user session specification is maintained by the Web Agent (not the
Policy Server). The session specification is also called the session ticket. The session
specification represents a user session and is the key to SiteMinder Session
Management. The environment in which the user session was created is responsible for
persistent storage of the session specification. For example, the Web Agent (HTTP
environment) stores the session specification in an HTTP cookie.

SiteMinder’s universal ID is integrated with the sessioning mechanism. A universal ID
identifies the user to an application in a SiteMinder environment using a unique
identifier, such as a customer account number. The universal ID facilitates identification
of users between old and new applications by delivering the user’s identification
automatically, regardless of the application. When configured on the Policy Server, a
user’s universal id is part of the session specification and is made available to agents for
the duration of the entire session.

Agents create sessions using Sm_AgentApi_Login(). This function authenticates the user
credentials and returns the session specification and unique session id in
Sm_AgentApi_Session_t. The session specification is updated on subsequent Agent API
calls that also return the updated expiration times. Agents can use this information to
perform custom session management and keep track of session timeouts.

If your Web server’s user tracking feature is enabled, SiteMinder issues an identity ticket
in addition to the session specification. Identity tickets can be used for identity-based
personalization when a user is accessing a resource protected by anonymous
authentication schemes. Identity tickets never expire.

When an application’s logic flow crosses application tiers, sessions can be delegated by
passing the session specification between two agents. Each agent can choose to have
the session specification validated.

The session specification is validated to make sure that a user session has neither
expired nor been terminated or revoked. This can occur at any time during the session’s
lifetime. Agents call Sm_AgentApi_Login() to validate a session specification.

38 Programming Guide for C

Agent API Services

A session is terminated after a user logs out and the agent discards the session
specification, when the session expires, or when the session is revoked. When a session
is terminated, the user must log in again to establish a new session.

You should terminate a session if a user is disabled after a session has begun. To find a
user's disabled state, call Sm_AgentApi_Login() to validate the session.

To terminate a session, the agent calls Sm_AgetnApi_Logout(). Note that any memory
allocated for the session specification (Sm_AgentApi_Session_t) must be deallocated.

Application Session Information

Session information can consist of more than the session specification. Session
information can include any information that the client application wants to associate
with the user’s session.

Application-defined session information consists of name/value pairs called session
variables. For example, business logic, certificate information, and SAML assertions for
affiliate operations can all be stored as session variables and bound to the session ID.

The Agent API provides the following functions for setting, retrieving, and deleting
session variables:

m Sm_AgentApi_SetSessionVariables()

m Sm_AgentApi_GetSessionVariables()

m Sm_AgentApi_DelSessionVariables()

Session variables are stored in a server-side database called the session store. The
session store is managed by the Policy Server.

Advantades of Session Variables

When a client application uses session variables:
m Up to 4K of data can be stored for each session variable value.

m The session information persists across multiple Policy Servers. Centralizing session
information on the server allows features such as cross-domain session
management, including enforcing logout and idle timeout across different domains.

Chapter 2: Adgent API Guidance For C 39

Agent API Services

Requirements for Using Session Variables

For a client application to use session variables, both of the following prerequisites must
be met:

m The session store must be enabled in the Policy Server Management Console.

m During realm configuration in the Administrative Ul, Persistent Session must be
selected for at least one of the realms to be accessed during the session. As soon as
the user accesses a realm configured for persistent sessions, session variables can
be used throughout the remainder of the session.

End of Session Cleanup

When the user logs out and the agent discards the session specification, the session
ends. In the case of a persistent session, SiteMinder removes all session information,
including any session variables, from the session store.

Timeouts

Agents can enforce session timeouts themselves or rely on the Policy Server to validate
each request. Typically, caching of user sessions or privileges by the agent requires some
form of timeout enforcement on the agent side. In this case, the agent is responsible for
keeping track of the last access time and knowing when the session is going to expire.

Agents that do not cache can leverage the Policy Server’s enforcement of timeouts. The
following Agent APl methods return the updated timeout information after every call:

m Sm_AgentApi_Login()
m Sm_AgentApi_Authorize()
m Sm_AgentApi_Audit()

Authorization Services

Agents that perform access control functions use authorization services of the Agent
API. These services enable clients to determine what access control is imposed on
resources, verify users rights to access resources, and retrieve users privileges for
specific resources.

Whether a resource is protected can be determined by calling the
Sm_AgentApi_IsProtected() method. This method accepts a resource that is served by
the requesting agent, and returns information about the credentials required for
authentication.

40 Programming Guide for C

Agent API Services

Transaction Tracking

After the user’s identity has been validated, agents call the Sm_AgentApi_Authorize()
method to determine if the requesting user has access to the requested resource.
Agents can perform fine-grained access control by testing the values of the response
attributes returned by this method.

A facility is provided for agents to keep track of all user activity during a session.
Although much of the activity is logged by the Policy Server, there are times when it may
be necessary to log authorizations done out of agent cache. Agents can call the
Sm_AgentApi_Audit() method to log requests for resources.

By generating a unique transaction id, agents can correlate access control activity with
application activity. The transaction id can be given to both the authorization and
auditing methods so that the Policy Server would record the transaction-specific id
associated with the application activity. This can be used for non-repudiation.

Manadgement Services

Cache Commands

A management protocol exists between agents and the Policy Server. This protocol
helps agents manage its caches and encryption keys in a manner consistent with policies
and administrative changes on the Policy Server.

Agents issue the Sm_AgentApi_DoManagement() call with the
SM_AGENTAPI_MANAGEMENT_GET_AGENT_COMMANDS command to request the
latest agent commands. Typically, this is done every N seconds by a thread running in
the background. The types of agent commands that can be received are cache
commands and encryption commands.

Cache commands inform the agent of any changes to its caches that may need to be
made as a result of administrative updates to the Policy Server. These agent commands
are:

m SM_AGENTAPI_CACHE_FLUSH_ALL

m SM_AGENTAPI_CACHE_FLUSH_ALL_USERS
m SM_AGENTAPI_CACHE_FLUSH_THIS_USER

m SM_AGENTAPI_CACHE_FLUSH_ALL_REALMS
m SM_AGENTAPI_CACHE_FLUSH_THIS_REALM

Chapter 2: Agent API Guidance For C 41

Response Attributes

Encryption commands

Tunnel Services

Encryption commands inform the agent of new encryption keys that are generated
automatically by the Policy Server or administratively. Agents that need to save secure
state can leverage this protocol to keep track of the latest encryption keys. These agent
commands are:

m SM_AGENTAPI_AGENT_KEY_UPDATE_NEXT
m SM_AGENTAPI_AGENT_KEY_UPDATE_LAST

m SM_AGENTAPI_AGENT_KEY_UPDATE_CURRENT

m SM_AGENTAPI_AGENT_KEY_UPDATE_PERSISTENT

Tunnel services enable agents to establish secure communications with a callable
service located on the Policy Server. This allows agents to perform custom actions over
a secure, VPN-like channel without having to deal with issues such as encryption and key
management.

Response Attributes

Response attributes enable the Policy Server to deliver information to agents. There are
two types of attributes:

m Well-known attributes

m Policy-based attributes

Well-known attributes are always returned by the Policy Server after certain calls, such
as Sm_AgentApi_Login(). These attributes represent static, fixed data such as the user
DN and Universal ID.

Policy-based attributes are returned by Sm_AgentApi_Login() and
Sm_AgentApi_Authorize(). These attributes are based on policies and are the vehicle for
delivering static and dynamic data from the Policy Server to agents, so that the agents
can distinguish between authentication and authorization attributes. The actual source
of the data is defined on the Policy Server using the responses feature that can be
configured to deliver data from a variety of sources. Data may include static
information, information from a directory profile or a custom Policy Server plug-in.
When the responses are properly configured, agents are capable of performing
fine-grained access control as well as profile-driven personalization.

42 Programming Guide for C

Custom Agents and Single Sign-On

Based on a policy definition, response attributes can time out or be cached for the
duration of the user session. The Policy Server delivers an attribute along with the TTL
(Time-To-Live) value, calculated in seconds. If the agent is caching user sessions or
authorizations or both, it is responsible for keeping the relevant attributes up to date.
Agents issue the Sm_AgentApi_UpdateAttributes() call to update stale attributes.

Custom Adents and Single Sign-On

In a single sign-on environment, a user who successfully authenticates through a given
agent does not have to re-authenticate when accessing a realm protected by a different
agent. When a custom agent is involved in a single sign-on environment, the two agents
must be in the same cookie domain—for example, xxx.domainname.com.

Single sign-on is made possible through a single sign-on cookie named SMSESSION. This
cookie is created and written to the user’s browser either by SiteMinder or by the
custom agent.

The Agent API contains two functions that allow custom agents to participate in a single
sign-on environment with standard SiteMinder Web Agents:

m Sm_AgentApi_DecodeSSOToken(). The custom agent extracts the cookie’s contents,
called a token, from an existing SMSESSION cookie and passes the token to this
function. The function decrypts the token and extracts the specified information.
This function can also be used to update the last-access timestamp in the token.

m Sm_AgentApi_CreateSSOToken(). After the user successfully logs in through the
custom agent, the custom agent passes information about the user to this function.
The function creates an encrypted token from this user information and from
session information returned from the login call. The custom agent writes the token
to the SMSESSION cookie.

See the sample custom agent code for an example of setting up the parameters for the
single sign-on functions and parsing the results. The sample custom agent code is
located in the smagentapi directory of <install_path>\sdk\samples.

Standard Adent Support

Custom agents created with SiteMinder SDK v5.5 SPx and later can accept SMSESSION
cookies created by a standard SiteMinder Web Agent.

However, standard SiteMinder Web Agents can only accept cookies created by a custom
agent if the standard agent has been upgraded with the appropriate SiteMinder Agent
Quarterly Maintenance Release (QMR). For information about the QMR version
required for each standard agent version, see the accompanying SDK release notes.

Chapter 2: Agent API Guidance For C 43

Custom Agents and Single Sign-On

In addition, to enable a SiteMinder agent with the appropriate QMR upgrade to accept
SMSESSION cookies created by a custom agent, the standard agent’s Agent
configuration file (LocalConfig.conf with IIS servers or WebAgent.conf with other
servers) or central configuration object (for v5.x or later) must contain the following
entry:

AcceptTPCookie="yes"

Set AcceptTPCookie as follows:

With 4.xQMR4 agents and above, add AcceptTPCookie="yes" directly in the
standard agent's Agent Configuration file.

With 5.xQMR1 agents and later, add the entry to the standard agent’s Agent
Configuration Object if the AllowLocalConfig parameter for that object is set to no.
If AllowLocalConfig is set to yes, you can set AcceptTPCookie in the standard agent’s
Agent configuration file.

Login Through a Custom Adent

Here is the typical sequence of events in a single sign-on environment when the initial
login is through the custom agent:

1.
2.

User logs in through the custom agent.

Custom agent calls Sm_AgentApi_Login() to authenticate the user. The user is
challenged for credentials.

Custom agent calls Sm_AgentApi_CreateSSOToken() and passes to it information
about the user (user name, user DN, IP address of the requesting client). SiteMinder
adds this information to a token along with session information returned from the
login call. SiteMinder also encrypts the information in the token.

Custom agent creates the SMSESSION cookie in the user’s browser and writes the
token to the cookie.

User requests a resource protected by a standard SiteMinder agent.

The standard agent performs a login operation, which validates the user based on
the information in the single sign-on cookie. The user is not challenged for
credentials.

44 Programming Guide for C

Memory Deallocation

Login Through a Standard Adgent

Here is the typical sequence of events in a single sign-on environment when the initial
login is through the standard SiteMinder Web Agent:

1.
2.

User logs in through the standard agent.

Standard agent authenticates the user by challenging the user for credentials
through the login call.

SiteMinder creates the SMSESSION cookie in the user’s browser and inserts the
encrypted token containing session information.

User requests a resource protected by a custom agent.

The custom agent obtains the SMSESSION cookie from the user’s request and
extracts the token.

The custom agent passes the token to the function
Sm_AgentApi_DecodeSSOToken(). The function decodes the token and returns a
subset of the token’s attributes to the custom agent.

The custom agent obtains the session specification from the token and passes the
session specification to Sm_AgentApi_Login(). The login call validates the user
without challenging the user for credentials.

User requests a resource protected by a standard SiteMinder agent.

The standard agent performs a login operation, which validates the user based on
the contents of the SMSESSION cookie. The user is not challenged for credentials.

Memory Deallocation

You must explicitly deallocate any memory that you allocate for your custom agent. To
release the response attributes in the Sm_AgentApi_Attribute_t structure, call
Sm_AgentApi_FreeAttributes().

More Information:

Sm_AgentApi_FreeAttributes() (see page 76)

Agent API Data Structures (C)

Before you use a structure, all unused fields should be set to zero. The best way to do
this is to set the entire structure to zero.

Chapter 2: Agent API Guidance For C 45

Adent API Data Structures (C)

Sm_AdentApi_AdentDiscovery_t
This structure defines information about agent instance parameters.
Syntax

This structure had the following format:

typedef struct Sm AgentApi AgentDiscovery s

{
char paramname[SM AGENTAPI SIZE NAME];
char paramvalue[SM AGENTAPI SIZE NAME];
} Sm AgentApi AgentDiscovery t;

Parameters

This structure had the following parameters:
paramname
Use the following names to specify agent instance attributes:
m SM_AGENT_INSTANCE_AGENTPRODUCTTYPE — Type of agent instance
m SM_AGENT_INSTANCE_AGENTPRODUCTVERSION — Agent instance version
m SM_AGENT_INSTANCE_AGENTPRODUCTSUBTYPE— Type of web server
m SM_AGENT_INSTANCE_AGENTPRODUCTOSTYPE — OS type hosting Agent
m SM_AGENT_INSTANCE_AGENTIDFILE — Path of the file containing Agent GUID.
m SM_AGENT_INSTANCE_ACONAM E — Name of the agent configuration object
m SM_AGENT_INSTANCE_HCONAME — Name of host configuration object
m SM_AGENT_INSTANCE_FIPSMODE— FIPS Mode used for Agent-PS connection

paramvalue

The value of the specified attribute.
Remarks

All agent instance attributes are initialized to "unknown" value. The developer using the
Agent API specifies the appropriate values by calling
Sm_AgentApi_SetAgentinstancelnfo(). When this call is not made, the agent does not
come under the purview of agent discovery.

46 Programming Guide for C

Agent API Data Structures (C)

Sm_AdentApi_Attribute_t
This structure defines information about a response attribute.
Syntax

This structure has the following format:

typedef struct Sm AgentApi Attribute s
{
long nAttributeld;
long nAttributeTTL;
long nAttributeFlags;
char lpszAttributeOid[SM AGENTAPI SIZE 0ID];
long nAttributelen;
char* lpszAttributeValue;
} Sm AgentApi Attribute t;

Parameters

This structure has the following parameters:
nAttributeld

ID of the response attribute.
nAttributeTTL

The time-to-live value (in seconds) for the response attribute. The attribute remains
in cache for the duration of the TTL value.

nAttributeFlags
Response attribute flag. This flag is used in the following session store functions:
m Sm_AgentApi_DelSessionVariables()
m Sm_AgentApi_GetSessionVariables()
m Sm_AgentApi_SetSessionVariables()
See the ppRespAttributes parameter of these functions for more information.
IpszAttributeOid
The response attribute object identifier.
nAttributelLen
The length of the response attribute.
IpszAttributeValue

The null-terminated attribute value of a response attribute.

Chapter 2: Agent API Guidance For C 47

Adent API Data Structures (C)

Remarks

The following well-known authentication attributes are returned by
Sm_AgentApi_Login() and referenced in the nAttributeld field of the
Sm_AgentApi_Attribute_t structure:

SM_AGENTAPI_ATTR_AUTH_DIR_OID

The Siteminder object id of the directory where the user was authenticated. This is
the internal object id assigned to the SiteMinder user directory.

SM_AGENTAPI_ATTR_AUTH_DIR_NAME

The SiteMinder "name" specification of the directory where the user was
authenticated. This is the directory name specified in the SiteMinder User Directory
Dialog.

SM_AGENTAPI_ATTR_AUTH_DIR_SERVER

The SiteMinder "server" specification of the directory where the user was
authenticated. This is the directory server specified in the SiteMinder User Directory
Dialog.

SM_AGENTAPI_ATTR_AUTH_DIR_NAMESPACE

The SiteMinder "namespace" specification of the directory where the user was
authenticated. This is the directory namespace (LDAP:, ODBC:, WinNT:, AD:) as
specified in the SiteMinder User Directory Dialog.

SM_AGENTAPI_ATTR_USERMSG

The text presented to the user as a result of authentication. Some authentication
schemes supply challenge text or a reason why an authentication has failed. A value
for this attribute can be provided through the IpszUserMsg parameter of
SmAuthenticate().

SM_AGENTAPI_ATTR_USERDN

The user’s distinguished name as recognized by SiteMinder.

This attribute is also used in single sign-on operations.
SM_AGENTAPI_ATTR_USERUNIVERSALID

The user’s universal id, as set in the user directory.
SM_AGENTAPI_ATTR_IDENTITYSPEC

The user’s identity ticket. SiteMinder returns this if the user tracking feature has
been enabled.

48 Programming Guide for C

Agent API Data Structures (C)

The following well-known attributes are used in single sign-on operations and
referenced in the nAttributeld field of the Sm_AgentApi_Attribute_t structure:

SM_AGENTAPI_ATTR_USERDN

The user’s distinguished name.
SM_AGENTAPI_ATTR_SESSIONSPEC

The session specification returned from the login call.
SM_AGENTAPI_ATTR_SESSIONID

The session ID returned from the login call.
SM_AGENTAPI_ATTR_USERNAME

The user’s name.
SM_AGENTAPI_ATTR_CLIENTIP

The IP address of the machine where the user initiated a request for a protected
resource.

SM_AGENTAPI_ATTR_DEVICENAME

The name of the agent that is decoding the token.
SM_AGENTAPI_ATTR_InnnnnDLESESSIONTIMEOUT

Maximum idle time for a session.
SM_AGENTAPI_ATTR_STARTSESSIONTIME

The time the session started after a successful login.
SM_AGENTAPI_ATTR_LASTSESSIONTIME

The time that the Policy Server was last accessed within the session.
SM_AGENTAPI_ATTR_SSOZONE

Specifies the designation of the SSO zone name, which you provide when you call
the Sm_AgentApi_CreateSSOToken method. If you do not specify a zone name, the
default is "SM." You can read this value in the in the attribute list returned by the
Sm_AgentApi_DecodeSSOToken method.

Chapter 2: Agent API Guidance For C 49

Adent API Data Structures (C)

The following well-known management attributes are returned by
Sm_AgentApi_DoManagement() and referenced in the nAttributeld field of the
Sm_AgentApi_Attribute_t structure:

SM_AGENTAPI_AFFILIATE_KEY_UPDATE
Instructs the agent to update the name of the affiliate agent.
SM_AGENTAPI_AGENT_KEY_UPDATE_NEXT

Instructs the agent to update its "next" Agent key. The value contains 24 bytes of
binary data.

SM_AGENTAPI_AGENT_KEY_UPDATE_LAST

Instructs the agent to update its "last" Agent key. The value contains 24 bytes of
binary data.

SM_AGENTAPI_AGENT_KEY_UPDATE_CURRENT

Instructs the agent to update its "current" Agent key. The value contains 24 bytes of
binary data.

SM_AGENTAPI_AGENT_KEY_UPDATE_ PERSISTENT

Instructs the agent to update its static (persistent) Agent key. The value contains 24
bytes of binary data.

SM_AGENTAPI_CACHE_FLUSH_ALL

Instructs the agent to flush all information in its caches.
SM_AGENTAPI_CACHE_FLUSH_ALL_USERS

Instructs the agent to flush all user information stored in its caches.
SM_AGENTAPI_CACHE_FLUSH_THIS_USER

Instructs the agent to flush all cache information pertaining to a given user. The
value contains the following: <user dir oid> / <user dn>.

SM_AGENTAPI_CACHE_FLUSH_ALL_REALMS
Instructs the agent to flush all resource information stored in its caches.
SM_AGENTAPI_CACHE_FLUSH_THIS_REALM

Instructs the agent to flush all resource information pertaining to a given realm. The
value is a realm OID.

50 Programming Guide for C

Agent API Data Structures (C)

Sm_AdentApi_Init_t

This structure defines agent initialization, including its server information, and also
specifies the failover threshold.

Syntax

This structure had the following format:

typedef struct Sm AgentApi Init s
{

long nVersion;
char lpszHostName[SM AGENTAPI SIZE NAME];
char lpszSharedSecret[SM AGENTAPI SIZE NAME];
long nFailover;
long nNumServers;
Sm_AgentApi Server t* pServers;

} Sm AgentApi Init t;

Parameters

This structure had the following parameters:
nVersion

The version of the Agent API. Set to SM_AGENTAPI_VERSION.
IpszHostName

The agent name. This name must match the agent name provided to the Policy
Server. The agent name is not case sensitive.

IpszSharedSecret

Each agent has a shared secret registered with the Policy Server. Enter that secret
here. This is a case sensitive field.

nFailover

Setting this to 0 enables the agent to access the specified Policy Servers in a
round-robin configuration. Setting this to 1 disables the round-robin configuration,
in which case the agent will operate in the failover mode.

Chapter 2: Agent API Guidance For C 51

Adent API Data Structures (C)

nNumServers
The number of Policy Servers defined in the next parameter.
pServers

An array of nNumServers structures of type Sm_AgentApi_Server_t. This structure
defines each identically configured Policy Server with which the agent will
communicate. The servers must share a common policy store. Depending on the
specified Agent APl version the array contains either clustered or non-clustered
servers.

Remarks

This structure is populated by calling Sm_AgentApi_GetConfig().

More Information:

Sm_AgentApi_GetConfig() (see page 79)
Central Host Configuration (see page 34)

Sm_AdentApi_ManagementContext_t

This structure defines Information about the management command.
Syntax

This structure has the following format:

typedef struct Sm AgentApi ManagementContext t
{

long nCommand;

char lpszData[SM AGENTAPI SIZE NAME];
} Sm AgentApi ManagementContext t;

52 Programming Guide for C

Agent API Data Structures (C)

Parameters

This structure has the following parameters:
nCommand
One of these management commands:

m SM_AGENTAPI_MANAGEMENT_GET_AGENT_COMMANDS

Requests the latest agent commands. With this command, IpszData should be
left blank.

m SM_AGENTAPI_MANAGEMENT_SET_AGENT_INFO
Provides information about the agent to the Policy Server. The information is
contained in IpszData.

IpszData

When SM_AGENTAPI_MANAGEMENT_SET_AGENT_INFO is set, contains the
following null-terminated string of information about the agent:

"Product=XXX,Platform=XXX,Version=XXX, Label=XXX"
Unknown clauses can be omitted.

This information is recorded by the Policy Server for logging and troubleshooting
purposes.

Example:

"Product=WebAgent,Platform=NT/ISAPI,
Version=5.0,Update=SP1,Label=C134"

The Agent API adds the crypto strength and agent time (in GMT) and time zone to
this string.

If you want to log information about a custom agent, add the following lines of code to
your custom agent definition:

ManagementContext.nCommand = SM_AGENTAPI MANAGEMENT SET AGENT INFO;
strncpy (ManagementContext.lpszData, version info goes here, 255);

Chapter 2: Agent API Guidance For C 53

Adent API Data Structures (C)

Sm_AdentApi_Realm_t
This structure defines Information about the realm in which a resource is protected.
Syntax

This structure has the following format:

typedef struct Sm AgentApi Realm s

{
char 1lpszDomain0id[SM AGENTAPI SIZE 0ID];
char lpszRealm0id[SM AGENTAPI SIZE 0ID];
char lpszRealmName[SM AGENTAPI SIZE NAME];
long nRealmCredentials;
char lpszFormLocation[SM AGENTAPI SIZE URL];
} Sm_AgentApi Realm t;

Parameters

This structure has the following parameters:
IpszDomainOid

Unique identifier for the domain.
IpszRealmOid

Unique identifier for the realm.
IpszRealmName

Name of the realm in which the resource is protected.
nRealmCredentials

A bit mask of values indicating the required credentials. The values are defined in
the Sm_Api_Credentials_t enumerated type (as defined in SmApi.h). The value 0
means that no credentials are required. The types are as follows:

m Sm_AuthApi_Cred_None
No credential required.

m Sm_AuthApi_Cred_Basic
Username and password required.

m Sm_AuthApi_Cred_Digest
Digest required.

m Sm_AuthApi_Cred_X509Cert
X.509 certificate required.

m Sm_AuthApi_Cred_X509CertUserDN
X.509 certificate and user DN required.

54 Programming Guide for C

Agent API Data Structures (C)

m Sm_AuthApi_Cred_X509CertlssuerDN
X.509 certificate issuer DN required.

m Sm_AuthApi_Cred_CertOrBasic
Either an X.509 certificate or username/password is required.

m Sm_AuthApi_Cred_CertOrForm
Either an X.509 certificate or a forms-based authentication scheme is required.

m Sm_AuthApi_Cred_NTChalResp
Use the NT challenge/response protocol.

m Sm_AuthApi_Cred_SSLRequired
SSL required.

m Sm_AuthApi_Cred_FormRequired
A redirect to an HTML form is required.

m Sm_AuthApi_Cred_AllowSaveCreds
Save credentials hint.

m Sm_AuthApi_Cred_PreserveSessionld
Session id should be preserved if the current session is still valid.

m Sm_AuthApi_Cred_DoNotChallenge
Do not challenge for credentials.

IpszFormLocation

URL of the form credential provider (http://...).

Sm_AdentApi_ResourceContext_t
This structure defines a resource for protection and authorization.
Syntax

This structure has the following format:

typedef struct Sm AgentApi ResourceContext s
{
char lpszAgent[SM AGENTAPI SIZE NAME];
char 1pszServer[SM AGENTAPI SIZE NAME];
char lpszAction[SM AGENTAPI SIZE NAME];
char lpszResource[SM AGENTAPI SIZE URL];
} Sm AgentApi ResourceContext t;

Chapter 2: Agent API Guidance For C 55

Adent API Data Structures (C)

Parameters

This structure has the following parameters:
IpszAgent

Name of the Affiliate Agent holding the resource. This flag is reserved for working
with Affiliate Agents. Leave this field blank.

IpszServer

Optional field, used to specify the name of the Web server hosting the Web
resource—for example, www.myorg.org.

IpszResoure
Name of the Web resource being requested—for example, /inventory/ .
IpszAction

Type of action to be performed on the resource—for example, GET.

Sm_AdentApi_Server_t
This structure defines the connection configuration for each server.
Syntax

This structure has the following format:
typedef struct Sm AgentApi Server s
{

char 1pszIpAddr[SM AGENTAPI SIZE NAME];

long nConnMin;

long nConnMax;

long nConnStep;

long nTimeout;

long nPort[3];

void* pHandle[3];

long nClusterSeq;
} Sm AgentApi_Server t;

56 Programming Guide for C

Agent API Data Structures (C)

Parameters

This structure has the following parameters:
pszlpAddr

The IP address of the Policy Server. A pipe of TCP connections is formed for each of
the three services within the Policy Server (Authorization, Authentication, and
Accounting).

nConnMin
Describing the pipe of TCP connections, this is the initial number of connections.
nConnMax

Describing the pipe of TCP connections, this is the maximum number of allowed
connections within the pipe.

nConnStep

As necessary, the number of connections in the pipe of TCP connections will be
increased by this increment.

nTimeout

The number of seconds until it is determined that the agent can not reach the
Policy Server. This parameter is configurable based on the overall throughput and
latency conditions of the entire SiteMinder installation.

nPort

When the Policy Server is configured for a single Access Control TCP port, use the
constant SM_AGENTAPI_POLICYSERVER to point to the combined port. The
constants below are maintained for backward compatibility:

m SM_AGENTAPI_AZ_SERVER
m SM_AGENTAPI_AUTH_SERVER
m SM_AGENTAPI_ACCT_SERVER
pHandle
Reserved; set to null.
nClusterSeq

The cluster sequence number. Sequence numbers begin at 1. Omit this parameter
for a non-cluster server.

Chapter 2: Agent API Guidance For C 57

Adent API Data Structures (C)

Sm_AdentApi_Session_t
This structure defines information about the user's session.
Syntax

This structure has the following format:

typedef struct Sm AgentApi Session s
{
long nReason;
long nIdleTimeout;
long nMaxTimeout;
long nCurrentServerTime;
long nSessionStartTime;
long nSessionLastTime;
char 1lpszSessionId[SM AGENTAPI SIZE 0ID];
char lpszSessionSpec[SM AGENTAPI SIZE SESSIONSPECI];
} Sm AgentApi Session t;

Parameters

This structure has the following parameters:
nReason

Additional status code: explains the reason for failed authentication or
authorization, or is passed in the event that results from a successful invocation of
Sm_AgentApi_Logout(). Defined in SmApi.h.

nldleTimeout

Maximum amount of time a session can be valid without the user accessing a
resource before the agent should challenge the user to re-authenticate, defined in
seconds.

nMaxTimeout

Maximum amount of time a user session can be active before the agent challenges
the user to re-authenticate, defined in seconds.

nCurrentServerTime

Current time (in GMT) set on the Policy Server.
nSessionStartTime

Server time (in GMT) when the session started.
nSessionlLastTime

Server time (in GMT) when the session was last seen by the Policy Server.

58 Programming Guide for C

Agent API Data Structures (C)

IpszSessionld
An opaque value returned to identify the session.
IpszSessionSpec

An opaque value returned to identify the session, which represents the session
specification.

Sm_AdentApi_TunnelServiceRequest_t
This structure defines information about the remote service library.
Syntax

This structure has the following syntax:

typedef struct Sm AgentApi TunnelServiceRequest s
{
char lpszLibrary[SM AGENTAPI SIZE NAME];
char lpszFunction[SM AGENTAPI SIZE NAME];
char lpszParameter[SM AGENTAPI SIZE USERINFO];
long nLength;
void* pData;
} Sm AgentApi TunnelServiceRequest t;

Parameters

This structure has the following parameters:
IpszLibrary

The name of the service to be invoked by the Policy Server.
IpszFunction

The name of a method to call within the service.
IpszParameter

Arbitrary string parameter to be passed to the method.
nLength

The length of the data passed to the method. The maximum length can be
determined by calling Sm_AgentApi_GetMaxTunnelBufSize().

pData

A pointer to the data.

Chapter 2: Agent API Guidance For C 59

Adent API Data Structures (C)

Sm_AdentApi_UserCredentials_t

This structure is used for passing credentials to the server.

Note: The agent supplies only the relevant information as requested by the Policy
Server.

Syntax

This structure has the following format:

typedef struct Sm AgentApi UserCredentials s

{

long nChallengeReason;

char lpszUsername[SM AGENTAPI SIZE USERINFO];
char lpszPassword[SM AGENTAPI SIZE USERINFO];
char lszCertUserDN[SM_AGENTAPI SIZE USERINFO];
char lpszCertIssuerDN[SM AGENTAPI SIZE USERINFO];
long nCertBinarylLen;

char* lpszCertBinary;

} Sm AgentApi UserCredentials t;

Parameters

This structure has the following parameters:

nChallengeReason

The original reason code from a previous authentication that has failed or been
challenged.

IpszUsername

Name of the user being authenticated.

IpszPassword

Password of the user being authenticated.

IpszCertUserDN

This field should be set to null. Specify the complete certificate data, including the
user DN, in IpszCertBinary.Existing agent applications that specify a user DN in this
field are not required to change the value to null. A user DN value is supported for
backward compatibility.

IpszCertissuerDN

This field should be set to null. Specify the complete certificate data, including the
issuer DN, in IpszCertBinary.Existnnnnning agent applications that specify an issuer
DN in this field are not required to change the value to null. An issuer DN value is
supported for backward compatibility. If IpszCertUserDN is null, IpszCertlssuerDN is
ignored.

60 Programming Guide for C

Agent API Function Declarations (C)

nCertBinaryLen

Number of characters in the Binary Certificate.

IpszCertBinary

Pointer to the certificate data.

Adent API Function Declarations (C)

The following table summarizes the C language functions that are used in the Agent API.
The functions appear alphabetically.

Function

Description

Sm_AgentApi_Audit() (see page 63)

Audits a transaction.

Sm_AgentApi_Authorize() (see page 64)

Determines if a user has access to a resource.

Sm_AgentApi_ChangePassword() (see
page 67)

Changes a user’s password.

Sm_AgentApi_CreateSSOToken()

Produces an encrypted single sign-on token that can be shared
between standard SiteMinder Web Agents and custom agents.

Sm_AgentApi_DecodeSSOToken()

Decodes a single sign-on token.

Sm_AgentApi DelSessionVariables() (see
page 73)

Deletes the specified session variables from the session store.

Sm_AgentApi_DoManagement() (see
page 75)

Requests agent commands.

Sm_AgentApi_FreeAttributes() (see
page 76)

Frees the buffer of response attributes.

Sm_AgentApi_FreeServers() (see page 77)

Frees an array of server structures after an
Sm_AgentApi_GetConfig() call.

Sm_AgentApi GetAgentApiUpdateVersion()

(see page 77)

Retrieves the current APl update version.

Sm_AgentApi_GetAllowedTunnelBufSize()
(see page 77)

Retrieves the maximum data buffer size that can be transferred in
a call to Sm_AgentApi_Tunnel().

Sm_AgentApi_GetConfig() (see page 79)

Retrieves agent configuration settings as defined either in the
Registry (for Microsoft Windows only) or in an agent configuration
file.

Chapter 2: Agent API Guidance For C 61

Agent API Function Declarations (C)

Function Description

Sm_AgentApi_GetSessionVariables() (see Retrieves the values of existing session variables.

page 82)

Sm_AgentApi_Init() (see page 85) Initializes the Agent API to set up connections to the Policy Servers.

Sm_AgentApi_IsProtected() (see page 87) Determines if a resource is protected.

Sm_AgentApi_Login() (see page 89) Performs session login and validation.

Sm_AgentApi_Logout() (see page 92) Logs a user out of a session.

Sm_AgentApi MakeCertificateHash() (see | Generates a hash of a certificate.

page 93)

Sm_AgentApi_SetDefaultAgentld() (see Sets the name of a custom agent that is configured through Central

page 95) Host Configuration.

Sm_AgentApi SetSessionVariables() (see Creates new session variables or updates existing session variables.

page 96)

Sm_AgentApi_Tunnel() (see page 99) Transfers data between a remote service on the Policy Server side
and your agent.

Sm_AgentApi_UnlInit() (see page 101) Uninitializes the Agent API.

Sm_AgentApi UpdateAttributes() (see Updates response attributes.

page 102)

More Information:

Agent Call Sequence (see page 37)

Function Return Codes

The Agent API functions can use some or all of the following return codes:

Name Value
SM_AGENTAPI_NOCONNECTION -3
SM_AGENTAPI_TIMEOUT -2
SM_AGENTAPI_FAILURE -1
SM_AGENTAPI_SUCCESS 0
SM_AGENTAPI_YES 1

62 Programming Guide for C

Agent API Function Declarations (C)

Name Value
SM_AGENTAPI_NO 2
SM_AGENTAPI_CHALLENGE 3

Sm_AdentApi_Audit()
Call this function if the authorizations are to be done out of agent cache.

Syntax

int Sm_AgentApi Audit (

const void* pHandle,
const char* 1pszClientIpAddr,
const char* lpszTransactionId,
const Sm AgentApi ResourceContext t* pResourceContext,
const Sm AgentApi Realm t* pRealm,
Sm_AgentApi Session t* pSession
);
Parameter 1/0 Description
pHandle I Agent APl session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

IpszClientlpAddr The IP address of the client where the user is
logging in. This is an optional parameter.

If the client IP begins with a star (*), the Policy
Server logs the IP address but does not validate it
against a session specification.

IpszTransactionld The ID that the agent uses to associate
application activity with security activity. The
Policy Server logs this ID. This is an optional

parameter.
pResourceContext I A defined resource definition structure.
pRealm I A realm definition structure.
pSession I A session definition structure.

Chapter 2: Agent API Guidance For C 63

Agent API Function Declarations (C)

ReturnValues

m SM_AGENTAPI_YES. The operation succeeded.

m SM_AGENTAPI_NO. The operation failed.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.
m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

Sm_AdgentApi_Authorize()

Determines if a defined user is authorized by SiteMinder to perform a defined action on
a defined resource and returns response attributes about the user with respect to the
resource.

Syntax

int SM_EXTERN Sm AgentApi Authorize (

const void* pHandle,
const char* 1pszClientIpAddr,
const char* lpszTransactionId,
const Sm AgentApi ResourceContext t* pResourceContext,
const Sm AgentApi Realm t* pRealm,
Sm AgentApi Session t* pSession,
long* pNumAttributes,
Sm AgentApi Attribute t** ppAttributes

)i

Parameter 1/0 Description

pHandle I Agent API session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

IpszClientlpAddr The IP address of the client asking for the resource.
This parameter is optional. If the client IP begins
with a star (*), the Policy Server logs the IP address
but does not validate it against a session
specification.

IpszTransactionld The ID that the agent uses to associate application
activity with security activity. The Policy Server
logs this ID. This is an optional parameter.

pResourceContext A resource definition structure.

64 Programming Guide for C

Agent API Function Declarations (C)

Parameter 1/0 Description

pRealm I A realm definition structure.

pSession I A session definition structure.
pNumAttributes 0] The number of returned attributes.
ppAttributes 0] A pointer to an array of response attribute

definition structures.

Return Values

m SM_AGENTAPI_YES. The user is authorized.

m SM_AGENTAPI_NO. The user is not authorized.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.
m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

Example

See the sample smagentexample.cpp for an example of this function.

Sm_AdentApi_AuthorizeDLP()

Determines if a defined user is authorized by SiteMinder DLP integration to access the
resource and returns response attributes about the user with respect to the resource.

Syntax

int SM_EXTERN Sm AgentApi AuthorizeDLP (

const void* pHandle,
const char* 1pszClientIpAddr,
const char* lpszTransactionId,
const Sm AgentApi ResourceContext t* pResourceContext,
const Sm AgentApi Realm t* pRealm,
Sm_AgentApi Session t* pSession,
long* pNumAttributes,
Sm_AgentApi Attribute t** ppAttributes

)i

Parameter 1/0 Description

pHandle I Agent API session handle returned in parameter

ppHandle of Sm_AgentApi_lInit().

Chapter 2: Agent API Guidance For C 65

Agent API Function Declarations (C)

Parameter

1/0

Description

IpszClientlpAddr

The IP address of the client asking for the resource.
This parameter is optional. If the client IP begins
with a star (*), the Policy Server logs the IP address
but does not validate it against a session
specification.

IpszTransactionld

The ID that the agent uses to associate application
activity with security activity. The Policy Server
logs this ID. This is an optional parameter.

pResourceContext

A resource definition structure.

pRealm

A realm definition structure.

pSession

A session definition structure.

pNumAttributes

The number of returned attributes.

ppAttributes

A pointer to an array of response attribute
definition structures.

Return Values

m SM_AGENTAPI_YES. The user is authorized.

m SM_AGENTAPI_NO. The user is not authorized.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

66 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_ChangePassword()

Changes a user’s password. The resulting attributes plus the reason code from the
session object are used to construct the correct password services redirect.

Syntax

int SM EXTERN Sm AgentApi ChangePassword (

const
const
const
const
const
const
const

void* pHandle,

char* 1pszClientIpAddr,

char* 1pszNewPassword,

char* pszTokenValue,
Sm_AgentApiResourceContext t* pResourceContext,
Sm_AgentApi Realm t* pRealm,

Sm_AgentApi UserCredentials t* pUserCredentials,

Sm_AgentApi Session t* pSession,
long * numAttributes,
Sm_AgentApi Attribute t** ppAttributes

Parameter

1/0

Description

pHandle

Agent API session handle returned in parameter
ppHandle of Sm_AgentApi_Init().

IpszClientlpAddr

The IP address of the client asking for the resource.
This parameter is optional. If the client IP begins
with a star (*), the Policy Server logs the IP address
but does not validate it against a session
specification.

IpszNewPassword

The new password (string) to which the user wants
to change.

pszTokenValue

The token that is exchanged between the Policy
Server and the Web Agent in the case of a
Password Services redirect. Use this parameter to
send to the Policy Server an extracted SMTOKEN
from the ppAttributes (returned by
Sm_AgentApi_ChangePassword()).

This value can be NULL if the nChallengeReason
value of the pUserCredentials parameter is set to
Sm_Api_Reason_PWSelfChange (indicating a
user-initiated password change).

pResourceContext

A pointer to a resource definition structure.

pRealm

A realm definition structure.

Chapter 2: Agent API Guidance For C 67

Agent API Function Declarations (C)

Parameter 1/0 Description

pUserCredentials I A user credentials definition structure.
pSession (6} A user session definition structure.
pNumAttributes 0] The number of attributes in ppAttributes.
ppAttributes 0] A pointer to an array of response attribute

definition structures.

Return Values

SM_AGENTAPI_YES. The user’s password was changed.
SM_AGENTAPI_NO. The user’s password was not changed.
SM_AGENTAPI_NOCONNECTION. The initialization was not done.
SM_AGENTAPI_TIMEOUT. The function timed out.
SM_AGENTAPI_FAILURE. The password was not changed

Sm_AdentApi_CreateSSOToken()

Produces an encrypted token of session and other information that can be shared
between standard SiteMinder Web Agents and custom agents. The mutual access to this
information allows a custom agent to participate in a single sign-on environment with a
standard SiteMinder Web Agent.

Syntax

int SM EXTERN Sm AgentApi CreateSSOToken (

const void* pHandle,
Sm AgentApi Session t* pSession,
long nNumAttributes,
Sm AgentApi Attribute t* pTokenAttributes,
long* pNumSSOTokenLength,
char* 1pszSS0Token
)i
Parameter 1/0 Description
pHandle | Agent APl session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

pSession | Session information returned by the

Sm_AgentApi_Login() call.

68 Programming Guide for C

Agent API Function Declarations (C)

Parameter

1/0

Description

nNum
Attributes

The number of attributes to include in the token. The
attributes are specified in the parameter
pTokenAttributes.

pToken
Attributes

The user attributes to include in the token. Valid
values:

m SM_AGENTAPI_ATTR_USERDN. The user’s
distinguished name.

m SM_AGENTAPI_ATTR_USERNAME. The user’s
name.

m SM_AGENTAPI_ATTR_CLIENTIP. The IP address of
the machine where the user initiated a request for
a protected resource.

Any other attribute is ignored.

The fields in the Sm_AgentApi_Attribute_t structure
that apply to this function are:

m nAttributeld (one of the above values)
m nAttributelen

m IpszAttributeValue

pNumSSOToken
Length

1,0

The length of the IpszSSOToken buffer passed in to
receive the token. The maximum size is specified by
SSO_TOKEN_MAX_SIZE, defined in SmAgentAPI.h.
Allow space for the null-terminator character.

On output, this parameter is set to the actual length of
the returned token, including the null-terminator
character.

lpszSSOToken

The token returned from this function. Write this token
to the SMSESSION cookie.

Return Values

m SM_AGENTAPI_SUCCESS. The operation successful.

m SM_AGENTAPI_FAILURE. The token was not created.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

Chapter 2: Agent API Guidance For C 69

Adgent API Function Declarations (C)

Remarks

This function associates the user attribute information specified in the pTokenAttributes
parameter with session and other attribute information returned from the call to
Sm_AgentApi_Login(). The information in the resulting token can be shared between
standard SiteMinder Web Agents and custom agents, allowing single sign-on operations
between the standard and custom agents.

This call does not allocate any memory.

To decode token information, call Sm_AgentApi_DecodeSSOToken().

Sm_AdentApi_DecodeSSOToken()

Decodes a single sign-on token and returns a subset of its attributes. Optionally, you can
update the token’s last-access timestamp, and then update the SMSESSION cookie with
the new token.

Syntax

int SM_EXTERN Sm AgentApi DecodeSSOToken (

const void* pHandle,
const char* 1pszSS0Token,
long* nTokenVersion,
long* pThirdPartyToken,
long* pNumAttributes,
Sm_AgentApi Attribute t** ppTokenAttributes,
long nUpdateToken,
long* pNumUpdatedSSOTokenLength,
char* 1pszUpdatedSSOToken
)i
Parameter I/0 Description
pHandle | Agent APl session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

70 Programming Guide for C

Agent API Function Declarations (C)

Parameter

1/0

Description

IpszSSOToken

Null-terminated character array that contains the token
to be decoded.

The custom agent finds the token in either of these
locations:

m [f the token was created by a custom agent, the
token is returned in the output parameter
IpszS50Token from the call to
Sm_AgentApi_CreateSSOToken().

m [f the token was created by a standard SiteMinder
Web Agent, the token is contained in the
SMSESSION cookie. The custom agent is
responsible for extracting the contents of the
cookie and assigning it to this parameter.

nTokenVersion

The SiteMinder version of the token.

pThirdParty
Token

A non-zero value indicates that the token was
originally produced by a custom (third-party) agent and
has not yet been updated by a standard SiteMinder
agent.

pNumAttributes

The number of attributes retrieved from the token. The
attributes are specified in the parameter
ppTokenAttributes.

ppToken
Attributes

The attributes extracted from the token. Valid values:
m SM_AGENTAPI_ATTR_USERDN

m SM_AGENTAPI_ATTR_SESSIONSPEC

m SM_AGENTAPI_ATTR_SESSIONID

m SM_AGENTAPI_ATTR_USERNAME

m SM_AGENTAPI_ATTR_CLIENTIP

m SM_AGENTAPI_ATTR_DEVICENAME

m SM_AGENTAPI_ATTR_IDLESESSIONTIMEOUT
m SM_AGENTAPI_ATTR_MAXSESSIONTIMEOUT
m SM_AGENTAPI_ATTR_STARTSESSIONTIME

m SM_AGENTAPI_ATTR_LASTSESSIONTIME

Chapter 2: Agent API Guidance For C 71

Agent API Function Declarations (C)

Parameter 1/0 Description

nUpdateToken | A non-zero value indicates that an updated token is
requested. The updated token is written to
IpszUpdatedSSOToken.

Set the nUpdateToken flag to a non-zero value if you
want to update the attribute
SM_AGENTAPI_ATTR_LASTSESSIONTIME.

pNumUpdatedSSO I,0 The length of the IpszUpdatedSSOToken buffer to
TokenlLength receive the token. The maximum size is specified by
SSO_TOKEN_MAX_SIZE, defined in SmAgentAPI.h.
Allow space for the null-terminator character.

On output, this parameter is set to the actual length of
the returned token, including the null-terminator

character.
IpszUpdated 0 The updated token returned from this function. Write
SSOToken this token to the SMSESSION cookie.

A token is returned only if nUpdateToken is set to a
non-zero value.

Returns

m SM_AGENTAPI_SUCCESS. The operation succeeded.

m SM_AGENTAPI_FAILURE. The token was not decoded.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

Remarks

This function accepts a single sign-on token as input and returns a subset of the token’s
attributes.

You can update the token’s last-access timestamp. To do so, assign a non-zero value to
the parameter nUpdateToken. The token that includes the updated timestamp is
returned in IpszUpdatedSSOToken. Write the updated token to the SMSESSION cookie.

This function allocates memory for the attribute list. To deallocate this memory, call
Sm_AgentApi_FreeAttributes().

To create a single sign-on token, call Sm_AgentApi_CreateSSOToken().

72 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_DelSessionVariables()

Deletes the specified session variables from the session store.

Syntax

int Sm AgentApi DelSessionVariables (

const void* pHandle,
const Sm AgentApi ResourceContext t* pResourceContext,
const char* lpszSessionld,
long nNumRegAttributes,
Sm AgentApi Attribute t* pRegAttributes,
long* pRespNumAttributes,
Sm_AgentApi Attribute t** ppRespAttributes
);
Parameter I/0 Description
pHandle | Agent API session handle returned in parameter
ppHandle of Sm_AgentApi_Init().
pResourceContext | Reserved for future use. Set all fields to 0.
IpszSessionld | A unique identifier of the session for which the
variable is to be deleted. Variables can only be
deleted for an active session.
After a successful login, the session ID is returned
in the IpszSessionld field of the structure
Sm_AgentApi_Session_t.
nNumRegqAttributes | Size of the array of session variables in
pRegAttributes.
pReqAttributes | An array of attributes representing the names of
session variables to be deleted.
Set the variable name in the field
IpszAttributeOid of structure
Sm_AgentApi_Attribute_t.
Set the nAttributeFlags field of the
Sm_AgentApi_Attribute_t structure to
SM_AGENTAPI_REQATTR_FLAGS_NONE.
The structure’s nAttributeld and nAttributeTTL
fields are ignored.
pRespNumAttributes 0] Size of the array of responses, if any, in

ppRespAttributes.

Chapter 2: Agent API Guidance For C 73

Agent API Function Declarations (C)

Parameter

1/0

Description

ppRespAttributes

If all the specified variables are deleted, no
response attributes are returned in this
parameter.

If this function returns
SM_AGENTAPI_UNRESOLVED, the response
attribute result set will contain variables that
could not be deleted. Also, each response
attribute will have the field nAttributeFlags of
the structure Sm_AgentApi_Attribute_t set to
SM_AGENTAPI_RESPATTR_FLAGS_UNRESOLVED.

The structure’s nAttributeld and nAttributeTTL
fields are ignored.

Return Values

m SM_AGENTAPI_YES. The operation succeeded.

m SM_AGENTAPI_NO. The call was refused.

m SM_AGENTAPI_UNRESOLVED. Some variables could not be deleted. See the
description of the ppRespAttributes parameter.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

Remarks

This function fails if the session referenced by IpszSessionld is not active, or the
connection to the session store is lost.

To release the memory allocated for any variables returned in the ppRespAttributes
parameter, call Sm_AgentApi_FreeAttributes().

More Information:

Sm_AgentApi_FreeAttributes() (see page 76)

74 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_DoManagement()

Requests agent commands from the Policy Server. Agent commands indicate work to be

performed by agents.

Syntax

int SM_EXTERN Sm AgentApi DoManagement (

const void*

pHandle,

Sm AgentApi ManagementContext t* pManagementContext,

long* pNumAttributes,
Sm_AgentApi Attribute t** ppAttributes
)i
Parameter 1/O Description
pHandle I Agent API session handle returned in parameter ppHandle of
Sm_AgentApi_lInit().
pMananagement | A management definition structure. The agent uses this
Context structure to define a management command.
pNumAttributes I The number of attributes in ppAttributes.
ppAttributes O A pointer to an array of requested attribute definition

structures. One or more of the following attributes may be
returned:

SM_AGENTAPI_AGENT_KEY_UPDATE_NEXT
SM_AGENTAPI_AGENT_KEY_UPDATE_LAST
SM_AGENTAPI_AGENT_KEY_UPDATE_CURRENT
SM_AGENTAPI_AGENT_KEY_UPDATE_PERSISTENT
SM_AGENTAPI_CACHE_FLUSH_ALL
SM_AGENTAPI_CACHE_FLUSH_ALL_USERS
SM_AGENTAPI_CACHE_FLUSH_THIS_USER
SM_AGENTAPI_CACHE_FLUSH_ALL_REALMS
SM_AGENTAPI_CACHE_FLUSH_THIS_REALM

Return Values

m SM_AGENTAPI_YES. The operation succeeded.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

Chapter 2: Agent API Guidance For C 75

Agent API Function Declarations (C)

m SM_AGENTAPI_FAILURE. The server could not be reached.
m SM_AGENTAPI_TIMEOUT. The function timed out.

Example

See the function SmAgentExample::Sm_DoManagement() in the example application
smagentexample.cpp.

Sm_AdentApi_FreeAttributes()
Frees the buffer of response attributes.

Syntax

void Sm AgentApi FreeAttributes (
const long nNumAttributes,
const Sm AgentApi Attribute t* pAttributes

)i

Parameter 1/0 Description
nNumAttributes | The number of attributes in pAttributes.
pAttributes | A pointer to an array of response attribute

definition structures.

Example

See the function SmAgentExample::Sm_Login() in the example application
smagentexample.cpp.

76 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_FreeServers()
Frees an array of server structures after a call to Sm_AgentApi_GetConfig().

Syntax

void SM EXTERN Sm AgentApi FreeServers (
Sm_AgentApi Server t* pServers

);

Parameter 1/0 Description

pServers | The server structures to free.

Sm_AdentApi_GetAdentApiUpdateVersion()
Retrieves the current APl update version in SM_AGENTAPI_UPDATE_VERSION.

For example, if the current version of the Agent APl is v6.0 SP3, you can call
Sm_AgentApi_GetAgentApiUpdateVersion() to verify that the custom program was
compiled against Agent APl v6.0 SP3.

Syntax

int SM_EXTERN Sm AgentApi GetAgentApiUpdateVersion();

Sm_AdentApi_GetAllowedTunnelBufSize()

Retrieves the maximum data buffer size that can be transferred in the
Sm_AgentApi_Tunnel() function call.

Syntax

long SM EXTERN Sm AgentApi GetAllowedTunnelBufSize (
void* pHandle,
int nServer

)i

Parameter 1/0 Description

pHandle | Agent API session handle returned in parameter
ppHandle of Sm_AgentApi_lInit().

Chapter 2: Agent API Guidance For C 77

Agent API Function Declarations (C)

Parameter 1/0 Description

nServer | The server that will process the request at the time
of the tunnel call. One of these values, defined in
smAgentAPI.h:
/* server ports */
/* authorization server */
#define SM_AGENTAPI_AZ_SERVER 0

/* authentication server */
#define SM_AGENTAPI_AUTH_SERVER 1

/* accounting server */
#define SM_AGENTAPI_ACCT_SERVER 2

Returns
The maximum size of the buffer.
Remarks

This function was introduced in SDK v5.5. Beginning with that release, maximum
allowable buffer sizes are larger than in previous releases.

78 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_GetConfig()

Retrieves configuration information for an agent.

This function requires an Agent API version of v5.0 or later.

This function can read configuration information either from a configuration file or, on a
Microsoft Windows platform, from the Windows Registry.

Syntax

int SM EXTERN Sm AgentApi GetConfig (

Sm AgentApi Init t* pInit,
const char* 1pszAgentName,
const char* lpszPath
);
Parameter 1/0 Description
plnit 0 A pointer to an Sm_AgentApi_Init_t structure.
Sm_AgentApi_GetConfig() retrieves agent
configuration information and copies each setting
to a field of p/nit.
To free the array of server structures that may be
placed in Sm_AgentApi_lInit_t, call
Sm_AgentApi_FreeServers().
IpszAgentName | Name of the target agent. The function

Sm_AgentApi_GetConfig() searches the agentname
list for the agent name specified in IpszAgentName.
If IpszAgentName is empty,
Sm_AgentApi_GetConfig() searches for the default
agent name.

In the case of a v5.x or v6.x custom agent that is

configured through central host configuration, this
parameter is ignored.

Chapter 2: Agent API Guidance For C 79

Agent API Function Declarations (C)

Parameter 1/0 Description

IpszPath | Full path and name of the configuration file that
contains the agent configuration information. Set
this parameter as an empty string ("") only for the
4QMRx web agent on IIS.

If IpszPath is an empty string,
Sm_AgentApi_GetConfig() checks whether the
agent is written for a WIN32 platform. If it is, the
function searches the Windows Registry for
configuration information. If it is not, the function
returns SM_AGENTAPI_FAILURE.

Return Values

m SM_AGENTAPI_SUCCESS. Configuration retrieval succeeded.

m SM_AGENTAPI_FAILURE. Configuration retrieval failed.

m SM_AGENTAPI_FAILURE is returned under any of these conditions:

m No agent name is specified in IpszAgentName, and Sm_AgentApi_GetConfig()
cannot get the default agent name

m Anagent name is specified in [pszAgentName, but Sm_AgentApi_GetConfig()
cannot find that agent name

m Sm_AgentApi_GetConfig() cannot find at least one SiteMinder Policy Server
configuration

m Thereis no path specified in IpszPath, and one of the following occurs:
m The platform is not WIN32, so there are no Registry settings to retrieve.

m Sm_AgentApi_GetConfig() cannot retrieve one of the required settings
from the Registry. For example, it cannot open the Registry key that holds
the shared secret.

m Thereis a path specified in IpszPath, but Sm_AgentApi_GetConfig() cannot
open and read the configuration file named in IpszPath.

80 Programming Guide for C

Agent API Function Declarations (C)

Remarks

This function must be called by custom agents that are configured through central host
configuration.

With v5.x or later agent connectivity:

m The function’s IpszPath parameter references the SmHost.conf file created when
the trusted host was registered with the Policy Server, or a WebAgent.conf file that
references SmHost.conf.

m The IpszAgentName parameter is ignored.

With 4.x agent connectivity:
m The agent name is specified in the IpszAgentName parameter.

m Avd.x WebAgent.conf file is referenced in IpszPath.

Sm_AgentApi_GetConfig() checks the value of IpszPath to find the path and name of a
configuration file:

m |f [pszPath is empty and the agent is written for a Microsoft Windows platform,
Sm_AgentApi_GetConfig() searches the Windows Registry for the configuration
information.

m If [pszPath is empty and the agent is running on a UNIX system,
Sm_AgentApi_GetConfig() returns SM_AGENTAPI_FAILURE.

If Sm_AgentApi_GetConfig() cannot find the agent name, it uses the default agent
name. If the default agent name cannot be retrieved, the function returns
SM_AGENTAPI_FAILURE.

When Sm_AgentApi_GetConfig() locates the configuration information for the correct
agent, it copies the information into the fields of an initialization structure
(Sm_AgentApi_Init_t). The parameter pinit points to this initialization structure. For
example, suppose the agent name parameter contains the string Agentl and the
agentname list of the configuration file is set as follows:

agentname="Agent1,123.112.12.12"

In this circumstance, Sm_AgentApi_GetConfig() sets the IpszHostName field of
initialization structure p/nit to Agentl. The IP Address is ignored.
Sm_AgentApi_GetConfig() then retrieves the information for the other fields of the
initialization structure.

Sm_AdentApi_GetMaxTunnelBufSize()

Deprecated in SDK v5.5. Replaced by Sm_AgentApi_GetAllowedTunnelBufSize() (see
page 77).

Chapter 2: Agent API Guidance For C 81

Agent API Function Declarations (C)

Sm_AdentApi_GetSessionVariables()

Retrieves the values of existing session variables.

Syntax

int Sm AgentApi GetSessionVariables (

const void*

pHandle,

const Sm AgentApi ResourceContext t* pResourceContext,

const char* lpszSessionld,
long nNumRegAttributes,
Sm AgentApi Attribute t* pRegAttributes,
long* pRespNumAttributes,
Sm_AgentApi Attribute t** ppRespAttributes
);
Parameter I/0 Description
pHandle I Agent APl session handle returned in parameter
ppHandle of Sm_AgentApi_Init().
pResourceContext I Reserved for future use. Set all fields to 0.
IpszSessionld I A unique identifier of the session for which the
variable is to be retrieved. Variables can only be
retrieved for an active session.
After a successful login, the session ID is returned in
the IpszSessionld field of the structure
Sm_AgentApi_Session_t.
nNumRegqAttributes Size of the array of attributes in pRegAttributes.

82 Programming Guide for C

Agent API Function Declarations (C)

Parameter

1/0

Description

pReqAttributes

An array of attributes representing the names of
session variables to be retrieved.

Set the variable name in the field IpszAttributeOid of
structure Sm_AgentApi_Attribute_t.

Set the nAttributeFlags field of the
Sm_AgentApi_Attribute_t structure to one of these
values:

m SM_AGENTAPI_REQATTR_FLAGS_NONE

Retrieve the named variable, but don’t delete it.

m SM_AGENTAPI_REQATTR_FLAGS_DELETE

Delete the variable from the session store after
retrieving it.

The structure’s nAttributeld and nAttributeTTL fields
are ignored.

Set the nAttributeFlags field of the
Sm_AgentApi_Attribute_t structure to one of these
values:

m SM_AGENTAPI_REQATTR_FLAGS_NONE

Retrieve the named variable, but don’t delete it.

m SM_AGENTAPI_REQATTR_FLAGS_DELETE

Delete the variable from the session store after
retrieving it.

The structure’s nAttributeld and nAttributeTTL fields
are ignored.

pRespNumAttributes

0]

Size of the array of responses in ppRespAttributes.

Chapter 2: Agent API Guidance For C 83

Adgent API Function Declarations (C)

Parameter

1/0

Description

ppRespAttributes

An array of response attributes representing session
variables and their values.

The value returned from this function indicates the
contents of the response attribute result set, as
follows:

m SM_AGENTAPI_UNRESOLVED

Some variables could not be fetched. If a given
variable can’t be fetched, the associated
nAttributeFlags field of the Sm_AgentApi_Attribute_t
structure is set to SM_AGENTAPI_
RESPATTR_FLAGS_UNRESOLVED.

For the variables that are fetched, the
nAttributeFlags field is set to
SM_AGENTAPI_RESPATTR_FLAGS_NONE.

m SM_AGENTAPI_YES

All requested variables and their values were fetched
from the session store and returned in
ppRespAttributes.

The structure’s nAttributeld and nAttributeTTL fields
are ignored.

Return Values

m SM_AGENTAPI_YES. The operation succeeded.

SM_AGENTAPI_NO. The call was refused.

m SM_AGENTAPI_UNRESOLVED. Some variables could not be fetched. See the
description of the ppRespAttributes parameter.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

m SM_AGENTAPI_SUCCESS. The operation succeeded.

84 Programming Guide for C

Agent API Function Declarations (C)

Remarks

This function fails if the session referenced by IpszSessionld is not active, if no variables
are found, or if the connection to the session store is lost.

To delete a variable from the session store after fetching it, set the
SM_AGENTAPI_REQATTR_FLAGS_DELETE flag in the pReqgAttributes parameter. To
delete a variable without fetching it, call the function
Sm_AgentApi_DelSessionVariables().

To release the memory allocated for any variables returned in the ppRespAttributes
parameter, call Sm_AgentApi FreeAttributes() (see page 76).

Sm_AgdentApi_Init()

Initializes the Agent API and sets up connections to the Policy Server. This function is
called once per agent.

Note: This call succeeds even if a connection to the Policy Server cannot be established
immediately. The Agent API will keep trying to reconnect. See the Remarks for more
information.

Syntax

int SM_EXTERN Sm AgentApi Init (
const Sm AgentApi Init t* pInitStruct,

void** ppHandle
)i
Parameter 1/0 Description
plnitStruct | A pointer to information about the server.
ppHandle 0] The address of a pointer to hold the returned

handle for this API session. This is an opaque type.

Returns
m SM_AGENTAPI_SUCCESS. Initialization succeeded.
m SM_AGENTAPI_FAILURE. Initialization failed.

Chapter 2: Agent API Guidance For C 85

Agent API Function Declarations (C)

Remarks

All agents should issue the DoManagement() call and specify the
SM_AGENTAPI_MANAGEMENT_SET_AGENT_INFO command once at startup.

This function is designed to fail only when a connection to the Policy Server is
established, but the shared secret and/or agent name are incorrect. In all other
circumstances, this function returns SM_AGENTAPI_SUCCESS, such as in the following
circumstances:

® Anincorrect Policy Server IP address and/or port number are provided during the
initialization operation

m A correct Policy Server IP address and port number are provided, but the Policy
Server is down

In these cases, the Agent API returns a status of success and continues to try to establish
the connection to the Policy Server (the connection layer does not know if the
information provided is correct or incorrect). You should not assume that a connection
to the Policy Server is established if the Sm_AgentApi_Init() function succeeds.

You are responsible for deallocating memory for your custom agent. When you initialize
the Agent APl with Sm_AgentAPI_Init(), all information in the Sm_AgentApi_lInit_t
structure is copied, allowing you to deallocate the structure’s memory after
initialization.

Example

See the function SmAgentExample::Sm_lInit() in the example application
smagentexample.cpp.

86 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_IsProtected()

Checks if the defined resource is protected by SiteMinder.

Syntax

int SM EXTERN Sm AgentApi IsProtected (

const void pHandle,
const char* 1pszClientIpAddr,
const Sm AgentApi ResourceContext t* pResourceContext,
Sm_AgentApi Realm t* pRealm
)i
Parameter 1/0 Description
pHandle | Agent API session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

IpszClientlpAddr | The IP address of the client asking for the resource.
This is an optional parameter.

pResourceContext | A resource definition structure.

pRealm 0] A realm definition structure. The resource is

protected by the returned realm.

Return Values

m SM_AGENTAPI_YES. The resource is protected.

m SM_AGENTAPI_NO. The resource is not protected.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

m SM_AGENTAPI_FAILURE. The server could not be reached.
m SM_AGENTAPI_TIMEOUT. The function timed out.

Example

See the function SmAgentExample::Sm_IsProtected() in the example application
smagentexample.cpp.

Chapter 2: Agent API Guidance For C 87

Agent API Function Declarations (C)

Sm_AdentApi_IsProtectedDLP()

Checks if the defined resource is protected by SiteMinder DLP integration.

Syntax

int SM_EXTERN Sm AgentApi IsProtectedDLP (

const void pHandle,
const char* 1pszClientIpAddr,
const Sm AgentApi ResourceContext t* pResourceContext,
Sm_AgentApi Realm t* pRealm
)i
Parameter 1/0 Description
pHandle | Agent API session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

IpszClientlpAddr | The IP address of the client asking for the resource.
This is an optional parameter.

pResourceContext | A resource definition structure.

pRealm 0] A realm definition structure. The resource is

protected by the returned realm.

Return Values

m SM_AGENTAPI_YES. The resource is protected by DLP integration.

m SM_AGENTAPI_NO. The resource is not protected by DLP integration.
m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

88 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_Login()

This function performs session login and session validation.

The Policy Server authenticates user credentials during session login and validates the
session specification during session validation. Whether the Policy Server performs
session login or session validation depends on whether a session specification is defined
in the field IpszSessionSpec of the structure Sm_AgentApi_Session_t, as follows:

m [fthe session specification exists, the Policy Server performs session validation.
During session validation, if the IpszSessionSpec field has a length, the Policy Server
takes the following actions:

m Verifies that the session has not expired based on the nMaxTimeout field of
Sm_AgentApi_Session_t.

m Checks the IP address.

m Verifies that the user is in the user directory and has not been disabled.

m [f the session specification does not exist, the Policy Server performs session login.
During session login, if the session ID is specified, it will be used as the session ID
upon successful authentication.

Syntax

int SM_EXTERN Sm AgentApi Login (

const void*
const char*

pHandle,
1pszClientIpAddr,
pResourceContext,

const Sm AgentApi ResourceContext t*
const Sm AgentApi Realm t*

const Sm AgentApi UserCredentials t*
Sm_AgentApi Session t*

long*

Sm AgentApi Attribute t**

pRealm,
pUserCredentials,
pSession,
pNumAttributes,
ppAttributes

Parameter I/ Description
(0]

pHandle I Agent APl session handle returned in parameter ppHandle
of Sm_AgentApi_lInit().

IpszClientlpAddr I The IP address of the client that the user is logging from.
This is an optional parameter. If the client IP begins with a
star (*), the Policy Server logs the IP address but does not
validate it against a session specification.

pResourceContext I A pointer to a resource definition structure.

Chapter 2: Agent API Guidance For C 89

Agent API Function Declarations (C)

Parameter I/ Description
(0]
pRealm I Arealm definition structure.
pUserCredentials I Auser credentials definition structure.
pSession O A User Session definition structure.
pNumAttributes O The number of attributes in ppAttributes.
ppAttributes O Apointer to an array of response attribute definition

structures.

This function returns the following attributes, when
available:

m SM_AGENTAPI_ATTR_AUTH_DIR_OID
= SM_AGENTAPI_ATTR_AUTH_DIR_NAME

m SM_AGENTAPI_ATTR_AUTH_DIR_SERVER

m SM_AGENTAPI_ATTR_AUTH_DIR_NAMESPACE
= SM_AGENTAPI_ATTR_USERMSG

= SM_AGENTAPI_ATTR_USERDN

m SM_AGENTAPI_ATTR_USERUNIVERSALID

m SM_AGENTAPI_ATTR_IDENTITYSPEC

See Remarks for information about the attributes that are
set when a resource is protected by an anonymous
authentication scheme.

Return Values

m SM_AGENTAPI_YES. The user was authenticated.

SM_AGENTAPI_NO. The user was not authenticated.

m SM_AGENTAPI_CHALLENGE. A challenge is required for authentication.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

90 Programming Guide for C

Agent API Function Declarations (C)

Remarks

Response attributes can be returned when authentication events occur. Both
well-known and policy-based attributes can be returned, as described in Response
Attributes. For example, upon successful authentication, a response could return the
user’s DN.

When a resource is protected by an anonymous authentication scheme, only the
following attributes are set:
m SM_AGENTAPI_ATTR_USERDN. Set with the SessionID for the anonymous session.

m SM_AGENTAPI_ATTR_IDENTITYSPEC. Set with the globally unique identity ticket for
the anonymous session.

Supply only the required credentials (as determined by a call to
Sm_AgentApi_IsProtected(), which should be called before Sm_AgentApi_Login()).
Unused fields in the user credentials structure must be zero-initialized.

Sm_AgentApi_Login() returns attributes in the Sm_AgentApi_Attribute_t structure. Call
Sm_AgentApi_FreeAttributes() to release the attributes.

On successful login, the Sm_AgentApi_Session_t structure is populated with the session
specification. If you allocated memory for this structure, it is your responsibility to
deallocate it.

Example

See the example application smagentexample.cpp for an example of this function.

Chapter 2: Agent API Guidance For C 91

Agent API Function Declarations (C)

Sm_AdentApi_Logout()

Logs a user out of a user session and issues an event. No database is updated.

When a user logs out, you must explicitly terminate the session by discarding the

session specification.

This function does not deallocate memory. It is your responsibility to deallocate any
memory you allocated for your custom agent.

Syntax

int SM_EXTERN Sm AgentApi Logout (

const void* pHandle,
const char* lpszClientIpAddr,
const Sm AgentApi Session t* pSession

);

Parameter 1/0 Description

pHandle | Agent API session handle returned in parameter
pHandle of Sm_AgentApi_lInit().

IpszClientlpAddr | The IP address of the client that the user is logging
out from. This is an optional parameter. If the
client IP begins with a star (*), the Policy Server
logs the IP address but does not validate it against
a session specification.

pSession | A session definition structure

(Sm_AgentApi_Session_t) for the user’s session.
The nreason field will be passed in the event issued
by the Policy Server. See Sm_Api_Reason_t.

Return Values

m SM_AGENTAPI_YES. The user logged out successfully.

m SM_AGENTAPI_NO. The user was not logged out.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.

92 Programming Guide for C

Agent API Function Declarations (C)

m SM_AGENTAPI_FAILURE. The server could not be reached.
m SM_AGENTAPI_TIMEOUT. The function timed out.

Remarks

To terminate a user’s session when a user logs out, you must discard the session
specification. You can do so by re-initializing the session specification in the
Sm_AgentApi_Session_t structure, as illustrated in the following code:

iResult = Sm AgentApi Logout (
pHandle,
SMAPI SAMPLE AGENTIP,
&pSession);

if (SM_AGENTAPI YES==iResult)
memset (&pSession, 0,sizeof (Sm AgentApi Session t));

Sm_AdentApi_MakeCertificateHash()

Use this function to generate an SHA1 hash of a binary certificate. The hash should be
placed in the binary certificate in the user credentials structure. For this function to
work properly, the iCertHashLen parameter must be greater than or equal to 20 bytes.
This function can be used to generate SHA1 hashes of an arbitrary buffer.

Syntax

int Sm AgentApi MakeCertificateHash (
const unsigned char* pCertificateData,

const int nCertlLen,
unsigned char* pCertHash,
const int nCertHashLen
);
Parameter 1/0 Description
pCertificateData | A pointer to a buffer.
nCertlLen | The length in bytes of the buffer.
pCertHash 0] The buffer into which the hash is placed.
nCertHashLen | The size of the hash buffer in bytes. The size must

be at least 20.

Chapter 2: Agent API Guidance For C 93

Agent API Function Declarations (C)

Return Values
m SM_AGENTAPI_SUCCESS. The operation succeeded.
m SM_AGENTAPI_FAILURE. The size is too small.

Sm_AdentApi_SetAdentInstancelnfo()

Sets the agent instance information specified in the agent discovery data structure. All
values in the Sm_AgentApi_AgentDiscovery_t are initialized to "unknown". Call this
function after Sm_AgentApi_lInit() to set the values of these attributes when you want
the agent to come under the purview of agent discovery.

Syntax

int SM_EXTERN Sm AgentApi SetAgentInstnaceInfo (

const void* pHandle,
Sm AgentApi AgentDiscovery t* arrParams|[]
int nCount
);
Parameter 1/0 Description
pHandle | Agent API session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

arrParams[] | Array containing name/value pairs of attributes for
the agent instance.

nCount | Number of elements in the array of attributes.

Return Values

m SM_AGENTAPI_YES. The resource is protected.

m SM_AGENTAPI_NO. The resource is not protected.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.
m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

94 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_SetDefaultAgentId()

Sets the name of a v5.x or later agent that is configured through Central Host
Configuration.

Syntax

int SM EXTERN Sm AgentApi SetDefaultAgentId(
const char *pszAgentIdentity,
void* pHandle

);

Parameter I/0 Description

pszAgentldentity | Specifies the name to set as the default agent
name. This name must match the name of the
corresponding agent object on the Policy Server.

pHandle | Agent API session handle returned in parameter
ppHandle of Sm_AgentApi_lInit().

Return Values
m SM_AGENTAPI_SUCCESS. The default agent name was set successfully.

m SM_AGENTAPI_FAILURE. Parameter pszAgentidentity was NULL or exceeded
SM_AGENTAPI_SIZE_NAME.

m SM_AGENTAPI_NOCONNECTION. Parameter pHandle was NULL.

Remarks

Call this function after calling Sm_AgentApi_Init() and before calling any other function
in the Agent API. Doing so avoids having to pass the name of the agent with each Agent

APl request.

This function is only used with v5 or later custom agents that are configured through
central host configuration.

Chapter 2: Agent API Guidance For C 95

Agent API Function Declarations (C)

Sm_AdentApi_SetSessionVariables()

Creates new session variables or updates existing session variables.

Syntax

int Sm AgentApi SetSessionVariables (

const void*

pHandle,

const Sm AgentApi ResourceContext t* pResourceContext,

const char* lpszSessionld,
long nNumRegAttributes,
Sm AgentApi Attribute t* pRegAttributes,
long* pRespNumAttributes,
Sm_AgentApi Attribute t** ppRespAttributes
)i
Parameter I/0 Description
pHandle | Agent APl session handle returned in parameter
ppHandle of Sm_AgentApi_Init().
pResourceContext | Reserved for future use. Set all fields to 0.
IpszSessionld | A unique identifier of the session for which the
variable is to be set. Variables can only be set for
an active session.
After a successful login, the session ID is returned
in the IpszSessionld field of the structure
Sm_AgentApi_Session_t.
nNumReqAttributes | Size of the array of session variables in

pRegAttributes.

96 Programming Guide for C

Agent API Function Declarations (C)

Parameter I/0 Description

pReqAttributes | An array of attributes representing session
variable values.

Set the variable name in the field
IpszAttributeOid of structure
Sm_AgentApi_Attribute_t:

m If avariable name already exists, the
associated variable value is overwritten by
the value of pReqgAttributes.

m If avariable name doesn’t exist, a new
variable is created.

Set the nAttributeFlags field of the

Sm_AgentApi_Attribute_t structure to

SM_AGENTAPI_REQATTR_FLAGS_NONE.

The structure’s nAttributeld and nAttributeTTL

fields are ignored.

pRespNumAttributes 0 Size of the array of responses in
ppRespAttributes.
ppRespAttributes 0 An array of response attributes representing

variables that could not be set.

If this function returns
SM_AGENTAPI_UNRESOLVED, the response
attribute result set will contain unresolved
variables. Also, for each unresolved variable
returned, the field nAttributeFlags of the
structure Sm_AgentApi_Attribute_t will be set to
SM_AGENTAPI_RESPATTR_UNRESOLVED.

The structure’s nAttributeld and nAttributeTTL
fields are ignored.

Chapter 2: Agent API Guidance For C 97

Agent API Function Declarations (C)

Returns
m SM_AGENTAPI_YES. The operation succeeded.
m SM_AGENTAPI_NO. The operation failed.

m SM_AGENTAPI_UNRESOLVED. Some variables could not be set. The list of
unresolved variables is returned in the ppRespAttributes parameter.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.
m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

m SM_AGENTAPI_SUCCESS. The operation succeeded.

Remarks

This function fails if the session referenced by IpszSessionld is not active or the
connection to the session store is lost.

To release the memory allocated for any unresolved variable values returned in the
ppRespAttributes parameter, call Sm_AgentApi FreeAttributes() (see page 76).

98 Programming Guide for C

Agent API Function Declarations (C)

Sm_AdentApi_Tunnel()

Call this function to transfer data between a remote service on the Policy Server side
and your agent. The Sm_AgentApi_GetMaxTunnelBufSize() function call gives you the
maximum data size that can be transferred. At this time this function supports only one
buffer for each call. pServiceRequest holds the information about the remote service
that will be invoked by the Policy Server.

Note: SMTUNNEL is a predefined tunnel agent name whose shared secret is also
SMTUNNEL. You can initialize a tunnel agent using these names without specifically
creating the agent ahead of time. The predefined SMTUNNEL agent can only call
Sm_AgentApi_Tunnel().

If you explicitly create a tunnel agent that has the name and shared secret SMTUNNEL,
it is also limited to calling Sm_AgentApi_Tunnel().

If an agent named SMTUNNEL makes a call to a function other than
Sm_AgentApi_Tunnel(), the Policy Server returns an error.

Syntax

int SM_EXTERN Sm AgentApi Tunnel (

const void* pHandle,
const int nServer,
const char* 1pszClientIpAddr,
const char* lpszTransactionId,

const Sm AgentApi ResourceContext t* pResourceContext,
const Sm AgentApi TunnelServiceRequest t* pServiceRequest,

long* pRespNumAttributes,
Sm AgentApi Attribute t** ppRespAttributes
)i
Parameter 1/0 Description
pHandle I Agent API session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

Chapter 2: Agent API Guidance For C 99

Agent API Function Declarations (C)

Parameter

1/0

Description

nServer

The server that will process the request at the
time of the tunnel call. One of these values,
defined in smAgentAPL.h:

/* server ports */

/* authorization server */
#define SM_AGENTAPI_AZ_SERVER 0

/* authentication server */
#define SM_AGENTAPI_AUTH_SERVER 1

/* accounting server */
#define SM_AGENTAPI_ACCT_SERVER 2

IpszClientlpAddr

(Optional) The IP address of the client from
which the user is logging.

IpszTransactionld

(Optional) The ID that the agent uses to
associate application activity with security
activity. The Policy Server logs this ID.

pResourceContext

A resource definition structure.

pServiceRequest

A service request definition structure.

pRespNumAttributes

The number of attributes in ppRespAttributes.

ppRespAttributes

A pointer to an array of response attribute
definition structures. The attribute identifier
SM_AGENTAPI_ATTR_SERVICE_DATA indicates
that the response structure contains the data
returned by the remote service. The attribute
identifier
SM_AGENTAPI_ATTR_STATUS_MESSAGE has
the status message from the remote service.

100 Programming Guide for C

Agent API Function Declarations (C)

Returns

m SM_AGENTAPI_YES. The operation succeeded.

m SM_AGENTAPI_NO. The operation failed.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.
m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

Example

For an example of Sm_AgentApi_Tunnel(), see:

<install_path>\sdk\samples\smtunnelagent\smtunnelexample.cpp

Sm_AgdentApi_UnInit()

Once the agent is no longer needed, uninitialize all API instances by issuing the
Sm_AgentApi_Unlnit() call for each API instance. This closes TCP connections to all
Policy Servers.

This function does not deallocate memory. It is your responsibility to deallocate any
memory you allocated for your custom agent.

Syntax

int SM EXTERN Sm AgentApi UnInit (
void** ppHandle
)i

Parameter 1/0 Description

ppHandle | The address of a pointer to the handle for this API
session. This is an opaque type.

Chapter 2: Adent API Guidance For C 101

Agent API Function Declarations (C)

Returns
m SM_AGENTAPI_SUCCESS. Uninitialization succeeded.
m SM_AGENTAPI_NOCONNECTION. Uninitialization was not done.

Example

See the function SmAgentExample::Sm_Unlnit() in the example application
smagentexample.cpp.

Sm_AdentApi_UpdateAttributes()

Call this function to update response attributes when the time-to-live (TTL) value has
expired. When specifying request attributes, each attribute structure should be
zero-initialized, then set the IpszAttributeOid fields in the Sm_AgentApi_Attribute_t
structure. Use the same field to map the response attributes to requested attributes.
Not all attributes may be updated.

This function will recalculate an active response that originally held no data. An active

response attribute is considered valid if its return value has a non-zero length or its TTL
value is set.

Syntax

int SM_EXTERN Sm AgentApi UpdateAttributes (

const void* pHandle,
const char* 1pszClientIpAddr,
const char* lpszTransactionId,
const Sm AgentApi ResourceContext t* pResourceContext,
const Sm AgentApi Realm t* pRealm,
const Sm AgentApi Session t* pSession,
long nNumRegAttributes,
Sm_AgentApi Attribute t* pRegAttributes,
long* pRespNumAttributes,
Sm_AgentApi Attribute t** ppRespAttributes

)i

Parameter 1/0 Description

pHandle | Agent API session handle returned in parameter

ppHandle of Sm_AgentApi_Init().

102 Programming Guide for C

Agent API Function Declarations (C)

Parameter I/0 Description

IpszClientlpAddr | The IP address of the client that the user is

logging from. This is an optional parameter. If
the client IP begins with a star (*), the Policy
Server logs the IP address but does not validate
it against a session specification.

IpszTransactionld | The ID that the agent uses to associate

application activity with security activity. The
Policy Server logs this ID. This is an optional

parameter.
pResourceContext | A resource definition structure.
pRealm 0] A realm definition structure.
pSession | A session definition structure.
nNumReqAttributes | The number of attributes in pRegAttributes.
pReqAttributes | An array of requested attribute definition
structures.
pRespNumAttributes 0] The number of attributes in ppRespAttributes.
ppRespAttributes 0] An array of response attribute definition
structures.

Returns

m SM_AGENTAPI_YES. The operation succeeded.

m SM_AGENTAPI_NO. The operation failed.

m SM_AGENTAPI_NOCONNECTION. The initialization was not done.
m SM_AGENTAPI_FAILURE. The server could not be reached.

m SM_AGENTAPI_TIMEOUT. The function timed out.

Chapter 2: Agent API Guidance For C 103

Chapter 3: Configuring Custom Adent Types

This section contains the following topics:

Custom Agent Type Overview (see page 105)
Configure an Agent Type (see page 106)
Modify an Agent Type (see page 108)

Custom Adent Type Overview

Using the Agent API, you can develop custom agents tailored to meet the specific needs
of your environment. After you have developed the agent, you must configure a new
Agent Type for the agent in the Administrative UL.

The Agent Type defines the behavior of an agent. For example, if you developed a
custom FTP Agent, you would then need to define an Agent Type for the FTP Agent in
the Administrative Ul.

Adent Type Worksheet

Before you begin the process of defining a custom Agent Type, you should have a clear
understanding of the environment your agent will support. Answer the following
questions before following the steps for configuring and agent type.

m Which protocol is going to be protected by this agent—for example, HTTP?

® What are the actions or commands that you want to protect on these resources?
Based on the protocol, list the actions you will allow. For example, for an FTP site,
you may want to protect GET and PUT.

® What responses do you want the agent to receive? What data types will you want
to pass in your responses: string, number, IP address?

m Aresponse can be a name-value pair. For example:
time-restriction=yes

m It can also be a string (personalized greeting) that you want to display to your

user—for example, Hello John Smith, where name=John Smith.

After you have answered these questions, you can begin configuring your custom Agent
Type.

Chapter 3: Confiduring Custom Agent Types 105

Configure an Agent Type

Confidgure an Adent Type

To configure an Agent Type

1.
2.

Log into the Administrative Ul.

Click Infrastructure, Agent Type, Create Agent Type.

The SiteMinder Create Agent Type dialog opens.

Enter the name of the new Agent Type in the Name field.

Enter a brief description in the Description field.

If the new Agent Type is a RADIUS Agent, select the RADIUS Device check box.

If you select the RADIUS Device check box, the fields in the Agent Type Definition
Tab change to the following:

m Vendor Specific Offset—Enter the Offset value provided by the RADIUS vendor.
This is not a required field.

m |ETF Vendor ID—Enter an integer value assigned to a Vendor by the Internet
Assigned Numbers Authority (IANA). This is not a required field. Do not use a
value of 2552, because this is reserved for the SiteMinder Agents.

If the new Agent Type is not a RADIUS Agent, click Create in the Actions box to
specify the actions you want to allow on the resources protected by this agent.

Enter a text string that describes an action the new Agent Type will recognize, such
as authenticate, then click OK.

The Agent Action dialog closes, and the new action is added to the list of actions in
the Agent Type dialog.

To configure attributes for this Agent type, click Create Agent Type Attribute.
Click Submit.

Note: The Resource Type is URL. This type of resource is processed in a string-like
manner: resource matching can be done based on wild cards and regular expressions.

Adgent Type Attributes

The following Agent Type Attributes can be entered when configuring an Agent Type:

Properties

Values

106 Programming Guide for C

Configure an Agent Type

Properties

Values

The fields in the Properties group box enable you to define the behavior of a response
attribute that can be used when constructing SiteMinder responses.

m Name—Name of the Agent Type Property.

m Description—Brief description of the Agent Type Property

m Data Type—One of the following data types for the value that the Policy Server
returns to the agent:

String—A string value.
Number—A four-byte numeric value in a network byte order.

IP Address—A four-byte numeric value in a network byte order that can be
interpreted as an IP address.

Encrypted String—A string encrypted using RADIUS-like encryption. An
encrypted string is used for RADIUS agents.

m |dentifier—This is a numeric ID assigned to the attribute, ranging from 1 to 255. For
custom Agents, available values are 224-255 and 1-150.

When assigning Response Behavior, consider the following:

What is the purpose of this response type: authentication or authorization?
What types of response behavior will this response require: success or failure?

How many instances of this type of an attribute will you allow in one response:
Zero or One or Zero or Many?

If you are setting up an authorization response type, you can use one of the
following two attribute selections: Access Accept or Access Reject.

If you are setting up an authentication Response Type, you can use any one of
the three displayed attribute selections: Access Accept, Access Reject, or
Access Challenge.

This group box only appears when you select an attribute Data Type to be a Number in
the Agent Type Attributes. You can assign a Symbolic Name and a Numeric Value to a
response of such data type. This makes it easier to remember what each numeric value
stands for when you create responses using this response type.

Chapter 3: Configuring Custom Adent Types 107

Modify an Adent Type

Confidure the Agent Type Attributes Properties and Values

To configure Agent Type Attributes

1
2
3.
4

v

Click Create Agent Type Attributes in the Agent Type Attributes group box.
Enter a name and description for the attribute In the General group box.
Enter the data type and identifier in the Properties group box.

If the data type is a number, the Values group box appears. Enter the symbolic
name and numerical value.

Enter the appropriate response behaviors.

Click Submit to save your selections.

Modify an Adgent Type

To edit Agent Type Properties

1.
2.
3.

Log into the Administrative Ul.
Click Infrastructure, Agent Types, Modify Agent Types.

Enter the name of the Agent Type you want to modify and click Search, or just click
Search to view a complete list of Agent Types.

Select the Agent Type.
The Modify Agent Type dialog appears.

Click the Edit button to the left of the the Action or Attribute you want to modify.
You can also delete an action or attribute (Delete button on the right of the listing).

Make the changes you require.

Click Submit to save the changes.
The Modify Agent Type dialog appears.

Click Submit again to save the changes for the Agent Type.

108 Programming Guide for C

Chapter 4: Policy Management API
Guidance

This section contains the following topics:

Policy Management APl Overview (see page 109)

Federation API (see page 115)

Policy Management API Data Structures (see page 125)

Exported Types (see page 213)

Structure of a Policy Application (see page 242)

Functions by Category in the Policy Management API (see page 243)
Function Declarations for the Policy Management API (see page 265)
Authentication Scheme Configuration (see page 522)

Policy Management API Overview

The Policy Management API lets you manipulate policy objects within a SiteMinder
installation. Using the Policy Management API, you can perform most of the data
manipulations that are provided by the Administrative Ul. You can also develop your
own custom interface to SiteMinder.

Note: Before you work with the Policy Management API, be sure that you are familiar
with SiteMinder concepts.

Policy Management Setup

To use the Policy Management API

1. Install the Policy Server and the SiteMinder Software Development Kit on the same
machine. In the Windows environment, the Policy Server is required for running
Policy Management applications. In the UNIX environment, the Policy Server is
required for both building and running Policy Management applications.

Note: You can build your Policy Management application without running the
Policy Server services.

2. Use the Policy Server Management Console to configure the Policy Server so that it
points to the policy store you want to access.

Chapter 4: Policy Management API Guidance 109

Policy Management API Overview

3. Runyour Policy Management application on the machine where the Policy Server is
installed and that has been configured to point to the policy store. The policy store
can be on a different machine than the Policy Server.

To run your Policy Management application, you need the following files:

Windows platforms: SmPolicyApi45.dll

UNIX platforms: libsmpolicyapi45.so and libsmutilities.so, in the following location:
<siteminder_install_location>\Netegrity\SiteMinder\lib

Refer to the sample makefile before executing a UNIX build.

To build your policy application, include SmPolicyAP145.h and link to the required shared

libraries.

m Windows platforms: Link to SmPolicyAPI45.lib, located in
<install_path>\sdk\lib\win32\

m UNIX platforms: Link to the libraries libsmpolicyapi45.so and libsmutilities.so,
located as described in the previous section.

Note: Before you build policy management applications for UNIX, you must install the
SiteMinder SDK on the same machine as the Policy Server.

Object Retrieval Functions
These functions retrieve information about an object from the SiteMinder policy store.
If the return code indicates success, a linked list of objects that match the request is
returned. In most cases, the APl returns a single item that matches the unique object
identifier. If a matching object is not found, the return code indicates failure and the
returned linked list pointer points to NULL.
Object retrieval functions are prefixed with Sm_PolicyApi_Get. To find the function that
retrieves information for a particular object, look in the table of functions for that
object.

More Information:

Functions by Category in the Policy Management API (see page 243)

110 Programming Guide for C

Policy Management API Overview

Object Creation Functions
To create a SiteMinder object, you must fill in the appropriate data structure and call
the appropriate function with a properly initialized handle. If the call is successful:
m The function returns Sm_PolicyApi_Success.
m The object is added to the SiteMinder policy store.

m The pszOid field in the corresponding object structure is set to the object identifier
of the object.

Object creation functions are prefixed with either Sm_PolicyApi_Add or
Sm_PolicyApi_Create.

More Information:

Functions by Category in the Policy Management API (see page 243)

Object Deletion Functions

These functions delete objects from the SiteMinder policy store. Only one object at a
time can be deleted.

Object deletion functions are prefixed with Sm_PolicyApi_Delete or
Sm_PolicyApi_Remove.

More Information:

Functions by Category in the Policy Management API (see page 243)

Chapter 4: Policy Management API Guidance 111

Policy Management API Overview

Object Associations

Some objects can be associated with or disassociated from one another-for example,
Sm_PolicyApi_AddAdminToDomain() adds an administrator object to a domain, and

Sm_PolicyApi_RemoveAdminFromDomain() removes an administrator object from a

domain.

An "add-to" operation requires that both objects exist prior to the call and have an
established association. After a "remove-from" operation, both objects still exist, but
they are no longer associated with one other.

When you're looking for a function that associates or disassociates two objects, look in
the category of the method that you are adding or removing. For example, the functions
Sm_PolicyApi_AddAdminToDomain() and Sm_PolicyApi_RemoveAdminFromDomain()
are both found in Administrator Functions.

Object Identifiers

With the introduction of nested realms, the unique identification of an object can no
longer rely on a realm name. When a SiteMinder object is created, a unique object
identifier (OID) is written in the pszOid field of the object's defining structure.

These functions do not return SiteMinder objects. Instead, they return an array of string
pointers that contain the OIDs of SiteMinder objects. You pass in OIDs to SiteMinder
Object Retrieval Functions (Sm_PolicyApi_Get...) to specify objects to retrieve.

The functions that return arrays of OIDs are:

m Sm_PolicyApi_GetDomainObjects()

m Sm_PolicyApi_GetGlobalObjects()

m Sm_PolicyApi_GetUserDirSearchOrder()

Free the memory allocated by this group of functions by calling
Sm_PolicyApi_FreeMemoryEx().

112 Programming Guide for C

Policy Management API Overview

Directory Search Order Functions

The following functions help you retrieve and set the search order of user directories:

Sm_PolicyApi_GetUserDirSearchOrder() retrieves the object identifiers (OIDs) of
user directory objects associated with the specified domain.

Sm_PolicyApi_SetUserDirSearchOrder() sets the search order of the user directories
in a domain. The ordered list of OIDs is specified in the pszArray string array. The
user directories in this array must match in OID and number (but not order) the list
of user directory OIDs that were retrieved by a call to
Sm_PolicyApi_GetUserDirSearchOrder().

Performance Enhancement

By performing either of the following actions, a custom Policy Management application
can reduce the time it takes to update policy store objects:

Omit the Sm_PolicyApi_InitFlags_PreLoadCache flag in the call to
Sm_PolicyApi_Init().

Introduce a very small time delay in the custom application to ensure adequate
time for cache processing before exiting.

Chapter 4: Policy Management API Guidance 113

Policy Management API Overview

Memory, Cache, and Agent Key Management

The following functions free memory allocated by the Policy Management API:

m Sm_PolicyApi_FreeMemory() and Sm_PolicyApi_FreeMemoryEx() free any of the
linked list pointers that are returned by the API.

m Sm_AgentApi_FreeServers() frees an array of server structures allocated by
Sm_AgentApi_GetConfig().

m Sm_PolicyApi_FreeString() frees memory allocated for a single string (for example,
pszUseMsg and pszErrMsg strings).

m Sm_PolicyApi_FreeStringArray() frees arrays of returned strings.

Another management command, Sm_PolicyApi_ManagementCommand(), performs
cache and agent encryption key management, such as:

m Flushing all caches

m Flushing users cache

m Flushing realms from the resource cache

m Changing dynamic keys

m Changing persistent keys

The type of management operation you want to perform is determined by the
management command you pass to Sm_PolicyApi_ManagementCommand().

Object Scope

SiteMinder objects can be classified according to scope:

m Domain objects are visible only within the domain. They cannot be shared between
domains.

m Global objects are visible across all domains. Global objects are sometimes called
system objects.

The scope of SiteMinder objects is as follows:
® Global objects include:

m Administrators

m Agent types

m Agents and agent groups

m Authentication schemes

m Authentication/authorization maps

m Certificate maps

114 Programming Guide for C

Federation API

s Domains
m ODBC query schemes
m Password policies
m Policies
m Registration schemes
m Responses
m Rules
m User directories

m Domain objects include:
m Policies
m Realms
m Responses and response groups
m Response attributes
m Rules and rule groups

m User policies

Federation API

The federation APIs support the manipulation of policy store data related to Affiliate
Domain objects, which can include Affiliates, Service Providers, and Resource Partners.

The CA SiteMinder® federation products support SAML 1.x, SAML 2.0, and

WS-Federation profiles. Partners have the ability to exchange user profile information in
a secure manner.

More Information:

Federation Functions (see page 249)
SAML 2.0 Configuration Functions (see page 257)

Chapter 4: Policy Management API Guidance 115

Federation API

SAML Assertions
A SAML assertion includes:
m Affiliate attributes, such as:
m User profile information from a user directory, such as a user’s email address or
business title.
m User entitlements, such as the user’s credit limit at the affiliate site.
m Session information (SAML 1.x assertions)—for example, whether the assertion
producer and the consumer can maintain separate sessions.
Note: You can modify the default assertion that the Policy Server generates. You do so
through a custom Java class that you create with the Java APIs in the CA SiteMinder®
SDK.
SAML 1.x

SAML 1.x support lets a user access a consumer site directly or from an assertion
producer site without having to supply credentials more than once.

When a user requests access to a protected resource at an affiliate site, the Policy
Server at the producer site is notified. After authenticating the user (if the user has not
yet been authenticated), the Policy Server generates a SAML assertion from the affiliate
object associated with the consumer site.

An application at the affiliate site then retrieves the SAML assertion from the Policy
Server, and uses the information for authorization purposes and any other required
purpose.

For example, suppose a user logs into a site for a bank (the producer site). The producer
includes Policy Server software. The Policy Server contains an affiliate object that
represents a site offering credit card services, and also other affiliate objects that
represent other sites affiliated with the bank. When a user is authenticated at the
producer, the user can click the link for the credit-card site and access the site without
having to re-enter his credentials.

SAML 1.x Pseudo-code Example

The pseudo-code in this section illustrates the following operations:
1. Initialize the API.

2. Add an affiliate domain.

3. Add a user directory to an affiliate domain.

4. Create an affiliate in an affiliate domain.

116 Programming Guide for C

Federation API

N oo ou

8.
9.

Add users to an affiliate.

Add an attribute to an affiliate

Get an existing affiliate domain.

Get all the affiliates in an affiliate domain.

Get all the attributes in an affiliate.

10. Remove an affiliate domain.

Note: Comments using <> notation represent code omitted for ease of understanding.
Return code checking is omitted for ease of understanding.

1. Initialize the API

use Netegrity::PolicyMgtAPI;

$policyapi = Netegrity::PolicyMgtAPI->New();

$session = $policyapi->CreateSession("adminid", "adminpwd");

2. Add an affiliate domain
$affdomain = $session->CreateAffDomain("name", "description");

3. Add a previously obtained user directory to the affiliate domain
<Obtain $userdir via $session->GetAllUserDirs>
$affdomain->AddUserDir($userdir);

4. Create an affiliate in the affiliate domain
$affiliate = $affdomain->CreateAffiliate("affname", "password",
http://authurl, 60, 30);

5. Add users from a previously obtained user table to the affiliate
<Obtain $user via $userdir->GetContents>
$affdomain->AddUser($user);

6. Add an attribute for the affiliate
$affdomain->AddAttribute(1l, "staticAttrName=StaticAttrValue");
7. Get an existing affiliate domain

$affiliate = $affdomain->GetAffiliate("affname");

8. Get all the affiliates in an affiliate domain
@affiliates = $affdomain->GetAllAffiliate();

9. Get all the attributes in an affiliate
@affiliateAttrs = $affiliate->GetAllAttributes();

10. Remove an affiliate domain
$session->DeleteAffDomain($affiliate);

Chapter 4: Policy Management API Guidance

117

Federation API

SAML 2.0

With SAML 2.0, security assertions are shared between the following entities within a
federation:

Identity Provider

An Identity Provider generates assertions for principals within a SAML 2.0
federation. The Identity Provider sends the SAML assertion to the Service Provider
where the principal is attempting to access resources.

Service Provider

A Service Provider makes applications and other resources available to principals
within a federation, using the identity information provided in an assertion. A
principal is a user or another federation entity.

The Service Provider uses a SAML 2.0 authentication scheme to validate a user
based on the information in a SAML 2.0 assertion.

Identity Providers and Service Providers can belong to a SAML affiliation. A SAML
affiliation is a group of SAML entities that share a name identifier for a single principal.

Service Providers and ldentity Providers can belong to an affiliation; however, an entity
can belong to no more than one affiliation. Service Providers share the Name ID
definition across the affiliation. Identity Providers share the user disambiguation
properties across the affiliation.

Using affiliations reduces the configuration required at each Service Provider.
Additionally, using one name ID for a principal saves storage space at the Identity
Provider.

Single Sign-on Example

By sharing security assertions, a principal can log in at one site (the site acting as the
Identity Provider), and then access resources at another site (the Service Provider)
without explicitly supplying credentials at the second site.
For example:
1. The useris a home buyer who authenticates at a realtor’s web site.

Any authentication scheme can be used to authenticate the user.

2. While viewing real estate listings, the user notices a link to a bank with an attractive
mortgage rate.

3. The user clicks the link.

118 Programming Guide for C

Federation API

4. Atthe realtor’s site, an entity acting as the Identity Provider packages the user’s
information in a SAML assertion, then transports the assertion to the bank’s site
using the SAML 2.0 POST binding.

5. At the bank’s site, an entity acting as the Service Provider uses the SAML 2.0
Authentication scheme associated with the Identity Provider to validate the user for
the resources on the bank’s site.

This validation is transparent to the user.

6. If the user is successfully validated, the user is allowed on the bank’s site to view
the rate information.

SAML 2.0 Pseudo-code Example

The pseudo-code in this section illustrates the following operations:
1. Initialize the API.

2. Retrieve the affiliate domain for the Service Provider.

3. Assign metadata constants to variables.

4. Assign values to the Service Provider metadata.

5. Create the Service Provider.

6. Retrieve users from the directory associated with the affiliate domain.
7. Add the users to the Service Provider.

8. Update the Service Provider's default skew time to 100.
9. Save the update.

10. Print the updated skew time.

1. Initialize the API

use Netegrity::PolicyMgtAPI;

$policyapi = Netegrity::PolicyMgtAPI->New();

$session = $policyapi->CreateSession("adminid", "adminpwd");

2. Retrieve the affiliate domain for the Service Provider
$affDom=$session->GetAffDomain("AffiliateDomain");

3. Assign metadata constants to variables

$SAML NAME=SAML NAME;

$SAML SP_AUTHENTICATION URL=SAML SP AUTHENTICATION URL;

$SAML KEY SPID=SAML KEY SPID;

$SAML SP_IDPID=SAML SP_IDPID;

$SAML AUDIENCE=SAML AUDIENCE;

$SAML SP_ASSERTION CONSUMER DEFAULT URL=
SAML_SP_ASSERTION CONSUMER DEFAULT URL;

$SAML SP NAMEID ATTRNAME=SAML SP_NAMEID ATTRNAME;

$SAML SKEWTIME=SAML SKEWTIME;

Chapter 4: Policy Management API Guidance 119

Federation API

4. Assign values to the Service Provider metadata
%hsh=($SAML_NAME=>'My Service Provider',
$SAML_SP_AUTHENTICATION URL=>
"http://www.mysite.com/redirect.jsp',
$SAML KEY SPID=>'http://www.spprovider.com',
$SAML SP IDPID=>'http://www.idpprovider.com',
$SAML_AUDIENCE=>'SSOAudience',
$SAML_SP_ASSERTION CONSUMER DEFAULT URL=>
"http://www.defaultconsumer.com',
$SAML SP NAMEID ATTRNAME=>'attribute'
);
5. Create the Service Provider
$sp=$affDom->CreateSAMLServiceProvider(\%hsh);

6. Retrieve users from the directory associated with the # affiliate
domain—in this case, users in the group HR
$userDir=$session->GetUserDir("MyNtDirectory");
$usr=$userDir->LookupEntry("HR");

7. Add the users to the Service Provider
$sp->AddUser($usr) ;

8. Update the Service Provider's default skewtime to 100
$sp->Property ($SAML SKEWTIME, "100");

9. Save the update
$sp->Save();

10. Print the updated skewtime
print "\n";
print $sp->Property($SAML_SKEWTIME) ;

SAML 2.0 Affiliations

A SAML 2.0 affiliation consists of Service Providers and Identity Providers that have a
shared Name ID namespace. Identity Providers also share the user disambiguation
properties across the affiliation.

A SAML 2.0 affiliation can have multiple Service Providers and Identity Providers.
However, a Service Provider or Identity Provider can belong to no more than one SAML
2.0 affiliation.

120 Programming Guide for C

Federation API

Example:

By sharing security assertions, a principal can log in at one site (the site acting as the
Identity Provider), and then access resources at another site (the Service Provider)
without explicitly supplying credentials at the second site:

1. The userisa home buyer who authenticates at a realtor's web site.
Any authentication scheme can be used to authenticate the user.

2. While viewing real estate listings, the user notices a link to a bank with an attractive
mortgage rate.

3. The user clicks the link.

4. Attherealtor's site, an entity acting as the Identity Provider packages the user's
information in a SAML assertion, then transports the assertion to the bank's site
using the SAML 2.0 POST binding.

5. Atthe bank's site, an entity acting as the Service Provider uses the SAML 2.0
Authentication scheme associated with the Identity Provider to validate the user for
the resources on the bank's site.

This validation occurs transparently to the user.

6. If the user is successfully validated, the user is allowed on the bank's site to view
the rate information.

SAML 2.0 Attribute Authority

SiteMinder supports authorization that uses the values of predetermined user attributes
from a remote site as the basis for the authorization decision. The request contains no
session information, because the user is not necessarily authenticated on the remote
site.

For example, imagine a customer logs on to a car rental agency site to inquire about
rates. The customer is authenticated by the agency, but to provide a competitive rate,
the agency uses information from the customer's preferred airline. The car rental
agency puts in a request to the airline's Web site to obtain the customer's quality code,
which is based on the customer's accrued frequent flier miles. The airline returns the
value of the quality code, for instance, 1A, and the car agency displays a customized rate
sheet.

In this example, the car rental agency acts as what is know as the the SAML Requester,
and the airline acts as what is known as a SAML Attribute Authority. Note that the
customer is not authenticated by the Attribute Authority.

The Policy Server implements this kind of authorization decision by using variables
within policy expressions. In the policy expressions, Federation Attribute Variables
associate an attribute with a remote Attribute Authority. When the policy server
attempts to resolve the Federation attribute variable, it determines the Attribute
Authority from which to request the value of the attribute.

Chapter 4: Policy Management API Guidance 121

Federation API

In the Policy Management API, the Sm_PolicyApi_SAMLRequesterAttr_t structure
defines an attribute that can be requested by the SAML Requester. It specifies the actual
name of the attribute known by the Attribute Authority, as well as a local name used in
Federation attribute variables. The local name maps to a variable defined in the SAML
2.0 authentication scheme.

More Information:

Sm_PolicyApi_ SAMLRequesterAttr_t (see page 181)
SAML 2.0 Attribute Authority Functions (see page 257)

SAML 2.0 Indexed Endpoints

When configuring single sign-on at the Identity Provider, you can configure more than
one endpoint for the Assertion Consumer Service, the service that enables a Service
Provider to consume a SAML assertion. Each endpoint you configure is assigned a
unique index value, instead of a single, explicit reference to an Assertion Consumer
Service URL.

The assigned index can be used as a part of a Service Provider request for an assertion
that it sends to the Identity Provider. This enables you to have a different Assertion
Consumer Service at the Service Provider for different protocol bindings (Artifact or
POST).

In the Policy Management API, you can, for example, add a new Assertion Consumer
Service to the Service Provider programmatically by calling the
Sm_PolicyApi_AddAssertionConsumerServiceToOSAMLSP() function as follows:

iSmApiRetCode = Sm PolicyApi AddAssertionConsumerServiceToSAMLSP (
pSmApiSessionHandle,
&structSAMLSPACS2,
psz0id);

Parameters:

m pSmAPiSessionHandle is a pointer to a structure that holds information about the
administrative session and the client session.

®m pstructSAMLSPACS?2 is a pointer to
Sm_PolicyApi_SAMLSPAssertionConsumerService_t. This structure specifes the
index, binding, and Assertion Consumer Service URL.

m pszOid is a pointer to a string containng the OID of the Service Provider.

In addition, the APl includes a function to remove an Assertion Consumer Service and a
function to retrieve all the Assertion Consumer Services defined in the Service Provider
object. The C Policy Management APl sample program, smpolicyapiexample.cpp, shows
how these functions are implemented.

122 Programming Guide for C

Federation API

More Information:

SAML 2.0 Indexed Endpoint Functions (see page 259)

Sample Application for Affiliates
The C sample program smpolicyapi has been augmented for the affiliate functionality.

To run the affiliate portions
1. Install the SiteMinder Option Pack on the Policy Server

2. Define the Affiliate Policy Store objects in smpolicy.smdif and import the objects to
the Policy Store.

3. Install the sample. This creates a sample user directory, which is used by the
affiliate sample.
Three options have been added to the smpolicyapi program.
m Do you wish to install Affiliate Sample Api? (Y/N):
Answering Y causes smpolicyapi to:
m Add an affiliate domain
m Add the sample user directory to the affiliate domain
m Add an affiliate to the affiliate domain
m Add users from the sample user directory to the affiliate
m Add an affiliate attribute to the affiliate
®m Do you wish to traverse affiliate domain? (Y/N):
Answering Y causes smpolicyapi to:
m Get the affiliate domain and print it.
m Get all user dir OIDs in the sample affiliate domain and print them
m Get all affiliate OIDs in the sample affiliate domain and print them
m Get all affiliates in the sample affiliate domain and print their properties
m Get all users in Affiliate and print them
m Get all attributes in Affiliate and print them
®m Do you wish to uninstall Affiliate Sample Api? (Y/N):

Answering Y causes smpolicyapi to delete the affiliate domain.

Chapter 4: Policy Management API Guidance 123

Federation API

WS-Federation

The WS-Federation specification provides a protocol for how passive clients (such as
Web browsers) implement the federation framework. ADFS is Microsoft's
implementation of the WS-Federation Passive Requestor Profile.

Web SSO and Signout in the WS-Federation environment are implmented using Account
Partners and Resource Partners. An Account Partner authenticates users, provides
WS-Federation security tokens and passes them to a Resource Partner. The Resource
Partner consumes security tokens and establishes a session based on the contents of
the WS-Federation security token.

For SiteMinder to act as an Account Partner, an administrator must define the Resource
Partner that will be consuming security tokens. This is done by defining a Resource
Partner in an Affiliate domain. For SiteMinder to act as a Resource Partner, an
administrator must define the Account Partner that is going to supply security tokens.
This is done by defining a WS-Federation authentication scheme.

The C Policy Management APl sample program, smpolicyapiexample.cpp, includes
examples of how to define, list, and delete a Resource Partner, as well as define, list,
and delete a WS-Federation authentication scheme.

More Information:

Sm_PolicyApi WSFEDProviderProp t (see page 204)
Sm_PolicyApi WSFEDResourcePartner t (see page 213)
WS-Federation Functions (see page 264)

124 Programming Guide for C

Policy Management API Data Structures

Policy Management API Data Structures

Each data structure represents an entity in the SiteMinder policy store. The structures
have a common format:

m The first field in each structure denotes the type of the structure, so that it can be
freed by the correct Policy Management APl memory function. When the structure
is used as an input parameter, the first field is ignored by the Policy Management
API. When the structure is used for a return, the first field is set properly by the
Policy Management API.

m The last field of each structure is a pointer to the next item in a returned linked list.
On input, this field is ignored, since the Policy Management APl does not accept
linked lists as input parameters. (If you supply a linked list as an input parameter,
the function examines only the first item in the list.)

All the character arrays within the following structures are sized according to BFSIZE,
which is set to 1024 characters. A 24-character TIMESIZE buffer is used for policy time
restrictions.

Sm_PolicyApi_Admin_t
Defines a SiteMinder Administrator object.

Syntax

typedef struct Sm PolicyApi Admin s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];
char pszPassword[BFSIZE];
char pszUserDirOid[BFSIZE];
char pszSchemeOid[BFSIZE];
Sm PolicyApi AdminRights t nRights; /* Required */
struct Sm PolicyApi Admin s* next;
} Sm PolicyApi Admin_t;

Field Description

iStructld Administrator data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the administrator object.

pszName Name of the administrator.

Chapter 4: Policy Management API Guidance 125

Policy Management API Data Structures

Field

Description

pszDesc

Brief description of the administrator.

pszPassword

This is required if the pszUserDirOid is not specified. The
SiteMinder stores the password in its directory.

pszUserDirOid

Object identifier of the user directory if the
administrator is stored in an external directory.

pszSchemeOid

Object identifier of the authentication scheme to use to
authenticate the administrator. This is required if the
pszUserDirOid is specified.

nRights

Rights of the administrator, as specified in
Sm_PolicyApi_AdminRights_t.

next

Pointer to the next administrator structure.

126 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_Affiliate_t
Represents an affiliate object.

Syntax

typedef struct Sm PolicyApi Affiliate s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE];
char pszDesc[BFSIZE];
char pszAffiliateDomainOid[BFSIZE];
char pszPassword[BFSIZE];
bool bIsEnabled;
bool bAllowNotification;
char pszAuthURL[BFSIZE];
char pszAudience[BFSIZE];
long nValidityDuration;
bool bSharedSession;
long nSyncInterval;
long nSkewTime;
long nStartTime;
long nEndTime;
unsigned char pszTimeGrid[TIMESIZE];
Sm PolicyApi IPAddress t *pIPAddress;
struct Sm PolicyApi Affiliate s* next;
long nSAMLVersion;
char pszAssertionPluginClass[BFSIZE];
char pszAssertionPluginParameters[BFSIZE];
Sm PolicyApi SAML Profile t SAMLProfile;
char pszConsumerURL[BFSIZE];
} Sm PolicyApi Affiliate t;

Field Description

iStructld Domain data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the affiliate object.

pszName Name of the affiliate.

pszDesc Brief description of the affiliate.

pszAffiliateDomain The object identifier of the affiliate domain object.
Oid

Chapter 4: Policy Management API Guidance 127

Policy Management API Data Structures

Field

Description

pszPassword

The password for the affiliate as a null terminated string.

bilsEnabled

Boolean indicating if the affiliate is enabled.

bAllowNotification

Boolean indicating if notifications are allowed for the
affiliate.

pszAuthURL

The authentication URL for the affiliate.

pszAudience

A URI of the document that describes the terms and
conditions of the agreement between the portal and the
affiliate.

nValidityDuration

The amount of time, in seconds, that the assertion is
valid.

bSharedSession

Boolean that enables the sharing of session information
between the portal and the affiliate.

nSyncinterval

The frequency, in seconds, at which the affiliate contacts
the portal to validate session status.

nSkewTime

The difference, in seconds, between the system clock
time of the portal and the system clock time of the
affiliate.

nStartTime

The time when the time restriction becomes effective.
This value is stored in standard time_t format. Set
nStartTime to 0 to start the time restriction immediately.

nEndTime

The time when the time restriction expires. This value is
stored in standard time_t format. Set nEndTime to O to
end the time restriction immediately.

pszTimeGrid

An array containing time restrictions for an entire week.

pIPAddress

IP address that user must use in order to gain access to
the resources governed by the Policy.

next

Pointer to the next affiliate structure.

nSAMLVersion

One of the following SAML version constants:
= SM_POLICY_API_SAML_1 0

m SM_POLICY_API_SAML 1_1

The SAML version has effect only if the Policy
Management API's session version is at least
SM_POLICY_API_VERSION_6_0_1.

128 Programming Guide for C

Policy Management API Data Structures

Field

Description

pszAssertion
PluginClass

The fully qualified class name of a custom assertion
generator plug-in. The plug-in lets you customize the
default assertion that SiteMinder generates for an
affiliate.

A plug-in class and parameter string are supported only
if the Policy Management API's session version is at least
SM_POLICY_API_VERSION_6_0_2.

Custom assertion generator plug-ins are implemented
with the Java SDK.

pszAssertion
PluginParameters

The parameter string to pass to a custom assertion
generator plug-in.

SAMLProfile

The type of profile used to send and receive
SAML assertions. Defined in
Sm_PolicyApi_SAML_Profile_t.

Valid profiles:

m Sm_PolicyApi_SAML_Profile_Artifact. The SAML
assertion is retrieved from a URL associated with the
assertion producer. The URL is specified during
configuration of the SAML Artifact authentication
scheme.

m Sm_PolicyApi_SAML_Profile_POST. The generated
SAML assertion is POSTed to the URL specified in
pszConsumerURL.

This profile is supported only if the Policy Management

AP!I's session version is at least

SM_POLICY_API_VERSION_6_0_2.

pszConsumerURL

With a SAML POST profile, this field specifies the URL
where the requesting user's browser must POST a
generated assertion. The site associated with the URL
validates the assertion and uses its contents to make
access decisions.

Chapter 4: Policy Management API Guidance 129

Policy Management API Data Structures

Sm_PolicyApi_AffiliateAttr_t

Represents affiliate attributes. Used with affiliate methods to manipulate affiliate
attributes.

Syntax

typedef struct Sm PolicyApi AffiliateAttr s
{
int iStructId;
Sm PolicyApi AffiliateAttrType t nAttrType;
char pszValue[BFSIZE];
struct Sm PolicyApi AffiliateAttr s* next;
} Sm PolicyApi AffiliateAttr t;

Field Description

iStructld Domain data structure ID, defined in
Sm_PolicyApi_Structs_t.

nAttrType An affiliate attribute type from
Sm_PolicyApi_AffiliateAttrType_t.

pszValue An affiliate attribute specification.

The affiliate attribute's name and value, in one of these
formats:

m Static attributes:
variableName=value

m User attributes:
variableName=<%userattr="AttrName"%>

m DN attributes:
variableName=<#dn="DNSpec"
attr="AttrName"#>

To allow SiteMinder to retrieve DN attributes from a
nested group, begin DNSpec with an exclamation mark
(!)-for example:

dn="lou=People,o=security.com"

next Pointer to the next Affiliate Attribute structure.

130 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_AffiliateDomain_t
Represents an affiliate domain.

Syntax

typedef struct Sm PolicyApi Domain s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE];
char pszDesc[BFSIZE];
struct Sm PolicyApi Domain s* next;
} Sm PolicyApi Domain t, Sm PolicyApi AffiliateDomain t;

Field Description

iStructld Affiliate Domain data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Affiliate Domain.

pszName Name of the Affiliate Domain.

pszDesc Brief description of the Affiliate Domain.

next Pointer to the next Affiliate Domain structure.

Chapter 4: Policy Management API Guidance 131

Policy Management API Data Structures

Sm_PolicyApi_Agent_t
Defines a SiteMinder Agent object.

Syntax

typedef struct Sm PolicyApi Agent s

{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];
char pszIpAddr[BFSIZE];
char pszSecret[BFSIZE];
char pszAgentTypeOid[BFSIZE]; /* Required */
int nRealmHintAttrId; /* Required */
struct Sm PolicyApi Agent s* next;

} Sm PolicyApi Agent t;

Field Description

iStructld Agent data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the agent object.

pszName Name of the agent. Agent names are converted to lower

case when written to the policy store.

pszDesc Brief description of the agent.
pszlpAddr IP address of the server on which the agent resides.
pszSecret A shared secret known to two parties for the purpose of

establishing secure data exchange.

If a shared secret is provided, the agent is considered to
be a SiteMinder version 4.x agent. If a shared secret is
not provided, the agent is considered to be a SiteMinder
version 5.x or 6.0 agent.

pszAgentTypeOid Type of agent.

nRealmHintAttrld The hint attribute is a RADIUS attribute that is sent by
the RADIUS client device.

next Pointer to the next agent structure.

132 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_AgdentConfig_t
Defines an agent configuration object.

Syntax

typedef struct Sm PolicyApi AgentConfig s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];
struct Sm PolicyApi AgentConfig s* next;
} Sm PolicyApi AgentConfig t;

Field Description

iStructld Data structure ID, defined in Sm_PolicyApi_Structs_t.
pszOid The object identifier of the agent configuration object.
pszName Name of the agent configuration.

pszDesc Brief description of the agent configuration.

next Pointer to the next agent configuration object structure.

Chapter 4: Policy Management API Guidance 133

Policy Management API Data Structures

Sm_PolicyApi_AgentType_t
Defines a SiteMinder Agent Type object.

Syntax

typedef struct Sm PolicyApi AgentType s
{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE];

char pszDesc[BFSIZE];

int nRfcld;

int nAgentType;

int nResourceType;

int nAgentTypeSpecific;

struct Sm PolicyApi AgentType s* next;
} Sm PolicyApi AgentType t;

Field Description

iStructld Agent Type data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Agent Type object.

pszName Name of the Agent Type object.

pszDesc Brief description of the Agent Type object.

nRfcld The IETF Vendor ID, assigned by the Internet Assigned
Numbers Authority (IANA). (Applies to RADIUS device
only.)

nAgentType Agent type: RADIUS (value=0) or Web Agent (value=1).

nResourceType The resource type that the agent will protect. One of the

following values:

m 0=None

m 1=URL

m 2 =IpAddr

m 3 =IpAddrRange
m 4 =AgentAuth

m 5 =Radius Authentication

134 Programming Guide for C

Policy Management API Data Structures

Field Description

nAgentTypeSpecific The vendor-specific offset provided by the RADIUS
vendor. (Applies to RADIUS device only.) Not a required
field.

next Pointer to the next Agent Type structure.

Sm_PolicyApi_AgentTypeAttr_t
Defines a SiteMinder Agent Type Attribute object.

Syntax

typedef struct Sm PolicyApi AgentTypeAttr s
{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE];

char pszDesc[BFSIZE];

char pszAgentTypeOid[BFSIZE];

struct Sm PolicyApi AgentTypeAttr s* next;
} Sm PolicyApi AgentTypeAttr t;

Field Description

iStructld Agent Type Attribute data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Agent Type Attribute object.

pszName Name of the Agent Type Attribute object.

pszDesc Brief description of the Agent Type Attribute object.

pszAgentTypeOid The object identifier of the Agent Type.

next Pointer to the next Agent Type Attribute structure.

Chapter 4: Policy Management API Guidance 135

Policy Management API Data Structures

Sm_PolicyApi_Association_t

Defines a configuration parameter name and its associated value for an agent
configuration object.

Syntax

typedef struct Sm PolicyApi Association s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE]; /* Required */
char* pszValue;
int iFlags;
struct Sm PolicyApi Association s* next;
} Sm PolicyApi Association t;

Field Description
iStructld Data structure ID, defined in Sm_PolicyApi_Structs_t.
pszOid The object identifier of the configuration parameter

association object.

pszName The name of the configuration parameter.
pszValue The value of the configuration parameter.
iFlags If 1, the name/value pair is stored in encrypted format. If

0, storage is in plain text.

next Pointer to the next configuration parameter association
structure.

136 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_AuthAzMap_t
Defines a SiteMinder authentication and authorization mapping object.

Syntax

typedef struct Sm PolicyApi AuthAzMap s
{

int iStructId;

char psz0id[BFSIZE];

char pszAuthDirOid[BFSIZE]; /* Required */
char pszAuthDirName[BFSIZE];
char pszAzDirOid[BFSIZE]; /* Required */

char pszAzDirName[BFSIZE];
Sm PolicyApi AuthAzMapType t nMapType; /* Required */
struct Sm PolicyApi AuthAzMap s *next;

} Sm PolicyApi AuthAzMap t;

Field Description

iStructld Authentication and authorization mapping object data
structure ID, defined in Sm_PolicyApi_Structs_t.

pszOid The object identifier of the authentication and
authorization mapping object.

pszAuthDirOid The object identifier for the Authentication Directory.

pszAuthDirName The name of the Authentication Directory.

pszAzDirOid The object identifier for the Authorization Directory.

pszAzDirName The name of the Authorization Directory.

nMapType The type of mapping between an authentication

directory and an authorization directory. The mapping
can be based on a DN, a universal identifier, or on an
attribute in the directory.

next Pointer to the next authentication and authorization
mapping structure.

Chapter 4: Policy Management API Guidance 137

Policy Management API Data Structures

Sm_PolicyApi_CertMap_t

Defines a SiteMinder certification mapping object.

Syntax

typedef struct Sm PolicyApi CertMap s

{

int iStructlId;

char psz0id[BFSIZE];

char pszDesc[BFSIZE];

char pszUserDirOid[BFSIZE]; /*
char pszIssuerDN[BFSIZE]; /*
char pszCaDN[BFSIZE];

char pszMapAttr[BFSIZE];

Sm_PolicyApi CertMapFlags t nFlags; /*
Sm PolicyApi CertMapAttrType t nAttrType;
Sm _PolicyApi DirType t nDirType; /*

struct Sm PolicyApi CertMap s *next;

} Sm PolicyApi CertMap t;

Required
Required

Required

Required

Field Description

iStructld

Sm_PolicyApi_Structs_t.

Certificate mapping data structure ID, defined in

pszOid The object identifier of the certificate mapping object.
pszDesc Brief description of the certificate mapping object.
pszUserDirOid Object identifier of the user directory.

pszissuerDN DN of the server certificate.

pszCaDN DN of the issuing Certificate Authority.

138 Programming Guide for C

Policy Management API Data Structures

Field

Description

pszMapAttr

You can perform single attribute mapping or custom mapping:

m Single Attribute Mapping
The format of the attribute is:

%{<attribute name>}

<attribute name> is the name of the attribute, matching a
single attribute from the subject DN of a user's certificate to a
single attribute stored in the user directory to verify the user's
identity.

m Custom Mapping

Using custom mapping expressions for complex multiple
attribute mapping, you can specify multiple user attributes that
should be extracted from a user DN to establish a certificate
mapping. The syntax for a custom mapping expression is a
parsing specification designed to enable full mapping flexibility.
It indicates which information to take from the certificate and
where it should be applied to in the user directory. The basic
syntax is: UserAttribute=%{CertificateAttribute},
UserAttribute2=%{CertificateAttribute}

nFlags

Set one or more of these flags:

m Sm_PolicyApi_CertMapFlags_CertRequired

m Sm_PolicyApi_CertMapFlags_UseDistributionPoints
m Sm_PolicyApi_CertMapFlags_VerifySignature

m Sm_PolicyApi_CertMapFlags_CRLCheck

m Sm_PolicyApi_CertMapFlags_Cache

Chapter 4: Policy Management API Guidance 139

Policy Management API Data Structures

Field

Description

nAttrType

This enumeration specifies how the X.509 client certificate
maps to the user information in the authentication directory.

m Sm_PolicyApi_CertMapAttrType_Single =1
Specify single attribute to make the Policy Server match a
single attribute from the subject DN of a user's certificate
to a single attribute stored in the user directory to verify
the user's identity.

m Sm_PolicyApi_CertMapAttrType_Custom = 2
You can specify a custom mapping expression to verify the
user's identity. Specify this attribute type if the mapping is
based on a custom expression.

m Sm_PolicyApi_CertMapAttrType_Exact =3
Specify exact attribute type to make the Policy Server
match the user's entire DN from the certificate to the
entire DN in the authentication directory.

nDirType

The type of directory used to authenticate users. One of these
values:

m Sm_PolicyApi_DirType_LDAP =1
m Sm_PolicyApi_DirType_WinNT = 2
m Sm_PolicyApi_DirType_ODBC =3

next

Pointer to the next registration scheme structure.

140 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_Domain_t
Defines a SiteMinder Domain object.

Syntax
typedef struct Sm PolicyApi Domain s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];
struct Sm PolicyApi Domain s* next;
Sm PolicyApi DomainFlags t iFlags;
} Sm PolicyApi Domain t;

Field Description

iStructld Domain data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Domain object.

pszName Name of the Domain.

pszDesc Brief description of the Domain.

next Pointer to the next domain structure.

iFlags Flag to enable or disable global policies processing for
the domain.

Chapter 4: Policy Management API Guidance 141

Policy Management API Data Structures

Sm_PolicyApi_Group_t

Defines a SiteMinder Group object. SiteMinder Groups are defined in the
Sm_PolicyApi_Groups_t enumeration.

Syntax

typedef struct Sm PolicyApi Group s
{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];
char pszAgentTypeOid[BFSIZE]; /* Required */

struct Sm PolicyApi Group s* next;
} Sm PolicyApi Group t;

Field Description

iStructld Group data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Group object.

pszName Name of the Group.

pszDesc Brief description of the Group.

pszpszAgentTypeOid Object identifier of the agent.

next Pointer to the next Group structure.

142 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_HostConfig_t

Defines a host configuration object.

Syntax

typedef struct Sm PolicyApi HostConfig s

{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE];

char pszDesc[BFSIZE];

char pszIPAdress[BFSIZE];

bool bEnableFailOver;

int iMaxSocketsPerPort;

int iMinSocketsPerPort;

int iNewSocketStep;

int iRequestTimeout;

struct Sm PolicyApi HostConfig s* next;
Sm PolicyApi Server t* pServer;
Sm PolicyApi Server t* pCluster;
long nFailoverThreshold;

} Sm PolicyApi HostConfig t;

/* Required */

Field

Description

iStructld

Data structure ID, defined in Sm_PolicyApi_Structs_t.

pszOid

The object identifier of the host configuration object.

pszName

The name of the host configuration.

pszDesc

Brief description of the host configuration.

pszIPAddr

The IP address of the host configuration object.

bEnableFailOver

Specifies whether an agent and the Policy Server should
communicate through failover or round-robin. The
parameter is applicable to non-cluster servers specified
in the pServer parameter.

iMaxSocketsPerPort

The maximum number of TCP/IP sockets that can be
opened between an agent and a particular Policy Server
process.

iMinSocketsPerPort

The minimum number of TCP/IP sockets that should be
opened between an agent and a particular Policy Server
process.

Chapter 4: Policy Management API Guidance 143

Policy Management API Data Structures

Field

Description

iNewSocketStep

The incremental number of TCP/IP sockets that should
be opened between an agent and a particular Policy
Server process when demand increases.

iRequestTimeout

The length of time in seconds that an agent will wait for
a response from the Policy Server.

next

Pointer to the next host configuration structure.

pServer

A linked list of Sm_PolicyApi_Server_t structures that
describe TCP/IP connectivity information for a particular
Policy Server installation.

pCluster

Pointer to an array of Sm_PolicyApi_Server_t structures.
The array specifies cluster servers.

nFailoverThreshold

Specifies the failover threshold percent. The parameter
is applicable to the cluster servers specified in pCluster.

Sm_PolicyApi_IPAddress_t

Defines an IP address restriction for an object-for example, you can define IP address
restrictions that must be met for a policy to fire.

You can specify a single host IP address, a range of IP addresses, a host name, or a

subnet mask.

Syntax

typedef struct Sm PolicyApi IPAddress s

{
int iStructId;

Sm_PolicyApi IPAddressType t iIPAddressType;
unsigned long nIPAddress;

unsigned long nEndIPAddress;

unsigned long nSubnetMask;

char pszHostName[BFSIZE];

struct Sm PolicyApi IPAddress s *next;

} Sm PolicyApi IPAddress t;

Field

Description

iStructld

IP address structure ID, defined in
Sm_PolicyApi_Structs_t.

144 Programming Guide for C

Policy Management API Data Structures

Field Description

ilPAddressType Type of IP address, as enumerated in
Sm_PolicyApi_IPAddressType_t.

nlPAddress Starting IP address.

nEndIPAddress Ending IP address.

nSubnetMask The subnet mask value is a number of bits. To arrive at
this value, count the bits in the binary value of the
address.

For example, suppose the subnet mask is
255.255.255.128. The binary format is:
11111111 11111111 11111111
10000000

Counting from left to right, the number to pass in
nSubnetMask would be 25.

pszHostName Host name of the machine that a user must be using in
order for a policy to fire.

next Pointer to next IP Address structure.

Sm_PolicyApi_ManagementCommand_t

Defines a management command. Management commands enable an agent to retrieve
information from the Policy Server.

Syntax

typedef struct Sm PolicyApi ManagementCommand s
{
Sm_PolicyApi ManagementCommands t iCommand;
char pszData[BFSIZE];
} Sm PolicyApi ManagementCommand t;

Field Description

iCommand Management command, as specified in Management
Commands.

pszData Reserved.

Chapter 4: Policy Management API Guidance 145

Policy Management API Data Structures

Sm_PolicyApi_ODBCQueryScheme_t
Defines a SiteMinder ODBC Query Scheme object.

Syntax

typedef struct Sm PolicyApi ODBCQueryScheme s
{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];

char pszQueryEnumerate[BFSIZE]; /* Required */
char pszQueryGetObjInfo[BFSIZE]; /* Required */
char pszQueryLookup[BFSIZE]; /* Required */
char pszQueryInitUser[BFSIZE]; /* Required */
char pszQueryAuthenticateUser[BFSIZE]; /* Required */
char pszQueryGetUserProp[BFSIZE]; /* Required */
char pszQuerySetUserProp[BFSIZE]; /* Required */
char pszQueryGetUserProps[BFSIZE]; /* Required */
char pszQuerylLookupUser[BFSIZE]; /* Required */
char pszQueryGetGroups|[BFSIZE]; /* Required */
char pszQueryIsGroupMember[BFSIZE]; /* Required */
char pszQueryGetGroupProp[BFSIZE]; /* Required */
char pszQuerySetGroupProp[BFSIZE]; /* Required */
char pszQueryGetGroupProps[BFSIZE]; /* Required */
char pszQueryLookupGroup [BFSIZE]; /* Required */
char pszQuerySetPassword [BFSIZE]; /* Required */

struct Sm PolicyApi ODBCQueryScheme s* next;
} Sm PolicyApi ODBCQueryScheme t;

Field Description

iStructld ODBC Query Scheme data structure 1D,
defined in Sm_PolicyApi_Structs_t.

pszOid The object identifier of the ODBC Query
Scheme object.

pszName Name of the ODBC Query Scheme.

pszDesc Brief description of the ODBC Query Scheme.

pszQueryEnumerate Query that lists the names of user objects in

the directory.

pszQueryGetObjinfo Query that fetches the class of the object.

146 Programming Guide for C

Policy Management API Data Structures

Field Description

pszQueryLookup Query that returns objects based on an
attribute specified in a group table.

pszQuerylinitUser Query that determines if a user with a given

name exists in the database.

pszQueryAuthenticateUser

Query that retrieves a password from a user.

pszQueryGetUserProp

Query that retrieves the value of a

user property. The property must be one
of the properties listed with
pszQueryGetUserProps.

pszQuerySetUserProp

Query that sets the value of a user property.
The property must be one of the properties
listed in pszQueryGetUserProps.

pszQueryGetUserProps

Query that returns a comma-separated list of
user attributes that reside in the same table
as the user name.

pszQuerylLookupUser

Query that retrieves a user name using an
attribute of the user table.

pszQueryGetGroups

Query that retrieves the names of the groups
of which the user is a member.

pszQuerylsGroupMember

Query that identifies the group membership
of a particular user.

pszQueryGetGroupProp Query that returns the value of a property
defined in pszQueryGetGroupProps
pszQuerySetGroupProp Query that sets the value of a group property.

The property must be one of the properties
listed in pszQueryGetGroupProps.

pszQueryGetGroupProps

Query that returns a comma-separated list of
group attributes.

pszQueryLookupGroup Query that retrieves a group name using an
attribute of the group table.

pszQuerySetPassword Query that changes a user password.

next Pointer to the next ODBC query scheme

structure.

Chapter 4: Policy Management API Guidance 147

Policy Management API Data Structures

Sm_PolicyApi_Oid_t

Used by the following functions to retrieve a SiteMinder object collection:
m Sm_PolicyApi_GetDomainObjects()

m Sm_PolicyApi_GetChildren()

m Sm_PolicyApi_GetGlobalObjects()

m Sm_PolicyApi_GetGroupQids().

Syntax

typedef struct Sm PolicyApi 0id s
{

int iStructId;

int iObjectId;

char psz0id[BFSIZE];

struct Sm PolicyApi 0id s *next;
} Sm PolicyApi 0id t;

Field Description

iStructld OID data structure ID, defined in
Sm_PolicyApi_Structs_t.

iObjectld The object type identifier (enumerated in
Sm_PolicyApi_Objects_t).

pszOid The unique object identifier.

next Pointer to the next OID structure.

148 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_PasswordMsgField_t

Describes a password policy message field. A password policy message field contains
information about an error that occurred during a validation attempt for a new
password.

A password policy message field is associated with a password policy message identifier.
This identifier is returned in the nMsgld parameter of Sm_PolicyApi_GetPasswordMsg().

This structure is returned in the ppStructMsgField parameter of
Sm_PolicyApi_GetPasswordMsg().

Syntax
typedef struct Sm PolicyApi PasswordMsgField s
{
int iStructId;
Sm_PolicyApi PasswordMsgFieldId t nId;
Sm PolicyApi FieldType t nType;
char pszMsg[BFSIZE];
int nValue;
struct Sm PolicyApi PasswordMsgField s* next;
} Sm PolicyApi PasswordMsgField t;

Field Description

iStructld Password policy data structure ID, defined in
Sm_PolicyApi_Structs_t.

nid The password message field identifier. Message field
identifiers are enumerated in
Sm_PolicyApi_PasswordMsgFieldld_t.

nType The data type of the message field (integer, string, or
none) as enumerated in Sm_PolicyApi_FieldType_t.

The value of nType determines whether pszMsg or
nValue is populated.

pszMsg Text that provides information about the error.
nValue Integer that provides information about the error.
next Pointer to the next password message field structure.

Chapter 4: Policy Management API Guidance 149

Policy Management API Data Structures

Sm_PolicyApi_PasswordPolicy_t

Defines a SiteMinder password policy object.

Syntax

typedef struct Sm PolicyApi PasswordPolicy s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE];
char pszDesc[BFSIZE];
bool bEntireDir;
bool bIsEnabled;
char pszUserDirectory0Oid[BFSIZE];
char pszPath[BFSIZE];
char pszClass[BFSIZE];
int nResolution;
int nLoginMaxFailures;
int nLoginMaxInactivity;
int nLoginInactivityWarn;
int nLoginDaysGrace;
char pszDictionaryName[BFSIZE];
int nDictionaryPartial;
int nExpirationDelay;
int nReenablement;
int nPasswordBehavior;
char pszPasswordServicesRedirect[BFSIZE];
int nPWMaxLength;
int nPWMinLength;
int nPWMaxRepeatingChar;
int nPWMinAlphaNum;
int nPWMinAlpha;
int nPWMinNonAlpha;
int nPWMinNonPrintable;
int nPWMinNumbers;
int nPWMinPunctuation;
int nPWReuseCount;
int nPWReuseDelay;
int nPWPercentDifferent;
int nPWPercentSequence;
int nPWSpecialsLength;
struct Sm PolicyApi PasswordPolicy s* nex
int nPriority;
int nPWMinLowerAlpha;
int nPWMinUpperAlpha;
int nReservedl;
int nReserved2;
int nReserved3;

/*

/*
/*
/*
/*
/*
/*
/*
/*

/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
t;
/*
/*
/*

Required

Required
Required
Required
Required
Required
Required
Required
Required

Required

Required
Required
Required
Required

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

Required
Required
Required

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

150 Programming Guide for C

Policy Management API Data Structures

int nReserved4[BFSIZE];
} Sm PolicyApi PasswordPolicy t;

Field Description
iStructld Password policy data structure ID, defined in
Sm_PolicyApi_Structs_t.
pszOid The object identifier of the password policy
object.
pszName Name of the password policy.
pszDesc Brief description of the password policy object.
bEntireDir Flag: Set to true to apply the password policy to
the entire LDAP directory.
bisEnabled Flag: Set to true to enable the password policy.
pszUserDirectoryOid Object identifier of the user directory to which
the password policy will apply.
pszPath If bEntireDir is set to false, use this field to
specify the users to whom the password policy
applies. For example, values you can specify
include:
m Acomplete user DN
m A complete DN of an organization or group
containing the users to whom the
password policy applies
m A search expression that represents the
users to whom the password policy applies
See nResolution for more information.
pszClass If bEntireDir is set to false, use this field to

specify the object class where the password
policy applies.

Specify the object class as understood by a
particular user directory, such as
organizationalUnit in LDAP or User in NT.

Chapter 4: Policy Management API Guidance 151

Policy Management API Data Structures

Field

Description

nResolution

A constant that shows how the password policy
applies to the users specified in pszPath. For
example:

m If pszPath is the path to a group, the
following constant indicates that the
password policy applies to the members of
the group:

Sm_PolicyResolution_UserGroup

m |f pszPath is a search expression that
searches for all groups containing a
particular attribute, the following constant
indicates that the password policy applies
to the members of the matching groups:

Sm_PolicyResolution_GroupProp

Policy resolution constants are defined in
Sm_PolicyResolution_t.

nLoginMaxFailures

Maximum number of failed login attempts a
user can make before the user account is
disabled.

nLoginMaxInactivity

Number of days of inactivity allowed before a
user's password expires. The account is not
disabled until the user tries to log in after the
expiration.

nlLogininactivityWarn

Reserved.

nLoginDaysGrace

Number of days in advance to notify user that
the password will expire.

pszDictionaryName

The location of a dictionary file that lists words
that cannot be used in a password.

nDictionaryPartial

The minimum number of letters to qualify for
dictionary checking. For example, set this field
to 5 to avoid checking words of 4 or fewer
characters. Set this field to O to reject only
passwords that match a word in the dictionary
exactly.

nExpirationDelay

Number of days of inactivity allowed before
user account is disabled.

152 Programming Guide for C

Policy Management API Data Structures

Field

Description

nReenablement

Specifies the number of minutes a user must
wait before attempting to log in again or before
the user's account is re-enabled.

The condition that applies after the
nReenablement time period is determined by
the following flag (which is set through
nPasswordBehavior):

Sm_PasswordPolicyBehavior_
FullReenable

nPasswordBehavior

Bit mask flags expressing the behavior of the
password policy, as defined in
Sm_PasswordPolicyBehavior_t.

You can also set recursive behavior for the
password policy through the additional
password behavior flag below. Use this flag to
indicate that the password policy applies to the
group specified in pszPath and to any groups
nested within it:

Sm_PolicyBehavior_Recursive_Yes

All password behavior flags are defined in
SmApi.h.

pszPasswordServices
Redirect

The URL to which the user should be redirected
when an invalid password is entered. This must
be the URL of the Password Services CGl.

nPWMaxLength

The maximum length for user passwords.

nPWMiinLength

Minimum length for user passwords.

nPWMaxRepeatingChar

Maximum number of identical characters that
can appear consecutively in a password.

nPWMinAlphaNum

Minimum number of alphabetic or numeric
characters (A-Z, a-z, or 0-9) that a password
must contain. May be set in conjunction with
PWMinAlpha or PWMinNumbers. For example,
if PWMinAlphaNum and PWMinNumbers are
set to 4, the password 1234 is valid.

nPWMinAlpha

Minimum number of alphabetic characters (A-Z,
a-z) a password must contain.

Chapter 4: Policy Management API Guidance 153

Policy Management API Data Structures

Field

Description

nPWMinNonAlpha

Minimum number of non-alphanumeric
characters a password must contain. These
characters include punctuation marks and other
symbols located on the keyboard, such as "@",
"S", and "*."

nPWMinNonPrintable

Minimum number of non-printable characters
that must be in a password. These characters
cannot be displayed on a computer screen.

nPWMinNumbers

Minimum number of numeric characters (0-9) a
password must contain.

nPWMinPunctuation

Minimum number of punctuation marks a
password must contain. These characters
include periods, commas, exclamation marks,
slashes, hyphens, dashes, and other marks used
for punctuation.

nPWReuseCount

Number of new passwords that must be used
before an old one can be reused.

nPWReuseDelay

Number of days a user must wait before reusing
a password.

nPWPercentDifferent

The percentage of characters a new password
must contain that differ from characters in the
previous password. If the value is set to 100,
the new password may contain no characters
that were in the previous password, unless
nPWPercentSequence is set to 0.

nPWPercentSequence

Flag that indicates whether to ignore sequence
(character position) when the
different-from-previous-characters percentage
is calculated. To ignore character position, set
nPWPercentSequence to 1. This flag works in
conjunction with nPWPercentDifferent.

For examples of how this parameter works with
nPWPercentDifferent, see Figure 31 on page
150.

154 Programming Guide for C

Policy Management API Data Structures

Field

Description

nPWSpecialsLength

Specifies the minimum character sequence to
check against the user's personal information.
For example, if this value is set to 4, SiteMinder
prohibits the use of any four consecutive
characters found in the user's personal
information, such as the four last digits of the
user's telephone number.

This field prevents a user from incorporating
personal information in a password. SiteMinder
checks the password against attributes in the
user's directory entry.

next

Pointer to the next registration scheme
structure.

nPriority

Priority of password policy, when multiple
password policies apply. The value can be any
integer, including a negative one. The higher
number has priority over the lower number.

nPWMinLowerAlpha

Minimum number of lowercase alphabetic
characters.

nPWMinUpperAlpha

Minimum number of uppercase alphabetic
characters.

Chapter 4: Policy Management API Guidance 155

Policy Management API Data Structures

Sm_PolicyApi_Policy_t
Defines a SiteMinder Policy object.

Syntax

typedef struct Sm PolicyApi Policy s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];
char pszActiveExpr[BFSIZE];
bool bIsEnabled; /* Required */
char pszDomainQid[BFSIZE]; /* Required */
long nStartTime;
long nEndTime;
unsigned char pszTimeGrid[TIMESIZE];
Sm PolicyApi IPAddress t *pIPAddress;
struct Sm PolicyApi Policy s* next;
char pszVariableExpr[BFSIZE]
Sm PolicyApi 0id t* pVariableList;
} Sm PolicyApi Policy t;

Field Description

iStructld Policy data structure ID, defined in Sm_PolicyApi_Structs_t.
pszOid The object identifier of the Policy object.

pszName Name of the Policy.

pszDesc Brief description of the Policy.

156 Programming Guide for C

Policy Management API Data Structures

Field Description
pszActiveExpr Active expression associated with the policy. The expression
is a string of variable definitions in the following format.
The non-alphanumeric characters are required characters.
For example:
<@lib="LibName" func="FuncName"
param="FuncParam"@>
In the format example:
m LibName is the name of the shared library that supports
the Active Policy.
m FuncName is the name of the actual function in the
shared library that implements the Active Policy.
m FuncParam is an optional list of parameters to be passed
to the function in the shared library.
bisEnabled Flag to enable or disable the policy.
pszDomainOid The object identifier of the domain. Required for
domain-specific policy; ignored for global policy.
nStartTime The time when the time restriction becomes effective. This
value is stored in standard time_t format. Set nStartTime to 0
to start the time restriction immediately.
nEndTime The time when the time restriction expires. This value is
stored in standard time_t format. Set nEndTime to 0 to end
the time restriction immediately.
pszTimeGrid An array containing time restrictions for an entire week.
plPAddress IP address that user must use in order to gain access to the
resources governed by the Policy.
next Pointer to the next Policy structure.
pszVariableExpr Unique object identifier that corresponds to a variable type.
pVariablelist Linked list of variable OIDs used by this expression.

Chapter 4: Policy Management API Guidance 157

Policy Management API Data Structures

Time Grid Array

The time grid array (used with the field pszTimeGrid) holds time restrictions for an entire
week. The array contains a one-byte element for every hour of the day, starting with 12
AM. In every byte, the seven days of the week are represented, beginning with Sunday
as the lowest order bit. Bits that are set enable the policy to fire. A zero bit prevents the
policy from firing on that day during the associated hour.

Examples:

m To disable policy firing for the hour 12-1 AM on Saturdays and Sundays, the
hexadecimal value for the entire grid is:
3E7F7F7FTFTFIFTFTFTFTFTFTFTFTF7F7F7FTFTFTFTFTFTF

m Tofire the policy at all times, leave all bits set:
TFIFTFTFTFIFIFIFIFIFIFTFTFIFIFIFTFTFTFTFTFTFTFTF

m To restrict the policy from being fired all day Thursday, turn off the Thursday bit in
all the hour elements:
6F

m To restrict the policy from being fired from 8 AM to 10AM on Tuesday, turn off the
Tuesday bit in hours 8 AM and 9 AM:
TFTFTETFTFTETFTETICTICTIFTFTFTFTF7F7F7FTFTFTFTFTFTE

m To fire between 8 AM and 8 PM on all days:
00000000000000007F7F7F7F7F7F7F7F7F7F7F7FO0000000

158 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_PolicyLink_t
Defines a SiteMinder Policy Link object.

Syntax
typedef struct Sm PolicyApi PolicylLink s

{
int iStructId;
char psz0id[BFSIZE];
char pszRuleOid[BFSIZE]; /* Required */
char pszResponse0id[BFSIZE];
struct Sm PolicyApi PolicylLink s* next;
} Sm PolicyApi PolicylLink t;

Field Description

iStructld Policy Link data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Policy Link object.

pszRuleOid Object identifier of the rule.

pszResponseOid Object identifier of the response.

next Pointer to the next Policy Link structure.

Chapter 4: Policy Management API Guidance 159

Policy Management API Data Structures

Sm_PolicyApi_Realm_t
Sm_PolicyApi_Realm_t type defines a SiteMinder Realm object.

Syntax

typedef struct Sm PolicyApi Realm s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];
char pszResourceFilter[BFSIZE];

char pszAgentOid[BFSIZE]; /* Required */
char pszSchemeQid[BFSIZE]; /* Required */
char pszParentRealmOid[BFSIZE]; /* Required */
char pszDomainQid[BFSIZE]; /* Required */
char pszAzUserDirOid[BFSIZE]; /* Required */
char pszRegScheme0Oid[BFSIZE]; /* Required */
bool bProcessAuthEvents; /* Required */
bool bProcessAzEvents; /* Required */
bool bProtectAll; /* Required */
int nMaxTimeout; /* Required */
int nIdleTimeout; /* Required */
bool bSyncAudit; /* Required */

struct Sm PolicyApi Realm s* next;
} Sm PolicyApi Realm t;

Field Description

iStructld Realm data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Realm object.

pszName Name of the realm.

pszDesc Brief description of the realm.

pszResourceFilter Path for the resource filter.

pszAgentOid Object identifier of the agent or agent group associated

with the realm.

pszSchemeOid Object identifier of the authentication scheme
associated with the realm.

160 Programming Guide for C

Policy Management API Data Structures

Field

Description

pszParentRealmOid

Object identifier of the parent realm under which this
realm will be added. If the realm being added is the top
realm in the realm hierarchy, set this field to the domain
OID. Otherwise, set it to the parent realm OID.

pszDomainOid

Object identifier of the domain.

bProcessAuthEvents

Boolean to trigger this rule in an event of authentication
attempts.

Authentication event processing affects performance. If
no rules in the realm are triggered by authentication
events, set this field to false.

bProcessAzEvents

Boolean to trigger this rule in an event of authorization
attempts.

Authorization event processing affects performance. If
no rules in the realm are triggered by authorization
events, set this field to false.

bProtectAll

Boolean to protect all the resources contained in the
new realm.

nMaxTimeout

Maximum amount of time a user can access the
protected resources in the realm before they must
re-authenticate.

nidleTimeout

Amount of time a user can remain authenticated for the
protected resources in the realm without interacting
with the resources before they must re-authenticate.

bSyncAudit

Boolean to enable synchronous auditing. When enabled,
users cannot access resources within a realm until their
activity has been successfully recorded in the audit logs
of both the Policy Server and the Web Agent.

pszAzUserDirOid

OID of the directory against which users accessing
resources in this realm will be authorized.

pszRegSchemeOid

OID of the registration scheme that will be used to
register new users accessing resources in this realm.

next

Pointer to the next realm structure.

Chapter 4: Policy Management API Guidance 161

Policy Management API Data Structures

Sm_PolicyApi_RegistrationScheme_t

Defines a SiteMinder registration scheme object.

Syntax

typedef struct Sm PolicyApi RegistrationScheme s

{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE];
char pszDesc[BFSIZE];

/* Required */

char pszUserDirOid[BFSIZE]; /* Required */
char pszWelcomePageURL[BFSIZE];
char pszTemplatePath[BFSIZE];

bool bEnablelLogging;

/* Required */

struct Sm PolicyApi RegistrationScheme s* next;
} Sm PolicyApi RegistrationScheme t;

Field Description

iStructld Registration scheme data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the registration scheme object.

pszName Name of the registration scheme.

pszDesc Brief description of the registration scheme.

pszUserDirOid Object identifier of the LDAP user directory in which user
information is stored.

pszWelcomePageURL Location of the form used to welcome users who
registered and who have been successfully
authenticated.

pszTemplatePath Location of a registration template.

bEnableLogging Flag to indicate whether to log registration information.
Set this flag to true to enable logging.

next Pointer to the next registration scheme structure.

162 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_RedularExpression_t
Defines a regular expression.

Syntax

typedef struct Sm PolicyApi RegularExpression_s
{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE];

char ExpressionDef[BFSIZE];

bool matchExpression;

struct Sm PolicyApi RegularExpression s *next;
} Sm PolicyApi RegularExpression t;

Field Description

iStructld Regular expression structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the regular expression object.
pszName Name of the regular expression.

ExpressionDef Definition of the regular expression.
matchExpression 1 if password must match this expression.

0 if password must not match this expression.

next Pointer to the next regular expression structure.

Chapter 4: Policy Management API Guidance 163

Policy Management API Data Structures

Sm_PolicyApi_Response_t
Defines a SiteMinder Response object.

Syntax

typedef struct Sm PolicyApi Response s
{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];

char pszAgentTypeOid[BFSIZE]; /* Required */
char pszDomainQid[BFSIZE]; /* Required */

struct Sm PolicyApi Response s* next;
} Sm PolicyApi Response t;

Field Description

iStructld Response data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Response object.
pszName Name of the Response.

pszDesc Brief description of the Response.
pszAgentTypeOid The object identifier of the agent type.
pszDomainOid The object identifier of the domain. Required for a

domain-specific response; ignored for a global response.

next Pointer to the next Response structure.

164 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_ResponseAttr_t
Defines a SiteMinder Response attribute object.

Syntax
typedef struct Sm PolicyApi ResponseAttr s

{
int iStructId;
char psz0id[BFSIZE];

char pszAgentTypeAttrO0id [BFSIZE]; /* Required */
char pszValue[BFSIZE];

int iTTL; /* Required */
int iFlags;

struct Sm PolicyApi ResponseAttr s* next;
char pszActiveExpr[BFSIZE];
Sm PolicyApi 0id t* pVariableList;

} Sm PolicyApi ResponseAttr t;

Field Description

iStructld Response Attribute data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the Response Attribute
object.

pszAgentTypeAttrOid The object identifier of the agent type attribute.

pszValue A response attribute type, as described in Response

Attribute Types.

iTTL Amount of time (in seconds) that can elapse before
the value of the response attribute is recalculated.

iFlags Reserved.
next Pointer to the next Response Attribute structure.
pszActiveExpr Active expression associated with the response

attribute. For information, see the bullet "Active
Response" in the section Response Attribute Types.

pVariableList Linked list of variable OIDs used by the active
expression.

Chapter 4: Policy Management API Guidance 165

Policy Management API Data Structures

Response Attribute Types

The field pszValue contains one of the following response attribute types:

Note: The non-alphanumeric characters in the formats below are required characters.

Static. A string that is part of a SiteMinder response. The string has the following
format:

variable-name=variable-value
In the format example:

m variable-name is the name for the name/value pair that this response attribute
will return to the Web Agent.

m variable-value is the static text that will be returned as the second half of the
name/value pair.

User Attribute. A string containing profile information from a user's entry in a user
directory. The string has the following format:

User-Attr-variable-name=<%userattr="user-attr-name"%>
In the format example:

m User-Attr-variable-name is the name for the name/value pair that this response
attribute will return to the Web Agent.

m user-attr-name is a user attribute that can be retrieved from an LDAP, WinNT,
or ODBC user directory.

DN Attribute. A string containing profile information from a directory object in an
LDAP or ODBC user directory. The string has the following format:

DN-Variable-Name=<#dn="DN-Spec" attr="DN-Attribute-Name"#>
In the format example:

m DN-Variable-Name is the name for the name/value pair that this response
attribute will return to the Web Agent.

m DN-Spec is the distinguished name of the user group from which you want to
retrieve the user attribute.

m DN-Attribute-Name is an attribute associated with an LDAP or ODBC directory
object to which the user is related, such as a group or an organizational unit
(ou).

Active Response. An active expression associated with the Response Attribute. The
expression is a string of variable definitions in the following format:

Name=<@lib="LibName" func="FuncName" param="Param"@
In the format example:

m Name is the name of the variable (with WebAgent-HTTP-Header-Variable
response attributes) or cookie (with WebAgent-HTTP-Cookie-Variable response
attributes) associated with the name/value pairs in the active expression.

166 Programming Guide for C

Policy Management API Data Structures

m LibName is the name of the shared library that supports the Active Response.

m FuncName is the name of the actual function in the shared library that
implements the Active Response.

m Param is an optional list of parameters to be passed to the function in the
shared library.

Note: For information about configuring active expressions in responses, rules, or
policies, see Policy Design.

Sm_PolicyApi_Rule_t
Defines a SiteMinder Rule object.

Syntax

typedef struct Sm PolicyApi Rule s
{

int iStructld;

char psz0id[BFSIZE];

char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];

char pszRealmOid[BFSIZE]; /* Required */
char pszAction[BFSIZE]; /* Required */
char pszResource[2*BFSIZE];

bool bAllowAccess; /* Required */
bool bRegularExpression; /* Required */
char pszActiveExpr[BFSIZE];

bool bIsEnabled; /* Required */

long nStartTime;

long nEndTime;

unsigned char pszTimeGrid[TIMESIZE];

struct Sm PolicyApi Rule s* next;

char pszAgentOid[BFSIZE]; /* Required */
} Sm PolicyApi Rule t;

Field Description

iStructld Rule data structure ID, defined in Sm_PolicyApi_Structs_t.
pszOid The object identifier of the rule object.

pszName Name of the Rule.

pszDesc Brief description of the rule.

Chapter 4: Policy Management API Guidance 167

Policy Management API Data Structures

Field Description

pszRealmOid Object identifier of the Realm associated with the rule.
Required for a domain-specific rule; ignored for a global
rule.

pszAction The type of action the rule is executing. The supported

Web Agent Actions consist of the following HTTP
operations: Get, Put, and Post.

pszResource Resource protected by the rule.

bAllowAccess Flag to allow or deny access to the resource protected by
the rule.

bRegularExpression Flag to perform regular expression pattern matching.
Regular expressions are text patterns used for string
matching.

pszActiveExpr Active expression associated with the rule. The expression

is a string of variable definitions in the following format:

The non-alphanumeric characters are required characters

.For example:

<@lib="LibName" func="FuncName"
param="FuncParam" @>

In the format example:

m LibName is the name of the shared library that
supports the Active Rule.

m FuncName is the name of the actual function in the
shared library that implements the Active Rule.

m FuncParam is an optional list of parameters to be
passed to the function in the shared library.

dbisEnabled Flag to enable or disable the rule.

nStartTime The time when the time restriction becomes effective.
This value is stored in standard time_t format. Set
nStartTime to 0 to start the time restriction immediately.

nEndTime The time when the time restriction expires. This value is
stored in standard time_t format. Set nEndTime to 0 to
end the time restriction immediately.

pszTimeGrid An array containing time restrictions for an entire week.

168 Programming Guide for C

Policy Management API Data Structures

Field Description
next Pointer to the next rule structure.
pszAgentOid Object identifier of agent or agent group associated with

the global rule.

Sm_PolicyApi_SAMLAffiliation_t

Defines a SAML 2.0 affiliation object. A SAML 2.0 affiliation is a set of entities that share
a single federated namespace of unique Name IDs for principals.

Syntax

typedef struct Sm PolicyApi SAMLAffiliation s
{

int iStructId;

Sm PolicyApi SAMLProviderProp t *pProps;

struct Sm PolicyApi SAMLAffiliation s *next;
} Sm PolicyApi SAMLAffiliation t;

Field Description

iStructld SAML affiliation structure ID, defined in
Sm_PolicyApi_Structs_t.

pProps SAML 2.0 metadata properties associated with the
affiliation.

If you do not assign a value to a property associated
with a default value, the default will be assigned.

next Pointer to the next SAML affiliation structure.

Chapter 4: Policy Management API Guidance 169

Policy Management API Data Structures

Sm_PolicyApi_SAMLProviderProp_t

Defines a SAML 2.0 metadata property as a name/value pair.

An Sm_PolicyApi_SAMLProviderProp_t structure consists of a single name/value pair.
You define a set of properties for a given SAML 2.0 object through a linked list of
Sm_PolicyApi_SAMLProviderProp_t structures.

Use the following structures and function to define a set of properties for a SAML 2.0
Service Provider, affiliation, or authentication scheme and associated Identity Provider:

m Sm_PolicyApi_SAMLSP_t
m Sm_PolicyApi_SAMLAffiliation_t
m Sm_PolicyApi_AddSAMLScheme()

Syntax
typedef struct Sm PolicyApi SAMLProviderProp s
{

int iStructId;

char pszName[BFSIZE];

char pszValue[BFSIZE];

struct Sm PolicyApi SAMLProviderProp s *next;
} Sm PolicyApi SAMLProviderProp t;

Field Description

iStructld SAML 2.0 properties structure ID, defined in
Sm_PolicyApi_Structs_t.

pszName The property name. See Property Lists for a list of valid
property names.

pszValue The value to assign to pszName.

next Pointer to the next SAML 2.0 properties structure.

170 Programming Guide for C

Policy Management API Data Structures

Example

The following is an example of a helper method that creates an instance of
Sm_PolicyApi_SAMLProviderProp_t and assigns it the name/value pair that is passed
into it:

Sm_PolicyApi SAMLProviderProp t * CreateSAMLProp(
const char *pszName,
const char *pszValue)

Sm PolicyApi SAMLProviderProp t * pProp = new

Sm_PolicyApi SAMLProviderProp t;
memset (pProp, 0, sizeof(Sm PolicyApi SAMLProviderProp t));
pProp->iStructId = Sm PolicyApi SAMLProviderProp ID;
strncpy(pProp->pszName, pszName, BFSIZE);
strncpy(pProp->pszValue, pszValue, BFSIZE);
return pProp;

}

The following is an example of a helper method that retrieves the value of the property
whose name is passed into it:

char * FindSAMLParam(const Sm PolicyApi SAMLSP t *pStructSP,
const char *pszName)

{
for(Sm _PolicyApi SAMLProviderProp t *pCurProp=pStructSP->pProps;
pCurProp != NULL;
pCurProp = pCurProp->next)
{
if (0 == strcmp(pCurProp->pszName, pszName))
{
return pCurProp->pszValue;
}
}
return NULL;
}

Property Lists

Each Sm_PolicyApi_SAMLProviderProp_t structure contains a SAML 2.0 metadata
property defined as a name/value pair. A complete set of properties for a particular
SAML 2.0 object is defined as a linked list of Sm_PolicyApi_SAMLProviderProp_t
structures.

The following metadata properties apply to a given type of SAML 2.0 object:

m Service Provider Properties

m SAML Affiliation Properties

Chapter 4: Policy Management API Guidance 171

Policy Management API Data Structures

m SAML 2.0 Authentication Scheme Properties

Note: Some properties are used with multiple object types.

Service Provider Properties

A Service Provider object contains information that an Identity Provider needs to
produce assertions for the Service Provider. Service Provider properties are stored

within an Sm_PolicyApi_SAMLSP_t structure.

The properties of a SAML 2.0 Service Provider object are listed following.

Property Name Comments

General Properties

SAML_NAME String, required.
SAML_DESCRIPTION String.
SAML_SP_AUTHENTICATION_URL String, required.
SAML_ENABLED Boolean.

Default: SAML_TRUE.

SAML_SP_DOMAIN String, required.

Name IDs Tab

SAML_SP_NAMEID_FORMAT String.
Default: Unspecified.

SAML_SP_NAMEID_TYPE Integer.
Default: 1.
SAML_SP_NAMEID_STATIC String.

Required conditionally.

SAML_SP_NAMEID_ATTRNAME String.

Required conditionally.

SAML_SP_NAMEID_DNSPEC String.

Required conditionally.
SAML_AFFILIATION String.
SAML_KEY_SPID String, required.

String, required.

172 Programming Guide for C

Policy Management API Data Structures

Property Name Comments
SAML_MAJOR_VERSION Integer.
Default: 2.
SAML_MINOR_VERSION Integer.
Default: 0.
SAML_SKEWTIME Integer.
Default: 30.
SAML_DISABLE_SIGNATURE_ Boolean.

PROCESSING

Default: SAML_FALSE.

SAML_DSIG_VERINFO_ISSUER_DN

String.

Required conditionally.

SAML_DSIG_VERINFO_SERIAL_NUMBER

String.

Required conditionally.

SSO Properties

SAML_AUDIENCE

String, required.

SAML_SP_ASSERTION_CONSUMER _
DEFAULT_URL

String, required.

SAML_ENABLE_SSO_ARTIFACT__
BINDING

Boolean.
Default: SAML_FALSE.

SAML_SP_ARTIFACT_ENCODING

String.

Default: FORM. Applies if no
value is provided and
SAML_ENABLE_SSO_
ARTIFACT_BINDING is
SAML_TRUE.

SAML_SP_IDP_SOURCEID

String.

Default: A hex-encoded SHA-1
hash of the SAML_SP_IDPID
value.

SAML_SP_PASSWORD

String.

Required conditionally (see
page 34).

SAML_ENABLE_SSO_POST_BINDING

Boolean.
Default: SAML_FALSE.

SAML_SSOECPPROFILE

Boolean.
Default: SAML_FALSE.

Chapter 4: Policy Management API Guidance 173

Policy Management API Data Structures

Property Name

Comments

SAML_SP_REQUIRE_SIGNED_
AUTHNREQUESTS

Boolean.
Default: SAML_FALSE.

SAML_SP_AUTHENTICATION_LEVEL

Integer.
Default: 5.

SAML_SP_AUTHN_CONTEXT_CLASS_REF

String.

Default:
urn:oasis:names:tc:SAML:
2.0:ac:classes:Password

SAML_SP_VALIDITY_DURATION Integer.
Default: 60.

SAML_SP_STARTTIME Long.

SAML_SP_ENDTIME Long.

SLO Properties

SAML_SLO_REDIRECT_BINDING Boolean.

Default: SAML_FALSE.

SAML_SLO_SERVICE_VALIDITY_

DURATION

Integer.

Default: 60. Applies if no value is
provided and
SAML_SLO_REDIRECT_BINDING
is SAML_TRUE.

SAML_SLO_SERVICE_URL

String.

Required conditionally.

SAML_SLO_SERVICE_RESPONSE_URL String.
SAML_SLO_SERVICE_CONFIRM_URL String.
IPD Properties

SAML_SP_ENABLE_IPD Boolean.

Default: SAML_FALSE.

SAML_SP_IPD_SERVICE_URL

String.

Required conditionally.

SAML_SP_COMMON_DOMAIN

String.

Required conditionally.

SAML_SP_PERSISTENT_COOKIE

Boolean.
Default: SAML_FALSE.

174 Programming Guide for C

Policy Management API Data Structures

Property Name Comments
Encryption Properties
SAML_SP_ENCRYPT_ID Boolean.

Default: SAML_FALSE.

SAML_SP_ENCRYPT_ASSERTION

Boolean.
Default: SAML_FALSE.

SAML_SP_ENCRYPT_BLOCK_ALGO

String.

Default: tripledes.

SAML_SP_ENCRYPT_KEY_ALGO

String.

Default: rsa-v15.

SAML_SP_ENCRYPT_CERT_ISSUER_DN

String.

Required conditionally.

SAML_SP_ENCRYPT_CERT_SERIAL_
NUMBER

String.

Required conditionally.

Attribute Service Properties

SAML_SP_ATTRSVS_ENABLE

Boolean.
Default: False (0).

SAML_SP_ATTRSVS_VALIDITY_DURATION

Integer.
Default: 60 (seconds)

SAML_SP_ATTRSVS_SIGN_ASSERTION

Boolean.
Default: False (0).

SAML_SP_ATTRSVS_LDAP_SEARCH_SPEC String.
SAML_SP_ATTRSVS_ODBC_SEARCH_SPEC String.
SAML_SP_ATTRSVS_WINNT_SEARCH_SPEC String.
SAML_SP_ATTRSVS_CUSTOM_SEARCH_SPEC String.
SAML_SP_ATTRSVS_AD_SEARCH_SPEC String.
Advanced Properties

SAML_SP_PLUGIN_CLASS String.
SAML_SP_PLUGIN_PARAMS String.

Chapter 4: Policy Management API Guidance 175

Policy Management API Data Structures

SAML Affiliation Properties

The properties of a SAML 2.0 affiliation object are listed below. Properties are grouped
according to the way they are presented on the SAML Affiliation Properties dialog box.

SAML affiliation properties are stored within an Sm_PolicyApi_SAMLAffiliation_t

structure.

Property Name

Comments

General Properties

SAML_NAME

String, required.

SAML_DESCRIPTION

String

SAML_KEY_AFFILIATION_ID

String, required.

SAML_MAJOR_VERSION Integer.
Default: 2.
SAML_MINOR_VERSION Integer.
Default: 0.
SAML_OID String.
SiteMinder supplies the object identifier
when an affiliation object is created.
Name IDs Tab

SAML_SP_NAMEID_FORMAT

String.

Default: Unspecified.

SAML_SP_NAMEID_TYPE Integer.
Default: 1.
SAML_SP_NAMEID_STATIC String.

Required conditionally.

SAML_SP_NAMEID_ATTRNAME

String.

Required conditionally.

SAML_SP_NAMEID_DNSPEC

String.

Required conditionally.

Users Tab

SAML_IDP_XPATH

String.

176 Programming Guide for C

Policy Management API Data Structures

Property Name Comments
SAML_IDP_LDAP_SEARCH_SPEC String.
SAML_IDP_ODBC_SEARCH_SPEC String.
SAML_IDP_WINNT_SEARCH_SPEC String.
SAML_IDP_CUSTOM_SEARCH_SPEC String.
SAML_IDP_AD_SEARCH_SPEC String.

SAML 2.0 Authentication Scheme Properties

The properties listed in this section define:
m Authentication schemes based on the SAML 2.0 Template.
m Metadata properties of the associated Identity Provider. The properties are stored

with the authentication scheme.

You define a SAML 2.0 authentication scheme to represent an Identity Provider for a
particular Service Provider.

The properties of a SAML 2.0 authentication scheme and its associated Identity Provider
are listed below. Properties are grouped according to the way they are presented on the
SAML Authentication Scheme Properties dialog box for the SAML 2.0 Template.

You define properties for a SAML 2.0 authentication scheme and its associated Identity
Provider by calling Sm_PolicyApi_AddSAMLScheme().

Property Name Comments

General Properties

SAML_NAME String, required.

SAML_DESCRIPTION String

Scheme Setup Tab

SAML_IDP_SPID String, required.
SAML_KEY_IDPID String, required.
SAML_MAJOR_VERSION Integer.
Default: 2.
SAML_MINOR_VERSION Integer.
Default: 0.

Chapter 4: Policy Management API Guidance 177

Policy Management API Data Structures

Property Name Comments

SAML_SKEWTIME Integer.
Default: 30.

SAML_DISABLE_SIGNATURE_ Boolean.

PROCESSING

Default: SAML_FALSE.

SAML_DSIG_VERINFO_ISSUER_DN

String.
Required conditionally (see page 9).

SAML_DSIG_VERINFO_SERIAL_NUMBER

String.

Required conditionally (see
page 10).

Additional Configuration - Users Tab

SAML_IDP_XPATH String.
SAML_IDP_LDAP_SEARCH_SPEC String.
SAML_IDP_ODBC_SEARCH_SPEC String.
SAML_IDP_WINNT_SEARCH_SPEC String.
SAML_IDP_CUSTOM_SEARCH_SPEC String.
SAML_IDP_AD_SEARCH_SPEC String.
SAML_AFFILIATION String.
Additional Configuration - SSO Tab
SAML_IDP_SSO_REDIRECT_MODE Integer.
Default: 0.

SAML_IDP_SSO_DEFAULT_SERVICE

String, required.

SAML_AUDIENCE

String, required.

SAML_IDP_SSO_TARGET

String.

SAML_ENABLE_SSO_ARTIFACT__
BINDING

Boolean.
Default: SAML_FALSE.

SAML_KEY_IDP_SOURCEID

String.

Default: A hex-encoded SHA-1 hash
of the SAML_KEY_IDPID value.

SAML_IDP_ARTIFACT_RESOLUTION_
DEFAULT_SERVICE

String.

Required conditionally (see
page 12).

178 Programming Guide for C

Policy Management API Data Structures

Property Name Comments

SAML_IDP_BACKCHANNEL_AUTH_TYPE Integer.
Default: 0.

SAML_IDP_SPNAME String.

Required conditionally (see
page 19).

SAML_IDP_PASSWORD

String.
Required conditionally (see
page 14).

SAML_ENABLE_SSO_POST_BINDING

Boolean.
Default: SAML_FALSE.

SAML_IDP_SSO_ENFORCE_SINGLE_
USE_POLICY

Boolean.
Default: SAML_TRUE.

SAML_SSOECPPROFILE

Boolean.
Default: SAML_FALSE.

SAML_IDP_SIGN_AUTHNREQUESTS

Boolean.
Default: SAML_FALSE.

Additional Configuration - SLO Tab

SAML_SLO_REDIRECT_BINDING

Boolean.
Default: SAML_FALSE.

SAML_SLO_SERVICE_VALIDITY_
DURATION

Integer.

Default: 60. Applies if no value is
provided and
SAML_SLO_REDIRECT_BINDING is
SAML_TRUE.

SAML_SLO_SERVICE_URL

String.

Required conditionally.

SAML_SLO_SERVICE_RESPONSE_URL String.
SAML_SLO_SERVICE_CONFIRM_URL String.
Additional Configuration - Encryption Tab
SAML_IDP_REQUIRE_ENCRYPTED_ Boolean.

ASSERTION

Default: SAML_FALSE.

SAML_IDP_REQUIRE_ENCRYPTED _
NAMEID

Boolean.
Default: SAML_FALSE.

Chapter 4: Policy Management API Guidance 179

Policy Management API Data Structures

Property Name Comments

Additional Configuration - Attributes Tab

SAML_IDP_SAMLREQ_ENABLE Boolean.
Default: False (0).

SAML_IDP_SAMLREQ_REQUIRE_SIGNED_ Boolean.
ASSERTION Default: False (0).

SAML_IDP_SAMLREQ_ATTRIBUTE_SERVICE String.

Additional Configuration - NamelD tab

SAML_IDP_SAMLREQ_NAMEID_FORMAT String.

SAML_IDP_SAMLREQ_NAMEID_TYPE Integer.
Default: 1 (User Attribute)

SAML_IDP_SAMLREQ_NAMEID_STATIC String.

SAML_IDP_SAMLREQ_NAMEID_ATTR_NAM String.
E

SAML_IDP_SAMLREQ_NAMEID_DN_SPEC String.

SAML_IDP_SAMLREQ_NAMEID_ALLOW_ Boolean.
NESTED Deafult: False (0).

Additional Configuration - Advanced Tab

SAML_SP_PLUGIN_CLASS String.
SAML_SP_PLUGIN_PARAMS String.
SAML_IDP_REDIRECT_URL_USER_ String.
NOT_FOUND
SAML_IDP_REDIRECT _MODE_USER_ Integer.
NOT_FOUND Default: 0.
SAML_IDP_REDIRECT _URL_FAILURE String.
SAML_IDP_REDIRECT _MODE_FAILURE Integer.
Default: 0.
SAML_IDP_REDIRECT_URL_INVALID String.
SAML_IDP_REDIRECT_MODE_INVALID Integer.
Default: 0.

180 Programming Guide for C

Policy Management API Data Structures

More Information:

SAML 2.0 Property Reference (see page 769)

Sm_PolicyApi_SAMLRequesterAttr_t

Defines an attribute that can be requested by a SAML Requester in an AttributeQuery
message.

Syntax

typedef struct Sm PolicyApi SAMLRequesterAttr s
{
int iStructId;
Sm PolicyApi SAMLSPAttrNameFormat t nAttrNameFormat;
char pszLocalName[BFSIZE];
char pszName[BUFSIZE];
struct Sm PolicyApi SAMLRequesterAttr s* next;
} Sm PolicyApi SAMLRequesterAttr t;

Field Description

iStructld SAML attribute structure ID, defined in
Sm_PolicyApi_Structs_t.

nAttrNameFormat The format of the attribute name, as defined by the
SAML 2.0 standard.

pszLocalName Name of the attribute as defined in the SAML 2.0
authentication scheme.

pszName Actual name of the attribute requested from the
Attribute Authority.

next Pointer to the next requester attribute structure.

Chapter 4: Policy Management API Guidance 181

Policy Management API Data Structures

Sm_PolicyApi_SAMLSP_t
Defines a SAML 2.0 Service Provider object for an Identity Provider.

A Service Provider offers services (such as access to applications and other resources) to
principals within a federation.

Syntax

typedef struct Sm PolicyApi SAMLSP s

{
int iStructId;
Sm PolicyApi SAMLProviderProp t *pProps;
Sm PolicyApi IPAddress t *pIPAddress;
unsigned char pszTimeGrid[TIMESIZE];
struct Sm PolicyApi SAMLSP s *next;

} Sm PolicyApi SAMLSP t;

Field Description

iStructld SAML Service Provider structure ID, defined in
Sm_PolicyApi_Structs_t.

pProps SAML 2.0 metadata properties associated with the
Service Provider.

If you do not assign a value to a property associated
with a default value, the default will be assigned.

plPAddress The Service Provider's IP address.

pszTimeGrid An array containing time restrictions for an entire
week.

next Pointer to the next Service Provider structure.

182 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_SAMLSPAssertionConsumerService_t

Defines a structure that supports the Assertion Consumer Service.

Syntax

typedef struct Sm PolicyApi SAMLSPAssertionConsumerService s

{
int iStructld;
int iIndex;

Sm_PolicyApi SAMLSPACSBinding t nACSBinding;
char pszAssertionConsumerURL[BFSIZE};

bool bIsDefault;

struct Sm PolicyApi SAMLSPAssertionConsumerService s* next;
} Sm PolicyApi SAMLSPAsserttionConsumer t;

Field

Description

iStructld

SAML Assertion Consumer Service ID, defined in
Sm_PolicyApi_Structs_t.

ilndex

Index value assigned to this Assertion Consumer
Service. The value must be O or a positive integer.

nACSBinding

One of the following bindings associated with the
Assertion Consumer Service:

m Sm_PolicyApi_SAMLSP_HTTP_Post
m Sm_PolicyApi_SAMLSP_HTTP_Artifact
m Sm_PolicyApi_SAMLSP_PAOS

pszAssertionConsumer-
URL

Location of the Assertion Consumer Service.

In the case of the HTTP-Artifact binding, this is the
URL that contains a SAML artifact and target as
guery parameters, which are used by the
credential collector to obtain the SAML assertion
and redirect the user to the target.

In the case of the HTTP-Post binding, it is the
destination site URL to which the user's browser
must POST a generated assertion.

bisDefault

Specifies whether this Assertion Consumer Service
is the default.

next

Pointer to the defintion of the next Assertion
Consumer Service.

Chapter 4: Policy Management API Guidance 183

Policy Management API Data Structures

Sm_PolicyApi_SAMLSPAttr_t

Defines an attribute of a principal for a particular SAML 2.0 Service Provider.

Syntax

typedef struct Sm PolicyApi SAMLSPAttr s
{
int iStructId;
Sm PolicyApi SAMLSPAttrNameFormat t nAttrNameFormat;
char pszValue[BFSIZE];
bool bEncrypted;
struct Sm PolicyApi SAMLSPAttr s* next;
Sm PolicyApi SAMLSPAttrMode t nMode;
} Sm PolicyApi SAMLSPAttr t;

Field Description

iStructld SAML attribute structure ID, defined in
Sm_PolicyApi_Structs_t.

nAttrNameFormat The format of the attribute name, as defined by the
SAML 2.0 standard.

pszValue The attribute's name and value, in one of these
formats:

m Static attributes:
variableName=value

m User attributes:
variableName=<%userattr="AttrName"%>

m DN attributes:
variabIName=<#dn="DNSpec"
attr="AttrName"#>

To allow SiteMinder to retrieve DN attributes from a
nested group, begin DNSpec with an exclamation
mark (!). For example:
dn="lou=People,o=security.com"

bEncrypted Specifies whether the attribute is encrypted.
next Pointer to the next attribute structure.
nMode One of the three following uses of an attribute:

m Sm_PolicyApi_SAMLSP_SSO_Only =0
m Sm_PolicyApi_SAMLSP_Atribute_Only =1
m Sm_PolicyApi_SAMLSP_Both =2

184 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_Scheme_t

Defines a SiteMinder authentication scheme object.

Syntax

typedef struct Sm PolicyApi Scheme s

{

int iStructId;

char psz0id[BFSIZE];
char pszName[BFSIZE];
char pszDesc[BFSIZE];
int nLevel;

char pszLib[BFSIZE];
char pszParam[BFSIZE];
char pszSecret[BFSIZE];
bool bIsTemplate;

bool bIsUsedbyAdmin;

Sm Api SchemeType t nType;
bool bAllowSaveCreds;
bool bIsRadius;

bool bIgnorePwCheck;

struct Sm PolicyApi Scheme s* next;

} Sm PolicyApi Scheme t;

/*

/*

/*
/*
/*

Required

Required

Required
Required
Required
Required

Field

Description

iStructld

Authentication scheme data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszOid

The object identifier of the authentication scheme
object.

pszName

Name of the authentication scheme.

pszDesc

Brief description of the authentication scheme.

nlLevel

The protection level of the authentication scheme. The
level may vary from 1 through 1000. The higher the
number, the more secure is the scheme.

With Anonymous authentication schemes, set this value
to 0.

pszLib

The name of the shared library that implements the
custom authentication scheme.

pszParam

Information that is passed on to the custom
authentication scheme.

Chapter 4: Policy Management API Guidance 185

Policy Management API Data Structures

Field

Description

pszSecret

A shared secret known to two parties for the purpose of
establishing secure data exchange. This information is
passed on to the custom authentication scheme.

bisTemplate

Flag to indicate whether the authentication scheme is a
template.

Note: Setting an authentication scheme as a template
with the C Policy Management API is deprecated in SDK
v6.0 SP3.

bisUsedbyAdmin

Flag to indicate if the custom authentication scheme can
be used to authenticate administrators.

nType

The type of the authentication scheme, defined in
Sm_Api_SchemeType_t.

bAllowSaveCreds

Flag to allow user credentials to be saved.

blsRadius

Flag to indicate if the scheme is of type Radius.

bignorePwCheck

If this flag is set to true, password policies for the
authentication scheme will be disabled.

next

Pointer to the next Scheme structure.

186 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_SharedSecretPolicy_t
Defines a shared secret policy.

In the Administrative Ul, a shared secret policy is defined in the Shared Secret Rollover
tab of the Key Management dialog box.

Syntax

typedef struct Sm PolicyApi SharedSecretPolicy s
{

int iStructID;

bool bIsEnabled;

int iRolloverPeriod;

int iRolloverFrequency;
} Sm PolicyApi SharedSecretPolicy t;

Field Description

iStructID Authentication scheme data structure ID, defined in
Sm_PolicyApi_Structs_t.

blsEnabled Is shared secret rollover enabled?

iRolloverPeriod The unit of time (hourly, daily, weekly, monthly) that is
used with iRolloverFrequency to determine how often
the shared secret is automatically changed (for example,
every 3 days, every 2 months, etc.). Valid values are
specified in Sm_PolicyApi_SecretRolloverPeriod_t.

iRolloverFrequency Specifies the number of iRolloverPeriod units between
rollovers.

Chapter 4: Policy Management API Guidance 187

Policy Management API Data Structures

Sm_PolicyApi_Server_t
Defines TCP/IP connectivity information for a Policy Server.

Syntax

typedef struct Sm PolicyApi Server s
{
int iStructId;
char pszIpAddr[BFSIZE]; /* Required */
long nPort[3];
long nClusterSeq;
struct Sm PolicyApi Server s* next;
} Sm PolicyApi Server t;

Field Description

iStructld Policy server structure ID, defined in
Sm_PolicyApi_Structs_t.

pszlpAddr The TCP/IP address of a Policy Server.

nPort Prior to v6.0 of SiteMinder, this is an array of TCP/IP
ports for Accounting, Authentication, and Authorization
services. Beginning with SiteMinder v6.0, only the Policy
Server port needs to be specified.

nClusterSeq The cluster sequence number for this server. For a
non-cluster server, omit the parameter. For a cluster
server, specify the cluster sequence number, starting
from one. Specifying a sequence number that is equal to
an existing sequence number will result in an error.

next Pointer to the next server structure.

188 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_TrustedHost_t

Defines a trusted host object.

Syntax
typedef struct Sm PolicyApi TrustedHost s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE];
char pszDesc[BFSIZE];
char pszIPAddr[BFSIZE];
char pszSecret[BFSIZE];
bool bIsdxHost;
struct Sm PolicyApi TrustedHost s* next;
bool bRolloverEnabled;
} Sm PolicyApi TrustedHost t;

Field Description

iStructld Data structure ID, defined in Sm_PolicyApi_Structs_t.
pszOid The object identifier of the trusted host object.
pszName The trusted host name.

pszDesc Brief description of the trusted host.

pszIPAddr The IP address of the trusted host.

pszSecret The shared secret of the trusted host.

bls4xHost Internal use only.

next Pointer to the next trusted host structure.
bRolloverEnabled Indicates whether or not shared secret rollover is

enabled for this trusted host.

Chapter 4: Policy Management API Guidance 189

Policy Management API Data Structures

Sm_PolicyApi_User_t

Defines a SiteMinder User object.

Syntax

typedef struct Sm PolicyApi User s

{
int iStructId;
char pszUserPolicyOid[BFSIZE]; /* Required */
char pszUserDirOid[BFSIZE]; /* Required */

char pszPath[BFSIZE];
char pszClass[BFSIZE];

/* Required */
/* Required */

Sm PolicyResolution t nPolicyResolution; /* Required */

int nFlags;

/* Required */

struct Sm PolicyApi User s* next;

} Sm PolicyApi User t;

Field

Description

iStructld

User data structure ID, defined in
Sm_PolicyApi_Structs_t.

pszUserPolicyOid

The object identifier of the user policy.

pszUserDirOid

The object identifier of the user directory

pszPath

User's distinguished name (DN).

pszClass

The object class as understood by a user directory, such
as organizationalUnit in LDAP or User in NT.

nPolicyResolution

The relationship between two policy objects. Policy
resolutions are enumerated in Sm_PolicyResolution_t.

nFlags

A bitmask using the bits defined in Policy Flags.

next

Pointer to the next User structure.

190 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_UserContext_t
Makes user context information available to callers of the Policy Management API.

Syntax

typedef struct Sm PolicyApi UserContext s
{

int iStructld;

Sm Api UserContext t *pUserContext;

struct Sm PolicyApi UserContext s* next;
} Sm PolicyApi UserContext t;

Field Description

iStructld User data structure ID, defined in
Sm_PolicyApi_Structs_t.

pUserContext Pointer to the user context information.

next This field is always set to null.

More Information:

Sm_PolicyApi_GetTrustedHostByName() (see page 456)

Chapter 4: Policy Management API Guidance 191

Policy Management API Data Structures

Sm_PolicyApi_UserDir_t
Defines a SiteMinder user directory object.

Syntax

typedef struct Sm PolicyApi UserDir s
{

int iStructId;

char psz0id[BFSIZE];

char pszName[BFSIZE]; /* Required */
char pszDesc[BFSIZE];

char pszNamespace[BFSIZE]; /* Required */
char pszServer[BFSIZE]; /* Required */

char pszSearchRoot[BFSIZE];

char pszUserLookupStart[BFSIZE];
char pszUserLookupEnd[BFSIZE];
char pszUsername[BFSIZE];

char pszPassword[BFSIZE];

int nSearchResults; /* Required */
int nSearchScope; /* Required */
int nSearchTimeout; /* Required */
bool bSecureConnection; /* Required */
bool bRequireCredentials; /* Required */

char pszDisabledAttr[BFSIZE];

char pszUniversalIDAttr[BFSIZE];

char psz0ODBCQueryScheme0Qid[BFSIZE];

char pszAnonymousId[BFSIZE];

char pszPasswordData[BFSIZE];

char pszPasswordAttribute[BFSIZE];

char pszEmailAddressAttr[BFSIZE];

char pszChallengeRespAttr[BFSIZE];

struct Sm PolicyApi UserDir s* next;
} Sm PolicyApi UserDir t;

Field Description

iStructld User directory data structure 1D, defined in
Sm_PolicyApi_Structs_t.

pszOid The object identifier of the user directory object.
pszName Name of the user directory.
pszDesc Brief description of the user directory.

192 Programming Guide for C

Policy Management API Data Structures

Field

Description

pszNamespace

Mandatory field that designates the specific
directory service being connected to (for
example, LDAP:, ODBC:, WinNT:, AD:, or
Custom:).

pszServer

Mandatory field. This is an overloaded field
whose contents depend upon the namespace:

m ODBC - Data source name.
m NT - Domain name.

m LDAPor AD - An IP address or an IP address
and port number in the format
IP_address:port_number. The port number
389 is assumed if no port number is
specified.

m Custom - Library name.

pszSearchRoot

One of the following values:

m With LDAP directories, the location in the
LDAP tree that serves as the starting point
for the directory connection-typically, an
organization (o) or organizational unit (ou).
The Policy Server begins searching at the root
when locating a user.

m With custom directories, any parameters to
pass to the custom library.

pszUserLookupStart

The User DN Lookup Start allows users to
authenticate by entering only a part of the user
name, without having to enter an entire DN
string. Identifying unique and non-unique
segments of the user DN string does this.

Use this field with LDAP directories only.

pszUserLookupEnd

The User DN Lookup End allows users to
authenticate by entering only a part of the user
name, without having to enter an entire whole
DN string.

Use this field with LDAP directories only.

pszUsername

The user name needed to access a user directory.

pszPassword

The password needed to access a user directory.

Chapter 4: Policy Management API Guidance 193

Policy Management API Data Structures

Field

Description

nSearchResults

The maximum number of records that can be
returned from a search of an LDAP or custom
directory.

nSearchScope

The extent to which SiteMinder looks for users
and user groups below pszSearchRoot in an LDAP
directory - all levels below the root (subtree) or
just one level below the root.

Specify 1 for one level down or 2 for subtree.

nSearchTimeout

The maximum amount of time, in seconds, that
SiteMinder will query an LDAP or custom
directory.

bSecureConnection

This flag must be enabled when accessing an
LDAP or custom directory over SSL. Enabling
Secure Connect means that SiteMinder performs
secure authentication and encrypted
transmissions.

bRequireCredentials

Flag to specify credentials necessary to
authenticate against a user directory

pszDisabledAttr

Name of the user directory attribute that
SiteMinder uses to keep track of a user's enabled
or disabled state.

Applies to LDAP and ODBC directories, and
possibly to custom directories.

pszUniversallDAttr

Name of the user directory attribute that has
been designated as the Universal ID. Typically,
the Universal ID differs from the user's login ID,
and the Universal ID is used to look up user
information.

Applies to LDAP, ODBC, and WinNT directories,
and possibly to custom directories.

pszODBCQuerySchemeOid

The object identifier for a set of ODBC queries
that SiteMinder uses to query the ODBC
directory.

194 Programming Guide for C

Policy Management API Data Structures

Field

Description

pszAnonymousld

Name of the user directory attribute that is
designated as the anonymous user DN. This DN is
defined in the anonymous authentication
scheme. Anonymous users impersonate this DN
to gain access to the resources associated with
the anonymous authentication scheme.

Applies to LDAP directories, and possibly to
custom directories.

pszPasswordData

Name of the user directory attribute that
SiteMinder uses to store password policy
information.

Applies to LDAP and ODBC directories, and
possibly to custom directories.

pszPasswordAttribute

Name of the user directory attribute that
contains the user's password, as defined using
Password Services.

Applies to LDAP and ODBC directories, and
possibly to custom directories.

pszEmailAddressAttr

Reserved for future use.

pszChallengeRespAttr

Name of the user directory attribute that
contains a response to return to the user, such as
a hint for a forgotten password.

Applies to LDAP directories, and possibly to
custom directories.

next

Pointer to the next directory structure.

Remarks

Fields apply to all types of directories (LDAP, ODBC, WinNT, and custom) unless
individual directory types are specified.

Fields that apply to LDAP directories also apply to Active Directories.

Chapter 4: Policy Management API Guidance 195

Policy Management API Data Structures

Sm_PolicyApi_UserPasswordState_t

Information regarding all PasswordState virtual attributes is returned using the
SmPolicyApi_UserPasswordState_t structure. This structure coexists with a User object,
which is restricted by the UserDirectory OID and a User DN string. The structure can be
retrieved, created, or updated through the C Policy Management API.

Syntax

typedef struct Sm PolicyApi UserPasswordState s
{

int iloginFailures;

time t tlastlLogin;

time t tPrevLogin;

time t tDisabled;

time t tlLastPWChange;
} Sm PolicyApi UserPasswordState t;

Field Description

iLoginFailures Specifies how many times the user has failed to log in
since the last successful login.

tLastLogin Specifies the last time the user successfully logged in.

tPrevLogin Specifies the second-to-last time the user successfully
logged in.

tDisabled Specifies the time the user was disabled.

tLastPWChange Specifies the last time the user changed his password.

If this value updates the user directory setting for the
last time the password was changed, and the password
is reset outside of SiteMinder, the password policy
preventing password reuse may not work as expected.
The value 0 may be returned in this field in the following
cases:

m The user begins the procedure to change his
password but does not complete it.

m Password history is cleared through a call to
Sm_PolicyApi_SetUserPasswordState().

196 Programming Guide for C

Policy Management API Data Structures

Sm_PolicyApi_Variable_t

Defines a variable object that can be used in a variable expression for a policy or a
response. Variable objects are managed by the Variable Functions.

A variable is a dynamic object that is resolved to a value during an authorization
request. The variables appear within an active expression defined for a policy or a
response.

Variables are used as follows:

With policies, variables are used as authorization constraints. When a user requests
access to a resource, and the resource contains an active expression that includes
one or more variables, the variables are resolved to values that pertain to the user.
The values are then evaluated and used in the decision on whether to authorize the
user.

For example, suppose a policy that protects a bank's credit card application form
contains an active expression with a Credit Rating variable and a Salary variable.
When a user attempts to access the form, the user is authorized only if his credit
rating and salary meet or exceed the minimum values for these variables.

With responses, variables are used as return values. For example, a response
attribute might be configured to return a transaction's tracking number obtained
from a remote Web Service.

Syntax

typedef struct Sm PolicyApi Variable s

{

int iStructld;

char psz0id[BFSIZE];

char pszName[BFSIZE];

char pszDesc[BFSIZE];

char pszVariableTypeOid[BFSIZE];

char pszDefinition[BFSIZE];

char pszMetaData[BFSIZE];

int nReturnType;

bool bPreFetchFlag;

char pszDomainQid[BFSIZE];

Sm PolicyApi 0id t* pNestedVariablelList;
struct Sm PolicyApi Variable s* next;

} Sm PolicyApi Variable t;

Field Description

iStructld Data structure ID, defined in

Sm_PolicyApi_Structs_t.

Chapter 4: Policy Management API Guidance 197

Policy Management API Data Structures

Field

Description

pszOid

The unique object ID of the variable object.

pszName

The user-defined name of the variable object.

pszDesc

Optional text describing the variable object.

pszVariableTypeOid

The unique object ID of the variable type.

pszDefinition

Information needed to obtain the value of the
variable at runtime.

pszMetaData

Reserved for use by the optional CA
TransactionMinder product.

nReturnType

The data type of the variable value:

m Sm_PolicyApi_VarReturnTypes_Boolean
m Sm_PolicyApi_VarReturnTypes_Number
m Sm_PolicyApi_VarReturnTypes_String

m Sm_PolicyApi_VarReturnTypes_Date

bPreFetchFlag

Not currently used.

pszDomainOid

The unique object ID of the associated domain.

pNestedVariableList

A linked list of nested variable OIDs that are part of
the definition of this variable.

next

Pointer to the next variable object structure.

Variable Definition

You define a variable by specifying where the variable's value can be found. You do so

through the pszDefinition field.

The value of this field can be a simple string or a set of XML elements, depending on the
variable type. Here are the SiteMinder variable types and a description of the

pszDefinition field for each type:

® Post

The pszDefinition field contains the name of a field on an HTML form. In a POST
action, the variable value is derived from the value assigned to the field.

198 Programming Guide for C

Policy Management API Data Structures

RequestContext
The pszDefinition field contains the following XML code:

<RequestContextVariableDef>
<ItemName></ItemName>
</RequestContextVariableDef>

The variable value depends upon which of the following attribute names appears
within the ItemName element:

m Action. With this item name, the variable value is the type of action specified in
the request (for example, GET or POST).

m Resource. With this item name, the variable value is the target resource (for
example, /directory_name/).

m Server. With this item name, the variable value is the full server name specified
in the request (for example, server.company.com).

Static

The pszDefinition field contains the actual value that will be compared against the
user-supplied data at runtime. For example, a Static variable of return type
Sm_PolicyApi_VarReturnTypes_Date might be assigned the string value 2004-01-01.
During authorization, this assigned date is compared against a user-supplied date.

UserContext
The pszDefinition field contains some or all of the following XML code:

<UserContextVariableDef>
<ItemName></ItemName>
<PropertyName></PropertyName>
<DN></DN>
<BufferSize></BufferSize>

</UserContextVariableDef>

The variable value is based on an attribute of a user directory connection (such as
session ID) or on the contents of the user directory (such as user name). The name
of the attribute upon which the variable value is based appears in the XML element
[temName.

The ItemName element can contain one of the following values:
m DirectoryEntryProperty

m DirectoryNameSpace
m DirectoryPath

m DirectoryServer

m IsUserContext

m Sessionld

m UserPath

Chapter 4: Policy Management API Guidance 199

Policy Management API Data Structures

m UserProperty
m UserName
The elements PropertyName, DN, and BufferSize are only used as follows:

m When ItemName contains DirectoryEntryProperty, elements PropertyName,
DN, and BufferSize are used.

m When ItemName contains UserProperty, elements PropertyName and
BufferSize are used.

WebService
The pszDefinition field contains the following basic XML structure:

<WebServiceVariableDefn xmlns:NeteWS=
"http://www.netegrity.com/2003/SM6.0" ;>
<NeteWS:RemoteURL></NeteWS: RemoteURL>
<NeteWS:SSL/>
<NeteWS: RemoteMethod></NeteWs :RemoteMethod>
<NeteWS:ResultQuery></NeteWS:ResultQuery>
<NeteWS:AuthCredentials>
<NeteWS:Username></NeteWS:Username>
<NeteWS:Password></NeteWS: Password>
<NeteWS:Hash></NeteWsS :Hash>
</NeteWS:AuthCredentials>
<NeteWS:Document>
<SO0AP:Envelope xmlns:SOAP=
"http://schemas.xmlsoap.org/soap/envelope/" ;>
<S0AP:Header></SO0AP:Header>
<SO0AP:Body></S0AP: Body>
</SOAP: Envelope>
</NeteWS:Document>
</WebServiceVariableDefn>

To retrieve a variable value from a Web Service, the Policy Server sends the Web
Service a SOAP request document as specified in pszDefinition, and then extracts
the variable value from the SOAP response.

The following table describes the XML elements used to configure a WebService
variable:

Element Description

RemoteURL The URL to the Web Service that will resolve the
WebService variable.

SSL Specifies that the connection between the Policy Server
and the Web Service should use SSL.

RemoteMethod Set this element to POST.

200 Programming Guide for C

Policy Management API Data Structures

Element Description

ResultQuery The return query, in XPath format. The Policy Server
uses this information to search for the variable's value
in the SOAP response document.

AuthCredentials Optionally, specify the user's Web Service credentials
through the following elements:

m Username
m Password (use either a SHA-1 password digest or a
clear-text password)

Optionally, use the Hash element to specify that a hash
of the password is to be included in the WS-Security
password.

Document Optionally, use this element to define a SOAP header
and/or SOAP body through the following elements:

m Envelope. The SOAP namespace is:
http://schemas.xmlsoap.org/soap/envelope

m Header. A user-defined SOAP header. A
WS-Security header is automatically added to it if
the user's Web Service credentials are specified.

m Body. A user-defined SOAP body.

Nested variables of type RequestContext, UserContext,
Post, and Static can be used inside the header and body.
Their values are resolved and substituted before the
request document is sent to the remote Web Service.

Specify a nested variable as follows:

Svariable-name$

Note: The XML element structures shown above are formatted for legibility. The XML
string supplied through the pszDefinition field should not be formatted with spaces,
tabs, and return characters. For example, a RequestContext variable for a Resource
attribute would be passed in pszDefinition as follows:

<RequestContextVariableDef><ItemName>Resource</ItemName></RequestContextVariableD
ef>

Chapter 4: Policy Management API Guidance 201

Policy Management API Data Structures

Sm_PolicyApi_VariableType_t

Defines a supported variable object type. Variable types are read-only. They cannot be
created or deleted through the Policy Management Variable Functions.

Syntax
typedef struct Sm PolicyApi VariableType s
{
int iStructId;
char psz0id[BFSIZE];
char pszName[BFSIZE];
char pszDesc[BFSIZE];
char pszFilter[BFSIZE];
struct Sm PolicyApi VariableType s* next;
} Sm PolicyApi VariableType t;

Field Description
iStructld Data structure ID defined in Sm_PolicyApi_Structs_t.
pszOid The unique object ID of the variable type object.
pszName One of the following object type names:

m Post

m RequestContext
m Static
m UserContext

m WebService

If you have installed the optional CA SOA Security Manager
product, the following variable types are also available:

m SAMLAssertion
m Transport

m XMLAgent

m XMLBody

m XMLEnvelopeHeader

You cannot create these variables using the SDK; you must use
the Administrative Ul.

pszDesc The description of the variable type object-for example, Form
Post Variables.

pszFilter Not currently used.

202 Programming Guide for C

Policy Management API Data Structures

Field Description

next Pointer to the next variable type object structure.

Chapter 4: Policy Management API Guidance 203

Policy Management API Data Structures

Sm_PolicyApi_WSFEDProviderProp_t

Defines a linked list of WS-Federation Provider properties, that is, name/value pairs.

An Sm_PolicyApi_WSFEDProviderProp_t structure consists of a single name/value pair.
You define a set of properties for a given WS-Federation object through a linked list of
Sm_PolicyApi_WSFEDProviderProp_t structures.

Syntax
typedef struct Sm PolicyApi WSFEDProviderProp s
{

int iStructld;

char pszName[BFSIZE];

char pszValue[BFSIZE];

Sm PolicyApi WSFEDProviderProp t* next;
} Sm PolicyApi WSFEDProviderProp t;

Parameters
iStructid

ID of the structure in Sm_PolicyAp_Structs_t. Should be set to
Sm_PolicyApi_WSFEDProviderProp_lID.

pszName
Name of the WS-Federation Provider property.
pszValue
Value of the WS-Federation Provider property.
next
Pointer to the next WS-Federation Provider property data in the linked list.
Each Sm_PolicyApi_WSFEDProviderProp_t structure contains a
WS-Federation metadata property defined as a name/value pair. A complete set of
properties for a particular object is defined as a linked list of
Sm_PolicyApi_WSFEDProviderProp_t structures.
The following metadata properties apply to WS-Federation objects types:
® Common properties
m Properties for defining a Resource Partner

m Properties for defining an Account Partner
Optional properties are specified in square brackets.

For Boolean values, a value of 1 denotes true; any other value denotes false.

204 Programming Guide for C

Policy Management API Data Structures

The Property Name column also includes the corresponidng C Policy Management API

macro name.

Common Properties

The following table specifies the metadata properties that are common to defining a

Resource Partner or an Account Partner:

Property Name Type Description

General

Name String Name of the provider.

WSFED_NAME

[Description] String Brief description of the provider.

WSFED_DESCRIPTION

[SkewTime] String The skew time between consumer and

WSFED SKEW TIME producer sides in seconds. This value is
B B used to calculate validity duration of

assertions and of SLO requests. The
default value is 30.

Versioning

[WSFEDMajorVersion] Int Version of WSFED protocol supported by

WSEED MAJOR VERSION this provider. The value of this property
B B has to be set to 1.

[WSFEDMinorVersion] Int Version of WSFED protocol supported by

WSFED MINOR VERSION this provider. The value of this property
- - has to be set to 0.

[WSFEDSAMLMajorVersion] Int Version of SAML protocol supported by

WSFED SAML MAJOR this provider. The value of this property

VERSION has to be set to 1.

[WSFEDSAMLMinorVersion] Int Version of WSFED protocol supported by

WSEED SAML MINOR this provider. The value of this property

VERSION has to be set to 1.

Chapter 4: Policy Management API Guidance 205

Policy Management API Data Structures

Resource Partner Properties

The following table lists the metadata properties used to define a Resource Partner:

Property Name Type Description

Domain OoID The Domain OID where this
WSFED RP DOMAIN Resource Partner is defined
[Enabled] Bool Boolean indicating if the
WSFED ENABLED provider is enabled. If not

provided, defaults to true.
This property does not get
stored physically to the
property collection but is
used to enable underlying

policy.
NetegrityAffiliateMinderAuthURL String The protected URL used to
WSFED_RP_AUTHENTICATION_URL authenticate Resource
Partner users.
NamelD
[NameldFormat] String The URI for a WSFED name
WSFED_RP_NAMEID_FORMAT identifier.
[NameldType] Int Represents the type of name
WSFED_RP_NAMEID_TYPE identifier:
0 - Static Text
1 - User Attribute
2 - DN Attribute
Defaults to 1
[NameldStatic] String The static text to be used as
WSFED RP NAMEID STATIC the name identifier when

the NameldType ==0. The
Policy Management API will
return an error if no value is
specified for this property
and NameldType==0.

206 Programming Guide for C

Policy Management API Data Structures

Property Name Type Description

[NameldAttrName] String The attribute name (user or

WSFED_RP_NAMEID_ATTR_NAME DN) which holds the name
identifier when NameldType
==1 or NameldType == 2. If
"NameldType" is set to "1"
or "2", "NameldAttrName"
property should have a
value, otherwise the Policy
Management APl will return
an error.

[NameldDNSpec] String The DN spec used when the

WSFED_RP_NAMEID_DN_SPEC NameldType == 2. If
"NameldType" is set to "2",
"NameldDNSpec" property
should have a value,
otherwise the Policy
Management APl will return
error.

[NameldAllowNested] Bool Flag indicating whether

WSFED_RP_NAMEID_ALLOWED_ nested groups are allowed

NESTED whgn selecting a DN
attribute for the name
identifier. Defaults to zero.

General

KEY_RPID String The Resource Partner ID for

WSFED KEY RPID WSFED Assertion Consumer.

- Must be a URI less than 1024

characters in length. Also
this is the key using which
properties associated to a
provider can be looked up.

APID String The Resource Partner ID of

WSFED APID the WSFED Assertion

B Producer.
Sso
[AuthenticationMethod] String The authentication method

WSFED_RP_AUTHENTICATION_METHOD

to use in the assertion.

Chapter 4: Policy Management API Guidance 207

Policy Management API Data Structures

Property Name Type Description
[ValidityDuration] Int An integer number of
WSFED_RP_VALIDITY_DURATION seconds for which a
generated assertion is valid.
If not provided during
Resource Partner creation,
the default is 60 seconds.
AssertionConsumerDefaultURL String The default WSFED Assertion
WSFED_RP_ASSERTION_CONSUMER _ Consumer to use.
DEFAULT_URL
[AuthenticationLevel] Int The principal must have
WSFED_RP_AUTHENTICATION_LEVEL authenticated in a realm by
an authentication scheme of
at least this level or greater.
If not supplied during
Resrource Partner creation,
this will default to 5.
Signout
[SLOEnabled] Bool Boolean indicating if Signout
WSFED RP SLO ENABLED is enabled for the Resource
T Partner.
[SignOutCleanupURL] String Sign-out cleanup URL of the
WSFED_RP_SIGNOUT_CLEANUP_URL Resource Partner. This
property is mandatory if
SLOEnabled is true.
[SignOutConfirmURL] String URL where the user will be
WSFED_RP_SIGNOUT_CONFIRM_URL redirected once the Sign-out
at Account Partner is
complete. (If there are
multiple Resource Partners
available then Sign-out
confirm URL of the last
Resource Partner is
applicable.)
Advanced
[AssertionPluginClass] String The fully qualified Java class

WSFED_RP_ PLUGIN_CLASS

name for the Assertion
Generator Plugin class to be
used.

208 Programming Guide for C

Policy Management API Data Structures

Property Name

Type

Description

[AssertionPluginParameters]
WSFED_RP_ PLUGIN_PARAMS

String

The string containing
parameters to be passed to
the Assertion Generator
Plugin.

Account Partner Properties

The following table lists the metadata properties used to define an Account Partner:

Property Name

Type

Description

General

KEY_APID
WSFED_KEY_APID

String

Identifier for the
account partner. Among
other things this
identifier is used to
identify assertion issuer.
Also this is the key using
which properties
associated to a Account
Partner can be looked

up.

RPID
WSFED_RPID

String

Identifier of the
Resource Partner.

Signing

[DisableSignatureProcessing]
WSFED_DISABLE_SIGNATURE_
PROCESSING

Bool

Specifies whether
signature processing is
disabled. This setting is
useful during initial
setup of a Account
Partner. When a
provider is up and
running, this setting will
need to be set to false,
to avoid security
implications. Default
value is zero.

[DsigVerinfolssuerDN]
WSFED _DSIG_VERINFO_ALIAS

String

Used to locate the
certificate of the
provider in the key store
if it is not provided
inline.

Chapter 4: Policy Management API Guidance 209

Policy Management API Data Structures

Property Name Type Description

Users

[XPath] String XPath query for

WSEED AP XPATH disambiguating the

- principal.

[LDAPSearchSpec] String Search specification for

WSFED_AP_LDAP_SEARCH_SPEC LDAP directory.

[ODBCSearchSpec] String Search specification for

WSFED_AP_ODBC_SEARCH_SPEC ODBC directory.

[WinNTSearchSpec] String Search specification for

WSFED_AP_WINNT_SEARCH_SPEC WIinNT directory.

[CustomSearchSpec] String Search specification for

WSFED_AP_CUSTOM_SEARCH_SPEC a custom directory.

[ADSearchSpec] String Search specification for

WSFED_AP_AD_SEARCH_SPEC AD directory.

SSO

[RedirectMode] Int Redirect mode for

WSFED AP SSO REDIRECT MODE assertion attributes. The

-7 B following values are

valid:
0—302 No Data 1—302
Cookie Data 2—Server
Redirect 3—Persist
Attributes The default is
zero.

[SSODefaultService] String The default location of

WSFED_AP_SSO_DEFAULT_SERVICE the Single Sign-on
service.

[Target] String Target resource at the

WSFED_AP_SSO_TARGET destination site.

[EnforceSingleUsePolicy] Bool If 1, the single use policy

ENFORCE_SINGLE_USE_POLICY

for POST assertions will
be enforced, if 0, single
use policy for POST
assertions will not be
enforced. Default set to
1.

210 Programming Guide for C

Policy Management API Data Structures

Property Name Type Description
Signout
[SLOEnabled] Bool Boolean indicating if

WSFED_AP_SLO_ENABLED

Signout is enabled for
the Account Partner. If
not supplied during
Account Partner
creation, this will
default to disabled.

[SignOutURL] String
WSFED_AP_SIGNOUT_URL

Sign-out URL of the
Account Partner. This
property is mandatory if
SLOEnabled is true.

Message Consumer Plug-in

[APPluginClass] String
WSFED_AP_ PLUGIN_CLASS

Name of a Java class
that implements
customization of
assertion consumption.

[APPluginParameters] String
WSFED_AP_ PLUGIN_PARAMS

Parameters of the Java
class that implements
customization of
assertion consumption.
All parameters are
concatenated into one
line.

Post Processing URL Support

[UserNotFoundRedirectURL] String
WSFED_AP_USER_NOT_FOUND_
REDIRECT_URL

Contains an optional
redirect URL to be used
when

- Auth Scheme cannot
obtain a LoginID from
the federation Message,
given the configured
query string

- Auth Scheme can not
find a user in the
specific user directory,
given the configured
user store search string.

Chapter 4: Policy Management API Guidance 211

Policy Management API Data Structures

Property Name Type Description
[UserNotFoundRedirectMode] 0/1 Default is 0.
WSFED_AP_USER_NOT_FOUND_ 0: Http 302 redirect
REDIRECT_MODE without passing

federation messages
1: Http Form Post

Redirect
[FailureRedirectURL] String Contains an optional
WSFED_AP_FAILURE_REDIRECT_URL redirect URL to be used

when assertion
processsing has failed.

[FailureRedirectMode] 0/1 Default is 0.

WSFED_AP_FAILURE_REDIRECT_MODE 0: Http 302 redirect
without passing
federation messages

1: Http Form Post

Redirect
[InvalidRedirectURL] String Contains an optional
WSFED_AP_INVALID_REDIRECT URL redirect URL to be used

when the assertion is

invalid.
[InvalidRedirectMode] 0/1 Default is 0.
WSFED_AP_INVALID_REDIRECT_MODE 0: Http 302 redirect

without passing
federation messages

1: Http Form Post
Redirect

212 Programming Guide for C

Exported Types

Sm_PolicyApi_WSFEDResourcePartner_t

Defines WS-Federation Resource Partner data.

Syntax

typdef struct Sm PolicyApi WSFEDResourcePartner s

{
int iStructld;
Sm_PolicyApi WSFEDProviderProp t* pProps;
Sm_PolicyApi WSFEDResourcePartner t* next;
} Sm PolicyApi WSFEDResroucePartner t;

Parameters
iStructid

ID of the structure in Sm_PolicyApi_Structs_t. Should be set to
Sm_PolicyApi_WSFEDResourcePartner_|ID.

pProp
Pointer to the linked list of Resource Partner properties.
next

Pointer to the next Resource Partner data in the linked list.

Exported Types

Administrator Rights

Sm_PolicyApi_AdminRights_t enumerates the rights of the administrator. These values
may be used individually or combined to set multiple rights. The resulting value is
passed to Sm_PolicyApi_AddAdmin() as one of the attributes in a
Sm_PolicyApi_Admin_t structure.

Name Value
Sm_PolicyApi_AdminRights_ManageAllDomains 0x01
Sm_PolicyApi_AdminRights_ManageObjects 0x02
Sm_PolicyApi_AdminRights_ManageUsers 0x04
Sm_PolicyApi_AdminRights_ManageKeys 0x08

Chapter 4: Policy Management API Guidance 213

Exported Types

Name Value
Sm_PolicyApi_AdminRights_ManagePasswordPolicy 0x08
Sm_PolicyApi_AdminRights_ManageReports 0x10

The following table shows how these values are used to set administrative privileges:

Scope Task

Setting and Privilege(s)

System Manage
System &
Domain
Objects

To set the privileges below, set administrator rights to
both of the following:

Sm_PolicyApi_AdminRights_ManageAllDomains
Sm_PolicyApi_AdminRights_ManageObjects
Privileges:

Create/edit/delete agents, agent groups, directories,
policy domains, authentication schemes, agent types,
ODBC setup, directory mappings, certificate mappings,
and registration schemes.

Create/delete parent realms in all domains.
Create/edit/delete administrators.

Flush all caches, including cached resources.
Change global settings.

All the privileges for Manage Domain Objects listed
below.

Domains Manage
Domain
Objects

To set the privileges below, set administrator rights to:
Sm_PolicyApi_AdminRights_ManageObjects
Privileges:

In managed domains: create/edit/delete rules, rule
groups, responses, response groups, policies.

Edit top level realms in managed domains (not resource
filters).

Create/edit/delete nested realms in managed domains.

Flush specific realms from the resource cache, and flush
all resources (in privileged domains) from the cache.

System View
Reports

To set the privilege below, set administrator rights to
both of the following:

Sm_PolicyApi_AdminRights_ManageAllDomains
Sm_PolicyApi_AdminRights_ManageUsers

Privilege:

View all system and domain reports.

214 Programming Guide for C

Exported Types

Scope Task Setting and Privilege(s)
Domains View To set the privilege below, set administrator rights to:
Reports Sm_PolicyApi_AdminRights_ManageUsers
Privilege:
View reports for managed domains.
System Manage To set the privileges below, set administrator rights to
Keys and both of the following:
PaS.S\.NOFd Sm_PolicyApi_AdminRights_ManageAllDomains
Policies Sm_PolicyApi_AdminRights_ManageKeys
Privileges:
Create/edit/delete password policies.
Manage keys.
Domains Manage To set the privilege below, set administrator rights to:
Password sm policyApi_AdminRights_ManagePasswordPolicy
Policies -
Privilege:
Create/edit/delete password policies for users in
directories attached to managed domains.
System Manage To set the privileges below, set administrator rights to
Users both of the following:
Sm_PolicyApi_AdminRights_ManageAllDomains
Sm_PolicyApi_AdminRights_ManageReports
Privileges:
Flush all user session caches, or flush the user session
cache of any individual user cache from any directory.
Enable/disable users in any directory.
Force password change on any user in any directory.
Domains Manage To set the privileges below, set administrator rights to:
Users

Sm_PolicyApi_AdminRights_ManageReports
Privileges:

Flush user session caches for individual users in
directories attached to managed domains.

Enable/disable users in directories attached to managed
domains.

Force password change on users in directories attached
to managed domains.

Chapter 4: Policy Management API Guidance 215

Exported Types

Affiliate Attribute Types

Sm_PolicyApi_AffiliateAttrType_t enumerates the valid affiliate attribute types, for use
in the affiliate functions to manipulate affiliate attributes.

Name Value
Sm_PolicyApi_Affiliate_HTTP_Header_Variable 1
Sm_PolicyApi_Affiliate_HTTP_Cookie_Variable 2

Attribute Mode Types

Sm_PolicyApi_SAMLSPAttrMode_t enumerates the valid attribute retrieval types for use
in SAML 2.0 Attribute Authority support:

Name Value
Sm_PolicyApi_SAMLSP_SSO_Only 0
Sm_PolicyApi_SAMLSP_Attribute_Only 1

One of these values should be provided in the nMode element of the
Sm_PolicyApi_SAMLSPALttr_t structure.
Authentication and Authorization Mapping Types

Sm_PolicyApi_AuthAzMapType_t enumerates the authentication and authorization
mapping types.

Name Value
Sm_PolicyApi_AuthAzMapType_DN 1
Sm_PolicyApi_AuthAzMapType_Universalld 2
Sm_PolicyApi_AuthAzMapType_Attr 3

216 Programming Guide for C

Exported Types

Certificate Mapping Attribute Types

Sm_PolicyApi_CertMapAttrType_t enumerates types of mapping that determine how an
X.509 client certificate will map to the user information in the authentication directory.

Name Value
Sm_PolicyApi_CertMapAttrType_Single 1
Sm_PolicyApi_CertMapAttrType_Custom 2
Sm_PolicyApi_CertMapAttrType_Exact 3

Certificate Mapping Directory Types

Sm_PolicyApi_DirType_t enumerates the types of directories that can be used to
authenticate users.

Name Value
Sm_PolicyApi_DirType_LDAP 1
Sm_PolicyApi_DirType_WinNT 2
Sm_PolicyApi_DirType_ODBC 3

Certificate Mapping Flags Definitions

Sm_PolicyApi_CertMapFlags_t enumerates flags that represent certificate mapping

properties.
Flag Value
Sm_PolicyApi_CertMapFlags_CertRequired 0x01

Setting this flag causes SiteMinder to verify that the certificate presented
by the user matches the certificate stored in the user's entry in the
authentication directory. The authentication directory must be an LDAP
user directory.

Chapter 4: Policy Management API Guidance 217

Exported Types

Flag Value

Sm_PolicyApi_CertMapFlags_UseDistributionPoints 0x02

Set this flag if your Certificate Revocation List (CRL) uses distribution
points. Large CRLs may contain multiple distribution points that can be
used to locate a revoked user. Distribution points indicate a starting point
in the CRL LDAP directory. The distribution point provides a starting point
for a CRL check and saves the processing time that it would take to

search the entire CRL for a particular user.

When this flag is set, SiteMinder retrieves the distribution point from the
user's certificate, then uses it to find the appropriate LDAP directory
entry point for the CRL.

Sm_PolicyApi_CertMapFlags_VerifySignature 0x04
Set this flag to enable signature verification, where the Policy Server

checks the Certificate Authority's public certificate against a signature

stored in the policy database.

Sm_PolicyApi_CertMapFlags_CRLCheck 0x08

Set this flag to make SiteMinder perform a Certificate Revocation List
check. A Certificate Revocation List (CRL) is a list of revoked X.509 client
certificates published by the Certificate Authority. Comparing certificates
against CRLs is one way to ensure that certificates are valid. When a user
with such a certificate tries to access a protected resource, SiteMinder
finds the user's certificate in the CRL and rejects the authentication.

Sm_PolicyApi_CertMapFlags_Cache 0x10

Setting this flag causes SiteMinder to use cached CRL information until
the date specified in the NextUpdate field in the CRL.

Directory Capabilities

Sm_PolicyApi_GetUserDirCapabilities() uses the values that are enumerated in
Sm_DirectoryCapability_t, which is defined in SmApi.h.

Directory Capability Value

Sm_DirCapability_CreatePasswordPolicy 0x00000001

Capable of creating password policy. The following attributes are
affected in the user directory (Sm_PolicyApi_UserDir_t):
pszPasswordData, pszDisabledAttr, and pszPasswordAttribute.

218 Programming Guide for C

Exported Types

Directory Capability Value

Sm_DirCapability_CreateRegistrationPolicy 0x00000002

Capable of creating registration policy. The following attributes are
affected in the user directory (Sm_PolicyApi_UserDir_t):
pszAnonymousld, pszEmailAddressAttr, pszChallengeRespAttr, and
pszPasswordAttribute.

Sm_DirCapability_ResetUserPassword 0x00000004

Capable of resetting the user password. This affects
pszPasswordAttribute.

Sm_DirCapability_ChangeUserPassword 0x00000008

Capable of changing the user password. This affects
pszPasswordAttribute.

Sm_DirCapability_DisableUser 0x00000010
Capable of disabling the user account. This affects pszDisabledAttr.

Sm_DirCapability_DmsCapable 0x00000020
Capable of being written by the Delegated Management System

(DMS).

Sm_DirCapability_Recursive 0x00000040

Capable of supporting recursion.

Sm_DirCapability_DisabledAttr 0x00100000

Read-Write disabled attribute. This attribute is configured for the
user directory.

Sm_DirCapability_UniversalldAttr 0x00200000
Read-only Universal ID. This attribute is configured for the user

directory.

Sm_DirCapability_AnonymousldAttr 0x00400000

Read-Write anonymous ID attribute. This attribute is configured for
the user directory.

Sm_DirCapability_PasswordDataAttr 0x00800000

Read-Write password data attribute. This attribute is configured for
the user directory.

Sm_DirCapability_UserPasswordAttr 0x01000000

Read-Write password attribute. This attribute is configured for the
user directory.

Chapter 4: Policy Management API Guidance 219

Exported Types

Directory Capability Value
Sm_DirCapability_EmailAddressAttr 0x02000000
Read-only E-mail attribute. This attribute is configured for the user

directory.

Sm_DirCapability_ChallengeRespAttr 0x04000000

Read-Write Challenge and Response attribute. This attribute is
configured for the user directory.

Note: Attribute masks are directory user profile attributes. They are available in the
directory. Each attribute is read-only or read-write. Read-write attributes are not used
by other applications.

Domain Flags

Sm_PolicyApi_DomainFlags_t enumerates flags pertaining to domain-wide influence.

Name Value

Sm_PolicyApi_DomainFlags_GlobalPoliciesApply 0x02

When this flag is set, the domain processes global policies for all realms
in the domain. When this flag is not set, the domain does not process
global policies.

Group Types
Sm_PolicyApi_Groups_t enumerates the type of group for which you can perform group
functions.
Name Value
Sm_PolicyApi_NULL_Group_Prop 0
Sm_PolicyApi_Rule_Group_Prop 1
Sm_PolicyApi_Response_Group_Prop 2
Sm_PolicyApi_Agent_Group_Prop 3

220 Programming Guide for C

Exported Types

IP Address Types

Sm_PolicyApi_IPAddressType_t enumerates the type of IP address restrictions that are
defined for an object in Sm_PolicyApi_IPAddress_t.

IP Address Type Value

Sm_PolicyApi_IPAddressType_SingleHost 1
A single host IP address requires the following fields to be set:

m Structld. IP Address data structure ID defined in
Sm_PolicyApi_Structs_t.

m iIPAddressType. Set IP address type to be
Sm_PolicyApi_IPAddressType_SingleHost.

m n/PAddress. The valid IP address. This IP address is specified in the long
format.

Sm_PolicyApi_IPAddressType_HostName 2

A host name IP address requires the following fields to be set:

m Structld. IP Address data structure ID defined in
Sm_PolicyApi_Structs_t.

m iIPAddressType. Set IP address type to be
Sm_PolicyApi_IPAddressType_HostName.

m pszHostName[BFSIZE]. Host name of the machine that a user must be
using for an action to occur-for example, for a policy to fire.

Sm_PolicyApi_IPAddressType_AddressAndSubNetMask 3

A subnet mask requires the following fields to be set:

m iStructld. IP Address data structure ID defined in
Sm_PolicyApi_Structs_t.

m iIPAddressType. Set IP address type to be
Sm_PolicyApi_IPAddressType_AddressAndSubnetMask.

m n/PAddress. The valid IP address. This IP address is specified in the long
format.

m nSubnetMask. Specify the subnet mask.

Chapter 4: Policy Management API Guidance 221

Exported Types

IP Address Type Value

Sm_PolicyApi_IPAddressType_Range 4
A range of IP addresses requires the following fields to be set:

m Structld. IP Address data structure ID defined in
Sm_PolicyApi_Structs_t.

m IPAddressType. Set IP address type to be
Sm_PolicyApi_IPAddressType_Range.

m n/PAddress. Starting IP address. This IP address is specified in the long
format.

m nEndIPAddress. Ending IP address. This IP address is specified in the
long format.

Management Commands

Sm_PolicyApi_ManagementCommands_t enumerates the values that can be passed to
Sm_PolicyApi_ManagementCommand() for flushing caches, for managing agent
encryption keys, and for shared secret rollover.

Initialize the structure to zero (memset) prior to setting any values. Use the symbolic
enumerated values, rather than hard-coding integer command values.

The value is passed in the iCommand field of the structure
Sm_PolicyApi_ManagementCommand_t.

Management Command Value

Sm_PolicyApi_ManagementCommand_FlushAll 1

Flushes all SiteMinder caches. Policy store cache, resource cache, and user
information cache are flushed by this command. It does not require any
data in the pszData field of Sm_PolicyApi_ManagementCommand_t.

Sm_PolicyApi_ManagementCommand_FlushUsers 2

Flushes user information cache. It does not require any data in the pszData
field of Sm_PolicyApi_ManagementCommand_t.

Sm_PolicyApi_ManagementCommand_FlushRealms 3

Flushes resource cache. It does not require any data in the pszData field of
Sm_PolicyApi_ManagementCommand_t.

222 Programming Guide for C

Exported Types

Management Command Value

Sm_PolicyApi_ManagementCommand_ChangeDynamicKeys 4

Changes the dynamic agent key. It does not require any data in the pszData
field of Sm_PolicyApi_ManagementCommand_t.

Before you change a dynamic agent key through the C API, the Agent Key
setting in the Policy Server Key Management dialog box must be set to Use
dynamic Agent Key. To access this dialog box in the Policy Server Ul, click
Tools > Manage Keys. Then, in the Agent Key tab, select Use dynamic Agent
Key.

Sm_PolicyApi_ManagementCommand_ChangePersistentKey 5

Changes the persistent or static key. The data field pszData of
Sm_PolicyApi_ManagementCommand_t structure may contain an optional
key value. If pszData is empty, the persistent key is randomly generated.

Sm_PolicyApi_ManagementCommand_ChangeSessionKey 6

Changes the session key. The data field pszData of
Sm_PolicyApi_ManagementCommand_t structure may contain an optional
key value. If pszData is empty, the session key is randomly generated.

Sm_PolicyApi_ManagementCommand_RolloverSharedSecrets 7

Rolls over shared secrets for rollover-enabled trusted hosts.

Password Messades
Sm_PolicyApi_PasswordMsgld_t enumerates password message IDs.
Password messages describe the encoded error message returned to

Sm_PolicyApi_SetPassword() when a new password does not satisfy the password policy
requirements of the specified directory.

Password Message ID Value
Sm_PolicyApi_PasswordMsgld_None 0
Sm_PolicyApi_PasswordMsgld_ChangePassword 1
Sm_PolicyApi_PasswordMsgld_PassswordGeneralFailure 1000
Sm_PolicyApi_PasswordMsgld_PasswordShort 1001
Sm_PolicyApi_PasswordMsgld_PasswordLong 1002
Sm_PolicyApi_PasswordMsgld_PasswordOldPasswordBad 1003
Sm_PolicyApi_PasswordMsgld_PasswordReuse 1004

Chapter 4: Policy Management API Guidance 223

Exported Types

Password Message ID Value
Sm_PolicyApi_PasswordMsgld_PasswordSimilar 1005
Sm_PolicyApi_PasswordMsgld_PasswordRepeatingChars? 1006
Sm_PolicyApi_PasswordMsgld_PasswordDictionaryMatch 1007
Sm_PolicyApi_PasswordMsgld_PasswordContentLetters 1008
Sm_PolicyApi_PasswordMsgld_PasswordContentDigits 1009
Sm_PolicyApi_PasswordMsgld_PasswordContentAlphaNum 1010
Sm_PolicyApi_PasswordMsgld_PasswordContentPunctuation 1011
Sm_PolicyApi_PasswordMsgld_PasswordContentNonPrintable 1012
Sm_PolicyApi_PasswordMsgld_PasswordContentNonAlphaNum 1013
Sm_PolicyApi_PasswordMsgld_PasswordProfileMatch 1014
Sm_PolicyApi_PasswordMsgld_PasswordGraceDays 1015
Sm_PolicyApi_PasswordMsgld_PasswordSystemPIN 1016
Sm_PolicyApi_PasswordMsgld_PasswordUserMaxNumPIN 1017
Sm_PolicyApi_PasswordMsgld_PasswordUserMinMaxNumPIN 1018
Sm_PolicyApi_PasswordMsgld_PasswordUserMaxAlphaPIN 1019
Sm_PolicyApi_PasswordMsgld_PasswordUserMinMaxAlphaPIN 1020
Sm_PolicyApi_PasswordMsgld_PasswordAcceptPIN 1021
Sm_PolicyApi_PasswordMsgld_PasswordContentLowerAlpha 1022
Sm_PolicyApi_PasswordMsgld_PasswordContentUpperAlpha 1023
Sm_PolicyApi_PasswordMsgld_PasswordContentNoLowerAlpha 1024
Sm_PolicyApi_PasswordMsgld_PasswordContentNoUpperAlpha 1025
Sm_PolicyApi_PasswordMsgld_PasswordContentNoDigits 1026
Sm_PolicyApi_PasswordMsgld_PasswordContentNoPunctuation 1027
Sm_PolicyApi_PasswordMsgld_PasswordContentNoNonPrintable 1028
Sm_PolicyApi_PasswordMsgld_PasswordContentNoNonAlphaNum 1029
Sm_PolicyApi_PasswordMsgld_PasswordContentNoAlphaNum 1030
Sm_PolicyApi_PasswordMsgld_PasswordContentMatchRegExp 1031
Sm_PolicyApi_PasswordMsgld_PasswordContentNoMatchRegExp 1032
Sm_PolicyApi_PasswordMsgld_PasswordUserMinNumPIN 1033

224 Programming Guide for C

Exported Types

Password Message ID Value
Sm_PolicyApi_PasswordMsgld_PasswordUserDigitsPIN 1034
Sm_PolicyApi_PasswordMsgld_PasswordUserAlphaNumPIN 1035

Additional information about the error message is available in the password message
field associated with the password message.

Password Messade Fields
Sm_PolicyApi_PasswordMsgFieldld_t enumerates password message field IDs.
Password message fields contain additional information about the password messages

described in the previous section. You can find this additional information in the
structure Sm_PolicyApi_PasswordMsgField_t.

Password Message Field ID Value
Sm_PolicyApi_PasswordMsgFieldld_None 0
Sm_PolicyApi_PasswordMsgFieldld_Min 1
Sm_PolicyApi_PasswordMsgFieldld_Max 2
Sm_PolicyApi_PasswordMsgFieldld_OldPW 3
Sm_PolicyApi_PasswordMsgFieldld_NewPW 4
Sm_PolicyApi_PasswordMsgFieldld_Days 5
Sm_PolicyApi_PasswordMsgFieldld_Token 6

Fields can be of type integer or string, or they can have no type.

Password Messade Field Types

Sm_PolicyApi_FieldType_t enumerates the possible data types for the password
message fields.

Password Message Field Type Value
Sm_PolicyApi_FieldType_None 0
Sm_PolicyApi_FieldType_Int 1
Sm_PolicyApi_FieldType_String 2

Chapter 4: Policy Management API Guidance 225

Exported Types

Password Policy Behavior Flags

Sm_PasswordPolicyBehavior_t enumerates the behavioral characteristics of a password

policy.
Password Policy Behavior Flag Value
Sm_PasswordPolicy_DontTrackLogins 0x00000004

This flag has been replaced in SiteMinder v6.0 SP3 by:
m Sm_PasswordPolicy_DontTrackSuccessLogins

m Sm_PasswordPolicy_DontTrackFailedLogins
The new flags allow successful and failed logins to be tracked
separately.

Sm_PasswordPolicy_DontTrackLogins is currently maintained for
backwards compatibility. If this flag is set, login tracking for
successful and failed logins will not occur.

Sm_PasswordPolicy_AllowFailedWrites 0x00000008

Allows users to log in even if password data cannot be written to
the user directory.

Sm_PasswordPolicy_InactivityForcePWChange 0x00000010

Forces a password change on the next login attempt after a user's
password becomes invalid due to inactivity.

Sm_PasswordPolicy_PWExpiredForcePWChange 0x00000020

Forces a password change on the next login attempt after a user's
password expires.

Sm_PasswordPolicyBehavior_FullReenable 0x00000040

If a user's account is disabled due to successive incorrect password
entries, this flag re-enables the account after a given time period.
Specify the time in the nReenablement field of
Sm_PolicyApi_PasswordPolicy_t.

If this flag is not set, the user is allowed another login attempt after
the given nReenablement time period.

Sm_PasswordPolicy_StopPriorityChaining 0x00000080

Prevents the evaluation of password policies with lower priority
ratings than the current password policy.

Sm_PasswordPolicy_ExpireDisablePassword 0x00000100

When the password expires, disable just the password and not the
user account.

226 Programming Guide for C

Exported Types

Password Policy Behavior Flag Value

Sm_PasswordPolicy_FailuresDisablePassword 0x00000200

When the maximum number of authentication failures are
exceeded, disable just the password and not the user account.

Sm_PasswordPolicy_ForceCase 0x00000400

Force the password's case that is specified through bit
Sm_PasswordPolicy_CaseSelect.

Sm_PasswordPolicy_CaseSelect 0x00000800

If Sm_PasswordPolicy_ForceCase is set,
Sm_PasswordPolicy_ForceCase forces upper case passwords when
set, and forces lower case passwords when cleared.

Sm_PasswordPolicy_CaseBits 0x00000c00

Sets both of the following bits (forces upper case passwords):
m Sm_PasswordPolicy_ForceCase

m Sm_PasswordPolicy_CaseSelect

Sm_PasswordPolicy_StripLeadingWhiteSpace 0x00001000

Removes any leading white space from the password.

Sm_PasswordPolicy_StripTrailingWhiteSpace 0x00002000

Removes any trailing white space from the password.

Sm_PasswordPolicy_StripFlankingWhiteSpace 0x00003000
Sets both of the following bits (strips leading and trailing white
space):

m Sm_PasswordPolicy_StripLeadingWhiteSpace
m Sm_PasswordPolicy_StripTrailingWhiteSpace

Sm_PasswordPolicy_StripEmbeddedWhiteSpace 0x00004000

Removes all white space within the password.

Sm_PasswordPolicy_WhiteSpaceBits 0x00007000

Sets all of the following bits (strips leading, trailing, and embedded
white space):

m Sm_PasswordPolicy_StripLeadingWhiteSpace
m Sm_PasswordPolicy_StripTrailingWhiteSpace
m Sm_PasswordPolicy_StripEmbeddedWhiteSpace

Chapter 4: Policy Management API Guidance 227

Exported Types

Policy Flags

Password Policy Behavior Flag Value

Sm_PasswordPolicy_PreProcessBits 0x00007c00

Sets all of the following bits (forces upper case passwords and
strips leading, trailing, and embedded white space):

m Sm_PasswordPolicy_ForceCase

m Sm_PasswordPolicy_CaseSelect

m Sm_PasswordPolicy_StripLeadingWhiteSpace

m Sm_PasswordPolicy_StripTrailingWhiteSpace

m Sm_PasswordPolicy_StripEmbeddedWhiteSpace

Sm_PasswordPolicy_DontTrackSuccessLogins 0x00008000

Performs directory updates at login time. When this flag is not set,
the password policy tracks successful user logins, including the
time of the last login.

Sm_PasswordPolicy_DontTrackFailedLogins 0x00010000

Performs directory updates at login time. When this flag is not set,
the password policy tracks unsuccessful user login attempts.

Note: Values 0x00000400 through 0x00007c00 apply to password preprocessing.
During preprocessing, the password is checked before it is processed or stored.

Sm_PolicyApi_AddUsersToPolicy() uses the following values (which are defined in
SmApi.h):

Flag Value

Sm_PolicyBehavior_Exclude_Mask 0x01

Bit Ox01 determines whether user policy excludes or includes 'users.'

Sm_PolicyBehavior_Exclude_No 0x00
Sm_PolicyBehavior_Exclude_Yes 0x01
Sm_PolicyBehavior_Recursive_Mask 0x02

Bit 0x02 determines whether user policy is recursive. This is applicable to
directory object classes that can be nested.

Sm_PolicyBehavior_Recursive_No 0x00

228 Programming Guide for C

Exported Types

Flag Value
Sm_PolicyBehavior_Recursive_Yes 0x02
Sm_PolicyBehavior_AND_Mask 0x04

Bit 0x04 determines whether the user policy has an AND relationship
between user policies. This is applicable to user policies that are
members of a particular user directory within the policy.

Sm_PolicyBehavior_AND_No 0x00

Sm_PolicyBehavior_AND_Yes 0x04

Policy Management API Initialization Flags

Sm_PolicyApi_InitFlags_t enumerates the initialization flags used by Sm_PolicyApi_lInit().
These flags affect APl behavior.

Flag Value

Sm_PolicyApi_lInitFlags_EnableCache 0x01

Enables caching of policy store, resource, and user information to ensure
that SiteMinder responds quickly to user requests.

Sm_PolicyApi_InitFlags_PreLoadCache 0x02
Enables the Policy Management API to preload the SiteMinder caches.

Note: By omitting this flag, you can reduce the time it takes for custom
Policy Management applications to make policy store changes.

Sm_PolicyApi_InitFlags_LoadAgentTypeDictionary 0x04
Enables the Policy Management API to preload the SiteMinder agent type
dictionary.

Sm_PolicyApi_InitFlags_DisableValidation 0x08

Disables validation of policy objects.

Sm_PolicyApi_lInitFlags_DisableAudit 0x10
Disables:

m Auditing of user activity, including authentication, authorization, and
administration activities. (Administration activities include changes to
the policy store.)

m Monitoring of user sessions.

Chapter 4: Policy Management API Guidance 229

Exported Types

Flag Value

Sm_PolicyApi_InitFlags_DisableCacheUpdates 0x20
Disables cache updates. If cache updates are not disabled and
Sm_PolicyApi_InitFlags_EnableCache is turned off, the Policy

Management API will still issue the cache updates.

Sm_PolicyApi_lInitFlags_DisableManagementWatchDog 0x40

Disables the SiteMinder management watchdog. The watchdog is enabled
by default. The watchdog is used internally and should not be disabled.

Policy Object IDs

Sm_PolicyApi_Objects_t describes the policy store properties that can be retrieved, set,
and removed.

Note: Sm_PolicyApi_NULL_Domain_Props, value 0, is reserved.

The following table lists the domain object type values that can be passed to
Sm_PolicyApi_GetDomainObjects():

Name Value
Sm_PolicyApi_Rule_Prop 1
Sm_PolicyApi_RuleGroup_Prop 2
Sm_PolicyApi_Policy_Prop 3
Sm_PolicyApi_PolicyLink_Prop 4
Sm_PolicyApi_UserPolicy_Prop 5
Sm_PolicyApi_Realm_Prop 6
Sm_PolicyApi_ResponseGroup_Prop 7
Sm_PolicyApi_Response_Prop 8
Sm_PolicyApi_ResponseAttr_Prop 9
Sm_PolicyApi_UserDir_Prop 10
Sm_PolicyApi_Admins_Prop 17
Sm_PolicyApi_ActiveExpr_Prop 23
Sm_PolicyApi_Variable_Prop 25
Sm_PolicyApi_Affiliate_Prop 33

230 Programming Guide for C

Exported Types

Name Value

Sm_PolicyApi_SAMLSP_Prop 35

The following table lists the global object type names that can be passed to
Sm_PolicyApi_GetGlobalObjects():

Name Value
Sm_PolicyApi_Rule_Prop 1
Sm_PolicyApi_Policy_Prop 3
Sm_PolicyApi_Response_Prop 8
Sm_PolicyApi_UserDir_Prop 10
Sm_PolicyApi_Scheme_Prop 11

Object ID for an authentication scheme.

Sm_PolicyApi_Agent_Prop 12
Sm_PolicyApi_AgentGroup_Prop 13
Sm_PolicyApi_AgentType_Prop 14
Sm_PolicyApi_AgentTypeAttr_Prop 15
Sm_PolicyApi_Domain_Prop 16
Sm_PolicyApi_Admins_Prop 17
Sm_PolicyApi_ODBCQueryScheme_Prop 18
Sm_PolicyApi_RegistrationScheme_Prop 19
Sm_PolicyApi_PasswordPolicy_Prop 20
Sm_PolicyApi_AuthAzMap_Prop 21

Object ID for an authentication-authorization object.

Sm_PolicyApi_CertMap_Prop 22

Object ID for a certification-mapping object.

Sm_PolicyApi_VariableType_Prop 24
Sm_PolicyApi_TrustedHost_Prop 26
Sm_PolicyApi_HostConfig_Prop 27
Sm_PolicyApi_AgentConfig_Prop 28
Sm_PolicyApi_Association_Prop 29

Object ID for a configuration name/value pair in an agent configuration
object.

Chapter 4: Policy Management API Guidance 231

Exported Types

Name Value
Sm_PolicyApi_AffiliateDomain_Prop 32
Sm_PolicyApi_SharedSecretPolicy_Prop 34
Sm_PolicyApi_SAMLIAP_Prop 36
Sm_PolicyApi_SAMLAffiliation_Prop 37
Sm_PolicyApi_WSFEDResourcePartner_Prop 38

Policy Resolutions

Sm_PolicyResolution_t, defined in SmApi.h, enumerates the values that describe the
relationship between two policy objects.

More Information:

Sm_PolicyResolution t (see page 757)

Return Codes

The value codes that can be returned by the APl are enumerated in
Sm_PolicyApi_Status_t. The values have the following significance:

m A zero return code indicates success.

m Negative return codes indicate failure.

Most of the code names are self-explanatory. However, note that
Sm_PolicyApi_BadArgument (-10) is returned when one or more of the required input

parameters is not supplied. For example, if an argument such as a domain OID is null or
represents a string of zero length, Sm_PolicyApi_BadArgument is returned to the caller.

Return codes with values less than -100 (except for Sm_PolicyApi_NotUnique, value
-105) will rarely be returned by this API. They are included for completeness.

Return Code Value
Sm_PolicyApi_Success 0
Sm_PolicyApi_Failure -1
Sm_PolicyApi_InvalidHandle -2

232 Programming Guide for C

Exported Types

Sm_PolicyApi_ErrorLogin
Sm_PolicyApi_NoPrivilege
Sm_PolicyApi_InvalidPasswordSyntax
Sm_PolicyApi_InvalidPassword
Sm_PolicyApi_DuplicateEntry
Sm_PolicyApi_DoesNotExist
Sm_PolicyApi_NotFound
Sm_PolicyApi_BadArgument
Sm_PolicyApi_WrongNumberOfElements
Sm_PolicyApi_UserDirNotPartOfDomain
Sm_PolicyApi_UserDirNotValid
Sm_PolicyApi_ErrorUserDir
Sm_PolicyApi_AgentNotFound
Sm_PolicyApi_AgentTypeNotFound
Sm_PolicyApi_AgentTypeAttrNotFound
Sm_PolicyApi_AgentTypeMismatch
Sm_PolicyApi_ODBCQuerySchemeNotFound
Sm_PolicyApi_UserDirNotFound
Sm_PolicyApi_DomainNotFound
Sm_PolicyApi_AdminNotFound
Sm_PolicyApi_SchemeNotFound
Sm_PolicyApi_RegistrationSchemeNotFound
Sm_PolicyApi_PasswordPolicyNotFound
Sm_PolicyApi_SchemelsRequired
Sm_PolicyApi_PasswordPolicyConfig
Sm_PolicyApi_RealmNotFound
Sm_PolicyApi_NoChildren
Sm_PolicyApi_RuleNotFound
Sm_PolicyApi_ResponseNotFound
Sm_PolicyApi_ResponseAttrNotFound

Sm_PolicyApi_PolicyNotFound

-11
-12
-13
-14
-15
-16

-17

Chapter 4: Policy Management API Guidance 233

Exported Types

Sm_PolicyApi_PolicyLinkNotFound
Sm_PolicyApi_UserPolicyNotFound
Sm_PolicyApi_BadGroup
Sm_PolicyApi_GroupNotFound
Sm_PolicyApi_Invalid
Sm_PolicyApi_InvalidHandleVersion
Sm_PolicyApi_DomainNotAffiliate
Sm_PolicyApi_InvalidOid
Sm_PolicyApi_NotImplemented
Sm_PolicyApi_NotSearchable
Sm_PolicyApi_NotStorable
Sm_PolicyApi_NotCollection
Sm_PolicyApi_NotUnique
Sm_PolicyApi_InvalidProp
Sm_PolicyApi_NotlInitted
Sm_PolicyApi_NoSession
Sm_PolicyApi_OidInUseByRealm
Sm_PolicyApi_OidInUseByRule
Sm_PolicyApi_OidInUseByAdmin
Sm_PolicyApi_MissingProperty
Sm_PolicyApi_GroupMemberName
Sm_PolicyApi_RadiuslpAddrNotUnique
Sm_PolicyApi_GroupAgentType
Sm_PolicyApi_RadiusRealmNotUnique
Sm_PolicyApi_RealmFilterNotUnique
Sm_PolicyApi_InvalidCharacters
Sm_PolicyApi_AgentTypeCantBeDeleted
Sm_PolicyApi_ProvNotimplemented
Sm_PolicyApi_ProvNotUnique
Sm_PolicyApi_RealmCantBeUsedInRule
Sm_PolicyApi_OidlnUserByCertMap

234 Programming Guide for C

Exported Types

Sm_PolicyApi_OidInUseBySelfReg
Sm_PolicyApi_OidIinUseByUserDirectory
Sm_PolicyApi_SchemeCantBeDeleted
Sm_PolicyApi_BasicSchemeUpdate
Sm_PolicyApi_NonHtmIForm
Sm_PolicyApi_lllegalRealmQOperation
Sm_PolicyApi_NameNotUnique
Sm_PolicyApi_FeatureNotSupported
Sm_PolicyApi_AssertionConsumerDefaultMissing
Sm_PolicyApi_SAMLSP_AuthenticationURLMissing
Sm_PolicyApi_SAMLSP_DomainOidMissing
Sm_PolicyApi_SAMLSP_IdPIDMissing
Sm_PolicyApi_SAMLSP_NameMissing
Sm_PolicyApi_SAMLSP_NameldFormatMissing
Sm_PolicyApi_SAMLSP_NameldTypeMissing
Sm_PolicyApi_SAMLSP_NameldStaticMissing
Sm_PolicyApi_SAMLSP_NameldAttrNameMissing
Sm_PolicyApi_SAMLSP_NameldDNSpecMissing
Sm_PolicyApi_SAMLSP_ProviderIDMissing
Sm_PolicyApi_SAMLSP_ProviderIDNotUnique
Sm_PolicyApi_SAML_UnSupportedSAMLVersion
Sm_PolicyApi_SAMLIDP_IncorrectParameters
Sm_PolicyApi_SAMLIDP_ProviderIDNotUnique
Sm_PolicyApi_SAMLAFF_NameMissing
Sm_PolicyApi_SAMLAFF_NameldFormatMissing
Sm_PolicyApi_SAMLAFF_NameldTypeMissing
Sm_PolicyApi_SAMLAFF_NameldStaticMissing
Sm_PolicyApi_SAMLAFF_NameldAttrNameMissing
Sm_PolicyApi_SAMLAFF_NameldDNSpecMissing
Sm_PolicyApi_SAMLAFF_AffiliationIDMissing

Sm_PolicyApi_SAMLAFF_AffiliationIDNotUnique

-124
-125
-126
-127
-128
-129
-130
-132
-133
-134
-135
-136
-137
-138
-139
-140
-141
-142
-143
-144
-145
-146
-147
-148
-149
-150
-151
-152
-153
-154
-155

Chapter 4: Policy Management API Guidance 235

Exported Types

Sm_PolicyApi_SAMLAFF_AffiliationHasMembers
Sm_PolicyApi_SAML_UnknownProperty
Sm_PolicyApi_WSFEDRP_AssertionConsumerDefaultMissing
Sm_PolicyApi_WSFEDRP_AuthenticationURLMissing
Sm_PolicyApi_WSFEDRP_DomainQOidMissing
Sm_PolicyApi_WSFEDRP_APIDMissing
Sm_PolicyApi_WSFEDRP_NameMissing
Sm_PolicyApi_WSFEDRP_NameldFormatMissing
Sm_PolicyApi_WSFEDRP_NameldTypeMissing
Sm_PolicyApi_WSFEDRP_NameldStaticMissing
Sm_PolicyApi_WSFEDRP_NameldAttrNameMissing
Sm_PolicyApi_WSFEDRP_NameldDNSpecMissing
Sm_PolicyApi_WSFEDRP_ProviderldMissing
Sm_PolicyApi_WSFEDRP_ProviderldNotUnique
Sm_PolicyApi_WSFEDRP_UnsupportedSAMLVersion
Sm_PolicyApi_WSFEDRP_UnkownProperty
Sm_PolicyApi_WSFEDAP_IncorrectParameters
Sm_PolicyApi_WSFEDAP_ProviderIDNotUnique
Sm_PolicyAPI_InsufficientRPData
Sm_PolicyAPI_WSFED_UnSupportedWSFEDVersion
Sm_PolicyAPI_DuplicateAttribute
Sm_PolicyAPI_SAMLSP_ACSDuplicatelndex
Sm_PolicyAPI_SAMLSP_ACSIndexedEndpointinUse
Sm_PolicyAPI_SAMLSP_ACSIndexedEndpointNotFound
Sm_PolicyAPI_SAMLSP_CantDeleteDefaultACSIndex
Sm_PolicyAPI_SAMLSP_ACSMaxExceeded
Sm_PolicyAPI_InConsistentANDBitMask

-156
-157
-158
-159
-160
-161
-162
-163
-164
-165
-166
-167
-168
-169
-170
171
-172
-173
-174
-175
-176
-177
-178
-179
-180
-181
-182

236 Programming Guide for C

Exported Types

SAML1x Redirect URL Types
Sm_PolicyApi_SAML1_STATUS_REDIRECT_URL_TYPE_t defines the type of redirection
specified in Sm_PolicyApi_AddRedirectURLToSAML1xScheme() and
Sm_PolicyApi_GetRedirectURLFromSAML1xScheme().

Sm_PolicyApi_SAML1_STATUS_REDIRECT_URL_TYPE_t is listed in SmPolicyApi45.h.

Name Value

Sm_PolicyApi_SAML1_STATUS_REDIRECT_URL_USER_NOT_FOUND_ 0

TYPE

Sm_PolicyApi_SAML1_STATUS_REDIRECT _URL_INVALID_SSO 1
Sm_PolicyApi_SAML1_STATUS_REDIRECT _URL_UNACCEPTABLE_USE 2
R_

CREDENTIALS

SAML Assertion Consumer Service Bindings

The following values are the SAML Protocol Bindings that can be specified for each row
of the Assertion Consumer Service:

Name Value
Sm_PolicyApi_SAMLSP_HTTP_Post 0
Sm_PolicyApi_SAMLSP_HTTP_Artifact 1
Sm_PolicyApi_SAMLSP_PAOS 2

Chapter 4: Policy Management API Guidance 237

Exported Types

SAML Attribute Name Format Identifiers

SAML Profiles

Scheme Types

Sm_PolicyApi_SAMLSPAttrNameFormat_t defines the format to use for specifying
attributes that apply to a principal. The format specification is made within the structure
Sm_PolicyApi_SAMLSPA(ttr_t.

The format identifiers are defined by the SAML 2.0 standard.

Sm_PolicyApi_SAMLSPAttrNameFormat_t is listed in SmPolicyApi45.h.

Name Value
Sm_PolicyApi_SAMLSP_Unspecified 0
Sm_PolicyApi_SAMLSP_URI 1
Sm_PolicyApi_SAMLSP_Basic 2

Sm_PolicyApi_SAML_Profile_t specifies the communication profile used to send and
receive a SAML assertion for a particular affiliate object. The profile is specified as one
of the attributes of a Sm_PolicyApi_Affiliate_t structure. Sm_PolicyApi_SAML_Profile_t
is listed in SmPolicyApi45.h.

Name Value
Sm_PolicyApi_SAML_Profile_Artifact 1
Sm_PolicyApi_SAML_Profile_POST 2

Sm_Api_SchemeType_t describes the values that may be passed to
Sm_PolicyApi_AddScheme() as one of the attributes of a SmPolicyApi_Scheme_t
structure. Sm_Api_SchemeType_t is listed in SmApi.h.

Scheme Type Value
Sm_Api_SchemeType_Basic 1
Sm_Api_SchemeType_CryptoCard 2
Sm_Api_SchemeType_Encotone 3
Sm_Api_SchemeType_HTMLForm 4

238 Programming Guide for C

Exported Types

Sm_Api_SchemeType_BasicOverSSL 5

Sm_Api_SchemeType_RadiusServer 6

Sm_Api_SchemeType_SafeWordServer 7

Sm_Api_SchemeType_ACEServer 8

Sm_Api_SchemeType_X509ClientCert 9

Sm_Api_SchemeType_X509ClientCertAndBasic 10
Sm_Api_SchemeType_X509ClientCertOrBasic 11
Sm_Api_SchemeType_RadiusChapPap 12
Sm_Api_SchemeType_Anonymous 13
Sm_Api_SchemeType_NTLM 14
Sm_Api_SchemeType_Custom 15
Sm_Api_SchemeType_ACEServerHTMLForm 16
Sm_Api_SchemeType_SafeWordHTMLForm 17
Sm_Api_SchemeType_XMLDsig 18
Sm_Api_SchemeType_X509ClientCertOrForm 19
Sm_Api_SchemeType_X509ClientCertAndForm 20
Sm_Api_SchemeType_MSPassport 21
Sm_Api_SchemeType_XMLDocumentCredentialCollector 22
Sm_Api_SchemeType_SAMLSessionTicket 25
Sm_Api_SchemeType_SAMLArtifact 26
Sm_Api_SchemeType_Impersonation 27
Sm_Api_SchemeType_SAMLPOST 28
Sm_Api_SchemeType_SAML2 29
Sm_Api-SchemeType_WSFED 30

Chapter 4: Policy Management API Guidance 239

Exported Types

Shared Secret Rollover Parameters

Sm_PolicyApi_SecretRolloverPeriod_t enumerates the units of time which, when
combined with the rollover frequency setting, determines how often shared secret
rollover occurs. For example a rollover period of RolloverHOURS and a frequency of 12
means that the shared secret is changed every 12 hours.

The rollover period is defined in the iRolloverPeriod field of structure
Sm_PolicyApi_SharedSecretPolicy_t, and the frequency is defined in the
iRolloverFrequency field of the structure.

Name Value
RolloverNEVER 0
RolloverHOURS 1
RolloverDAYS 2
RolloverWEEKS 3
RolloverMONTHS 4

Structure IDs

Sm_PolicyApi_Structs_t enumerates the data structures that can be passed to and from
the Policy Management API as follows:

Name Value
Sm_PolicyApi_NULL_ID 0
Sm_PolicyApi_Rule_ID 1
Sm_PolicyApi_Policy_ID 2
Sm_PolicyApi_Realm_ID 3
Sm_PolicyApi_Response_ID 4
Sm_PolicyApi_UserDir_ID 5
Sm_PolicyApi_Agent_ID 6
Sm_PolicyApi_Domain_ID 7
Sm_PolicyApi_PolicyLink_ID 8
Sm_PolicyApi_ResponseAttr_ID 9
Sm_PolicyApi_User_ID 10

240 Programming Guide for C

Exported Types

Name Value
Sm_PolicyApi_Scheme_ID 11
Sm_PolicyApi_Admin_ID 12
Sm_PolicyApi_Group_ID 13
Sm_PolicyApi_ODBCQueryScheme_ID 14
Sm_PolicyApi_Object_ID 15
Sm_PolicyApi_AgentType_ID 16
Sm_PolicyApi_AgentTypeAttr_ID 17
Sm_PolicyApi_RegistrationScheme_ID 18
Sm_PolicyApi_PasswordPolicy_ID 19
Sm_PolicyApi_IPAddress_ID 20
Sm_PolicyApi_AuthAzMap_ID 21
Sm_PolicyApi_CertMap_ID 22
Sm_PolicyApi_PasswordMsgField_ID 23
Sm_PolicyApi_VariableType_ID 25
Sm_PolicyApi_Variable_ID 26
Sm_PolicyApi_TrustedHost_ID 27
Sm_PolicyApi_HostConfig_ID 28
Sm_PolicyApi_AgentConfig_ID 29
Sm_PolicyApi_Association_ID 30
Sm_PolicyApi_UserContext_ID 31
Sm_PolicyApi_Affiliate_ID 36
Sm_PolicyApi_AffiliateAttr_ID 37
Sm_PolicyApi_SharedSecretPolicy_ID 38
Sm_PolicyApi_UserContext_ID 40
Sm_PolicyApi_SAMLSP_ID 41
Sm_PolicyApi_SAMLProviderProp_ID 42
Sm_PolicyApi_SAMLAffiliation_ID 43
Sm_PolicyApi_SAMLSPAttr_ID 44

Chapter 4: Policy Management API Guidance 241

Structure of a Policy Application

Name Value
Sm_PolicyApi_WSFEDResourcePartner_ID 45
Sm_PolicyApi_WSFEDProviderProp_ID 46
Sm_PolicyApi_WSFEDRPAttr_ID 47
Sm_PolicyApi_SAMLRequesterAttr_ID 48
Sm_PolicyApi_SAMLSPAssertionConsumerService_ 49

ID

Structure of a Policy Application

Policy applications must perform the following operations:

Initialization: Sm_PolicyApi_Init() or Sm_PolicyApi_InitEx() must be the first
function called by the API client session. The function initializes the connection to
the SiteMinder policy store and establishes the init handle. (The init handle is
passed in calls to Sm_PolicyApi_Login() and Sm_PolicyApi_Release().)

Login: Sm_PolicyApi_Login() must be called after initialization and before making
calls to the other functions in the API. This function can check the administrator's
login credentials (username and password) or the administrator's validity.

If the administrator is authenticated, the function initializes internal data structures
and resources. Once the administrator is logged in, the Policy Server initializes a
handle that is used as an input parameter to subsequent Policy Management API
functions. Sm_PolicyApi_Login() can be called more than once during the client
session.

Logout: Sm_PolicyApi_Logout() logs out the administrator.

Release: Sm_PolicyApi_Release() must be the last function called by the API client
session. It disconnects from the policy store and releases memory and resources
held by the API. This function must be called once per client session. Failure to call
this function will result in a memory leak.

242 Programming Guide for C

Functions by Catedory in the Policy Management API

Functions by Catedory in the Policy Management API

Most of the functions in the Policy Management API are categorized according to the
SiteMinder policy store object (for example, an agent, policy, or rule) that a given
function acts upon. There are additional categories-required functions, user state
functions, and utility functions such as cache and agent encryption key
management-that are categorized by the type of service that certain functions perform.

Use these categories to help you find a particular Policy Management API function to
use in your custom policy management applications.
The categories of Policy Management API functions include:
® Required Functions

® Administrator Functions

® Agent Functions

m Agent Configuration Functions

m Authentication/Authorization Map Functions

®m Authentication Scheme Functions

m Certificate Mapping Functions

® Domain Functions

®m Federation Functions

m General Object Functions

® Group Functions

m ODBC Query Scheme Functions

m Password Policy Functions

m Policy Functions

m Realm Functions

m Registration Scheme Functions

m Regular Expression Functions

m Response Functions

m Rule Functions

m SAML 2.0 Attribute Authority Functions

m SAML 2.0 Configuration Functions

m SAML 2.0 Indexed Endpoint Functions

m User Directory Functions

m User and User State Functions

Chapter 4: Policy Management API Guidance 243

Functions by Category in the Policy Management API

m User Password State Functions
m Utility Functions
m Variable Functions

m WS-Federation Functions

Required Functions

The following functions must be used in all policy management applications:

Function

Description

Sm_PolicyApi_Init() (see page 475)

Initializes the connection to the Policy
Server.

Sm_PolicyApi_InitEx() (see page 476)

Initializes a connection to the SiteMinder
policy store and establishes the init handle
based on a supplied version. Required for
clients starting at version
SM_POLICY_API_VERSION_6_0.

Sm_PolicyApi_Login() (see page 479)

Authenticates the administrator.

Sm_PolicyApi_Logout() (see page 481)

Logs out the administrator.

Sm_PolicyApi_Release() (see page 486)

Disconnects from the Policy Server and
releases memory and resources held by
the API.

Administrator Functions

The following functions manage SiteMinder administrator objects:

Function

Description

Sm_PolicyApi AddAdmin() (see page 266)

Creates or updates an
administrator object.

Sm_PolicyApi_AddAdminToDomain() (see

Gives the administrator

page 268) permission to administer the
specified domain.
Sm_PolicyApi_DeleteAdmin() (see page 336) Deletes an administrator.

Sm_PolicyApi_GetAdmin() (see page 368)

Gets the contents of an
administrator by object identifier.

244 Programming Guide for C

Functions by Catedory in the Policy Management API

Adent Functions

Function

Description

Sm_PolicyApi_GetAdminByName() (see page 369)

Gets the contents of an
administrator by name.

Sm_PolicyApi

GetGlobalPolicyByName() (see

page 408)

Gets a specified global policy by
name.

Sm_PolicyApi_GetGlobalResponseByName() (see

Gets a specified global response

page 409) by name.
Sm_PolicyApi_GetGlobalRuleByName() (see Gets a specified global rule by
page 410) name.

Sm_PolicyApi RemoveAdminFromDomain() (see

page 488)

Disassociates the administrator
from the specified domain.

The following functions manage SiteMinder agent objects.

Note: There is no facility for creating Agent Types or Agent Type attributes.

Function Description
Sm_PolicyApi_AddAgent() (see page 272) Creates or updates an agent object.
Sm_PolicyApi_ConvertFromLegacyAgent() (see Converts a v4.x agent to a v5.x
page 328) agent.
Sm_PolicyApi_ConvertTolLegacyAgent() (see Converts a v5.x agent to a v4.x
page 329) agent.
Sm_PolicyApi DeleteAgent() (see page 339) Deletes an agent.
Sm_PolicyApi_GetAgent() (see page 380) Gets the contents of an agent by
OID.
Sm_PolicyApi_GetAgentByName() (see Gets the contents of an agent by
page 381) name.
Sm_PolicyApi_GetAgentType() (see page 385) Gets the contents of an agent type
object by OID.
Sm_PolicyApi_GetAgentTypeByName() (see Gets the contents of an agent type
page 386) object by name.
Sm_PolicyApi_GetAgentTypeAttr() (see Returns one or all agent type
page 387) attributes.

Chapter 4: Policy Management API Guidance 245

Functions by Catedory in the Policy Management API

Function Description

Sm_PolicyApi GetAgentTypeAttrByName() (see Returns named agent type attribute
page 388) object.

Agent Configuration Functions

The following functions manage configuration objects (agent configuration objects, host
configuration objects, and trusted host objects) for centrally configuring agents.

Trusted hosts are created in any of the following ways:

m During agent installation

m Through the command line using the smreghost tool. For information about using
this tool, see Web Agent Installation Guide.

m Through the Sm_PolicyApi_AddTrustedHost() function.

Function Description

Sm_PolicyApi AddAgentConfig() (see page 273) Adds or modifies an agent
configuration object.

Sm_PolicyApi AddAgentConfigAssociation() (see Adds or modifies a

page 274) configuration parameter name

and corresponding value in a
specified agent configuration
object.

Sm_PolicyApi AddHostConfig() (see page 286) Adds or modifies a host
configuration object.

Sm_PolicyApi_AddTrustedHost() (see page 312) Creates or modifies a trusted
host object in the object store
when there is no connection
between the agent and the
Policy Server.

Sm_PolicyApi_DeleteAgentConfig() (see page 340) Deletes an agent configuration
object.

Sm_PolicyApi_DeleteHostConfig() (see page 344) Deletes a host configuration
object.

Sm_PolicyApi_DeleteTrustedHost() (see page 357) Deletes a trusted host object.

246 Programming Guide for C

Functions by Catedory in the Policy Management API

Function Description
Sm_PolicyApi_GetAgentConfig() (see page 382) Retrieves an agent
configuration object.
Sm_PolicyApi_GetAgentConfigAssociations() (see Retrieves a list of configuration
page 384) parameters for an agent
configuration object.
Sm_PolicyApi_GetAgentConfigByName() (see Retrieves an agent
page 383) configuration object by name.
Sm_PolicyApi_GetHostConfig() (see page 416) Retrieves a host configuration
object.
Sm_PolicyApi GetHostConfigByName() (see Retrieves a host configuration
page 417) object by name.
Sm_PolicyApi_GetSharedSecretPolicy() (see Retrieves the current shared
page 452) secret policy.
Sm_PolicyApi_GetTrusted (see page 455) Host() (see Retrieves a trusted host object
page 455) by OID.
Sm_PolicyApi_GetTrustedHostByName() (see Retrieves a trusted host object
page 456) by name.
Sm_PolicyApi RemoveAgentConfigAssociation() (see Removes a configuration
page 489) parameter name/value pair
from a specified agent
configuration object.
Sm_PolicyApi_SetSharedSecretPolicy() (see page 517) Sets the current

SharedSecretPolicy.

Authentication/Authorization Map Functions

The following functions manage SiteMinder authentication and authorization directory
mapping objects:

Function Description
Sm_PolicyApi_CreateAuthAzMap() (see Creates or updates an authentication and
page 330) authorization directory mapping object.
Sm_PolicyApi DeleteAuthAzMap() (see Deletes an authentication and

page 341) authorization directory map.

Chapter 4: Policy Management API Guidance 247

Functions by Category in the Policy Management API

Function Description
Sm_PolicyApi_GetAuthAzMap() (see Gets the contents of an authentication
page 398) and authorization directory map.

Authentication Scheme Functions

The following functions manage SiteMinder authentication schemes:

Function Description
Sm_PolicyApi_AddScheme() (see Creates or updates an authentication
page 308) scheme.
Sm_PolicyApi_DeleteScheme() (see Deletes an authentication scheme.
page 356)

Sm_PolicyApi_GetScheme() (see Gets the contents of an authentication
page 451) scheme by OID.

Sm_PolicyApi_GetSchemeByName() (see Gets the contents of an authentication
page 452) scheme by name.

Certificate Mapping Functions

The following functions manage SiteMinder certificate mapping objects:

Function Description
Sm_PolicyApi_CreateCertMap() (see Creates or updates a certificate mapping
page 331) object.

Sm_PolicyApi_DeleteCertMap() (see Deletes a certificate map.

page 342)

Sm_PolicyApi_GetCertMap() (see Gets the contents of a certificate map.
page 399)

248 Programming Guide for C

Functions by Catedory in the Policy Management API

Domain Functions

The following functions manage SiteMinder domain objects:

Function

Description

Sm_PolicyApi AddDomain() (see
page 280)

Creates or updates a domain.

Sm_PolicyApi_DeleteDomain() (see
page 343)

Deletes the domain and any domain
children (rules, responses, realms, and
policies).

Sm_PolicyApi_GetDomain() (see page 404)

Gets the contents of the domain by OID.

Sm_PolicyApi_GetDomainByName() (see
page 405)

Gets the contents of a specified domain by
name.

Sm_PolicyApi_GetDomainObjects() (see
page 406)

Gets the OIDs of domain objects for a
specified object type within the specified
domain.

Federation Functions

The following functions support the manipulation of Policy Store data (Affiliate Domain
and Affiliate objects) required to generate SAML assertions.

Function

Description

Sm_PolicyApi

AddAdminToAffiliateDomain() (see page 267)

Adds an

administrator to an
affiliate domain.

Sm_PolicyApi AddAffiliate() (see page 269)

Creates a new or
update an existing
affiliate object.

Sm_PolicyApi

AddAffiliateDomain() (see page 270)

Creates a new or
updates an existing
affiliate domain.

Sm_PolicyApi

AddAttributeToAffiliate() (see page 277)

Adds a new attribute
to an affiliate.

Sm_PolicyApi

AddUserDirToAffiliateDomain() (see page 313)

Adds a user directory

to an affiliate
domain.

Sm_PolicyApi

AddUsersToAffiliate() (see page 317)

Adds a user directory
entry to an affiliate.

Chapter 4: Policy Management API Guidance 249

Functions by Catedory in the Policy Management API

Function Description
Sm_PolicyApi DeleteAffiliate() (see page 337) Deletes an affiliate.
Sm_PolicyApi DeleteAffiliateDomain() (see page 338) Deletes an affiliate
domain.
Sm_PolicyApi_GetAffiliate() (see page 370) Gets an affiliate by
OID.
Sm_PolicyApi_GetAffiliateByName() (see page 371) Gets and affiliate by
name.
Sm_PolicyApi_GetAffiliateDomain() (see page 372) Gets an affiliate
domain by OID.
Sm_PolicyApi_GetAffiliateDomainByName() (see page 373) Gets an affiliate
domain by name
Sm_PolicyApi_GetAffiliateDomainObjects() (see page 374) Gets the OIDs of
domain objects for a
given object type
within the affiliate
domain.
Sm_PolicyApi_GetAffiliateDomainUserDirSearchOrder() (see Gets the user
page 376) directory search
order for an affiliate
domain.
Sm_PolicyApi_GetAffiliateUsers() (see page 379) Gets the user
directory entries for
an affiliate.
Sm_PolicyApi_GetAllAffiliateAttributes() (see page 389) Gets all attributes for
an affiliate.
Sm_PolicyApi_GetAllAffiliates() (see page 390) Gets all affiliates for
an affiliate domain.
Sm_PolicyApi_GetGlobalObjects() (see page 410) Gets affiliate
domains. (Not
exclusively a
Federation function.)
Sm_PolicyApi_InitEx() (see page 476) See Required
Functions.
Sm_PolicyApi RemoveAdminFromAffiliateDomain() (see Removes an
page 487) administrator from

an affiliate domain.

250 Programming Guide for C

Functions by Category in the Policy Management API

Function

Description

Sm_PolicyApi RemoveAttributeFromAffiliate() (see page 491)

Removes an attribute
from an affiliate.

Sm_PolicyApi_RemoveUserDirFromAffiliateDomain() (see
page 500)

Removes a user
directory from an
affiliate domain.

Sm_PolicyApi_RemoveUsersFromAffiliate() (see page 502)

Removes a user
directory entry from
an affiliate.

Sm_PolicyApi_SetAffiliateDomainUserDirSearchOrder() (see
page 509)

Sets the user
directory search
order for an affiliate
domain.

General Object Functions

Group Functions

The following functions act on multiple types of SiteMinder objects:

Function Description

Sm_PolicyApi_GetGlobalObjects() (see
page 410)

Gets the OIDs of global objects for a
specified object type.

Sm_PolicyApi_RenameObiject() (see
page 508)

Renames an object.

The following functions manage SiteMinder group objects. You can create agent groups,
response groups, and rule groups, as enumerated in Sm_PolicyApi_Groups_t.

Note: Groups of global objects are not supported.

A group can contain individual items or groups of its own type. For example, a rule

group can contain rules and/or groups of rules.

Function Description

Sm_PolicyApi AddGroup() (see page 285)

Creates or updates an agent, response, or
rule group object.

Chapter 4: Policy Management API Guidance 251

Functions by Catedory in the Policy Management API

Function Description

Sm_PolicyApi AddToGroup() (see Adds an agent, response, or rule item to a

page 310) group.

Sm_PolicyApi_DeleteGroup() (see Deletes a group.

page 345)

Sm_PolicyApi GetGroup() (see page 411) Gets the contents of a group by OID.

Sm_PolicyApi_GetGroupByName() (see Gets the contents of a group by name.

page 413)

Sm_PolicyApi_GetGroupOQids() (see Gets the OIDs contained with a group.

page 415)

Sm_PolicyApi IsGroup() (see page 477) Determines whether a specified item is
contained within the group.

Sm_PolicyApi RemoveFromGroup() (see Removes the specified item from the

page 495) group.

ODBC Query Scheme Functions

The following functions manage SiteMinder ODBC query schemes:

Function

Description

Sm_PolicyApi_CreateODBCQueryScheme() (see

page 332)

Creates or updates an ODBC
qguery scheme.

Sm_PolicyApi_DeleteODBCQueryScheme() (see

page 347)

Deletes an ODBC query
scheme.

Sm_PolicyApi_GetODBCQueryScheme() (see page 420)

Gets the contents of an
ODBC query scheme by OID.

Sm_PolicyApi_GetODBCQuerySchemeByName() (see

Gets the contents of an

page 421)

ODBC query scheme by
name.

252 Programming Guide for C

Functions by Catedory in the Policy Management API

Password Policy Functions

Policy Functions

The following functions manage SiteMinder password policy objects:

Function Description
Sm_PolicyApi_AddPasswordPolicy() (see Creates or updates a password
page 290) policy object.
Sm_PolicyApi_DeletePasswordPolicy() (see Deletes a password policy.
page 348)

Sm_PolicyApi_GetPasswordPolicy() (see page 425)

Gets the contents of a password
policy by OID.

Sm_PolicyApi

GetPasswordPolicyByName() (see

page 426)

Gets the contents of a password
policy by name.

The following functions manage SiteMinder policy and policy link objects. A policy link is
an association of a policy, a rule, and optionally, a response.

Function Description

Sm_PolicyApi AddGlobalPolicy() (see page 281) Creates or updates a global
policy object.

Sm_PolicyApi AddPolicy() (see page 291) Creates or updates a policy
object.

Sm_PolicyApi AddPolicyLink() (see page 292) Creates a policy link for the
specified policy.

Sm_PolicyApi DeletePolicy() (see page 349) Deletes a policy.

Sm_PolicyApi GetPasswordPolicyByName() (see Gets the contents of a

page 426) password policy by name.

Sm_PolicyApi_GetPolicy() (see page 427) Gets the contents of a policy by
OID.

Sm_PolicyApi_GetPolicyLinks() (see page 429) Gets a linked list of all policy
links associated with the
specified policy.

Sm_PolicyApi_RemovePolicyLinkFromPolicy() (see Removes a policy link from the

page 497) specified policy.

Chapter 4: Policy Management API Guidance 253

Functions by Catedory in the Policy Management API

Realm Functions

The following functions manage SiteMinder realms objects:

Function

Description

Sm_PolicyApi AddRealm() (see page 294)

Creates or updates a realm object.

Sm_PolicyApi DeleteRealm() (see
page 350)

Deletes a realm.

Sm_PolicyApi_GetChildren() (see
page 400)

Builds a hierarchical realm and rule tree.

Sm_PolicyApi GetRealm() (see page 432)

Gets the contents of a realm by OID.

Sm_PolicyApi_GetRealmByName() (see
page 433)

Gets the contents of a realm by name.

Registration Scheme Functions

The following functions manage SiteMinder registration schemes:

Function Description

Sm_PolicyApi AddRegistrationScheme() (see Creates or updates a

page 297) registration scheme.
Sm_PolicyApi_DeleteRegistrationScheme() (see Deletes a registration scheme.
page 351)

Sm_PolicyApi_GetRegistrationScheme() (see
page 436)

Gets the contents of a
registration scheme by OID.

Sm_PolicyApi_GetRegistration (see
page 437) SchemeByName() (see page 437)

Gets the contents of a
registration scheme by name.

Redular Expression Functions

The following functions manage SiteMinder regular expressions:

Function Description

Sm_PolicyApi_AddRegularExpressionToPasswordPolicy() (see Creates or

page 298) updates a
regular
expression.

254 Programming Guide for C

Functions by Catedory in the Policy Management API

Function Description

Sm_PolicyApi RemoveRegularExpressionFromPasswordPolicy() (see Deletes a
page 498) regular
expression.

Sm_PolicyApi_GetRegularExpressions() (see page 438) Gets the
regular
expressions
belonging to
a given
password
policy.

Response Functions

The following functions manage SiteMinder response objects:

Function Description

Sm_PolicyApi AddGlobalResponse() (see page 282) Creates or updates a global
response object.

Sm_PolicyApi_AddResponse() (see page 299) Creates or updates a response
object.

Sm_PolicyApi_AddResponseAttr() (see page 300) Creates a response attribute for
the specified response.

Sm_PolicyApi DeleteResponse() (see page 352) Deletes a response.
Sm_PolicyApi_GetResponse() (see page 439) Gets the contents of a response
by OID.

Sm_PolicyApi_GetResponseAttrs() (see page 441) Gets a linked list of response
attributes for the specified

response.
Sm_PolicyApi_GetResponseByName() (see Gets the contents of a response
page 440) by name.
Sm_PolicyApi_RemoveResponseAttr() (see Disassociates a response
page 499) attribute from the specified
response.
Sm_PolicyApi_SetResponselnPolicylLink() (see Sets a response or response
page 516) group to a rule or rule group, or

removes a response or response
group from a rule or rule group.

Chapter 4: Policy Management API Guidance 255

Functions by Category in the Policy Management API

Rule Functions

The following functions manage SiteMinder rule objects:

Function Description
Sm_PolicyApi_AddGlobalRule() (see Creates or updates a global rule object.
page 284)

Sm_PolicyApi_AddRule() (see page 302) Creates or updates a rule object.

Sm_PolicyApi DeleteRule() (see page 353) Deletes a rule.

Sm_PolicyApi_GetRule() (see page 442) Gets the contents of a rule by OID.

Sm_PolicyApi_GetRuleByName() (see Gets the contents of a rule by name.

page 443)

SAML1.x Configuration Functions

The following functions provide support for SAML 1.x configuration settings:

Function

Description

Sm_PolicyApi_AddMessageConsu
merPluginTo

SAML1Scheme()

Adds or updates a
message consumer
plugin setting to a
SAML1.x authentication
scheme.

Sm_PolicyApi AddRedirectURLTo SAML1xScheme() (see
page 296)

Adds or updates a
redirect URLto a
SAML1.x authentication
scheme.

Sm_PolicyApi_GetMessageConsumerPluginFrom
SAML1Scheme()

Retrieves a message
consumer plugin setting
from a SAML 1.x
authentication scheme.

Sm_PolicyApi_GetRedirectURLFromSAML1Scheme()

Retrieves a redirect URL
setting from a SAML 1.x
authentication scheme.

256 Programming Guide for C

Functions by Catedory in the Policy Management API

SAML 2.0 Attribute Authority Functions

The following functions managed attributes for a SAML Requester:

Function

Description

Sm

PolicyApi AddAttributeToSAMLScheme() (see

Adds an attribute to a SAML

page 278) Requester defined in a
SAML 2.0 authentication
scheme.

Sm_PolicyApi_GetAlISAMLSchemeAttributes() (see Retrieves all attributes

page 392)

defined for a SAML
Requester.

Sm_PolicyApi RemoveAttributeFromSAMLScheme() (see

page 492)

Removes an attribute from
a SAML Requester defined
ina SAML 2.0
authentication scheme.

SAML 2.0 Configuration Functions

The following functions manage SAML 2.0 affiliations, Service Providers, and ldentity

Providers.
Function Description
Sm_PolicyApi AddAttributeToSAMLSP() (see page 279) Defines a SAML 2.0

attribute for the
Service Provider.

Sm

PolicyApi_AddSAMLAffiliation() (see page 303)

Adds a new SAML
affiliation object or
modifies an existing
one.

Sm

PolicyApi AddSAMLScheme() (see page 304)

Adds a new SAML 2.0
authentication scheme
object or modifies an
existing one.

Sm

PolicyApi_AddSAMLServiceProvider() (see page 306)

Adds a new SAML 2.0
Service Provider object
or modifies an existing
one.

Chapter 4: Policy Management API Guidance 257

Functions by Catedory in the Policy Management API

Function

Description

Sm_PolicyApi

AddUsersToSAMLServiceProvider() (see

page 320)

Associates a user
directory entry with
SAML 2.0 Service
Provider.

Sm_PolicyApi

DeleteSAMLAffiliation() (see page 354)

Deletes the specified
SAML affiliation.

Sm_PolicyApi

DeleteSAMLServiceProvider() (see page 355)

Deletes the specified
Service Provider.

Sm_PolicyApi

GetAffiliatedSAMLAuthSchemes() (see

page 377)

Retrieves all the SAML
authentication schemes
associated with the
specified SAML
affiliation.

Sm_PolicyApi

GetAffiliatedSAMLServiceProviders() (see

page 378)

Retrieves all the Service
Providers associated
with the specified
SAML affiliation.

Sm_PolicyApi

GetAlISAMLAffiliations() (see page 391)

Retrieves all existing
SAML affiliation
objects.

Sm_PolicyApi

GetAllISAMLServiceProviders() (see page 393)

Retrieves all the Service
Providers in the
specified affiliate
domain.

Sm_PolicyApi

GetAlISAMLSPAttributes() (see page 395)

Retrieves all the
attributes associated
with the specified
Service Provider.

Sm_PolicyApi

GetSAML (see page 444)

Affiliation() (see page 444)

Retrieves the SAML
affiliation specified by
its OID in the policy
store.

Sm_PolicyApi

GetSAMLAffiliationByld() (see page 445)

Retrieves the SAML
affiliation specified by
its unique affiliation
identifier (URI).

Sm_PolicyApi

GetSAMLScheme() (see page 446)

Retrieves information
about a SAML 2.0
authentication scheme.

258 Programming Guide for C

Functions by Catedory in the Policy Management API

Function

Description

Sm_PolicyApi_GetSAMLServiceProvider() (see page 448)

Retrieves the Service
Provider specified by its
OID in the policy store.

Sm_PolicyApi_GetSAMLServiceProviderByld() (see page 449)

Retrieves the Service
Provider specified by its
unique provider
identifier.

Sm_PolicyApi_GetSAMLServiceProviderUsers() (see
page 450)

Retrieves the user
directory entries
associated with the
specified Service
Provider.

Sm_PolicyApi RemoveAttributeFromSAMLSP() (see
page 493)

Removes the specified
SAML attribute from
the Service Provider.

Sm_PolicyApi_RemoveUsersFromSAMLServiceProvider() (see
page 505)

Removes the specified
users from the Service
Provider.

SAML 2.0 Indexed Endpoint Functions

The following functions manage indexed endpoints in the Service Provider:

Function

Description

Sm_PolicyApi AddAssertionConsumerServiceToOSAMLSP() (see
page 276)

Adds a new
indexed endpoint
reference (with
index, binding, and
Assertion
Consumer URL) to
a Service Provider.

Sm_PolicyApi_GetAlISAMLSPAssertionConsumerService() (see
page 394)

Gets a list of all
Assertion
Consumer Services
present in the
policy store.

Chapter 4: Policy Management API Guidance 259

Functions by Catedory in the Policy Management API

Function

Description

Sm_PolicyApi_RemoveAssertionConsumerService() (see

page 490)

Removes an
indexed endpoint
reference to an
Assertion
Consumer Service.

User Directory Functions

The following functions manage SiteMinder user directory objects:

Function

Description

Sm

PolicyApi

AddUserDirToDomain() (see page 315)

Associates a
directory object
with the specified
domain.

Sm

PolicyApi

CreateUserDir() (see page 333)

Creates or updates
a user directory
object.

Sm

PolicyApi

DeleteUserDir() (see page 358)

Deletes a user
directory.

Sm

PolicyApi

GetDirectoryContents() (see page 401)

Gets a linked list of
user structures for
the specified user
directory.

Sm

PolicyApi

GetUserContext() (see page 458)

Allows callers of
the Policy
Management API
to access user
context
information.

Sm

PolicyApi

GetUserDir() (see page 460)

Gets the contents
of a user directory
by OID.

Sm

PolicyApi

GetUserDirByName() (see page 461)

Gets the contents
of a user directory
by name.

Sm

PolicyApi

GetUserDirCapabilities() (see page 462)

Gets the
capabilities of the
user directory.

260 Programming Guide for C

Functions by Catedory in the Policy Management API

Function

Description

Sm

PolicyApi_GetUserDirSearchOrder() (see page 463)

Gets the OIDs of
the user directory
associated with the
specified domain.

Sm

PolicyApi_LookupDirectoryEntry() (see page 482)

Finds a user
specification in a
particular user
directory and
based on the
specified search
pattern.

Sm

PolicyApi_RemoveUserDirFromDomain() (see page 501)

Disassociates a
user directory from
the specified
domain.

Sm

PolicyApi_SetUserDirSearchOrder() (see page 518)

Rearranges the
search order of the
user directories
associated with the
specified domain.

Sm

PolicyApi_ValidateDirectoryEntry() (see page 521)

Validates a user
specification in a
given path and
user directory.

User and User State Functions

The following functions perform operations on user state and on user entries in a
SiteMinder user directory:

Field Description
Sm_PolicyApi AddUsersToPolicy() (see page 318) Adds a user to the
specified policy.
Sm_PolicyApi_DisableUser() (see page 361) Disables a user.
Sm_PolicyApi_EnableUser() (see page 362) Enables a user.
Sm_PolicyApi_GetDisabledUserState() (see page 402) Gets the disabled state of

a user.

Chapter 4: Policy Management API Guidance 261

Functions by Catedory in the Policy Management API

Field

Description

Sm

PolicyApi

GetPasswordMsg() (see page 423)

Gets information about an
error that occurred during
an attempt to validate a
new password.

Sm

PolicyApi

GetPolicyUsers() (see page 430)

Gets a linked list of
structures for the users
associated with the
specified policy and
optionally, user directory.

Sm

PolicyApi

GetUserGroups() (see page 464)

Gets the list of groups that
a user is member of.

Sm

PolicyApi

RemoveUsersFromPolicy() (see page 503)

Disassociates the user
from the specified policy.

Sm

PolicyApi

SetDisabledUserState() (see page 510)

Sets the disabled state of a
user.

Sm

PolicyApi

SetPassword() (see page 514)

Changes or validates a user
password.

Sm_PolicyApi_SetPath()

Sets the path of a userin a
specified policy.

User Password State Functions

The following functions manage SiteMinder password state objects:

Function

Description

Sm_PolicyApi_GetUserPasswordState() (see page 465)

Returns a
UserPasswordState
object.

Sm_PolicyApi SetUserPasswordState() (see page 519)

Adds/Updates a
UserPasswordState
object.

262 Programming Guide for C

Functions by Catedory in the Policy Management API

Utility Functions

The following functions provide a variety of services, including memory, cache, and
agent encryption key management:

Function Description

Sm_PolicyApi_FlushRealm() (see page 363) Flushes the specified realm from the
resource cache.

Sm_PolicyApi_FlushUser() (see page 364) Flushes the specified user from user
cache.

Sm_PolicyApi FreeMemory() (see page 365) Frees memory allocated by the

Policy Management API.

Sm_PolicyApi_FreeMemoryEx() (see page 366) Frees memory allocated by the
Policy Management API. Required
for clients starting at version
SM_POLICY_API_VERSION_6_O0.

Sm_PolicyApi_FreeString() (see page 367) Frees a single string allocated by the
Policy Management API.

Sm_PolicyApi FreeStringArray() (see page 367) Frees string arrays allocated by the
Policy Management API.

Sm_PolicyApi_ManagementCommand() (see Performs user, key, and resource
page 485) management services.

Variable Functions

The following methods manage variables.

Function Description

Sm_PolicyApi AddVariable() (see page 323) Adds a variable object.

Sm_PolicyApi DeleteVariable() (see page 359) Deletes a variable object.

Sm_PolicyApi_GetVariable() (see page 468) Gets a specified variable by OID.

Sm_PolicyApi_GetVariableByName() (see Gets a specified variable by name.
page 469)

Sm_PolicyApi_GetVariableType() (see Gets a specified variable type by OID.
page 470)

Sm_PolicyApi_GetVariableTypeByName() (see Gets a specified variable type by
page 471) name.

Chapter 4: Policy Management API Guidance 263

Functions by Catedory in the Policy Management API

WS-Federation Functions

The following table lists the supported functions for Resource Partners and Account

Partners:

Function

Description

Sm_PolicyApi AddWSFEDResourcePartner() (see page 324)

Creates or updates
a WS-Federation
Resource Partner
object.

Sm_PolicyApi_GetWSFEDResourcePartner() (see page 473)

Gets a
WS-Federation
Resource Partner
object

Sm_PolicyApi_GetAllIWSFEDResourcePartners() (see page 397)

Gets all
WS-Federation
Resource Partner
objects for a
domain as a linked
list

Sm_PolicyApi_DeleteWSFEDResourcePartner() (see page 360)

Deletes a
WS-Federation
Resource Partner.
This will then
delete the agent,
realm, rule, policy,
and policy link
objects associated
with the Resource
Partner object

Sm_PolicyApi AddUsersToOWSFEDResourcePartner() (see
page 322)

Associates a user
directory entry
with a
WS-Federation
Resource Partner.

Sm_PolicyApi RemoveUsersFromWSFEDResourcePartner() (see
page 507)

Disssociates a user
directory entry
from a
WS-Federation
Resource Partner

264 Programming Guide for C

Function Declarations for the Policy Management API

Function Description
Sm_PolicyApi_GetUsersFromWSFEDResourcePartner() (see Gets the user
page 467) directory entries

associated with a
WS-Federation
Resource Partner

Sm_PolicyApi AddWSFEDScheme() (see page 326) Creates or updates
a WS-Federation
authentication
scheme

Sm_PolicyApi_GetWSFEDScheme() (see page 474) Gets a
WS-Federation
authentication
scheme.

Function Declarations for the Policy Management API

Function declarations include the syntax and return values for each function in the
Policy Management API for reference.

Chapter 4: Policy Management API Guidance 265

Function Declarations for the Policy Management API

Sm_PolicyApi_AddAdmin()

Creates a new SiteMinder administrator object at a global scope. The administrator's
attributes are contained in the pstructAdmin structure.

If the administrator object exists and bUpdate is true, the item is updated.
Type
Administrator function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddAdmin (

void* pSessionHandle,
Sm PolicyApi Admin t* pstructAdmin,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.

pstructAdmin | A pointer to a completely filled-in administrator
structure.

bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Returns

m Sm_PolicyApi_Success. The administrator object was created successfully.

m Sm_PolicyApi_Failure. The administrator object was not created successfully.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
an administrator object.

® Sm_PolicyApi_InvalidOid:
m The administrator object identifier was not found during an update.
m The user directory object identifier was not found.

m The scheme object identifier was not found.

266 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddAdminToAffiliateDomain()

Adds an administrator to an affiliate domain.
Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi AddAdminToAffiliateDomain (
void* pSessionHandle,
const char* pszAdminOid,
const char* pszAffiliateDomainOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAdminOid | A null-terminated string containing the object
identifier of an existing administrator.

pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.
Returns

m Sm_PolicyApi_Success. The administrator was added to the affiliate domain.

m Sm_PolicyApi_Failure. The administrator was not added to the affiliate domain.
® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
an affiliate domain.

m Sm_PolicyApi_InvalidOid. The affiliate domain OID was not found during an update.

m Sm_PolicyApi_DuplicateEntry. The specified administrator object identifier already
exists in the affiliate domain

Chapter 4: Policy Management API Guidance 267

Function Declarations for the Policy Management API

Sm_PolicyApi_AddAdminToDomain()

Gives the specified administrator permission to administer the specified domain, and
associates the administrator object identified by szAdminOid with the domain identified
by szDomainOid.

Type
Administrator function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddAdminToDomain (

void* pSessionHandle,
const char* pszAdminOid,
const char* pszDomainOid
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAdminOid | A null-terminated string containing the object
identifier of an existing administrator.

pszDomainOid | A null-terminated string containing the object
identifier of an existing domain.

Returns

® Sm_PolicyApi_Success. The administrator was added to the domain.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add an
administrator to a domain.

m Sm_PolicyApi_InvalidOid. The administrator object identifier or the domain object
identifier was not found.

m Sm_PolicyApi_DuplicateEntry. The specified administrator object identifier already
exists in the domain.

268 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddAffiliate()

Creates a new or updates an existing affiliate object. This function will also retrieve the
PropertyCollection object based on the AffiliateDomain OID.

Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi AddAffiliate (

void* pSessionHandle,
Sm PolicyApi Affiliate t* pstructAffiliate,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.

pstructAffiliate | A pointer to a completely filled-in affiliate
structure.

bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Chapter 4: Policy Management API Guidance 269

Function Declarations for the Policy Management API

Remarks

This function creates affiliate objects that are based on the artifact profile or the POST
profile (see the Sm_PolicyApi_Affiliate_t field SAMLProfile). Creating an affiliate object
based on the POST profile requires an APl version of at least
SM_POLICY_API_VERSION_6_0_2. If an earlier version is involved, the POST profile

request is ignored (along with any POST-specific fields in Sm_PolicyApi_Affiliate_t) and
an attempt is made to create an affiliate object based on the artifact profile.

Returns

m Sm_PolicyApi_Success. The affiliate was created successfully.

m Sm_PolicyApi_Failure. The affiliate was not created successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
an affiliate.

m Sm_PolicyApi_DomainNotFound. The affiliate domain OID was not found.

m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

Sm_PolicyApi_AddAffiliateDomain()

Creates a new or updates an existing affiliate domain. Sets bIsAffiliate to TRUE.
Type
Federation function

Syntax

int SM_EXTERN Sm PolicyApi AddAffiliateDomain (

void* pSessionHandle,
Sm PolicyApi AffiliateDomain t *pstructAffiliateDomain,
const bool bUpdate
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

270 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pstructAffiliate | A pointer to a completely filled-in affiliate domain
Domain structure.

bUpdate | A boolean flag to indicate that if an existing object

is found, it should be updated.

Returns

m Sm_PolicyApi_Success. The affiliate domain was created successfully.

m Sm_PolicyApi_Failure. The affiliate domain was not created successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
an affiliate domain.

m Sm_PolicyApi_DomainNotFound. The affiliate domain OID was not found during an
update.

m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

Chapter 4: Policy Management API Guidance 271

Function Declarations for the Policy Management API

Sm_PolicyApi_AddAgent()

Creates a new SiteMinder agent. The attributes of the agent are contained in the
pstructAgent structure.

If the agent exists and the bUpdate flag is true, the item is updated.

You must specify an agent type with this call. To get the agent type OID for the agent,
use Sm_PolicyApi_GetGlobalObjects().

Type
Agent function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi AddAgent (

void* pSessionHandle,
Sm PolicyApi Agent t* pstructAgent,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pstructAgent | A pointer to a completely filled-in agent structure.
bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

272 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The agent was created successfully.

m Sm_PolicyApi_Failure. The agent was not created successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
an agent.

m Sm_PolicyApi_InvalidOid:
m The agent type OID was not found or is not of the specified agent type.

m The agent OID was not found. This happens when this function is called with
bUpdate set to true and the pszOid field of Sm_PolicyApi_Agent_t holds the
OID of the agent being updated.

m Sm_PolicyApi_NotUnique. An agent with the same name exists.

m Sm_PolicyApi_RadiuslpAddrNotUnique. Another RADIUS IP address exists that is
the same.

m Sm_PolicyApi_MissingProperty. One of the required fields is not set.

Sm_PolicyApi_AddAgentConfig()
Creates or modifies an agent configuration object in the policy store.
Type
Agent configuration function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi AddAgentConfig (

void* pSessionHandle,
Sm_PolicyApi AgentConfig t* pstructAgentConfig,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle I A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 273

Function Declarations for the Policy Management API

Parameter 1/0 Description

pstructAgentConfig I Address of a structure that defines the agent
configuration object.

bUpdate If true, the object is being updated.

Returns

m Sm_PolicyApi_Success. The operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidOid. The unique ID does not correspond to an agent

configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to add or modify

an agent configuration object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Sm_PolicyApi_AddAgdgentConfigAssociation()

Adds or modifies a configuration parameter name and corresponding value in a

specified agent configuration object.

Type

Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddAgentConfigAssociation (

void* pSessionHandle,
const char* pszAgentConfig0id,
Sm PolicyApi Association t* pstructAssociation,
bool bUpdate
);
Parameter 1/0 Description
pSessionHandle I A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

274 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszAgentConfigOid I Unique identifier of the agent configuration
object.

pstructAssociation The name/value pair to add or modify in the

agent configuration object.

bUpdate If true, the object is being updated.

Returns

m Sm_PolicyApi_Success. The operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidOid. The unique ID does not correspond to an agent
configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to add agent
configuration object parameters.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Chapter 4: Policy Management API Guidance 275

Function Declarations for the Policy Management API

Sm_PolicyApi_AddAssertionConsumerServiceToOSAMLSP

Adds a new indexed endpoint, which includes an index, binding, and an Assertion
Consumer Service URL, to the Service Provider.

Note: An existing indexed endpoint reference cannot be modified.
Type
Federation function

Syntax

int SM_EXTERN Sm PolicyApi AddAssertionConsumerServiceToSAMLSP (
void* pSessionHandle,
const Sm PolicyApi SAMLSPAssertionConsumerService t*
pstructSAMLSPAssertionConsumerService,

const char* pszSAMLSPOid
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pstructSAMLSPAssertion | A pointer to an Assertion Consumer Service
ConsumerService structure.
pszSAMLSPOid | A pointer to a string containing the OID of the

Service Provider.

276 Programming Guide for C

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The Assertion Consumer Service was added successfully.
m Sm_PolicyApi_Failure - The Assertion Consumer Service was not added successfully.

m Sm_PolicyApi_ACSDuplicatelndex - There is already an Assertion Consumer Service
assigned to thei Service Provider with the same index value.

m Sm_PolicyApi_InvalidHandle - There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession - There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege - The administrator does not have the privilege to add an
Assertion Consumer Service.

Remarks

The following fields of the Sm_PolicyApi_SAMLSPAssertionConsumerService_t structure
are evaluated:

m The value of the index is a unique positive integer, less than 65535,
m The Assertion Consumer URL starts with http:// or https://.
m The binding is either HTTP-Post or HTTP_Artifact.

Sm_PolicyApi_AddAttributeToAffiliate()

Adds a new attribute to an affiliate.
Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi AddAttributeToAffiliate (

void* pSessionHandle,
const Sm PolicyApi AffiliateAttr t* pstructAffiliateAttr,
const char* pszAffiliateOid
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 277

Function Declarations for the Policy Management API

Parameter 1/0 Description

pstructAffiliate | A pointer to a completely filled-in affiliate attribute
Attr structure.

pszAffiliateOid | A null-terminated string containing the object

identifier of an existing affiliate.

Returns

m Sm_PolicyApi_Success. The affiliate attribute was created successfully.

m Sm_PolicyApi_Failure - The affiliate attribute was not created successfully.

m Sm_PolicyApi_InvalidHandle - There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession - There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege - The administrator does not have the privilege to create
an affiliate attribute.

m Sm_PolicyApi_InvalidOid - The affiliate OID was not found.

Sm_PolicyApi_AddAttributeToSAMLScheme()

Adds an attribute, which can be requested from the configured Attribute Service, to a
SAML 2.0 authentication scheme.

Syntax

int SM EXTERN Sm PolicyApi AddAttributeToSAMLScheme(
void* pHandle,
const Sm PolicyApi Scheme t* pstructScheme,
const Sm PolicyApi SAMLRequesterAttr t* pAttr
)i

Parameter 1/0 Description

pHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pstructScheme | A pointer to a completely filled-in structure for a
SAML 2.0 Scheme.

pPAttr | A pointer to the
Sm_PolicyApi_SAMLRequesterAttr_t structure
containing the attribute to be added.

278 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The attribute was added successfully.

m Sm_PolicyApi_Failure. The attribute was not added successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add an
attribute to a SAML Requester.

m Sm_PolicyApi_SAMLIDP_IncorrectParameters. Supplied SAML provided properties
are incomplete or incorrect.

m Sm_PolicyApi_DuplicateAttribute. An attribute already exists with the same Name

and NameFormat.

Sm_PolicyApi_AddAttributeToSAMLSP()

Defines a SAML 2.0 attribute for the Service Provider.

A SAML 2.0 attribute contains information about a principal who is trying to access a
resource on the Service Provider-for example, the principal's user DN.

The defined attribute is included in an attribute statement for all SAML 2.0 assertions
that are produced for the Service Provider.

Type

SAML 2.0 Configuration function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi AddAttributeToSAMLSP (

void* pHandle,
const Sm PolicyApi SAMLSPAttr t* pstructSAMLSPAttr,
const char* pszSAMLSPOid
);
Parameter 1/0 Description
pHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pstructSAMLSPAttr | A pointer to a completely filled-in attribute

structure.

Chapter 4: Policy Management API Guidance 279

Function Declarations for the Policy Management API

Parameter I/0 Description

pszSAMLSPOid A null-terminated string containing the object
identifier of an existing Service Provider.

Returns

m Sm_PolicyApi_Success. The attribute was added successfully.

m Sm_PolicyApi_Failure. The attribute was not added successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add an
attribute to a SAML Service Provider.

m Sm_PolicyApi_DuplicateAttribute. An attribute already exists with the same Name
and NameFormat.

Sm_PolicyApi_AddDomain()

Creates a new SiteMinder domain. Attributes of the domain are contained in the
pstructDomain structure.

If the domain exists and the bUpdate flag is true, the item is updated.
Type
Domain function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddDomain (

void* pSessionHandle,
Sm PolicyApi Domain t* pstructDomain,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

280 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pstructDomain | A pointer to a completely filled-in domain
structure.

bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Returns

m Sm_PolicyApi_Success. The domain was created successfully.

m Sm_PolicyApi_Failure. The domain was not created successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a domain.

m Sm_PolicyApi_InvalidOid. The domain OID was not found during an update.

Sm_PolicyApi_AddGlobalPolicy()

Creates a new global policy in the object store. The policy attributes are contained in the
pStructPolicy structure.

If the policy exists and the bUpdate flag is true, the item is updated.

Type

Policy function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi AddGlobalPolicy (

void* pSessionHandle,
Sm PolicyApi Policy t* pStructPolicy,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 281

Function Declarations for the Policy Management API

Parameter 1/0 Description

pStructPolicy | A pointer to a completely filled policy structure.

The structure's domain OID is ignored.

bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Returns

Sm_PolicyApi_Success. The global policy was created successfully.
Sm_PolicyApi_Failure. The global policy was not created successfully.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a global policy.

Sm_PolicyApi_Notimplemented: The client who called this function initialized the
API with a version less than SM_POLICY_API_VERSION_6_0.

Sm_PolicyApi_AddGlobalResponse()

Creates a new global response in the object store.

Type

Rule function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddGlobalResponse (

void* pSessionHandle,
Sm PolicyApi Response t* pStructResponse,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

282 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pStructResponse | A pointer to a completely filled response structure.
The structure's domain OID is ignored.

bUpdate | A flag to indicate that if an existing object is found,
it should be updated.

Returns

m Sm_PolicyApi_Success. The global response was created successfully.

m Sm_PolicyApi_Failure. The global response was not created successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a global response.

m Sm_PolicyApi_InvalidOid: A global response with a matching OID was not found
during an update.

m Sm_PolicyApi_Notimplemented: The client who called this function initialized the
APl with a version less than SM_POLICY_API_VERSION_6_0.

Chapter 4: Policy Management API Guidance 283

Function Declarations for the Policy Management API

Sm_PolicyApi_AddGlobalRule()

Creates a new global rule in the object store.
Type
Rule function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddGlobalRule (

void* pSessionHandle,
Sm PolicyApi Rule t* pStructRule,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pStructRule | A pointer to a completely filled-in rule structure.
The realm OID in the structure is ignored.

bUpdate | A flag to indicate that if an existing object is found,
it should be updated.

Returns

m Sm_PolicyApi_Success. The global rule was created successfully.

m Sm_PolicyApi_Failure. The global rule was not created successfully.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a global rule.

m Sm_PolicyApi_InvalidOid:
m Aglobal rule with a matching OID was not found during an update.
m An agent or agent group with matching OID was not found.

® Sm_PolicyApi_Notimplemented: The client who called this function initialized the
API with a version less than SM_POLICY_API_VERSION_6_0.

284 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddGroup()

Adds a new group object to the Siteminder policy store. The attributes of the group are
contained in the pStructGroup structure.

Note: Groups of global objects are not supported.

The pszDomainOid parameter is required by a rule group or response group. An agent
group does not require a domain OID because it is not a domain-based object.

If the group object exists and the bUpdate flag is true, the item is updated.

Type

Group function, global scope (agents) or domain scope (responses, rules).

Syntax

int SM EXTERN Sm PolicyApi AddGroup (

void* pSessionHandle,
Sm _PolicyApi Groups t dwGroup,
const char* pszDomainOid,
Sm PolicyApi Group t* pStructGroup,
const bool bUpdate

);

Parameter 1/0 Description

pSession Handle

A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

dwGroup | Indicates the type of group to be added.

pszDomainOid | A null-terminated string containing the name of an
existing domain. Required parameter for rule or
response group. (Global rule or response groups
are not supported.)

pStructGroup | A pointer to a completely filled-in group structure.

bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Chapter 4: Policy Management API Guidance 285

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The add was successful.

m Sm_PolicyApi_Failure. The add was not successful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
group.

m Sm_PolicyApi_InvalidOid. The domain OID was not found (for a domain-based
group).

m Sm_PolicyApi_BadGroup. The dwGroup parameter is not the rule, response, or

agent group type.

Sm_PolicyApi_AddHostConfig()

Creates or updates a host configuration object in the policy store.

Type

Agent configuration function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi AddHostConfig (

void* pSessionHandle,
Sm_PolicyApi HostConfig t* pstructHostConfig,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle I A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pstructHostConfig Address of structure that defines the host

configuration object.

bUpdate If true, the object is being updated.

286 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The operation was successful.
Sm_PolicyApi_Failure. Generalized failure.

Sm_PolicyApi_InvalidOid. The unique ID does not correspond to a host
configuration object.

Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to create or
modify a host configuration object.

Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

Sm_PolicyApi_NoSession. The API user is not properly logged in.

Chapter 4: Policy Management API Guidance 287

Function Declarations for the Policy Management API

Sm_PolicyApi_AddMessageConsumerPluginToSAML1xScheme()

Adds or updates a message consumer plugin setting to a SAML 1.x authentication
scheme.

Syntax

int SM_EXTERN Sm PolicyApi AddMessageConsumerPluginToSAML1xScheme (
void* pHandle,
char* pszSchemeOID,
char* pluginClass,
char* pluginParam
);
Parameters
phandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszSchemeOid

[in] A pointer to the OID of the authentication scheme that is being updated.
pluginClass

[in] A pointer to the name of the message consumer plugin class to be set.
pluginParam

[in] A pointer to the parameters of the message consumer plugin class to be set.

Returns

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

® Sm_PolicyApi_SchemeNotFound. The authentication scheme corresponding to the
OID was not found, or was not a SAML 1.x authentication scheme.

m Sm_PolicyApi_InvalidOid. The OID of the authentication scheme is NULL.

288 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddOneTimeUsePropToAffiliate()

Adds or updates the OneTimeUse property for an assertion in a SAML 1.x affiliate.

Syntax

int SM EXTERN Sm PolicyApi AddOneTimeUsePropToAffiliate(
void* pHandle,
char* pszAffiliateOID,
bool bOneTimeUse

);

Parameters
pHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszAffiliateOid
[in] A pointer to the OID of an existing SMAL 1.x affiliate.

bOneTimeUse
[in] A Boolean value that specifies whether an assertion is used only once in this
affiliate.

Returns

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

m Sm_PolicyApi_NoSession. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator did not have sufficient access
privileges.

Chapter 4: Policy Management API Guidance 289

Function Declarations for the Policy Management API

Sm_PolicyApi_AddPasswordPolicy()

Adds a password policy object.

Note the following about Sm_PolicyApi_PasswordPolicy_t:

m When the password policy applies to an entire directory (bEntireDir is set to true),
you must set pszPath and pszClass to an empty string. The Policy Management API
returns Sm_PolicyAPI_BadArgument if these strings are not empty.

m When the pszPasswordServicesRedirect field is set to an empty string, the Policy
Management API sets it to a default URL:

/siteminderagent/forms/smpwservices.fcc
Type
Password policy function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi AddPasswordPolicy (

void* pSessionHandle,
Sm PolicyApi PasswordPolicy t* pstructPasswordPolicy,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pstructPassword | The address of a pointer to a
Policy Sm_PolicyApi_PasswordPolicy_t structure

containing information about password policy.

bUpdate | A flag to indicate that if an existing object is found,
it should be updated.

Returns

m Sm_PolicyApi_Success. The create was successful.

m Sm_PolicyApi_Failure. The create was not successful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

290 Programming Guide for C

Function Declarations for the Policy Management API

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a password policy.

m Sm_PolicyApi_InvalidOid:
m The password policy OID was not found during an update.
m The user directory OID was not found.

m Sm_PolicyApi_BadArgument. The path and class are empty.

Sm_PolicyApi_AddPolicy()

Creates a new SiteMinder policy. The policy attributes are contained in the pStructPolicy
structure.

If the policy exists and the bUpdate flag is true, the item is updated.
Type
Policy function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi AddPolicy (

void* pSessionHandle,
Sm PolicyApi Policy t* pStructPolicy,
const bool bUpdate
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pStructPolicy | A pointer to a completely filled-in policy structure.
bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Chapter 4: Policy Management API Guidance 291

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The policy was created successfully.

m Sm_PolicyApi_Failure. The policy was not created successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a policy.

m Sm_PolicyApi_InvalidOid:
m The policy OID was not found during an update.

m The domain OID was not found.

Sm_PolicyApi_AddPolicyLink()
Creates a new SiteMinder policy link for the policy identified by pszPolicyOid.

A policy link object binds a policy to a rule and, optionally, a response. The attributes of
the new policy link are contained in the pstructPolicylLink structure.

If the policy link exists and the bUpdate flag is true, the item is updated.

Type
Policy function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi AddPolicylLink (
void* pSessionHandle,
const pszPolicy0id,
Sm PolicyApi PolicylLink t* pstructPolicylLink
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszPolicyOid | A null-terminated string containing the object
identifier of an existing policy.

292 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pstructPolicyLink | A pointer to a completely filled-in policy link
structure.

Returns

m Sm_PolicyApi_Success. The policy link was created successfully.
m Sm_PolicyApi_Failure:
m The domain of a rule OID is not the same as the domain of the policy OID.
m The domain of a response OID is not the same as the domain of the policy OID.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a policy link.

m Sm_PolicyApi_InvalidOid:
m The policy OID was not found.
m The rule or rule group OID was not found.

m The response or response group OID was not found.

Chapter 4: Policy Management API Guidance 293

Function Declarations for the Policy Management API

Sm_PolicyApi_AddRealm()

Creates a new SiteMinder realm within the domain specified in pStructRealm. The
pStructRealm structure also contains other attributes of the realm, including the agent
or agent group that protects the realm.

Sm_PolicyApi_AddRealm() fails if a protecting agent or agent group is not specified.

If the new realm is a top-level realm, set pszParentRealmOid (in Sm_PolicyApi_Realm_t)
to the domain OID. Otherwise, set pszParentRealmOid to the OID of the new realm's
parent realm.

If the realm exists and the bUpdate flag is true, the existing item is updated.
It is the responsibility of the client application to meet the following conditions in order

to add an authorization directory to a realm successfully:

m The directory mapping between the authorization user directory and authentication
user directory should exist.

Note: The Policy Management API checks only to see if the authorization user
directory exists. It does not validate if there is a directory mapping for the given
authorization user directory.

m The associated authentication user directory should be present in the user directory
collection of the domain.

Type
Realm function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi AddRealm (

void* pSessionHandle,
Sm PolicyApi Realm t* pStructRealm,
const bool bUpdate
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pStructRealm | A pointer to a completely filled-in structure.

294 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

bUpdate

| A flag to indicate that if an existing object is found,
it should be updated.

Returns

Sm_PolicyApi_Success. The realm was created successfully.

Sm_PolicyApi_Failure. The realm was not created successfully.

Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a realm.

Sm_PolicyApi_InvalidOid:

The realm OID was not found during an update.
The domain OID was not found.

The agent OID or agent group OID was not found.
The scheme OID was not found.

The parent OID could not be found. (The parent OID can be a realm OID or a
domain OID.)

Chapter 4: Policy Management API Guidance 295

Function Declarations for the Policy Management API

Sm_PolicyApi_AddRedirectURLToSAML1xScheme()

Adds or updates a redirect URL setting in a SAML 1.x authentication scheme.

Syntax

int SM EXTERN Sm PolicyApi AddRedirectURLToSAML1xScheme(

void* pSessionHandle,
const char* pszSchemeOid,
int iTypeURL,
char* URL,
int redirectMode

);

Parameters

pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszSchemeOid

[in] A null-terminated string containing the object identifier of the authentication
scheme being updated.

iTypeUrl

[in] An integer specifying the type of redirect URL, defined in
Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_TYPE_t as follows:

m Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_USER_NOT_FOUND_TYPE =0
m Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_INVALID_SSO =1

m Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_UNACCEPTABLE_USER_CREDEN
TIALS = 2

URL
[in] A pointer to the input redirect URL.

redirectMode
[in] An integer specifying the input redirect mode, which is either 0 for 302 No Data,
or 1 for Http-Post.

Return Values

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_SchemeNotFound. The authentication scheme corresponding to the
OID was not found, or was not a SAML 1.x authentication scheme.

296 Programming Guide for C

Function Declarations for the Policy Management API

m Sm_PolicyApi_InvalidOid. The OID of the authentication scheme is NULL.

Sm_PolicyApi_AddRedistrationScheme()

Adds a registration scheme.

Type
Registration scheme function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi AddRegistrationScheme (
void* pSessionHandle,
Sm PolicyApi RegistrationScheme t*
pstructRegistrationScheme,

const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pstruct | The address of a pointer to
Registration Sm_PolicyApi_RegistrationScheme_t, which
Scheme contains information about the registration
scheme.
bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Chapter 4: Policy Management API Guidance 297

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The registration scheme was created successfully.

m Sm_PolicyApi_Failure. The registration scheme was not created successfully.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a registration scheme.

m Sm_PolicyApi_InvalidOid:
m The registration scheme object identifier was not found during an update.

m The user directory object identifier was not found.

Sm_PolicyApi_AddRedularExpressionToPasswordPolicy()

Adds a regular expression to the referenced password policy. Implemented only if the
session's version is set to SM_POLICY_API_VERSION_6_0.

Type
Regular Expression function.

Syntax

int SM_EXTERN Sm_PolicyApi AddRegularExpressionToPasswordPolicy (
void* pSessionHandle,
const char* pszPasswordPolicy0Oid,
Sm_PolicyApi RegularExpression t* pstructRegExpr

)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszPassword | The OID of the password policy to add the regular
PolicyOid expression to.
pstructRegExpr | A pointer to the regular expression structure to
add.

298 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The regular expression was added successfully.

m Sm_PolicyApi_Failure. The regular expression was not added successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
regular expression.

m Sm_PolicyApi_InvalidOid: The password policy OID was not found.

Sm_PolicyApi_AddResponse()

Creates a new SiteMinder response. The attributes of the response itself are contained
in the pStructResponse structure.

If the response exists, and the bUpdate flag is true, the item is updated.

Type

Response function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi AddResponse (

void* pSessionHandle,
Sm PolicyApi Response t* pStructResponse,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.

pStructResponse | A pointer to a completely filled-in response
structure.

bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Chapter 4: Policy Management API Guidance 299

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The response was created successfully.

m Sm_PolicyApi_Failure. The response was not created successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a response.

m Sm_PolicyApi_InvalidOid:
m The response OID was not found during an update.
m The domain OID was not found.

m The agent type OID was not found.

Sm_PolicyApi_AddResponseAttr()

Creates a new SiteMinder response attribute object within the response identified by
pszResponseOid. The response attributes are contained in the pstructResponseAttr
parameter.

Type
Response function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi AddResponseAttr (
void* pSessionHandle,
const char* pszResponse0id,
Sm PolicyApi ResponseAttr t* pstructResponseAttr
);

Parameter 1/0 Description

pSessionHandle I A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszResponseOid A null-terminated string containing the object
identifier of an existing response.

300 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description
pstructResponseAttr I A pointer to a completely filled-in response
structure.

Returns

m Sm_PolicyApi_Success. The response attribute was added successfully.

m Sm_PolicyApi_Failure. The response attribute was not added successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
response attribute.

m Sm_PolicyApi_InvalidOid:

The response OID was not found.

m The agent type attribute OID was not found.

Chapter 4: Policy Management API Guidance 301

Function Declarations for the Policy Management API

Sm_PolicyApi_AddRule()

Creates a new SiteMinder rule. The attributes of the rule itself are contained in the
structure referenced by pStructRule.

If the rule exists and the bUpdate flag is true, the item is updated.

Note: A rule is always associated with a realm. Rule names are unique within in a realm
but not within a domain.

Type
Rule function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi AddRule (

void* pSessionHandle,
Sm PolicyApi Rule t* pStructRule,
const bool bUpdate
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pStructRule | A pointer to a completed rule structure.
bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Returns

m Sm_PolicyApi_Success. The rule was created successfully.

m Sm_PolicyApi_Failure. The rule was not created successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
arule.

m Sm_PolicyApi_InvalidOid:
m The rule OID was not found during an update.

m Therealm OID was not found.

302 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddSAMLAffiliation()

Adds a new SAML affiliation object or modifies an existing one.

Type

SAML 2.0 Configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddSAMLAffiliation (

void* pSessionHandle,
Sm PolicyApi SAMLAffiliation t* pstructAffiliation,
const bool bUpdate,
char** pszErrMsg
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pstructAffiliation | A pointer to a completed SAML affiliation
structure.
bUpdate | Specifies whether an update operation should be
performed on an existing object.
pszErrMsg 0] String containing an error message if the affiliation

is not added or updated successfully.

The Policy Management API allocates memory for
this parameter dynamically. It is the responsibility
of the custom application to free it using a call to
Sm_PolicyApi_FreeString().

If Sm_PolicyApi_MissingProperty or
Sm_PolicyApi_InvalidProp are returned, this field
contains the name of the property that is missing
or invalid.

Chapter 4: Policy Management API Guidance 303

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The operation was successful.

m Sm_PolicyApi_Failure. The operation was not successful.

m Sm_PolicyApi_InvalidProp. A specified property is invalid. The property name is
returned in pszErrMsg.

m Sm_PolicyApi_MissingProperty. A required property was not specified. The
property name is returned in pszErrMsg.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a SAML affiliation.

m Sm_PolicyApi_lInsufficientData. Required properties for configuring the SAML

affiliation were missing.

Sm_PolicyApi_AddSAMLScheme()

Adds a new SAML 2.0 authentication scheme object or modifies an existing one. This
function also defines metadata properties for the associated Identity Provider. The
metadata properties are stored with the authentication scheme.

Type

SAML 2.0 Configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddSAMLScheme

(

void* pHandle,
Sm_PolicyApi Scheme t* pstructScheme,
Sm_PolicyApi SAMLProviderProp t* pProps,
const bool bUpdate,
char** pszErrMsg
)i
Parameter 1/0 Description
pHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

304 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0

Description

pstructScheme |

A pointer to a completed scheme structure.

pProps |

SAML 2.0 metadata properties associated with the
authentication scheme.

If you do not assign a value to a property
associated with a default value, the default will be
assigned.

bUpdate |

Specifies whether an update operation should be
performed on an existing object.

pszErrMsg O

String containing an error message if the
authentication scheme is not added or updated
successfully.

The Policy Management API allocates memory for
this parameter dynamically. It is the responsibility
of the custom application to free it using a call to
Sm_PolicyApi_FreeString()..

If Sm_PolicyApi_MissingProperty or
Sm_PolicyApi_InvalidProp are returned, this field
contains the name of the property that is missing
or invalid.

Returns

m Sm_PolicyApi_Success. The SAML 2.0 authentication scheme operation was

successful.

m Sm_PolicyApi_Failure. The SAML 2.0 authentication operation was not successful

m Sm_PolicyApi_InvalidProp. A specified property is invalid. The property name is

returned in pszErrMsg.

m Sm_PolicyApi_MissingProperty. A required property was not specified. The
property name is returned in pszErrMsg.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a SAML 2.0 authentication scheme.

m Sm_PolicyApi_SAMLIDP_IncorrectParameters. The supplied SAML provider
properties are incomplete or incorrect.

m Sm_PolicyApi_SAMLIDP_ProviderldNotUnique. The supplied SAML provider ID is

not unique.

Chapter 4: Policy Management API Guidance 305

Function Declarations for the Policy Management API

Sm_PolicyApi_AddSAMLServiceProvider()

Adds a new SAML 2.0 Service Provider object or modifies an existing one.

If a Service Provider cannot be created, any associated objects created in the policy
store during the attempt will be rolled back.

Type

SAML 2.0 Configuration function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi AddSAMLServiceProvider

(

void* pSessionHandle,
Sm_PolicyApi SAMLSP t* pstructSAMLSP,
const bool bUpdate,
char** pszErrMsg
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pstructSAMLSP | A pointer to a completed Service Provider
structure.
bUpdate | Specifies whether an update operation should be
performed on an existing object.
pszErrMsg 0] String containing an error message if the Service

Provider is not added or updated successfully.

The Policy Management API allocates memory for
this parameter dynamically. It is the responsibility
of the custom application to free it using a call to
Sm_PolicyApi_FreeString().

If Sm_PolicyApi_MissingProperty or
Sm_PolicyApi_InvalidProp are returned, this field
contains the name of the property that is missing
or invalid.

306 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The Service Provider operation was successful.
Sm_PolicyApi_Failure. The Service Provider operation was not successful.

Sm_PolicyApi_InvalidProp. A specified property is invalid. The property name is
returned in pszErrMsg.

Sm_PolicyApi_MissingProperty. A required property was not specified. The
property name is returned in pszErrMsg.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a Service Provider.

Sm_PolicyApi_DomainNotFound. The affiliate domain OID was not found.
Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

Sm_PolicyApi_InsufficientSPData. Required properties for configuring the Service
Provider were missing.

Chapter 4: Policy Management API Guidance 307

Function Declarations for the Policy Management API

Sm_PolicyApi_AddScheme()

Creates a new SiteMinder authentication scheme. Attributes of the scheme are
contained in the pstructScheme structure.

If the scheme exists and the bUpdate flag is true, the item is updated.
Type
Authentication scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddScheme (

void* pSessionHandle,
Sm PolicyApi Scheme t* pstructScheme,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.

pstructScheme | A pointer to a completely filled-in scheme
structure.

bUpdate | A flag to indicate that if an existing object is found,

it should be updated.

Returns

m Sm_PolicyApi_Success. The scheme was created successfully.

m Sm_PolicyApi_Failure. The scheme was not created successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a scheme.

m Sm_PolicyApi_InvalidOid. The scheme object identifier was not found during an
update.

308 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyAPI_AddTargetConfigToSAML1xScheme

Adds a default target configuration setting in a SAML 1.x authentication scheme.
Syntax

The Sm_PolicyApi_AddTargetConfigToSAML1xScheme function has the following syntax:

int SM EXTERN Sm PolicyApi AddTargetConfigToSAML1xScheme (
void* pHandle,
const char* pszSchemeOid,
const char* pszURL,
int iQPOverridesTarget
);

Parameters

The Sm_PolicyApi_AddTargetConfigToSAML1xScheme function accepts the following
parameters:

pHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszSchemeOid

[in] A null-terminated string containing the object identifier of the authentication
scheme being updated.

pszURL
[in] A pointer to a valid default target configuration URL.
iQPOverrides Target

[in] An integer specifying the value specified in the 'Query parameter override
Default Target' check box.

Valid values for iQPOverridesTarget are:
m 0 specifies that the query parameter does not override the target.

m 1 specifies that the query parameter overrides the target.
Return Values
The Sm_PolicyApi_AddTargetConfigToSAML1xScheme function returns one of the
following values:
m Sm_PolicyApi_Success. The action was completed successfully.
m Sm_PolicyApi_Failure. The action was unsuccessful.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

Chapter 4: Policy Management API Guidance 309

Function Declarations for the Policy Management API

m Sm_PolicyApi_SchemeNotFound. The authentication scheme corresponding to the
OID was not found, or was not a SAML 1.x authentication scheme.

m Sm_PolicyApi_InvalidOid. The OID of the authentication scheme is NULL.

Sm_PolicyApi_AddToGroup()

Adds an item to the group identified by pszGroupOid.

The item (which may be a group) and the group must exist and must be of the same
type.

The pszDomainOid parameter is required by a rule group or response group. An agent
group does not require a domain OID because it is not a domain-based object.

Type
Group function, global scope (agents) or domain scope (responses, rules).

Syntax

int SM EXTERN Sm PolicyApi AddToGroup (

void* pSessionHandle,
Sm PolicyApi Groups t dwGroup,
const char* pszItemOid,
const char* pszGroup0id,
const char* pszDomainOid
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.

dwGroup | The type of group.

pszltemOid | A null-terminated string containing the object
identifier of an existing item of the same type as
the group.

310 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszGroupOid | A null-terminated string containing the object
identifier of a group of the type indicated by
dwGroup.

pszDomainOid | A null-terminated string containing the object

identifier of an existing domain. Required for rule
and response objects.

Returns

Sm_PolicyApi_Success. The add was successful.

Sm_PolicyApi_Failure. The add was not successful.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
rule, response, or agent OID to its respective group.

Sm_PolicyApi_InvalidOid:

m The domain OID was not found (for a domain-based group).
m The group OID was not found.

m Therule, response, or agent OID or group OID was not found.

Sm_PolicyApi_BadGroup. Parameter dwGroup is not the rule, response, or agent
type.

Chapter 4: Policy Management API Guidance 311

Function Declarations for the Policy Management API

Sm_PolicyApi_AddTrustedHost()

Creates or modifies a trusted host object in the object store.

Use this function to register the trusted host "offline"-that is, without a connection
between the agent and the Policy Server. When you use this function, you must run the
SiteMinder smreghost tool to define the shared secret in the host configuration file
(default name SmHost.conf). You define the shared secret with the -sh option of the
smreghost tool.

Type
Agent configuration function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi AddTrustedHost (

void* pSessionHandle,
Sm PolicyApi TrustedHost t* pstructTrustedHost,
bool bUpdate,
bool bGenSharedSecret
);
Parameter I/0 Description
pSessionHandle I Specifies the identifier of the session.
pstructTrustedHost I/O The address of a structure of type

Sm_PolicyApi_TrustedHost_t. The structure is
filled by a caller prior to a function call.

bUpdate Specifies whether the function was called to
update the existing object in the object store.

bGenSharedSecret Indicates whether to generate the shared
secret.

Remarks

If bGenSharedSecret is true, the function generates a 128-byte value and updates the
pszSecret field of pstructTrustedHost. If bGenSharedSecret is false, the value of the
shared secret for a new or updated trusted host object is taken from the pszSecret field
of the pstructTrustedHost structure.

If both bGenSharedSecret and bUpdate are true, the function ignores the value specified
in the pszSecret field of pstructTrustedHost, generates a new value, and updates the
object in the object store and in the pszSecret field of pstructTrustedHost.

312 Programming Guide for C

Function Declarations for the Policy Management API

If the function generates the shared secret, you must retrieve the generated shared
secret in clear text so that you can define it in the -sh option of the smreghost tool. To
retrieve the shared secret, call Sm_PolicyApi_GetTrustedHost().

In past releases, agent registration with the Policy Server always used 128-byte random
ASCll shared secrets. The new model makes it possible to use a user-defined string value
as a shared secret. This is a potential security weakness. The administrator who chooses
offline agent host configuration must create a strong shared secret and store it safely. It
is strongly recommended that you call the function Sm_PolicyApi_AddTrustedHost()
with the bGenSharedSecret parameter set to true. This enforces automatic generation
of a hard-to-guess shared secret.

Use of this function is not required to either create a trusted host or to define the host
configuration. SiteMinder automatically creates and configures the trusted host during
installation, and also when you run smreghost without using the -sh option.

Returns

m Sm_PolicyApi_Success. The trusted host object was created or modified.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidOid. The unique ID does not correspond to a Trusted Host
object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the proper privileges to add or
modify a trusted host object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NotUnique. The shared secret already exists.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.
m Sm_PolicyApi_InvalidProp. Invalid shared secret value specified.

m Sm_PolicyApi_GenSharedSecretFailure. Failed to generate a 128-byte shared secret
value.

Sm_PolicyApi_AddUserDirToAffiliateDomain()
Adds a user directory to an existing affiliate domain.

Type

Federation function

Chapter 4: Policy Management API Guidance 313

Function Declarations for the Policy Management API

Syntax

int SM EXTERN Sm PolicyApi AddUserDirToAffiliateDomain (
void* pSessionHandle,
const char* pszUserDir0Oid,
const char* pszAffiliateDomainOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object
identifier of an existing user directory.

pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.
Returns

m Sm_PolicyApi_Success. The user directory was added to the affiliate domain
successfully.

m Sm_PolicyApi_Failure. The user directory was not added to the affiliate domain.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

® Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
user directory to an affiliate domain.

m Sm_PolicyApi_InvalidOid. The affiliate domain OID or user directory OID was not
found during an update.

m Sm_PolicyApi_DuplicateEntry. The user directory exists in the user directory
collection of the domain.

314 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddUserDirToDomain()

Associates the directory object identified by pszUserDirOid with the domain identified
by pszDomainOid. The directory object is appended to the end of the search order.

Type
User directory function, global scope.

Syntax

int SM EXTERN Sm PolicyApi AddUserDirToDomain (
void* pSessionHandle,
const char* pszUserDir0id,
const char* pszDomainOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object
identifier of an existing user directory.

pszDomainOid | A null-terminated string containing the object
identifier of an existing domain.

Returns

m Sm_PolicyApi_Success. The add operation was successful.

m Sm_PolicyApi_Failure. The add operation was not successful.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
user directory to a domain.

m Sm_PolicyApi_InvalidOid. A user directory or domain OID was not found.

m Sm_PolicyApi_DuplicateEntry. The user directory exists in the user directory
collection of the domain.

Chapter 4: Policy Management API Guidance 315

Function Declarations for the Policy Management API

Sm_PolicyApi_AddUseSecureAuthPropToAffiliate()
Adds or updates the UseSecureAuthURL property to a SAML 1.x affiliate.

Syntax

int SM EXTERN Sm PolicyApi AddUseSecureAuthPropToAffiliate(
void* pHandle,
char* pszAffiliateOID,
bool bUseSecureAuthURL

);

Parameters
pHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszAffiliateOid
[in] A pointer to the OID of an existing SMAL 1.x affiliate.

bUseSecureAuthURL
[in] A Boolean value that specifies whether to use a secure authentication URL for
this affiliate.

Returns

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

m Sm_PolicyApi_NoSession. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator did not have sufficient access
privileges.

316 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddUsersToAffiliate()

Adds a user directory entry to an affiliate.
Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi AddUsersToAffiliate (

void* pSessionHandle,
const char* pszAffiliateOid,
Sm PolicyApi User t *pStructUsers,
int iPolicyFlags
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAffiliateOid | A null-terminated string containing the object
identifier of an existing affiliate.

pStructUsers | Pointer to a Sm_PolicyApi_User_t structure
containing information about the user directory.

iPolicyFlags | A bit field that indicates whether the policy
includes or excludes a user and whether the policy
should be applied recursively. The bit definitions
are listed in Figure 21 on page 112.

Chapter 4: Policy Management API Guidance 317

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The user was added was successful.

m Sm_PolicyApi_Failure. The user was not added successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
user.

m Sm_PolicyApi_InvalidOid: The affiliate OID was not found.

m Sm_PolicyApi_DuplicateEntry. The user is already part of the affiliate.

Sm_PolicyApi_AddUsersToPolicy()

Adds a user directory entry to the policy identified by pszPolicyOid. Only one user
specification (which may be an aggregate) can be added at a time.

Type

User and user state function.

Syntax

int SM_EXTERN Sm PolicyApi AddUsersToPolicy (

void* pSessionHandle,
const char* pszPolicy0id,
Sm PolicyApi User t* pStructUsers,
int iPolicyFlags
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.

pszPolicyOid | A null-terminated string containing the object
identifier of an existing policy to which a user is to
be added.

pStructUsers | Pointer to a Sm_PolicyApi_User_t structure

containing information about the user directory.

318 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

iPolicyFlags | A bit field that indicates whether the policy

includes or excludes users, and whether the policy
should be applied recursively. Bit definitions are
listed in Policy Flags.

Returns

m Sm_PolicyApi_Success. The add was successful.

m Sm_PolicyApi_Failure. The user directory is not part of the domain user directory
collection.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add
users to the policy.

m Sm_PolicyApi_InvalidOid:
m The policy OID was not found.
m The user directory OID was not found.

m Sm_PolicyApi_DuplicateEntry. The user is already part of the policy.

m Sm_PolicyApi_InConsistentANDBitMask. An existing user policy of this particular

user directory under the policy has a different value of
Sm_PolicyBehavior_AND_Mask set as against the one to be added.

Chapter 4: Policy Management API Guidance 319

Function Declarations for the Policy Management API

Sm_PolicyApi_AddUsersToSAMLServiceProvider()

Associates a user directory entry with SAML 2.0 Service Provider.

Type

SAML 2.0 Configuration function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi AddUsersToSAMLServiceProvider

(

void* pSessionHandle,
const char* pszProvider0Oid,
Sm PolicyApi User t* pStructUsers,
int iPolicyFlags
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszProviderOid | A null-terminated string containing the object
identifier of an existing SAML Service Provider.
pStructUsers | Pointer to a Sm_PolicyApi_User_t structure
containing information about the user directory.
iPolicyFlags | A bit field that indicates whether:

m The policy created for the SAML Service
Provider includes a user

m The policy should be applied recursively

320 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The user was added successfully.

m Sm_PolicyApi_Failure. The user was not added successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
user.

m Sm_PolicyApi_InvalidOid. The Service Provider OID was not found.

m Sm_PolicyApi_DuplicateEntry. The user is already part of the Service Provider.

Chapter 4: Policy Management API Guidance 321

Function Declarations for the Policy Management API

Sm_PolicyApi_AddUsersToWSFEDResourcePartner()

Associates a user directory entry with WS-Federation Resource Partner.

Syntax

int SM_EXTERN Sm PolicyApi AddUsersToWSFEDResourcePartner (
void* pSessionHandle,
const char * pszProvider0Oid,
Sm PolicyApi User t *pStructUsers,
int iPolicyFlags
);
Parameters
pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszProviderOid

[in] A null-terminated string containing the object identifier of an existing
WS-Federation Resource Partner.

pStructUsers

[in] A Pointer to a Sm_PolicyApi_User_t structure containing information about the
user directory.

iPolicyFlags
[in] A bit field that indicates whether the policy created for WS-Federation Resource
Partner includes or excludes a user and whether the policy should be applied
recursively.

Return Values

m Sm_PolicyApi_Success. The user was added successfully.

m Sm_PolicyApi_Failure. The user was not added successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
user.

® Sm_PolicyApi_InvalidOid. The Resource Partner OID was not found.

m Sm_PolicyApi_DuplicateEntry. The user is already part of the Resource Partner.

322 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_AddVariable()
Adds a variable object.
Type
Variable function.

Syntax

int SM EXTERN Sm PolicyApi AddVariable (

void* pSessionHandle,
Sm PolicyApi Variable t* pstructVariable,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pstructVariable | A pointer to a Sm_PolicyApi_Variable_t structure
containing information about the variable.

bUpdate | A flag to indicate that if an existing object is found,
it should be updated.

Returns

m Sm_PolicyApi_Success. The add operation was successful.

m Sm_PolicyApi_Failure. The add operation was not successful.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to add a
variable.

m Sm_PolicyApi_FeatureNotSupported. The client who called this function initialized
the API with a version less than SM_POLICY_API_VERSION_6_0.

Chapter 4: Policy Management API Guidance 323

Function Declarations for the Policy Management API

Sm_PolicyApi_AddWSFEDResourcePartner()

Creates a new or update an existing WS-Federation Resource Partner object. Validation
of properties (values and dependencies on other properties) is performed.

Syntax

int SM EXTERN Sm PolicyApi AddWSFEDResourcePartner (
void* pSessionHandle,
Sm_PolicyApi WSFEDResourcePartner t* structServiceProvider,
const bool bUpdate,
char **pszErrMsg
)i
Parameters
pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pstructServiceProvider

[in] A pointer to a completely filled-in WS-Federation Resource Partner structure.
bUpdate

[in] A flag to indicate that if an existing object is found, update it.
pszErrMsg

[out] When a call to this function returns a value of
Sm_PolicyApi_SAML_UnknownProperty, Sm_PolicyApi_MissingProperty, or
Sm_PolicyApi_InvalidProp, this variable contains the name of the property which
produced the error. You release the memory allocated for this variable by using a
call to Sm_PolicyApi_FreeString().

Return Values

m Sm_PolicyApi_Success. The Resource Partner was created successfully.

m Sm_PolicyApi_Failure. The Resource Partner was not created successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
an affiliate.

m Sm_PolicyApi_DomainNotFound. The affiliate domain OID was not found.
m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

m Sm_PolicyApi_lInsufficientRPData. Required properties for configuring the Resource
Partner were missing.

324 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_WSFED_UnknownProperty. An unknown property name was
provided.

Sm_PolicyApi_WSFEDRP_AssertionConsumerDefaultMissing. The property which is
required, potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_AuthenticationURLMissing. The property which is
required, potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_DomainQOidMissing. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_APIDMissing. The property which is required, potentially
due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_NameMissing. The property which is required, potentially
due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_NameldFormatMissing. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_NameldTypeMissing. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_NameldStaticMissing. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_NameldAttrNameMissing. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_NameldDNSpecMissing. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_ProviderldMissing. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_ProviderldNotUnique. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_UnSupportedSAMLVersion. The property which is
required, potentially due to a dependency, was not provided.

Sm_PolicyApi_WSFEDRP_UnknownProperty. The property which is required,
potentially due to a dependency, was not provided.

Sm_PolicyApi_MissingProperty. A property which is required, potentially due to a
dependency, was not provided.

Sm_PolicyApi_InvalidProp.The value for a provided property is invalid.

Chapter 4: Policy Management API Guidance 325

Function Declarations for the Policy Management API

Remarks

In the event that a Resource Partner cannot be created, any objects created in the policy
store must be rolled back. In addition, the prefix string wsfed: will be used for the Name
property to differentiate between affiliate: and samisp:.

Sm_PolicyApi_AddWSFEDScheme()

Creates a new or updates an existing SiteMinder WSFED authentication scheme (WSFED
auth scheme) object. Validation of properties (values and dependencies on other
properties) is performed.

Syntax

int SM EXTERN Sm PolicyApi AddWSFEDScheme (
void* pSessionHandle,
Sm PolicyApi Scheme t* pstructScheme,
Sm PolicyApi WSFEDProviderProp t* pProps,
const bool bUpdate,
char **pszErrMsg
);
Parameters
pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pstructScheme
[in] A pointer to a completely filled-in scheme structure.
pProps
[in] A pointer to a linked list of WSFED provider properties.
bUpdate
[in] A flag to indicate that if an existing object is found, it should be updated.
pszErrMsg

[out] When a call to this function returns a value of
Sm_PolicyApi_WSFED_UnknownProperty, Sm_PolicyApi_MissingProperty or
Sm_PolicyApi_InvalidProp, this variable contains the name of the property which
produced the error. You release the memory allocated for this variable by using a
call to SmPolicyApi_FreeString().

326 Programming Guide for C

Function Declarations for the Policy Management API

Return Values

Sm_PolicyApi_Success. The WSFED auth scheme was created successfully.
Sm_PolicyApi_Failure. The WSFED auth scheme was not created successfully.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a WSFED auth scheme.

Sm_PolicyApi_WSFEDAP_IncorrectParameters. Supplied WSFED Account Partner
properties are incomplete or incorrect.

Sm_PolicyApi_WSFEDAP_ProviderldNotUnique. Supplied WSFED Account Partner
ID is not unique.

Sm_PolicyApi_WSFED_UnknownProperty. An unknown property name was
provided.

Sm_PolicyApi_MissingProperty. A property which is required, potentially due to a
dependency, was not provided.

Sm_PolicyApi_InvalidProp. The value for a provided property is invalid.

Chapter 4: Policy Management API Guidance 327

Function Declarations for the Policy Management API

Sm_PolicyApi_ConvertFromLedacyAdent()
Converts a v4.x agent to a v5.x agent.

Calling this function is the equivalent of clearing the Support 4.x agents check box on the
Agent Properties dialog box.

Type
Agent function, global scope.

Syntax

int SM EXTERN Sm PolicyApi ConvertFromLegacyAgent (
void* pSessionHandle,
Sm PolicyApi Agent t* pStructAgent

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pStructAgent | A pointer to a completely filled-in agent structure.

Returns
m Sm_PolicyApi_Success. The agent was converted successfully.
m Sm_PolicyApi_Failure. The agent conversion failed.

m Sm_PolicyApi_InvalidProp. One or more properties defined in pStructAgent are
invalid.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to modify
an agent.

328 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_ConvertToLedgacyAdent()
Converts a v5.x agent to a v4.x agent.

Calling this function is the equivalent of checking the Support 4.x agents check box on
the Agent Properties dialog box.

Type
Agent function, global scope.

Syntax

int SM EXTERN Sm PolicyApi ConvertTolLegacyAgent (
void* pSessionHandle,
Sm PolicyApi Agent t* pStructAgent

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pStructAgent | A pointer to a completely filled-in agent structure.

Returns
m Sm_PolicyApi_Success. The agent was converted successfully.
m Sm_PolicyApi_Failure. The agent conversion failed.

m Sm_PolicyApi_InvalidProp. One or more properties defined in pStructAgent are
invalid.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to modify
an agent.

Chapter 4: Policy Management API Guidance 329

Function Declarations for the Policy Management API

Sm_PolicyApi_CreateAuthAzMap()

Creates an authentication and authorization directory mapping object.
Type
Authentication/Authorization map function, global scope.

Syntax

int SM EXTERN Sm PolicyApi CreateAuthAzMap (

void* pSessionHandle,
Sm PolicyApi AuthAzMap t* pAuthAzMap,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pAuthAzMap | The address of a pointer to information about
authentication and authorization mapping.

bUpdate | A flag to indicate that if an existing object is found,
it should be updated.

Returns

m Sm_PolicyApi_Success. The directory mapping object was created successfully.
® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
a directory mapping object.

m Sm_PolicyApi_InvalidOid:
m An authentication user directory OID was not found.
m An authorization user directory OID was not found.

m Adirectory-mapping object OID was not found.

330 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_CreateCertMap()

Creates a certification mapping object.
Type
Certificate map function, global scope.

Syntax

int SM EXTERN Sm PolicyApi CreateCertMap (
void* pSessionHandle,

Sm PolicyApi CertMap t* pCertMap,

const bool

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pCertMap | The address of a pointer to
Sm_PolicyApi_CertMap_t, which contains
information about certificate mapping.

Update | A flag to indicate that if an existing object is found,
it should be updated.

Returns

m Sm_PolicyApi_Success. The certificate mapping object was created successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create

a certificate mapping object.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found or the certificate
mapping object OID was not found during an update.

m Sm_PolicyApi_Invalid. The directory type is not valid.

Chapter 4: Policy Management API Guidance 331

Function Declarations for the Policy Management API

Sm_PolicyApi_CreateODBCQueryScheme()

Creates a new ODBC Query Scheme. An ODBC query scheme is used to create an ODBC
directory. The attributes of the user directory are contained in the
pstructODBCQueryScheme structure.

If the user ODBC query scheme object exists and the bUpdate flag is true, the item is
updated.

Type
ODBC query scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi CreateODBCQueryScheme (

void* pSessionHandle,
Sm PolicyApi ODBCQueryScheme t* pstructODBCQueryScheme,
const bool bUpdate
);
Parameter 1/0 Description
pSessionHandle I A pointer to an internal Policy

Management API data structure. The
structure holds information about the
administrator session and the client
session.

pstructODBCQueryScheme A pointer to a completely filled-in ODBC
query scheme.

bUpdate A flag to indicate that if an existing object
is found, it should be updated.

332 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The ODBC Query Scheme was created successfully.
Sm_PolicyApi_Failure. The ODBC Query Scheme was not created successfully.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create
an ODBC Query Scheme.

Sm_PolicyApi_InvalidOid. The ODBC Query Scheme OID was not found. This
happens when this function is called with bUpdate set to true and the pszOid field
of Sm_PolicyApi_ODBCQueryScheme_t holds the OID of the ODBC Query Scheme
being updated.

Sm_PolicyApi_NotUnique. An ODBC Query Scheme with the same name exists.

Sm_PolicyApi_MissingProperty. One of the required fields is not set.

Sm_PolicyApi_CreateUserDir()

Creates a new SiteMinder user directory object at global scope. The attributes of the
user directory are contained in the pstructUserDir structure.

If the user directory object exists and the bUpdate flag is true, the item is updated.

Type

User directory function, global scope.

Syntax

int SM EXTERN Sm PolicyApi CreateUserDir (

void* pSessionHandle,
Sm PolicyApi UserDir t* pstructUserDir,
const bool bUpdate
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pstructUserDir | A pointer to a completely filled-in user directory

structure.

Chapter 4: Policy Management API Guidance 333

Function Declarations for the Policy Management API

Parameter 1/0 Description

bUpdate | A flag to indicate that if an existing object is found,
it should be updated.

SM_PolicyAPI_UserDir_t Field Usage

The following table shows the SM_PolicyAPl_UserDir_t field that

Sm_PolicyApi_CreateUserDir() uses for different types of user directories:

Field User Directory Type

ODBC LDAP WinNT Custom
pszOid X X X X
Object Identifier of the user directory
being updated
pszName X X X X
Required field.
pszDesc X X X X
pszNamespace ODBC LDAP WinNT Custom
Required field.
pszServer ODBC IP NT Name of
Required field. data address Domain shared

source name library
pszODBCQuerySchemeOid X
Required field.
pszSearchRoot X paramete

r string

pszUserLookupStart X
pszUserLookupEnd X
bRequireCredentials X X X X
pszUsername X X X X
Required field if bRequireCredentials is
true.
pszPassword X X X X

Required field if bRequireCredentials is
true.

334 Programming Guide for C

Function Declarations for the Policy Management API

Field User Directory Type
ODBC LDAP WinNT Custom
nSearchResults X Max
results
nSearchScope X
nSearchTimeout X Max time
out
bSecureConnection X X
pszDisabledAttr X X (Varies)
pszUniversallDAttr X X X (Varies)
pszAnonymousld X (Varies)
pszPasswordData X X (Varies)
pszPasswordAttribute X X (Varies)
pszEmailAddressAttr
pszChallengeRespAttr X (Varies)

Chapter 4: Policy Management API Guidance 335

Function Declarations for the Policy Management API

Note: With custom directories, fields indicated by the word varies may or may not
apply to the user directory object being created.

Returns

m Sm_PolicyApi_Success. The user directory was created successfully.

m Sm_PolicyApi_Failure. The user directory was not created successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to create

a user directory.

m Sm_PolicyApi_InvalidOid:

m Auser directory type with the specified OID was not found.

m Auser directory OID cannot be found. This happens when this function is called
with bUpdate set to true and pszOid holds the OID of the user directory that is
being updated.

m You are creating an ODBC user directory and the OCBC Query Scheme OID was
not found.

m Sm_PolicyApi_NotUnique. A user directory of the same name exists.
m Sm_PolicyApi_MissingProperty. One of the required fields is not set.

Sm_PolicyApi_DeleteAdmin()

Deletes the administrator object identified by pszAdminQid.

Type

Administrator function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi DeleteAdmin (

void* pSessionHandle,
const char* pszAdminOid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

336 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszAdminOid | A null-terminated string containing the object

identifier of an existing administrator.

Returns

m Sm_PolicyApi_Success. The delete operation was successful.

m Sm_PolicyApi_Failure. The delete operation was not successful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
an administrator object.

m Sm_PolicyApi_InvalidOid. The administrator object identifier was not found.

Sm_PolicyApi_DeleteAffiliate()

Deletes an existing affiliate.

Type

Federation function

Syntax

int SM EXTERN Sm PolicyApi DeleteAffiliate (

);

void* pSessionHandle,
const char* pszAffiliateOid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAffiliateOid | A null-terminated string containing the object

identifier of an existing affiliate.

Chapter 4: Policy Management API Guidance 337

Function Declarations for the Policy Management API

Remarks

This function deletes affiliate objects that are based on the artifact profile or the POST
profile (see the Sm_PolicyApi_Affiliate_t field SAMLProfile). Deletion of an affiliate
object based on the POST profile requires an API version of at least
SM_POLICY_API_VERSION_6_0_2. If an earlier version is involved, and the function

specifies an affiliate object based on a POST profile, the request fails.

Returns

m Sm_PolicyApi_Success. The affiliate was deleted successfully.

m Sm_PolicyApi_Failure. The affiliate was not deleted successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
an affiliate.

m Sm_PolicyApi_InvalidOid. The affiliate OID was not found.

Sm_PolicyApi_DeleteAffiliateDomain()

Deletes an existing affiliate domain.

Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi DeleteAffiliateDomain (
void* pSessionHandle,
const char* pszAffiliateDomainOid

)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.

338 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The affiliate domain was deleted successfully.

m Sm_PolicyApi_Failure. The affiliate domain was not deleted successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
an affiliate domain.

m Sm_PolicyApi_InvalidOid. An affiliate with the specified OID was not found during

an update.

Sm_PolicyApi_DeleteAgent()

Deletes the agent identified by pszAgentOid.

Type

Agent function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteAgent (

);

void* pSessionHandle,
const char* pszAgent0id

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAgentOid | A null-terminated string containing the object

identifier of an existing agent.

Chapter 4: Policy Management API Guidance 339

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The agent was deleted successfully.

m Sm_PolicyApi_Failure. The agent was not deleted successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
an agent.

m Sm_PolicyApi_InvalidOid. An agent with the specified OID was not found.

Sm_PolicyApi_DeleteAgentConfig()

Deletes an agent configuration object.
Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteAgentConfig (

void* pSessionHandle,
const char* pszAgentConfig0id
)i
Parameter 1/0 Description
pSessionHandle I A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAgentConfigOid Unique identifier of the agent configuration
object to delete.

340 Programming Guide for C

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The delete operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidOid. The unique ID does not correspond to an agent
configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to delete an agent
configuration object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Sm_PolicyApi_DeleteAuthAzMap()

Deletes an authentication and authorization directory mapping object.

Type
Authentication/Authorization map function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi DeleteAuthAzMap (
void* pSessionHandle,
const char* pszAuthAzMapOid

)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAuthAzMapOid | A null-terminated string containing the object
identifier of the directory mapping object.

Chapter 4: Policy Management API Guidance 341

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The delete operation was successful.

m Sm_PolicyApi_Failure. The delete operation was unsuccessful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a directory mapping object.

m Sm_PolicyApi_InvalidOid. The directory-mapping object OID was not found.

Sm_PolicyApi_DeleteCertMap()

Deletes a certificate mapping object.

Type
Certificate map function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi DeleteCertMap (
void* pSessionHandle,
const char* pszCertMap0Oid

)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszCertMapOid | A null-terminated string containing the object
identifier of the certificate mapping object.

342 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The delete operation was successful.
Sm_PolicyApi_Failure. The delete operation was unsuccessful.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a certificate mapping object.

Sm_PolicyApi_InvalidOid. A certificate mapping object with the specified OID was
not found.

Sm_PolicyApi_DeleteDomain()

Deletes the domain identified by pszDomainOid as well as the domain's children (rules,
responses, realms, and policies).

Type

Domain function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteDomain (

);

void* pSessionHandle,
const char* pszDomainOid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszDomainOid | A null-terminated string containing the object

identifier of an existing domain.

Chapter 4: Policy Management API Guidance 343

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The domain was deleted successfully.

m Sm_PolicyApi_Failure. The domain was not deleted successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a domain.

m Sm_PolicyApi_InvalidOid. The domain OID was not found.

Sm_PolicyApi_DeleteHostConfig()

Deletes a host configuration object from the policy store.
Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteHostConfig (

void* pSessionHandle,
const char* pszHostConfig0id
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszHostConfigOid | Unique identifier of the host configuration object
to delete.

344 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The delete operation was successful.
Sm_PolicyApi_Failure. Generalized failure.

Sm_PolicyApi_InvalidOid. The unique ID does not correspond to a host
configuration object.

Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to delete a host
configuration object.

Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

Sm_PolicyApi_NoSession. The API user is not properly logged in.

Sm_PolicyApi_DeleteGroup()

Deletes the group object identified by pszGroupOid.

The pszDomainOid parameter is required by a rule group or response group. An agent
group does not require a domain OID because it is not a domain-based object.

Type

Group function, global scope (agents) or domain scope (responses, rules).

Syntax

int SM_EXTERN Sm PolicyApi DeleteGroup (

void* pSessionHandle,
Sm PolicyApi Groups t dwGroup,
const char* pszGroup0id,
const char* pszDomainOid
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
dwGroup | Indicates the type of the group to be deleted.
pszGroupOid | A null-terminated string containing the object

identifier of the group and the type indicated by
dwGroup.

Chapter 4: Policy Management API Guidance 345

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszDomainOid | A null-terminated string containing the object

identifier of an existing domain. Required
parameter for rule or response group.

Returns
m Sm_PolicyApi_Success. The delete was successful.
m Sm_PolicyApi_Failure. The delete was not successful.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a rule group, response group, or agent group.
m Sm_PolicyApi_InvalidOid:
m The group OID was not found.
m The domain OID was not found (for a domain-based group).
m Sm_PolicyApi_BadGroup. The dwGroup parameter is not the rule, response, or

agent type.

346 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteODBCQueryScheme()

Deletes the ODBC query scheme identified by pszODBCQuerySchemeOid.

Type

ODBC query scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteODBCQueryScheme (

);

void* pSessionHandle,
const char* psz0DBCQueryScheme0id

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy

Management API data structure. The
structure holds information about the
administrator session and the client
session.

pszODBCQuerySchemeOid | A null-terminated string containing the

object identifier of an existing ODBC
Query Scheme.

Returns

m Sm_PolicyApi_Success. The delete operation was successful.

m Sm_PolicyApi_Failure. The delete operation was not successful.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
an ODBC Query Scheme.

m Sm_PolicyApi_InvalidOid. The ODBC Query Scheme OID was not found.

Chapter 4: Policy Management API Guidance 347

Function Declarations for the Policy Management API

Sm_PolicyApi_DeletePasswordPolicy()
Deletes a password policy.
Type
Password policy function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeletePasswordPolicy (
void* pSessionHandle,
const char* pszPasswordPolicyOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszPasswordPolicyOid | A null-terminated string containing the
object identifier of a password policy.

Returns

m Sm_PolicyApi_Success. The delete operation was successful.

m Sm_PolicyApi_Failure. The delete operation was not successful.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a password policy.

m Sm_PolicyApi_InvalidOid. The password policy OID was not found.

348 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DeletePolicy()
Deletes the policy identified by pszPolicyOid.
Type
Policy function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi DeletePolicy (
void* pSessionHandle,
const char* pszPolicyOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszPolicyOid | A null-terminated string containing the object
identifier of an existing policy.

Returns

m Sm_PolicyApi_Success. The policy was deleted successfully.

m Sm_PolicyApi_Failure. The policy was not deleted successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
® Sm_PolicyApi_NoSession.l There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a policy.

m Sm_PolicyApi_InvalidOid. The policy OID was not found.

Chapter 4: Policy Management API Guidance 349

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteRealm()

Deletes the realm identified by pszRealOid.

Note: You cannot delete a realm while it is inked to rules.

Type

Realm function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteRealm (

);

void* pSessionHandle,
const char* pszRealm0id

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszRealmOid | A null-terminated string containing the object

identifier of an existing realm.

Returns

m Sm_PolicyApi_Success. The realm was deleted successfully.

m Sm_PolicyApi_Failure. The realm was not deleted successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a realm.

m Sm_PolicyApi_InvalidOid. The realm OID was not found.

350 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteRedistrationScheme()
Deletes a registration scheme.
Type
Registration scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteRegistrationScheme (
void* pSessionHandle,
const char* pszRegistrationSchemeOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszRegistrationOid | A null-terminated string containing the object
identifier of the registration scheme.

Returns

m Sm_PolicyApi_Success. The registration scheme was deleted successfully.

m Sm_PolicyApi_Failure. The registration scheme was not deleted successfully.
® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a registration scheme.

m Sm_PolicyApi_InvalidOid. The registration scheme OID was not found.

Chapter 4: Policy Management API Guidance 351

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteResponse()

Deletes the response identified by pszResponseOid and any related response attributes.

Type

Response function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteResponse (

);

void* pSessionHandle,
const char* pszResponse0id

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszResponseOid | A null-terminated string containing the object

identifier of an existing response.

Returns

m Sm_PolicyApi_Success. The response was deleted successfully.

m Sm_PolicyApi_Failure. The response was not deleted successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a response.

m Sm_PolicyApi_InvalidOid. The response OID was not found.

352 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteRule()

Deletes the rule identified by pszRuleOid.

Type
Rule function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteRule (
void* pSessionHandle,
const char* pszRule0Oid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszRuleOid | A null-terminated string containing the object
identifier of an existing rule.

Returns

m Sm_PolicyApi_Success. The rule was deleted successfully.

m Sm_PolicyApi_Failure. The rule was not deleted successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
arule.

m Sm_PolicyApi_InvalidOid. The rule OID was not found.

Chapter 4: Policy Management API Guidance 353

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteSAMLAffiliation()
Deletes the SAML affiliation identified by pszAffiliationOid.
Type
SAML 2.0 Configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteSAMLAffiliation
(

void* pSessionHandle,
const char* pszAffiliationOid
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAffiliationOid | A null-terminated string containing the object
identifier of an existing SAML affiliation.

Returns

m Sm_PolicyApi_Success. The SAML affiliation was deleted successfully.

m Sm_PolicyApi_Failure. The SAML affiliation was not deleted successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a SAML affiliation.

m Sm_PolicyApi_InvalidOID. The SAML affiliation's object identifier was not found.

354 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteSAMLServiceProvider()

Deletes the Service Provider identified by pszProviderQOid.
Type
SAML 2.0 Configuration function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteSAMLServiceProvider(

void* pSessionHandle,

const char* pszProvider0id

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszProviderOid | A null-terminated string containing the object
identifier of an existing Service Provider.

Returns

m Sm_PolicyApi_Success. The Service Provider was deleted successfully.

m Sm_PolicyApi_Failure. The Service Provider was not deleted successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a Service Provider.

m Sm_PolicyApi_InvalidOID. The Service Provider's object identifier was not found.

Chapter 4: Policy Management API Guidance 355

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteScheme()

Deletes the authentication scheme identified by pszSchemeOid.

Type

Authentication scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteScheme (

);

void* pSessionHandle,
const char* pszSchemeOid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszSchemeOid | A null-terminated string containing the object

identifier of an existing authentication scheme.

Returns

m Sm_PolicyApi_Success. The scheme was deleted successfully.

m Sm_PolicyApi_Failure. The scheme was not deleted successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a scheme.

m Sm_PolicyApi_InvalidOid. The scheme object identifier was not found.

356 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteTrustedHost()

Deletes an existing trusted host object from the policy store.
Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteTrustedHost (

void* pSessionHandle,
const char* pszTrustedHost0id
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszTrustedHostOid | Unique identifier of the trusted host object to
delete.

Returns
m Sm_PolicyApi_Success. The delete operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

® Sm_PolicyApi_InvalidOid. The unique ID does not correspond to a trusted host
object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to delete a trusted
host object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Chapter 4: Policy Management API Guidance 357

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteUserDir()

Deletes the user directory identified by pszUserDirQOid.

Type

User directory function, global scope.

Syntax

int SM EXTERN Sm PolicyApi DeleteUserDir (

);

void* pSessionHandle,
const char* pszUserDir0Oid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object

identifier of an existing user directory.

Returns

m Sm_PolicyApi_Success. The user directory was deleted successfully.

m Sm_PolicyApi_Failure. The user directory was not deleted successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a user directory.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

358 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteVariable()

Deletes a variable object.

Type
Variable function.

Syntax

int SM EXTERN Sm PolicyApi DeleteVariable (
void* pSessionHandle,
const char* pszVariableOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszVariableOid | A null-terminated string containing the object
identifier of an existing variable.

Returns

m Sm_PolicyApi_Success. The delete operation was successful.

m Sm_PolicyApi_Failure. The delete operation was not successful.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to delete
a variable.

m Sm_PolicyApi_InvalidOid. The variable object identifier was not found.

m Sm_PolicyApi_FeatureNotSupported. The client who called this function initialized
the APl with a version less than SM_POLICY_API_VERSION_6_0.

Chapter 4: Policy Management API Guidance 359

Function Declarations for the Policy Management API

Sm_PolicyApi_DeleteWSFEDResourcePartner()

Deletes an existing WS-Federation Resource Partner object.

Syntax

int SM EXTERN Sm PolicyApi DeleteWSFEDResourcePartner (
void* pSessionHandle,
const char * pszProvider0Oid,

)i

Parameters

pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszProviderOid
[in] A null-terminated string containing the object identifier of an existing
WS-Federation Resource Partner.

Return Values

m Sm_PolicyApi_Success. The Resource Partner was retrieved successfully.

m Sm_PolicyApi_Failure. The Resource Partner was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
an affiliate.

m Sm_PolicyApi_InvalidOID. The Resource Partner OID was not found.

360 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_DisableUser()

Disables a user for the reason Sm_Api_Disabled_AdminDisabled. It does not change

other concurrent disabling reasons.

To make this function work, the attribute for tracking disabled users must be set in the
user directory (the pszDisabledAttr field of Sm_PolicyApi_UserDir_t). You can also set
the attribute using the Policy Server Ul.

Type

User and user state function.

Syntax

int SM_EXTERN Sm PolicyApi DisableUser (

void* pSessionHandle,
const char* pszUserDirQid,
const char* pszUserDN,
char** pszErrMsg
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszUserDirOid | A null-terminated string containing the object
identifier of the user directory where the user may
be found.
pszUserDN | The distinguished name of the user to be disabled.
pszErrMsg 0] String containing an error message if the user is not

disabled successfully. You release the memory
allocated for this variable by calling
Sm_PolicyApi_FreeString().

Chapter 4: Policy Management API Guidance 361

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The user was disabled successfully.

Sm_PolicyApi_Failure. The user was not disabled successfully or memory could not
be allocated to the error message string.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to disable

a user.

Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Sm_PolicyApi_EnableUser()

Enables a user by clearing all the disabled bits. It does not clear the qualifier bit
Sm_Api_Disabled_PWMustChange.

Type

User and user state function.

Syntax

int SM_EXTERN Sm PolicyApi EnableUser (

void*

const char*
const char*
char**

pSessionHandle,
pszUserDir0id,
pszUserDN,
pszErrMsg

Parameter

1/0 Description

pSessionHandle

| A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid

| A null-terminated string containing the object
identifier of the user directory where the user may
be found.

pszUserDN

| The distinguished name of the user to be enabled.

362 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszErrMsg 0] String containing an error message if the user is not

enabled successfully. You release the memory
allocated for this variable by calling
Sm_PolicyApi_FreeString().

Returns

m Sm_PolicyApi_Success. The user was enabled successfully.

m Sm_PolicyApi_Failure. The user was not enabled successfully or memory could not
be allocated to the error message string.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to enable
a user.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Sm_PolicyApi_FlushRealm()

Flushes the specified realm identified by pszRealmOid from a resource cache.

Type

Utility function.

Syntax

int SM_EXTERN Sm PolicyApi FlushRealm (

);

void* pSessionHandle,
const char* pszRealmOid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszRealmOid | A null-terminated string containing the object

identifier of a realm.

Chapter 4: Policy Management API Guidance 363

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The flush operation was successful.

m Sm_PolicyApi_Failure. The flush operation was not successful.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to flush a

realm.

m Sm_PolicyApi_InvalidOid. The realm OID was not found.

Sm_PolicyApi_FlushUser()

Flushes a user from a User Cache.

Type
Utility function.

Syntax

int SM EXTERN Sm PolicyApi FlushUser (

void* pSessionHandle,
const char* pszUserDir0id,
const char* pszUserDN,
char** pszErrMsg
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszUserDirOid | A null-terminated string containing the object
identifier of an existing user directory.
pszUserDN | A null-terminated string containing the name of a
user in an existing user directory who is to be
flushed from the user cache.
pszErrMsg 0] Error message returned by the Policy Management

API. You release the memory allocated for this
variable by using a call to
Sm_PolicyApi_FreeString().

364 Programming Guide for C

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The flush operation was successful.

m Sm_PolicyApi_Failure. The flush operation was not successful or memory could not
be allocated to the error message string.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session. There is no valid
administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to flush a
user.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Sm_PolicyApi_FreeMemory()

Note: This function is deprecated for clients starting at SM_POLICY_API_VERSION_6_0.
Instead, use Sm_PolicyApi_FreeMemoryEx().

Call Sm_PolicyApi_FreeMemory() to free memory that was allocated by the Policy

Management API. This includes the Sm_PolicyApi_Server_t structures allocated as part
of the Sm_PolicyApi_HostConfig_t structure.

Type
Utility function.

Syntax

int SM EXTERN Sm PolicyApi FreeMemory (void* pMem);

Parameter 1/0 description

pMem | A void pointer to memory that was allocated by the
Policy Management API.

Returns

Sm_PolicyApi_Success or Sm_PolicyApi_Failure.

Chapter 4: Policy Management API Guidance 365

Function Declarations for the Policy Management API

Sm_PolicyApi_FreeMemoryEx()

Call Sm_PolicyApi_FreeMemoryEx() to free memory that was allocated by the Policy
Management API. This includes the Sm_PolicyApi_Server_t structures allocated as part
of the Sm_PolicyApi_HostConfig_t structure.

Note: Clients starting at version SM_POLICY_API_VERSION_6_0 must use this function
instead of Sm_PolicyApi_FreeMemory().

Type
Utility function.

Syntax

int SM_EXTERN Sm PolicyApi FreeMemoryEx (
void* pInitHandle

void* pMem

);

Parameter 1/0 description

plnitHandle | A void pointer that points to memory that was
allocated by the Policy Management API.

pMem | A void pointer that points to memory that was
allocated by the Policy Management API.

Returns

m Sm_PolicyApi_Success. The operation was successful.
m Sm_PolicyApi_Failure. The operation failed.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

366 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_FreeString()
Frees a single string that was allocated by the Policy Management API.
Type
Utility function.

Syntax

int SM EXTERN Sm PolicyApi FreeString(
char* pszString
)i

Parameter 1/0 Description
pszString | A pointer to a null-terminated string.
Returns

This function always returns Sm_PolicyApi_Success.

Sm_PolicyApi_FreeStringArray()
Frees string arrays that were allocated by the Policy Management API.
Type
Utility function.

Syntax

int SM EXTERN Sm PolicyApi FreeStringArray (
char* pszStringArray[]
)i

Parameter 1/0 Description

pszStringArray | A pointer to an array of pointers that point to
null-terminated strings.

Chapter 4: Policy Management API Guidance 367

Function Declarations for the Policy Management API

Returns

This function always returns Sm_PolicyApi_Success.

Sm_PolicyApi_GetAdmin()
Gets the contents of the administrator object identified by szAdminOid.

The results of this function are returned in a structure referenced by ppstructAdmin.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Administrator function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetAdmin (
void* pSessionHandle,
const char* pszAdmin0id,
Sm PolicyApi Admin t** ppstructAdmin
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAdminOid | A null-terminated string containing the object
identifier of an existing administrator.

ppstructAdmin 0] The address of a pointer to an administrator
structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Admin_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
administrator object.

® Sm_PolicyApi_InvalidOid. The administrator object ID was not found.

368 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAdminByName()
Gets the contents of the administrator object identified by szAdminName.

The results of this function are returned in a structure referenced by ppstructAdmin.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Administrator function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAdminByName (
void* pSessionHandle,
const char* pszAdminName,
Sm_PolicyApi Admin t** ppstructAdmin
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAdminName | A null-terminated string containing the name of an
existing administrator.

ppstructAdmin 0] The address of a pointer to an administrator
structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Admin_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
administrator object.

m Sm_PolicyApi_NotFound. The administrator name was not found.

Chapter 4: Policy Management API Guidance 369

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAffiliate()
Gets an affiliate.

Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAffiliate (
void* pSessionHandle,
const char* pszAffiliateOid,
Sm PolicyApi Affiliate t** ppstructAffiliate
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszAffiliateOid | A null-terminated string containing the object
identifier of an existing affiliate.
ppstruct 0] The address of a pointer to an affiliate structure.
Affiliate
Remarks

This function retrieves affiliate objects that are based on the artifact profile or the POST
profile (see the Sm_PolicyApi_Affiliate_t field SAMLProfile). Retrieval of an affiliate
object based on the POST profile requires an API version of at least
SM_POLICY_API_VERSION_6_0_2. If an earlier version is involved, and the function

specifies an affiliate object based on a POST profile, the request fails.

Returns

m Sm_PolicyApi_Success. The affiliate was retrieved successfully.

m Sm_PolicyApi_Failure. The affiliate was not retrieved successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
an affiliate.

m Sm_PolicyApi_InvalidOID. The affiliate OID was not found.

370 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAffiliateByName()
Gets an affiliate.
Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAffiliateByName (

void* pSessionHandle,
const char* pszAffiliateOid,
const char* pszAffiliateName,

Sm PolicyApi Affiliate t** ppstructAffiliate
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAffiliateOid | A null-terminated string containing the object
identifier of an existing affiliate.

pszAffiliateName | A null-terminated string containing the name of an
existing affiliate.

ppstruct 0] The address of a pointer to an affiliate structure.
Affiliate

Chapter 4: Policy Management API Guidance 371

Function Declarations for the Policy Management API

Remarks

This function retrieves affiliate objects that are based on the artifact profile or the POST
profile (see the Sm_PolicyApi_Affiliate_t field SAMLProfile). Retrieval of an affiliate
object based on the POST profile requires an API version of at least
SM_POLICY_API_VERSION_6_0_2. If an earlier version is involved, and the function

specifies an affiliate object based on a POST profile, the request fails.

Returns

m Sm_PolicyApi_Success. The affiliate was retrieved successfully.

m Sm_PolicyApi_Failure. The affiliate was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
an affiliate.

m Sm_PolicyApi_InvalidOID. The affiliate OID was not found.

m Sm_PolicyApi_NotFound. The affiliate name was not found.

Sm_PolicyApi_GetAffiliateDomain()

Gets an affiliate domain.

Type

Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAffiliateDomain (

);

void* pSessionHandle,
const char* pszAffiliateDomainOid,
Sm PolicyApi AffiliateDomain_ t** ppstructAffiliateDomain

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

372 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.
ppstruct 0] The address of a pointer to an affiliate domain
AffiliateDomain structure.

Returns

m Sm_PolicyApi_Success. The affiliate domain was retrieved successfully.

m Sm_PolicyApi_Failure. The affiliate domain was not retrieved successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
affiliate domain.

m Sm_PolicyApi_DomainNotFound. The affiliate domain OID was not found.

m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

Sm_PolicyApi_GetAffiliateDomainByName()
Gets an affiliate domain.

Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAffiliateDomainByName (
void* pSessionHandle,
const char* pszAffiliateDomainName,
Sm PolicyApi AffiliateDomain_ t** ppstructAffiliateDomain
)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 373

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszAffiliate | A null-terminated string containing the name of an
DomainName existing affiliate domain.

ppstruct 0 The address of a pointer to an affiliate domain
AffiliateDomain structure.

Returns

m Sm_PolicyApi_Success. The affiliate domain was retrieved successfully.

m Sm_PolicyApi_Failure. The affiliate domain was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
affiliate domain.

m Sm_PolicyApi_NotFound. The affiliate domain name was not found.

m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

Sm_PolicyApi_GetAffiliateDomainObjects()

Gets affiliate domain objects.
Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAffiliateDomainObjects (

void* pSessionHandle,
const char* pszAffiliateDomainOid,
const Sm PolicyApi Objects t nObjectId,
Sm PolicyApi 0id t** ppstructObject
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

374 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description
pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.

nObjectld | The type of domain object to retrieve. Valid types
are for affiliate, admin, and user directory objects
only.

ppstructObject 0 The address of a pointer to a Sm_PolicyApi_Oid_t
structure

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. The get operation was not successful.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get

affiliate domain objects.

m Sm_PolicyApi_InvalidOID. The affiliate domain OID was not found.

Chapter 4: Policy Management API Guidance 375

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAffiliateDomainUserDirSearchOrder()

Gets the user directory search order for an affiliate domain.

Type

Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAffiliateDomainUserDirSearchOrder (

void* pSessionHandle,
const char* pszAffiliateDomainOid,
char** pszArray[1]
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.
pszArray 0] The returned array of user directory OIDs of the
requested objects.
Returns
m Sm_PolicyApi_Success. The function successfully returned the user directory search
order.
m Sm_PolicyApi_Failure. The function did not successfully return the user directory
search order.
® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get
user directory search order in an affiliate domain.
m Sm_PolicyApi_InvalidOID. The affiliate domain OID was not found.

376 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAffiliatedSAMLAuthSchemes()

Retrieves all the SAML authentication schemes associated with the specified SAML

affiliation.

Type

SAML 2.0 Configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAffiliatedSAMLAuthSchemes

(

void* pSessionHandle,
const char* pszAffiliationOid,
Sm_PolicyApi Scheme t** ppstructSchemes
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszAffiliationOid | A null-terminated string containing the object
identifier of an existing SAML affiliation.
ppstructSchemes 0] The address of a pointer to SAML authentication
scheme structures.
Returns

® Sm_PolicyApi_Success. The SAML authentication schemes were retrieved

successfully.

m Sm_PolicyApi_Failure. The SAML authentication schemes were not retrieved

successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve

SAML authentication schemes.

m Sm_PolicyApi_InvalidOID. The SAML affiliation object identifier was not found.

Chapter 4: Policy Management API Guidance 377

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAffiliatedSAMLServiceProviders()

Retrieves all the Service Providers associated with the specified SAML affiliation.

Type

SAML 2.0 Configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAffiliatedSAMLServiceProviders

(

void* pSessionHandle,
const char* pszAffiliationOid,
Sm PolicyApi SAMLSP t** ppstructSAMLSPs
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszAffiliationOid | A null-terminated string containing the object
identifier of an existing SAML affiliation.
ppstructSAMLSPs 0] The address of a pointer to Service Provider
structures.
Returns

m Sm_PolicyApi_Success. Service Providers were retrieved successfully.

m Sm_PolicyApi_Failure. Service Providers were not retrieved successfully.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve

Service Providers.

m Sm_PolicyApi_InvalidOID. The SAML affiliation object identifier was not found.

378 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAffiliateUsers()

Gets the user directory entries for an affiliate.

Type

Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAffiliateUsers (

);

void*
const char*
const char*

pSessionHandle,
pszAffiliateOid,
pszUserDir0id,
Sm PolicyApi User t **ppStructUsers

Parameter

Description

pSessionHandle

A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAffiliateOid

A null-terminated string containing the object
identifier of an existing affiliate.

pszUserDirOid

A null-terminated string containing the object
identifier of an existing user directory.

ppStructUsers

The address of a pointer to a linked list of user
structures.

Returns

Sm_PolicyApi_Success. The user was retrieved successfully.

Sm_PolicyApi_Failure. The user was not retrieved successfully.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve

users.

Sm_PolicyApi_InvalidOID. The affiliate OID or user directory OID was not found.

Chapter 4: Policy Management API Guidance 379

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAdent()

Gets the contents of the agent identified by pszAgentOid. The results of this function are
returned in a structure referenced by ppstructAgent.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Agent function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAgent (
void* pSessionHandle,
const char* pszAgent0id,
Sm PolicyApi Agent t** ppstructAgent
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszAgentOid | A null-terminated string containing the object
identifier of an existing agent.
ppstructAgent 0] The address of a pointer to an agent structure.
Returns

m Sm_PolicyApi_Success. The get operation was successful.

® Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Agent_t.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
agent.

m Sm_PolicyApi_InvalidOid. An agent with the specified OID not found.

380 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAgentByName()

Gets the contents of the agent identified by szAgentName. The results of this function
are returned in a structure referenced by ppstructAgent.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Agent function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetAgentByName (
void* pSessionHandle,
const char* pszAgentName,
Sm PolicyApi Agent t** ppstructAgent
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAgentName | A null-terminated string containing the name of an
existing agent.

ppstructAgent 0] The address of a pointer to an agent structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

® Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Agent_t.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
agent.

m Sm_PolicyApi_NotFound. An agent with the specified name not found.

Chapter 4: Policy Management API Guidance 381

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAdentConfig()
Retrieves an existing agent configuration object.

Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAgentConfig (
void* pSessionHandle,
const char* pszAgentConfig0Oid,
Sm PolicyApi AgentConfig t** ppstructAgentConfig
);

Parameter 1/0 Description

pSessionHandle I A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszAgentConfigOid Unique identifier of the agent configuration
object to retrieve.

ppstructAgentConfig (0] Address of a pointer to a structure that defines
the agent configuration object. The function
allocates the structure.

Returns
m Sm_PolicyApi_Success. The get operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

® Sm_PolicyApi_InvalidOid. The unique ID does not correspond to an agent
configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to retrieve an
agent configuration object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

382 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAgentConfigByName()
Retrieves an existing agent configuration object by pszAgentConfigName.

Type
Agent configuration function, global scope.

Syntax
int SM EXTERN Sm PolicyApi GetAgentConfigByName (

void* pSessionHandle,

const char* pszAgentConfigName,

Sm PolicyApi AgentConfig t** ppstructAgentConfig
);

Parameter 1/0 Description

pSessionHandle I A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszAgentConfigName Unigue name of the agent configuration object
to retrieve.
ppstructAgentConfig 0] Address of a pointer to a structure that defines

the agent configuration object. The function
allocates the structure.

Returns
m Sm_PolicyApi_Success. The get operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_NotFound. The unique name does not correspond to an agent
configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to retrieve an
agent configuration object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Chapter 4: Policy Management API Guidance 383

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAdentConfigAssociations()

Retrieves a list of configuration parameters for an agent configuration object.

Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAgentConfigAssociations (
void* pSessionHandle,
const char* pszAgentConfig0id,
Sm PolicyApi Association t** ppstructAssociations
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszAgentConfigOid | Unique identifier of the agent configuration
object.
ppstructAssociations 0 A list of name/value pairs representing the

configuration parameters for the agent
configuration object.

Returns
m Sm_PolicyApi_Success. The get operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

® Sm_PolicyApi_InvalidOid. The unique ID does not correspond to an agent
configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to retrieve
configuration parameters for an agent configuration object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

384 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAdentType()

Gets the contents of the agent type object identified by pszAgentTypeOid. The results of
this function will be returned in a structure referenced by ppstructAgentType.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().
Type
Agent function, global scope.
Syntax
int SM EXTERN Sm PolicyApi GetAgentType (
void* pSessionHandle,
const char* pszAgentType0Oid,

Sm PolicyApi AgentType t** ppstructAgentType
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.

pszAgentTypeOid | A null-terminated string containing the object
identifier of an existing agent type.

ppstructAgentType 0] The address of a pointer to an agent type
structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_AgentType_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
agent type.

m Sm_PolicyApi_InvalidOid. An agent type with the specified OID was not found.

Chapter 4: Policy Management API Guidance 385

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAdentTypeByName()

Gets the contents of the agent type object identified by pszAgentTypeName. The results
of this function will be returned in a structure referenced by ppstructAgentType.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().
Type
Agent function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetAgentTypeByName (
void* pSessionHandle,
const char* pszAgentTypeName,
Sm PolicyApi AgentType t** ppstructAgentType
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAgentTypeName | A null-terminated string containing the name of
an existing agent type.

ppstructAgentType 0] The address of a pointer to an agent type
structure.

Returns
m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_AgentType_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
agent type.

m Sm_PolicyApi_NotFound.An agent type with the specified name was not found.

386 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAdgentTypeAttr()

Returns one or all agent attributes:

m If pszOid is of type Sm_PolicyApi_AgentType_Prop, the function returns all agent
attributes.

m | pszOid is of type Sm_PolicyApi_AgentTypeAttr_Prop, the function returns an
agent type attribute object.

Type
Agent function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAgentTypeAttr (

void* pSessionHandle,

const char* psz0id,

Sm PolicyApi AgentTypeAttr t** ppstructAgentTypeAttr
);

Parameter 1/0 Description

pSessionHandle I A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator
session and the client session.

pszOid A null-terminated string containing the
object identifier of an existing agent type or
agent type attribute.

ppstructAgentTypeAttr (e} The address of a pointer to an agent type
attribute structure.

Chapter 4: Policy Management API Guidance 387

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The get operation was successful.

Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_AgentTypeAttr_t.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
agent type or an agent type attribute.

Sm_PolicyApi_InvalidOid. An agent type or an agent type attribute with the
specified OID was not found.

Sm_PolicyApi_GetAdentTypeAttrByName()

Returns an agent type attribute object by name.

Type

Agent function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAgentTypeAttrByName (

);

void* pSessionHandle,
const char* szAgentTypeName,
Sm PolicyApi AgentTypeAttr t** ppstructAgentTypeAttr

Parameter 1/0 Description

pSessionHandle I A pointer to an internal Policy Management

API data structure. The structure holds
information about the administrator
session and the client session.

szAgentTypeName A null-terminated string containing the

name of an existing agent type attribute.

ppstructAgentTypeAttr (0] The address of a pointer to an agent type

attribute structure.

388 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The get operation was successful.

Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_AgentTypeAttr_t.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
agent type or an agent type attribute.

Sm_PolicyApi_NotFound. An agent type attribute with the specified name was not
found.

Sm_PolicyApi_GetAllAffiliateAttributes()

Gets all the attributes for an affiliate.

Type

Federation function

Syntax

int SM EXTERN Sm PolicyApi GetAllAffiliateAttributes (

);

void* pSessionHandle,
const char* pszAffiliateOid,
Sm PolicyApi AffiliateAttr t** ppstructAffiliateAttr

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszAffiliateOid | A null-terminated string containing the object
identifier of an existing affiliate.
ppstruct 0] The address of a pointer to an affiliate attribute
AffiliateAttr structure.

Chapter 4: Policy Management API Guidance 389

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The affiliate attribute was retrieved successfully.

m Sm_PolicyApi_Failure. The affiliate attribute was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
affiliate attributes.

m Sm_PolicyApi_InvalidOID. The affiliate OID was not found.

Sm_PolicyApi_GetAllAffiliates()

Gets all affiliates in the specified affiliate domain.

Type
Federation function

Syntax

int SM_EXTERN Sm PolicyApi GetAllAffiliates (
void* pSessionHandle,
const char* pszAffiliateDomainOid,
Sm PolicyApi Affiliate t** ppstructAffiliates

)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.
ppstruct 0] The address of a pointer to an affiliate structure.

Affiliates

390 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The affiliates were retrieved successfully.

m Sm_PolicyApi_Failure. The affiliates were not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
affiliates.

m Sm_PolicyApi_InvalidOID. The affiliate domain OID was not found.

Sm_PolicyApi_GetAlISAMLAffiliations()

Retrieves all existing SAML affiliation objects.

Type
SAML 2.0 Configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAllSAMLAffiliations
(

void* pSessionHandle,

Sm PolicyApi SAMLAffiliation t** ppstructAffiliations
)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
ppstruct 0] The address of a pointer to SAML affiliation
Affiliations structures.

Chapter 4: Policy Management API Guidance 391

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The SAML affiliations were retrieved successfully.

m Sm_PolicyApi_Failure. The SAML affiliations were not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
SAML affiliations.

Sm_PolicyApi_GetAlLISAMLSchemeAttributes()

Returns a linked list of all attributes defined for a SAML Requester.

Syntax

int SM_EXTERN Sm PolicyApi AddAttributeToSAMLScheme(
void* pHandle,
const Sm PolicyApi Scheme t* pstructScheme,
const Sm PolicyApi SAMLRequesterAttr t* pAttr
)i

Parameter 1/0 Description

pHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.

pstructScheme | A pointer to a completely filled-in scheme
structure.

pPAttr 0] A pointer that will be assigned to the first

Sm_PolicyApi_SAMLRequesterAttr_t structure in
the returned list of attributes.

392 Programming Guide for C

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The SAML Requester attributes were returned successfully.

m Sm_PolicyApi_Failure. The SAML Requester attributes were not returned
successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to obtain
SAML Requester attributes.

m Sm_PolicyApi_SAMLIDP_IncorrectParameters. Supplied SAML provided properties
are incomplete or incorrect.

m Sm_PolicyApi_DuplicateAttribute. An attribute already exists with the same Name
and NameFormat.

Sm_PolicyApi_GetAllISAMLServiceProviders()

Retrieves all the Service Providers in the specified affiliate domain.
Type
SAML 2.0 Configuration function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetAllSAMLServiceProviders
(

void* pSessionHandle,
const char* pszAffiliateDomain0Oid,
Sm PolicyApi SAMLSP t** ppstructSAMLSPs
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.

Chapter 4: Policy Management API Guidance 393

Function Declarations for the Policy Management API

Parameter 1/0 Description

ppstructSAMLSPs 0] The address of a pointer to Service Provider
structures.

Returns

m Sm_PolicyApi_Success. Service Providers were retrieved successfully.

m Sm_PolicyApi_Failure. Service Providers were not retrieved successfully.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior

m to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
Service Providers.

m Sm_PolicyApi_InvalidOID. The affiliate domain object identifier was not found.

Sm_PolicyApi_GetAlLISAMLSPAssertionConsumerService()

Retrieves a list of all the Assertion Consumer Services currently in the policy store.

Note: The list of Assertion Consumer Service structures that is returned by this function
must be freed using the Sm_PolicyApi_FreeMemory function.

Type
Federation function

Syntax

int SM_EXTERN Sm PolicyApi GetAllSAMLSPAssertionConsumerService(
void* pSessionHandle,
const Sm PolicyApi SAMLSPAssertionConsumerService t**
ppstructSAMLSPAssertionConsumerService,
const char* pszSAMLSPOid
)i

Parameter I/ Description

pSessionHandle I Apointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

394 Programming Guide for C

Function Declarations for the Policy Management API

Parameter I/ Description
(o]
ppstructSAMLSPAssertion I A pointer to an array of Assertion Consumer
ConsumerServiceAttr Service structures.
pszSAMLSPOId | Apointer to a string containing the OID of the

Service Provider.

Returns

m Sm_PolicyApi_Success. The array of Assertion Consumer Services was retrieved
successfully.

m Sm_PolicyApi_Failure - The array of Assertion Consumer Services was not retrieved

successfully.
m Sm_PolicyApi_InvalidHandle - There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession - There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege - The administrator does not have the privilege to
remove Attributes from a SAML Service Provider.

Sm_PolicyApi_GetAlLISAMLSPAttributes()

Retrieves all the attributes associated with the specified Service Provider.
Type
SAML 2.0 Configuration function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi GetAllSAMLSPAttributes
(

void* pHandle,
const char* pszSAMLSPOid,
Sm_PolicyApi SAMLSPAttr t** ppstructSAMLSPAttr
);
Parameter 1/0 Description
pHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 395

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszSAMLSPOid | A null-terminated string containing the object
identifier of an existing Service Provider.

ppstructSAML 0] The address of a pointer to attribute structures.
SPAttr

Returns

m Sm_PolicyApi_Success. The attributes were retrieved successfully.

m Sm_PolicyApi_Failure. The attributes were not retrieved successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
attributes from a SAML Service Provider.

396 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAlIWSFEDResourcePartners()

Retrieves all existing Resource Partner objects.

Syntax

int SM EXTERN Sm PolicyApi GetAllWSFEDResourcePartners (

void* pSessionHandle,

const char * pszAffiliateDomainOid,

Sm_PolicyApi WSFEDResourcePartner t** ppResourcePartners
)i
Parameters

pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszAffiliateDomainOid

[in] A null-terminated string containing the object identifier of an existing affiliate
domain.

ppResourcePartners

[out] The address of the pointer to WS-Federation Resource Partner structures.

Return Values

m Sm_PolicyApi_Success. The Resource Partner was retrieved successfully.

m Sm_PolicyApi_Failure. The Resource Partner was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
an affiliate.

m Sm_PolicyApi_InvalidOID. The affiliate domain OID was not found.

Chapter 4: Policy Management API Guidance 397

Function Declarations for the Policy Management API

Sm_PolicyApi_GetAuthAzMap()

Gets the contents of an authentication and authorization directory mapping object.
Type
Authentication/Authorization map function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetAuthAzMap (
void* pSessionHandle,
const char* pszAuthAzMap0Oid,
Sm_PolicyApi AuthAzMap t** ppAuthAzMap

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAuthAzMapOid | A null-terminated string containing the object
identifier of the directory mapping object.

pszAuthAzMap 0] The address of a pointer to an
Sm_PolicyApi_AuthAzMap_t structure.

Returns
m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_AuthAzMap_t.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
directory mapping object.

m Sm_PolicyApi_InvalidOid. The directory-mapping OID was not found.

398 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetCertMap()

Retrieves a certificate mapping object.
Type
Certificate map function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetCertMap (
void* pSessionHandle,
const char* pszCertMap0id,
Sm PolicyApi CertMap t** ppCertMap

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszCertMapOid | A null-terminated string containing the object
identifier of the certificate mapping object.

ppCertMap 0] The address of a pointer to an
Sm_PolicyApi_CertMap_t structure.

Returns
m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_CertMap_t.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
certificate mapping object.

m Sm_PolicyApi_InvalidOid. A certificate mapping object matching the specified OID
was not found.

Chapter 4: Policy Management API Guidance 399

Function Declarations for the Policy Management API

Sm_PolicyApi_GetChildren()

Builds the hierarchical realm and rule tree.

This function retrieves a list of OIDs. The OIDs are of type realms, or realms and rules. If
the function is called with a domain OID, it retrieves a list of top-level realm OIDs. If the
function is called with a realm OID, it retrieves a list of realm and rule OIDs under that
realm. The iObjectld field in Sm_PolicyApi_Oid_t specifies the type of OID.

If there are no children for the domain or realm OID, the function returns an empty list.

Type
Realm function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi GetChildren (
void* pSessionHandle,
const char* psz0id,
Sm PolicyApi 0id t** ppStructObject
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszOid | A null-terminated string containing the object
identifier of a domain or a realm.

ppStructObject 0] The address of a pointer to a Sm_PolicyApi_Oid_t
structure.

400 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Oid_t.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
list of realms and rules.

m Sm_PolicyApi_InvalidOid. The domain or realm OID was not found.

m Sm_PolicyApi_NoChildren. The domain has no realms or the realm has no realms or

rules.

Sm_PolicyApi_GetDirectoryContents()

Retrieves a linked list of user structures (referenced by ppStructUsers) for a particular
user directory.

The granularity of the response to this function is governed by the following registry
entry:

HKLM\SOFTWARE\Wow6423Node\Netegrity\SiteMinder\CurrentVersion\Ds\ClassFilters

Free the memory allocated for the returned structures by calling
Sm_PolicyApi_FreeMemoryEx().

Type
User directory function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetDirectoryContents (
void* pSessionHandle,
const char* pszUserDir0id,
Sm PolicyApi User t** ppStructUserSpec

)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 401

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszUserDirOid | A null-terminated string containing the object
identifier of an existing user directory.

ppStructUserSpec 0 The address of a pointer to a user structure.

Returns

m Sm_PolicyApi_Success. The retrieve operation was successful.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Sm_PolicyApi_GetDisabledUserState()

Retrieves the disabled state of a user.

To make this function work successfully, you must specify a directory attribute to track
disabled users. This attribute is specified in the disabled flag of the user directory. The
disabled reasons are enumerated in Sm_Api_DisabledReason_t, which is defined in
SmApi.h.

Type

User and user state function.

Syntax

int SM EXTERN Sm PolicyApi GetDisabledUserState (

void* pSessionHandle,
const char* pszUserDir0id,
const char* pszUserDN,
Sm_Api DisabledReason t* nDisabledReason,
char** pszErrMsg
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

402 Programming Guide for C

Function Declarations for the Policy Management API

Parameter

1/0

Description

pszUserDirOid

A null-terminated string containing the object
identifier of an existing user directory where the
user may be found.

pszUserDN

A null-terminated string containing the
distinguished name of a user whose disabled state
is to be changed.

nDisabledReason

Reason for disabling or enabling a user. Reasons
are enumerated in Sm_Api_DisabledReason_t,
which is defined in SmApi.h.

pszErrMsg

The error message is held in this string if the
retrieval was not successful. You release the
memory allocated for this variable by calling
Sm_PolicyApi_FreeString().

Returns

m Sm_PolicyApi_Success. The get was successful.

m Sm_PolicyApi_Failure:

m The disable state was not retrieved.

m Memory could not be allocated to pszErrMsg.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get

disabled user state.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Chapter 4: Policy Management API Guidance 403

Function Declarations for the Policy Management API

Sm_PolicyApi_GetDomain()

Gets the contents of the domain identified by pszDomainOid. The results of this function
are returned in a structure referenced by ppstructDomain.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Domain function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetDomain (
void* pSessionHandle,
const char* pszDomainOid,
Sm_PolicyApi Domain t** ppstructDomain
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszDomainOid | A null-terminated string containing the object
identifier of an existing domain.

ppstructDomain 0] The address of a pointer to a domain structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Domain_t.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
domain.

m Sm_PolicyApi_InvalidOid. The domain OID was not found.

404 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetDomainByName()

Gets the contents of the domain identified by pszDomainName. The results of this
function are returned in a structure referenced by ppstructDomain.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Domain function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetDomainByName (
void* pSessionHandle,
const char* pszDomainName,
Sm_PolicyApi Domain t** ppstructDomain
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszDomainName | A null-terminated string containing the name of an
existing domain.

ppstructDomain 0] The address of a pointer to a domain structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Domain_t.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
domain.

m Sm_PolicyApi_NotFound. The domain name was not found.

Chapter 4: Policy Management API Guidance 405

Function Declarations for the Policy Management API

Sm_PolicyApi_GetDomainObjects()

Retrieves the OIDs of domain objects for a given object type within the domain
identified by pszDomainOid. The returned values are contained in the
Sm_PolicyApi_Oid_t structure.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Domain function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetDomainObjects (

void* pSessionHandle,
const char* pszDomainOid,
const Sm PolicyApi Objects t nObjectId,
Sm PolicyApi 0id t** ppstructObject
);
Parameter 1/0 Description
pSessionHandle I A pointer to an internal Policy Management API data

structure. The structure holds information about the
administrator session and the client session.

pszDomainOid A null-terminated string containing the object

identifier of an existing domain.

nObjectid The type of domain object to retrieve, as

enumerated in Sm_PolicyApi_Objects_t.

ppstructObject 0] The address of a pointer to a Sm_PolicyApi_Oid_t
structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Oid_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get
domain-based objects.

m Sm_PolicyApi_InvalidOid. The domain OID was not found.

406 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetGlobalObjects()

Retrieves the object identifiers of global objects of a specified type. Beginning at
SiteMinder v6.0, this function will accept rule, policy, and response properties as global
objects, and will return global rules, policies, and responses.

The returned values are contained in structure Sm_PolicyApi_Oid_t. Free the memory
allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Note: In releases prior to SiteMinder v4.5, the functionality provided by
Sm_PolicyApi_GetGlobalObjects() was provided by
Sm_PolicyApi_GetGlobalObjectNames().

Type

General object function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetGlobalObjects (

void* pSessionHandle,
const Sm PolicyApi Objects t nObjectId,
Sm PolicyApi 0id t** ppstructObject
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API data

structure. The structure holds information about the
administrator session and the client session.

nObjectid | The type of global object to retrieve. Object types are
enumerated in Sm_PolicyApi_Objects_t.

ppstructObject 0] The address of a pointer to a Sm_PolicyApi_Oid_t
structure.

Chapter 4: Policy Management API Guidance 407

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Oid_t.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get
global objects.

m Sm_PolicyApi_Invalid. A non-global object identifier was specified.

Sm_PolicyApi_GetGlobalPolicyByName()

Gets a specified global policy.

The results of this function are returned in a structure referenced by ppstructPolicy. Free
the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Administrator function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetGlobalPolicyByName (
void* pHandle,
const char* szPolicyName,
Sm PolicyApi Policy t** ppstructPolicy

);

Parameter 1/0 Description

pHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
szPolicyName | Unique name that corresponds to a global policy.
ppstructPolicy 0] The address of a pointer to a policy structure.

408 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The get operation was successful.

Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Policy_t.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
policy.

Sm_PolicyApi_NotFound. The policy name was not found.

Sm_PolicyApi_GetGlobalResponseByName()

Gets the specified global response.

The results of this function are returned in a structure referenced by ppstructResponse.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Administrator function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetGlobalResponseByName (

);

void* pHandle,
const char* szResponseName,
Sm_PolicyApi Response t** ppstructReponse

Parameter 1/0 Description

pHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.

szResponseName | Unique name that corresponds to a global
response.

ppstructResponse 0] The address of a pointer to a response structure.

Chapter 4: Policy Management API Guidance 409

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_Response_t.

m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
scheme.

m Sm_PolicyApi_NotFound. The global response name was not found.

Sm_PolicyApi_GetGlobalRuleByName()

Gets the specified global rule.

The results of this function are returned in a structure referenced by ppstructRule.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().
Type

Administrator function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetGlobalRuleByName (
void* pHandle,
const char* szRuleName,
Sm PolicyApi Rule t** ppstructRule

)i

Parameter 1/0 Description

pHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
szRuleName | Unique name that corresponds to a global rule.
ppstructRule 0] The address of a pointer to a response structure.

410 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Rule_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
scheme.

m Sm_PolicyApi_NotFound. The global rule name was not found.

Sm_PolicyApi_GetGroup()

Gets the contents of the group object identified by pszGroupQid. The results of this
function are returned in a structure referenced by ppStructGroup.

The pszDomainOid parameter is required by a rule or response group. An agent group
does not require a domain OID because it is not a domain-based object.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Group function, global scope (agents) or domain scope (responses, rules).

Syntax

int SM EXTERN Sm PolicyApi GetGroup (

void* pSessionHandle,
Sm PolicyApi Groups t dwGroup,

const char* pszGroup0id,
const char* pszDomain0id,

Sm PolicyApi Group t** ppStructGroup

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

dwGroup | The type of group to be retrieved.

Chapter 4: Policy Management API Guidance 411

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszGroupOid | A null-terminated string containing the object
identifier of the group object being retrieved.

pszDomainOid | A null-terminated string containing the object
identifier of an existing domain. Required
parameter for rule or response groups.

ppStructGroup 0 The address of a pointer to a group structure.

Returns

m Sm_PolicyApi_Success. The get was successful.

m Sm_PolicyApi_Failure. The get was not successful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get the
contents of a group.

m Sm_PolicyApi_InvalidOid:
m The group OID was not found.
m The domain OID was not found (for a domain-based group).

m Sm_PolicyApi_BadGroup. The dwGroup parameter is not the rule, response, or
agent type.

412 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetGroupByName()

Gets the contents of the group object identified by pszGroupName. The results of this
function are returned in a structure referenced by ppStructGroup.

The pszDomainOid parameter is required by a rule or response group. An agent group
does not require a domain OID because it is not a domain-based object.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().
Type
Group function, global scope (agents) or domain scope (responses, rules).

Syntax

int SM EXTERN Sm PolicyApi GetGroupByName (

void* pSessionHandle,
Sm PolicyApi Groups t dwGroup,

const char* pszGroupName,
const char* pszDomain0id,

Sm PolicyApi Group t** ppStructGroup

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
dwGroup | The type of group to be retrieved.
pszGroupOid | A null-terminated string containing the object

identifier of the group object being retrieved.

pszDomainName | A null-terminated string containing the name of an
existing domain. Required parameter for rule or
response groups.

ppStructGroup 0] The address of a pointer to a group structure.

Chapter 4: Policy Management API Guidance 413

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get was successful.

m Sm_PolicyApi_Failure. The get was not successful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get the
contents of a group.

m Sm_PolicyApi_InvalidOid. The domain OID was not found (for a domain-based
group).

m SmPolicyApi_Notfound. The group name was not found.

m Sm_PolicyApi_BadGroup. The dwGroup parameter is not the rule, response, or

agent type.

414 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetGroupOids()

Retrieves the object identifiers contained within a group object. The results of this
function are returned in a structure referenced by ppStructObjects.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

pszDomainQOid is required by a rule group or response group. An agent group does not

require a domain OID because it is not a domain-based object.

Note: At releases prior to SiteMinder v4.5, the functionality provided by
Sm_PolicyApi_GetGroupQids() was provided by Sm_PolicyApi_GetGroupNames().

Type

Group function, global scope (agents) or domain scope (responses, rules).

Syntax

int SM EXTERN Sm PolicyApi GetGroupOids (

void* pSessionHandle,
Sm PolicyApi Groups t dwGroup,
const char* pszGroup0id,
const char* pszDomainOid,
Sm PolicyApi 0id t** ppStructObjects
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
dwGroup | Indicates the type of the group from which to
retrieve object identifiers.
pszGroupOid | A null-terminated string containing the object
identifier of a group of the type indicated by
dwGroup.
pszDomainOid | A null-terminated string containing the object
identifier of an existing domain. Required
parameter for rule or response group.
ppStructObjects 0] A pointer to the address of an object structure.

Chapter 4: Policy Management API Guidance 415

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get was successful.

m Sm_PolicyApi_Failure. The get was not successful or memory could not be allocated
to Sm_PolicyApi_Oid_t.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get
group OIDs.

m Sm_PolicyApi_InvalidOid:
m The group OID was not found.
m The domain OID was not found (for a domain-based group).

m Sm_PolicyApi_BadGroup. Parameter dwGroup is not the rule, response, or agent

type.

Sm_PolicyApi_GetHostConfig()

Retrieves an existing host configuration object.
Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetHostConfig (

void* pSessionHandle,
const char* pszHostConfig0id,
Sm PolicyApi HostConfig t** ppstructHostConfig
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management

API data structure. The structure holds
information about the administrator session
and the client session.

pszHostConfigOid | Unique identifier of the host configuration
object to retrieve.

416 Programming Guide for C

Function Declarations for the Policy Management API

Parameter

1/0 Description

ppstructHostConfig

0] Address of a pointer to a structure that
defines the host configuration object. The
function allocates the structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidOid. The unique ID does not correspond to a host

configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to get a host

configuration object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Sm_PolicyApi_GetHostConfigByName()

Retrieves an existing host configuration object.

Type

Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetHostConfigByName (

void*
const char*

Sm PolicyApi HostConfig t**

);

pSessionHandle,
pszHostConfigName,
ppstructHostConfig

Parameter

1/0 Description

pSessionHandle

| A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszHostConfigName

| Unique name of the host configuration object
to retrieve.

Chapter 4: Policy Management API Guidance 417

Function Declarations for the Policy Management API

Parameter 1/0 Description

ppstructHostConfig 0] Address of a pointer to a structure that

defines the host configuration object. The
function allocates the structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_NotFound. The unique name does not correspond to a host
configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to get a host
configuration object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

418 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyAPI_GetMessageConsumerPluginFromSAML1xScheme()
Gets a message consumer plugin setting from a SAML 1.x authentication scheme.

Syntax

int SM EXTERN Sm PolicyApi_GetMessageConsumerPluginFromSAML1xScheme (
void* pHandle,
char* pszSchemeOID,
char** pluginClass,
char** pluginParam
)i
Parameters
phandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszSchemeOid
[in] A pointer to the OID of the authentication scheme that is being updated.
pluginClass

[out] A pointer to the name of the plugin class to be read in from the authentication
scheme,

pluginParam
[out] A pointer to the parameters of the plugin class to be read in from the
authentication scheme.

Returns

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

® Sm_PolicyApi_SchemeNotFound. The authentication scheme corresponding to the
OID was not found, or was not a SAML 1.x authentication scheme.

m Sm_PolicyApi_InvalidOid. The OID of the authentication scheme is NULL.

Chapter 4: Policy Management API Guidance 419

Function Declarations for the Policy Management API

Sm_PolicyApi_GetODBCQueryScheme()

Gets the contents of the ODBC Query Scheme object identified by
pszODBCQuerySchemeOid.

The results of this function are returned in a structure referenced by
pstructODBCQueryScheme. Free the memory allocated for this structure calling
Sm_PolicyApi_FreeMemoryEx().

Type
ODBC query scheme function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetODBCQueryScheme (
void* pSessionHandle,
const char* psz0DBCQueryScheme0id,
Sm PolicyApi ODBCQueryScheme t** pstructODBCQueryScheme
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy
Management API data structure. The
structure holds information about the
administrator session and the client
session.

pszODBCQuerySchemeOid | A null-terminated string containing the
object identifier of an existing ODBC
Query Scheme.

pstructODBCQueryScheme 0] The address of a pointer to a ODBC query
scheme.

Returns
m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_ODBCQueryScheme_t.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
ODBC Query Scheme.

m Sm_PolicyApi_InvalidOid. The ODBC Query Scheme OID was not found.

420 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetODBCQuerySchemeByName()

Gets the contents of the ODBC Query Scheme object identified by
pszODBCQuerySchemeName.

The results of this function are returned in a structure referenced by
pstructODBCQueryScheme. Free the memory allocated for this structure calling
Sm_PolicyApi_FreeMemoryEx().

Type
ODBC query scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetODBCQuerySchemeByName (
void* pSessionHandle,
const char* psz0DBCQuerySchemeName,
Sm PolicyApi ODBCQueryScheme t** pstructODBCQueryScheme
)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy
Management API data structure. The
structure holds information about the
administrator session and the client
session.

pszODBCQuerySchemeName | A null-terminated string containing the
name of an existing ODBC Query Scheme.

pstructODBCQueryScheme 0] The address of a pointer to a ODBC query
scheme.

Returns
m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for
Sm_PolicyApi_ODBCQueryScheme_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get an
ODBC Query Scheme.

m Sm_PolicyApi_NotFound. The ODBC Query Scheme name was not found.

Chapter 4: Policy Management API Guidance 421

Function Declarations for the Policy Management API

Sm_PolicyApi_GetOneTimeUsePropFromAffiliate()
Retrieves the value of the OneTimeUse property for an assertion in a SAML 1.x affiliate.

Syntax

int SM EXTERN Sm PolicyApi_GetOneTimeUsePropFromAffiliate(
void* pHandle,
char* pszAffiliateOID,
bool &bOneTimeUse

);

Parameters
pHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszAffiliateOid
[in] A pointer to the OID of an existing SMAL 1.x affiliate.

bOneTimeUse
[in] A Boolean value that specifies whether an assertion is used only once in this
affiliate.

Returns

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

m Sm_PolicyApi_NoSession. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator did not have sufficient access
privileges.

422 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetPasswordMsg()

Gets information about an error that occurred during an attempt to validate a new

password.

Call this function when Sm_PolicyApi_SetPassword() returns the error code
Sm_PolicyApi_InvalidPasswordSyntax.

Type

User and user state function.

Syntax

int SM EXTERN Sm PolicyApi GetPasswordMsg (

void*

const char*
unsigned int*
unsigned int*
unsigned int*

pSessionHandle,
pszPasswordMsg,
nVersion,
nMsgld,

nArgs,

Sm PolicyApi PasswordMsgField t** ppStructMsgField

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszPasswordMsg | Encoded error message returned in the pszErrMsg
parameter of the function
Sm_PolicyApi_SetPassword().

nVersion 0] The version of the SiteMinder password services.

nMsgld 0] The password services message identifier retrieved

for the encoded error message. Message
identifiers are enumerated in
Sm_PolicyApi_PasswordMsgld_t.

Chapter 4: Policy Management API Guidance 423

Function Declarations for the Policy Management API

Parameter 1/0 Description

nArgs 0] The number of fields in the
Sm_PolicyApi_PasswordMsgField_t structure
referenced by ppStructMsgField.

ppStructMsgField 0 The address of a pointer to an
Sm_PolicyApi_PasswordMsgField_t structure
containing the password error message
information.

Remarks

SiteMinder password services errors contain a unique message identifier. A message
identifier (enumerated in Sm_PolicyApi_PasswordMsgld_t) is returned in the nMsgld
parameter of the function Sm_PolicyApi_GetPasswordMsg().

Further, each message identifier is associated with additional information about the
error. This additional information is referenced by a field identifier (enumerated in
Sm_PolicyApi_PasswordMsgFieldld_t).

For example, suppose an administrator sets the minimum length of a password to seven
characters. If a user tries to validate a new password containing just six characters, the
following events can occur:

1. Asaresult of the failed password validation attempt, Sm_PolicyApi_SetPassword()
returns Sm_PolicyApi_InvalidPasswordSyntax.

2. The Policy Management application responds by calling
Sm_PolicyApi_GetPasswordMsg(), passing the encoded error message returned
from Sm_PolicyApi_SetPassword() in the pszPasswordMsg parameter.

3. When Sm_PolicyApi_GetPasswordMsg() returns:
m nMsgld contains Sm_PolicyApi_PasswordMsgld_PasswordShort

m ppStructMsgField points to an Sm_PolicyApi_PasswordMsgField_t structure
containing the following additional information about the password error:

Field Value and Meaning

iStructld Sm_PolicyApi_PasswordMsgField_ID.

The error information relates to a password policy.

nid Sm_PolicyApi_PasswordMsgField_Id_Min.

The error violates a minimum character requirement for the
password (the minimum password length).

424 Programming Guide for C

Function Declarations for the Policy Management API

Field Value and Meaning

nType Sm_PolicyApi_FieldType_Int.

The error description is an integer, so nValue is filled and
pszMsg is not.

pszMsg

Not applicable to this error.

nValue 7.

The minimum password length. The length of the requested
password was less than this value.

Sm_PolicyApi_GetPasswordPolicy()
Gets the contents of a password policy object.

Type
Password policy function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetPasswordPolicy (
void* pSessionHandle,
const char* pszPasswordPolicy0id,
Sm PolicyApi PasswordPolicy t** ppstructPasswordPolicy
)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszPassword | A null-terminated string containing the object
PolicyOid identifier of the password policy.
ppstruct 0 The address of a pointer to
PasswordPolicy Sm_PolicyApi_PasswordPolicy_t.

Chapter 4: Policy Management API Guidance 425

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The get was successful.

Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_PasswordPolicy_t.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
password policy.

Sm_PolicyApi_InvalidOid. The password policy OID was not found.

Sm_PolicyApi_GetPasswordPolicyByName()

Gets the contents of a password policy object.

Type

Password policy function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetPasswordPolicyByName (

);

void* pSessionHandle,
const char* pszPasswordPolicyName,
Sm_PolicyApi PasswordPolicy t** ppstructPasswordPolicy

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszPassword | A null-terminated string containing the name of the
PolicyName password policy.
ppstruct 0] The address of a pointer to
PasswordPolicy Sm_PolicyApi_PasswordPolicy_t.

426 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The get was successful.

Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_PasswordPolicy_t.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
password policy.

Sm_PolicyApi_NotFound. The password policy name was not found.

Sm_PolicyApi_GetPolicy()

Gets the contents of the policy identified by pszPolicyOid.

The results of this function are returned in a structure referenced by ppstructPolicy. Free
the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Policy function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi GetPolicy (

);

void* pSessionHandle,
const char* pszPolicy0id,
Sm PolicyApi Policy t** ppstructPolicy

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszPolicyOid | A null-terminated string containing the object

identifier of an existing policy.

ppstructPolicy 0] The address of a pointer to a policy structure.

Chapter 4: Policy Management API Guidance 427

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Policy_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
policy.

m Sm_PolicyApi_InvalidOid. The policy OID was not found.

Sm_PolicyApi_GetPolicyByName()

Gets the contents of the policy identified by pszPolicyName and the corresponding
pszDomainOid of the Domain in which the policy exists.

The results of this function are returned in a structure referenced by ppstructPolicy. Free
the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Policy function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi GetPolicyByName (

void* pSessionHandle,
const char* szDomain0id,
const char* pszPolicyName,

Sm PolicyApi Policy t** ppstructPolicy
)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

szDomainOid | A null-terminated string containing the object
identifier of an existing domain.

pszPolicyName | A null-terminated string containing the name of an
existing policy.

428 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description
ppstructPolicy 0] The address of a pointer to a policy structure.
Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Policy_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
policy.
m Sm_PolicyApi_InvalidOid. The Domain OID was not found.

m Sm_PolicyApi_NotFound. The policy name was not found.

Sm_PolicyApi_GetPolicyLinks()

Returns a linked list of all of the policy links that are associated with the policy identified
by pszPolicyOid.

The linked list returned is referenced by the ppstructPolicyLink structure. Free the
memory allocated to these structures by calling Sm_PolicyApi_FreeMemoryEx().

Type
Policy function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetPolicyLinks (
void* pSessionHandle,
const char* pszPolicy0id,
Sm PolicyApi PolicyLink t** ppstructPolicylLink
)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 429

Function Declarations for the Policy Management API

Parameter I/0 Description

pszPolicyOid | A null-terminated string containing the object
identifier of an existing policy.

ppstructPolicyLink 0 The address of a policy link structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory is not allocated to Sm_PolicyApi_PolicyLink_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
list of policy links.

m Sm_PolicyApi_InvalidOid. The policy OID was not found.

Sm_PolicyApi_GetPolicyUsers()
Returns a linked list of Sm_PolicyApi_User_t structures corresponding to the users who
are associated with the policy identified by pszPolicyOid and who optionally belong to

the user directory identified by pszUserDirOid. Free the memory allocated for this
structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
User and user state function.

Syntax

int SM EXTERN Sm PolicyApi GetPolicyUsers (

void* pSessionHandle,
const char* pszPolicy0id,
const char* pszUserDir0id,

Sm PolicyApi User t** ppStructUsers

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

430 Programming Guide for C

Function Declarations for the Policy Management API

Parameter

1/0

Description

pszPolicyOid

A null-terminated string containing the object
identifier of an existing policy.

pszUserDirOid

A null-terminated string containing the object
identifier of an existing user directory. This
parameter is optional. If it is empty, the function
returns all the policy users under the specified
policy. If it is specified, the function returns policy
users who belong to this directory under the
specified policy.

ppStructUsers

The address of a pointer to a linked list of user
structures.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_User_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get

users from the policy.

® Sm_PolicyApi_InvalidOid:

m The policy OID was not found.

m The user directory OID was not found.

Chapter 4: Policy Management API Guidance 431

Function Declarations for the Policy Management API

Sm_PolicyApi_GetRealm()
Gets the contents of the realm identified by pszRealmOid.

The results of this function are returned in a structure referenced by ppstructRealm.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Realm function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetRealm (
void* pSessionHandle,
const char* pszRealm0id,
Sm_PolicyApi Realm t** ppstructRealm
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszRealmOid | A null-terminated string containing the object
identifier of an existing realm.

ppstructRealm 0] The address of a pointer to a realm structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Realm_t.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
realm.

m Sm_PolicyApi_InvalidOid. The realm OID was not found.

432 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetRealmByName()
Gets the contents of the realm identified by pszRealmName, and the corresponding
pszDomainOrParentRealmOid of the Domain in which the Realm exists, or the Oid of the

Parent Realm in the case of a child Realm.

The results of this function are returned in a structure referenced by ppstructRealm.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Realm function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetRealmByName (
void* pSessionHandle,
const char* pszRealm0id,

Sm_PolicyApi Realm t** ppstructRealm
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
szDomainOr | A null-terminated string containing the object
ParentRealm identifier of an existing Domain or Realm
Oid
pszRealmName | A null-terminated string containing the name of an
existing realm.
ppstructRealm 0] The address of a pointer to a realm structure.

Chapter 4: Policy Management API Guidance 433

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_Realm_t.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
realm.

m Sm_PolicyApi_InvalidOid. The Domain or parent Realm OID was not found.

m Sm_PolicyApi_NotFound The Realm name was not found.

434 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyAPI_GetRedirectURLFromSAML1xScheme()

Retrieves a redirect URL setting from a SAML 1.x authentication scheme.

Syntax

int SM EXTERN Sm PolicyApi_GetRedirectURLFromSAML1xScheme (

void* pSessionHandle,
const char* pszSchemeOid,
int iTypeURL,
char** URL,
int &redirectMode
);
Parameters

pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszSchemeOid

[in] A null-terminated string containing the object identifier of the authentication
scheme being updated.

iTypeUrl

[in] An integer specifying the type of redirect URL, defined in
Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_TYPE_t as follows:

m Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_USER_NOT_FOUND_TYPE =0
m Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_INVALID_SSO =1

m Sm_PolicyAPI_SAML1_STATUS_REDIRECT_URL_UNACCEPTABLE_USER_CREDEN
TIALS = 2

URL
[out] A pointer to the redirect URL from the authentication scheme
redirectMode
[out] An integer specifying the input redirect mode, which is either 0 for 302 No
Data, or 1 for Http-Post.
Return Values
m Sm_PolicyApi_Success. The action was completed successfully.
m Sm_PolicyApi_Failure. The action was unsuccessful.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_SchemeNotFound. The authentication scheme corresponding to the
OID was not found, or was not a SAML 1.x authentication scheme.

Chapter 4: Policy Management API Guidance 435

Function Declarations for the Policy Management API

m Sm_PolicyApi_InvalidOid. The OID of the authentication scheme is NULL.

Sm_PolicyApi_GetRegistrationScheme()
Gets a registration scheme.

Type
Registration scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetRegistrationScheme (
void* pSessionHandle,
const char* pszRegistrationScheme0id,
Sm_PolicyApi RegistrationScheme t**
ppstructRegistrationScheme

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszRegistration | A null-terminated string containing the object
SchemeOid identifier of the registration scheme.
ppstruct 0 The address of a pointer to
Registration Sm_PolicyApi_RegistrationScheme_t.
Scheme
Returns

m Sm_PolicyApi_Success. The get was successful.

® Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_RegistrationScheme_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
registration scheme.

m Sm_PolicyApi_InvalidOid. A registration scheme OID was not found.

436 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetRegistrationSchemeByName()

Gets a registration scheme.

Type

Registration scheme function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetRegistrationSchemeByName (

void* pSessionHandle,
const char* pszRegistrationSchemeName,
Sm_PolicyApi RegistrationScheme t**

ppstructRegistrationScheme

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszRegistration | A null-terminated string containing the name of
SchemeName the registration scheme.
ppstruct 0] The address of a pointer to
Registration Sm_PolicyApi_RegistrationScheme_t.
Scheme
Returns
m Sm_PolicyApi_Success. The get was successful.
® Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_RegistrationScheme_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
registration scheme.
m Sm_PolicyApi_NotFound. A registration scheme name was not found.

Chapter 4: Policy Management API Guidance 437

Function Declarations for the Policy Management API

Sm_PolicyApi_GetRegularExpressions()

Gets a list of regular expressions belonging to the referenced password policy.
Implemented only if the session's version is set to SM_POLICY_API_VERSION_6_0O.

Type
Regular Expression function.

Syntax

int SM_EXTERN Sm PolicyApi GetRegularExpressions (
void* pSessionHandle,
const char* pszPasswordPolicy0Oid,
Sm_PolicyApi RegularExpression t** ppstructRegExpr

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.
pszPassword | The OID of the password policy.
PolicyOid
ppstructRegExpr 0] Pointer to a linked list of regular expressions
belonging to the referenced password policy.
Returns

m Sm_PolicyApi_Success. The regular expression list was retrieved successfully.

m Sm_PolicyApi_Failure. The regular expression list was not retrieved successfully.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get
regular expressions.

m Sm_PolicyApi_InvalidOid: The password policy OID was not found.

438 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetResponse()
Gets the contents of the response identified by pszResponseQOid.

The results of this function are returned in a structure referenced by ppstructResponse.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Response function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetResponse (
void* pSessionHandle,
const char* pszResponse0id,
Sm_PolicyApi Response t** ppstructResponse
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszResponseOid | A null-terminated string containing the object
identifier of an existing response.

ppstructResponse 0] The address of a pointer to a response structure.

Returns
m Sm_PolicyApi_Success. The get operation was completed successfully.

m Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_Response_t.

m Sm_PolicyApi_NoSession. There is no valid administrator session.
® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
response.

m Sm_PolicyApi_InvalidOid. The response OID was not found.

Chapter 4: Policy Management API Guidance 439

Function Declarations for the Policy Management API

Sm_PolicyApi_GetResponseByName()

Gets the contents of the response identified by pszResponseName and the
corresponding pszDomainOid of the Domain in which the response exists.

The results of this function are returned in a structure referenced by ppstructResponse.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Response function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetResponseByName (

void* pSessionHandle,
const char* szDomainOid,
const char* pszResponseName,

Sm PolicyApi Response t** ppstructResponse

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

szDomainOid A null-terminated string containing the object
identifier of an existing Domain.

pszResponseName | A null-terminated string containing the name of an
existing response.

ppstructResponse 0] The address of a pointer to a response structure.

440 Programming Guide for C

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The get operation was completed successfully.

m Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_Response_t.

m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
response.

m Sm_PolicyApi_InvalidOid. The Domain OID was not found.

m Sm_PolicyApi_NotFound. The response name was not found.

Sm_PolicyApi_GetResponseAttrs()

Retrieves a linked list of the response attributes that are associated with the response
identified by pszResponseOid.

The linked list that is returned is referenced by the ppstructResponseAttr structure. Free
the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Response function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetResponseAttrs (
void* pSessionHandle,
const char* pszResponse0id,
Sm PolicyApi ResponseAttr t** ppstructResponseAttr
);

Parameter 1/0 Description

pSessionHandle I A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator
session and the client session.

pszResponseOid A null-terminated string containing the
object identifier of an existing response.

Chapter 4: Policy Management API Guidance 441

Function Declarations for the Policy Management API

Parameter 1/0 Description
ppstructResponseAttr o A pointer to a response attribute structure.
Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to
Sm_PolicyApi_ResponseAttr_t.

m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
list of response attributes.

m Sm_PolicyApi_InvalidOid. The response OID was not found.

Sm_PolicyApi_GetRule()
Gets the contents of the rule identified by pszRuleOid.

The results are returned in a structure referenced by ppstructRule. Free the memory
allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Rule function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetRule (
void* pSessionHandle,
const char* pszRule0id,
Sm PolicyApi Rule t** ppstructRule

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszRuleOid | A null-terminated string containing the object
identifier of an existing rule.

442 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

ppstructRule 0] The address of a pointer to a Sm_PolicyApi_Rule_t
structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Rule_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
rule.

m Sm_PolicyApi_InvalidOid. The rule OID was not found.

Sm_PolicyApi_GetRuleByName()
Gets the contents of the rule identified by pszRuleName.

The results are returned in a structure referenced by ppstructRule. Free the memory
allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Rule function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetRuleByName (

void* pSessionHandle,
const char* szRealmOid,
const char* pszRuleName,

Sm PolicyApi Rule t** ppstructRule
)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

szRealmOid | A null-terminated string containing the object
identifier of an existing Realm.

Chapter 4: Policy Management API Guidance 443

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszRuleName | A null-terminated string containing the name of an
existing rule.

ppstructRule 0 The address of a pointer to a Sm_PolicyApi_Rule_t
structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Rule_t.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
rule.

m Sm_PolicyApi_InvalidOid. The Realm OID was not found.

m Sm_PolicyApi_NotFound. The rule name was not found.

Sm_PolicyApi_GetSAMLAffiliation()

Retrieves the SAML affiliation specified by its object identifier in the policy store.

Type
SAML 2.0 Configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetSAMLAffiliation

(
void* pSessionHandle,
const char* pszAffiliationOid,
Sm PolicyApi SAMLAffiliation t** ppstructAffiliation

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

444 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description
pszAffiliationOid | A null-terminated string containing the policy store
object identifier of an existing SAML affiliation.
ppstruct 0] The address of a pointer to a SAML affiliation
Affiliation structure.
Returns

m Sm_PolicyApi_Success. The SAML affiliation was retrieved successfully.

m Sm_PolicyApi_Failure. The SAML affiliation was not retrieved successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve

a SAML affiliation.

m Sm_PolicyApi_InvalidOID. The SAML affiliation OID was not found.

Sm_PolicyApi_GetSAMLAffiliationById()

Retrieves the SAML affiliation specified by its unique affiliation identifier (URI).

Type

SAML 2.0 Configuration function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetSAMLAffiliationById

(
void*
const char*

pSessionHandle,
pszAffiliationID,

Sm PolicyApi SAMLAffiliation t** ppstructAffiliation

);

Parameter 1/0

Description

pSessionHandle |

A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

Chapter 4: Policy Management API Guidance 445

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszAffiliationID | A null-terminated string containing the unique

affiliation identifier of an existing SAML affiliation.

The affiliation identifier is specified in
SAML_KEY_AFFILIATION_ID.

ppstruct 0] The address of a pointer to a SAML affiliation
Affiliation structure.

Returns

m Sm_PolicyApi_Success. The SAML affiliation was retrieved successfully.

m Sm_PolicyApi_Failure. The SAML affiliation was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve

a SAML affiliation.

Sm_PolicyApi_GetSAMLScheme()

Retrieves information about a SAML 2.0 authentication scheme and the metadata
properties of the associated Identity Provider.

Type

SAML 2.0 Configuration function, global scope.

Syntax
int SM EXTERN Sm PolicyApi GetSAMLScheme

(

void* pHandle,
const char* pszSchemeOid,
Sm PolicyApi Scheme t** ppstructScheme,
Sm PolicyApi SAMLProviderProp t** ppProps
);
Parameter 1/0 Description
pHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

446 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszSchemeOid | A null-terminated string containing the object
identifier of an existing SAML authentication
scheme.

ppstructScheme 0 The address of a pointer to a SAML authentication

scheme structure.

ppProps 0 The address of a pointer to a SAML 2.0 metadata

properties structure.

For information about these properties, see SAML
2.0 Authentication Scheme Properties.

Returns

m Sm_PolicyApi_Success. The authentication scheme was retrieved successfully.

m Sm_PolicyApi_Failure. The authentication scheme was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior

m to thiscall.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
an authentication scheme.

m Sm_PolicyApi_InvalidOID. The authentication scheme OID was not found.

Chapter 4: Policy Management API Guidance 447

Function Declarations for the Policy Management API

Sm_PolicyApi_GetSAMLServiceProvider()

Retrieves the Service Provider specified by its object identifier in the policy store.

Type

SAML 2.0 Configuration function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi GetSAMLServiceProvider

(

void* pSessionHandle,
const char* pszProvider0id,
Sm PolicyApi SAMLSP t** pstructSAMLSP
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszProviderOid | A null-terminated string containing the policy store

object identifier of an existing Service Provider.

ppstructSAMLSP 0] The address of a pointer to a Service Provider
structure.

Returns

m Sm_PolicyApi_Success. The Service Provider was retrieved successfully.

m Sm_PolicyApi_Failure. The Service Provider was not retrieved successfully.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior

m to thiscall.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
a Service Provider.

® Sm_PolicyApi_InvalidOID. The Service Provider OID was not found.

m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

448 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetSAMLServiceProviderById()

Retrieves the Service Provider specified by its unique provider identifier.
Type

SAML 2.0 Configuration function, domain scope

Syntax

int SM EXTERN Sm PolicyApi GetSAMLServiceProvider
(

void* pSessionHandle,
const char* pszProviderld,
Sm PolicyApi SAMLSP t** pstructSAMLSP
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszProviderld | A null-terminated string containing the unique
provider identifier of an existing Service Provider.

The provider identifier is specified in
SAML_KEY_SPID.

ppstructSAMLSP 0 The address of a pointer to a Service Provider
structure.

Returns

m Sm_PolicyApi_Success. The Service Provider was retrieved successfully.

m Sm_PolicyApi_Failure. The Service Provider was not retrieved successfully.
® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior

®m to thiscall.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
a Service Provider.

m Sm_PolicyApi_InvalidOID. The Service Provider OID was not found.

m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

Chapter 4: Policy Management API Guidance 449

Function Declarations for the Policy Management API

Sm_PolicyApi_GetSAMLServiceProviderUsers()

Retrieves the user directory entries associated with the specified Service Provider.

Type

SAML 2.0 Configuration function, domain scope.

Syntax
int SM EXTERN Sm PolicyApi GetSAMLServiceProviderUsers

(

void* pSessionHandle,
const char* pszProvider0id,
const char* pszUserDir0id,
Sm PolicyApi User t** ppStructUsers
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszProviderOid | A null-terminated string containing the policy store
object identifier of an existing Service Provider.
pszUserDirOid | A null-terminated string containing the policy store
object identifier of an existing user.
ppStructUsers 0] The address of a pointer to user structures.
Returns
m Sm_PolicyApi_Success. The users were retrieved successfully.
m Sm_PolicyApi_Failure. The users were not retrieved successfully.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
users.
m Sm_PolicyApi_InvalidOid. The affiliate OID was not found.

450 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetScheme()

Gets the contents of the authentication scheme identified by pszSchemeOid. The results
of this function are returned in a structure referenced by ppstructScheme.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Authentication scheme function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetScheme (
void* pSessionHandle,
const char* pszScheme0id,

Sm PolicyApi Scheme t** ppstructScheme
);

Parameter I/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.

pszSchemeOid | A null-terminated string containing the object
identifier of an existing scheme.

ppstructScheme 0] The address of a pointer to a scheme structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Scheme_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
scheme.

m Sm_PolicyApi_InvalidOid. The scheme OID was not found.

Chapter 4: Policy Management API Guidance 451

Function Declarations for the Policy Management API

Sm_PolicyApi_GetSchemeByName()

Gets the contents of the authentication scheme identified by pszSchemeName. The
results of this function are returned in a structure referenced by ppstructScheme.

Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Authentication scheme function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetSchemeByName (
void* pSessionHandle,
const char* pszSchemeName,
Sm_PolicyApi Scheme t** ppstructScheme
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszSchemeName | A null-terminated string containing the name of an
existing scheme.

ppstructScheme 0] The address of a pointer to a scheme structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

® Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Scheme_t.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
scheme.

m Sm_PolicyApi_NotFound. The scheme name was not found.

452 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetSharedSecretPolicy()
Gets the current SharedSecretPolicy.

Returns the current shared secret policy object. There will always be exactly one such
object, so it is not necessary to specify its OID.

Type
Agent configuration.

Syntax

int SM EXTERN Sm PolicyApi GetSharedSecretPolicy (

void* pSessionHandle,

Sm PolicyApi SharedSecretPolicy t** ppstructSecretPolicy
);

Parameter 1/0 Description

pSessionHandle | The current Policy API session handle.

ppstructSecret 1/0 Address of pointer to shared secret policy structure
Policy

Returns

m Sm_PolicyApi_Success. The operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidHandle. The session handle was invalid.
m Sm_PolicyApi_NoSession. The user is not logged in.

m Sm_PolicyApi_NoPrivilege. User does not have rights to manage objects.

Chapter 4: Policy Management API Guidance 453

Function Declarations for the Policy Management API

Sm_PolicyApi_GetTardetConfigFromSAML1xScheme

Retrieves a target configuration setting from a SAML 1.x authentication scheme.
Syntax

The Sm_PolicyApi_GetTargetConfigfromSAML1xScheme function has the following
syntax:

int SM_EXTERN Sm PolicyApi GetTargetConfigFromSAML1xScheme (

void* pHandle,
const char* pszSchemeOid,
char** pszDefaultTarget,
int* iQPOverridesTarget
);
Parameters

The Sm_PolicyApi_GetTargetConfigfromSAML1xScheme function accepts the following
parameters:

pSessionHandle

[in] A pointer to an internal Policy Management APl data structure. The structure
holds information about the administrator session and the client session.

pszSchemeOid

[in] A null-terminated string containing the object identifier of the authentication
scheme being updated.

pszDefaultTarget

[out] Specifies the target configuration. The calling program must free up this
memory by calling the Sm_PolicyApi_FreeMemory() function.

iQPOverridesTarget
[out] Specifies the value of the 'Query parameter override Default Target' check
box. The calling program is responsible for passing allocated memory.

Return Values

The Sm_PolicyApi_GetTargetConfigfromSAML1xScheme function returns one of the

following values:

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_SchemeNotFound. The authentication scheme corresponding to the
OID was not found, or was not a SAML 1.x authentication scheme.

454 Programming Guide for C

Function Declarations for the Policy Management API

m Sm_PolicyApi_InvalidOid. The OID of the authentication scheme is NULL.

Sm_PolicyApi_GetTrustedHost()

Retrieves an existing trusted host object.
Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetTrustedHost (
void* pSessionHandle,
const char* pszTrustedHost0id,
Sm PolicyApi TrustedHost t** ppstructTrustedHost
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszTrustedHostOid | Unique identifier of the trusted host object to
retrieve.
ppstructTrustedHost 0 Address of a pointer to a structure that

defines the trusted host object. The function
allocates the structure.

Returns
m Sm_PolicyApi_Success. The get operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

® Sm_PolicyApi_InvalidOid. The unique ID does not correspond to a trusted host
object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to get a trusted
host object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Chapter 4: Policy Management API Guidance 455

Function Declarations for the Policy Management API

Sm_PolicyApi_GetTrustedHostByName()

Retrieves an existing trusted host object.
Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetTrustedHostByName (
void* pSessionHandle,
const char* pszTrustedHostName,
Sm PolicyApi TrustedHost t** ppstructTrustedHost
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.

pszTrustedHostName | Unique name of the trusted host object to
retrieve.
ppstructTrustedHost 0 Address of a pointer to a structure that

defines the trusted host object. The function
allocates the structure.

Returns
m Sm_PolicyApi_Success. The get operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

® Sm_PolicyApi_NotFound. The unique name does not correspond to a trusted host
object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to get a trusted
host object.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

456 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUseSecureAuthPropFromAffiliate()

Retrieves the value of the UseSecureAuthURL property from a SAML 1.x affiliate.

Syntax

int SM EXTERN Sm PolicyApi GetUseSecureAuthPropFromAffiliate(
void* pHandle,
char* pszAffiliateOID,
bool &bUseSecureAuthURL

);

Parameters
pHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszAffiliateOid
[in] A pointer to the OID of an existing SMAL 1.x affiliate.

bUseSecureAuthURL
[in] A Boolean value that specifies whether to use a secure authentication URL for
this affiliate.

Returns

m Sm_PolicyApi_Success. The action was completed successfully.

m Sm_PolicyApi_Failure. The action was unsuccessful.

m Sm_PolicyApi_NoSession. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator did not have sufficient access
privileges.

Chapter 4: Policy Management API Guidance 457

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUserContext()

Allows callers of the Policy Management API to access user context information.

Type

User directory function, global scope.

Syntax

int SM EXTERN Sm PolicyApi_GetUserContext (

void

const char
const char
const char

Sm PolicyApi UserContext t

*pSessionHandle,
*1pszUserDir0id,
*1pszUserPath,
*1pszSessionID,
**ppPolicyApiUserContext);

Parameter

1/0

Description

pSessionHandle

A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

IpszUserDirOid

A null-terminated string containing the object
identifier of the user directory for the user
specified in IpszUserPath.

IpszUserPath

The distinguished name of the user.

IpszSessionID

A unique identifier of the session.

After a successful login, the session ID is returned
in the IpszSessionld field of the structure
Sm_AgentApi_Session_t.

If the session ID is not known, assign an empty
string ("") to this parameter.

ppPolicyApi
UserContext

The user context information that SiteMinder
passes to the function.

458 Programming Guide for C

Function Declarations for the Policy Management API

Remarks

This function allows an application to access information about a user without having to
connect to the underlying user directory. To retrieve the user information, the
application calls the functions in the Sm_Api_UserContext_t structure, which is returned
in ppPolicyApiUserContext.For example:

m Calling fGetProp or fSetProp to get or set a user attribute.
m Calling fAuthenticate to verify a user's password.

m Calling fGetProp to search the directory and examine the results to verify that the
correct user has been found.

m Calling fGetProp to retrieve an attribute for a user who is not the logged-in user.
Important! After calling Sm_GetUserContext(), release the allocated memory by calling
Sm_PolicyApi_FreeMemoryEx(). Otherwise, you can possibly see some Policy Server
performance degradation.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. The get operation was not successful.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_lnvalid. The specified user or directory was not valid.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
user directory.

Chapter 4: Policy Management API Guidance 459

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUserDir()
Gets the contents of the user directory identified by pszUserDirOid.

The results of this function are returned in a structure referenced by ppstructUserDir.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
User directory function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetUserDir (
void* pSessionHandle,
const char* pszUserDir0id,
Sm PolicyApi UserDir t** ppstructUserDir
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object
identifier of an existing user directory.

ppstructUserDir 0] Address of a pointer to a user directory structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_UserDir_t.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
user directory.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

460 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUserDirByName()
Gets the contents of the user directory identified by pszUserDirName

The results of this function are returned in a structure referenced by ppstructUserDir.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
User directory function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetUserDirByName (
void* pSessionHandle,
const char* pszUserDirName,
Sm PolicyApi UserDir t** ppstructUserDir
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirName | A null-terminated string containing the name of an
existing user directory.

ppstructUserDir 0] Address of a pointer to a user directory structure.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated for Sm_PolicyApi_UserDir_t.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get a
user directory.

m Sm_PolicyApi_NotFound. The user directory name was not found.

Chapter 4: Policy Management API Guidance 461

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUserDirCapabilities()
Retrieves the user directory capabilities.
The user directory capabilities are enumerated in Sm_DirectoryCapability_t in SmApi.h.
Type
User directory function, global scope.

Syntax

int SM EXTERN Sm PolicyApi GetUserDirCapabilities (
void* pSessionHandle,
const char* pszUserDir0id,
unsigned long* pCapabilities

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object
identifier of the user directory where the lookup
has to be performed.

pCapabilities 0] The address of a pointer to an unsigned long that
will hold information about directory capability.
Directory capabilities are enumerated in
Sm_DirectoryCapability_t, which is defined in the
header file SmApi.h. See Figure 12 on page 103.

Returns

m Sm_PolicyApi_Success. The retrieve was successful.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
user directory capability.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

462 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUserDirSearchOrder()

Retrieves the OIDs of the user directory objects that are associated with the domain
identified by pszDomainOid.

The retrieved list of OIDs is stored in the pszArray string array in the order in that they
are searched by SiteMinder. Free the memory allocated for this structure by calling
Sm_PolicyApi_FreeStringArray().

Type

User directory function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi GetUserDirSearchOrder (

void* pSessionHandle,
const char* pszDomainOid,
char** pszArray|[]
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszDomainOid | A null-terminated string containing the object
identifier of an existing domain.

pszArray 0] The returned array of user directory OIDs of the
requested objects.

Returns

m Sm_PolicyApi_Success. The function successfully returned the user directory search
order.

m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get
user directory search order in a domain.

m Sm_PolicyApi_InvalidOid. The domain OID was not found.

Chapter 4: Policy Management API Guidance 463

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUserGroups()
Gets the list of groups that a user is member of.
Type
User and user state function.

Syntax

int SM EXTERN Sm PolicyApi GetUserGroups (
void * pSessionHandle,
const char * pszUserDir0id,
const char * pszUserDN,

const bool bRecursive,
char** pszGroups|[]
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszUserDirOid | The user's object identifier.
pszUserDN | The user's distinguished name.
bRecursive | Value indicating whether to search just one level or
all levels. If you specify True, all levels are
searched.
pszGroups 0] Array that will contain the groups that the user

belongs to. Free the memory allocated for the
array by calling Sm_PolicyApi_FreeStringArray().

464 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. The get operation was not successful.

m Sm_PolicyApi_Invalid. There was no valid directory for the specified user OID and
DN.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_InvalidOid. The directory OID was not found (for a directory-based
group).

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to get the

groups.

Sm_PolicyApi_GetUserPasswordState()

Returns Sm_Api_UserPasswordState_t. The memory for the
Sm_Api_UserPasswordState_t object should be allocated by the calling function.

Type

Password state function.

Syntax
int SM_EXTERN Sm PolicyApi GetUserPasswordState (
void *pSessionHandle,

const char *pszUserDir0id,

const char *pszUserDN,

Sm_PolicyApi UserPasswordState t *pPasswordState
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | Unique object identifier that corresponds to a
particular User Directory.

pszUserDN | Specifies the DN of the user within the user
directory.
pPasswordState 0] The user password state object.

Chapter 4: Policy Management API Guidance 465

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_BadArgument. The input password state pointer is NULL.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

m Sm_PolicyApi_InvalidOid. The unique ID does not correspond to User Directory
object.

m Sm_PolicyApi_UserDirNotFound. Failed to retrieve User Directory object from
policy store.

m Sm_PolicyApi_ErrorUserDir. Invalid User Directory object or wrong user DN.

m Sm_PolicyApi_NoPrivilege. The caller does not have the proper privileges.

466 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetUsersFromWSFEDResourcePartner()
Gets the user directory entries associated with a WS-Federation Resource Partner.

Syntax

int SM_EXTERN Sm PolicyApi GetUsersFromWSFEDResourcePartner (
void* pSessionHandle,
const char * pszProvider0Oid,
const char * pszUserPolicy0id,
Sm_PolicyApi User t ** ppStructUsers
);
Parameters
pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszProviderOid

[in] A null-terminated string containing the object identifier of an existing
WS-Federation Resource Partner.

pszUserPolicyOid

[in] A null-terminated string containing the object identifier of an existing policy
user.

ppStructUsers

[out] The address of a pointer to a linked list of user structures.

Return Values

m Sm_PolicyApi_Success. The user directory was added successfully.

m Sm_PolicyApi_Failure. The user directory was not added successfully.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
users.

m Sm_PolicyApi_InvalidOid. The affiliate OID was not found.

Chapter 4: Policy Management API Guidance 467

Function Declarations for the Policy Management API

Sm_PolicyApi_GetVariable()

Gets a specified variable.

The results of this function are returned in a structure referenced by ppstructVariable.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Variable function.

Syntax

int SM EXTERN Sm PolicyApi GetVariable (

void* pSessionHandle,
const char* pszVariableOid,
Sm PolicyApi Variable t** ppstructVariable
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszVariableOid | Unique object identifier that corresponds to a
variable.
ppstructVariable 0] The address of a pointer to a variable structure.
Returns

m Sm_PolicyApi_Success. The get was successful.

® Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Variable_t.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to obtain

a variable.

m Sm_PolicyApi_InvalidOid. The variable object identifier was not found.

m Sm_PolicyApi_FeatureNotSupported. The client who called this function initialized
the API with a version less than SM_POLICY_API_VERSION_6_0.

468 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetVariableByName()
Gets a specified variable.

The results of this function are returned in a structure referenced by ppstructVariable.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type
Variable function.

Syntax

int SM EXTERN Sm PolicyApi GetVariableByName (
void* pSessionHandle,
const char* pszVariableName,
Sm PolicyApi Variable t** ppstructVariable
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszDomainOid | A null-terminated string containing the object
identifier of an existing Domain.

pszVariableName | Unique name that corresponds to a variable.

ppstructVariable 0 The address of a pointer to a variable structure.

Chapter 4: Policy Management API Guidance 469

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Variable_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to obtain
a variable.

m Sm_PolicyApi_InvalidOid. The Domain OID was not found.

m Sm_PolicyApi_NotFound. The variable name was not found.

m Sm_PolicyApi_FeatureNotSupported. The client who called this function initialized

the API with a version less than SM_POLICY_API_VERSION_6_0.

Sm_PolicyApi_GetVariableType()

Gets a specified variable type.

The results of this function are returned in a structure referenced by ppstructVariable.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Variable function.

Syntax

int SM EXTERN Sm PolicyApi GetVariableType (

);

void* pSessionHandle,
const char* pszVariableType0Oid,
Sm PolicyApi VariableType t** ppstructVariableType

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszVariableOid | Unique object identifier that corresponds to a

variable type.

ppstructVariable 0] The address of a pointer to a variable structure.

470 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The get was successful.

Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Variable_t.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to obtain
the variable type.

Sm_PolicyApi_InvalidOid. The variable type object identifier was not found.

Sm_PolicyApi_FeatureNotSupported. The client who called this function initialized
the APl with a version less than SM_POLICY_API_VERSION_6_0.

Sm_PolicyApi_GetVariableTypeByName()

Gets a specified variable type.

The results of this function are returned in a structure referenced by ppstructVariable.
Free the memory allocated for this structure by calling Sm_PolicyApi_FreeMemoryEx().

Type

Variable function.

Syntax

int SM EXTERN Sm PolicyApi GetVariableTypeByName (

);

void* pSessionHandle,
const char* pszVariableTypeName,
Sm PolicyApi VariableType t** ppstructVariableType

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszVariableName | Unique name that corresponds to a variable type.
ppstructVariable 0] The address of a pointer to a variable structure.

Chapter 4: Policy Management API Guidance 471

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The get was successful.

m Sm_PolicyApi_Failure. Memory could not be allocated to Sm_PolicyApi_Variable_t.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to obtain
the variable type.

m Sm_PolicyApi_NotFound The variable type object identifier was not found.

m Sm_PolicyApi_FeatureNotSupported. The client who called this function initialized

the API with a version less than SM_POLICY_API_VERSION_6_0.

472 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_GetWSFEDResourcePartner()

Gets an existing Resource Partner object.

Syntax

int SM_EXTERN Sm PolicyApi GetWSFEDResourcePartner (

void* pSessionHandle,

const char * pszProvider0Qid;

Sm_PolicyApi WSFEDResourcePartner t** pstructServiceProvider
);
Parameters

pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszProviderOid

[in] A null-terminated string containing the object identifier of an existing
WS-Federation Resource Partner.

pstructServiceProvider

[out] The address of the pointer to WS-Federation Resource Partner structure.

Return Values

m Sm_PolicyApi_Success. The Resource Partner was retrieved successfully.

m Sm_PolicyApi_Failure. The Resource Partner was not retrieved successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
an affiliate.

m Sm_PolicyApi_InvalidOID. The Resource Partner OID was not found.

m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain

Chapter 4: Policy Management API Guidance 473

Function Declarations for the Policy Management API

Sm_PolicyApi_GetWSFEDScheme()

Gets an existing WSFED authentication scheme object.

Syntax

int SM_EXTERN Sm PolicyApi GetWSFEDScheme (
void* pSessionHandle,
const char * pszProvider0Oid,
Sm PolicyApi Scheme t** ppstructScheme,
Sm_PolicyApi WSFEDProviderProp t** ppProps
);
Parameters
pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszProviderOid

[in] A null-terminated string containing the object identifier of an existing WSFED
auth scheme.

ppstructScheme

[out] The address of the pointer to SiteMinder auth scheme structure.
ppProps

[out] The address of the pointer to linked list WSFED provider properties.

Return Values

m Sm_PolicyApi_Success. The authentication scheme was retrieved successfully.

m Sm_PolicyApi_Failure. The authentication scheme was not retrieved successfully.
® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to retrieve
an affiliate.

m Sm_PolicyApi_InvalidOID. The provider OID was not found.

474 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_Init()
Initializes the connection to the SiteMinder policy store and establishes the init handle.
You can specify an initialization flag that will affect the API's behavior.

This function must be called once per API client session. It must be the first function
called in the session.

Type
Required function.

Syntax

int SM_EXTERN Sm PolicyApi Init (
void** ppInitHandle,
const Sm PolicyApi InitFlags t nInitFlag

)i

Parameter 1/0 Description

pplnitHandle 0 A pointer to an internal Policy Management API
data structure that contains client session
information. This init handle is returned on
successful initialization and is used as an input
parameter to every call to Sm_PolicyApi_Login()
and Sm_PolicyApi_Release().

ninitFlag | Value affecting the behavior of the API.

Returns

m Sm_PolicyApi_Success. The initialization of the Policy Store connection was
successful.

m Sm_PolicyApi_Failure. The initialization of the Policy Store connection was
unsuccessful or memory could not be allocated.

Chapter 4: Policy Management API Guidance 475

Function Declarations for the Policy Management API

Sm_PolicyApi_InitEx()

Initializes a connection to the SiteMinder policy store and establishes the init handle
based on a supplied version.

Type

Required function.

Syntax
int SM EXTERN Sm PolicyApi InitEx (
void** ppInitHandle,
const Sm PolicyApi InitFlags t nInitFlag,
const unsigned version
)
Parameter 1/0 Description
pplnitHandle 0] A pointer to an internal Policy Management API
data structure that contains client session
information.
ninitFlag | Value affecting the behavior of the API.
version | Version of the Policy Management API to initialize.
Returns

m Sm_PolicyApi_Success. The initialization of the Policy Store connection was
successful.

m Sm_PolicyApi_Failure. The initialization of the Policy Store connection was
unsuccessful or memory could not be allocated.

476 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_IsGroup()

Determines whether an item is a group.

Type

Group function, global scope (agents) or domain scope (responses, rules).

Syntax
int SM_EXTERN Sm PolicyApi IsGroup (
void* pSessionHandle,
Sm PolicyApi Groups t dwGroup,
const char* psz0id,
const char* pszDomainOid,
bool* bIsGroup
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
dwGroup | Indicates the type of the object.
pszOid | A null-terminated string containing the object
identifier of the item to check.
pszDomainOid | A null-terminated string containing the object
identifier of an existing domain.
blsGroup 0] A pointer to a boolean value. true if the pszOid

object is a group.

Chapter 4: Policy Management API Guidance 477

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The OID is a group.
m Sm_PolicyApi_Failure. The OID is not a group.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to find out
if a rule, response, or agent OID is a group.
m Sm_PolicyApi_InvalidOid:
m The domain OID was not found (for a domain-based group).
m The group OID was not found.
m Therule, response, or agent OID or group OID was not found.
m Sm_PolicyApi_BadGroup. Parameter dwGroup is not the rule, response, or agent

type.

478 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_Login()

After initialization, a successful call to Sm_PolicyApi_Login() is a prerequisite to making
any further function calls. This function checks the administrator's login credentials
(username and password). If the API detects an uninitialized or improperly initialized init
handle, an error is generated. If the administrator is authenticated, the function
initializes internal data structures and resources. Once the administrator is logged in,
the Policy Server initializes a session handle, which is used as an input parameter to all
the Policy Management API functions.

Internally, the session handle contains data structures and context information required
for the operation of the Policy Management API, including the client session data (from
the init handle) and the administrator session data. The data structures and context
information are transparent to the caller.

You can call Sm_PolicyApi_Login() to initialize a session handle without checking the
administrator's credentials or without specifying any administrator. To log in under
either of these circumstances, set the parameter nCheckCreds to false. See the

description of the nCheckCreds parameter for more information.

This function can be called more than once during the client session and depends on the
successful initialization of the Policy Store connection.

Type

Required function.

Syntax
int SM EXTERN Sm PolicyApi Login (
void* pInitHandle,
void** ppSessionHandle,
int nCheckCreds,
const char* pszUserName,
const char* pszPassword,
const char* pszClientIP,
char** pszUserMsg,
char** pszErrMsg
);
Parameter 1/0 Description
plnitHandle | A pointer to an internal Policy Management API

data structure. This is the init handle returned by
Sm_PolicyApi_Init().

Chapter 4: Policy Management API Guidance 479

Function Declarations for the Policy Management API

Parameter

1/0

Description

ppSessionHandle

A pointer to an internal Policy Management API
data structure (a different instance of the structure
from pinitHandle). The structure contains
administrator session data. The session handle is
transparent to the caller.

nCheckCreds

Flag indicating whether to check the credentials of
the administrator, as follows:

m If nCheckCreds is false and an empty string
("")is passed in pszUserName, no credential
checking is done, and the caller is granted all
administrator rights.

m If nCheckCreds is false and a user name is
passed in pszUserName, no credential
checking is done. However, the passed name
must be that of a valid SiteMinder
administrator. The caller is granted rights
defined for the administrator.

m If nCheckCreds is true, both the user name and
the password are verified and should match a
valid SiteMinder administrator. The caller is
granted rights defined for the administrator.

pszUserName

User Name of the Policy Management API
administrator.

If you pass in an empty string ("") and set
nCheckCreds to false, no administrator name and
password are required. The caller is granted all
administrator rights.

pszPassword

Password of the Policy Management API
administrator.

pszClientIP

IP address of the machine the administrator is
logging from.

pszUserMsg

User message returned by the Policy Management
API. You release the memory allocated for this
variable by calling Sm_PolicyApi_FreeString().

pszErrMsg

Error message returned by the Policy Management
API. You release the memory allocated for this
variable by calling Sm_PolicyApi_FreeString().

480 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The login was successful.

m Sm_PolicyApi_Failure. Memory cannot be allocated.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have privileges to some or
all the domains.

m Sm_PolicyApi_ErrorLogin. The authentication failed.

Example

See the Sm_PolicyApi_Login() call in the example application smpolicyapiexample.cpp.

Sm_PolicyApi_Logout()

Logs out an administrator session.

Type

Required function.

Syntax

int SM EXTERN Sm PolicyApi Logout (

);

void* pSessionHandle

Parameter 1/0 Description

pSessionHandle | The session handle that was returned by

Sm_PolicyApi_Login() after successful login of the
administrator.

Returns

m Sm_PolicyApi_Success. The logout was successful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

Chapter 4: Policy Management API Guidance 481

Function Declarations for the Policy Management API

Sm_PolicyApi_LookupDirectoryEntry()

Looks up the user specification in a user directory.

pszSearchPattern holds the search pattern for the lookup. User directory searches vary
for each type of user directory namespaces.

Type

User directory function, global scope.

Syntax
int SM EXTERN Sm PolicyApi LookupDirectoryEntry (
void* pSessionHandle,
const char* pszUserDir0id,
const char* pszSearchPattern,
Sm PolicyApi User t** ppStructUserSpec
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszUserDirOid | A null-terminated string containing the object
identifier of the user directory where lookup is to
be performed.
pszSearchPattern | A null-terminated string containing the search
pattern for the lookup. Information about the
search expression grammar for different
namespace types appears in the section below.
ppStructUserSpec 0] The address of a pointer to a user structure.

482 Programming Guide for C

Function Declarations for the Policy Management API

Search Expression Grammar for an LDAP Namespace

The search in an LDAP user directory can be based on an attribute-value pair or on an
LDAP search expression.

For an attribute-value pair, the format of pszSearchPattern is:
<attribute-name>=<value>

For example if <attribute-name> is disabled and <value> is 0, the LDAP search filter
is:

Base:'o=airius.com’,
Filter:

(&
(| (objectclass=organizationalPerson)
(objectclass=inetOrgPerson)
(objectclass=organization)
(objectclass=organizationalUnit)
(objectclass=groupOfNames)
(objectclass=group0fUniqueNames)
(objectclass=group)

)
(

disabled=0)
) 1
If the search uses an LDAP search expression, pszSearchPattern will hold the LDAP

search expression. For example, if the search expression is 'uid=user1111', the LDAP
search filter is:

Base:'o=airius.com’,
Filter:

(&

(| (objectclass=organizationalPerson)
(objectclass=inetOrgPerson)
(objectclass=organization)
(objectclass=organizationalUnit)
(objectclass=groupOfNames)
(objectclass=groupOfUniqueNames)
(objectclass=group)

)
(

uid=userllll)

Chapter 4: Policy Management API Guidance 483

Function Declarations for the Policy Management API

Search Expression Grammar for ODBC, WinNT and Custom Namespaces

You can search in an ODBC user directory for users, groups, or both. The search is based
on attribute-value pairs.

The format of pszSearchPattern is:

[<class>=] <value>

In the format example:
m <class>is an empty-string or user or group. An empty-string implies user and group.

m <value>is a wildcard string.

Returns
m Sm_PolicyApi_Success. The lookup was successful.

m Sm_PolicyApi_Failure. The user specification lookup failed or memory could not be
allocated to Sm_PolicyApi_User_t.

m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

m Sm_PolicyApi_UserDirNotValid. There is no connection to the user directory or the
user directory provider has not been loaded.

484 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_ManagementCommand()
Performs user, key, and resource management activities.

The Policy Management APl supports the types of management commands that are
enumerated in Sm_PolicyApi_ManagementCommands_t.

Type
Utility function.

Syntax

int SM EXTERN Sm PolicyApi ManagementCommand (
void* pSessionHandle,
Sm_PolicyApi ManagementCommand t* pstructManagementCommand
);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy
Management API data structure. The
structure holds information about the
administrator session and the client
session.

pstructManagementCommand | The address of a pointer to a
management command structure.

Returns

m Sm_PolicyApi_Success. The management command was issued successfully.

m Sm_PolicyApi_Failure. The management command was not issued successfully.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to call
Sm_PolicyApi_ManagementCommand().

m Sm_PolicyApi_Invalid. An invalid management command was specified.

Chapter 4: Policy Management API Guidance 485

Function Declarations for the Policy Management API

Sm_PolicyApi_Release()
Disconnects from the policy store and releases memory and resources held by the API.

This function must be the last function called by the API client session. This function
must be called once per client session.

Note: Failure to call this function will result in a memory leak.
Type
Required function.

Syntax

int SM EXTERN Sm PolicyApi Release(void* pInitHandle);

Parameter 1/0 Description

plnitHandle | The init handle that was returned by
Sm_PolicyApi_Init() after successful initialization of
the client session.

Returns

This function always returns Sm_PolicyApi_Success.

486 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_RemoveAdminFromAffiliateDomain()

Removes an administrator from an affiliate domain.

Type

Federation function

Syntax

int SM_EXTERN Sm_

void*

const char*

const char*
);

PolicyApi RemoveAdminFromAffiliateDomain (
pSessionHandle,

pszAdminQid,

pszAffiliateDomain0Oid

Parameter

1/0 Description

pSessionHandle

| A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszAdminOid

| A null-terminated string containing the object
identifier of an existing administrator.

pszAffiliate
DomainOid

| A null-terminated string containing the object
identifier of an existing affiliate domain.

Returns

m Sm_PolicyApi_Success. The administrator was removed from the affiliate domain.

m Sm_PolicyApi_Failure. The administrator was not removed from the affiliate

domain.

® Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
an administrator from an affiliate domain.

m Sm_PolicyApi_InvalidOID. The affiliate domain OID was not found during an update.

m Sm_PolicyApi_NotFound. The administrator object identifier could not be found in
the affiliate domain collection.

Chapter 4: Policy Management API Guidance 487

Function Declarations for the Policy Management API

Sm_PolicyApi_RemoveAdminFromDomain()

Disassociates the administrator object identified by pszAdminOid from the domain
identified by szDomainOid.

Type

Administrator function, global scope.

Syntax

int SM EXTERN Sm PolicyApi RemoveAdminFromDomain (

);

void* pSessionHandle,
const char* pszAdminOid,
const char* pszDomainOid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAdminOid | A null-terminated string containing the object

identifier of an existing administrator.

pszDomainOid | A null-terminated string containing the object

identifier of an existing domain.

Returns

Sm_PolicyApi_Success. The administrator was removed successfully from a domain.

Sm_PolicyApi_Failure. The administrator was not removed successfully from a
domain.

Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
an administrator from a domain.

Sm_PolicyApi_InvalidOid. The administrator object identifier or the domain object
identifier was not found.

Sm_PolicyApi_NotFound, if
m There are no administrator object identifiers in the domain collection.

m The administrator object identifier could not be found in the domain collection.

488 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_RemoveAdentConfigAssociation()

Removes a configuration parameter name/value pair from the specified agent
configuration object.

Type
Agent configuration function, global scope.

Syntax

int SM EXTERN Sm PolicyApi RemoveAgentConfigAssociation (

void* pSessionHandle,
const char* pszAssociation0Oid
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAssociationOid | Unique identifier of the name/value pair to
remove.

Returns
m Sm_PolicyApi_Success. The operation was successful.
m Sm_PolicyApi_Failure. Generalized failure.

® Sm_PolicyApi_InvalidOid. The unique ID does not correspond to an agent
configuration object.

m Sm_PolicyApi_NoPrivilege. The caller does not have the privilege to remove agent
configuration object parameters.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_NoSession. The API user is not properly logged in.

Chapter 4: Policy Management API Guidance 489

Function Declarations for the Policy Management API

Sm_PolicyApi_RemoveAssertionConsumerServiceFromSAMLSP()

Removes an existing indexed endpoint reference to an Assertion Consumer Service from
the policy store. The index, binding type, and Assertion Consumer Service URL must
match an existing Assertion Consumer Service.

Type
Federation function

Syntax

int SM_EXTERN Sm PolicyApi RemoveAssertionConsumerServiceToSAMLSP (
void* pSessionHandle,
const Sm PolicyApi SAMLSPAssertionConsumerService t*
pstructSAMLSPAssertionConsumerService,

const char* pszSAMLSPOid
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pstructSAMLAssertionConsu | A pointer to an Assertion Consumer Service
merService structure.
pszSAMLSPOId | A pointer to a string containing the OID of the

Service Provider.

490 Programming Guide for C

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The Assertion Consumer Service was removed successfully.

m Sm_PolicyApi_Failure - The Assertion Consumer Service was not removed
successfully.

m Sm_PolicyApi_ACSIndexedEndpointNotFound - There is no Assertion Consumer
Service that matches the Assertion Consumer Service to be removed..

m Sm_PolicyApi_InvalidHandle - There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession - There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege - The administrator does not have the privilege to
remove Attributes from a SAML Service Provider.

Sm_PolicyApi_RemoveAttributeFromAffiliate()

Removes an attribute from an affiliate.
Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi RemoveAttributeFromAffiliate (

void* pSessionHandle,
const Sm PolicyApi AffiliateAttr t* pstructAffiliateAttr,
const char* pszAffiliateOid
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pstructAffiliate | A pointer to an affiliate attribute structure.
Attr
pszAffiliateOid | A null-terminated string containing the object

identifier of an existing affiliate.

Chapter 4: Policy Management API Guidance 491

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The affiliate attribute was removed successfully.

m Sm_PolicyApi_Failure. The affiliate attribute was not removed successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
an affiliate attribute.

m Sm_PolicyApi_InvalidOID. The affiliate OID was not found.

Sm_PolicyApi_RemoveAttributeFromSAMLScheme()

Removes a configured attribute from a SAML authentication scheme.

Syntax

int SM_EXTERN Sm PolicyApi RemoveAttributeFromSAMLScheme (
void* pHandle,
const Sm PolicyApi Scheme t* pstructScheme,
const Sm PolicyApi SAMLRequesterAttr t* pAttr

)i

Parameter 1/0 Description

pHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.

pstructScheme | A pointer to a completely filled-in scheme
structure.

pAttr | A pointer to the

Sm_PolicyApi_SAMLRequesterAttr_t structure
containng the attribute to be removed.

492 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The attribute was removed successfully.

m Sm_PolicyApi_Failure. The attribute was not removed successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
an attribute to a SAML Requester.

m Sm_PolicyApi_SAMLIDP_IncorrectParameters. Supplied SAML provided properties
are incomplete or incorrect.

m Sm_PolicyApi_NoSuchAttribute. An attribute with a matching Name and
NameFormat does not exist.

Sm_PolicyApi_RemoveAttributeFromSAMLSP()

Removes the specified SAML attribute from the Service Provider.
Type
SAML 2.0 Configuration function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi RemoveAttributeFromSAMLSP
(

void* pHandle,
const Sm PolicyApi SAMLSPAttr t* pstructSAMLSPAttr,
const char* pszSAMLSPOid
)i
Parameter 1/0 Description
pHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pstructSAMLSPAttr | A pointer to a SAML attribute structure

Chapter 4: Policy Management API Guidance 493

Function Declarations for the Policy Management API

Parameter 1/0 Description
pszSAMLSPOid | The Service Provider's object identifier in the policy
store.

Returns

m Sm_PolicyApi_Success. The attribute was removed successfully.

m Sm_PolicyApi_Failure. The attribute was not removed successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
an SAML attribute from a Service Provider.

m Sm_PolicyApi_NoSuchAttribute. No attribute exists with the Name and

NameFormat provided.

494 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_RemoveFromGroup()
Removes an item from a group.

The item and the group must exist and must be of the same type, and the item must be
contained in the group.

The pszDomainOid parameter is required by rule and response groups. An agent group
does not require a domain OID because it is not a domain-based object.

Type

Group function, global scope (agents) or domain scope (responses, rules).
Syntax

int SM EXTERN Sm PolicyApi RemoveFromGroup (

void* pSessionHandle,
Sm PolicyApi Groups t dwGroup,

const char* pszItemOid,
const char* pszGroup0id,
const char* pszDomainOid
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
dwGroup | Indicates the type of the group.
pszltemOid | A null-terminated string containing the object
identifier of an existing item; must be the same
type as the group.
pszGroupOid | A null-terminated string containing the object
identifier of the group.
pszDomainOid | A null-terminated string containing the object

identifier of an existing domain. Required by rule
and response groups.

Chapter 4: Policy Management API Guidance 495

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The remove was successful.
m Sm_PolicyApi_Failure. The remove was not successful.
m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
arule, response, or agent OID from its respective group.
m Sm_PolicyApi_InvalidOid:
m The domain OID was not found (for a domain-based group).
m The group OID was not found.
m Therule, response, or agent OID or group OID was not found.
m Sm_PolicyApi_BadGroup. Parameter dwGroup is not the rule, response, or agent

type.

496 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_RemovePolicyLinkFromPolicy()

By removing the policy link identified by pszPolicyLinkOid from the policy identified by
pszPolicyOid, this function effectively removes the rule from the policy.

A policy link object binds a policy to a rule and, optionally, a response.

Note: In releases prior to SiteMinder v4.5, the functionality provided by
Sm_PolicyApi_RemovePolicyLinkFromPolicy() was provided by
Sm_PolicyApi_RemoveRuleFromPolicy().

Type
Policy function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi RemovePolicyLinkFromPolicy (
void* pSessionHandle,
const char* pszPolicyLink0id,
const char* pszPolicyOid

);

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client

session.

pszPolicyLinkOid | A null-terminated string containing the object
identifier of an existing policy link under
pszPolicyOid.

pszPolicyOid | A null-terminated string containing the object

identifier of an existing policy.

Chapter 4: Policy Management API Guidance 497

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The policy link was removed successfully.

m Sm_PolicyApi_Failure. The policy link was not removed successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a policy link.

m Sm_PolicyApi_InvalidOid:

m The policy OID was not found.

m The policy link OID was not found.

Sm_PolicyApi_RemoveRedularExpressionFromPasswordPolicy()

Removes a Regular Expression from the referenced password policy. Implemented only
if the session's version is set to SM_POLICY_API_VERSION_6_0.

Type

Regular Expression function.

Syntax

int SM_EXTERN Sm_PolicyApi RemoveRegularExpressionFromPasswordPolicy(

);

void* pSessionHandle,
const char* pszRegularExpression0Oid,
const char* pszPasswordPolicy0Oid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszRegular | The OID of the regular expression to be removed.
ExpressionOid
pszPassword | The OID of the password policy to remove the
PolicyOid expression from.

498 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The regular expression was removed successfully.

m Sm_PolicyApi_Failure. The regular expression was not removed successfully.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
regular expressions.

m Sm_PolicyApi_InvalidOid: The password policy OID was not found.

Sm_PolicyApi_RemoveResponseAttr()

Disassociates the response attribute defined by the pstructResponseAttr structure from
the response identified by pszResponseAttrOid. The attribute name and attribute value
must match in order for the remove to occur.

Type
Response function, domain scope.

Syntax

int SM_EXTERN Sm PolicyApi RemoveResponseAttr (
void* pSessionHandle,
const char* pszResponseAttrOid

)i

Parameter 1/0 Description

pSessionHandle I A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszResponseAttrOid A null-terminated string containing the object
identifier of an existing response attribute.

Chapter 4: Policy Management API Guidance 499

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The remove operation was successful.

m Sm_PolicyApi_Failure. The remove operation was not successful.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a response attribute.

m Sm_PolicyApi_InvalidOid. The response attribute OID was not found.

Sm_PolicyApi_RemoveUserDirFromAffiliateDomain()

Removes a user directory from an existing affiliate domain.

Type

Federation function

Syntax

int SM_EXTERN Sm PolicyApi RemoveUserDirFromAffiliateDomain(

);

void* pSessionHandle,
const char* pszUserDir0id,
const char* pszAffiliateDomainOid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object

identifier of an existing user directory.

pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.

500 Programming Guide for C

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The user directory was removed from the affiliate domain
successfully.

Sm_PolicyApi_NotFound. The domain does not have the user directory.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a user directory from an affiliate domain.

Sm_PolicyApi_InvalidOID. The user directory OID or affiliate domain OID was not
found during an update.

Sm_PolicyApi_RemoveUserDirFromDomain()

Disassociates the user directory identified by pszUserDirOid from the domain identified
by pszDomainOid.

Type

User directory function, global scope.

Syntax

int SM EXTERN Sm PolicyApi RemoveUserDirFromDomain (

);

void* pSessionHandle,
const char* pszUserDir0id,
const char* pszDomain0Oid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object

identifier of an existing user directory.

pszDomainOid | A null-terminated string containing the object

identifier of an existing domain.

Chapter 4: Policy Management API Guidance 501

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The remove operation was successful.

m Sm_PolicyApi_NotFound. The domain does not have any user directories.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a user directory from a domain.

m Sm_PolicyApi_InvalidOid. A user directory or domain OID was not found.

Sm_PolicyApi_RemoveUsersFromAffiliate()

Removes a user directory entry from an affiliate.

Type

Federation function

Syntax

int SM EXTERN Sm PolicyApi RemoveUsersFromAffiliate (

);

void* pSessionHandle,
const char* pszAffiliateOid,
const char* pszUserPolicy0Oid

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszAffiliateOid | A null-terminated string containing the object

identifier of an existing affiliate.

pszUserPolicyOid | A null-terminated string containing the object

identifier of an existing policy user.

502 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The user was removed successfully.

m Sm_PolicyApi_Failure. The user was not removed successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a user.

m Sm_PolicyApi_InvalidOID. The affiliate OID or user policy OID was not found.

Sm_PolicyApi_RemoveUsersFromPolicy()

Disassociates the user identified by pszUserPolicyOid from the policy identified by
pszPolicyOid. Only one user specification (which may be an aggregate) can be removed
at a time.

Type

User and user state function.

Syntax

int SM_EXTERN Sm PolicyApi RemoveUsersFromPolicy (

);

void* pSessionHandle,
const char* pszPolicy0id,
const char* pszUserPolicy0id

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszPolicyOid | A null-terminated string containing the object

identifier of an existing policy from which a user is
to be removed.

pszUserPolicyOid | A null-terminated string containing the object

identifier of an existing policy user.

Chapter 4: Policy Management API Guidance 503

Function Declarations for the Policy Management API

Remarks

This function is successful only when the pointer to Sm_PolicyApi_User_t is obtained
with the Sm_PolicyApi_GetPolicyUsers() function. If the user is retrieved with
Sm_PolicyApi_LookupDirectoryEntry(), Sm_PolicyApi_GetDirectoryContents(), or
Sm_PolicyApi_ValidateDirectoryEntry(), pszUserPolicyOid will be invalid and the call will
fail.

Returns

m Sm_PolicyApi_Success. The remove operation was successful.

m Sm_PolicyApi_Failure. The remove operation was not successful.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a user from the policy.

m Sm_PolicyApi_InvalidOid:
m The policy OID was not found.

m The user policy OID was not found.

504 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_RemoveUsersFromSAMLServiceProvider()

Removes the specified users from the Service Provider.

Type

SAML 2.0 Configuration function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi AddUsersToSAMLServiceProvider

(

void* pSessionHandle,
const char* pszProvider0id,
Sm PolicyApi User t* pStructUsers,
int iPolicyFlags
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.
pszProviderOid | A null-terminated string containing the Service
Provider's object identifier.
pStructUsers | The users to remove from the Service Provider.
iPolicyFlags | A bit field that indicates whether:

m The policy created for the SAML Service
Provider includes a user

m The policy should be applied recursively

Chapter 4: Policy Management API Guidance 505

Function Declarations for the Policy Management API

Returns

Sm_PolicyApi_Success. The users were removed successfully.
Sm_PolicyApi_Failure. The users were not removed successfully.
Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
Sm_PolicyApi_NoSession. There is no valid administrator session.

Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a user.

Sm_PolicyApi_InvalidOid. The Service Provider OID was not found.

506 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_RemoveUsersFromWSFEDResourcePartner()
Dissociates a user directory entry from WS-Federation Resource Partner.

Syntax

int SM EXTERN Sm PolicyApi RemoveUsersFromWSFEDResourcePartner (
void* pSessionHandle,
const char * pszProvider0Oid,
const char * pszUserPolicy0Oid

);

Parameters

pSessionHandle

[in] A pointer to an internal Policy Management API data structure. The structure
holds information about the administrator session and the client session.

pszProviderOid

[in] A null-terminated string containing the object identifier of an existing
WS-Federation Resource Partner.

pszUserPolicyOid
[in] A null-terminated string containing the object identifier of an existing policy
user.

Return Values

m Sm_PolicyApi_Success. The user directory was removed a successfully.

m Sm_PolicyApi_Failure. The user directory was not removed successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to remove
a user.

m Sm_PolicyApi_InvalidOid. The Resource Partner OID was not found.

Chapter 4: Policy Management API Guidance 507

Function Declarations for the Policy Management API

Sm_PolicyApi_RenameObject()

Renames a domain or global object.

This function requires the Object Identifier (OID) of the object to be renamed. You can
retrieve the object identifier by performing the Get operation on the object.

Type

General object function.

Syntax

int SM EXTERN Sm PolicyApi RenameObject (

);

void* pSessionHandle,
const char* psz0id,
const char* pszNewName

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszOid | Object Identifier of the object to be renamed.
pszNewName | New name for the object.

Returns

m Sm_PolicyApi_Success. The object was renamed successfully.

m Sm_PolicyApi_Failure. The object was not renamed successfully.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

® Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to rename
an object.

® Sm_PolicyApi_InvalidOid. The OID was not found.

508 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_SetAffiliateDomainUserDirSearchOrder()

Sets the user directory search order for an affiliate domain.
Type
Federation function

Syntax

int SM EXTERN Sm PolicyApi SetAffiliateDomainUserDirSearchOrder (

void* pSessionHandle,
const char* pszAffiliateDomainOid,
char** pszArray[]
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client

session.
pszAffiliate | A null-terminated string containing the object
DomainOid identifier of an existing affiliate domain.
pszArray | An array of user directory OIDs, in the desired
order.

Returns

m Sm_PolicyApi_Success. The function successfully set the user directory search
order.

® Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to set user
directory search order in an affiliate domain.

m Sm_PolicyApi_InvalidOID. The affiliate OID was not found.
m Sm_PolicyApi_DomainNotAffiliate. The domain is not an affiliate domain.

m Sm_PolicyApi_WrongNumberOfElements. The number of user directories in the
affiliate domain collection is different from the number of elements in the array.

Chapter 4: Policy Management API Guidance 509

Function Declarations for the Policy Management API

Sm_PolicyApi_SetDisabledUserState()

Sets the disabled state of a user. You can also enable a user with this function.
To make this function work, the attribute for tracking disabled users must be set in the

user directory (the pszDisabledAttr field of structure Sm_PolicyApi_UserDir_t). You can
also set the attribute using the Policy Server User Interface.

Type
User and user state function.

Syntax

int SM EXTERN Sm PolicyApi SetDisabledUserState (

void* pSessionHandle,
const char* pszUserDir0id,
const char* pszUserDN,
const Sm Api DisabledReason t nDisabledReason,
char** pszErrMsg
)i
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object
identifier of an existing user directory.

pszUserDN | The distinguished name of the user whose disabled
state is to be changed.

nDisabledReason | Reason for disabling or enabling a user. The
reasons are enumerated in
Sm_Api_DisabledReason_t, which is defined in
SmApi.h.

It is the responsibility of the caller to set the
correct state. Multiple reasons can exist
concurrently. When a user is enabled, all the flags
in the disabled mask should be cleared.

510 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

pszErrMsg 0] The error message is held in the string if the
operation was not successful. You release the
memory allocated for this variable by calling
Sm_PolicyApi_FreeString().

Chapter 4: Policy Management API Guidance 511

Function Declarations for the Policy Management API

Returns
m Sm_PolicyApi_Success. The disable user state was set successfully.
m Sm_PolicyApi_Failure:
m User state was not disabled.
m Memory could not be allocated to pszErrMsg.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to set
disabled user state.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Examples
m To disable a user for password expiration:

nDisabledReason = Sm Api Disabled DisabledMask &
Sm_Api Disabled PWExpired;

m To disable a user for administrative reasons:

enum Sm Api DisabledReason t nDisabledReason;

iRes = Sm PolicyApi GetDisabledUserState (pSessionHandle,
pszUserDir0id,
pszUserDN,
&nDisabledReason,
&pszGetErrMsg) ;

if (iRes != Sm PolicyApi Success)

{

cout << "Error: " << pszGetErrMsg << endl;

// Set admin disabled reason bit.
nDisabledReason=(Sm Api DisabledReason t) (nDisabledReason |
Sm Api Disabled AdminDisabled);

// Set Disable user state

iRes = Sm PolicyApi SetDisabledUserState(pSessionHandle,
pszUserDir0id,
pszUserDN,
nDisabledReason,
&pszSetErrMsg) ;

m To enable a user and clear all disable reason bits:

512 Programming Guide for C

Function Declarations for the Policy Management API

enum Sm Api DisabledReason t nDisabledReason;

iRes = Sm PolicyApi GetDisabledUserState(pSessionHandle,
pszUserDir0id,
pszUserDN,
&nDisabledReason,
&pszGetErrMsg) ;

if (iRes != Sm PolicyApi Success)

{
if (pszGetErrMsg)
{
cout << "Error: " << pszGetErrMsg << endl;
}
}

// Clear all the disable reason bits.
nDisabledReason=(Sm Api DisabledReason t)
(nDisabledReason & (~Sm_Api Disabled DisabledMask));

// Set Disable user state to enable

iRes = Sm PolicyApi SetDisabledUserState(pSessionHandle,
pszUserDir0id,
pszUserDN,
nDisabledReason,
&pszSetErrMsg) ;

Chapter 4: Policy Management API Guidance 513

Function Declarations for the Policy Management API

Sm_PolicyApi_SetPassword()

Changes the password of a user account. It can also be used to validate a new password
or an old password without changing the password.

To validate a new password, you must set SiteMinder Password services for the
directory, and you must identify a password attribute in the SiteMinder user directory.

Type
User and user state function.

Syntax

int SM_EXTERN Sm PolicyApi SetPassword (
void* pSessionHandle,
const char* pszUserDir0id,
const char* pszUserDN,
const char* pszNewPassword,
const char* pszOldPassword,

bool bChangePassword,
bool bValidateNewPassword,
bool bValidateOldPassword,
char** pszErrMsg
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management
API data structure. The structure holds
information about the administrator session
and the client session.
pszUserDirOid | A null-terminated string containing the
object identifier of the user directory where
the user may be found.
pszUserDN | The distinguished name of the user whose
password is to be changed and/or whose
new or old password is to be validated.
pszNewPassword | New user password to validate or change.
pszOldPassword | Old user password to validate or change.

514 Programming Guide for C

Function Declarations for the Policy Management API

Parameter 1/0 Description

bChangePassword | If true, the password is changed to the new

password and is recorded in the user's
password history. If an error occurs, the
function returns an error code.

bValidateNewPassword | If true, the new password is checked to

make sure it satisfies all password policy
requirements. If the new password is in
violation of any password policies,
pszErrMsg is set and the function returns an
error code.

bValidateOldPassword | If true, the old password is used to

authenticate the user. If authentication fails,
the function returns an error code.

pszErrMsg 0] String containing an error message if the

user password change or validation was not
successful. You release the memory
allocated for this variable by calling
Sm_PolicyApi_FreeString().

Returns

m Sm_PolicyApi_Success. The change or validation was successful.

m Sm_PolicyApi_Failure. The change or validation was not successful or memory could
not be allocated to the error message string.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_lnvalidPasswordSyntax. Returned when both of these conditions
exist:
m bValidateNewPassword is true.
m The new password did not satisfy the password policy requirements set for the

specified directory.

For information about the error, call Sm_PolicyApi_GetPasswordMsg() and pass to
it the encoded error message (pszErrMsg) returned from
Sm_PolicyApi_SetPassword().

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to set or
validate user passwords.

m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Chapter 4: Policy Management API Guidance 515

Function Declarations for the Policy Management API

Sm_PolicyApi_SetResponselInPolicyLink()
Alters the policy link described by the ppstructPolicyLink structure.

This function sets a response or a response group to a rule or rule group. It can also be
used to remove a response or response group from a policy link. To remove a response
or response group from a policy link, set the pszResponseOid in
Sm_PolicyApi_PolicyLink_t to an empty string.

Type
Response function, domain scope.

Syntax

int SM EXTERN Sm PolicyApi SetResponseInPolicylLink (
void* pSessionHandle,
const char* pszPolicy0id,
Sm PolicyApi PolicylLink t* ppstructPolicylLink

)i

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API
data structure. The structure holds information
about the administrator session and the client
session.

pszPolicyOid | A null-terminated string containing the object
identifier of an existing policy.

ppstructPolicyLink | The address of a policy link structure.

516 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The response was successfully set or removed in a policy
link.

m Sm_PolicyApi_Failure. The response cannot be set or removed in a policy link.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to set a
policy link.

m Sm_PolicyApi_InvalidOid:
m The policy OID was not found.
m The rule or rule group OID was not found.
m The response or response group OID was not found.

m Sm_PolicyApi_DoesNotExist. There are no policy links in the policy collection.

Sm_PolicyApi_SetSharedSecretPolicy()

Sets the current SharedSecretPolicy. There will always be exactly one such object, so it is
not necessary to provide the bUpdate boolean flag.

Type
Agent configuration.

Syntax

int SM EXTERN Sm PolicyApi SetSharedSecretPolicy (

void* pSessionHandle,

Sm PolicyApi SharedSecretPolicy t* ppstructSecretPolicy
);

Parameter 1/0 Description

pSessionHandle | The current Policy API session handle.

ppstructSecret 1/0 The shared secret policy structure.
Policy

Chapter 4: Policy Management API Guidance 517

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidHandle. The session handle was invalid.
m Sm_PolicyApi_NoSession. The user is not logged in.

m Sm_PolicyApi_NoPrivilege. User does not have rights to manage objects.

Sm_PolicyApi_SetUserDirSearchOrder()

Rearranges the search order of the user directory objects associated with the domain
identified by pszDomainOid.

The ordered list of names is specified in the pszArray string array. The user directories in

this array must match in OID and number (but not order) the list of user directory
names that were retrieved by a call to Sm_PolicyApi_GetUserDirSearchOrder().

Type
User directory function, global scope.

Syntax

int SM EXTERN Sm PolicyApi SetUserDirSearchOrder (

void* pSessionHandle,
const char* pszDomainOid,
char** pszArray[1]
);
Parameter 1/0 Description
pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszDomainOid | A null-terminated string containing the object
identifier of an existing domain.

pszArray | An array of user directory OIDs, in the desired
order.

518 Programming Guide for C

Function Declarations for the Policy Management API

Returns

m Sm_PolicyApi_Success. The user directory search order was set successfully.

m Sm_PolicyApi_NoSession. There is no valid administrator session.

m Sm_PolicyApi_lnvalidHandle. There was no valid initialization prior to this call.

m Sm_PolicyApi_NoPrivilege. The administrator does not have the privilege to set user
directory search order in a domain.

m Sm_PolicyApi_InvalidOid. The domain OID was not found.

m Sm_PolicyApi_WrongNumberOfElements. The number of user directories in the

domain collection is different from the number of elements in the array.

Sm_PolicyApi_SetUserPasswordState()

Add or update a UserPasswordState object.

If there is no PasswordState associated with the user, a new PasswordState will be
created. Otherwise, the UserPasswordState will be updated.

Type

Password state function.

Syntax

int SM_EXTERN Sm PolicyApi SetUserPasswordState (

void *pSessionHandle,
const char *pszUserDir0id,
const char *pszUserDN,

Sm PolicyApi UserPasswordState t *pPasswordState
bool bEmptyHistory

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | Unique object identifier that corresponds to a

particular User Directory.

pszUserDN | Specifies the distinguished name of the user within

the user directory.

Chapter 4: Policy Management API Guidance 519

Function Declarations for the Policy Management API

Parameter 1/0

Description

pPasswordState 1/0

The user password state object.

If this parameter changes the user directory setting
for the last time the password was changed, and
the password is reset outside of SiteMinder, the
password policy preventing password reuse may
not work as expected.

If this parameter is set to NULL, the function
returns Sm_PolicyApi_Failure.

bEmptyHistory |

Specifies whether this function should clear the
existing password history. If this parameter is set to
true, the field tLastPWChange field of structure
Sm_PolicyApi_UserPasswordState_t is implicitly
reset to zero.

Returns

m Sm_PolicyApi_Success. The get operation was successful.

m Sm_PolicyApi_Failure. Generalized failure.

m Sm_PolicyApi_InvalidHandle. The session pointer is not valid.

m Sm_PolicyApi_BadArgument. The input password state pointer is NULL.

m Sm_PolicyApi_NoSession. The APl user is not properly logged in.

® Sm_PolicyApi_InvalidOid. The unique id does not correspond to User Directory

object.

m Sm_PolicyApi_UserDirNotFound. Failed to retrieve User Directory object from

policy store.

m Sm_PolicyApi_ErrorUserDir. Invalid User Directory object or wrong user DN.

m Sm_PolicyApi_NoPrivilege. The caller does not have the proper privileges.

520 Programming Guide for C

Function Declarations for the Policy Management API

Sm_PolicyApi_ValidateDirectoryEntry()

Validates a user specification in a user directory.

Type

User directory function, global scope.

Syntax

int SM_EXTERN Sm PolicyApi ValidateDirectoryEntry (
void* pSessionHandle,
const char* pszUserDir0id,
const char* pszPath,

);

Sm PolicyApi User t** ppUserEntry

Parameter 1/0 Description

pSessionHandle | A pointer to an internal Policy Management API

data structure. The structure holds information
about the administrator session and the client
session.

pszUserDirOid | A null-terminated string containing the object

identifier of the user directory.

pszPath | A null-terminated string containing the path of a
user.
ppUserEntry 0] The address of a pointer to a user structure.
Returns
m Sm_PolicyApi_Success. The validation was successful.
® Sm_PolicyApi_Failure:
m The policy resolution of the user path in pszPath is not of type
Sm_PolicyResolution_User.
m There is no connection to the user directory or the user directory provider has
not been loaded.
m Memory could not be allocated to Sm_PolicyApi_User_t.
m Sm_PolicyApi_NoSession. There is no valid administrator session.
m Sm_PolicyApi_InvalidHandle. There was no valid initialization prior to this call.
m Sm_PolicyApi_InvalidOid. The user directory OID was not found.

Chapter 4: Policy Management API Guidance 521

Authentication Scheme Configuration

Authentication Scheme Confiduration

When you configure an authentication scheme programmatically, you provide
information that would otherwise be provided through the Authentication Scheme
Properties dialog of the Policy Server Ul. You provide this information through the fields
in the structure Sm_PolicyApi_Scheme_t.

Note: The following categories of information can be used for different purposes in
different authentication schemes. For example, with the TelelD authentication scheme,
the shared secret is used to supply the encryption seed.

Scheme type

SiteMinder provides a number of standard authentication scheme types (also
known as templates). Each authentication scheme type is configured differently.

Description
Brief description of the authentication scheme.
Protection level

Protection level values can range from 1 through 1000. The higher the number, the
greater the degree of protection provided by the scheme.

Library

An authentication scheme library performs authentication processing for the
associated authentication scheme type. Each predefined authentication scheme is
shipped with a default library. Optionally, you can use a custom library instead of
the default.

Parameter

Additional information that the authentication scheme requires, such as the URL of
an HTML login page. With some authentication schemes, the parameter
information is constructed from field values in the Scheme Type Setup tab of the
Authentication Scheme Properties dialog. To see how a parameter string is
constructed for a given scheme type, open this dialog, select the appropriate
scheme type, provide values to the fields in the Scheme Type Setup tab, and view
the constructed parameter in the Advanced tab.

Shared Secret

Information that is known to both the authentication scheme and the Policy Server.
Different authentication schemes use different kinds of secrets. Most schemes use
no secret.

Is template?
A flag that specifies whether the authentication scheme is a template.

Note: Setting an authentication scheme as a template with the C Policy
Management APl was deprecated in SDK v6.0 SP3.

522 Programming Guide for C

Authentication Scheme Configuration

m |s used by administrator?

A flag that specifies whether the authentication scheme can be used to
authenticate administrators.

m Save Credentials?

A flag that specifies whether to save the user's credentials.
= |sRADIUS?

A flag that specifies whether the scheme can be used with RADIUS agents.
m Ignore password check?

A flag that specifies whether password policies for the scheme are enabled. If True
(1), password policies are disabled.

Note: The Ignore password check flag must be set to True for anonymous
authentication schemes.

Anonymous Template

Use this table when configuring an authentication scheme based on the scheme type
Anonymous. The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Note: The Ignore password check flag must be set to True for anonymous
authentication schemes.

Information Type Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_Anonymous

The scheme type Anonymous.

Description pszDesc=description

The description of the authentication scheme.

Protection level nlLevel=0

Set to 0. Not applicable to this scheme type.

Library pszLib="smauthanon"

The default library for this scheme type.

Parameter pszParam=param

A string containing the guest DN. Policies associated with the
guest DN must apply to anonymous users.

Shared secret pszSecret=

Set to an empty string. Not applicable to this scheme.

Chapter 4: Policy Management API Guidance 523

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Is template?

blsTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by
administrator?

bisUsedbyAdmin=0

Set to false (0)-scheme is not used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

bisRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=1

Set to true (1)-ignore password checking.

Basic Over SSL Template

Use this table when configuring an authentication scheme based on the scheme type
Basic over SSL. The structure fields referenced in the table
are in Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type

nType=Sm_Api_SchemeType_BasicOverSSL

The scheme type Basic over SSL.

Description

pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 10.

Library

pszLib="smauthcert"

The default library for this scheme type.

524 Programming Guide for C

Authentication Scheme Configuration

Basic Template

Information Type

Value Assignment and Meaning

Parameter

pszParam=param

A string containing the domain or IP address of the SSL server
and the name of the SSL Credentials Collector (SCC). Format:

https://server/SCC?basic
The following example uses the default SCC:

https://my.server.com/siteminderagent/
nocert/smgetcred.scc?basic

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template? bisTemplate=0
Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=0

administrator?

Set to false (0) for this scheme.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

bisRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Use this table when configuring an authentication scheme based on the scheme type
Basic. The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_Basic
The scheme type Basic.
Description pszDesc=description

The description of the authentication scheme.

Chapter 4: Policy Management API Guidance 525

Authentication Scheme Configuration

Custom Template

Information Type

Value Assignment and Meaning

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library pszLib="smauthdir"
The default library for this scheme type.
Parameter pszParam=""

Set to an empty string. Not applicable to this scheme.

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template? bisTemplate=0
Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=1

administrator?

Set to true (1)-scheme can be used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

bisRadius=1
Set to true (1)-scheme can be used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Use this table when configuring an authentication scheme based on the scheme type
Custom. You create custom schemes using the Authentication API. The structure fields
referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type

Scheme type

Value Assignment and Meaning

nType=Sm_Api_SchemeType_Custom

The scheme type Custom.

526 Programming Guide for C

Authentication Scheme Configuration

Information Type

Description

Protection level

Library

Parameter

Shared secret

Is template?

Is used by
administrator?

Save credentials?

Is RADIUS?

Ignore password
check?

Value Assignment and Meaning

pszDesc=description

The description of the authentication scheme.

nlLevel=value

A value of 0 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

pszLib=customLibName

The name of the custom shared library you created using the
Authentication API.

pszParam=param

Any string of one or more parameters required by your
custom authentication scheme.

For a custom authentication scheme that uses SSL, you must
supply a URL that points to a SiteMinder Web Agent library
required for the SSL-based authentication.

pszSecret=secret

The shared secret, if any, that your custom authentication
scheme uses for encryption of credentials.

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

bisUsedbyAdmin=flag

Set to true (1) to specify that the scheme can be used to
authenticate administrators, or to false (0) to specify that the
scheme cannot be used to authenticate administrators.
Default is 0.

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

blsRadius=0

Set to false (0)-scheme is not used with RADIUS agents.

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Chapter 4: Policy Management API Guidance 527

Authentication Scheme Configuration

HTML Form Template

Use this table when configuring an authentication scheme based on the scheme type
HTML Form. The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_HTMLForm
The scheme type HTML Form.

Description pszDesc=description

The description of the authentication scheme.

Protection level nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library pszLib="smauthhtml"
The default library for this scheme type.

Parameter pszParam=param

A string containing a user attribute list plus the location of the
forms credential collector (FCC). The attribute list must begin
with AL= and use commas as the list delimiter character, and
it must end with a semicolon-for example:

AlL=Password,SSN,age,zipcode;

The complete parameter format is:
attr-list;https:/server/fcc

The following example uses the default FCC:

AL=PASSWORD,SSN,age,zipcode;
http://my.server.com/siteminderagent/
forms/login.fcc

Shared secret pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template? bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=0

administrator? Set to false (0)-scheme is not used to authenticate
administrators.

528 Programming Guide for C

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Save credentials?

bAllowSaveCreds=flag

Set to true (1) to indicate that user credentials should be
saved, or false (0) to indicate that user credentials should not
be saved. Default is 0.

Is RADIUS?

blsRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Impersonation Template

Use this table when configuring an authentication scheme based on the scheme type
Impersonation. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type

nType=Sm_Api_SchemeType_Impersonation

The scheme type Impersonation.

Description

pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library

pszLib="smauthimpersonate"

The default library for this scheme type.

Chapter 4: Policy Management API Guidance 529

Authentication Scheme Configuration

Information Type Value Assignment and Meaning

Parameter pszParam=param

A string containing a user attribute list plus the location of the
forms credential collector (FCC). The attribute list must begin
with AL= and use commas as the list delimiter character, and
it must end with a semicolon-for example:

AlL=Password,SSN,age,zipcode;

The complete parameter format is:
attr-list;https:/server/fcc

The following example uses the default FCC:

AL=PASSWORD,SSN,age,zipcode;
http://my.server.com/siteminderagent/
forms/imp.fcc

Shared secret pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template? bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=0

administrator? Set to false (0)-scheme is not used to authenticate
administrators.

Save credentials? bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS? blsRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password blgnorePwCheck=1

check? Set to true (1)-ignore password checking.

530 Programming Guide for C

Authentication Scheme Configuration

RADIUS CHAP/PAP Template

Use this table when configuring an authentication scheme based on the scheme type
RADIUS CHAP/PAP. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_RadiusChapPap
The scheme type RADIUS CHAP/PAP.
Description pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library pszLib="smauthchap"
The default library for this scheme type.
Parameter pszParam=param

A string containing the name of a user directory attribute. This
attribute is used as the clear text password for authentication.

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template? bisTemplate=0
Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=0

administrator?

Set to false (0)-scheme is not used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

bisRadius=1
Set to true (1)-scheme can be used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Chapter 4: Policy Management API Guidance 531

Authentication Scheme Configuration

RADIUS Server Template

Use this table when configuring an authentication scheme based on the scheme type
RADIUS Server. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_RadiusServer
The scheme type RADIUS Server.
Description pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library pszLib="smauthradius"
The default library for this scheme type.
Parameter pszParam=param

A string containing the IP address and port of the RADIUS
server-for example:

123.123.12.12:1645
The default UDP port is 1645.

Shared secret

pszSecret=secret

The user attribute that the RADIUS Server will use as the clear
text password.

Is template? bisTemplate=0
Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=1

administrator?

Set to true (1)-scheme can be used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

blsRadius=1
Set to true (1)-scheme can be used with RADIUS agents.

532 Programming Guide for C

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Ignore password
check?

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

SafeWord HTML Form Template

Use this table when configuring an authentication scheme based on the scheme type
SafeWord HTML Form. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type

nType=Sm_Api_SchemeType_SafeWordHTMLForm
The scheme type SafeWord HTML Form.

Description

pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 10.

Library

pszLib="smauthenigmahtml|"

The default library for this scheme type.

Parameter

pszParam=param

A string containing the name and location of the forms
credentials collector. This example shows the default
credentials collector:

http://my.server.com/
siteminderagent/forms/safeword.fcc

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template?

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by
administrator?

blsUsedbyAdmin=1

Set to true (1)-scheme can be used to authenticate
administrators.

Chapter 4: Policy Management API Guidance 533

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

blsRadius=1
Set to true (1)-scheme can be used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=1
Set to true (1)-ignore password checking.

SafeWord Template

Use this table when configuring an authentication scheme based on the scheme type
SafeWord. The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type

nType=Sm_Api_SchemeType_SafeWordServer
The scheme type SafeWord.

Description

pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 10.

Library

pszLib="smauthenigma"

The default library for this scheme type.

Parameter

pszParam=

Set to an empty string. Not applicable to this scheme.

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template?

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by
administrator?

blsUsedbyAdmin=1

Set to true (1)-scheme can be used to authenticate
administrators.

534 Programming Guide for C

Authentication Scheme Configuration

Information Type Value Assignment and Meaning

Save credentials? bAllowSaveCreds=0
Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS? bisRadius=1

Set to true (1)-scheme can be used with RADIUS agents.

Ignore password blgnorePwCheck=1
check? Set to true (1)-ignore password checking.
SAML Artifact Template

Use this table when configuring a SAML authentication scheme based on the profile
type artifact for communicating security assertions. With the artifact profile type, the
URL for retrieving the SAML assertion is referenced within the AssertionRetrievalURL
portion of the Parameter string.

The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_SAMLArtifact
The scheme type SAML Artifact.

Description pszDesc=description

The description of the authentication scheme.

Protection level nlLevel=value
A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme.
Default is 5.

Library pszLib="smauthsaml"

The default library for this scheme type.
Parameter pszParam=param

The following required parameters:

m Name. The name of the affiliate.

m RedirectMode. The way in which the SAML
Credentials Collector redirects to the target resource.
One of the following numeric values:

Chapter 4: Policy Management API Guidance 535

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

0. Meaning: 302 No Data.

1. Meaning: 302 Cookie Data.
2. Meaning: Server Redirect.
3. Meaning: Persist Attributes.

m SRCID. The 20-byte source ID for the site that
produces the SAML assertion. The ID is located at the
SAML producer's site in the properties file
AMAssertionGenerator.properties.

m AssertionRetrievalURL. The URL for obtaining the
assertion from the SAML assertion producer's site.

m Audience. The URI of the document that describes
the agreement between the portal and the affiliate.
This value is compared with the audience value
specified in the SAML assertion.

m Issuer. The SAML issuer specified in the assertion.

m AttributeXPath. A standard XPath query run against
the SAML assertion. The query obtains the data that
is substituted in a search specification that looks up a
user-for example:

//saml:AttributeValue/SM:/SMContent
/SM:Smlogin/SM:Username.text()

This query gets the text of the Username element.
m SAMLVersion. The SAML version in use: 1.0 or 1.1.

m RetrievalMethod. One of these values:
0. Meaning: Basic authentication.

1. Meaning: Client certificate authentication.

m Attribute. The search string for looking up a user in a
user directory of the specified type. Use a percent
sign (%) to indicate where the value returned from
the XPath query should be inserted. For example, if
you specify attribute LDAP:uid=%s, and user1 is
returned from the query, the search string used for
LDAP directories is uid=userl. At least one attribute
must be specified.

536 Programming Guide for C

Authentication Scheme Configuration

Information Type

Shared secret

Is template?

Is used by
administrator?

Save credentials?

Is RADIUS?

Ignore password
check?

SAML POST Template

Value Assignment and Meaning

Format of the parameter string is as follows. Separate
name/value pairs with semi-colons (;). The format
example includes LDAP and ODBC attributes:

Name=name;RedirectMode=0|1]|2;SRCID=srcid,
AssertionRetrievalURL=url;Audience=audience;
Issuer=issuer;AttributeXpath=XPathQuery;
SAMLVersion=1.0|1.1;RetrievalMethod=0|1;
attribute=LDAP:srchSpc;attribute=ODBC:srchSpc
pszSecret=secret

The password for the affiliate site.

bisTemplate=0

Set to false (0) to indicate that the scheme is not a
template. Any other value is ignored.

bisUsedbyAdmin=0

Set to false (0)-scheme is not used to authenticate
administrators.

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

bisRadius=0
Set to false (0)-scheme is not used with RADIUS agents.
blgnorePwCheck=1

Set to true (1)-ignore password checking.

Use this table when configuring a SAML authentication scheme based on the profile
type POST for communicating security assertions. With the POST profile type, the
generated SAML assertion is POSTed to the URL specified in the AssertionConsumerURL
portion of the Parameter string.

The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type

Scheme type

Description

Value Assignment and Meaning
nType=Sm_Api_SchemeType_SAMLPOST
The scheme type SAML POST.

pszDesc=description

The description of the authentication scheme.

Chapter 4: Policy Management API Guidance 537

Authentication Scheme Configuration

Information Type Value Assignment and Meaning

Protection level nlLevel=value

A value of 1 through 1000. The higher the number, the greater
degree of protection provided by the scheme. Default is 5.

Library pszLib="smauthsaml"

The default library for this scheme type.

Parameter pszParam=param

The following required parameters:
m Name. The name of the affiliate.
m SAMLProfile. The profile type: POST.

m SAMLVersion. The SAML version in use. The POST profile
requires version 1.1.

m RedirectMode. The way in which the SAML Credentials
Collector redirects to the target resource. One of the
following numeric values:

0. Meaning: 302 No Data.

1. Meaning: 302 Cookie Data.
2. Meaning: Server Redirect.
3. Meaning: Persist Attributes

m AssertionConsumerURL. The URL to be sent the
generated assertion.

m Audience. The URI of the document that describes the
agreement between the portal and the affiliate. This
value is compared with the audience value specified in
the SAML assertion.

m Issuer. The SAML issuer specified in the assertion.

538 Programming Guide for C

Authentication Scheme Configuration

Information Type

Parameter (con't)

Shared secret

Is template?

Is used by
administrator?

Save credentials?

Is RADIUS?

Ignore password
check?

Value Assignment and Meaning

m AttributeXPath. A standard XPath query run against the
SAML assertion. The query obtains the data that is
substituted in a search specification that looks up a
user-for example:

//saml:AttributeValue/SM:/SMContent
/SM:Smlogin/SM:Username.text()

This query gets the text of the Username element.

m attribute. The search string for looking up a user in a user
directory of the specified type. Use a percent sign (%) to
indicate where the value returned from the XPath query
should be inserted. For example, if you specify attribute
LDAP:uid=%s, and userl is returned from the query, the
search string used for LDAP directories is uid=userl. At
least one attribute must be specified.

Format of the parameter string is as follows. Separate
name/value pairs with semi-colons (;). The format example
includes LDAP and ODBC attributes:

Name=name;SAMLProfile=POST;
SAMLVersion=1.1;RedirectMode=0]|1]2;
AssertionConsumerURL=consumerUrl;
Audience=audience;lssuer=issuer;
AttributeXpath=XPathQuery;
attribute=LDAP:srchSpc;attribute=ODBC:srchSpc

pszSecret=
Set to an empty string. Not applicable to this scheme.
bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

bisUsedbyAdmin=0

Set to false (0)-scheme is not used to authenticate
administrators.

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

blsRadius=0
Set to false (0)-scheme is not used with RADIUS agents.
blgnorePwCheck=1

Set to true (1)-ignore password checking.

Chapter 4: Policy Management API Guidance 539

Authentication Scheme Configuration

SAML 2.0 Template

Use this table when configuring a SAML authentication scheme based on the SAML 2.0
scheme type. A Service Provider uses this authentication scheme to transparently
validate a user based on the information in a SAML 2.0 assertion. This transparent
validation allows functionality such as single sign-on and single logout.

When you configure a SAML 2.0 authentication scheme, you also define metadata
properties for the associated Identity Provider-that is, the Identity Provider that supplies
the assertion to the Service Provider.

The properties of the Identity Provider are stored with the authentication scheme
object as a separate set of properties. As a result, two structures are used to configure a
SAML 2.0 authentication scheme:

m The structure fields referenced in the following table are in
Sm_PolicyApi_Scheme_t.

m The metadata properties for the associated Identity Provider are defined through
Sm_PolicyApi_SAMLProviderProp_t.

Information Type Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_SAML2
The scheme type SAML 2.0.

Description pszDesc=description

The description of the authentication scheme.

Protection level nlLevel=value

A value of 1 through 1000. The higher the number, the greater
degree of protection provided by the scheme. Default is 5.

Library pszLib="smauthsaml"
The default library for this scheme type.

Parameter pszParam=
Set to an empty string. SiteMinder assigns a parameter value.

The parameter is a reference to the SAML 2.0 metadata
properties for the associated Identity Provider. The properties
are defined through Sm_PolicyApi_SAMLProviderProp_t.

Shared secret pszSecret=

Set to an empty string. Not applicable to this scheme.

540 Programming Guide for C

Authentication Scheme Configuration

Information Type Value Assignment and Meaning

Is template? bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=0

administrator? Set to false (0)-scheme is not used to authenticate
administrators.

Save credentials? bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS? bisRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password blgnorePwCheck=1

check? Set to true (1)-ignore password checking.

More Information:

Custom Agents and Single Sign-On (see page 43)

SecurID HTML Form Template

Use this table when configuring an authentication scheme based on the scheme type
SecurlD HTML Form. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_ACEServerHTMLForm
The scheme type SecurlD HTML Form.

Description pszDesc=description

The description of the authentication scheme.

Protection level nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 15.

Library pszLib="smauthacehtm|"

The default library for this scheme type.

Chapter 4: Policy Management API Guidance 541

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Parameter

pszParam=param

A string containing the name of the attribute that contains
the ACE IDs, the Web server where the forms credential
collector (FCC) is installed, and the target executable file
required for processing SecurlD authentication with forms
support. It also specifies whether an SSL connection is
required. Format:

attr;https://server/target

Note: The "s" in "https" is optional, depending on whether
you want an SSL connection.

The following example uses the default for processing SecurlD
authentication with forms support:

ace_id;https://my.server.com/
siteminderagent/forms/smpwservices.fcc

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template?

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by
administrator?

bisUsedbyAdmin=0

Set to false (0)-scheme is not used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

blsRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=1

Set to true (1)-ignore password checking.

542 Programming Guide for C

Authentication Scheme Configuration

SecurID Template

Use this table when configuring an authentication scheme based on the scheme type
SecurlD. The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_ACEServer
The scheme type SecurlD.
Description pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 15.

Library pszLib="smauthace"
The default library for this scheme type.
Parameter pszParam=param

A string containing the attribute in the authentication user
directory that contains the ACE Server user ID.

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template? blsTemplate=0
Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=1

administrator?

Set to true (1)-scheme can be used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

bisRadius=1
Set to true (1)-scheme can be used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=1

Set to true (1)-ignore password checking.

Chapter 4: Policy Management API Guidance 543

Authentication Scheme Configuration

smauthetsso authentication scheme

This authentication scheme is similar to the SiteMinder X.509 certification scheme, but
with an eSS0 cookie as the authentication credential instead of an X.509 credential.

If this scheme is configured for either cookieorbasic or cookieorforms mode, and both
an eSS0 cookie and login name and password credentials are passed to it, the eSSO
cookie is ignored, and the login name and password are used to authenticate the user to
SiteMinder.

When the eSSO cookie is the only credential, the authentication scheme uses the
ETWAS API to connect to the configured eSSO Policy Server to validate the cookie and
extract the user Distinguished Name (DN) from it.

Use this table when configuring an smauthetsso authentication scheme, which is based
on the Custom scheme type. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type Value Assignment and Meaning

Scheme type nType=Sm_Api_SchemeType_Custom

Uses the Custom scheme type

Description pszDesc=description

The description of the authentication scheme.

Protection level nlLevel=value

A value of 0 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library pszLib="smauthetsso"

The name of the library of this authentication scheme.

544 Programming Guide for C

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Parameter

pszParam=param

An ordered set of tokens, separated by semi-colons:
<Mode>[; <Target>]; <Admin>; <eTPS_Host>

You can add spaces to make the string easier to read.

<Mode> specifies the type of credentials that the
authenticaion scheme will accept. The following values are
possible:

m cookie -- Only eTrust SSO Cookies are acceptable

m cookieorbasic -- If an eTrust SSO Cookie is not provided, a
login name and password are requested by using Basic
Authentication.

m cookieorforms -- If an eTrust SSO Cookie is not provided,
a login name and password are requested by using Forms
Authentication.

<Target> is valid only with cookieorforms mode. This is
identical to the Target field for standard HTML Forms
Authentication Scheme.

<Admin> specifies the login ID of an administrator for the
eTrust Policy Server. The password for this administrator has
been specified in the Shared Secret field.

<eTPO_Host> specifies the name of the amchine on which the
Policy Server is installed.

SiteMinder will authenticate itself as <Admin> to the eTrust
Policy Server on the <eTPS_Host> so that SiteMinder can
request validation of eTrust SSO cookies.

Examples:

pszParam="cookie; SMPS_sso; myserver.myco.com"
pszParam="cookieorforms; /siteminderagent/forms/login.fcc;
SMPS_sso; myserver.myco.com"

Shared secret

pszSecret=secret

The password of the eTrust Policy Server administrator
named in the Paramter field.

Is template?

blsTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Chapter 4: Policy Management API Guidance 545

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Is used by
administrator?

bisUsedbyAdmin=flag

Set to true (1) to specify that the scheme can be used to
authenticate administrators, or to false (0) to specify that the
scheme cannot be used to authenticate administrators.
Default is 0.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

bisRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

TeleID Template

Use this table when configuring an authentication scheme based on the scheme type
TelelD. The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type

nType=Sm_Api_SchemeType_Encotone
The scheme type TelelD.

Description

pszDesc=description

The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 15.

Library

pszLib="smauthencotone"

The default library for this scheme type.

Parameter

pszParam=

Set to an empty string. Not applicable to this scheme.

Shared secret

pszSecret=seed

The encryption seed. SiteMinder uses this value as an
encryption seed for initializing hardware tokens.

546 Programming Guide for C

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Is template?

blsTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by
administrator?

bisUsedbyAdmin=1

Set to true (1)-scheme can be used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

bisRadius=1
Set to true (1)-scheme can be used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=1

Set to true (1)-ignore password checking.

Windows Authentication Template

Use this table when configuring an Integrated Windows Authentication scheme based
on the scheme type Windows Authentication (previously known as NTLM). This scheme
type is used to authenticate against WinNT or Active Directory user stores.

An Active Directory can be configured to run in mixed mode or native mode. An Active
Directory supports WinNT style authentication when running in mixed mode. In native
mode, an Active Directory supports only LDAP style lookups.

This authentication scheme supports either mixed mode or native mode.

The structure fields referenced in the table are in Sm_PolicyApi_Scheme_t.

Information Type

Value Assignment and Meaning

Scheme type

nType=Sm_Api_SchemeType_NTLM
The scheme type Windows Authentication (NTLM).

Description

pszDesc=description

The description of the authentication scheme.

Chapter 4: Policy Management API Guidance 547

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library

pszLib="smauthntlm"

The default library for this scheme type.

Parameter

pszParam=param
The value of pszParam determines the style of authentication
to perform for this scheme:

NTLM authentication (for WinNT or Active Directory running
in mixed mode)

Format:

iis-web-server-url/path-to-ntc-file

In the format, iis-web-server-url is the name of the IIS web
server that is the target of the redirection, and path-to-ntc-file
is the location of the .ntc file that collects the WinNT
credentials.

For example:

http://myiiswebserver.mycompany.com/
siteminderagent/ntim/creds.ntc

A SiteMinder Web Agent must be installed on the specified
server. By default, the Web Agent installation creates a virtual
directory for NTLM credential collection.

Windows Authentication (for Active Directory running in
native mode)

With this authentication style, pszParam has an LDAP filter
added to the beginning of the redirection URL. The filter and
URL are separated by a semi-colon (;). For example:
cn=%{UID},ou=Users,ou=USA,dc=%{DOMAIN},
dc=mycompany,dc=com;http://
myiiswebserver.mycompany.com/
siteminderagent/ntlm/creds.ntc

SiteMinder uses the LDAP filter to map credentials received
from the browser/Web Agent to an LDAP DN or search filter.

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template?

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

548 Programming Guide for C

Authentication Scheme Configuration

Information Type Value Assignment and Meaning
Is used by bisUsedbyAdmin=0
administrator? Set to false (0)-scheme is not used to authenticate

administrators.

Save credentials? bAllowSaveCreds=0
Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS? bisRadius=0

Set to false (0)-scheme is not used with RADIUS agents.

Ignore password blgnorePwCheck=flag

check? For WinNT and for Active Directory running in mixed mode,

this property must be true (1)-ignore password checking.

For Active Directory running in native mode, set to true (1) to
ignore password checking, or false (0) to check passwords.
Default is 0.

WS-Federation Template

Use this table when configuring a WSFED authentication scheme based on the WSFED
scheme type. A Resource Partner uses this authentication scheme to transparently
validate a user based on the information in a SAML 1.0 assertion. This transparent
validation allows functionality such as single sign-on and single logout.

When you configure a WSFED authentication scheme, you also define metadata
properties for the associated Account Partner, that is, the Account Partner that supplies
the assertion to the Resource Partner.

The properties of the Account Partner are stored with the authentication scheme object
as a separate set of properties. As a result, two structures are used to configure a
WSFED authentication scheme:

m The structure fields referenced in the following table are in
Sm_PolicyApi_Scheme_t.

m The metadata properties for the associated Account Partner are defined through
Sm_PolicyApi_WSFEDProviderProp_t.

Information Type Value Assignment and Meaning
Scheme type nType=Sm_Api_SchemeType_WSFED
The scheme type WSFED.

Chapter 4: Policy Management API Guidance 549

Authentication Scheme Configuration

Information Type

Value Assignment and Meaning

Description

pszDesc=description
The description of the authentication scheme.

Protection level

nlLevel=value

A value of 1 through 1000. The higher the number, the greater
degree of protection provided by the scheme. Default is 5.

Library pszLib="smauthsaml"
The default library for this scheme type.
Parameter pszParam=""

Set to an empty string. SiteMinder assigns a parameter value.

The parameter is a reference to the WSFED metadata
properties for the associated Account Partner. The properties
are defined through Sm_PolicyApi_WSFEDProviderProp_t.

Shared secret

pszSecret=

Set to an empty string. Not applicable to this scheme.

Is template? bisTemplate=0
Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

Is used by bisUsedbyAdmin=0

administrator?

Set to false (0)-scheme is not used to authenticate
administrators.

Save credentials?

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Is RADIUS?

blsRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

Ignore password
check?

blgnorePwCheck=1

Set to true (1)-ignore password checking.

More Information:

WS-Federation (see page 124)

550 Programming Guide for C

Authentication Scheme Configuration

X.509 Client Cert and Basic Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate and Basic. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Scheme type

Description

Protection level

Library

Parameter

Shared secret

Is template?

Is used by
administrator?

Save credentials?

Value Assignment and Meaning

nType=
Sm_Api_SchemeType_X509ClientCertAndBasic

The scheme type X.509 Client Certificate and Basic.

pszDesc=description

The description of the authentication scheme.

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 15.

pszLib="smauthcert"

The default library for this scheme type.

pszParam=param

A string containing the domain or IP address of the SSL server
and the name and path of the SSL Credentials Collector (SCC).
The server redirects a user's X.509 certificate over an SSL
connection. Format:

https://server:port/SCC?cert+basic
The following example uses the default SCC:

https://my.server.com:80/siteminderagent/
cert/smgetcred.scc?cert+basic

pszSecret=

Set to an empty string. Not applicable to this scheme.

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

blsUsedbyAdmin=0

Set to false (0)-scheme is not used to authenticate
administrators.

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

Chapter 4: Policy Management API Guidance 551

Authentication Scheme Configuration

Information Type

Is RADIUS?

Ignore password
check?

Value Assignment and Meaning

blsRadius=0
Set to false (0)-scheme is not used with RADIUS agents.

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

X.509 Client Cert and Form Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate and Form. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Scheme type

Description

Protection level

Library

Parameter

Shared secret

Value Assignment and Meaning

nType=
Sm_Api_SchemeType_X509ClientCertAndForm

The scheme type X.509 Client Certificate and HTML Form.

pszDesc=description

The description of the authentication scheme.

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 15.

pszLib="smauthcert"

The default library for this scheme type.

pszParam=param

A string containing the domain or IP address of the SSL server
and the name and path of the forms credentials collector
(FCC). The server redirects a user's X.509 certificate over an
SSL connection. Format:

https://server:port/FCC?cert+forms
The following example uses the default FCC:

https://my.server.com:80/siteminderagent/
certoptional/forms/login.fcc?cert+forms

pszSecret=

Set to an empty string. Not applicable to this scheme.

552 Programming Guide for C

Authentication Scheme Configuration

Information Type

Is template?

Is used by
administrator?

Save credentials?

Is RADIUS?

Ignore password
check?

X.509 Client Cert or Basic Template

Value Assignment and Meaning

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

bisUsedbyAdmin=0

Set to O-scheme is not used to authenticate administrators.
bAllowSaveCreds=0

Set to 0 to indicate that user credentials won't be saved.
blsRadius=0

Set to 0-scheme is not used with RADIUS agents.

blgnorePwCheck=flag

Set to 1 to ignore password checking, or 0 to check
passwords. Default is 0.

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate or Basic. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Scheme type

Description

Protection level

Library

Value Assignment and Meaning

nType=
Sm_Api_SchemeType_X509ClientCertOrBasic

The scheme type X.509 Client Certificate or Basic.

pszDesc=description

The description of the authentication scheme.

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

pszLib="smauthcert"

The default library for this scheme type.

Chapter 4: Policy Management API Guidance 553

Authentication Scheme Configuration

Information Type

Parameter

Shared secret

Is template?

Is used by
administrator?

Save credentials?

Is RADIUS?

Ignore password
check?

Value Assignment and Meaning

pszParam=param

A string containing the following information:

m Server for establishing an SSL connection. This server
redirects a user's X.509 certificate over an SSL
connection.

= Name and path of the SSL Credentials Collector (SSC).

If you are using basic authentication over SSL, also provide the

following two pieces of information:

m The fully qualified name of the SSL server used for
establishing an SSL connection for basic authentication.
= Name and path of the SSL Credentials Collector (SSC).

https://SSLserver:port/SCC?certorbasic;
[https://BasicServer/SCC]

The following example uses the default SCC values:

https://my.SSLserver.com:80/siteminderagent/
certoptional/smgetcred.scc?certorbasic;
https://my.BasicServer.com/
siteminderagent/nocert/smgetcred.scc

pszSecret=

Set to an empty string. Not applicable to this scheme.

bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

bisUsedbyAdmin=0

Set to false (0)-scheme is not used to authenticate
administrators.

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

bisRadius=0

Set to false (0)-scheme is not used with RADIUS agents.

blgnorePwCheck=flag

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

554 Programming Guide for C

Authentication Scheme Configuration

X.509 Client Cert or Form Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate or Form. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Scheme type

Description

Protection level

Library

Parameter

Value Assignment and Meaning

nType=
Sm_Api_SchemeType_X509ClientCertOrForm
The scheme type X.509 Client Certificate or HTML Form.

pszDesc=description

The description of the authentication scheme.

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

pszLib="smauthcertorform"

The default library for this scheme type.

CpszParam=param
A string containing the following information:
m Server for establishing an SSL connection. This server

redirects a user's X.509 certificate over an SSL
connection.

m Name and path of the SSL and forms credentials collector
(SFCC).

If you are using an alternate forms-based authentication over

SSL, also provide the following two pieces of information:

m The fully qualified name of the SSL server used for
establishing an SSL connection for authentication.

m Name and path of the Forms Credentials Collector (FCC).

https://SSLserver:port/SFCC?certorform;
[https://BasicServer/FCC)

The following example uses the default SCC values:

https://my.SSLserver.com:80/siteminderagent/
certoptional/forms/login.sfcc?certorform;
https://my.BasicServer.com/
siteminderagent/forms/login.fcc

Chapter 4: Policy Management API Guidance 555

Authentication Scheme Configuration

Information Type

Shared secret

Is template?

Is used by
administrator?
Save credentials?

Is RADIUS?

Ignore password
check?

X.509 Client Cert Template

Value Assignment and Meaning

pszSecret=
Set to an empty string. Not applicable to this scheme.

blsTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

bisUsedbyAdmin=0

Set to 0-scheme is not used to authenticate administrators.
bAllowSaveCreds=0

Set to O to indicate that user credentials won't be saved.
blsRadius=0

Set to 0-scheme is not used with RADIUS agents.

blgnorePwCheck=flag

Set to 1 to ignore password checking, or 0 to check
passwords. Default is 0.

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate. The structure fields referenced in the table are in
Sm_PolicyApi_Scheme_t.

Information Type

Scheme type

Description

Protection level

Library

Value Assignment and Meaning

nType=Sm_Api_SchemeType_X509ClientCert
The scheme type X.509 Client Certificate.

pszDesc=description

The description of the authentication scheme.

nlLevel=value

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

pszLib="smauthcert"

The default library for this scheme type.

556 Programming Guide for C

Authentication Scheme Configuration

Information Type

Parameter

Shared secret

Is template?

Is used by
administrator?

Save credentials?

Is RADIUS?

Ignore password
check?

Value Assignment and Meaning

pszParam=param

A string containing the domain or IP address of the server
responsible for establishing the SSL connection and the name
and path of the SSL Credentials Collector (SCC). The server
redirects a user's X.509 certificate over an SSL connection.
Format:

https://server/SCC?cert
The following example uses the default SCC value:

https://my.server.com/siteminderagent/
cert/smgetcred.scc?cert

pszSecret=""
Set to an empty string. Not applicable to this scheme.
bisTemplate=0

Set to false (0) to indicate that the scheme is not a template.
Any other value is ignored.

bisUsedbyAdmin=0

Set to false (0)-scheme is not used to authenticate
administrators.

bAllowSaveCreds=0

Set to false (0) to indicate that user credentials won't be
saved.

blsRadius=0
Set to false (0)-scheme is not used with RADIUS agents.
blgnorePwCheck=1

Set to true (1)-ignore password checking.

Chapter 4: Policy Management API Guidance 557

Chapter 5: Customizing the Policy Server

The following APIs allow you to develop custom extensions to the Policy Server:

Authentication API

m Authorization API

Event API

Directory API

For example, you can create the following:

®m An active policy that provides dynamic authorization based on external business
logic

®m An active response that returns values from external data sources
®m An active rule that provides dynamic authorization based on external business logic
m A custom authentication scheme

m An event handler that captures events issued by the Policy Server,

A user directory from data in a custom namespace

This section contains the following topics:

Work with Authentication and Authorization APls (see page 559)
Integration with the Web Agent (see page 567)

Work with Authentication and Authorization APIs

The Policy server exposes a number of hooks that can be used to perform custom
authentication and authorization tasks. In addition, hooks can be used to enable
delivery of custom data to applications that are protected by SiteMinder Agents. Using
these hooks enables tight integration between SiteMinder and the existing
infrastructure.

Chapter 5: Customizing the Policy Server 559

Work with Authentication and Authorization APIs

Authentication Hook

To use this hook, you must build a custom authentication scheme using the
Authentication API. A custom authentication scheme can assume control over user
disambiguation, authentication, and impersonation issues. A custom authentication
scheme can accept or reject a user’s authentication attempt, and can specify a numeric
reason and a text message for doing so. The numeric reason and the text message are
made available to the application so that the application can take the appropriate

action. This enables the application to maintain communication with the authentication
scheme until the user is finally authenticated.

Authorization Hook

To use this hook, you must build a custom authorization module using the Authorization
API. A custom authorization module controls whether or not SiteMinder rules and
policies allow the user to access a resource.

Custom Data Hook

To use this hook, you must build a custom module that obtains data from an external
data source and returns this data to the Policy Server. The Policy Server then delivers

the data to the application protected by SiteMinder. SiteMinder does not interpret this
data in any way.

SiteMinder Events

The Policy Server defines a number of events that may be triggered after each
authentication and authorization. SiteMinder policies are used to catch these events
and return appropriate data to applications protected by SiteMinder Agents. Events can

be used to implement application workflow. There are two types of events:
authentication and authorization.

560 Programming Guide for C

Work with Authentication and Authorization APIs

Authentication Events

Authorization Events

The Policy Server fires an authentication event based on the outcome of the
authentication. Authentication events include:

m OnAuthAccept

m OnAuthReject

m OnAuthChallenge
m OnAuthAttempt

By using proper authentication events, responses can be accumulated and delivered to
the application immediately after a user is authenticated.

The Policy Server fires an authorization event based on the outcome of the
authorization. Authorization events include:

® OnAccessAccept
® OnAccessReject

By using proper authorization events, responses can be accumulated and delivered to
the application immediately after a user is authorized to access a resource.

Saving Data Between Module Invocations

When the Policy Server makes calls to custom modules, it may be convenient for these
modules to communicate some request-specific information between themselves.
Custom modules built with the Authentication, Authorization or Directory APIs can
preserve state between module invocations. To preserve state, use the memory
management hooks provided in the Sm_Api_Context_t structure (defined in SmApi.h).
State has request-only scope and is limited to a single instance of a process; that is, a
custom module running in the context of the authentication server cannot exchange
state with a module running in the context of the authorization server.

Chapter 5: Customizing the Policy Server 561

Work with Authentication and Authorization APIs

Well-known User Attributes

Sometimes it may be necessary to return data that describes a user property that is not
stored in the user profile. Typically, this data is some kind of dynamic information that is
maintained by and known to SiteMinder. The dynamic information is provided using
well-known or pseudo user attributes. These attributes can be accessed by the standard
response mechanism or by a custom module if the attributes represent standard user
attributes. These attributes begin with SM_ and are listed here:

SM_USERNAME

For an authenticated user, this is the user DN as disambiguated by SiteMinder. For an
unauthenticated user, this is the user ID as specified by the user in the login attempt.

SM_USERIMPERSONATORNAME

If the authentication scheme performs impersonation, this is the user DN that is
authenticated by SiteMinder.

SM_USERLOGINNAME
This is the user ID as specified by the user in the login attempt.
SM_USERLOGINFAILURESCOUNT

The number of attempted logins that failed, expressed as an int value. One of the
password policy state attributes.

SM_USERIPADDRESS

The user’s IP address at the time of authentication or authorization.

SM_USERPATH

For an authenticated user, this is a string that represents the directory namespace and

directory server (both as specified in the user directory definition), and user DN (as
disambiguated by SiteMinder). For example:

“LDAP://123.123.0.1/uid=scarter, ou=people, 0=airius.com”

For an unauthenticated user, this is the same as SM_USERNAME.

562 Programming Guide for C

Work with Authentication and Authorization APIs

SM_USERPREVIOUSLOGINTIME

Time of the user’s previous login, expressed as a GMT time_t value. One of the
password policy state attributes. This value is read-only (get); it cannot be set. The value
represents the time since the Policy Server system epoch time, which is 00:00:00 UTC,
January 1, 1970. (If a Mac OS machine is running as a client, its epoch time is 00:00:00,
January 1, 1904, local time.) One of the password policy state attributes.

SM_USERPASSWORD

This is the password as specified by the user in the login attempt. The value is returned
only on authentication, not on authorization.

SM_TRANSACTIONID
The transaction ID that is generated by the agent.
SM_USERDISABLEDTIME

Time that the user has been disabled, expressed as a GMT time_t value. One of the
password policy state attributes. This value is read-only (get); it cannot be set. The value
represents the time since the Policy Server system epoch time, which is 00:00:00 UTC,
January 1, 1970. (If a Mac OS machine is running as a client, its epoch time is 00:00:00,
January 1, 1904, local time.) One of the password policy state attributes.

SM_USERLASTPWCHANGETIME

Time that the user last changed the password, expressed as a GMT time_t value. The
value represents the time since the Policy Server system epoch time, which is 00:00:00
UTC, January 1, 1970. (If a Mac OS machine is running as a client, its epoch time is
00:00:00, January 1, 1904, local time.) One of the password policy state attributes.

Note: If you set this value, and the associated password is reset outside of SiteMinder,
the password policy preventing password reuse may not work as expected

SM_USERPASSWORDHISTORY

One of the password policy state attributes. Contains all the password change
information for up to 32 entries, expressed as a string value. Includes encrypted,
structured, binary information. The Password State API does not expose any detail
about this structure to the external applications.

Note: You can "set" the value of this attribute only by using an empty string to clear the
entire history. No other history changes are allowed. You cannot add or remove only
one history entry. There is no read (get) for this attribute.

Chapter 5: Customizing the Policy Server 563

Work with Authentication and Authorization APIs

SM_USERSESSIONSPEC
The user’s session specification.
SM_USERSESSIONID

The session ID of a user who has already been authenticated. This is the session ID that
will be assigned to the user upon successful authentication.

SM_USERSESSIONIP

The IP address that was used during the original user authentication (upon
establishment of a session).

SM_USERSESSIONUNIVID

The user’s universal ID. If no universal ID directory attribute is specified in the user
directory definition, this defaults to the user’s DN.

SM_USERSESSIONDIRNAME

The name of the user directory that the Policy Server is configured to use.
SM_USERSESSIONDIROID

The object ID of the user directory that the Policy server is configured to use.
SM_USERSESSIONTYPE

The user’s session type. One of the following:
m 2-session

m 1-identity
SM_USERLASTLOGINTIME

The user’s last login time, expressed as a GMT time_t value. Available only during
authentication with applicable password services policies. One of the password policy
state attributes.

SM_USERGROUPS

Groups to which the user belongs. If the user belongs to a nested group, this attribute
contains the group furthest down in the hierarchy. For all nested groups to which the
user belongs, use SM_USERNESTEDGROUPS.

For example, if user JSmith belongs to the group Accounts Payable, which is contained in
group Accounting, SM_USERGROUPS contains Accounts Payable. If you want both
Accounting and Accounts Payable, use SM_USERNESTEDGROUPS.

564 Programming Guide for C

Work with Authentication and Authorization APIs

SM_USERNESTEDGROUPS

Nested groups to which the user belongs. For only the group furthest down in the
hierarchy, use SM_USERGROUPS.

For example, if user JSmith belongs to the group Accounts Payable, which is contained in
group Accounting, SM_USERNESTEDGROUPS contains Accounting and Accounts
Payable. If you want only Accounting, use SM_USERGROUPS.

SM_USERSCHEMAATTRIBUTES

User attributes associated with the DN, or properties associated with the user. If the
user directory is a SQL database, then SM_USERSCHEMAATTRIBUTES holds the names of
the columns in the table where user data is stored. For example, using the
SmSampleUsers schema, SM_USERSCHEMAATTRIBUTES holds the names of the
columns in the SmUser table.

SM_USERPOLICIES

These contain the names of the policies that authorize the user for a resource.
For example, suppose that to purchase an item, a user must be associated
with the Buyer policy. When the user is successfully authorized to buy an item,
SM_USERPOLICIES will contain Buyer.

SM_USERPOLICIES will only contain a value when the action for the associated rule is set
to Authorization events and the specified event is OnAccessAccept.

SM_USERPRIVS

When a user is authenticated or is authorized for a resource, SM_USERPRIVS holds all of
the response attributes for all policies that apply to that user, in all policy domains.

SM_USERREALMPRIVS

When a user is authenticated or is authorized for a resource under a realm,
SM_USERREALMPRIVS holds all the response attributes for all rules under that realm.

For example, suppose that there is a realm called Equipment Purchasing. Under that
realm, there is a CheckCredit rule. Associated with the CheckCredit rule is a response
that returns the buyer’s credit limit, such as limit = $15000, as a response attribute. If
the buyer attempts to purchase equipment worth $5000, the CheckCredit rule fires.
SM_USERREALMPRIVS would contain all of the response attributes for all of the rules
under the Equipment Purchasing realm.

Chapter 5: Customizing the Policy Server 565

Work with Authentication and Authorization APIs

SM_USERDISABLEDSTATE

Returns a decimal number that represents a bit mask of reasons that a user is disabled.
The bits are defined in SmApi.h under the Sm_Api_DisabledReason_t data structure.

For example, a user may be disabled as a result of inactivity,
Sm_Api_Disabled_Inactivity. In Sm_Api_DisabledReason_t, the reason
Sm_Api_Disabled_Inactivity, corresponds to the value 0x00000004. So, in this case,
SM_USERDISABLEDSTATE is 4..

NTUSERNAME

Returns the username portion of the fully qualified WinNT name—for example, for
mydomain\myname, myname is returned.

NTFULLUSERNAME

Returns the fully qualified WinNT name.

Retrieving a Password

Some applications require knowledge of user credentials. SiteMinder can make the user
password available to the application by returning a well-known attribute
SM_USERPASSWORD. This attribute is only available after a successful authentication
through the OnAuthAccept event.

The following example demonstrates retrieving a password.

char 1pszSmPassword(128);
int nBytes =

lpUserContext->fGetProp(lpUserContext->1pParam,
““SM_USERPASSWORD"”,
sizeof (lpszSmPassword),
lpszSmPassword) ;

566 Programming Guide for C

Integration with the Web Agent

Integration with the Web Adgent

The Policy Server works in tandem with the Web Agent. While it is authenticating and
authorizing, the Policy server sends certain information about the outcome of the
operation to the Web Agent. The Web Agent makes this information available to the
application as follows:

Authentication events without a redirect:

m The user message is exposed as the HTTP_SM_USRMSG header variable.
m The reason code is exposed as the HTTP_SM_AUTHREASON header variable.

Authentication events with a redirect:
m The user’s message is stored in the SMUSERMSG cookie as SMUSRMSG=<text>.

m The reason code is appended to the redirect URL as ?SMAUTHREASON=<reason
code>

If the reason code is included in the following form:
SMAUTHREASON=S$SSMAUTHREASONSS

the value is used in the authentication reason field for SM_AGENTAPI_LOGIN, along
with the username and password.

m The redirect text is stored in the SMTEXT cookie as SMTEXT=<text>.

Authorization events without a redirect:

® No reason code is available.

Authorization events with a redirect:
m The reason code is stored in the SMREASON cookie as SMREASON=<reason code>.
m The redirect text is stored in the SMTEXT cookie as SMTEXT=<text>.

Chapter 5: Customizing the Policy Server 567

Chapter 6: Context Structures

Thi

Sm

s section contains the following topics:

Api_AppSpecificContext t (see page 569)

Sm

Api_Context t (see page 572)

Sm

Api_RequestContext t (see page 574)

Sm

Api_TunnelContext t (see page 575)

Sm

Api_UserContext t (see page 576)

Sm

AuthApi_UserCredentials_t (see page 582)

Sm_Api_AppSpecificContext_t

This structure contains shared memory information.

Syntax

The syntax of this structure is:

typedef struct

{

void* pHandle;

Sm_Api GetBufferFunc fGetBuffer;

Sm_Api AllocBufferFunc fAllocBuffer;
Sm_Api FreeBufferFunc fFreeBuffer;
Sm_Api GetBufferSizefunc fGetBufferSize;

} Sm Api_ AppSpecificContext t;

Field Description

pHandle A handle to be passed, required by memory

management functions. This handle is obtained from the
pAppSpecific field of Sm_Api_Context_t.

fGetBuffer Function that returns a pointer to the previously

allocated request-specific memory or NULL if no memory
was allocated.

pHandle is the function’s only parameter.

Chapter 6: Context Structures 569

Sm_Api_AppSpecificContext_t

Field

Description

fAllocBuffer

Function that allocates request-specific memory and
returns a pointer to the allocated buffer. It returns NULL
if the buffer has already been allocated or no memory is
available.

Parameters are pHandle and an int specifying the size of
the buffer.

fFreeBuffer

Function that releases any request-specific memory
associated with the passed pHandle argument. No value
is returned.

fGetBufferSize

Function that retrieves the size of the buffer.

570 Programming Guide for C

Sm_Api_AppSpecificContext_t

Function Declarations

In structure Sm_Api_AppSpecificContext_t, the functions fGetBuffer, fAllocBuffer,
fFreeBuffer, and fGetBufferSize are declared in SmApi.h as follows:

fGetBuffer
typedef void* (SM_EXTERN *Sm Api GetBufferFunc)
(const void *pHandle);

fAllocBuffer
typedef void* (SM_EXTERN *Sm Api AllocBufferFunc)
(const void *pHandle, const int nSize);

fFreeBuffer
typedef void (SM EXTERN *Sm Api FreeBufferFunc)
(const void *pHandle);

fGetBufferSize
typedef int (SM EXTERN *Sm Api GetBufferSizeFunc)
(const void *pHandle);

Example

// Allocate 64 bytes

char* pBuffer = (char*) lpApiContext->pAppSpecific->fAllocBuffer
(lpApiContext->pAppSpecific->pHandle, 64);

strcpy (pBuffer, "id=5");

// Use it somewhere else
char id[20];
char* pBuffer = (char*) 1pApiContext->pAppSpecific->fGetBuffer
(lpApiContext->pAppSpecific->pHandle);
if (pBuffer != NULL)
{
strcpy (id, pBuffer);

//Free the memory when done

(char*) 1pApiContext->pAppSpecific->fFreeBuffer
(lpApiContext->pAppSpecific->pHandle);

Chapter 6: Context Structures 571

Sm_Api_Context_t

Sm_Api_Context_t
This structure contains general APl information.

Syntax

typedef struct
{

int nVersion;

Sm_Api_LogFunc fLog;

Sm_Api_TraceFunc fTrace;

Sm_Api_ErrorFunc fError;

Sm Api AppSpecificContext t* pAppSpecific;
} Sm Api Context t;

Field Description

nVersion Version number of the API being used. Possible values:
m Sm_Api_Version_V3
m Sm_Api_Version_V4
m Sm_Api_Version_V4_1

Version constants are defined in SmApi.h.

flog Function for accessing the SiteMinder logging utility.
SiteMinder must be running with logging enabled.

The calling syntax for this function is:
char* |pszMessage = "Log this text";
IpApiContext->fLog (IpszMessage);

fTrace Function for accessing the SiteMinder trace utility.
SiteMinder must be running with tracing enabled.

The calling syntax for this function is:

char* IpszCheckpoint = "MyLib";

char* IpszTraceMessage = "Trace text";

IpApiContext->fTrace (IpszCheckpoint,
IpszTraceMessage);

fError Function for accessing the SiteMinder error utility.
SiteMinder must be running with logging enabled.

The calling syntax for this function is:
char* IpszMessage = "Log this Error text";
IpApiContext->fError (IpszMessage);

572 Programming Guide for C

Sm_Api_Context_t

Field Description

pAppSpecific The pAppSpecific pointer has access to the methods in
the Sm_Api_AppSpecificContext_t structure. These
methods allocate, delete, and release request-specific
memory. This memory persists during the entire
processing of a single agent request and is local to each
server process such as authentication and authorization
daemons.

There is no limit as to the number of times memory can
be allocated and released by a module. Once a request is
processed, memory is released automatically.

Function Declarations

In structure Sm_Api_Context_t, the functions fLog, fTrace, and fError are declared in
SmApi.h as follows:

fLog
/* string to log (null-terminated) */
typedef void (SM EXTERN *Sm Api LogFunc) (const char* lpszBuffer);

fTrace
/* string to log (null-terminated) */
typedef void (SM EXTERN *Sm Api TraceFunc)
(const char* 1pszCheckpoint, const char* 1lpszBuffer);

fError

/* string to log (null-terminated) */

typedef void (SM EXTERN *Sm Api ErrorFunc)
(const char* 1lpszBuffer);

Chapter 6: Context Structures 573

Sm_Api_RequestContext_t

Sm_Api_RequestContext_t

Contains information about the request being made.

Syntax

typedef struct

{
char* lpszServer;
char* lpszResource;
char* lpszAction;

} Sm_Api_ RequestContext_t;

Field Description

IpszServer Server part of the user access request. For example, if
the user accesses http://www.server.com/index.html,
the server is www.server.com.

IpszResource Resource part of the user access request. For example, if
the user accesses http://www.server.com/index.html,
the resource is /index.html.

IpszAction The action as requested by the user. For example, the
typical action when accessing Web resources is a GET.

574 Programming Guide for C

Sm_Api_TunnelContext_t

Sm_Api_TunnelContext_t

Holds information passed from the Tunnel Agent.

Syntax

typedef struct

{
char* lpszClientIp;
char* lpszTransactionId;
char* lpszParameter;

} Sm Api TunnelContext t;

Field Description

IpszClientIP The IP Address of the Tunnel Agent making the tunnel
calls.

IpszTransactionld (Optional) The ID that the agent uses to associate

application activity with security activity. The Policy
Server logs this ID.

lpszParameter Arbitrary string parameter passed from the Tunnel
Agent. On the Tunnel Agent side, this information is
passed in lpszParameter in
Sm_AgentApi_TunnelServiceRequest_t.

Chapter 6: Context Structures 575

Sm_Api_UserContext_t

Sm_Api_UserContext_t

Contains information about the user.

Syntax

typedef struct
{

unsigned char bIsUserContext;

char* lpszUserName;
char* lpszUserPath;
char* lpszDirPath;
void* 1pReservedl;
char* 1lpszDirServer;

char* 1lpszDirNamespace;

char* 1lpszSessionld;

Sm_Api_GetDnProp fGetDnProp;
Sm_Api_SetDnProp fSetDnProp;

void* lpParam;

Sm_Api_GetUserProp fGetProp;
Sm_Api_SetUserProp fSetProp;
Sm_Api_AuthenticateUser fAuthenticate;

} Sm Api UserContext t;

Field

Description

blsUserContext

Flag indicating that SiteMinder has established the user’s
identity and that the user context is available. When this
flag is set, the fGetProp, fSetProp, fGetDnProp, and
fSetDnProp user attribute functions are available.

IpszUserName

Full distinguished name of the user.

IpszUserPath

User path in the following format:
directory-namespace + server + [+ user-DN

For example:
Idap://server.company.com/
uid=userl,ou=people,o=company.com

lpszDirPath

Directory path of the SiteMinder user directory where the
user context was established, in the following format:
directory-namespace + server

For example:
Idap://server.company.com

IpReservedl

Reserved for internal use.

576 Programming Guide for C

Sm_Api_UserContext_t

Field Description

IpszDirServer Directory server of a SiteMinder user directory where
user’s context was established.

IpszDirNamespace Directory namespace such as LDAP:, AD:, WinNT:, or
ODBC..

IpszSessionld Session ID that has been or will be assigned to the user’s
session, depending on whether or not the session has been
established.

fGetDnProp Function that returns an attribute of a directory entry. If

the user context flag blsUserContext is set, developers can
call this function to retrieve a well-known attribute of any
DN that the user is related to in the context of a directory

(for example, user is a member of a group).

The calling syntax for this function is:

if (IpUserContext->blsUserContext)

{

char IpszDN[]="cn=group,ou=org unit,0=org";

char IpszCommonName[100];

int nBytes = IpUserContext->fGetDnProp(
IpUserContext->lpParam,
IpszDN,
"accesslevel",
sizeof (IpszCommonName),
IpszCommonName);

}

If no error occurs, the function places the value of the
requested attribute in the null-terminated output buffer
and returns its length. Otherwise, the function returns —1.

The attribute returned from this function should not be
larger than the maximum buffer size specified in the
nBytesValueBuf argument. Larger attributes are truncated
to nBytesValueBuf.

Chapter 6: Context Structures 577

Sm_Api_UserContext_t

Field

Description

fSetDnProp

Function that sets an attribute of a directory entry. If the
user context flag blsUserContext is set, developers can call
this function to set a well-known attribute of any DN that
the user is related to in the context of a directory (for
example: user is a member of a group). At this time only
attributes of type ‘string’ are supported.

The calling syntax for this function is:
if (IpUserContext->blsUserContext)
{
char IpszDN[]="cn=group,ou=org unit,0o=org";
char IpszTimestamp(] = "<timestamp>";
int nErr = IpUserContext->fSetDnProp (
IpUserContext->IpParam,
IpszDN,
"lastaccess",
sizeof (IpszTimestamp),
IpszTimestamp);

IpParam

Pointer to the parameters to be passed to fGetProp,
fSetProp, fGetDnProp, and, fSetDnProp functions.

578 Programming Guide for C

Sm_Api_UserContext_t

Field Description

fGetProp Function that returns user attributes. If the user context
flag blsUserContext is set, developers can call this function
to retrieve a well-known user attribute.

The calling syntax for this function is:

if (IpUserContext->blsUserContext)

{

char IpszCommonName[100];

int nBytes = IpUserContext->fGetProp (
IpUserContext->lpParam,
en”,
sizeof (IpszCommonName),
IpszCommonName);

}

If no error occurs, the function places the value of the
requested attribute in the null-terminated output buffer
and returns its length. Otherwise, the function returns -1.

The attribute returned from this function should not be
larger than the maximum buffer size specified in the
nBytesValueBuf argument. Larger attributes are truncated
to nBytesValueBuf.

fSetProp Function that sets a user attribute. If the user context flag
blsUserContext is set, developers can call this function to
set a well-known user attribute. At this time, only
attributes of type “string” are supported.

The calling syntax for this function is:

if (IpUserContext->blsUserContext)
{
char IpszCommonName[] = "John Smith";
int nErr = IpUserContext->fSetProp (
IpUserContext->IpParam,
"cn",
sizeof (IpszCommonName),
IpszCommonName);

}

If no error occurs, the function returns 0. Otherwise, the
function returns -1.

Chapter 6: Context Structures 579

Sm_Api_UserContext_t

Function Declarations

In structure Sm_Api_UserContext_t, the functions fGetDnProp, fSetDnProp, fGetProp,
fSetProp, and fAuthenticate are declared in SmApi.h as follows:

fGetDnProp

typedef int (SM EXTERN *Sm Api GetDnProp)

(

const void* 1lpParam, /* The function parameter */

const char* 1pDn, /* The DN of a directory object */
const char* 1lpszPropName, /* User property name (null-term) */
const int nBytesValueBuf, /* Max size of user property buffer */
char* 1pszValueBuf /* Output buffer to hold the user property */
);

fSetDnProp

typedef int (SM EXTERN *Sm Api SetDnProp)

(

const void* 1lpParam, /* The function parameter */

const char* 1pDn, /* The DN of a directory object */
const char* 1lpszPropName, /* User property name (null-term) */
const int nBytesValueBuf, /* Size of user property buffer */
const char* 1lpszValueBuf /* The user property buffer */

);

fGetProp

typedef int (SM _EXTERN *Sm Api GetUserProp)

(

const void* 1lpParam, /* The function parameter */

const char* 1lpszPropName, /* User property name (null-term) */
const int nBytesValueBuf, /* Max size of user property buffer */
char* 1pszValueBuf /* Output buffer to hold the user property */
);

fSetProp

typedef int (SM EXTERN *Sm Api SetUserProp)

(

const void* 1lpParam, /* The function parameter */

const char* 1lpszPropName, /* User property name (null-term) */
const int nBytesValueBuf, /* Size of user property buffer */
const char* 1pszValueBuf /* The user property buffer */

)i

fAuthenticate
typedef int (SM EXTERN *Sm Api AuthenticateUser)
(

580 Programming Guide for C

Sm_Api_UserContext_t

const void* 1lpParam, /* The function parameter */

const char* 1lpszPassword, /* User password (null-terminated) */
const int nBytesUserMsg, /* Max size of user message buffer */
char* 1pszUserMsg, /* Output buffer to hold the user message */
const int nBytesErrMsg, /* Maximum size of the error buffer */

char* 1pszErrMsg /* Output buffer to hold the error message */
);

More Information:

Multi-Valued Attributes in LDAP (see page 581)

Multi-Valued Attributes in LDAP

When setting or retrieving multi-valued attributes in an LDAP user store, the values are
presented in a single string, delimited by a carat character (*).

For example, you might set three different telephone numbers as follows:

char 1pszTemp[] = "111-1234"111-5678"111-0000";

int getResult = lpUserContext->fSetProp (lpUserContext->1pParam,
"telephonenumber",
strlen(1lpszTemp),
lpszTemp) ;

Custom code that sets or retrieves multi-valued attributes must support the expected
multi-valued string format.

Note: ODBC user stores do not support multi-valued attribute settings.
Policy Server Version Support

With a 4.61 or later Policy Server, the telephone numbers in the example above are put
into the user’s telephone number attribute in the LDAP user store as follows:

111-1234
111-5678
111-0000

Prior to the 4.61 Policy Server, the above code would set the telephone number
attribute as follows:

111-12347111-5678"111-0000

Chapter 6: Context Structures 581

Sm_AuthApi_UserCredentials_t

Sm_AuthApi_UserCredentials_t

Contains information about user credentials.

SiteMinder specifies as much information as it has available. Typically, the username
and password fields are specified. Each authentication scheme expects a subset of
possible credentials.

Fields in this structure are filled in on the basis of requested credentials.

Syntax

typedef struct

{

char*
char*
int

char*
int

char*
char*
char*
char*
int

void*
char*
char*
char*
char*
char*

lpszUsername;
lpszPassword;
nBytesChapPassword;
1pszChapPassword;
nBytesChapChallenge;
1pszChapChallenge;
1pReservedl;
1pszCertUserDN;
lpszCertIssuerDN;
nCertBinLen;
lpCertBinary;
lpszDirPath;
lpszDirServer;
1pszDirNamespace;
1pszNewPassword;
lpszPasswordToken;

} Sm AuthApi UserCredentials t;

Field Description

IpszUsername User’s DN as disambiguated by SiteMinder from the
username specified by the user.

IpszPassword User password as specified by the user.

nBytesChapPassword Length of the CHAP password.

IpszChapPassword CHAP password.

nBytesChapChallenge Length of the CHAP challenge.

IpszChapChallenge CHAP challenge.

IpReservedl Reserved for internal use.

IpszCertUserDN User DN part of the X.509 user’s Certificate.

582 Programming Guide for C

Sm_AuthApi_UserCredentials_t

Field Description

IpszCertlssuerDN Issuer DN part of the X.509 user’s Certificate.

nCertBinLen Length of the user’s binary X.509 Certificate.

IpCertBinary User’s binary X.509 Certificate.

lpszDirPath Directory path in the SiteMinder notation of a
SiteMinder user directory where user’s context was
established.

IpszDirServer Directory server in the SiteMinder user directory

where user’s context was established.

IpszDirNamespace Directory namespace in the SiteMinder user directory
where user’s context was established.

IpszNewPassword The user’s new password.

IpszPasswordToken The password token from Password Services.

Chapter 6: Context Structures 583

Chapter 7: Authentication API for C

This section contains the following topics:

Authentication API Overview (see page 585)
Create a Custom Authentication Scheme Library (see page 589)

Authentication API Overview

Each SiteMinder Authentication Scheme is an instance of a shared library that supports
the Authentication API provider interface.

Typically, when you define an authentication scheme in the Administrative Ul, you
accept the default library for the authentication scheme type you want to use. For
example, if you want to use an authentication scheme based on the HTML Form
Template, you would accept its default library, smauthhtml.

If you want your authentication scheme to support custom authentication functionality,
build a new library for the authentication scheme. You build an authentication scheme
library using the Authentication API.

Chapter 7: Authentication API for C 585

Authentication API Overview

The following figure shows how the authentication scheme library is used in the
authentication process:

Browser Web Agent Policy Server Authentication Scheme
1

1. Requests a
resource
—>: 2. Checks whether
1 the resource is
protected

3. Ifitis protected,
| SmAuthQuery () asks

' how itis protected ~
»

4. The required
credentials are returned

5. If protected,
the specified
credentials are
requested

6. Submits the <—

credentials

J

7. Submits the
credentials

s

8. First smAuthenticate ()
call establishes user context

v

9. Returns status of
operation

A

10. Second
SmAuthenticate () call
authenticates the user

v

111. Returns status of
:operation
12. Authentication :#

success or failure 1
1

4t

13. Authentication
success or failure

..__________________________________

Install an Authentication Scheme Library

Install your custom-built library in one of the following default locations:
m On UNIX platforms, in the SiteMinder lib directory

m On Windows platforms, in the SiteMinder bin directory

586 Programming Guide for C

Authentication API Overview

Load an Authentication Scheme

The authentication scheme library is loaded by both the authentication server and the
authorization server. Both servers use the scheme to retrieve the required credentials.

Immediately after the scheme is loaded, the following operations occur:

1. The SmAuthQuery() function is called to get the Authentication APl version number
and description.

2. After SmAuthQuery() is called, SmAuthlnit() is called by the authentication server.
The SmAuthlnit() function is not called by the authorization server.

User Context

An authentication scheme verifies the user credentials passed to it by SiteMinder and
returns the authentication result. An authentication scheme operates in these modes:

m User context is unknown—The user has yet to be located in the user store. Either
SiteMinder or the authentication scheme looks up the user so that the user’s stored
credentials can be compared with the credentials supplied at login.

Looking up the user in the user store is called user disambiguation.

m User context is known—The user has been located in the user store. The custom
authentication scheme can now verify the user’s credentials.

Authentication Events

Authentication results are tied to SiteMinder events. If authentication events are
enabled in the realm where the user is being authenticated, SiteMinder evaluates
optional policies tied to OnAuthAccept, OnAuthReject, OnAuthAttempt, and
OnAuthChallenge rules. You can configure these policies to return custom responses
based on a user’s identity, redirect the user to another location based on the result of
the authentication, or update the user data in an external database.

Chapter 7: Authentication API for C 587

Authentication API Overview

Redirection

The authentication scheme can tell the Policy Server to instruct the agent to perform a
redirect. To build an authentication scheme that provides redirection capabilities, place
the URL in the IpszErrMsg parameter and return a status code that includes reason code
Sm_Api_Reason_ErrorMessagelsRedirect.

For example:

strcpy (lpszErrMsg, "https://12.12.1.1/display/user.cgi?dn=");
strcat (lpszErrMsg, 1lpUserContext->1pszUserName);
return SM MAKEAUTH STATUSVALUE (Sm AuthApi Accept,

Sm_Api Reason ErrorMessagelsRedirect);

This functionality is useful when customizing the workflow of a Web application using a
standard Agent. However, configuring redirection is also useful when using custom
agents.

Supported Credentials

The Authentication APl supports user authentication based on the following types of
credentials:
m Username/Password

m X.509 Certificate

m Custom user attributes

More Information:

SmAuthQuery() (see page 593)

588 Programming Guide for C

Create a Custom Authentication Scheme Library

Create a Custom Authentication Scheme Library

To create a custom authentication scheme library:

Include the SmApi.h file, as follows:

#include "SmApi.h"

Make the following functions externally visible:

Function Description
SmAuthenticate() (see Performs user authentications. The scheme
page 590) authenticates user credentials and returns the result.

SmAuthlnit() (see page 592) Initializes the scheme. The scheme should initialize
whatever resources it needs at this time.

SmAuthQuery() (see page 593) Requests scheme information.

SmAuthRelease() (see Releases the scheme only when SiteMinder is shutting
page 597) down. The scheme should release its resources at this
time.

Each entry point in the shared library must be defined according to specified syntax.

Note: If you are using Microsoft Visual Studio, export the function addresses to a
modular definition file (.DEF) file. To export the function addresses, create a .DEF file,
and in the export section of the .DEF file, list all of the authentication scheme functions,
described in the previous table. Once you have created the .DEF file, add it to the
Microsoft Visual Studio project.

Compile the code into a DLL or shared library. When you define the authentication
scheme in the Administrative Ul, you will specify this library name in the Authentication
Scheme Properties dialog box.

After you have written and compiled a custom authentication scheme library, you
define the authentication scheme that will use the custom library. You do so using the
Administrative Ul.

Chapter 7: Authentication API for C 589

Create a Custom Authentication Scheme Library

SmAuthenticate()

The SmAuthenticate() function authenticates user credentials.
Syntax

This function has the following format:
Sm_AuthApi Status_t SM EXTERN SmAuthenticate (

const Sm Api Context t* 1pApiContext,
const Sm Api UserContext t* lpUserContext,
const Sm AuthApi UserCredentials t* lpUserCredentials,
const Sm Api Reason t nChallengeReason,
const char* lpszParam,
const char* lpszSharedSecret,
const int nBytesUserMsg,
char* lpszUserMsg,
const int nBytesErrMsg,
char* lpszErrMsg

)i

Parameters

This function has the following parameters:
IpApiContext

[in] Indicates a pointer to the APl context structure.
IpUserContext

[in] Indicates a pointer to the user context structure.
IpUserCredentials

[in] Indicates a pointer to the user credentials context structure.
nChallengeReason

[in] Indicates the reason for the original challenge; otherwise, set to zero.
IpszParam

[in] Indicates a pointer to the buffer containing the null-terminated parameter
string as specified for the authentication scheme.

IpszSharedSecret

[in] Indicates a pointer to the buffer containing the null-terminated shared secret
string as specified for the authentication scheme.

nBytesUserMsg

[in] Indicates the maximum size of the IpszUserMsg buffer to receive the user
message—4097 bytes, including the string termination character.

590 Programming Guide for C

Create a Custom Authentication Scheme Library

IpszUserMsg

[out] Indicates a pointer to an output buffer to receive the user message. This
message can be the challenge text or any other message that the scheme developer
wants to present to the user through a mechanism external to SiteMinder. The
Agent stores this message in the HTTP_SM_USERMSG HTTP variable. For RADIUS
authentication, the user message is returned in the REPLY-MESSAGE response
attribute.

nBytesErrMsg

[in] Indicates the maximum size of the IpszErrMsg error buffer—4097 bytes,
including the string termination character.

IpszErrMsg
[out] Indicates a pointer to an output buffer to receive the error text. Use this

buffer to return an error message to SiteMinder.

Returns

This function uses the SM_MAKEAUTH_STATUSVALUE macro to construct the return
value. This macro is defined in SmApi.h. The syntax of the macro is as follows:

SM MAKEAUTH_ STATUSVALUE(status, reason)

This macro ha sthe following two parameters::

m status—An Sm_AuthApi_Status_t enumeration. Different status codes can be
returned when SmAuthenticate() is called during disambiguation and when it is
called during authentication, as follows:

During the disambiguation phase:
- Sm_AuthApi_NoUserContext
- Sm_AuthApi_Success

- Sm_AuthApi_SuccessUserDN
- Sm_AuthApi_SuccessUserFilter
- Sm_AuthApi_Attempt

- Sm_AuthApi_Failure

During the authentication phase:
- Sm_AuthApi_Accept

- Sm_AuthApi_Reject

- Sm_AuthApi_Challenge

- Sm_AuthApi_Failure

Chapter 7: Authentication API for C 591

Create a Custom Authentication Scheme Library

SmAuthInit()

® reason—An Sm_Api_Reason_t enumeration:
- Values 0 - 31999 are reserved for use by SiteMinder.

— Values 32000 - 32767 are available for user-defined reasons.

The SmAuthlinit() function lets the authentication scheme perform its own initialization
procedure. This call is made once, when the scheme is first loaded.

Syntax

This function has the following format:

Sm_AuthApi Status t SM EXTERN SmAuthInit (
const char* lpszParam,
const char* 1pszSharedSecret

);

Parameters

This function has the following parameters:
IpszParam

[in] Indicates a pointer to the buffer containing the null-terminated parameter
string as specified for the authentication scheme.

IpszSharedSecret
[in] Indicates a pointer to the buffer containing the null-terminated shared secret
string as specified for the authentication scheme.

Returns

This function returns one of the following values:
Sm_AuthApi_Success.

Indicates the function completed successfully.
Sm_AuthApi_Failure.

Indicates the function was unsuccessful. The scheme is not loaded.

592 Programming Guide for C

Create a Custom Authentication Scheme Library

SmAuthQuery()

The SmAuthQuery() function returns information about an authentication scheme.
Syntax

This function has the following format:

Sm_AuthApi Status t SM EXTERN SmAuthQuery (

const char* lpszParam,
const char* lpszSharedSecret,
const Sm AuthApi QueryCode t code,
char* lpszStatusBuffer,
int* lpnStatusCode

);

Parameters

This function has the following parameters:
IpszParam

[in] Indicates a pointer to the buffer containing the null-terminated parameter
string as specified for the authentication scheme.

IpszSharedSecret

[in] Indicates a pointer to the buffer containing the null-terminated shared secret
string as specified for the authentication scheme.

code

[in] Request code as defined by an enum type Sm_AuthApi_QueryCode_t, which
contains the following values:

m Sm_AuthApi_QueryDescription. Requests the scheme’s description.
The scheme returns a description through IpszStatusBuffer and the
Authentication API version number through IpnStatusCode.

m Sm_AuthApi_QueryCredentialsReq.
Requests the credentials required by the scheme and where to obtain them.
The scheme should return a bit mask through IpnStatusCode, which represents
the credentials needed for authentication.

Individual flags are defined by the enum type Sm_Api_Credentials_t. The scheme
may return the location where the credentials can be obtained (that is, an HTTP
URL) using the IpszStatusBuffer parameter.

IpszStatusBuffer

Receives a character string response. Up to Sm_AuthApi_StatusBufSize characters
can be returned.

IpnStatusCode

Chapter 7: Authentication API for C 593

Create a Custom Authentication Scheme Library

If the call requests the scheme’s description, receives a numeric response indicating
the version number of the Authentication API. Supported versions are
Sm_Api_Version_V4 and Sm_Api_Version_V4_1.

If the call requests the credentials required by the scheme, the scheme returns one
or more credentials. See Remarks. These constants are defined in SmApi.h.

Returns

This function returns one of the following values:
Sm_AuthApi_Success

Indicates the function completed successfully.
Sm_AuthApi_Failure

Indicates the caller has specified an invalid request code.
Remarks

The scheme supports request codes as specified by enumeration type
Sm_AuthApi_QueryCode_t. The caller queries the scheme to find out what kind of
credentials are required for authentication and where to obtain them.

The credentials are defined by the enum type Sm_Api_Credentials_t and can be
combined to request multiple credentials. The caller collects the requested credentials,
places them into the Sm_AuthApi_UserCredentials_t context structure, and calls the
SmAuthenticate() function.

The individual flags in Sm_Api_Credentials_t are as follows:

® Sm_AuthApi_Cred_None—No credentials are required.

® Sm_AuthApi_Cred_Basic—Username and password are required.

® Sm_AuthApi_Cred_Digest—Required user name and password are exchanged using
the digest protocol.

m Sm_AuthApi_Cred_X509Cert—Full X.509 Client Certificate is required.
Sm_AuthApi_Cred_SSLRequired must be specified.

m Sm_AuthApi_Cred_X509CertUserDN—User DN from an X.509 Client Certificate is
required. Sm_AuthApi_Cred_SSLRequired must be specified.

m Sm_AuthApi_Cred_X509CertlssuerDN—Issuer DN from an X.509 Client Certificate is
required. Sm_AuthApi_Cred_SSLRequired must be specified.

m Sm_AuthApi_Cred_CertOrBasic—Either a certificate is required or a user name and
password is required.

m Sm_AuthApi_Cred_CertOrForm—Either a certificate is required or a form-based
username and password are required.

594 Programming Guide for C

Create a Custom Authentication Scheme Library

Sm_AuthApi_Cred_SSLRequired—An SSL connection is required. A redirect to an
https URL must be specified.

Sm_AuthApi_Cred_NTChalResp—Required user name and password are exchanged
using the NT Challenge Response protocol.

Sm_AuthApi_Cred_AllowSaveCreds—Signifies whether the credentials can be saved
for 30 days by the user. If a user saves their credentials, they do not need to enter
their credentials, such as user name and password, each time they access the
protected resource.

Sm_AuthApi_Cred_FormRequired—A form-based username and password are
required. A redirect to a URL containing a form must be specified.

Sm_AuthApi_Cred_PreserveSessionld—The session ID should be preserved if the
current session is still valid.

Sm_AuthApi_Cred_DoNotChallenge—Do not challenge for credentials

Sm_AuthAPI_Cred_AllowAnonymous—Allow validation of anonymous identity.

Examples: Setting status codes
An Anonymous scheme combines these credential flags:
*1pnStatusCode = Sm AuthApi Cred None|Sm AuthApi Cred AllowAnonymous;

Collect username and password. The Agent uses HTTP basic authentication to
challenge the user:

*1lpnStatusCode = Sm AuthApi Cred Basic;

Collect username and password. The Agent challenges the user over SSL using HTTP
basic authentication:

*1lpnStatusCode = Sm AuthApi Cred Basic |
Sm_AuthApi Cred SSLRequired;
strcpy(lpszStatusBuffer,
"https://xxx.yyy.zzz/secure.ssc?basic")

Collect username and password. The Agent challenges the user over SSL using an
HTML form:

*1lpnStatusCode = Sm AuthApi Cred Basic |
Sm_AuthApi Cred FormRequired;
strcpy(lpszStatusBuffer,
"https://xxx.yyy.zzz/getcredentials.fcc")

Chapter 7: Authentication API for C 595

Create a Custom Authentication Scheme Library

Collect an X.509 Certificate. The Agent challenges the user for a certificate:

*LpnStatusCode = Sm AuthApi Cred SSLRequired |
Sm_AuthApi Cred X509Cert;
strcpy(lpszStatusBuffer,
"https://xxx.yyy.zzz/getcert.scc?cert")

Collect an X.509 Certificate, username, and password. The Agent challenges the
user over SSL using HTTP basic authentication:

*1lpnStatusCode = Sm AuthApi Cred Basic |
Sm_AuthApi Cred SSLRequired |
Sm AuthApi Cred X509Cert;
strcpy(lpszStatusBuffer,
"https://xxx.yyy.zzz/getcert.scc?cert+basic")

596 Programming Guide for C

Create a Custom Authentication Scheme Library

SmAuthRelease()

The SmAuthRelease() function lets an authentication scheme perform its own rundown
procedure.The caller makes this call once when SiteMinder is shutting down.

Syntax

This function has the following format:

Sm_AuthApi Status t SM EXTERN SmAuthRelease (
const char* lpszParam
const char* lpszSharedSecret

);

Parameters

This function has the following parameters:
IpszParam

[in] Indicates a pointer to the buffer containing the null-terminated parameter
string as specified for the authentication scheme.

IpszSharedSecret
[in] Indicates a pointer to the buffer containing the null-terminated shared secret
string as specified for the authentication scheme.

Returns

This function returns one of the following values:
Sm_AuthApi_Success.

Indicates the function completed successfully.
Sm_AuthApi_Failure.

Indicates the function was unsuccessful. The scheme is not loaded.

Chapter 7: Authentication API for C 597

Chapter 8: Authorization API for C

This section contains the following topics:

Authorization API Overview (see page 599)

Active Expressions (see page 600)

Authorization Function Declarations (see page 603)

Active Expression Examples (see page 605)

Authorization API Overview

Using the Authorization API, you can implement custom access control functionality. To
implement custom access control functionality, you must:

1.

Develop a shared library that supports the Authorization APl and provides the
custom functionality you need.

The shared library must contain one or more functions defined as exportable
symbols. SmApi.h defines all of the data structures necessary to create custom
policy, rule, and response plug-ins.

Install the shared library in one of the following default locations:
m On UNIX platforms, in the SiteMinder lib directory

m On Windows platforms, in the SiteMinder bin directory
Define one or more of the following in the Administrative Ul:

m Active policy—A policy that provides dynamic authorization based on external
business logic.

For example, you might define an active policy that returns true if the user
belongs to a particular organizational unit (ou) in an LDAP directory as defined
in the parameter (param) field of the active policy expression.

m Active response—A custom response returned from a shared library. Using an
active response is one way you can define user-specific privilege information.

For example, you might define an active response that returns a user’s
common name (cn) if the user belongs to the ou specified in the param field of
the active response expression.

m Active rule—A rule that provides dynamic authorization based on external
business logic.

For example, you might define an active rule that returns true if a user is a
member of a group, such as Directory Administrator, that has permission to
view a realm.

Chapter 8: Authorization API for C 599

Active Expressions

Include File

When extending the authorization API, include the SmApi.h header file:

#include "SmApi.h"

Active Expressions

An active expression is a string of variable definitions that comprises an active policy,
rule, or response. Active expressions are constructed in the Administrative Ul using the
following syntax:

<@ lib=<lib-spec> func=<func-spec> param=<func-params>@

In the syntax example:

lib-spec is the path to a custom shared library. This clause is required.

If you place the library in the default location, you need only specify the library file
name rather than a path. Also, the extension .dll or .so is optional.

func-spec is the name of a user-defined, externally-visible function defined in the
shared library. This clause is required.

func-params is a parameter string to be passed to the function. This clause is
optional.

SiteMinder constructs the active expression from information provided in the Active
Rule Editor, Active Policy Editor, or Active Response Attribute Editor dialog box.

How SiteMinder Interprets Active Expressions

An active expression in an application initiates the following tasks:

Loads the shared library specified in the active expression.
Calls the user-defined function specified in the active expression.

Passes to the user-defined function the optional parameter string plus contextual
information—that is, APl context (Sm_Api_Context_t), request context
(Sm_Api_RequestContext_t), and user context (Sm_Api_UserContext_t).

600 Programming Guide for C

Active Expressions

The specified user-defined function in the shared library returns a result to SiteMinder
in the IpszOutBuf parameter. SiteMinder interprets this result according to the type of
active expression, as follows:

m Active Policy—If the function call fails or the result returned in IpszOutBuf is empty,
authorization is denied.

The policy does not fire if the result returned in IpszOutBuf matches any of the
following strings (not case-sensitive): FALSE, F, or O.

Any other result value causes the policy to fire.

m Active Rule—If the function call fails or the result returned in IpszOutBuf is empty,
the following behavior occurs:

m With Allow Access rules, the rule does not fire.
m With Deny Access rules, the rule fires.
Otherwise, the behavior is the same as for Active Policies.

m Active Response—The result is a string representing the response attribute value.
How SiteMinder uses this value is determined by the response attribute specified in
the Administrative Ul. For example:

m WebAgent-OnReject-Redirect. Given this attribute, SiteMinder expects the
response value to specify a location, such as a URL, to redirect a user who is
denied access to a resource.

For example, you could specify a group name in the optional param variable of
the active expression, then test for the group name in the function to
determine the URL to pass back.

m WebAgent-HTTP-Cookie-Variable. Given this attribute, SiteMinder expects that
the response value, such as the user’s common name, is to be assigned to a
cookie variable. You can use the response value any way you like, such as
displaying the user’s common name to personalize a form.

You specify the cookie name in the SiteMinder Response Attribute Editor.

Define Active Rules

Active rules are defined in the Administrative Ul using the Active Rule Editor dialog box.
To access this editor from the Rule Properties dialog box, select the Active Rule tab in
the Advanced group box, then click Edit.

Chapter 8: Authorization API for C 601

Active Expressions

Define Active Responses

Active responses are defined in the Administrative Ul using the Response Attribute
Editor dialog box.

From the Response Properties dialog box, access the editor by clicking Create and select
the Active Response button in the Attribute Kind group box on the Attribute Setup tab.

Define Active Policies

Active policies are defined in the Administrative Ul using the Active Policy Editor dialog
box.

From the Policies Properties dialog box, access this editor by selecting the Advanced tab
and clicking Edit.

Pass HTTP Headers and Cookies to Policy Server

You can add arbitrary custom key/value pairs to the current session to pass HTTP
headers and cookies to the Policy Server. These key/value pairs are kept in the session
store; they have the same lifetime as the session. The name/value pairs are stored in
the Expiry Data Table in the session store database. There can be maximum 5 entries for
a session. The Active Plugin code can use the UserContext structure
(Sm_Api_UserContext_t* IpUserContext) to set and retrieve these name/value pairs by
calling fSetProp and fGetProp respectively. To set the value, fSetProp is called with
IpszPropName as SM_SESSIONVAR(<name>) and IpszValueBuf as the value. To retrieve
the value, fGetProp is called with IpszPropName as SM_SESSIONVAR(<name>)/
SM_SESSIONVAR and the value/values is returned in lpszValueBuf.

Note the following:

m To set the name/value pair in Expiry Data Table, the name should be passed in
SM_SESSIONVAR(<name>) format only. The name can be maximum 32 characters
long, can start with only a letter or underscore and can contain only letters, digits or
underscore. The length of the value which can be set is 4000 characters maximum.

m To fetch the value for a name, the name should be passed in
SM_SESSIONVAR(<name>) format. The value in Expiry Data Table corresponding to
<name> is returned. If only SM_SESSIONVAR is passed (no name is passed within),
then all the names for that session are returned in caret-delimited format.

m |f you remove name/value pair in Expiry Data Table, the name is passed as
SM_SESSIONVAR(<name>) and the value should be passed as blank.

602 Programming Guide for C

Authorization Function Declarations

Authorization Function Declarations

The shared library requires proper entry points. Each entry point in the shared library
represents one or more active expressions and must be defined according to the
specified syntax.

Note: If you are using Microsoft Visual Studio, export the function addresses to a
modular definition file (.DEF) file. To export the function addresses, create a .DEF file,
and in the export section of the .DEF file, list the functions that you want to invoke from
the Active Rule or Active Policy. After you have created the .DEF file, add it to the
Microsoft Visual Studio project.

User-Defined Function

The Policy Server calls a user-defined function to perform a custom policy, rule, or
response operation.

You can assign the function any name. Through the active expression that you define in
the Administrative Ul, you advise SiteMinder of the function name and the name of the
shared library where the function resides.

Syntax
int SM EXTERN <func-spec> (
const Sm Api Context t* lpApiContext,
const Sm Api UserContext t* lpUserContext,
const Sm Api RequestContext t* 1pRegContext,
const char* lpszParam,
const int nBytesOutBuf,
char* 1pszOutBuf,
const int nBytesErrBuf,
char* lpszErrBuf
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
IpUserContext | Pointer to the user context structure.
IpRegContext | Pointer to the request context structure.
IpszParam | Pointer to the buffer containing the
null-terminated parameter string specified in
<Param-String>.
nBytesOutBuf | Maximum size of the output result buffer (4097

bytes).

Chapter 8: Authorization API for C 603

Authorization Function Declarations

Parameter 1/0 Description

IpszOutBuf 0] Output buffer for the result to send to SiteMinder.

nBytesErrBuf | Maximum size of the output error buffer (4097
bytes).

lpszErrBuf 0] Output buffer to receive error text. SiteMinder

displays the error text in the debug log file.

Returns

m Upon successful execution, the function returns a value greater than 0—that is, the
total number of bytes in the result buffer lpszOutBuf.

m [fan error occurs, the function returns -1 and stores the applicable error message in
the error buffer IpszErrBuf.

m When used for an Active Rule, a return value of 0 (an empty string was passed back
in IpszOutbuf) results in one of the following actions:

m With Allow Access rules, the rule does not fire.

m With Deny Access rules, the rule fires.

SmQueryVersion()

The Policy Server calls this function to determine the Authorization API version that the
custom library is compliant with.

Syntax
int SmQueryVersion (

const Sm Api Context t* lpApiContext
)i

Parameter 1/0 Description
IpApiContext | A pointer to the API context structure.
Returns

Returns the version number of the Authorization API. Currently the version supported is
Sm_Api_Version_V3. This constant is defined in SmApi.h.

604 Programming Guide for C

Active Expression Examples

Active Expression Examples

This samples provided in the following sections are located in:
sdk\samples\smazapi\smazapi.cpp

The syntax that precedes each sample, such as:

<@ lib="SmAzAPI" func="activeRule" param="" @

is an example of the Generated Script that SiteMinder constructs in the SiteMinder
Active Rule Editor, Active Policy Editor, or Active Response Attribute Editor dialog box
from the information you provide in the dialog box.

To build sample active expressions for UNIX, use the makefile found in
<install_path>\sdk\samples\smazapi\makefile.

Chapter 8: Authorization API for C 605

Active Expression Examples

Example of an Active Rule

The example below returns true if the user has special access permission to view the
realm. If the user has directory manager privileges, the user can view the realm.

<@ 1ib="SmAzAPI" func="activeRule" param="" @
skesk sk sk ok ok K ok ok sk sk ok sk sk ok sk sk ok Sk sk ok ok sk ok ok sk ok s sk ok sk sk sk sk sk sk ok sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok K
int SM EXTERN activeRule(
const Sm Api Context t* lpApiContext,
// the structure that provides API context
const Sm Api UserContext t* lpUserContext,
// the structure that provides user context
const Sm Api RequestContext t* lpRegContext,
// the structure that provides request context
const char* lpszParam,
// the parameter string (null-terminated)
const int nBytesOutBuf,
// the maximum size of the output buffer
char* 1pszOutBuf,
// the output buffer to hold the null-terminated result
const int nBytesErrBuf,
// the maximum size of the error message buffer
char* 1lpszErrBuf)
// the output buffer to hold the null-terminated error message
{
/* User Context is required to use the functions like fGetProp, fSetProp.. */
if(!lpUserContext->bIsUserContext)
{
strncpy (lpszErrBuf, "No User Context ", nBytesErrBuf);
lpszErrBuf [nBytesErrBuf-1] = '\0';
return -1;
}
/*
// The DN to look for the attribute "uniquemember"
// If the user is listed as the member of the above attribute,
// it has directory manager privileges.
*/
char 1pszDn[] = "cn=Directory Administrators,ou=Groups,o=airius.com";
char 1lpszDnvalue[256];
memset (lpszDnvalue, 0, sizeof(lpszDnvalue));
/*
// fGetDnProp function is used to retrieve an attribute value
// in a directory entry.
*/

606 Programming Guide for C

Active Expression Examples

int getResult = lpUserContext->fGetDnProp(
lpUserContext->1pParam,
lpszDn,
"uniquemember",
sizeof (1lpszDnvalue),
lpszDnvalue) ;
/*
// If no error occurs, fGenDnProp will return the length of the
// buffer lpszDnvalue. Otherwise the function returns 0.
*/
if(getResult > 0)
{

/* Check to see if the user is present in the list. */
if(strpbrk(lpszDnvalue, lpUserContext->lpszUserName) != NULL)

{

/* The result "true" is placed in the output buffer. */
strncpy(lpszOutBuf, "true", nBytesOutBuf);
1pszOutBuf[nBytesOutBuf-1] = '\0';

return strlen(1lpszOutBuf);

}

else

{

strncpy(lpszOutBuf, "false", nBytesOutBuf);
1pszOutBuf[nBytesOutBuf-1] = '\0';

return strlen(1lpszOutBuf);

}

else

{
strncpy(lpszErrBuf, "Failed to get attribute value for the DN ",
nBytesErrBuf);
strncat((lpszErrBuf + strlen(lpszErrBuf)), lpszDn,
(nBytesErrBuf-strlen(lpszErrBuf)));
lpszErrBuf[nBytesErrBuf-1] = '\0';
return -1;

}
/* everything failed.... */

return 0;

Chapter 8: Authorization API for C 607

Active Expression Examples

Example of an Active Response

This active response returns the common name (cn) of the user, if the user belongs to
the organizational unit specified in the parameter (param) field of the active response
expression.

<@ lib="SmAzAPI" func="activeResponse" param="Human Resources" @
Sk ok ok ok ok ok R ok ok ok ok sk ok 5k K >k sk ok ok ok sk ok >k >k sk ok okook sk ok ok sk K sk ok ok sk sk koK sk sk sk sk k k ko k sksk sk sk k sk sk sk k ok k
int SM EXTERN activeResponse(
const Sm Api Context t* 1pApiContext,
/* the structure that provides API context */
const Sm Api UserContext t* T1pUserContext,
/* the structure that provides user context */
const Sm Api RequestContext t* 1pRegContext,
/* the structure that provides request context */
const char* 1lpszParam,
/* the parameter string (null-terminated) */
const int nBytesOutBuf,
/* the maximum size of the output buffer */
char* 1pszOutBuf,
/* the output buffer to hold the null-terminated attribute value */
const int nBytesErrBuf,
/* the maximum size of the error message buffer */
char* 1lpszErrBuf)
/* the output buffer to hold the null-terminated error message */
{
memset (lpszOutBuf, 0, sizeof(lpszOutBuf));
if (!lpUserContext->bIsUserContext)
{
strncpy (lpszErrBuf, "No User Context ", nBytesErrBuf);
lpszErrBuf[nBytesErrBuf-1] = '\0';
return -1;
}
/* Store all the organizational units to which the user belongs. */
char 1pszOrgUnit[30];
memset (lpszOrgUnit, 0, sizeof(1lpszOrgUnit));
/* store the common name of the user. */
char 1pszCN[30];
memset (lpszCN, 0, sizeof(lpszCN));
/* Check to see if a parameter is requested. */

if(lpszParam == NULL || strlen(lpszParam) == 0)
{
strncpy (lpszErrBuf, "Organizational unit is not entered ",
nBytesErrBuf);
lpszErrBuf[nBytesErrBuf-1] = '\0"';
return -1;
}

/* Get all the organization units to which the user belongs. */

608 Programming Guide for C

Active Expression Examples

int getResult = lpUserContext->fGetProp (
lpUserContext->1pParam,
"ou", /* Attribute name */
sizeof (lpszOrgUnit), 1pszOrgUnit);
if (getResult < 0)
{
strncpy (lpszErrBuf,
"Failed to get organization unit for the user's profile ",
nBytesErrBuf);
strncat((lpszErrBuf + strlen(lpszErrBuf)),
lpUserContext->1pszUserName,
(nBytesErrBuf-strlen(lpszErrBuf)));
lpszErrBuf[nBytesErrBuf-1] = '\0';
return -1;
}
else
{
/* Check if the user belongs to the organization unit that is requested. */
if(strstr(lpszOrgUnit, lpszParam) != NULL)
{
if((lpUserContext->fGetProp(lpUserContext->1pParam,
"cn",sizeof(1pszCN),1pszCN)) > 0)
{
strncpy(1pszOutBuf, 1pszCN, nBytesOutBuf);
1pszOutBuf[nBytesOutBuf-1] = '\0';
return strlen(1lpszOutBuf);
} /* end of fGetProp */
else
{
strncpy (lpszErrBuf,
"Failed to get user common name from user's profile attribute ",
nBytesErrBuf);
strncat((lpszErrBuf + strlen(lpszErrBuf)),
lpUserContext->1pszUserName,
(nBytesErrBuf-strlen(lpszErrBuf)));
lpszErrBuf[nBytesErrBuf-1] = '\0';
return -1;
}
} /* end of strstr */
else
{
strncpy (lpszErrBuf,
"The user does not belong to the requested organizational unit ",
nBytesErrBuf);
lpszErrBuf [nBytesErrBuf-1] = '\0';
return -1;

}

Chapter 8: Authorization API for C 609

Active Expression Examples

/* everything failed....

return 0;

}
#ifndef WIN32

}

#endif

*/

610 Programming Guide for C

Chapter 9: Tunnel Service API Guidance

This section contains the following topics:

Tunnel Service APl Overview (see page 611)
Develop a Custom Tunnel Service (see page 612)

Tunnel Service API Overview

The Tunnel Service API provides secure transfer of data between an agent and a shared
library that supports the Tunnel Service.

When an agent sends a tunnel request to the Policy Server, the request contains:

m The name of the service library
m The function to be called in the service library

m The data to be passed to the function

Chapter 9: Tunnel Service API Guidance 611

Develop a Custom Tunnel Service

The Policy Server initializes the appropriate service, invokes the requested function, and
passes the data to the function. Once the service has performed its task, the Policy
Server returns the results to the agent. The following graphic shows the tunnel service
process:

Agent Policy Server Tunnel Service

T
|
| 1. Calls Sm_AgentApi_Tunnel.

>

2. Loads the service

and caches it.

<—

3. Queries the version of
the service library. >|

|, 4 Returns the Service version.

&

. Calls the initialization
function of the service.

I‘
|
|
|
|

o

. Initialization result returned.

7. Calls the user-defined
function and passes data
in IpInBuf.

©

. Returns the resultin
IpOutbuf of the user-
defined function.

9. Returns the resultin

Sm_AgentApi_Tunnel.

o -ty __L_y _I_

& - --A "7~k

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 ppRespAttributes of
|
r<

¢

Develop a Custom Tunnel Service

Each tunnel service is an instance of a shared library that supports the Tunnel Service
API. To support a tunnel service, you must build a new shared library.

Install the shared library in one of the following locations:

m On UNIX platforms, in the SiteMinder lib directory

m On Windows platforms, in the SiteMinder bin directory

612 Programming Guide for C

Develop a Custom Tunnel Service

Include File

To develop a tunnel service, include the SmApi.h header file:

#include "SmApi.h"

Tunnel Service API Reference

The shared library must provide the following functions as externally visible entry

points:

Function Description

SmQueryVersion() Requests the Tunnel Service API version that the
custom library is compliant with.

SmTunnellnit() Initializes the tunnel service.

SmTunnelRelease() Releases the tunnel service.

User-Defined Function Calls the function that the tunnel agent is

requesting.

Each entry point in the shared library must be defined according to specified syntax.

Note: If you are using Microsoft Visual Studio, export the function addresses to a
modular definition file (.DEF) file. To export the function addresses, create a .DEF file,
and in the export section of the .DEF file, list all of the tunnel service functions,
described in the previous table. Once you have created the .DEF file, add it to the
Microsoft Visual Studio project.

SmQueryVersion()

SiteMinder calls this function to request the Tunnel Service API version that the custom
library is compliant with.

Syntax

int SM EXTERN SmQueryVersion (
const Sm Api Context t* lpApiContext
);

Parameter 1/0 Description

IpApiContext | A pointer to the API context structure.

Chapter 9: Tunnel Service API Guidance 613

Develop a Custom Tunnel Service

Returns

Returns the version number of the Tunnel Service API. Currently the versions supported
are Sm_Api_Version_V4 and Sm_Api_Version_V4_1. Version constants are defined in

SmApi.h.

SmTunnellnit()

SiteMinder calls this function so that a tunnel service can perform its own initialization
procedure. This call is made once when the tunnel service is loaded for the first time.
The information is cached for subsequent use.

Syntax

int SM EXTERN SmTunnelInit (

void** ppServiceHandle,
const Sm Api Context t* 1pApiContext,
const int nBytesStatusBuf,
char* lpszStatusBuf
);
Parameter 1/0 Description
ppServiceHandle | An internal pointer used by the tunnel service
library.
IpApiContext | A pointer to the API context structure.
nBytesStatusBuf 0] Maximum size of the output status buffer.
IpszStatusBuf 0] Output buffer receives any status messages from
the tunnel service.
Returns

Returns 0 if successful or -1 if unsuccessful.

614 Programming Guide for C

Develop a Custom Tunnel Service

SmTunnelRelease()

The tunnel service can perform its own rundown procedure. This call is made one time

when SiteMinder is shutting down.

Syntax

void SM EXTERN SmTunnelRelease (

void* pServiceHandle,
const Sm Api Context t* 1pApiContext
)i
Parameter 1/0 Description
pServiceHandle | An internal pointer used by the tunnel service
library.
IpApiContext | A pointer to the API context structure.

User-Defined Function

The tunnel agent requests this function:

Syntax

int SM EXTERN <func-spec> (
void* pServiceHandle,
const Sm Api Context t* 1pApiContext,
const Sm Api RequestContext t* 1pReqgContext,
const Sm Api TunnelContext t* lpTunnelContext,
const int nBytesInBuf,
void* 1pInBuf,
const int nBytesOutBuf,
void* 1pOutBuf,
const int nBytesStatusBuf,
char* lpszStatusBuf

)i

Parameter 1/0 Description

pServiceHandle

An internal pointer used by the tunnel service
library.

IpApiContext

A pointer to the API context structure.

IpRegContext

A pointer to the API request structure.

Chapter 9: Tunnel Service API Guidance

615

Develop a Custom Tunnel Service

Parameter 1/0 Description

IpTunnelContext | A pointer to the API tunnel context.

nBytesInBuf | Number of bytes in the input buffer.

IpInBuf | Input buffer containing information sent from the
remote agent.

nBytesOutBuf 0 Maximum size of the output result buffer.

IpOutBuf 0] Output buffer to receive the result.

nBytesStatusBuf 0] Maximum size of the status buffer.

IpszStatusBuf 0] Status buffer to receive status.

616 Programming Guide for C

Chapter 10: Event API Guidance

This section contains the following topics:

Event AP| Overview (see page 617)

Event API Setup (see page 618)

Event Provider Structures (see page 618)

Event API Reference (see page 623)

Event Function Declarations (see page 663)

Example of an Active Policy (see page 666)

Configuring the Policy Server for the Event Handler (see page 668)

Event API Overview

The SiteMinder Event API lets you create custom event handlers.

Through the Event API, SiteMinder can log events using outside sources, providers, or
applications. You can then access the logged information through these other sources,
providers, or applications.

Using the Event API, you can build applications to alert administrators of SiteMinder
activity. For example, an event handler can send an e-mail to the administrator when
the accounting server starts or someone creates a new policy.

Chapter 10: Event API Guidance 617

Event API Setup

Event API Setup

Each event handler is an instance of a shared library that supports the Event API
provider interface. To support custom event handlers, you must build a shared library.

Install the shared library in one of the following locations:
m On UNIX platforms, in the SiteMinder lib directory

®m On Windows platforms, in the SiteMinder bin directory

The shared library must export the following entry points:
m SmEventlnit()
m SmEventRecord()

m SmEventRelease()

To build an event handler, include the SmEventApi.h header file:

#include "SmEventApi.h"

Event Provider Structures

The following table lists the structure definitions used with Event Provider API functions:

Structure Description

SmlLog Access t (see Contains information about access events.

page 619)

SmLog EMS t (see Contains information about Entitlement Management

page 621) Services (EMS) events. EMS events result from actions
performed on directory objects.

SmLog Obj t(see Contains information about object events.

page 622)

SmLog System t (see Contains information about system events.
page 623)

618 Programming Guide for C

Event Provider Structures

SmLog_Access_t

Syntax

Contains information about an access event.

typedef struct SmLog Access s

{

long nVersion;
long nCurrentTime;
Sm_Api Reason t nReason;

char*
char*
char*
char*
char*
char*
char*
char*
char*
char*
char*
char*
char*
char*
char*
char*
char*

szAgentName;
szSessionId;
szClientIp;
szUserName;
szDomainOid;
szRealmName;
szRealmOid;
szAuthDirName;
szAuthDirServer;
szAuthDirNamespace;
szServer;
szResource;
szAction;
szTransactionld;
szStatusMsg;
szDomainName;
szImpersonatorName;

char* szImpersonatorDirName;

} SmLog Access t;

Field Description

nVersion Version number of the Policy Server.

nCurrentTime Policy Server time (in GMT) when the event occurred.
nReason Contains the reason identifier.

szAgentName Name of the agent.

szSessionld Session ID.

szClientlp The IP address of the client.

szUserName Full distinguished name of the user or administrator.
szDomainOid The object identifier of the domain object.

Chapter 10: Event API Guidance 619

Event Provider Structures

Field Description

szRealmName Name of the realm in which the resource is protected.

szRealmOid Object identifier for the realm object.

szAuthDirName The name of the directory.

szAuthDirServer Directory Server of a SiteMinder user directory where
user’s context was established.

szAuthDirNamespace Directory Namespace such as LDAP, WinNT, or ODBC.

szServer Name of the server holding the resource.

szResource Name of the resource.

szAction Type of action performed on the resource. A typical
action when accessing web resources is a GET.

szTransactionld Identifier of a transaction between the agent and Policy
Server. The agent sets this ID and the Policy Server logs
it.
When the agent makes a request to the Policy Server, it
associates an ID with the request. Since the agent may
make many such requests, the agent uses the ID to
match information from the Policy Server with the
originating request.

szStatusMsg Status message.

szlmpersonatorName Specifies the name of the impersonator.
Set to NULL if there is no impersonated session in
progress.

szDomainName Specifies the name of the domain.

szlmpersonator Specifies the name of the user directory used to

DirName authenticate the impersonator.

Set to NULL if there is no impersonated session in
progress.

More Information:

Sm_Api_Reason t (see page 755)

620 Programming Guide for C

Event Provider Structures

SmLog_EMS_t

Contains information about an Entitlement Management Services (EMS) event. EMS
events result from actions performed on directory objects.

Syntax

typedef struct SmLog EMS s

{

long nVersion;
long nCurrentTime;

char*
char*
char*
char*
char*
char*
char*
char*
int

char*

szUserName;
szSessionId;
szDirName;
sz0bjName;
szObjPath;
szObjClass;
szOrgName:
szRoleName;
szFieldDesc;
szStatusMsg;

} SmLog EMS t;

Field Description

nVersion Version number of the Policy Server.

nCurrentTime Policy Server time (in GMT) when the event occurred.

szUserName If the user is an administrator, the ID of
the administrator who initiated the EMS event. If the
event is an end-user event, the user name is
Registration.

szSessionID EMS Service Session ID.

szDirName Name of the SiteMinder directory affected by the EMS
event.

szObjName Name of the object targeted by this event.

szObjPath Full distinguished name of the object.

szObjClass Class name of the object.

szOrgName Name of the object’s organization.

szRoleName Name of the role to which the object is related (only for
events that involve roles).

szFieldDesc Description of the event.

Chapter 10: Event API Guidance 621

Event Provider Structures

Field

Description

szStatusMsg The status message.

SmLog_0bj_t

Contains information about an object event.

Syntax

typedef struct SmLog Obj s

{

long nVersion;
long nCurrentTime;

char*
char*
char*
char*
char*
char*
char*

szUserName;
szSessionld;
szDomainOid;
szObjName;
sz0bjo0id;
szFieldDesc;
szStatusMsg;

} SmLog Obj t;

Field Description

nVersion Version number of the Policy Server.

nCurrentTime Policy Server time (in GMT) when the event occurred.
szUserName The name of the user who triggered the event.
szSessionld Session ID.

szDomainOid Object identifier for the domain object.

szObjName The name of the object.

sz0ObjOid Object identifier for the object.

szFieldDesc User DN.

szStatusMsg Status message.

622 Programming Guide for C

Event API Reference

SmLog_System_t
Contains information about a system event.

Syntax
typedef struct SmLog System s
{
long nVersion;
long nCurrentTime;
char* szName;
char* szIpAddress;
int nIpPort;
char* szMsg;
} SmLog System t;

Field Description

nVersion Version number of the Policy Server.
nCurrentTime Time when the event occurred.

szName Name of the client, database, or directory.
szlpAddress IP address of the client.

nipPort Port number that the client communicates on.
szMsg Buffer to receive string message for an event.

Event API Reference

SiteMinder logs four types of events. All event classifications have well-defined data.
The types of events are:

m Access events (associated with structure SmLog_Access_t).
m EMS events (associated with structure SmLog_EMS_t).
m Object events (associated with structure SmLog_Obj_t).

m System events (associated with structure SmLog_System_t).

Chapter 10: Event API Guidance 623

Event API Reference

Access Event Type

Access events result from user-related activities. They are called in the context of
authentication, authorization, administration, and affiliate activity.

There are four categories of access events. Each of these event categories responds with
its own set of events. The following table lists the access event categories and their

associated response events.

Event Category

SiteMinder Activity

SiteMinder Event

Authentication

User
authentication
accepted

User
authentication
rejected

User
authentication
attempted

User
authentication
challenged

User session
validated

SmLogAccessEvent_AuthAccept
SmLogAccessEvent_AuthReject
SmLogAccessEvent_AuthAttempt
SmLogAccessEvent_AuthChallenge
SmLogAccessEvent_ValidateAccept
SmLogAccessEvent_ValidateReject

SmLogAccessEvent_AuthlLogout

Authorization

User
authorization
accepted

User
authorization
rejected

SmLogAccessEvent_AzAccept
SmLogAccessEvent_AzReject

SmLogAccessEvent_AzUnresolved

Administration

Administrator
login

Administrator
rejected

Administrator
logout

SmLogAccessEvent_AdminLogin
SmLogAccessEvent_AdminLogout

SmLogAccessEvent_AdminReject

Affiliate

SmLogAccessEvent_Visit

624 Programming Guide for C

Event API Reference

Filter Access Events

EMS Event Type

Beginning with SiteMinder v5.x, you can filter the kinds of access events you want to
audit and log using the Auditing tab on the Policy Server Management Console. For
example, for each of the four event categories you can select Log All Events or Log No
Events.

In addition, for the Authentication, Authorization, and Administration categories, you
can select Log Rejection Events Only. For example, if this option is selected for the
Authentication category, SmLogAccessEvent_AuthReject events would be logged, but
SmLogAccessEvent_AuthAccept events would not be. Also, note the following behavior
when Log Rejection Events Only is selected:

m SmLogAccessEvent_AuthAttempt events are not logged.

A login attempt that does not result in an accepted authentication is considered a
failure. However, because the authentication was not actually rejected, events are
not logged if Log Rejection Events Only is selected.

You can use SmLogAccessEvent_AuthAttempt events for intrusion detection.
m SmLogAccessEvent_AuthChallenge events are logged.

A challenge is not considered a failure. It simply indicates a need for additional
authentication information. However, because a challenge involves a rejected
authentication, events are logged if Log Rejection Events Only is selected.

EMS events result from actions performed on directory objects.

SiteMinder calls EMS events when:

m Directory objects are created, updated, or deleted

m Relationships, such as membership, are formed between objects

After calling an event, SiteMinder logs session activities to the objects. When an
EMS-based application, such as Delegated Management Services (DMS), logs in to EMS,
a new session is created. EMS validates the login session and reports an appropriate
event.

These Directory objects are associated with EMS events:

m Users

m Roles

® Organizations

m Generic, or user-defined directory objects

Chapter 10: Event API Guidance 625

Event API Reference

Each of the objects above is associated with the following object events:

m Create
m Delete
m Modify

EMS events are classified according to category:

m Administrative events are generated by a user with sufficient privilege to modify
objects in a directory.

m Session events are generated when a session is initialized or terminated.

m End-user events are generated by users who self-register or modify their own user
profiles.

m Workflow Preprocess events are generated when a workflow preprocess step is
complete.

m Workflow Postprocess events are generated when a workflow postprocess step is

complete.
Event Category EMS Event
SmLogEmsCat_DirectoryAdmin SmLogEmsEvent_CreateUser

SmLogEmsEvent_DeleteUser
SmLogEmsEvent_ModifyUser
SmLogEmsEvent_AssignUserRole
SmLogEmsEvent_RemoveUserRole
SmLogEmsEvent_EnableUser
SmLogEmsEvent_DisableUser
SmLogEmsEvent_CreateOrg
SmLogEmsEvent_DeleteOrg
SmLogEmsEvent_ModifyOrg
SmLogEmsEvent_CreateRole
SmLogEmsEvent_DeleteRole
SmLogEmsEvent_ModifyRole
SmLogEmsEvent_PasswordModify
SmLogEmsEvent_CreateObject
SmLogEmsEvent_DeleteObject
SmLogEmsEvent_ModifyObject

626 Programming Guide for C

Event API Reference

Event Category

EMS Event

SmLogEmsCat_DirectoryUser

SmLogEmsEvent_CreateUser
SmLogEmsEvent_ModifyUser
SmLogEmsEvent_PasswordModify

SmLogEmsCat_DirectorySession

SmLogEmsEvent_Login
SmLogEmsEvent_Logout
SmLogEmsEvent_LoginFail
SmLogEmsEvent_SessionTimeout
SmLogEmsEvent_AuthFail

Logging Workflow Events

When a preprocess or postprocess event is handled, the event will be logged. In this
case, the category in the log is either SmLogEmsCat_EventPreprocess or
SmLogEmsCat_EventPostprocess. The Event ID is the original Event ID (for example,
SmLogEmsEvent_CreateUser).

In addition, the following fields of SmLog_EMS_t apply to preprocess and postprocess

events:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who generated the
original event.

szSessionld The EMS session ID.

szDirName The name of the SiteMinder directory where the target
object is located.

szObjPath Full distinguished name of the object targeted by this
event.

szFieldDesc Name of the workflow library that executed the event.

Chapter 10: Event API Guidance 627

Event API Reference

Field Description

szStatusMsg This includes a workflow completion code and an
optional error message. The following workflow
completion codes are defined in SmApi.h:

m Sm_DmsWorkflowApi_Success

m Sm_DmsWorkflowApi_lgnore

m Sm_DmsWorkflowApi_Failure

m Sm_DmsWorkflowApi_Reject

m Sm_DmsWorkflowApi_NoUserContext

m Sm_DmsWorkflowApi_SkipSuccess

More Information:

SmLog EMS t (see page 621)

Object Event Type

The SiteMinder environment contains elements, called objects, such as domains,
policies, realms, and user directories. Collectively, these persistent objects form an
object store.

SiteMinder calls object events when objects are created, updated, or deleted. The
object events are:

m Object created

m Object updated

m Object deleted

The following SiteMinder objects are associated with object events:

Agents Agent Groups

Agent Types Agent Type Attributes
Agent Keys Key Management
Domains Administrators
Policies Policy Links

628 Programming Guide for C

Event API Reference

Password Policies

Registration

User Policies

User Directories

Realms

Management Commands

Responses

Response Groups

Response Attributes

Certificate Mapping

Rules

Rule Groups

Authentication

Authentication and Authorization Mapping

Authentication schemes

ODBC Query

Root

Root Configuration

After calling an object event, SiteMinder logs session activities to the objects. When an
application logs in to the object store, a new session is created. SiteMinder validates the
login session and reports an appropriate event.

Authentication Events

Authentication reports the following events:

Login by an application or a user for creating, modifying, or updating an object

Logout by an application or a user

Login rejected

Management Command Events

The management commands are not persistent. They log information about
management functions, such as flushing cache and changing keys. Management
commands are associated with the following events:

Flush All Caches

Flush All User Caches

Flush a Single User from Cache
Flush Resources

Change Dynamic Keys

Change Persistent Key

Chapter 10: Event API Guidance 629

Event API Reference

System Event Type

System events indicate system- and server-related activities. The following table lists the
system events:

Activity Type SiteMinder Event

Server activity SmLogSystemEvent_Serverlnit
SmLogSystemEvent_ServerlnitFail
SmLogSystemEvent_ServerUp
SmLogSystemEvent_ServerDown
SmLogSystemEvent_LogFileOpenFail

SmLogSystemEvent_ServerHeartBeat

System activity SmLogSystemEvent_Agentinfo
SmLogSystemEvent_AgentConnectionStart
SmLogSystemEvent_AgentConnectionFail
SmLogSystemEvent_AgentConnectionEnd
SmLogSystemEvent_DbConnect
SmLogSystemEvent_DbConnectFail
SmLogSystemEvent_LdapConnect
SmLogSystemEvent_LdapConnectFail
SmLogSystemEvent_AmbiguousResourceMatch
SmLogSystemEvent_AmbiguousRADIUSMatch
SmSystemEvent_AgentHeartBeat

SmLodgAccessEvent_AuthAccept
This event is called when the user is authenticated.

The following table lists the sssociated SmLog_Access_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szAgentName Name of the agent.

szSessionld Contains the session identifier of the user being

authenticated.

szClientlp Contains the IP address of the agent.

630 Programming Guide for C

Event API Reference

Field Description

szUserName Name of the user.

SzDomainOid Contains the object identifier of the domain under which
the resource was accessed.

szRealmName Contains the name of the realm being accessed.

szRealmOid Contains the object identifier of the realm.

szAuthDirName Contains the name of the directory against which the
user was authenticated.

szAuthDirServer Contains the authentication directory data source.

szAuthDirNamespace Contains the namespace of the authentication directory.

szResource Contains the name of the resource that the user is
accessing.

szAction Contains the action associated with the resource.

szTransactionld Contains information about the newly created session in

the following format:
idletime=N;maxtime=N;authlevel=N

In the format example:

m idletime is the idle timeout in seconds of the newly
created session

m maxtime is the maximum timeout in seconds of the
newly created session

m authlevel is the security level of the newly created
session

SmLogAccessEvent_AuthReject

This event is called when the user is not authenticated.

The following table lists the sssociated SmLog_Access_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.
szAgentName Name of the agent.

Chapter 10: Event API Guidance 631

Event API Reference

Field Description

szClientlp Contains the IP address of the agent.

szUserName Name of the user.

SzDomainOid Contains the object identifier of the domain under which
the resource was accessed.

szRealmName Contains the name of the realm being accessed.

szRealmOid Contains the object identifier of the realm.

szAuthDirName Contains the name of the directory against which the
user was authenticated.

szAuthDirServer Contains the authentication directory data source.

szAuthDirNamespace Contains the namespace of the authentication directory.

szResource Contains the name of the resource that the user is
accessing.

szAction Contains the action associated with the resource.

SmLogAccessEvent_AuthAttempt

This event is called when the authentication attempt has failed.

The following table lists the associated SmLog_Access_t fields

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szAgentName Name of the agent.

szClientlp Contains the IP address of the agent.

szUserName Name of the user.

SzDomainOid Contains the object identifier of the domain under which
the resource was accessed.

szRealmName Contains the name of the realm being accessed.

szRealmOid Contains the object identifier of the realm.

szResource Contains the name of the resource that the user is

accessing.

632 Programming Guide for C

Event API Reference

Field Description

szAction Contains the action associated with the resource.

SmLodgAccessEvent_AuthChallenge

This event is called when authentication is challenged.

The following table lists the associated SmLog_Access_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szAgentName Name of the agent.

szClientlp Contains the IP address of the agent.

szUserName Name of the user.

SzDomainOid Contains the object identifier of the domain under which

the resource was accessed.

szRealmName Contains the name of the realm being accessed.

szRealmOid Contains the object identifier of the realm.

szResource Contains the name of the resource that the user is
accessing.

szAction Contains the action associated with the resource.

SmLogAccessEvent_AzAccept
This event is called when the user is authorized to access the resource.

The following table lists the associated SmLog_Access_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.
szAgentName Name of the agent.

Chapter 10: Event API Guidance 633

Event API Reference

Field

Description

szSessionld

Contains the session identifier of the user whose
authorization is accepted.

szClientlp

Contains the IP address of the agent.

szUserName

Name of the user.

SzDomainOid

Contains the object identifier of the domain under which
the resource was accessed.

szRealmName

Contains the name of the realm being accessed.

szRealmOid

Contains the object identifier of the realm.

szResource

Contains the name of the resource that the user is
accessing.

szAction

Contains the action associated with the resource.

szTransactionld

Contains the transaction identifier, which is set by the
agent to track information returned from the Policy
Server. The Policy Server logs this ID.

SmLogAccessEvent_AzReject

This event is called when the user is not authorized to access the resource.

The following table lists the associated SmLog_Access_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szAgentName

Name of the agent.

szSessionld

Contains the session identifier of the user whose
authorization is rejected.

szClientlp

Contains the IP address of the agent.

szUserName

Name of the user.

SzDomainOid

Contains the object identifier of the domain under which
the resource was accessed.

szRealmName

Contains the name of the realm being accessed.

szRealmOid

Contains the object identifier of the realm.

634 Programming Guide for C

Event API Reference

Field

Description

szResource

Contains the name of the resource that the user is
accessing.

szAction

Contains the action associated with the resource.

SmLogAccessEvent_AdminLogin

This event is called when an administrator login is successful.

The following table lists the associated SmLog_Access_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szSessionld

Contains the session identifier of the administrator
whose login is successful.

szClientlp

Contains the IP address of the agent.

szUserName

Name of the administrator.

SmLodgAccessEvent_AdminLogout

This event is called when an administrator logs out.

The following table lists the associated SmLog_Access_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szSessionld

Contains the session identifier of the administrator who
logged out.

szClientlp

Contains the IP address of the agent.

szUserName

Name of the administrator.

Chapter 10: Event API Guidance 635

Event API Reference

SmLodgAccessEvent_AdminReject
This event is called when an administrator login is rejected.

The following table lists the associated SmLog_Access_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

nReason Contains the reason identifier.

szClientlp Contains the IP address of the agent.
szUserName Name of the administrator.

szStatusMsg Contains the reason for the login reject.

SmLogAccessEvent_AuthLogout

This event is called when the authentication server logs out a session.

The following table lists the associated SmLog_Access_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

nReason The reason identifier, of type Sm_Api_Reason_t. .

SmLogAccessEvent_ValidateAccept
This event is called when a session validation is successful.

The following table lists the associated SmLog_Access_t fields:

Field Description
nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

636 Programming Guide for C

Event API Reference

SmLodgAccessEvent_ValidateReject
This event is called when a session validation is rejected.

The following table lists the associated SmLog_Access_t fields:

Field Description
nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

SmLodEmsEvent_CreateUser, SmLogEmsEvent_DeleteUser,
SmLogEmsEvent_ModifyUser

Creating, deleting, or modifying a user object results in an EMS event. User objects are
LDAP entities of the class inetorgperson or entities of a class that extends inetorgperson.

The following table lists the associated SmLog_Ems_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szUserName If this is an administrative event, the name of the

administrator who is creating, modifying, or deleting the
user object. If this is an end-user event, the user name is
Registration.

szSessionld The EMS session ID.

szDirName The name of the SiteMinder directory where the user is
located.

szObjName The name (user ID) of the user object targeted by this
event.

szObjPath Full distinguished name of the user object targeted by
this event.

szObjClass Class name of the user object.

Chapter 10: Event API Guidance 637

Event API Reference

Field

Description

szOrgName

Name of the user object’s organization.

szFieldDesc

Description of the event.

szStatusMsg

Status message. Used only if the event was not handled
successfully.

SmLogEmsEvent_PasswordModify

Changing a user password results in an EMS event.

The following table lists the associated SmLog_Ems_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

If this is an Administrative event, the name of the
administrator who is modifying the password. If this is an
end-user event, the user name is Registration.

szSessionld

The EMS session ID.

szDirName

The name of the SiteMinder directory where the user is
located.

szObjName

The name (user ID) of the user object targeted by this
event.

szObjPath

Full distinguished name of the user object targeted by
this event.

szObjClass

Class name of the user object.

szOrgName

Name of the user object’s organization.

szFieldDesc

Description of the event.

szStatusMsg

Status message. Used only if the event was not handled
successfully.

638 Programming Guide for C

Event API Reference

SmLogEmsEvent_AssignUserRole, SmLogEmsEvent_RemoveUserRole
Assigning a user to a role or removing a user from a role results in an EMS event. Roles
are LDAP entities of the class groupofuniquenames or entities that extend

groupofuniquenames.

The following table lists the associated SmLog_Ems_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is assigning or

removing the role.

szSessionld The EMS session ID.

szDirName The name of the SiteMinder directory where the role is
located.

szObjName The name (user ID) of the user object targeted by this
event.

szObjPath Full distinguished name of the user object targeted by
this event.

sz0bjClass Class name of the user object.

szOrgName Name of the user’s organization.

szRoleName Name of the role that is being assigned or removed.

szFieldDesc Description of the event.

szStatusMsg Status message. Used only if the event was not handled

successfully.

SmLogEmsEvent_EnableUser, SmLogEmsEvent_DisableUser

These events are called when a user’s access rights are enabled or disabled. Access
rights pertain to the user’s ability to get resources that are under SiteMinder protection.

The following table lists the associated SmLog_Ems_t fields:

Field Description

nVersion Version number of the SiteMinder server.

Chapter 10: Event API Guidance 639

Event API Reference

Field Description
nCurrentTime Time when the event occurred.
szUserName The name of the administrator who is enabling or

disabling the user’s access rights.

szSessionld The EMS session ID.

szDirName The name of the SiteMinder directory where the user is
located.

szObjName The name (user ID) of the user object targeted by this
event.

szObjPath Full distinguished name of the user object targeted by
this event.

szObjClass Class name of the user object.

szOrgName Name of the user’s organization.

szFieldDesc Description of the event.

szStatusMsg Status message. This will be 0 if the user’s access rights
are enabled, and non-zero if the user’s access rights are
disabled.

SmLodgEmsEvent_CreateOrd, SmLogEmsEvent_DeleteOrg,
SmLogEmsEvent_ModifyOrg

These events are called when an organization object is created, deleted, or modified.
Organization objects are LDAP entities of the class organizationalunit or entities of a
class that extends organizationalunit.

The following table lists the associated SmLog_Ems_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is creating,

modifying, or deleting the organization.

szSessionld The EMS session ID.

szDirName The name of the SiteMinder directory where the
organization is located.

640 Programming Guide for C

Event API Reference

Field

Description

szObjName

The name (user ID) of the organization object targeted
by this event.

szObjPath

Full distinguished name of the organization object
targeted by this event.

szObjClass

Class name of the organization object.

szFieldDesc

Description of the event.

szStatusMsg

Status message. Used only if the event was not handled
successfully.

SmLogEmsEvent_CreateRole, SmLogEmsEvent_DeleteRole,

SmLogEmsEvent_ModifyRole

These events are called when a role object is created, deleted, or modified. Role objects
are LDAP entities of the class groupofuniquenames or entities of a class that extends

groupofuniquenames.

The following table lists the associated SmLog_Ems_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator who is creating,
modifying, or deleting the group.

szSessionld

The EMS session ID.

szDirName

The name of the SiteMinder directory where the group is
located.

szObjName

The name of the group targeted by this event.

szObjPath

Full distinguished name of the group object targeted by
this event.

szObjClass

Class name of the group object.

szOrgName

Name of the user group’s organization.

szFieldDesc

Description of the event.

szStatusMsg

Status message. Used only if the event was not handled
successfully.

Chapter 10: Event API Guidance 641

Event API Reference

SmLogEmsEvent_CreateObject, SmLogEmsEvent_DeleteObject,

SmLogEmsEvent_ModifyObject

These events are called when an LDAP entry with an object class of top is created,
deleted, or modified. The top object class is a superclass for all other object classes in an
LDAP directory. These events apply to any LDAP entry that uses the attribute

objectclass.

The following table lists the associated SmLog_Ems_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator who is creating,
modifying, or deleting the object.

szSessionld

The EMS session ID.

szDirName

The name of the SiteMinder directory where the object
is located.

szObjName

The name of the object targeted by this event.

szObjPath

Full distinguished name of the object targeted by this
event.

szObjClass

Class name of the object.

szFieldDesc

Description of the event.

szStatusMsg

Status message. Used only if the event was not handled
successfully.

SmLogEmsEvent_Login, SmLogEmsEvent_Logout

These events are called when an administrator logs in or logs out.

The following table lists the associated SmLog_Ems_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator.

642 Programming Guide for C

Event API Reference

Field Description
szSessionld The EMS session ID.
szDirName The name of the SiteMinder directory where the

administrator is located.

szObjName The name (UID) of the administrator.

szObjPath Full distinguished name of the administrator.
sz0OrgName Name of the user administrator’s organization.
szFieldDesc Description of the event.

szStatusMsg Status message. Used only if the event was not handled

successfully.

SmLogEmsEvent_AuthFail

This event is called when an administration authentication fails.

The following table lists the associated SmLog_Ems_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szUserName The name of the administrator.

szSessionld The EMS session ID. This will probably not exist.
szFieldDesc Description of the event.

szStatusMsg Status message.

SmLogEmsEvent_SessionTimeout
This event is called when an EMS server session times out.

The following table lists the associated SmLog_Ems_t fields:

Field Description

nVersion Version number of the SiteMinder server.

Chapter 10: Event API Guidance 643

Event API Reference

Field Description

nCurrentTime Time when the event occurred.
szUserName The name of the administrator.
szSessionld The EMS session ID.

sz0OrgName Name of the administrator’s organization
szFieldDesc Description of the event.

szStatusMsg Status message.

SmLogObjEvent_Create

This event is called when system or domain objects are created.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is creating the
object.

szSessionld The session ID of the administrator who is creating the
object.

szDomainOid If the object being created is a domain object, this value
is set to the domain object identifier.

szObjName Name of the object being created.

sz0bjOid Object identifier of the object being created.

644 Programming Guide for C

Event API Reference

SmLogObjEvent_Update

This event is called when system or domain objects are updated.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is updating the

object.

szSessionld

The session ID of the administrator who is updating the
object.

szDomainOid If the object being created is a domain object, this value
is set to the domain object identifier under which the
object is updated.

szObjName Name of the object being updated.

szObjOid Object identifier of the object being updated.

szFieldDesc Administrator’s DN.

SmLogObjEvent_Delete

This event is called when system or domain objects are deleted.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is deleting the
object.

szSessionld The session ID of the administrator who is deleting the
object.

szDomainOid If the object being created is a domain object, this value

is set to the domain object identifier under which the
object is deleted.

Chapter 10: Event API Guidance 645

Event API Reference

Field

Description

szObjName

Name of the object being deleted.

sz0bjOid

Object identifier of the object being deleted.

SmLogObjEvent_Login

This event is called when an administrator or an application (such as smobjimport) logs

into the policy store.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator or application logging
into the policy store.

szSessionld

The session ID of the administrator or application logging
into the policy store.

SmLogObjEvent_FailedLoginAttemptsCount

This event is called when a user login fails and there is a password policy that applies.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The user whose login attempt failed.

szSessionld

The session ID of the user.

szObjName

Name of directory where the user was found.

szFieldDesc

User’s DN.

szStatusMsg

Number of times that the login was attempted. This
number cannot be higher than the number of attempts
that results in a disabled account.

646 Programming Guide for C

Event API Reference

SmLogObjEvent_Logout

This event is called when an administrator or an application (such as smobjimport) logs
out of the policy store.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator or application logging out

of the policy store.

szSessionld The session ID of the administrator or application logging
out of the policy store.

SmLogObjEvent_LoginReject

This event is called when an administrator or an application login to the policy store is
rejected.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator or application that was
rejected.

Chapter 10: Event API Guidance 647

Event API Reference

SmLogObjEvent_FlushAll

This event is called when all the SiteMinder caches are flushed, including user sessions,
resource information, and user directory caches.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is flushing the cache.

szSessionld The session ID of the administrator who is flushing the
cache.

SmLogObjEvent_FlushUser

This event is called when a user is flushed from user session cache.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is flushing the user.

szSessionld The session ID of the administrator who is flushing the
user.

szObjName Name of the directory where the user is defined.

sz0bjoid Object identifier of the directory where the user is
defined.

szFieldDesc DN of the user being flushed.

648 Programming Guide for C

Event API Reference

SmLogObjEvent_FlushUsers
This event is called when all users are flushed from user session cache.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is flushing the users.

szSessionld The session ID of the administrator who is flushing the
users.

SmLogObjEvent_FlushRealms
This event is called when all the realms are flushed from resource information cache.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is flushing the
realms.

szSessionld The session ID of the administrator who is flushing the
realms.

Chapter 10: Event API Guidance 649

Event API Reference

SmLogObjEvent_ChandgeDynamicKeys

This event is called when the dynamic key is changed.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is changing the keys.

szSessionld

The session ID of the administrator who is changing the
keys.

SmLogObjEvent_ChandgePersistentKey

This event is called when the persistent key is changed.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is changing the keys.
szSessionld The session ID of the administrator who is changing the

keys.

SmLogObjEvent_ChangdeSessionKey

This event is called when the session key is changed.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

650 Programming Guide for C

Event API Reference

Field

Description

nCurrentTime

Time when the event occurred.

SmLogObjEvent_ChangeUserPassword

This event is called whenever an administrator changes a user’s password.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator who is changing the
password.

szSessionld

The session ID of the administrator who is changing the
password.

szObjName

Name of the directory where the user is defined.

sz0ObjOid

Object identifier of the directory where the user is
defined.

szFieldDesc

DN of the user whose password is being changed.

SmLogObjEvent_CreateUserSuccess

This event is called when a new user is created.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator who is creating the user
account.

Chapter 10: Event API Guidance 651

Event API Reference

Field Description

szSessionld The session ID of the administrator who is creating the
user account.

szObjName Name of the directory where the user is defined.

szFieldDesc DN of the user whose account is being created.

SmLogObjEvent_DeleteUserSuccess
This event is called when a user account is deleted in the directory.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is deleting the user
account.

szSessionld The session ID of the administrator who is deleting the

user account.

szObjName Name of the directory where the user is defined.

szFieldDesc DN of the user whose account is being deleted.

652 Programming Guide for C

Event API Reference

SmLogObjEvent_ChandeDisabledUserState

This event is called under the following conditions:

When Admin enables or disables the user account.

When you enable the account through the Administrative Ul or the SDK.
When the user is disabled because of account inactivity.

When the user is disabled because the number of login failures was exceeded.
When the user is disabled because the password has expired.

When you set or unset "User must change password" in the Administrative UI.

When you change a user password because changing the password triggers the user
must enter a new password.

The following table lists the associated SmLog_Obj_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szUserName The name of the administrator who is changing the state

of the account.

szSessionld The session ID of the administrator who is changing the

state of the account.

szObjName Name of the directory where the user is defined.
szFieldDesc DN of the user whose account is being changed.
szStatusMsg Reason for changing the state of the account.

SmLogObjEvent_ModifyUserSuccess

This event is called when a user account is modified.

The following table lists the associated SmLog_Obj_t fields:

Field Description
nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

Chapter 10: Event API Guidance 653

Event API Reference

Field

Description

szUserName

The name of the administrator who is modifying the user
account.

szSessionld

The session ID of the administrator who is modifying the
user account.

szObjName

Name of the directory where the user is defined.

szFieldDesc

DN of the user whose account is being modified.

SmLogObjEvent_CreateUserFail

This event is called when the user account cannot be created.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator who is attempting to
create the user account.

szSessionld

The session ID of the administrator who is attempting to
create the user account.

sz0ObjName

Name of the directory where the user is defined.

szFieldDesc

DN of the user whose account could not be created.

SmLogObjEvent_DeleteUserFail

This event is called when the user account cannot be deleted.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

654 Programming Guide for C

Event API Reference

Field

Description

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator who is attempting to
delete the user account.

szSessionld

The session ID of the administrator who is attempting to
delete the user account.

szObjName

Name of the directory where the user is defined.

szFieldDesc

DN of the user whose account could not be deleted.

SmLogObjEvent_ModifyUserFail

This event is called when the user account cannot be modified.

The following table lists the associated SmLog_Obj_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szUserName

The name of the administrator who is attempting to
modify the user account.

szSessionld

The session ID of the administrator who is attempting to
modify the user account.

sz0ObjName

Name of the directory where the user is defined.

szFieldDesc

DN of the user whose account could not be modified.

Chapter 10: Event API Guidance 655

Event API Reference

SmLogSystemEvent_Serverlnit
The server is initializing.

The following table lists the associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szName Name of the server.

szMsg Information about the server in the following format:

Product=%,Platform=%,Version=%,Update=%,
Label=%,Crypto=%,UTC=%,TZ=%

In the format example:
Product is the name of the server.
Platform is the supported platform of the server software.

Version is the version number of the SiteMinder server
software.

Update is the update number of the server software.
Label is the build number of the server software.
Crypto is the crypto strength.

UTC is the time in the Universal Time Format.

TZ is the time zone.

Unknown clauses are left blank.

Example:

Product=smservacct,Platform=Windows NT,
Version=4.0,Update=None,Label=C144,
Crypto=56,UTC=949621705,TZ=5

SmLogSystemEvent_ServerlnitFail

Called by the event handler to find out which server initialization failed according to the
system category in the event call.

This event has no associated SmLog_System_t fields.

656 Programming Guide for C

Event API Reference

SmLogSystemEvent_ServerUp

Called by the event handler to find out which server is up and running according to the
system category in the event call.

This event has no associated SmLog_System_t fields.

SmLogSystemEvent_ServerDown

Called by the event handler to find out which server is down according to the system
category in the event call.

This event has not associated SmLog_System_t fields.

SmLogSystemEvent_LogFileOpenFail
This event is called when the text file used for audit logging could not be opened.

The following table lists the associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.

nCurrentTime Time when the event occurred.

szMsg The name of the audit log file that could not be opened.

SmLogSystemEvent_ServerHeartbeat
This event provides periodic information about the server. It is called every 30 seconds.

The following table lists associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szName Name of the server.

Chapter 10: Event API Guidance 657

Event API Reference

Field

Description

szlpAddress

Name of the host where the server is running.

nlpPort

Port on which the server is listening.

SmLogSystemEvent_AdgentInfo

Contains information about the agent.

The following table lists the associated SmLog_System_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szName

Name of the agent.

szMsg

Information about the agent in the following format:

Product=%,Platform=%,Version=%,Update=%,
Label=%,Crypto=%,UTC=%,TZ=%

In the format example:

Product is the name of the agent software.

Platform is the supported platform of the agent software.
Version is the version number of the agent software.
Update is the update number of the agent software.
Label is the build number of the agent software.
Crypto is the crypto strength.

UTC is the time in the Universal Time Format.

TZ is the time zone.

Unknown clauses are left blank.

For example, the Web Agent issues the following:

Product=WebAgent,Platform=NT/ISAPI,
Version=4.0,Update=SP1,Label=C134,
Crypto=56,UTC=949621705,TZ=5

658 Programming Guide for C

Event API Reference

SmLogSystemEvent_AdentConnectionStart

This event is called when the agent connects to the Policy Server.

The following table lists the associated SmLog_System_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szName

Name of the agent.

szlpAddress

The IP Address of the agent machine.

nlpPort

Port on the Policy Server machine that the agent is
connected to.

SmLogSystemEvent_AdentConnectionFail

This event is called when the agent connection fails.

The following table lists the associated SmLog_System_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szName

Name of the agent.

szlpAddress

The IP Address of the agent machine.

nipPort

Port on the Policy Server machine that the agent tried to
connect to.

SmLogSystemEvent_AdentConnectionEnd

This event is called when the agent connection ends.

The following table lists the associated SmLog_System_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

Chapter 10: Event API Guidance 659

Event API Reference

Field

Description

nCurrentTime

Time when the event occurred.

szName

Name of the agent.

szlpAddress

The IP Address of the agent machine.

nlpPort

Port on the Policy Server machine that the agent was
connected to.

SmLogSystemEvent_DbConnect

This event is called when the Policy Server connects to the database.

The following table lists the associated SmLog_System_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szName

The name of the data source.

SmLogSystemEvent_DbConnectFail

This event is called when the Policy Server connection to the database fails.

The following table lists the associated SmLog_System_t fields:

Field

Description

nVersion

Version number of the SiteMinder server.

nCurrentTime

Time when the event occurred.

szName

The name of the data source.

szMsg

The error message.

660 Programming Guide for C

Event API Reference

SmLogSystemEvent_LdapConnect
This event is called when the Policy Server connects to an LDAP directory.

The following table lists the associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szName The name of the LDAP directory.
szlpAddress The IP Address of the LDAP directory.
nlpPort Port of the LDAP directory.

SmLogSystemEvent_LdapConnectFail
This event is called when the Policy Server connection to the LDAP directory fails.

The following table lists the associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szName The name of the LDAP directory.
szlpAddress The IP Address of the LDAP directory.
nipPort Port of the LDAP directory.

szMsg The error message.

Chapter 10: Event API Guidance 661

Event API Reference

SmLogSystemEvent_AmbidquousResourceMatch
This event is called when there is an ambiguous resource match.

The following table lists the associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szName Name of the machine requesting the resource.
szMsg The resource requested.

SmLogSystemEvent_AmbiquousRadiusMatch
This event is called when there is an ambiguous RADIUS match.

The following table lists the associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szName The name of the RADIUS device.

SmLogSystemEvent_AdentHeartbeat
This event is called whenever an agent makes a DoManagement request.

The following table lists the associated SmLog_System_t fields:

Field Description

nVersion Version number of the SiteMinder server.
nCurrentTime Time when the event occurred.

szName Name of the agent.

szlpAddress IP address of the agent.

662 Programming Guide for C

Event Function Declarations

Field Description
nipPort Port on the Policy Server machine to which the agent is
connected.

Event Function Declarations

SmEventInit()

The table below lists the functions used in the Event API. Your shared library must
export these entry points.

Function Definition Description

SmEventlnit() (see Called by the Policy Server so that an event handler can
page 663) perform its own initialization procedure.
SmEventRecord() (see Called by the Policy Server when an event has been
page 664) signalled.

SmEventRelease() (see Called by the Policy Server so that an event handler can
page 665) perform its own rundown procedure.

The Policy Server calls this function to let an event provider perform its own
initialization procedure. The call is made once when the provider is first loaded.

Syntax

int SM EXTERN SmEventInit();
Returns

Returns 1 if successful or 0 if unsuccessful.

Chapter 10: Event API Guidance 663

Event Function Declarations

SmEventRecord()

The Policy Server calls this function when an event has been signalled.

Syntax

void SM EXTERN SmEventRecord (
const int nCategoryType,
const int nCategory,
const int nEventld,

void* pData

);

Parameter 1/0 Description

nCategoryType | The type of the event being logged. One of the
following valid values:
m Smlog_Access
m Smlog EMS
m SmlLog_Obj
m Smlog_System

nCategory | The event category. A list of valid event categories
follows this parameter table.

nEventID | The event.

pData | The pointer to the property instance. The structure

could be one of the following:

m Smlog Access t (see page 619)
m Smlog EMS t (see page 621)

m Smlog Obj t(see page 622)

m Smlog System t (see page 623)

664 Programming Guide for C

Event Function Declarations

SmEventRelease()

Valid values for the nCategory parameter are as follows:

SmLogAccessCat_Admin
SmLogAccessCat_Affiliate
SmLogAccessCat_Auth
SmLogAccessCat_Az
SmLogEmsCat_DirectoryAdmin
SmLogEmsCat_DirectorySession
SmLogEmsCat_DirectoryUser
SmLogEmsCat_EventPostprocess
SmLogEmsCat_EventPreprocess
SmLogObjCat_ActiveExpr
SmLogObjCat_Admin
SmLogObjCat_Agent
SmLogObjCat_AgentGroup
SmLogObjCat_AgentKey
SmLogObjCat_Auth
SmLogObjCat_AuthAzMap
SmLogObjCat_CertMap
SmLogObjCat_Domain
SmLogObjCat_KeyManagement
SmLogObjCat_ManagementCommand
SmLogObjCat_ODBCQuery
SmLogObjCat_PasswordPolicy
SmLogObjCat_Policy
SmLogObjCat_PolicyLink
SmLogObjCat_Property

SmLogObjCat_PropertyCollection
SmLogObjCat_PropertySection
SmLogObjCat_Realm
SmLogObjCat_Response
SmLogObjCat_ResponseAttr
SmLogObjCat_ResponseGroup
SmLogObjCat_Root
SmLogObjCat_RootConfig
SmLogObjCat_Rule
SmLogObjCat_RuleGroup
SmLogObjCat_Scheme
SmLogObjCat_SelfReg
SmLogObjCat_TaggedString
SmLogObjCat_UserDirectory
SmLogObjCat_UserPolicy
SmLogObjCat_Variable
SmLogObjCat_VariableType
SmLogObjCat_Vendor
SmLogObjCat_VendorAttr
SmLogSystemCat_Acct
SmLogSystemCat_Admin
SmLogSystemCat_Auth
SmLogSystemCat_Az
SmLogSystemCat_Combined
SmLogSystemCat_System

The Policy Server calls this function to let the event handler perform its own rundown
procedure. This call is made once when SiteMinder is shutting down.

Syntax

void SM EXTERN SmEventRelease();

Chapter 10: Event API Guidance 665

Example of an Active Policy

Example of an Active Policy

This function returns true if the user belongs to the organizational unit specified in the
parameter (param) field of the active policy expression.

<@ 1ib="SmAzAPI" func="activePolicy" param="Accounting" @
ke sk ok ok K ok ok sk sk ok sk ok 3k sk ok Sk sk ok ok sk ok ok sk ok s sk ok sk sk sk sk sk sk ok sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok ok ok ok K
int SM EXTERN activePolicy(
const Sm Api Context t* lpApiContext,
// the structure that provides API context
const Sm Api UserContext t* T1pUserContext,
// the structure that provides user context
const Sm Api RequestContext t* 1pReqContext,
// the structure that provides request context
const char* lpszParam,
// the parameter string (null-terminated)
const int nBytesOutBuf,
// the maximum size of the output buffer
char* 1pszOutBuf,
// the output buffer to hold the null-terminated attribute value
const int nBytesErrBuf,
// the maximum size of the error message buffer
char* 1lpszErrBuf)
// the output buffer to hold the null-terminated error message
{
/* User Context is required to use the functions like fGetProp, fSetProp.. */
if(!lpUserContext->bIsUserContext) {
strncpy (lpszErrBuf, "No User Context ", nBytesErrBuf);
lpszErrBuf[nBytesErrBuf-1] = '\0';
return -1;
}
/* Buffer to store all the organizational units user belongs to. */
char 1pszOrgUnit[30];
memset (lpszOrgUnit, 0, sizeof(1lpszOrgUnit));
/*
// Check to see if an organizational unit has been
// entered in the parameter.

*/
if(lpszParam == NULL || strlen(lpszParam) == 0)
{
strncpy (lpszErrBuf, "Organizational unit is not entered ",
nBytesErrBuf);
lpszErrBuf[nBytesErrBuf-1] = '\0';
return -1;
}

/* Get all the organizational units to which the user belongs. */

666 Programming Guide for C

Example of an Active Policy

if

/*

*/

int getResult = lpUserContext->fGetProp (
lpUserContext->1pParam,

"ou", /* Attribute name */

sizeof (lpszOrguUnit),lpszOrgUnit);

(getResult < 0)

{
strncpy (lpszErrBuf,

"Failed to get user password from user's profile attribute ",

nBytesErrBuf);
lpszErrBuf [nBytesErrBuf-1] = '\0';
return -1;
}
else

{

/* Check if the user belongs to the organization unit that is

requested. */
if(strstr(lpszOrgUnit, lpszParam) != NULL)
{

// Yes the user belongs to the organization unit
// mentioned in the parameter field of active policy.

strncpy(lpszOutBuf, "true", nBytesOutBuf);
1pszOutBuf[nBytesOutBuf-1] = '\0';
return strlen(1lpszOutBuf);
}
else
{
strncpy (lpszErrBuf,
"The user does not belong to the requested organizational unit ",
nBytesErrBuf);
lpszErrBuf[nBytesErrBuf-1] = '\0';
return -1;
}
}
/* everything failed.... */
return 0;

Chapter 10: Event API Guidance 667

Configuring the Policy Server for the Event Handler

Configuring the Policy Server for the Event Handler

You can add additional event handler libraries to the CA SiteMinder® Policy Server.

Note: If you do not have write access to the CA SiteMinder® binary files (XPS.dll,
libXPS.so, libXPS.sl), an Administrator must grant you permission to use the related XPS
command line tools using the Administrative Ul or the XPSSecurity tool.

To add event handler libraries

1.

Open a command line on the Policy Server, and enter the following command:
xpsconfig

The tool starts and displays the name of the log file for this session, and a menu of
choices opens.

Enter the following:

Xps

A list of options appears.

Enter the following:

5 (AuditSMHandlers)

The settings for the event handler libraries appear.

Type C, and then enter the path and file name of the event handler library you want
to add. Separate multiple library locations with commas.

The settings for the event handler libraries appear. The value you added is shown at
the bottom of the settings as a "pending value."

Do the following:

a. Enter Qtwice.

b. EnterlL.

c. Enter Qto end your XPS session.

Your changes are saved and the command prompt appears.

668 Programming Guide for C

Chapter 11: DMS Workflow API

This section contains the following topics:

DMS Workflow APl Guidance (see page 669)
DMS Workflow API Reference (see page 672)

DMS Workflow API Guidance

Using the DMS Workflow API, you can add simple pre- and postprocess workflow for
DMS events. To implement these processes, you must:

1. Develop a shared library that supports the DMS Workflow APl and provides the
custom functionality you need. The shared library must contain the workflow
functions defined as exportable symbols.

SmApi.h defines all of the data structures necessary to create custom workflows.
SmEventApi.h defines all of the workflow events.

2. Install the shared library in one of the following locations:
m On UNIX platforms, in the SiteMinder lib directory
m On Windows platforms, in the SiteMinder bin directory

3. Define the workflow library in the Administrative Ul. Every DMS Administration
realm and every resource realm into which an end-user may self-register is
associated with a Registration Scheme. The Registration Scheme Properties Ul
contains a text field where you may enter the name of the shared library to use for
DMS workflow.

Note: The DMS API (available in Java only) has different functionality than the DMS
Workflow API (available in C/C++ only). The DMS API lets you develop directory
management applications that perform similar operations as the SiteMinder DMS
product. The DMS Workflow APl works in conjunction with DMS and fires when certain
pre-process and post-process DMS events occur, allowing you to develop applications
that perform additional functionality before and/or after these events.

Chapter 11: DMS Workflow API 669

DMS Workflow API Guidance

DMS Sessions

A user working with a DMS application is assigned a session to maintain the application
context according to the user’s administrative privileges.

There are two types of DMS user sessions:

® An Administration session is created for a user who has administrative privileges in
the DMS application. In order to start a DMS session, the user must be
authenticated and authorized to use the application. Administrative sessions
generate events which are categorized as administrative events. Such events
provide a user context to the workflow libraries.

m Registration sessions are created for registration realms where users will be adding
themselves to the directory. A registration session is created for a realm upon the
first request to self-register for the resources in that realm. The session remains live
on the DMS server until SiteMinder is shut down. Registration sessions generate
events that are categorized as registration events. Such events will not provide a
user context to the workflow libraries. Registration events are limited to the
creation of a user entry and the self-modification of a user entry.

DMS Workflow

When a user initiates a DMS session, either by requesting self-registration or by entering
a DMS administration application, the following SiteMinder objects are located:

m The realm of the requested resource. For self-registration, this is the realm
containing the page for which the user is signing up. For DMS administrators, the
realm is the location of the DMS Administration servlet. The realm is obtained by
the SiteMinder Web Agent when the user requests access.

m The registration scheme associated with the realm. The registration scheme
contains the name of the workflow library, if any.

Because workflow is associated with a realm, it is possible to set up several
workflow libraries, depending on the desired DMS event processing for a particular
resource. For example, self-registration may be required in order to receive
documents on separate sites, but the rules for pre- and postprocessing users for
each site may be different.

For example, it is possible to set up a number of self-registering sites; each may
have its own workflow library.

670 Programming Guide for C

DMS Workflow API Guidance

Workflow Events

If the registration scheme includes a workflow library name, the library is loaded. The
loader checks to see that all the required functions are exported by the library. If the
library can not be loaded or a function is missing, session initialization will fail and DMS
requests for that realm will not be processed. To correct this situation:

1.

Make sure the library has been installed in the correct location, as specified in DMS
Workflow API Overview.

Ensure that the required functions are exported by the library.

If desired, disable the workflow by removing the library name from the registration
scheme, using the Administrative Ul.

When the workflow library is loaded, it will be called for every DMS event that involves
adding, modifying, or deleting entities in the user directory during the session.

Workflow events are documented in EMS Event Type. These events are used for logging
as well as for workflow. Events are divided into these categories:

SmLogEmsCat_DirectoryUser. Assigned to events generated by an end-user, such as
self-registration and modification.

SmLogEmsCat_DirectoryAdmin. Assigned to events generated by a DMS
administrator.

SmLogEmsCat_DirectorySession. Assigned to events associated with DMS session
management.

SmLogEmsCat_EventPreprocess. Assigned to events generated by a workflow
preprocess step; used for logging the result of a workflow event.

SmLogEmsCat_EventPostprocess. Assigned to events generated by a workflow
postprocess step; used for logging the result of a workflow event.

More Information:

EMS Event Type (see page 625)

Chapter 11: DMS Workflow APT 671

DMS Workflow API Reference

Preprocess Events

A preprocess event takes place before the DMS request is processed. A workflow library
may evaluate the request and decide whether to accept or reject it. If accepted, the
request will be carried out. If rejected, the request will not be carried out and a
preprocess error will be returned to the DMS application. The preprocess function may
optionally set an error message for DMS to display to the user.

The workflow library is called to preprocess all events in the categories
SmLogEmsCat_DirectoryUser and SmLogEmsCat_DirectoryAdmin.

Postprocess Events

A postprocess event takes place after the DMS request is successfully processed. A
workflow library may evaluate the request, take any action as dictated by the business
process, and return success or fail status. The postprocess function may optionally set
an error message for DMS to display to the user. It is important to note that postprocess
failure will not result in rolling back the transaction. Unacceptable requests should be
detected in preprocessing.

The workflow library is called to postprocess all events in the
SmLogEmsCat_DirectoryUser and SmLogEmsCat_DirectoryAdmin categories, as well as
the SmLogEmsCat_DirectorySession category. This last category provides session status
only.

DMS Workflow API Reference

To create a custom workflow library:

1. Include the SmApi.h file, as follows:
#include "SmApi.h"

2. Include the SmEventApi.h file, as follows:
#include " SmEventApi.h"

3. Make sure the following functions are externally visible:

Function Description

SmDmsWorkflowlInit() (see page 677) Initializes the workflow library. The library
should initialize whatever resources it needs
at this time.

SmDmsWorkflowPostprocess() (see Performs the workflow postprocess step.

page 677)

672 Programming Guide for C

DMS Workflow API Reference

SmDmsWorkflowPreprocess() (see Performs the workflow preprocess step.

page 679)

SmDmsWorkflowRelease() (see The library should release whatever

page 680) resources were created by initialization at
this time.

Each entry point in the shared library must be defined according to specified syntax.

Note: If you are using Microsoft Visual Studio, export the function addresses to a
modular definition file (.DEF) file. To export the function addresses, create a .DEF file. In
the file’s export section, list all the functions described in the previous table. Once you
have created the .DEF file, add it to the Microsoft Visual Studio project.

Compile the code into a DLL or shared library. The name of this file will be specified as
the library in the SiteMinder Registration Properties dialog.

When you have written a custom workflow, such as the example provided at the end of
this chapter, you must define the workflow in the Registration Properties dialog using
the Administrative Ul.

Chapter 11: DMS Workflow APTI 673

DMS Workflow API Reference

Sm_Api_DmsContext_t
This structure provides DMS-specific context.

Syntax

typedef struct

{
unsigned char bIsUserContext;
char* 1pszAdminUserName
char* 1pszAdminUserPath;
char* lpszDirPath;
void 1pReservedl;
char* lpszDirServer;
char* lpszDirNamespace;
char* 1pszSessionld;
void* lpDirParam;
void* 1pAdminParam;

Sm_Api GetUserProp fGetAdminProp;
Sm_Api_GetDmsDnProp fGetDnProp;
} Sm_Api DmsContext t;

Field Description

bisUserContext Flag indicating that SiteMinder has established the user's
identity and stored it in lJpszAdminUserName. When this
flag is set, the function referenced in fGetAdminProp can

be used to obtain properties of this user.

IpszAdminUserName The DMS administrator user name. This will be a full
distinguished name for Administrator events, else it will
be an empty string.

IpszAdminUserPath The DMS administrator user path in the SiteMinder
notation, for Administrator events only.

IpszDirPath Directory path, in the SiteMinder notation, of a
SiteMinder user directory specified by the registration
scheme.

IpReserved1 Reserved for internal use.

IpszDirServer The directory server of a SiteMinder user directory
specified by the registration scheme.

IpszDirNamespace The directory namespace.

IpszSessionld The DMS session ID.

674 Programming Guide for C

DMS Workflow API Reference

Field

Description

IpDirParam

Pointer to the parameters to be passed to fGetDnProp.

IpAdminParam

Pointer to the parameters to be passed to
fGetAdminProp.

fGetAdminProp

Function that returns attributes of the administrative
user. The calling syntax for this function is:

int nMaxBufSize = 256;

char IpszResult[256];

int nBuflen = I[pDmsContext->fGetProp (
IpDmsContext->IpAdminParam,
"mail",
nMaxBufSize,
IpszResult);

If the function succeeds, the return value is the number
of bytes in the output buffer. If the function fails, the
return value is -1.

fGetDnProp

Function that returns attributes given a distinguished
name. Any object may be examined as long as it can be
retrieved from the directory server. The calling syntax
for this function is:

int nMaxBufSize = 256;
char IpszResult[256];
char IpszDn[] =
"uid=jsmith,ou=People,o=dms.com";
int nBuflen = [pDmsContext->fGetProp (
IpDmsContext->IpDirParam,
IpszDn,
"mail",
nMaxBufSize,
IpszResult);

If the function succeeds, the return value is the number
of bytes in the output buffer. If the function fails, the
return value is -1.

Chapter 11: DMS Workflow APT 675

DMS Workflow API Reference

Function Declarations

In structure Sm_Api_DmsContext_t, the functions fGetAdminProp and fGetDnProp are
declared in SmApi.h as follows:

fGetAdminProp

typedef int (SM EXTERN *Sm Api GetUserProp)

(

const void* 1lpParam, /* The function parameter */

const char* 1lpszPropName, /* User property name (null-term) */
const int nBytesValueBuf, /* Max size of user property buffer */
char* 1pszValueBuf /* Output buffer to hold the user property */
);

fGetDnProp

typedef int (SM EXTERN *Sm Api GetDmsDnProp)

(

const void* 1lpParam, /* The function parameter */

const char* 1pszDN, /* The DN of the object */

const char* 1lpszPropName, /* Object property name (null-term) */
const int nBytesValueBuf, /* Max size of object property buffer */
char* 1pszValueBuf /* Output buffer to hold the object property */
);

Sm_DmsWorkflow_Attribute_t

This structure pairs a request or response attribute name with a string representation of
the attribute value. An array of these structures is used to represent a DMS request to
create or modify a directory object.

Syntax

typedef struct
{
const char* lpszAttrName;
const char* lpszAttrValue;
} Sm DmsWorkflow Attribute t;

Field Description
IpszAttrName Name of the request or response attribute.
IpszAttrValue String representing the attribute value.

676 Programming Guide for C

DMS Workflow API Reference

SmDmsWorkflowInit()

SiteMinder calls this function so that a workflow library can perform its own
initialization procedure. This call is made once, when the library is loaded for the first

time.

Syntax

Sm _DmsWorkflowApi Status t SM EXTERN SmDmsWorkflowInit();

Returns

m Sm_DmsWorkflowApi_Success. Function was successful.

m Sm_DmsWorkflowApi_Failure. Function was not successful, and the workflow will
not be loaded. If the workflow is not loaded successfully, DMS events that depend
on the registration scheme that specified the workflow will fail until:

m The workflow library can load successfully

m The workflow library is removed from the registration scheme

SmDmsWorkflowPostprocess()

SiteMinder calls this function so that a workflow library can postprocess a DMS event.

Syntax

Sm DmsWorkflowApi Status t SM EXTERN SmDmsWorkflowPostprocess(

const Sm Api Context t* 1pApiContext,

const Sm Api DmsContext t* 1pDmsContext,

const char * lpszWorkflow0id,

const int nCategoryld,

const int nEventId,

const char * lpszObjectPath,

const int nAttributes,

const Sm DmsWorkflow Attribute t* pAttributes,

const int nBytesErrMsg,

char * lpszErrMsg
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
IpDmsContext | Pointer to the DMS context structure.
IpszWorkflowOid | Unique workflow identifier.

Chapter 11: DMS Workflow API 677

DMS Workflow API Reference

Parameter 1/0 Description

nCategoryld | DMS event category.

nEventld | DMS event identifier

IpszObjectPath | Distinguished name of the object that is the target

of this event, if any. The target object DN will be
available for requests to create, delete, and modify
directory objects.

nAttributes | Number of attributes in the array of response
attributes.

pAttributes | Array of DMS response attribute/value pairs.

nBytesErrMsg | Maximum size of the output error buffer.

lpszErrMsg 0] Output buffer to receive the error text. Use this
buffer to return an error message to the DMS
application.

Returns

m Sm_DmsWorkflowApi_Success. Function was successful.
m Sm_DmsWorkflowApi_Failure. Function was not successful.

m Sm_DmsWorkflowApi_lgnore. The event was of no interest to this step.
Remarks

The event has already been processed. Return values of Sm_DmsWorkflowApi_Success
or Sm_DmsWorkflowApi_Ilgnore result in a success status returned to the application.
Sm_DmsWorkflowApi_Failure causes an error code to be returned to the application.
The error code indicates that there was a failure in the DMS postprocessing step.

The character array IpszErrMsg may be used by the postprocess function to send an
error message back to the application. The maximum size of the character array is
specified in nBytesErrMsg.

678 Programming Guide for C

DMS Workflow API Reference

SmDmsWorkflowPreprocess()

SiteMinder calls this function so that a workflow library can preprocess a DMS event.

Syntax

Sm_DmsWorkflowApi_Status t SM EXTERN SmDmsWorkflowPreprocess(

const Sm Api Context t* 1pApiContext,
const Sm Api DmsContext t* 1pDmsContext,
const char * 1pszWorkflowOid,
const int nCategoryld,
const int nEventlId,
const char * lpszObjectPath,
const int nAttributes,
const Sm DmsWorkflow Attribute t* pAttributes,
const int nBytesErrMsg,
char * 1pszErrMsg
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
IpDmsContext | Pointer to the DMS context structure.
IpszWorkflowOid | Unique workflow identifier.
nCategoryld | DMS event type.
nEventld | DMS event identifier
IpszObjectPath | Distinguished name of the object that is the target
of this event, if any. The target object DN will be
available for requests to create, delete, and modify
directory objects.
nAttributes | Number of attributes in the array of request
attributes.
pAttributes | Array of DMS request attribute/value pairs.
nBytesErrMsg | Maximum size of the output error buffer.
IpszErrMsg 0] Output buffer to receive the error text. Use this

buffer to return an error message to the DMS
application.

Chapter 11: DMS Workflow API 679

DMS Workflow API Reference

Returns
® Sm_DmsWorkflowApi_Success. Function was successful.
m Sm_DmsWorkflowApi_Failure. Function was not successful.

m Sm_DmsWorkflowApi_NoUserContext. An administrative user event was generated
and the user context could not be determine.

m Sm_DmsWorkflowApi_SkipSuccess. The event will be handled by the preprocess
function and no further processing is desired.

m Sm_DmsWorkflowApi_lgnore. The event was of no interest to this step.
Remarks

A return of Sm_DmsWorkflowApi_Success or Sm_DmsWorkflowApi_lgnore causes
processing to continue. Any other return causes processing to stop, and an error code is
returned to the application. The error code indicates that there was a failure in the DMS
preprocessing step.

Sm_DmsWorkflowApi_SkipSuccess causes processing to stop, but a success status is
returned to the application. It is up to the implementation of the preprocess function to
fulfill the desired goal. If the function fails, it should return a failure code rather than
Sm_DmsWorkflowApi_SkipSuccess.

The character array lpszErrMsg may be used by the preprocess function to send an error
message back to the application. The maximum size of the character array is specified in
nBytesErrMsg.

SmDmsWorkflowRelease()

SiteMinder calls this function so that a workflow library can perform its own rundown
procedure. This call is made once, when SiteMinder is shutting down.

Syntax
Sm _DmsWorkflowApi Status t SM _EXTERN SmDmsWorkflowRelease();

Returns
m Sm_DmsWorkflowApi_Success. Function was successful.

® Sm_DmsWorkflowApi_Failure. Function was not successful.

680 Programming Guide for C

Chapter 12: Directory API Guidance

This section contains the following topics:

Purpose of the Directory API (see page 681)

Before You Use the Directory API (see page 682)

How to Use the Directory API (see page 682)

Directory API Reference (see page 692)

Structures Used in the Sample Directory Application (see page 748)

Purpose of the Directory API

The Directory APl accesses data stored in a type of database or directory that
SiteMinder does not support. With the Directory API, you can:

m Add a non-supported directory entry (user) to a SiteMinder policy

® Manage non-supported directory entries

SiteMinder supports the following namespaces for user directories:

m LDAP

m ODBC

®m Microsoft Windows NT

m Custom

The LDAP, ODBC and NT namespaces can be used without the Directory API. To access

another type of user directory, create an interface to the directory with the Directory
API.

Chapter 12: Directory API Guidance 681

Before You Use the Directory API

Before You Use the Directory API

Before using the Directory API, go to the SiteMinder Administrative Ul and create and

conf

igure a user directory object with a Custom namespace.

To use the Directory API, you must have the following:

One or more application developers who have experience with the following tasks:
m Codingin the C programming language

m Building shared libraries

m Using relevant APIs provided by the vendor of the desired directory type

A supported development environment for building a shared library.

Because no linking is required, there is no restrictive list of supported development
environments. For example, you can use the GNU Compiler Collection (GCC). The
Directory APl has been tested using the following development environments:

m UNIX platforms: Sun Visual WorkShop C++ 5.0
m Windows platforms: Microsoft Visual C++ 6.0
The SiteMinder Policy Server

Although you don’t need the SiteMinder Policy Server to build a Directory API
application, you need the SiteMinder Policy Server to use the application. The
SiteMinder Policy Server calls the Directory API.

How to Use the Directory API

When you have met the prerequisites, follow these steps:

Ll S

Review the sample provided with the Directory API.

Werite source code to implement the Directory API.

Build a shared library from the source code.

Place the shared library in the default location, as follows:
m On UNIX platforms, in the SiteMinder lib directory

m On Windows platforms, in the SiteMinder bin directory

Optionally, you can place the shared library in a different location, as long as the
SiteMinder Policy Server can access it. If you use an alternate location, indicate the
fully qualified path to the shared library in the Library field of the SiteMinder User
Directory Dialog box.

682 Programming Guide for C

How to Use the Directory API

Build a Directory Application

When you build a Directory API application, include the SmAPL.h file. Your source code
must contain the statement:

#include "SmApi.h"

When building a shared library that implements the Directory API, you need not link to
any other shared libraries or import libraries. The Directory APl is built as a shared
library with the exportable functions defined in the include file SmApi.h.

Exported Enumerations

SmApi.h includes the following enumerations used by the Directory API:
m Sm_DirApi_Capability_t (directory capabilities)

m Sm_PolicyResolution_t (policy resolutions)
Directory Capabilities

Sm_DirApi_Capability_t enumerates the capabilities that can be configured for a custom
directory.

The following table lists the directory capabilities enumerated in
Sm_DirApi_Capability_t. Descriptions of each capability follow the table.

Name Value

Sm_DirApi_Capability_ForceResetUserPassword 0x00000001
Sm_DirApi_Capability_ChangeUserPassword 0x00000002
Sm_DirApi_Capability_DisableUser 0x00000004
Sm_DirApi_Capability_SetUserAttributes 0x00000008
Sm_DirApi_Capability_Recursive 0x00000010

Chapter 12: Directory API Guidance 683

How to Use the Directory API

For a custom directory to have a specific capability, you must define the required user
attributes for that capability. For example, to enable SiteMinder to change a user’s
password, you need to identify a Password Attribute. SiteMinder then uses that
attribute to get and set the user password.

Sm_DirApi_Capability_ForceResetUserPassword. The custom directory is capable of
forcing user password reset.

To enable SiteMinder to force a reset of the password, define the following user
attributes:

m Password attribute. An attribute that SiteMinder can use to get and set the
user password. In the SiteMinder Administrative Ul, enter that attribute name
in the Password Attribute field on the User Attributes tab on the User Directory
Dialog box. In the sample, the attribute name is password.

m Disabled Flag. An attribute that SiteMinder can use to get and set the disabled
state of a user. In the SiteMinder Administrative Ul, enter that attribute name
in the Disabled Flag field on the User Attributes tab on the User Directory
Dialog box. In the sample, the attribute name is Disabled.

When users are forced to change their passwords, the Policy Server calls
SmDirSetUserDisabledState(). In the sample code, the user’s Disabled Flag is set to
Sm_Api_Disabled_PWMustChange (the disabled reason).

Sm_DirApi_Capability_ChangeUserPassword. The custom directory is capable of
changing the user password. To change the password, you need to identify a
Password Attribute, which is an attribute that SiteMinder can use to get and set the
user password. In the SiteMinder Administrative Ul, enter that attribute name in
the Password Attribute field on the User Attributes tab on the User Directory Dialog
box.

The SiteMinder Policy Server calls SmDirChangeUserPassword() so that you can
change the value in the password field for an entry in your custom directory.

Sm_DirApi_Capability_DisableUser. The custom directory is capable of disabling a
user account. To disable a user, you need to identify a Disabled Flag, which is an
attribute that SiteMinder can use to get and set the disabled state of a user. In the
SiteMinder Administrative Ul, enter that attribute name in the Disabled Flag field
on the User Attributes tab on the User Directory Dialog box.

When an administrator uses the SiteMinder Administrative Ul to disable or enable a
user account, or when Password Services disables a user account, the SiteMinder
Policy Server calls SmDirSetUserDisabledState().

In SiteMinder, user accounts can be disabled for a number of reasons, and these
reasons are represented by the members of the data structure
Sm_Api_DisabledReason_t.

Sm_DirApi_Capability_SetUserAttributes. SiteMinder can set user attributes in the
custom directory.

The SiteMinder Policy Server calls SmDirSetUserAttr() so that you can use
SiteMinder to set a user attribute in your custom directory.

684 Programming Guide for C

How to Use the Directory API

m Sm_DirApi_Capability_Recursive. The custom directory is capable of supporting
recursion. For example, the custom directory may support nested groups.

The following functions in the Directory APl have a parameter to hold a recursive
flag:

m SmDirGetUserGroups()

m SmDirValidateUserPolicyRelationship()
To send information about the directory capabilities to the SiteMinder Policy Server,
implement the function SmDirQueryVersion(). Use the capabilities parameter

(bnCapabilites) to pass one or more values enumerated in Sm_DirApi_Capability_t.
SiteMinder then checks for those capabilities.

For example, if a user attempts to change a password, the SiteMinder Policy Server calls
SmDirQueryVersion() to check for the capability
Sm_DirApi_Capability_ChangeUserPassword. If the custom directory does not have that
capability, the user receives an error message.

An example of setting the directory capabilities is shown in the sample code. First,
initialize *pnCapabilities to zero, then set *pnCapabilities as follows:

*pnCapabilities =
*pnCapabilities | Sm DirApi Capability <supported capability>;

For example:

*pnCapabilities =

*pnCapabilities | Sm DirApi Capability ChangeUserPassword;
*pnCapabilities =

*pnCapabilities | Sm DirApi Capability DisableUser;

Ensure that no other application changes data in fields intended for use by SiteMinder.
For example, no other application should change data in the field that holds the
disabled state of a SiteMinder user.

Policy Resolutions

Sm_PolicyResolution_t, defined in SmApi.h, enumerates the values that describe the
relationship between two policy objects. The following Directory API functions use
Sm_PolicyResolution_t:

m SmDirAddEntry()
® SmDirGetDirObjInfo()
m SmDirRemoveEntry()

m SmDirValidateUserPolicyRelationship()

Chapter 12: Directory API Guidance 685

How to Use the Directory API

General Data Types and Structures

The data types and structures are used in the Directory API, but may also be used by
other SiteMinder APlIs.

Sm_Api_DisabledReason_t enumerates the reasons that a user account can be disabled.

The following Directory API functions use Sm_Api_DisabledReason_t:
m SmDirGetUserDisabledState()
m SmDirSetUserDisabledState()

When a user’s account is enabled or disabled, the SiteMinder Policy Server calls
SmDirSetUserDisabledState(). This call gives you the opportunity to set the disabled flag
in your custom directory to one or more of the disabled reasons, as enumerated in
Sm_Api_DisabledReason_t. If a user’s account is disabled or enabled,
SmDirGetUserDisabledState() returns the disabled reason(s). When implementing
SmDirGetUserDisabledState(), return Sm_Api_Disabled_Enabled if your custom
directory does not support a disabled flag.

Note: A user’s account can be disabled for multiple reasons. For example, if the User
must change password at next login checkbox is checked and the administrator then
clicks Disable, the nDisabledReason holds both the Sm_Api_Disabled_PWMustChange
bit and the Sm_Api_Disabled_AdminDisabled bit.

The disabled flag is a SiteMinder user attribute. In the SiteMinder Administrative Ul, on
the User Attributes tab of the User Directory Dialog box, enter the attribute name in the
Disabled Flag field. In the sample, the attribute name is Disabled.

The structure Sm_Api_Context_t gives the function pointers for the SiteMinder logging
utility, trace utility, and error utility.

Sm_Api_Reason_t enumerates the reasons for an access event, such as an
authentication failure. When a user supplies credentials for authentication, the
SiteMinder Policy Server, validating the username and DN, calls
SmDirAuthenticateUser(). This call gives you the opportunity to return information
about the access event.

686 Programming Guide for C

How to Use the Directory API

Initialization and Release Functions

To initialize objects, the SiteMinder Policy Server calls the functions in the following

table:

Function Name Object Initialized by SiteMinder Policy Server
SmDirlnit() (see page 720) Directory provider. Set provider handle.
SmDirlnitDirlnstance() (see Directory instance. Set directory instance handle.
page 722)

SmDirlnitUserlnstance() (see Directory Entry (User) instance. Set user entry
page 725) instance handle.

Initializing the Directory Provider

The first time that the custom directory provider is required after the SiteMinder Policy
Server is started, the Policy Server calls SmDirlnit() to initialize the directory provider. At
this point, set the provider handle as shown in the sample code. The SiteMinder Policy
Server will not call SmDirlnit() again until one of the Policy Server services is started (or
re-started).

SmDirlnit() is called once per custom directory provider library (.dll or .so).
Initializing the Directory Instance

The Policy Server calls SmDirlnitDirlnstance() to initialize the directory instance. Set the
directory instance handle as shown in the sample code.

SmDirlInitDirlnstance() is called once per directory instance using this directory provider
library. SiteMinder calls the function when it needs a directory context (to perform an
operation such as search or get properties) while processing an authentication or
authorization request. This function is typically called at the beginning of a request.

Initializing the Directory Entry (User) Instance
The SiteMinder Policy Server initializes the user instance by calling
SmDirlnitUserInstance(). Set the directory entry (user) instance handle as shown in the

sample code.

To release objects, use the functions in the following table:

Function Name Object Released by SiteMinder Policy Server
SmDirRelease() (see page 729) Directory provider. Delete provider handle

Chapter 12: Directory API Guidance 687

How to Use the Directory API

Utility Functions

Function Name Object Released by SiteMinder Policy Server
SmDirReleaselnstance() (see Directory or entry instance. Determine which
page 730) handle is passed.

Releasing the User Instance

The SiteMinder Policy Server calls SmDirReleaselnstance() so that you can release the
user instance handle if you choose. Ensure that the handle that is passed is the user
instance handle, not the directory instance handle.

Releasing the Directory Instance

The SiteMinder Policy Server calls SmDirReleaselnstance() so that you can release the
directory instance handle if you choose. Ensure that the handle that is passed is the
directory instance handle, not the user instance handle.

SiteMinder calls SmDirReleaselnstance() once per every call to SmDirlnitDirlnstance(),
after the directory context is no longer needed. It is typically called at the end of a
request.

Releasing the Directory Provider

When an administrator starts to shut down the SiteMinder Policy Server, the SiteMinder
Policy Server calls SmDirRelease() to release the directory provider.

More Information:

How To Distinguish between Handle Types (see page 751)

These functions can be called either within a sequence of directory operations or within
a sequence of directory entry (user) operations. If the function receives an instance
handle through a parameter, determine whether it is a directory instance handle or a
directory entry (user) instance handle.

Function Name Description

SmDirFreeString() (see page 705) Free memory allocated for a sting.

SmDirFreeStringArray() (see Free memory allocated for a string array.
page 705)

688 Programming Guide for C

How to Use the Directory API

Function Name Description
SmDirQueryVersion() (see Check the Directory APl version and the directory
page 728) capabilities it supports.

Free Strings and String Arrays

After the SiteMinder Policy Server calls an operation function that takes string
parameters, the SiteMinder Policy Server calls SmDirFreeString() or
SmDirFreeStringArray() to release allocated memory. Calls may be repeated so that
multiple strings can be freed.

For example, a SiteMinder Administrator can use the SiteMinder Administrative Ul to
perform a search for the user Mikel. The SiteMinder Administrator first selects the string
User from the Search drop-down list box, then enters the string Mikel in the Search
Expression field. SiteMinder calls SmDirLookup() and passes the strings (in the form
“User = Mikel”) into the IpszPattern parameter. SiteMinder then calls
SmDirFreeStringArray() twice. On the first call, SiteMinder passes the string array Mikel.
On the second call, SiteMinder passes the string array User.

Query and Validation

The SiteMinder Policy Server frequently calls SmDirQueryVersion(), then
SmDirValidatelnstance(). This sequence may be repeated several times.

Operations on the Directory

The Policy Server calls the directory operations function(s) to let you define directory
operations tasks for your custom directory. For example, if a user is using the
SiteMinder Administrative Ul to search for a user, the Policy Server calls SmDirLookup().

Function Name Use this function to:

SmDirAddEntry() (see page 695) Insert a directory entry (user) into your custom
directory.

SmDirAddMemberToGroup() (see page 697) Add a user or group to an existing group.

SmDirAddMemberToRole() (see page 698) Assign a role to a user or to a group.

SmDirEnumerate() (see page 704) Retrieve a list of directory entries and corresponding
class names.

SmDirGetDirConnection() (see page 706) Get the connection handle to the directory.

Chapter 12: Directory API Guidance 689

How to Use the Directory API

Function Name

Use this function to:

SmDirGetDirObjlnfo() (see page 707)

Get information about the object specified in the
object parameter.

SmDirGetGroupMembers() (see page 708)

Retrieve the members of a user group.

SmDirGetLastErrMsg() (see page 709)

Determine which instance handle is passed, and return
the associated error message. Also used with directory
entry (user) operations.

SmDirGetRoleMembers() (see page 710)

Retrieve the directory entries assigned to a role.

SmDirLookup() (see page 727)

Look up a pattern in the directory.

SmDirRemoveEntry() (see page 731)

Delete a directory entry (user) from your custom
directory.

SmDirRemoveMemberFromGroup() (see page 732)

Remove a user or group from a existing group.

SmDirRemoveMemberFromRole() (see page 733)

Remove a user or group from an assigned role.

SmDirSearch() (see page 734)

Search on the criteria specified in the search filter
parameter.

SmDirSearchCount() (see page 736)

Return a count of the entries that meet the criteria
specified in the parameters.

SmbDirValidatelnstance() (see page 743)

Determine which instance handle is passed, and
validate that instance. Also used with directory entry
(user) operations.

SmDirValidateUserDN() (see page 744)

Perform any needed validation on the user ID.

SmDirValidateUsername() (see page 745)

Convert the credentials presented by the user to a user
ID for the custom directory.

690 Programming Guide for C

How to Use the Directory API

Operations on a Directory Entry (User)

The operations covered in this section apply to directory entries, such as users, groups

and roles.

The SiteMinder Policy Server calls the directory entry (user) operation function(s)
relevant to the operation performed. For example, if a user is using the SiteMinder
Administrative Ul to disable a user account, the SiteMinder Policy Server calls

SmDirSetUserDisabledState().

Function Name

Use this function to:

SmDirAuthenticateUser() (see page 699)

Check the directory for the provided user
name and password.

SmDirChangeUserPassword() (see
page 702)

Change the value in the password field for
the specified user.

SmDirGetLastErrMsg() (see page 709)

Determine which instance handle is
passed, and return the associated error
message. Also used with directory
operations.

SmDirGetUserAttr() (see page 711)

Retrieve the value of the specified user
attribute.

SmDirGetUserAttrMulti() (see page 712)

Retrieve an array of values for a single
attribute.

SmDirGetUserClasses() (see page 713)

Get the object classes for the specified
DN.

SmDirGetUserDisabledState() (see
page 714)

For disabled user accounts, return the
reason that an account is disabled.
Otherwise, return enabled.

SmDirGetUserGroups() (see page 717)

Retrieve the groups to which a user
belongs.

SmDirGetUserProperties() (see page 718)

Return the names of all user attributes or
only required user attributes.

SmDirGetUserRoles() (see page 719)

Retrieve the roles to which a user belongs.

SmDirSetUserAttr() (see page 738)

Set the value for a user attribute.

SmDirSetUserAttrMulti() (see page 739)

Set an array of values for a single
attribute.

SmDirSetUserDisabledState() (see
page 740)

Enable or disable a user account.

Chapter 12: Directory API Guidance 691

Directory API Reference

Function Name Use this function to:

SmDirValidatelnstance() (see page 743) Determine which instance handle is
passed, and validate that instance. Also
used with directory operations.

SmDirValidateUserPolicy (see page 746) Validate the relationship between policy
Relationship() (see page 746) objects.

Directory API Reference

The following diagrams outline the order of function calls for procedures that perform
operations on the directory and possibly perform operations on a directory entry (user).
For example, using the SiteMinder Administrative Ul to search for a particular user in a
custom directory requires both operations on the directory and operations on a
directory entry (user). Some procedures involve only operations on the directory. For
example, using the SiteMinder Administrative Ul only to view the properties of a custom
user directory requires only operations on the directory.

692 Programming Guide for C

Directory API Reference

Policy Server initializes Directory Provider
SmDirlnit
Set Provider handle

Policy Server initializes Directory Instance
SmDirlnitDirinstance
Set Directory instance handle

Query and Validation
SmDirQueryVersion
SmDirValidatelnstance

Directory Operation

Release String Buffer
SmDirFreeString
SmDirFreeStringArray

Are there user
operations?

Directory Entry (User) Operations
Sequence

Policy Server calls Release Instance
SmDirReleaselnstance
Use directory instance handle

Policy Server releases Directory Provider
SmDirRelease
Delete provider handle

Chapter 12: Directory API Guidance 693

Directory API Reference

This second diagram shows an additional sequence that occurs only if directory entry
(user) operations occur.

. t. Policy Server initializes User Instance
+ Are there user” ,
.) I+ e+ sYes + + P SmDirInitUserInstance
* operations? .
.. . Set User Instance Handle

Query and Validation
SmDirQueryVersion

SmDirValidateInstance

. y
No . .
- Directory Entry (User) Operation
* y
. Policy Server calls Release Instance
) smDirReleaselInstance
. Use user instance handle

. Release the Directory Instance
SmDirReleaselnstance
Use directory instance handle .

694 Programming Guide for C

Directory API Reference

SmDirAddEntry()

To authenticate a user, the SiteMinder Policy Server requests a username from the user.
SmbDirValidateUsername() is called to translate the user-supplied username into the
internal user ID key used by the directory as the primary key to the user’s data. The
username from the credentials is supplied in the IpszUsername parameter. If
SmDirValidateUsername() is not implemented, the user-supplied username is passed
into IpszUserDN.

If SmDirValidateUsername() is implemented, it should return the user’s ID in the
IpszNewUsername parameter. The value returned by IpszNewUsername becomes the
IpszUserDN parameter value.

The IpszUserDN parameter value is passed into many other functions, such as
SmDirValidateUserDN() and SmDirAuthenticateUser().

The SiteMinder Policy Server calls SmDirAddEntry() so that you can insert a directory
entry (user) into your custom directory. Examples of directory entries are users, groups
and roles. For example, if you are using a SQL database and need to add a group, you
could use SmDirAddEntry() to insert a record into the groups table (and all related
tables) for the database.

When adding an entry to a hierarchical directory, it may be helpful to look at the
attributes passed in with the entry, such as object class in LDAP.

Syntax
int SM_EXTERN SmDirAddEntry (
const Sm Api Context t* 1pApiContext,
void* pHandle,
void* pInstanceHandle,
const Sm PolicyResolution t nEntryType,
const char* lpszEntryDN,
const char** lpszAttrNames,
const char** lpszAttrValues
)i
Parameter I/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance

handle.

Chapter 12: Directory API Guidance 695

Directory API Reference

Parameter I/0 Description

nEntryType | The Policy resolution of the entry. Policy resolutions
are enumerated in Sm_PolicyResolution_t, which is
defined in SmApi.h.

The following elements of Sm_PolicyResolution_t
are valid entry types:

m Sm_PolicyResolution_Unknown
m Sm_PolicyResolution_User

m Sm_PolicyResolution_UserGroup
m Sm_PolicyResolution_UserRole

m Sm_PolicyResolution_Org

IpszEntryDN | Buffer containing the distinguished name for the
entry being added.

IpszAttrNames | Buffer containing the names of the entry attributes.

IpszAttrValues | Buffer containing the values of the entry attributes.

Returns

Returns 0 if successful or -1 if not successful.
Remarks

This function is called when Delegated Management Services is used to create directory
entries, including users or roles.

696 Programming Guide for C

Directory API Reference

SmDirAddMemberToGroup()

The SiteMinder Policy Server calls SmDirAddMemberToGroup() so that you can add a
user or group to an existing group.

If you want to add a user or group to a role, use SmDirAddMemberToRole(). The
difference between a group and a role is defined by your custom directory provider. For
some providers, there is no difference.

Syntax

int SM EXTERN SmDirAddMemberToGroup (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszMemberDN,
const char* 1pszGroupDN
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
lpszMemberDN | Buffer containing the distinguished name for the

user or group being added to the existing group.

IpszGroupDN | Buffer containing the distinguished name for the
group to which the member is being added.

Returns
Returns 0 if successful or -1 if not successful.
Remarks

This function is called when Delegated Management Services is used to assign either a
user or a group to an existing group.

Chapter 12: Directory API Guidance 697

Directory API Reference

SmDirAddMemberToRole()

The SiteMinder Policy Server calls SmDirAddMemberToRole() so that you can assign a
role to a user or to a group.

For example, in Oracle, a role is a set of object or system privileges that can be granted
to a user. A group is a set of users. If you want everyone that performs collections to be
able to update the AR table and select from the CUSTOMER table, you could create a
role named COLLECTIONS. You could then assign the COLLECTIONS role to each of the
individual users who perform collections, or even to a group such as Accounts
Receivable.

If you want to add either a user or group to an existing group, use
SmDirAddMemberToGroup(). The difference between a group and a role is defined by
the provider of the custom directory.

For some providers, there will be no difference between a role and a group.

Syntax

int SM_EXTERN SmDirAddMemberToRole (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszMemberDN,
const char* 1pszRoleDN
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
lpszMemberDN | Buffer containing the distinguished name for the

user or group being added to the existing role.

IpszRoleDN | Buffer containing the distinguished name for the
role to which the member is being added.

698 Programming Guide for C

Directory API Reference

Returns
Returns 0 if successful or -1 if not successful.
Remarks

This function is called when Delegated Management Services is used to assign a role to a
user or a group.

SmDirAuthenticateUser()

Use the SmDirAuthenticateUser() function to check the directory for the provided user
name and password.

After the call to SmDirAuthenticateUser(), SiteMinder calls SmDirFreeString() to free the
IpszUserMsg buffer, then calls SmDirFreeString() again to free the IpszErrMsg buffer.

Syntax

int SM_EXTERN SmDirAuthenticateUser (
const Sm Api Context t* T1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const char* 1pszPassword,
Sm Api Reason t* pnReason,
char** lpszUserMsg,
char** 1pszErrMsg
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
Handle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the user instance
handle.

Chapter 12: Directory API Guidance 699

Directory API Reference

Parameter

1/0

Description

IpszUserDN

Buffer containing the user DN that has to be
authenticated.

If SmDirValidateUsername() is not implemented,
the user-supplied username is passed into
IpszUserDN.

If SmDirValidateUsername() is implemented,
SmDirValidateUsername() should return the user’s
ID in the IpszNewUsername parameter. The value
returned by IpszNewUsername becomes the
IpszUserDN parameter value.

IpszPassword

Buffer containing the password that has to be
authenticated.

pnReason

Pointer to the resulting reason of the
authentication event, using the reasons
enumerated in Sm_Api_Reason_t.

IpszUserMsg

Output buffer to receive a message for the user.
This message can be the challenge text or any
other message an authentication scheme
developer wants to present to the user through a
mechanism external to SiteMinder. In the sample,
if a bogus username is presented, authentication
fails and the string Failed to authenticate is copied
to IpszUserMsg.

The Web Agent stores this message in the HTTP
variable HTTP_SM_USERMSG. For RADIUS
authentication, the user message is returned in the
REPLY-MESSAGE response attribute.

The SiteMinder Policy Server writes the error
message in IpszUserMsg to the SiteMinder
Authentication log.

700 Programming Guide for C

Directory API Reference

Parameter

1/0

Description

IpszErrMsg

Output buffer to receive the error message. Use
this buffer to return an error message to
SiteMinder. In the sample, if a bogus username is
presented, authentication fails and the string Failed
to authenticate is copied to IpszErrMsg.

The SiteMinder Policy Server writes the error
message in IpszErrMsg to the SiteMinder
Authentication log. The string in IpszErrMsg follows
Not Authenticated in the log. The string in
IpszUserMsg follows the string in IpszErrMsg. For
example, if the challenged user presents the bogus
username impostor, the SiteMinder Policy Server
writes the following status message to the log:
‘impostor’ Not Authenticated. ErrMsg. UserMsg

Returns

Returns 0 if authentication succeeds, or -1 if there is an error in processing or if the
user-supplied credentials are invalid.

If authentication fails, convey the reason through the output parameter pnReason and

return -1.

Remarks

This function is called when you use the SiteMinder Test Tool to run IsAuthenticated for
a user in the custom directory.

Chapter 12: Directory API Guidance 701

Directory API Reference

SmDirChangeUserPassword()

The SiteMinder Policy Server calls SmDirChangeUserPassword() so that you can change
the value in the password field for an entry in your custom directory.

To implement SmDirChangeUserPassword(), you must specify the name of the password
field in your custom directory. In the SiteMinder Administrative Ul, enter that attribute
name in the Password Attribute field on the User Attributes tab of the User Directory
Dialog box.

The user’s distinguished name is passed in with the following information:

Old password

New password

Name of the password field in the custom directory

Whether the old password is needed

Syntax
int SM_EXTERN SmDirChangeUserPassword (

const Sm Api Context t* T1pApiContext,
void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const char* 1pszOldPassword,
const char* 1pszNewPassword,
const char* 1pszPasswordAttr,
const int bDoNotRequireOldPassword
);
Parameter 1/0 Description
IpApiContext I Pointer to the API context structure.
pHandle The address of the pointer returned by
SmDirlnit().
pinstanceHandle The address of a pointer to the user
instance handle.
lpszUserDN Buffer containing the user DN whose
password has to be changed.
IpszOldPassword Buffer containing the old password of

the user DN.

702 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

IpszNewPassword I Buffer containing the new password of
the user DN.

IpszPasswordAttr Directory attribute where the user’s

password is stored. Use this attribute
to change the user password.

The default value for this attribute
name in a Netscape LDAP directory is
userpassword.

bDoNotRequireOldPassword

A value indicating whether the user
needs to specify the old password to
perform the password change. The
value 1 indicates that the old password
is not required; 0 indicates that the old
password is required.

An administrator may not need to

specify the old password, but an end
user would need to specify.

Returns

Returns 0 if successful or -1 if not successful.

Sample Code Information

If you are changing a user password, SiteMinder passes the name of the password
attribute through IpszPasswordAttr. To indicate the name of the directory attribute that

holds this information:

1. Inthe SiteMinder Administrative Ul, go to the User Directory Dialog box

2. Inthe User Attributes tab, complete the Password Attribute field. To use the
sample, type password in this field.

Chapter 12: Directory API Guidance 703

Directory API Reference

SmDirEnumerate()

The SiteMinder Policy Server calls SmDirEnumerate() to retrieve a list of distinguished
names and their corresponding class names (User or Group) in the user directory.

The SiteMinder Policy Server calls SmDirFreeStringArray() to free the IpszDNs and
IpszClasses arrays.

Syntax
int SM_EXTERN SmDirEnumerate (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
char*** 1pszDNs,
char*** 1pszClasses
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
IpszDNs 0] List of user distinguished names present in the
directory.
IpszClasses 0] List of corresponding class information for the user

distinguished names.

Returns
Returns 0 if successful or -1 if not successful.
Remarks

This function is called when you click the View Contents button in the SiteMinder User
Directory Dialog box.

704 Programming Guide for C

Directory API Reference

SmDirFreeString()

The SiteMinder Policy Server calls SmDirFreeString() to free memory allocated for the
specified string in IpszString.

Syntax

void SM EXTERN SmDirFreeString (
char* 1lpszString
)i

Parameter 1/0 Description
IpszString | String for which the allocated memory is to be
freed.

SmDirFreeStringArray()

The SiteMinder Policy Server calls SmDirFreeStringArray() to free memory allocated for
the specified string array in IpszStringArray. For example, after a call to
SmDirEnumerate(), the SiteMinder Policy Server calls SmDirFreeStringArray() to free
memory allocated for parameter IpszDNs, then calls SmDirFreeStringArray() again to
free memory allocated for parameter IpszClasses.

Syntax

void SM EXTERN SmDirFreeStringArray (
char* lpszStringArray
)i

Parameter 1/0 Description
IpszStringArray | String array for which the allocated memory is to
be freed.

Chapter 12: Directory API Guidance 705

Directory API Reference

SmDirGetDirConnection()

This function is called to get the connection handle to the directory.

If you are using active rules, policies, or responses, the SiteMinder Policy Server calls
SmDirGetDirConnection() when it calls an authentication scheme library or an active
library. The SiteMinder Policy Server calls SmDirGetDirConnection() before
authentication.

When implementing SmDirGetDirConnection(), return NULL.
Syntax

void* SM EXTERN SmDirGetDirConnection (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the directory instance
handle.
Returns

When implementing SmDirGetDirConnection(), return NULL, as shown in the sample.

706 Programming Guide for C

Directory API Reference

SmDirGetDirObjInfo()

The SiteMinder Policy Server calls SmDirGetDirObjInfo() to get information about the
object specified in the IpszObject buffer. You can use this function to get the following
information about the object passed in as IpszObject:

m Distinguished Name (/pszDN)
m Class (/pszClass)
m Policy Resolution (pnSmPolicyResolution)

The SiteMinder Policy Server calls SmDirFreeString() to free the IpszDN and IpszClass
buffers.

Syntax
int SM _EXTERN SmDirGetDirObjInfo (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1lpszObject,
char** 1pszDN,
char** lpszClass,
int* pnSmPolicyResolution
);
Parameter 1/0 Description
IpApiContext I Pointer to the API context structure.
pHandle I The address of the pointer returned by
SmDirlnit().
plnstanceHandle The address of a pointer to the directory
instance handle.
IpszObject The string containing the null-terminated
string of the user name.
IpszDN (e} Fill in the user distinguished name resolved
from the IpszObject.
IpszClass (0] Fill in the class of the resolved user
distinguished name.
pnSmPolicyResolution (0] Fill in the Policy resolution of the resolved

user distinguished name. Policy resolutions
are enumerated in Sm_PolicyResolution_t.

Chapter 12: Directory API Guidance 707

Directory API Reference

Returns
Returns 0 if successful or -1 if not successful.
Remarks

This function is called in the following circumstances:
m Searching for a user

m Enabling or disabling a user account
Sample Code Information

If you are disabling user account Mikel, Mikel is passed in as IpszObject. Using the
sample code, the following values are returned:

Parameter Value
IpszDN Mikel
IpszClass User
pnSmPolicyResolution 1

SmDirGetGroupMembers()

The SiteMinder Policy Server calls SmDirGetGroupMembers() so that you can retrieve
the members of a user group. This function is designed to support Delegated
Management Services.

Syntax
int SM_EXTERN SmDirGetGroupMembers (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszGroupDN,
charx** lpszMembers,
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().

708 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

pinstanceHandle | The address of a pointer to the directory instance
handle.

lpszGroupDN | Buffer containing the distinguished name for the

group for which members are being retrieved.

lpszMembers 0 Buffer containing the members of the group.

Returns

Returns 0 if successful or -1 if not successful.

SmDirGetLastErrMsg()

Calling the function SmDirGetLastErrMsg() retrieves the last error message that resulted
from a Directory API call.

If a user operation or directory operation fails, store the error message in szErrMsg,
which is the third field of the instance handle structure. You can then call
SmDirGetLastErrMsg() to retrieve the error message. The SiteMinder Policy Server also
calls SmDirGetLastErrMsg() upon operation failure.

This function call is made for both the directory instance and the user instance. Either
the directory instance handle or user instance handle can be passed through
pinstanceHandle. Your code must determine which handle is passed and return the
appropriate error message. See the sample code for an example.

After calling SmDirGetLastErrMsg(), the SiteMinder Policy Server calls SmDirFreeString()
to free the error buffer.

Syntax
char* SM EXTERN SmDirGetLastErrMsg (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().

Chapter 12: Directory API Guidance 709

Directory API Reference

Parameter 1/0 Description

pinstanceHandle | The addresses of a pointer to the user instance
handle or directory instance handle.

Returns
The last error message occurred during a directory operation or user operation.
Remarks

This function is called when you are searching for users or groups and the lookup
(SmDirLookup()) fails.

Sample Code Information

In the sample code for SmDirValidateUserPolicyRelationship(), under the condition that
the policy resolution is UserGroup, there is a call to the function chk_grp(). The third
parameter of chk_grp() is an output parameter that returns szErrMsg in the user handle.
If you then called SmDirGetLastErrMsg() and passed the user instance handle, you
would get the value stored in szErrMsg.

SmDirGetRoleMembers()

The SiteMinder Policy Server calls SmDirGetRoleMembers() so that you can retrieve the
directory entries assigned to a role. This function is designed to support Delegated
Management Services.

Syntax
int SM EXTERN SmDirGetRoleMembers (
const Sm Api Context t* T1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszRoleDN,
char*** 1pszMembers
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.

710 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

IpszRoleDN | Buffer containing the distinguished name for the
role for which members are being retrieved.

IpszMembers 0] Buffer containing the members of the role.

Returns

Returns 0 if successful or -1 if not successful.

SmDirGetUserAttr()

The SiteMinder Policy Server calls SmDirGetUserAttr() so that you can retrieve the value
for a user attribute in your custom directory. For example, you may need to retrieve the
last name of a user.

SiteMinder calls SmDirFreeString() to free the IpszAttrData buffer.

Syntax
int SM_EXTERN SmDirGetUserAttr (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const char* lpszAttrName,
char** lpszAttrData
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the user instance
handle.
lpszUserDN | Buffer containing the user DN whose user attribute

has to be retrieved.

IpszAttrName | Buffer containing the name of the user attribute
whose value you're retrieving.

Chapter 12: Directory API Guidance 711

Directory API Reference

Parameter 1/0 Description

IpszAttrData 0] Buffer containing the retrieved value for the
requested attribute. Look up the value of the
attribute specified in IpszAttrName and return the
value in IpszAttrData.

Returns

Returns 0 if successful or -1 if not successful.

SmDirGetUserAttrMulti()

The SiteMinder Policy Server calls SmDirGetUserAttrMulti() so that you can retrieve an
array of values for a single attribute. The provider needs to handle the case where this
function is called and the attribute has only a single value.

SiteMinder calls SmDirFreeStringArray() to free the IpszAttrData buffer.

Syntax
int SM EXTERN SmDirGetUserAttrMulti (
const Sm Api Context t* T1pApiContext,
void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const char* 1pszAttrName,
char*** lpszAttrData
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the user instance
handle.
IpszUserDN | Buffer containing the user DN whose user
attributes has to be retrieved.
IpszAttrName | Buffer containing the name of the user attribute.

712 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

IpszAttrData 0] Buffer containing the value of the user attribute.
Look up the value of the attribute named in
IpszAttrName and return the value in IpszAttrData.

Returns

Returns 0 if successful or -1 if not successful.

SmDirGetUserClasses()

The SiteMinder Policy Server calls SmDirGetUserClasses() so that you can get the object
classes of the specified distinguished name (DN). This function is designed to support
Delegated Management Services.

Your custom directory may be hierarchical or flat. If your directory is hierarchical, as
with an LDAP directory, the DN may belong to multiple object classes. If the directory is
flat, as with a SQL database, the user DN belongs to a single class, such as User or
Group.

Your code must determine the type of DN passed and handle it appropriately. For
example, if a the name of a group is passed in, you need to be able to determine that it
is a group and return Group.

SiteMinder calls SmDirFreeStringArray() to free the IpszAttrData buffer.
Syntax

int SM EXTERN SmDirGetUserClasses (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
char*** 1lpszClasses
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the user instance
handle.

Chapter 12: Directory API Guidance 713

Directory API Reference

Parameter 1/0 Description

IpszUserDN | Buffer containing the distinguished name for which
you must retrieve the classes.

IpszClasses 0 Buffer containing the classes for the specified
distinguished name.

Returns
Returns 0 if successful or -1 if not successful.

If you decide not to implement this function, return -1.

SmDirGetUserDisabledState()

The SiteMinder Policy Server calls SmDirGetUserDisabledState() to get information
about whether a user account is disabled.

If a user account is disabled, SmDirGetUserDisabledState() returns information in
pnDisabledReason about how the account was disabled.

The possible reasons that a user is disabled are enumerated in
Sm_Api_DisabledReason_t, which is defined in SmApi.h. The disabled reason is set when
the SiteMinder Policy Server calls SmDirSetUserDisabledState().

If the custom directory does not support a disabled flag, use the following code to
indicate that the user is always enabled:

*pnDisabledReason = Sm Api Disabled Enabled;
return 0;

Syntax
int SM EXTERN SmDirGetUserDisabledState (
const Sm Api Context t* 1pApiContext,

void* pHandle,

void* pInstanceHandle,
const char* lpszUserDN,

const char* lpszDisabledAttr,

Sm Api DisabledReason t* pnDisabledReason

Parameter 1/0 Description

IpApiContext | Pointer to the API context structure.

714 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

pHandle | The address of the pointer returned by SmDirlnit().

pinstanceHandle | The address of a pointer to the user instance
handle.

pszUserDN | Buffer containing the user DN whose disabled state
has to be retrieved.

IpszDisabledAttr | The user directory attribute that is used by
SiteMinder to track disabled users. Use this
attribute to retrieve the disabled state.

pnDisabledReason 0] Attribute containing the user disabled state of the

user. Store the user-disabled state that is fetched
from the user directory attribute specified in
IpszDisabledAttr.

Chapter 12: Directory API Guidance 715

Directory API Reference

Returns

Return values indicate whether the function successfully determines the user’s disabled
state:

m Return 0 if the function successfully determines the user’s disabled state.

m Return -1 if the function fails to determine the user’s disabled state.

Return values do not indicate the disabled state, which is stored in the parameter
pnDisabledReason.

Remarks

This function is called in the following circumstances:
m When searching for a user, after calling SmDirLookup() to perform the lookup.
m After calling SmDirSetUserDisabledState() to change the disabled state of a user.

m After calling SmDirAuthenticateUser() to authenticate a user. If the disabled flag is
set for a user, SiteMinder does not authenticate the user—even if the user supplies
valid credentials.

Sample Code Information

If you are managing users, when you lookup the user, SiteMinder checks the disabled
state for that user by checking IpszDisabledAttr. To indicate the name of the directory
attribute that holds this information, in the SiteMinder Administrative Ul, in the User
Directory Dialog box, on the User Attributes tab, complete the Disabled Flag field. To

use the sample, type Disabled in this field.

If the user is enabled, then running the sample code results in a value of
Sm_Api_Disabled_Enabled for pnDisabledReason. If the SiteMinder administrator has
used the Disable button to disable the user, then running the sample code results in a
value of Sm_Api_Disabled_AdminDisabled for pnDisabledReason.

716 Programming Guide for C

Directory API Reference

SmDirGetUserGroups()

The SiteMinder Policy Server calls SmDirGetUserGroups so that you can retrieve the

groups to which a user belongs.

SiteMinder calls SmDirFreeStringArray() to free the IpszGroups array.

Syntax

int SM_EXTERN SmDirGetUserGroups (

const Sm Api Context t* 1pApiContext,
void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const int bRecursive,
Char#x 1pszGroups
);
Parameter 1/0 Description
IpApiContext | Pointer to the APl context structure.
pHandle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the user instance
handle.
IpszUserDN | Buffer containing the user DN.
bRecursive | A value specifying whether the custom directory
supports recursion (for example, nested groups).
The value 1 indicates recursion support; 0 indicates
no support.
If your custom directory supports recursion, you
must search down any hierarchy of groups to find
the user. Suppose that the value of the User DN is
Bill Collector. Bill Collector may be in a group called
AR, and AR may be in a group called Accounting.
IpszGroups 0 A list of groups associated with /pszUserDN.
Returns

Returns 0 if successful or -1 if not successful.

Chapter 12: Directory API Guidance 717

Directory API Reference

SmDirGetUserProperties()

SiteMinder calls SmDirGetUserProperties() so that you can return the names of all user
attributes or only required user attributes.

Unlike SmDirGetUserAttr(), which is designed to return values for the attribute names
passed, SmDirGetUserProperties() is designed for returning only attribute names.

SiteMinder calls SmDirFreeStringArray() to free the IpszProperties array.

Syntax
int SM_EXTERN SmDirGetUserProperties (
const Sm Api Context t* T1pApiContext,
void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const int bMandatory,
char*** lpszProperties
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the user instance
handle.
IpszUserDN | Buffer containing the user DN for which you must
retrieve the names of user attributes.
bMandatory | A value specifying whether to return only
mandatory attribute names. The value 1 indicates
that only mandatory attribute names are returned;
0 indicates that all attribute names are returned.
Some directories have interfaces that distinguish
between the mandatory attributes of an object and
the optional attributes. For example, IADs for
Microsoft Active Directory makes this distinction.
pszProperties 0] Array containing a list of user attribute names.

718 Programming Guide for C

Directory API Reference

Returns

Returns 0 if successful or -1 if not successful.

SmDirGetUserRoles()

The SiteMinder Policy Server calls SmDirGetUserRoles() so that you can retrieve the
roles to which a user belongs.

SiteMinder calls SmDirFreeStringArray() to free the IpszRoles array.
Syntax

int SM_EXTERN SmDirGetUserRoles (
const Sm Api Context t* T1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
char*** 1pszRoles
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the user instance
handle.
IpszUserDN | Buffer containing the user DN whose roles has to

be retrieved.

IpszRoles 0 A list of roles associated with the user in
IpszUserDN.

Returns

Returns 0 if successful or -1 if not successful.

Chapter 12: Directory API Guidance 719

Directory API Reference

SmDirInit()

SmDirlnit() is called when SiteMinder initializes the directory services provider for the
custom namespace.

This function is called once before any other Directory APl functions are called. The
function returns the address of a pointer to the handle for the directory. The handle is
passed in all subsequent function calls.

Once the administration process starts, the SiteMinder Policy Server calls SmDirlnit() the
first time you perform any task for which the custom directory provider is required.

For example, if you were to start the Policy Server, then immediately view the
properties of a user directory with a Custom namespace, the SiteMinder Policy Server
would call SmDirlnit(), then call SmDirlnitDirlnstance().

Syntax

int SM EXTERN SmDirInit (
const Sm Api Context t* 1pApiContext,

void** ppHandle,
const char* lpszParameter
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
ppHandle 0] The address of a pointer to the handle for the

Directory API. This parameter is initialized in the
call to SmDirlnit() and is passed to all subsequent
function calls.

For example, if you were using SmDirlnit() to load a
shared library on the directory side, you could use
ppHandle to store function pointers to all the
functions in that shared library.

lpszParameter | The null-terminated string specified in the
Parameter field of the SiteMinder User Directory
Dialog box.

720 Programming Guide for C

Directory API Reference

Returns
Returns 0 if successful or -1 if not successful.
Remarks

Instantiate ProviderHandle_t when SmDirlnit() is called. This handle is then passed to
almost all subsequent functions. The same value need not be carried through the entire
process. You are permitted to change the value.

Release ProviderHandle_t when SmDirRelease() is called.

You could use SmDirlnit() to load another shared library. The vendor of the directory
containing your data may provide an interface that you can implement by building a
shared library. You could use SmDirlnit() to load that shared library by placing the path
to the shared library in the Parameter field on the Directory Setup tab of the User
Directory Dialog box. The string entered in the Parameter field is passed to
IpszParameter in calls to SmDirlnit() and SmDirlnitDirlnstance().

Note: The string entered in the Parameter field is also passed to IpszSearchRoot in calls
to SmDirSearch() and SmDirSearchCount(). If your code for SmDirlnit() needs to use
IpszParameter and your code for the search functions needs a search root, you will have
to parse the string from the Parameter field.

Chapter 12: Directory API Guidance 721

Directory API Reference

SmDirInitDirInstance()

SiteMinder calls this directory instance initialization function before it calls any of the
directory functions on the given directory instance. This function provides you an
opportunity to make a connection to the custom directory.

After SiteMinder completes the directory function call, it calls SmDirReleaselnstance().
This function is called multiple times. SiteMinder does not require you to make and
break directory connections every time the initialization and release calls are made.

Syntax
int SM EXTERN SmDirInitDirInstance (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void** ppInstanceHandle,
const char* lpszUniqueKey,
const char* lpszParameter,
const char* lpszUsername,
const char* lpszPassword,
const int bRequireCredentials,
const int bSecureConnection,
const int nSearchResults,
const int nSearchTimeout
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by
SmDirlnit().
pplnstanceHandle 0] Use this parameter to set the handle for the

directory instance. For example, you could
use pplnstanceHandle to hold information
about a connection to the directory.

At the end of the directory instance lifecycle,
the SiteMinder Policy Server calls
SmDirReleaselnstance() and passes the
directory instance handle so that you can
delete the handle.

IpszUniqueKey | A unique identifier for the directory instance
session. This unique key holds the object
identifier (OID) of the custom directory
object.

722 Programming Guide for C

Directory API Reference

Parameter

1/0

Description

IpszParameter

The null-terminated string specified in the
Parameter field of the SiteMinder User
Directory Dialog box. The value is the same as
it was for the call to SmDirlnit().

IpszUsername

The string containing the user name as
specified in the Credentials and Connection
tab of the SiteMinder User Directory Dialog
box.

When bRequireCredentials is set to true,
IpszUsername holds the value in the
Username field in the Administrator
Credentials group box.

IpszPassword

The string containing the password as
specified in the Credentials and Connection
tab of the SiteMinder User Directory Dialog
box.

When bRequireCredentials is set to true,
IpszPassword holds the value in the Password
field in the Administrator Credentials group
box.

bRequireCredentials

This boolean indicates whether credentials
are required for user directory access.

In the SiteMinder Administrative Ul, on the
Credentials and Connection tab, in the
Administrator Credentials group box, there is
a Require Credentials check box. Checking this
check box sets bRequireCredentials to true
(1). When bRequireCredentials is set to true,
IpszUsername and IpszPassword will hold the
values in the Username and Password fields in
the Administrator Credentials group box. The
SiteMinder Policy Server uses these
credentials to access the directory.

bSecureConnection

This boolean indicates whether an SSL
connection is required to access the user
directory.

Chapter 12: Directory API Guidance 723

Directory API Reference

Parameter

1/0

Description

nSearchResults

This parameter indicates the maximum
number of records to return as the result set
of a single search by the Directory API. In the
SiteMinder User Directory Dialog box, on the
Directory Setup tab, in the Custom
NameSpace group box, there is a Max results
field. The nSearchResults parameter holds the
value in the Max results field.

nSearchTimeout

This parameter indicates the time in seconds
after which the Directory APl will stop
searching the user directory for results. In the
SiteMinder User Directory Dialog box, on the
Directory Setup tab, in the Custom
NameSpace group box, there is a Max time
field. The nSearchResults parameter holds the
value in the Max time field.

Returns

Returns 0 if successful or -1 if not successful.

Remarks

Instantiate DirHandle_t when SmDirlnitDirInstance() is called. Set nTag to 0 to
distinguish the directory instance handle from the user instance handle.

The handle referenced by DirHandle_t is passed to subsequent directory operations
functions. You can change the handle value.

Release DirHandle_t when SmDirReleaselnstance() is called. Use the value of nTag to
distinguish between the directory instance handle and the user instance handle.

More Information:

Operations on the Directory (see page 689)

724 Programming Guide for C

Directory API Reference

SmDirInitUserInstance()

The SiteMinder Policy Server calls SmDirlnitUserInstance() before it calls any of the
directory entry (user) operations functions on the given directory instance.

SmDirlnitUserInstance() can be called multiple times.

Syntax

int SM_EXTERN SmDirInitUserInstance (

const Sm Api Context t* 1pApiContext,
void* pHandle,
void** ppInstanceHandle,
void* pDirInstanceHandle,
const char* 1pszUserDN
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by
SmDirlnit().
pplnstanceHandle 0] The address of a pointer to hold the handle for
the user instance session.
pDirlnstanceHandle | The address of a pointer handle for
the directory instance session. This value is
passed in from SmDirlnitDirlnstance().
IpszUserDN | The string containing the null-terminated string

of the user distinguished name.

Chapter 12: Directory API Guidance 725

Directory API Reference

Returns
Returns 0 if successful or -1 if not successful.
Remarks

Instantiate UserHandle_t when SmDirlnitUserInstance() is called. Set nTag to 1 to
distinguish the user instance handle from the directory instance handle.

The handle referenced by UserHandle_t is passed to subsequent directory entry (user)
operations functions. You can change the handle value.

After SiteMinder completes the calls to the relevant directory entry (user) operations
functions, it calls SmDirReleaselnstance(). Release UserHandle_t when this call is made.
Use the value of nTag to distinguish between the user instance handle and the directory
instance handle.

726 Programming Guide for C

Directory API Reference

SmDirLookup()

SiteMinder calls SmDirLookup() to look up a pattern in the directory.

Use the following search expression grammar for the search pattern:
[<class> =] <value>

In the search pattern format:
®m <class>=empty-string | user | group (empty-string implies user & group)
m <value> = wildcard-string

Your code must be able to interpret a search pattern that begins with the string user=.
For example:

CStringArray Paths, Classes;

CString szPattern = CString ("user=") + UserDir.m szUniversalIDAttr
+ CString ("=") + Session.m szUnivId;

if (m _pDsDir->Lookup (szPattern, Paths, Classes))

SiteMinder calls SmDirFreeStringArray() to free the IpszDNs and IpszClasses arrays.
Syntax

int SM EXTERN SmDirLookup (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* lpszPattern,
charx** 1pszDNs,
char*** 1lpszClasses
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
IpszPattern | Buffer containing the pattern to search in the
directory.

Chapter 12: Directory API Guidance 727

Directory API Reference

Parameter 1/0 Description

IpszDNs 0] List of user distinguished names that match the
pattern.

IpszClasses 0 List of class information corresponding to the user

distinguished names.

Returns

Returns 0 if successful or -1 if not successful.

Remarks

This function is called when you perform a user directory search.
Sample Code Information

When trying the sample code, go to the SiteMinder Administrative Ul, navigate to the
dialog box for the directory search, and enter the search criteria as follows:

m |nthe Search drop-down list box, select User.

m |nthe Search Expression field, enter the exact name of one of the sample users,
such as Mikel. Do not use wild cards.

SmDirQueryVersion()

SmDirQueryVersion() queries the Directory API to find out its version and its directory
capabilities. Supported capabilities are enumerated in Sm_DirApi_Capability_t.

Syntax
int SM_EXTERN SmDirQueryVersion (
const Sm Api Context t* 1pApiContext,

void* pHandle,
unsigned long* pnCapabilities
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().

728 Programming Guide for C

Directory API Reference

SmDirRelease()

Parameter 1/0 Description

pnCapabilities 0] This parameter is used to pass the capabilities of
the custom directory. The capabilities of a custom
directory are enumerated in
Sm_DirApi_Capability_t, which is defined in
SmApi.h. For more information on
Sm_DirApi_Capability_t, see Directory Capabilities.

Returns

Returns the version number of the Directory API that the custom library complies with.
Currently the versions supported are Sm_Api_Version_V4 and Sm_Api_Version_V4_1.
Version constants are defined in SmApi.h.

The Policy Server calls SmDirRelease() when the directory service provider for the
Custom Namespace is no longer required.

Syntax
void SM EXTERN SmDirRelease (
const Sm Api Context t* 1pApiContext,

void* pHandle
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
Remarks

This function is called when you stop one of the Policy Server services.

Chapter 12: Directory API Guidance 729

Directory API Reference

SmDirReleaseInstance()

The SiteMinder Policy Server calls SmDirReleaselnstance() so that you can release the
user instance or the directory instance if you choose.

Syntax

void SM EXTERN SmDirReleaseInstance (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the user or directory

instance handle. To release the user instance,
ensure that p/nstanceHandle contains the user
instance handle. To release the directory instance,
ensure that pInstanceHandle contains the directory
instance handle.

Remarks

You need to write your release code so that it will work with the type of instance
handle— user or directory—that is passed.

During a process, the SiteMinder Policy Server may first call SmDirlInitDirlnstance() and
then call SmDirInitUserInstance(). If so, the SiteMinder Policy Server calls
SmDirReleaselnstance() twice at the end of the process. At the first call, the user
instance handle (as p/nstanceHandle) is passed so that you can release the user
instance. At the second call, the directory instance handle is passed (as
plnstanceHandle) so that you can release the directory instance.

Use the value of nTag to distinguish between a user handle and a directory handle, as
follows:
m With user handles, nTag in structure DirHandle_t is 0.

m With directory handles, nTag in structure UserHandle_t is 1.

730 Programming Guide for C

Directory API Reference

SmDirRemoveEntry()

The SiteMinder Policy Server calls SmDirRemoveEntry() so that you can delete a
directory entry (user) from your custom directory.

Examples of directory entries are users, groups and roles. For example, if you are using
an SQL database and need to remove a group, you could use SmDirRemoveEntry() to
delete the relevant record from the groups table (and all related tables) for the
database.

If your directory is hierarchical, as with an LDAP directory, you need to handle the
process of deleting relevant data at different levels of the hierarchy. It may be helpful to
look at the attributes of the entry, such as object class in LDAP.

Syntax
int SM_EXTERN SmDirRemoveEntry (
const Sm Api Context t* lpApiContext,
void* pHandle,
void* pInstanceHandle,
const Sm PolicyResolution t nEntryType,
const char* lpszEntryDN
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
nEntryType | The Policy resolution of the entry. Policy

resolutions are enumerated in
Sm_PolicyResolution_t, which is defined in
SmApi.h.

The following Sm_PolicyResolution_t elements are
valid entry types:

m Sm_PolicyResolution_Unknown
m Sm_PolicyResolution_User

m Sm_PolicyResolution_UserGroup
m Sm_PolicyResolution_UserRole

m Sm_PolicyResolution_Org

Chapter 12: Directory API Guidance 731

Directory API Reference

Parameter 1/0 Description

IpszEntryDN | Buffer containing the distinguished name for the
entry being removed.

Returns
Returns 0 if successful or -1 if not successful.
Remarks

This function is called when Delegated Management Services is used to delete directory
entries, including groups or roles.

SmDirRemoveMemberFromGroup()

The SiteMinder Policy Server calls SmDirRemoveMemberFromGroup() so that you can
remove a user or group from a existing group.

Syntax
int SM_EXTERN SmDirRemoveMemberFromGroup (
const Sm Api Context t* T1pApiContext,

void* pHandle,

void* pInstanceHandle,
const char* 1pszMemberDN,
const char* 1pszGroupDN

)i

Parameter 1/0 Description

IpApiContext | Pointer to the API context structure.

pHandle | The address of the pointer returned by SmDirlnit().

plnstanceHandle | The address of a pointer to the directory instance
handle.

IpszMemberDN | Buffer containing the distinguished name for the
user or group being removed from the parent
group.

IpszGroupDN | Buffer containing the distinguished name for the

group from which the member is being removed.

732 Programming Guide for C

Directory API Reference

Returns
Returns 0 if successful or -1 if not successful.
Remarks

This function is called when Delegated Management Services is used to remove users or
groups from groups.

SmDirRemoveMemberFromRole()

The SiteMinder Policy Server calls SmDirRemoveMemberFromRole() so that you can
remove a user or group from an assigned role.

Syntax
int SM_EXTERN SmDirRemoveMemberFromRole (
const Sm Api Context t* 1pApiContext,

void* pHandle,

void* pInstanceHandle,
const char* 1pszMemberDN,
const char* 1pszRoleDN

);

Parameter 1/0 Description

IpApiContext | Pointer to the API context structure.

pHandle | The address of the pointer returned by SmDirlnit().

pinstanceHandle | The address of a pointer to the directory instance
handle.

IpszMemberDN | Buffer containing the distinguished name for the
user or group being removed from the assigned
role.

IpszRoleDN | Buffer containing the distinguished name for the

role from which the member is being removed.

Chapter 12: Directory API Guidance 733

Directory API Reference

SmDirSearch()

Returns
Returns 0 if successful or -1 if not successful.
Remarks

This function is called when Delegated Management Services is used to remove users or
groups from assigned roles.

SiteMinder calls SmDirSearch() to search on the criteria specified in the search filter
IpszSearchFilter. You could use SmDirSearch() to execute a query, such as an SQL select,
on your custom directory.

In addition to the search filter, the function SmDirSearch() passes directory search
parameters. In the SiteMinder Administrative Ul, on the Directory Setup tab, you can
specify parameters in the following fields:

® Maxtime
m Max results

The nSearchTimeout and nSearchResults parameters of SmDirSearch() pass the
information entered in those fields.

SiteMinder calls SmDirFreeStringArray() to free the IpszDNs array.
Syntax

int SM EXTERN SmDirSearch (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
charx** 1pszDNs,
const char* lpszSearchFilter,
const char* 1pszSearchRoot,
const int nSearchResults,
const int nSearchTimeout,
const int nSearchScope
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().

734 Programming Guide for C

Directory API Reference

Parameter

1/0

Description

pinstanceHandle

The address of a pointer to the directory instance
handle.

IpszDN's

Distinguished names of the users found as a result
of the search.

IpszSearchFilter

Buffer containing the search expression.

IpszSearchRoot

This parameter is designed to hold the search
root—that is, the starting point for the search. In a
hierarchical directory, when authenticating a user,
SiteMinder starts at the root and works down the
tree.

In the SiteMinder Administrative Ul, on the
Directory Setup tab, in the Custom Namespace
group box, the value entered in the Parameter field
is passed in through IpszSearchRoot.

Note: The string entered in the Parameter field is
also passed to IpszParameter for use with
SmDirlnit() and SmDirlnitDirlnstance(). If your code
for SmDirlnit() needs to use IpszParameter and
your code for SmDirSearch() needs a search root,
you will have to parse the string from the
Parameter field.

nSearchResults

This parameter holds the maximum number of
records that can be returned for a single search of
the directory.

nSearchTimeout

This parameter holds the maximum time in
seconds that the API should keep searching the
directory for results.

nSearchScope

This parameter indicates how far below the root
(IpszSearchRoot) the APl will query the directory to
find a match. Depending on the value in
nSearchScope, the search could go down only one
level or through the entire subtree. The default
value is 2.

Returns

Returns 0 if successful or -1 if not successful.

Chapter 12: Directory API Guidance 735

Directory API Reference

SmDirSearchCount()

Use the function SmDirSearchCount() to return a count of the entries retrieved through
the search criteria specified in IpszSearchFilter, subject to the restrictions specified in
the directory search parameters. See the Remarks section for more information.

Syntax
int SM EXTERN SmDirSearchCount (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
int* pnCount,
const char* lpszSearchFilter,
const char* 1pszSearchRoot,
const int nSearchResults,
const int nSearchTimeout,
const int nSearchScope
);
Parameter 1/0 Description
IpApiContext | Pointer to the APl context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
pnCount 0] Number of entries returned by the search
IpszSearchFilter | Buffer containing search expression.
IpszSearchRoot | This parameter is designed to hold the search root,
or the starting point for the search. In a
hierarchical directory, when authenticating a user,
SiteMinder starts at the root and works down the
tree.
nSearchResults | The parameter holds the maximum number of
records that can be returned for a single search of
the directory.
nSearchTimeout | This parameter holds the maximum time in

seconds that the APl should keep searching the
directory for results.

736 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

nSearchScope | This parameter indicates how far below the root
(IpszSearchRoot) the APl will query the directory to
find a match. Depending on the value in
nSearchScope, the search could go down only one
level or through the entire subtree. The default
value is 2.

Returns

Returns 0 if successful or -1 if not successful.

Remarks

In the SiteMinder Policy Server User Interface, on the Directory Setup tab, parameters
can be specified in the following fields:

m Parameter—Search root. Its value is passed in through parameter IpszSearchRoot.

® Max time—Maximum search time in seconds. Its value is passed in through
parameter nSearchTimeout.

m Max results—Maximum number of results to return. Its value is passed in through
parameter nSearchResults.

Note: The string entered in the Parameter field is also passed to IpszParameter for use
with SmDirlnit() and SmDirlInitDirlnstance(). If your code for SmDirlnit() needs to use
IpszParameter and your code for SmDirSearchCount() needs a search root, you will have
to parse the string from the Parameter field.

Chapter 12: Directory API Guidance 737

Directory API Reference

SmDirSetUserAttr()

The SiteMinder Policy Server calls SmDirSetUserAttr() so that you can use SiteMinder to
set a user attribute in your custom directory. For example, you may need to change the
last name of a user.

Syntax
int SM EXTERN SmDirSetUserAttr (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const char* 1pszAttrName,
const char* lpszAttrData
)i
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
pinstanceHandle | The address of a pointer to the user instance
handle.
IpszUserDN | Buffer containing the user DN whose user attribute

has to be set.

IpszAttrName | Buffer containing the name of the user attribute.
IpszAttrData | Buffer containing the value of the user attribute.
Returns

Returns 0 if successful or -1 if not successful.

738 Programming Guide for C

Directory API Reference

SmDirSetUserAttrMulti()

The SiteMinder Policy Server calls SmDirSetUserAttrMulti() so that you can set an array
of values for a single attribute in your custom directory.

Syntax

int SM_EXTERN SmDirSetUserAttrMulti (
const Sm Api Context t* 1pApiContext,

void*
void*
const char*
const char*
const char**

pHandle,
pInstanceHandle,
1pszUserDN,
lpszAttrName,
lpszAttrData

Parameter

1/0 Description

IpApiContext

| Pointer to the API context structure.

pHandle

| The address of the pointer returned by SmDirlnit().

pinstanceHandle

| The address of a pointer to the user instance
handle.

IpszUserDN

| Buffer containing the user DN whose user attribute
has to be set.

IpszAttrName

| Buffer containing the name of the user attribute.

IpszAttrData

| Buffer containing the values for the user attribute.

Returns

Returns 0 if successful or -1 if not successful.

Chapter 12: Directory API Guidance 739

Directory API Reference

SmDirSetUserDisabledState()

The SiteMinder Policy Server calls SmDirSetUserDisabledState() when an administrator
uses the SiteMinder Policy Server User Interface to disable or enable a user, or
Password Services disables a user.

This call gives you the opportunity to set the disabled flag in your custom directory to
the disabled reason passed in through nDisabledReason.

When implementing SmDirSetUserDisabledState(), be sure that you have specified
which field (or attribute) in the custom directory will hold the disabled reason. In the
SiteMinder Policy Server User Interface, specify the attribute name in the Disabled Flag
field on the User Attributes tab on the User Directory dialog box. This attribute is passed
in through IpszDisabledAttr.

Syntax

int SM EXTERN SmDirSetUserDisabledState (

const Sm Api Context t* lpApiContext,
void* pHandle,

void* pInstanceHandle,
const char* 1pszUserDN,
const char* lpszDisabledAttr,

const Sm Api DisabledReason t nDisabledReason

Parameter 1/0 Description

IpApiContext | Pointer to the API context structure.

pHandle | The address of the pointer returned by SmDirlnit().

plnstanceHandle | The address of a pointer to the user instance
handle.

IpszUserDN | Buffer containing the Distinguished Name (DN) of

the user whose disabled state has to be modified.

IpszDisabledAttr | The user directory attribute that holds a user’s
disabled state. The SiteMinder Policy Server checks
this attribute to see if a user is enabled or disabled.
If a user is disabled, this attribute also holds the
specific reason. Use this attribute to change a
user’s disabled state.

740 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

nDisabledReason | Reason that the user was disabled or enabled.
Possible reasons are enumerated in
Sm_Api_DisabledReason_t. Store the user-disabled
state in the user directory attribute that is specified
in IpszDisabledAttr.

Note: A user account can be disabled for multiple reasons. Be sure to hold onto the
disabled reason(s) and be sure that you don’t overwrite those bits. For example, if the
User must change password at next login checkbox is checked and the administrator
clicks Disable, the nDisabledReason parameter holds both the
Sm_Api_Disabled_PWMustChange bit and the Sm_Api_Disabled_AdminDisabled bit.
When the user account is enabled, be sure to clear all the disabled bits.

Returns
Returns 0 if successful or -1 if not successful.
Remarks

To enable a user’s account in the Policy Server User Interface:
1. Navigate to the User Management dialog box.
2. Select the user whose account you are enabling.

3. Click Enable.

To disable a user’s account in the Policy Server User Interface:
1. Navigate to the User Management dialog box.
2. Select the user whose account you are disabling.

3. Click Disable.

Chapter 12: Directory API Guidance 741

Directory API Reference

Enabled user accounts can also be disabled by using Password Services. For example,
you can configure Password Services to disable a user account under the following
conditions:

®m |nactivity—A specified period of time has elapsed since the user has logged in.

m Failed login attempts—The user has reached a specified number of consecutive
failed log in attempts.

m Expired password—The user has failed to make a required password change.

m Forced password change—The user is being forced to change his or her password.
On the User Management dialog box, the administrator has checked User must
change password at next login.

Sample Code Information

When using the sample, specify the disabled attribute as Disabled. This attribute will be
passed in through the parameter IpszDisabledAttr. You can specify the attribute by
entering Disabled in the Disabled Flag field on the User Attributes tab of the User
Directory dialog box.

In the SiteMinder Policy Server User Interface, in the User Management dialog box,
suppose an administrator selects the enabled user Mikel and clicks Disable. Using the
sample code, the User DN (lpszUserDN) is Mikel, and the Disabled Attribute
(IpszDisabledAttr) is Disabled. The Disabled Reason (nDisabledReason) is
Sm_Api_Disabled_AdminDisabled. In the SiteMinder Policy Server User Interface, the
User Management dialog box shows that the Current Settings for Mikel have changed
from User is enabled to Disabled - administrative.

742 Programming Guide for C

Directory API Reference

SmDirValidateInstance()

SiteMinder calls SmDirValidatelnstance() so that the Directory API can validate the
instance for which the handle is passed.

Either the directory instance handle or user instance handle can be passed through
plnstanceHandle. Your code must determine which handle is passed. Check to see if the
handle is valid and return the corresponding response.

Syntax

int SM EXTERN SmDirValidateInstance (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the user instance

handle or directory instance handle.

Returns

Returns 0 if successful or -1 if not successful.

Chapter 12: Directory API Guidance 743

Directory API Reference

SmDirValidateUserDN()

Use this function to perform any needed validation on the user ID passed in through
IpszUserDN.

If you do not need to implement SmDirValidateUserDN(), return 0, as shown in the
sample code.

Syntax

int SM EXTERN SmDirValidateUserDN (
const Sm Api Context t* 1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* lpszUserDN
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
IpszUserDN | Buffer containing the user DN that has to be
validated.
Returns

Returns 0 if successful or -1 if not successful.
Remarks

This function is called when you use the SiteMinder Test Tool to run IsAuthenticated for
a user in the custom directory.

744 Programming Guide for C

Directory API Reference

SmDirValidateUsername()

SiteMinder calls this function to validate the user name passed in through
IpszUsername.

You can use this function to resolve the user name and copy the user ID into the
IpszNewUsername buffer. If you choose not to implement SmDirValidateUsername(),
set IpszNewUsername to NULL, as shown in the sample.

SiteMinder calls SmDirFreeString() to free the IpszNewUsername buffer.

Syntax

int SM_EXTERN SmDirValidateUsername (
const Sm Api Context t* T1pApiContext,

void* pHandle,
void* pInstanceHandle,
const char* 1pszUsername,
char** 1pszNewUsername
);
Parameter 1/0 Description
IpApiContext | Pointer to the API context structure.
pHandle | The address of the pointer returned by SmDirlnit().
plnstanceHandle | The address of a pointer to the directory instance
handle.
IpszUsername | Buffer containing the user name that has to be
validated.
IpszNewUsername 0] Buffer containing the validated user name.
Returns

Returns 0 if successful or -1 if not successful.
Remarks

This function is called when you use the SiteMinder Test Tool to run IsAuthenticated for
a user in the custom directory.

Chapter 12: Directory API Guidance 745

Directory API Reference

SmDirValidateUserPolicyRelationship()

Use SmDirValidateUserPolicyRelationship() to validate the relationship between policy
objects. Determine whether the user distinguished name has the specified relationship
to the policy distinguished name. The relationship is passed in through

nPolicyResolution.

For example:

m [f nPolicyResolution is Sm_PolicyResolution_User, determine whether the user
passed in through IpszUserDN is the same user that is passed in through
IpszPolicyDN.

m [f nPolicyResolution is Sm_PolicyResolution_UserGroup, determine whether the
user passed in through IpszUserDN is a member of the group passed in through
IpszPolicyDN.

Syntax

int SM EXTERN SmDirValidateUserPolicyRelationship (

const Sm Api Context t* 1pApiContext,
void* pHandle,
void* pInstanceHandle,
const char* 1pszUserDN,
const Sm PolicyResolution t nPolicyResolution,
const int bRecursive,
const char* 1pszPolicyDN,
const char* lpszPolicyClass

)i

Parameter 1/0 Description

IpApiContext I

Pointer to the API context structure.

pHandle

The address of the pointer returned by
SmDirlnit().

plnstanceHandle

The address of a pointer to the user instance
handle.

IpszUserDN

Buffer containing the user DN for which you must
validate the relationship.

746 Programming Guide for C

Directory API Reference

Parameter 1/0 Description

nPolicyResolution I The relationship between the user distinguished
name and the policy distinguished name should
match what is specified in nPolicyResolution.
Specific policy resolutions are enumerated in
Sm_PolicyResolution_t.

For more information on Sm_PolicyResolution_t
see Sm_PolicyResolution_t.

bRecursive Whether the directory supports recursion (for
example, nested groups).

Suppose that the value of nPolicyResolution is
Sm_PolicyResolution_UserGroup, the User DN is
Bill Collector, and the Policy DN is Accounting. If
your custom directory supports recursion, you
will need to search down any hierarchy of groups
to find the user. Bill Collector may be in a group
called AR, which may be in the group Accounting.

IpszPolicyDN Distinguished names of the object, such as users,
groups or roles, bound to the policy.

IpszPolicyClass Class of the object named in IpszPolicyDN. For
example, the class could be Group.

Returns

Returns 0 if successful or -1 if not successful.

Chapter 12: Directory API Guidance 747

Structures Used in the Sample Directory Application

Structures Used in the Sample Directory Application

The sample Directory API application resides in:
<install path>\sdk\samples\smdirapi\smdirapi.cpp

The Directory APl includes a directory instance handle, a directory provider handle, and
a directory entry (user) instance handle. These handles are returned from the
initialization functions listed in section Initialization and Release Functions.

The sample code uses the following structures to manage these handles:

Handle Type Data Structure
Directory instance DirHandle_t
Directory provider ProviderHandle_t
Directory entry (user) instance UserHandle_t

748 Programming Guide for C

Structures Used in the Sample Directory Application

Directory Instance Handle

The sample instantiates DirHandle_t when SmDirlInitDirlnstance() is called. The handle is
then passed to the directory operations functions.

The same value need not be carried through the entire process. You are permitted to
change the value.

The definition of DirHandle_t is as follows:

typedef struct DirHandle s
{
char nTag;
bool bValid;
char szErrMsg[ERRMSG SIZE];
char* pszUniqueKey;
char* pszParameter;
char* pszUsername;
char* pszPassword;
int bRequireCredentials;
int bSecureConnection;
int nSearchResults;
int nSearchTimeout;
} DirHandle t;

The sample releases DirHandle_t when SmDirReleaselnstance() is called. The value of
nTag is used to distinguish between the directory instance handle and the user instance
handle.

More Information:

How To Distinguish between Handle Types (see page 751)

Chapter 12: Directory API Guidance 749

Structures Used in the Sample Directory Application

Directory Provider Handle

The sample defines the provider handle structure ProviderHandle_t to serve as a bridge
between the SiteMinder Policy Server and the Directory API. The provider handle can be
used to store data from the time SiteMinder loads the library until the SiteMinder Policy
Server shuts down.

The sample instantiates ProviderHandle_t when SmDirlnit() is called. The handle is then
passed to almost all subsequent functions. The same value need not be carried through
the entire process. You are permitted to change the value.

The sample releases ProviderHandle_t when SmDirRelease() is called.

See the function SmDirlnit() in the sample code for an example of ProviderHandle_t. You
can follow this example, but you aren’t required to. ProviderHandle_t can contain any
information that you would like to set at the beginning of the process and carry through,
such as a user’s password.

Directory Entry (User) Instance Handle

The sample instantiates UserHandle_t when SmDirlnitUserInstance() is called. This
handle is then passed to the directory entry (user) operations functions. For a list of
these functions, see Operations on a Directory Entry (User).

The same value need not be carried through the entire process. You are permitted to
change the value.

The definition of UserHandle_t is as follows:

typedef struct UserHandle s
{
char nTag;
bool bValid;
char szErrMsg[ERRMSG SIZE];
DirHandle t* phDir;
char* pszUserDn;
} UserHandle t;

The sample releases UserHandle_t when SmDirReleaselnstance() is called.

750 Programming Guide for C

Structures Used in the Sample Directory Application

How To Distinguish between Handle Types

Some functions, such as SmDirReleaselnstance(), may be passed either the directory
instance handle or the directory entry (user) instance handle. The sample code provides
a way you can distinguish the directory instance handle from the directory entry (user)
instance handle.

Notice that nTag is the first field of both DirHandle_t and UserHandle_t. When
SmDirlnitDirlnstance() is called, nTag is set to 0 in DirHandle_t. When
SmDirlnitUserInstance is called, nTag is set to 1 in UserHandle_t.

When a function that accepts either type of handle is called, the value of nTag is
checked to see which type of handle is being passed.

Chapter 12: Directory API Guidance 751

Chapter 13: Common Data Types and
Structure

This section contains the following topics:

Exported Enumerations (see page 753)
Common Structure (see page 759)

Exported Enumerations

The following enumerations in SmApi.h are used by more than one SiteMinder API:

m Sm Api DisabledReason t (see page 753)

m Sm _Api Reason t (see page 755)

m Sm_PolicyResolution t (see page 757)

Sm_Api_DisabledReason_t
Enumerates the reasons that a user account can be disabled.

The following APIs use Sm_Api_DisabledReason_t:

® Policy Management API

m Directory API

Note: A user account can be disabled for multiple reasons. For example, if the User
must change password at next login checkbox is checked and the administrator clicks

Disable, an nDisabledReason parameter holds both the
Sm_Api_Disabled_PWMustChange bit and the Sm_Api_Disabled_AdminDisabled bit.

For examples of using Sm_Api_DisabledReason_t, see the examples under
Sm_PolicyApi_SetDisabledUserState().

The following table shows the bits that can be set for disabled reason. A brief
explanation of each reason, organized by reason type, follows the table.

Disabled Reason Type Value
Sm_Api_Disabled_DisabledMask Mask O0xOOffffff
Sm_Api_Disabled_Enabled Mask 0

Chapter 13: Common Data Types and Structure 753

Exported Enumerations

Disabled Reason Type Value

Sm_Api_Disabled_AdminDisabled Bits 0x00000001
Sm_Api_Disabled_MaxLoginFail Bits 0x00000002
Sm_Api_Disabled_Inactivity Bits 0x00000004
Sm_Api_Disabled_PWExpired Bits 0x00000008
Sm_Api_Disabled_DirNativeDisabled Bits 0x00000010
Sm_Api_Disabled_PWMustChange Quialifier 0x01000000

Disabled Mask

m Sm_Api_Disabled_DisabledMask
The disable bits mask is used to distinguish between two cases:
m When disabled bits are set, the resulting hexadecimal value begins 0x00.
m When users are forced to change their passwords, the resulting hexadecimal
value begins 0x01.
m Sm_Api_Disabled_Enabled
When a user account is enabled, the value is 0, as opposed to the other cases that
have non-zero values.
Disabled Bits

A user account can be disabled for one or more of the following reasons:

Sm_Api_Disabled_AdminDisabled

Disabled by administrator.
Sm_Api_Disabled_MaxLoginFail

Disabled for maximum login failures.
Sm_Api_Disabled_Inactivity

Disabled for inactivity over a period of time.
Sm_Api_Disabled_PWExpired

Disabled for password expiration.
Sm_Api_Disabled_DirNativeDisabled

Disabled by the user repository and cannot be enabled in SiteMinder. For example,
SiteMinder returns this disabled reason if an Active Directory user object expires
because its accountExpires time elapsed.

754 Programming Guide for C

Exported Enumerations

Qualifier
m Sm_Api_Disabled_PWMustChange

Forces a user to change his or her password during the next login. When users are
forced to change their passwords, the resulting hexadecimal value begins 0x01, as
opposed to 0x00.

Sm_Api_Reason_t

Enumerates the reasons for an access event, such as an authentication failure or session
logout.

When an authentication scheme fails to authenticate, it may send back a reason status
code. The status code returned from the authentication function is constructed using
the SM_MAKEAUTH_STATUSVALUE macro (see Returns on page 10).

The Policy server sends the reason to the agent. The SiteMinder Web Agent exposes the
reason so that Web applications can use it in their logic.

The following APls use Sm_Api_Reason_t:

m Authentication API

® Event API

m Directory API

The following table shows the bits that can be set for access events.

Note: Values 0 through 31999 are reserved for use by SiteMinder. Values 32000
through 32767 are available for user-defined reasons.

Authentication Reason Value
Sm_Api_Reason_None 0
Sm_Api_Reason_PwMustChange 1
Sm_Api_Reason_InvalidSession 2
Sm_Api_Reason_RevokedSession 3
Sm_Api_Reason_ExpiredSession 4
Sm_Api_Reason_AuthLevelTooLow 5
Sm_Api_Reason_UnknownUser 6
Sm_Api_Reason_UserDisabled 7
Sm_Api_Reason_lInvalidSessionld 8

Chapter 13: Common Data Types and Structure 755

Exported Enumerations

Authentication Reason Value
Sm_Api_Reason_InvalidSessionlp 9
Sm_Api_Reason_CertificateRevoked 10
Sm_Api_Reason_CRLOutOfDate 11
Sm_Api_Reason_CertRevokedKeyCompromised 12
Sm_Api_Reason_CertRevokedAffiliationChange 13
Sm_Api_Reason_CertOnHold 14
Sm_Api_Reason_TokenCardChallenge 15
Sm_Api_Reason_ImpersonatedUserNotInDir 16
Sm_Api_Reason_Anonymous 17
Sm_Api_Reason_PwWillExpire 18
Sm_Api_Reason_PwExpired 19
Sm_Api_Reason_ImmedPWChangeRequired 20
Sm_Api_Reason_PWChangeFailed 21
Sm_Api_Reason_BadPWChange 22
Sm_Api_Reason_PWChangeAccepted 23
Sm_Api_Reason_ExcessiveFailedLoginAttempts 24
Sm_Api_Reason_Accountlnactivity 25
Sm_Api_Reason_NoRedirectConfigured 26
Sm_Api_Reason_ErrorMessagelsRedirect 27
Sm_Api_Reason_Next_Tokencode 28
Sm_Api_Reason_New_PIN_Select 29
Sm_Api_Reason_New_PIN_Sys_Tokencode 30
Sm_Api_Reason_New_User_PIN_Tokencode 31
Sm_Api_Reason_New_PIN_Accepted 32
Sm_Api_Reason_Guest 33
Sm_Api_Reason_PWSelfChange 34
Sm_Api_Reason_ServerException 35
Sm_Api_Reason_UnknownScheme 36
Sm_Api_Reason_UnsupportedScheme 37

756 Programming Guide for C

Exported Enumerations

Authentication Reason Value
Sm_Api_Reason_Misconfigured 38
Sm_Api_Reason_BufferOverflow 39
Sm_Api_Reason_SetPersistentSessionFailed 40
Sm_Api_Reason_UserLogout 41
Sm_Api_Reason_ldleSession 42
Sm_Api_Reason_PolicyServerEnforcedTimeout 43
Sm_Api_Reason_PolicyServerEnforcedldle 44
Sm_Api_Reason_ImpersonationNotAllowed 45
Sm_Api_Reason_ImpersonationNotAllowedUser 46
Sm_Api_Reason_FederationNoLoginID 47
Sm_Api_Reason_FederationUserNotInDir 48
Sm_Api_Reason_FederationlnvalidMessage 49
Sm_Api_Reason_FederationUnacceptedMessage 50

Sm_PolicyResolution_t

Sm_PolicyResolution_t, defined in SmApi.h, enumerates values that describe how one
policy object, such as a user, is related to another policy object, such as a group.

The following APIs use the enumeration Sm_PolicyResolution_t:

m Policy Management API
m Directory API

The following table lists the supported policy resolutions. A brief description of each

resolution follows the table.

Policy Resolution Value
Sm_PolicyResolution_Unknown 0
Sm_PolicyResolution_User 1
Sm_PolicyResolution_UserGroup 2
Sm_PolicyResolution_UserProp 3
Sm_PolicyResolution_UserRole 4

Chapter 13: Common Data Types and Structure 757

Exported Enumerations

Policy Resolution Value
Sm_PolicyResolution_Org 5
Sm_PolicyResolution_Query 6
Sm_PolicyResolution_All 7
Sm_PolicyResolution_GroupProp 8
Sm_PolicyResolution_OrgProp 9
Sm_PolicyResolution_DnProp 10

Note: Another policy resolution, Sm_PolicyResolution_Max, is for internal use only.

Sm_PolicyResolution_Unknown. The policy object is unknown.
Sm_PolicyResolution_User. The policy object is the specified user object.

Sm_PolicyResolution_UserGroup. The policy object is a member (directly, or
indirectly through another group) of the specified user group object.

Sm_PolicyResolution_UserProp. The policy object matches the specified filter (user
scope).

Sm_PolicyResolution_UserRole. The policy object is the occupant of the specified
role.

Sm_PolicyResolution_Org. The policy object is a member (directly or indirectly
through another organization) of the specified organization object (this supports
organizations and organization units).

Sm_PolicyResolution_Query. The policy object is contained in the result set of a
directory-specific query.

Sm_PolicyResolution_All. The policy object is located in the specified directory.

Sm_PolicyResolution_GroupProp. The policy object is policy-related to a
"group"-like DN matching the specified filter.

Sm_PolicyResolution_OrgProp. The policy object is policy-related to a "org"-like DN
matching the specified filter.

Sm_PolicyResolution_DnProp. The policy object is policy-related to any DN
matching the specified filter.

More Information:

SmDirValidateUserPolicyRelationship() (see page 746)

758 Programming Guide for C

Common Structure

Common Structure

The Sm_Api_Context_t structure is used by multiple SiteMinder APlIs.

The structure provides the function pointers for the SiteMinder logging utility, trace
utility, and error utility.

The following APIs use Sm_Api_Context_t:
m Authentication API

m Authorization API

®m Tunnel Service API

= DMS Workflow API

m Directory API

More Information:

Sm_Api Context t (see page 572)

Chapter 14: Event Log Formats

Access Events

Access events indicate user-related activities. They are called in the context of
authentication, authorization, and administration activity.

The format for access events in a text log depends on the event category ID.

Chapter 14: Event Log Formats 759

Access Events

Authentication and Authorization Format

If the event category ID is authentication (SmLogAccessCat_Auth) or authorization
(SmLogAccessCat_Az), the format is:

lpszEvent lpszHostName lpszTimeString "szClientIp szUserName" "szAgentName szAction
szResource" [szTransactionId] [nReason] szStatusMsg

Elements in the above format example are described as follows:
m |pszEvent. The name (type) of the access event:

SmLogAccessEvent AuthAccept : lpszEvent = "AuthAccept"
SmLogAccessEvent AuthReject : lpszEvent = "AuthReject"
SmLogAccessEvent AuthAttempt : lpszEvent = "AuthAttempt"
SmLogAccessEvent AuthChallenge : lpszEvent = "AuthChallenge"
SmLogAccessEvent AzAccept : lpszEvent = "AzAccept"
SmLogAccessEvent AzReject : 1lpszEvent = "AzReject"
SmLogAccessEvent AdminLogin : lpszEvent = "AdminLogin"
SmLogAccessEvent AdminLogout : lpszEvent = "AdminLogout"
SmLogAccessEvent AdminReject : lpszEvent = "AdminReject"
SmLogAccessEvent AuthLogout : lpszEvent = "AuthLogout"
SmLogAccessEvent ValidateAccept : lpszEvent = "ValidateAccept"
SmLogAccessEvent ValidateReject : lpszEvent = "ValidateReject"

m |pszHostName. The name of the host.

m |pszTimeString. The timestamp of the occurrence of the event, in the format:
[<date>/<month>/<year>:<hour>:<minute>:<second>
<difference from GMT>]. For example: [27/Jun/2000:11:27:29 -0500]

m szClientlp. The IP address of the client machine.

m szUserName. The name of the user.

m szAgentName. The name of the agent.

®m szAction. The action associated with the resource.
m szResource. The accessed resource.

m [szTransactionld]. A string that contains: idletime=<value>.

760 Programming Guide for C

Access Events

m [nReason]. The reason associated with the event. Reasons are enumerated in

Sm_Api_Reason_t, which is in SmApi.h.

m szStatusMsg. The message associated with the event. The message depends on the

event type, as shown in in the following table:

Event

Role of szStatusMsg

SmLogAccessEvent_AdminLogin

Holds the UserMsg returned by
the authentication scheme.

SmLogAccessEvent_AdminReject

Holds the ErrorMsg returned by
the authentication Scheme

SmLogAccessEvent_AuthAccept

Holds the UserMsg.

SmLogAccessEvent_AuthReject

Holds a concatenated string of
UserMsg and ErrorMsg.

SmLogAccessEvent_AuthAttempt

Holds a concatenated string of
UserMsg and ErrorMsg.

SmLogAccessEvent_AuthChallenge

Holds the UserMsg.

SmLogAccessEvent_ValidateAccept

Is an empty string.

SmLogAccessEvent_ValidateReject

Holds an error message
containing the reason for validate
reject. Examples:

"Invalid session token"

"Invalid session id"

"Invalid session ip"

"Invalid user DN"

"Session has expired"

"Invalid key in use"

"Invalid error status"

SmLogAccessEvent_AuthlLogout

An empty string.

Chapter 14: Event Log Formats 761

Access Events

Event Role of szStatusMsg
SmLogAccessEvent_AzAccept An empty string.
SmLogAccessEvent_AzReject Depending on the type of az

reject, it is a string explaining the
reason for the reject.
Examples:
"Invalid session type for
affiliate agent"
"Invalid session type"
"Session not authorized for
this security level"

For example:

AuthAccept testbox [27/Jun/2000:11:27:29 -0500] "190.158.4.90
uid=scarter,ou=people,o=airius.com" "testagent GET /test/index.html"
[idletime=3600;maxtime=7200;authlevel=5;] [0]

In this example,

m |pszEvent is AuthAccept

m |pszHostName is testbox

m |pszTimeString is [27/Jun/2000:11:27:29 -0500]

m szClientlp is 190.158.4.90

m szUserName is uid=scarter,ou=people,o=airius.com

m szAgentName is testagent

m szAction is GET

m szResource is /test/index.html

m [szTransactionld] is [idletime=3600;maxtime=7200;
authlevel=5;]

m [nReason]is [0]

m szStatusMsg is not specified.

762 Programming Guide for C

Access Events

Administration Format

If the event category ID is SmLogAccessCat_Admin, the format is:

lpszEvent 1pszHostName lpszTimeString "szClientIp szUserName" szStatusMsg

Elements in the above format example are described as follows:

m |pszEvent is the name (type) of the access event:
SmLogAccessEvent AdminLogin:lpszEvent = "AdminLogin"
SmLogAccessEvent AdminLogout:1lpszEvent = "AdminLogout"
SmLogAccessEvent AdminReject:1lpszEvent = "AdminReject"”

m |pszHostName is the name of the host.

m |pszTimeString is the timestamp of the occurrence of the event, in the format:
[<date>/<month>/<year>:<hour>:<minute>:<second> <difference from GMT>]. For
example:

[27/3un/2000:11:27:29 -0500]

m szClientlp is the IP address of the client machine.

m szUserName is the name of the user.

m szStatusMsg is the message associated with the event. The message depends on the
event type, as shown in the following table:

Event Role of szStatusMsg

SmLogAccessEvent_AdminLogin Holds the UserMsg returned by the

authentication scheme.

SmLogAccessEvent_AdminReject Holds the ErrorMsg returned by the

authentication scheme

For example:

AdminLogin testbox [27/Jun/2000:11:26:50 -0500]

"190.158.4.90 siteminder"

In this example,

IpszEvent is AdminLogin

IpszHostName is testbox

IpszTimeString is [27/Jun/2000:11:26:50 -0500]
szClientlp is 190.158.4.90

szUserName is siteminder

szStatusMsg is not specified.

Chapter 14: Event Log Formats 763

Object Events

Object Events

Object events are called when
m SiteMinder objects are created, updated, or deleted.
®m An application or a user logs in to the object store.

Object events are called in the context of authentication, SiteMinder object changes,
and management activity.

The format for object events in a text log depends upon the object event category ID.

AdminChange Format

AdminChange events occur when an administrator adds, updates, or deletes an object.
The format is:

AdminChange <Hostname> <Time String> <Username>

'<0bjectName>'

<Event> <Category>

Elements in the above format example are described as follows:
m <HostName> is the name of the host.

m <Time String> is the timestamp of the occurrence of the event, in the format:
[<date>/<month>/<year>:<hour>:<minute>:<second> <difference from GMT>]. For
example:

[27/3un/2000:11:27:29 -0500]
m <UserName> is the name of the user who generated the event.
m <Event>is the name of the object event—namely:

Create
Delete
Update
UpdateField

m <Category> is the object that is the target of the event—for example, Rule or
UserDirectory.

m <ObjectName> is the user-defined name for the object. Some object categories
(such as RootConfig) have no ObjectName associated with them.

Here is an example of an AdminChange event format that was logged when
administrator JLewis created the rule MyNewRule:

AdminChange MyHost [20/Jul/2001:10:26:15 -0500] "- JLewis" Create Rule 'MyNewRule'

764 Programming Guide for C

Object Events

Management Command Format

If the object category ID is management command
(SmLogObjCat_ManagementCommand), the format is:

ManagementCommand <Hostname> <Time String> "- <Username> " <Event> '<Description>'

Elements in the above format example are described as follows:

<HostName> is the name of the host.

<Time String> is the timestamp of the occurrence of the event, in the format:
[<date>/<month>/<year>:<hour>:<minute>:<second> <difference from GMT>]. For
example:

[27/3un/2000:11:27:29 -0500]
<UserName> is the name of the user who generated the event.

<Event> is the name of the management command event—namely:

FlushAll ChangeDynamicKeys
FlushUser ChangePersistentKey
FlushAllUsers ChangeDisabledUserState
FlushAllRealms ChangeUserPassword

<Description> is the user DN for management commands that involve a user, such
as flush user command, a change disabled user state, and a change password.

Here is an example of a management command event format that was logged when
administrator JLewis flushed the user cache for BRoy:

ManagementCommand MyHost [20/Jul/2001:13:26:23 -0500]
"- JLewis" FlushUser 'uid=BRoy,ou=HR,o=security.com'

Chapter 14: Event Log Formats 765

EMS Events

EMS Events

EMS events include the following:
m Creating, deleting or modifying any of the following objects:
m User
m Organization
m Userrole
m Adminrole
m Resource
m Generic object in the Top object class
m Enabling or disabling a user
®m Assigning or removing a user role
m Modifying a user’s password
m Logging in or logging out as an administrator
m Failing to authenticate

m EMS server session timeout

EMS Log Format

SiteMinder logs EMS events to a text file using the following format. In the format
example, literal strings are shown in bold type:

lpszTimeString: Category lpszCat (nCategoryId),

Event lpszEvent (nEventId)

Username szUserName, SessionId szSessionId

DirectoryName szDirName

ObjectName szObjName, ObjectClass szObjClass,
ObjectPath szObjPath

Organization szOrgName, Role szRoleName

Description: szFieldDesc

Status: szStatusMsg

766 Programming Guide for C

EMS Events

Elements in the preceding format example are described as follows:

m |pszTimeString is the timestamp of the occurrence of the event, in the format:
[<date>/<month>/<year>:<hour>:<minute>:<second>

<difference from GMT>]. For example:

[27/3un/2000:11:27:29 -0500]

m nCategoryld contains the category ID, and IpszCat contains the corresponding

category name.

m nEventld contains the EMS event ID, and IpszEvent contains the corresponding

event name.

The remaining fields, shown in jtalics, are members of the structure SmLog_EMS _t.

Category ID (nCategoryld)

Category (IpszCat)

SmLogEmsCat_DirectoryUser "User"
SmLogEmsCat_DirectoryAdmin "Admin"
SmLogEmsCat_DirectorySession "Session"

Event ID (nEventid)

Event (lpszEvent)

SmLogEmsEvent_CreateUser "CreateUser"
SmLogEmsEvent_DeleteUser "DeleteUser"
SmLogEmsEvent_ModifyUser "ModifyUser"

SmLogEmsEvent_AssignUserRole

"AssignUserRol" (sic)

SmLogEmsEvent_RemoveUserRole

"RemoveUserRole"

SmLogEmsEvent_EnableUser

"EnableUser"

SmLogEmsEvent_DisableUser

"DisableUser"

SmLogEmsEvent_CreateOrg

"CreateQOrganization"

SmLogEmsEvent_DeleteOrg

"DeleteOrganization"

SmLogEmsEvent_ModifyOrg

"ModifyOrganization"

SmLogEmsEvent_CreateRole "CreateRole"
SmLogEmsEvent_DeleteRole "DeleteRole"
SmLogEmsEvent_ModifyRole "ModifyRole"
SmLogEmsEvent_CreateResource "CreateResource"

Chapter 14: Event Log Formats 767

EMS Events

Event ID (nEventld)

Event (IpszEvent)

SmLogEmsEvent_DeleteResource

"DeleteResource"

SmLogEmsEvent_ModifyResource

"ModifyResource"

SmLogEmsEvent_AssignResourceRole

"AssignResourceRole"

SmLogEmsEvent_RemoveResourceRole

"RemoveResourceRole"

SmLogEmsEvent_Login "Login"
SmLogEmsEvent_Logout "Logout"
SmLogEmsEvent_LoginFail "LoginFail"

SmLogEmsEvent_SessionTimeout

"SessionTimeout"

SmLogEmsEvent_AuthFail

"AuthFail"

SmLogEmsEvent_PasswordModify

"ChangePassword"

SmLogEmsEvent_CreateAdminRole

"CreateAdminRole"

SmLogEmsEvent_DeleteAdminRole

"DeleteAdminRole"

SmLogEmsEvent_ModifyAdminRole

"ModifyAdminRole"

SmLogEmsEvent_AssignAdminRole

"AssignAdminRole"

SmLogEmsEvent_RemoveAdminRole

"RemoveAdminRole"

SmLogEmsEvent_AddManagedOrg "AddManagedOrg"
SmLogEmsEvent_RemoveManagedOrg "RemoveManagedOrg"
SmLogEmsEvent_CreateObject "CreateObject"

SmLogEmsEvent_DeleteObject

"DeleteObject"

SmLogEmsEvent_ModifyObject

"ModifyObject"

768 Programming Guide for C

Appendix A: SAML 2.0 Property Reference

This section contains the following topics:

About the SAML 2.0 Properties (see page 769)

SAML 2.0 Property Reference (see page 769)

About the SAML 2.0 Properties

This reference includes the SAML 2.0 metadata properties associated with the structure
Sm_PolicyApi_SAMLProviderProp_t. The properties are defined in the file
SmPolicyApi45.h.

The properties apply to one or more of the following SAML 2.0 objects:

SAML 2.0 affiliation.

A SAML 2.0 affiliation is a set of entities that share a single federated namespace of
unique Name IDs for principals.

SAML 2.0 authentication scheme and its associated Identity Provider definition.

The Identity Provider creates SAML assertions for the Service Provider that
configured the Identity Provider and its associated SAML 2.0 authentication
scheme.

Service Provider.

A Service Provider provides services (such as access to applications and other
resources) to principals within a federation.

A Service Provider uses a SAML 2.0 authentication scheme to validate a principal
based on the information in a SAML assertion. The assertion is supplied by the
Identity Provider associated with the authentication scheme.

SAML 2.0 Property Reference

This reference includes the SAML 2.0 metadata properties associated with the structure
Sm_PolicyApi_SAMLProviderProp_t. The properties are defined in the file
SmPolicyApi45.h.

Appendix A: SAML 2.0 Property Reference 769

SAML 2.0 Property Reference

The properties apply to one or more of the following SAML 2.0 objects:
m SAML 2.0 affiliation.

A SAML 2.0 affiliation is a set of entities that share a single federated namespace of
unique Name IDs for principals.

m SAML 2.0 authentication scheme and its associated Identity Provider definition.

The Identity Provider creates SAML assertions for the Service Provider that
configured the Identity Provider and its associated SAML 2.0 authentication
scheme.

m Service Provider.

A Service Provider provides services (such as access to applications and other
resources) to principals within a federation.

A Service Provider uses a SAML 2.0 authentication scheme to validate a principal
based on the information in a SAML assertion. The assertion is supplied by the
Identity Provider associated with the authentication scheme.

When reading the property references, note the following:

m Unless otherwise specified, properties of data type String have the following
maximum lengths:

m URIs and URLs must be less than 1,024 characters
m All other Strings must not exceed 255 characters

m Specify Boolean values as either SAML_TRUE or SAML_FALSE.

SAML_AFFILIATION

Type String

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default None

770 Programming Guide for C

SAML 2.0 Property Reference

Description
The SAML 2.0 affiliation to associate with this object.

Service Providers share the Name ID properties across the affiliation. Identity Providers
share the user disambiguation properties across the affiliation.

A Service Provider or Identity Provider can belong to only one SAML 2.0 affiliation.
If a SAML affiliation is specified, the NAMEID properties (for example,
SAML_SP_NAMEID_FORMAT) are not used. SiteMinder uses the NAMEID information in

the specified affiliation.

Note: An Identity Provider is assigned to an affiliation through its associated SAML 2.0
authentication scheme.

SAML_AUDIENCE

Type String

Applies to SAML 2.0 Authentication, Service Provider
Required Yes

Default None

Description

The URI of the expected audience for a Service Provider. The audience expected by the
Service Provider must match the audience specified in the assertion.

The audience might also be sent in an authentication request.

SAML_DESCRIPTION

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication, Service Provider
Required No

Default None

Description

A brief description of the affiliation, authentication scheme, or Service Provider object.

Appendix A: SAML 2.0 Property Reference 771

SAML 2.0 Property Reference

SAML_DISABLE_SIGNATURE_PROCESSING

Type Boolean

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default SAML_FALSE

Description

Specifies whether to disable all signature validation, including signing.
It may be useful to disable signature validation during the initial setup of a provider and
during debugging. During normal runtime, this property should be set to SAML_FALSE

(signature processing enabled).

SAML_DSIG_ALGO

Type String

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default 1

Description

Specifes the XML Federation Signature algorithm with one of the following values:
m 1 =RSAwithSHA1 (default)
m 2 =RSAwithSHA256

SAML_DSIG_VERINFO_ISSUER_DN

Type String

Applies to SAML 2.0 Authentication, Service Provider

772 Programming Guide for C

SAML 2.0 Property Reference

Required

With SAML 2.0 Authentication Schemes:

Required only if SAML_DISABLE_SIGNATURE_PROCESSING is
SAML_FALSE and one or both of the following are SAML_TRUE:

SAML_SLO_REDIRECT_BINDING

SAML_ENABLE_SSO_POST_BINDING

m With Service Providers:

Required only if SAML_DISABLE_SIGNATURE_PROCESSING is
SAML_FALSE and one or both of the following are SAML_TRUE:

m SAML_SLO_REDIRECT_BINDING
m SAML_SP_REQUIRE_SIGNED_AUTHNREQUESTS

Default

None

Description

If the certificate of the Service Provider is not provided inline, this value is used along
with SAML_DSIG_VERINFO_SERIAL_NUMBER to locate the certificate in the key store.

SAML_DSIG_VERINFO_SERIAL_NUMBER

Type

String

Applies to

SAML 2.0 Authentication, Service Provider

Required

With SAML 2.0 Authentication Schemes:

Required only if SAML_DISABLE_SIGNATURE_PROCESSING is
SAML_FALSE and one or both of the following are SAML_TRUE:

= SAML_SLO_REDIRECT_BINDING
= SAML_ENABLE_SSO_POST_BINDING

With Service Providers:

Required only if SAML_DISABLE_SIGNATURE_PROCESSING is
SAML_FALSE and one or both of the following are SAML_TRUE:

m SAML_SLO_REDIRECT_BINDING
m SAML_SP_REQUIRE_SIGNED_AUTHNREQUESTS

Default

None

Description

If the certificate of the Service Provider is not provided inline, this value is used along
with SAML_DSIG_VERINFO_ISSUER_DN to locate the certificate in the key store.

Appendix A: SAML 2.0 Property Reference 773

SAML 2.0 Property Reference

SAML_ENABLE_SSO_ARTIFACT_BINDING

Type Boolean

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default SAML_FALSE

Description

Specifies whether artifact binding is supported by the Service Provider and enabled by
the Identity Provider.

SAML_ENABLE_SSO_POST_BINDING

Type Boolean

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default SAML_FALSE

Description

Specifies whether HTTP POST binding is supported by the Service Provider and enabled
by the Identity Provider.

See also SAML_DSIG_VERINFO_ISSUER_DN and
SAML_DSIG_VERINFO_SERIAL_NUMBER.

SAML_ENABLED

Type Boolean

Applies to Service Provider
Required No

Default SAML_TRUE
Description

Specifies whether the Service Provider is activated.

774 Programming Guide for C

SAML 2.0 Property Reference

SAML_IDP_AD_SEARCH_SPEC

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication

Required No
Default None
Description

Search specification for AD directories.

If user disambiguation is being performed on a user in an AD directory, but no AD search
specification has been provided for this property, the default search specification
defined on the SiteMinder User Directory Properties dialog is used.

Assigning a search specification to this property is recommended for the following
reasons:

m When using the default search specification, the Policy Server might duplicate login
ID prefixes and suffixes that are already present in the ID extracted from the
assertion.

m If you are extending the functionality of a SAML 2.0 authentication scheme with a
custom message consumer plugin, the plugin will not be called in the user
disambiguation phase if the Policy Server disambiguates the user with the default
search specification defined on the SiteMinder User Directory Properties dialog. For
more information, see SAML_IDP_PLUGIN_CLASS.

When defined for an affiliation, the search specification is shared by all Identity
Providers across the affiliation.

SAML_IDP_ARTIFACT_RESOLUTION_DEFAULT_SERVICE

Type String

Applies to SAML 2.0 Authentication

Required Yes, if SAML_ENABLE_SSO_ARTIFACT_BINDING is SAML_TRUE
Default None

Description

A URL specifying the default artifact resolution service for the Identity Provider.

Appendix A: SAML 2.0 Property Reference 775

SAML 2.0 Property Reference

SAML_IDP_BACKCHANNEL_AUTH_TYPE

Type Integer

Applies to SAML 2.0 Authentication

Required No
Default 0
Description

Specifies the type of authentication to use on the back channel. Valid values:

m 0. Basic — Uses the specified Service Provider Name and password for
authentication.

m 1. Client Cert — Uses the specified Service Provider ID and password to look up the
certificate in the keystore.

m 2. No Auth — No authentication is required.

SAML_IDP_CUSTOM_SEARCH_SPEC

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication
Required No

Default None

Description

Search specification for custom user directories. If user disambiguation is being
performed on a user in a custom directory, but no search specification is provided, the
default search specification defined on the SiteMinder User Directory Properties dialog
is used.

When defined for an affiliation, the search specification is shared by all Identity
Providers across the affiliation.

If you are extending the functionality of a SAML 2.0 authentication scheme with a
custom message consumer plugin, the plugin will not be called in the user
disambiguation phase if the Policy Server disambiguates the user with the default
search specification defined on the SiteMinder User Directory Properties dialog. For
more information, see SAML_IDP_PLUGIN_CLASS.

776 Programming Guide for C

SAML 2.0 Property Reference

SAML_IDP_LDAP_SEARCH_SPEC

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication

Required No
Default None
Description

Search specification for LDAP directories.

If user disambiguation is being performed on a user in an LDAP directory, but no search
specification has been provided for this property, the default search specification
defined on the SiteMinder User Directory Properties dialog is used.

Assigning a search specification to this property is recommended for the following
reasons:

m When using the default search specification, the Policy Server might duplicate login
ID prefixes and suffixes that are already present in the ID extracted from the
assertion.

m If you are extending the functionality of a SAML 2.0 authentication scheme with a
custom message consumer plugin, the plugin will not be called in the user
disambiguation phase if the Policy Server disambiguates the user with the default
search specification defined on the SiteMinder User Directory Properties dialog. For
more information, see SAML_IDP_PLUGIN_CLASS.

When defined for an affiliation, the search specification is shared by all Identity
Providers across the affiliation.

SAML_IDP_ODBC_SEARCH_SPEC

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication
Required No

Default None

Appendix A: SAML 2.0 Property Reference 777

SAML 2.0 Property Reference

Description
Search specification for ODBC directories.

If user disambiguation is being performed on a user in an ODBC directory, but no ODBC
search specification has been provided for this property, the default search specification
defined on the SiteMinder User Directory Properties dialog is used.

Assigning a search specification to this property is recommended for the following
reasons:

m When using the default search specification, the Policy Server might duplicate login
ID prefixes and suffixes that are already present in the ID extracted from the
assertion.

m [|f you are extending the functionality of a SAML 2.0 authentication scheme with a
custom message consumer plugin, the plugin will not be called in the user
disambiguation phase if the Policy Server disambiguates the user with the default
search specification defined on the SiteMinder User Directory Properties dialog. For
more information, see SAML_IDP_PLUGIN_CLASS.

When defined for an affiliation, the search specification is shared by all Identity
Providers across the affiliation.

SAML_IDP_PASSWORD

Type String

Applies to SAML 2.0 Authentication

Required Yes, if SAML_IDP_BACKCHANNEL_AUTH_TYPE is setto O or 1
Default None
Description

The password to use for the back-channel authentication. The password is only used
with the back-channel authentication types Basic and Client Cert.

SAML_IDP_PLUGIN_CLASS

Type String

Applies to SAML 2.0 Authentication
Required No

Default None

778 Programming Guide for C

SAML 2.0 Property Reference

Description

The fully qualified name of a Java class that extends the functionality of this SAML 2.0
authentication scheme. The custom functionality is provided by an implementation of
the interface MessageConsumerPlugin.java.

Authentication has two phases—user disambiguation and user authentication
(validation of the disambiguated user’s credentials).

If a plugin is configured for the authentication scheme, it is called as follows:

During user disambiguation, if the authentication scheme cannot disambiguate the
user.

Note: The plugin is not called in this phase if a search specification is not provided
for the user directory where disambiguation is to occur (for example,
SAML_IDP_LDAP_SEARCH_SPEC for an LDAP directory). In this case, the Policy
Server performs the disambiguation, not the authentication scheme.

At the end of the default authentication phase, even if the user is validated
successfully.

A SAML 2.0 authentication scheme can be extended by only one message consumer
plugin.

SAML_IDP_PLUGIN_PARAMS

Type String

Applies to SAML 2.0 Authentication
Required No

Default None

Description

Parameters to pass into the custom authentication scheme extension specified in
SAML_IDP_PLUGIN_CLASS.

The syntax of the parameter string is determined by the custom object.

SAML_IDP_REDIRECT_MODE_FAILURE

Type Integer
Applies to SAML 2.0 Authentication
Required No

Appendix A: SAML 2.0 Property Reference 779

SAML 2.0 Property Reference

Default 0

Description

The redirection mode for SAML_IDP_REDIRECT_URL_FAILURE. Valid values:

m (.302 No Data — HTTP 302 redirection. The URL for the target resource and the
reason for the authentication failure are appended to the redirection URL. The
SAML 2.0 Response message passed to the authentication scheme is not included.

m 1. Http Post. — HTTP POST redirection. The SAML 2.0 Response message passed to
the authentication scheme and the Identity Provider’s ID are generated by an HTTP
form.

SAML_IDP_REDIRECT_MODE_INVALID

Type Integer

Applies to SAML 2.0 Authentication
Required No

Default 0

Description

The redirection mode for SAML_IDP_REDIRECT_URL_INVALID. Valid values:

m 0.302 No Data — HTTP 302 redirection. The URL for the target resource and the
reason for the authentication failure are appended to the redirection URL. The
SAML 2.0 Response message passed to the authentication scheme is not included.

m 1. Http Post. — HTTP POST redirection. The SAML 2.0 Response message passed to
the authentication scheme and the Identity Provider’s ID are generated by an HTTP
form.

SAML_IDP_REDIRECT_MODE_USER_NOT_FOUND

Type Integer

Applies to SAML 2.0 Authentication

Required No

Default 0

780 Programming Guide for C

SAML 2.0 Property Reference

Description

The redirection mode for SAML_IDP_REDIRECT_URL_USER_NOT_FOUND. Valid values:

m 0.302 No Data — HTTP 302 redirection. The URL for the target resource and the
reason for the authentication failure are appended to the redirection URL. The
SAML 2.0 Response message passed to the authentication scheme is not included.

m 1. Http Post. — HTTP POST redirection. The SAML 2.0 Response message passed to
the authentication scheme and the Identity Provider’s ID are generated by an HTTP
form.

SAML_IDP_REDIRECT_URL_FAILURE

Type String

Applies to SAML 2.0 Authentication
Required No

Default None

Description

The redirection URL to use when the authentication information passed to the
authentication scheme is not accepted to authenticate the user.

SAML_IDP_REDIRECT_URL_INVALID

Type String

Applies to SAML 2.0 Authentication

Required No
Default None
Description

The redirection URL to use when the authentication information passed to the
authentication scheme is not formatted according to the SAML 2.0 standard.

SAML_IDP_REDIRECT_URL_USER_NOT_FOUND

Type String

Applies to SAML 2.0 Authentication

Required No

Appendix A: SAML 2.0 Property Reference 781

SAML 2.0 Property Reference

Default None

Description

The redirection URL to use in either of these circumstances:

m The authentication scheme cannot obtain a login ID from the SAML 2.0 Response
message passed to it.

m The authentication scheme cannot find the user in the user directory.

If you are extending the functionality of a SAML 2.0 authentication scheme with a
custom message consumer plugin, the plugin will not be called in the user
disambiguation phase if the Policy Server disambiguates the user with the default
search specification defined on the SiteMinder User Directory Properties dialog. For
more information, see SAML_IDP_PLUGIN_CLASS.

SAML_IDP_REQUIRE_ENCRYPTED_ASSERTION

Type Boolean

Applies to SAML 2.0 Authentication
Required No

Default SAML_FALSE
Description

Specifies whether the assertion selected for authentication must be encrypted. If this
property is SAML_TRUE and the authentication scheme is passed an unencrypted
assertion, the assertion cannot be authenticated.

SAML_IDP_REQUIRE_ENCRYPTED_NAMEID

Type Boolean

Applies to SAML 2.0 Authentication

Required No
Default SAML_FALSE
Description

Specifies whether the Name ID of the principal contained in the assertion must be
encrypted. If this property is SAML_TRUE and the Name ID is not encrypted, the
assertion cannot be authenticated.

782 Programming Guide for C

SAML 2.0 Property Reference

SAML_IDP_SAMLREQ_ATTRIBUTE_SERVICE

Type String

Applies to SAML 2.0 Authentication

Required No
Default None
Description

The URL of the Attribute Service on the Attribute Authority.

SAML_IDP_SAMLREQ_ENABLE

Type Boolean

Applies to SAML 2.0 Authentication

Required Yes
Default False (0)
Description

Indicates whether the SAML Requester is enabled.

SAML_IDP_SAMLREQ_NAMEID_ALLOWED_NESTED

Type Boolean

Applies to SAML 2.0 Authentication

Required No
Default False (0)
Description

Indicated whether nested groups are allowed when selecting a DN attribute for the
name identifier.

SAML_IDP_SAMLREQ_NAMEID_ATTR_NAME

Type String

Appendix A: SAML 2.0 Property Reference 783

SAML 2.0 Property Reference

Applies to SAML 2.0 Authentication

Required No
Default None
Description

The attribute name (User or DN) that holds the name when NameldType is set to 1 or 2.
If NameldType is set to 1 or 2, NameldAttrName must have a valid value.

SAML_IDP_SAMLREQ_NAMEID_DN_SPEC

Type String

Applies to SAML 2.0 Authentication
Required No

Default None

Description

The DN specification used when NameldType is set to 2. When this is the case,
NameldDNSpec must have a valid value.

SAML_IDP_SAMLREQ_NAMEID_FORMAT

Type Boolean

Applies to SAML 2.0 Authentication
Required No

Default None

Description

The URI for a SAML 2.0 name identifier.

SAML_IDP_SAMLREQ_NAMEID_STATIC

Type String
Applies to SAML 2.0 Authentication
Required No

784 Programming Guide for C

SAML 2.0 Property Reference

Default None

Description

The static text to be used as the name identifier when the NameldType is set to 0. When
this is the the case, a valid value must be specified for NameldStatic.

SAML_IDP_SAMLREQ_NAMEID_TYPE

Type Integer

Applies to SAML 2.0 Authentication
Required No

Default 1

Description

Represents the type of name identifier:
0 -- static text

1 -- user attribute

2 -- DN attribute

SAML_IDP_SAMELREQ_REQUIRE_SIGNED_ASSERTION

Type Boolean

Applies to SAML 2.0 Authentication

Required No
Default False (0)
Description

Indicates whether the assertion returned in response to an attribute query must be
signed.

SAML_IDP_SAMELREQ_SIGN_ATTRIBUTE_QUERY

Type Boolean

Applies to SAML 2.0 Authentication

Appendix A: SAML 2.0 Property Reference 785

SAML 2.0 Property Reference

Required No
Default None
Description

Indicates whether the attribute query must be signed.

SAML_IDP_SIGN_AUTHNREQUESTS

Type Boolean

Applies to SAML 2.0 Authentication
Required No

Default False (0)

Description

Specifies whether authentication requests are signed.

SAML_IDP_SPID

Type String

Applies to SAML 2.0 Authentication
Required Yes

Default None

Description

The unique provider ID of the Service Provider being protected by this authentication

scheme.

SAML_IDP_SPNAME

Type

String

Applies to

SAML 2.0 Authentication

Required

Yes, if SAML_IDP_BACKCHANNEL_AUTH_TYPE is settoO or 1

Default

None

786 Programming Guide for C

SAML 2.0 Property Reference

Description
The name of the Service Provider involved in the back-channel authentication. The
Service Provider name is used with the back-channel authentication types Basic and

Client Cert.

SAML_IDP_SSO_DEFAULT_SERVICE

Type String

Applies to SAML 2.0 Authentication

Required Yes
Default None
Description

The URL of the Identity Provider’s single sign-on service—for example:

http://mysite.netegrity.com/affwebservices/public/saml2sso

SAML_IDP_SSO_ENFORCE_SINGLE_USE_POLICY

Type Boolean

Applies to SAML 2.0 Authentication

Required No
Default SAML_TRUE
Description

Specifies whether to enforce a single-use policy for HTTP POST binding.
Setting this property to SAML_TRUE (the default) ensures that an assertion cannot be
"replayed" to a Service Provider site to establish a second session, in accordance with

SAML POST-specific processing rules.

The single-use policy requirement is enforced even in a clustered Policy Server
environment with load-balancing and failover enabled.

SAML_IDP_SSO_REDIRECT_MODE

Type Integer

Applies to SAML 2.0 Authentication

Appendix A: SAML 2.0 Property Reference 787

SAML 2.0 Property Reference

Required No
Default 0
Description

Specifies the method by which response attribute information is passed when the user
is redirected to the target resource. Valid values:

m 0.302 No Data — No response attributes are passed.

m 1.302 Cookie Data — Response attributes are set as HTTP cookie data.
Attribute cookies issued by the authentication scheme are unencrypted.

m 2. Server Redirect — Response attributes are passed as a HashMap object.
m 3. Persist Attributes — Attributes can be retrieved.
Server-side redirects allow passing information to an application within the server
application itself. Response attribute data is never sent to the user's browser. This

redirection method is part of Java Servlet specification and is supported by all
standards-compliant servlet containers.

SAML_IDP_SSO_TARGET

Type String

Applies to SAML 2.0 Authentication
Required No

Default None

Description

The URL of the target resource at the Service Provider site. For example, the target
might be a web page or an application.

SAML_IDP_WINNT_SEARCH_SPEC

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication
Required No

Default None

788 Programming Guide for C

SAML 2.0 Property Reference

Description

Search specification for WinNT directories. If user disambiguation is being performed on
a user in a WinNT directory, but no search specification is provided, the default search
specification defined on the SiteMinder User Directory Properties dialog is used.

When defined for an affiliation, the search specification is shared by all Identity
Providers across the affiliation.

If you are extending the functionality of a SAML 2.0 authentication scheme with a
custom message consumer plugin, the plugin will not be called in the user
disambiguation phase if the Policy Server disambiguates the user with the default
search specification defined on the SiteMinder User Directory Properties dialog. For
more information, see SAML_IDP_PLUGIN_CLASS.

SAML_IDP_XPATH

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication

Required No
Default None
Description

The XPath query that extracts the user’s login ID from an assertion. The login ID is then
used to disambiguate the user.

By default, if no XPath is provided, an attempt is made to extract the login ID from the
Assertion/Subject/NamelD element of the SAML 2.0 Response message.

Once successfully extracted, the login ID is inserted into the search string specified for
the user directory, and the disambiguation phase begins.

When defined for an affiliation, the XPath is shared by all Identity Providers across the
affiliation.

SAML_KEY_AFFILIATION_ID

Type String

Applies to SAML 2.0 Affiliation

Required Yes

Default None

Appendix A: SAML 2.0 Property Reference 789

SAML 2.0 Property Reference

Description

The URI for the affiliation. The ID is used to verify that a Service Provider and Identity
Provider are members of the same affiliation—for example:

m When a Service Provider issues an authentication request to an Identity Provider,
the request includes the affiliation ID. The Identity Provider verifies that the Service
Provider belongs to the specified affiliation.

m When the Identity Provider generates an assertion and sends it back to the Service
Provider, the assertion includes the affiliation ID. The Service Provider verifies that
the Identity Provider belongs to the specified affiliation.

m During single logout, the logout requests also contain the affiliation ID. Upon
receiving a logout request, the Service Provider and the Identity Provider each
verify that the other belongs to the specified affiliation.

The affiliation ID is specified in the SPNameQualifier attribute of the requests and
assertions.

SAML_KEY_IDP_SOURCEID

Type String

Applies to SAML 2.0 Authentication

Required No

Default A hex-encoded SHA-1 hash of the SAML_KEY_IDPID value
Description

A hex-encoded 20-byte sequence identifier for the artifact issuer. This value uniquely
identifies the artifact issuer in the assertion artifact.

The authentication scheme uses the source ID as a key to look up Identity Provider
metadata.

The string length must be exactly 40 characters. Only a lower case hex string will be
stored.

SAML_KEY_IDPID

Type String

Applies to SAML 2.0 Authentication
Required Yes

Default None

790 Programming Guide for C

SAML 2.0 Property Reference

Description

The provider ID of the Identity Provider for this authentication scheme. This ID:
m Uniquely identifies the assertion issuer.

m Serves as a key for looking up properties of the Identity Provider.

SAML_KEY_SPID

Type String

Applies to Service Provider
Required Yes

Default None
Description

The unique provider ID of this Service Provider.

SAML_MAJOR_VERSION

Type Integer

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication, Service Provider
Required No

Default 2

Description

The major version of the SAML protocol that is supported. If a value is supplied, it must
be 2.

SAML_MINOR_VERSION

Type Integer

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication, Service Provider

Required No

Default 0

Appendix A: SAML 2.0 Property Reference 791

SAML 2.0 Property Reference

Description

The minor version of the SAML protocol that is supported. If a value is supplied, it must
be 0.

SAML_NAME

Type String

Applies to SAML 2.0 Affiliation, SAML 2.0 Authentication, Service Provider

Required Yes
Default None
Description

The name of the affiliation, authentication scheme, or Service Provider.

The name must be globally unique. With SAML 2.0 affiliations and Service Providers, the
name must be lower case.

SAML_OID

Type String

Applies to SAML 2.0 Affiliation

Required No, when the affiliation object is being created (SiteMinder supplies
the object identifier during object creation); it is required when
custom code references an existing object

Default None

Description
The unique object identifier for the affiliation object.
The SAML Affiliation Properties dialog box has no corresponding field for this property.

SAML_SKEWTIME

Type Integer
Applies to SAML 2.0 Authentication, Service Provider
Required No

792 Programming Guide for C

SAML 2.0 Property Reference

Default 30

Description

The difference, in seconds, between the system clock time of the Identity Provider and
the system clock time of the Service Provider, as follows:

m With Service Providers, the number of seconds to be subtracted from the current
time if its system clock is not synchronized with the Policy Server acting as an
Identity Provider.

m With Identity Providers, the number of seconds to be subtracted from the current
time if its system clock is not synchronized with the Policy Server acting as a Service
Provider.

Skew time is used to calculate the validity duration of assertions and single logout
requests. The value provided must be a positive integer.

SAML_SLO_REDIRECT_BINDING

Type Boolean

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default SAML_FALSE

Description

Specifies whether HTTP redirect binding is supported for single logout.

See also SAML_DSIG_VERINFO_ISSUER_DN and
SAML_DSIG_VERINFO_SERIAL_NUMBER.

SAML_SLO_SERVICE_CONFIRM_URL

Type String

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default None

Description

The URL where a user is redirected after single logout is completed.

Appendix A: SAML 2.0 Property Reference 793

SAML 2.0 Property Reference

SAML_SLO_SERVICE_RESPONSE_URL

Type String

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default None

Description

The response location for the single logout service. This property allows SLO response
messages to be sent to a different location from where request messages are sent.

SAML_SLO_SERVICE_URL

Type String

Applies to SAML 2.0 Authentication, Service Provider

Required Yes, if SAML_SLO_REDIRECT_BINDING is SAML_TRUE
Default None

Description

With HTTP-Redirect bindings, the Identity Provider URL where single logout requests are
sent.

SAML_SLO_SERVICE_VALIDITY_DURATION

Type Integer

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default 60 (applies if a value is not provided and

SAML_SLO_REDIRECT_BINDING is SAML_TRUE)

Description
The number of seconds for which a single logout request is valid.
The value provided must be a positive integer.

See also SAML_SKEWTIME.

794 Programming Guide for C

SAML 2.0 Property Reference

SAML_SP_ARTIFACT_ENCODING

Type String

Applies to Service Provider

Required No

Default FORM (applies if a value is not provided and

SAML_ENABLE_SSO_ARTIFACT_BINDING is SAML_TRUE)

Description

Specifies the encoding to use for the artifact binding. Valid values:
m FORM. The artifact is form-encoded in a hidden control named SAMLart.

m URL. The artifact is URL-encoded in a URL parameter named SAMLart.
FORM and URL encoding is accomplished according to SAML 2.0 specifications.

SAML_SP_ASSERTION_CONSUMER_DEFAULT_URL

Type String

Applies to Service Provider
Required Yes

Default None
Description

The Service Provider URL where generated assertions are sent—for example:

http://mysite.netegrity.com/affwebservices/public/saml2assertionconsumer

SAML_SP_ATTRSVC_AD_SEARCH_SPEC

Type String

Applies to Service Provider
Required No

Default None
Description

Search specification for an AD directory.

Appendix A: SAML 2.0 Property Reference 795

SAML 2.0 Property Reference

SAML_SP_ATTRSVC_CUSTOM_SEARCH_SPEC

Type String

Applies to Service Provider
Required No

Default None
Description

Search specification for a custom directory.

SAML_SP_ATTRSVC_ENABLE

Type Boolean

Applies to Service Provider
Required No

Default SAML_FALSE
Description

Indicates whether the Attribute Authority is enabled.

SAML_SP_ATTRSVC_LDAP_SEARCH_SPEC

Type String

Applies to Service Provider
Required No

Default None
Description

Search sepcification for an LDAP directory.

SAML_SP_ATTRSVC_ODBC_SEARCH_SPEC

Type

String

Applies to

Service Provider

796 Programming Guide for C

SAML 2.0 Property Reference

Required No
Default None
Description

Search specification for an ODBC directory.

SAML_SP_ATTRSVC_REQUIRE_SIGNED_QUERY

Type Boolean

Applies to Service Provider
Required No

Default None

Description
Indicates whether the attribute query must be signed.

SAML_SP_ATTRSVC_SIGN_ASSERTION

Type Boolean

Applies to Service Provider
Required No

Default None
Description

Indicates whether the SAML Assertion should be signed.

SAML_SP_ATTRSVC_SIGN_RESPONSE

Type Boolean

Applies to Service Provider
Required No

Default None

Appendix A: SAML 2.0 Property Reference 797

SAML 2.0 Property Reference

Description
Indicates whether the SAML Response should be signed.

SAML_SP_ATTRSVC_VALIDITY_DURATION

Type Integer

Applies to Service Provider
Required No

Default 60

Description

Specifies the number of seconds for which an assertion is valid.

SAML_SP_ATTRSVC_WINNT_SEARCH_SPEC

Type String

Applies to Service Provider
Required No

Default None
Description

Search specificatin for a WinNT directory.

SAML_SP_AUTHENTICATION_LEVEL

Type Integer

Applies to Service Provider
Required No

Default 5

Description

This property specifies the minimum protection level required for the authentication
scheme that authenticates the principal associated with the current assertion.

798 Programming Guide for C

SAML 2.0 Property Reference

SAML_SP_AUTHENTICATION_URL

Type String

Applies to Service Provider
Required Yes

Default None
Description

The protected URL for authenticating users of this Service Provider.

SAML_SP_AUTHN_CONTEXT_CLASS_REF

Type String

Applies to Service Provider

Required No

Default urn:oasis:names:tc:SAML:2.0:ac:classes:Password
Description

The class of information that a Service Provider may require to assess its confidence in
an assertion. The class is specified in the assertion’s AuthnContextClassRef element.

For example, the default authentication context class is Password. This class applies
when a principal authenticates through the presentation of a password over an
unprotected HTTP session.

Other examples of authentication context class include InternetProtocol (authentication
through a provided IP address), X509 (authentication through an X.509 digital
signature), and Telephony (authentication through the provision of a fixed-line
telephone number transported via a telephony protocol).

The authentication context class is a URI with the following initial stem:
urn:oasis:names:tc:SAML:2.0:ac:classes:

The SAML 2.0 authentication context specification defines the URIs that can be provided
as authentication context classes. The class must also be appropriate for the
authentication level defined for the Service Provider.

Appendix A: SAML 2.0 Property Reference 799

SAML 2.0 Property Reference

SAML_SP_COMMON_DOMAIN

Type String

Applies to Service Provider

Required Yes, if SAML_SP_ENABLE_IPD is SAML_TRUE

Default None

Description

The common cookie domain for the Identity Provider Discovery profile. The domain
must be a subset of the host specified in SAML_SP_IPD_SERVICE_URL.

SAML_SP_CUSTOM_TIME_OUT

Type String

Applies to Service Provider
Required No

Default None

Description

Specifies the value of the SessionNotOnOrAfter parameter set in the assertion. This
property is only valid if SAML_SP_SESSION_NOTORAFTER_TYPE is set to Custom.

SAML_SP_DOMAIN

Type String

Applies to Service Provider

Required Yes

Default None
Description

The unique ID of the affiliate domain where the Service Provider is defined.

The SAML Service Provider Properties dialog box has no corresponding field for this
property.

800 Programming Guide for C

SAML 2.0 Property Reference

SAML_SP_ENABLE_IPD

Type Boolean

Applies to Service Provider

Required No

Default SAML_FALSE
Description

Specifies whether the Identity Provider Discovery profile is enabled.

SAML_SP_ENCRYPT_ASSERTION

Type Boolean

Applies to Service Provider
Required No

Default SAML_FALSE
Description

Specifies whether to encrypt the generated assertion at the Service Provider site. By
default, the assertion is not encrypted.

SAML_SP_ENCRYPT_BLOCK_ALGO

Type String

Applies to Service Provider
Required No

Default tripledes
Description

The type of block encryption algorithm to use. Valid values:

m tripledes. Data Encryption Standard using three separate 56-bit keys.
m aes-128. Advanced Encryption Standard, key length is 128 bits.

m aes-256. Advanced Encryption Standard, key length is 256 bits.

Appendix A: SAML 2.0 Property Reference 801

SAML 2.0 Property Reference

SAML_SP_ENCRYPT_CERT_ISSUER_DN

Type String
Applies to Service Provider
Required Yes, in either of the following circumstances:

m If either of the following is SAML_TRUE:
SAML_SP_ENCRYPT_ID
SAML_SP_ENCRYPT_ASSERTION

m If any assertion attribute statements require encryption. These
attributes are defined on the Attributes tab of the SAML Service
Provider Properties dialog box.

Default None

Description
The Issuer DN portion of a public key certificate to be used for encryption. This property
is used with SAML_SP_ENCRYPT_CERT_SERIAL_NUMBER to locate the Service Provider’s

certificate in the keystore if it is not provided inline.

SAML_SP_ENCRYPT_CERT_SERIAL_NUMBER

Type String
Applies to Service Provider
Required Yes, in either of the following circumstances:

m If either of the following is SAML_TRUE:
SAML_SP_ENCRYPT ID
SAML SP_ENCRYPT ASSERTION

m If any assertion attribute statements require encryption. These
attributes are defined on the Attributes tab of the SAML Service
Provider Properties dialog box.

Default None

Description

The serial number portion of a public key certificate to be used for encryption. This
property is used with SAML_SP_ENCRYPT_CERT_ISSUER_DN to locate the Service
Provider’s certificate in the keystore if it is not provided inline.

802 Programming Guide for C

SAML 2.0 Property Reference

SAML_SP_ENCRYPT_ID

Type Boolean

Applies to Service Provider
Required No

Default SAML_FALSE
Description

Specifies whether the Name ID in the generated assertion should be encrypted at the
Service Provider site. By default, the Name ID is not encrypted.

SAML_SP_ENCRYPT_KEY_ALGO

Type String

Applies to Service Provider
Required No

Default rsa-v1l5
Description

The type of encryption key algorithm to use. Valid values:
® rsa-v15. RSA encryption, version 1.5.

® rsa-oaep. Optimal Asymmetric Encryption Padding encoding and RSA encryption.

SAML_SP_ENDTIME

Type Long (stored as decimal string)
Applies to Service Provider

Required No

Default None

Appendix A: SAML 2.0 Property Reference 803

SAML 2.0 Property Reference

Description

The time by which an assertion must be generated.

This property is used with SAML_SP_STARTTIME and with the pszTimeGrid field of the
Sm_PolicyApi_SAMLSP_t structure to define time restrictions for the generation of

assertions.

This value is created from standard time_t values. However, it is stored as a decimal
string. If you need to use SAML_SP_ENDTIME as data type long, be sure to convert it.

Set SAML_SP_ENDTIME to 0 to end the time restriction immediately.

SAML_SP_IDP_SOURCEID

Type String

Applies to Service Provider

Required No

Default A hex-encoded SHA-1 hash of the SAML_SP_IDPID value
Description

A hex-encoded 20-byte sequence identifier for the artifact issuer. This value uniquely
identifies the artifact issuer in the assertion artifact.

The string length must be exactly 40 characters. Only a lower case hex string will be
stored.

SAML_SP_IDPID

Type String

Applies to Service Provider
Required Yes

Default None
Description

The provider ID of the Identity Provider that generates the assertions.

804 Programming Guide for C

SAML 2.0 Property Reference

SAML_SP_IGNORE_REQ_AUTHNCONTEXT

Type String

Applies to Service Provider
Required No

Default 0

Description

Specifies that the Identity Provider ignores "RequestedAuthnContext" in an
AuthnRequest message (value of 1), or not (value of 0).

SAML_SP_IPD_SERVICE_URL

Type String

Applies to Service Provider

Required Yes, if SAML_SP_ENABLE_IPD is SAML_TRUE
Default None

Description

The host URL for the Identity Provider Discovery profile.

SAML_SP_NAMEID_ATTRNAME

Type String

Applies to SAML 2.0 Affiliation, Service Provider

Required Yes, if SAML_SP_NAMEID_TYPE is set to 1 (User Attribute) or 2 (DN
Attribute)

Default None

Description

One of the following values:

m When SAML_SP_NAMEID_TYPE is set to 1, this property specifies the name of the
user attribute that contains the name identifier.

m When SAML_SP_NAMEID_TYPE is set to 2, this property specifies the attribute
associated with a group or organizational unit DN.

Appendix A: SAML 2.0 Property Reference 805

SAML 2.0 Property Reference

SAML_SP_NAMEID_DNSPEC

Type String

Applies to SAML 2.0 Affiliation, Service Provider

Required Yes, if SAML_SP_NAMEID_TYPE is set to 2 (DN Attribute)
Default None
Description

A group or organizational unit DN used to obtain the associated Name ID attribute.

You can allow SiteMinder to search for attributes in nested groups. For information, see
the description of the pszValue field of the structure Sm_PolicyApi_SAMLSPAttr_t.

SAML_SP_NAMEID_FORMAT

Type String

Applies to SAML 2.0 Affiliation, Service Provider

Required No
Default Unspecified
Description

The full URI for one of the following nameid-format values:
m Unspecified

m Email Address

m X509 Subject Name

m Windows Domain Qualified Name

m Kerberos Principal Name

m Entity Identifier

m Persistent Identifier

® Transient Identifier

For example, the full URI for the default format Unspecified is:

urn:oasis:names:tc:SAML:2.0:nameid-format:unspecified

806 Programming Guide for C

SAML 2.0 Property Reference

For descriptions of these formats, see the following SAML 2.0 specification:

Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0
Note: If a SAML affiliation is specified in SAML_AFFILIATION, this and other
SAML_SP_NAMEID... properties are not used. SiteMinder uses the NAMEID information

in the specified affiliation.

SAML_SP_NAMEID_STATIC

Type String

Applies to SAML 2.0 Affiliation, Service Provider

Required Yes, if SAML_SP_NAMEID_TYPE is set to O (Static)
Default None

Description

The static text to be used for all name identifiers.

SAML_SP_NAMEID_TYPE

Type Integer

Applies to SAML 2.0 Affiliation, Service Provider
Required No

Default 1

Description

The type of name identifier. Valid values:
m (. Static text.
m 1. User attribute.

m 2. DN attribute.

SAML_SP_ONE_TIME_USE

Type Boolean
Applies to Service Provider
Required No

Appendix A: SAML 2.0 Property Reference 807

SAML 2.0 Property Reference

Default SAML_FALSE

Description

Specifies whether an element indicating that the Assertion should be used only once is
added to the Assertion.

SAML_SP_PASSWORD

Type String

Applies to Service Provider

Required Yes, if SAML_ENABLE_SSO_ARTIFACT_BINDING is SAML_TRUE
Default None

Description

The password to use for Service Provider access through the back channel.

SAML_SP_PERSISTENT_COOKIE

Type Boolean

Applies to Service Provider
Required No

Default SAML_FALSE
Description

Specifies whether an Identity Provider Discovery profile cookie should be persistent.
Applies only if SAML_SP_ENABLE_IPD is SAML_TRUE.

SAML_SP_PLUGIN_CLASS

Type String

Applies to Service Provider
Required No

Default None

808 Programming Guide for C

SAML 2.0 Property Reference

Description

The fully qualified Java class name of the assertion generator plug-in.

An assertion generator plugin allows the content of an assertion to be customized. For
more information, see the online SiteMinder Java APl Documentation (Javadoc and

Guide).

SAML_SP_PLUGIN_PARAMS

Type String

Applies to Service Provider
Required No

Default None
Description

Any parameters to pass into the assertion generator plug-in specified in
SAML_SP_PLUGIN_CLASS.

SAML_SP_REQUIRE_SIGNED_AUTHNREQUESTS

Type Boolean

Applies to Service Provider
Required No

Default SAML_FALSE
Description

Specifies whether authentication requests must be signed.

SAML_SP_REUSE_SESSION_INDEX

Type Boolean

Applies to Service Provider
Required No

Default 0

Appendix A: SAML 2.0 Property Reference 809

SAML 2.0 Property Reference

Description

Indicates whether CA SiteMinder® sends the same session index in the assertion for
the same partner in a single browser session. If a user federates multiple times with
the same partner using the same browser window, setting this property tells the
IdP to send the same session index in each assertion. The default value (0) for the
property instructs SiteMinder to generate a new session index every time single
sign-on occurs.

Valid values:
0

Do not reuse the same session index.

Reuse the same session index.

SAML_SP_STARTTIME

Type Long (stored as decimal string)
Applies to Service Provider

Required No

Default None

Description

The time when a time restriction for generating an assertion becomes effective. This
value is stored in standard time_t format.

This property is used with SAML_SP_ENDTIME and with the pszTimeGrid field of the
Sm_PolicyApi_SAMLSP_t structure to define time restrictions for the generation of

assertions.

This value is created from standard time_t values. However, it is stored as a decimal
string. If you need to use SAML_SP_STARTTIME as data type long, be sure to convert it.

Set SAML_SP_STARTTIME to O to start the time restriction immediately.

SAML_SP_VALIDITY_DURATION

Type Integer
Applies to Service Provider
Required No

810 Programming Guide for C

SAML 2.0 Property Reference

Default 60

Description

The number of seconds for which a generated assertion is valid.
The value provided must be a positive integer.

See also SAML_SKEWTIME.

SAML_SP_SESSION_NOTORAFTER_TYPE

Type String

Applies to Service Provider
Required No

Default Use Assertion Validity
Description

This property determines the value set for the SessionNotOnOrAfter parameter in the
assertion. A third-party SP can use the value of the SessionNotOnOrAfter to set its own
session timeout.

If CA SiteMinder® is acting as an SP, it ignores the SessionNotOnOrAfter value. Instead, a
CA SiteMinder® SP sets session timeouts based on the realm timeout that corresponds
to the configured SAML authentication scheme that protects the target resource.

Use Assertion Validity
Calculates the SessionNotOnOrAfter value based on the assertion validity duration.
Omit
Instructs the IdP not to include the SessionNotOnOrAfter parameter in the
assertion.

IDP Session

Calculates the SessionNotOnOrAfter value based on the IdP session timeout. The
timeout is configured in the IdP realm for the authentication URL. Using this option
can synchronize the IdP and SP session timeout values.

Custom

Lets you specify your own value for the SessionNotOnOrAfter parameter in the
assertion. If you select this option, enter a time in the
SAML_SP_CUSTOM_TIME_OUT property.

Appendix A: SAML 2.0 Property Reference 811

SAML 2.0 Property Reference

SAML_SSOECPPROFILE

Type Boolean

Applies to SAML 2.0 Authentication, Service Provider
Required No

Default SAML_FALSE

Description

Specifies whether the Identity Provider or Service Provider supports SAML 2.0 Enhanced
Client and Proxy profile requests.

SAML2_CUSTOM_ENABLE_INVALID_REQUEST_URL

Type Boolean

Applies to Custom error pages
Required No

Default None

Description

Specifies whether the custom error redirect process is enabled for an invalid request.

SAML2_CUSTOM_ENABLE_SERVER_ERROR_URL

Type Boolean

Applies to Custom error pages
Required No

Default None

Description

Specifies whether the custom error redirect process is enabled for a server error.

SAML2_CUSTOM_ENABLE_INVALID_REQUEST_URL

Type Boolean

812 Programming Guide for C

SAML 2.0 Property Reference

Applies to Custom error pages
Required No

Default None

Description

Specifies whether the custom error redirect process is enabled for an invalid request.

SAML2_CUSTOM_INVALID_REQUEST_REDIRECT_MODE

Type Boolean

Applies to Custom error pages
Required No

Default None

Description

Specifies the redirect mode for an invalid request. Valid values:

m (0.302 No Data — HTTP 302 redirection. The URL for the target resource and the
reason for the authentication failure are appended to the redirection URL. The
SAML 2.0 Response message passed to the authentication scheme is not included.

m 1. Http Post. — HTTP POST redirection. The SAML 2.0 Response message passed to
the authentication scheme and the Identity Provider’s ID are generated by an HTTP
form.

SAML2_CUSTOM_INVALID_REQUEST_REDIRECT_URL

Type String

Applies to Custom error pages
Required No

Default None

Description

m Specifies the redirect URL for an invalid request.

SAML2_CUSTOM_SERVER_ERROR_REDIRECT_MODE

Type Boolean

Appendix A: SAML 2.0 Property Reference 813

SAML 2.0 Property Reference

Applies to Custom error pages
Required No

Default None

Description

Specifies the redirect mode for an internal server error. Valid values:

m 0.302 No Data — HTTP 302 redirection. The URL for the target resource and the
reason for the authentication failure are appended to the redirection URL. The
SAML 2.0 Response message passed to the authentication scheme is not included.

m 1. Http Post. — HTTP POST redirection. The SAML 2.0 Response message passed to
the authentication scheme and the Identity Provider’s ID are generated by an HTTP
form.

SAML2_CUSTOM_SERVER_ERROR_REDIRECT_URL

Type String

Applies to Custom error pages
Required No

Default None

Description

Specifies the redirect URL for an internal server error .

SAML2_CUSTOM_UNAUTHORIZED_ACCESS_REDIRECT_MODE

Type Boolean

Applies to Custom error pages
Required No

Default None

814 Programming Guide for C

SAML 2.0 Property Reference

Description

Specifies the redirect mode for forbidden access. Valid values:

m 0.302 No Data — HTTP 302 redirection. The URL for the target resource and the
reason for the authentication failure are appended to the redirection URL. The
SAML 2.0 Response message passed to the authentication scheme is not included.

m 1. Http Post. — HTTP POST redirection. The SAML 2.0 Response message passed to
the authentication scheme and the Identity Provider’s ID are generated by an HTTP
form.

SAML2_CUSTOM_UNAUTHORIZED_ACCESS_REDIRECT_URL

Type String

Applies to Custom error pages
Required No

Default None

Description

Specifies the redirect URL for a forbidden access error.

Appendix A: SAML 2.0 Property Reference 815

Index

A

access events
data structure ¢ 619
filtering 625
log format ¢ 759
reasons for e 755
accounting port ¢ 188
Active Directory
AD namespace for user directory ¢ 192
authentication scheme ¢ 547
active expressions
using ¢ 600
active policy
about ¢ 599
active response
about ¢ 599
active rule
about ¢ 599
AD namespace for user directory ¢ 192
address restrictions, I[P ¢ 144
administrators
associate with domain ¢ 268
creating 266
definition ¢ 125
deleting * 336
disassociate from domain ¢ 488
events ¢ 624
login ¢ 479
login/logout events ¢ 642
logout « 481
retrieving * 368, 369
rights ¢ 213, 268, 488
tasks ¢ 213
affiliate
events ¢ 624
Agent API
about ¢ 27
data structures ¢ 45
function declarations ¢ 61
initializing a connection ¢ 32, 85
memory deallocation ¢ 45, 76
purpose e 23
return codes ¢ 62
services ¢ 37

version ¢ 32,34,51, 52
agent configuration file ¢ 43
Agent Type
about » 105
attributes » 106, 135, 387
object definition * 134
retrieving ¢ 385, 386
retrieving attributes 387
agents
about e 27
adding to Policy Server ¢ 272
building ¢ 32
configuration file ¢ 43
configuration retrieval » 79
configuring ¢ 133, 246
deleting from Policy Server 339
information in policy store ¢ 132
initialization ¢ 51
key management ¢ 114
legacy » 245
management services ¢ 41
memory deallocation ¢ 45, 76
object definition ¢ 132
Policy Server interaction ¢ 567
receiving information from Policy Server ¢ 567
requirements for compiling ¢ 34
retrieving 380, 381
services ¢ 37
session services ¢ 38
session timeouts ¢ 40
single sign-on ¢ 43
transaction audit ¢ 32
transaction tracking 41
tunnel services ® 42
uninitializing ¢ 101
version ¢ 32,51, 52
AlX agents ¢ 34
anonymous authentication, response attributes ¢ 89
artifact profile, SAML ¢ 127, 238, 535
assertions. See SAML assertions e 249
attributes
affiliate e 130
auditing a transaction ¢ 32, 63
authentication
events ¢ 561, 567, 624

Index 817

failure o 643 central agent configuration

functions for custom scheme ¢ 589 functions ¢ 246
in custom scheme ¢ 590 not supported by custom agents ¢ 34
port » 188 central host configuration
SAML 2.0 ¢ 170 about * 34
Service Provider ¢ 540 agent name ¢ 36, 95
status codes ¢ 755 Sm_AgentApi_GetConfig() required 79
Authentication API upgrading from a v4.x agent ¢ 36
about ¢ 585 vs. central agent configuration e 34
preserving state e 561 certificate map
purpose e 23 creating e 331
version ¢ 587, 593 deleting 342
workflow e 585 object definition ¢ 138
authentication scheme retrieving ¢ 399
adding * 308 certificate, collecting 593
configuring ¢ 522 changing dynamic keys ¢ 222
custom e 589 CHAP ¢ 582
deleting 356 ClassFilters 401
loading 587 clustered servers 143, 188
retrieving ¢ 409, 410, 451, 452 code samples ¢ 25
return values ¢ 590 compiling
return values ¢ 590 agent application ¢ 34
authentication/authorization map policy application ¢ 109
creating * 330 configuring
deleting 341 agents 43, 133, 246
object definition ¢ 137 authentication schemes ¢ 522
retrieving e 398 authorization variables ¢ 198
authorization Identity Providers ¢ 540
events ¢ 561, 567, 624 SAML 2.0 authentication schemes ¢ 304
port e 188 SAML affiliations * 169
users ® 32, 64 Service Providers ¢ 182
variables ¢ 197, 198, 263 connection initialization
Authorization API Agent APl ¢ 32, 51, 85
about ¢ 599 Policy Management APl e 229, 475, 476
active policies ¢ 599 connection parameters for custom agents ¢ 34
active responses ¢ 599 context
active rules ® 599 UserContext variable ¢ 198
function declarations * 603 cookies, SMSESSION e 43
preserving state ¢ 561 creating an agent session ¢ 38
purpose ¢ 23 credentials
user-defined function ¢ 603 administrator ¢ 479
using active expressions ¢ 600 authenticating, in custom scheme ¢ 590
version ¢ 604 user ¢ 60
custom agents
C about ¢ 27
cache central configuration support « 34
commands e 41, 222 compatibility with SiteMinder o 27
flushing » 41, 75, 222 specifying the name © 36, 95
types ¢ 105

818 Programming Guide for C

vd.x and v5.x ¢ 34 adding an administrator ¢ 268
custom namespace for user directory ¢ 192 associate user directory ¢ 315
child OIDs ¢ 400

D creating ¢ 280
definition of authorization variables ¢ 198 definition ¢ 141
Delegated Management Services ¢ 710 deleting ¢ 343
deploying disassociate user directory ¢ 501
policy management applications ¢ 109 list of objects in * 406
Directory API removing an administrator ¢ 488
about * 681 renaming ¢ 508
directory capabilities » 683 retrieving ¢ 404, 405
prerequisites ¢ 682 scope ¢ 114
preserving state * 561 types ¢ 230
purpose 23 dynamic keys, changing ¢ 222
using ¢ 683, 692 E
version ¢ 728
directory capabilities » 218 EMS events
directory entry (user) handle 725, 750 data structure 621
directory entry (user) instance log format ¢ 766
initializing « 687 EMS server timeout » 643
directory entry attribute * 576 enabling user objects ¢ 362
directory entry handle encryption key commands
distinguishing from directory instance ¢ 751 Agent APl ¢ 42
directory instance Policy Management APl ¢ 222
initializing » 687 Event API
releasing 687 purpose e 23
directory instance handle » 749 event handler
distinguishing from directory entry ¢ 751 custom ¢ 617
directory namespace ¢ 192, 576 event types
directory provider object ¢ 628
initializing » 687 events
releasing ¢ 687 administrator ¢ 624
directory provider handle ¢ 750 affiliate » 624
DirHandle_t e 722 authentication ¢ 561, 624
disabled state of user object 402 authorization * 561, 624
disabling user objects ¢ 361 initialization ¢ 663
reasons for e 753 OnAuthAccept 587
disambiguation ¢ 590 OnAuthAttempt » 587
DMS Workflow API OnAuthChallenge ¢ 587
about ¢ 669 OnAuthReject 587
data structure ¢ 674 example
purpose ¢ 23 collecting an X.509 Certificate 593
sessions ¢ 670 collecting an X.509 Certificate, username, and
using ¢ 672 passwor ¢ 593
DN e 576 collecting username and password over HTTP
documentation basic auth ¢ 593
supplemental, for Policy Management APl e 109 collecting username and password over SSL using
domain object an H e 593

Index 819

collecting username and password over SSL using

an HT ¢ 593

collecting username and password over SSL using

HTTP « 593
location of sample code ¢ 25

F

fGetProp ¢ 576

field identifier o 423

filtering access events ¢ 625

flushing cache
commands ¢ 41
realms ¢ 363
Sm_AgentApi_DoManagement() ® 75

Sm_PolicyApi_ManagementCommand() 222

users ¢ 364

freeing memory. See memory deallocation e 45

fSetDnProp ¢ 576

fSetProp ¢ 576

function declarations
Agent APl » 61
Authorization API « 603

G

GetGlobalObjectNames 407
global objects
about ¢ 114
renaming ¢ 508
retrieving ¢ 407
types ¢ 230
Global Policies Flag ® 220
grid for time restrictions ¢ 158
group object
adding ¢ 285
adding items to ¢ 310
definition 142
deleting » 345
list of objects in 415
removing items from e 495
retrieving ® 411, 413
verifying « 477
group types ¢ 220

H

handles in Directory API
distinguishing between e 751
in sample code » 748
initializing » 687

header variables ¢ 567
host configuration
definition structure ¢ 143
functions ¢ 246
See also central host configuration ¢ 34
host configuration object. See central host
configuration ¢ 34
HP-UX agents ¢ 34
HTTP header information ¢ 600

I

Identity Providers
adding, modifying ¢ 170, 304, 540
affiliation membership ¢ 120
authentication schemes ¢ 170
property list 170
property reference 769
retrieving properties ® 446
identity ticket » 38
IIS agents ¢ 34, 43,79
init handle ¢ 475
initialization flags * 229
initializing a connection
Agent APl » 32,51, 85
Policy Management API e 229, 475, 476
<install_path> e 24
installation path ¢ 24
instance handle 749
directory entry (user) ¢ 750
Integrated Windows Authentication e 547
IP address
restriction definition ¢ 144
restriction types e 221

L

LD_LIBRARY_PATH ¢ 34
LDAP entry
creating » 641, 642
deleting » 641, 642
modifying ¢ 641, 642
multi-valued attributes ¢ 581
LDAP namespace for user directory e 192
legacy agents, conversion e 245
LIBPATH « 34
library search path ¢ 34
libsmagentapi.sl ® 34
libsmagentapi.so ¢ 34
libsmpolicyapi45.so ¢ 109

820 Programming Guide for C

libsmutilities.so ® 109
Linux agents 34
LocalConfig.conf e 34, 43
logging in
administrators ¢ 479
users ¢ 89
logging out
administrators e 481
users ¢ 92
logging utility 572
login attributes, anonymous authentication ¢ 89
login to Policy Management APl e 479
logout from Policy Management API » 481

M

management commands

Agent APl ¢ 52

Policy Management APl e 222
management services

Agent APl ¢ 41,75

Policy Management APl e 114, 145
memory deallocation

Agent APl ¢ 45,76, 77

Policy Management APl e 114, 365, 366, 367, 486
metadata properties

See also SAML 2.0 properties ¢ 769

SAML 2.0 769
mixed mode ¢ 547
multi-valued user attributes in LDAP ¢ 581

N

namespace for user directory ¢ 192
native mode ¢ 547
Netegrity SDK
Agent APl e 27
APIs e 23
Authentication API e 585
Authorization APl e 599
Directory APl » 681
DMS Workflow API 669
Event APl e 617
Policy Management APl ¢ 109
Tunnel Service APl » 611

0]

object collection ¢ 148
object events
data structure 622

event type * 628

log format » 764
object identifiers ® 112
object types

agent configuration e 246

authorization variables ¢ 263

domain ¢ 230

global » 230

host configuration * 246

password state ¢ 262

policy ¢ 253

policy link ¢ 253

trusted host ¢ 246

user password state ¢ 262

variables ¢ 263
objects

events ¢ 628

renaming ¢ 251, 508
ODBC namespace for user directory » 192
ODBC query scheme

creating e 332

deleting » 347

object definition ¢ 146

retrieving * 420, 421
OIDs e 112
OnAuthAccept » 587
OnAuthAttempt 587
OnAuthChallenge ¢ 587
OnAuthReject 587
organization object

creating * 640

deleting * 640

modifying ¢ 640

P

password policy object
adding 290
behavior flags » 226
definition ¢ 150
deleting » 348
retrieving ¢ 425, 426
password state ¢ 262
passwords
changing » 514
field IDs » 225, 423
message field types ¢ 225
message fields ¢ 149, 225, 423
message IDs ¢ 223, 423

Index 821

modifying ® 638
path for libraries e 34
performance enhancement, Policy Management API
*113
persistent sessions ¢ 40
Policy API Object Descriptions ¢ 216, 217, 218, 220,
228, 229
policy application
about 109
compiling ® 109
policy-based attributes ¢ 42
policy link object
adding ¢ 292
changing * 516
definition ¢ 159
functions ¢ 253
removing ® 497
retrieving list of ® 429
Policy Management API
agent configuration functions ¢ 246
authorization variables functions ¢ 263
data structures ¢ 240
domain objects ¢ 114
global objects » 114
initialization flags ¢ 229
initializing a connection ¢ 475, 476
memory deallocation ¢ 114, 365, 366, 367, 486
object descriptions ¢ 221
object descriptions ¢ 222
password state functions ¢ 262
performance ¢ 113
policy functions 253
policy link object functions ¢ 253
prerequisite function ¢ 479
purpose e 23
renaming objects e 251
user password state functions ¢ 262
variables functions ¢ 263
policy object
adding 291
adding policy link ¢ 292
adding users * 318
definition ¢ 156
deleting « 349
functions e 253
global ¢ 281
relationships of policy objects e 757
removing policy link ¢ 497
removing users ¢ 503

retrieving ¢ 408, 427, 428
users associated with ¢ 430
policy object IDs
domain ¢ 230
global » 230
policy resolutions e 757
Policy Server
agent interaction ¢ 567
building applications e 24, 109
clusters » 143, 188
connecting to e 32
connection information ¢ 56
passing information to agents ¢ 567
single process * 188
version ¢ 619, 621, 622, 623
policy store
connecting to ¢ 475, 476
disconnecting from ¢ 486
policy store objects. See objects, object types ¢ 243
portals 127, 535, 537
ports e 188
POST profile, SAML ¢ 127, 238, 537
Post variables ¢ 198
principals
SAML 2.0 affiliation ¢ 769
validation ¢ 540
profile type for SAML assertions ¢ 238
protected resources
authorization ¢ 64
checking for « 87
realm e 54
provider handle ¢ 750
ProviderHandle_t ¢ 720
pseudo user attributes ¢ 562

R

realms
adding * 294
child OIDs « 400
data structure ¢ 54
definition ¢ 160
deleting 350
flushing from cache ¢ 363
retrieving ® 432,433
session types ¢ 40
session variables ¢ 40
tree » 400

reason codes ¢ 755

822 Programming Guide for C

redirection e 567
registering a trusted host ¢ 246
registration scheme object
adding * 297
definition 162
deleting » 351
retrieving * 436, 437
regular expressions
object ¢ 163
renaming objects ¢ 508
RequestContext variables 198
resource protection
checking for e 87
context structure ¢ 55
user authorization ¢ 64
response attributes
about ¢ 42
active response ¢ 600
adding ¢ 300
agent management ¢ 75
anonymous login ¢ 89
freeing buffer for e 76
list of e 441
object definition ¢ 165
policy-based ¢ 42
removing ® 499
SAML redirection ¢ 769
types ® 166
updating after TTL expiration ¢ 102
user authorization ¢ 64
user login ¢ 89
well-known e 42
response object
adding * 299
definition 164
deleting ¢ 352
global ¢ 282
retrieving ¢ 439, 440
restrictions
IP address » 144
time ¢ 158
return codes
Agent APl ¢ 62
Policy Management APl 232
roles
assigning users ¢ 639
creating * 641
deleting » 641
modifying ¢ 641

removing users ® 639
rollover period for shared secret ¢ 240
rule object

adding * 302

definition ¢ 167

deleting ¢ 353

global » 284

retrieving » 442, 443
rule tree * 400

S

SAML 2.0 authentication schemes
adding, modifying ¢ 304
property list e 170
property reference 769
retrieving ¢ 377, 446

SAML 2.0 properties
affiliation ¢ 170
Identity Provider e 170
reference 769
SAML 2.0 authentication ® 170, 540
Service Provider ¢ 170

SAML affiliations
about ¢ 120
adding ¢ 303
defining » 169
deleting » 354
property list ¢ 170
property reference ¢ 769
retrieving all e 391
retrieving, by affiliation identifier (URI) o 445
retrieving, by object identifier » 444

SAML assertions
artifact profile e 535
functions related to ¢ 249
modifying ¢ 127
POST profile » 537
profile type ¢ 238
SAML 2.0 « 540
validity duration ¢ 127

SAML attributes
defining » 279
format identifiers ¢ 238
removing ¢ 493
retrieving ¢ 395

SAML profile types ¢ 238

samples e 25

scheme types ¢ 238

Index 823

scheme. See authentication scheme ¢ 522
SDK installation path e 24
SDK samples ¢ 25
search order in user directories 463, 518
search syntax e 483, 484
server connection data structure ¢ 56
server. See Policy Server 188
Service Providers
adding attributes ¢ 279
adding users ¢ 320
adding, modifying ¢ 306
affiliation membership ¢ 120
authentication ¢ 540
defining » 182
deleting » 355
property list ¢ 170
property reference 769
removing attributes ¢ 493
removing users ¢ 505
retrieving users ¢ 450
retrieving, by object identifier « 448
retrieving, by provider identifier » 449
retrieving, in a domain ¢ 393
retrieving, in an affiliation ¢ 378
validation e 540
session
creating » 38
data structure ¢ 58
DMS ¢ 670
information ¢ 39
login 89
logout ¢ 92
services ¢ 38
specification ¢ 38, 39, 58, 89
termination e 38, 40, 92
timeout ¢ 40, 643
types, and realms ¢ 40
validation ¢ 38
variables ¢ 39
Session Server ¢ 40
session specification

session variables

about * 39

persistent sessions ¢ 40
shared library

Authentication API ¢ 585

Authorization APl ¢ 599

Directory API e 682

DMS Workflow API 669

Event APl » 618

Tunnel Service APl » 612
shared secret

Agent APl ¢ 51

custom authentication ¢ 590

Policy Management APl e 132

rollover period ¢ 240
SHLIB_PATH « 34
single server ¢ 188
single sign-on

about ¢ 43

create token ¢ 43

decode token ¢ 43

SAML assertions e 120
SiteMinder Agents ¢ 27
SiteMinder Policy object » 156
SiteMinder Rule object ¢ 167
Sm_AgentApi_CreateSSOToken() » 43
Sm_AgentApi_DecodeSSOToken() » 43
Sm_AgentApi_DelSessionVariables() 39
Sm_AgentApi_FreeServers() 114
Sm_AgentApi_GetConfig() » 36
Sm_AgentApi_GetSessionVariables() ¢ 39
Sm_AgentApi_Init_t e 36

populating * 51, 79

SM_AGENTAPI_MANAGEMENT_GET_AGENT_COMM

ANDS ¢ 52

SM_AGENTAPI_MANAGEMENT_SET_AGENT_INFO e

52
SM_AGENTAPI_POLICYSERVER 56
Sm_AgentApi_SetDefaultAgentld() » 36
Sm_AgentApi_SetSessionVariables() ¢ 39
SM_AGENTAPI_UPDATE_VERSION e 77

about ¢ 38 Sm_Api_Context_t » 686, 759

discarding ¢ 38, 92 Sm_Api_Credentials_t ¢ 593

login ¢ 89 Sm_Api_DisabledReason_t » 686, 714

session variables and ¢ 39 Sm_Api_Reason_t ¢ 686, 760

single sign-on e 45 Sm_Api_SchemeType_ACEServerHTMLForm e 238

structure 58 Sm_Api_SchemeType_lmpersonation 238
session store ¢ 39 Sm_Api_SchemeType_MSPassport ¢ 238

session ticket. See session specification ¢ 38 Sm_Api_SchemeType_SafeWordHTMLForm e 238

824 Programming Guide for C

Sm_Api_SchemeType_SAML2 e 238
Sm_Api_SchemeType_SAMLArtifact ¢ 238
Sm_Api_SchemeType_SAMLPOST ¢ 238
Sm_Api_SchemeType_SAMLSessionTicket ¢ 238
Sm_Api_SchemeType_t ¢ 238
Sm_Api_SchemeType_X509ClientCertAndForm e 238
Sm_Api_SchemeType_X509ClientCertOrForm e 238
Sm_Api_SchemeType_XMLDocumentCredentialColle
ctor 238
Sm_Api_SchemeType_XMLDsig ® 238
Sm_AuthApi_Accept 590
Sm_AuthApi_Attempt ¢ 590
Sm_AuthApi_Challenge ¢ 590
Sm_AuthAPI_Cred_AllowAnonymous ¢ 593
Sm_AuthApi_Cred_AllowSaveCreds ¢ 593
Sm_AuthApi_Cred_Basic ¢ 593
Sm_AuthApi_Cred_CertOrBasic ® 593
Sm_AuthApi_Cred_CertOrForm e 593
Sm_AuthApi_Cred_Digest 593
Sm_AuthApi_Cred_DoNotChallenge 593
Sm_AuthApi_Cred_FormRequired ¢ 593
Sm_AuthApi_Cred_None ¢ 593
Sm_AuthApi_Cred_NTChalResp ¢ 593
Sm_AuthApi_Cred_PreserveSessionld ¢ 593
Sm_AuthApi_Cred_SSLRequired ¢ 593
Sm_AuthApi_Cred_X509Cert ¢ 593
Sm_AuthApi_Cred_X509CertlssuerDN e 593
Sm_AuthApi_Cred_X509CertUserDN e 593
Sm_AuthApi_Failure e 590
Sm_AuthApi_NoUserContext ¢ 590
Sm_AuthApi_QueryCode_t » 593
Sm_AuthApi_Reject ® 590
Sm_AuthApi_Success ¢ 590
Sm_AuthApi_SuccessUserDN e 590
Sm_DirApi_Capability_t » 683, 728
Sm_DirCapability_AnonymousldAttr ¢ 218
Sm_DirCapability_ChallengeRespAttr « 218
Sm_DirCapability_ChangeUserPassword ¢ 218
Sm_DirCapability_CreatePasswordPolicy ¢ 218
Sm_DirCapability_CreateRegistrationPolicy » 218
Sm_DirCapability_DisabledAttr e 218
Sm_DirCapability_DisableUser ¢ 218
Sm_DirCapability_DmsCapable ¢ 218
Sm_DirCapability_EmailAddressAttr e 218
Sm_DirCapability_PasswordDataAttr e 218
Sm_DirCapability_Recursive ¢ 218
Sm_DirCapability_ResetUserPassword ¢ 218
Sm_DirCapability_UniversalldAttr e 218
Sm_DirCapability_UserPasswordAttr e 218

Sm_DmsWorkflowApi_Failure ¢ 627
Sm_DmsWorkflowApi_lgnore 627
Sm_DmsWorkflowApi_NoUserContext ¢ 627
Sm_DmsWorkflowApi_Reject » 627
Sm_DmsWorkflowApi_SkipSuccess ¢ 627
Sm_DmsWorkflowApi_Success ¢ 627
SM_MAKEAUTH_STATUSVALUE e 590, 755
Sm_PasswordPolicy_AllowFailedWrites ® 226
Sm_PasswordPolicy_CaseBits ® 226
Sm_PasswordPolicy_CaseSelect » 226
Sm_PasswordPolicy_DontTrackFailedLogins * 226
Sm_PasswordPolicy_DontTrackLogins ¢ 226
Sm_PasswordPolicy_DontTrackSuccessLogins ¢ 226
Sm_PasswordPolicy_ExpireDisablePassword ¢ 226
Sm_PasswordPolicy_FailuresDisablePassword 226
Sm_PasswordPolicy_ForceCase ® 226
Sm_PasswordPolicy_InactivityForcePWChange ¢ 226
Sm_PasswordPolicy_PreProcessBits ¢ 226
Sm_PasswordPolicy_PWExpiredForcePWChange
226
Sm_PasswordPolicy_StopPriorityChaining ¢ 226
Sm_PasswordPolicy_StripEmbeddedWhiteSpace
226
Sm_PasswordPolicy_StripFlankingWhiteSpace ¢ 226
Sm_PasswordPolicy_StripLeadingWhiteSpace * 226
Sm_PasswordPolicy_StripTrailingWhiteSpace ¢ 226
Sm_PasswordPolicy_WhiteSpaceBits 226
Sm_PasswordPolicyBehavior_FullReenable ¢ 226
Sm_PasswordPolicyBehavior_t ¢ 226
Sm_Policy_Api_Init() ® 229
Sm_PolicyApi_ActiveExpr_Prop ¢ 230
Sm_PolicyApi_AddAdmin() e 213, 244
Sm_PolicyApi_AddAdminToDomain() ¢ 244
Sm_PolicyApi_AddAgent() » 245
Sm_PolicyApi_AddAgentConfig() » 246
Sm_PolicyApi_AddAgentConfigAssociation() * 246
Sm_PolicyApi_AddAttributeToSAMLSP() * 257
Sm_PolicyApi_AddDomain() * 249
Sm_PolicyApi_AddGlobalRule() ® 256
Sm_PolicyApi_AddGroup() ® 251
Sm_PolicyApi_AddHostConfig() » 246
Sm_PolicyApi_AddPasswordPolicy() ® 253
Sm_PolicyApi_AddPolicy() ® 253, 282, 284, 291
Sm_PolicyApi_AddPolicyLink() ® 253
Sm_PolicyApi_AddRealm() » 254
Sm_PolicyApi_AddRegistrationScheme() 254
Sm_PolicyApi_AddResponse() ® 255
Sm_PolicyApi_AddResponseAttr() 255
Sm_PolicyApi_AddRule() » 256

Index 825

Sm_PolicyApi_AddSAMLAffiliation() ® 257
Sm_PolicyApi_AddSAMLScheme() ¢ 257
Sm_PolicyApi_AddSAMLServiceProvider() e 257
Sm_PolicyApi_AddScheme() » 238, 248
Sm_PolicyApi_AddToGroup() ® 251
Sm_PolicyApi_AddTrustedHost() ® 246
Sm_PolicyApi_AddUsersToPolicy() » 228, 261, 317,
318
Sm_PolicyApi_AddUsersToSAMLServiceProvider() ¢
257
Sm_PolicyApi_Admin_ID() ® 240
Sm_PolicyApi_Admin_t 213
Sm_PolicyApi_AdminNotFound ¢ 232
Sm_PolicyApi_AdminRights_ManageAllDomains
213
Sm_PolicyApi_AdminRights_ManageKeys ¢ 213
Sm_PolicyApi_AdminRights_ManageObjects » 213
Sm_PolicyApi_AdminRights_ManagePasswordPolicy
*213
Sm_PolicyApi_AdminRights_ManageReports 213
Sm_PolicyApi_AdminRights_ManageUsers ¢ 213
Sm_PolicyApi_AdminRights_t e 213
Sm_PolicyApi_Admins_Prop ® 230
Sm_PolicyApi_Affiliate_HTTP_Header_Variable ¢ 216
Sm_PolicyApi_Affiliate_ID » 240
Sm_PolicyApi_Affiliate_t » 238
Sm_PolicyApi_AffiliateAttr_ID o 240
Sm_PolicyApi_AffiliateAttrType_t » 216
Sm_PolicyApi_AffiliateDomain_Prop ¢ 230
Sm_PolicyApi_Agent_ID ¢ 240
Sm_PolicyApi_Agent_Prop ¢ 230
Sm_PolicyApi_AgentConfig_ID e 240
Sm_PolicyApi_AgentConfig_Prop * 230
Sm_PolicyApi_AgentGroup_Prop ¢ 230
Sm_PolicyApi_AgentNotFound e 232
Sm_PolicyApi_AgentType_ID ¢ 240
Sm_PolicyApi_AgentType_Prop ¢ 230
Sm_PolicyApi_AgentTypeAttr_ID » 240
Sm_PolicyApi_AgentTypeAttr_Prop ¢ 230
Sm_PolicyApi_AgentTypeAttrNotFound e 232
Sm_PolicyApi_AgentTypeCantBeDeleted ¢ 232
Sm_PolicyApi_AgentTypeMismatch ¢ 232
Sm_PolicyApi_AgentTypeNotFound e 232
Sm_PolicyApi_AssertionConsumerDefaultMissing
232
Sm_PolicyApi_Association_ID ¢ 240
Sm_PolicyApi_Association_Prop ¢ 230
Sm_PolicyApi_AuthAzMap_ID e 240
Sm_PolicyApi_AuthAzMap_Prop ¢ 230

Sm_PolicyApi_AuthAzMapType_Attr » 216
Sm_PolicyApi_AuthAzMapType_DN ¢ 216
Sm_PolicyApi_AuthAzMapType_t » 216
Sm_PolicyApi_AuthAzMapType_Universalld » 216
Sm_PolicyApi_BadArgument e 232
Sm_PolicyApi_BadGroup ¢ 232
Sm_PolicyApi_BasicSchemeUpdate ¢ 232
Sm_PolicyApi_CertMap_ID ¢ 240
Sm_PolicyApi_CertMap_Prop * 230
Sm_PolicyApi_CertMapAttrType_Custom e 217
Sm_PolicyApi_CertMapAttrType_Exact » 217
Sm_PolicyApi_CertMapAttrType_Single ¢ 217
Sm_PolicyApi_CertMapAttrType_t 217
Sm_PolicyApi_CertMapFlags_Cache ¢ 138, 217
Sm_PolicyApi_CertMapFlags_CertRequired » 138,
217
Sm_PolicyApi_CertMapFlags_CRLCheck » 138, 217
Sm_PolicyApi_CertMapFlags_t » 217
Sm_PolicyApi_CertMapFlags_UseDistributionPoints
* 138,217
Sm_PolicyApi_CertMapFlags_VerifySignature * 138,
217
Sm_PolicyApi_ConvertFromLegacyAgent() ® 245
Sm_PolicyApi_ConvertToLegacyAgent() ¢ 245
Sm_PolicyApi_CreateAuthAzMap() e 247
Sm_PolicyApi_CreateCertMap() » 248
Sm_PolicyApi_CreateODBCQueryScheme() 252
Sm_PolicyApi_CreateUserDir() ® 260
Sm_PolicyApi_DeleteAdmin() » 244
Sm_PolicyApi_DeleteAgent() » 245
Sm_PolicyApi_DeleteAgentConfig() » 246
Sm_PolicyApi_DeleteAuthAzMap() » 247
Sm_PolicyApi_DeleteCertMap() » 248
Sm_PolicyApi_DeleteDomain() ¢ 249
Sm_PolicyApi_DeleteGroup() ® 251
Sm_PolicyApi_DeleteHostConfig() » 246
Sm_PolicyApi_DeleteODBCQueryScheme() 252
Sm_PolicyApi_DeletePasswordPolicy() ® 253
Sm_PolicyApi_DeletePolicy() ® 253, 349
Sm_PolicyApi_DeleteRealm() ¢ 254
Sm_PolicyApi_DeleteRegistrationScheme() » 254
Sm_PolicyApi_DeleteResponse() ® 255
Sm_PolicyApi_DeleteRule() » 256
Sm_PolicyApi_DeleteSAMLAffiliation() ® 257
Sm_PolicyApi_DeleteSAMLServiceProvider() ® 257
Sm_PolicyApi_DeleteScheme() » 248
Sm_PolicyApi_DeleteTrustedHost() ® 246
Sm_PolicyApi_DeleteUserDir() 260
Sm_PolicyApi_DirType_LDAP ¢ 217

826 Programming Guide for C

Sm_PolicyApi_DirType_ODBC ¢ 217
Sm_PolicyApi_DirType_t » 217
Sm_PolicyApi_DirType_WinNT e 217
Sm_PolicyApi_DisableUser() » 261
Sm_PolicyApi_DoesNotExist ® 232
Sm_PolicyApi_Domain_ID ¢ 240
Sm_PolicyApi_Domain_Prop ¢ 230
Sm_PolicyApi_DomainFlags_GlobalPoliciesApply
220
Sm_PolicyApi_DomainFlags_t ¢ 220
Sm_PolicyApi_DomainNotAffiliate 232
Sm_PolicyApi_DomainNotFound ¢ 232
Sm_PolicyApi_DuplicateEntry e 232
Sm_PolicyApi_EnableUser() » 261
Sm_PolicyApi_ErrorLogin e 232
Sm_PolicyApi_ErrorUserDir e 232
Sm_PolicyApi_Failure ¢ 232
Sm_PolicyApi_FeatureNotSupported ¢ 232
Sm_PolicyApi_FieldType_t ¢ 225
Sm_PolicyApi_FlushRealm() » 263
Sm_PolicyApi_FlushUser() 263
Sm_PolicyApi_FreeMemory() » 114, 263, 365, 366
Sm_PolicyApi_FreeMemoryEx() » 114, 263
Sm_PolicyApi_FreeStringArray() » 114, 263
Sm_PolicyApi_GetAdmin() » 244, 368, 369
Sm_PolicyApi_GetAffiliatedSAMLAuthSchemes() ¢
257
Sm_PolicyApi_GetAffiliatedSAMLServiceProviders() ¢
257
Sm_PolicyApi_GetAgent() » 245
Sm_PolicyApi_GetAgentByName() » 245
Sm_PolicyApi_GetAgentConfig() » 246
Sm_PolicyApi_GetAgentConfigAssociations() ® 246
Sm_PolicyApi_GetAgentType() » 245
Sm_PolicyApi_GetAgentTypeAttr() » 245
Sm_PolicyApi_GetAllISAMLAffiliations() ® 257
Sm_PolicyApi_GetAllISAMLServiceProviders() ® 257
Sm_PolicyApi_GetAlISAMLSPAttributes() 257
Sm_PolicyApi_GetAuthAzMap() ¢ 247
Sm_PolicyApi_GetCertMap() » 248
Sm_PolicyApi_GetChildren() 254
Sm_PolicyApi_GetDirectoryContents() ® 260, 401
Sm_PolicyApi_GetDisabledUserState() » 261
Sm_PolicyApi_GetDomain() 249
Sm_PolicyApi_GetDomainObjects() 230, 249
Sm_PolicyApi_GetGlobalObjects() » 230, 251, 407
Sm_PolicyApi_GetGroup() ® 251
Sm_PolicyApi_GetGroupNames() * 415
Sm_PolicyApi_GetGroupQids() ® 251

Sm_PolicyApi_GetHostConfig() » 246
Sm_PolicyApi_GetODBCQueryScheme() ¢ 252
Sm_PolicyApi_GetPasswordMsg() » 261, 514
Sm_PolicyApi_GetPasswordPolicy() ® 253
Sm_PolicyApi_GetPolicyLinks() 253, 429
Sm_PolicyApi_GetPolicyUsers() » 261, 503
Sm_PolicyApi_GetRealm() » 254
Sm_PolicyApi_GetRegistrationScheme() ¢ 254
Sm_PolicyApi_GetResponse() ® 255
Sm_PolicyApi_GetResponseAttrs() ® 255
Sm_PolicyApi_GetRule() » 256
Sm_PolicyApi_GetSAMLAffiliation() e 257
Sm_PolicyApi_GetSAMLAffiliationByld() 257
Sm_PolicyApi_GetSAMLScheme() » 257
Sm_PolicyApi_GetSAMLServiceProvider() ® 257
Sm_PolicyApi_GetSAMLServiceProviderByld() » 257
Sm_PolicyApi_GetSAMLServiceProviderUsers() e 257
Sm_PolicyApi_GetScheme() » 248
Sm_PolicyApi_GetSharedSecretPolicy() ® 246
Sm_PolicyApi_GetTrustedHost() » 246
Sm_PolicyApi_GetUserContext() 260
Sm_PolicyApi_GetUserDir() ® 260
Sm_PolicyApi_GetUserDirByName() * 260
Sm_PolicyApi_GetUserDirCapabilities() ® 260
Sm_PolicyApi_GetUserDirSearchOrder() » 260
Sm_PolicyApi_GetUserGroups() » 261
Sm_PolicyApi_Group_ID ¢ 240
Sm_PolicyApi_GroupAgentType ¢ 232
Sm_PolicyApi_GroupMemberName ¢ 232
Sm_PolicyApi_GroupNotFound e 232
Sm_PolicyApi_Groups_t ¢ 220, 251
Sm_PolicyApi_HostConfig_ID ¢ 240
Sm_PolicyApi_HostConfig_Prop ¢ 230
Sm_PolicyApi_lllegalRealmOperation ¢ 232
Sm_PolicyApi_Init() » 244, 475
Sm_PolicyApi_InitEx() » 244
Sm_PolicyApi_InitFlags_DisableAudit e 229
Sm_PolicyApi_InitFlags_DisableCacheUpdates ¢ 229
Sm_PolicyApi_InitFlags_DisableManagementWatchD
og e 229
Sm_PolicyApi_InitFlags_DisableValidation ¢ 229
Sm_PolicyApi_InitFlags_EnableCache ¢ 229
Sm_PolicyApi_InitFlags_LoadVendorDictionary ¢ 229
Sm_PolicyApi_InitFlags_PreLoadCache ¢ 229
Sm_PolicyApi_InitFlags_t 229
Sm_PolicyApi_Invalid ¢ 232
Sm_PolicyApi_InvalidCharacters ¢ 232
Sm_PolicyApi_InvalidHandle ¢ 232
Sm_PolicyApi_InvalidHandleVersion ¢ 232

Index 827

Sm_PolicyApi_InvalidOid e 232
Sm_PolicyApi_InvalidPassword e 232
Sm_PolicyApi_InvalidPasswordSyntax e 232
Sm_PolicyApi_InvalidProp ¢ 232
Sm_PolicyApi_IPAddress_ID ¢ 240
Sm_PolicyApi_IPAddress_t ¢ 221
Sm_PolicyApi_IPAddressType_AddressAndSubNetM
ask e 221
Sm_PolicyApi_IPAddressType_HostName ¢ 221
Sm_PolicyApi_IPAddressType_Range ¢ 221
Sm_PolicyApi_IPAddressType_SingleHost » 221
Sm_PolicyApi_IPAddressType_t » 221
Sm_PolicyApi_IsGroup() ® 251
Sm_PolicyApi_Login() * 244, 479
Sm_PolicyApi_Logout() » 244, 481
Sm_PolicyApi_LookupDirectoryEntry() ® 260
Sm_PolicyApi_ManagementCommand() » 114, 222,
263
Sm_PolicyApi_ManagementCommand_t e 222
Sm_PolicyApi_ManagementCommands_t e 222
Sm_PolicyApi_MissingProperty ¢ 232
Sm_PolicyApi_NoChildren ¢ 232
Sm_PolicyApi_NonHtmIForm e 232
Sm_PolicyApi_NoPrivilege 232
Sm_PolicyApi_NoSession ¢ 232
Sm_PolicyApi_NotCollection ¢ 232
Sm_PolicyApi_NotFound e 232
Sm_PolicyApi_Notimplemented ¢ 232
Sm_PolicyApi_NotlInitted » 232
Sm_PolicyApi_NotSearchable ¢ 232
Sm_PolicyApi_NotStorable 232
Sm_PolicyApi_NotUnique ® 232
Sm_PolicyApi_NULL_Domain_Prop ¢ 230
Sm_PolicyApi_NULL_ID e 240
Sm_PolicyApi_Object_ID » 240
Sm_PolicyApi_Objects_t ¢ 230
Sm_PolicyApi_ODBCQueryScheme_ID ¢ 240
Sm_PolicyApi_ODBCQueryScheme_Prop ¢ 230
Sm_PolicyApi_ODBCQuerySchemeNotFound e 232
Sm_PolicyApi_OidInUseByAdmin e 232
Sm_PolicyApi_OidIinUseByRealm ¢ 232
Sm_PolicyApi_OidinUseByRule ¢ 232
Sm_PolicyApi_OidinUseBySelfReg ¢ 232
Sm_PolicyApi_OidinUseByUserDirectory ¢ 232
Sm_PolicyApi_OidinUserByCertMap ¢ 232
Sm_PolicyApi_PasswordMsgField_ID ¢ 240
Sm_PolicyApi_PasswordMsgFieldld_t e 225
Sm_PolicyApi_PasswordMsgld_t ¢ 223
Sm_PolicyApi_PasswordPolicy_ID * 240

Sm_PolicyApi_PasswordPolicy_Prop ¢ 230
Sm_PolicyApi_PasswordPolicyConfig e 232
Sm_PolicyApi_PasswordPolicyNotFound ¢ 232
Sm_PolicyApi_Policy_ID * 240
Sm_PolicyApi_Policy_Prop ¢ 230
Sm_PolicyApi_PolicyLink_ID ¢ 240
Sm_PolicyApi_PolicyLink_Prop * 230
Sm_PolicyApi_PolicyLinkNotFound e 232
Sm_PolicyApi_PolicyNotFound e 232
Sm_PolicyApi_ProvNotimplemented ¢ 232
Sm_PolicyApi_ProvNotUnique ¢ 232
Sm_PolicyApi_RadiuslpAddrNotUnique ¢ 232
Sm_PolicyApi_RadiusRealmNotUnique ¢ 232
Sm_PolicyApi_Realm_ID ¢ 240
Sm_PolicyApi_Realm_Prop ¢ 230
Sm_PolicyApi_RealmCantBeUsedInRule ¢ 232
Sm_PolicyApi_RealmFilterNotUnique ¢ 232
Sm_PolicyApi_RealmNotFound e 232
Sm_PolicyApi_RegistrationScheme_ID ¢ 240
Sm_PolicyApi_RegistrationScheme_Prop ¢ 230
Sm_PolicyApi_RegistrationSchemeNotFound e 232
Sm_PolicyApi_Release() » 244
Sm_PolicyApi_RemoveAdminFromDomain() e 244
Sm_PolicyApi_RemoveAgentConfigAssociation() e
246
Sm_PolicyApi_RemoveAttributeFromSAMLSP() ¢ 257
Sm_PolicyApi_RemoveFromGroup() ® 251
Sm_PolicyApi_RemovePolicyLinkFromPolicy() ® 253
Sm_PolicyApi_RemoveResponseAttr() e 255
Sm_PolicyApi_RemoveRuleFromPolicy() * 497
Sm_PolicyApi_RemoveUserDirFromDomain() 260
Sm_PolicyApi_RemoveUsersFromPolicy() ¢ 261
Sm_PolicyApi_RemoveUsersFromSAMLServiceProvid
er() e 257
Sm_PolicyApi_RenameObiject() » 251
Sm_PolicyApi_Response_ID ¢ 240
Sm_PolicyApi_Response_Prop ¢ 230
Sm_PolicyApi_ResponseAttr_ID ¢ 240
Sm_PolicyApi_ResponseAttr_Prop ¢ 230
Sm_PolicyApi_ResponseAttrNotFound ¢ 232
Sm_PolicyApi_ResponseGroup_Prop ¢ 230
Sm_PolicyApi_ResponseNotFound ¢ 232
Sm_PolicyApi_Rule_ID ¢ 240
Sm_PolicyApi_Rule_Prop ¢ 230
Sm_PolicyApi_RuleGroup_Prop ¢ 230
Sm_PolicyApi_RuleNotFound e 232
Sm_PolicyApi_SAML_Profile_Artifact » 127, 238
Sm_PolicyApi_SAML_Profile_POST » 127, 238
Sm_PolicyApi_SAML_Profile_t » 238

828 Programming Guide for C

Sm_PolicyApi_SAML_UnknownProperty ¢ 232
Sm_PolicyApi_SAML_UnSupportedSAMLVersion
232
Sm_PolicyApi_SAMLAFF_AffiliationHasMembers e
232
Sm_PolicyApi_SAMLAFF_AffiliationIDMissing ¢ 232
Sm_PolicyApi_SAMLAFF_AffiliationIDNotUnique e
232
Sm_PolicyApi_SAMLAFF_NameldAttrNameMissing
232
Sm_PolicyApi_SAMLAFF_NameldDNSpecMissing e
232
Sm_PolicyApi_SAMLAFF_NameldFormatMissing
232
Sm_PolicyApi_SAMLAFF_NameldStaticMissing ¢ 232
Sm_PolicyApi_SAMLAFF_NameldTypeMissing ® 232
Sm_PolicyApi_SAMLAFF_NameMissing ® 232
Sm_PolicyApi_SAMLAffiliation_ID e 240
Sm_PolicyApi_SAMLAffiliation_Prop ¢ 230
Sm_PolicyApi_SAMLIDP_IncorrectParameters * 232
Sm_PolicyApi_SAMLIAP_Prop ¢ 230
Sm_PolicyApi_SAMLIDP_ProviderIDNotUnique 232
Sm_PolicyApi_SAMLProviderProp_ID ¢ 240
Sm_PolicyApi_SAMLSP_AuthenticationURLMissing e
232
Sm_PolicyApi_SAMLSP_Basic ¢ 238
Sm_PolicyApi_SAMLSP_DomainOidMissing ¢ 232
Sm_PolicyApi_SAMLSP_ID ¢ 240
Sm_PolicyApi_SAMLSP_IdPIDMissing ® 232
Sm_PolicyApi_SAMLSP_NameldAttrNameMissing
232
Sm_PolicyApi_SAMLSP_NameldDNSpecMissing
232
Sm_PolicyApi_SAMLSP_NameldFormatMissing ¢ 232
Sm_PolicyApi_SAMLSP_NameldStaticMissing ¢ 232
Sm_PolicyApi_SAMLSP_NameldTypeMissing ® 232
Sm_PolicyApi_SAMLSP_NameMissing ® 232
Sm_PolicyApi_SAMLSP_Prop ¢ 230
Sm_PolicyApi_SAMLSP_ProviderIDMissing ¢ 232
Sm_PolicyApi_SAMLSP_ProviderIDNotUnique ¢ 232
Sm_PolicyApi_SAMLSP_Unspecified 238
Sm_PolicyApi_SAMLSP_URI ¢ 238
Sm_PolicyApi_SAMLSPALttr_ID ¢ 240
Sm_PolicyApi_SAMLSPALttr_t e 238
Sm_PolicyApi_SAMLSPAttrNameFormat_t 238
Sm_PolicyApi_Scheme_ID ¢ 240
Sm_PolicyApi_Scheme_Prop ¢ 230
Sm_PolicyApi_SchemeCantBeDeleted ¢ 232
Sm_PolicyApi_SchemelsRequired ¢ 232

Sm_PolicyApi_SchemeNotFound ¢ 232
Sm_PolicyApi_SchemeType_ACEServer ¢ 238
Sm_PolicyApi_SchemeType_Anonymous ¢ 238
Sm_PolicyApi_SchemeType_Basic » 238
Sm_PolicyApi_SchemeType_BasicOverSSL ¢ 238
Sm_PolicyApi_SchemeType_CryptoCard » 238
Sm_PolicyApi_SchemeType_Custom ¢ 238
Sm_PolicyApi_SchemeType_Encotone » 238
Sm_PolicyApi_SchemeType_HTMLForm e 238
Sm_PolicyApi_SchemeType_NTLM ¢ 238
Sm_PolicyApi_SchemeType_RadiusChapPap ¢ 238
Sm_PolicyApi_SchemeType_RadiusServer ¢ 238
Sm_PolicyApi_SchemeType_SafeWordServer 238
Sm_PolicyApi_SchemeType_X509ClientCert 238
Sm_PolicyApi_SchemeType_X509ClientCertAndBasic
* 238
Sm_PolicyApi_SchemeType_X509ClientCertOrBasic ®
238
Sm_PolicyApi_SetDisabledUserState() » 261
Sm_PolicyApi_SetPassword() » 223, 261
Sm_PolicyApi_SetResponselnPolicyLink() ® 255
Sm_PolicyApi_SetUserDirSearchOrder() » 260
Sm_PolicyApi_SharedSecretPolicy_ID ¢ 240
Sm_PolicyApi_SharedSecretPolicy_Prop ¢ 230
Sm_PolicyApi_Status_t ¢ 232
Sm_PolicyApi_Structs_t 240
Sm_PolicyApi_Success ¢ 232
Sm_PolicyApi_TrustedHost_ID ¢ 240
Sm_PolicyApi_TrustedHost_Prop ¢ 230
Sm_PolicyApi_User_ID ¢ 240
Sm_PolicyApi_UserContext_ID e 240
Sm_PolicyApi_UserDir_ID » 240
Sm_PolicyApi_UserDir_Prop ¢ 230
Sm_PolicyApi_UserDirNotFound e 232
Sm_PolicyApi_UserDirNotPartOfDomain ¢ 232
Sm_PolicyApi_UserDirNotValid 232
Sm_PolicyApi_UserPolicy_Prop ¢ 230
Sm_PolicyApi_UserPolicyNotFound ¢ 232
Sm_PolicyApi_ValidateDirectoryEntry() e 260
Sm_PolicyApi_Variable_ID ¢ 240
Sm_PolicyApi_Variable_Prop ¢ 230
Sm_PolicyApi_VariableType_ID e 240
Sm_PolicyApi_VariableType_Prop ¢ 230
Sm_PolicyApi_WrongNumberOfElements e 232
Sm_PolicyBehavior_Exclude_Mask ¢ 228
Sm_PolicyBehavior_Exclude_No ¢ 228
Sm_PolicyBehavior_Exclude_Yes ¢ 228
Sm_PolicyBehavior_Recursive_Mask * 228
Sm_PolicyBehavior_Recursive_No ¢ 228

Index 829

Sm_PolicyBehavior_Recursive_Yes ¢ 228
Sm_PolicyResolution_t 190, 232, 683, 757
SmAgentAPLlib ¢ 34
SmDirAddEntry() 695
SmDirAddMemberToGroup() ® 697, 698
SmDirAddMemberToRole() ® 697, 698
SmDirAuthenticateUser() » 686, 699, 714
SmDirChangeUserPassword() » 683, 702
SmDirEnumerate() ® 704, 705
SmDirFreeString() 699, 705, 707, 709, 711, 745
SmDirFreeStringArray() ® 704, 705, 712, 713, 717,
718,719, 727
SmDirGetDirConnection() 706
SmDirGetDirObjlnfo() » 707
SmDirGetGroupMembers() 708
SmDirGetLastErrMsg() » 709
SmDirGetRoleMembers() ® 710
SmDirGetUserAttr() 711, 718
SmDirGetUserAttrMulti() » 712
SmDirGetUserClasses() ® 713
SmDirGetUserDisabledState() » 686, 714
SmDirGetUserGroups() » 683, 717
SmDirGetUserProperties() ® 718
SmDirGetUserRoles() » 719
SmDirlnit() 687, 720, 750
SmDirlnitDirlnstance() » 687, 722, 749, 751
SmDirlnitUserlnstance() 725, 750, 751
SmDirLookup() » 709, 714, 727
SmDirQueryVersion() * 683, 728
SmDirRelease() 720, 729, 750
SmDirReleaselnstance() 687, 722, 730, 749, 750,
751
SmDirRemoveEntry() 731
SmDirRemoveMemberFromGroup() ¢ 732
SmDirRemoveMemberFromRole() ® 733
SmDirSearch() » 720, 734
SmDirSearchCount() ® 720, 736
SmDirSetUserAttr() » 683, 738
SmDirSetUserDisabledState() » 683, 686, 714, 740
SmDirValidatelnstance() » 743
SmDirValidateUserDN() 744
SmDirValidateUsername() ® 699, 745
SmDirValidateUserPolicyRelationship() ® 683, 709,
746
SmHost.conf e 36, 79
SmLog _EMS t e 766
SmPolicyApi_Scheme_t ¢ 238
SmPolicyAPI45.lib e 109
smreghost tool 246

SMSESSION cookie © 43
SOAP, with authorization variables e 198
Solaris agents ¢ 34
SSO. See single sign-on ¢ 43
Static variables ¢ 198
status codes ¢ 755
structure IDs for Policy Management APl ¢ 240
subnet mask ¢ 144
system events
data structure » 623
event type ¢ 630
system objects. See global objects » 114

T

terminating a session ¢ 38, 92
ticket. See identity ticket, session specification * 38
time restriction grid « 158
timeout
EMS server session ® 643
user session ¢ 40
time-to-live
expired ¢ 102
tokens
about ¢ 43
trace utility ® 572
transaction audit ¢ 32
transaction ID * 41
trusted hosts
about * 34
creating 246, 312
definition structure ¢ 189
register with Policy Server ¢ 246
Tunnel Service API
purpose e 23
user-defined function ¢ 615
version ¢ 613
tunnel services
about ¢ 611
information passed from ¢ 575
initialization ¢ 614
maximum data size ¢ 77
request data structure ¢ 59
secure agent/Policy Server communication e 42
transferring data » 99

U

unique object identifiers e 112
universal ID ¢ 38

830 Programming Guide for C

user access request ¢ 574
user context

known e 587

Policy Management API structure ¢ 191
retrieving e 458

SiteMinder API structure ® 576
unknown e 587

user directory namespace ¢ 192, 576
user directory object

associate with domain ¢ 315
capabilities list » 462
creating » 333

definition ¢ 192

deleting 358

disassociate from domain ¢ 501
getting search order » 463
retrieving * 401, 460, 461
setting search order ¢ 518
user entry validation ¢ 521
user lookup e 482

user disambiguation ¢ 590
user handle ¢ 725, 750
user instance

initializing « 687
releasing * 687

user object

context information ¢ 191, 458, 576
creating e 637

defining » 190

deleting » 637

disable events ¢ 639

disabling * 361, 753

enable events ¢ 639

enabling 362

flushing from cache ¢ 364
modifying ¢ 637

retrieving disabled state ¢ 402
setting disabled state ¢ 510

user password state ¢ 262
UserContext variables e 198
user-defined function

Authorization APl 603
Tunnel Service APl ¢ 615

UserHandle_t ¢ 725
Username/Password ¢ 588
users

activity tracking ¢ 41
adding to policy » 318
additional attributes ¢ 562

associated with a policy ¢ 430
authenticating ® 522, 590
authorizing * 32

changing password ¢ 514
credentials * 60

disambiguation ¢ 590

group membership ¢ 464

login 89

logout 92

removing from policy ¢ 503
searching for e 482

Service Providers ¢ 320, 450, 505
session information e 58

session timeout ¢ 40

validation in user directory ¢ 521

vV

v4.x and v5.x agents
central host configuration 34
populating the agent structure ¢ 51
retrieving configuration data ¢ 79
upgrading to v5.x ¢ 36

validating a session ¢ 38

variable types
definition ¢ 198
object ¢ 202

variables
authorization » 197, 198, 263
session ¢ 39

version
agent ¢ 32,51, 52
APl ¢ 572
Authentication APl e 587, 593
Authorization API « 604
context structure data ¢ 572
Directory APl e 728
Policy Server » 619, 621, 622, 623
SiteMinder password service ¢ 423
Tunnel Service APl » 613

w

watchdog ¢ 229

WebAgent.conf ¢ 34, 36, 43
WebAgent-HTTP-Cookie-Variable ¢ 600
WebAgent-HTTP-Header-Variable ¢ 600
WebAgent-OnReject-Redirect ® 600
WebService variables ¢ 198

well-known user attributes ¢ 42, 562

Index 831

Windows agents ¢ 34
WinNT namespace for user directory e 192
workflow events
logging » 627
ws2_32.lib e 34

X

X.509 Certificate » 582, 593
X.509 Client Certificate * 588

832 Programming Guide for C

	CA Technologies Product References
	Contact CA Technologies
	Contents
	Chapter 1: API Overview
	SiteMinder SDK Overview
	SDK Installation
	Custom Applications and Policy Server Extensions
	Code Samples
	Support for Custom Code

	Chapter 2: Agent API Guidance For C
	Agent API Overview
	About the SiteMinder Agent
	Agent Initialization
	Agent Discovery
	How to Access a Resource Using the Agent API
	Compile and Link a Custom Agent
	Central Host Configuration
	Configuration Requirements
	Code Requirements
	Upgrade an Agent

	Agent Call Sequence
	Sample Custom Agent
	Agent API Services
	Session Services
	Application Session Information
	Advantages of Session Variables
	Requirements for Using Session Variables
	End of Session Cleanup

	Timeouts

	Authorization Services
	Transaction Tracking

	Management Services
	Cache Commands
	Encryption commands

	Tunnel Services

	Response Attributes
	Custom Agents and Single Sign-On
	Standard Agent Support
	Login Through a Custom Agent
	Login Through a Standard Agent

	Memory Deallocation
	Agent API Data Structures (C)
	Sm_AgentApi_AgentDiscovery_t
	Sm_AgentApi_Attribute_t
	Sm_AgentApi_Init_t
	Sm_AgentApi_ManagementContext_t
	Sm_AgentApi_Realm_t
	Sm_AgentApi_ResourceContext_t
	Sm_AgentApi_Server_t
	Sm_AgentApi_Session_t
	Sm_AgentApi_TunnelServiceRequest_t
	Sm_AgentApi_UserCredentials_t

	Agent API Function Declarations (C)
	Function Return Codes
	Sm_AgentApi_Audit()
	Sm_AgentApi_Authorize()
	Sm_AgentApi_AuthorizeDLP()
	Sm_AgentApi_ChangePassword()
	Sm_AgentApi_CreateSSOToken()
	Sm_AgentApi_DecodeSSOToken()
	Sm_AgentApi_DelSessionVariables()
	Sm_AgentApi_DoManagement()
	Sm_AgentApi_FreeAttributes()
	Sm_AgentApi_FreeServers()
	Sm_AgentApi_GetAgentApiUpdateVersion()
	Sm_AgentApi_GetAllowedTunnelBufSize()
	Sm_AgentApi_GetConfig()
	Sm_AgentApi_GetMaxTunnelBufSize()
	Sm_AgentApi_GetSessionVariables()
	Sm_AgentApi_Init()
	Sm_AgentApi_IsProtected()
	Sm_AgentApi_IsProtectedDLP()
	Sm_AgentApi_Login()
	Sm_AgentApi_Logout()
	Sm_AgentApi_MakeCertificateHash()
	Sm_AgentApi_SetAgentInstanceInfo()
	Sm_AgentApi_SetDefaultAgentId()
	Sm_AgentApi_SetSessionVariables()
	Sm_AgentApi_Tunnel()
	Sm_AgentApi_UnInit()
	Sm_AgentApi_UpdateAttributes()

	Chapter 3: Configuring Custom Agent Types
	Custom Agent Type Overview
	Agent Type Worksheet

	Configure an Agent Type
	Agent Type Attributes
	Properties
	Values
	Configure the Agent Type Attributes Properties and Values

	Modify an Agent Type

	Chapter 4: Policy Management API Guidance
	Policy Management API Overview
	Policy Management Setup
	Object Retrieval Functions
	Object Creation Functions
	Object Deletion Functions
	Object Associations
	Object Identifiers
	Directory Search Order Functions
	Performance Enhancement
	Memory, Cache, and Agent Key Management
	Object Scope

	Federation API
	SAML Assertions
	SAML 1.x
	SAML 1.x Pseudo-code Example

	SAML 2.0
	Single Sign-on Example
	SAML 2.0 Pseudo-code Example
	SAML 2.0 Affiliations
	SAML 2.0 Attribute Authority
	SAML 2.0 Indexed Endpoints
	Sample Application for Affiliates

	WS-Federation

	Policy Management API Data Structures
	Sm_PolicyApi_Admin_t
	Sm_PolicyApi_Affiliate_t
	Sm_PolicyApi_AffiliateAttr_t
	Sm_PolicyApi_AffiliateDomain_t
	Sm_PolicyApi_Agent_t
	Sm_PolicyApi_AgentConfig_t
	Sm_PolicyApi_AgentType_t
	Sm_PolicyApi_AgentTypeAttr_t
	Sm_PolicyApi_Association_t
	Sm_PolicyApi_AuthAzMap_t
	Sm_PolicyApi_CertMap_t
	Sm_PolicyApi_Domain_t
	Sm_PolicyApi_Group_t
	Sm_PolicyApi_HostConfig_t
	Sm_PolicyApi_IPAddress_t
	Sm_PolicyApi_ManagementCommand_t
	Sm_PolicyApi_ODBCQueryScheme_t
	Sm_PolicyApi_Oid_t
	Sm_PolicyApi_PasswordMsgField_t
	Sm_PolicyApi_PasswordPolicy_t
	Sm_PolicyApi_Policy_t
	Time Grid Array

	Sm_PolicyApi_PolicyLink_t
	Sm_PolicyApi_Realm_t
	Sm_PolicyApi_RegistrationScheme_t
	Sm_PolicyApi_RegularExpression_t
	Sm_PolicyApi_Response_t
	Sm_PolicyApi_ResponseAttr_t
	Response Attribute Types

	Sm_PolicyApi_Rule_t
	Sm_PolicyApi_SAMLAffiliation_t
	Sm_PolicyApi_SAMLProviderProp_t
	Sm_PolicyApi_SAMLRequesterAttr_t
	Sm_PolicyApi_SAMLSP_t
	Sm_PolicyApi_SAMLSPAssertionConsumerService_t
	Sm_PolicyApi_SAMLSPAttr_t
	Sm_PolicyApi_Scheme_t
	Sm_PolicyApi_SharedSecretPolicy_t
	Sm_PolicyApi_Server_t
	Sm_PolicyApi_TrustedHost_t
	Sm_PolicyApi_User_t
	Sm_PolicyApi_UserContext_t
	Sm_PolicyApi_UserDir_t
	Sm_PolicyApi_UserPasswordState_t
	Sm_PolicyApi_Variable_t
	Variable Definition

	Sm_PolicyApi_VariableType_t
	Sm_PolicyApi_WSFEDProviderProp_t
	Sm_PolicyApi_WSFEDResourcePartner_t

	Exported Types
	Administrator Rights
	Affiliate Attribute Types
	Attribute Mode Types
	Authentication and Authorization Mapping Types
	Certificate Mapping Attribute Types
	Certificate Mapping Directory Types
	Certificate Mapping Flags Definitions
	Directory Capabilities
	Domain Flags
	Group Types
	IP Address Types
	Management Commands
	Password Messages
	Password Message Fields
	Password Message Field Types
	Password Policy Behavior Flags
	Policy Flags
	Policy Management API Initialization Flags
	Policy Object IDs
	Policy Resolutions
	Return Codes
	SAML1x Redirect URL Types
	SAML Assertion Consumer Service Bindings
	SAML Attribute Name Format Identifiers
	SAML Profiles
	Scheme Types
	Shared Secret Rollover Parameters
	Structure IDs

	Structure of a Policy Application
	Functions by Category in the Policy Management API
	Required Functions
	Administrator Functions
	Agent Functions
	Agent Configuration Functions
	Authentication/Authorization Map Functions
	Authentication Scheme Functions
	Certificate Mapping Functions
	Domain Functions
	Federation Functions
	General Object Functions
	Group Functions
	ODBC Query Scheme Functions
	Password Policy Functions
	Policy Functions
	Realm Functions
	Registration Scheme Functions
	Regular Expression Functions
	Response Functions
	Rule Functions
	SAML1.x Configuration Functions
	SAML 2.0 Attribute Authority Functions
	SAML 2.0 Configuration Functions
	SAML 2.0 Indexed Endpoint Functions
	User Directory Functions
	User and User State Functions
	User Password State Functions
	Utility Functions
	Variable Functions
	WS-Federation Functions

	Function Declarations for the Policy Management API
	Sm_PolicyApi_AddAdmin()
	Sm_PolicyApi_AddAdminToAffiliateDomain()
	Sm_PolicyApi_AddAdminToDomain()
	Sm_PolicyApi_AddAffiliate()
	Sm_PolicyApi_AddAffiliateDomain()
	Sm_PolicyApi_AddAgent()
	Sm_PolicyApi_AddAgentConfig()
	Sm_PolicyApi_AddAgentConfigAssociation()
	Sm_PolicyApi_AddAssertionConsumerServiceToSAMLSP
	Sm_PolicyApi_AddAttributeToAffiliate()
	Sm_PolicyApi_AddAttributeToSAMLScheme()
	Sm_PolicyApi_AddAttributeToSAMLSP()
	Sm_PolicyApi_AddDomain()
	Sm_PolicyApi_AddGlobalPolicy()
	Sm_PolicyApi_AddGlobalResponse()
	Sm_PolicyApi_AddGlobalRule()
	Sm_PolicyApi_AddGroup()
	Sm_PolicyApi_AddHostConfig()
	Sm_PolicyApi_AddMessageConsumerPluginToSAML1xScheme()
	Sm_PolicyApi_AddOneTimeUsePropToAffiliate()
	Sm_PolicyApi_AddPasswordPolicy()
	Sm_PolicyApi_AddPolicy()
	Sm_PolicyApi_AddPolicyLink()
	Sm_PolicyApi_AddRealm()
	Sm_PolicyApi_AddRedirectURLToSAML1xScheme()
	Sm_PolicyApi_AddRegistrationScheme()
	Sm_PolicyApi_AddRegularExpressionToPasswordPolicy()
	Sm_PolicyApi_AddResponse()
	Sm_PolicyApi_AddResponseAttr()
	Sm_PolicyApi_AddRule()
	Sm_PolicyApi_AddSAMLAffiliation()
	Sm_PolicyApi_AddSAMLScheme()
	Sm_PolicyApi_AddSAMLServiceProvider()
	Sm_PolicyApi_AddScheme()
	Sm_PolicyAPI_AddTargetConfigToSAML1xScheme
	Sm_PolicyApi_AddToGroup()
	Sm_PolicyApi_AddTrustedHost()
	Sm_PolicyApi_AddUserDirToAffiliateDomain()
	Sm_PolicyApi_AddUserDirToDomain()
	Sm_PolicyApi_AddUseSecureAuthPropToAffiliate()
	Sm_PolicyApi_AddUsersToAffiliate()
	Sm_PolicyApi_AddUsersToPolicy()
	Sm_PolicyApi_AddUsersToSAMLServiceProvider()
	Sm_PolicyApi_AddUsersToWSFEDResourcePartner()
	Sm_PolicyApi_AddVariable()
	Sm_PolicyApi_AddWSFEDResourcePartner()
	Sm_PolicyApi_AddWSFEDScheme()
	Sm_PolicyApi_ConvertFromLegacyAgent()
	Sm_PolicyApi_ConvertToLegacyAgent()
	Sm_PolicyApi_CreateAuthAzMap()
	Sm_PolicyApi_CreateCertMap()
	Sm_PolicyApi_CreateODBCQueryScheme()
	Sm_PolicyApi_CreateUserDir()
	SM_PolicyAPI_UserDir_t Field Usage

	Sm_PolicyApi_DeleteAdmin()
	Sm_PolicyApi_DeleteAffiliate()
	Sm_PolicyApi_DeleteAffiliateDomain()
	Sm_PolicyApi_DeleteAgent()
	Sm_PolicyApi_DeleteAgentConfig()
	Sm_PolicyApi_DeleteAuthAzMap()
	Sm_PolicyApi_DeleteCertMap()
	Sm_PolicyApi_DeleteDomain()
	Sm_PolicyApi_DeleteHostConfig()
	Sm_PolicyApi_DeleteGroup()
	Sm_PolicyApi_DeleteODBCQueryScheme()
	Sm_PolicyApi_DeletePasswordPolicy()
	Sm_PolicyApi_DeletePolicy()
	Sm_PolicyApi_DeleteRealm()
	Sm_PolicyApi_DeleteRegistrationScheme()
	Sm_PolicyApi_DeleteResponse()
	Sm_PolicyApi_DeleteRule()
	Sm_PolicyApi_DeleteSAMLAffiliation()
	Sm_PolicyApi_DeleteSAMLServiceProvider()
	Sm_PolicyApi_DeleteScheme()
	Sm_PolicyApi_DeleteTrustedHost()
	Sm_PolicyApi_DeleteUserDir()
	Sm_PolicyApi_DeleteVariable()
	Sm_PolicyApi_DeleteWSFEDResourcePartner()
	Sm_PolicyApi_DisableUser()
	Sm_PolicyApi_EnableUser()
	Sm_PolicyApi_FlushRealm()
	Sm_PolicyApi_FlushUser()
	Sm_PolicyApi_FreeMemory()
	Sm_PolicyApi_FreeMemoryEx()
	Sm_PolicyApi_FreeString()
	Sm_PolicyApi_FreeStringArray()
	Sm_PolicyApi_GetAdmin()
	Sm_PolicyApi_GetAdminByName()
	Sm_PolicyApi_GetAffiliate()
	Sm_PolicyApi_GetAffiliateByName()
	Sm_PolicyApi_GetAffiliateDomain()
	Sm_PolicyApi_GetAffiliateDomainByName()
	Sm_PolicyApi_GetAffiliateDomainObjects()
	Sm_PolicyApi_GetAffiliateDomainUserDirSearchOrder()
	Sm_PolicyApi_GetAffiliatedSAMLAuthSchemes()
	Sm_PolicyApi_GetAffiliatedSAMLServiceProviders()
	Sm_PolicyApi_GetAffiliateUsers()
	Sm_PolicyApi_GetAgent()
	Sm_PolicyApi_GetAgentByName()
	Sm_PolicyApi_GetAgentConfig()
	Sm_PolicyApi_GetAgentConfigByName()
	Sm_PolicyApi_GetAgentConfigAssociations()
	Sm_PolicyApi_GetAgentType()
	Sm_PolicyApi_GetAgentTypeByName()
	Sm_PolicyApi_GetAgentTypeAttr()
	Sm_PolicyApi_GetAgentTypeAttrByName()
	Sm_PolicyApi_GetAllAffiliateAttributes()
	Sm_PolicyApi_GetAllAffiliates()
	Sm_PolicyApi_GetAllSAMLAffiliations()
	Sm_PolicyApi_GetAllSAMLSchemeAttributes()
	Sm_PolicyApi_GetAllSAMLServiceProviders()
	Sm_PolicyApi_GetAllSAMLSPAssertionConsumerService()
	Sm_PolicyApi_GetAllSAMLSPAttributes()
	Sm_PolicyApi_GetAllWSFEDResourcePartners()
	Sm_PolicyApi_GetAuthAzMap()
	Sm_PolicyApi_GetCertMap()
	Sm_PolicyApi_GetChildren()
	Sm_PolicyApi_GetDirectoryContents()
	Sm_PolicyApi_GetDisabledUserState()
	Sm_PolicyApi_GetDomain()
	Sm_PolicyApi_GetDomainByName()
	Sm_PolicyApi_GetDomainObjects()
	Sm_PolicyApi_GetGlobalObjects()
	Sm_PolicyApi_GetGlobalPolicyByName()
	Sm_PolicyApi_GetGlobalResponseByName()
	Sm_PolicyApi_GetGlobalRuleByName()
	Sm_PolicyApi_GetGroup()
	Sm_PolicyApi_GetGroupByName()
	Sm_PolicyApi_GetGroupOids()
	Sm_PolicyApi_GetHostConfig()
	Sm_PolicyApi_GetHostConfigByName()
	Sm_PolicyAPI_GetMessageConsumerPluginFromSAML1xScheme()
	Sm_PolicyApi_GetODBCQueryScheme()
	Sm_PolicyApi_GetODBCQuerySchemeByName()
	Sm_PolicyApi_GetOneTimeUsePropFromAffiliate()
	Sm_PolicyApi_GetPasswordMsg()
	Sm_PolicyApi_GetPasswordPolicy()
	Sm_PolicyApi_GetPasswordPolicyByName()
	Sm_PolicyApi_GetPolicy()
	Sm_PolicyApi_GetPolicyByName()
	Sm_PolicyApi_GetPolicyLinks()
	Sm_PolicyApi_GetPolicyUsers()
	Sm_PolicyApi_GetRealm()
	Sm_PolicyApi_GetRealmByName()
	Sm_PolicyAPI_GetRedirectURLFromSAML1xScheme()
	Sm_PolicyApi_GetRegistrationScheme()
	Sm_PolicyApi_GetRegistrationSchemeByName()
	Sm_PolicyApi_GetRegularExpressions()
	Sm_PolicyApi_GetResponse()
	Sm_PolicyApi_GetResponseByName()
	Sm_PolicyApi_GetResponseAttrs()
	Sm_PolicyApi_GetRule()
	Sm_PolicyApi_GetRuleByName()
	Sm_PolicyApi_GetSAMLAffiliation()
	Sm_PolicyApi_GetSAMLAffiliationById()
	Sm_PolicyApi_GetSAMLScheme()
	Sm_PolicyApi_GetSAMLServiceProvider()
	Sm_PolicyApi_GetSAMLServiceProviderById()
	Sm_PolicyApi_GetSAMLServiceProviderUsers()
	Sm_PolicyApi_GetScheme()
	Sm_PolicyApi_GetSchemeByName()
	Sm_PolicyApi_GetSharedSecretPolicy()
	Sm_PolicyApi_GetTargetConfigFromSAML1xScheme
	Sm_PolicyApi_GetTrustedHost()
	Sm_PolicyApi_GetTrustedHostByName()
	Sm_PolicyApi_GetUseSecureAuthPropFromAffiliate()
	Sm_PolicyApi_GetUserContext()
	Sm_PolicyApi_GetUserDir()
	Sm_PolicyApi_GetUserDirByName()
	Sm_PolicyApi_GetUserDirCapabilities()
	Sm_PolicyApi_GetUserDirSearchOrder()
	Sm_PolicyApi_GetUserGroups()
	Sm_PolicyApi_GetUserPasswordState()
	Sm_PolicyApi_GetUsersFromWSFEDResourcePartner()
	Sm_PolicyApi_GetVariable()
	Sm_PolicyApi_GetVariableByName()
	Sm_PolicyApi_GetVariableType()
	Sm_PolicyApi_GetVariableTypeByName()
	Sm_PolicyApi_GetWSFEDResourcePartner()
	Sm_PolicyApi_GetWSFEDScheme()
	Sm_PolicyApi_Init()
	Sm_PolicyApi_InitEx()
	Sm_PolicyApi_IsGroup()
	Sm_PolicyApi_Login()
	Sm_PolicyApi_Logout()
	Sm_PolicyApi_LookupDirectoryEntry()
	Search Expression Grammar for an LDAP Namespace
	Search Expression Grammar for ODBC, WinNT and Custom Namespaces

	Sm_PolicyApi_ManagementCommand()
	Sm_PolicyApi_Release()
	Sm_PolicyApi_RemoveAdminFromAffiliateDomain()
	Sm_PolicyApi_RemoveAdminFromDomain()
	Sm_PolicyApi_RemoveAgentConfigAssociation()
	Sm_PolicyApi_RemoveAssertionConsumerServiceFromSAMLSP()
	Sm_PolicyApi_RemoveAttributeFromAffiliate()
	Sm_PolicyApi_RemoveAttributeFromSAMLScheme()
	Sm_PolicyApi_RemoveAttributeFromSAMLSP()
	Sm_PolicyApi_RemoveFromGroup()
	Sm_PolicyApi_RemovePolicyLinkFromPolicy()
	Sm_PolicyApi_RemoveRegularExpressionFromPasswordPolicy()
	Sm_PolicyApi_RemoveResponseAttr()
	Sm_PolicyApi_RemoveUserDirFromAffiliateDomain()
	Sm_PolicyApi_RemoveUserDirFromDomain()
	Sm_PolicyApi_RemoveUsersFromAffiliate()
	Sm_PolicyApi_RemoveUsersFromPolicy()
	Sm_PolicyApi_RemoveUsersFromSAMLServiceProvider()
	Sm_PolicyApi_RemoveUsersFromWSFEDResourcePartner()
	Sm_PolicyApi_RenameObject()
	Sm_PolicyApi_SetAffiliateDomainUserDirSearchOrder()
	Sm_PolicyApi_SetDisabledUserState()
	Sm_PolicyApi_SetPassword()
	Sm_PolicyApi_SetResponseInPolicyLink()
	Sm_PolicyApi_SetSharedSecretPolicy()
	Sm_PolicyApi_SetUserDirSearchOrder()
	Sm_PolicyApi_SetUserPasswordState()
	Sm_PolicyApi_ValidateDirectoryEntry()

	Authentication Scheme Configuration
	Anonymous Template
	Basic Over SSL Template
	Basic Template
	Custom Template
	HTML Form Template
	Impersonation Template
	RADIUS CHAP/PAP Template
	RADIUS Server Template
	SafeWord HTML Form Template
	SafeWord Template
	SAML Artifact Template
	SAML POST Template
	SAML 2.0 Template
	SecurID HTML Form Template
	SecurID Template
	smauthetsso authentication scheme
	TeleID Template
	Windows Authentication Template
	WS-Federation Template
	X.509 Client Cert and Basic Template
	X.509 Client Cert and Form Template
	X.509 Client Cert or Basic Template
	X.509 Client Cert or Form Template
	X.509 Client Cert Template

	Chapter 5: Customizing the Policy Server
	Work with Authentication and Authorization APIs
	Authentication Hook
	Authorization Hook
	Custom Data Hook
	SiteMinder Events
	Authentication Events
	Authorization Events

	Saving Data Between Module Invocations
	Well-known User Attributes
	Retrieving a Password

	Integration with the Web Agent

	Chapter 6: Context Structures
	Sm_Api_AppSpecificContext_t
	Sm_Api_Context_t
	Sm_Api_RequestContext_t
	Sm_Api_TunnelContext_t
	Sm_Api_UserContext_t
	Multi-Valued Attributes in LDAP

	Sm_AuthApi_UserCredentials_t

	Chapter 7: Authentication API for C
	Authentication API Overview
	Install an Authentication Scheme Library
	Load an Authentication Scheme
	User Context
	Authentication Events
	Redirection
	Supported Credentials

	Create a Custom Authentication Scheme Library
	SmAuthenticate()
	SmAuthInit()
	SmAuthQuery()
	SmAuthRelease()

	Chapter 8: Authorization API for C
	Authorization API Overview
	Include File

	Active Expressions
	How SiteMinder Interprets Active Expressions
	Define Active Rules
	Define Active Responses
	Define Active Policies
	Pass HTTP Headers and Cookies to Policy Server

	Authorization Function Declarations
	User-Defined Function
	SmQueryVersion()

	Active Expression Examples
	Example of an Active Rule
	Example of an Active Response

	Chapter 9: Tunnel Service API Guidance
	Tunnel Service API Overview
	Develop a Custom Tunnel Service
	Include File
	Tunnel Service API Reference
	SmQueryVersion()
	SmTunnelInit()
	SmTunnelRelease()
	User-Defined Function

	Chapter 10: Event API Guidance
	Event API Overview
	Event API Setup
	Event Provider Structures
	SmLog_Access_t
	Syntax

	SmLog_EMS_t
	SmLog_Obj_t
	SmLog_System_t

	Event API Reference
	Access Event Type
	Filter Access Events

	EMS Event Type
	Logging Workflow Events

	Object Event Type
	Authentication Events
	Management Command Events

	System Event Type
	SmLogAccessEvent_AuthAccept
	SmLogAccessEvent_AuthReject
	SmLogAccessEvent_AuthAttempt
	SmLogAccessEvent_AuthChallenge
	SmLogAccessEvent_AzAccept
	SmLogAccessEvent_AzReject
	SmLogAccessEvent_AdminLogin
	SmLogAccessEvent_AdminLogout
	SmLogAccessEvent_AdminReject
	SmLogAccessEvent_AuthLogout
	SmLogAccessEvent_ValidateAccept
	SmLogAccessEvent_ValidateReject
	SmLogEmsEvent_CreateUser, SmLogEmsEvent_DeleteUser, SmLogEmsEvent_ModifyUser
	SmLogEmsEvent_PasswordModify
	SmLogEmsEvent_AssignUserRole, SmLogEmsEvent_RemoveUserRole
	SmLogEmsEvent_EnableUser, SmLogEmsEvent_DisableUser
	SmLogEmsEvent_CreateOrg, SmLogEmsEvent_DeleteOrg, SmLogEmsEvent_ModifyOrg
	SmLogEmsEvent_CreateRole, SmLogEmsEvent_DeleteRole, SmLogEmsEvent_ModifyRole
	SmLogEmsEvent_CreateObject, SmLogEmsEvent_DeleteObject, SmLogEmsEvent_ModifyObject
	SmLogEmsEvent_Login, SmLogEmsEvent_Logout
	SmLogEmsEvent_AuthFail
	SmLogEmsEvent_SessionTimeout
	SmLogObjEvent_Create
	SmLogObjEvent_Update
	SmLogObjEvent_Delete
	SmLogObjEvent_Login
	SmLogObjEvent_FailedLoginAttemptsCount
	SmLogObjEvent_Logout
	SmLogObjEvent_LoginReject
	SmLogObjEvent_FlushAll
	SmLogObjEvent_FlushUser
	SmLogObjEvent_FlushUsers
	SmLogObjEvent_FlushRealms
	SmLogObjEvent_ChangeDynamicKeys
	SmLogObjEvent_ChangePersistentKey
	SmLogObjEvent_ChangeSessionKey
	SmLogObjEvent_ChangeUserPassword
	SmLogObjEvent_CreateUserSuccess
	SmLogObjEvent_DeleteUserSuccess
	SmLogObjEvent_ChangeDisabledUserState
	SmLogObjEvent_ModifyUserSuccess
	SmLogObjEvent_CreateUserFail
	SmLogObjEvent_DeleteUserFail
	SmLogObjEvent_ModifyUserFail
	SmLogSystemEvent_ServerInit
	SmLogSystemEvent_ServerInitFail
	SmLogSystemEvent_ServerUp
	SmLogSystemEvent_ServerDown
	SmLogSystemEvent_LogFileOpenFail
	SmLogSystemEvent_ServerHeartbeat
	SmLogSystemEvent_AgentInfo
	SmLogSystemEvent_AgentConnectionStart
	SmLogSystemEvent_AgentConnectionFail
	SmLogSystemEvent_AgentConnectionEnd
	SmLogSystemEvent_DbConnect
	SmLogSystemEvent_DbConnectFail
	SmLogSystemEvent_LdapConnect
	SmLogSystemEvent_LdapConnectFail
	SmLogSystemEvent_AmbiguousResourceMatch
	SmLogSystemEvent_AmbiguousRadiusMatch
	SmLogSystemEvent_AgentHeartbeat

	Event Function Declarations
	SmEventInit()
	SmEventRecord()
	SmEventRelease()

	Example of an Active Policy
	Configuring the Policy Server for the Event Handler

	Chapter 11: DMS Workflow API
	DMS Workflow API Guidance
	DMS Sessions
	DMS Workflow
	Workflow Events
	Preprocess Events
	Postprocess Events

	DMS Workflow API Reference
	Sm_Api_DmsContext_t
	Sm_DmsWorkflow_Attribute_t
	SmDmsWorkflowInit()
	SmDmsWorkflowPostprocess()
	SmDmsWorkflowPreprocess()
	SmDmsWorkflowRelease()

	Chapter 12: Directory API Guidance
	Purpose of the Directory API
	Before You Use the Directory API
	How to Use the Directory API
	Build a Directory Application
	Exported Enumerations
	General Data Types and Structures
	Initialization and Release Functions
	Utility Functions
	Operations on the Directory
	Operations on a Directory Entry (User)

	Directory API Reference
	SmDirAddEntry()
	SmDirAddMemberToGroup()
	SmDirAddMemberToRole()
	SmDirAuthenticateUser()
	SmDirChangeUserPassword()
	SmDirEnumerate()
	SmDirFreeString()
	SmDirFreeStringArray()
	SmDirGetDirConnection()
	SmDirGetDirObjInfo()
	SmDirGetGroupMembers()
	SmDirGetLastErrMsg()
	SmDirGetRoleMembers()
	SmDirGetUserAttr()
	SmDirGetUserAttrMulti()
	SmDirGetUserClasses()
	SmDirGetUserDisabledState()
	SmDirGetUserGroups()
	SmDirGetUserProperties()
	SmDirGetUserRoles()
	SmDirInit()
	SmDirInitDirInstance()
	SmDirInitUserInstance()
	SmDirLookup()
	SmDirQueryVersion()
	SmDirRelease()
	SmDirReleaseInstance()
	SmDirRemoveEntry()
	SmDirRemoveMemberFromGroup()
	SmDirRemoveMemberFromRole()
	SmDirSearch()
	SmDirSearchCount()
	SmDirSetUserAttr()
	SmDirSetUserAttrMulti()
	SmDirSetUserDisabledState()
	SmDirValidateInstance()
	SmDirValidateUserDN()
	SmDirValidateUsername()
	SmDirValidateUserPolicyRelationship()

	Structures Used in the Sample Directory Application
	Directory Instance Handle
	Directory Provider Handle
	Directory Entry (User) Instance Handle
	How To Distinguish between Handle Types

	Chapter 13: Common Data Types and Structure
	Exported Enumerations
	Sm_Api_DisabledReason_t
	Sm_Api_Reason_t
	Sm_PolicyResolution_t

	Common Structure

	Chapter 14: Event Log Formats
	Access Events
	Authentication and Authorization Format
	Administration Format

	Object Events
	AdminChange Format
	Management Command Format

	EMS Events
	EMS Log Format

	Appendix A: SAML 2.0 Property Reference
	About the SAML 2.0 Properties
	SAML 2.0 Property Reference

	Index

