

Programming Guide for Java
r12.5

CA CA SiteMinder®

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing your
use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA SiteMinder®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our short
customer survey which is available on the CA Support website at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Java API Overview 13

Purpose of the Java APIs .. 13

Installation Path ... 13

Code Samples ... 14

Policy Server Prerequisite... 14

Java Components of the SiteMinder SDK ... 15

Java Agent API .. 15

Policy Management API ... 16

Authentication API ... 16

Authorization API ... 17

Delegated Management Services API .. 17

Utilities Package ... 17

How Java Components Fit Together... 18

Network Architecture ... 18

Java API Flow .. 19

Establish a Connection to the Policy Server .. 19

Obtain a Session .. 23

Agent Discovery .. 24

Make API Requests and Handle Results .. 25

Log Trace Information .. 26

Javadoc Reference .. 26

Support for Custom Code ... 27

Chapter 2: Utilities Package 29

Purpose of the Utilities Package ... 29

Classes for Internal Use .. 29

Connection Class .. 30

Session Class ... 30

Result Class ... 31

Interpret a Result Object ... 31

Core Methods in the Result Class.. 32

Exception Class ... 33

Property Class ... 34

Chapter 3: Agent API 35

SiteMinder Agents .. 35

6 Programming Guide for Java

Agent Type ... 36

Agent API Class Hierarchy... 36

Implement the JNI Java Agent API.. 37

Implement the Pure Java Agent API ... 38

Pure Java Agent API Usage .. 39

Enable Pure Java Agent API Tracing .. 40

Connection to a Policy Server... 41

User Access to Resources ... 41

How Web Agents Use the Agent API .. 43

Java Agent API Services .. 44

Session Services .. 44

Session Creation and the Session Specification .. 44

Session Validation ... 45

Session Delegation .. 45

Session Termination .. 46

Authorization Services .. 46

Auditing Services and Transaction Tracking ... 46

Management Services .. 47

Cache Commands .. 47

Encryption Commands .. 47

Tunnel Services ... 48

Response Attributes ... 48

Single Sign-on ... 48

Log on through a Custom Agent.. 49

Log on through a Standard Agent ... 50

Standard Agent Support .. 50

How Information Is Bound to a Session .. 51

Advantages of Session Variables ... 51

Requirements for Using Session Variables .. 52

End of Session Cleanup ... 52

Server Clusters.. 52

Clustered and Non-Clustered Servers ... 52

Cluster Configuration .. 53

Cluster Failover.. 54

Timeouts ... 55

Chapter 4: Policy Management API 57

About Policy Management ... 58

Policy Management Setup.. 59

Required JAR File .. 59

Policy Store Objects .. 59

Contents 7

Write a Policy Management Application .. 61

Establish a Connection to the Policy Server .. 61

Obtain a Session Object .. 62

Pass in the Session Object ... 62

Make Policy Management API Requests ... 62

Terminate the Administrator Session ... 62

Administrator Methods .. 63

Agent Methods ... 63

Agent Configuration Object Methods .. 64

Authentication and Authorization Map Methods .. 64

Authentication Scheme Methods... 65

Certificate Map Methods ... 65

Domain Methods .. 65

General Object Methods .. 66

Group Methods .. 67

Host Configuration Object Methods .. 67

ODBC Query Scheme Methods... 68

Password Policy Methods... 68

Policy Methods ... 69

Realm Methods .. 69

Response Methods ... 70

Root Configuration Methods .. 70

Rule Methods ... 71

Self-Registration Methods .. 71

Trusted Host Object Methods .. 71

User Directory Methods ... 72

User Policy Methods... 73

Utility Methods... 73

Object Associations .. 74

Add Objects to the Policy Store .. 74

Retrieve Objects from the Policy Store .. 75

Delete Objects from the Policy Store ... 75

Authentication Scheme Configuration ... 75

Anonymous Template ... 77

Basic Template .. 78

Basic Over SSL Template ... 79

Custom Template .. 80

HTML Form Template.. 81

Impersonation Template ... 83

MS Passport Template .. 84

RADIUS CHAP/PAP Template .. 86

RADIUS Server Template ... 87

8 Programming Guide for Java

SafeWord HTML Form Template ... 88

SafeWord Template .. 89

SAML Artifact Template .. 90

SecurID HTML Form Template .. 92

SecurID Template .. 94

smauthetsso Authentication Scheme ... 95

TeleID Template .. 97

Windows Authentication Template .. 98

X.509 Client Cert and Basic Template ... 100

X.509 Client Cert and Form Template ... 102

X.509 Client Cert or Basic Template .. 103

X.509 Client Cert or Form Template.. 104

X.509 Client Cert Template ... 106

Performance Consideration ... 107

Chapter 5: Authentication and Authorization APIs 109

Configuration of All Custom Classes ... 109

Custom Classes for Authentication and Authorization .. 110

Required Library File... 110

Shared Information .. 110

Common Classes... 110

Create a Custom Authentication Scheme .. 111

Classes and Interfaces in the Authentication API .. 111

How SiteMinder Loads a Custom Authentication Scheme in Java .. 113

How SiteMinder Initializes Authentication Processing ... 114

Supported Credentials... 116

User Disambiguation and Authentication ... 116

Redirection .. 119

Authentication Events ... 119

Extend the SAML and WS-Federation Authentication Schemes ... 120

Use the Authorization API .. 122

Active Expressions ... 122

ActiveExpression Methods .. 124

Other Classes in the Authorization API ... 125

Chapter 6: Customizing a SAML Assertion 127

Implement the Java Assertion Generator Plug-in Interface ... 129

Deploy the Assertion Generator Plug-in... 131

Configure the Assertion Generator Plug-in in the UI ... 131

Contents 9

Chapter 7: Delegated Management Services API 133

About the DMS API ... 133

The Required JAR File ... 134

SiteMinder User Directories ... 134

SiteMinder User Directory Containers .. 135

Attribute-based Delegation .. 136

Configure Attribute-based Delegation .. 137

DMS Users .. 137

Implementation Class ... 138

Context Class .. 138

Object Class .. 139

Object Model... 139

Search Class .. 139

Cursor Class .. 140

Searches that Support Cursor Operations... 141

Searches of Microsoft LDAP Directories.. 141

Write a Directory Management Application .. 142

DMS Context ... 143

Directory Context .. 145

Change the User Type in DMS Context ... 145

Create an Object ... 147

Get Directory Entry Attributes .. 147

Add an Object to a Directory ... 148

Add a User to a Group ... 149

Add a User to a Role .. 149

Get, Modify, or Delete an Object .. 149

Searches ... 150

Set Search Parameters When You Create the Search Object ... 150

Set Search Parameters After Creating the Search Object ... 151

Set the Search Filter .. 152

Search an Organization ... 155

Examples of a Search... 156

User Password State ... 157

ODBC Support... 158

Restricted Methods .. 159

Index 163

10 Programming Guide for Java

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing your
use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References 11

CA Technologies Product References

This document references the following CA Technologies products:

■ CA CA SiteMinder®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our short
customer survey which is available on the CA Support website at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Chapter 1: Java API Overview 13

Chapter 1: Java API Overview

This section contains the following topics:

Purpose of the Java APIs (see page 13)
Installation Path (see page 13)
Code Samples (see page 14)
Policy Server Prerequisite (see page 14)
Java Components of the SiteMinder SDK (see page 15)
Java Agent API (see page 15)
Policy Management API (see page 16)
Authentication API (see page 16)
Authorization API (see page 17)
Delegated Management Services API (see page 17)
Utilities Package (see page 17)
How Java Components Fit Together (see page 18)
Network Architecture (see page 18)
Java API Flow (see page 19)
Log Trace Information (see page 26)
Javadoc Reference (see page 26)
Support for Custom Code (see page 27)

Purpose of the Java APIs

The SiteMinder SDK provides Java APIs for performing the following tasks:

■ Creating SiteMinder Agents

■ Creating Policy Management applications

■ Creating Delegated Management Services (DMS) applications

Installation Path

The Java APIs, documentation, and samples are installed to the following location:

■ UNIX platforms: <install_path>/sdk

■ Windows platforms: <install_path>\sdk

<install_path> refers to the installation path where you installed the SDK software.

Code Samples

14 Programming Guide for Java

Code Samples

The SiteMinder SDK includes tested samples of SiteMinder client applications. The
source files for these samples are located as follows:

■ UNIX platforms:

<install_path>/sdk/samples/<api-name>

■ Windows platforms:

<install_path>\sdk\samples\<api-name>

Notes on the Java samples:

■ The samples use properties defined in smjsdksample.properties, located in
/sdk/properties. Before you run the Java samples, modify this file with settings for
your environment.

■ The smjsdksample.properties file also externalizes literal strings used for logging.

■ The samples smjavaagentapi and javadmsapi use the policy store created by the
sample javapolicyapi. Run smjavapolicyapi before running smjavaagentapi or
javadmsapi.

■ All the samples use the same logging options and output format.

■ When executing the Java samples on a 64-bit UNIX operating environment, note the
following:

■ Use a 64-bit JVM. Running the 64-bit samples using a 32-bit JVM is not
supported.

■ If you are using the file java-run.sh (in the samples/smjavaagentapi folder)
remove the comment indicator before the -d64 flag. Leave this flag commented
out when on a 32-bit operating environment.

Policy Server Prerequisite

You must have the SiteMinder Policy Server to run the applications and Policy Server
plug-ins that you develop with the SiteMinder SDK.However, in most cases, you do not
use the Policy Server to build those applications and plug-ins. The application runtime
files can either be local or remote to the Policy Server.

Java Components of the SiteMinder SDK

Chapter 1: Java API Overview 15

Java Components of the SiteMinder SDK
The Java components of the SiteMinder SDK are listed in the following table:

API Name:

Package Name

Primary Interfaces and Classes

Java Agent API:

netegrity.siteminder.javaagent

AgentAPI

Policy Management API:

com.netegrity.sdk.policyapi

SmPolicyApi, implemented by

SmPolicyApiImpl

Authentication and Authorization APIs

com.netegrity.policyserver.smapi

SmAuthScheme
 (Authentication API)

ActiveExpression

 (Authorization API)

Delegated Management Services API:

com.netegrity.sdk.dmsapi

SmDmsApi, implemented by
SmDmsApiImpl

Utilities package:

com.netegrity.sdk.apiutil

SmApiConnection

SmApiSession

Java Agent API

Use the Java Agent API to build a custom agent for enforcing access control and for
managing user sessions. Enforcing access control consists of the following:

■ User authentication

■ User authorization

■ Auditing

When using the Java Agent API, code your agent in Java. The Agent API performs the
connection to the Policy Server.

Policy Management API

16 Programming Guide for Java

The SiteMinder Java Agent API has two implementations:

■ The JNI Java Agent API, which relies on the native C/C++ Agent API libraries. This
implementation uses the interface presented in the SiteMinder SDK, versions 5.x
and later.

■ The pure Java Agent API, which replaces the native code used in the JNI Java Agent
API with pure Java components. The present version of this API uses the same
interface as the JNI Java Agent API.

Because there are no native-mode components, the pure Java Agent API is highly
portable to new operating environments. Applications written using the pure Java
implementation require certification only against the Java Virtual Machine hosting the
implementation, rather than against individual operating systems.

Policy Management API

Use the Policy Management API to manage the following SiteMinder elements:

■ Resources

■ Policies

■ Caches

■ Security roles

You can manage policies by creating, deleting, associating, and modifying policy objects
such as policy domains, realms, and policies.

Authentication API

Use the Authentication API to create a custom authentication scheme that implements
authentication service not offered by any of the standard SiteMinder authentication
schemes.

Authorization API

Chapter 1: Java API Overview 17

Authorization API

Use the Authorization API to implement custom functionality for controlling access to
protected resources. The functionality is provided through custom Java classes that are
referenced in Policy Server active expressions. An active expression is a string of variable
definitions that appears in the following Policy Server objects:

■ Active policy

■ Active response

■ Active rule

Delegated Management Services API

Use the Delegated Management Services (DMS) API to perform tasks such as:

■ Manage directory entries

■ Grant privileges to users and to groups

■ Grant DMS roles to users and to groups

Utilities Package

Use the methods in the Utilities package to implement the APIs in the Policy
Management API and the DMS API.

How Java Components Fit Together

18 Programming Guide for Java

How Java Components Fit Together

The following figure shows how the Java components of the SiteMinder SDK fit
together:

Network Architecture

You can use the Java APIs to write client applications that connect to a remote
SiteMinder Policy Server. These applications have access to the following built-in
functionality of the Java Agent API:

■ Security

■ Load balancing

■ Failover

Java API Flow

Chapter 1: Java API Overview 19

The network architecture of the Java APIs is shown in the following figure:

The Policy Management API and the DMS API use the Java Agent API to access the Policy
Server. A single API client instance makes a single, secure, Agent API connection to the
SiteMinder Policy Server. As long as they share the same process space, multiple API
clients can use a single Agent API connection. For example, you can use the Java Agent
API to establish a connection, then use that connection to make DMS API calls.

Java API Flow

The steps listed following are required when you are creating a client application with
the Policy Management API or the DMS API:

1. Establish a Connection to the Policy Server.

2. Obtain a Session.

3. Make API Requests.

4. Handle Results and Exceptions.

Establish a Connection to the Policy Server

To establish a connection to the Policy Server, use the SmApiConnection class of the
Utilities package. This class holds the Agent API handle through which Java API requests
are sent.

Java API Flow

20 Programming Guide for Java

There are two types of connection handles in this class:

■ A default connection handle. A default connection handle:

■ Represents a single instance of an Agent API object.

■ Is static across the process.

■ Allows connections to the Agent API object from both Policy Management and
DMS clients.

You can establish multiple connections to the Policy Server through the single Agent
API object instance.

■ A user-defined connection handle. You can create multiple user-defined connection
objects; each one can support multiple connections to the Policy Server.

Establish a Default Connection

If you have not already established a connection to the Policy Server, you can request an
automatic connection. If SiteMinder establishes a connection for you automatically, it
creates a default Java Agent API object and handle. However, if a valid user-defined
handle already exists, SiteMinder does not create a default object and handle. A
user-defined handle takes precedence over a default handle.

To establish a default connection to the Policy Server automatically

1. Use the following constructor to create an API connection object:

 SmApiConnection (boolean bDefaultAgentConnection

 boolean disableLoadBalancing)

2. In the constructor, set bDefaultAgentConnection to true—for example:

 SmApiConnection m_defaultConnection =

 new SmApiConnection(true,false);

3. If bDefaultAgentConnection is false, you must explicitly establish the connection in
your client code.

An automatic connection has the following requirements:

■ Your Web Agent be installed on the same machine where you are running the
Agent API.

■ The property DefaultAgentName in the Web Agent configuration object contains an
agent name. You define the Web Agent configuration object in the Policy Server.

■ With Apache Web Agents, the path to the Agent configuration file is in the
CLASSPATH. With Microsoft IIS Web Agents, this configuration information is in the
Registry, so a CLASSPATH reference is not necessary.

Java API Flow

Chapter 1: Java API Overview 21

Establish a User-Defined Connection

You establish a user-defined connection in one of two ways:

■ By referencing an existing Java Agent API connection handle in the constructor of
the SmApiConnection object.

■ By establishing a new connection manually through the setAgentApiConnection()
method.

Note: If you already have a connection to the Policy Server, you can use it to make
subsequent Policy Management API or DMS API calls.

To create a connection using an existing Agent API connection

1. Create your connection object through the following constructor:

 SmApiConnection (netegrity.siteminder.javaagent.AgentAPI

 agentApiConnection)

2. In the constructor, use agentApiConnection to pass in the handle of the existing
Agent API connection—for example:

 SmApiConnection myConnection =

 new SmApiConnection (myAgentApiConnection);

The new Java Agent API handle is a user-defined handle.

Java API Flow

22 Programming Guide for Java

If you do not already have a default connection and you want a user-defined connection
object, you can use the Agent API to create the agent object and then create the new
connection, as follows:

1. Create the agent object.

You can create an agent object based on connection parameters from either of the
following sources:

■ User-defined connection parameters defined in your code—for example:

AgentAPI agent = new AgentAPI();

ServerDef sd = new ServerDef();

sd.serverIpAddress = POLICY_IP;

sd.connectionMin = CX_MIN;

sd.connectionMax = CX_MAX;

sd.connectionStep = CX_STEP;

sd.timeout = CX_TIMEOUT;

sd.authorizationPort = AZ_PORT;

sd.authenticationPort = AUTH_PORT;

sd.accountingPort = ACC_PORT;

InitDef init=new InitDef(AGENT_LOGIN,SHARED_SECRET,false, sd);

agent.init(init);

Note: With SiteMinder v6.0 and later, the authorization, authentication, and
accounting servers are combined into a single server process. Consequently,
authorizationPort, authenticationPort, and accountingPort can all be set to the
same value.

■ Connection parameters stored in an Agent configuration file.

Note: SiteMider v4.x webagent.conf files are no longer supported by the SM API.

2. Create the new connection.

After creating the agent object, you create the new connection in either of these
ways:

■ Pass the agent object you just created into the constructor of the new
SmApiConnection object—for example:

SmApiConnection myConnection = new SmApiConnection(agent);

■ Call setAgentApiConnection() and pass in the agent object you just
created—for example:

SmApiConnection myConnection=new SmApiConnection(false,false);

myConnection.setAgentApiConnection(agent);

If you establish the connection in this way, the Java Agent API handle is a
user-defined handle.

If you call setAgentApiConnection() and you do not have a connection, you can
establish an automatic, static connection by passing in null.

Java API Flow

Chapter 1: Java API Overview 23

Obtain a Session

After you obtain a connection to the Policy Server, get a user or administrator session.

Note: To use the Policy Management API, you must connect as a SiteMinder
Administrator.

After you obtain a session object, pass it to the Policy Management API or the DMS API
through the constructor for the SmPolicyApiImpl class, or the SmDmsApiImpl class.

To obtain a session, perform one of these actions:

If... And... Then...

You have an existing
session from

authenticating a user.

— Pass in the session
specification for the

authenticated user.

You do not have an

existing session.

You must connect as a

SiteMinder Administrator.

Use the method

SmApiSession.login().

You do not have an

existing session.

You want to connect as a

non-Administrator.

Use the Java Agent API to
obtain a session specification
for the user.

If you have a session specification for a user that has been authenticated, you can use
that session specification. You need not obtain a new session specification.

To use an existing session, create an SmApiSession object and associate the session
specification with that object.

Log in as a SiteMinder Administrator

To authenticate a SiteMinder administrator, use the login() method in the SmApiSession
class of the Utilities package. This method uses the administrator’s login credentials
(username and password) to authenticate the administrator. Calling this login() method
obtains a session specification and returns an SmApiResult object.

The syntax of the login() method is as follows:

result=mySession.login (username,

 password,

 IPaddress,

 challengeReason);

Java API Flow

24 Programming Guide for Java

Provide a value for the challengeReason parameter as follows:

■ On the administrator’s initial login, set challengeReason to 0 (no reason).

■ If the initial login fails, use challengeReason in the next login() call to specify the
results of the previous authentication attempt.

To retrieve the reason value to assign to challengeReason, call getReason() in the
SmApiResult object.

To obtain a new session specification for a user, use the Java Agent API to obtain a
session specification. Then, create an SmApiSession object and associate the session
specification with that object.

Agent Discovery

Agent discovery lets CA SiteMinder administrators track instances of different types of
agents, including agents that have been deployed over a number of years. An agent
instance can be any type of agent, for example, Web agent, custom agent, or ERP agent.
To come under the purview of agent discovery, the agent must be active and in
communication with the Policy Server.

Only 5.x agents and later can be tracked. For agents created before r12.5, the
combination of the IP address and trusted host are used to identify the agent. Any
change in this combination for the same agent results in multiple entries for the same
agent.

A unique GUID identifies each r12.5 agent instance, which is stored in a configuration
file. Multiple agent instances cannot share a configuration file. In addition to the
location of the configuration file, AgentInstanceDef.java defines parameters that specify
the following attributes of an agent instance:

■ Agent product type

■ Agent product version

■ Agent product subtype

■ Agent configuration object name

■ Host configuration object name

Java API Flow

Chapter 1: Java API Overview 25

Enable Agent Discovery

When you want a custom agent to come under the purview of agent discovery, follow
this process:

1. Instantiate the AgentInstanceDef.java class.

2. Call the getAgentIdFile method.

If this method returns a valid configuration path, the agent instance is already
accounted for in the agent discovery process.

3. Call the setAgentIdFile method and provide the location of the configuration file
when getAgentIdFile does not return one.

4. (Optional) Call additional methods to set or get attribute information for the agent
instance.

5. Call the AgentAPI.setAgentInstanceInfo method, passing in the name of your object.

The agent instance periodically sends the Policy Server a heartbeat message informing
the Policy Server that the agent instance is still active.

Make API Requests and Handle Results

After you establish a session, you can call the methods in your client application.

A result is a response from the Policy Server to a Java API request. Results are returned
in an SmApiResult object.

Exceptions are thrown from an unexpected client-side error. An exception contains a
result with additional information, such as the origin and severity of the result. To create
a result object to store the results of API requests, use the constructor of the
SmApiResult class in the Utilities package—for example:

SmApiResult result = new SmApiResult();

Log Trace Information

26 Programming Guide for Java

You can verify whether a request was successful by calling the method isSuccess() on
the result object. The method returns true if the request was successful, or false if it was
not successful.

You can compare the current result object to a specified result object by calling the
equals() method.

You can use the equals() method to compare the current result object with SmApiResult
constants that represent different kinds of results. For example, in the following code,
the result represented by the unique constant SERVER_INVALID_PASSWORD is
compared against the current result object:

InetAddress address = InetAddress.getLocalHost();

SmApiResult result = apiSession.login(usr,pwd,address,0);

boolean resultStatus =

 result.equals(SmApiResult.SERVER_INVALID_PASSWORD);

Log Trace Information

To log tracing information on the client side, use the -D option of the java tool and set
the system property SMJAVASDK_LOG_INFO to true. SiteMinder logs the information to
the standard output.

For example, if your Java Development Kit is on Windows and you want to trace the
Policy Management API sample application, the command line would be:

java -DSMJAVASDK_LOG_INFO=true -classpath .;..\..\java\smjavasdk2.jar;

..\..\java\smjavaagentapi.jar PolicyApiSample

Javadoc Reference

This guide includes frequent references to the Javadoc, which you can access through a
link on the SiteMinder bookshelf. Use the Javadoc to learn about a particular class or
method. These details typically include syntax, parameters, return values, and exception
information.

The description of each package, class, and interface in the Javadoc reference
sometimes includes a Since heading that indicates the SiteMinder or SDK version when
the component was introduced. Individual methods and fields only include a Since
heading if they were added in a later version of the class or interface.

Support for Custom Code

Chapter 1: Java API Overview 27

Support for Custom Code

CA supports the Software Development Kit (SDK) as part of the standard offerings. Code
written by customers or partners, however, is not supported. You are responsible for
the code you write. If you require assistance designing or implementing SDK-based
code, contact your CA customer account team.

Chapter 2: Utilities Package 29

Chapter 2: Utilities Package

This section contains the following topics:

Purpose of the Utilities Package (see page 29)
Classes for Internal Use (see page 29)
Connection Class (see page 30)
Session Class (see page 30)
Result Class (see page 31)
Exception Class (see page 33)
Property Class (see page 34)

Purpose of the Utilities Package

If you plan to call functions in the Policy Management API or the DMS API, you must use
the functions in the Utilities package to build your Java application.

The SmApiConnection, SmApiResult, SmApiSession, SmApiException, and SmProperty
classes in the Utilities package provide services such as:

■ Establishing a connection to the Policy Server

■ Obtaining a session

■ Providing a result object that stores results of API requests

■ Handling exceptions and results

■ Encapsulating property data

Classes for Internal Use

The Utilities package provides these classes for SiteMinder internal use only:

■ SmApiConstants

■ SmApiObject

■ SmApiPropertySets

■ SmApiExportFileHandler

■ SmApiImportFileHandler

■ SmFlag

These classes are used internally to define methods in the Policy Management API and
the DMS API.

Connection Class

30 Programming Guide for Java

Connection Class

Use the SmApiConnection class to create an API connection object and establish a
connection between the Agent API and Policy Server. Depending upon the constructor
you use, you can establish either a default connection or a user-defined connection.

The core methods of the SmApiConnection class are as follows:

Method Description

getAgentApiConnection() Retrieves the Agent API handle for the current
connection. Use this handle when issuing
subsequent Java API requests to the Policy

Server.

isValidApiConnection() Verifies whether a valid Agent API connection
is available.

setAgentApiConnection() Establishes a user-defined connection through
the handle passed into the method. If null is

passed, a static connection is established.

Note: Do not call the execute() method from your client application. This method is for
internal use only.

Session Class

The Session class, SmApiSession, lets you create a session object by passing in a valid
API connection and, depending upon the constructor you use, a session specification.
(A session specification is also known as a session ticket).

The core methods of the SmApiSession class are as follows:

Method Description

getApiConnection() Retrieves the SmApiConnection object for the
current connection.

getSessionSpec() Retrieves the specification for the current
session.

login() Logs in a SiteMinder administrator. The Policy
Server issues a session specification for the

session.

logout() Logs out a SiteMinder administrator.

Result Class

Chapter 2: Utilities Package 31

Method Description

setApiConnection() Sets a valid API connection.

setSessionSpec() Sets an existing session specification.

Note: For login and logout of end users, DMS organization administrators, and DMS
super administrators, use the AgentAPI.login() and AgentAPI.logout() methods in the
Agent API package.

Result Class

The Result class, SmApiResult, stores the result of a SiteMinder Java API request. A
SiteMinder result contains the following elements:

■ Facility. Origin of the result. For example, the result might originate on the client or
server.

■ Severity. Significance of the result, such as informational or warning.

■ Status. Status code of the result. Status codes are unique within each facility. You
can use a facility’s unique status code to distinguish a particular result from other
results that might have originated from the facility.

■ Message. Additional information about the result, such as descriptive text or
numeric details.

A result might also include a reason code. For example, a password policy result might
include a reason code of 1001, meaning that the password does not contain the
required minimum number of characters. To find a reason code for a result, call
getReason().

All server-side errors are returned as results, not as exceptions. However, when a
client-side exception is thrown, an SmApiResult object is embedded in the exception.

Interpret a Result Object

Each result object and its Facility/Severity/Status combination are represented by a
unique value. These unique values are associated with predefined constants defined in
the SmApiResult class—for example, SERVER_CONFIGURATION_FAILURE.

To determine the Facility/Severity/Status information for a result, you can call the
equals() method to compare the returned SmApiResult object with the result constants.

■ Facility: FACILITY_CONNECTION

■ Severity: SEVERITY_ERROR

Result Class

32 Programming Guide for Java

■ Status: 4

■ Message: Unable to get server configuration

You can output a result object as a string—for example, you can generate a result string
by calling toString() on the SmApiResult object.

A result string has five space-separated name/value pairs in the following format:

[facility=facility severity=severity reason=reason

status=statusCode message=message]

For example, suppose you call toString() for an SmApiResult object that occurs because
a user attempted to create a password with fewer than the minimum number of
alphabetic characters. The method might return a result string that looks like this:

[facility=4 severity=3 reason=1008 status=13 message=nArg=1,Arg1=3]

The fields in the result have the following meanings:

■ facility=4. The result originated on the server.

■ severity=3. The result is an error.

■ reason=1008. The error occurred because the requested password has fewer than
the minimum number of alphabetic characters required for passwords.

■ status=13. The unique result status code for this facility.

■ message=nArg=1,Arg1=3. An additional description of the result. The two parts to
this field have the following meanings:

■ nArg1=1. The error contains just one error description.

■ Arg1=3. The error description is 3. In the context of reason code 1008, the Arg1
value means that a password is required to have a minimum of 3 alphabetic
characters.

Core Methods in the Result Class

The core methods of the SmApiResult class include:

Method Description

equals() Indicates whether the current object is equal to the object
passed to the method.

getError() Retrieves a unique error code.

getFacility() Retrieves the facility code associated with the error.

Exception Class

Chapter 2: Utilities Package 33

Method Description

getMessage() Retrieves the message associated with the error.

getReason() Retrieves the reason code of the error.

getSeverity() Retrieves the severity code associated with the error.

getStatus() Retrieves the status code in the current facility. This method
can take as a parameter the result code from the server.

isSuccess() Reports whether the request was successful.

toString() Returns a string representation of the SmApiResult object.

Exception Class

The Exception class, SmApiException, contains the result class SmApiResult. The
following packages use SmApiException:

■ com.netegrity.sdk.policyapi

■ com.netegrity.sdk.dmsapi

■ com.netegrity.sdk.apiutil

The core methods of the SmApiException class include:

Method Description

getFacility() Retrieves the facility code of the exception.

getReason() Retrieves the reason code of the exception.

getSeverity() Retrieves the severity code of the exception.

getStatus() Retrieves the status code of the exception.

toString() Returns a string representation of the SmApiResult object.

The Exception class extends java.lang.Exception. By calling the inherited getMessage()
method, you can retrieve the message associated with the exception.

Property Class

34 Programming Guide for Java

Property Class

The Property class, SmProperty, holds the following information about a property:

■ Name

■ Value

■ Type (encrypted / plain)

The core methods of the SmProperty class include:

Method Description

getName() Retrieves the name of the property.

getType() Retrieves the type of the property (that is, 0 if plain text, 1
if encrypted).

getValue() Retrieves the value of the property.

setName() Sets the name of the property.

setType() Sets the type of the property, 0 if plain text & 1 if

encrypted.

setValue() Sets the value of the property.

Chapter 3: Agent API 35

Chapter 3: Agent API

This section contains the following topics:

SiteMinder Agents (see page 35)
Agent Type (see page 36)
Agent API Class Hierarchy (see page 36)
Implement the JNI Java Agent API (see page 37)
Implement the Pure Java Agent API (see page 38)
Connection to a Policy Server (see page 41)
User Access to Resources (see page 41)
How Web Agents Use the Agent API (see page 43)
Java Agent API Services (see page 44)
Session Services (see page 44)
Authorization Services (see page 46)
Auditing Services and Transaction Tracking (see page 46)
Management Services (see page 47)
Tunnel Services (see page 48)
Response Attributes (see page 48)
Single Sign-on (see page 48)
Server Clusters (see page 52)
Timeouts (see page 55)

SiteMinder Agents

A SiteMinder Agent is a client of the Agent API. The agent enforces access control
policies served by the Policy Server. The Policy Server is a general-purpose policy engine
with no specific knowledge of resources. The specific knowledge of resources is
provided by SiteMinder agents. Agents establish resource semantics and act as gate
keepers to protect resources from unauthorized users.

Different agent types protect different kinds of resources. Some agent types are
pre-defined, standard agents that are shipped as part of the SiteMinder product—for
example, the Web Agent, which provides HTTP access control for Web Servers.
However, you can also use the Agent API to implement custom agents.

The Agent API lets you create a custom agent that can authenticate and authorize users
in a variety of context-specific ways. For example, you could create an agent for FTP
transfers that does the following:

■ Implements certificate-based authentication instead of basic name and password
credentials.

■ Allows uploads and downloads based on an individual user’s authorization level.

Agent Type

36 Programming Guide for Java

Custom agents can participate in a single sign-on environment with standard SiteMinder
Web Agents.

Agent Type

The Agent Type defines the behavior of an agent. After you have developed a custom
agent, you must configure a new Agent Type for the agent in the Policy Server User
Interface. For example, if you developed a custom FTP Agent, you would then need to
configure an Agent Type for the FTP Agent in the Policy Server User Interface.

Note: For information on configuring an Agent Type for your custom agent, see the
SiteMinder Programming Guide for C.

Agent API Class Hierarchy

The primary point of access to the Java Agent API is the AgentAPI class. Several other
classes are provided to hold data required by the AgentAPI class:

■ Attribute

■ AttributeList

■ BinaryBuffer

■ InitDef

■ ManagementContextDef

■ RealmDef

■ ResourceContextDef

■ ServerDef

■ SessionDef

■ TokenDescriptor

■ TunnelServiceRequest

■ UserCredentials

Implement the JNI Java Agent API

Chapter 3: Agent API 37

Implement the JNI Java Agent API

Applications that are built using the JNI Java AgentAPI either directly or indirectly
(through another agent) are insulated from underlying implementation details,
including:

■ User namespaces, such as LDAP directories, SQL databases, or NT domains

■ Authentication methods as simple as username/password or as complex as PKI
systems

■ Authorizations based on group membership or individual profile data

Additional benefits provided by the Java Agent API include full session management
support, automatic encryption key rollover, and real-time policy updates.

To implement the JNI Java Agent API

1. Review the required software as listed in the accompanying release notes.

2. Review the sample code.

3. Write source code for your client application.

4. Ensure that your system can find the JNI support libraries when the Java Virtual
Machine (JVM) is invoked, as follows:

■ On Windows: Change PATH to include the following, so that
smjavaagentapi.dll, smerrlog.dll, and smcommonutil.dll can be found:

<install_path>\sdk\bin

■ On Solaris: Change LD_LIBRARY_PATH to include the following, so that
libsmjavaagentapi.so, libsmerrlog.so, libsmcommonutil.so can be found:

<install_path>/sdk/bin

■ On AIX: Change LIBPATH to include the following, so that libsmjavaagentapi.so,
libsmerrlog.so, and libsmcommonutil.so can be found:

<install_path>/sdk/bin

■ On Linux: Change LD_LIBRARY_PATH to include the following, so that
libsmjavaagentapi.so, libsmerrlog.so and libsmcommonutil.so can be found:

<install_path>/sdk/bin

■ On HP-UX 11: Change SHLIB_PATH to include the following, so that
libsmjavaagentapi.so, libsmerrlog.so, and libsmcommontuil.so can be found:

<install_path>/sdk/bin

Note: The Java Agent API is not available for HP10.

Implement the Pure Java Agent API

38 Programming Guide for Java

5. Ensure that SiteMinder can find the JNI Java AgentAPI JAR file when you compile or
run an agent that uses the Java Agent API. The JAR file, smjavaagentapi.jar, is stored
in the following locations:

■ Windows platforms:

<install_path>\sdk\java

■ UNIX platforms:

<install_path>/sdk/java

Add smjavaagentapi.jar to your CLASSPATH setting. When compiling, you can use
the -classpath switch.

6. Compile the Java Agent API application using javac.

For an example, see java-build.bat or java-build.sh in the sample directory
smjavaagentapi.

7. Configure the Policy Server to use the Java Agent API application.

8. Run the application.

For an example, see java-run.bat or java-run.sh in the sample directory
smjavaagentapi.

Implement the Pure Java Agent API

Applications that are built using the pure Java Agent API either directly or indirectly
(through another agent) are insulated from underlying implementation details,
including:

■ User namespaces, such as LDAP directories, SQL databases, or NT domains

■ Authentication methods as simple as username/password or as complex as PKI
systems

■ Authorizations based on group membership or individual profile data

Additional benefits provided by the Java Agent API include full session management
support, automatic encryption key rollover, and real-time policy updates.

To implement the pure Java Agent API

1. Review the required software as listed in the accompanying release notes.

2. Review the sample code.

3. Write source code for your client application.

Implement the Pure Java Agent API

Chapter 3: Agent API 39

4. Ensure that SiteMinder can find the pure Java Agent API .jar file when you compile
or run an agent that uses the Java Agent API. The JAR file, smagentapi.jar, is stored
in the following locations:

■ Windows platforms:

<install_path>\sdk\java

■ UNIX platforms:

<install_path>/sdk/java

Add smagentapi.jar, crypto.jar, cryptoFIPS.jar to your CLASSPATH setting. When
compiling, you can use the -classpath switch.

5. Compile the Java Agent API application using javac.

For an example, see java-build.bat or java-build.sh in the sample directory
smjavaagentapi.

6. Configure the Policy Server to use the Java Agent API application.

7. Run the application.

Pure Java Agent API Usage

Backward compatibility

The pure Java Agent API maintains binary and source compatibility with the JNI Java
Agent API. The pure Java Agent API supports all of the other SiteMinder Java SDK
interfaces that rely on the Agent API for connectivity to the SiteMinder Policy Server,
including the SiteMinder Policy Management API and the SiteMinder DMS API, in
addition to extending the portability of those interfaces.

Implement the Pure Java Agent API

40 Programming Guide for Java

Configuration limitations

The pure Java Agent API does not change the configuration of either the SiteMinder
Application Server Agents or any agents developed with the SiteMinder SDK. The
configuration of the pure Java Agent API is identical to the configuration of the JNI Java
Agent API with the following exceptions:

■ Migration of UNIX agents from the JNI Java Agent API to the pure Java Agent API
requires re-registration of the trusted host entity with the SiteMinder Policy Server
because the shared secret in the JNI Java API is computed differently from the pure
Java implementation.

■ On both Unix and Windows systems (due to file-locking incompatibilities with the
native code Agent API), the SmHost.conf file cannot be shared between agents
using the C/C++ or JNI Java Agent API and agents using the pure Java Agent API.
Therefore, a separate copy of the bootstrap configuration file must be kept for pure
Java Agent API agents.

■ To register a host for a 5.x-type custom pure Java Agent you must use
smreghost.bat (or smreghost.sh on UNIX), not smreghost.exe.

■ Upgrades from the JNI Java Agent API on Unix systems requires users of custom
4.x-based agents that use shared secrets encrypted with the 4.x encryptkey tool to
update their shared secret on the agent side for upgraded agents.

Enable Pure Java Agent API Tracing

The pure Java Agent API supports detailed trace messages, which are printed to the
console. These messages can be useful when running a command line tool that uses the
Agent API, such as smreghost.

To enable trace messages, set a system property named enableDebug to "true". From
the command line, add -Dcom.ca.siteminder.sdk.agentapi.enableDebug="true". For
example:

>SM_SMREGHOST_CLASSPATH="c:\ca\sdk\java\smagentapi.jar;c:\ca\sdk\java\cryptoj.jar"

>java -Dcom.ca.siteminder.sdk.agentapi.enableDebug="true" -classpath %SM_SMREGHOST_CLASSPATH%

com.ca.siteminder.sdk.agentapi.SmRegHost -i 127.0.0.1 -hc host_conf1 -hn trustedhost3 -u siteminder

-p firewall

Connection to a Policy Server

Chapter 3: Agent API 41

Connection to a Policy Server

Before an agent can perform work on behalf of its users, it must initialize connections to
one or more Policy Servers by issuing the init() method. Through the InitDef parameter,
you can specify connection parameters such as failover mode and connection pool size.
This step creates TCP connections and typically does not need to be done more than
once per agent instance.

After the Agent API is initialized, all API calls are fully thread-safe with respect to the
initialized API instance.

It is possible to initialize more than one API instance (for example, when working with
Policy Servers that use separate policy stores).

Immediately after initialization, the agent should communicate its version information
to the Policy Server by calling doManagement() with the constant
MANAGEMENT_SET_AGENT_INFO set in the ManagementContextDef object. The actual
information can be any string containing enough information about the agent, such as
the build number, and the version number. The string is recorded in the Policy Server
logs.

After the Agent API has been initialized, the agent can perform useful work. At this point
it can start accepting requests from its users, such as receiving GET requests for URLs.

User Access to Resources

The agent must perform the following steps before granting a user access to a
requested resource. The outcome of most steps can be cached to improve agent
performance. The agent can choose to cache as little or as much as possible.

1. Accept a user request.

Accept a user request to access a resource. This is the application-specific request.
For example, the Web Agent would accept a user’s GET request for a URL.

2. Check if the resource is protected.

Call isProtected() to determine if the requested resource is protected.

If the resource is protected, the policy server returns the required credentials that
must be obtained from the user in order to validate the user’s identity. If the
resource is not protected, access to the requested resource should be allowed.

The outcome of this step can be cached.

User Access to Resources

42 Programming Guide for Java

3. Authenticate the user.

Call login() to collect the required credentials from the user and to authenticate the
user.

Upon successful authentication, the Policy Server creates a session and returns
response attributes, including the unique session id and session specification. These
response attributes are policy-driven and may include user profile data, static or
dynamic privileges, a number of predefined authentication state attributes, or any
other data that was designated by a policy administrator.

The agent can now perform session management by caching user session
information and keeping track of session expiration.

4. Check if the user is authorized.

Call authorize() to validate that the user has access to the requested resource.

Upon successful authorization, the policy server returns response attributes
including resource-specific privileges. These response attributes are policy driven
and may include user profile data, static or dynamic privileges, or any other data
that was designated by a policy administrator.

At this point the user’s authorization information with respect to the requested
resource is known and can be cached to speed up future requests.

5. Audit cached authorization information.

Both the authentication and authorization steps log the relevant information about
the user, the protected resource, and the agent. However, if the agent performs
authorizations out of its cache, the transaction can still be logged through the
audit() method.

6. Allow access to resource.

Now that the user’s identity is known, authorization has been verified, and the
required entitlements obtained, give the authorized user access to the resource.

7. Issue a management request.

This is an optional step that is used to poll the Policy Server for update commands.
In response to a command, agents update encryption keys or flush caches or both.

When the agent is no longer needed, issue the unInit() method for each API instance.
This closes TCP connections to all policy servers.

Note: The Agent API does not provide a facility for caching in a manner that enforces
session validity. By choosing to cache user sessions and/or resource-specific privileges,
the agent becomes obligated to perform its own session management during each user
request. This is required, since caching on the agent removes the need to contact the
SiteMinder Policy Server to perform session validation and/or resource authorizations.

How Web Agents Use the Agent API

Chapter 3: Agent API 43

How Web Agents Use the Agent API

 The following figure shows the process flow that occurs when a Web Agent uses the
Agent API:

Java Agent API Services

44 Programming Guide for Java

Java Agent API Services

The Java Agent API provides a rich set of services that let you develop sophisticated,
secure, and robust agents. Building an agent involves using these services:

■ Session Services

■ Authorization Services

■ Auditing Services and Transaction Tracking

■ Management Services (key encryption, cache updates)

■ Tunnel Services

These services are accessed through the AgentAPI class.

Session Services

Sessioning is used to maintain consistent user sessions across multi-tiered application
environments.

AgentAPI methods that implement session services are:

■ login()

■ logout()

Agents that perform session management use the sessioning services of the Java Agent
API to create, delegate, validate, and terminate user sessions.

Note: For login and logout of SiteMinder administrators for Policy Server or DMS
sessions, use the methods SmApiSession.login() and SmApiSession.logout() in the Utility
package.

Session Creation and the Session Specification

A session is created after a successful user login. Once created, a user session persists
until it is terminated.

When a user is authenticated, the Policy Server issues a session specification. A session
specification contains information about the user.

User-side session persistence in a multi-tiered application environment is accomplished
by saving and maintaining the user information in the session specification. This session
specification represents a user session. It is the key to SiteMinder session management.

Session Services

Chapter 3: Agent API 45

The SiteMinder environment where the user session was created is responsible for the
creation, maintenance, and persistent storage of the session specification. For example,
the Web Agent (HTTP environment) stores the session specification in an HTTP cookie.

Agents create sessions using login(). This method authenticates the user credentials and
gets the information for session specification (including the unique session id). Once
created, the session specification is updated on subsequent Java Agent API calls that
also return updated expiration times. Agents can use this information to perform
custom session management and keep track of session timeouts.

If your Web server’s user-tracking feature is enabled, the SiteMinder Policy Server issues
an identity ticket in addition to the session specification. Identity tickets can be used for
identity-based personalization when a user is accessing a resource protected by
anonymous authentication schemes. Identity tickets never expire.

Another important feature that is seamlessly integrated with the sessioning mechanism
is the SiteMinder universal ID. A universal ID identifies the user to an application in a
SiteMinder environment through a unique identifier, such as a social security number or
customer account number. The universal ID facilitates identification of users between
old and new applications by delivering the user’s identification automatically, regardless
of the application. Once configured on the Policy Server, a user’s universal id becomes
part of the session specification and is made available to agents for the duration of the
entire session.

Session Validation

Agents request validation of a session specification to make sure that a user session has
neither expired nor been terminated or revoked. This can occur at any time during the
session’s lifetime. Agents call AgentAPI.login() to validate a session specification.

Session Delegation

When an application’s logic flow crosses application tiers, sessions may be delegated by
passing the session specification between two agents. Each agent can choose to have
the session specification validated.

Authorization Services

46 Programming Guide for Java

Session Termination

A session is terminated in any of the following ways:

■ After a user logs outs and the agent discards the session specification

■ When the session expires

■ When the session is revoked

■ When the user account is disabled

To terminate a session, the agent must discard the session specification. Once a session
is terminated, the user must log in again to establish a new session.

Authorization Services

Agents that perform access control functions use the authorization services of the
AgentAPI class. These services enable clients to verify a user’s rights to access a
resource, retrieve a user’s privileges with respect to specific resources, and determine
the specific access control, if any, that is imposed upon a resource.

You can determine whether a resource is protected by calling the isProtected() method.
This method accepts as a parameter the resource that is served by the requesting agent
and returns information about the user’s credentials.

Once the user’s identity is validated, the agent calls the authorize() method to
determine if the requesting user has access to the requested resource. Agents can
perform fine-grained access control by leveraging the collection of response attributes
that this method retrieves.

Auditing Services and Transaction Tracking

Agents can keep track of and log all user activity during a session. Although much of a
user’s activity is logged by the Policy Server, there are times when it may be necessary
to log authorizations done out of agent cache. Agents call the audit() method to log such
requests for resources.

By generating a unique transaction id, agents can correlate access control activity with
application activity. The transaction id can be given to both the authorization and
auditing methods so that the Policy Server would record the transaction-specific id
associated with the application activity. This can be used for non-repudiation.

Management Services

Chapter 3: Agent API 47

Management Services

A management protocol exists between agents and the SiteMinder Policy Server. This
protocol helps an agent manage its caches and encryption keys in a manner consistent
with both SiteMinder policies and administrative changes on the Policy Server.

To request the latest agent commands, an agent calls the method doManagement()
with MANAGEMENT_GET_AGENT_COMMANDS set in the ManagementContextDef
object. Typically, this call is made every n seconds by a thread running in the
background. The types of agent commands that can be retrieved are cache commands
and encryption commands.

Cache Commands

Cache commands inform the agent of any changes to its caches that may need to be
made as a result of administrative updates to the Policy Server.

The cache commands are:

■ CACHE_FLUSH_ALL

■ CACHE_FLUSH_ALL_USERS

■ CACHE_FLUSH_THIS_USER

■ CACHE_FLUSH_ALL_REALMS

■ CACHE_FLUSH_THIS_REALM

Encryption Commands

Encryption commands inform the agent of new encryption keys that are generated
administratively or automatically by the Policy Server. Agents save secure state can use
this protocol to keep track of the latest encryption keys.

The encryption commands are:

■ AFFILIATE_KEY_UPDATE

■ AGENT_KEY_UPDATE_NEXT

■ AGENT_KEY_UPDATE_LAST

■ AGENT_KEY_UPDATE_CURRENT

■ AGENT_KEY_UPDATE_PERSISTENT

Tunnel Services

48 Programming Guide for Java

Tunnel Services

Tunnel services enable agents to establish secure communications with a callable
service located on the Policy Server. This allows agents to perform custom actions over a
secure, VPN-like channel without having to address issues such as encryption key
management.

Response Attributes

Response attributes enable the Policy Server to deliver information to agents. Response
attributes are managed through methods in the AgentAPI class.

There are two types of response attributes:

■ Well-known

■ Policy-based

The well-known attributes are always returned by the Policy Server after certain calls
such as login(). These attributes represent static, fixed data such as the user DN and
Universal ID.

The policy-based attributes are returned by the login() and authorize() methods. These
attributes are based on policies and are the vehicle for delivering static and dynamic
data from the Policy Server to agents, which can distinguish between authentication and
authorization attributes. The actual source of the data is defined on the Policy Server
using the responses feature that can be configured to deliver data from a variety of
sources. Data may include static information, information from a directory profile, or a
custom Policy Server plug-in. Once the responses are properly configured, agents are
capable of performing fine-grained access control as well as profile-driven
personalization.

Based on a policy definition, response attributes can time out or be cached for the
duration of the user session. The Policy Server delivers an attribute along with the TTL
(Time-To-Live) value, calculated in seconds. If the agent is caching user sessions and/or
authorizations, it is responsible for keeping the relevant attributes up to date. Agents
issue the updateAttributes() method to update stale attributes.

Single Sign-on

In a single sign-on environment, a user who successfully authenticates through a given
agent does not have to re-authenticate when accessing a realm protected by a different
agent. When a custom agent is involved in a single sign-on environment, the two agents
must be in the same cookie domain—for example, xxx.domainname.com.

Single Sign-on

Chapter 3: Agent API 49

Single sign-on is made possible through a single sign-on cookie named SMSESSION. This
cookie is created and written to the user’s browser either by SiteMinder or by the
custom agent.

Class AgentAPI contains two methods that allow custom agents to participate in a single
sign-on environment with standard SiteMinder Web Agents:

decodeSSOToken()

The custom agent extracts the cookie’s contents, called a token, from an existing
SMSESSION cookie and passes the token to this method. The method decrypts the
token and extracts the specified information. This method can also be used to
update the last-access timestamp in the token.

createSSOToken()

After the user successfully logs in through the custom agent, the custom agent
passes information about the user to this method. The method creates an
encrypted token from this user information and from session information returned
from the login call. The custom agent writes the token to the SMSESSION cookie.

See the sample custom agent code for an example of setting up the parameters for the
single sign-on methods and parsing the results. The sample custom agent code is
located in the smjavaagentapi directory of <install_path>\sdk\samples.

Log on through a Custom Agent

Here is the typical sequence of events in a single sign-on environment when the initial
login is through the custom agent:

1. User logs in through the custom agent.

2. Custom agent calls login() to authenticate the user. The user is challenged for
credentials.

3. Custom agent calls createSSOToken() and passes to it information about the user
(user name, user DN, IP address of the requesting client). SiteMinder adds this
information to a token along with session information returned from the login call.
SiteMinder also encrypts the information in the token.

4. Custom agent creates the SMSESSION cookie in the user’s browser and writes the
token to the cookie.

5. User requests a resource protected by a standard SiteMinder agent.

6. The standard agent performs a login operation, which validates the user based on
the information in the single sign-on cookie. The user is not challenged for
credentials.

Single Sign-on

50 Programming Guide for Java

Log on through a Standard Agent

Here is the typical sequence of events that occurs in a single sign-on environment when
the initial login is performed through the standard SiteMinder Web Agent:

1. User logs in through the standard agent.

2. Standard agent authenticates the user by challenging the user for credentials
through the login call.

3. SiteMinder creates the SMSESSION cookie in the user’s browser and inserts the
encrypted token containing session information.

4. User requests a resource protected by a custom agent.

5. The custom agent obtains the SMSESSION cookie from the user’s request and
extracts the token.

6. The custom agent passes the token to the method decodeSSOToken(). The method
decodes the token and returns a subset of the token’s attributes to the custom
agent.

7. The custom agent obtains the session specification from the token and passes the
session specification to login(). The login call validates the user without challenging
the user for credentials.

8. User requests a resource protected by a standard SiteMinder agent.

9. The standard agent performs a login operation, which validates the user based on
the contents of the SMSESSION cookie. The user is not challenged for credentials.

Standard Agent Support

Custom agents created with the SiteMinder SDK v6.x can accept SMSESSION cookies
created by a standard SiteMinder v4.x, v5.x, or v6.x Web Agent. However, standard
SiteMinder v4.x or v5.x Web Agents can only accept cookies created by a custom agent
if the standard agent has been upgraded with the appropriate Siteminder Agent
Quarterly Maintenance Release (QMR). For information about the QMR version
required for each standard agent version, see the accompanying SDK release notes.

Single Sign-on

Chapter 3: Agent API 51

To enable a SiteMinder v4.x or v5.x agent with the appropriate QMR upgrade to accept
SMSESSION cookies created by a custom agent, the standard agent’s Agent
configuration file (LocalConfig.conf with IIS servers or WebAgent.conf with other
servers) or central configuration object (for v5.x or higher) must contain the following
entry:

AcceptTPCookie="yes"

Set AcceptTPCookie as follows:

■ With 4.xQMR4 agents and above, add AcceptTPCookie="yes" directly in the
standard agent’s Agent configuration file.

■ With 5.xQMR1 agents and above, add the entry to the standard agent’s Agent
Configuration Object if the AllowLocalConfig parameter for that object is set to no.
If AllowLocalConfig is set to yes, you can set AcceptTPCookie in the standard agent’s
Agent configuration file.

How Information Is Bound to a Session

Session information can consist of more than the session specification. Session
information can include any information that the client application wants to associate
with the user’s session.

Application-defined session information consists of name/value pairs called session
variables. For example, business logic, certificate information, and SAML assertions for
affiliate operations can all be stored as session variables and bound to the session ID.

The class AgentAPI provides the following methods for setting, retrieving, and deleting
session variables:

■ setSessionVariables()

■ getSessionVariables()

■ delSessionVariables()

Session variables are stored in a server-side database called the session store. The
session store is managed by the Policy Server.

Advantages of Session Variables

When a client application uses session variables:

■ Up to 4K of data can be stored for each session variable value.

■ The session information persists across multiple Policy Servers. Centralizing session
information on the server allows features such as cross-domain session
management, including enforcing logout and idle timeout across different domains.

Server Clusters

52 Programming Guide for Java

Requirements for Using Session Variables

For a client application to use session variables, both of the following prerequisites must
be met:

■ The session store must be enabled in the Policy Server Management Console.

■ During realm configuration in the Policy Server UI, Persistent Session must be
selected for at least one of the realms to be accessed during the session. As soon as
the user accesses a realm configured for persistent sessions, session variables can
be used throughout the remainder of the session.

End of Session Cleanup

When the user logs out and the agent discards the session specification, the session
ends. In the case of a persistent session, SiteMinder removes all session information,
including any session variables, from the session store.

Server Clusters

To help prevent service interruptions, SiteMinder includes a failover feature. If the
primary Policy Server fails and failover is enabled, a backup Policy Server takes over
policy operations. Beginning with SiteMinder v6.0, failover can occur not only between
Policy Servers, but between groups, or clusters, of Policy Servers.

The cluster functionality also improves server performance by providing dynamic load
balancing between the servers in a cluster. With dynamic load balancing, policy
operations are automatically distributed between the available servers in a cluster
according to the performance capabilities of each server.

Clustered and Non-Clustered Servers

An agent running against Agent API v6.x can be associated with one or more Policy
Servers, or with one or more clusters of Policy Servers, as follows:

■ Clustered servers

In the ServerDef object for each clustered server, set clusterSeq() to the sequence
number for the cluster. All servers in a cluster have the same cluster sequence
number.

Behavior: Failover occurs between clusters of servers if multiple clusters are
defined. Also, requests to servers within a cluster are sent according to the
improved performance-based load-balancing techniques introduced with Agent API
v6.0.

Server Clusters

Chapter 3: Agent API 53

■ Non-clustered servers

In the ServerDef object for each non-clustered server, set the method clusterSeq()
to 0.

Behavior: Behavior is the same as in v5.x installations—that is, you can enable
failover among the servers associated with the agent, or you can enable
round-robin behavior among the servers.

When round-robin behavior is enabled, the improved performance-based
load-balancing techniques introduced with Agent API v6.0 are used.

Note: The same agent cannot be associated with both clustered and non-clustered
servers.

Cluster Configuration

You can configure a cluster through the Agent API or through a host configuration object
using the Policy Server User Interface. If you configure a cluster through the Agent API,
be sure that the configuration does not conflict with any cluster configuration
information that may be defined in the host configuration object.

You configure the individual servers or clusters of servers that the agent is associated
with through the InitDef and ServerDef classes.

Cluster failover occurs according to the following configuration settings:

■ Failover threshold. The minimum percentage of servers within a cluster that must
be available for Policy Server requests. If the number of available servers falls below
the threshold, failover to the next cluster occurs.

The failover threshold percentage applies to all clusters associated with the agent.

To determine the number of servers that the percentage represents in any given
cluster, multiply the threshold percentage by the number of servers in the cluster,
rounding to the nearest integer. For example, with a 60-percent failover threshold
for a cluster of five servers, failover to the next cluster occurs when the number of
available servers in the currently active cluster falls below 3.

Set through: InitDef constructor that contains the failOverThreshold parameter.

■ Sequence of cluster failover. Each cluster is assigned a sequence number. When
cluster failover occurs, SiteMinder sends subsequent Policy Server requests to the
next cluster in the cluster sequence.

Set through: ServerDef.clusterSeq().

Server Clusters

54 Programming Guide for Java

Cluster Failover

If your site uses clusters, you typically will have a primary cluster and one or more
backup clusters.

The primary cluster is the cluster to which SiteMinder sends requests as long as the
number of available servers in the cluster does not fall below the failover threshold. If
there are not enough available servers in the primary cluster, failover to the next cluster
in the cluster sequence occurs. If that cluster also fails, failover to the third cluster
occurs, and so on.

When All Clusters Fail

If the number of available servers falls below the failover threshold in all clusters
associated with the agent, policy operations do not stop. Requests are sent to the first
cluster in the cluster sequence that has at least one available server.

For example, suppose an agent is associated with two clusters—C1 containing three
servers, and C2 containing five servers.The failover threshold for any cluster associated
with the agent is set at 60 percent.

The following table shows the minimum number of servers that must be available within
each cluster:

Cluster Servers in
Cluster

Percentage
Failover

Threshold

Numeric
Failover
Threshold
(Minimum

Available Servers)

C1 3 60 1

C2 5 60 3

If the number of available servers falls below the threshold in each cluster, so that C1
has no available servers and C2 has just two, the next incoming request will be
dispatched to a C2 server with the best response time. After at least two of the three C1
servers are repaired, subsequent requests are load-balanced among the available C1
servers.

Version Compatibility and Failover Behavior

Agent API v6 is backwards-compatible with Agent API v5, allowing complete
interoperability between v5/v6 agents and the v5/v6 Agent APIs.

Timeouts

Chapter 3: Agent API 55

Timeouts

Agents can enforce session timeouts or rely on the Policy Server to validate each
request. Typically, caching of user sessions or privileges by the agent requires some
form of timeout enforcement on the agent side. In this case, the agent is responsible for
keeping track of last access time and knowing when the session is going to expire.

Agents that do not cache can leverage the Policy Server’s enforcement of timeouts. The
following Java Agent API methods return the updated timeout information after every
call:

■ login()

■ authorize()

■ audit()

Chapter 4: Policy Management API 57

Chapter 4: Policy Management API

This section contains the following topics:

About Policy Management (see page 58)
Policy Management Setup (see page 59)
Required JAR File (see page 59)
Policy Store Objects (see page 59)
Write a Policy Management Application (see page 61)
Administrator Methods (see page 63)
Agent Methods (see page 63)
Agent Configuration Object Methods (see page 64)
Authentication and Authorization Map Methods (see page 64)
Authentication Scheme Methods (see page 65)
Certificate Map Methods (see page 65)
Domain Methods (see page 65)
General Object Methods (see page 66)
Group Methods (see page 67)
Host Configuration Object Methods (see page 67)
ODBC Query Scheme Methods (see page 68)
Password Policy Methods (see page 68)
Policy Methods (see page 69)
Realm Methods (see page 69)
Response Methods (see page 70)
Root Configuration Methods (see page 70)
Rule Methods (see page 71)
Self-Registration Methods (see page 71)
Trusted Host Object Methods (see page 71)
User Directory Methods (see page 72)
User Policy Methods (see page 73)
Utility Methods (see page 73)
Object Associations (see page 74)
Add Objects to the Policy Store (see page 74)
Retrieve Objects from the Policy Store (see page 75)
Delete Objects from the Policy Store (see page 75)
Authentication Scheme Configuration (see page 75)
Performance Consideration (see page 107)

About Policy Management

58 Programming Guide for Java

About Policy Management

Policy management consists of creating, deleting, and modifying policy objects within a
SiteMinder policy store. Through the Policy Management API, you can perform most of
the data manipulations that you can perform through the native Policy Server User
Interface. For example, you can write a client application that allows administrators to
perform tasks such as:

■ Creating a policy domain

■ Creating an Agent object

■ Creating an Agent configuration object

■ Creating a host configuration object

■ Registering a trusted host

■ Creating a SiteMinder user directory object

■ Creating an authentication scheme object

■ Creating an administrator

■ Creating a realm

■ Adding a realm to a policy domain

■ Creating a rule

■ Creating a response

■ Creating a policy

■ Adding a user or group to a policy

■ Adding a rule to a policy

■ Setting responses for rules in a policy

■ Migrating an entire policy store or an individual policy domain remotely

Policy Management Setup

Chapter 4: Policy Management API 59

Policy Management Setup

To run applications built with the Policy Management API:

■ Use the Policy Server Management Console to configure the Policy Server so that it
points to the policy store you want to access.

■ Run your Policy Management application on the same machine as the Policy Server
or on a machine that has network access to the Policy Server.

Note: If an application built with the Policy Management API runs on the same machine
as the Policy Server, the application must run as the same user who installed the Policy
Server (for example, smuser on UNIX platforms).

Required JAR File

The JAR file smjavasdk2.jar is required for building and running Policy Management
applications. The JAR file is stored in the following locations:

■ Windows platforms:

<install_path>\sdk\java

■ UNIX platforms:

<install_path>/sdk/java

Policy Store Objects

Interface SmPolicyApi is implemented by the class SmPolicyApiImpl. Use this class as the
starting point for the Policy Management API. Each policy store object is associated with
a class in the Policy Management API. You create and manage policy store objects
through the methods in an object’s class.

Policy store objects can be classified according to scope:

■ Domain objects are visible only within the domain. They cannot be shared between
domains.

■ Global objects are visible across all domains.

Global objects are sometimes called system objects.

Global objects include:

■ Administrators

■ Agent types

■ Agents and agent groups

Policy Store Objects

60 Programming Guide for Java

■ Agent Configuration objects

■ Host Configuration objects

■ Trusted Hosts

■ Authentication schemes

■ Authentication/authorization maps

■ Certificate maps

■ Domains

■ ODBC query schemes

■ Password policies

■ Registration schemes

■ User directories

Domain objects include:

■ Policies

■ Realms

■ Responses and response groups

■ Response attributes

■ Rules and rule groups

■ User policies

When you are working in the Policy Server user interface, you will see most of the above
objects listed in the System and Domain tabs of the SiteMinder Administration window.

Note: Descriptions in the Javadoc reference specify whether an object has global scope
or domain scope.

Write a Policy Management Application

Chapter 4: Policy Management API 61

Write a Policy Management Application

To write a Policy Management application

1. Establish a Connection to the Policy Server

2. Obtain a Session Object

3. Pass in the Session Object

4. Make Policy Management API Requests

5. Terminate the Administrator Session

The SiteMinder SDK contains a sample of how to use the classes and methods in the
Java Policy Management API.

Establish a Connection to the Policy Server

To establish a connection to the Policy Server, use the SmApiConnection class of the
Utilities package. This class holds the Agent API handle through which Java API requests
are sent.

There are two types of connection handles in this class:

■ A default connection handle. A default connection handle:

■ Represents a single instance of an Agent API object.

■ Is static across the process.

■ Allows connections to the Agent API object from both Policy Management and
DMS clients.

You can establish multiple connections to the Policy Server through the single Agent
API object instance.

■ A user-defined connection handle. You can create multiple user-defined connection
objects; each one can support multiple connections to the Policy Server.

Write a Policy Management Application

62 Programming Guide for Java

Obtain a Session Object

A session object is obtained when a user or administrator successfully logs in. In this
case, an administrator login is required, since only administrators can perform policy
management.

To log in a SiteMinder administrator and establish an administrator session, call the
login() method in the SmApiSession class of the Utilities package.

Once login is successful, the session object will hold a valid administrator session
specification.

Pass in the Session Object

After obtaining a valid session, create a Policy Management API object by passing the
session to the constructor of the SmPolicyApiImpl class—for example:

SmPolicyApi policyApi = new SmPolicyApiImpl (apiSession);

In the example, policyApi is the new Policy Management API object and apiSession is the
session obtained when the administrator successfully logged in.

Make Policy Management API Requests

After you obtain a session object and create a Policy Management API object, you are
ready to make Policy Management requests. Most of the methods in the Policy
Management API are categorized according to the SiteMinder object that a given
method acts upon—for example, agents, policies, and rules.

There is also a Utilities category for methods that perform services, such as cache and
encryption key management. Use these categories to help you find a particular Policy
Management API method to use in your custom policy management applications.

Note: The methods in the policyapi package can only be called from a Siteminder
administrator session.

Terminate the Administrator Session

When you are finished making Policy Management API requests, log out the
administrator by calling the logout() method in the SmApiSession class of the Utilities
package.

Important! After you have called the logout() method, the connection handle becomes
invalid. Do not reference it again.

Administrator Methods

Chapter 4: Policy Management API 63

Administrator Methods
Unless otherwise specified, the following methods are in the class SmPolicyApiImpl. The
following methods act on administrator objects. You create an administrator object by
instantiating SmAdmin.

Method Description

addAdmin() Adds an administrator object to the policy
store.

addAdminToDomain() Associates an administrator with a
domain.

deleteAdmin() Deletes an administrator.

getAdmin() Gets the contents of an administrator.

getAdminUserDirs() Gets a list of user directories that an
administrator can manage.

modifyAdmin() Modifies an administrator.

removeAdminFromDomain() Disassociates an administrator from a
domain.

Agent Methods

Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on agent objects. You create an agent
object by instantiating SmAgent.

Method Description

addAgent() Adds an agent object to the policy store.

deleteAgent() Deletes an agent.

getAgent() Gets the contents of an agent.

modifyAgent() Modifies an agent.

Agent Configuration Object Methods

64 Programming Guide for Java

Agent Configuration Object Methods

Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on agent configuration objects. You define
an agent configuration object by instantiating SmAgentConfig.

Method Description

addAgentConfig() Adds an agent configuration object to the

policy store.

deleteAgentConfig() Deletes an agent configuration object.

getAgentConfig() Gets the contents of an agent
configuration object.

modifyAgentConfig() Modifies an agent configuration object.

Authentication and Authorization Map Methods
Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on authentication and authorization
directory mapping objects. You create an authentication and authorization directory
mapping object by instantiating SmAuthAzMap.

Method Description

addAuthAzMap() Adds an authentication and authorization
directory mapping object to the policy
store.

deleteAuthAzMap() Deletes an authentication and

authorization directory mapping object.

getAuthAzMap() Gets the contents of an authentication
and authorization directory mapping
object.

modifyAuthAzMap() Modifies an authentication and
authorization directory mapping object.

Authentication Scheme Methods

Chapter 4: Policy Management API 65

Authentication Scheme Methods
Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on authentication schemes. You create an
authentication scheme by instantiating SmScheme.

Method Description

addScheme() Adds an authentication scheme to the
policy store.

deleteScheme() Deletes an authentication scheme.

getScheme() Gets the contents of an authentication
scheme.

modifyScheme() Modifies an authentication scheme.

Certificate Map Methods
Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on certificate mapping objects. You create
certificate mapping objects by instantiating SmCertMap.

Method Description

addCertMap() Adds a certificate mapping object to the
policy store.

deleteCertMap() Deletes a certificate mapping object.

getCertMap() Gets the contents of a certificate mapping
object.

modifyCertMap() Modifies a certificate mapping object.

Domain Methods
Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on domain objects. You create domain
objects by instantiating SmDomain.

Method Description

addDomain() Adds a domain object to the policy store.

General Object Methods

66 Programming Guide for Java

Method Description

deleteDomain() Deletes a domain.

getDomain() Gets the contents of a domain.

getDomainObject() Gets a domain object for the specified
object name or OID.

getDomainObjectNames() Gets a list of domain objects within a
domain.

isDomainObject() Indicates whether an object is a domain
object.

In classes SmObjectImpl,
SmDomainObjectImpl.

modifyDomain() Modifies a domain.

General Object Methods
Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on multiple types of objects.

Method Description

getGlobalObjectNames() Gets a list of global objects.

getObject() Gets a global object for the specified
object name or OID.

getOid() Retrieves an object identifier for an
object.

In class SmObjectImpl.

isWriteable() Specifies whether an object is writeable.

In classes SmAgentType,

SmDomainObjectImpl, and SmObjectImpl.

renameObject() Renames an object.

Group Methods

Chapter 4: Policy Management API 67

Group Methods

Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on group objects. Group objects are
created with SmAgentGroup (for agent groups), SmResponseGroup (for response
groups), or SmRuleGroup (for rule groups).

Method Description

addGroup() Adds an agent, response, or rule group to

the policy store.

addToGroup() Adds a group element of type rule,
response, or agent to the specified group.

deleteGroup() Deletes an existing group.

getGroup() Gets the contents of an existing group.

getGroupMembers() Get a list of groups of all types.

modifyGroup() Modify a group.

removeFromGroup() Removes a group element from a group.

Host Configuration Object Methods
Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on host configuration objects. You define a
host configuration object by instantiating SmHostConfig.

Method Description

addHostConfig() Adds a host configuration object to the
policy store.

deleteHostConfig() Deletes a host configuration object.

getHostConfig() Gets the contents of a host configuration
object.

modifyHostConfig() Modifies a host configuration object.

ODBC Query Scheme Methods

68 Programming Guide for Java

ODBC Query Scheme Methods

Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on ODBC Query schemes. You create ODBC
Query schemes by instantiating SmODBCQuery.

Method Description

addODBCQuery() Adds an ODBC query object to the policy

store.

deleteODBCQuery() Deletes an ODBC query object.

getODBCQuery() Gets the contents of an ODBC query
object.

modifyODBCQuery() Modifies an ODBC query object.

Password Policy Methods

Unless otherwise specified, the methods listed in this table are in the class
SmPolicyApiImpl. The following methods act on password policy objects. You create
password policy objects by instantiating SmPasswordPolicy.

Method Description

addPasswordPolicy() Adds a password policy object to the
policy store.

deletePasswordPolicy() Deletes a password policy.

getPasswordPolicy() Gets the contents of a password policy.

isEnabled() Specifies whether the password policy is
enabled.

In class SmPasswordPolicy.

isEntireDir() Specifies whether the password policy
applies to the entire directory.

In class SmPasswordPolicy.

modifyPasswordPolicy() Modifies a password policy.

Policy Methods

Chapter 4: Policy Management API 69

Policy Methods

The following methods act on policy and policy link objects. A policy link is an
association of a policy, a rule, and optionally, a response. Unless otherwise specified,
these methods are in the class SmPolicyApiImpl.

Policy objects are created with SmPolicy. Policy link objects are created with
SmPolicyLink.

Method Description

addPolicy() Adds a policy object to the policy store.

addPolicyLink() Adds a policy link to a policy.

deletePolicy() Deletes the policy associated with the
specified domain.

deletePolicyLink() Removes a policy link from a policy.

getPolicy() Gets the contents of a policy.

getPolicyLinks() Gets all of the policy links for the specified

policy and domain.

modifyPolicy() Modify the policy associated with the
specified domain.

modifyPolicyLink() Modifies the specified policy link.

Realm Methods
The following methods act on realm objects. Realm objects are created with SmRealm.

Method Description

addRealm(() Adds a realm object to the policy store.

deleteRealm() Deletes a realm.

getRealm() Gets the contents of a realm.

getRealmRules() Gets all the rules for the specified realm
and domain.

getRealmUserPolicies() Gets a list of user policies that can access
a realm.

modifyRealm() Modifies the specified realm.

Response Methods

70 Programming Guide for Java

Response Methods
The following methods act on response and response attribute objects. Unless
otherwise specified, these methods are in the class SmPolicyApiImpl. Response objects
are created with SmResponse. Response attribute objects are created with
SmResponseAttr.

Method Description

addResponse() Adds a response object to the policy store.

addResponseAttr() Creates a response attribute and
associates it with a response.

deleteResponse() Deletes a response.

deleteResponseAttribute() Deletes a response attribute.

getResponse() Gets the contents of a response.

getResponseAttrs() Gets a list of attributes for the specified
response.

modifyResponse() Modify the specified response.

setResponseInPolicyLink() Changes the response for the specified
policy link.

Root Configuration Methods
The following methods act on root configuration objects. Unless otherwise specified, the
methods listed in this table are in the class SmPolicyApiImpl. You create root
configuration objects by instantiating SmRootConfig.

Method Description

addRootConfig() Adds a root configuration object to the
policy store.

deleteRootConfig() Deletes a root configuration.

getRootConfig() Gets the contents of a root configuration.

modifyRootConfig() Modifies a root configuration.

Rule Methods

Chapter 4: Policy Management API 71

Rule Methods
The following methods act on rule objects. Unless otherwise specified, the methods
listed in this table are in the class SmPolicyApiImpl. You create rule objects by
instantiating SmRule.

Method Description

addRule() Adds a rule object to the policy store.

deleteRule() Deletes a rule.

getRule() Gets the contents of a rule.

modifyRule() Modifies a rule.

Self-Registration Methods
The following methods act on self-registration objects. Unless otherwise specified, the
methods listed in this table are in the class SmPolicyApiImpl. You create self-registration
objects by instantiating SmSelfReg.

Method Description

addSelfReg() Adds a self-registration object to the

policy store.

deleteSelfReg() Deletes a self-registration object.

getSelfReg() Gets the contents of a self-registration
object.

modifySelfReg() Modifies a self-registration object.

Trusted Host Object Methods
The following methods act on Trusted Host objects. Unless otherwise specified, the
methods listed in this table are in the class SmPolicyApiImpl. You define a Trusted Host
object by instantiating SmTrustedHost.

Method Description

addTrustedHost() Registers a trusted host with the Policy
Server.

deleteTrustedHost() Deletes a trusted host object.

User Directory Methods

72 Programming Guide for Java

User Directory Methods

User management functionality is provided in the DMS API. However, the Policy
Management API provides methods for getting and setting user attributes. These
methods are in the SmUserDirectory class.

For example:

■ To specify which user attribute holds the disabled state of the user, call
setDisabledAttr() in SmUserDirectory.

■ To disable and enable users, use the DMS API.

The following methods act on user directory objects. Unless otherwise specified, the
methods listed in this section are in the class SmPolicyApiImpl. You create user directory
objects by instantiating SmUserDirectory.

Method Description

addUserDirectory() Adds a user directory object to the policy
store.

addUserDirToDomain() Associates an existing user directory with
a domain.

deleteUserDirectory() Deletes a user directory.

getDirectoryContents() Gets a list of distinguished names and
classes for the specified user directory.

getUserDirectory() Gets the contents of a user directory.

getUserDirSearchOrder() Retrieves the search order of user
directories for a domain by retrieving a

vector of user directory names.

lookupDirectory() Gets a list of distinguished names and
classes for the specified user directory and

search pattern.

modifyUserDirectory() Modifies a user directory.

removeUserDirFromDomain() Disassociates an existing user directory

from a domain.

setUserDirSearchOrder() Sets the search order of user directories in
a domain.

User Policy Methods

Chapter 4: Policy Management API 73

User Policy Methods
The following methods act on user policy objects. Unless otherwise specified, the
methods listed in this table are in the class SmPolicyApiImpl. You create user policy
objects by instantiating SmUserPolicy.

Method Description

addUserPolicy() Adds a user policy object to the policy
store.

deleteUserPolicy() Deletes a user policy for a specified
domain.

getUserPolicies() Gets all the user policies for the specified
policy and domain.

Utility Methods
The following methods provide a variety of services, including cache and encryption key
management. Unless otherwise specified, the methods listed in this table are in the
class SmPolicyApiImpl.

Method Description

changeDynamicKey() Changes a dynamic encryption key.

changePersistentKey() Changes the persistent encryption key.

changeSessionKey() Changes the session encryption key.

flushAll() Flushes all SiteMinder caches.

flushRealm() Flushes a realm from the resource cache.

flushRealms() Flushes all realms from the resource
cache.

flushUser() Flushes a user from the user information
cache.

flushUsers() Flushes all users from the information
cache.

search() Searches the specified object.

setApiSession() Sets the API session object.

Object Associations

74 Programming Guide for Java

Object Associations

Some objects can be associated with or disassociated from one another—for example,
AddAdminToDomain() adds an administrator object to a domain, and
RemoveAdminFromDomain() removes an administrator object from a domain. An
add-to operation requires that both objects exist prior to the call. After a remove-from
operation, both objects still exist, but they are no longer associated with one other.

When you are looking for a method that associates or disassociates two objects, look in
the category of the method that you are adding or removing. For example,
AddAdminToDomain() and RemoveAdminFromDomain() are both found in
Administrator Methods.

Add Objects to the Policy Store

After creating a Policy Management API object, you can create objects to add to the
policy store.

To add objects to the policy store

1. Create an object to be added to the policy store.

For example, if you want to create an agent object:

SmAgent agent = new SmAgent();

2. Set the appropriate fields for the object—for example:

agent.setName ("myAgent");

agent.setSecret ("siteminder");

agent.setDescription ("Sample agent");

agent.setAgentType (SmAgentType.DefaultAgentType);

3. Add the object to the policy store, as follows:

■ Call the add... method for the object you just created—for example, addAgent()
for an agent object, or addDomain() for a domain object—and pass in the
object you want to add to the policy store.

■ Returning the result into a result object.

For example:

result = policyApi.addAgent(agent);

4. Examine the result.

Retrieve Objects from the Policy Store

Chapter 4: Policy Management API 75

If the call is successful:

■ The method returns an SmApiResult object whose isSuccess() method returns true.

■ The object is added to the SiteMinder policy store.

■ The Oid field in the corresponding object structure is set to the object identifier.

Retrieve Objects from the Policy Store

To retrieve an object from the policy store

1. Create an object of the relevant class to store the returned properties. For example,
the following code creates an agent object:

SmAgent myAgent = new SmAgent();

2. Call the appropriate get... function for the object you just created—for example,
getAgent() for an agent object, or getDomain() for a domain object—and pass in the
object you just created. For example, if you’re retrieving an agent named myAgent:

result = myPolicyApi.getAgent ("myAgent", myAgent);

If the method succeeds, it populates myAgent with the properties of the specified agent
object. (If a get... method retrieves a list, the list is written to a vector.) If no matching
objects are found, the properties of the receiving object retain their initial values.

Delete Objects from the Policy Store

A delete operation deletes an object from the policy store. You can only delete one
object at a time from the policy store.

To delete an object, use the object-deletion method for the object you’re deleting—for
example, deleteAgent() for an agent object, or deleteDomain() for a domain object

Authentication Scheme Configuration

When you configure an authentication scheme programmatically, you provide
information that would otherwise be provided through the Authentication Scheme
Properties dialog box of the Policy Server UI.

Authentication Scheme Configuration

76 Programming Guide for Java

When you configure an authentication scheme, you use the get... and set... methods in
the SmScheme class to provide the following information:

■ Scheme type

SiteMinder provides a number of standard authentication scheme types (also called
templates). Each authentication scheme type is configured differently. The scheme
types are descibed in subsequent topics.

■ Description

Brief description of the authentication scheme.

■ Protection level

Protection level values can range from 1 through 1000. The higher the number, the
greater the degree of protection provided by the scheme.

■ Library

An authentication scheme library performs authentication processing for the
associated authentication scheme type. Each pre-defined authentication scheme is
shipped with a default library, which you typically will use. But optionally, you can
use a custom library instead of the default.

■ Parameter

Additional information that the authentication scheme requires, such as the URL of
an HTML login page.

With some authentication schemes, the parameter information is constructed from
field values in the Scheme Type Setup tab of the Authentication Scheme Properties
dialog box. To see how a parameter string might be constructed for a given scheme
type, open this dialog box, choose the appropriate scheme type, provide values to
the fields in the Scheme Type Setup tab, and view the constructed parameter in the
Advanced tab.

For information on providing parameter values for different authentication scheme
types, see the chapter on authentication schemes in the Policy Design Guide.

■ Shared Secret

Information that is known to both the authentication scheme and the Policy Server.
Different authentication schemes use different kinds of secrets. Most schemes use
no secret.

■ Is template?

A flag that specifies whether the authentication scheme is a template.

■ Is used by administrator?

A flag that specifies whether the authentication scheme can be used to
authenticate administrators.

■ Save Credentials?

A flag that specifies whether the user’s credentials will be saved.

Authentication Scheme Configuration

Chapter 4: Policy Management API 77

■ Is RADIUS?

A flag that specifies whether the scheme can be used with RADIUS agents.

■ Ignore password check?

A flag that specifies whether password policies for the scheme are enabled. If True
(1), password policies will be disabled.

Note: These categories of information can be used for different purposes in different
authentication schemes. For example, with the TeleID authentication scheme, the
shared secret is used to supply the encryption seed.

Anonymous Template

Use this table when configuring an authentication scheme based on the scheme type
Anonymous. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeAnonymous)

The scheme type Anonymous.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(0)

Set to 0. Not applicable to this scheme type.

Library setLibrary("smauthanon")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the guest DN. Policies associated with the
guest DN must apply to anonymous users.

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by

administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Authentication Scheme Configuration

78 Programming Guide for Java

Information Type Value Assignment and Meaning

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Basic Template

Use this table when configuring an authentication scheme based on the scheme type
Basic. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeBasic)

The scheme type Basic.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 5.

Library setLibrary("smauthdir")

The default library for this scheme type.

Parameter setParameter("")

Set to an empty string. Not applicable to this scheme.

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(1)

Set to true (1)—scheme can be used to authenticate

administrators.

Authentication Scheme Configuration

Chapter 4: Policy Management API 79

Information Type Value Assignment and Meaning

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(1)

Set to true (1)—scheme can be used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to

check passwords. Default is 0.

Basic Over SSL Template

Use this table when configuring an authentication scheme based on the scheme type
Basic over SSL. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeBasicOverSSL)

The scheme type Basic over SSL.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 10.

Library setLibrary("smauthcert")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the domain or IP address of the SSL server
and the name of the SSL Credentials Collector (SCC). Format:

https://server/SCC?basic

The following example uses the default SCC:

https://my.server.com/siteminderagent/
 nocert/smgetcred.scc?basic

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Authentication Scheme Configuration

80 Programming Guide for Java

Information Type Value Assignment and Meaning

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0) for this scheme.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to

check passwords. Default is 0.

Custom Template

Use this table when configuring an authentication scheme based on the scheme type
Custom. You create custom schemes using the C Authentication API. For more
information, see the Developer’s Guide for C. The Java methods referenced in the table
are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeCustom)

The scheme type Custom.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 0 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 5.

Library setLibrary(customLibName)

The name of the custom shared library you created using the
C Authentication API.

Authentication Scheme Configuration

Chapter 4: Policy Management API 81

Information Type Value Assignment and Meaning

Parameter setParameter(param)

Any string of one or more parameters required by your

custom authentication scheme.

For a custom authentication scheme that uses SSL, you must
supply a URL that points to a SiteMinder Web Agent library

required for the SSL-based authentication.

Shared secret setSecret(secret)

The shared secret, if any, that your custom authentication

scheme uses for encryption of credentials.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(flag)

Set to true (1) to specify that the scheme can be used to
authenticate administrators, or to false (0) to specify that the
scheme cannot be used to authenticate administrators.

Default is 0.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to

check passwords. Default is 0.

HTML Form Template

Use this table when configuring an authentication scheme based on the scheme type
HTML Form. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeHTMLForm)

The scheme type HTML Form.

Description setDescription(description)

The description of the authentication scheme.

Authentication Scheme Configuration

82 Programming Guide for Java

Information Type Value Assignment and Meaning

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 5.

Library setLibrary("smauthhtml")

The default library for this scheme type.

Parameter setParameter(param)

A string containing a user attribute list plus the location of the
forms credential collector (FCC). The attribute list must begin
with AL= and use commas as the list delimiter character, and
it must end with a semicolon—for example:

AL=Password,SSN,age,zipcode;

The complete parameter format is:

attr-list;https:/server/fcc

The following example uses the default FCC:

AL=PASSWORD,SSN,age,zipcode;
 http://my.server.com/siteminderagent/

 forms/login.fcc

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Save credentials? setAllowSaveCreds(flag)

Set to true (1) to indicate that user credentials should be
saved, or false (0) to indicate that user credentials should not

be saved. Default is 0.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Authentication Scheme Configuration

Chapter 4: Policy Management API 83

Impersonation Template

Use this table when configuring an authentication scheme based on scheme type
Impersonation. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeImpersonation)

The scheme type Impersonation.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library setLibrary("smauthimpersonate")

The default library for this scheme type.

Parameter setParameter(param)

A string containing a user attribute list plus the location of the
forms credential collector (FCC). The attribute list must begin
with AL= and use commas as the list delimiter character, and

it must end with a semicolon—for example:

AL=Password,SSN,age,zipcode;

The complete parameter format is:

attr-list;https:/server/fcc

The following example uses the default FCC:

AL=PASSWORD,SSN,age,zipcode;
 http://my.server.com/siteminderagent/
 forms/imp.fcc

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(templateFlag)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Authentication Scheme Configuration

84 Programming Guide for Java

Information Type Value Assignment and Meaning

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

MS Passport Template

Use this table when configuring an authentication scheme based on scheme type MS
Passport. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeMSPassport)

The scheme type MS Passport.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 1.

Library setLibrary("smauthmspp")

The default library for this scheme type.

Authentication Scheme Configuration

Chapter 4: Policy Management API 85

Information Type Value Assignment and Meaning

Parameter setParameter(param)

The following information, separated by semicolons:

■ A DN for an anonymous user. Format:

anonuser=anonUserDN

If you specify an anonymous user DN, the protection level is 0.

■ The search string for looking up a user in a user directory
of the specified type. Format:

attribute=nameSpace:attrib=searchSpec

Valid namespaces are LDAP, AD, ODBC, WinNT, and Custom.

■ The registration URL. The URL can be a custom URL or a
SiteMinder form. Formats:

registrationurl=URL (custom URL)
registrationurl=FORM=URL (SiteMinder form)

Example using an LDAP attribute and a custom URL:

attribute=LDAP:altSecurityIdentities=
Kerberos:%s@company.local;registrationurl

=http://passport.xanadu.local/registration/passportreg.asp

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(templateFlag)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Authentication Scheme Configuration

86 Programming Guide for Java

RADIUS CHAP/PAP Template

Use this table when configuring an authentication scheme based on the scheme type
RADIUS CHAP/PAP. The Java methods referenced in the table are in the class
SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeRadiusChapPap)

The scheme type RADIUS CHAP/PAP.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library setLibrary("smauthchap")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the name of a user directory attribute. This

attribute is used as the clear text password for authentication.

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate
administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(1)

Set to true (1)—scheme can be used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Authentication Scheme Configuration

Chapter 4: Policy Management API 87

RADIUS Server Template

Use this table when configuring an authentication scheme based on the scheme type
RADIUS Server. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeRadiusServer)

The scheme type RADIUS Server.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 5.

Library setLibrary("smauthradius")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the IP address and port of the RADIUS

server—for example:

123.123.12.12:1645

The default UDP port is 1645.

Shared secret setSecret(secret)

The user attribute that the RADIUS Server will use as the clear
text password.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by

administrator?

setIsUsedByAdmin(1)

Set to true (1)—scheme can be used to authenticate
administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(1)

Set to true (1)—scheme can be used with RADIUS agents..

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to
check passwords. Default is 0.

Authentication Scheme Configuration

88 Programming Guide for Java

SafeWord HTML Form Template

Use this table when configuring an authentication scheme based on the scheme type
SafeWord HTML Form. The Java methods referenced in the table are in the class
SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeSafeWordHTMLForm)

The scheme type SafeWord HTML Form.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 10.

Library setLibrary("smauthenigmahtml")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the name and location of the forms
credentials collector. This example shows the default

credentials collector:

http://my.server.com/
siteminderagent/forms/safeword.fcc

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(1)

Set to true (1)—scheme can be used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(1)

Set to true (1)—scheme can be used with RADIUS agents..

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Authentication Scheme Configuration

Chapter 4: Policy Management API 89

SafeWord Template

Use this table when configuring an authentication scheme based on the scheme type
SafeWord. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeSafeWordServer)

The scheme type SafeWord.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 10.

Library setLibrary("smauthenigma")

The default library for this scheme type.

Parameter setParameter("")

Set to an empty string. Not applicable to this scheme.

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by

administrator?

setIsUsedByAdmin(1)

Set to true (1)—scheme can be used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(1)

Set to true (1)—scheme can be used with RADIUS agents..

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Authentication Scheme Configuration

90 Programming Guide for Java

SAML Artifact Template

Use this table when configuring an authentication scheme based on the SAML Artifact
binding. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeSAMLArtifact)

The scheme type SAML Artifact.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the greater

degree of protection provided by the scheme. Default is 5.

Library setLibrary("smauthsaml")

The default library for this scheme type.

Authentication Scheme Configuration

Chapter 4: Policy Management API 91

Information Type Value Assignment and Meaning

Parameter setParameter(param)

The following required parameters:

■ Name. The name of the affiliate.

■ RedirectMode. The way in which the SAML Credentials
Collector redirects to the target resource. One of the
following numeric values:

0. Meaning: 302 No Data.

1. Meaning: 302 Cookie Data.

2. Meaning: Server Redirect.

■ SRCID. The 20-byte source ID for the site that produces
the SAML assertion. The ID is located at the SAML
producer’s site in the properties file
AMAssertionGenerator.properties.

■ AssertionRetrievalURL. The URL for obtaining the
assertion from the SAML assertion producer’s site.

■ Audience. The URI of the document that describes the
agreement between the portal and the affiliate. This
value is compared with the audience value specified in
the SAML assertion.

■ Issuer. The SAML issuer specified in the assertion.

■ AttributeXPath. A standard XPath query run against the
SAML assertion. The query obtains the data that is
substituted in a search specification that looks up a user.

■ attribute. The search string for looking up a user in a user
directory of the specified type. Use a percent sign (%) to
indicate where the value returned from the XPath query
should be inserted. For example, if you specify attribute
LDAP:uid=%s, and user1 is returned from the query, the
search string used for LDAP directories is uid=user1. At
least one attribute must be specified.

Format of the parameter string is as follows. Separate
name/value pairs with semi-colons (;). The format example

includes LDAP and ODBC attributes:

Name=name;RedirectMode=0|1|2;SRCID=srcid;
AssertionRetrievalURL=url;Audience=audience;
Issuer=issuer;AttributeXpath=XPathQuery;
attribute=LDAP:srchSpc;attribute=ODBC:srchSpc

Shared secret setSecret(secret)

The password for the affiliate site.

Authentication Scheme Configuration

92 Programming Guide for Java

Information Type Value Assignment and Meaning

Is template? setIsTemplate(templateFlag)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

SecurID HTML Form Template

Use this table when configuring an authentication scheme based on the scheme type
SecurID HTML Form. The Java methods referenced in the table are in the class
SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeACEServerHTMLForm)

The scheme type SecurID HTML Form.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the greater
degree of protection provided by the scheme. Default is 15.

Library setLibrary("smauthacehtml")

The default library for this scheme type.

Authentication Scheme Configuration

Chapter 4: Policy Management API 93

Information Type Value Assignment and Meaning

Parameter setParameter(param)

A string containing the name of the attribute that contains the
ACE IDs, the Web server where the forms credential collector
(FCC) is installed, and the target executable file required for
processing SecurID authentication with forms support. It also

specifies whether an SSL connection is required. Format:

attr;https://server/target

Note: The "s" in "https" is optional, depending on whether

you want an SSL connection.

The following example uses the default for processing SecurID

authentication with forms support:

ace_id;https://my.server.com/
siteminderagent/pwcgi/smpwservicescgi.exe

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Authentication Scheme Configuration

94 Programming Guide for Java

SecurID Template

Use this table when configuring an authentication scheme based on the scheme type
SecurID. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeACEServer)

The scheme type SecurID.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 15.

Library setLibrary("smauthace")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the attribute in the authentication user

directory that contains the ACE Server user ID.

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(1)

Set to true (1)—scheme can be used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(1)

Set to true (1)—scheme can be used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Authentication Scheme Configuration

Chapter 4: Policy Management API 95

smauthetsso Authentication Scheme

The smauthetsso authentication scheme is similar to the SiteMinder X.509 certification
scheme, but with an eSSO cookie as the authentication credential instead of an X.509
credential.

If this scheme is configured for either cookieorbasic or cookieorforms mode, and both
an eSSO cookie and login name and password credentials are passed to it, the eSSO
cookie is ignored, and the login name and password are used to authenticate the user to
SiteMinder.

When the eSSO cookie is the only credential, the authentication scheme uses the
ETWAS API to connect to the configured eSSO Policy Server to validate the cookie and
extract the user Distinguished Name (DN) from it.

Use this table when configuring an smauthetsso authentication scheme, which is based
on the scheme type Custom. The Java methods referenced in the table are in the class
SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeCustom)

Uses the scheme type Custom.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 0 through 1000. The higher the number, the greater

degree of protection provided by the scheme. Default is 5.

Library setLibrary("smauthetsso")

The name of the library for this authentication scheme.

Authentication Scheme Configuration

96 Programming Guide for Java

Information Type Value Assignment and Meaning

Parameter setParameter(param)

An ordered set of tokens, separated by semi-colons:

<Mode>[; <Target>]; <Admin>; <eTPS_Host>

You can add spaces to make the string easier to read.

<Mode> specifies the type of credentials that the authenticaion
scheme will accept. The following values are possible:

■ cookie -- Only SSO Cookies are acceptable.

■ cookieorbasic -- If an SSO Cookie is not provided, a login
name and password are requested by using Basic
Authentication.

■ cookieorforms -- If an SSO Cookie is not provided, a login
name and password are requested by using Forms
Authentication.

<Target> is valid only with cookieorforms mode. This is
identical to the Target field for standard HTML Forms

Authentication Scheme.

<Admin> specifies the login ID of an administrator for the Policy
Server. The password for this administrator has been specified

in the Shared Secret field.

<eTPO_Host> specifies the name of the amchine on which the
Policy Server is installed.

SiteMinder will authenticate itself as <Admin> to the Policy
Server on the <eTPS_Host> so that SiteMinder can request

validation of SSO cookies.

Examples:

"cookie; SMPS_sso; myserver.myco.com"
"cookieorforms; /siteminderagent/forms/login.fcc; SMPS_sso;

myserver.myco.com"

Shared secret setSecret(secret)

The password of the Policy Server administrator named in the

Parameter field.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Authentication Scheme Configuration

Chapter 4: Policy Management API 97

Information Type Value Assignment and Meaning

Is used by

administrator?

setIsUsedByAdmin(flag)

Set to true (1) to specify that the scheme can be used to
authenticate administrators, or to false (0) to specify that the
scheme cannot be used to authenticate administrators. Default

is 0.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to check

passwords. Default is 0.

TeleID Template

Use this table when configuring an authentication scheme based on the scheme type
TeleID. The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeEncotone)

The scheme type TeleID.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 15.

Library setLibrary("smauthencotone")

The default library for this scheme type.

Parameter setParameter("")

Set to an empty string. Not applicable to this scheme.

Shared secret setSecret(seed)

The encryption seed. SiteMinder uses this value as an
encryption seed for initializing hardware tokens.

Authentication Scheme Configuration

98 Programming Guide for Java

Information Type Value Assignment and Meaning

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by

administrator?

setIsUsedByAdmin(1)

Set to true (1)—scheme can be used to authenticate
administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(1)

Set to true (1)—scheme can be used with RADIUS agents..

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Windows Authentication Template

Use this table when configuring an Integrated Windows Authentication scheme based
on the scheme type Windows Authentication (previously known as NTLM). This scheme
type is used to authenticate against WinNT or Active Directory user stores.

An Active Directory can be configured to run in mixed mode or native mode. An Active
Directory supports WinNT style authentication when running in mixed mode. In native
mode, an Active Directory supports only LDAP style lookups.

This authentication scheme supports either mixed mode or native mode.

The Java methods referenced in the table are in the class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeNTLM)

The scheme type Windows Authentication (NTLM).

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Authentication Scheme Configuration

Chapter 4: Policy Management API 99

Information Type Value Assignment and Meaning

Library setLibrary("smauthntlm")

The default library for this scheme type.

Parameter setParameter(param)

The value of param determines the style of authentication to
perform for this scheme:

NTLM authentication (for WinNT or Active Directory running

in mixed mode)

Format:

iis-web-server-url/path-to-ntc-file

In the format, iis-web-server-url is the name of the IIS web
server that is the target of the redirection, and path-to-ntc-file
is the location of the .ntc file that collects the WinNT

credentials.

For example:

http://myiiswebserver.mycompany.com/

 siteminderagent/ntlm/creds.ntc

A SiteMinder Web Agent must be installed on the specified
server. By default, the Web Agent installation creates a virtual

directory for NTLM credential collection.

Windows Authentication (for Active Directory running in
native mode)

With this authentication style, param has an LDAP filter added
to the beginning of the redirection URL. The filter and URL are

separated by a semi-colon (;). For example:

cn=%{UID},ou=Users,ou=USA,dc=%{DOMAIN},
 dc=mycompany,dc=com;http://
 myiiswebserver.mycompany.com/

 siteminderagent/ntlm/creds.ntc

SiteMinder uses the LDAP filter to map credentials received
from the browser/Web Agent to an LDAP DN or search filter.

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by

administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Authentication Scheme Configuration

100 Programming Guide for Java

Information Type Value Assignment and Meaning

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials will not be

saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

For WinNT and for Active Directory running in mixed mode,

this property must be true (1)—ignore password checking.

For Active Directory running in native mode, set to true (1) to
ignore password checking, or false (0) to check passwords.
The default is 0.

X.509 Client Cert and Basic Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate and Basic. The Java methods referenced in the table are in the
class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeX509ClientCertAndBasic)

The scheme type X.509 Client Certificate and Basic.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 15.

Library setLibrary("smauthcert")

The default library for this scheme type.

Authentication Scheme Configuration

Chapter 4: Policy Management API 101

Information Type Value Assignment and Meaning

Parameter setParameter(param)

A string containing the domain or IP address of the SSL server
and the name and path of the SSL Credentials Collector (SCC).
The server redirects a user’s X.509 certificate over an SSL

connection. Format:

https://server:port/SCC?cert+basic

The following example uses the default SCC:

https://my.server.com:80/siteminderagent/
 cert/smgetcred.scc?cert+basic

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to

check passwords. Default is 0.

Authentication Scheme Configuration

102 Programming Guide for Java

X.509 Client Cert and Form Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate and Form. The Java methods referenced in the table are in the
class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeX509ClientCertAndForm)

The scheme type X.509 Client Certificate and HTML Form.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the

greater degree of protection provided by the scheme.

Default is 15.

Library setLibrary("smauthcert")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the domain or IP address of the SSL server
and the name and path of the forms credentials collector
(FCC). The server redirects a user’s X.509 certificate over an
SSL connection. Format:

https://server:port/FCC?cert+forms

The following example uses the default FCC:

https://my.server.com:80/siteminderagent/

 certoptional/forms/login.fcc?cert+forms

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to 0 to indicate that the scheme is not a template, or 1 if

the scheme is a template. Default is 0.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to 0—scheme is not used to authenticate administrators.

Save credentials? setAllowSaveCreds(0)

Set to 0 to indicate that user credentials won’t be saved.

Authentication Scheme Configuration

Chapter 4: Policy Management API 103

Information Type Value Assignment and Meaning

Is RADIUS? setIsRadius(0)

Set to 0—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to 1 to ignore password checking, or 0 to check
passwords. Default is 0.

X.509 Client Cert or Basic Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate or Basic. The Java methods referenced in the table are in the
class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeX509ClientCertOrBasic)

The scheme type X.509 Client Certificate or Basic.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 5.

Library setLibrary("smauthcert")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the following information:

Server for establishing an SSL connection. This server redirects

a user’s X.509 certificate over an SSL connection.

Name and path of the SSL Credentials Collector (SSC).

If you are using basic authentication over SSL, also provide the
following two pieces of information:

The fully qualified name of the SSL server used for
establishing an SSL connection for basic authentication.

Name and path of the SSL Credentials Collector (SSC).

https://SSLserver:port/SCC?certorbasic;

 [https://BasicServer/SCC]

Authentication Scheme Configuration

104 Programming Guide for Java

Information Type Value Assignment and Meaning

 The following example uses the default SCC values:

https://my.SSLserver.com:80/siteminderagent/
 certoptional/smgetcred.scc?certorbasic;
 https://my.BasicServer.com/

 siteminderagent/nocert/smgetcred.scc

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate
administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be

saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to true (1) to ignore password checking, or false (0) to

check passwords. Default is 0.

X.509 Client Cert or Form Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate or Form. The Java methods referenced in the table are in the
class SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeX509ClientCertOrForm)

The scheme type X.509 Client Certificate or HTML Form.

Description setDescription(description)

The description of the authentication scheme.

Authentication Scheme Configuration

Chapter 4: Policy Management API 105

Information Type Value Assignment and Meaning

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default

is 5.

Library setLibrary("smauthcertorform")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the following information:

■ Server for establishing an SSL connection. This server
redirects a user’s X.509 certificate over an SSL
connection.

■ Name and path of the SSL and forms credentials collector
(SFCC).

If you are using an alternate forms-based authentication over
SSL, also provide the following two pieces of information:

■ The fully qualified name of the SSL server used for
establishing an SSL connection for authentication.

■ Name and path of the Forms Credentials Collector (FCC).

https://SSLserver:port/SFCC?certorform;

 [https://BasicServer/FCC]

 The following example uses the default SCC values:

https://my.SSLserver.com:80/siteminderagent/
 certoptional/forms/login.sfcc?certorform;
 https://my.BasicServer.com/

 siteminderagent/forms/login.fcc

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Is template? setIsTemplate(0)

Set to 0 to indicate that the scheme is not a template, or 1 if

the scheme is a template. Default is 0.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to 0—scheme is not used to authenticate administrators.

Save credentials? setAllowSaveCreds(0)

Set to 0 to indicate that user credentials won’t be saved.

Authentication Scheme Configuration

106 Programming Guide for Java

Information Type Value Assignment and Meaning

Is RADIUS? setIsRadius(0)

Set to 0—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(flag)

Set to 1 to ignore password checking, or 0 to check
passwords. Default is 0.

X.509 Client Cert Template

Use this table when configuring an authentication scheme based on the scheme type
X.509 Client Certificate. The Java methods referenced in the table are in the class
SmScheme.

Information Type Value Assignment and Meaning

Scheme type setType(TypeX509ClientCert)

The scheme type X.509 Client Certificate.

Description setDescription(description)

The description of the authentication scheme.

Protection level setLevel(value)

A value of 1 through 1000. The higher the number, the
greater degree of protection provided by the scheme. Default
is 5.

Library setLibrary("smauthcert")

The default library for this scheme type.

Parameter setParameter(param)

A string containing the domain or IP address of the server
responsible for establishing the SSL connection and the name
and path of the SSL Credentials Collector (SCC). The server
redirects a user’s X.509 certificate over an SSL connection.
Format:

https://server/SCC?cert

The following example uses the default SCC value:

https://my.server.com/siteminderagent/
 cert/smgetcred.scc?cert

Shared secret setSecret("")

Set to an empty string. Not applicable to this scheme.

Performance Consideration

Chapter 4: Policy Management API 107

Information Type Value Assignment and Meaning

Is template? setIsTemplate(0)

Set to false (0) to indicate that the scheme is not a template.

Is used by
administrator?

setIsUsedByAdmin(0)

Set to false (0)—scheme is not used to authenticate

administrators.

Save credentials? setAllowSaveCreds(0)

Set to false (0) to indicate that user credentials won’t be
saved.

Is RADIUS? setIsRadius(0)

Set to false (0)—scheme is not used with RADIUS agents.

Ignore password
check?

setIgnorePwCheck(1)

Set to true (1)—ignore password checking.

Performance Consideration

The following properties of the SmRealm object are set to true by default:

■ PropProcessAuthEvents. When true, authentication event processing occurs.

■ PropProcessAzEvents. When true, authorization event processing occurs.

Authentication and authorization event processing affect performance. If no rules in the
realm are triggered by authentication or authorization events, set the associated
property to false.

Chapter 5: Authentication and Authorization APIs 109

Chapter 5: Authentication and
Authorization APIs

This section contains the following topics:

Configuration of All Custom Classes (see page 109)
Custom Classes for Authentication and Authorization (see page 110)
Required Library File (see page 110)
Shared Information (see page 110)
Common Classes (see page 110)
Create a Custom Authentication Scheme (see page 111)
Use the Authorization API (see page 122)

Configuration of All Custom Classes

The following configuration information applies to all custom authentication schemes
and active expressions implemented with the Java Authentication API and Java
Authorization API:

■ The library name is always smjavaapi.

■ In the parameter field, the first item must be the name of the custom class you
implemented with the Authentication API or Authorization API, as follows:

■ With authentication schemes, specify the name of the class you implemented
from the base interface SmAuthScheme. The class name should include the
fully qualified package name, such as:

com.myorg.sdk.myclass

■ With active policies, active rules, and active responses, specify the name of the
class you implemented from the base interface ActiveExpression.

■ If any parameters are specified in the parameter field after the class name, the class
name is separated from the parameters list by a space character.

When SiteMinder calls the methods in an instance of your custom class, it passes
the specified parameters. The class name is not passed. The parameters are passed
as a single string. If the string contains multiple parameters, the parameters can be
delimited in any way that the custom class requires.

■ The class file specified in the parameter field must be referenced in the classpath
directive of the JVMOptions.txt configuration file. This file is located in
Netegrity/SiteMinder/Config within the SiteMinder installation path.

■ With active expressions, the function name (that is, the entry point for the
smjavaapi library file) is always JavaActiveExpression.

Custom Classes for Authentication and Authorization

110 Programming Guide for Java

Custom Classes for Authentication and Authorization

The basic steps for implementing and deploying custom authentication or authorization
classes are as follows:

1. Implement the custom authentication or authorization class using the
Authentication or Authorization API and the common classes.

2. Deploy the custom class or jar file on the Policy Server machine, and specify its
location in the classpath directive of the JVMOptions.txt file. This file is located in
Netegrity/siteminder/config within the SiteMinder installation path.

3. Configure the custom authentication or authorization functionality in the Policy
Server User Interface.

Required Library File

All custom authentication and authorization classes use the same library
file—smjavaapi. This library file is included with the Policy Server. You do not have to
modify this library file. You simply reference it when you are configuring your custom
authentication or authorization class.

Shared Information

Custom authentication and authorization objects may sometimes need to communicate
request-specific information between themselves, such as to preserve state between
object instances. These objects can share information through AppSpecificContext,
which is retrieved through ApiContext. ApiContext is one of the common classes that is
passed to both authentication and authorization objects.

Information shared through AppSpecificContext has request-only scope. For example, a
custom object running in the context of an authentication request cannot exchange
information with an object running in the context of an authorization request.

Common Classes

The following classes are used by both the Authentication API and the Authorization API.
The services that these classes provide include:

■ Sending logging, tracing, and error messages to the Policy Server

■ Providing a mechanism for custom authentication and authorization objects to
share information

■ Making user context information available to authentication and authorization
objects

Create a Custom Authentication Scheme

Chapter 5: Authentication and Authorization APIs 111

The following table summarizes the common classes:

Class Description

APIContext Allows logging, tracing, and error messages to

be sent to the Policy Server.

AppSpecificContext Provides methods that allow custom
authentication and authorization objects to
share information.

SmJavaApiException Provides exception functionality to custom

authentication and authorization objects.

UserContext Allows a custom object to set and retrieve
information about a user in a user directory.
The information includes user attributes and

directory attributes associated with the user.

The methods for setting and retrieving user
directory attributes are available only if

isUserContext() returns true.

Create a Custom Authentication Scheme

Authentication schemes provide a way to collect a user’s credentials and determine the
user’s identity.

The Policy Server includes a variety of standard authentication schemes. These schemes
range from basic user name/password authentication and HTML forms-based
authentication to digital certificate and token authentication.

If the standard authentication schemes included with the Policy Server do not provide
the kind of authentication functionality required at your site, you can use the Java
Authentication API to create a custom authentication scheme.

Classes and Interfaces in the Authentication API

The base interface in the Java Authentication API is SmAuthScheme. All custom
authentication schemes created with the Java Authentication API must implement this
interface.

Create a Custom Authentication Scheme

112 Programming Guide for Java

SmAuthScheme Methods

SiteMinder calls the following methods in the base interface SmAuthScheme:

Method Description

authenticate() Performs the custom authentication and returns the
authentication result.

SiteMinder calls this method at least twice—to establish
user context and to authenticate the user’s credentials.

init() Performs any initialization procedures that the
authentication scheme requires. SiteMinder calls this
method once for each authentication scheme instance,
when the authentication scheme is loaded.

query() Provides SiteMinder with either of the following kinds of
information, depending on the value SiteMinder passes in
the reason parameter (object SmAuthQueryCode):

The version and description of the authentication scheme.

The kind of credentials that SiteMinder should collect from
the user, and optionally, the URL for the site where

credentials should be collected.

release() Performs any rundown procedures that the authentication
scheme requires. SiteMinder calls this method once for each
authentication scheme instance, when SiteMinder is

shutting down.

Other Classes in the Authentication API

The following classes are used in conjunction with the SmAuthScheme base interface:

Class Description

SmAuthenticationContext Contains the following context classes passed to
authenticate():

APIContext

UserContext

UserCredentialsContext

The set... methods in this object pass
information directly to SiteMinder.

SmAuthenticationResult Contains status and reason codes returned to
SiteMinder after a call to authenticate().

Create a Custom Authentication Scheme

Chapter 5: Authentication and Authorization APIs 113

Class Description

SmAuthQueryCode Contains the type of request that SiteMinder is
making of the authentication scheme (version
number and description, or information about

the credentials that SiteMinder must collect).

SiteMinder passes this object to the

authentication scheme in query().

SmAuthQueryResponse Contains constants that specify the kind of
credentials that are required for authentication,
if any. Also allows a text message to be

returned to SiteMinder for display to the user.

Optionally, the authentication scheme can call
setResponseBuffer() to specify a URL where

credentials must be collected.

The set... methods in this object pass
information directly to SiteMinder.

SmAuthStatus Contains Authentication API status codes such
as SMAUTH_ACCEPT and SMAUTH_REJECT.

This object can be passed back to SiteMinder in
SmAuthenticationResult. It is also the return
value type for the authentication scheme’s

init(), query(), and release() methods.

UserCredentialsContext Contains credentials information and other
information from the user directory where user

context was established.

This object is contained in the
SmAuthenticationContext object passed to

authenticate().

How SiteMinder Loads a Custom Authentication Scheme in Java

When user authentication is to occur against a custom authentication scheme created
with the Java API, SiteMinder loads the custom scheme by loading:

■ The standard library file smjavaapi that is installed with the Policy Server

■ An instance of the custom class implemented from SmAuthScheme

Create a Custom Authentication Scheme

114 Programming Guide for Java

How SiteMinder Initializes Authentication Processing

Immediately after the scheme is loaded, SiteMinder calls the following methods in the
custom class implemented from SmAuthScheme:

■ query(). SiteMinder passes SMAUTH_QUERY_DESCRIPTION in the request
parameter, requesting that the authentication scheme pass back the version
number and description of the Java Authentication API.

Note: When SiteMinder passes SMAUTH_QUERY_CREDENTIALS_REQ in query(),
SiteMinder is requesting that the authentication scheme specify the kind of
credentials that are required. SiteMinder then collects the specified credentials.

■ init(). SiteMinder passes the parameter string and shared secret that were defined
when the authentication scheme was configured in the Policy Server. The scheme
then performs any initialization procedures it requires.

Create a Custom Authentication Scheme

Chapter 5: Authentication and Authorization APIs 115

Authentication of User Credentials

The following figure shows the key activities that occur during authentication:

Create a Custom Authentication Scheme

116 Programming Guide for Java

Supported Credentials

The Java Authentication API supports authentication based on the following general
types of credentials requirements:

■ Username/Password

■ X.509 Certificate

■ Custom user attributes

You specify the authentication credentials that are required through the
setResponseBuffer() method in the object SmAuthQueryResponse. This object contains
a number of constants that indicate the specific credentials that are required or whether
no credentials are required.

User Disambiguation and Authentication

The authentication process includes two phases—user disambiguation and user
authentication.

Before a user can be authenticated, the user’s profile information must be retrieved
from the user store so that the user’s stored credentials can be compared with the
credentials supplied at login. Looking up the user in a user store (such as an LDAP user
directory or an ODBC database) is called user disambiguation. Either SiteMinder or the
authentication scheme can disambiguate the user.

SiteMinder calls SmAuthScheme.authenticate() at least once during the disambiguation
phase and at least once during the authentication phase:

■ During disambiguation, it is called once per directory where disambiguation
occurred.

■ During authentication, it is called once per user found in the directory.

Create a Custom Authentication Scheme

Chapter 5: Authentication and Authorization APIs 117

The basic steps are as follows:

1. User login. The user supplies a login ID (such as jsmith) for authentication purposes.

2. Disambiguation phase. Before the user lookup in the data store can begin, a
complete DN or a search expression must be constructed based upon the supplied
login ID. For example, if the login ID is jsmith, the DN used to search the user store
might be constructed as follows:

uid=jsmith,ou=marketing,o=myorg.org

An LDAP search expression can also be used to search an LDAP user directory, and a
SQL query is used to search an ODBC database—for example:

(&(objectclass=inetOrgPerson)(uid=jsmith))

select Name from SmUser where Name = 'jsmith'

Multiple results are possible, given that the LDAP DN or the ID stored in the ODBC
database might apply to different users who have different passwords.

3. Authentication phase. The custom authentication scheme compares the known
credentials of each disambiguated user with the credentials supplied during
login—for example, by comparing the hash of the supplied password against the
hash in the user store.

User Disambiguation

SiteMinder first calls authenticate() at the beginning of the user disambiguation phase.

Either SiteMinder or the custom authentication scheme can disambiguate the user. The
authentication scheme indicates whether it has performed the disambiguation through
a combination of the following:

■ One of the status codes listed below

■ Whether a value is passed to SiteMinder in the setUserText() method of
SmAuthenticationContext

Create a Custom Authentication Scheme

118 Programming Guide for Java

The status codes are set in the SmAuthStatus object. This object is passed in the status
parameter of the SmAuthenticationResult constructor. SmAuthenticationResult is
returned from authenticate():

■ SMAUTH_NO_USER_CONTEXT

The authentication scheme asks SiteMinder to disambiguate the user.

When returning this status code, the authentication scheme should also return an
empty string through the setUserText() method. SiteMinder gets the login ID from
the Agent, constructs the DN or search expression based on the login ID and the
information defined in the SiteMinder User Directory Properties dialog box, and
disambiguates the user by looking up the user in the user store.

■ SMAUTH_SUCCESS

The authentication scheme asks SiteMinder to disambiguate the user.

The authentication scheme passes the login ID to SiteMinder through setUserText().
SiteMinder uses that value to construct the DN or search expression
and disambiguate the user in the user store. This approach gives the authentication
scheme the opportunity to modify the login ID before SiteMinder disambiguates the
user.

Note: If the authentication scheme passes an empty string in setUserText(),
SiteMinder uses the login ID provided by the Agent (the same behavior as with
return code SMAUTH_NO_USER_CONTEXT).

■ SMAUTH_SUCCESS_USER_DN

The authentication scheme disambiguates the user by constructing the complete
DN or search expression and looking up the user in the user store. The
authentication scheme passes the user’s complete DN or ODBC database ID to
SiteMinder in setUserText(). Only one DN or database ID can be passed in
setUserText().

■ SMAUTH_ATTEMPT.

The user cannot be found in the directory.

■ SMAUTH_FAILURE

This is returned if an error condition exists. Error text is returned to SiteMinder
through the setUserText() method.

Create a Custom Authentication Scheme

Chapter 5: Authentication and Authorization APIs 119

User Authentication

During this phase, SiteMinder calls authenticate() again to allow the authentication
scheme to verify the supplied credentials after the user context has been established
during disambiguation. The method sets one of the following status codes:

■ SMAUTH_ACCEPT. The user is authenticated.

■ SMAUTH_REJECT. The user is not authenticated.

■ SMAUTH_CHALLENGE. The user is challenged. The scheme passes the challenge
message to SiteMinder through the setUserText() method. Also, a reason code must
be supplied in the SmAuthenticationResult object returned by authenticate().

■ SMAUTH_FAILURE. An error condition occurred. Error text is passed to SiteMinder
in setUserText().

Redirection

Your authentication scheme can have the Policy Server instruct the agent to perform a
redirect. To build redirection capabilities into your authentication scheme:

■ Specify the redirection URL in:

SmAuthenticationContext.setErrorText()

■ When creating an SmAuthenticationResult object to return from authenticate(),
specify REASON_ERROR_MESSAGE_IS_REDIRECT in the reason parameter of the
constructor.

Authentication Events

Authentication results are tied to SiteMinder events. If authentication events are
enabled in the realm where the user is being authenticated, SiteMinder evaluates
optional policies tied to OnAuthAccept, OnAuthReject, OnAuthAttempt, and
OnAuthChallenge rules. You can configure these policies to return custom responses
based on a user’s identity, redirect the user to another location based on the result of
the authentication, or update the user data in an external database.

Create a Custom Authentication Scheme

120 Programming Guide for Java

Extend the SAML and WS-Federation Authentication Schemes

The SiteMinder SAML (1.x and 2.0) and WS-Federation authentication schemes process
response messages. For business reasons, for example, you might want to add
additional steps to further process a response. The Message Consumer Extension API
defines an interface that enables you to elaborate on the SAML or WS-Federation
response in two ways during the authentication process:

■ To report detailed failure reasons during user disambiguation

■ To customize user credential validation

The SiteMinder Java MessageConsumerPlugin API implements the Message Consumer
Extension (MCE) interface. You can code to your own requirements and then integrate
the custom plug-in into SiteMinder.

The MessageConsumerPlugin includes the following four methods:

Method Description

init() Performs any initialization procedures that the plug-in
requires. SiteMinder calls this method once for each

plug-in instance, when the plug-in is loaded.

release() Performs any rundown procedures that the plug-in
requires. SiteMinder calls this method once for each

plug-in instance, when SiteMinder is shutting down.

postDisambiguateUser() Provides processing to disambiguate a user when the
authentication scheme is unable to do so, or to add data
for new federation users to a user store. Note that this
method receives the decrypted assertion. The decrypted
assertion is added to the properties map passed to MCP

under the key “_DecryptedAssertion”.

postAuthenticateUser() Provides any additional code to determine the final
outcome of assertion processing, regardless of whether
the policy server processing results in success or failure.

SiteMinder provides the following samples of the Message Consumer plug-in class:

■ MessageConsumerPluginSample.java in
<install-path>\sdk\samples\messageconsumerplugin

■ MessageConsumerSAML20.java in
<install-path>\sdk\samples\authextensionsaml20

Create a Custom Authentication Scheme

Chapter 5: Authentication and Authorization APIs 121

The Role of the MessageConsumerPlugin

The following list describes the MessageConsumerPlugin in an elaborated process of
user authentication:

1. The Federation Web Services (FWS) application forwards a request for user
authentication to the Policy Server.

2. The Policy Server invokes the authentication scheme to disambiguate the user.

3. The authentication scheme disambiguates the user as follows:

a. The authentication scheme metadata is obtained from the Policy store.

b. The authentication scheme attempts to obtain the LoginID. If LoginID is not
found, the authentication scheme invokes the MessageConsumerPlugin as
described in Step 4.

c. If the LoginID is obtained successfully, the authentication scheme searches the
current user directory with a predefined SearchSpec. If the user is not found,
the postDisambiguate() method is called as described in Step 4. If the user is
found, the Policy Server proceeds with credential validation, as described in
Step 6 and following.

d. When the authentication scheme does not provide the user store SearchSpec,
the Policy Server core searches for the user with the search string defined with
the User Directory object. The MessageConsumerPlugin is not called.

4. The postDisambiguateUser() method searches a user directory to determine
whether a particular LoginID exists. The result is returned to the authentication
scheme. The method might be called several times if more than one user directory
is configured. This method can also be used to add data for new federation users
from the assertion to a user store.

5. When the user has been successfully disambiguated by the Policy Server, the
authentication scheme, or the plug-in, the Policy Server returns the user DN to the
Policy Server and proceeds to credential validation (Step 8 and following).

6. If the user has not been successfuly disambiguated for this user directory by either
the Policy Server, the authentication scheme, or MessageConsumerPlugin, the FWS
application checks the next user directory and repeats Steps 2 - 6 before proceeding
with credential validation.

7. When a user has been disambiguated, the Policy Server again calls the
authentication scheme to determine whether the user has the proper credentials
for the authentication request. The authentication scheme determines whether the
response message is acceptable.

8. After the the authentication scheme has attempted to authenticate the
disambiguated user with the response message, the Policy Server calls the
postAuthenticateUser() method from the MessageConsumerPlugin. The Policy
Server always calls this method when a user is disambiguated, even when the Policy
Server core performs the user disambiguation.

Use the Authorization API

122 Programming Guide for Java

9. You can use postAuthenticateUser() to add any other procedures for federation
credential validation required by your implementation.

10. The final result is passed back to the Policy Server by the authenticaiton scheme.

11. If necessary, the FWS application can process any failure and redirect the user to an
appropriate URL.

Use the Authorization API

The Java Authorization API lets you implement custom functionality for controlling
access to protected resources.

The functionality is provided through custom Java classes that are referenced in Policy
Server active expressions. An active expression is a string of variable definitions that
appears in the following Policy Server objects:

■ Active policy—A policy that provides dynamic authorization based on external
business logic.

For example, you might implement a custom Java class that returns true if the user
belongs to a particular organizational unit (ou) in an LDAP directory. The ou is
passed to the custom Java class in the parameter (param) field of the active
expression.

■ Active response—A response returned from a custom Java class. Using an active
response is one way you can define user-specific privilege information.

For example, you might define an active response that returns a user’s common
name (cn) if the user belongs to the ou passed in the param field of the active
expression.

■ Active rule—A rule that provides dynamic authorization based on external business
logic.

For example, you might define a custom Java class that returns true if a user is a
member of a group, such as Directory Administrator, that has permission to view a
realm. The group name is passed to the Java class in the param field of the active
expression.

Active Expressions

Active expressions are constructed in the Policy Server User Interface using the
following syntax:

<@ lib=<lib-spec> func=<func-spec> param=<func-params>@>

Use the Authorization API

Chapter 5: Authentication and Authorization APIs 123

An active expression based on the Java Authorization API has the following required
fields:

■ lib contains the shared library name smjavaapi. This library is used with all active
expressions that reference a custom Java class in param.

■ func contains the function name JavaActiveExpression. This function is the entry
point for the smjavaapi library. It is used with all active expressions that reference a
custom Java class in param.

■ param contains the following information.

■ The name of your custom Java class

■ Optionally, any parameters to pass to an instance of your class

You define an active expression when you configure the active policy, rule, or response
in the Policy Server User Interface.

Execute an Active Expression

When SiteMinder detects an active expression that references a custom Java class, it
performs the following tasks:

■ Loads the shared library and instance of the custom Java class specified in the active
expression.

■ Calls the library function specified in the active expression.

■ Passes to the instance of the custom Java class the optional parameter string plus
the following context objects:

■ APIContext

■ RequestContext

■ UserContext

■ The instance of the Java class performs the custom functionality and returns a
result to SiteMinder. Results are returned from the custom Java class’s invoke()
method.

Use the Authorization API

124 Programming Guide for Java

Interpret an Active Expression Result

SiteMinder interprets the result returned by the instance of the custom Java class
according to the type of active expression that references the Java class, as follows:

■ Active Policy—If the result returned is an empty string or if an exception is thrown,
authorization is denied.

The policy does not fire if the result returned matches any of the following strings
(not case-sensitive): FALSE, F, or 0.

Any other result causes the policy to fire.

■ Active Rule—If the result returned is an empty string or if an exception is thrown,
the following behavior occurs:

■ With Allow Access rules, the rule does not fire.

■ With Deny Access rules, the rule fires.

Otherwise, the behavior is the same as for Active Policies.

■ Active Response—The result is a string that corresponds to a response attribute.
How SiteMinder interprets the result string is determined by the response attribute
specified in the Policy Server User Interface. For example:

■ WebAgent-OnReject-Redirect. Given this response attribute, SiteMinder
expects the result string to specify a location, such as a URL, to redirect a user
who is denied access to a resource.

(The URL that is passed back might vary according to information passed into
the custom Java class. For example, a group name could be passed in the
param field of the active expression. The custom Java class could then test for
the group name to determine the URL to pass back.)

■ WebAgent-HTTP-Cookie-Variable. Given this response attribute, SiteMinder
expects that the result string, such as the user’s common name, is to be
assigned to a cookie variable. You can use the result string any way you like,
such as to display the user’s common name to personalize a form.

You specify the cookie name in the SiteMinder Response Attribute Editor.

If the method fails (that is, the method returns -1 or 0), the response attribute is
ignored.

ActiveExpression Methods

The base interface in the Java Authorization API is ActiveExpression. All Java classes that
provide custom authorization functionality must implement this interface.

The name of the class that you implement from the base interface must appear in the
param field of any associated active expression.

Use the Authorization API

Chapter 5: Authentication and Authorization APIs 125

SiteMinder calls the following methods in the base interface ActiveExpression:

Method Description

init() Performs any initialization procedures that the custom Java class
requires. SiteMinder calls this method once per instance of the
custom ActiveExpression class.

invoke() Performs the custom authorization functionality in the
ActiveExpression object and returns a result.

release() Performs any rundown procedures that the ActiveExpression
object requires. SiteMinder calls this method once for each
instance of an ActiveExpression class, when SiteMinder is shutting
down.

Note: Classes that implement ActiveExpression should be implemented on a stateless
model that does not depend on instance state stored in member variables of the
ActiveExpression class.

Other Classes in the Authorization API

The following classes in the Authorization API are used in conjunction with the
ActiveExpression base interface:

Class Description

ActiveExpressionContext Contains the following context classes passed to
invoke():

■ APIContext

■ RequestContext

■ UserContext

RequestContext Provides information about the user’s access
request—for example, the server or resource

portion of the request.

Chapter 6: Customizing a SAML Assertion 127

Chapter 6: Customizing a SAML Assertion

Security domains exchange authentication and authorization using data packages
named assertions. The Security Assertion Markup Language (SAML) is an open standard
that specifies the format of an assertion. A federated partnership consists of an identity
provider (producer of an assertion) and a service provider (consumer of an assertion).

An enterprise can modify the content of an assertion based on the business agreements
between the federated partners. For example, one partner can require user-friendly
name equivalents for the attributes in the assertion. Or, a partner can opt to include the
XML-type designation for each attribute in the assertion.

CA SiteMinder Federation creates SAML assertions with its implementation of the
AssertionGeneratorPlugin.java interface. An Application Developer can enhance the
contents of the SAML assertion by overwriting the existing implementation class.

Use the Authorization API

128 Programming Guide for Java

The diagram shown following illustrates the process of creating a custom assertion
generator plug-in.

The process of customizing a SAML assertion includes these steps:

1. Implement the Java assertion generator plug-in interface (see page 129).

2. Deploy the new assertion generator plug-in (see page 131).

3. Configure the assertion generator plug-in in the CA SiteMinder Federation UI (see
page 131).

Implement the Java Assertion Generator Plug-in Interface

Chapter 6: Customizing a SAML Assertion 129

Implement the Java Assertion Generator Plug-in Interface

You create a custom assertion generator plug-in by implementing the
AssertionGeneratorPlugin.java interface. The minimum requirements for the
implementation class are listed following.

Follow these steps:

1. Provide a public default constructor method that contains no parameters.

2. Provide code that helps ensure that the implementation is stateless, so that many
threads can use a single plug-in class.

3. Include a call to the customizeAssertion method.

Example

In this example, imagine that the application developer defines
handler.updateNameID to create user-friendly name attributes.

/**

 * <p>Performs Assertion Generator callout functionality to customize the

 * SAML assertion in the <code>AssertionGeneratorPlugin</code> object and

 * returns a result.</p>

 * @param apiContext A context object that provides methods for sending

 * log, trace, and error messages to the Policy Server.

Use the APIContext.getAttrMap() method to retrieve attributes posted by the

application specified in the Application URL.

 * @param userContext A context object that allows a custom object to set

 * and retrieve information about a user in a user

 * directory. The information includes user

 * attributes and directory attributes associated

 * with the user.

 * @param pluginParam The string for Assertion plug-in parameters.

 * @param inputAssertion The current XML token representing the SAML

Assertion.

 * @param outputAssertion The final XML token representing the SAML

Assertion.

 * @return 0 if assertion is customized successfully, or -1 if no

customization or an error occurred.

 * If the method fails, the outputAssertion is ignored.

 * @throws java.lang.Exception For cases when the customization terminates

unexpectedly.

 *

 **/

Implement the Java Assertion Generator Plug-in Interface

130 Programming Guide for Java

 public int customizeAssertion(APIContext apiContext, UserContext

userContext,String pluginParam,

 String inputAssertion, final StringBuffer outputAssertion) throws Exception

{

 if (inputAssertion == null || inputAssertion.equals("")) {

 // Indicates non-zero for an error.

 apiContext.trace(PLUGIN_TAG, "Received null or empty response for

customization");

 return -1;

 }

 apiContext.trace(PLUGIN_TAG, "Entering customizeAssertion");

 StringBuffer newAssertion = new StringBuffer(inputAssertion);

 try

 {

 Saml1AssertionHandler handler =

 initHandler(apiContext, userContext);

 handler.updateNameID(newAssertion);

 handler.addAttributes(pluginParam, newAssertion);

 }

 catch(Throwable th)

 {

 apiContext.error("SAML1AssertionSample: " + th.getMessage());

 StringWriter writer = new StringWriter();

 th.printStackTrace(new PrintWriter(writer));

 writer.flush();

 apiContext.trace(PLUGIN_TAG,

 "Error customizing Assertion:\n" +

writer.toString());

 apiContext.trace(PLUGIN_TAG, "Done customizeAssertion");

 return -1;

 }

 outputAssertion.append(newAssertion);

 apiContext.trace(PLUGIN_TAG, "Done customizeAssertion");

 // return "success"

 return 0;

 }

Note: The syntax requirements and use of the parameter string that is passed into
the customizeAssertion method is the responsibility of the custom object.

Deploy the Assertion Generator Plug-in

Chapter 6: Customizing a SAML Assertion 131

Deploy the Assertion Generator Plug-in

After you have coded your implementation class for the AssertionGeneratoPlugin.java
interface, compile it and verify that CA SiteMinder Federation can find your executable
file.

Follow these steps:

1. Compile the assertion generator plug-in code in one of the following ways:

■ If you are using a sample plug-in, use the build script to compile the plug-in.
The build scripts are installed in the directory
federation_mgr_sdk_home\sample. The build scripts are:

Windows: build_plugin.bat

UNIX: build_plugin.sh

A compiled sample plug-in, fedpluginsample.jar, is in the directory
federation_mgr_sdk_home\jar.

■ If you write your own plug-in, include smapi.jar when you compile your plug-in.

2. In the JVMOptions.txt file, modify the -Djava.class.path value so it includes the
classpath for the plug-in. Locate the JVMOptions.txt file in the directory
federation_mgr_home\siteminder\config.

You can place the plug-in jar in any directory and have the JVMOptions.txt file point
to it. To use the sample plug-in, modify the classpath to point to
fedpluginsample.jar; however, do not modify the classpath for smapi.jar.

Note: To use Apache Xerces or Xalan in your plug-in, use the Xerces or Xalan binary
files installed with CA SiteMinder Federation. The binaries are not installed with the
CA SiteMinder Federation SDK. Using these files is necessary for compatibility
reasons.

3. Restart the CA SiteMinder Federation services.

Restarting the services helps ensure that CA SiteMinder Federation uses the latest
version of the assertion generator plug-in.

Configure the Assertion Generator Plug-in in the UI

To configure the assertion generator plug-in, you provide values for settings in the CA
SiteMinder Federation UI.

Note: Do not configure the plug-in settings until you deploy the plug-in.

Configure the Assertion Generator Plug-in in the UI

132 Programming Guide for Java

Follow these steps:

1. Log on to the CA SiteMinder Federation UI.

2. Navigate to the Assertion Configuration step of the Partnership wizard for the
partnership you want to modify.

3. Enter values for the following fields:

Plug-in Class

Specifies the Java class name of the plug-in. Enter a name. This plug-in is
invoked at run time.

Example: com.mycompany.assertiongenerator.AssertionSample

The plug-in class can parse and modify the assertion, and then return the result
to CA SiteMinder Federation for final processing. Specify an assertion generator
plug-in for each relying party. A compiled sample plug-in is included in the
directory federation_mgr_sdk_home/jar.

Plug-in Parameter

(Optional). Specifies the string that CA SiteMinder Federation passes to the
plug-in as a parameter at run time. The string can contain any value; there is no
specific syntax to follow.

The plug-in interprets the parameters that it receives. For example, the
parameter is the name of an attribute, or the string can contain an integer that
instructs the plug-in to do something.

The assertion generator plug-in is coded, compiled, and in place. The CA SiteMinder
Federation assertion generator creates enhanced assertions as defined by the
federation partners.

Chapter 7: Delegated Management Services API 133

Chapter 7: Delegated Management Services
API

This section contains the following topics:

About the DMS API (see page 133)
The Required JAR File (see page 134)
SiteMinder User Directories (see page 134)
Attribute-based Delegation (see page 136)
DMS Users (see page 137)
Implementation Class (see page 138)
Context Class (see page 138)
Object Class (see page 139)
Search Class (see page 139)
Cursor Class (see page 140)
Write a Directory Management Application (see page 142)
Searches (see page 150)
User Password State (see page 157)
ODBC Support (see page 158)
Restricted Methods (see page 159)

About the DMS API

Directory management consists of managing objects within a SiteMinder user directory.
For example, a user of your directory management application can create organizations,
add groups to organizations, and add end users to groups. Your application performs
directory management operations with the DMS API.

The Delegated Management Services (DMS) API lets you perform directory management
operations on LDAP and ODBC directories.

With LDAP directories, you can use the DMS API to write a client application that allows
a user with the specified privileges to perform tasks such as (but not limited to):

■ Creating an organization

■ Creating a group

■ Adding a group to an organization

The Required JAR File

134 Programming Guide for Java

■ Adding a user to a group

■ Modifying the profile of a user

With ODBC directories, you can perform many but not all DMS API operations.

Note: The DMS API (available in Java only) has different functionality than the DMS
Workflow API (available in C/C++ only). The DMS API lets you develop directory
management applications that perform similar operations as the SiteMinder DMS
product. The DMS Workflow API works in conjunction with DMS and fires when certain
pre-process and post-process DMS events occur, allowing you to develop applications
that perform additional functionality before and/or after these events.

The Required JAR File

The JAR file smjavasdk2.jar is required for building and running Delegated Management
applications. The JAR file is stored in the following locations:

■ Windows platforms:

<install_path>\sdk\java

■ UNIX platforms:

<install_path>/sdk/java

SiteMinder User Directories

A SiteMinder user directory is a conceptual view of a single organizational unit (such as
Engineering or Human Resources) within a larger entity (such as a corporation).
SiteMinder user directories make managing an entire directory structure easier by
breaking up the directory into smaller, more manageable, and logically related
segments.

The methods in your custom DMS application reference a particular SiteMinder user
directory by specifying its unique organization DN. The organization DN points to the
root, or top level, of the SiteMinder user directory’s inverted tree structure or to one of
its sub-levels.

SiteMinder User Directories

Chapter 7: Delegated Management Services API 135

Every DMS request references an organization DN. In the following illustration, two
SiteMinder user directories are enclosed in broken-line boxes. The directories are
identified by the organization DNs ou=eng, o=swdev.com (representing the Engineering
organizational unit) and ou=hr, o=swdev.com (representing the Human Resources
organizational unit):

SiteMinder user directories can exist within other SiteMinder user directories. In the
preceding illustration, the Engineering organizational unit has three SiteMinder user
directories within it. These have the attribute and organization names ou=dev, ou=qa,
and ou=doc. The Human Resources organizational unit has two SiteMinder user
directories within it—ou=benefits and ou=recruit.

SiteMinder User Directory Containers

An organization DN in a SiteMinder user directory typically has one or more sub DNs.
Sub DNs are also called "containers" because they contain lists of information. The
default names of these containers and the information they contain are:

■ people—End users in the Siteminder user directory.

■ roles—Roles used in the SiteMinder user directory.

■ groups—Groups used in the SiteMinder user directory.

■ orgadmin—Group for administrators who can manage the organizational unit.

Sub DNs are managed by the class SmDmsConfig. When you create an SmDmsConfig
object, you can keep the default sub DN names or assign new ones.

Organization administrators are listed in the orgadmin container. In a hierarchical
organization, an organization administrator listed in a given orgadmin container can
manage the organizational unit associated with that container and any organizational
units below it.

Attribute-based Delegation

136 Programming Guide for Java

Attribute-based Delegation

In addition to hierarchical organization, DMS also provides an administration model for
sites that have implemented a flat directory structure. In this model, delegation is based
on attributes in user profiles instead of hierarchical levels.

In a flat directory, DMS adds attribute/value pairs to user profiles to group users
together. Once users are grouped together, another attribute/value pair determines
which users can manage the groups.

DMS groups users into organizations by adding an attribute/value pair to user profiles.
For example, users who belong to the organization East Bank have the attribute/value
pair ou=East Bank in their profiles, where ou is the attribute that indicates the
organization to which a user belongs.

An organization administrator can only manage organizations that are listed in the
organization administrator’s profile. The list of organizations is assigned to a profile
attribute that you specify in the SmDmsConfig constructor. For example, if you specify
departmentnumber as the attribute that contains the organizations that an organization
administrator can manage, the attribute/value pair departmentnumber=East Bank
means that the organization administrator can manage the East Bank organization and
no others.

The following illustration describes how attribute-based delegation is implemented:

In this example, Donna Gibson is an organization administrator for East Bank and North
Bank. She can manage Edward Johnson and Carrie Winham because they belong to
organizations that are listed in the departmentnumber attribute in Donna’s user profile.

DMS Users

Chapter 7: Delegated Management Services API 137

Configure Attribute-based Delegation

You specify the attributes that enable attribute-based delegation in the SmDmsConfig
constructor. Three attributes are required to identify the following information:

■ A user as an organization administrator. This attribute can be any attribute in your
LDAP directory that you are not using to store other information—for example, o.

You specify a user as an organization administrator through the constructor’s
OrgAdminSubDn parameter, as in the following example:

OrgAdminSubDn="(title=OrgAdmin)";

■ The organization(s) that an organization administrator can manage. By default, DMS
uses the departmentnumber attribute to store managed organizations.

You specify this attribute through the constructor’s OrgAdminOrgs parameter—for
example:

OrgAdminOrgs="departmentnumber";

■ The organization to which a user belongs. By default, DMS uses the ou attribute.

You specify this attribute through the constructor’s DnOrgs parameter—for
example:

DnOrgs="ou";

DMS Users

DMS users are assigned one of the following categories of directory management
privileges. The categories are listed below from lowest to highest:

■ End user—Can manage certain information about the end user’s own account, such
as changing the user’s password and viewing (but not adding) the roles that the
user is a member of.

■ Organization administrator—Can manage an entire organization and any
organizations below it.

■ SiteMinder administrator—Can manage directories in one or more domains.

SiteMinder administrator privileges can vary. With DMS, SiteMinder administrators
must have system-level Manage User privileges, and they must be present in at
least one domain.

■ Super administrator—Can manage all directories in all domains.

You use different login() methods to log in different categories of DMS users.

Implementation Class

138 Programming Guide for Java

Implementation Class

Interface SmDmsApi is implemented by the class SmDmsApiImpl. Use this class as the
starting point for the DMS API.

This class lets you determine how you want to access the information in the
SmDmsDirectory object. You can do so by providing either of two kinds of information:

■ The name or OID of the target user directory. To provide this information, call
getDirectoryContext().

■ The OID of the protected realm that the user is attempting to access. To provide
this information, call getDmsContext().

These methods fill the context object that is passed into them.

Context Class

The getDirectoryContext() and getDmsContext() methods in class SmDmsApiImpl create
a context object—either SmDmsDirectoryContext or SmDmsContext. The context
object contains information such as user directory, session, and connection information.
The context object is so-named because its information is derived within the context of
the provided realm OID or the user directory name or OID. When you have a context
object, you call its getDmsDirectory() method to retrieve an SmDmsDirectory object.
This object represents an LDAP or other namespace and gives you access to
organizations and other elements in the namespace.

Object Class

Chapter 7: Delegated Management Services API 139

Object Class

The Object class, SmDmsObject, and its subclasses provide methods for creating and
managing directory objects. SmDmsObject includes the following subclasses:

■ SmDmsDirectory represents a user namespace, such as LDAP. It provides access to
the information in an entire directory.

■ SmDmsOrganization represents an organization, such as Engineering or Human
Resources, within a directory. A SiteMinder user directory is a conceptual view of an
organization. It is managed by an organization administrator and uniquely identified
by an organization DN.

■ SmDmsGroup represents a group within an organization. Groups are sets of objects
that have something in common—for example, a group of employees who have
been with the company for less than a year. With group objects, users can be
assigned privileges collectively instead of individually.

■ SmDmsRole represents a role within an organization. A role describes a user’s
function in an organization. This allows the user to be managed with other users
who have the same privileges. For example, a user who can order items online and
view an inventory list may have the role buyer.

■ SmDMSUser represents a user within an organization. Users can be end users or
administrators.

Object Model

When performing an operation on a directory, organization, group, role, or user object,
you sometimes have a choice of using the generic SmDmsObject or one of its subclasses.
However, for object-specific operations (such as authenticating a user, changing a user’s
password, or getting a user’s privileges), you have to use an object-specific subclass.

The objects corresponding to the subclasses are distinguished by a class identifier, such
as DMSOBJECT_CLASS_USER for a user object. These identifiers are defined in
SmDmsObject. When you create an object using a subclass, such as creating a user with
SmDmsUser, and then you call addObject(), the class identifier is automatically set.
However, if you create a generic directory, organization, group, role, or user object with
SmDmsObject, you must set the class identifier before calling addObject().

Search Class

The Search class, SmDmsSearch, represents a configuration object for the search
operation. It holds the search base and the filter. The filter expects a string-based search
expression for the object class.

Cursor Class

140 Programming Guide for Java

The search class returns a list of distinguished names paired with the corresponding
class identifier, and optionally, selected attribute information for the items retrieved in
the search.

Cursor Class

The SmDmsCursor class lets you define sorting and paging behavior for result set
operations—for example:

■ Set the sort parameter of the SmDmsCursor constructor to specify the columns to
use for sorting rows.

■ Call setBlockSize() to define the maximum number of rows that can be returned
from a result set at one time—that is, the maximum number of rows in a page.

■ Call setOffset() to specify the starting offset (row number) of the block returned
from the result set.

■ Call isSortingCritical() to specify whether a result set must be sorted.

■ If you specify true, a result set will be retrieved only if it can be sorted.

■ If you specify false, an unsorted result set will be sent if it cannot be sorted. An
isSorted() call on the same SmDmsCursor object will return false.

■ Call isPagingCritical() to specify whether a result set must be paginated.

■ If you specify true, a result set will be retrieved only if it can be paginated.

■ If you specify false, a complete result set will be sent if it cannot be sorted. An
isPaginated() call on the same SmDmsCursor object will return false.

Cursor Class

Chapter 7: Delegated Management Services API 141

Searches that Support Cursor Operations

You can perform sorting and paging operations by passing a defined SmDmsCursor
object into any of the following methods:

■ One of the search methods in SmDmsOrganization:

■ search()

■ searchForward()

■ searchBack()

■ searchRefresh()

■ SmDmsObject.getGroups()

■ SmDmsOrganization.getGroups()

■ SmDmsGroups.getMembers()

Note: getGroups() and getMembers() are not supported in searches of ODBC
directories.

Searches of Microsoft LDAP Directories

Sorting and paging operations are not supported for Active Directories through the AD
namespace. Sorting and paging operations are supported for Active Directories through
the LDAP namespace.

When communicating with an Active Directory through the AD namespace, SiteMinder
responds to sorting and paging requests as follows:

■ If both isPagingCritical() and isSortingCritical() return false in the SmDmsCursor
object, the result set is returned. No sorting and paging operations are performed.

■ If either isPagingCritical() or isSortingCritical() returns true in the SmDmsCursor
object, an error occurs. No result set is returned.

You specify whether sorting and paging operations are critical in the SmDmsCursor
constructor.

Write a Directory Management Application

142 Programming Guide for Java

Write a Directory Management Application

To write a Directory Management application

1. Establish a Connection to the Policy Server

2. Obtain a Session Object

A session object is obtained when a user or administrator successfully logs in:

■ To log in a SiteMinder administrator and establish a SiteMinder administrator
session, call the login() method in the SmApiSession class of the Utilities
package.

If login is successful, the session object contains the session specification.

■ To log in an end user, DMS organization administrator, or DMS super
administrator, call the login() method in the AgentAPI class of the Agent API
package.

If the login is successful, the session specification is put into the spec field of
the SessionDef object. Set the spec value in the SmApiSession object.

3. Pass in the Session Object

After obtaining a valid session, create a DMS API object by passing the session to
the constructor of the SmDmsApiImpl class—for example:

SmDmsApi dmsApi = new SmDmsApiImpl (apiSession);

In the example, dmsApi is the new DMS API object, and apiSession is the session
obtained when the administrator successfully logged in.

Note: Whenever you create a DMS API object, you pass the session and connection
information to the object.

4. Create a Directory Management Context

To use the DMS API to access a user directory, you need to know either:

■ The OID of a realm that has a self-registration scheme configured for it.

Call SmDmsApiImpl.getDmsContext() to pass in this information.

■ The SiteMinder user directory where you are operating.

Call SmDmsApiImpl.getDirectoryContext() to pass in this information.

The type of information you know or choose to provide determines the directory
management context for accessing the user directory, as follows:

If You Know... And... Then Use...

The OID of a realm that
contains a

self-registration scheme

The user is a SiteMinder
administrator

Delegated Management
Services (DMS) context

Write a Directory Management Application

Chapter 7: Delegated Management Services API 143

If You Know... And... Then Use...

The SiteMinder user
directory name or OID

— Directory context

DMS context and directory context provide two different avenues for reaching the
same destination—an SmDmsDirectory object where you can access and
manipulate directory information.

5. Create and Manipulate Objects

After creating a context, you can create and manipulate directory objects using the
DMS Object Model. When working with directory objects, you need to know:

■ The distinguished name of the object.

■ The type of object, such as:

■ Top-level organization

■ Organizational unit

■ Group

■ User

■ Role

DMS Context

DMS context lets you access an SmDmsDirectory object within the context of a realm
OID that you provide. The DMS context class is SmDmsContext.

You can create a DMS context object as follows:

SmDmsContext dmsContext = new SmDmsContext();

You can retrieve a DMS context object, use the method getDmsContext() in the class
SmDmsApiImpl.

Note: SiteMinder administrator privileges are required for calling getDmsContext().

Before retrieving the DMS context object information, you need to create a realm object
to pass into the getDmsContext() call. The realm object must:

■ Have a valid object identifier (OID) obtained from an agent call to
AgentAPI.isProtected().

■ Be configured with a registration scheme.

Write a Directory Management Application

144 Programming Guide for Java

You create the SmRealm object as follows:

SmRealm realm = new SmRealm();

Then, set the realm OID by calling setOid(). You can call this method through an object
that extends the SmObjectImpl class of the Policy Management API.

After setting the OID for the realm object, call getDmsContext() and pass in the realm
object.

Example:

An agent calls isProtected() to determine if the resource that a user is attempting to
access is protected. The Policy Server indicates that the resource is protected by
returning the credentials required for accessing the resource. Included with the return
information is the OID of the protected realm. As shown in the example below, you use
the returned realm OID (in the example, m_REALM_OID) to set the OID for the realm
object you are creating and passing to getDmsContext():

// Create a DMS API object from a valid session.

SmDmsApi dmsApi = new SmDmsApiImpl (apiSession);

// The realm below should contain a registration scheme.

// You can get a directory OID from the registration scheme.

SmRealm realm = new SmRealm ();

realm.setOid (m_REALM_OID);

// Create the DMS context object.

SmDmsContext dmsContext = new SmDmsContext ();

// This call returns the realm, self registration,

// and user directory information through dmsContext.

result = dmsApi.getDmsContext (realm,

 new SmDmsConfig(),

 dmsContext);

To get complete directory information from the dmsContext object, call
dmsContext.getDmsDirectory().

To get just the directory OID, call dmsContext.getSelfReg(), and then call
SmSelfReg.getUserDir().

Write a Directory Management Application

Chapter 7: Delegated Management Services API 145

Directory Context

Directory context lets you access an SmDmsDirectory object within the context of a user
directory name or OID that you provide. The directory context class is
SmDmsDirectoryContext. To get a directory context, use the method
getDirectoryContext() in the class SmDmsApiImpl.

In the following example, an SmDmsDirectoryContext object is returned in dirContext.
Call getDmsDirectory() to get the information about the directory object.

// Create a DMS API object from a valid session.

SmDmsApi dmsApi = new SmDmsApiImpl (apiSession);

// Create the directory context object.

SmDmsDirectoryContext dirContext=new SmDmsDirectoryContext();

// Directory object to pass in to getDirectoryContext().

SmUserDirectory userDir = new SmUserDirectory ();

// setOid() method can take the name of the user directory.

userDir.setOid ("smdev");

// This call returns directory information through dirContext.

result=dmsApi.getDirectoryContext(userDir,

 new SmDmsConfig(),

 dirContext);

Change the User Type in DMS Context

In a directory context, you can perform operations on behalf of any user type—super
administrator, SiteMinder administrator, organization administrator, or end user. But to
create a DMS context object, you must call the method getDmsContext(), and
SiteMinder administrator privileges are required to call this method.

After getDmsContext() is called and DMS context is established for the session, it’s
possible to change the user type for subsequent operations in the session. For example,
after a SiteMinder administrator opens a session in DMS context, you might want an
end user to modify his user profile later in the same session. To make the profile request
on the end user’s behalf rather than the SiteMinder administrator’s, you need to change
the user type.

Write a Directory Management Application

146 Programming Guide for Java

To create a DMS context object, you call SmDmsApiImpl.getDmsContext(). When you do
so, connection information and the SiteMinder administrator’s session specification are
included the DMS context object.

As a chain of subsequent objects is created in the session (for example,
SmDmsDirectory/SmDmsOrganization/SmDmsUser), the connection and session
information is passed from object to object. To change the user type for a given object,
you replace the SiteMinder administrator’s session specification for that object with the
session specification for the new user type on whose behalf subsequent calls will be
made. You can change the session specification at any object level.

To change the user type for an object created in DMS context

1. Create the object that will be the target of requests by the new user type.

For example, to make requests against the new user object dmsUser in organization
dmsOrg on behalf of an end user with the distinguished name USER_DN:

SmDmsUser dmsUser = dmsOrg.newUser(USER_DN);

In the example, the SiteMinder administrator session specification in the dmsOrg
object is passed to the dmsUser object.

2. Get a session specification for the new user in either of these ways:

■ With standard SiteMinder agents, use the default HTTP header
HTTP_SM_SERVERSESSIONSPEC.

■ With custom agents, use the Agent API to log in the new user.

3. Pass in the session specification for the new user and DMS object. For example, if
sessionSpec is the session specification:

dmsUser.getApiSession().setSessionSpec(sessionSpec);

More Information:

Context Class (see page 138)

Write a Directory Management Application

Chapter 7: Delegated Management Services API 147

Create an Object

To create an object, such as an organization object, a group object, a user object, or a
role object:

1. Use the context to get a directory object by calling getDmsDirectory() on a DMS
context or directory context. For example, using a DMS context:

SmDmsDirectory dmsDir = dmsContext.getDmsDirectory();

2. Use the directory object to create an organization object by calling
newOrganization() in class SmDmsDirectory. Pass in the distinguished name of the
organization, such as o=swdev.com. For example:

SmDmsOrganization org=dmsDir.newOrganization("o=swdev.com");

3. Use the organization object to create other objects, such as group objects or
organizational unit objects. The following example creates a group object named
grp with the distinguished name ou=UI,ou=eng, o=swdev.com.

SmDmsGroup grp=org.newGroup("ou=UI,ou=eng,o=swdev.com");

Note: This code does not add the group to the directory.

The following figure illustrates the DMS API flow for creating directory objects:

Get Directory Entry Attributes

To retrieve a value for a specific attribute, call getAttribute() in class SmDmsObject and
pass in the attribute name as a string. Attribute values are available after you fetch the
attributes with getObject(). The method getAttribute() returns a member of the
java.lang.Object class. If the attribute is multi-valued, the returned object will contain
multiple values delimited by a caret (^).

Write a Directory Management Application

148 Programming Guide for Java

Add an Object to a Directory

To add an object to a directory:

1. Set the attributes for the object by calling setAttribute() in class SmDmsObject and
passing to it the attribute name and its value. Attribute names are defined in your
directory system.

Call setAttribute() as many times as necessary to define the object.

2. Call the method addObject() in class SmDmsObject. For example:

result = grp.addObject();

In the example, result is an SmApiResult object.

Note: If you want to call addObject() on a (generic) SmDmsObject object, you must
first call setClassId() to set the class identifier.

When adding an object, you can set multiple values for the objectclass attribute, but not
for other attributes. When modifying an object with the modifyObject() method, you
can set multiple values for any attribute.

To set multiple values for an attribute, you can either:

■ Pass in a string, using a caret (^) to delimit the values.

■ Pass in a vector of values and have SiteMinder convert the vector to a string.

For example, to pass in a string containing the values top and organizationalunit, you
could use the following code:

group.setAttribute("objectclass","top^organizationalunit");

To pass in a vector for the same values, you could use the following code:

Vector objectclass = new Vector();

objectclass.add("top");

objectclass.add("organizationalunit");

group.setAttribute("objectclass", objectclass);

Note: For existing objects, object class can be modified through the modifyObjectClass()
method. This method also allows you to set multiple values for object class.

Write a Directory Management Application

Chapter 7: Delegated Management Services API 149

Add a User to a Group

To add a user to a group, call the addToGroup() method in class SmDmsObject. In the
following example, the user user1 is added to the group devGroup:

SmDmsDirectory dmsDir = dmsContext.getDmsDirectory();

SmDmsOrganization org = dmsDir.newOrganization(ORG_ROOT);

SmDmsGroup devGroup = org.newGroup(GROUP_DN);

SmDmsUser user1 = org.newUser(USER_DN1);

result = devGroup.addToGroup(user1);

Add a User to a Role

To add a user to a role, call the addToRole() method (class SmDmsUser). In the following
example, the user user1 is added to the role role:

SmDmsDirectory dmsDir = dmsContext.getDmsDirectory();

SmDmsOrganization org = dmsDir.newOrganization(ORG_ROOT);

SmDmsRole role = org.newRole(ROLE_DN);

SmDmsUser user1 = org.newUser(USER_DN1);

result = user1.addToRole(role);

Get, Modify, or Delete an Object

To get or modify an object’s attributes, or to delete an object, call getObject(),
modifyObject(), or deleteObject(). These methods are defined in class SmDmsObject.

For example, to get the attributes of the organization org whose DN is referenced by
ORG_ROOT in the directory namespace dmsDir:

ORG_ROOT="o=swdev.com";

SmDmsDirectory dmsDir = dmsContext.getDmsDirectory();

SmDmsOrganization org = dmsDir.newOrganization(ORG_ROOT);

SmApiResult result = org.getObject();

To modify an object’s attributes, you first fetch the existing attributes with getObject().
Then, you set the new attribute(s) by calling setAttribute() (in class SmDmsObject), just
as you do when adding an object.). For example, to modify the user USER_DN1 in the
organization org above by setting attribute l to the value Boston:

SmDmsUser user = org.newUser(USER_DN1);

result = user.getObject();

user.setAttribute("l", "Boston");

result = user.modifyObject();

Searches

150 Programming Guide for Java

You can modify multiple values for all attributes, not just the objectclass attribute.

To delete the user in the previous example:

SmDmsUser user = org.newUser(USER_DN1);

result = user.deleteObject();

Searches

You can search LDAP directories and ODBC directories. You search an organization using
one of the search... methods in the class SmDmsOrganization.

You define a search using the following objects:

■ SmDmsSearch to set search parameters such as the search starting point, the
maximum number of records to retrieve, and the search filter. The following
sections describe the use of this object.

■ SmDmsCursor to define optional sorting and paging preferences.

You can specify the search parameters to use when searching the directory. There are
two times when you can specify search parameters:

■ When you create the search object

■ After you create the search object

You can use either option or both options. They are not mutually exclusive.

Set Search Parameters When You Create the Search Object

To specify a search parameter when you create a search object, pass one or more
search parameter names to the constructor of the SmDmsSearch class.

There are some search parameters that you cannot specify during creation of the search
object—for example, scope. The constructor for the SmDmsSearch class accepts only
the following search parameters:

■ filter

■ root

■ propertyNames

■ maxItems

You can create an SmDmsSearch object without passing any search parameters to the
constructor.

Searches

Chapter 7: Delegated Management Services API 151

Set Search Parameters After Creating the Search Object

After a search object is created, you can use the set... methods in the SmDmsSearch
class to:

■ Set additional search parameters.

■ Reset search parameters that you set when the search object was created.

By using the set... methods, you can set or reset any of the parameters shown in the
following table:

Parameter Default Set Method Definition

classId Unknown
(not set yet)

setClassId() Class identifier.

filter " " setFilter() Search filter, or the string
you want to find.

Can also be set when the
search object is created.

maxItems 50 setMaxItems() Maximum number of result
set items to display at a

time.

Can also be set when the

search object is created.

nMaxResults -1 setMaxResults() Maximum number of items

for the result set.

For example, if nMaxResults
is 500, but 750 items match
the search criteria, only the
first 500 matches will be
returned from the search.

nextItem -1 setNextItem() The item to start with on
the next search
forward—for example:

nextItem += maxItems

previousItem -1 setPreviousItem() The item to start with on
the next search

backward—for example:

previousItem-=maxItems

Searches

152 Programming Guide for Java

Parameter Default Set Method Definition

propertyNames null setPropertyNames(

)

Properties to return from

the search.

Can also be set when the

search object is created.

root " " setRoot() Directory entry where the
search should start.

Can also be set when the

search object is created.

Valid for LDAP searches
only.

scope None setScope() Levels searched.

For LDAP searches only.

timeout -1 setTimeout() Maximum duration of the
search, in seconds.

Set the Search Filter

The search filter defines the items you want to retrieve in the search. You can set the
search filter through an SmDmsSearch constructor or through the SmDmsSearch
method setFilter().

The search filter is described differently for LDAP directories and ODBC directories.

Set the Search Filter for LDAP Directories

With LDAP directories, you provide a complete LDAP search filter in the filter parameter
of an SmDmsSearch constructor or setFilter() method. For example, if you pass filter and
root to the SmDmsSearch constructor to search the organization swdev.com for groups,
you could specify the following:

SmDmsSearch search = new SmDmsSearch (

 "(&(objectclass=organizationalUnit) (ou=groups))",

 "o=swdev.com");

Searches

Chapter 7: Delegated Management Services API 153

Set the Search Filter for ODBC Directories

A search of an ODBC directory is performed through a SQL query. The DMS API supports
the SQL SELECT statement.

The information you provide in the search filter depends on whether your search uses
an SmDmsCursor object to provide sorting and paging operations:

■ With ODBC searches that do not pass an SmDmsCursor object to the search
method, use a fully defined SQL SELECT statement in the search filter.

■ With ODBC searches that do pass an SmDmsCursor object to the search method,
use a partial SQL SELECT statement in the search filter, consisting only of FROM and
WHERE clauses.

With ODBC database searches that pass an SmDmsCursor object to the search method,
the DMS API constructs the complete SQL SELECT statement from various sources, as
follows:

■ The FROM and WHERE clauses are taken from the filter parameter of an
SmDmsSearch constructor or setFilter() method.

■ The SELECT columns portion of the query is taken from attributes specified in either
of the following parameters:

■ The propertyNames parameter of setPropertyNames(). These attributes are
used when an SmDmsSearch object is passed to one of the search methods in
SmDmsOrganization.

■ The attrNames parameter of a getGroups() or getMembers() method.

■ The ORDER BY keywords portion is taken from the order of the attributes you
specify in the sort parameter of the SmDmsCursor constructor.

Searches

154 Programming Guide for Java

Consider the following code fragment:

String DIR_ROOT = "root";

String SRCH_FILTER ="from SmGroup";

SmDmsSearch search = new SmDmsSearch(SRCH_FILTER);

String[] prop = {"Name", "'Group' as Class"};

search.setPropertyNames(prop);

Vector SortOrder = new Vector();

SortOrder.add("uid");

SmDmsCursor cursor = new SmDmsCursor(SortOrder,blockSize,false,true);

The DMS API uses the information in the previous example to build the following SQL
statement:

SELECT Name, 'Group' AS Class FROM SmGroup ORDER BY uid ASC

Code Source Portion of SQL Statement

SRCH_FILTER parameter of
SmDmsSearch constructor

from SmGroup

SortOrder parameter of
SmDmsCursor constructor

order by uid asc

prop parameter of

setPropertyNames()

select Name, 'Group' as Class

Searches

Chapter 7: Delegated Management Services API 155

Search an Organization

In the DMS API, searches are performed on an organization object.

To search an organization:

1. Create a search object. This search object holds the search parameters.

For example, the following SmDmsSearch constructor call creates a search object to
search for groups. The root parameter specifies a start point of o=swdev.org.

SmDmsSearch mySearch = new SmDmsSearch (

 "(&(objectclass=organizationalUnit) (ou=groups))",

 "o=swdev.org");

Note: The root is the top level of the SiteMinder user directory to search. It is not
necessarily the top level of the entire directory structure.

Use the set... methods in the SmDmsSearch class to set any other search
parameters—for example:

mySearch.setScope(2);

2. Optionally, define sorting and paging preferences in the SmDmsCursor object.

3. Call the search() method in class SmDmsOrganization on the organization you want
to search—for example:

result = targetOrg.search (mySearch, 1);

The second parameter of the search() method indicates the direction to search, as
shown in the following table:

Direction Integer Value

Reset 0

Forward 1

Back 2

Refresh 3

4. To get the items returned from the search, call getResults() on the search
object—for example:

Vector mySearchResults = search.getResults();

The first element of the results vector contains the search parameters in a
SmDmsSearchResultParams object. The remaining elements are SmDmsObject
objects. To distinguish object types, the classId attribute of each object is set
through the setClassId() method. For example, if the classId is
DMSOBJECT_CLASS_USER, the object is a user. If the classId is
DMSOBJECT_CLASS_GROUP, the object is a group.

Searches

156 Programming Guide for Java

Examples of a Search

The following example searches an organization using the search parameters set
through the search.set... methods below. The results of the forward search are assigned
to the vector vsearch and are printed along with the search parameters.

SmDmsContext dmsContext = new SmDmsContext();

SmDmsDirectory dmsDir = dmsContext.getDmsDirectory();

SmApiResult result = new SmApiResult();

SmDmsOrganization org = dmsDir.newOrganization (DIR_ROOT);

// Search

SmDmsOrganization test = org.newOrganization("");

SmDmsSearch search = new SmDmsSearch (

 "(&(objectclass=organizationalUnit) (ou=groups))",

 "o=swdev.com");

// Define search parameters

search.setScope(2); // Number of levels to search.

search.setNextItem(0); // Initialize forward search start

search.setMaxItems(20); // Max number of items to display

search.setPreviousItem(0); // Initialize back search start

search.setMaxResults(500); // Max items in the result set

result = test.search(search, 1);

Vector vsearch = search.getResults();

System.out.println("Search object vector size " + vsearch.size());

SmDmsSearchResultParams searchParams =

 (SmDmsSearchResultParams)vsearch.firstElement();

System.out.println("***Search Parameters***");

System.out.println(searchParams.toString());

System.out.println("removed element at 0");

vsearch.removeElementAt(0);

System.out.println("Search object vector size " + vsearch.size());

for (int i=0; i<vsearch.size(); i++)

{

 SmDmsObject dmsObj = (SmDmsObject)vsearch.elementAt(i);

 System.out.println("***Search**** " + dmsObj);

 printObject (dmsObj, result);

}

Hashtable attrs = dmsObj.getAttributes();

Enumeration keys = attrs.keys();

Enumeration values = attrs.elements();

while(values.hasMoreElements())

User Password State

Chapter 7: Delegated Management Services API 157

The following code fragment configures sorting and paging features through
an SmDmsCursor object and performs a search. The parameters for the SmDmsSearch
object search would be defined in the same way as in the previous example:

Vector SortOrder = new Vector();

SortOrder.add("uid");

int blockSize = 20;

SmDmsCursor cursor=new SmDmsCursor(SortOrder,blockSize,false,true);

cursor.setOffset(15);

result = org.search(search, cursor, 1); //Forward search

System.out.println(keys.nextElement() + " = " +

 values.nextElement());

User Password State

Password state refers to activities relating to a given user’s password—for example, the
last time the password was changed, and the last time the password was used to log in
the user. To retrieve an existing SmDmsUserPWState object for a user, or to set a new
password state object with any attribute changes, call getUserPWState() or
setUserPWState() in SmDmsUser.

The following table lists the password state attributes you can access for a given user,
and the method used to set or retrieve an attribute value. All methods are in the class
SmDmsUserPWState, unless otherwise noted.

Password State
Attribute

Method Description

Login failures setLoginFailures()
getLoginFailures()

Sets or retrieves the number of
times the user failed to log in
since the user’s last successful
login.

Last login time setLastLoginTime()
getLastLoginTime()

Sets or retrieves the time the
user last logged in successfully.

Previous login time setPrevLoginTime()

getPrevLoginTime()

Sets or retrieves the
next-to-last time the user
logged in successfully.

Disabled time setDisabledTime()
getDisabledTime()

Sets or retrieves the time the
user object was disabled.

ODBC Support

158 Programming Guide for Java

Password State
Attribute

Method Description

Password history SmDmsUser.
setUserPWState()

Optionally, clears the user’s
password history when setting
the password state object for
the user.

You cannot retrieve password
history or set password history
entries.

Last password change
time

setLastPWChangeTime()
getLastPWChangeTime()

Sets or retrieves the time the
user’s password was last
changed.

If you change a password state attribute, the change applies to the current password
state object only. To apply the change to a password state object that may be
subsequently retrieved, pass the current password state object in a call to
SmDmsUser.setUserPWState(). This method sets a new password state object
containing the attribute values passed into the method.

ODBC Support

When operating against ODBC-based user directories, you can use the following DMS
API methods:

■ SmDmsApiImpl.getDirectoryContext(SmUserDirectory,
 SmDmsConfig, SmDmsDirectoryContext)

■ SmDmsDirectory.getCapabilities(Vector)

■ SmDmsDirectory.getUserChallengeText(String)

■ SmDmsDirectory.getUserTempPassword(String, String)

■ SmDmsObject.getGroups(Vector, boolean)

■ SmDmsObject.getObject()

■ SmDmsObject.getObject(Vector)

■ All search... methods in SmDmsOrganization

■ SmDmsUser.authenticate(String)

■ SmDmsUser.changePassword(String, String, boolean)

DMS roles are not supported. Also not supported are operations such as adding and
deleting users and groups, adding users to a group, and removing users from a group.

Restricted Methods

Chapter 7: Delegated Management Services API 159

Restricted Methods

Some of the methods in the DMS API can only be called within a session established at a
minimum level of the user privilege hierarchy or higher. For example, adding an end
user to a role requires an organization administrator session, Siteminder administrator
session, or super administrator session.

The following table shows the DMS methods (plus the login() and logout() methods in
the apiutil package) that have security restrictions, the minimum privilege level required
to call the methods, and the classes that the methods are called from:

Method Minimum Privilege Level and Class

addObject() Organization administrator session
SmDmsObject and subclasses

addToGroup() Organization administrator session
SmDmsObject and subclasses

addToRole() Organization administrator session

SmDmsUser class

authenticate() End user session
SmDmsUser class

changePassword() End user session
SmDmsUser class

deleteObject() Organization administrator session
SmDmsObject and subclasses

getCapabilities() End user session
SmDmsDirectory class

getDirectoryContext() End user session

SmDmsApiImpl class

getDisabledState() End user session
SmDmsUser class

getDmsContext() SiteMinder administrator session

SmDmsApiImpl class

getDmsRoles() Organization administrator session
SmDmsDirectory class

getGroups() End user session
SmDmsObject and subclasses

getGroups() Organization administrator session
SmDmsOrganization class

getMembers() Organization administrator session
SmDmsGroup class

Restricted Methods

160 Programming Guide for Java

Method Minimum Privilege Level and Class

getMembers() Organization administrator session

SmDmsRole class

getObject() End user session
SmDmsObject and subclasses

getOrganizations() Organization administrator session
SmDmsOrganization class

getRoles() End User session
SmDmsUser class

getRoles() Organization administrator session
SmDmsOrganization class

getUserChallengeText() Super administrator session

SmDmsDirectory class

getUserPWState() End user session
SmDmsUser class

getUserTempPassword() Super administrator session
SmDmsDirectory class

login() No session
SmApiSession class

logout() SiteMinder administrator session
SmApiSession class

modifyObject() End user session

SmDmsObject and subclasses

removeFromGroup() Organization administrator session
SmDmsObject and subclasses

search() Organization administrator session
SmDmsOrganization class

searchBack() Organization administrator session
SmDmsOrganization class

searchForward() Organization administrator session
SmDmsOrganization class

searchRefresh() Organization administrator session
SmDmsOrganization class

setDisable() Organization administrator session
SmDmsUser class

setDisabledState() Organization administrator session
SmDmsUser class

Restricted Methods

Chapter 7: Delegated Management Services API 161

Method Minimum Privilege Level and Class

setEnable() Organization administrator session

SmDmsUser class

modifyObjectClass() Organization administrator session
SmDmsObject and subclasses

setPasswordMustChange() End user session
SmDmsUser class

setUserPWState() End user session
SmDmsUser class

Index 163

Index

A

About Policy Management • 58
About the DMS API • 133
accessing a resource • 41
accounting port • 21
Active Expressions • 122
active policies, rules, and responses • 122, 124
ActiveExpression Methods • 124
ActiveExpressionContext class • 125
AD namespace for user directory • 141
Add a User to a Group • 149
Add a User to a Role • 149
Add an Object to a Directory • 148
Add Objects to the Policy Store • 74
addAdmin() • 63
addAdminToDomain() • 63
addAgent() • 63
addAgentConfig() • 64
addAuthAzMap() • 64
addCertMap() • 65
addDomain() • 65
addGroup() • 67
addHostConfig() • 67
adding objects to a directory • 148
adding to directories • 148
adding to groups • 149
adding to roles • 149
addObject() • 159
addODBCQuery() • 68
addPasswordPolicy() • 68
addPolicy() • 69
addPolicyLink() • 69
addRealm(() • 69
addResponse() • 70
addResponseAttr() • 70
addRootConfig() • 70
addRule() • 71
addScheme() • 65
addSelfReg() • 71
addToGroup() • 67, 149, 159
addToRole() • 149, 159
addTrustedHost() • 71
addUserDirectory() • 72
addUserDirToDomain() • 72

addUserPolicy() • 73
Administrator Methods • 63
administrator session • 62
Advantages of Session Variables • 51
affiliates • 90
Agent API • 35
Agent API Class Hierarchy • 36
Agent Configuration Object Methods • 64
Agent Discovery • 24
agent information • 41
Agent JAR file • 37
Agent Methods • 63
Agent Type • 36
agents • 50
AIX agent • 37
Anonymous Template • 77
API instance initialization • 41
APIContext class • 110
AppSpecificContext class • 110
Attribute-based Delegation • 136
attributes • 72
auditing • 41, 46
Auditing Services and Transaction Tracking • 46
authenticate() • 112, 119, 159
authenticating • 41, 75, 111
authenticating a user • 41, 119
Authentication and Authorization APIs • 109
Authentication and Authorization Map Methods • 64
Authentication API • 16, 110, 111, 112
Authentication API JAR file • 109, 110
Authentication Events • 119
authentication events and performance • 107
Authentication of User Credentials • 115
authentication port • 21
authentication scheme • 90, 98
Authentication Scheme Configuration • 75
Authentication Scheme Dialog • 112, 120
Authentication Scheme Methods • 65
authentication schemes • 75, 109, 112, 120
Authorization API • 17, 110, 122, 125
Authorization API JAR file • 109, 110
authorization events and performance • 107
authorization port • 21
Authorization Services • 46
authorizing • 41, 122

164 Programming Guide for Java

automatic connections • 20

B

backup Policy Server • 52
balancing Policy Server load • 52
base interface • 111
Basic Over SSL Template • 79
Basic Template • 78
block offset • 140
block size • 140
building and running applications • 14

C

CA Technologies Product References • 3, 11
Cache Commands • 47
cached authorization • 41, 46
calling sequence • 114
Certificate Map Methods • 65
challenging a user • 119
Change the User Type in DMS Context • 145
changeDynamicKey() • 73
changePassword() • 159
changePersistentKey() • 73
changeSessionKey() • 73
changing user type • 145
class identifiers • 139
classes • 112, 125
Classes and Interfaces in the Authentication API •

111
Classes for Internal Use • 29
Cluster Configuration • 53
Cluster Failover • 54
Clustered and Non-Clustered Servers • 52
Code Samples • 14
Common Classes • 110
components • 15, 18
configuration • 109
configuration file • 20, 21, 50
Configuration of All Custom Classes • 109
Configure Attribute-based Delegation • 137
Configure the Assertion Generator Plug-in in the UI •

131
configuring • 75, 109
Connection Class • 30
connection handles • 19
connection parameters • 41
Connection to a Policy Server • 41
connection types • 19

Contact CA Technologies • 3, 11
containers in directories • 135
Context Class • 138
cookies, SMSESSION • 48
Core Methods in the Result Class • 32
Create a Custom Authentication Scheme • 111
Create an Object • 147
create token • 48
createSSOToken() • 48
creating • 20, 21, 41, 147
creating objects • 147
credentials, custom authentication • 112, 115, 116
Cursor Class • 140
custom authentication • 111, 115
custom authorization • 122
Custom Classes for Authentication and Authorization

• 110
Custom Template • 80
Customizing a SAML Assertion • 127

D

decodeSSOToken() • 48
decrypt token • 48
default object handle • 19
Delegated Management Services API • 17, 133
Delete Objects from the Policy Store • 75
deleteAdmin() • 63
deleteAgent() • 63
deleteAgentConfig() • 64
deleteAuthAzMap() • 64
deleteCertMap() • 65
deleteDomain() • 65
deleteGroup() • 67
deleteHostConfig() • 67
deleteObject() • 149, 159
deleteODBCQuery() • 68
deletePasswordPolicy() • 68
deletePolicy() • 69
deletePolicyLink() • 69
deleteRealm() • 69
deleteResponse() • 70
deleteResponseAttribute() • 70
deleteRootConfig() • 70
deleteRule() • 71
deleteScheme() • 65
deleteSelfReg() • 71
deleteTrustedHost • 71
deleteUserDirectory() • 72

Index 165

deleteUserPolicy() • 73
deleting • 149
delSessionVariables() • 51
Deploy the Assertion Generator Plug-in • 131
description • 136
direction • 155
directory • 139
Directory Context • 145
directory context class • 145
disambiguation • 116, 117
discarding • 46
DMS API • 133, 134, 137, 138
DMS API support • 158
DMS Context • 143
DMS Context class • 143
DMS hierarchy • 137
DMS Users • 137
Domain Methods • 65
domain objects • 59
doManagement() • 41
dynamic load balancing • 52

E

elements • 31
Enable Agent Discovery • 25
Enable Pure Java Agent API Tracing • 40
Encryption Commands • 47
End of Session Cleanup • 52
end user session • 137
equals() • 25, 31, 32
errors on server • 31
Establish a Connection to the Policy Server • 19, 61
Establish a Default Connection • 20
Establish a User-Defined Connection • 21
event processing and performance • 107
events and custom authentication • 119
Examples of a Search • 156
Exception class • 33
Exception Class • 33
exceptions • 25, 31, 33
Execute an Active Expression • 123
execute() • 30
execution sequence • 123
existing connections • 21
Extend the SAML and WS-Federation Authentication

Schemes • 120

F

Facility portion of result • 31
failover • 18, 41, 52, 54
failures • 157
filter for directory searches • 152
filters • 152
flat directories • 136
flow of calls • 19
flushAll() • 73
flushing caches • 41, 73
flushing from cache • 73
flushRealm() • 73
flushRealms() • 73
flushUser() • 73
flushUsers() • 73
FROM clause • 153

G

General Object Methods • 66
Get Directory Entry Attributes • 147
Get, Modify, or Delete an Object • 149
getAdmin() • 63
getAdminUserDirs() • 63
getAgent() • 63
getAgentApiConnection() • 30
getAgentConfig() • 64
getApiConnection() • 30
getAttribute() • 147
getAuthAzMap() • 64
getCapabilities() • 159
getCertMap() • 65
getDirectoryContents() • 72
getDirectoryContext() • 138, 159
getDisabledState() • 159
getDisabledTime() • 157
getDmsContext() • 138, 159
getDmsDirectory() • 138
getDmsRoles() • 159
getDomain() • 65
getDomainObject() • 65
getDomainObjectNames() • 65
getError() • 32
getFacility() • 32, 33
getGlobalObjectNames() • 66
getGroup() • 67
getGroupMembers() • 67
getGroups() • 159
getHostConfig() • 67

166 Programming Guide for Java

getLastLoginTime() • 157
getLastPWChangeTime() • 157
getLoginFailures • 157
getMembers() • 159
getMessage() • 32, 33
getName() • 34
getObject() • 66, 149, 159
getODBCQuery() • 68
getOid() • 66
getOrganizations() • 159
getPasswordPolicy() • 68
getPolicy() • 69
getPolicyLinks() • 69
getPrevLoginTime() • 157
getRealm() • 69
getRealmRules() • 69
getRealmUserPolicies() • 69
getReason() • 31, 32, 33
getResponse() • 70
getResponseAttrs() • 70
getResults() • 155
getRoles() • 159
getRootConfig() • 70
getRule() • 71
getScheme() • 65
getSelfReg() • 71
getSessionSpec() • 30
getSessionVariables() • 51
getSeverity() • 32, 33
getStatus() • 32, 33
getType() • 34
getUserChallengeText() • 159
getUserDirectory() • 72
getUserDirSearchOrder() • 72
getUserPolicies() • 73
getUserPWState() • 157, 159
getUserTempPassword() • 159
getValue() • 34
global objects • 59
Group Methods • 67

H

hierarchical directories • 134
Host Configuration Object Methods • 67
How Information Is Bound to a Session • 51
How Java Components Fit Together • 18
How SiteMinder Initializes Authentication Processing

• 114

How SiteMinder Loads a Custom Authentication
Scheme in Java • 113

How Web Agents Use the Agent API • 43
HP-UX 11 agent • 37
HTML Form Template • 81

I

identity ticket • 44
identity tracking • 44
Impersonation Template • 83
Implement the Java Assertion Generator Plug-in

Interface • 129
Implement the JNI Java Agent API • 37
Implement the Pure Java Agent API • 38
Implementation Class • 138
initializing a connection • 41
initializing an Agent API instance • 41
Installation Path • 13
installation path of Java APIs • 13
Interpret a Result Object • 31
Interpret an Active Expression Result • 124
interpreting as an object • 31
invoke() • 124
isDomainObject() • 65
isEnabled() • 68
isEntireDir() • 68
isProtected() • 41, 46
isSuccess() • 25, 32, 74
isValidApiConnection() • 30
isWriteable() • 66

J

JAR file • 37, 59, 134
jar file deployment • 110
Java Agent API • 15, 37
Java Agent API Services • 44
Java API Flow • 19
Java API Overview • 13
Java Authentication API • 111
Java Authorization API • 122
Java components • 15
Java components of SDK • 15
Java Components of the SiteMinder SDK • 15
Java DMS API • 133
Java Policy Management API • 58
Javadoc • 26
Javadoc Reference • 26
JVMOptions.txt • 109, 110

Index 167

L

LDAP directories • 152
library entry point • 109
library file • 110
libsmjavaagentapi.sl • 37
libsmjavaagentapi.so • 37
Linux agent • 37
load balancing • 18, 52
load distribution • 52
loading and initializing • 113
LocalConfig.conf • 21, 50
Log in as a SiteMinder Administrator • 23
Log on through a Custom Agent • 49
Log on through a Standard Agent • 50
Log Trace Information • 26
logging trace information • 26
login • 23, 30, 44, 45, 62
login() • 159
logout • 30, 44, 62
logout() • 159
lookupDirectory() • 72

M

Make API Requests and Handle Results • 25
Make Policy Management API Requests • 62
Management Services • 47
managing agents • 41
managing user attributes • 72
manual connections • 21
Message portion of result • 31
messages • 110
method security in DMS • 159
methods • 141
Microsoft LDAP searches • 141
mixed mode • 98
modifyAdmin() • 63
modifyAgent() • 63
modifyAgentConfig() • 64
modifyAuthAzMap() • 64
modifyCertMap() • 65
modifyDomain() • 65
modifyGroup() • 67
modifyHostConfig() • 67
modifyObject() • 149, 159
modifyObjectClass() • 159
modifyODBCQuery() • 68
modifyPasswordPolicy() • 68
modifyPolicy() • 69

modifyPolicyLink() • 69
modifyRealm() • 69
modifyResponse() • 70
modifyRootConfig() • 70
modifyRule() • 71
modifyScheme() • 65
modifySelfReg() • 71
modifyUserDirectory() • 72
MS Passport Template • 84

N

namespace • 139
native mode • 98
network architecture • 18
Network Architecture • 18
new session specification • 23
non-clustered Policy Servers • 52

O

Object Associations • 74
Object class • 139
Object Class • 139
object creation • 62, 147
Object Model • 139
Obtain a Session • 23
Obtain a Session Object • 62
ODBC directories • 153
ODBC Query Scheme Methods • 68
ODBC Support • 158
offset of result set block • 140
ORDER BY clause • 153
organization administrators • 44, 136
organization DN • 134, 139
organization objects, creating • 147
organizational units (ou). See SiteMinder user

directory • 134
organizations in flat directories • 137
organizations. See SiteMinder user directory • 134
Other Classes in the Authentication API • 112
Other Classes in the Authorization API • 125

P

package name • 15
paginating • 140
paging preferences • 140
Pass in the Session Object • 62
Password Policy Methods • 68
password state • 157

168 Programming Guide for Java

percentage for failover threshold • 54
performance • 52
Performance Consideration • 107
performance issue with realms • 107
persistent sessions • 52
policies, active • 122, 124
Policy Management API • 16, 57, 59, 61, 62
Policy Management Setup • 59
Policy Methods • 69
Policy Server • 19, 41
Policy Server Prerequisite • 14
Policy Store Objects • 59
policy-based response attributes • 48
portals • 90
ports • 21
prerequisites for Policy Management setup • 59
primary cluster • 54
privilege hierarchy • 137
privilege hierarchy in DMS • 137
process flow • 43
properties • 34
Property class • 34
Property Class • 34
PropProcessAuthEvents • 107
PropProcessAzEvents • 107
protected resources • 41, 46, 122
Pure Java Agent API Usage • 39
Purpose of the Java APIs • 13
Purpose of the Utilities Package • 29

Q

query() • 112

R

RADIUS CHAP/PAP Template • 86
RADIUS Server Template • 87
Realm Methods • 69
reason code for a result • 31
redirection • 119
Redirection • 119
reference documentation • 26
removeAdminFromDomain() • 63
removeFromGroup() • 67, 159
removeUserDirFromDomain() • 72
renameObject() • 66
RequestContext class • 125
requests, storing results of • 31
required attributes • 137

Required JAR File • 59
Required Library File • 110
required, attribute-based delegation • 137
requirements • 37
Requirements for Using Session Variables • 52
resource access • 41, 46
resources, check if protected • 41, 46
response attributes • 41, 46, 48, 124
Response Attributes • 48
Response Methods • 70
responses, active • 122, 124
Restricted Methods • 159
Result class • 31
Result Class • 31
result objects • 25
results • 124
Retrieve Objects from the Policy Store • 75
retrieving an attribute value • 147
retrieving attributes • 149
retrieving for object • 149
retrieving results • 155
Root Configuration Methods • 70
root of SiteMinder user directory • 134, 155
round-robin Policy Servers • 52
Rule Methods • 71
rules, active • 122, 124
running applications • 59

S

SafeWord HTML Form Template • 88
SafeWord Template • 89
SAML Artifact Template • 90
samples • 14
scheme. See authentication scheme • 75
SDK installation path • 13
SDK samples • 14
Search an Organization • 155
Search Class • 139
search filter • 152, 153
search() • 73, 159
search... methods • 141
searchBack() • 159
Searches • 150
Searches of Microsoft LDAP Directories • 141
Searches that Support Cursor Operations • 141
searchForward() • 159
searching • 155
searching directory • 72

Index 169

searchRefresh() • 159
SecurID HTML Form Template • 92
SecurID Template • 94
security • 62, 137
SELECT statement • 153
Self-Registration Methods • 71
sequence number • 52
Server Clusters • 52
server. See Policy Server • 52
server-side errors • 31
services • 44
session • 23, 62, 137
Session Class • 30
Session Creation and the Session Specification • 44
Session Delegation • 45
session management • 41
Session Server • 52
session services • 44
Session Services • 44
session specification • 30, 44
Session Termination • 46
session ticket. See session specification • 30
session types • 52
Session Validation • 45
session variables • 52
sessions • 23, 137
Set Search Parameters After Creating the Search

Object • 151
Set Search Parameters When You Create the Search

Object • 150
Set the Search Filter • 152
Set the Search Filter for LDAP Directories • 152
Set the Search Filter for ODBC Directories • 153
setAgentApiConnection() • 30
setApiConnection() • 30
setApiSession() • 73
setAttribute() • 148, 149
setDisable() • 159
setDisabledAttr() • 72
setDisabledState() • 159
setDisabledTime() • 157
setEnable() • 159
setFilter() • 152
setLastLoginTime() • 157
setLastPWChangeTime() • 157
setLoginFailures() • 157
setName() • 34
setPasswordMustChange() • 159
setPrevLoginTime() • 157

setResponseInPolicyLink() • 70
setSessionSpec() • 30
setSessionVariables() • 51
setting the search order • 72
setType() • 34
setUserDirSearchOrder() • 72
setUserPWState() • 157, 159
setValue() • 34
Severity portion of result • 31
Shared Information • 110
sharing information • 110
single process • 21
single server • 21
Single Sign-on • 48
SiteMinder administrators • 23, 30, 62
SiteMinder Agents • 35
SiteMinder User Directories • 134
SiteMinder user directory • 155
SiteMinder User Directory Containers • 135
SmAdmin() • 63
SmAgent() • 63
SmAgentConfig() • 64
SmAgentGroup() • 67
SmApiException class • 33
SmApiResult class • 31
SmApiSession class • 30
SmAuthAzMap() • 64
SmAuthenticationContext class • 112
SmAuthenticationResult class • 112
smauthetsso Authentication Scheme • 95
SmAuthQueryCode class • 112
SmAuthQueryResponse class • 112
SmAuthScheme interface • 111
SmAuthScheme Methods • 112
SmAuthStatus class • 112
SmCertMap() • 65
SmDmsApi interface • 138
SmDmsApiImpl class • 138
SmDmsConfig class • 135, 136, 137
SmDmsContext class • 138, 143
SmDmsCursor class • 140, 155
SmDmsDirectory class • 138, 139
SmDmsDirectoryContext class • 138, 145
SmDmsGroup class • 139
SmDmsObject class • 139
SmDmsOrganization class • 139
SmDmsRole class • 139
SmDmsSearch class • 139
SmDmsUserPWState class • 157

170 Programming Guide for Java

SmDomain() • 65
SmHostConfig() • 67
smjavaagentapi.dll • 37
smjavaagentapi.jar • 37
smjavaapi • 109, 110
SmJavaApiException class • 110
SmODBCQuery() • 68
SmPasswordPolicy() • 68
SmPolicyApiImpl() • 63, 64, 65, 66, 67, 68, 69, 70, 71,

72, 73
SmProperty class • 34
SmRealm() • 69
SmResponseAttr() • 70
SmResponseGroup() • 67
SmRootConfig() • 70
SmRule() • 71
SmRuleGroup() • 67
SmScheme() • 65
SmSelfReg() • 71
SMSESSION cookie • 48
SmTrustedHost() • 71
SmUserDirectory() • 72
SmUserPolicy() • 73
Solaris agent • 37
sorting • 140
sorting and paginating results • 141
sorting and paging operations • 141
sorting preferences • 140
SQL • 153
SSO. See single sign-on • 48
Standard Agent Support • 50
starting class • 138
Status portion of result • 31
stored as session variables • 51
sub DNs • 135
super administrators • 44
Support for Custom Code • 27
Supported Credentials • 116
system objects. See global objects • 59

T

TeleID Template • 97
Terminate the Administrator Session • 62
termination • 46, 52
The Required JAR File • 134
The Role of the MessageConsumerPlugin • 121
threshold percentage • 54
ticket. See identity ticket, session specification • 30

timeout information • 55
Timeouts • 55
tokens • 48
toString() • 32, 33
trace information, logging • 26
tracking, identity • 44
transaction ID • 46
Trusted Host Object Methods • 71
Tunnel Services • 48
types, and realms • 52

U

unInit() • 41
uninitializing an Agent API instance • 41
unique constants • 31
universal ID • 44
updateAttributes() • 48
updating encryption keys • 41, 73
usage flow • 19
Use the Authorization API • 122
User Access to Resources • 41
User Authentication • 119
User Directory Methods • 72
user disambiguation • 116, 117
User Disambiguation • 117
User Disambiguation and Authentication • 116
User Password State • 157
User Policy Methods • 73
user privilege hierarchy • 137
UserContext class • 110
UserCredentialsContext class • 112
user-defined Agent object handle • 19
using Authentication • 111
using Authorization • 122
using Policy Management • 61
using the DMS API • 133
Utilities Package • 17, 29
Utility Methods • 73

V

variables, session • 51
Version Compatibility and Failover Behavior • 54
version of custom authentication scheme • 112

W

Web Agent • 43
WebAgent.conf • 21, 50
well-known response attributes • 48

Index 171

When All Clusters Fail • 54
WHERE clause • 153
Windows agent • 37
Windows Authentication Template • 98
workflow • 115
Write a Directory Management Application • 142
Write a Policy Management Application • 61
writing applications • 142

X

X.509 Client Cert and Basic Template • 100
X.509 Client Cert and Form Template • 102
X.509 Client Cert or Basic Template • 103
X.509 Client Cert or Form Template • 104
X.509 Client Cert Template • 106

	CA CA SiteMinder Programming Guide for Java
	CA Technologies Product References
	Contact CA Technologies
	Contents
	CA Technologies Product References
	Contact CA Technologies
	1: Java API Overview
	Purpose of the Java APIs
	Installation Path
	Code Samples
	Policy Server Prerequisite
	Java Components of the SiteMinder SDK
	Java Agent API
	Policy Management API
	Authentication API
	Authorization API
	Delegated Management Services API
	Utilities Package
	How Java Components Fit Together
	Network Architecture
	Java API Flow
	Establish a Connection to the Policy Server
	Establish a Default Connection
	Establish a User-Defined Connection

	Obtain a Session
	Log in as a SiteMinder Administrator

	Agent Discovery
	Enable Agent Discovery

	Make API Requests and Handle Results

	Log Trace Information
	Javadoc Reference
	Support for Custom Code

	2: Utilities Package
	Purpose of the Utilities Package
	Classes for Internal Use
	Connection Class
	Session Class
	Result Class
	Interpret a Result Object
	Core Methods in the Result Class

	Exception Class
	Property Class

	3: Agent API
	SiteMinder Agents
	Agent Type
	Agent API Class Hierarchy
	Implement the JNI Java Agent API
	Implement the Pure Java Agent API
	Pure Java Agent API Usage
	Enable Pure Java Agent API Tracing

	Connection to a Policy Server
	User Access to Resources
	How Web Agents Use the Agent API
	Java Agent API Services
	Session Services
	Session Creation and the Session Specification
	Session Validation
	Session Delegation
	Session Termination

	Authorization Services
	Auditing Services and Transaction Tracking
	Management Services
	Cache Commands
	Encryption Commands

	Tunnel Services
	Response Attributes
	Single Sign-on
	Log on through a Custom Agent
	Log on through a Standard Agent
	Standard Agent Support
	How Information Is Bound to a Session
	Advantages of Session Variables
	Requirements for Using Session Variables
	End of Session Cleanup

	Server Clusters
	Clustered and Non-Clustered Servers
	Cluster Configuration
	Cluster Failover
	When All Clusters Fail
	Version Compatibility and Failover Behavior

	Timeouts

	4: Policy Management API
	About Policy Management
	Policy Management Setup
	Required JAR File
	Policy Store Objects
	Write a Policy Management Application
	Establish a Connection to the Policy Server
	Obtain a Session Object
	Pass in the Session Object
	Make Policy Management API Requests
	Terminate the Administrator Session

	Administrator Methods
	Agent Methods
	Agent Configuration Object Methods
	Authentication and Authorization Map Methods
	Authentication Scheme Methods
	Certificate Map Methods
	Domain Methods
	General Object Methods
	Group Methods
	Host Configuration Object Methods
	ODBC Query Scheme Methods
	Password Policy Methods
	Policy Methods
	Realm Methods
	Response Methods
	Root Configuration Methods
	Rule Methods
	Self-Registration Methods
	Trusted Host Object Methods
	User Directory Methods
	User Policy Methods
	Utility Methods
	Object Associations
	Add Objects to the Policy Store
	Retrieve Objects from the Policy Store
	Delete Objects from the Policy Store
	Authentication Scheme Configuration
	Anonymous Template
	Basic Template
	Basic Over SSL Template
	Custom Template
	HTML Form Template
	Impersonation Template
	MS Passport Template
	RADIUS CHAP/PAP Template
	RADIUS Server Template
	SafeWord HTML Form Template
	SafeWord Template
	SAML Artifact Template
	SecurID HTML Form Template
	SecurID Template
	smauthetsso Authentication Scheme
	TeleID Template
	Windows Authentication Template
	X.509 Client Cert and Basic Template
	X.509 Client Cert and Form Template
	X.509 Client Cert or Basic Template
	X.509 Client Cert or Form Template
	X.509 Client Cert Template

	Performance Consideration

	5: Authentication and Authorization APIs
	Configuration of All Custom Classes
	Custom Classes for Authentication and Authorization
	Required Library File
	Shared Information
	Common Classes
	Create a Custom Authentication Scheme
	Classes and Interfaces in the Authentication API
	SmAuthScheme Methods
	Other Classes in the Authentication API

	How SiteMinder Loads a Custom Authentication Scheme in Java
	How SiteMinder Initializes Authentication Processing
	Authentication of User Credentials

	Supported Credentials
	User Disambiguation and Authentication
	User Disambiguation
	User Authentication

	Redirection
	Authentication Events
	Extend the SAML and WS-Federation Authentication Schemes
	The Role of the MessageConsumerPlugin

	Use the Authorization API
	Active Expressions
	Execute an Active Expression
	Interpret an Active Expression Result

	ActiveExpression Methods
	Other Classes in the Authorization API

	6: Customizing a SAML Assertion
	Implement the Java Assertion Generator Plug-in Interface
	Deploy the Assertion Generator Plug-in
	Configure the Assertion Generator Plug-in in the UI

	7: Delegated Management Services API
	About the DMS API
	The Required JAR File
	SiteMinder User Directories
	SiteMinder User Directory Containers

	Attribute-based Delegation
	Configure Attribute-based Delegation

	DMS Users
	Implementation Class
	Context Class
	Object Class
	Object Model

	Search Class
	Cursor Class
	Searches that Support Cursor Operations
	Searches of Microsoft LDAP Directories

	Write a Directory Management Application
	DMS Context
	Directory Context
	Change the User Type in DMS Context
	Create an Object
	Get Directory Entry Attributes
	Add an Object to a Directory
	Add a User to a Group
	Add a User to a Role
	Get, Modify, or Delete an Object

	Searches
	Set Search Parameters When You Create the Search Object
	Set Search Parameters After Creating the Search Object
	Set the Search Filter
	Set the Search Filter for LDAP Directories
	Set the Search Filter for ODBC Directories

	Search an Organization
	Examples of a Search

	User Password State
	ODBC Support
	Restricted Methods

	Index

