

Web Services Reference Guide
r3.2

CA Service Operations Insight

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Application Performance Management

■ CA Business Intelligence

■ CA Clarity™ Project and Portfolio Manager

■ CA CMDB

■ CA Configuration Automation (formerly CA Application Configuration Manager)

■ CA eHealth® Performance Manager (eHealth)

■ CA Embedded Entitlements Manager (CA EEM)

■ CA Event Integration

■ CA Insight™ Database Performance Manager

■ CA NSM

■ CA Process Automation

■ CA Service Desk

■ CA Server Automation (formerly CA Spectrum® Automation Manager)

■ CA SiteMinder®

■ CA Spectrum®

■ CA Systems Performance for Infrastructure Managers

■ CA SystemEDGE

■ CA Virtual Assurance

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: About This Guide 9

Intended Audience ... 9

Related Publications ... 9

Local Documentation and Online Bookshelf .. 11

Chapter 2: CA SOI REST Web Services 13

REST Web Services Overview ... 13

Base CA SOI REST Web Services URL ... 14

Supported REST HTTP Methods .. 15

Endpoints .. 15

Web Application Description Language URL ... 16

Common Requirements .. 16

REST Web Services Authentication .. 17

Configure Authentication-Related Security Filter Parameters.. 18

REST Web Services Ordering Metric .. 19

Service Ordering .. 20

Group Ordering ... 20

Customer Ordering.. 21

CI Ordering .. 21

Alert Queue Ordering .. 22

Alert Ordering ... 22

User Ordering .. 22

Escalation Policy Ordering ... 22

Escalation Policy Action Ordering ... 23

Configuration Ordering ... 23

Configuration Node Ordering.. 23

Available CA SOI REST Web Services .. 23

Alert Queue REST Web Services .. 24

Alert REST Web Services ... 25

CI REST Web Services .. 25

Configuration REST Web Services ... 26

Customer REST Web Services.. 27

Email REST Web Services .. 28

Escalation Policy Action REST Web Services ... 28

Escalation Policy REST Web Services ... 29

Group REST Web Services ... 29

6 Web Services Reference Guide

Meta REST Web Services ... 31

Schedule REST Web Services ... 31

Service REST Web Services .. 31

User REST Web Services .. 32

Chapter 3: REST Web Services Example 35

Chapter 4: Calling CA SOI REST Web Services from Perl Scripts 37

Prerequisites ... 37

Set Up Users in a CA SOI Environment .. 38

Code Overview .. 39

Chapter 5: WS-MAN Web Services 45

Introduction to WS-MAN Web Services ... 45

Web Services Architecture .. 45

Resources and Operations .. 46

Available Web Services ... 51

Available Web Clients ... 51

USM Entity Web Services ... 52

Entity Web Services Overview .. 52

Get an Entity ... 53

Get a List of Entities .. 53

Create an Entity ... 54

Update an Entity ... 55

Delete an Entity ... 55

Entity Web Services Examples .. 56

Subscribe to Notifications for Entity Changes ... 57

USM Binary Relationship Web Services ... 57

BinaryRelationship Web Services Overview ... 58

Get a Relationship ... 59

Get a List of Relationships ... 59

Create a Relationship .. 60

Update a Relationship ... 61

Delete a Relationship .. 62

Relationship Web Services Examples .. 62

Subscribe to Notifications for Relationship Changes .. 68

Notification Web Services .. 68

Notification Web Services Overview ... 68

How to Subscribe to Notifications for Entity, Relationship, and Alert Changes ... 69

Create a Subscription .. 70

Contents 7

Delete a Subscription .. 70

Pull a Subscription Notification ... 71

Notification Web Services Examples ... 72

Queue Web Services .. 74

Queue Web Services Overview ... 75

Get a Queue .. 75

Get a List of Queues .. 76

Create a Queue ... 76

Update a Queue .. 77

Delete a Queue ... 77

Queue Web Services Examples ... 78

Customer Web Services ... 82

Customer Web Services Overview .. 82

Get a Customer ... 82

Get a List of Customers ... 83

Customer Web Services Examples .. 84

Alert Web Services ... 85

Alert Web Services Overview .. 86

Get an Alert ... 86

Get a List of Alerts ... 87

Create an Alert .. 88

Update an Alert ... 88

Clear an Alert .. 89

Alert Web Services Examples .. 89

Subscribe to Notifications for Alert Changes .. 92

Propagation Policy Web Services ... 92

Propagation Policy Web Services Overview .. 92

Get a Propagation Policy ... 93

Get a List of Propagation Policies .. 94

Create a Propagation Policy .. 94

Update a Propagation Policy ... 95

Delete a Propagation Policy .. 96

Propagation Policy Web Services Examples .. 97

Escalation Policy Web Services .. 100

Escalation Policy Web Services Overview ... 101

Get an Escalation Policy .. 101

Get a List of Escalation Policies ... 102

Create an Escalation Policy ... 102

Update an Escalation Policy .. 103

Delete an Escalation Policy ... 104

Escalation Policy Web Services Examples ... 104

Escalation Action Web Services ... 109

8 Web Services Reference Guide

Escalation Action Web Services Overview .. 109

Get an Escalation Action ... 110

Get a List of Escalation Actions ... 110

Create an Escalation Action .. 111

Delete an Escalation Action .. 112

Escalation Action Web Services Examples .. 113

Chapter 1: About This Guide 9

Chapter 1: About This Guide

This guide covers the Representational State Transfer (REST) and WS-Management
(WS-MAN) web services that are available with CA SOI. The document describes the
resources exposed and the available operations to perform against these web services.

This section contains the following topics:

Intended Audience (see page 9)
Related Publications (see page 9)
Local Documentation and Online Bookshelf (see page 11)

Intended Audience

This guide is intended for product administrators, domain manager administrators, or
integration developers who are interested in extending the CA SOI solution by
integrating its data with other products through REST and WS-MAN web services.

The guide assumes experience working with these web services and prior knowledge of
the related concepts.

Related Publications

The following publications, provided on the installation media and the CA SOI online
bookshelf, provide complete information about CA SOI:

Administration Guide

Provides information about administering and maintaining the product after
installation.

Connector Guide

Provides general information about connectors and the connector infrastructure
and details about creating integrations through custom connectors and other
methods.

Event and Alert Management Best Practices Guide

Provides concepts, procedures, and best practices for managing the event and alert
stream that CA SOI receives from connectors.

Implementation Guide

Provides information about installing and implementing the product.

Related Publications

10 Web Services Reference Guide

Online Help

Provides information about performing tasks in CA SOI user interfaces.

Readme

Provides information about known issues and information that is discovered after
the guides were finalized. A CA SOI release may not have a Readme.

Release Notes

Provides information about operating system support, system requirements,
database requirements, web browser support, and international support.

Service Modeling Best Practices Guide

Provides procedures and best practices for modeling services including the
following methods: service imports, service discovery, and manual service
modeling.

Troubleshooting Guide

Provides information and procedures to diagnose and resolve problems with CA
SOI.

User Guide

Provides information for nonadministrative users about using the product, such as
responding to alerts and viewing reports.

The following publications provide information about CA Catalyst connectors and are
located on each downloadable connector package:

<Product Name> Connector Guide

Provides information about a specific CA Catalyst connector, including
prerequisites, installation, configuration, and data mapping.

<Product Name> Connector Readme

Provides known issues for a specific CA Catalyst connector and information
discovered after the product-specific Connector Guide was finalized.

Local Documentation and Online Bookshelf

Chapter 1: About This Guide 11

Local Documentation and Online Bookshelf

CA SOI provides access to the documentation locally and online.

Local Documentation

The local documentation is installed in the SOI_HOME\Documentation folder and
includes the PDFs for all guides. The online help is also installed with CA SOI and
accessed through the Dashboard (PC and Mobile) and USM Web View. The local
documentation is updated with specific releases only.

Online Bookshelf

The online bookshelf is on support.ca.com and provides the most current
documentation set, which can be updated between releases. The online bookshelf also
provides the documentation for the latest supported versions of CA Business
Intelligence, CA EEM, and CA Process Automation. For a list of Bookshelf updates, click
the Update History link on the Bookshelf.

CA SOI provides access to the online bookshelf in the following locations:

■ The Dashboard provides a Bookshelf link.

■ The Operations Console provides a menu link under Help, Bookshelf.

Note: If you are unable to access the online bookshelf, contact your system
administrator to provide the documentation set PDFs.

Chapter 2: CA SOI REST Web Services 13

Chapter 2: CA SOI REST Web Services

This section provides information about REST web services in CA SOI.

This section contains the following topics:

REST Web Services Overview (see page 13)
REST Web Services Authentication (see page 17)
REST Web Services Ordering Metric (see page 19)
Available CA SOI REST Web Services (see page 23)

REST Web Services Overview

This section helps administrators and integration developers understand how CA SOI
REST web services work, including the base URL, supported methods, endpoints, and
common requirements.

Representational State Transfer (REST) is a client-server architectural style of building
applications that leverages the fundamental properties of HTTP to manage objects
accessible at a URL. REST architecture and applications are stateless, which means that
no client context information is stored between requests. Each request contains all the
information necessary to service the request. REST web services are lightweight,
HTTP-based, easy to create and use, and have the desirable property of relating the
classes of data to each other using hyperlinks. REST web services provide a simple yet
powerful mechanism to interact with data. Using these web services, integration
developers can configure the product and can make it communicate through the REST
interface. They can use REST web services directly to send HTTP requests to the server
for the resources they want to manipulate.

CA SOI lets you expose CA SOI data over REST web services. Because of the inherent
standards in the REST architecture, CA SOI REST web services make the CA SOI data
accessible to many different development environments. Several resources such as CA
SOI user interfaces and third-party interfaces can then consume the exposed data. This
ability helps integration developers extend the CA SOI solution by integrating its data
with other products through REST web services. These interfaces provide an HTTP-based
integration point to the CA SOI data, allowing read or write access. Using these web
services, you can access the CA SOI data directly from a browser or can integrate it into
your own applications. You can use these web services with any language that
understands how to manage HTTP integration.

REST Web Services Overview

14 Web Services Reference Guide

REST web services access resources by using a Uniform Resource Identifier (URI)—a
character string that identifies a name or resource on the Internet. An application using
REST web services makes an HTTP request to a URI and parses the response. Such
identification enables interaction with representations of the resource over a network.
Each client-to-server request contains all the information necessary to understand the
request, and does not use any stored context on the server.

CA SOI REST web services follow Hypertext As The Engine Of Application State
(HATEOAS) principle. This principle implies that the resources that a request returns to
the server contain the next state changes the client can navigate as links. The
representations of the resources are interrelated using URLs, enabling you to move from
one state to another.

This section helps you understand CA SOI REST web services as follows:

■ Provides general concepts and common requirements about using CA SOI REST web
services

■ Provides information about how to retrieve, manipulate, and set data using various
CA SOI REST web services

■ Defines information that you can pass to the REST interface

■ Provides information about how to send web services requests to perform specific
tasks and verify that you get a meaningful response

Note: REST web services use the HTTP protocol for communication. Familiarity with
both the HTTP protocol and the REST architecture is required. This section, therefore,
assumes that you have experience working with REST web services and prior knowledge
of related concepts (such as WADL and Hypertext As The Engine Of Application State).

Base CA SOI REST Web Services URL

The base URL for all CA SOI REST web services is as follows:

http://server:port/rest/

server

Specifies the server where the REST web service is located.

port

Specifies the port number where the REST web service is located. The default port
numbers are 7403 (secure) and 7070 (non-secure).

Examples of base URLs are https://ServerABC:7403/rest/ (secure) and
http://ServerXYZ:7070/rest/ (non-secure).

REST Web Services Overview

Chapter 2: CA SOI REST Web Services 15

Note: By default, the non-secure interface is not allowed with the Basic authentication
(user name and password), where the user name and password are sent as a plain text
(Base64 encoded). If you want to allow Basic authentication over the non-secure
connection, you can configure the web.xml file. You can always use the non-secure
interface with other types of authentications: CA EEM token and JSESSION. However,
you can use the secure interface with all three types of authentications: Basic (user
name and password), CA EEM token, and JSESSION. For more information about these
authentication methods, see the REST Web Services Authentication (see page 17) .

Supported REST HTTP Methods

As an integration developer, you use REST HTTP methods with the REST web service
URLs to manage information in your environment. REST HTTP methods help you achieve
the following objectives:

■ Access and modify associated resources

■ Send an HTTP request to the server for the resource that you want to manipulate

■ Control the attributes that you want to retrieve using HTTP headers

CA SOI REST web services support the following REST HTTP methods:

POST (Create)

Creates a resource. The web service can respond with data or status indicating a
success or failure.

GET (Read)

Performs a query on a resource and retrieves data. The data that is returned from
the web service is a representation of the requested resource.

PUT (Update)

Updates an existing resource.

DELETE (Delete)

Removes an existing resource.

Endpoints

REST web services URLs are specific endpoints. Endpoints are types of items that you
use with appropriate HTTP request methods to return a list of results or create, update,
or delete an item.

REST Web Services Overview

16 Web Services Reference Guide

For example, the endpoint (used with the GET method) to get a list of links that let you
find more information about a specific service (identified by a service ID) is as follows:

GET http://server:7070/rest/service/<serviceId>/entry

Note: For more information about specific endpoints, see Available CA SOI REST Web
Services (see page 23).

Web Application Description Language URL

You can obtain the complete Web Application Description Language (WADL) for CA SOI
REST web services by adding application.wadl?format=xml to the base URL. The
endpoint is used with the GET method as follows:

GET http://server:port/rest/application.wadl?format=xml

This WADL file outlines the available operations.

Common Requirements

The following requirements are applicable to all the requests:

■ CA SOI REST web services require one of the authentication (see page 17) methods
for each call.

■ CA SOI REST web services produce the output in Atom format. Atom represents a
document format that is based on XML, and that describes lists of associated
resources. For Atom version, do one of the following tasks:

– Send the Accept header Accept: application/atom+xml.

– Specify the URL query parameter format=atom.

■ The query parameter format takes precedence over the format defined in the
Accept header.

■ CA SOI REST web services follow Hypertext As The Engine Of Application State
(HATEOAS) principle. This principle implies that the resources that a request returns
to the server contain the next state changes the client can navigate as links.

■ The typical output of a CA SOI REST web service request is the Atom feed, which can
be ordered and paged to organize the output properly. For ordering and paging, you
can use the following parameters:

metric

Specifies the ordering domain. The values depend on the type of the returning
object. The Ordering Metric (see page 19) section includes detailed information
about what values you can use.

REST Web Services Authentication

Chapter 2: CA SOI REST Web Services 17

desc

(If true) Returns the result in the descending order.

size

Specifies the size of the page; that is, how many results to show on a single
page. The default value is 25. The default value is used when you do not specify
any value for the parameter, or you provide an invalid value (for example, a
negative value).

start

Specifies the page from where to start; that is, how many results to skip from
the beginning. The default value is 0; therefore, skip zero records implies start
from the beginning.

Note: Examples in this section demonstrate how CA SOI REST web services use create,
read, update, and delete HTTP operations on CA SOI objects. Use these examples to
understand how each REST operation interacts with CA SOI objects.

REST Web Services Authentication

This section helps administrators and integration developers understand the different
authentication methods that the REST web services support and how to customize the
acceptable authentication methods.

CA SOI REST web services support authentication in three ways: using a user name and
password (Basic authentication), using a CA EEM artifact, or using a JSESSIONID. Typical
communication with CA SOI REST web services is authenticated through the user
name/password or CA EEM artifact in the first call, and then using the JSESSIONID for all
other subsequent calls. The last call is the logout call that invalidates the session.

Therefore, for the first call, use one of the two methods: user name/password or CA
EEM artifact. This first call returns the JSESSIONID, which the clients can then start using
for making subsequent calls. The JSESSIONID authentication is the best performance
authentication method, because it does not require the REST web service to verify the
password or CA EEM artifact against CA EEM.

Additional information about these authentications is as follows:

■ Using the user name and password (Basic authentication)

The user name and password are sent in the form of the Basic HTTP authentication
in the HTTP header. The password is encoded by using Base64 encoding and can be
easily decoded; therefore, this type of authentication is supported over a secure SSL
channel (HTTPS protocol). For a typical CA SOI installation, it is port 7403, for
example, https://server:7403/rest/.

Note: Only CA EEM users have access to CA SOI REST API. Therefore the “samuser”
user is not able to access the REST API.

REST Web Services Authentication

18 Web Services Reference Guide

■ Using the one-time CA EEM artifact

In this type of authentication, the CA EEM artifact can be obtained by calling the
SafeSession.exportSession() method.

You can use this type of authentication with both the protocols—HTTP and HTTPS.

Note: For more information about CA EEM sessions, see the CA EEM
documentation.

■ Using the JSESSIONID

This type of authentication sends the JSESSIONID in the cookie header parameter.
Both the previously mentioned authentication methods (user name/password and
CA EEM artifact) set a cookie with the JSESSIONID value. The JSESSIONID can then
be used in all subsequent calls through HTTP or HTTPS protocol.

The session expires after 30 seconds of inactivity or after a call to the logout
endpoint http://server:port/rest/logout.

Note: You can also configure authentication-related security filter parameters in the
web.xml configuration file. For more information, see Configure the
Authentication-related Security Filter Parameters.

Configure Authentication-Related Security Filter Parameters

The web.xml file includes authentication-related security filter parameters. You can
configure the values of these parameters based on your unique IT environment
requirements. This file is available in the folder
SOI_HOME\SAMUI\webapps\rest\WEB-INF.

Note: SOI_HOME represents the location where CA SOI is installed; for example,
C:\Program Files\CA\SOI.

Follow these steps:

1. Locate the web.xml file in the folder SOI_HOME\SAMUI\webapps\rest\WEB-INF.

2. Open the file using a text editor and search for the following section in the file:

<filter-name>SecurityFilter</filter-name>

This section includes three parameters that you can configure.

3. Specify the appropriate value in the <param-value>...</param-value> field of the
following parameters:

allowPlainCredentials

Specifies whether to allow Basic authentication over the non-SSL connection.
Possible values are true and false. The default value is false, which implies that
the Basic authentication is not allowed over the non-SSL connection.

REST Web Services Ordering Metric

Chapter 2: CA SOI REST Web Services 19

Default: false

Note: If the REST interface is accessed using the loopback address (127.0.0.1 or
::1), the Basic authentication is always allowed.

cacheCredentials

Specifies whether the REST interface must cache the user credentials instead of
verifying the password for each request. When you cache the user credentials,
the password verification process becomes faster. Therefore, when you use the
user name/password authentication method for all calls, the caching improves
the response of the REST interface, because the CA EEM call is skipped.

Possible values are true and false. The default value is true, which implies that
the interface must cache the user credentials.

Default: true

Note: User credentials are cached for 10 minutes. Therefore, if a user changes
the password, the old password remains active in the REST interface until the
cached record expires.

sessionInactivateInterval

Specifies the time (in seconds) for which the REST interface must keep the
session active. If no request is using the session during the specified time, the
client must authenticate again.

Default: 30

4. Review the new information and save the file.

The changes are saved.

REST Web Services Ordering Metric

This section includes the ordering metric values for REST web services.

The ordering metric specifies the ordering domain of the web service request output to
organize the output appropriately. This section includes ordering metrics values for the
following output items:

■ Service (see page 20)

■ Group (see page 20)

■ Customer (see page 21)

■ CI (see page 21)

■ Alert Queue (see page 22)

■ Alert (see page 22)

REST Web Services Ordering Metric

20 Web Services Reference Guide

■ User (see page 22)

■ Escalation Policy (see page 22)

■ Escalation Policy Action (see page 23)

■ Configuration (see page 23)

■ Configuration Node (see page 23)

Note: All metric values are not case-sensitive.

Service Ordering

The following table includes the ordering metric values for Service:

Metric Value Description

NAME Ordered by the service name

HEALTH Ordered by the service health

RISK Ordered by the service risk

AVAILABILITY Ordered by the service availability (last 24
hours)

QUALITY Ordered by the service quality

SLA Ordered by the service SLA status

PRIORITY Ordered by the service priority

ALERT_COUNT Ordered by the down alert count

DOWN_ALERT_COUNT Ordered by the down alert count

CRITICAL_ALERT_COUNT Ordered by the critical alert count

MAJOR_ALERT_COUNT Ordered by the major alert count

MINOR_ALERT_COUNT Ordered by the minor alert count

Group Ordering

The following table includes the ordering metric values for Group:

Metric Value Description

NAME Ordered by the group name

REST Web Services Ordering Metric

Chapter 2: CA SOI REST Web Services 21

Metric Value Description

PRIVILEGE_SET Ordered by the privilege set, which implies
that all administrator groups and user groups
would be together

Customer Ordering

The following table includes the ordering metric values for Customer:

Metric Value Description

NAME Ordered by the customer name

HEALTH Ordered by the customer health

RISK Ordered by the customer risk

QUALITY Ordered by the customer quality

PRIORITY Ordered by the customer priority

DOWN_ALERT_COUNT Ordered by the down alert count

CRITICAL_ALERT_COUNT Ordered by the critical alert count

MAJOR_ALERT_COUNT Ordered by the major alert count

MINOR_ALERT_COUNT Ordered by the minor alert count

CI Ordering

The following table includes the ordering metric values for CI:

Metric Value Description

NAME Ordered by the CI name

HEALTH Ordered by the CI health

USM_TYPE Ordered by the USM type

IP_ADDRESS Ordered by the IP address

OPERATIONAL_MODE Ordered by the CI operational mode

REST Web Services Ordering Metric

22 Web Services Reference Guide

Alert Queue Ordering

The following table includes the ordering metric values for Alert Queue:

Metric Value Description

NAME Ordered by the alert queue name

ALERT_COUNT Ordered by the down alert count

DOWN_ALERT_COUNT Ordered by the down alert count

CRITICAL_ALERT_COUNT Ordered by the critical alert count

MAJOR_ALERT_COUNT Ordered by the major alert count

MINOR_ALERT_COUNT Ordered by the minor alert count

Alert Ordering

The following table includes the ordering metric values for Alert:

Metric Value Description

SEVERITY Ordered by the alert severity

TIME Ordered by the occurrence time

User Ordering

The following table includes the ordering metric values for User:

Metric Value Description

NAME Ordered by the user name

Escalation Policy Ordering

The following table includes the ordering metric values for Escalation Policy:

Metric Value Description

NAME Ordered by the escalation policy name

Available CA SOI REST Web Services

Chapter 2: CA SOI REST Web Services 23

Escalation Policy Action Ordering

The following table includes the ordering metric values for Escalation Policy Action:

Metric Value Description

NAME Ordered by the escalation policy action name

Configuration Ordering

The following table includes the ordering metric values for Configuration:

Metric Value Description

NAME Ordered by the configuration name

Configuration Node Ordering

The following table includes the ordering metric values for Configuration Node:

Metric Value Description

NAME Ordered by the configuration node name

Available CA SOI REST Web Services

The following CA SOI REST web services are available:

■ Alert Queue (see page 24)

■ Alert (see page 25)

■ CI (see page 25)

■ Configuration (see page 26)

■ Connector

■ Customer (see page 27)

■ Email (see page 28)

■ Escalation Policy Action (see page 28)

■ Escalation Policy (see page 29)

Available CA SOI REST Web Services

24 Web Services Reference Guide

■ Group (see page 29)

■ Meta (see page 31)

■ Schedule (see page 31)

■ Service (see page 31)

■ User (see page 32)

Note: The complete documentation for CA SOI REST web services is available at:

https://<ui-server>:<ssl port>/rest/docs/rest/

Alert Queue REST Web Services

Alert queues are user-defined alert groups. Alert queues let you group alerts as they
come in based on specific criteria to monitor the status of your infrastructure more
efficiently.

Using the Alert Queue REST web services, you can perform various operations on alert
management queues in CA SOI:

■ Create an alert queue

■ Get a list of alert queues

■ Get a list of alerts in an alert queue

■ Get the alert queue definition

■ Get hyperlink entries associated with an alert queue

■ Get the status information for an alert queue

■ Update an alert queue

■ Delete an alert queue

The GET, PUT, POST, and DELETE HTTP methods are used to perform these tasks, as
appropriate. For example, to delete an alert queue, the HTTP method DELETE is used.

Note: The complete documentation for the CA SOI Alert Queue REST web services is
available at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_AlertQueueResource.html

Available CA SOI REST Web Services

Chapter 2: CA SOI REST Web Services 25

Alert REST Web Services

Alerts are fault conditions that the integrated domain manager reports. Each alert is
associated with a CI and contains properties such as severity, a summary of the
condition, and when the condition occurred. Alerts are service impacting when they
affect a CI that is part of a managed service. They are non-service impacting when they
affect CIs that are not part of a managed service.

Using the Alert REST web services, you can perform various alert-related operations in
CA SOI:

■ Get a list of alerts

■ Get hyperlink entries associated with an alert

■ Get the alert definition

■ Get the status information for an alert

■ Get a list of escalation policy actions associated with an alert

■ Perform an escalation policy action on a specific alert

■ Update an alert

■ Delete an alert

The GET, PUT, POST, and DELETE HTTP methods are used to perform these tasks, as
appropriate. For example, to delete an alert, the HTTP method DELETE is used.

Note: The complete documentation for the CA SOI Alert REST web services is available
at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_AlertResource.html

CI REST Web Services

CIs in CA SOI represent IT elements managed by a domain manager. Each CI belongs to a
type (defined in the USM schema) such as ComputerSystem, Database, Process, and
Relationship. Connectors transform managed objects from domain managers to adhere
to the USM schema and import the objects into CA Catalyst as CIs.

The CI REST web services let you perform the following operations:

■ Get hyperlink entries associated with a CI

■ Get the status information for a CI

■ Get the CI USM information

■ Get a list of alerts impacting a specific CI

■ Get a list of children for a specific CI

Available CA SOI REST Web Services

26 Web Services Reference Guide

■ Get a list of parents for a specific CI

■ Get a list of services for a CI

The GET HTTP method is used to perform these tasks.

Note: The complete documentation for the CA SOI CI REST web services is available at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_CIResource.html

Configuration REST Web Services

The CA SOI Configuration REST web services give you the flexibility to view and update
integration configuration values as and when required using the programmable
interface. You can override the static configuration values (such as CA EEM
configuration, email configuration) specified at the time of installation. For example, CA
SOI has a number of integrations with various external products. This integration
information is stored in configuration files, which can require updates based on some
changes in the deployment environment. You can use the Configuration REST web
services to view and update these configurations.

You can perform the following tasks using the Configuration REST web services:

■ Get a list of configuration nodes

■ Get a list of configuration sections for a configuration node

■ Get the configuration section definition

■ Get hyperlink entries associated with a configuration section

■ Update a configuration section

The GET and PUT HTTP methods are used to perform these tasks, as appropriate. For
example, to update a configuration section, the HTTP method PUT is used.

Note: The complete documentation for the CA SOI Configuration REST web services is
available at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_ConfigurationResource.html

Available CA SOI REST Web Services

Chapter 2: CA SOI REST Web Services 27

Customer REST Web Services

A customer in CA SOI is any consumer of a managed service. You create customers and
associate them with service models to see the impact of service degradation on the
service consumer. Customer management provides an extra layer of insight into how
end users dependent on provided services are affected when those services experience
downtime or degraded performance.

Using the Customer REST web services, you can perform customer-related operations in
CA SOI:

■ Get a list of customers

■ Get hyperlink entries associated with a customer

■ Get the status information for a specific customer

■ Get a list of services associated with a customer

■ Get a list of alerts on all services associated with a customer

■ Get a list of subcustomers

■ Get information about the parent customer

■ Get information about the selected customers

■ Get information about services of a specific customer

■ Get the customer definition

■ Get a list of services associated with a customer (as XML)

■ Create a top-level customer

■ Create a subcustomer

■ Set customer services

■ Update a customer

■ Delete a customer

The GET, PUT, POST, and DELETE HTTP methods are used to perform these tasks, as
appropriate. For example, to delete a customer, the HTTP method DELETE is used.

Note: The complete documentation for the CA SOI Customer REST web services is
available at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_CustomerResource.html

Available CA SOI REST Web Services

28 Web Services Reference Guide

Email REST Web Services

The CA SOI Email REST web services give you the option to create and send emails using
the REST programming interface. For example, you can create and send emails about
alerts from your application using the Email web services.

You can perform the following task using the Email REST web services:

■ Send an email

The POST HTTP method is used to perform this task.

Note: The complete documentation for the CA SOI Email REST web services is available
at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_EmailResource.html

Escalation Policy Action REST Web Services

Escalation policy action defines the action to perform when the policy criteria are met.
For example, you can set an escalation policy action where when an alert matches
escalation policy criteria, the alert triggers an action that sends an email to the
technician responsible for the affected service.

Using the Escalation Policy Action REST web services, you can perform escalation policy
action-related operations in CA SOI:

■ Get a list of escalation policy actions

■ Get hyperlink entries associated with an escalation policy action

■ Get the escalation policy action definition

The GET HTTP method is used to perform these tasks.

Note: The complete documentation for the CA SOI Escalation Policy Action REST web
services is available at:

https://<ui-server>:<ssl
port>/rest/docs/rest/resource_EscalationPolicyActionResource.html

Available CA SOI REST Web Services

Chapter 2: CA SOI REST Web Services 29

Escalation Policy REST Web Services

Escalation policy automates alert escalation according to user-defined criteria. When
the policy criteria are met, a specified escalation action runs. Using the Escalation Policy
REST web services, you can perform the following operations:

■ Get a list of escalation policies

■ Get hyperlink entries associated with an escalation policy

■ Get the escalation policy definition

■ Create an escalation policy

■ Update an escalation policy

■ Delete an escalation policy

■ Get a list of assigned service IDs for an escalation policy

■ Get a list of assigned alert queue IDs for an escalation policy

■ Get a list of assigned escalation policy action IDs for an escalation policy

■ Get a list of assigned schedule IDs for an escalation policy

■ Set a list of escalation policy services

■ Set a list of escalation policy alert queues

■ Set a list of escalation policy actions

■ Set a list of escalation policy schedules

The GET, PUT, POST, and DELETE HTTP methods are used to perform these tasks, as
appropriate. For example, to delete an escalation policy, the HTTP method DELETE is
used.

Note: The complete documentation for the CA SOI Escalation Policy REST web services is
available at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_EscalationPolicyResource.html

Group REST Web Services

A user group in CA SOI includes users having the same level of access privileges. You can
access CA SOI user groups using the Group REST web services. The Group REST web
services let you perform the following user group-related tasks:

■ Get a list of groups

■ Get hyperlink entries associated with a group

■ Get the status information for a group

■ Create a group

Available CA SOI REST Web Services

30 Web Services Reference Guide

■ Update a group

■ Delete a group

■ Get a list of users assigned to a group

■ Assign users to a group

■ Remove a user from a group

■ Get the user definition in the assigned group

■ Get the user group access status for all alert queues

■ Set the user group access status for all alert queues

■ Get a list of specific privileged alert queues for a group

■ Set a list of specific privileged alert queues for a group

■ Get the user group access status for all services

■ Set the user group access status for all services
.

■ Get a list of specific privileged services for a group

■ Set a list of specific privileged services for a group

■ Get the user group access status for all customers

■ Set the user group access status for all customers

■ Get a list of specific privileged customers for a group

■ Set a list of specific privileged customers for a group

■ Get a list of all the privileges for the Administrator role

■ Get a list of all the privileges for the Operator role

The GET, PUT, POST, and DELETE HTTP methods are used to perform these tasks, as
appropriate. For example, to delete a group, the HTTP method DELETE is used.

Note: The complete documentation for the CA SOI Group REST web services is available
at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_GroupResource.html

Available CA SOI REST Web Services

Chapter 2: CA SOI REST Web Services 31

Meta REST Web Services

Using the Meta REST web services, you can retrieve administrator and operator group
privileges:

■ Get a definition of the Administrator group

■ Get a definition of the Operator group

The GET method is used to perform these tasks.

Note: The complete documentation for the CA SOI Meta REST web services is available
at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_MetaResource.html

Schedule REST Web Services

Using Schedule REST web services, you can manage, create, or delete escalation
schedules:

■ Get a list of schedules

■ Create a schedule

■ Get schedule details

■ Delete a schedule

■ Get hyperlink entries associated with a schedule

The GET, POST, and DELETE methods are used to perform these tasks.

Note: The complete documentation for CA SOI Schedule REST web service is available
at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_ScheduleResource.html

Service REST Web Services

Services in CA SOI represent discrete business functions that can contain CIs that
multiple domain managers manage. A service typically consists of several CIs, which can
be grouped to represent things like web server farms or clusters. Services can also
contain subservices, which are subordinate service models. Service models typically
represent high-level abstract entities; for example, a web-based retail transaction
service, an application server service, and a printing service.

Available CA SOI REST Web Services

32 Web Services Reference Guide

Using the Service REST web services, you can retrieve data about CA SOI services. The
HTTP method GET is used to retrieve this information. You make an HTTP request, which
uses the GET method, to a specific URL. The web service interprets the method in the
URI as the action it must perform. The web service then retrieves the required data
from the request and returns the output based on that data.

You can perform the following operations using the Service REST web services:

■ Get a list of services

■ Get hyperlink entries associated with a service

■ Get the status information for a service

■ Get the service USM information

■ Get the service metric history information

■ Get a list of service alerts

■ Get a list of children for a service

■ Get a list of parents for a service

■ Get a list of services based on service IDs

■ Get a list of subservices

■ Create a service

■ Update a service

■ Delete a service

The GET, PUT, DELETE, and POST HTTP methods are used to perform these tasks, as
appropriate. For example, to retrieve a list of services, the HTTP method GET is used.

Note: The complete documentation for the CA SOI Service REST web services is available
at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_ServiceResource.html

User REST Web Services

You can access CA SOI users using the User REST web services. This ability lets you
manage CA SOI users; for example, you can create, list, and update users.

Available CA SOI REST Web Services

Chapter 2: CA SOI REST Web Services 33

The User REST web services let you perform the following user-related tasks:

■ Create a user

■ Get a list of users

■ Get hyperlink entries associated with a user

■ Get the user definition

■ Get a list of groups associated with a user

■ Update a user

The GET, PUT, and POST HTTP methods are used to perform these tasks, as appropriate.
For example, to update a user, the HTTP method PUT is used.

User creation and assignment works as follows:

1. The endpoint information in the Create a User section lets you create users in CA
EEM. The created users remain in the unassigned state. You can list the unassigned
users using the unassigned parameter while getting a list of users.

2. The created user is assigned to the CA SOI application and the group by using the
endpoint information specified in the Assign Users to a Group section.

Therefore, this way, you cannot only create users and add them to a group, but also add
existing users (for example, users that are created manually) to a group.

Note: The complete documentation for the CA SOI User REST web services is available
at:

https://<ui-server>:<ssl port>/rest/docs/rest/resource_UserResource.html

Chapter 3: REST Web Services Example 35

Chapter 3: REST Web Services Example

This section provides an example use case for leveraging the REST web services in Perl
scripts to perform bulk operations such as user and group creation.

This section contains the following topics:

Calling CA SOI REST Web Services from Perl Scripts (see page 37)

Chapter 4: Calling CA SOI REST Web Services from Perl Scripts 37

Chapter 4: Calling CA SOI REST Web
Services from Perl Scripts

The following section provides information about how to use REST web services to
retrieve, post, and process CA SOI data, using a Perl script. Perl scripts are useful for the
initial setup of the CA SOI platform because they allow you to automatically enter or
process large amounts of data. You can use Perl scripts for making all types of calls, but
this document highlights the main ways to embed REST web services calls in your
scripts.

This section contains the following topics:

Prerequisites (see page 37)
Set Up Users in a CA SOI Environment (see page 38)
Code Overview (see page 39)

Prerequisites

You must have:

■ Perl version 5.14.2.1 or higher installed.

Note: Verify that the Perl module XML::XPath is installed.

■ Access to the Perl Script Example files in the following location:

SOI_HOME\tools\examples\REST_Perl_Example\

Available CA SOI REST Web Services

38 Web Services Reference Guide

Set Up Users in a CA SOI Environment

You can use the Perl script to process an input file and assign users to groups according
to the file. This method of entering users into the system and assigning them to groups
is useful when you want to process large amounts of data. If a user does not exist in the
system, it creates the user. The format of the input file is comma-separated with user
name first and group name last on each line.

Example

The following example shows three users being assigned to two user groups, using REST
web services from Perl.

username1, groupA

username2, groupA

username3, groupB

A prerequisite is that all groups exist in the system.

Note: If a group does not exist in the system, the line containing that group is skipped.
The script then continues with the next line.

Configure the Perl Script

The Perl script starts with an environment definition constant where you can set up
connectivity to REST web services, user credentials, and so on.

Example

The following code snippet shows configuration constants from the beginning of the
Perl script.

my $headless_server = 'soi-r2-test06'; # hostname

my $headless_port = '7070'; # port for plain HTTP access

my $headless_ssl_port = '7403'; # port for HTTPS access

my $headless_user = 'samuser'; # admin user name

my $headless_password = 'P@ssword01'; # admin user password

my $password_for_created_users ='changeit'; # password for the newly created users

my $page_size = 10000; # page size in which the data are fetched

 # larger value more data fetched per one call.

Available CA SOI REST Web Services

Chapter 4: Calling CA SOI REST Web Services from Perl Scripts 39

Code Overview

PERL code contains detailed comments. This code overview highlights some key
components of the PERL script. The following section provides examples that cover all
aspects of calling REST web services, such as authentication, retrieving paged data, and
parsing and posting data. You can use these examples to help create your own scripts to
call REST web services.

You can find the Perl Script Example file in the following location:

SOI_HOME\tools\examples\REST_Perl_Example\

HTTP Access

To make HTTP and HTTPS calls, you can use the LWP::Simple module.

Example

The following example shows how to tell Perl to use the LWP::Simple module:

use LWP::Simple; # LWP package to work with HTTP requests

The following classes are the most important of the package:

LWP::UserAgent

Behaves as a simple browser, where you can configure basic authentication,
cookies, and so on.

LWP::Request

Represents the HTTP request.

Note: The LWP::Request is not required for the HTTP GET method, because the
request comprises URL only. However, it is required for HTTP POST and HTTP PUT
methods where you pass the URL and the payload.

LWP::Result

The class representing the HTTP response, which contains the result code, http
header and body.

Available CA SOI REST Web Services

40 Web Services Reference Guide

HTTP GET Call

Use the PERL script to perform an HTTP GET call.

Example

The following code snippet shows an HTTP GET call.

Note: The code snippet does not contain authentication to keep the example simple.

my $browser = LWP::UserAgent->new(); # create browser

my $response = $browser->get('http://server:7070/rest/group'); # call HTTP get

if ($response->is_success) # check HTTP status

 return $response->content; # return the result

die "Error while calling http get"; # error

SSL Communication and Basic Authentication Method

To use a secure communication channel, you can use SSL communication and a basic
authentication method.

Example

The following code snippets shows SSL communication and a basic authentication
method:

$ENV{PERL_LWP_SSL_VERIFY_HOSTNAME}=0; # skip SSL certificate verification

my $browser = LWP::UserAgent->new(); # create browser

$browser->credentials(# BASIC auth

 'server:7403',

 'REST Authentication', # REALM

 'bob' => 'bobspasswd');

my $response = $browser->get('https://server:7403/rest/group'); # call HTTPS get

if ($response->is_success) # check HTTP status

 return $response->content; # return the result

die "Error while callings http get";

When you authenticate using user name and password, REST web services returns a
cookie with the session ID.

Example

The following code snippet shows the code that reads the cookies and then how they
are used.

regular expression to select the cookie

if ($response->header('SET-COOKIE') !~ /(JSESSIONID=\w+);/) {

 die "cookie with jsession not found\n Aborting";

}

Available CA SOI REST Web Services

Chapter 4: Calling CA SOI REST Web Services from Perl Scripts 41

my $cookie = $1; # the first group is the value

The cookie can be used for authentication in all other calls by setting the cookie in the
request headers.

$browser->default_header('Cookie' => $cookie); #set the sessionID as cookie

HTTP POST with LWP::Request Creation

In addition to HTTP GET, the PERL code calls HTTP POST in REST web services.

Note: The Post call is similar to the HTTP GET, but it requires that you set the payload by
creating an LWP::Request.

Example

The following code snippet shows the creation of an LWP::Request.

 my $request = HTTP::Request->new(POST => 'http://server:7070/rest/user';

$request->header('Accept' => 'application/xml');

$request->content("<user>

 <userName>bob</userName>

 <password>changeit</password>

 </user>");

$request->content_type("application/xml; charset=utf-8");

my $response = $browser->request($request);

if ($response->code == 201) {

 # location header has the URL to the newly created resource

 return $response->header('Location');

}

die "Error while calling HTTP_POST"

Parsing Response

REST web services responses are typically ATOM feeds which are XML. An easy way to
get certain information from XML is to use an XPath expression to query information. To
download the XPath module to your PERL environment, enter the following call from
your shell command line:

cpan XML::XPath

The call downloads the required module.

You can start using the following module in your script:

use XML::XPath; # XPath to parse XML (Atom) outputs

use XML::XPath::XMLParser;

Available CA SOI REST Web Services

42 Web Services Reference Guide

Example

The following ATOM feed shows an example of a response from the REST interface.

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns="http://www.w3.org/2005/Atom">

 <title>Users</title>

 <link rel="next-page" type="application/atom+xml"

href="http://server:7070/rest/user?desc=false&start=4&size=4"

title="next-page" />

 <author>

 <name>CA SOI</name>

 </author>

 <id>http://server:7070/rest/user?unassigned=true</id>

 <updated>2012-03-29T13:36:17Z</updated>

 <restApi:totalCountHint

xmlns:restApi="http://ca.com/2011/soi/rest">75</restApi:totalCountHint>

 <entry>

 <title>zaiwenuser</title>

 <link rel="entry" type="application/atom+xml"

href="http://server:7070/rest/user/zaiwenuser/entry" title="entry" />

 <id>http://server:7070/rest/user/zaiwenuser/entry</id>

 <published>2012-03-29T13:36:17Z</published>

 </entry>

 <entry>

 <title>zaiwen400</title>

 <link rel="entry" type="application/atom+xml"

href="http://server:7070/rest/user/zaiwen400/entry" title="entry" />

 <id>http://server:7070/rest/user/zaiwen400/entry</id>

 <published>2012-03-29T13:36:17Z</published>

 </entry>

 <entry>

 <title>zaiwen300</title>

 <link rel="entry" type="application/atom+xml"

href="http://server:7070/rest/user/zaiwen300/entry" title="entry" />

 <id>http://server:7070/rest/user/zaiwen300/entry</id>

 <published>2012-03-29T13:36:17Z</published>

 </entry>

 <entry>

 <title>zaiwen200</title>

 <link rel="entry" type="application/atom+xml"

href="http://server:7070/rest/user/zaiwen200/entry" title="entry" />

 <id>http://server:7070/rest/user/zaiwen200/entry</id>

 <published>2012-03-29T13:36:17Z</published>

 </entry>

</feed>

Available CA SOI REST Web Services

Chapter 4: Calling CA SOI REST Web Services from Perl Scripts 43

If you want to return only one value in your XPath query, for example, to get a link to
the next page, you can use XPath::findvalue() method which returns the one element.

Example

The following code snippet shows how to get the next page URL from the ATOM feed.

my $xp = XML::XPath->new($response->content);

my $next_page_url =

$xp->findvalue('/feed/link[@rel=\'next-page\']/@href')->value();

In case your XPath returns list of values, use XPath::findnodes() method.

Example

This code snippet shows how to get all titles from the entries in the ATOM feed.

my $xp = XML::XPath->new($response->content);

my @usernames = $xp->findnodes('/feed/entry/title');

foreach my $username (@usernames) {

 print $username->string_value;

}

Chapter 5: WS-MAN Web Services 45

Chapter 5: WS-MAN Web Services

This section provides information about the WS-MAN web services that are available in
CA SOI.

Note: WS-MAN web services should be considered an obsolete API. Instead, we
recommend using the REST (see page 13) API.

This section contains the following topics:

Introduction to WS-MAN Web Services (see page 45)
USM Entity Web Services (see page 52)
USM Binary Relationship Web Services (see page 57)
Notification Web Services (see page 68)
Queue Web Services (see page 74)
Customer Web Services (see page 82)
Alert Web Services (see page 85)
Propagation Policy Web Services (see page 92)
Escalation Policy Web Services (see page 100)
Escalation Action Web Services (see page 109)

Introduction to WS-MAN Web Services

This section introduces the architecture of the CA SOI WS-MAN web services and the
mechanisms used to interact with CA SOI data.

Web Services Architecture

CA SOI provides web services that comply with the WS-Management standard using a
Wiseman implementation. The web services interface with the SA Manager to provide
access to service, CI, alert, and other data. The web services use basic authentication to
let clients access these resources through SOAP. Several Resource URIs are available
through which the web services access the requested data.

Introduction to WS-MAN Web Services

46 Web Services Reference Guide

The following diagram illustrates how the web service obtains data when it receives a
request:

The WSManServlet intercepts client SOAP requests directed at the endpoint URL and
dispatches them to the appropriate Resource Handler instance identified by the
ResourceURI contained in the EPR element of the SOAP message. Wiseman
automatically identifies the appropriate Resource Handler class in the following format:
Resource_Handler.java.

Resources and Operations

The Endpoint Reference transport address for all CA SOI WS-Management web services
is as follows:

http://samanager:port/sam/webservice

samanager

Defines the name of the server that contains the SA Manager.

port

Defines the SA Manager Tomcat port, which is 7090 by default.

Introduction to WS-MAN Web Services

Chapter 5: WS-MAN Web Services 47

WS-Management defines a resource addressing model based on the WS-Addressing
standard. It uses the ReferenceParameter field in the WS-Addressing EndpointReference
element to contain the following specific elements that identify the resource to act
upon:

ResourceID

Defines the resource type or class.

SelectorSet

Defines the specific resource instance.

USM Schema Based Resources

The USM schema currently used as the CA SOI and CA Catalyst internal schema exposes
CA SOI resources for web service operations using the following ResourceURI:

http://ns.ca.com/2009/07/usm-core/resource-class

resource-class

Defines the type of USM object, which can be Entity, BinaryRelationship, Alert, or
Notification.

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm-core-200907.wsdl

Access the USM schema as follows:

http://samanager:port/sam/webservice/schemas/usm-core-200907.xsd

The initial USM schema web services implementation exposes the following USM
resource types:

Entity

Refers to any CI in CA SOI, including services.

BinaryRelationship

Refers to the relationship between CIs. Note that this is different from the
propagation type, which used the term relationship in previous releases.

Alert

Refers to CA SOI alerts.

Notification

Refers to the subscription to notifications for changes to Entities, Alerts, and
BinaryRelationships.

Introduction to WS-MAN Web Services

48 Web Services Reference Guide

Note: Notification resource is applicable only for CA SOI; it does not appear in CA
Catalyst. By default, the USM schema does not contain any definition for the
Notification resource. To ensure that it is available in the USM schema for CA SOI,
special Java classes have been added explicitly for CA SOI.

Any of these resource types may require the following identifiers in the web service
request as SelectorSets:

MdrProduct

Defines the connector data source. Each connector has a specific MdrProduct value
formatted as a five-digit number prefixed by 'CA:'. For example, the MdrProduct
value for resources created by web services is CA:09996. For a list of MdrProduct
values, see the Connector Guide.

MdrProdInstance

Defines the host name associated with the resource.

MdrElementID

Defines a value that uniquely identifies the resource.

You can retrieve these values from existing resources from the Operations Console or
through an Enumerate web services operation.

USM 01-2009 Based Resources

A robust set of web services is available that uses a previous version of the USM schema
(referred in the document as USM 01-2009) from the following ResourceURI:

http://ns.ca.com/2009/01/usm-data/resource-class

resource-class

Defines the type of USM object, which can be Queue, Customer, RelationshipPolicy,
EscalationPolicy, or EscalationPolicyAction.

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm2.wsdl

Access the USM 01-2009 schema as follows:

http://samanager:port/sam/webservice/schemas/usm2.xsd

This implementation supports resources that are not accessible from the current USM
schema web services, such as propagation policy, escalation policy, and escalation
actions. Use this implementation to retrieve resources not available from the current
USM schema web services, or for backward compatibility with previous web service
implementations.

Introduction to WS-MAN Web Services

Chapter 5: WS-MAN Web Services 49

Any of these resource types may require one of the following identifiers in the web
service request as the SelectorSet:

ASBOID

Defines the resource using the following properties:

ASBOID.source

Defines the connector data source. Each data source has a unique value that
you can obtain from the usm2.xsd file or an Enumerate operation.

ASBOID.id

Defines the unique ID value for the resource, which you can obtain from an
Enumerate operation.

If you use ASBOID to uniquely identify the resource, include these properties
separately.

USMID

Defines a value that uniquely identifies the resource by concatenating the
ASBOID.source and ASBOID.id values.

WS-Transfer Operations

The web service resource handlers support all WS-Transfer operations as defined in the
WS-Management specification:

■ Get: http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

■ Put: http://schemas.xmlsoap.org/ws/2004/09/transfer/Put

■ Create: http://schemas.xmlsoap.org/ws/2004/09/transfer/Create

■ Delete: http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete

The SelectorSet element is required to identify the appropriate resource instance. Each
web service type (USM 01-2009 (see page 48), and USM (see page 47)) requires
different SelectorSet values.

Fragment-Level WS-Transfer Operations

Fragment-level WS-Transfer is a WS-Management extension that lets you access a
subset of resource properties. The web service resource handlers support
fragment-level WS-Transfer for some operations where applicable using the default
XPath dialect specified by the following URI:

http://www.w3.org/TR/1999/REC-xpath-19991116

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
http://schemas.xmlsoap.org/ws/2004/09/transfer/Create
http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/1999/REC-xpath-19991116/

Introduction to WS-MAN Web Services

50 Web Services Reference Guide

The syntax is a list of property identifiers separated by "|" characters, such as the
following:

<wsman:FragmentTransfer Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"

env:mustUnderstand="true">AlertID|SvcDeskTicket|SDTicketProp|AnnotationList

</wsman:FragmentTransfer>

WS-Enumeration Operations

The web service resource handlers support the following WS-Enumeration operations as
defined in the WS-Management specification:

■ Enumerate: http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate

■ Pull: http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull

■ Release: http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release

Wiseman 1.0 does not implement the following operations that may be supported in
the future:

■ Renew: http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew

■ GetStatus: http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus

■ EnumerationEnd:
http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerationEnd

WS-Enumeration Filtering

WS-Enumeration defines XPath as the default filter dialect. XPath is designed to operate
on XML elements, so all instances first must be retrieved, converted to XML, and then
passed through the filter.

Configure an enumeration filter as follows:

final String xpathFilter = /alarm:alarm[alarm:ClassName='SA_Service']";

final Map<String, String> namespaces = new HashMap<String, String>(1);

namespaces.put("alarm","http://schemas.sam.ca.com/webservice/1/alarm.xsd");

This filter retrieves only those alerts that are associated with services.

WS-Eventing Operations

The web service resource handlers Entity, Alert, and BinaryRelationship support the
following WS-Eventing operations as defined in the WS-Management specification
(http://schemas.xmlsoap.org/ws/2004/08/eventing):

■ Subscribe: http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

■ Unsubscribe: http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release
http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew
http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus
http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerationEnd
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe
http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe
http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe

Introduction to WS-MAN Web Services

Chapter 5: WS-MAN Web Services 51

This release does not support the following operations:

■ GetStatus: http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus

■ SubscriptionEnd:
http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd

■ Renew: http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew

Available Web Services

The available web services and their resource URLs are as follows:

■ USM Entity (see page 52): http://ns.ca.com/2009/07/usm-core/Entity

■ USM BinaryRelationship (see page 57):
http://ns.ca.com/2009/07/usm-core/BinaryRelationship

■ Alert (see page 85): http://ns.ca.com/2009/07/usm-core/Alert

■ Propagation Policy (see page 92):
http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

■ Escalation Policy (see page 29):
http://ns.ca.com/2009/01/usm-data/EscalationPolicy

■ Escalation Action (see page 28):
http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

■ Queue (see page 74): http://ns.ca.com/2009/01/usm-data/Queue

■ Notification (see page 68): http://ns.ca.com/2009/07/usm-core/Notification

■ Customer (see page 27): http://ns.ca.com/2009/01/usm-data/Customer

Available Web Clients

This section summarizes the available web clients for testing and using the web services.

SoapUI

SoapUI is an open source application that lets you inspect, invoke, develop, simulate,
and test web services. Developers and testers who are responsible for providing or
consuming WSDL-based web services primarily use soapUI. CA SOI web services have
been tested using this tool.

http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus
http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd
http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew

USM Entity Web Services

52 Web Services Reference Guide

Java Web Client using Axis2

You can use an Axis2 Java web client from which you can generate Axi2-based stub
classes for the CA SOI web services using the wsdl2java utility and then using the classes
to generate a SOAP-based request.

For information about using Axis2 clients, see the Wiseman Client Developer's Guide.

USM Entity Web Services

This section provides information about the operations performed in USM entity web
services.

Entity Web Services Overview

Entity web services use the USM schema to perform operations on USM entities, which
include CIs, services, and alerts. Use the following endpoint URI when invoking the
entity web services resource:

http://ns.ca.com/2009/07/usm-core/Entity

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm-core-200907.wsdl

Access the USM schema as follows:

http://samanager:port/sam/webservice/schemas/usm-core-200907.xsd

Using the entity web services requires basic knowledge of the USM schema and its
properties. In addition to the schema itself, HTML documentation is available. For
information about how to access the USM schema documentation, see the Connector
Guide.

USM Entity Web Services

Chapter 5: WS-MAN Web Services 53

Get an Entity

Use the Get request to retrieve a specific entity. The following selectors are required as
part of the request to identify a unique instance of a CA SOI CI:

Note: This request also retrieves the KPI properties (Risk, Quality, and Health) of an
entity.

MdrProduct

Defines the connector data source. Each connector has a specific MdrProduct value
formatted as a five-digit number prefixed by 'CA:'. For example, the MdrProduct
value for resources created by web services is CA:09996. For a list of MdrProduct
values, see the Connector Guide.

MdrProdInstance

Defines the host name associated with the resource.

MdrElementID

Defines a value that uniquely identifies the resource.

To get an entity, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Entity

Selector: MdrProduct

Selector: MdrProdInstance

Selector: MdrElementID

The EntityHandlerImpl.Get() method returns an entity of the type of USM resource that
represents the CA SOI CI in USM terms, including the CI type and its properties.

Get a List of Entities

To retrieve a list of active CIs, the web services use a combination of WS-Management
Enumeration and Pull operations. You can filter the returned list using the
WS-Management Filter element to pass a valid XPath expression to limit the number
and type of CIs returned.

USM Entity Web Services

54 Web Services Reference Guide

Use the className selector to filter the collection by USM type. For example, if you pass
in a selector of “className=Service”, the collection is limited to entities of the Service
type.

To get a list of entities, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Entity

Selector: className

The EntityIteratorImpl() method creates a collection of all the active CIs in CA SOI of the
USM type defined in the className selector, and the Pull operation retrieves CIs in
batches as defined by the MaxElements tag.

Create an Entity

Use the Create operation to create a CI in CA SOI. You define the CI type and USM
property values for the new CI in the body of the request.

Note: For information about the required properties to include for an entity, see the
USM schema documentation.

To create a CI, use the following properties in the request:

Operation: Create

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Entity

Selector: null

The EntityHandlerImpl.Create() method extracts all defined property values from the
body of the SOAP message and passes a map of the property names and values to the
Connector Manager, which is the same interface that all connectors use to create CIs.

Note: Refer to the USM schema for a list of USM properties and their appropriate
values. For information about how to access the USM schema documentation, see the
Connector Guide.

USM Entity Web Services

Chapter 5: WS-MAN Web Services 55

Update an Entity

Use the Put operation to update the writable properties of a CI. Perform the update by
passing in all of the USM properties and their new values in the body of the request.

To update an entity, use the following properties in the request:

Operation: Put

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Entity

Selector: null

The EntityHandlerImpl.Put method extracts the entity property name value pairs and
passes them into a CI Update request to the Connector Manager.

Note: Refer to the USM schema for a list of USM properties and their appropriate
values. For information about how to access the USM schema documentation, see the
Connector Guide.

Delete an Entity

Use the Delete operation to delete a CI. If the CI exists and has active alerts, the
operation clears the associated alerts before deleting the CI. Pass the USM properties of
the CI to delete in the body of the request.

Note: For information about the required properties to include for an entity, see the
USM schema documentation.

To delete an entity, use the following properties in the request:

Operation: Delete

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Entity

Selector: Null

The EntityHandlerImpl.Delete() method verifies that the CI exists, clears any active
associated alerts, and deletes the CI. The CI is deleted only if the connector is a trusted
source, otherwise the CI is marked as 'Unmanaged.' A trusted source connector is the
trusted source of record for a CI. Imported information uses the source connector as a
trusted source unless you change the trusted source in the Operations Console.

USM Entity Web Services

56 Web Services Reference Guide

Entity Web Services Examples

The following example shows the SOAP messages of many of the available entity web
services.

Example: Update a ComputerSystem CI

The following example SOAP message is a Put request to update a set of properties in a
specific ComputerSystem CI:

<env:Envelope>

<env:Header>

<wsa:ReplyTo xmlns:usm="http://ns.ca.com/2009/07/usm-core">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:usm="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

uuid:4add8974-25a0-4fc4-84f6-c7f88158f8f7

</wsa:MessageID>

<wsa:To xmlns:usm="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:usm="http://ns.ca.com/2009/07/usm-core">

http://ns.ca.com/2009/07/usm-core/Entity

</wsman:ResourceURI>

<wsman:OperationTimeout xmlns:usm="http://ns.ca.com/2009/07/usm-core">

PT30.000S

</wsman:OperationTimeout>

<wsa:Action xmlns:usm="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Put

</wsa:Action>

</env:Header>

<env:Body>

<usm:ComputerSystem >

 <ssa_connector_name>server1.ca.com</ssa_connector_name>

 <ssa_silo_name>WebServiceForSSA_server1@server1.ca.com</ssa_silo_name>

 <usm:MdrProduct>CA:09996</usm:MdrProduct>

 <usm:MdrProdInstance>server1.ca.com</usm:MdrProdInstance>

 <usm:MdrElementID>ComputerSystem:server1</usm:MdrElementID>

 <usm:InstanceName>CA:server1</usm:InstanceName>

 <usm:Label>USM-WSServer3</usm:Label>

 <usm:Description>New description</usm:Description>

 <usm:AdministrativeStatus>Managed</usm:AdministrativeStatus>

 <usm:Vendor>Dell</usm:Vendor>

USM Binary Relationship Web Services

Chapter 5: WS-MAN Web Services 57

 <usm:PrimaryDnsName>server1.ca.com</usm:PrimaryDnsName>

 <usm:PrimaryIPV4Address>111.11.11.11</usm:PrimaryIPV4Address>

 <usm:ComputerName>server1</usm:ComputerName>

 <usm:MemoryInGB>512</usm:MemoryInGB>

</usm:ComputerSystem>

</env:Body>

</env:Envelope>

The web service updates the properties listed in bold in the body of the request. The
SOAP response to this request is as follows:

<env:Envelope>

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:f1ccc796-28a6-4afc-9766-d1438fe7d011

</wsa:MessageID>

<wsa:RelatesTo xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:4add8974-25a0-4fc4-84f6-c7f88158f8f7

</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body/>

</env:Envelope>

Subscribe to Notifications for Entity Changes

To subscribe to notifications for changes to Entity, use the Notification web services.
The Entity resource supports the WS-Eventing functionality that enables a web client to
subscribe to notification events when an entity is created, deleted, or updated.

Note: For more information, see Notification Web Services.

USM Binary Relationship Web Services

This section provides information about the operations performed in USM Binary
Relationship web services.

USM Binary Relationship Web Services

58 Web Services Reference Guide

BinaryRelationship Web Services Overview

BinaryRelationship web services use the USM schema to perform operations on USM
BinaryRelationships, which define the relationships between CIs in CA SOI.

USM BinaryRelationships (referred to as relationships) are not the same as the entities
known as relationships in previous releases of CA SOI. Propagation types define how the
impact is propagated between related CIs (which was the previous role of relationships),
and relationships are USM entities that show how CIs are linked. Every relationship in
CA SOI has a corresponding propagation type. The USM Semantic property indicates the
propagation type for each relationship. Therefore, when you interact with relationships,
you can view, create, or edit their corresponding propagation types at the same time.

Note: For a list of the available relationships and propagation types, see the Service
Modeling Best Practices Guide.

Use the following endpoint URI when invoking the relationship web services resource:

http://ns.ca.com/2009/07/usm-core/BinaryRelationship

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm-core-200907.wsdl

Access the USM schema as follows:

http://samanager:port/sam/webservice/schemas/usm-core-200907.xsd

Using the relationship web services requires basic knowledge of the USM schema and its
properties. In addition to the schema itself, HTML documentation is available. For
information about how to access the USM schema documentation, see the Connector
Guide.

USM Binary Relationship Web Services

Chapter 5: WS-MAN Web Services 59

Get a Relationship

Use the Get request to get a specific relationship. Each relationship belongs to one of
the USM BinaryRelationship types. The following selectors are required as part of the
USM definition to identify a unique instance of a relationship:

MdrProduct

Defines the connector data source. Each connector has a specific MdrProduct value
formatted as a five-digit number prefixed by 'CA:'. For example, the MdrProduct
value for resources created by web services is CA:09996. For a list of MdrProduct
values, see the Connector Guide.

MdrProdInstance

Defines the host name associated with the resource.

MdrElementID

Defines a value that uniquely identifies the resource.

To get a relationship, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/BinaryRelationship

Selector: MdrProduct

Selector: MdrProdInstance

Selector: MdrElementID

The BinaryRelationshipImpl.Get() method returns an entity of the type of USM
BinaryRelationship that represents the CA SOI relationship in USM terms.

Get a List of Relationships

To retrieve a list of relationships for a given CA SOI service, the web services use a
combination of WS-Management Enumeration and Pull operations. You can filter the
returned list using the WS-Management Filter element to pass a valid XPath Expression
to limit the number and type of relationships returned.

Use the serviceName selector to filter the collection by service.

USM Binary Relationship Web Services

60 Web Services Reference Guide

To get a list of relationships, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/BinaryRelationship

Selector: serviceName

The BinaryRelationshipIteratorImpl() method creates a collection of all the relationships
for the service defined in the selector. The Pull operation retrieves relationships in
batches as defined by the MaxElements tag.

Create a Relationship

Use the Create operation to create a relationship between two CIs in CA SOI. You define
the type and USM property values for the new relationship in the body of the request.
You should include the following information:

■ Unique identifiers (MdrProduct, MdrProdInstance, MdrElementID)

■ Unique identifiers for the source CI

■ Unique identifiers for the target CI

■ Unique identifiers for the service in which to include the relationship

■ Semantic value to define the propagation type

Note: For information about the required properties to include for a relationship, see
the USM schema documentation. For more information about property names and
formatting, see USM Binary Relationship Web Services Examples (see page 62).

To create a relationship, use the following properties in the request:

Operation: Create

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/BinaryRelationship

Selector: null

USM Binary Relationship Web Services

Chapter 5: WS-MAN Web Services 61

The BinaryRelationshipHandlerImpl.Create() method extracts all defined properties
from the body of the SOAP message and passes a map of the property names and values
to the Connector Manager, which is the same interface that all connectors use to create
relationships.

Note: Refer to the USM schema for a list of USM properties and their appropriate
values. For information about how to access the USM schema documentation, see the
Connector Guide. For a list of all available BinaryRelationship types, see the Service
Modeling Best Practices Guide.

Update a Relationship

Use the Put operation to update the writable properties of a relationship. Perform the
update by passing in all of the USM BinaryRelationship properties and their new values
in the body of the request. You should include the following information:

■ Unique identifiers (MdrProduct, MdrProdInstance, MdrElementID)

■ Unique identifiers for the source CI

■ Unique identifiers for the target CI

■ Unique identifiers for the service in which to include the relationship

■ Semantic value to define the propagation type

Note: For more information, see USM Binary Relationship Web Services Examples (see
page 62).

To update a relationship, use the following properties in the request:

Operation: Put

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/BinaryRelationship

Selector: null

The BinaryRelationshipHandlerImpl.Put method extracts the relationship property name
value pairs and passes them into a Relationship Update request to the Connector
Manager.

Note: Refer to the USM schema for a list of USM properties and their appropriate
values. For information about how to access the USM schema documentation, see the
Connector Guide. For a list of all available BinaryRelationship types, see the Service
Modeling Best Practices Guide.

USM Binary Relationship Web Services

62 Web Services Reference Guide

Delete a Relationship

Use the Delete operation to delete a relationship. Pass the USM properties of the
relationship to delete in the body of the request.

Note: For information about the required properties to include for a relationship, see
the USM schema documentation.

To delete a relationship, use the following properties in the request:

Operation: Delete

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/BinaryRelationship

Selector: Null

The BinaryRelationshipHandlerImpl.Delete() method passes the delete request to the
Connector Manager to process.

Relationship Web Services Examples

The following examples show the SOAP messages of many of the available relationship
web services.

Example: Get a list of relationships for a specific service

The following example SOAP messages are Enumerate and Pull requests to retrieve a list
of relationships associated with the servicetest service:

<env:Envelope>

<env:Header>

<wsa:Action xmlns:ns13="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate

</wsa:Action>

<wsa:ReplyTo xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:ns13="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

uuid:c189ea6b-b07f-48c4-8060-819c1dd2da12

</wsa:MessageID>

USM Binary Relationship Web Services

Chapter 5: WS-MAN Web Services 63

<wsa:To xmlns:ns13="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

http://ns.ca.com/2009/07/usm-core/BinaryRelationship

</wsman:ResourceURI>

<wsman:SelectorSet xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

<wsman:Selector Name="serviceName">SA_Service:servicetest

</wsman:Selector>

</wsman:SelectorSet>

<wsman:RequestTotalItemsCountEstimate

xmlns:ns13="http://ns.ca.com/2009/07/usm-core"/>

</env:Header>

<env:Body>

<wsen:Enumerate xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

<wsman:EnumerationMode>EnumerateObjectAndEPR</wsman:EnumerationMode>

</wsen:Enumerate>

</env:Body>

</env:Envelope>

<env:Envelope>

<env:Header>

<wsa:Action xmlns:ns13="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull

</wsa:Action>

<wsa:ReplyTo xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:ns13="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

uuid:630fa96e-7f01-46bd-b3aa-7f79dc57445c

</wsa:MessageID>

<wsa:To xmlns:ns13="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

http://ns.ca.com/2009/07/usm-core/BinaryRelationship

</wsman:ResourceURI>

<wsman:OperationTimeout xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

P0Y0M0DT0H0M30.000S

</wsman:OperationTimeout>

</env:Header>

<env:Body>

<wsen:Pull xmlns:ns13="http://ns.ca.com/2009/07/usm-core">

USM Binary Relationship Web Services

64 Web Services Reference Guide

 <wsen:EnumerationContext>7a26ba28-7c8e-46dc-b456-f70c67d2f2b6

 </wsen:EnumerationContext>

 <wsen:MaxTime>P0Y0M0DT0H0M30.000S</wsen:MaxTime>

 <wsen:MaxElements>20</wsen:MaxElements>

</wsen:Pull>

</env:Body>

</env:Envelope>

The bold SelectorSet syntax defines the service for which to list relationships. The SOAP
response to this request is as follows:

<env:Envelope>

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true">

uuid:6bbbc6ad-3f91-4191-ac58-b17dce91d581

</wsa:MessageID>

<wsa:RelatesTo >uuid:630fa96e-7f01-46bd-b3aa-7f79dc57445c</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true" >

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body>

<wsen:PullResponse >

<wsen:Items>

<wsman:Item>

<BinaryRelationship>

 <MdrProduct>CA:00047</MdrProduct>

 <MdrProdInstance>server1</MdrProdInstance>

 <MdrElementID>21:21:22</MdrElementID>

 <ssa_usm_rel_id>IsAffectedBy</ssa_usm_rel_id>

 <ssa_impact>0</ssa_impact>

 <ssa_policy_id>0</ssa_policy_id>

 <ssa_relevance>0</ssa_relevance>

 <ssa_root_cause>false</ssa_root_cause>

 <SourceMdrProduct>CA:00047</SourceMdrProduct>

 <SourceMdrProdInstance>server1</SourceMdrProdInstance>

 <SourceMdrElementID>21</SourceMdrElementID>

 <ns12:TargetMdrProduct>CA:00047</TargetMdrProduct>

 <ns12:TargetMdrProdInstance>server2</TargetMdrProdInstance>

 <ns12:TargetMdrElementID>22</TargetMdrElementID>

 <ns12:Semantic>Depends On</Semantic>

 <ns12:ScopeMdrProduct>CA:00047</ScopeMdrProduct>

 <ns12:ScopeMdrProdInstance>server1</ScopeMdrProdInstance>

USM Binary Relationship Web Services

Chapter 5: WS-MAN Web Services 65

 <ns12:ScopeMdrElementID>21</ScopeMdrElementID>

 <ns12:Significance>5</Significance>

 </BinaryRelationship>

 <wsa:EndpointReference>

 <wsa:Address env:mustUnderstand="true">

 http://localhost:7090/sam/webservice</wsa:Address>

 <wsa:ReferenceParameters>

 <wsman:ResourceURI>

 http://ns.ca.com/2009/07/usm-core/BinaryRelationship

 </wsman:ResourceURI>

 <wsman:SelectorSet>

 <wsman:Selector Name="MdrProduct">CA:00047</wsman:Selector>

 <wsman:Selector Name="MdrElementID">21:21:22</wsman:Selector>

 <wsman:Selector Name="MdrProdInstance">server1</wsman:Selector>

 </wsman:SelectorSet>

 </wsa:ReferenceParameters>

 </wsa:EndpointReference>

 </wsman:Item>

 <wsman:Item>

 <ns12:BinaryRelationship>

 <ns12:MdrProduct>CA:00047</ns12:MdrProduct>

 <ns12:MdrProdInstance>server3</ns12:MdrProdInstance>

 <ns12:MdrElementID>21:21:9</ns12:MdrElementID>

 <ssa_usm_rel_id>IsAffectedBy</ssa_usm_rel_id>

 <ssa_impact>0</ssa_impact>

 <ssa_policy_id>0</ssa_policy_id>

 <ssa_relevance>0</ssa_relevance>

 <ssa_root_cause>false</ssa_root_cause>

 <ns12:SourceMdrProduct>CA:00047</ns12:SourceMdrProduct>

 <ns12:SourceMdrProdInstance>server3</ns12:SourceMdrProdInstance>

 <ns12:SourceMdrElementID>21</ns12:SourceMdrElementID>

 <ns12:TargetMdrProduct>CA:00047</ns12:TargetMdrProduct>

 <ns12:TargetMdrProdInstance>server4</ns12:TargetMdrProdInstance>

 <ns12:TargetMdrElementID>9</ns12:TargetMdrElementID>

 <ns12:Semantic>Depends On</ns12:Semantic>

 <ns12:ScopeMdrProduct>CA:00047</ns12:ScopeMdrProduct>

 <ns12:ScopeMdrProdInstance>server3</ns12:ScopeMdrProdInstance>

 <ns12:ScopeMdrElementID>21</ns12:ScopeMdrElementID>

 <ns12:Significance>5</ns12:Significance>

 </BinaryRelationship>

 <wsa:EndpointReference>

 <wsa:Address

 env:mustUnderstand="true">http://localhost:7090/sam/webservice

 </wsa:Address>

USM Binary Relationship Web Services

66 Web Services Reference Guide

 <wsa:ReferenceParameters>

 <wsman:ResourceURI>http://ns.ca.com/2009/07/usm-core/BinaryRelationshi

p

 </wsman:ResourceURI>

 <wsman:SelectorSet>

 <wsman:Selector Name="MdrProduct">CA:00047</wsman:Selector>

 <wsman:Selector Name="MdrElementID">21:21:9</wsman:Selector>

 <wsman:Selector Name="MdrProdInstance">symbe01-5</wsman:Selector>

 </wsman:SelectorSet>

 </wsa:ReferenceParameters>

 </wsa:EndpointReference>

 </wsman:Item>

 </wsen:Items>

 <wsen:EndOfSequence xsi:type="xs:string"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</wsen:PullResponse>

</env:Body>

</env:Envelope>

The bold syntax shows the details of the returned relationships for the servicetest
service. Note the returned properties, including the relationship type (ssa_usm_rel_id),
propagation type (Semantic), and source and target CIs.

Example: Create a relationship

The following example SOAP message is a Create request to create a new relationship
with Aggregates propagation:

<env:Envelope>

<env:Header>

<wsa:ReplyTo xmlns:usm="http://ns.ca.com/2009/07/usm-core">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:usm="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

uuid:4add8974-25a0-4fc4-84f6-c7f88158f8f7

</wsa:MessageID>

<wsa:To xmlns:usm="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:usm="http://ns.ca.com/2009/07/usm-core">

http://ns.ca.com/2009/07/usm-core/BinaryRelationship

</wsman:ResourceURI>

USM Binary Relationship Web Services

Chapter 5: WS-MAN Web Services 67

<wsman:OperationTimeout xmlns:usm="http://ns.ca.com/2009/07/usm-core">

PT30.000S

</wsman:OperationTimeout>

<wsa:Action xmlns:usm="http://ns.ca.com/2009/07/usm-core"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create

</wsa:Action>

</env:Header>

<env:Body>

<BinaryRelationship xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

 <MdrProduct>CA:09997</MdrProduct>

 <MdrProdInstance>server1.ca.com</MdrProdInstance>

 <MdrElementID>Agg_Service:Agg_Service:Dep_Server</MdrElementID>

 <SourceMdrProduct>CA:09997</SourceMdrProduct>

 <SourceMdrProdInstance>server1.ca.com</SourceMdrProdInstance>

 <SourceMdrElementID>SA_Service:Agg_Service</SourceMdrElementID>

 <TargetMdrProduct>CA:09997</TargetMdrProduct>

 <TargetMdrProdInstance>server2.ca.com</TargetMdrProdInstance>

 <TargetMdrElementID>SA_Server:Dep_Server</TargetMdrElementID>

 <Semantic>Aggregates</Semantic>

 <ScopeMdrProduct>CA:09997</ScopeMdrProduct>

 <ScopeMdrProdInstance>server1.ca.com</ScopeMdrProdInstance>

 <ScopeMdrElementID>SA_Service:Agg_Service</ScopeMdrElementID>

 <Significance>5</Significance>

 <ssa_connector_name>server1.ca.com</ssa_connector_name>

 <ssa_silo_name>WebServiceForSSA_server1.ca.com@server1.ca.com</ssa_silo_na

me>

</BinaryRelationship>

</env:Body>

</env:Envelope>

The web service creates the relationship using the properties listed in bold in the body
of the request. Note that the Semantic property defines the propagation type for the
relationship as Aggregates. No relationship type is defined, so the relationship
automatically obtains the default type that maps to Aggregates propagation. The SOAP
response to this request is as follows:

<env:Envelope>

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:d23a181b-5e2d-4dae-85a0-8ee4415c227b

</wsa:MessageID>

Notification Web Services

68 Web Services Reference Guide

<wsa:RelatesTo xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:4add8974-25a0-4fc4-84f6-c7f88158f8f7

</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body>

<wxf:ResourceCreated xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

<wsa:Address env:mustUnderstand="true">

http://localhost:7090/sam/webservice/</wsa:Address>

<wsa:ReferenceParameters>

<wsman:ResourceURI>http://ns.ca.com/2009/07/usm-core/BinaryRelationship

</wsman:ResourceURI>

</wsa:ReferenceParameters>

</wxf:ResourceCreated>

</env:Body>

</env:Envelope>

Subscribe to Notifications for Relationship Changes

To subscribe to notifications for changes to Relationship, use the Notification web
services. The Relationship resource supports the WS-Eventing functionality that enables
a web client to subscribe to notification events when a relationship is created, deleted,
or updated.

Note: For more information, see Notification Web Services.

Notification Web Services

This section provides information about the operations performed in Notification web
services.

Notification Web Services Overview

Notification web services are used to subscribe to notifications for changes to Entities,
Alerts, and Relationships.

Use the following endpoint URI when invoking the Notification web services resource:

http://ns.ca.com/2009/07/usm-core/Notification

Notification Web Services

Chapter 5: WS-MAN Web Services 69

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm-core-200907.wsdl

Access the USM schema as follows:

http://samanager:port/sam/webservice/schemas/usm-core-200907.xsd

Using the Notification web services requires basic knowledge of the USM schema and its
properties. In addition to the schema itself, HTML documentation is available. For
information about how to access the USM schema documentation, see the Connector
Guide.

How to Subscribe to Notifications for Entity, Relationship, and Alert Changes

Addition of the WS-Eventing functionality to the Entity (see page 52), Relationship (see
page 58), and Alert (see page 86) resources allows a web client to subscribe to
notification events when an entity (CI), relationship, or alert is created, deleted, or
updated. The web client sends a subscription request with a filter detailing what
notification events the client wants to receive and the mode of delivery. If the request is
successful, the web service sends a response with a subscription ID. The subscription
provides two delivery modes: Pull and Push. In case of Pull, a client periodically polls for
notification events, and in case of Push, the notification events are published to an
event sink, where the web client can process them.

You can perform the following steps to complete the task:

1. Send a Subscribe request for the Notification resource.

2. Add a filter with the following events as appropriate:

■ entityCreated, entityModified, and entityDeleted for the Entity resource

■ binaryrelationshipCreated, binaryrelationshipModified, and
binaryrelationshipDeleted for the Relationship resource

■ alertCreated, alertModified, and alertCleared for the Alert resource

3. Update authentication details (user ID and password).

4. Run the request, and review the response for the subscription ID.

Note: For Pull mode, send a Pull request for the Notification resource.

Notification Web Services

70 Web Services Reference Guide

Create a Subscription

Use the Subscribe operation to create a subscription request for notification. This
request is sent to the event source.

To create a subscription, use the following properties in the request:

Operation: Subscribe

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Notification

Creating a subscription request does not require any selector; it requires a filter.
Therefore, the web client must provide the following information:

■ Address of the web service

■ Resource URL

■ Action (Subscribe)

■ Reply-to Address (default)

■ MessageID (uuid)

■ Delivery Mode (Pull in this case)

■ Heartbeats (Timeout value for subscription)

■ Filter (what events to subscribe for)

■ Bookmark (from what point to start sending events)

Note: For more information about how to create this request, see the first example in
the Notification Web Services Examples (see page 72) section.

Delete a Subscription

Use the Unsubscribe operation to explicitly delete a subscription when you do not want
notifications associated with the subscription.

To delete a subscription, use the following properties in the request:

Operation: Unsubscribe

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Notification

Notification Web Services

Chapter 5: WS-MAN Web Services 71

Deleting a subscription does not require any selector; it requires a filter. Therefore, the
web client must provide the following information:

■ Address of the web service

■ Resource URL

■ Action (Unsubscribe)

■ Reply-to Address (default)

■ MessageID (uuid)

■ Identifier (Subscription ID)

Note: For more information about how to create this request, see the second example
in the Notification Web Services Examples (see page 72) section.

Pull a Subscription Notification

Use the WS-Management Pull operation in combination with the delivery mode Pull to
retrieve periodically any notification events such as entityModified, entityCreated, and
entityDeleted for Entity; binaryrelationshipModified, binaryrelationshipCreated, and
binaryrelationshipDeleted for Relationship; and alertModified, alertCreated, and
alertDeleted for Alert.

To pull a subscription notification, use the following properties in the request:

Operation: Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Notification

EnumerationContext: subscriptionID

Note: For more information about how to create this request, see the third example in
the Notification Web Services Examples (see page 72) section.

Notification Web Services

72 Web Services Reference Guide

Notification Web Services Examples

The following examples show the SOAP requests to create a subscription, retrieve
notification events, and delete a subscription for Entity.

Example 1: Create a subscription

The following example SOAP request shows how you can create a subscription request:

<env:Envelope>

<env:Header>

<wsa:To env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI>

http://ns.ca.com/2009/07/usm-core/Notification

</wsman:ResourceURI>

<wsa:Action env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

</wsa:Action>

<wsa:ReplyTo>

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID env:mustUnderstand="true">

uuid:afb3d3ee-cdb2-4587-9087-d09d77ab5d8d

</wsa:MessageID>

</env:Header>

<env:Body>

<wse:Subscribe>

<wse:Delivery Mode="http://schemas.dmtf.org/wbem/wsman/1/wsman/Pull">

<wsman:Heartbeats>PT5M0.000S</wsman:Heartbeats>

</wse:Delivery>

<wse:Filter Dialect="http://ns.ca.com/2009/07/usm-core/NotificationFilter">

entityModified;entityCreated;entityDeleted

</wse:Filter>

<wsman:Bookmark>

<ns15:Bookmark>

http://schemas.dmtf.org/wbem/wsman/1/wsman/bookmark/earliest

</ns15:Bookmark>

</wsman:Bookmark>

</wse:Subscribe>

</env:Body>

</env:Envelope>

Notification Web Services

Chapter 5: WS-MAN Web Services 73

Example 2: Delete a Subscription

The following example SOAP request shows how to delete a subscription:

<env:Envelope >

<env:Header>

<wsa:To env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI >

http://ns.ca.com/2009/07/usm-core/Notification

</wsman:ResourceURI>

<wsa:Action env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe

</wsa:Action>

<wsa:ReplyTo>

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID env:mustUnderstand="true">

uuid:0f589af8-1b38-4948-a171-f4dc419f49db

</wsa:MessageID>

<wse:Identifier >

5264d7de-c6ac-46f4-80ea-fd59c11a7561

</wse:Identifier>

</env:Header>

<env:Body>

<wse:Unsubscribe/>

</env:Body>

</env:Envelope>

Example 3: Retrieve Notification Events

The following example SOAP request shows how to retrieve notification events:

<env:Envelope>

<env:Header>

<wsa:To env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI >

http://ns.ca.com/2009/07/usm-core/Notification

</wsman:ResourceURI>

Queue Web Services

74 Web Services Reference Guide

<wsman:OperationTimeout>

PT0.100S

</wsman:OperationTimeout>

<wsa:Action env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull

</wsa:Action>

<wsa:ReplyTo >

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID env:mustUnderstand="true">

uuid:7f71fa61-1e94-4265-97e4-f4bf0ddd7e68

</wsa:MessageID>

</env:Header>

<env:Body>

<wsen:Pull >

<wsen:EnumerationContext>

 5264d7de-c6ac-46f4-80ea-fd59c11a7561

</wsen:EnumerationContext>

<wsen:MaxTime>

 PT0.100S

</wsen:MaxTime>

<wsen:MaxElements>

 10

</wsen:MaxElements>

</wsen:Pull>

</env:Body>

</env:Envelope>

Queue Web Services

This section provides information about the operations performed in queue web
services.

Note: WS-MAN web services should be considered obsolete. We recommend using the
Alert Queue (see page 24) REST web services instead.

Queue Web Services

Chapter 5: WS-MAN Web Services 75

Queue Web Services Overview

Queue web services use the USM 01-2009 schema to perform operations on alert
management queues in CA SOI. Alert queues collect and logically organize closely
related groups of alerts in CA SOI.

Use the following endpoint URI when invoking the queue web services resource:

http://ns.ca.com/2009/01/usm-data/Queue

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm2.wsdl

Access the USM 01-2009 schema as follows:

http://samanager:port/sam/webservice/schemas/usm2.xsd

Note: For more information about queues, see the Event and Alert Management Best
Practices Guide.

Get a Queue

Use the Get request to retrieve a specific queue. The following selectors are required as
part of the request to identify a unique instance of a queue:

ASBOID.id

Uniquely identifies the queue using the Action ID value. Derive this value using an
Enumerate operation.

ASBOID.source

Defines the DomainID of the CA SOI model repository. This value is constant for the
SA Manager. Derive the value using an Enumerate operation.

To get a queue, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/Queue

Selector: ASBOID.id

Selector: ASBOID.source

The QueueHandlerImpl.Get() method returns the queue based on the selectors.

Queue Web Services

76 Web Services Reference Guide

Get a List of Queues

To retrieve a list of queues, the web services use a combination of WS-Management
Enumeration and Pull operations. You can filter the returned list using the
WS-Management Filter element to pass a valid XPath expression to limit the number
and type of queues returned.

To get a list of queues, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/Queue

Selector: Null

The QueueIteratorImpl() method creates a collection of all alert queues in CA SOI. The
Pull operation retrieves queues in batches as defined by the MaxElements tag.

Create a Queue

Use the Create operation to create an alert queue in CA SOI. You define the queue type
and property values for the new queue in the body of the request.

Note: For information about the required properties to include for a queue, see the
USM 01-2009 schema.

To create a queue, use the following properties in the request:

Operation: Create

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/Queue

Selector: Null

The QueueHandlerImpl.Create() method extracts all defined property values from the
body of the SOAP message and creates the queue in CA SOI.

Queue Web Services

Chapter 5: WS-MAN Web Services 77

Update a Queue

Use the Put operation to update the writeable properties of a queue. Perform the
update by passing in all of the properties and their new values in the body of the
request.

To update a queue, use the following properties in the request:

Operation: Put

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/Queue

Selector: ASBOID.id

Selector: ASBOID.source

Fragment: property (Description indicating which property to update)

The QueueHandlerImpl.Put() method inspects the SOAP Header and determines if it is a
fragment-based update. If so, only the attributes specified in the Fragment are updated;
otherwise, all of the writable attributes are updated.

Note: For information about the required properties to include for a queue, see the
USM 01-2009 schema.

Delete a Queue

Use the Delete operation to delete a queue. Use the queue ASBOID.id and
ASBOID.source values as selectors.

To delete a queue, use the following properties in the request:

Operation: Delete

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/Queue

Selector: ASBOID.id

Selector: ASBOID.source

The QueueHandlerImpl.Delete() method verifies that the queue exists and deletes it.

Queue Web Services

78 Web Services Reference Guide

Queue Web Services Examples

The following examples show the SOAP messages of many of the available Queue web
services.

Example 1: Get a Queue

The following example SOAP message is a Get request to retrieve a queue:

<env:Envelope>

<env:Header>

<wsa:To>http://localhost:7090/sam/webservice</wsa:To>

<wsman:ResourceURI >

http://ns.ca.com/2009/01/usm-data/Queue

</wsman:ResourceURI>

<wsman:SelectorSet>

<wsman:Selector Name="ASBOID.source">4503599627370496</wsman:Selector>

<wsman:Selector Name="ASBOID.id">2</wsman:Selector>

</wsman:SelectorSet>

<wsa:Action>

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

</wsa:Action>

<wsa:ReplyTo>

<wsa:Address>

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID>uuid:78372ad8-46e7-4d27-b632-7e2de827f29a</wsa:MessageID>

</env:Header>

<env:Body/>

</env:Envelope>

Example 2: Get a Queue Response

The following example SOAP message shows how you can get a queue response:

<env:Envelope>

<env:Header>

<wsa:Action>

http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse

</wsa:Action>

<wsa:MessageID>

uuid:607204b7-daf5-4ba1-966a-ebab3628b498

</wsa:MessageID>

Queue Web Services

Chapter 5: WS-MAN Web Services 79

<wsa:RelatesTo>uuid:78372ad8-46e7-4d27-b632-7e2de827f29a</wsa:RelatesTo>

<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:

To>

</env:Header>

<env:Body>

<ns13:Queue>

<ssa_escalation_policy_id_1>2</ssa_escalation_policy_id_1>

<sam_alert_queue_id>0x13400000000002</sam_alert_queue_id>

<USMID>4503599627370496:2</USMID>

<ASBOID>

<source>4503599627370496</source>

<id>2</id>

</ASBOID>

<ns13:item_name>WebServices Created Queue</ns13:item_name>

<ns13:item_description>WS alarm queue10</ns13:item_description>

<ns13:item_creation_date>2012-02-15T13:17:54.713+11:00</ns13:item_creation_da

te>

<ns13:item_creation_user>symbe01</ns13:item_creation_user>

<ns13:CriteriaXml><![CDATA[<attr-filter><and><equals-ignore-case><attribute

id="0x11f57"><value>symbe01</value></attribute></equals-ignore-case><equals-i

gnore-case><attribute

id="0x12a08"><value>Windows</value></attribute></equals-ignore-case></and></a

ttr-filter>]]></ns13:CriteriaXml>

<ns13:CriteriaDrool>package com.ca.sam.manager.rules

import com.ca.sam.manager.rules.AlarmObject;

rule "Queue 2"

 when

 $alarm : AlarmObject(((assignedTo matches "(?i)symbe01" &&

situationType matches "(?i)Windows")))

 then

 $alarm.assignQueue(2);

end</ns13:CriteriaDrool>

<ns13:CompileTime>2012-02-28T08:21:21.797+11:00</ns13:CompileTime>

<ns13:Priority>2</ns13:Priority>

<ns13:NumberOfAlerts>0</ns13:NumberOfAlerts>

<ns13:CountMinor>0</ns13:CountMinor>

<ns13:CountMajor>0</ns13:CountMajor>

<ns13:CountCritical>0</ns13:CountCritical>

<ns13:CountDown>0</ns13:CountDown>

</ns13:Queue>

</env:Body>

</env:Envelope>

Queue Web Services

80 Web Services Reference Guide

Example 3: Create a Queue

The following example SOAP message is a Create request to create a queue:

<env:Envelope>

<env:Header>

<wsa:ReplyTo>

<wsa:Address>

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID>uuid:697da93f-3bc4-479f-8007-fcd0d860d2cb</wsa:MessageID>

<wsa:To>http://au-symbe01-w8e2:7090/sam/webservice</wsa:To>

<wsman:ResourceURI>http://ns.ca.com/2009/01/usm-data/Queue

</wsman:ResourceURI>

<wsman:OperationTimeout>P0Y0M0DT0H0M30.000S</wsman:OperationTimeout>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Create</wsa:Action

>

</env:Header>

<env:Body>

<ns13:Queue>

<ns13:item_name>NewQueue</ns13:item_name>

<ns13:item_description>My New Queue description</ns13:item_description>

<ns13:item_creation_user>symbe01</ns13:item_creation_user>

<ns13:CriteriaXml><![CDATA[<attr-filter><and><equals-ignore-case><attribu

te

id="0x11f57"><value>symbe01</value></attribute></equals-ignore-case><equa

ls-ignore-case><attribute

id="0x12a08"><value>Windows</value></attribute></equals-ignore-case></and

></attr-filter>]]></ns13:CriteriaXml>

</ns13:Queue>

</env:Body>

</env:Envelope>

Example 4: Update a Queue

The following example SOAP message is a Put request that shows how you can update a
queue:

<env:Envelope>

<env:Header>

<wsa:To>http://localhost:7090/sam/webservice</wsa:To>

<wsman:ResourceURI>http://ns.ca.com/2009/01/usm-data/Queue</wsman:ResourceURI

>

<wsman:OperationTimeout>P0Y0M0DT0H0M30.000S</wsman:OperationTimeout>

<wsman:SelectorSet>

<wsman:Selector Name="ASBOID.source">4503599627370496</wsman:Selector>

<wsman:Selector Name="ASBOID.id">2</wsman:Selector>

</wsman:SelectorSet>

Queue Web Services

Chapter 5: WS-MAN Web Services 81

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Put</wsa:Action>

<wsa:ReplyTo>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID>uuid:f4ea8e55-a4bc-4faf-9dd1-010d1767c8f4</wsa:MessageID>

<wsman:FragmentTransfer>item_description</wsman:FragmentTransfer>

</env:Header>

<env:Body>

<ns11:Queue>

<ASBOID>

<source>4503599627370496</source>

<id>2</id>

</ASBOID>

<ns11:item_description>Updated desc</ns11:item_description>

</ns11:Queue>

</env:Body>

</env:Envelope>

Example 5: Delete a Queue

The following example SOAP message is a Delete request that shows how you can
delete a queue:

<env:Envelope>

<env:Header>

<wsa:To>http://localhost:7090/sam/webservice</wsa:To>

<wsman:ResourceURI>http://ns.ca.com/2009/01/usm-data/Queue</wsman:ResourceURI

>

<wsman:OperationTimeout>P0Y0M0DT0H0M30.000S</wsman:OperationTimeout>

<wsman:SelectorSet>

<wsman:Selector Name="ASBOID.source">4503599627370496</wsman:Selector>

<wsman:Selector Name="ASBOID.id">2</wsman:Selector>

</wsman:SelectorSet>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete</wsa:Ac

tion>

<wsa:ReplyTo>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID>uuid:f4ea8e55-a4bc-4faf-9dd1-010d1767c8f4</wsa:MessageID>

<wsman:FragmentTransfer>item_description</wsman:FragmentTransfer>

</env:Header>

<env:Body/>

</env:Envelope>

Customer Web Services

82 Web Services Reference Guide

Customer Web Services

This section provides information about the operations that you can perform in CA SOI
using the Customer web services resource.

Note: WS-MAN web services should be considered obsolete. We recommend using the
Customer (see page 27) REST web services instead.

Customer Web Services Overview

Customer web services resource uses the USM 01-2009 schema to perform
customer-related operations in CA SOI. A customer in CA SOI is any consumer of a
managed service. The CA SOI administrator creates customers and associates them with
service models to see the impact of service degradation on the customer.

Use the following endpoint URI when invoking the customer web services resource:

http://ns.ca.com/2009/01/usm-data/Customer

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm2.wsdl

Access the USM 01-2009 schema as follows:

http://samanager:port/sam/webservice/schemas/usm2.xsd

Note: For more information about customers, see the Service Modeling Best Practices
Guide.

Get a Customer

Use the Get request to retrieve a specific customer. The following selectors are required
as part of the request to identify a unique customer:

ASBOID.id

Uniquely identifies the customer using the Action ID value. Derive this value using
an Enumerate operation.

ASBOID.source

Defines the DomainID of the CA SOI model repository. This value is constant for the
SA Manager. Derive the value using an Enumerate operation.

Customer Web Services

Chapter 5: WS-MAN Web Services 83

To get a customer, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/Customer

Selector: ASBOID.id

Selector: ASBOID.source

The CustomerHandlerImpl.Get() method returns the customer based on the selectors.

Get a List of Customers

To retrieve a list of customers, the web services use a combination of WS-Management
Enumeration and Pull operations. You can filter the returned list using the
WS-Management Filter element to pass a valid XPath expression to limit the number of
customers returned.

To get a list of customers, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/Customer

Selector: Null

The CustomerIteratorImpl() method creates a collection of all customers in CA SOI. The
Pull operation retrieves customers in batches as defined by the MaxElements tag.

Customer Web Services

84 Web Services Reference Guide

Customer Web Services Examples

The following example shows the SOAP messages of the customer web services.

Example: Get a Customer

The following example SOAP message is a Get request to retrieve a customer:

<env:Envelope>

 <env:Header>

 <wsa:To>http://localhost:7090/sam/webservice</wsa:To>

 <wsman:ResourceURI>

 http://ns.ca.com/2009/01/usm-data/Customer

 </wsman:ResourceURI>

 <wsman:SelectorSet>

 <wsman:Selector Name="ASBOID.source">4503599627370496

 </wsman:Selector>

 <wsman:Selector Name="ASBOID.id">1</wsman:Selector>

 </wsman:SelectorSet>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

 </wsa:Action>

 <wsa:ReplyTo>

 <wsa:Address>

 http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

 </wsa:Address>

 </wsa:ReplyTo>

 <wsa:MessageID>

 uuid:78372ad8-46e7-4d27-b632-7e2de827f29a

 </wsa:MessageID>

 </env:Header>

<env:Body/>

</env:Envelope>

The response of the Get request is as follows:

<env:Envelope>

 <env:Header>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse

 </wsa:Action>

 <wsa:MessageID>

 uuid:6b58e83b-b02a-4a5e-8650-61fdc8842a77

 </wsa:MessageID>

 <wsa:RelatesTo>

 uuid:78372ad8-46e7-4d27-b632-7e2de827f29a

 </wsa:RelatesTo>

Alert Web Services

Chapter 5: WS-MAN Web Services 85

 <wsa:To>

 http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

 </wsa:To>

 </env:Header>

 <env:Body>

 <ns13:Customer>

 <USMID>4503599627370496:1</USMID>

 <ASBOID>

 <source>4503599627370496</source>

 <id>1</id>

 </ASBOID>

 <ns13:item_name>customer1</ns13:item_name>

 <ns13:item_description>first customer</ns13:item_description>

 <ns13:priority>10</ns13:priority>

 <ns13:identifier>c12345</ns13:identifier>

 <ns13:quality>0</ns13:quality>

 <ns13:risk>5</ns13:risk>

 <ns13:health>1</ns13:health>

 <ns13:topLevel>true</ns13:topLevel>

 <ns13:services>3</ns13:services>

 <ns13:services>16</ns13:services>

 </ns13:Customer>

 </env:Body>

</env:Envelope>

Alert Web Services

This section describes the operations performed in alert web services.

Note: WS-MAN web services should be considered obsolete. We recommend using the
Alert (see page 25) REST web services instead.

Alert Web Services

86 Web Services Reference Guide

Alert Web Services Overview

Alert web services let you interact with CA SOI alerts. Use the following endpoint URI
when invoking the alert web services resource:

http://ns.ca.com/2009/07/usm-core/Alert

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm-core-200907.wsdl

Access the USM schema as follows:

http://samanager:port/sam/webservice/schemas/usm-core-200907.xsd

Using the alert web services requires basic knowledge of the USM schema and its
properties. In addition to the schema itself, HTML documentation is available. The USM
schema documentation is available on the online bookshelf.

Get an Alert

Use the Get request to retrieve an alert. The following selectors are required as part of
the request to identify a unique instance of an alert:

MdrProduct

Defines the connector data source. Each connector has a specific MdrProduct value
formatted as a five-digit number prefixed by 'CA:'. For example, the MdrProduct
value for resources created by web services is CA:09996. For a list of MdrProduct
values, see the Connector Guide.

MdrProdInstance

Defines the host name associated with the resource.

MdrElementID

Defines a value that uniquely identifies the resource.

Note: This request also retrieves the root cause property ssa_rootcause_alert_id of
service-related alerts to indicate the alert that is the root cause alert, and
ssa_is_rootcause property of CI alerts to indicate whether CI alerts are root cause alerts.

To get an alert, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Alert Web Services

Chapter 5: WS-MAN Web Services 87

ResourceURI: http://ns.ca.com/2009/07/usm-core/Alert

Selector: MdrProduct

Selector: MdrProdInstance

Selector: MdrElementID

The AlertHandlerImpl.Get() method returns an alert of the type of USM resource that
represents the CA SOI alert in USM terms.

Get a List of Alerts

To retrieve a list of alerts, the web services use a combination of WS-Management
Enumeration and Pull operations. You can filter the returned list using the
WS-Management Filter element to pass a valid XPath expression to limit the number
and type of alerts returned.

When you retrieve a list of alerts, the web service returns the AlertID property for each
alert in the MdrElementID property. For more information about a specific alert, use the
retrieved AlertID value to get an alert.

To get a list of alerts, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Alert

Selector: Null

Note: You can also retrieve a list of alerts associated with a service and all of its children
CIs. Use the Recursive selector to achieve this task. For example, if you specify
MdrElementID=2 and Recursive=True, then if MdrElementID represents a service, the
alerts for the service and all of its children CIs are returned in the list.

The AlertIteratorImpl.java program retrieves the list of current alerts from the alert
repository context and the CI with which the alert is associated from the Model
Repository and creates a collection object that contains the alert list. An enumeration
context is returned, which you can use to retrieve the alerts through the Pull operation.

Alert Web Services

88 Web Services Reference Guide

Create an Alert

Use the Create operation to create an alert and associate it with a CI in CA SOI. You
define the alert type and USM property values for the new alert in the body of the
request.

Note: For information about the required properties to include for an alert, see the USM
schema documentation. The USM schema documentation is provided on the online
bookshelf.

To create an alert, use the following properties in the request:

Operation: Create

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Alert

Selector: Null

The AlertHandlerImpl.Create() method extracts the alert detail from the body of the
SOAP message, and creates the alert in CA SOI. If successful, the CreateResponse
includes a unique AlertID in the MdrElementID of the response.

Update an Alert

Use the Put operation to update the writable attributes of an alert. Perform the update
by passing in all of the USM properties and their new values in the body of the request.

Note: Refer to the USM schema for a list of USM properties and their appropriate
values. The USM schema documentation is provided on the online bookshelf.

To update an alert, use the following properties in the request:

Operation: Put

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Alert

Selector: Null

The AlertHandlerImpl.Put() method examines the contents of the SOAP header, and if
the request contains a Fragment element, only the attributes specified in the Fragment
are updated. Otherwise, all writable alert attributes are updated. A PutResponse
Operation is returned after successful updates.

Alert Web Services

Chapter 5: WS-MAN Web Services 89

Clear an Alert

Use the Delete operation to clear an alert. Pass the USM properties of the alert to
delete in the body of the request.

Note: For information about the required properties to include for an alert, see the USM
schema documentation.

To clear an alert, use the following properties in the request:

Operation: Delete

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/07/usm-core/Alert

Selector: MdrElementID

The AlertHandlerImpl.Delete() method uses MdrElementID to select the appropriate
alert and runs the clear backend function to delete the alert from the Operations
Console.

If the alert is successfully cleared, the DeleteResponse operation is returned. Otherwise,
a SOAP fault exception is returned.

Alert Web Services Examples

The following examples show the SOAP messages of many of the available alert web
services.

Example: Get an alert

The following example SOAP message is a Get request to retrieve a specific alert:

<env:Envelope>

<env:Header>

<wsa:To>http://localhost:7090/sam/webservice</wsa:To>

<wsman:ResourceURI>http://ns.ca.com/2009/07/usm-core/Alert</wsman:ResourceURI

>

<wsman:SelectorSet>

<wsman:Selector Name="AlertID">32</wsman:Selector>

</wsman:SelectorSet>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get</wsa:Action>

<wsa:ReplyTo>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:Address>

Alert Web Services

90 Web Services Reference Guide

</wsa:ReplyTo>

<wsa:MessageID>uuid:079e3c5a-7c5e-41a0-b5a8-992238aa55e3</wsa:MessageID>

</env:Header>

<env:Body/>

</env:Envelope>

The SOAP response to this request is as follows:

<env:Envelope>

<env:Header>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse</wsa:A

ction>

<wsa:MessageID>uuid:09af3775-21b1-475e-91ca-4a3b2da059c8</wsa:MessageID>

<wsa:RelatesTo>uuid:079e3c5a-7c5e-41a0-b5a8-992238aa55e3</wsa:RelatesTo>

<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:

To>

</env:Header>

<env:Body>

<ns14:Alert>

<ns14:MdrProduct>CA:00047</ns14:MdrProduct>

<ns14:MdrProdInstance>AB-XY01-W8</ns14:MdrProdInstance>

<ns14:MdrElementID>32</ns14:MdrElementID>

<ns14:UrlParams>http://AB-XY01-W8.ca.com:8080?id=A00002</ns14:UrlParams>

<ns14:OccurrenceTimestamp>2012-03-05T09:58:59.701+11:00</ns14:OccurrenceT

imestamp>

<ns14:ReportTimestamp>2012-03-05T09:58:59.000+11:00</ns14:ReportTimestamp

>

<ns14:AlertType>Risk</ns14:AlertType>

<ns14:Severity>Minor</ns14:Severity>

<ns14:AlertedMdrProduct>CA:00047</ns14:AlertedMdrProduct>

<ns14:AlertedMdrProdInstance>AB-XY01-W8</ns14:AlertedMdrProdInstance>

<ns14:AlertedMdrElementID>19</ns14:AlertedMdrElementID>

<ns14:Summary>UC_Server has an infrastructure alarm..</ns14:Summary>

<ns14:Message>The Detailed message associated with this

alert..</ns14:Message>

<ns14:IsAcknowledged>false</ns14:IsAcknowledged>

<ns14:Assignee/>

<ns14:RelatedIncident/>

<ssa_instance_id>ComputerSystem:dnsname,ucserver.ca.com:UCServer</ssa_ins

tance_id>

<ssa_classname>SA_Server</ssa_classname>

<ssa_class_id>21</ssa_class_id>

<ssa_connector_id>2</ssa_connector_id>

<ssa_connector_name>UniversalConnector running on host

AB-XY01-W8.ca.com</ssa_connector_name>

<ssa_ticket_props/>

<ssa_ticket_id_url/>

<ssa_ticket_url/>

Alert Web Services

Chapter 5: WS-MAN Web Services 91

<ssa_userattribute_1/>

<ssa_userattribute_2/>

<ssa_userattribute_3/>

<ssa_userattribute_4/>

<ssa_userattribute_5/>

<ssa_is_rootcause>true</ssa_is_rootcause>

<ssa_domain_id>4503599627370496</ssa_domain_id>

<ssa_queue_id>2</ssa_queue_id>

</ns14:Alert>

</env:Body>

</env:Envelope>

Note: The tag structure for the root cause property of service-related alert and CI alert
is as follows. In the following example code snippet, false specifies that the CI alerts are
not the root cause alerts and 3 implies the ID of the service-related alert that is the root
cause alert :

<ssa_is_rootcause>false</ssa_is_rootcause>

<ssa_rootcause_alert_id>3</ssa_rootcause_alert_id>

Example: Update the ticket number of an alert

The following example SOAP message is a Put request for the RelatedIncident property
of the Alert:

<env:Envelope>

<env:Header>

<wsa:ReplyTo>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID>uuid:4add8974-25a0-4fc4-84f6-c7f88158f8f7</wsa:MessageID>

<wsa:To>http://localhost:7090/sam/webservice</wsa:To>

<wsman:ResourceURI>http://ns.ca.com/2009/07/usm-core/Alert</wsman:ResourceURI

>

<wsman:OperationTimeout>PT30.000S</wsman:OperationTimeout>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Put</wsa:Action>

</env:Header>

<env:Body>

<ns14:Alert>

<ns14:MdrProduct>CA:00047</ns14:MdrProduct>

<ns14:MdrProdInstance>symbe01-5</ns14:MdrProdInstance>

<ns14:MdrElementID>6</ns14:MdrElementID>

<ns14:UrlParams>http://symbe01-5.ca.com:8080?id=mdr_id</ns14:UrlParams>

<ns14:AlertType>Quality</ns14:AlertType>

<ns14:Severity>Critical</ns14:Severity>

<ns14:AlertedMdrProduct>CA:00047</ns14:AlertedMdrProduct>

Propagation Policy Web Services

92 Web Services Reference Guide

<ns14:AlertedMdrProdInstance>symbe01-5</ns14:AlertedMdrProdInstance>

<ns14:AlertedMdrElementID>4</ns14:AlertedMdrElementID>

<ns14:Summary>UC_Server has a updated client alarm..</ns14:Summary>

<ns14:Message>UC_Server has a detailed client alarm..</ns14:Message>

<ns14:IsAcknowledged>false</ns14:IsAcknowledged>

<ns14:Assignee/>

<ns14:RelatedIncident>T12345</ns14:RelatedIncident>

<ssa_ticket_props/>

<ssa_userattribute_1/>

<ssa_userattribute_2/>

<ssa_userattribute_3/>

<ssa_userattribute_4/>

<ssa_userattribute_5/>

</ns14:Alert>

</env:Body>

</env:Envelope>

Subscribe to Notifications for Alert Changes

To subscribe to notifications for changes to Alert, use the Notification web services. The
Alert resource supports the WS-Eventing functionality that enables a web client to
subscribe to notification events when an alert is created, deleted, or updated.

Note: For more information, see Notification Web Services.

Propagation Policy Web Services

This section provides information about the operations performed in propagation policy
web services.

Propagation Policy Web Services Overview

Propagation policy web services use the USM 01-2009 schema to perform operations on
propagation policies, which define specific policy instructions for how impact
propagates in related CIs in a service.

Propagation policy was known as relationship policy in previous versions of CA SOI. The
following propagation types require propagation policy:

■ Custom (formerly DependsOn)

■ Operative (formerly Requires)

Propagation Policy Web Services

Chapter 5: WS-MAN Web Services 93

The propagation policy web services let you interact with Custom propagation policy
assigned to a relationship and propagation between CIs. Use the term DependsOn in
web service requests to refer to Custom propagation policy.

Note: The web services cannot interact with Operative propagation policy.

Use the following endpoint URI when invoking the propagation policy web services
resource:

http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm2.wsdl

Access the USM 01-2009 schema as follows:

http://samanager:port/sam/webservice/schemas/usm2.xsd

Note: For more information about propagation policy, see the Service Modeling Best
Practices Guide.

Get a Propagation Policy

Use the Get request to retrieve a propagation policy associated with a custom
propagation type. View the propagation policy in the Service Modeler on the Policies
tab.

The following selectors are required to identify a unique instance of a propagation
policy:

ASBOID.id

Uniquely identifies the propagation policy using the Policy ID value. Derive this
value using an Enumerate operation.

ASBOID.source

Defines the DomainID of the CA SOI model repository. This value is constant for the
SA Manager. Derive the value using an Enumerate operation.

To get a propagation policy, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

Propagation Policy Web Services

94 Web Services Reference Guide

Selector: ASBOID.id

Selector: ASBOID.source

Get a List of Propagation Policies

To retrieve a list of propagation policies for a service, the web services use a
combination of WS-Management Enumeration and Pull operations. You can filter the
returned list using the WS-Management Filter element to pass a valid XPath Expression
to limit the number and type of propagation policies returned.

Use the item_name selector to filter the collection by service. Format the selector as
follows:

SA_Service:servicename

servicename

Defines the name of the service.

To get a list of propagation policies, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

Selector: item_name

Create a Propagation Policy

Use the Create operation to create a propagation policy between CIs in CA SOI that
belong to an existing service. Include the following information in the body of the
request:

■ CI ID for the service in which the propagation exists

■ CI ID for the source CI

■ CI ID for the target CI or CIs

■ Policy properties, such as impact and thresholds

Propagation Policy Web Services

Chapter 5: WS-MAN Web Services 95

The associated propagation type must be custom (referred to as DependsOn in the web
service request).

Note: For information about the required properties to include for a propagation policy,
see the USM 01-2009 schema. For more information about property names and
formatting, see Propagation Policy Web Services Examples (see page 97).

To create a propagation policy, use the following properties in the request:

Operation: Create

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

Selector: null

Update a Propagation Policy

Use the Put operation to update the writable attributes of a propagation policy. You can
update all writable attributes or only certain attributes that you specify in a Fragment
statement. To identify the unique propagation policy, pass the ASBOID.id and
ASBOID.source propagation policy values (see page 93) as selectors.

You can update the following propagation policy attributes:

■ item_description

■ sam_policy_type

■ sam_policy_threshold_1 (Rule 1 threshold)

■ sam_policy_threshold_2 (Rule 2 threshold)

■ sam_policy_threshold_3 (Rule 3 threshold)

■ sam_policy_threshold_4 (Rule 4 threshold)

■ sam_policy_action_1 (Rule 1 impact)

■ sam_policy_action_2 (Rule 2 impact)

■ sam_policy_action_3 (Rule 3 impact)

■ sam_policy_action_4 (Rule 4 impact)

■ sam_policy_bnode_id (CIs that the policy applies to)

Propagation Policy Web Services

96 Web Services Reference Guide

The valid sam_policy_type values are as follows:

Any

Sets the impact of the parent item when any CIs associated with the policy have the
impact specified in the rule.

All

Sets the impact of the parent item when all CIs have the impact specified in the
rule.

Percentage

Sets the impact of the parent item based on a percentage of CIs that have the
impact specified in the rule.

Average

Sets the impact of the parent item based on the average impact values of CIs
associated with the policy.

To update a propagation policy, use the following properties in the request:

Operation: Put

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

Selector: ASBOID.id

Selector: ASBOID.source

Fragment: any attributes

Delete a Propagation Policy

Use the Delete operation to delete a propagation policy. Use the propagation policy
ASBOID.id and ASBOID.source values (see page 93) as selectors.

To delete a propagation policy, use the following properties in the request:

Operation: Delete

Endpoint: http://samanager:port/sam/webservice

Propagation Policy Web Services

Chapter 5: WS-MAN Web Services 97

Resource: http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

Selector: ASBOID.id

Selector: ASBOID.source

Propagation Policy Web Services Examples

The following examples show the SOAP messages of many of the available propagation
policy web services.

Example: Create a custom propagation policy

The following example SOAP message is a Create request to create a custom
propagation policy:

<env:Header>

<wsa:ReplyTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

uuid:e5d2bbd4-04dc-42d0-ab7a-2bd1692c87a0

</wsa:MessageID>

<wsa:To xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

</wsman:ResourceURI>

<wsman:OperationTimeout xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

PT30.000S

</wsman:OperationTimeout>

<wsa:Action xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create

</wsa:Action>

</env:Header>

<env:Body>

<ns11:RelationshipPolicy xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"

xmlns:ns11="http://ns.ca.com/2009/01/usm-data"

xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:ns3="http://schemas.xmlsoap.org/ws/2004/08/eventing"

Propagation Policy Web Services

98 Web Services Reference Guide

xmlns:ns4="http://schemas.xmlsoap.org/ws/2004/09/enumeration"

xmlns:ns5="http://schemas.xmlsoap.org/ws/2004/09/transfer"

xmlns:ns6="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"

xmlns:ns7="http://schemas.xmlsoap.org/ws/2004/09/mex"

xmlns:ns8="http://schemas.wiseman.dev.java.net/metadata/messagetypes"

xmlns:ns9="http://schemas.sam.ca.com/webservice/1/alarm.xsd">

 <sam_policy_type>Percentage</sam_policy_type>

 <sam_policy_service_id>22</sam_policy_service_id>

 <sam_policy_anode_id>22</sam_policy_anode_id>

 <sam_policy_action_1>2</sam_policy_action_1>

 <sam_policy_action_2>3</sam_policy_action_2>

 <sam_policy_action_3>0</sam_policy_action_3>

 <sam_policy_action_4>0</sam_policy_action_4>

 <sam_policy_threshold_1>15</sam_policy_threshold_1>

 <sam_policy_threshold_2>35</sam_policy_threshold_2>

 <sam_policy_threshold_3>01</sam_policy_threshold_3>

 <sam_policy_threshold_4>01</sam_policy_threshold_4>

 <sam_usm_reltype_id>105</sam_usm_reltype_id>

 <sam_policy_bnode_id>23</sam_policy_bnode_id>

 <ns11:item_name>SAM2818_2</ns11:item_name>

 <ns11:item_description>SAM2818_2 Policy</ns11:item_description>

</ns11:RelationshipPolicy>

</env:Body>

</env:Envelope>

The bold syntax shows the properties defined for the custom propagation policy. The
SOAP response to this request is as follows:

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

uuid:449e3af7-12e2-4f91-a3f4-360a4dffe484

</wsa:MessageID>

<wsa:RelatesTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

uuid:e5d2bbd4-04dc-42d0-ab7a-2bd1692c87a0

</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body>

Propagation Policy Web Services

Chapter 5: WS-MAN Web Services 99

<wxf:ResourceCreated xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

<wsa:Address env:mustUnderstand="true">

http://localhost:7090/sam/webservice/

</wsa:Address>

<wsa:ReferenceParameters>

<wsman:ResourceURI>

http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

</wsman:ResourceURI>

<wsman:SelectorSet>

 <wsman:Selector Name="ASBOID.id">8</wsman:Selector>

 <wsman:Selector Name="ASBOID.source">4503599627370496</wsman:Selector>

</wsman:SelectorSet>

</wsa:ReferenceParameters>

</wxf:ResourceCreated>

</env:Body>

</env:Envelope>

The bold syntax shows the returned selector properties for the created custom
propagation policy.

Example: Delete a propagation policy

The following example SOAP message is a Delete request to delete a propagation policy:

<env:Header>

<wsa:ReplyTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

uuid:202fc0d4-7bf6-4e28-87cf-1a11afef97db

</wsa:MessageID>

<wsa:To xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice</wsa:To>

<wsman:ResourceURI xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

http://ns.ca.com/2009/01/usm-data/RelationshipPolicy

</wsman:ResourceURI>

<wsman:OperationTimeout xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

PT30.000S

</wsman:OperationTimeout>

<wsman:SelectorSet xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

 <wsman:Selector Name="ASBOID.source">4503599627370496</wsman:Selector>

 <wsman:Selector Name="ASBOID.id">8</wsman:Selector>

</wsman:SelectorSet>

Escalation Policy Web Services

100 Web Services Reference Guide

<wsa:Action xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete

</wsa:Action>

</env:Header>

<env:Body/>

</env:Envelope>

The bold syntax shows the selectors that uniquely identify the propagation policy. The
SOAP response to this request is as follows:

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

uuid:baa81209-3bc6-4e67-aed4-2050a89b8279

</wsa:MessageID>

<wsa:RelatesTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

uuid:202fc0d4-7bf6-4e28-87cf-1a11afef97db</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body/>

</env:Envelope>

Escalation Policy Web Services

This section provides information about the operations performed in escalation policy
web services.

Note: WS-MAN web services should be considered obsolete. We recommend using the
Escalation Policy (see page 29) REST web services instead.

Escalation Policy Web Services

Chapter 5: WS-MAN Web Services 101

Escalation Policy Web Services Overview

Escalation policy web services use the USM 01-2009 schema to perform operations on
escalation policies, which define specific policy instructions for when to escalate alerts.
Escalation policies can be global or service-specific.

Use the following endpoint URI when invoking the escalation policy web services
resource:

http://ns.ca.com/2009/01/usm-data/EscalationPolicy

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm2.wsdl

Access the USM 01-2009 schema as follows:

http://samanager:port/sam/webservice/schemas/usm2.xsd

Note: For more information about escalation policy, see the Event and Alert
Management Best Practices Guide.

Get an Escalation Policy

Use the Get request to retrieve an escalation policy. The following selectors are required
to identify a unique instance of an escalation policy:

ASBOID.id

Uniquely identifies the escalation policy using the Policy ID value. Derive this value
using an Enumerate operation.

ASBOID.source

Defines the DomainID of the CA SOI model repository. This value is constant for the
SA Manager. Derive the value using an Enumerate operation.

To get an escalation policy, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationPolicy

Selector: ASBOID.id

Selector: ASBOID.source

Escalation Policy Web Services

102 Web Services Reference Guide

Get a List of Escalation Policies

To retrieve a list of escalation policies, the web services use a combination of
WS-Management Enumeration and Pull operations. You can filter the returned list using
the WS-Management Filter element to pass a valid XPath Expression to limit the number
and type of escalation policies returned.

To get a list of escalation policies, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationPolicy

Selector: null

Create an Escalation Policy

Use the Create operation to create an escalation policy. You define escalation policy
properties in the body of the request, such as the following:

■ Policy type (global or non-global)

■ The types of alerts to which the policy applies

Note: Global policy type specifies that the policy applies to all alerts. Non-global
type specifies that the policy applies to alerts of an assigned service or alert queue.
When you create a queue (see page 76), you can associate it with an existing
escalation policy by using the attribute <ssa_escalation_policy_id_1>.

■ Strings that indicate policy rules

Note: For information about the required properties to include for an escalation policy,
see the USM 01-2009 schema. For more information about property names and
formatting, see Escalation Policy Web Services Examples (see page 104).

To create an escalation policy, use the following properties in the request:

Operation: Create

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationPolicy

Selector: null

Escalation Policy Web Services

Chapter 5: WS-MAN Web Services 103

Update an Escalation Policy

Use the Put operation to update the writable attributes of an escalation policy. You can
update all writable attributes or only certain attributes that you specify in a Fragment
statement. To identify the unique escalation policy, pass the ASBOID.id and
ASBOID.source escalation policy values (see page 101) as selectors.

You can update the following escalation policy attributes:

■ sam_policy_enabled (Enable)

■ sam_is_global (Global or Non-global)

Note: You can create an escalation policy as a non-global policy and add the
attribute <sam_is_local_service_name> to identify the service.

■ sam_root_cause_alarm

■ sam_symptom_alarm

■ sam_service_alarm

■ sam_infrastructure_alarm

■ sam_maintenance_alarm

■ sam_service_maintenance_alarm

To update an escalation policy, use the following properties in the request:

Operation: Put

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationPolicy

Selector: ASBOID.id

Selector: ASBOID.source

Fragment: any property

Escalation Policy Web Services

104 Web Services Reference Guide

Delete an Escalation Policy

Use the Delete operation to delete an escalation policy. Use the escalation policy
ASBOID.id and ASBOID.source values (see page 101) as selectors.

To delete an escalation policy, use the following properties in the request::

Operation: Delete

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationPolicy

Selector: ASBOID.id

Selector: ASBOID.source

Escalation Policy Web Services Examples

The following examples show the SOAP messages of many of the available escalation
policy web services.

Example: Create a global escalation policy

The following example SOAP message is a Create request to create a global escalation
policy:

<env:Header>

<wsa:ReplyTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

uuid:51f6d9ca-767f-4be7-bd3e-d1f13cdd6759

</wsa:MessageID>

<wsa:To xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://ns.ca.com/2009/01/usm-data/EscalationPolicy

</wsman:ResourceURI>

<wsman:OperationTimeout xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

PT30.000S

</wsman:OperationTimeout>

Escalation Policy Web Services

Chapter 5: WS-MAN Web Services 105

<wsa:Action xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create

</wsa:Action>

</env:Header>

<env:Body>

<ns11:EscalationPolicy xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"

xmlns:ns11="http://ns.ca.com/2009/01/usm-data"

xmlns:ns12="http://ns.ca.com/2009/07/usm-core"

xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:ns3="http://schemas.xmlsoap.org/ws/2004/08/eventing"

xmlns:ns4="http://schemas.xmlsoap.org/ws/2004/09/enumeration"

xmlns:ns5="http://schemas.xmlsoap.org/ws/2004/09/transfer"

xmlns:ns6="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"

xmlns:ns7="http://schemas.xmlsoap.org/ws/2004/09/mex"

xmlns:ns8="http://schemas.wiseman.dev.java.net/metadata/messagetypes"

xmlns:ns9="http://schemas.sam.ca.com/webservice/1/alarm.xsd">

 <sam_is_global>true</sam_is_global>

 <sam_policy_enabled>true</sam_policy_enabled>

 <sam_root_cause_alarm>true</sam_root_cause_alarm>

 <sam_symptom_alarm>true</sam_symptom_alarm>

 <sam_service_alarm>true</sam_service_alarm>

 <sam_infrastructure_alarm>true</sam_infrastructure_alarm>

 <sam_maintenance_mode>true</sam_maintenance_mode>

 <sam_service_maintenance_mode>false</sam_service_maintenance_mode>

 <sam_schedule_type>0</sam_schedule_type>

 <sam_calendar_id>0</sam_calendar_id>

 <sam_xml_rule_string>&lt;esc-policy&gt;&lt;/esc-policy&gt

;

 </sam_xml_rule_string>

 <sam_drl_rule_string>package com.ca.sam.manager.rules

 import com.ca.sam.manager.rules.AlarmObject;

 rule "d68f435d-9a7e-4926-b383-d2e4676920ae"

 when

 $alarm : AlarmObject()</sam_drl_rule_string>

 <ns11:item_name>Escalation_Policy_eleven</ns11:item_name>

 <ns11:item_description>Policy created by the

 webservice...</ns11:item_description>

</ns11:EscalationPolicy>

</env:Body>

</env:Envelope>

The bold syntax defines the following properties for the escalation policy:

■ It is global and enabled

■ It includes root cause, symptom, service, and infrastructure alerts

■ It includes the rules defined in the sam_xml_rule_string and sam_drl_rule_string
properties

Escalation Policy Web Services

106 Web Services Reference Guide

The SOAP response to this request is as follows:

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

uuid:be232d8e-d755-4627-9365-643dbe47cf85

</wsa:MessageID>

<wsa:RelatesTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

uuid:51f6d9ca-767f-4be7-bd3e-d1f13cdd6759

</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body>

 <wxf:ResourceCreated xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

 <wsa:Address

 env:mustUnderstand="true">http://localhost:8888/sam/webservice/

 </wsa:Address>

 <wsa:ReferenceParameters>

 <wsman:ResourceURI>

 http://ns.ca.com/2009/01/usm-data/EscalationPolicy

 </wsman:ResourceURI>

 <wsman:SelectorSet>

 <wsman:Selector Name="ASBOID.id">32</wsman:Selector>

 <wsman:Selector

Name="ASBOID.source">4503599627370496</wsman:Selector>

 </wsman:SelectorSet>

 </wsa:ReferenceParameters>

 </wxf:ResourceCreated>

</env:Body>

</env:Envelope>

The bold syntax shows the returned selector properties for the created escalation
policy.

Example: Get an escalation policy

The following example SOAP message is a Get request to retrieve a specific escalation
policy:

<env:Header>

<wsa:To xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

Escalation Policy Web Services

Chapter 5: WS-MAN Web Services 107

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

http://ns.ca.com/2009/01/usm-data/EscalationPolicy

</wsman:ResourceURI>

<wsman:SelectorSet xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

 <wsman:Selector Name="ASBOID.source">0</wsman:Selector>

 <wsman:Selector Name="ASBOID.id">27</wsman:Selector>

</wsman:SelectorSet>

<wsa:Action xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

</wsa:Action>

<wsa:ReplyTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

uuid:78372ad8-46e7-4d27-b632-7e2de827f29a

</wsa:MessageID>

</env:Header>

<env:Body/>

</env:Envelope>

The request retrieves the escalation policy with the ASBOID values in the bold
SelectorSet syntax. The SOAP response to this request is as follows:

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

uuid:a608934d-17a5-4e7a-b5eb-d983bc6e1d8d

</wsa:MessageID>

<wsa:RelatesTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

uuid:78372ad8-46e7-4d27-b632-7e2de827f29a

</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

Escalation Policy Web Services

108 Web Services Reference Guide

</env:Header>

<env:Body>

 <ns13:EscalationPolicy xmlns:ns13="http://ns.ca.com/2009/01/usm-data" >

 <sam_unique_id>4edb0241-f08a-416d-a7ab-16e32c920651</sam_unique_id>

 <sam_compiled_time>2010-03-16 09:00:01.27</sam_compiled_time>

 <sam_policy_enabled>true</sam_policy_enabled>

 <sam_root_cause_alarm>false</sam_root_cause_alarm>

 <sam_symptom_alarm>false</sam_symptom_alarm>

 <sam_service_alarm>true</sam_service_alarm>

 <sam_infrastructure_alarm>true</sam_infrastructure_alarm>

 <sam_maintenance_mode>true</sam_maintenance_mode>

 <sam_is_global>true</sam_is_global>

 <sam_service_maintenance_mode>false</sam_service_maintenance_mode>

 <sam_schedule_type>2</sam_schedule_type>

 <sam_escalation_schedule_id>0x11000000000001</sam_escalation_schedule_i

d>

 <sam_escalation_schedule_desc>Daily</sam_escalation_schedule_desc>

 <sam_calendar_id>0</sam_calendar_id>

 <sam_xml_rule_string><![CDATA[<esc-policy><time-filter><

or><greater-than><attribute

id="0x20027"><value>30</value></attribute><

/greater-than></or></time-filter><attr-filter><and>

;<equals-ignore-case><attribute

id="0x11f57"><value>symbe01</value></attribute>

;</equals-ignore-case></and></attr-filter></esc-policy&g

t;]]>

 </sam_xml_rule_string>

 <sam_drl_rule_string>package com.ca.sam.manager.rules

import com.ca.sam.manager.rules.AlarmObject;

rule "4edb0241-f08a-416d-a7ab-16e32c920651"

 when

 $alarm : AlarmObject(</sam_drl_rule_string>

 <USMID>0:27</USMID>

 <ASBOID>

 <source>0</source>

 <id>27</id>

 </ASBOID>

 <ns13:item_name>global_3</ns13:item_name>

 <ns13:item_description/>

 <ns13:item_creation_date>2010-03-09T14:28:45.693+11:00

 </ns13:item_creation_date>

 <ns13:item_creation_user>Web Service</ns13:item_creation_user>

</ns13:EscalationPolicy>

</env:Body>

</env:Envelope>

The bold syntax shows the details of the returned escalation policy.

Escalation Action Web Services

Chapter 5: WS-MAN Web Services 109

Escalation Action Web Services

This section provides information about the operations performed in escalation action
web services.

Note: WS-MAN web services should be considered obsolete. We recommend using the
Escalation Policy Action (see page 28) REST web services instead.

Escalation Action Web Services Overview

Escalation action web services use the USM 01-2009 schema to perform operations on
escalation actions, which define specific actions to perform when associated escalation
policy criteria are met. Examples of available actions include the following:

■ Send an email

■ Create a help desk ticket

■ Run a command

■ Create a help desk announcement

■ Run the CA Process Automation process

■ Clear an alert

Use the following endpoint URI when invoking the escalation action web services
resource:

http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

The following WSDL file outlines the available operations:

http://samanager:port/sam/webservice/wsdls/usm2.wsdl

Access the USM 01-2009 schema as follows:

http://samanager:port/sam/webservice/schemas/usm2.xsd

Note: For more information about escalation actions, see the Event and Alert
Management Best Practices Guide.

Escalation Action Web Services

110 Web Services Reference Guide

Get an Escalation Action

Use the Get request to retrieve an escalation action. The following selectors are
required to identify a unique instance of an escalation action:

ASBOID.id

Uniquely identifies the escalation action using the Action ID value. Derive this value
using an Enumerate operation.

ASBOID.source

Defines the DomainID of the CA SOI model repository. This value is constant for the
SA Manager. Derive the value using an Enumerate operation.

To get an escalation action, use the following properties in the request:

Operation: Get

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

Selector: ASBOID.id

Selector: ASBOID.source

Get a List of Escalation Actions

To retrieve a list of escalation actions, the web services use a combination of
WS-Management Enumeration and Pull operations. You can filter the returned list using
the WS-Management Filter element to pass a valid XPath Expression to limit the number
and type of escalation actions returned.

To get a list of escalation actions, use the following properties in the request:

Operation: Enumerate & Pull

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

Selector: null

Escalation Action Web Services

Chapter 5: WS-MAN Web Services 111

You can also retrieve a list of escalation actions based on the action name and action
type. You can achieve this by using the WS-Management Filter parameter in the
Enumerate operation as explained in the following two examples:

■ The first example SOAP message snippet explains how you can get a list of
escalation types based on the action type. This example limits the list to those
action types that are equal to 1, which represents Tickets:

<env:Body xmlns:EscalationpolicyAction="http://ns.ca.com/2009/01/usm-data">

<wsen:Enumerate xmlns:ns11="http://ns.ca.com/2009/01/usm-data" >

<wsman:Filter

Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">/EscalationpolicyActio

n:EscalationpolicyAction[sam_action_type='1']</wsman:Filter>

<wsman:EnumerationMode>EnumerateObjectAndEPR</wsman:EnumerationMode>

</wsen:Enumerate>

</env:Body>

■ The second example SOAP message snippet explains how you can get a list of
escalation types based on the action name. This example limits the list to those
escalation actions that have a name starting with Tick:

<env:Body xmlns:EscalationpolicyAction="http://ns.ca.com/2009/01/usm-data">

<wsen:Enumerate xmlns:ns11="http://ns.ca.com/2009/01/usm-data" >

<wsman:Filter

Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">/EscalationpolicyActio

n:EscalationpolicyAction[starts-with(EscalationpolicyAction:item_name,'Tick')

]</wsman:Filter>

<wsman:EnumerationMode>EnumerateObjectAndEPR</wsman:EnumerationMode>

</wsen:Enumerate>

</env:Body>

Create an Escalation Action

Use the Create request to create an escalation action. You define escalation action
properties in the body of the request, such as the following:

■ Action type (0-5)

■ Action data, such as an email address

Note: For more information about property names and formatting, see Escalation
Action Web Services Examples (see page 113).

The valid action type properties are as follows:

0

Corresponds to the Send Email escalation action type.

1

Corresponds to the Create Ticket escalation action type.

Escalation Action Web Services

112 Web Services Reference Guide

2

Corresponds to the Execute Command escalation action type.

3

Corresponds to the Create Announcement escalation action type.

4

Corresponds to the Execute Automated Process escalation action type.

5

Corresponds to the Clear Alert escalation action type.

To create an escalation action, use the following properties in the request:

Operation: Create

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

Selector: null

Delete an Escalation Action

Use the Delete operation to delete an escalation action. Use the escalation action
ASBOID.id and ASBOID.source values (see page 110) as selectors.

To delete an escalation action, use the following properties in the request:

Operation: Delete

Endpoint: http://samanager:port/sam/webservice

Resource: http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

Selector: ASBOID.id

Selector: ASBOID.source

Escalation Action Web Services

Chapter 5: WS-MAN Web Services 113

Escalation Action Web Services Examples

The following examples show the SOAP messages of many of the available escalation
action web services.

Example: Create an email escalation action

The following example SOAP message is a Create request to create an escalation action
that sends an email when the associated escalation policy criteria are met:

<env:Header>

<wsa:ReplyTo xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:MessageID xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core" env:mustUnderstand="true">

uuid:4a909925-71c2-4317-82e4-b27c0b4f89d0

</wsa:MessageID>

<wsa:To xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core" env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

</wsman:ResourceURI>

<wsman:OperationTimeout

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

PT30.000S

</wsman:OperationTimeout>

<wsa:Action xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core" env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create

Escalation Action Web Services

114 Web Services Reference Guide

</wsa:Action>

</env:Header>

<env:Body>

<ns11:EscalationpolicyAction

xmlns:ns10="http://www.w3.org/2003/05/soap-envelope"

xmlns:ns11="http://ns.ca.com/2009/01/usm-data"

xmlns:ns12="http://ns.ca.com/2009/07/usm-core"

xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:ns3="http://schemas.xmlsoap.org/ws/2004/08/eventing"

xmlns:ns4="http://schemas.xmlsoap.org/ws/2004/09/enumeration"

xmlns:ns5="http://schemas.xmlsoap.org/ws/2004/09/transfer"

xmlns:ns6="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd"

xmlns:ns7="http://schemas.xmlsoap.org/ws/2004/09/mex"

xmlns:ns8="http://schemas.wiseman.dev.java.net/metadata/messagetypes"

xmlns:ns9="http://schemas.sam.ca.com/webservice/1/alarm.xsd">

 <sam_action_type>0</sam_action_type>

 <sam_action_data>emailaddress@ca.com</sam_action_data>

 <sam_action_subject>new web service subject</sam_action_subject>

 <sam_action_msg>the message of the email</sam_action_msg>

 <ns11:item_name>MyEmailAction</ns11:item_name>

 <ns11:item_description>Escalation Action created via WS

 </ns11:item_description>

</ns11:EscalationpolicyAction>

</env:Body>

</env:Envelope>

The bold syntax defines the following properties for the escalation action:

■ A type of 0 indicates an email escalation action

■ The action sends an email to the address emailaddress@ca.com with a subject of
'new web service subject'.

The SOAP response to this request is as follows:

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:ec2a8c6a-4cd1-4b89-8380-05ffc9dbd488

</wsa:MessageID>

Escalation Action Web Services

Chapter 5: WS-MAN Web Services 115

<wsa:RelatesTo xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:4a909925-71c2-4317-82e4-b27c0b4f89d0

</wsa:RelatesTo>

<wsa:To env:mustUnderstand="true" x

mlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body>

<wxf:ResourceCreated

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

<wsa:Address

env:mustUnderstand="true">http://localhost:8888/sam/webservice/</wsa:Address>

<wsa:ReferenceParameters>

<wsman:ResourceURI>

http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

</wsman:ResourceURI>

 <wsman:SelectorSet>

 <wsman:Selector Name="ASBOID.id">18</wsman:Selector>

 <wsman:Selector Name="ASBOID.source">4503599627370496</wsman:Selector>

 </wsman:SelectorSet>

</wsa:ReferenceParameters>

</wxf:ResourceCreated>

</env:Body>

</env:Envelope>

The bold syntax shows the returned selector properties for the created escalation
action.

Example: Delete an escalation action

The following example SOAP message is a Delete request to delete an escalation action:

<env:Header>

<wsa:ReplyTo xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

<wsa:Address env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

Escalation Action Web Services

116 Web Services Reference Guide

<wsa:MessageID xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

uuid:4f440ab3-9c4b-46db-824a-426faf11e9bd

</wsa:MessageID>

<wsa:To xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://localhost:7090/sam/webservice

</wsa:To>

<wsman:ResourceURI xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

http://ns.ca.com/2009/01/usm-data/EscalationpolicyAction

</wsman:ResourceURI>

<wsman:OperationTimeout xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

PT30.000S

</wsman:OperationTimeout>

<wsman:SelectorSet xmlns:ns13="http://ns.ca.com/2009/01/usm-data">

 <wsman:Selector Name="ASBOID.id">18</wsman:Selector>

 <wsman:Selector Name="ASBOID.source">0</wsman:Selector>

</wsman:SelectorSet>

<wsa:Action xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

env:mustUnderstand="true">

http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete

</wsa:Action>

</env:Header>

<env:Body/>

</env:Envelope>

The bold syntax shows the selectors that uniquely identify the escalation action. The
SOAP response to this request is as follows:

<env:Header>

<wsa:Action env:mustUnderstand="true"

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse

</wsa:Action>

<wsa:MessageID env:mustUnderstand="true"

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:5179bae4-8d0e-42a5-a944-b7f6c7c29eec

</wsa:MessageID>

<wsa:RelatesTo xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

uuid:4f440ab3-9c4b-46db-824a-426faf11e9bd

</wsa:RelatesTo>

Escalation Action Web Services

Chapter 5: WS-MAN Web Services 117

<wsa:To env:mustUnderstand="true"

xmlns:ns11="http://schemas.sam.ca.com/webservice/1/alarm.xsd"

xmlns:ns13="http://ns.ca.com/2009/01/usm-data"

xmlns:ns14="http://ns.ca.com/2009/07/usm-core">

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:To>

</env:Header>

<env:Body/>

</env:Envelope>

	CA Service Operations Insight Web Services Reference Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: About This Guide
	Intended Audience
	Related Publications
	Local Documentation and Online Bookshelf

	2: CA SOI REST Web Services
	REST Web Services Overview
	Base CA SOI REST Web Services URL
	Supported REST HTTP Methods
	Endpoints
	Web Application Description Language URL
	Common Requirements

	REST Web Services Authentication
	Configure Authentication-Related Security Filter Parameters

	REST Web Services Ordering Metric
	Service Ordering
	Group Ordering
	Customer Ordering
	CI Ordering
	Alert Queue Ordering
	Alert Ordering
	User Ordering
	Escalation Policy Ordering
	Escalation Policy Action Ordering
	Configuration Ordering
	Configuration Node Ordering

	Available CA SOI REST Web Services
	Alert Queue REST Web Services
	Alert REST Web Services
	CI REST Web Services
	Configuration REST Web Services
	Customer REST Web Services
	Email REST Web Services
	Escalation Policy Action REST Web Services
	Escalation Policy REST Web Services
	Group REST Web Services
	Meta REST Web Services
	Schedule REST Web Services
	Service REST Web Services
	User REST Web Services

	3: REST Web Services Example
	4: Calling CA SOI REST Web Services from Perl Scripts
	Prerequisites
	Set Up Users in a CA SOI Environment
	Configure the Perl Script

	Code Overview
	HTTP Access
	HTTP GET Call
	SSL Communication and Basic Authentication Method
	HTTP POST with LWP::Request Creation
	Parsing Response

	5: WS-MAN Web Services
	Introduction to WS-MAN Web Services
	Web Services Architecture
	Resources and Operations
	USM Schema Based Resources
	USM 01-2009 Based Resources
	WS-Transfer Operations
	Fragment-Level WS-Transfer Operations

	WS-Enumeration Operations
	WS-Enumeration Filtering

	WS-Eventing Operations

	Available Web Services
	Available Web Clients
	SoapUI
	Java Web Client using Axis2

	USM Entity Web Services
	Entity Web Services Overview
	Get an Entity
	Get a List of Entities
	Create an Entity
	Update an Entity
	Delete an Entity
	Entity Web Services Examples
	Subscribe to Notifications for Entity Changes

	USM Binary Relationship Web Services
	BinaryRelationship Web Services Overview
	Get a Relationship
	Get a List of Relationships
	Create a Relationship
	Update a Relationship
	Delete a Relationship
	Relationship Web Services Examples
	Subscribe to Notifications for Relationship Changes

	Notification Web Services
	Notification Web Services Overview
	How to Subscribe to Notifications for Entity, Relationship, and Alert Changes
	Create a Subscription
	Delete a Subscription
	Pull a Subscription Notification
	Notification Web Services Examples

	Queue Web Services
	Queue Web Services Overview
	Get a Queue
	Get a List of Queues
	Create a Queue
	Update a Queue
	Delete a Queue
	Queue Web Services Examples

	Customer Web Services
	Customer Web Services Overview
	Get a Customer
	Get a List of Customers
	Customer Web Services Examples

	Alert Web Services
	Alert Web Services Overview
	Get an Alert
	Get a List of Alerts
	Create an Alert
	Update an Alert
	Clear an Alert
	Alert Web Services Examples
	Subscribe to Notifications for Alert Changes

	Propagation Policy Web Services
	Propagation Policy Web Services Overview
	Get a Propagation Policy
	Get a List of Propagation Policies
	Create a Propagation Policy
	Update a Propagation Policy
	Delete a Propagation Policy
	Propagation Policy Web Services Examples

	Escalation Policy Web Services
	Escalation Policy Web Services Overview
	Get an Escalation Policy
	Get a List of Escalation Policies
	Create an Escalation Policy
	Update an Escalation Policy
	Delete an Escalation Policy
	Escalation Policy Web Services Examples

	Escalation Action Web Services
	Escalation Action Web Services Overview
	Get an Escalation Action
	Get a List of Escalation Actions
	Create an Escalation Action
	Delete an Escalation Action
	Escalation Action Web Services Examples

