CA Mainframe Network
Manadement

Network Control Lanquage Programming
Guide
Release 12.1

eeeeeeeeeeee

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2010 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents

Chapter 1: Introduction 23
Y o Yo TV o d o T U Lo [T PSPPSRI 23
What You Need to KNOW BefOre USING NCLccoiiiiiieiiiicciieeecteeeeites et e e et e e s tae s e stveeeensta e e sanaaessasaeeeensaeesnnnneas 23
21 1 E=To l D Jo Tol U1y o 1= o1 =Y d [o ISP UPPRTPPRRIN 24
Chapter 2: About Network Control Landuagde 25
What Is Network Control LANGUAEE (NCL)?.....coouiiriieieeieeiestesiee sttt ettt st e st e st e beetesatesatesaeesaeeeeenteeneesasesseesseensenn 25
CrEate NCL PrOCEUUIESveiiieiiieeciieeeesiteeese et eertte e e sttt e e s sate e e ssaaaeaesbaeeeestaeesassaeessasseeeessteeesansaeeesassaeeennsaeesanssaeesnnsnens 26
(01 Y=Yl [N[O Y] 7 D USRS 26
TESE NCL PrOCEAUIES .ceiiiiiieeiiee ettt ettt e ettt sttt e e ettt e s ettt e e sabt e e e s a bt e e s aasbeeesaabteesaabeeeeaasbeeesasseeeesabeeesanseeesanneeas 26
DEDUEZ aN NCL PrOCEAUIEeouitiieiiieiitteei sttt ettt et s bttt e st e et e sttt e bt e sttt s bt e s abe e e seesabeeebeesabeeesneeebeeenneesnnees 27
INVOKE @Nd CANCEI NCL PrOCEAUIESciiieeiiie ittt eciiteeceitee st e e ettt e s s eae e e saae e e e s teeeesaseeeesasseeeesstaeesesseeesnsseeesnnsenesannes 27
INVOKE NCL PrOCEAUIESvviiiieieee et eetiee ettt e st e e ettt e e seatte e e sbaeeeeataeesessaeeesnsaeeeensseeesanseeesssseeeennsseesansseeesnnsees 28
CaNCEI NCL PrOCEAUIES ...vviitieiiieitee ettt estteeteeesttesbee e steesabe e sbeesabeesabaesabaesbaesabeesbaesabeesnbeesabaesnseesabaesseesnbeesnseennss 28
A OO D TU T oY= == T ol U | 1 o o I TR 28
CONETIOI RUNGWAY LOOPS. ¢ utieuiieitieeieeette ettt esite ettt s tte st e s bt e sttt s bt e sabe e s beesabeeabeesabeeebeesabeeeaseesabeesnseesabeesneesabeeenneenase 29
LISt PrOCEAUIE NGIMES ...eiiieiiieiiiieeeeitiee e ettt e e sttt e e ettt e e esate e e saaeeeesstaeesassaeessaseaeeastaeesanseeessasseeeenssaeesansseessnsseaesnnssneennne 29
List the CONTENTS OF NCL PrOCEUUIEScccviiiiieiiieiieesieeeteesteeeteesbe e steesbeesbeesbeeabaesbeesnsaesnbeeessaeesseessseensseessseensens 30
Chapter 3: NCL Concepts 31
WHhEre DOES NCL EXECULE? ..c.neeeieieiiiee ettt ettt ettt ettt e ettt e s ettt e s bt e e s a bt e e s eabteeesabbeeeannbeeesaasbeessabteeeenbaeesnaseeas 31
WHhat 1S 2N NCL PrOCEAUIE?eeieieiitee ettt ettt ettt ettt ettt e e ettt e e s ettt e s bt e e e s abe e e s eabteeesabbeeeennbeeesausbeeesabbeeeenbaeesnaseeas 31
WHat 1S @0 NCL PrOCESS?veiiiiiieiiiitee ettt e sitte e e sttt e s ettt e sttt e e s abe e e s eabteeesabbeeesabeeesaabteeesabbeeeanbeeesausbeessabbeeeenbaeesanneeas 32
N =E] Ao V= PRSP PPt 32
NCL ProCeSS IAENTIFIEI ..eeiieeeiieeeeee ettt sttt ettt e b e s bt e be e st e e bt e s bt e e bee s bt e e sateebeeesnneenes 32
NCL ProCeSSING REGION ..uuuiiiiiiiiieicieieseses s s e s s e e s s s s s e s e s s s s e s e s e s s e e s s e s nsnan s sasn s s ssnsssssssssssnsnsssnsesssnsenes 33
NCL Processing ENVIFONIMENTcciiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeee e e eeeeeeeeeeeeeeeeeeeeeseeeeeeteteteseeeteseseeesesetesereeesereserereseeererenens 33
EXECULE NCL ProCESSES SEIIAIIY ..vviiiieiiieieiiii sttt et tee st e e et e e e eee e e sttt e e e s st e e eeaeeeeesanaeeeesstaeesansseeesnseeeansseeesnnnns 34
Execute NCL ProcCesSeSs CONCUITENTIY ...viicueiieiiieeeeciieecetee e ste e e e tteeseete e e s aaeeeesstaeeeenseaeessnseeeasssseesansseeessnseeessnsseeennne 34
Dependent Processing ENVIFONMENTcccuuiiiiiieeccieecetes e cee et e e e ere e st e e e s e e esseeeesnseeeesstaeesassseessnseeeesnsseennnnn 35
T L @110 IV T o < F U UPPR 35
EXPIICIt NCL ProCeSS EXECULIONuviiiiiiii ittt ettt ettt e e e e ettt e e e e e e e saabb e e e e e e e e s asbaaaeeaaeeseassssensaaeesennsnsens 36
[T g0 Tt o L O I (Yol U o o 36
SYSLEM LEVEI PIOCEAUIESeevieeeiiee et eetee ettt e e ettt e et e e sttt e e e st e e e s s asaeeesasaeeeesteeesanseeeesnssaeeessenesnnsneeesnssneanns 37
IMSGPROC PrOCEAUIE . .teiiieeiiieeeiee sttt sttt sttt st e st e st et e bt e sabe e e bt e sabe e e bt e sabeeebte s beeebaesabeeenstesbeeennsesnnes 37
Issue COMMANAS frOM @N NCL PrOCESS ...vviiiieeiiiieiieeiiieeiteesteeesteeste s eteeeteeeteesabeeessaeebeeessaeenbeeesseeeseeessseensseessseensees 37

Contents 5

TaY e TR @] aa T gt 1o Lo H o C=Tol UL 1o o AP 38

Dependent COMMANG EXECULION ...c...iiiiiiiiiieiieiiee ettt s bttt e s bt e sbee s be e e saneesbeeesaneennees 38
Review Of MeSSage DEIIVEIY RUIESccc..viiiiiiee e ceie ettt tee sttt e ettt e e e ae e e st e e et r e e s eastaeesnbaaeesntbeeeenssaeesnsneas 39
NCL Processes and the Remote Operator Facility (ROF)ccueeiiiiiieieiee et svee et e e ere e e snve e e e s treeeenens 39
MeSSAZE FIOW 0N @ ROF SESSIONuiiiieiiiiiiciiee e siiee e ettt e eetre e e s ttee e e tte e e eeaaeeesabeeeastaeesasssaeessseeeesnsseeeassseennnsnes 40
COMMUNICATION BETWEEN PrOCESSES ...ieiiietieeeee e ettt e ettt e e e e ettt e e e e e e s e b ettt e e e e e seaasbbeeeeeesesanbabaeeeeeesanbaneeaeens 41
1\ @ U] S o T o' 4 =1 o o HSU PSPPSR 41
DePENdENt REGUEST QUEBUEeiiieeiiieetee sttt eiee st e steesbeesbeesabeeebeesbeesbaesabeesbaesabeesastesabeeessteesteessseensseesaseenses 42
Request and RESPONSE DiSCIPIINESccccuiiiiiiiiieeiiee ettt e s e e et e e e tae e e st e e e e s taeessasaaeesnbeeeesntbeeeessaeesnnseeas 43
INTQUE ACrOSS ROF SESSIONSeeeiiiiiiieieiiiitee et ettt e e ettt et e e e e et ettt e e e e e s anbabteeeeae s ababeeaeeeesaansnrbaaeeeesesnnnrees 43
Scope Of the NCL ProCeSSiNG REGION ...cc.uiiiiiiiiieiiieeeite sttt ettt ettt et sat e st e st e e st e st e esabeesabeesabeesabeesabeesaneess 44
Find Out Which NCL Processes Are EXECULINGccevuieriiiiiiiieniieeite ettt et ettt s e e saee s b e e saneenees 44
Chapter 4: NCL Statement Types and Syntax 45
N (O]) = (=T 0 =T 01 T TP PP T TP P PP PP 45
FOrMAt Of NCL StatEMENTS ...viiiiieiiieiieertee sttt sttt st sbee st e e e bt e ebe e s beesabeesbaesabeesbaeenbeeebaeenbeeensaesnbasensseenseas 45
Statement CoONtINUATIONS ...ttt et e e e st e e e e s e s b e e e e e e e s e s nsrerereeesesannnnneee 45
AV L a1 o] LI o 1 a1V 4 o T o PR 46
NCL CONVENTIONS QN SYNTAX.00uttiritiieitieiteieitee st e et e st e et esbe e e bt e sbeeebtesbeeebeesabeeeseesbeeeaseeeabeeeseeeabeeesntesabeeenneesnees 47
COMMENTS IN NCL PrOCEAUIES ... ueitie ettt ettt ettt ettt e e st e e e sa bt e s eabte e e sabbeeeesabeeeseasbeeesnstaesanbeeesannbaeesnneeas 48
CommeENtS ON NCL STAtEMENTS .ceeeieeiee ettt e e e s et e e e s e bt e e e e e se b e e e e e e sesannnnnneeeens 48
Displayable Stand-alone COMMENT LINES........ueiiiuiieeeiiie e ceitee et eete e ee e e e st e e e sata e e eebtee e sabeeeesataeeeensraeesnnsenas 49
Highlighted Key Words in COMMENT LINESciiiiiieieiiiieceiies sttt e svtee e et ee e ssaae e s sneeeeesntaeeeensseeesnnnneas 49
Non-displayable Stand-alone COMMENT LINESeeiieiiiiiieieecciiee et et see e see e e sae e s s na e e e sntaeeeenreeesneneas 50
U oY o1 g =1 [g W@ o =T =Tt =1 oS USURROt 50
L] STAtEMEBNTS...eeiiitiiie ettt ettt ettt e st e e e bt e e s e abbe e e s bt e e e e abeeesaabeaeesbbeeeeaa bt eesebbeeesaabteeeabbaeeenee 51
Valid LADIS: ...ttt ettt ettt e et ee e e bttt e s bt e e e s b bt e e e a bt e e s eabbe e e sbbeeeeaabaeesenbeeesnreeeens 51
TV e Y o 1] £ PO TR P TP PP TP 51
(1] o T YT o | o] [T PO TR P ST PSP OTPPTOPPO 52
(8L Lo 1=y e =Te B =] o 1T SRR 52
D TU o [Tor= T 4=l IF: | o 1= PSRRIt 53
MINTMIZE LADBIS. ettt ettt et sttt e s bt et e s bt e bt e sttt e bt e e beeebee s bt e e abeenbbeesaneenes 53
VID SEATEMEBNTS. ..ceieei ettt ettt s e e st e s h bt e s a bt e s bt e e s bt e e sa b e e e ab e e sa b e e e ab e e sab e e e ab e e sabeenabeesabeeeaneesbeenanee s 54
BUIIE-IN FUNCLION STATOMEBNTS ... eiiiitiiiiie ettt et sttt s bt e b e sttt s bt e s bt e e bt e sabe e e beesabeeesseesbeeennneennees 55
FAN od g T g LT LA - =T 4 =T RN 56
F Y44 o [0 1= o PO PSP PRRUPPPOTPRPON 56
COMMEANT SEALEMENES...eiitieiiii ettt ettt e ste e s b e e s bt e s be e s bt e s beesbeesabeesaseesabeesbeesabeesneesabaessaenane 56
Chapter 5: Variables, Substitution, and Assignment 57
WAL IS @ VAIADIE? ..ttt st s e st esab e sa bt e s at e e sa b e e sabeesabeessbeesabeesabeesabeesaneesasaesaneess 57
[LA o] E=I Y o 1T PP PSSP OO P PP PPO VPP 57

6 Network Control Language Programming Guide

N S TtV T F=] o [T UPPR 58

U TaT] o] L= PSR 58
GlODAI VATTADIES ..eveieeiectee ettt et st e b e s e e be e s be e e bee s ba e e nbeeebaeenaeenate 58
e 10 =T =T PSR PPPPPRRTROPRt 60
D] O D=3 o= INY U] o] o o o PP P PP 60
NV La 1 o LU o1 a1 (U4 o T o OSSP PR 61
Undefined Variable SUDSTITULIONoiiiiiiiee e et stee e s st e e e ba e e snaaneas 62
Complex Variable SUDSTITULIONoiiie et e e e e st e e e st e e e easte e e saseeeesstaeeeenssaeesrnnneas 63
F N [F=da BT U] o1 (UL d oY B - PSP 64
LOW I CASE DAt ... e e s s e s e e e e e s e e e e e e e e e e e eeeeans 65
DEDUGEING PrOCEAUIES ..ottt ettt ettt s b et e bt e s bt e bt e s b et e bt e s bt e e beeeabeeebeesabeeesnbesaneeesaneenees 65
Set Variables 10 @ PArtiCUIAr VAIUEo.uiii ittt et e e s e e e st e e s ensae e e seaaeeeesnbaeesenseeesnnneeas 66
Explicit Assignment: AsSigNMENT SEATEMENT.......ccuiii it e et e e et e e e st e e e e sata e e eensraeesaraeas 66
Complex Variables in AsSigNmMENt STatEMENTS......ccccuiii ettt e et e e e re e e e st re e e earee e srbeeeesabeeesennes 67
Implicit AssigNMeNnt: USING &ASSIGNcooiiiiiiiiiiieiee ettt ettt ettt e s b e e saee s bt e e bt e s be e e saseesbeeesaneennees 68
Implicit Assignment: USiNg Other NCL VEIDSc...oiiiiiiiiiieieiee ettt ettt sttt st be e saee e 68
NCL Table ManipUIGTiON ...co.eeieieeiieeee ettt et sttt b et bt e s bt e bt e s bt e e beeeabeeebeesabeeesnbesbeeesnneenees 69
VL0 = o] (=T =Tt L1 Y 2RSSR 70
UZFDBK VAlUES .. eveieiieetee ettt ettt ettt ettt et sb e e sbeesabe e e beeeabe e sabeeeabeesabeesabeeensaesabeesnbeesabaeenseesabaeeseesnbaeensnesnss 71
&VARTABLE Manipulation FaCiliti@S.......ccuueiiiiiiiieeiii ettt sttt et sb e e saee s e saee e 72
Shared Table UPdatingooceeiieiiieeie ettt ettt be e sab e s bt e sabe e e bt e s beeeneesabeeenneenane 73
A =V I <ol VYT UL PR 76
&VARTABLE SyNtaX DeSCriPliONS..ccciciiiiieiee ittt e e ettt e e e e e st e e e e e e e s eaata e e e e e e sesanntaeeeeessesnnnsasseeessessnsraneesens 77
MIFTOFEA Vartables.coieiiei ettt e e ettt e s et e e s bt e e e e aa bt e e s eaabeeesabbeeesaabeeesesbaeesaneeas 78
Differences Between Mirrored and Standard Vartables..........c.cooeiriiiiiniiiiie e 78
Update MiIrrored Vartables...... ..ottt e et e e e st e e e s atae e s enaeeeesnsteeeennsaeesnnnaeas 79
AOM Attributes of Mirrored Vartablesc.eoiiiiiieiieeiieesiee ettt e sae e sateesaeesabeesabeesnseessreess 79
Chapter 6: Arithmetic in NCL 83
ADOUL AFENMETIC TN NCL. .ttt ettt e ettt e e e b bt e e s bt e e e s abe e e s e abeeeesabbeeeannbeeesausbeessabbeeeenbaeesnaneeas 83
FaL e =T =L o AV g1 o] o V=1 4 Lo U PPRRRNS 84
Rl NUMDBEE AFERMETIC ..ottt et ettt bt e s b et e bt e sttt e bee ettt e satesbeeesaneennees 84
QICONTROL REALeiiitteeiteeette ettt et e ettt et s bttt e sttt e sbeesabe e e bt e sabe e s st e sabeesaaeesabeeeabeesabeeeabeesabeeenseesabaeenseeenbaeeseenase 85
Comparisons With REAI NUMDEISiiiiiiie ettt e st s e st e e saae e e ssae e e e sntaeeeesneeesnseeeesnsseasnnnes 85
F N1 oY = ol o o T (o o U PURRNt 85
F N 1 oY=y o @ o T=T o= o] U PURRINt 86
DiVIide (REAL AFTENIMETIC) wuveiiiiiiciiiiiiee ettt ettt eee et e e e e e st b e e e e e e e e s aabaaeeeeeeesesbsaaeeeeeesessnreeeseeesenssnrees 87
Divide Quotient (INTEGER AFTNMETIC) ...cccuviiiiiiiieiireieie ettt ee et e e e e e seabaaeeeeeeesesbnreeeeeeesennnnnees 87
Divide Remainder (INTEGER AtMETIC) ..uuvveiiiiiieireiii ettt eeeerre e e e e s tbrae e e e e e e seabnaeeeeeeesennnnnees 87
DAV Te [l oSV AT o TR PUUUOt 87
o= To [T g ol o] 0T 01T = o] U PUUROt 88

Contents 7

Parentheses to CONTrol EVAlUGTION OFUEIoevviiiiiiiiiiiiiieieeeeeeeeeeeeeeeee ettt ettt e et e seeeeereseeeeereeees 89

NCL SUDSEItULION @Nd EXPIrESSIONS ...cccuviiiiiiiiieitie et stee ettt et sb e et e st e bt esab et e st e s bt e e sbeesabeeesaeeeabeeesabesaneeesanesnees 90
Y7o g 1T N 0T Y T =T SRS 90
FOPMAT INUMIDEES .ottt ettt e s b e st e st e s be e sab e e st e e sabeeeabeesabeesbbeeabeeebaesabeeesaseenbeeenaseeneas 91
Chapter 7: Designing Interactive Panels (Panel Services) 93
FiY o T T A o T g 1T BT oV ol PSPPSR 93
LOGICAl SCIEEN IMIAN@ZET ..eeeeitieeee ettt ettt ettt ettt e bt e s bt e bt e s bt e e bt e s b et e bt e e beeebee s beeenneesbeeennneenees 94
How You Create or Change Panels..........coiiiiiiiiiiiieie ettt sttt et st esbe e e saneenees 94
INVOKE FUII-SCIrEEN PANEIS...ciiieiiieeiiee ettt ettt et ettt e e st e s st e e st e e e e st aeessasbeessabeeeesabaeesnnsseeesnsaeas 94
Fixed and Variable Data in PAnEIS.......cccueeiciiiiiieeiiiiiiiee sttt sttt ste e st saae st e s sbaesbaeesabeensaeesaseenseas 95
Y T= BT = o TSR UURRRN 96
DESIZN GUILEIINES ...neeeiitieeieeeitee ettt ettt et e sttt et e sttt e bt e sab et e bt e s abe e e bt e sabeeeseesabeeebeesabeeennneeneeesaneenees 96
[T [o O - = or T P TS 97
FIEI TYPES enneeeitieete ettt ettt sttt sttt et e st e s bt e sttt e bt e sab e e e bt e sabe e e bt e ea b et e bt e eabe e e bbe e beeebee e bt e e saneenneeesnreenes 97
SAMPIE PANEIS ...t e st e e ettt e e e eta e e e s bae e e e bbeeeaaataee e s bbee e e staeeeaaabeee e tbaeeeantaeeearaaeestreeaans 99
OVerride the INPUL ATEIIDULEeeeeceee et e et e e e st e e e e ate e e e abaaeesabbeaesastaeeeenseaeessseeaans 100
Control How Long @ Panel is DISPIayedc...eiiuieiiiiiiieniieeiee sttt sttt sttt sttt st e s e sbeeeanee s 100
ANAIYZE PANEI TNPUL...ciiiiieie ettt ettt et e h e e st e e bt e e s ht e e bt e e sabeeabe e e sabe e bt e e saseeabeeesaseennbeesaneennes 101
MONILOr PAN@l REEUIN COUBS .euuviiiiiiiiiiiiiesiee sttt sttt e et st este e st e st e s beesbeesabeesabeesabaesabeesabaesnseesabeesnseesnbassnseesnns 103
[Yoo | E=N g oY T OO PROUPRRPPROE 105
INEEINAT VAlIHATION .etiiiiiiieeieee e st s b e e s be e s be e e beesabeesabeesabeesnbaesabeesnseesabaesnseesnss 108
Find Out Which Input Fields Have Changedccocuieeieiiiiiiiee sttt e tee st e e svee e e sbae e e s saae e senaneaesnseaeens 112
Output Padding and JUSEITICAtIONciieuiiii e e e e e e st e e e e sat e e e s e naaeeesnsaeesennsaeesnnneeas 113
Field LeVel JUSTITICAtION ..iivviiiiiiiieicteesie ettt sttt s e e st e s be e sabe e sbeesabeeenbeesabeesnsaesabeesseesnse 114
Variable LeVel JUSTITICAtION ...c..iiiiiirii ettt ettt et e e bt e e st e e sbae e s aaeesbaeessaeenbaeesseeenseas 115
INpUt Padding and JUSTITICAtIONcciuiiiiiciei et e et e ettt e e e s tb e e e eat e e e eeabaeeesabaeeeestaeesessaeeessreaaans 116
Process With LIght PENS/CUISOI SEIECEccuviiuiiiieeii ittt ettt et et e v e et e et e ebe e be e beebesaaesaeesneesreereenrenns 118
Mix SPD Fields with Normal INpUt FIEldScooeuiiriiiiee e e e e s e e e e e e e nnaneas 119
HardWare RESTIICHIONSeiii ittt e sttt e e st e e e sabe e e st be e e sttt e e sbbeeesaabbeessabbeeeeabaeesaaneeas 119
LN =Y oY o) fl U] o Lot o o TN =2 TSP 119
Panels 0N DIffEr@nt SCrEEN SIZEScoeuiiiiieriieieeeee ettt sttt s e et e st e s bt e s bt e s bt e s beeebeesabaeeseesbaeenneesane 121
GLUROWS Variableeeiiieieeeiee ettt st ettt et ettt e st e st esa bt e saseesabeesaseesabeesaseesabaesaneess 121
QILUCOLS Vari@bIe ettt ettt ettt st e s bt e s bt e st e s bt e sa b e e easeesabeesaseesabeesaseesabaesaneens 121
QICURSCOL VAriable eeeiieeeiiee ettt ettt e e sttt e s st e e e s bt e e e e abe e e s abbeeesabbeeesnbaeesanseaesssseeenns 122
QCURSROW Variable. .. .ceieeiee ettt ettt ettt e e st e e s i e e e s bt e e e sabbeeesnbeeesaasbaessnbeeeens 122
Determine the Field LOCation Of the CUISOrciiiiiiiiiiiieeiee ettt sttt sttt sttt e s ae e st e snee e 122
(0o T Y d o] W@ T T 5o T gl oo 1Yo 1 o= S 123
(G181 5o Tl o Ty Lo a1 TaY = L1T o [ol 125 124
Dynamically Alter Panel Designs (PREPARSE)ccuiiiieiiie e eiteeeeete e e eetee e e steeeeeeate e e eeaaaeaesbaeaeenataeeeessaeaesnsrenaans 124
(DAY o T Yo g1 Tol o 2 = o A 2R S @ o) 4o IRt 126

8 Network Control Languade Programming Guide

Static PREPARSE OPLION .eeiiiiiiiiiiiieietie ettt s aa e e s s e e e s s e e e senan e e s snaeeeeas 127

Considerations When Using PREPARSEcooiiiitiiie ittt sttt ettt sttt st e saneesabeesaneesbeesanee s 128
Display FUNCLION KBY PrOMPES. . ciiciiiiiiciieeeiiieeeecte e setee e e sttt e e et e e e st e e e esataeeseasseeesasaeeeanssaeesensseeesnssaeeanssaeesnnsnes 128
Control the FOrmatting of INPUL FIEIAS........c.uiiiiiiee et e re e st e e et e e e s aer e e e staeeeentaeeeenneeas 129
Allow Long Field Names in SNOrt FIElASoiiiiiie ittt e e e e e et e e e st e e e e nraeeennneas 130

Retrieve Panels from Panel Libraries

Display Panels on OCS Windows
NCL Processes Competing Against OCS for the OCS Window
Competition Between NCL Processes for an NCL Environment WindOoWccccoveeevieeeiiieeeesiieeecceeeesiieeene 132

F XY 1ol o Tge Y Vo TU E - [o 1= O PTUPPTPPRN
ASYNChronous OPeration CONCEPES. ...cc.utiiuuieiieeiiiieiieeite ettt ettt et e bt e e st e bt e e sab e e bt e e s aee e bt e e sareesnseesaneennees
Invoke an Asynchronous &PANEL Operation
Control INput Field INItialiZation...........eie it e e et e e e aa e e e s tb e e e s eataeeeearaeesasreeaans
MaNAEE 1/0 CONEENTION Loeuviiiiiecieecieeete et e et e st e e te e sbeeeteesbeeebeesbeeebeesabaaenseesabesenseesabesenseesateseseesnteseseeants

PanEl CONTIOl STAtEMENTS ...uviiiiiiieeiiee ettt et e et e e e sttt e e s te e e seaeeeeessteeeeanteeesaaseeessnsaeeeessaeesassneessnsseeesns
#ALIAS Control Statement—Define Alternative Name for Input Variablesccccovveeiiiininniiniceieceeee, 138
HERR Control Statement—Define Action Taken During Error Processing

#FLD Control Statement—Define or Modify a Panel Definition Field Character

#NOTE Control Statement—Allow User Comments in a Panel Definitioncccueeeeiiiiciiiiieeeceieeiiieeee s 155

#OPT Control Statement—Define Panel Processing OPLioNScoouieiieeriienienniienieesiee et 155

HTRAILER Control Statement—Place Lines at SCreen ENooovvvvviiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e ee s 162
Chapter 8: NCL File Processing 165
UDDB Fil® FOIMATS .. .uuiiiiiiieiiieiiirieee e e e eecitee et e e e e eectbaeeeeeeeesetbaaeeeeeeesasbaaaeaseeesasssaaaeseeesasssssaaseeessansnsaaesaeesennssreneeeesanes

Y YT o =Te B oY g o =) Al o 11T USSR
Unmapped Format Files
Delimited Format Filescccooveeevniieiiniieeniieeee
Multiple File and AIternate INAeX SUPPOIT......coieiiieiiiieeeieee et e cee e e st e eeeee e s tae e e s sate e e seareeeesnbaeeesnreeesennneas 168
WWOTK WIth UDBS ...ceiuiiiiiieeiteeitee ettt ettt ettt e st e h e e bt e e s bt e ettt e s bt e e bt e e sbe e e bt e e sabeebe e e sbeebeeessbeesbeesaseennseesaseenns
ALIOCATE UDBS....ceiiieiieeeitee ettt ettt ettt e st e e ettt e e s ettt e e s bt e e e e a bt e e s e bt e e e s bbt e e e aabe e e e e hbe e e e abeeeeaabbeeeenbaeesaanaeas
Prepare to Use a UDB
UDB Initialization

Control UDB Performance and RESOUICE USAZEuueviveuerereiiieeeeiieeeeeiteeesitteeesseteeesesaeeesssseeessnseeessssesssssseeeens 171
A RECOIAS 0 @ UDBiiiiiiiiiieeiee ettt ettt ettt et ettt e s it e e sbe e e sat e e bt e e sa b e e bt e e sabe e bt e e sateebeeessneeseeenaneennns
SYSOUT CONSIABIAtIONS ...teieeitieeeitieee ettt ettt ettt e e sttt e sttt e e s s bt e e e s bbeeessbteessabaeesesbeeesabaeesaabaeesessaeesannnens
(e d e s LN] LU I 01U 41U | PRt
Update Records in a UDB

Delete RECOrdS from @ UDBccccuiiiiiiiieeiieeeiee sttt sttt st st e st e s bt e sabe e s bt e sabeesbeesabeesseesabeeesaeesabaeeseesane 175
Retrieve RECOIAS from @ UDB........ciiiiiiiieiiieeiee sttt sttt st ste e st e s bt e st e e s bt e sabe e sbeesabeesnseesabeeenaeesabaesnseesane 177
ReStrictions WHENn USING UDBSciiiiiiiiiiiiiiiee e e eecitieee e e s e eeiittee e e e e e eesattaaseesesesansssaseesaesseassssanssaessessssseneeeesenas 178
Create UDBS With AILErNate INAEXES.....ccoiiiiiiiiieeeite ettt st e st e e st e e s sbb e e e ssabeeesssbaeesbbeeeens 179

Contents 9

VSAM Considerations for AlLEINate INAEXEScovvviiiiieieeeeeeeeeeeeeeeeeeeeeeeeee ettt e e e e e a e e e eeees 180

Key Structures and AIEINAte INAEXESoiiiiiieieiie ettt et e s sere e e sbae e e s abe e e ssataeeesabaeesesabaeesnaneeas 181
Retrieve Data Using AItErNate INAEXEScccvvieeeciiiieicieeeeciiee et e sree e et e e s eere e e s tae e e eatr e e sensseeesnsseeeantaeesnnnneas 182
CoNtrol UDB AVAil@abilityveeeiiieeeciiie sttt et e e e e e e e ae e e st e e e e ate e e s nsaeeesatseaeastaeesanseasesnnaeaaans 185
WWOIK Wt FIIES.c.ueiiiiie ettt ettt e s e e b e s bt e ettt e s b te e bt e e shbe e bt e e sabeenbeeesbbeessteesabeesateesaseenses 186
LOGICAl File IA@NTIIOIS. . .eeeeeeeet et ettt e bt e e bt e st e e bt e sab e e e bt e sabeeeneesane 187
Release File ProCeSSING RESOUICTEScccueeiiiiriieiiteeite st teetee st e st sb e st e st e et esab e e bt e st e e ebeesabeeenneesbeeeseesane 188
[D1EY o] = 1A ST F=T L3 o) ' =4 o o SRS 189
Specify the File ProCeSSiNG IMOE......cc.uviiieiiii et ettt e e e e e et e e e s tae e e e s ta e e eesteeeenbeaeesnsreseenssaeesnnnnens 189
Yo =Tol 1 AV 4 o TN ST L= G2 PSP 190
VT YL g T] - SRR 190
Data Set Positioning and Generic RELIHEVAIoouiiiiiiiiiiiee et 191
Mapped Format Files: Data RePreSeNnTatioNncc.uiiicuieeeiiieeceiiee et eeette e e stre e e eate e e eeaba e e e sbaeeeearaeesnnaeas 192
Unmapped Format Files: Data RepreSenTatioN..........cccuiieiiiieeeeciee e eeiee e et e ee e e e sette e e e staeeeeateeesasaeeesasreeeennns 192
&FILE GET Statement and Unmapped FOrmat UDBSccocuiiiiiiiiieniieniee ettt sttt s snee s 194
Data Conversion and Unmapped FOrmMat UDBSccoiiiiiiieriieniie ettt sttt seee s e s nee s e snee e 195
Key and Data Differ@ntiation.........cooueeiiioiiieeeeeee ettt sttt nee e 196
Offline ProcesSiNg Of DAta SEESueiiiiiiiiiiiiie ettt et e e stte e e et e e e etae e e sbbee e e ataeeseasaaeesabbeaesastaeeeenseaeesasseeaans 198
BACK UP ONIINE DAta SEES...iiiiuiiieeeiiii et e eciieeeete e ettt e e e stte e e e e tte e e stbeeeesataeeseasaaeesasbeeeanstaeesassaaeesnssasaassasesnsseeas 199
Chapter 9: System Level Procedures 201
SYSEEM LEVEI PrOCEAUIES.....cciciiieeeiiiee ettt ettt e ettt e e ettt e e e tte e e e sabeeeeeataeesaasaaeesabseeeenssaeessseaeaastaeeeanseseesassaaesansansennnes 201
ACTIVITY LOB -evvtttiietiieiiiittee ettt e e e e sttt et e e e s ettt et e e e sssstbteeeeeeesasaaab e e e eeessesassbanaeaeesesansbenaeaesessanssssaneesesnnssnnens 201
VTAM MMBSSAEES . eeeiiiiieieiiieieeeeeeeeee ettt ettt ettt et et et et et et et et et et et et e tet et etetetetatetatetatateteteteratetereteterererererererererererererens 202
EASINET Terminal CONTIOl..cco..viieieiiiie ettt ettt st e et e st e e e s et e e s bttt e seabbeessabaeeeenbeeesnnaeas 202
OCS WiIndow Traffic HANAIINGeeeiieieeee ettt et e te e e et e e e e tte e e e abaee e sabbeaeeesbaeeeenseaeessbeaaans 203
Yol B o) 11 [@l T o Tol=Y o] USRS UTUR 203
Intercept Solicited and Unsolicited VTAM Messages (PPOPROC ProCedures)........ccvueecueeeceescreeeseesseeesreesssnessneeenns 204
Filter Messages SEEN DY PPOPROCuuiiiiiiieeeiee e cctee ettt e ettt e e sttt e e et e e s eaate e e staeeessteeesssaeeesnsseaeennseeesnnnneas 205
Modify the Message Definition Table: DEFMSG COMMANG......c..oiiiiiiieeiiiiecciiee ettt e et e eeiee e e teee e e era e e e 205
Message Filtering: SOlICITEd IMESSAZESuuiiiiiiieiciieeee e ee e e e e e s e e e e e e sesabbtaeeeeeesesasstaaneeaeeennns 205
Message Filtering: UnsoliCited MESSAZESceiecuiiiiiiieeeiiieeeeiiee e setee e e sttt e ssete e e s taeeessateeessaaeeeesnsaaeeennteeesnnneeas 206
DESiZN @ PPOPROC PrOCEAUIE....cccuuiiieeeieeeeiiieeeeiiee e settee e e sttt e esaeeeesaaeeeessteeesesseeeesnsaeeeassseeesassseeesnsseesasnseessnnnnes 206
MeSSAZES FrOM PPOPROCuiieieiiiieeciieeeestieeeette e e st e e e setee e e st e e e s aaeeeeasteeesassaeeesnsaeeeanstaeeeasseeeesnsenesannseeesnnsnens 206
PPOPROC SEQLEMIENTSeeiiiiieiiiitiieee et ettt e e e e e sttt et e e e s e bbbt e et eeesaaanbateeeaeseaaanbeeeeeeeeesannabeeeaeeesaannnbeeeeeaesannnn 207
LICCES A 2 O 13O L N 207
PPOPROC PrarEUISIEES . . uueiiiiiieiriitteeeeeesiitateeeeesesetareeeeeeesastereeatesssasssstatateessesasssaseeesessssssssseesesssnsssssneeesssensas 208
Intercept OCS Messages (MSGPROC PrOCEAUIES)uueiecurereicieeeeitieeeeiieeeseseeeesrreessssseeessseeessssessasssasesesssesssnsseesans 208
MSGPROC SEAEMENTS ...ttt e e s e e e s e s e e e e e s e s anen e e e e e e e s nnneeeeeseseans 209
BLT Fd oW Y Y €] o 2 (@ Tl o g Tl Te [USSR USURN 209
MesSAgES fromM IMISGPROC ...ttt e e e e e et e e e e e e e e bbb e e e e e e s esaastbaaeeeeeeseassbsaeeeaaesessstaaeeaassannns 210

10 Network Control Language Programming Guide

TESE IMISGPROC ...ttt ettt s et e s s b et e s e bt e et ab e e e s s be e e s e b b e e e s anae e e snbeeeesraeesaanne 210

User ID Considerations for System Level ProCEAUIESc.ciiiiiiiiiiiieeie ettt 210
Chapter 10: Implementing User Programs 211
ADOUL The SUBSYS FACIHlILY .eeeiiiiiiiiiiieete ettt ettt e bt e st e bt e e s bt e s bt e e s bt e e be e e smbeenneeesnneennees 211
USE &CALL WILNOUL SUBSYSeiiiiiiiiieeitt ettt ettt ettt et et e e sat e e saae e sabeesbteesabeesaseesabaesabeesabaesaseesabaesaneens 211
USE CALL Wit SUBSYSeiiiiiieiiiieite ettt ettt st st e site st e sbtessbae e sateesbeeesateesbteesabeesasaesabaesateessbeenaseesasaenaseens 212
EXEENSIONS O GUCALL. ...ttt ettt e e e sttt et e e e s e ae b b et e e e e s e s anbebteeeeeeseabnbteeeeeesenanntaaeeeeesanann 212
USES Of SUBSYS ... cetee ittt ettt erttee ettt ettt e sttt e s sttt e st e e e s beeeesasbeeesaseeeesabeeesensteeesnseeeeanbaeesannteeesnsaeesnnbaeeennnes 212
Send Parameter Lists 10 the SUDSYSTEM ...cc.uiiiiiiiiiii ettt e 213
(0o 0 d oY BT U] o132 =T o USRS 213
[T T T U o1 V] = 1 USRS 214
SEAMT @ SUDSYSTEIM ...ttt ettt et e bt e e s a bt e bt e e sa b e e bt e e s abe e be e e s aee e be e e saneennteesareennes 214
SEOP @ SUDSYSTEM ..ttt ettt et h e st e s bt e s a bt e bt e e s ab e e bt e e sab e e bt e e s ae e e bt e e sateenteesareennes 214
DIt @ SUDSYSTEIM ...ttt ettt e e st e st e st e et e s b e e e bt e sabe e e bt e sabeesabeesabeeeneesabeeeneenane 215
RO ok To IR g L=l o4 - o ISP 215
Display the Status 0f @ SUDSYSTEIMc..uuiiiiie ettt tre e e e rate e e e eata e e e s tb e e e erataeeeennaeas 215
WIItE @ SUBSYS PrOBIam . ..cciiiiiei ittt ettt ettt s et st e s s e e e s e nr e e e ssae e e e sar e e e sennneeesnneeessnranesannne 215
Subsystem Program CONSIAEIATIONScovuuiiiieiiiieiieeit ettt ettt e s e e bt e st e s bt e e saneesareesareesaees 216
Write a Subsystem Program in High-leVel LaNgUAEES.......cuviiiiiiieeiiiee ettt et e e e etve e e ara e e 218
SUBSYS CallDACK AP ...ttt ettt ettt ettt et sit e e st et e e sa e et e e s ate e bt e e sbaeebbeesabeebeeessbeenbeeessbeenbaeessseensseesasaenses 219
Function Code 0—Queue a Message to the INTCMD Environment of an NCL Process........ccccceccvveeeecveeecnnen. 219
Function Code 4—Send @ Message t0 @N NCL PrOCESScc.uuieeecuiireiiieeeeiieeeeeiteeestaeesssateeessaseeeesssseesesnseeesnnnenas 220
Function Code 8 —Send a Message to MONITOR RECEIVEISuuiiviuvieeiiiiieieiieeesitieeessieeeseaeeeessaeesesnseessnnneeas 220
REEUIN COBS ... ittt ettt ettt e e s et e e e sa bt e e abb e e e s bt e e e e abe e e s abbeeesabbeeeeasbeeesnbbeeesabbaeeennbaeesnaneeas 221
Chapter 11: Synchronizing Access to Resources 223
Use NCL t0 SYNChronize ACCESS tO RESOUICTESuuiieiiieiiiiiiieeeeeeieiittee e e e e seiatteeeeessestatreeeeeesesssstanseeessesnnsssneeesssanes 223
RESOUICES aNd RESOUICE LOCKS.....eiiiiiiiiiiiii ettt ettt e e sttt e s sttt eseabte e s sabbeeeeabeeeseabbeeesabeeeenns 224
RESOUITE GIrOUPS ceeeieiiiiiiiiieitiiiettttttteteeteteteteeetetetetererereteteteretetereteteretetereteretererererererereretereretererererererererererererererens 224
o T 4 TRV N =10 0 1= PSPPSR PUPPPN 225
LY Lo Lo T AV 0 o 1= TSRO PR S PPPPOP 225
RESOUICE NAME HIBIAICRY ...eiiiiiii e e e e e e sttt e e e e e e e seabbtaeeeeeesesbataeeaeassanssstsaeeeassannnnrens 225
[o TU T o=l N\ =T g 1T o T @Y g 1Y7=T | o o TSRO 226
BILOCK VEID .ttt ettt sttt e st e st e s ab e e s ab e s ab e e s abeesab e e saseesabeesabeesabeesaseesabeeeabeesabeesaseesabaesaneens 226
Wit fOr ACCESS £0 @ RESOUICEeiieiiiiieiiiie ittt ettt ettt ettt et ettt e sa b e sbt e e sa b e e bt e e sabe e bt e e s ateesabeesabeesateesaseenaes 227
Alter the Status 0f @ RESOUINCE LOCK ...cuuiiruiiiiieiiiieiieeiit ettt ettt ettt sae e e st e e sba e e sabeesateesareesaes 227
Associate Text With @ RESOUICE LOCK.......ciuiuiiiiiiieieieeeette ettt st e e s st e e e s saba e e seanaeas 228
RESOUICES @S SEMAPINOIES ...eiiiiiiiiiciiiieee ettt e e e eecee e e e e e e e e st aaeeeeeeeseatbatseaaeeeaasbasaeaaeeesaassasanaeaassanssstseesasssnanssrens 228

Contents 11

Chapter 12: NCL Debug Facility 231

OVEIVIBW ...ttt ettt et e ettt et e e ettt et e e e e e s aabe et e e e e e e s abe e eaeeeee s aabs b e e e e eeesaassbeeeeeeesaaanbbeeeeeesaaanbabeeeeesesannsnnaaaeens 231
Y=To{ U1 1 4T 2SSOSR PPN 232
N O I D=y oYU Tl o ol | [U 233
N O I D=y oYU Tl - ol |1 SRS 233
Start and Stop an NCL DEDUE SESSIONceueiiiiiiiiiieiiieeiie ettt ettt ettt ettt e s it e sbe e e s e e s ebe e e saneesateesaneennees 233
Control the EXECULION OF NCL PrOCESSES ...cccuuiiiiiiiieiiiieeesiieee e sttt e ssitee e sttt e e ssabeeesssteeesbaeeesssbaeessseeessssaeessnnsaeesnnseeas 235
) =Y [Tl T o Yo 1T) R 235
VEID BrEAKPOINTS ... ueieeiiiieeceitee ettt ettt e et e e st e e et e e e e e eteeestsaeeesataeeeesssaeessseeeeassaeeeasssaeesnseaeeansaeesansaeesnnsnens 236
AV L g] o] LN = T =T 4 o Lo 11 43RS 236
Procedure ENTRY BreakpOintscciueieieeiiiieieesiee ettt s st st e s tee st e et e st e sseesabeesabeesabeeenneesabeeeseesane 236
Procedure EXIT BreakpOints.o i iie ettt ettt ettt ettt e et e st e s bt e st e e ebeesbeeesaeesbeeeseenane 236
BREAKPOINT COMMANG ..uitiiiiiiiiieiiiiesieesteesteesiteesseeseteessseesateesnseessbessnsassssessnsessnsessnseesnsessnsesssessnsessnsessnsessnne 236
SAMPIE DEDUEG SESSION ...uiiiiiiiiii ettt ettt et e et e e ettt e e e e tte e e staeee e s abbeeeebraeesasseaeeastaeeaassseesssaaaeastaeseansraeesnnsaens 238
Display and Modify the Contents of NCL Variables..........coouiiiiiiiiniiee et 238
List Procedure and Subrouting NeSting LEVEIS........ccueiiiiiiiiiiiieee ettt st 239
DisSplay the EXECULE SOUICEccouuiiiiiiieiieiieeette sttt sttt e e st e et e st e et e s b e e s bt e st e e ebeesabeeenneesbeeeseenane 239
RECEIVE NCL Trace OULPUL..cciiiiiiiiiiiiiiiiiieiiieeeteeeee e ee et e e e e e e e ee e e eeee e e e e eeeeteeeeeteeeeeteeetereeeteseeereeeretererereeeeeeereeesererens 239
Chapter 13: About Mapping Services 243
WAt IS IMAPPING SEIVICES? weiiuiiiiiitiiiieiititesite ettt e st e sttt e sttt esteeesbeeesteeesateesseeessteesbseesateessaeessbeeabeeessseensaeessseensaeensseensees 243
MaPPING SEIVICES PrOCESSING «.eeeiiiiiiiitiee ettt et ettt e e e e ettt e e e e s e s b ettt eeesesanbe bt e eeeeesanbsbeeeeeeesansnneeeeesesannnnneee 244
IMIDIOS ..eeeneteeite ettt ettt ettt e st sa e et e s a e s at e s a bt e e ab e e sa bt e e ab e e sa ke e e a b e e sa ke e e a bt e e Ak e e e abee s a b e e e abeesabeeebeeeabeeebee s beeenee s beeeneenate 244
1Y/ T o LS PP PTPUPPPTPPPPPPPPPPPPPIRE 244
INCL PrOCEAUIES ..ceiiititt ettt ettt e ettt sttt e ettt e e et te e e s bte e e e sabeeeseabbeee s bbteeeasbe e e s abbeeesabeeeeeabeeesnsbeessabbeeeannbaeesnaneeas 244
1Y/ To] oY ¥ =4 6] aTol= o -3 TSP 245
DE) = BT o LU T ol L TSP UPP RO PPPPPPTTRPRE 246
V=T 00 Y o= PP SRPTPPPPTRTRPIOE 246
Transfer MDOs Between Nested NCL PrOCEAUIESeiviiiiiieriieeiee sttt sttt ettt st e s b e e nee e 247
Mapping Services, Mapping SUPPOrt, aNd NCL ProCESSINGcccvvviiieiiieiiiiiieee e e e sceirrte e e e e e setarreeeeeesesnssseseeessesnnnsnns 247
(o] Ve =Tt a ol g R o MY oY o] o 11 T ANT U] o] o Lol o PPNt 248
R o TU] el o T=a DT) - [N 248
Y T a T oIV LR Lo Lo I g = ot D - | - S S 249
USE @ MAP iN NCL PrOCESSING ..vvvviiiiiieiiiiiieieteeeieittteeesseseetareeeeesesesbareeeseessasssssteeeesssassssseaetesssassssssneeesssessssssneeesssnnnns 249
Chapter 14: Using Mapping Services 251
OVEIVIBW ..ttt eittee ettt s ettt e s ettt e st e e e am b et e s ae e e e e s ane e e e e s b et e s mse e e e sa R et e e e an b et e s mnn e e e saseeeeenreeesnneeessaraeesennreeesnnneas 251
MDO Behavior and NCL Processing CONVENTIONSccuiiiiiiiiiteeeiiieeeeiietesrtteeesbeeesssabeeessbaeessbaeesssstaeessasseessaseeeesns 252
INPUL OPErations 0N @N IMIDO......coiiiiiiiiiiiiiiiicceeeeeeeeeeeeeeeeee e e e e et et e e e e e e e e e e e e et e ee e e e st et e e et eseeaterareeeeereeesaranenanens 254
Output Operations fromM @an IMDOcoiiciii et e e e e e e e stee e e s e e e e essteeessnsaeeesnsseaeaassaeeeanssesesnnseeeans 256

12 Network Control Language Programming Guide

BUASSIGIN VEID ..ot a e e 256

Create and DEIELE IMIDOSoiiiiiieiiieteeeiiee ettt e ettt e e sete e e sttt e e s s bt e e seabteeesabaeessssbeeesaasteessabseeessbaeesanseeesssenesans 256
Assignment 0f Data iNtO @N IMIDOuiiiiiiiiie ettt e e et e e e et e e e s tte e e e s s taeeeesteee s aseeeesnsreeeansaeesnnnnens 257
QUETY IMIDO COMPONENTS .veeiteeiieerteesteesteesiteesbeessseesbeesseesabaessseesabeesseesabeessseesasessnseesateessseessesssseessessseessaesnsees 261
NCL Reference, Type Checking, and Data BENAVIONcciiiiiiiiiiie ettt et e et eaa e e e snree e 265
BOOLEAN TYPE cervreereeeeeeeeeeeeeeeeeee et eeeeeee e eese et eeeseeeeses e s seeseseeseeseseassesesssssesassesseseseese et s eeseesaseeseesaeeenesseneesesenens 266
INTEGER T e veoeeoveeeeeeseseesesssssessessessassssssesessssssassssssssasssssssssssssssssssssssssessssssssenns 266
BIT STRING TP ettiutieiieeniteesiteeste e sttt e steesiteesateesabeesabeesabeesabeesabeesaseesabeesabeesabaesaseesabeesaseesabeesnbaesabeesseesbaesnsaesase 267
OCTET STRING TYPE .uvteeutteeieeeteeeiteesteesiteesbeeseeesabeesabeesabeessseesabaesaseesabeesaseesabaessseesabaessseesabeesaseesateensseesssaesnseenn 269
HEX STRING TYPE «.vvoveoveveeceseeesesesssessessessens 269
NULL TYP@ ettt st et e e s b s s e s e e e s e bbb s s e e e e s e s baa s e e s e e s s e nabaseseeesesans 269
OBJECT IDENTIFIER Ty P e e e s s e s e s e s e s e s e s e s e s e s e s e se s e s e s e s e s e sasasasasasasasasasasasasasasasasss 270
(0] o =Tetd{ D ITY o g T o] {o Y gl 1Y/ o Y= TSRS 270
RE AL Ty DB ettt ertteesite ettt e st e e sttt e et e st e s bt e sateesateesabeesabeesabeesabeesabeesabeesabeesabeesabaeenbeesabeeenbeesabeeenbeeeabeeeaeeebaeebeenar 271
ENUMERATED TP ittt ettt ettt teteteteteteteteeetetetetet et ete s et et e tet et et et ererateteretetateteterererererererererererens 272
ST a = TN o o= Y o1 OSSP PPR O PPPPTOP 273
T aL] o] Ey A [a = Y/ o1 T PO P PP P O UUPORUPPRPPPRPRIOt 273
RIS LoD S o T a Y= Y o 1TSS SRSUNS 274
RV A Lo L=To T =) d T = Y/ o 1 ISP UPPRPROE 274
TN o T = Y/ o T TSP ST PPPP PP 274
UTCTIME TP ciieieiiiiee ettt ettt e st e s et e e s bt e e s ab e e e s e b et e e s ma e e e s s b e e e s e be e e e sbe e e e e anreeesaanneeesnnneessnreeesannne 275
(Y=Y oY= YL =Te I T o 1= Y 1SR UP S 275
(G =T o] a1 TNy {4 o =4 V7 1Y SRR 276
VA L1 L=y g T = Y/ o 1P UPURTRE 276
(CT=Y QT =Y (T Y= Y7 o 1TSS 276
Type Conversion fOr MDO ASSIZNMENTiiiieiier et eesee e eeee e st ee e e tee e seaeeeesaaeeeessteeessssseeessseeeessseeesassseeesnsseeeans 277
GraphiC-0riENtEd SOUINCE TYPE ciiiiiiiiciiiieee ettt e eecr e e e e e s et e e e e e e s e st taaeaeeeseaastaeeeeeeeesanssaaaeeeeeesansranneaens 279
NUMEIIC-OFIENTEU SOUICE TYPES .evtvreieiiieiiiiiiiiee e e e scitrre e e e e e serttreeeeeeeesattaaaeeeesesastsasaeeeessesssssseeeeaseeassntraneesesenes 280
RECIaE e E =0l Yo U ol= I IV 1= RPN 280
Chapter 15: NDB Concepts 283
WAL IS @N NDB? .ciiieiteeite ettt ettt ettt e sit ettt e rat e sae e e s at e e bt e e s be e e bt e e s bt e e bt e e sbee e bt e e sabe e bt e e sbeebeeesabeebeeesaseesnbeesaseenns 284
WWOTK WIth INDBS ..c..eiiiiiiiiieeite ettt ettt site ettt sat et e sat e s bt e sat e e s bt e e sa b e e bt e e sa b e e bt e e saeeebeeesaeeebeeesabeennseesaneennrs 285
USES OF NDBSeeitteeitie ittt ettt st ettt s bttt e bt sbtesb et e bt e ettt e bt e e bt e e s bt e ebe e e sabeesteesabeesaeeesabeesaeeesabeesabeesabaenaneens 285
Differences BEtWEeNn NDBS @nd UDBS........ccuuiiiiuieiiiiiieeeiitee ettt e sitee e et eesssteeesbteesssabeeessasteessabeeesssnsaeessnssens 285
[N 2 Y o =TSNt 287
NDB STFUCTUFE .ttt e e e s et e et e e e s e s e et e e e e s e s m b e et e e e e e e s nraneeeeeeesannnnneeseeesannnnnee 287
(6e] a1 o] I 3Y=Tolo] (o N OO PO OO P OO SORUSP PR 287
JOUINAl CONETIOI RECOIT...ciuiiiiiiiiieeeite ettt ettt e st e s bt e st e e s bt e sabeesbeesabeesbeesabeesbeesabaesnseesane 287
JOUINAI DAta RECOIAS .eeiiiiiieiiiit ettt ettt ettt et e e sttt e e sttt e e st e e e s abe e e s abae e s sabbeeeesbaeessanteeesbbaeesnabaeesnnes 287
Field Definition RECOISceiiiiiieieiiiie ettt ettt ettt e e st e e s sabte e e sbbeeesabaeesasteessabbaesaabaeesnnaeas 287

Contents 13

KEY STATISTICS RECOITS. ... eiieieitieitieie ettt ettt ettt e bt e s bt e et e st e e e bt e sabeeeabeesabeeeneesabeeeneenane 288

KEY RECOIUS ...ttt st e e st e et e sa b e e st e e s a bt e e abeesa ke e e abeesabeeeabeesabeeeaseesabeeenneesabeeeneenane 288
2] DY =Y [V LT o Tol ol (4= VN 2 U=T oo o KRS 288
DT = I =T ol o OO OO OUPPPROPPRRPRN 288
[2CTole e I | B OO OO OO RORU PP PURRPPROE 288
RID REUSE ..ttt ettt ettt et et et et ettt et et et et et e te s et et et et et e e et et et et et e s et et e s e s et et et et et et eseterereseneresesererenenens 289
ALErts fOr VSAM IMONIEOING .euvteiiiieiieeite ettt ettt ettt et e bt e st e e bt e shb e e bt e e shb e e bt e e sabeeabe e e ssbesabeeesnbeenneeennneenees 289
NDB Data FOIMATS...ceiiiiiiiiiieie ettt e e e e e s e e e e e s e s er et e e e s e s n b e r e e eeesesannnaneeeeesesannnnnneeeeessannnnnne 290
NUITVAIUES @NA NUITFIEIAS «..veeiieeiieeeieeste ettt sttt sttt e st s b e st e s be e sabe e sbeesabaessbeesabeesnseesabaesnseesane 291
LU T30 (o T N TU]I =] (o PSPPI 292
NDB Transaction Management: Database Protectionc..coeueeiiiiiiiiiiieiiie et 293
NDB JOUINAIING ceetttetttett ettt ettt ettt s bt e et esa b e sub e e sa bt e s abeesabeeeabeesab e e eabeesabeeeaseesabeeeaseesabaeenseesabaeanneenane 294
(0fo] 0 4T o[0T U T NV 11 =1 o111 A SRR SP 294
B 2 Y= Tole 1Y =T o PPNt 294
How to Respond to an Alert for File Size or File FUIl ..ot s 295
FiX @ COTTUPTEO NDB....c.ueiiiiiieeiteeiitte ettt ettt e st e st e et e sa b e et e sa bt e e aaeesabeeeabeesabeeeabeesabeeeaseesabeeenseesabeeenseesabaeanneenane 295
Chapter 16: NetMaster Database Administration 297
HOW T0 Create @n INDB ... s s s s s s s s s s s s s s s s e s s e s e e e sesasennss 297
DEfiNE VSAM Data SEL....ciiiiiiiiiiiieiieeste st e st ste e st e st e e ste e s beesbeesabeesabeesabeeesbeesabeessseesabeesnsaesabeesseesnbeesnseesnss 298
(07] [olU 1 =Y =3 =L =T o T o o SRR UPR S 298
(07| [T Y =3 Y=Y ol] o =T o = o o SRR 299
AllOCALE the VSAM Data SELcoiuiiiiiiieiiieiiie ettt ettt ettt e st e e bt e sab e e sae e e sabe e bt e e sabeesabeesaseesaseesaneennes 300
(O] oL R o T Ay ANV D = T SR 300
CrEate the NDB ...ttt ettt e ettt e st e e e a bt e e s eabteeesabbeeeeabeee s abbeeesabbeeeenbaeesaanbeeesnneaeens 301
STArt the DAtabaseceoeuiiiieiiii ettt e et e e ettt e st e e e st e e e e abe e e s bt e e e s bt e e s e nbaeesnanaeas 302
INSEIt FIElA DEFINTTIONS ..viiieiiiieiiiiieeciee sttt st e e be e s be e s be e sabeessbeesabeessseesabeessbaesabeesseesabeesnseesnss 302
LOAA INIIAl DALA ..eeieiieiieeeteecet ettt sttt e e st e et e st e et e s bt e s abee s abe e e b e e s be e e bt e sabeeebee s beeenee e beeeneenane 303
DEIELE @N NDB ...c.ueiiiiieeeite ettt ettt e st sa bt e st esa bt e s bt e sa b e e suseesubeesaseesabeesabeesa bt e e bt e s abeeeabee s beeebee e beeebee e baeenneenane 304
Delete Al Data in @n NDBuiiiiiiie ettt ettt s ettt e sbt e e e sa bt e e seabte e e sabbeeesnbeeeseubbeessabaeeeaabaeesanneeas 305
Alter Field Definitions iN @n NDBc.cocuiiiieiniieiieenie st esteesteesee e seeesteeesateessseesaeeesseeessseesseeessseessseessseesssessnseessees 305
Fie [I T=1 [WD Lt T T d o] o T T PP PO PR PP 306
Delete Field DefinNitioNSc.uei ittt sttt st s e st e s bt e sab e e s bt e sabeesbee s beesaee s beeebeenane 306
Update @ Field DefiNItioNoicieeieiiie sttt e et e e st e e e e ate e e snaeeeesntaeessnnteeesnnneeeennseeesannes 307
BACK UP @N NDB....utiiiiieiicciieee ettt e e ee sttt e e e e e e st a e e e e e e e et s baaeeaeeeesasbaaeeaaeeeaasbasaeaeeeeaassaeaeaaeaesansssanssaessennsnrens 308
RESTOIE @N INDB ...ttt ettt et ettt e e e e e e e st ettt e e e e e s b beb e e eee e e s nbebteeeeeeaaanssbbeeaeaesaannnnaeeeeeesasannreee 308
IMONITOT NDB ACTIVITY 1iiiiiiiiiiiiiee ettt ettt e e ee sttt e e s e s s e et e e e s e s s bae e e eeesesassbaraeeeesesasssaseeeeeessanssnnneeeeessnsnsnsenn 309
MONItOr NDB PEIfOIMANCE ...eiiuiiiiiiiieiiieiiiierie ettt s e st e st e st e e st e sabeesbeesabeesabeesabeeeaseesabaesnseesabeesnseesabaesseesane 310
Improve Performance by Using LOAD IMODEooociiieiiiiee ettt e et e e st e e et e e e eaae e e e s e e e s nteeesnneeas 310
(0o 1Te = Ta I VI D= o T g o o 1 £ =T Tox VAR 311
Multiple System ACCESS 10 @N NDB.......ooiii e e e e e e e e srtb e e e e e e eesebataeeeeeeseassasaeaeaassensssssessasseennsssens 311

14 Network Control Language Programming Guide

How to Implement NDB JOUINAIINGcoiiiiiiieiiieeiee ettt sttt sttt st eb e st e s bt e sbe e e bt e sbeeenneenane 312

Define TWO JOUINAI DAta SELS ...eiiiiiiiiiiiiieiiitie ettt stee e ettt e st e e ste e e s sate e e ssabte e e sbaeeesabeeesnaneeeesnsbaeeannsaeesnnneeas 312
Allocate Data Sets to the ProducCt REZIONciiiiiei ittt e e e e e ete e e s be e e e st e e e e nraeeennneas 312
Make DUPIICAtES OF thE NDBS ...cccciiiiiciiee ettt e et e et e e e s e e e e sata e e seataeeestaeeeanstaeesansseeesnssaeeannsaeesnnnneas 313
Add the Duplicates to the Batch FOrward RECOVEIY JCLuuiiiiiiiieiiiee ettt ettt e et re e e nrn e e 313
) L i o LI A D2 PP PPUPN 314
NDB JOUINAI SWAPPING -.vtenittiitieiteeitieeete ettt st e e st e et e st e e e bt e st e e bt e s bt e e bt e sabeeebeesabeeeabeesabeeeneesabeesseesane 315
Chapter 17: Using &NDB Verbs 317
Relationship Between &FILE and &NDBXXX VEIDScc.uiiiiiiiiiiiiieiiieeiee sttt sttt sttt sttt s e ae e s eenee s 317
Protect Your Data Values With & NDBQUOTE.........coecuteriieriieerieenireesieesreesbeesseesbesssseesstessseesssessnsesssessssessnne 317
Preserve LOWEICASE Data.....cii i ueiiiiiei ittt ettt e e e s et e e e e s e s ee e e e e e e e s anereeeeeeesennnreeeeeeesannnn 318
Define and Delete Fields inN @n NDBcciiiiiieiriiireiiiieeesiieeseie e e steeeeste e e ssaee e e sbaeeesssteeessaseeeesnseaessssseeessssees 318
ACCESS QN NDB ...ttt s st st e e nn b bnnnnnnn 318
[N 1NV 2 I e o Y (o [T > Lo T PSP 319
CIOSE @N NDBeiiiiiiiieetie ettt ettt e et e s be e ete e s be e s beesabeesabeesabeesabeesabeeaaseesabeeenbeesabeeeabeesabeesabeesnbeeeabeesbaenareenn 319
WWOIK WIth INDBS ...eiiuiiiiiitiitieeiiie et ettt st et si e e sttt e sat e e bt e e sbteebeeesbeeebeeesbaeebeeesabeebaeesbeebeeessbeensteesaseensseenasaenses 319
Yo o Il 20 Tolo o Kt o I T o TN V] B 2 TSR 320
Update RECOIAS iN @ NDBeiiiiiiiieiiet ettt ettt et ettt e e bt e e s it e e sae e e sabeesbteesabeesaeeesaseesneeesabeenaneesabeennneens 321
Delete RECOrds from @n NDBc.coiciiiiiiieiiieniee sttt st e sre e ste e st e sbe e s beesabeesbeesabeesbeesabeesnbeesnbeesnseesnbaeenseesnss 322
Retrieve RECOrds from @n NDBciciiiiiiiiiiiiieeiieesitee st e steesbeesreesbeesbeesabeesbeesabeesbeesabeesnbeesbeessseesnssesnseesnse 323
Notes 0N SEQUENTIAI RETITEVAL.......ccciiiieeiee e e e e e et e e e st b e e e eata e e eeasaaeesabaeaeestaeesensaeeessreaaans 328
KEEP=YES ON &NDBSEQLetiitttiiteiiiitenteesitteeteesitee sttt e st esaseesuteesaseesabeessseesabeesaseesabeesseesabeesnseesabeesneesabeesseenane 328
QINDBSEQ U RESETeiitiieitieiteeeitee et te sttt et e sttt et e st e st e sab e e s bt e s be e s st e sabeeeaseesabeeeabeesabeeeaseesabeesaseesabeennseesabaesaneenn 328
&INDBGET DIR= @Nd SKIP= .. .eeiiiiiiiieiieieiteesies et e st st e st e ste e s e e sbeesabe e saaeesabeessseesabeesaseesabaesnseessseasssessnsansnseenn 329
REAA DY SPAISE KBYS. . uuiiiiiiiiee ittt s et e e e e st e e e e e s ettt e e e e e e e eesaetaaaeeeesesaastaasaeeeeesassssaeeeaessansstsnnaeassanes 329
Obtain INformMation ADOUL @N NDB.........cciciiiiiieiiiieiite st eetee st e st e st e s reesbeesbeesabeeesbeesabeessseesabeessseesnseesssessnsessseesn 331
Change NDB NCL ProCessing OPtiONS......uiiicuieriiiiieeeiieresiteeeesieeessseeeestaeesessseeeseseeesssseeesssseeesasssesssssseesssssseesnsseees 333
Put It All Together—Unload or Reload @n NDB..........cooiciiiiiiiiie ettt seee e st e s e saee e e srae e e e sstaeesenaeeessnnreeeens 334
DEfiNg @N UNIOAA FIlB....viiiiiiiiiiiieecieesie sttt sttt st e st s e s be e st e e s beesabaessbeesabeesabeesabeeenbeesabeesseesateesnseesnss 334
Open the Database and OUtpUt UNIOad Fileoeeiiiiiiiiiiieicc et e e e e aaaaeeeee s 335
Unload Database Level INfOrmMationoceiiiiiiiiieee ettt st st e e s 335
Obtain and Unload Field Level INfOrmation ..ottt st 336
Build @ FOrmat for REAAING Daata......ccccciiiiiiiiieeeiee e cciee ettt se e st e e et e e s eaee e e s bt e e e eateeesenaeeeesnsseeeennseeesnnnneas 337
Define the SEqUENCE fOr REAING......cui ittt e e e e e s e e e e e e e seeabbbaeeeeaeseeantbaneeaeeeanns 337
(0101 [oF-To I d o[- D - [P PSP PR UPPUPTPPPPRRRt 337
UnIoad SUDSELS USING SPArSE KBYSeiiicuieeiiiiieieiieresiteeeestteeeesteeessaseeeessteeesessseeesasseeeesssseesasssessssssseessnssessannes 339
Reload an NDB from @an UnlOad Fil........coiiiieiiiiiiieiee sttt sttt sttt st st e s saeesbaesneesane 339
Open the Database and the INput Unload File........c..oviiiiiiiiiiee et e s e e s e e s e 340
Check Database ATTrIDULES.ccoi ittt st e ettt e st e e e sbbe e e ssabeeessanteeesabaeeeens 341
BUIIA Field DEFINITIONS ...eeeieeeiieeeeee ettt ettt et e e st e e e s bt e e e saba e e seabbeessabaeeseabaeesnasaeas 342

Contents 15

[WeF: [0 I o g TN D= - W 342

Chapter 18: Using &NDBSCAN Statements 345
SCAN PrOCESSING ...veeiiiiiieiiiiie ettt ettt sttt s ettt e s bbb e e s ab et e s e b e e e e s bb e e e e s ab e e e s e abbe e e sbae e e s aa b e e e saasneeesanbaeessraeeseanne 345
Display the Generated Scan Action Tableoo it s 345
PrOCESS SCAN RESUILS .ovvviiiiieieiieeie sttt sttt ettt e st s e s bt e st e e s be e sabeesabeesabeesabeesabeesnbaesabeesseesabaesseesnse 346
Control &NDBSCAN RESOUICE USAEEuvvieieurieeeiiieeeeitieeesitteeeesteeeeesresestseesasstaeesassseessssessasssssesasssesessssessasssssessseees 347
SCAN EXPIESSIONS ..eeiiiiiiiiiiiie ettt ettt ettt e ettt e s b e e e s ab et e s e b e et e s nb e e e e e b e e e s e abae e e ssaeeesaabeee s anaeeesanbeeesaraeesaanne 348
T V= Te IV o] o PSPPI 349
N UL = Lo LSRR 350
[T [R ol =Y [o M@oY 1Y o F= T £ L o LSRR 350
Use &NDBQUOTE to Protect Special CharaCtersocuueiiiiiie ettt e e et e e eate e e eabae e e saveeeenens 350
YT T (I e i Mo N T g o Yl D - TSR 351
(00 1NN 17 1 USSP 352
L K E ettt e ettt e ettt e e e et ee e e e e e et ta— . eeeeeetetaa.——eeeeettta——aeeeetata—teeetetata.teaeettataaaaeeeerannaaaeeererannnn 352
Use the Results of @ Previous &NDBSCANcuiiiiiiiiiirieeiit ettt e steesiteesteesiteesateessseessseessseesssesssseesssessseess 354
O 1R 1 N 0] o J=T £ o] Y USRSt 355
Efficient Use Of &INDBSCAN..........uiiiiiiiecetiee ettt ettt e e ettt e sttt e e esabaeeeasseeesaasaeeesssaeeeansseeesasseaesansaeeeenssaeesassneessnsseeenns 356
Chapter 19: Using Advanced Program-to-Program Communication 359
Advanced Program-to-Program Communication (APPC)c.cecueiierierierieeie et etesttesteeteetesteseaestesaeesaeesaeeneeeneeens 359
APPC CONVEISATIONS ..eeiuitieiiiiieeeiitee e ettt e sttt e st e s e b e e s e be e e e ssste e s aabeeesebr e e e s neeeeeanreresenneeesnseeesanreeesennreeesannnees 360
[0 A =T o < BT ST UP PPNt 360
N G- o < OO PSRRI 361
CONVEISATION STATES .eiiiiiiiiieeie ettt ettt et e e e s ettt e e e s e e b et e tee e sesaanbee et e e e s e s nnbaneeeeeeesannnnneeeeens 362
(00 0\ LT T To] o I o o Yol =F1-Y [oV - S TP 363
Return Codes and SYStem Variablesooiuiieieiiiriiiiee ettt e e s e e et e e e eaae e e e sbaeeeesntaeesennneas 363
CONVEIrSATION AlIOCATION ...veiieiiie ettt e ettt e sttt e e e sa bt e e s e abbeeesabbeeeeabeeesaabbeeesabaeeeennbaeesnanaeas 365
TrANSACHION IENTIIEI ce.utiiiiiiiiee ettt st e st e st e e s be e sabeeebeesabeeebeesabeesnbeesabeeeseesabeesnseesnns 365
DESINATION SEIECTIONiieeieeeee ettt et st e st e s bt e s bt e sabeeebeesabeeeaeesabeesseenane 365
AllOCATION AN SESSIONSttiiiiieiieeiee ettt ettt ettt e ste ettt s bt e sttt e sa b e e s bt e e sabe e bt e e sabe e bt e e saeeeseeesaneenbeeennsesnnnes 366
Set Program Initialization ParamEtersc.ueiiieiiiieiiie e cctee ettt e st e e et e e s rae e e sba e e e s snteeeeennteeesnreeeens 366
FAN [Yor= Y [o] g W @] g Y o1 [=] d o o RSP UPPRRROE 366
F AN = Yol BT o o Tol=T o U] o DO OO UPPRRUUPPOTPPRINt 367
(O o AT V=T o =Y 21T Vo] [=Y AU 367
EXECUTION ENVIFONMIENT ...ttt e e s e e st e e e e e s et e e sabe e e e emte e e snneeeesareeesenreeesnnnees 367
Access Program Initialization Parameters........occuieeiiiieeieiiee et e e e e eee e e s te e e e s e e e e nre e e eennneas 367
F AN - [o [o o Yol oYY [oV - U PURUOE 367
R aTo IO o =T 4 To] s Ly SRR PURRRt 368
YT oL D | - [T TP P O PSP SPPRPPP 368
D =AY = o] o1 aY =¥ o] o Yo o PP PUPPPN 368

16 Network Control Language Programming Guide

Data Mapping fOr NCL TOKENS ...c...eiiuiiiiiieiiteeie ettt ettt et e et e st e e bt e st e e sbeesbeeesneesbeeeneenane 369

Data Mapping and MapPiNg SEIVICESccouiiriiiiiiieitentte et sttt sttt e st e et e st e e bt e st e e ebee s be e e st e sbeeeneesane 370
Send Data When Data Mapping IS NOt SUPPOITEA........ccoccieiiiiiiie et eee e seee e are e e tae e e stre e e e nraeeeennneas 371
Request Confirmation Of DAta SENTuiiiiiiieiciee et e e e et e e s tre e e e ata e e seaseeeesbsaeeensaeesnnnneas 371
FOrce Data TranSMISSION ...ceiiiiiiiiiieiiee ettt e et e e st e et e e e s e r e e e e e s e sanrer e e e e e s e s nnnnnereeeeesennnneneeesesaans 371
SWitCh State from SENA 0 RECEIVE ..couviiiiieiiii ettt e e s st e e s abe e e e sabee e e snbaeesnanaeas 372
RECEIVE OPEIAtIONS .ttt e s b et s e e e s s b et e s e b bt e e samb b e e s sabaeesenresesenbneessnreeesas 372
U =Tol A = D | - OO PP PP PURTPN 373
RECEIVE Data iNtO NCL TOKENS...ccuutiiiieriieiiteeiee sttt st e ste e s e e st e sbe e sbeesabeesbeesabeesbeesabaesnseesabeesnseesbaesnseesane 373
ReCeive Data into @N IMD O ... ettt ettt et e e e s ettt e e e s e s e bt eeeeeeseaabebteeeeeeseannrbeeeeeeeeaan 374
Respond to @ Confirmation REQUESTcoiuiiiiiiiiiiieee ettt st ettt e e ne e s beesnee e 375
T AV R BT =T o To I g Vo I Tor- Yl o o HOS PSP 375
Receive a Deallocation INAICAtIONuiiiie ittt sttt st s be e st e s beesabe e sbeesabeeesaeesnbaeenseesnne 375
o oY g o o Tt =11 [= T TP TRT 375
(0o V=T ST Ta (ol g DT | o Yor- Y 4o o I USSR 376
SAMIPIE CONVEISATIONS ..ttt ettt ettt ettt ettt e h e bt e st e e sttt e sh b e e bt e e sa b e e bt e e sabeebeeesabeebeeesabeebeeesnneenees 376
&APPC RetUIrN Code INFOIMATtiONuiiiiiiie ittt ettt e st stae e e et e e e aae e e s tbeeeesabeeesenateeesnsaeeeenssaeesnnsaeas 377
F Y oY o] [Tor: 14 Te] T DT F{ o DO USRSt 378
Chapter 20: Advanced Program-to-Program Communication Extensions 379
APPC EXLENAEA VEID SEL ..nviiiiiiiiie ettt sttt ettt ettt e si e et s e e sae e e sate e bt e e sateesbeeessbeenbeeessbeesaeessteenseessaseenses 380
LAY e O =14 1 Tl d (o] o K- PP PPPPPURTPIRt 381
START Transaction-RemMOte ProCESS STAIt.......ccuuiiiiiiiiiiiitee ittt st e s s e s e e sennree s snneeeeas 382
Remote Procedure Call (RPC) TranSaCiONeciecveiiiceeeeeeteeeeeieee e cereeeeete e e eetree e eetreeeeesaeeeeeaneeeeeseeeeenareeeeenneas 383
ATTACH Transaction-AlloCate @ PrOCEAUIEccuuiiiiiiie ettt e e ittt e e s st e e s e ate e e seaneeas 383
CONNECT Transaction-Connect t0 an ACEIVE PrOCESSuuiiiii ittt ettt e e e e e e e s e s eneeeeeee s 384
APPC CliENt/SEIVEI PrOCESSING .veecvveeiureeeteeeiteeeteesireesteesaeeeteeesaeeesesesseessseessseeasseessbeeasssessseeasssessseeasseessseensseessseenses 384
Y] V=T g e o ol Ty T PO PP PP ORPPRTI 385
Client/Server CONNECTION IMOUE.......oii ittt ettt et e e ettt e s e eaa e e e set et e e esbaeesesaaeeeseraeesssssesesaaseessasatessssaeesasaees 385
AUtOMAtiC CONNECTION IMOTE ... ieiiiieiiiie ettt et e ettt e sttt e e e s bt e e s e abeeesabaeeesabbeeeenbaeesaaneeas 386
NOTITICATION MO 1 tiiiieeie ettt sttt st e st e e s be e e bee s beeeabeesabeeesbeesabeeenbeesabeesabaesabeesseesnbeesnsensnss 387
2L T=T 4 o Ta T 1Y, o o SRS 388
TranSfEr @ CONVEISAtION ...cciuuiiiiieiiieeiee ettt ettt s e st s bt e s bt e s bt e s bt e s beeeabeesabeesaseesabeeeabeesabeesaseesabaeenseenane 388
Chapter 21: Using APPC to Communicate with Other Systems 389
Y o Lo TV A AN o T TP PP P PP PPTSTPRPRO 389
Transaction Programs and CONVEISAtiONS.........iiicuiiriiiiieeeiiie e cetee e steeeeste e e sseee e e snreeeessteeessnseeesnseeeesssseesanes 390
YT (o ol o1 - o £V ST UPUUUOE 391
(00e] NV =T T T o] T Y o =T TR 391
FAN o e O 0 oY o o Y= &P PUPPRTRIE 392
0] o) o Yo Lo (=T YA o O o o Yo [F ot £ 3R 393

Contents 17

Doy T L= Y ad a OO X1 394

Define DYNAMIC APPC LINKS......iiieieiieeetie ettt ettt e e st e e bt e st e e e bt e s b e e s neesbeeeneesane 394
F Y T O =Y o] L= Y=o [0 1T Y3 0 =Y oL (R 395
HOW APPC CONErol Tables INEEIACTciviiiiiiiieiee sttt sttt e st e e sbeesabe e e saeesbaesbaesane 395
DEfINE APPC TABIES «..eveiieeiieeeee ettt sttt st e st e st e st e s s be e eabeesabeesabeesabaesabeesabaesnbeesabaeeseesabaeenseesans 396
Define @ Transaction CoNtrol Table........uiiiiiiiiiii et s ettt e e s bbe e e e sabaeesnaneeas 397
[T T - T 1Y ot o o [PSSP 397
Define @ DYNAamIC LINK TaDIE ..uvieiiiiic et e et e e et e e e st e e e eata e e s sasseeesssaeeentaeesnnnneas 399
Define an Option St CoONtrol TABIEeeii it e e e e e eatr e e e st a e e e ntaeeernnneas 400
Define @ MOdE CONLIOI TabIE . .uiiiiiiiii et ee e e s bae e e sttt e e ssanbeeesbbeeeenabaeesnaneeas 401
Chapter 22: APPC Security 403
LINK LEVEI SECUIITY «.neteeiieeetteittte ettt sttt sttt e st e st e st e e bt e sab e e e bt e sabe e e bt e sabeesaseesabeeenneesabeeeneenane 403
CONVErSAtION LEVEI SECUIITY ..eeiutiiiiieitii ettt ettt ettt ettt e et sa bt e sabee s b e e eabeesabeesaneesabeesaneenn 404
VT I Yol UL =Te B I =T g Y- Tt d] o PSP 404
Conversation Level Security and NCL Procedure ENVIrONMENTSccccuieiiiiieeeiiieecciieeeciveeeesiteeeeeeeeeesvveeeens 405
Specify Security for APPC Links With REMOTE SYSTEMSuviiiiiiieeiiee ettt e e e etre e e e eara e e eanaeas 405
APPC REEION USE ..ttt ettt ettt st e e s s e e s et et e s ma e e e e e n b e e e s e mn e e e snbeeessnreeesenreeesannneas 406
ACTIVATE APPC LINKS c..uvteeeeiieieecieeeesttee ettt e sttt e e sttt e e saa e e e sateeeessateeesasaeeesateeesansseeessaeeeessbaeesansseeesnnsaeesnnsanesanes 406
STArt LINKS IMANUAIIY ..ttt e et e e e st e e e ebtae e s tbaeeesabaeeeessaeessbaaeesataeeeansraeesnnsaens 406
Deactivate LINKS ManUAIIYeecciiiieeeee ettt e e et e e et e e e s ba e e e eataeeeeasaeeesnbaeeeesraeesnsenas 407
Start LiNks AULOMATICAIIY...ccccvieie et e et e e st e e e e e ta e e eeate e e eabeaaesabaeeeensraeesnseeas 407
Deactivate Links AULOMATICAIIY ..oceeviiiiieee ettt e e e st e e e ate e e seaaeeeesnbeeeennraeeennnneas 412
APPC Link Definition EXAMIPIES....cciiviieeeiiieeeiieeesiee e sreee e sette e sttt e e st e e seaaae e e sat e e e sessseeessaeeeessseeesanseeeesnseaessnsenenannes 412
Run Conversations Within the Same DOMaincioiiieiiiiiie ettt e e seaneeas 412
RUN With Already Verified SECUNITYccuiii ittt ettt e et e e e e tae e e ette e e eeataeeesabbeeeeabaeeeensanas 413
Run an APPC Link Between a Domain and @ REMOtE LUccoociiiiiiiiiiiiiiieeeiiee ettt s 414
RUN @ QUAlIfied TranSaCLiON c....eieeiiiiieeiee ettt sttt st e st e st e s bt e sabe e e bt e sabeeesnee s beesneesane 415
{0 W CT=T o= o Tol N = 0 1Y [ot o o [PPSO PRSPPI 416
Chapter 23: Program-to-Program Interface 417
USES OF PPl ettt ettt e be e st e bt e e bt e bt e e bt e e bt e e bt e e s hb e e bt e e e a b e e bt e e sab e e hbeesabeeeateesabeeeabeesareenaneens 417
CNIMNETIM IMOGUIE ettt ettt ettt ettt e e e sttt e s e bt e e e sttt e e eabeee s asbeeesabbeeeenbaeesnsbaeesabeeeeenbaeesnnsaeas 418
STUCLUIE @NA DAta FIOW.....iiiiiiiiee ettt ettt et ettt e e sttt e sttt e e s s bt e e e saabeeesabbteeeaabaeessasteeesnbaeesanbaeesnanes 419
INEEITACE DELAIIS c..veeeiieeeee ettt st e st e st e s et e st e e sab e e s bt e sabeeeabeesabaesnbeesabaeesee s baeenneenane 420
BIPPIVEID ettt ettt sttt s ke st e s a b e e et e s et e e st e s b e e e a bt e s a b e e e be e sabe e e be e sa b e e e abeesabeesabeesabeenatee s 421
Return Codes, System Variables, and User Variablescooouiioiiiei et 422
Determing PPl Or RECEIVET STATUSoiiiiiiiitiiee ettt e e e e et e e e e e s abeb e e e e e e s e anreeeeeaeeeann 422
Define the Process as @ Registered PPl RECEIVELuuiiiiii ittt e e e e e ciatr e e e e e s e aataaeeaeeeeenas 422
Y =TaTe I W CT=T o 1= g ol A 1= o AT PSP P PP PPPPRP 423
SENA DAta 10 @ RECEIVET . .eeiiiiiiieee ettt ettt et e sbt e e st esb et e sate e bt e e sabe e bt e e sateesbeeesabeenbeeenatesnnees 423

18 Network Control Language Programming Guide

RECEIVE DAt ..ooeeeviiiieiiieieeiiiee et ee e e ettt e e e e e et e aa e eeeeee e e e aa b e eeeeeesabaaaaseeeseastanasesesssstanneeeeesssstnnnseeessessnnnns 423

DEaCtiVate the RECEIVET ID ..c.ueiiiiiiiiie ettt ettt s et e e st e e s et e e ssabte e e sabaeeessbeeessasaeeesabeaeeaareeesnnneeas 423
Yol T o ol o Yol L A= PP PPTTRRTRO 424
ACCESS PPl FrOM NCL PrOCESSES ...veivvieiieiriieeriieesiteesiieestteesiteesteeesiteesseeesssesssseesssesssseesssesssesesssesssseesseesssessssesssees 424
Access PPl Facilities from Other PrOgrams.........ciiuiieeiiiii e ccieee sttt e ettt e eree e e st e e e ette e e saaeeeesatseeeensseeesnsaeessnssesennnns 426
YL G o o IO 1 PP RRUPP 426
SPECify SENAEr aNd RECEIVET IDS ..c.uveieiiiiiiieiiieeitt ettt ettt ettt et e et sa bt e bt e s ae e e bt e e s st e e sbe e e saseesateesaneennees 428
(01 TTol T o o B 7 1 U OO O OO PRSPPI 431
(0o A o] I Y=Y ol TN T g o oY d =T o o SRS 432
Check the Status 0f @ RECEIVEI PrOSIramc...eiiuiiiiiiiiieiite ettt sttt sttt e st e s e sbeeeanee s 432
Obtain ASCB @Nd TCB AGQUArESSES ...eiiiiiiieiiiiieeiitieee ettt e eritee e sttt e e s ssteeessateeesabseessssteeesssteesssseeesnssaeessssseessnsseeeens 434
Define and INItIAliZE @ RECEIVETuiii ittt et e e et e st e e e s tae e e e bt e e seaaeeeesnsseeeenaseeesnnneeas 435
DEACTIVALE @ RECEBIVET ...ttt ettt e e e sttt et e e e s ettt e e e e s esan b ee e e e e e e e sansrreeeeeeesannnreeeeeeesannnn

Delete an Active Receiver

Yo B CT=T o 1T ol A 1= o SRR
Control Data Buffers.......ccoceeeueennne
Send @ Data BUFfEr 0 @ RECEIVETciiieiiiecciit ettt st e e e s bee e e s ate e e sabeee e sabaeeeennsaeesnnneeas 442
Allow a Receiver to Receive @ Data BUfEr.......coviii ettt 444
PUIEE the Data BUFFEIeeeee e et e e et e e et e e e e att e e e stbeeeeataeeeasaaeesntaaeeasraeesnnnanas 446
WA ON @N ECBi....iiiiiiiiiiiiteee ettt ettt et e e e sttt e e e e e s e bbbt e e e e e e sasaaat e e e e eeesasssbataeeessasassbabaeeeeeesasnsssbaaeesssasnnnrees 447
Obtain @ Unique Sender OF RECEIVET ID.......ciiuiiiiiiiieeeiee ettt sttt et e et e st e et e st e e b e sabeesaseesabeesabeesabaesaneens 448
Receive Information from @ RECEIVET PrOZIamcciiiiiiiiiiiiieeccieee ettt eeee et e e e e rite e e e et e e s s tae e e eataeesensaeeesanreeaans 450
Trace the Cause Of @ PrOCESSING EITOrcccuiiiiciiee et eetee et e st e e et e e e ta e e e s tbeaeesateeeeeastaeesasbeeeesssessasaseesnsreeaans 452
D L] oT0T=d o1 o = Yo =TSSP USURN 454
Chapter 24: &NDB Verbs, Built-in Functions, and System Variables 455
NI Y A=Tg BT U T 0] s o= | SRR 456
S TU T o T S T Tt Lo Y g I T 4 4 P SR 457
SYStEM Variable SUMMAIYoiiiiiiie et e et e e sttt e e e st e e e seaaae e e s baeeeesteeesnseeeesnsaeeeasseeesnnsees 457
=T o] 40 N gL = USSR 458
Appendix A: NCL VSAM Techniques 461
Initialization aNd ACB OPEN PrOCESSING......utiiiiiieeeiiiee ettt eiit e e sttt e e ettt e s eitte e s sabeeeeesabeeesaasteessabeeeseasbaeesaseeeesasseeenns 461
Automatic Verification and LOAING.........uuiiiiiii ittt e e e e st e e e e e e s abrae e e e e e e seabataeeeeeesennnanes 461
2o I T o | g =S
Obtain 1/0 Buffers
Concurrent ACCESS tO MUILIPIE UDBSciiicuieiiiiieeeetiee e sttt e e rtee e e tre e e stae e e e st eeesasaeeesssaeeeasseeessssaeesnsseeeanssneessnsens 463
Data Set Positioning and GENEriC RETIIEVAL........coiii it e e e e e e e e e e s e earaa e e e e e e eeenneaes 464
Release File ProCESSING RESOUICESuciiiiiiiiiiiiiieeeececiittteeeeeeesettateeeeeeesettaaeeeaeeesastasaeasaessaassssaeaaaassensssssessesssannsssens 465
[D1E o] F= 1A ST F=TR 2o ' = o T o SR 465
CONLIOl UDB PeIfOIrMANCE...cutiiiiiiitie ettt ettt ettt et sttt e st e st e st e e s bt e sabeesabeesabeesaseesabeesaseesabeesaseesabeesaneens 466

Contents 19

Offline Processing Of DAta SEEScciiiiiiiiiiiiieie ettt ettt e ettt e st st e e e bt e sabeesabeesabeesaneens 466

Appendix B: System Level Procedures: Messade Profiles 469
USE NCL VErbs tO RETrEVE IMIESSAZEScccueeiiiiiiieeiitt et ettt ettt ettt ettt ettt e sit e ettt sabe e bt e e sab e e s bt e e sabeessteesabeesabeesabeesaneess 469
System Level Procedure ENVIFONMENTScc.uiiiiiiiiieiiee ittt ettt ettt ettt e st e sbe e e sabessbee e sabesabee e sareesneeesaneennees 469

MSGPROC Viewed as a System Level PrOCEAUIEcccuiie ittt svee e e e e ete e s aaae e e sereeeennes 470

&INTREAD: Dependent Processing ENVIFONMENTiiicciieeiiieeeeiieeeeeiiee e sireeeeseve e e seaaeeesnreeessntaeeesnsaeessnneeeans 470
Message Handling and Processing by System Level ProCeAUIEScocuiiiiiiiiieiieiniee ettt s 470
Decide What £0 DO With @ IMIESSAEeiiuiiiiiiiiieeiti ettt ettt ettt ettt e st e e s st e e sabeeenbeesabeesareesabeesanee s 471
IMIESSAEE PrOfil ..ottt ettt ettt e h e e bt e s a b e e bt e e sa bt e h et e sab e e at e e s bt e eabeesbeeeanee s 472

MESSAZE Profile Variablesccceeiee ettt e et et e e e st e e e et e e e setteeeesabaeeeesteeesssaeeesateeeeanses 472
&INTREAD MESSAZE PrOfileeeieeiiiiee ettt ettt et e e st e e e et a e e eebae e e sabbeeeeataee s asaeeesasaeeeanstaeesnnsaeas 478
QLOGREAD MESSALE ProOfile....cc ittt ettt ettt e sttt e s bt e st e e eabeesabeesaseesabeesanee s 483
&MSGREAD MESSAZE PrOfile...ci ittt ettt st e ettt e st e st e e eabeesabeesaseesabeesanee s 486
&PPOREAD MESSAEE PrOfil....ee ittt ettt ettt e et e st e e bt st e eabeesabeesnseesabeesanee s 489
Appendix C: Sample APPC Conversations 493
Sample Conversations BETWEEN TWO SYSTEIMSuiiiiiiiiiicciieeecttee et e eeiee e e st e e e ette e e staeeeesataeeeesaeeesssaeessssaesennnes 493

Source and Target NCL ProCEAUIES.........uuiiiiiie ittt et e e ee st e e e e s e seabar e e e e e eeseasbsaseeeeeesessstsaeeesessanssnes 493
RUN the Sample APPC CONVEISATIONScciciiiiiiiiieeeeciteeeeiteeeeetteeestteeeestteeeeeasaeeessseeeesstaeseassasessssaeeansseeesnssasesnnsens 494

Environment 1: LOCAl CONVEISAtIONS.....ccuieiiiiieeeeiiireeittee e settee e ettt e ssete e e sbaeessateeessaeeeesntaeessnteeesssneesssseeennnns 494

Environment 2: Same LU CONVEISAtiONSccocvuieiiiiiieiiiiee ittt et e e e esenn e e snneeessneeesennne 494

Environment 3: Conversations BETWEeN TWO SYSTEMISuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieieiererarererererereeaeea. 495
Appendix D: NDB Response Codes 497
ADOUL RESPONSE COUES....uuiiiiiieeiiiiiiiiieee e e e ettt e e e e e e se e e e e e e se et aeeeaasseasastaeaeeeseaasstaaeeeessasanstssaeeeesesanssssnnaeasesennnsens 497
[g Te T TaN o100 - o] o KOS RTSRPRP 497
LTIy o Lo T TSI o Yo [R 498
Appendix E: Using Key Ranges with an NDB 513
INDB K@Y STIUCTUI ...ttt et e e e e e s r et e e e s e s ar et e e e e s sesnsbaeereeeseans 513

SEOIAZE OF VAIUES ...ttt ettt sa e st e bt e e sa b e e bt e e s at e e bt e e s st e e bt e e sabeenateesabeennns 515
SUEEESTEA KBY RANEES ..ceiuviiiiiitieeeitiee e ettt e sttt e e sttt e e s tte e e s ateeeessteeeeassseeesansaeeasaseeeeansseeeasseeeessseeeeansseeesanseeessnsenenanne 516
(0] d o [T @l o Y [o [T A Te] o IR OO O ST P UUPPRROTPRRRR 516
Appendix F: Using NCLEXO1 for NDB Security 517
NDB Open EXit Call DELAIISuuvvieiieeieeiiiiei ettt e ettt e e e e e sttt e e e e e e seabbtaeeeeeesesaaataeeeeaeseassataessaassennnstaeseaeasenas 517

20 Network Control Language Programming Guide

Appendix G: Using the Batch Command Interface 519

Y ol sl @oT0 010 =10 Vo I [1 X=Y o o U RUPTUPO 519
210l I @o Yo' 00 F=Ta Yo I IV 1= 520
211 1o T o] U TP 520
211 0 LU T TP 521
BCILOGON Command—EStabliSh SESSIONcccuuiiiiiiiieiiiiit ettt s e e st e e s sbae e e sabaeessaateeesnreeeeas 521
BCIDISC Command—TermMiNate SESSIONciiicuieeiiiiieiiiieteeiiteeesittee e sttt e ssbteeesbeeeessabeeessaseeessbeeesssssaeesssssesssnsseeeens 523
BCIEXITC Command—Control CoOmMMand EXIt.......cccercuierieeriiiiniieeiieeeiieesieeesieesieesiaeesbeessseesbeessseesabeesnseessbessnseesnne 523
210 IO o= -1 0] o PP T TP 524

PrOCEAUIE SUSERBC ..ttt ettt e et e e et e e ee e e e s eaeeesateeeseaaeeeesanateseasetesansseeesaretesaassetesansaeessareeesaareeesannneas 524

CUSTOMIZE SUSERBCI ..ttt ettt ete ettt et e et e et et e eteeatssatesatesaeesaeeaasenesenesenesebeeatsenteentesneesaeesaeesaeenssenteenssans 526
BCI COMMANG EXITarriiiiiiiieiiiiiieeeeeeeiiieee e e e e eesiteee e e e e eeseataeeeeeeeesatbaaeeeeeeesasstareeaeeeesassssaeaeeeesaassssaeseeaesansssseseeeseannnnrens 526

REEUIN COBS ...ttt ettt ettt e e e st e e e sa bt e s abb e e e sabb e e e e st e e e saabbeeesabbeeeeasbeeesnsbeessabbeeeannbaeesnaneeas 527
JCL RETUIN COBS ...tiieiiieeeeiiee ettt ettt ettt ettt ettt e e e bttt e st e e e s a bt e e e e st e e e s abaee e sabbeaeaanbeeesansbeessabbeeeesbbeesanneeeesanseeeann 528
Appendix H: Virtual 3270 Interface 529
AbOUL the VIrtual 3270 INTEITACE ..vviiiiiiieiieee ettt et sbt e e st e e sba e e s abeesateesabeesaseesaseenenas 529
NV g YAy N 1o =T o - o] SRR 529
(0o Y A o] I Tl oY V=Y ¥ d o o RSP 531

INTEITACE 1O NCL PrOCEAUIESeiiiiiiiieciieeestee ettt s et e et e e e et e e ste e e e sate e e ssaateeesnbaeeeesteeeesnsaeeesnssaeeensseeesnnseeas 531

T a T N Ol Y Tot T 1 ol OO PP PPPRPRN 531
Index 533

Contents 21

Chapter 1: Introduction

This section contains the following topics:

About this Guide (see page 23)
What You Need to Know Before Using NCL (see page 23)
Related Documentation (see page 24)

About this Guide

This guide provides information for anyone who writes or maintains NCL procedures. It
describes the principles behind NCL and includes reference material and examples. It
describes how NCL is structured and used. It describes important components of the

language and how these components are used within NCL statements to drive your
products.

The components (verbs, built-in functions, and system variables) are listed. The
manipulation of NetMaster® Databases (NDBs) is described with step-by-step

instructions for creating an NDB and examples of code to demonstrate how best to work
with NDBs.

What You Need to Know Before Using NCL

This guide assumes that your product is already installed. It assumes that you are
already familiar with basic IBM computer concepts and terminology. Specific NCL

concepts and terminology are described where appropriate in the text, usually when
first mentioned.

Chapter 1: Introduction 23

Related Documentation

Related Documentation

This guide and the Network Control Language Reference Guide are the principal
reference documents for users of NCL.

The Network Control Language Reference Guide contains descriptions of all NCL and
&NDB verbs, built-in functions, and system variables, their syntax and usage.

Note: For more information about administering and using the core functions of your
products, see the following resources:

m Administration Guide

m Reference Guide

®m Security Guide

m User Guide

m Online Help

24 Network Control Language Programming Guide

Chapter 2: About Network Control Lanquagde

This section contains the following topics:

What Is Network Control Language (NCL)? (see page 25)
Create NCL Procedures (see page 26)

Invoke and Cancel NCL Procedures (see page 27)

Exit OCS During Execution (see page 28)

Control Runaway Loops (see page 29)

List Procedure Names (see page 29)

List the Contents of NCL Procedures (see page 30)

What Is Network Control Languade (NCL)?

Network Control Language (NCL) is a high-level interpretive language integrated into
your products. It provides a fast, comprehensive and advanced development tool to
implement your site-specific requirements. You can use NCL to rapidly tailor your
product to suit the needs of your environment. NCL is based on free-form statement
syntax that can process both system and user-supplied data. Data is maintained in
variables that can be manipulated and changed as required.

Collections of NCL statements, which can include system commands, are termed
procedures, and are stored in partitioned data sets (OS/VS) or CMS files (VM) called
procedure libraries. These procedure libraries can be edited and updated while your
system is operational. Each NCL procedure is a separate member within a procedure
library.

There is one principal procedure library (or concatenation of libraries) used by your
system. In addition to this system library, individual users under OS/VS can be allocated
an individual procedure library for their own use, as part of the definition of their user
ID.

NCL procedures can take many forms. They can be a simple collection of comment
statements that provide an effective means of online documentation. They can be a
collection of product commands in exactly the same format as entered from a terminal.
They can be extended to include logical decision-making capabilities, the display of
full-screen panels, and the use of file processing capabilities.

An NCL procedure can call or nest another procedure to improve modularity.

In addition, certain NCL procedures are reserved for performing special functions such
as interfacing to unsolicited messages from VTAM (PPOPROC), intercepting and reacting
to other messages sent to the user terminal (MSGPROC), and processing messages
destined for the activity logs (LOGPROC).

Chapter 2: About Network Control Languadge 25

Create NCL Procedures

Create NCL Procedures

Check NCL Syntax

Procedures can be created while the system is operational. New procedures can be
added to the procedure library, or existing procedures modified. Any changes made to a
procedure become effective the next time the procedure is loaded.

Procedures can be created using either system utilities or an online editor such as
TSO/ISPF or CMS Edit.

To create a new procedure you must first select a (unique) name by which the
procedure is to be identified and by which it will later be executed. The name you select
should be meaningful and where possible identify the type of function that the
procedure performs. CA recommends that you establish naming conventions for this
library to ensure consistent use of names across operational areas.

Procedures are created as a series of individual records. Although the format of
statements within each record is flexible, certain syntax restrictions do apply.

Commands, comments, and statements can be entered in either upper or lower case.
Most commands are converted to upper case before execution. Comments are left
unchanged.

When you have written an NCL procedure, you can use the NCLCHECK command to
verify the syntax and structure without executing the procedure. NCLCHECK loads and
checks the procedure just as if it were to be executed and notifies you of major syntax
or structural errors in your code. Full syntax checking does not take place until
execution.

Test NCL Procedures

To ensure that system overhead is kept to a minimum, the system attempts to optimize
NCL execution in many ways. One technique is that of sharing concurrent requests for a
procedure of the same name, in such a way that only one copy of the procedure is
loaded into storage. This technique also lets you specify a retention queue on which a
completed procedure is retained, on the assumption that it can be reused within a short
period. This eliminates the need to perform disk I/O to bring the procedure into storage
again.

For extremely high usage procedures, you can use a technique known as preloading to
ensure that the procedure remains in storage at all times, regardless of its pattern of
use. These options are selected by the LOAD command.

26 Network Control Language Programming Guide

Invoke and Cancel NCL Procedures

Test in Production and Testing Environments

While such facilities are ideal in a production environment they can interfere with
testing. For example, you may have completed and tested a procedure and made
certain corrections and want to run a second test. Although you have saved the
corrected procedure in its library, you may notice the original errors are still occurring.
This is most likely to be caused by NCL having retained the original procedure in storage
and reused it when the second test was run. To overcome this apparent interference
with your testing, use the NCLTEST command to signal to the system that you are in fact
operating in a test mode and do not want your procedures retained or shared and that
the latest copy is always to be loaded from the library. For more information about the
NCLTEST command, see the Online Help.

Debug an NCL Procedure
The NCL Debug facility is a powerful tool to assist in the debugging of NCL procedures.

NCL Debug provides the ability to observe the execution of an NCL procedure from an
external source, that is, another environment, another user region, window, or NCL
environment. It eliminates the need for code changes to debug a procedure. It also
provides comprehensive control over the NCL procedure as it is being executed,
supporting statement stepping, alteration of variable contents and attributes, and so on.
It lets you specify criteria for debugging NCL before it begins execution.

The NCL Debug facility is made up of a set of commands that lets you start and stop an
NCL debug session, control the execution of NCL processes, and display and modify the
contents of NCL variables. Procedure and subroutine nesting levels can be listed and the
source code that is being executed can be displayed. NCL trace output can be received
at another region, thus allowing you to view the trace output concurrently as the
debugged process executes.

Invoke and Cancel NCL Procedures

NCL procedures are invoked and canceled by using commands.

Chapter 2: About Network Control Language 27

Exit OCS During Execution

Invoke NCL Procedures

Procedures are invoked explicitly by using the EXEC and START commands, or implicitly
by certain system functions such as EASINET and timer commands.

Optionally, variable parameters can be passed to the procedure when it is invoked.
These variables are specified on the EXEC or START command following the name of the
procedure being invoked. There is no limit to the number of variables that can be
passed. Each word following the procedure name is passed in the next available
variable, numbering from &1 for the first word, &2 for the second, and so on.

In VM systems the CMS minidisk that holds your product procedures must be
reaccessed after the procedures have been altered, so that your product locates the
new versions of the changed procedures.

Cancel NCL Procedures

NCL procedures can be canceled by using the FLUSH or END commands. Generally users
can cancel only their own procedures, but the system can be configured so that
authorized users can cancel any procedure. Full-screen procedures (that is, procedures
that display full-screen panels) can normally be canceled by using the standard END
function keys (F3/4 or F15/16). If function key interception is being performed by the
procedure, the responsibility of responding correctly to the use of function keys rests
with the author of the procedure.

Exit OCS During Execution

When an Operator Console Services (OCS) operator exits OCS, any NCL processes still
executing in their OCS window are flushed without further execution and any display
lines awaiting output are discarded. Any processes that are queued for execution by
that user are also flushed. Messages are written to the log identifying any procedures
that have been flushed.

28 Network Control Language Programming Guide

Control Runaway Loops

Control Runaway Loops

Protection against uncontrolled looping within a procedure is provided through a loop
control counter, maintained automatically by NCL. Runaway loop control can be
activated by using & CONTROL LOOPCHK verb. The default is &CONTROL NOLOOPCHK,
which means that runaway loop control is not in effect unless requested.

When a procedure commences execution, a count of 1000 is assigned to this counter.
This is then decremented by one for each executed &DOEND statement associated with
an &DOWHILE or &DOUNTIL, and for each executed &GOTO statement. If the count
reaches zero, the procedure is regarded as being in an uncontrolled loop and is
automatically terminated.

Certain events that involve operator interaction, indicating that the procedure is not
looping, cause this counter to be automatically reset. An example of this occurs when
displaying a panel using the &PANEL statement and then having to wait for operator
input before processing can continue. In such a case the value for the loop control
counter is reset to 1000. The &LOOPCTL verb is provided to enable the user to set a new
loop control limit from within the procedure for those procedures that require more
than the default value.

Note: &LOOPCTL is decremented for PPOPROC, MSGPROC, LOGPROC, AOMPROC, or
CNMPROC. However, it is reset to its full value each time a message is read with

&PPOREAD, &MSGREAD, &LOGREAD, &AOMREAD, &CNMREAD, or &INTREAD. The loop
control therefore applies only for processing associated with one message.

List Procedure Names

Note: This applies to OS/VS only.

The SHOW EXEC command can be used to obtain an online list of the names of
procedures in the procedure library. Optionally, a specified range can be listed:

SHOW EXEC,CA,CD

or the procedures in a particular procedure library can be listed:

SHOW EXEC, ID=PROCLIB2

For more information about the SHOW EXEC command, see the Online Help.

Chapter 2: About Network Control Languadge 29

List the Contents of NCL Procedures

List the Contents of NCL Procedures

The LIST command displays the contents of the nominated procedure. No statements or
commands within the procedure are executed. Nested procedures are not listed, and
separate LIST commands are required if these need to be displayed.

30 Network Control Language Programming Guide

Chapter 3: NCL Concepts

This section contains the following topics:

Where Does NCL Execute? (see page 31)

What Is an NCL Procedure? (see page 31)

What Is an NCL Process? (see page 32)

NCL Processing Region (see page 33)

Execute NCL Processes Serially (see page 34)
Execute NCL Processes Concurrently (see page 34)
Dependent Processing Environment (see page 35)
Issue Commands from an NCL Process (see page 37)
NCL Processes and the Remote Operator Facility (ROF) (see page 39)
Communication Between Processes (see page 41)
Scope of the NCL Processing Region (see page 44)

Where Does NCL Execute?

NCL executes only in association with a real or internally-simulated terminal. The most
flexible method of invoking NCL processing, and the one that is easiest to understand, is
to use the EXEC or START commands from an OCS window. These commands let you
specify the name of the NCL program that you want to run.

Other methods of executing NCL are implicit (see page 36) rather than explicit.

What Is an NCL Procedure?

The basic unit of NCL code is called an NCL procedure. A procedure contains one or
more NCL statements that are executed when the procedure is invoked.

Each NCL procedure has a 1- to 8-character name and resides in your product's
procedure library. In OS/VS systems this is a Partitioned Data Set (PDS). In VM systems
the library is held on a CMS minidisk.

Procedures are created or modified by an appropriate editor, for example, ISPF.

Chapter 3: NCL Concepts 31

What Is an NCL Process?

What Is an NCL Process?

The actual execution of an NCL procedure is termed an NCL process. The EXEC or START
command specifies the name of an NCL procedure, which is either retrieved from the
NCL procedure library or is already resident in storage.

The following example shows the logical difference between a procedure and a process:

START PROC1I NCPA
START PROC1I NCPB
START PROCLI NCPC

These commands, entered from an OCS window, invoke three separate NCL processes,
each of which is executing procedure PROC1. There can be only one copy of PROC1 NCL
code in storage, but three separate executions of it are taking place concurrently. In this
example each process is given a different NCP name as a parameter.

It is nevertheless common for the term procedure to be used instead of process.

Nesting

The first procedure that is executed in a process can issue EXEC commands internally to
call other procedures. This is called nesting. Regardless of how many other procedures
are called, or the number of nesting levels involved, all execute as part of the same
process. If any procedure in a process issues a START command, a new process is
invoked, which is independent of the originating process.

Execution of the procedures in a process continues according to the logic of the
procedures. When the first level procedure completes its processing, it ends and the
process terminates.

NCL Process Identifier

Each NCL process has a unique number associated with it when it starts execution. This
is the NCL Process Identifier (NCLID), and it is a 6-digit number in the range 1 to 999999.
Processes executing at the same time carry different identifiers.

The process identifier lets individual processes be identified, even when processes are
executing the same procedure.

The process identifier is used principally to specify which process is to be the target of a
command such as GO, FLUSH, or INTQ, all of which can talk to NCL processes.

32 Network Control Language Programming Guide

NCL Processing Region

NCL Processing Region

All NCL processing that occurs within a system is performed on behalf of product users.
These users can be people, who log on to the system with a user ID/password
combination. Also, there are internal environments that act like real users, except that
they do not have any real terminal associated with them. These internal environments
all have virtual user IDs and in fact can be profiled in the same way as a real user ID by
having a UAMS definition created.

The most common virtual user IDs are those associated with the background
environments known as the background logger and background monitor. If you issue a
SHOW USERS command from an OCS window, you will see these virtual user IDs listed
along with any real users logged onto the system at the time. Other optional product
components generate their own background environments, so the list that you see on a
SHOW USERS display varies according to the configuration of the system.

Regardless of whether a user is real or virtual, every user in a product region is capable
of executing NCL processes, because every user has an NCL processing region associated
with their user ID while they are logged on.

The NCL processing region provides all the internal services necessary to allow the user
to have NCL processes executed on their behalf. While there is one NCL processing
region for each user; within each user region there can be one or more NCL processing
environments.

NCL Processing Environment

Each real user is associated with a 3270-type terminal with a display screen that
supports either one or two logical windows at any time.

Virtual users have no real terminals associated with them, but operate logically as if
they own one real line mode window.

Associated with each window that a user operates is at least one primary processing
environment. A processing environment provides the internal services and facilities that
are required to execute NCL processes for the user from its associated window.

Real users, using real terminals, can have one or two windows and therefore can have
one or two active NCL processing environments directly associated with these windows.
Internal users have only one window (logically operating in line mode) and therefore
have only one NCL processing environment.

An NCL process always operates within the NCL processing environment associated with
the window from which it was invoked.

Chapter 3: NCL Concepts 33

Execute NCL Processes Serially

Execute NCL Processes Serially

You can use the EXEC command to invoke an NCL process which will execute serially
with respect to other NCL processes that are invoked by the EXEC command from the
same window (that is, in the same processing environment).

This means that if you enter:

EXEC PROC1
EXEC PROC2

from the OCS window command line, a process is invoked to execute procedure PROC1
immediately; the process invoked to execute PROC2 waits until the first process ends
before starting to execute. The use of the EXEC command therefore serializes execution
of NCL processes in each NCL environment.

Serial execution of processes is useful for handling sequences of functions or operations.

Remember: Each NCL processing environment is independent; each one can be
executing its own stream of serialized processes. There is no limit to the number of
processes that can be queued for serial execution within an NCL processing
environment.

Execute NCL Processes Concurrently

You can use the START command to invoke an NCL process that will execute
concurrently with other NCL processes that are invoked with the EXEC or START
command from the same window (that is, in the same processing environment).

This means that if you enter:

START PROC1
START PROC2

from the OCS window command line, a process is invoked to execute the procedure
PROC1 immediately, and the second process is also invoked to execute PROC2
immediately. You can use the START command to execute many independent NCL
processes at the same time in the same NCL environment.

Concurrent execution of processes lets you have slave processes running on your behalf
doing different tasks. For example, a process could execute NCL procedures that
monitor the status of particular resources at regular intervals and communicate with
your OCS window only when something is found to be wrong.

The default maximum number of NCL processes that can be executing concurrently for
any user is 128.

34 Network Control Language Programming Guide

Dependent Processing Environment

The concurrent stream of NCL processes executes in parallel with the serial stream.

If you enter:

EXEC PROC1
EXEC PROC2
START PROC3
START PROC4

from the OCS window command line, PROC1 executes at once on the serial stream and
PROC2 is queued waiting for PROC1 to finish. However, PROC3 and PROC4 start at once
on the concurrent stream and therefore execute at the same time as PROC1.

Dependent Processing Environment

&INTCMD Verb

Processing environments can operate in a hierarchy, so that there can be many
processing environments associated with the same window. This is achieved by using
the &INTCMD NCL verb.

Every NCL process executing within an NCL processing environment can establish a
dependent processing environment (using the &INTCMD verb) in which other NCL
processes can be invoked to execute on behalf of the higher level.

In turn, an NCL process executing in a dependent processing environment can establish
its own dependent environment, forming a hierarchy of dependency and allowing any
NCL process to invoke chains of other dependent processes on its behalf.

&INTCMD lets a procedure issue commands or execute other NCL processes and have
the results returned to it rather than returning to the user's terminal window. This lets
users write sophisticated procedures that check the results of their actions and correlate
commands with their results.

When an &INTCMD statement is executed by a procedure, a new NCL processing
environment is created that is subordinate to the process that owns it, that is, the
process from which the &INTCMD statement is issued. This new processing
environment is called a dependent processing environment, because it exists only until
its originating process ends or issues an &INTCLEAR verb. The originating process can
use &INTCMD to schedule commands or other NCL processes for execution within its
dependent processing environment.

Chapter 3: NCL Concepts 35

Dependent Processing Environment

Any NCL process can issue &INTCMD and create its own dependent processing
environment. As described before, if you issue the commands:

START PROC1

START PROC2

from your OCS window command line, processes PROC1 and PROC2 start executing in
your window's NCL processing environment.

If each of those processes issues:

&INTCMD START PROC3

then PROC1 and PROC2 each have a dependent processing environment in which a
process PROC3 is executing. Similarly, the PROC3 processes can issue their own
&INTCMD statements to create and use their own dependent environments.

Any process that ends or that issues an & NTCLEAR statement, automatically causes the
termination of all dependent environments, and therefore causes termination of
whatever hierarchy of processes exists below it.

Explicit NCL Process Execution

The examples shown in the preceding sections have all assumed that the NCL processes
involved have been executed as a result of a START or EXEC command. Using START or
EXEC to invoke NCL processes is called explicit execution.

Implicit NCL Execution

Certain system functions execute NCL processes on behalf of users. The Primary Menu
NCL procedure is an example of this. When a user logs on, the NCL procedure
nominated on the SYSPARMS MENUPROC command is executed.

In this case, NCL execution has been invoked implicitly as a result of a user logging on,
rather than as a result of a START or EXEC command.

Other examples of implicit NCL execution are:

® MAI menu procedure (MAI selected from the Primary Menu)

m EASINET procedure (invoked on behalf of each terminal when it connects)

36 Network Control Language Programming Guide

Issue Commands from an NCL Process

System Level Procedures

Implicit NCL execution also occurs in relation to the various system level procedures that
operate internally. The most common examples are:

LOGPROC

This process executes the NCL procedure nominated on the SYSPARMS LOGPROC=
command. The process executes in the processing region of the LOGP user ID type,
which is a virtual user. LOGPROC views, and can act on, all messages that flow to
the log.

PPOPROC

This process executes the NCL procedure nominated on the SYSPARMS PPOPROC=
command. The process executes in the processing region of the PPOP user ID type,
which is a virtual user. PPOPROC views, and can act on, all unsolicited messages
that are sent to your product by VTAM to report network events.

Other system level procedures can be started by optional components, for example, the
Network Error Warning System (CNMPROC).

MSGPROC Procedure

A user operating in OCS mode can have a MSGPROC procedure associated with the
window.

The MSGPROC procedure is invoked automatically when the user selects OCS mode
from the Primary Menu, and is therefore implicitly executed. The MSGPROC procedure
has access to all messages that are sent to the OCS window and can intercept, change or
delete them as required. Message attributes such as color and highlight options can also
be changed.

MSGPROC facilities are available to OCS windows running on real terminals, to
background environments, system level procedures, and console environments.
Processes that execute in dependent processing environments cannot have MSGPROCs
associated with them.

Issue Commands from an NCL Process

Each NCL process executes within the NCL processing region of the user ID that invoked
it and is entitled to execute any command the user can execute from an OCS window
command line. The process therefore has the same command authority as the user for
which it is executing.

If a process executes a command, the rules outlined in the following sections dictate
where the results of the command are sent.

Chapter 3: NCL Concepts 37

Issue Commands from an NCL Process

Inline Command Execution

If an OCS operator enters:

START PROC1

from the OCS window command line, the process PROC1 starts running.

If the process then executes the command:

SHOW USERS

the results of the command (the answer) flow to the OCS window. The process itself
never has access to the messages generated as a result of the command. Consequently
the procedure cannot make any decisions based on the results of the command.

The execution of a command by a process in this example is called inline command
execution.

Dependent Command Execution

If PROCL1 is started in the same way as described in the previous section but executes
the NCL statement:

&INTCMD SHOW USERS

the SHOW USERS command is executed in the dependent processing environment for
the process. The messages generated by the command are not returned to the user's

OCS window but queued in a stack called the dependent response queue. The process
PROC1 can then issue the NCL statement:

&INTREAD ARGS

to read the results of the command from the dependent response queue one message
at a time. The individual words of each message are tokenized and placed in variables of
the form &1 &2... &n.

This technique lets a process issue a command and get the results back internally, so
that the process can review the results and therefore make a decision based on the
results of the command. This allows correlation of commands and results which in turn
provides unlimited capability for complex logic to be built into processes to handle
monitoring and automation of events.

The use of &INTCMD to execute commands privately in this way is called dependent
execution of commands.

38 Network Control Language Programming Guide

NCL Processes and the Remote Operator Facility (ROF)

Review of Messade Delivery Rules

The principal difference between inline and dependent command execution is the
message delivery that applies to the two different techniques.

A process that issues an inline command never sees the results of the command; the
results are always returned to the owner of the NCL processing environment in which
the process is running.

A process that issues a dependent command sees the results of the command because
they are queued to its dependent response queue and can be read using the &INTREAD
statement.

NCL Processes and the Remote Operator Facility (ROF)

The concepts of NCL operation discussed so far have covered execution of processes
within the NCL processing region of the user, in the system where the user is physically
logged on.

ROF lets a user, who is logged on in one system, route commands to other systems for
execution. The results of these commands are then returned to the originating user.

ROF also allows a command to be routed to one system for onward propagation to
another system where the command is to be actually executed.

Since ROF provides services at a command level, NCL processes (which can issue
commands) are also entitled to use ROF services to route commands to a remote
system and retrieve the results.

Chapter 3: NCL Concepts 39

NCL Processes and the Remote Operator Facility (ROF)

Messade Flow on a ROF Session

A user who issues a SIGNON command to another system or who issues a ROUTE
command to send a command to another system for execution establishes a ROF
session. The user is logically logged on to the remote system and has user attributes and
privileges as defined to the remote system.

If you enter:

ROUTE SOL2 SHOW USERS

from the OCS window command line, the SHOW USERS command is sent to the remote
system known as SOL2 and executed under your ROF logon. The results of the command
are returned and displayed on your real OCS window.

If you enter:

START PROC1

to start the process PROC1, which in turn issues the inline command:

ROUTE SOL2 SHOW USERS

the results are also returned to the real OCS window. In other words, the delivery of the
results of inline commands is the same across a ROF session as it is within the one
system. If a process executes an inline command either in its own system or by routing
the command to another system, the results return to the owner of the NCL processing
environment in which the process is executing; they do not return to the process itself.

Alternatively, if the process in the example issues the statement:

&INTCMD ROUTE SOL2 SHOW USERS

the results return to the PROC1 dependent response queue, and can be read back by
PROC1 using the &INTREAD statement.

In summary, therefore, the delivery of command results is always the same, regardless
of whether a process issues a command for execution in its own system or a remote
one.

The ability of NCL processes to issue commands across ROF sessions, and to correlate
the results, allows the development of monitoring and control processes that can
operate unseen and communicate with the operator only when a problem occurs.

40 Network Control Language Programming Guide

Communication Between Processes

Communication Between Processes

NCL processes execute in isolation from one another and although many processes can
run concurrently in the same NCL environment or region, they usually have no
knowledge of each other's existence.

However, it is often very useful to communicate directly with another NCL process
either within the same NCL region or (depending on implementation options and user
authority) across NCL regions.

The ability of processes to talk to each other provides the framework for developing
co-operative processes that can coordinate their activities but remain independent. ROF
services can also be used to provide communication between processes in different
systems.

INTQUE Command

As described in the preceding sections, a process receives the results of commands that
it issues using the &INTREAD verb. In concept there is a queue associated with the
process, to which can be added messages that represent the results of commands. The
&INTREAD statement allows the process to take messages off the queue one by one and
process them as required.

The queue used for the messages generated by commands is called the dependent
response queue.

The INTQUE command can also be used to place messages on a process's dependent
response queue either by entering the command from an OCS window command entry
line, or (more commonly) by issuing the INTQUE command from a different process.

Example: INTQUE command

The following example illustrates the concept. An OCS operator enters:
START PROC1

from the OCS window, which starts the process PROC1.

PROC1 then executes the following statements:

SWRITE DATA=&ZNCLID READY FOR WORK.
&INTREAD ARGS

Chapter 3: NCL Concepts 41

Communication Between Processes

At this point the process suspends execution pending the arrival of message(s) on its
dependent response queue.

The operator, or another NCL process, then enters:

INTQUE 1ID=357 TYPE=RESP DATA=BEGIN

where 357 is the NCL process identifier of the process PROC1 and TYPE=RESP indicates
that the text of the command is to be placed on the PROC1 dependent response queue.
The &INTREAD of the process then completes, with the variable &1 containing the word
BEGIN. The process can then go ahead with whatever other processing is required,
having used the &INTREAD and INTQUE combination to provide direct communication
between the process and the operator.

Dependent Request Queue

While the INTQUE command can be used to place messages on the dependent response
queue of a target process, it is sometimes confusing if messages arrive from an INTQUE
command when the process is also expecting the results of a command it has issued.
The INTQUE messages might arrive in the middle of the messages generated by the
command.

To avoid this and to provide a method of isolating messages generated by commands
issued by a process (which are predictable) from messages arriving from INTQUE
commands issued externally (which are unpredictable), a second message stream is
available. This is the dependent request queue.

Example: Dependent Request Queue

If the example in the previous section is changed so that PROC1 executes:

SWRITE DATA=&ZNCLID READY FOR WORK.
&INTREAD ARGS TYPE=REQ

and the operator enters:
INTQUE ID=357 TYPE=REQ DATA=BEGIN

then the &INTREAD issued by PROC1 completes as before with &1 = BEGIN, but the
communication flow takes place on the request flow rather than the response flow.

In a more complex scenario, PROC1 can use this differentiation in message flows to keep
separate the results of its own commands (the response flow) and the arrival of
messages from operators or other processes that arrive on the request flow.

42 Network Control Language Programming Guide

Communication Between Processes

Request and Response Disciplines

It is important to understand that the terms request and response are arbitrary and
have no absolute meaning. They serve only to provide a logical separation between
types of messages that can be used to simplify communications between processes.

A process that issues the statement:

&INTREAD TYPE=RESP ARGS

can never receive messages sent to it by a command:

INTQUE TYPE=REQ

If you want to use INTQUE to send messages from one process to another, you must
plan what you are going to send, make sure that the process you send a message to
knows what to expect and is prepared to receive it, and that you coordinate the INTQUE
and &INTREAD statements to make sure that they both expect the messages on the
same request or response flow.

INTQUE Across ROF Sessions

Since INTQUE is a standard command, a process in one system can use INTQUE across a
ROF session to talk directly to a process on the remote system. To do this, the process
(or OCS operator) must know the target process identifier in the remote system and
ROUTE an INTQUE command to the remote system.

This delivers an INTQUE message to the dependent response or request queue of the
target process, as if the target were executing in the same system.

If the target process is executing in the remote system as a result of a ROF command,
that is, if it was started in the remote system by the command:

ROUTE SOL2 START PROC2

then PROC2 cannot use INTQUE to talk back to the local system. Instead, it uses
&WRITE, which in a ROF environment causes all the command output generated by a
remote process to flow back to the user ID environment in the local system.

Chapter 3: NCL Concepts 43

Scope of the NCL Processing Region

Scope of the NCL Processing Region

The concept of the NCL region is designed to limit the activities of individual users so
that the NCL processes that they can run or communicate with are always within the
user's own region. This prevents one user from affecting or tampering with NCL
processes in use by other users or background environments.

The INTQUE command has a second authority level that is checked when a user
attempts to route a message to a process outside their own NCL region. The user must
have an authority level equal to or greater than the opauth value assigned to the
INTQUE command. The opauth value defaults to authority level 2, but could be different
in your installation.

Find Out Which NCL Processes Are Executing

Use the SHOW NCL command to display the status of active NCL processes. SHOW NCL
provides displays of NCL activity by environment or by region:

m Environment shows you details of NCL processes that are executing in the NCL
environment of the window from which the command is entered

m Region shows you all NCL activity associated with your user ID
SHOW NCL can also be used to display the status of NCL processes executing on behalf

of other user IDs if you have sufficient command authority. For more information, see
the Reference Guide and the Online Help.

44 Network Control Language Programming Guide

Chapter 4: NCL Statement Types and Syntax

This section contains the following topics:

NCL Statements (see page 45)

Format of NCL Statements (see page 45)
NCL Conventions and Syntax (see page 47)
Comments in NCL Procedures (see page 48)
Label Statements (see page 51)

Verb Statements (see page 54)

Built-in Function Statements (see page 55)
Assignment Statements (see page 56)
Command Statements (see page 56)

NCL Statements

An NCL procedure comprises a group of NCL statements that describe the logic and
functions to be executed when the procedure is invoked. There are different types of
NCL statements, where the type is determined by the function that the statement
performs within the procedure.

Format of NCL Statements

NCL statements are coded as free-format, 80-character records where the first 72
characters contain the statement syntax and the last 8 characters can contain optional
statement sequence numbers that, if present, are used in error messages generated by
NCL.

An NCL procedure can contain statements that are completely blank. These are useful
for visual layout when reading a procedure and are ignored when the procedure is
executed.

Statement Continuations

Statements could require more than the 72 characters available in a single record. To
accommodate this, NCL supports the continuation of a statement across multiple
consecutive lines. Use of continuations can assist in improving the layout of a procedure
and simplify future modification.

The number of continuations is limited to a total statement length of 2048 characters,
before variable substitution.

Chapter 4: NCL Statement Types and Syntax 45

Format of NCL Statements

A continuation is indicated when the last non-blank character on a statement (not
including the optional sequence number in columns 73 to 80) is a plus (+) sign.

When a continuation is detected, the plus sign is removed and the text of the next
statement is concatenated to the statement that contained the plus sign, after stripping
leading blanks. This concatenation continues until a statement is found that does not
have a plus sign as the last non-blank character.

Example 1: Statement Continuations

&FILE GET ID=MYFILE OPT=KEQ VARS=(A,B,+ -* DATE, TIME

-* and NAME
Cc,D,E,F,G,+ -* ADDRESS

-* DETAILS
H,I,3) -* EQUIPMENT

-* DETAILS

would result in the statement:

&FILE GET ID=MYFILE OPT=KEQ VARS=(A,B,C,D,E,F,G,H,I,J)
Example 2: Statement Continuations

Continuation is deactivated by the & CONTROL NOCONT statement. This may be
necessary in procedures where a plus sign is used to set a function key where the plus
sign also indicates an implied blank. In such cases, these statements should be preceded
by an &CONTROL statement that deactivates continuation processing and followed by
another that reactivates it.

&CONTROL NOCONT
PF5 PREF,MSG USER1+
&CONTROL CONT

The CONT and NOCONT operands of the & CONTROL verb cannot be coded as variables.

Variable Substitution

Statements can contain variables that have contents that are resolved through a
substitution process at the time the statement is executed. The use of variables within
the statement syntax effectively changes the text of the statement by substituting the
current value of the variables imbedded in the statement text each time the statement
is executed.

During the substitution process, a restriction of a maximum word size of 256 characters
exists. Additionally, the total size of a statement after substitution has been completed
is 12288 characters.

46 Network Control Languade Programming Guide

NCL Conventions and Syntax

Example: Variable Substitution

The length of the following coded statement is 28 characters, including blanks between
the words:

&IF &A = &B &THEN &GOTO .END

If it were used in the following manner:

&A = ABCDEFG
&B = ABCDEFG
&IF &A = &B &THEN &GOTO .END

then, after the substitution process performed at the time the statement is executed,
the statement would read as follows and be 38 characters long:

&IF ABCDEFG = ABCDEFG &THEN &GOTO .END

Variable substitution in statements let you code a standard logic routine that processes
different information.

NCL Conventions and Syntax

The logic capabilities of procedures include the ability to define user and global
variables, test the truth of conditions, and to make conditional branches on the basis of
these tests. To achieve this, certain syntax rules must be obeyed:

® Procedure statements are stored in 80-character records. Columns 1 to 72 can be
used to contain commands, statements, or comments. Columns 73 to 80 are
reserved for optional sequence numbers. If present, these sequence numbers are
used in error messages to pinpoint a statement in error.

m Comments can be included within procedures to assist in documentation and you
are encouraged to use them freely.

Comments can occur as separate statements or on other types of statement.

m Continuation of a statement onto the next record is supported if the last non-blank
character on the line (excluding comments) is a plus sign (+). The total length of a
statement including all continuations cannot exceed 2048 characters. & CONTROL
CONT must be in effect.

m Syntax is free-format and can start in any column to improve presentation.

m A procedure can invoke other procedures. This process is called nesting. Nesting to
64 levels is supported. Variables can be passed to a procedure either when the
procedure is invoked by the operator or when a nested procedure is invoked.

m No individual word or field within a statement can exceed 256 characters.

m The value of a variable cannot exceed 256 characters in length.

Chapter 4: NCL Statement Types and Syntax 47

Comments in NCL Procedures

m The total length of an expanded statement after variable substitution must not be
longer than 12288 characters.

m Statements can contain any number of leading or trailing blanks. A completely
blank statement is ignored. No specific termination statement is required to signal
the end of a procedure. When the end of the procedure is reached (end-of-file), the
procedure terminates, unless terminated through other processing options (for
example, &END) or errors.

Comments in NCL Procedures

NCL allows the inclusion of comments within procedures to assist in understanding the
code. In addition to providing internal documentation of the processing being
performed by the procedure, comments can also provide a simple means of directing
messages to the operator when operating in OCS mode.

Comments fall into four categories:

® Comments on NCL statements

m Displayable stand-alone comment lines

m Highlighted key words in comment lines

m Non-displayable stand-alone comment lines

Comments on NCL Statements

Individual statements can include comments after the statement text, to describe the
function being performed by that statement. In such cases the comments must
commence with the two suppression characters, dash asterisk (-*). The text of the
comment following the -* is free-form.

Example: Comments on NCL Statements

&PANEL TESTPANEL -* DISPLAY OUR TEST PANEL.

Where a statement spans multiple lines and therefore contains continuations,
comments can be included on each line if the comment text follows the continuation
indicator.

&FILE GET ID=MYFILE OPT=SEQ +-* SEARCH IS TO BE
-* SEQUENTIAL
VARS=(A,B,C) -* RECEIVE INTO THESE
-* VARIABLES.

48 Network Control Languade Programming Guide

Comments in NCL Procedures

Displayable Stand-alone Comment Lines

Comment lines can be included in procedures by inserting an asterisk (*) as the first
non-blank character in the statement, unless the statement contains a label, in which
case the asterisk must be the first non-blank character following the end of the label.
Comment lines are displayed at an OCS window exactly as entered (both upper and
lower case) after variable substitution has been performed. The leading asterisk is not
displayed. This facility provides a simple means of building online operator instructions
or Help facilities.

Example: Display Stand-alone Comment Lines

*BRING UP WESTERN SECTOR AT 13.00.

Highlighted Key Words in Comment Lines

Key words within a comment line can be highlighted. This is achieved by coding a plus
sign (+) in place of the asterisk as the first non-blank character in the statement. Such
lines are scanned for the occurrence of the highlight indicator, which is an at (@) sign.
Words bounded by this character are displayed in high intensity and a blank substituted
in place of the @ character. Multiple occurrences can exist within a line.

Example: Highlight Key Words in Comment Lines
+BRING UP@WESTERN SECTOR@AT@13.00@.

will display as:

BRING UP WESTERN SECTOR AT 13.00.

If only one @ is contained in a line, the remainder of that line is displayed in high
intensity. The effect does not flow on to the next procedure statement.

Note: The & WRITE verb offers further facilities for displaying information and for using
color and highlighting to improve information presentation.

Chapter 4: NCL Statement Types and Syntax 49

Comments in NCL Procedures

Non-displayable Stand-alone Comment Lines

If the minus (-) suppression character (see page 50) is used in conjunction with the
asterisk (*) it indicates that the comment line display is to be suppressed. In such a case
the comment is not displayed, even if executing from an OCS window, and acts solely as
a source of documentation within the procedure.

Example: Non-displayable Stand-alone Comment Lines

*

-* THIS PROCEDURE ACTIVATES THE NETWORK

*

Suppression Character

The minus character (-) is reserved as the suppression character. If used, the
suppression character (-) must be the first non-blank character in the line. The
suppression character can be used with both command and comment lines, but not NCL
statement lines. When used in a command line, the command is executed in the normal
way. However, the command is neither displayed (echoed) on your screen before
execution, as would normally be the case, nor written to the system's activity log.

Example: Suppression Character

This example shows how to use the suppression character when entering commands
from an OCS window.

-SHOW USERS

Results generated by the execution of the command are displayed at your terminal and
are written to the activity log.

An alternative to using the suppression character is the & CONTROL NOCMD statement.
This statement prevents the echoing of all commands within the procedure until the
end of the procedure or until and &CONTROL CMD statement. When using NOCMD, the
results generated by commands are written to the activity log.

Use of & CONTROL NOCMD has no impact on comment lines and does not cause them to
be suppressed.

50 Network Control Language Programming Guide

Label Statements

Label Statements

NCL supports the definition of labels that can be branched to during processing using an
&GOTO or &GOSUB statement. The following rules apply when defining labels:

m labels commence with a period (.), followed by 1 to 12 characters and not
containing any ampersands (&).

m Alabelis not required to commence in column 1. However, it must be the first item
on the statement.

m Alabel can be placed on a statement containing no other data.

Examples: Valid Label

.LABEL1 -k
.10 -k
.ACT-NODE -k
.CMD1 statement -*

Normal label

Numeric label

Label containing special characters
NCL statement following label

Examples: Invalid Label

BAD -
.LABELTOOOLONG -
.LABEL&1 -

*
*
*

XYZ .LABEL -*

Valid Labels:

.LABEL1

.10

.ACT-NODE

.CMD1 statement

_k
_k
_k
_k

Invalid Labels:

BAD
.LABELTOOOLONG
.LABEL&1

XYZ .LABEL

_k
_k
_k
_k

Does not commence with a period.
Label must be 1 to 12 characters.
Cannot contain ampersands.
Must be first item on line.

Normal label

Numeric label

Label containing special characters
NCL statement following label

Does not commence with a period.
Label must be 1 to 12 characters.
Cannot contain ampersands.
Must be first item on line.

Chapter 4: NCL Statement Types and Syntax 51

Label Statements

Label Variables

A variable can be specified as the target of an &GOTO or &GOSUB statement. This
variable, after variable substitution, is then taken as a label to which a branch is
required.

Example: Label Variables

&GOTO .&MSGID

can read, after variable substitution:

&GOTO .IST3501
and a search for the label .IST350l is made.

Usually, most information input to a procedure contains a unique identifier such as a
message number. The ability to branch to a label variable makes it possible to use this
unique message number and branch directly to the part of the procedure concerned
with processing the message, instead of having to use a number of &IF statements to
determine the processing required.

Undefined Labels

Normally, an attempt to branch to an undefined label results in an error and the
procedure is terminated. However, the & CONTROL NOLABEL operand lets the user
specify that an attempt to branch to an undefined label will not result in an error, but
will simply drop through and execute the statement following the &GOTO. Thus, a trap
for unexpected messages can be set up and all of the efficiencies associated with direct
branching still achieved.

Example: Undefined Labels

&CONTROL NOLABEL
.NEXT
&PPOREAD VARS=(A,B,C,D,E)
&GOTO .&A
SWRITE ALARM=YES DATA=UNEXPECTED INPUT &A &B &C &D &E
&GOTO .NEXT
.IST305I
LIST3141

52 Network Control Language Programming Guide

Label Statements

Duplicate Labels

Minimize Labels

Alabel in an NCL procedure should not appear more than once; NCL normally checks to
ensure a label is not duplicated. If the & CONTROL NODUPCHK operand is used,
duplicate label checking is not performed. This option can result in improved efficiency,
but is normally only used after the procedure has been thoroughly debugged.

While label variables offer great benefits in both performance and simplicity, one point
needs to be considered. By its very nature, a label must be unique within a given
procedure. An attempt to &GOTO a duplicate label will result in an error (unless the
&CONTROL NODUPCHK option is in effect). If the processing of a label variable yields a
duplicate label, perhaps conflicting with one used earlier in the procedure, you can use
the following. if you are using a variable in an &GOTO that is itself not unique, you can
append one or more characters to the label in the &GOTO to ensure the generated label

is in fact unique.

Example: Duplicate Labels

In this example, the operator can enter YES or NO to either of the & PAUSE statements.
In the second, the letter X is prefixed to the operator's input to differentiate it from

input entered in reply to the first & PAUSE statement.

SWRITE DATA=ENTER 'Yes' OR 'No'
.PAUSE &PAUSE ARGS
&GOTO .&1
SWRITE DATA=INVALID RESPONSE, RE-ENTER.
&GOTO .PAUSE
.NO &END
.YES

SWRITE DATA=ENTER 'Yes' OR 'No'
.PAUSE2 &PAUSE ARGS

&GOTO .X&1

SWRITE DATA=INVALID RESPONSE, RE-ENTER.

&GOTO . PAUSE2 -* Note addition of X to both
.XNO &END -* &G0TO and target labels to
.XYES -* make labels unique.

By using the verbs &DO, &DOWHILE and &DOUNTIL in your procedure logic you reduce
the need for &GOTO and &GOSUB statements. This is recommended, both to reduce
the number of labels that you need in a procedure and to improve the structure of your

procedures.

Chapter 4: NCL Statement Types and Syntax 53

Verb Statements

Verb Statements

NCL verbs cause actions to occur. There are different types of verbs, some that dictate
the flow of processing and logic, others that fetch information for the procedure to
process and others that cause data to flow to external targets.
The following are examples of verb statements:
&DOWHILE
Causes processing to continue in a loop while a certain condition exists.
&WRITE
Allows a procedure to write a message to the user's terminal.
&FILE

Allows a procedure to read, write, or delete records on a file.

NCL statements that contain a verb have the following general form:

verb [opt=opt &variable ... &variable]

where verb is the keyword that is the name of the verb to be executed, opt is a keyword
operand identifying a sub function of the verb, and &variable represents parameters
required as input to the verb's actions, or the names of variables that receive the results
of the verb's execution.

54 Network Control Language Programming Guide

Built-in Function Statements

Built-in Function Statements

NCL built-in functions perform commonly required functions that are either impossible
to achieve using NCL or require complex NCL coding.
The following are examples of built-in functions:
&DEC
Converts a hexadecimal number to its decimal equivalent.
&SUBSTR
Lets you extract part of one variable and place it in a second variable.
&CONCAT
Lets you concatenate the values of two or more source variables and place the

result in a target variable.

NCL statements that contain a built-in function have the general form:

&target = function parameter

where &target is the name of a variable that is to receive the result of the built-in
function, function is the keyword that is the name of the built-in function to be
executed and parameter represents parameters required as input to the built-in
function.

Note: For more information about NCL verbs and built-in functions, see the Network
Control Language Reference Guide.

Chapter 4: NCL Statement Types and Syntax 55

Assignment Statements

Assignment Statements

Assignment statements let you set a new value for a nominated variable. Assignment
statements have the following format:

&variable = expression

where &variable is the name of the target variable, whose value is to be changed to the
result of the execution of expression. The target variable is always on the left of the
equals sign (=) and the value to be assigned to the target is always on the right of the =
sign.

Assignment statements are used to manipulate the values of the variables that your
procedure uses.

Assignment also occurs as the result of executing built-in functions and some verbs.

Example: Assignment Statements

§A = 10 -* &A is assigned the value 10
&XYZ = ABCDEF -* &XYZ receives the value ABCDEF
S8A = (&€ + 1) - (& * 5) -* Add 1 to &C then subtract

-* five times the value of

-* &B and put the result in &A.

Arithmetic

Arithmetic is performed by a series of explicit assignment statements, in which the
target variable receives the result of the calculation coded to the right of the = sign.
Compound arithmetic expressions are supported by NCL, and both integer and
floating-point arithmetic can be used.

More information:

About Arithmetic in NCL (see page 83)

Command Statements

You can execute any product command within a procedure by coding the command
statement exactly as you would enter the command from an OCS window.

You can also code the command statement to include variables in the command text, in
which case substitution is performed before the command is executed.

56 Network Control Language Programming Guide

Chapter 5: Variables, Substitution, and

Assignment

This section contains the following topics:

What Is a Variable? (see page 57)
Variable Types (see page 57)

DBCS Device Support (see page 60)
Variable Substitution (see page 61)

Complex Variable Substitution (see page 63)
Align Substitution Data (see page 64)

Lowercase Data (see page 65)

Debugging Procedures (see page 65)
Set Variables to a Particular Value (see page 66)

NCL Table Manipulation (see page 69)

Vartable Facility (see page 70)

What Is a Variable?

The term variable describes a word that may represent different values within a
statement. A variable commences with an ampersand (&) and is followed by 1 to 12
characters that form the name of the variable.

A variable name can contain the characters $, #, @, Ato Z, and 0 to 9. The name is
delimited by the first blank or non-valid character. Although the names of variables can
be coded to contain both upper and lower case characters (A to Z) they are treated
internally as being entirely upper case.

However, when operating in a system where support for double byte character stream
(DBCS) terminals is active, no translation to upper case is performed.

If a variable name starts with a digit, the whole variable name must be numeric.

Variable Types

There are four types of variables:

m System variables
m User variables
m Global variables

® Parameters

Chapter 5: Variables, Substitution, and Assignment 57

Variable Types

System Variables

User Variables

Global Variables

A number of variables are maintained by the system to provide access to commonly
required facilities. An example of a system variable is the time, which can be obtained
by referencing the &TIME system variable.

Any number of user variables (within storage limitations) can be defined to contain
information required during the processing phase of a procedure. Explicit definition of
user variables is not required. The first time a user variable is referenced it is
automatically defined. User variables are automatically deleted when a procedure
terminates.

User variables can be passed across nested procedure levels if the & CONTROL SHRVARS
operand is in force when the nested procedure is invoked, otherwise they are unique
within the current nesting level. If a user variable is required in a nested level and
&CONTROL SHRVARS is not in effect, its value must be passed explicitly as a parameter
on the EXEC command when the nested level is invoked. An &RETURN statement can
then be used to return specified variables to a higher nesting level, thus facilitating the
development of modular functions.

Global variables operate in a similar manner to user variables. The difference is that
global variables, as the name implies, are global to the entire system and once created
can be referenced or modified by any procedure. Thus, global variables can be used to
perform cross-talk between procedures.

Global variables commence with a 1- to 4-character prefix that you can set for your site
using the SYSPARMS NCLGLBL command. Unless otherwise defined this prefix defaults
to GLBL. The remaining characters must conform to standard variable naming
conventions.

The &000 system variable is set to the current value of the global variable prefix. Thus, if
the SYSPARMS NCLGLBL=#@ command was used to set the global variable prefix to #@
then &000 returns that value. This facility is provided to allow the procedure designer to
develop procedures that execute correctly regardless of the global variable prefix. For
example, &&000SYS1 is resolved to &GLBLSYS1 using the default value for the global
variable prefix, or &#@SYS1 if the prefix is set as mentioned previously.

A global variable can be created explicitly by an assignment statement, for example:

&SOOOSHIFTLDR = &STR SHIFT LEADER IS BILL SMITH

58 Network Control Language Programming Guide

Variable Types

It can also be created implicitly by specifying a global variable name as the target of a
verb that creates or modifies variables as part of its function.

Once created, a global variable remains in existence until it is explicitly deleted by an
assignment statement. For example:

&SOOOSHIFTLDR =

Note: The uncontrolled creation of large numbers of global variables can consume a
large amount of storage. You should ensure that global variables are deleted as soon as
they are no longer needed. Care should be taken when designing procedures to ensure
that they do not end without deleting any redundant global variables created.

CA recommends that you observe a standard naming convention for global variables to
avoid the inadvertent destruction of variables where, for example, one procedure
creates a global variable with an identical name as that created by another.

The SHOW NCLGLBL command provides a display of the global variables that exist in the
system. For more information, see the Online Help.

Persistent Global Variables

You can save selected NCL global variables to preserve data between restarts of the
region. Saved global variables are known as persistent global variables (PGVs). They are
automatically loaded at restart.

You can use the GLBLSAVE process macro or calls to the Persistent Global Variables
Interface (SCAGLBL) to create PGVs. GLBLSAVE has an NCL procedure (SRMMCA47S in the
COMMANDS data definition) that shows how to use SCAGLBL.

Note: For more information about SCAGLBL, see the Network Control Language
Reference Guide.

You can administer PGVs from the Persistent Global Variables List by entering /PVAR at
the command prompt.

Note: For more information about the Persistent Global Variables List, see the Online
Help.

Chapter 5: Variables, Substitution, and Assignment 59

DBCS Device Support

Parameters

Parameters are those variables passed to the procedure when it is invoked by the
operator, by another procedure, or by your product.

Parameters entered when the procedure is invoked are positional and must be entered
in the order expected by the procedure. Entered parameters are separated by one or
more blanks. Commas are not accepted as delimiters between parameters. The
procedure must verify that the entered parameters are correct. Each parameter is
allocated to a variable in the form &n, where n is a number, starting at 1, identifying the
position of the parameter.

If the operator enters:

EXEC TEST1 PUl1 LU2 NCP3

the following variables are created:

&1 will be set to PUL
& will be set to LU2
& will be set to NCP3

In addition, when a procedure is invoked, the user variable &ALLPARMS will be set to
the entire string provided, excluding the EXEC or START command and the procedure
name. In the previous example, &ALLPARMS is set to:

PU1 LU2 NCP3

The system also supplies a count of the number of variables created in the system
variable &PARMCNT. In the previous example, &PARMCNT is set to 3.

Note: &CONTROL SHRVARS can be utilized to pass some or all variables to a lower
nesting level rather than specifying individual parameters.

DBCS Device Support

Your products support terminals that use DBCS representation of symbols for languages
such as Japanese (Kanji script).

When DBCS support is active, the system no longer automatically translates lower case
characters to upper case for comparative purposes, and so on. When DBCS is active all
characters in the extended character set are regarded as unique, and certain system
functions no longer apply, or are treated as a no-operation.

60 Network Control Language Programming Guide

Variable Substitution

Variable Substitution

Before a procedure statement is analyzed or a command is executed, the record is
scanned for the presence of variables, indicated by an ampersand (&). This process is
called variable substitution. Variable substitution is performed from right to left of the
statement. When a potential variable is detected by the presence of an ampersand, the
variable is isolated by scanning to the right for a delimiting blank, comma, or other
character not valid in a variable name.

Note: A single character ampersand is not treated as a variable and remains intact as a
single ampersand.

Take the string &A.1 as an example. &A is processed as the variable and the resulting
substitution inserted in its place (for example, 123.1).

Variables whose names are entirely numeric (for example, &99) have unique properties
in that they are delimited by the first non-numeric character. For example:

&91 = 123

&A &91ABC

The variable &A in this example would yield the value 123ABC. This technique can
provide an alternative to the use of & CONCAT with alphanumeric variables.

In the substitution process no spaces are added or deleted. The variable is removed and
the text to the right of the variable is relocated to accommodate the data being
substituted in place of the variable. A variable can be referenced as often as required.
Left and right alignment of substituted data can be achieved using the & CONTROL
ALIGNL and ALIGNR options to enhance tabular output or when displaying data in
full-screen panels the #FLD statement can be used to assign specific alignment
attributes to a field.

Chapter 5: Variables, Substitution, and Assignment 61

Variable Substitution

Undefined Variable Substitution

Undefined variables, or variables that have a null value, are eliminated from the line;
therefore, you should to ensure that variables are correctly coded and will not be
eliminated during the substitution process. For example, the following statement:

SWRITE DATA=The time is &TIMW and date is &DATE1

incorrectly contains the variable & TIMW where &TIME was intended. Because &TIMW
does not have an assigned value, it is eliminated from the statement; the final result
written to the user's terminal is:

The time is and date is 91.001

In certain cases, such as with an &IF statement, this elimination of variables can pose
problems and result in syntax errors. Consider the following statement:

&IF &1 EQ YES &THEN &GOTO .OK

If &1 is a null value, perhaps because an operator did not enter its value after an
&PAUSE, the statement after substitution appears as:

&IF EQ YES &THEN &GOTO .OK

and results in a syntax error and the procedure terminates.

A technique that can be used to avoid this is to append a constant character to the
variable and, of course, to the value to which it is to be compared. For example:

&IF .&1 EQ .YES &THEN &GOTO .OK

In this case, if the variable &1 has a null value, the following statement results:

&IF . EQ .YES &THEN &GOTO .0OK

which is syntactically correct and performs as desired.

Note: When comparing numeric values, a zero (0) can be used as the constant
character.

For more information about using this technique, see the &IF verb description in the
Network Control Language Reference Guide.

62 Network Control Language Programming Guide

Complex Variable Substitution

Complex Variable Substitution

Complex or multi-level variables are supported. If after one substitution, the value
generated remains a variable (commences with an &), substitution is again performed.

Example 1: Complex Variable Substitution

8A =1
&1 = MESSAGE
SWRITE DATA=TEST &SA

Because the current value of &A (1) is substituted into the statement, the first pass of
the & WRITE statement yields:

SWRITE DATA=TEST &1

The second pass then resolves &1, and yields:

SWRITE DATA=TEST MESSAGE
Example 2: Complex Variable Substitution

Complex variables are important when performing matrix processing where an
unknown number of variables must be dynamically generated to accommodate data.

&FILE OPEN ID=MYFILE

&FILE SET ID=MYFILE KEY=MYKEY

&LIMIT = 100

&NT =1

&DOWHILE &CNT LT &LIMIT
&FILE GET ID=MYFILE OPT=KEQ VARS=MYFIELD1
&SAVESCNT = SMYFIELD1
&CNT = &CNT + 1

&DOEND

Chapter 5: Variables, Substitution, and Assignment 63

Align Substitution Data

Align Substitution Data

The substitution process does not, by default, preserve any difference in the length
between a variable name and the data being substituted in place of the variable. This
can make tabular output of rows of numbers difficult or impossible to align when not
using full-screen facilities.

The &CONTROL statement provides the ALIGNL and ALIGNR options to specify special
alignment requirements. ALIGNL requests left alignment and ALIGNR right alignment.
Both of these options can additionally identify a fill character (by default a blank) that is
to be used, for example, ALIGNRS.

When using these alighment options, the length of the name of the variable itself is
used to determine both the point of alignment and the number of fill characters
required. Therefore variables with names of the same length must be used to ensure
the correct alignment is achieved.

Example: Aligning Substitution Data

In this example, the three variables & COUNT01, &COUNTO02 and & COUNTO3 are used to
display a table of numbers. They are to be right-aligned and padded with leading dashes
(-).

&CONTROL ALIGNR-

&COUNTO1 = 1

&COUNTO2 = 1098

&COUNTO3 = 66

SWRITE DATA=COUNT 1 = &COUNTO1
SWRITE DATA=COUNT 2 = &COUNTO2
SWRITE DATA=COUNT 3 = &COUNTO3

The result is:

COUNT 1 = ------- 1
COUNT 2 = ----1098
COUNT 3 = ------ 66

Note: These techniques are designed to be used by NCL procedures running in the OCS
environment which do not utilize full-screen panels.

64 Network Control Language Programming Guide

Lowercase Data

Lowercase Data

By default, data assigned to a variable is converted to uppercase. However, use of the
&CONTROL NOUCASE statement allows lowercase data, such as input from a full-screen
panel, to be maintained. If you want comparison operations to occur without translation
of the operands being compared, specify & CONTROL NOIFCASE in addition to the
NOUCASE option.

Note: For data entry into a panel in lowercase, the field definition for the panel must
also specify CAPS=NO.

When operating in a system with the SYSPARMS DBCS=YES option specified, no
distinction is made between uppercase and lowercase. The rules regarding automatic
conversion to uppercase do not apply.

Debugging Procedures

During the development of procedures coding errors are bound to occur. The
&CONTROL TRACE and &CONTROL TRACELOG statements allow you to request
statements to be written to your terminal or the system log after variable substitution
and before execution. The & CONTROL statement can occur as frequently as required
and can therefore be placed strategically within the procedure.

The TRACELAB and TRACEALL options are available to provide label flow tracing and to
include additional detail on the trace records that are logged.

The &CONTROL NOTRACE statement returns to normal processing. You will have
imposed a limit to the maximum number of trace messages that can be generated by a
procedure. By default this limit is 100 messages and has been imposed to stop excessive
tracing consuming system resources.

The NCLTRACE command can be used from an OCS window to dynamically start or stop
NCL procedure tracing while an NCL procedure is executing. This lets you debug
executing processes without having to stop them, edit the NCL to include & CONTROL
statements, and then restart them.

For more information about the NCLTRACE command, see the Online Help. For more
information about the & CONTROL verb, see the Network Control Language Reference
Guide.

When testing procedures that use full-screen processing, the temporary inclusion of
variables in a vacant area in a panel can assist in tracking and development. These can
be removed when the procedure has been completed.

Chapter 5: Variables, Substitution, and Assignment 65

Set Variables to a Particular Value

The & WRITE statement can also be used to great advantage to display the contents of
variables at specific points in processing.

When using &WRITE from procedures operating in full-screen mode, the messages are
queued and displayed in one or more full-screen panels when the procedure
terminates. Having completed the display of any queued messages, the procedure ends.

Set Variables to a Particular Value

Assignment is the term used for the process of setting variables to a particular value.
Assignment is either explicit, in which case you use the assignment statement to change
the value of a variable, or implicit, in which case the action of a verb causes a change in
value of a target variable (or variables).

Explicit Assignment: Assignment Statement

The basic format of the assignment statement is:

&ariable = expression
&variable

Is the name of the user variable or global variable whose value is to be changed.
The variable might not actually exist, in which case the assignment statement
creates it then sets its value.

The name of the variable must be valid according to the rules for variable names.

If a system variable is specified as the target of an assignment statement a syntax
error will occur.

Complex variables (see page 67) are supported.

Is written as shown, indicating that an assignment is required.
expression

Represents the value that is to be assigned to the target variable. If no expression is
supplied the target variable is assigned a null value, and the variable is
automatically deleted. An expression is one of the following constructs:

m Avariable or constant whose value is to be assigned to the target variable.

m A built-in function such as & CONCAT, &SUBSTR, and so on. When a built-in
function executes it produces a result that is used as the value to be assigned
to the target variable.

m An arithmetic expression. The arithmetic calculation is performed to yield a
result, which is then used as the value to be assigned to the target variable.

66 Network Control Language Programming Guide

Set Variables to a Particular Value

Complex Variables in Assignment Statements

Use of complex variables within an assignment is supported. A complex variable
requires multiple substitutions to determine the final variable required. For example:

&1
&AL

An example of the use of complex variables is the accumulation of counts for different
values. A counter is initialized for each possible value. A single statement can then be
used to increment the associated counter.

Example: Complex Variables in Assignment Statements

In this example, a variable (&1) can have the values A, B, or C and you want to count the
occurrences of each of these. This could be achieved in the following way:

&CNTA = 0
&CNTB = 0
&NTC = 0

S&DOWHILE &CNT&1 NE &LIMIT
processing to receive input and set &1 to A, B or C

&CNT&1 = &CNT&1 + 1
&DOEND

The assignment statement target (&CNT&1) will be resolved to &CNTA, &CNTB or
&CNTC prior to execution.

Chapter 5: Variables, Substitution, and Assignment 67

Set Variables to a Particular Value

Implicit Assignment: Using &ASSIGN

The &ASSIGN statement, which is an NCL verb, is used to assign values to multiple target
variables in one operation. It is common for procedures to operate with groups of
related variables and to have the need to manipulate the values of all the variables in a
group.

Using explicit assignment statements to change the values of all the variables in a group
is less efficient than using the &ASSIGN statement.

&ASSIGN lets you define named or generic groups of source variables, and transfer
source variable contents to corresponding target variables, also named specifically or
generically. Similarly, groups of target variables can be assigned null values and deleted
in a single operation.

Implicit Assignment: Using Other NCL Verbs

While &ASSIGN is a verb designed specifically to allow multiple assignment operations,
many other NCL verbs also cause assignment of a new value to one or more target
variables as the result of their execution. Examples of these NCL verbs are & PARSE and
&SETVARS. A complete description of these verbs and how to use them can be found in
the Network Control Language Reference Guide.

Verbs whose action results in retrieving information from an external source (for
example, &FILE, & PAUSE) place the data they receive into specified target variables. An
implicit assignment of values takes place as a result of the execution of this type of verb.

Uppercase and Lowercase Variables

By default, when character data is assigned to a target variable, the data is converted to
uppercase.

If you want to manipulate lowercase character data, use the & CONTROL NOUCASE
processing option within your procedure. The NOUCASE option stops the automatic
translation of character data to uppercase on assignment statements.

DBCS Support and Lowercase Data
If your system is operating with DBCS support active (SYSPARMS DBCS=YES), then the

system regards all data as a single case, and no uppercase or lowercase translation is
performed. In this execution mode, the & CONTROL UCASE option is ignored.

68 Network Control Language Programming Guide

NCL Table Manipulation

Variables and Storage Usade

Variables hold the data your procedures work with. This data occupies virtual storage in
your product region or partition. Therefore, the more variables you create the more
storage your procedures will use.

While your product attempts to optimize storage usage, you should design your
procedures to control the use of variables and avoid creating large numbers of variables
that are seldom referenced.

If the temporary use of an extremely large number of variables is required, then assign a
null value to these variables when they are no longer required to delete them and
reduce the storage required by the procedure.

The &ASSIGN statement can be used to nullify large groups of variables in a single
operation.

All storage used for NCL variables resides above the 16 MB line.

NCL Table Manipulation

The discussion of variables and substitution has so far concentrated on using simple and
complex variables as single data entities. You can also construct tables of data using
multiple individual variables using either of two common techniques:

®m You can use complex variables, for example, &DATA&INDEX where the variable
&INDEX contains a number (for example, 1,2,3), so generating variable names of
&DATA1, &DATA?2, &DATA3, and so on.

This technique is fairly efficient for small tables, but the overheads of creating and
managing large numbers of variables become significant when dealing with large
tables. However, it is only suitable for numeric table indexes, or short alphanumeric
indexes that do not contain any characters that are invalid in an NCL variable name.

m The second technique uses the complex variable approach described previously,
but each entry in the table is represented by 2 (or more) variables (for example,
&KEY&INDEX, and &DATA&INDEX). One contains the key value, and the others the
data values. The table is searched by incrementing an index variable, and
comparing the key variable to the search value. When a match is obtained, the
index variable is used to build the complex variable name containing the data.

Chapter 5: Variables, Substitution, and Assignment 69

Vartable Facility

Vartable Facility

A vartable is an in-storage table with the following attributes:

A name, assigned when the table is created, and used to refer to the table.
A scope, which can be one of:

PROCESS

(Default) Indicates that the table is only visible to the NCL PROCESS that
allocated it. It is automatically freed when the process terminates, if not
explicitly freed beforehand. Table names must be unique within a process, but
different processes can operate using different tables with the same name.

REGION

Indicates that the table is visible to all NCL processes in a processing region. For
a signed-on user, this means all NCL processes running in either NCL window,
under the User Services menu, MAI script procedures, and so on. The table is
automatically freed when the region terminates (for example, when the user
signs off), if not explicitly freed beforehand. Table names must be unique
within the region, but different regions can use different tables of the same
name.

SYSTEM

Indicates that the table is visible to all NCL processes in this address space. The
table is automatically deleted when your product terminates, if not explicitly
freed sometime beforehand.

SYSTEM scope replaced GLOBAL in an earlier version but the use of GLOBAL is
supported.

AOM

Indicates that the statement refers to a mirrored vartable (see page 78) if AOM
has started.

A key length, from 1 to 256 characters long. Each table can have a different key
length.

70 Network Control Language Programming Guide

Vartable Facility

&ZFDBK Values

m Zero or more entries, consisting of:
- Akey. Every entry must have a unique key, which can be numeric.

- Upto 16 items of data, or an unlimited number of data items if DATA=MAPPED
is specified. Each item can be from 0 (null, not present) to 256 characters long.
The data value is null if no data is provided for an item when an entry is added.

- Acounter field, which is initialized to 0 when an entry is created, and can be
reset to any value, or adjusted by any amount, on update calls.

- Auser correlator field. This field is maintained by the system, and can be used
to provide update synchronization for tables shared between NCL processes
(that is, for tables with SCOPE= REGION or SYSTEM only).

The entries in a table are maintained in ascending key field value order. The retrieval
option of & VARTABLE allows sequential retrieval in ascending or descending order.

The &ZFDBK system variable is set by the & VARTABLE verb to indicate the success of the
action. Most of the possible values are documented in the Network Control Language
Reference Guide. Vartables with SCOPE=AOM can also return other &ZFDBK values.
These are fully described under each & VARTABLE option in the Network Control
Language Reference Guide.

Chapter 5: Variables, Substitution, and Assignment 71

Vartable Facility

&VARTABLE Manipulation Facilities

&VARTABLE provides the following table manipulation facilities:
ADD
Add an entry to a vartable.
ALLOC
Allocate a new vartable.
DELETE
Delete an entry from a vartable.
FREE
Free (unallocate) an existing vartable.
GET
Get (retrieve) an entry from a vartable.
PUT
Add or update (if there) an entry in a vartable.
QUERY
Query the existence of a vartable, and optionally return attribute information.
RESET

Delete all entries in an existing vartable, but preserve the definition of the table
(like doing FREE/ALLOC).

UPDATE

Update an existing entry in a vartable.

The functions ALLOC, FREE, RESET, QUERY provide table-level manipulation. ADD, PUT,
UPDATE, DELETE, GET are used to manipulate entries in a table.

72 Network Control Language Programming Guide

Vartable Facility

Shared Table Updating

Tables allocated with a scope of REGION or SYSTEM can be accessed by any number of
concurrently running NCL procedures. An NCL procedure can be interrupted at any time
and another procedure can be scheduled. If two procedures are manipulating the same
table, the possibility of logical corruption exists.

Example: Shared Table Updating

In this example, assume that the entry with key KEY001 has a data content of 10 before
the code is executed.
procedure 1 procedure 2

&K = KEY001
&/ARTABLE GET ID=T1 +

SCOPE=SYSTEM +

KEY=K FIELDS=D VARS=DATA
& =& +1 -* & now 11

*

-* system interrupts procedure 1, schedules procedure 2
*

& = KEY001
&/ARTABLE GET ID=T1 +

SCOPE=SYSTEM +

KEY=K FIELDS=D VARS=DATA
& =8+1 -*& now 11
&/ARTABLE PUT ID=T1 +

SCOPE=SYSTEM +

KEY=K FIELDS=D VARS=DATA
&END

*

-* system re-schedules procedure 1
*

&ARTABLE PUT ID=T1 +
SCOPE=SYSTEM +
KEY=K FIELDS=D VARS=DATA

If the data in the table entry was being used as a counter, instead of having 12 (because
of 2 adds), it only has 11, as the update done by procedure 2 is lost.

Chapter 5: Variables, Substitution, and Assignment 73

Vartable Facility

There are three solutions to the problem:

If a single counter is being maintained in each entry, there is no need to get, alter,
then update the table entries. Instead, you can use the ADJUST= or
FIELDS=(ADJUST) options of the &VARTABLE PUT, UPDATE, or ADD operands to
change the system-maintained counter fields in the entry without interference from
any other procedure that is using the table. The previous example could be written
as:

& = KEY001
&/ARTABLE PUT ID=T1 SCOPE=SYSTEM +

KEY=K ADJUST=1

This would insert a new entry if it did not already exist, and add 1 to the (zeroed)
counter, or update an existing entry by adding 1 to the current counter value.

This approach is extremely useful for event counting, where the event (for example,
a particular message ID) is described by the key.

Use the &LOCK verb to lock the key value during the manipulation:

&LOCK TYPE=EXCL use key as resource name....
&VARTABLE GET ...
manipulate the table entry
&VARTABLE UPDATE ...
&LOCK TYPE=FREE

The &LOCK verb is described in the Network Control Language Reference Guide.

This approach allows almost any manipulation to take place. However, for heavily
accessed tables, the overheads of LOCK/UNLOCK could be excessive. If you do not
know the key of an entry in advance, you might need to lock the entire table.

74 Network Control Language Programming Guide

Vartable Facility

= |f we assume that minimal contention for any one table entry, a third approach is to
consider we can access it and only redo our work if someone else actually changes
the entry while we are performing calculations.

Remember that each entry in a vartable contains a user correlator. This is a
system-maintained update counter. An &VARTABLE GET operation can request
that the current value of the correlator for the requested entry be returned in a
nominated variable. The actual format of the correlator is of no consequence, and
should not be altered by the procedure.

When the procedure issues the & VARTABLE UPDATE, & VARTABLE PUT, or
&VARTABLE DELETE, the name of the variable containing the correlator should be
supplied in the VARS list (and .USERCORR specified in the FIELDS list). The system
checks that the correlator matches the current value of the correlator in the current
table entry, and only if they are the same, performs the update or delete operation
(if PUT, and the entry is new, the correlator is ignored).

Following the update, the correlator in the table entry is given a new, unique value
(again, of no consequence to the procedure).

Obviously, if two procedures issue a GET for the same entry, with no intervening
updates to that entry, they will both be given the same correlator value. But, if both
then attempt to update that entry, supplying the same correlator value, the second
update will fail (with &ZFDBK set to 8), and it should reissue the GET, and redo the
update logic.

Example: Shared Table

&K = KEY001
.RETRY -* loop here if update fails on correlator
-* mismatch

&ARTABLE GET ID=T1 SCOPE=SYSTEM KEY=K +
FIELDS=(.DATA, .USERCORR) VARS=(D,UC)

*

-* manipulate the entry data (in &D).
*

&ARTABLE PUT ID=T1 SCOPE=SYSTEM KEY=K +
FIELDS=(.DATA, .USERCORR) VARS=(D,UC)

&IF &ZFDBK = 8 &THEN &GOTO .RETRY-* loop if
-* changed

Note: Because no locks are held, there is no extra work to release those locks should the
procedure encounter an error condition while manipulating the data.

Also, if the GET is using an OPT= that retrieves a different key value record (for example
OPT=GEN), you do not need to know in advance what key value to lock. If & LOCK had to
be used in this case, you might need to lock the entire table.

Chapter 5: Variables, Substitution, and Assignment 75

Vartable Facility

Note: The use of the user correlator can be forced, for a particular table, by specifying
USERCORR=YES when allocating it.

(To contrast these two views, (2) can be regarded as the conservative approach, and (3)
can be regarded as the aggressive approach.)

Retrieval Techniques

The & VARTABLE GET statement allows an NCL procedure to retrieve an entry from a
vartable, placing the key, data, counter, and possibly user correlator, into nominated
NCL variables. The specific entry returned depends on both of the following:

m The value of the OPT= parameter on the & VARTABLE GET statement

m The value contained in the NCL variable nominated on the KEY= parameter of the
&VARTABLE GET statement, unless OPT=FIRST or OPT=LAST is specified, in which
case the KEY= parameter is not permitted.

The default OPT= parameter is OPT=KEQ, which searches the nominated vartable for an
exact EQUAL KEY match.

Most of the other OPT= values are straightforward:

KGE

Retrieve the entry with the lowest key value greater than or equal to the supplied
key value.

KLE

Retrieve the entry with the highest key value less than or equal to the supplied key
value.

KGT

Retrieve the entry with the lowest key value greater than the supplied key value.
KLT

Retrieve the entry with the highest key value less than the supplied key value.
GEN

Retrieve the entry with the lowest key value generically equal to the supplied key
value (that is, match for as many non-blank characters in the supplied argument,
and the fewest non-blank characters after).

Two OPT= values allow retrieval of the entry with the lowest key (OPT=FIRST), or highest
key (OPT=LAST). When used in conjunction with the OPT=KGT or OPT=KLT options in a
loop, a table can be sequentially read (the & VARTABLE GET description illustrates this).

76 Network Control Language Programming Guide

Vartable Facility

OPT=IGEN

The remaining OPT= value, OPT=IGEN (Inverse GENeric), has special use. The definition
is: Retrieve the entry with the longest key value equal to the supplied key value, but at
least one character long. For example, a search key of ABCDE searches as follows:

1. For ABCDE; if no match is found, the search continues for...

2. ABCD; if no match, it would then search for...
3. ABC; and so on through...

4. ABand...

5. A

This retrieval option is especially suited for screening messages by message identifier,
where generic identifiers (for example, IEF) control all messages that start with that
identifier, and less-generic identifiers (degenerating to specifics, such as IEF431l)
override the generic identifier in a particular case.

By loading a table with these identifiers, an incoming message identifier can be looked

up in one GET OPT=IGEN statement, to find the most-specific match. This avoids looping
to examine lists of shorter and shorter identifiers.

&VARTABLE Syntax Descriptions

For a complete description of the & VARTABLE verb and its options, see the Network
Control Language Reference Guide.

Chapter 5: Variables, Substitution, and Assignment 77

Vartable Facility

Mirrored Vartables

Note: Mirrored vartables are only available if your region includes Automation Services
products.

A mirrored vartable can be used to control an AOM screening table. For example,
message |IDs can be stored in a mirrored vartable, and message suppression and routing
can be controlled dynamically by adding or deleting entries in the table. Using the
LOOKUP screening statement, messages that are matched by message ID can have
various attributes assigned or altered.

The ability to dynamically add entries to a mirrored vartable, by screening table code,
allows statistics on such things as message ID to be easily accumulated.

If AOM is not started when a vartable with a scope of AOM is allocated, no mirroring
takes place. When AOM START is issued, all existing SCOPE=AOM vartables are
mirrored. When AOM STOP is issued, all mirrored vartable copies are deleted; the
standard vartable remains. If a mirrored vartable is allocated while AOM is started, it is
mirrored immediately.

Differences Between Mirrored and Standard Vartables

A mirrored vartable is a standard vartable, allocated with a scope of AOM. SCOPE=AOM
is similar to SCOPE=SYSTEM; any NCL procedure can refer to a SCOPE=AOM vartable,
but these vartables are logically separate to SCOPE=SYSTEM. That is, there can be a
table with an ID=TAB1 in both SCOPE=AOM and SCOPE=SYSTEM.

Mirrored vartables are distinguished from standard vartables by using the & VARTABLE
verb to maintain mirrored vartables. This copy can be read from, added to, and updated
by an AOM screening table.

In z/0OS, the mirrored copy is maintained in (E)CSA; in VM, it is maintained in your
product storage. SYSPARMS AOMMIRST=n sets the maximum amount of storage in
kilobytes that can be used by mirrored vartables.

78 Network Control Language Programming Guide

Vartable Facility

Update Mirrored Vartables

When a new entry is added to the mirrored vartable by an NCL procedure, the new
entry is automatically copied into the mirrored copy of the table.

The mirrored copy contains the following:

A copy of the key (always 16 characters)

A copy of the first 8 bytes of the DATA1 data field (blank padded if necessary)
The .AOMID attribute

An encoded version of the . AOMATTR attribute string

A counter field . AOMCOUNT

When an existing entry is updated or deleted, the appropriate action is also performed
on the mirrored copy. The screening table LOOKUP statement cannot update data in an
entry, or delete an entry, but can update the count field in the mirrored entry.

When a screening table LOOKUP statement adds a new entry, the downward mirroring
is not performed immediately, but is performed as soon as is necessary. This happens

when:

m &VARTABLE GET retrieves an entry with that key value.

m The entry can be sequentially accessed.

m GET OPT=FIRST or LAST is specified. In this instance all pending mirroring is

performed immediately.

These rules allow the mirrored copy of the vartable to be accessed with no serialization.
This enhances the performance of the screening table.

AOM Attributes of Mirrored Vartables

Mirrored vartables support several extra data fields in a table entry.

.AOMID

This attribute allows a 1- to 12-character AOM identifier to be stored or retrieved.
When a LOOKUP statement assigns the ID attribute on a successful lookup, this
value is assigned as the ID of the current message and is available to AOMPROC in
the &AOMID system variable. If the supplied value is blank, the AOMID in the table
entry is regarded as not specified, and a LOOKUP ASSIGN statement of ID will not
override the current ID value for the message.

Chapter 5: Variables, Substitution, and Assignment 79

Vartable Facility

.AOMATTR

This attribute lets you set a list of AOM message attributes. Each allowable attribute
is encoded into a 1- or 2-character value and placed into a particular position in a
character string. The blank and dash (-) have special meaning. A blank in any
position means that the associated attribute is to be regarded as not specified. This
means that when a LOOKUP statement assigns an attribute from a table entry that
is not specified, the current attribute value is not changed. A dash (-) means that
the current value of the associated attribute is not to be changed and acts as a
place holder when updating attributes that are further down in the attribute string.

The following message attributes can be encoded in a . AOMATTR string:
Position 1
z/0S delete option. Y-YES, N-NO, F-FORCE.
Position 2
ALARM option. Y-YES, N-NO.
Position 3
MONITOR option. Y-YES, N-NO.
Position 4
INTENSITY option
H-HIGH, N-NORMAL, L-LOW.
Position 5
NRD option. Y-YES, N-NO, O-OPER.
Position 6
TRACE option. S-START, F-FINISH, *-This one.
Position 7
ROUTE option. P-PROC, O-PROCONLY, M-MSG, B-BOTH, L-LOG, N-NO.

Refer to local/remote route options. If LCLROUTE and/or RMTROUTE are also
specified, they override any value set here. If both positions are set and are
different, this position is returned as not specified (-).

Position 8
HLITE option. N-NO, R-REVERSE, B-BLINK, U-UNDERSCORE,
Position 9

COLOR option. N-NO, B-BLUE, R-RED, P-PINK, G-GREEN, Y-YELLOW,
T-TURQUOISE, W-WHITE.

Positions 10-11

MSGCODE value. 2 hexadecimal digits.

80 Network Control Languade Programming Guide

Vartable Facility

Positions 12-19

8 user flags. Each can be Y-YES, N-NO.
Position 20

LCLROUTE option. P-PROC, O-PROCONLY, M-MSG, B-BOTH, L-LOG, N-NO
Position 21

RMTROUTE option. P-PROC, O-PROCONLY, M-MSG, B-BOTH, L-LOG, N-NO

Position 22
DOM-TRACK option. Y-YES, N-NO.

Positions 23-30
8 RMTCLASS values. Each can be Y-YES, N-NO.

If a string shorter than 30 characters is specified it is padded to 30 characters with
dashes. A new entry is regarded as having all attributes as not specified prior to
processing any supplied .AOMID or . AOMATTR values.

When retrieving a table entry, if the . AOMATTR values are retrieved, a 30-character
string is always returned, however some positions can be blank.

.AOMCOUNT

This attribute cannot be set or updated but can be retrieved by using the
&VARTABLE GET statement. This is a counter that is incremented if the COUNT
option is specified in the LOOKUP statement. It can be used as a hit counter. A new
table entry has this field initialized to zero before the implied count if it is added by
a LOOKUP statement with both ADD and COUNT specified.

AOMTHIT, .AOMTMISS, . AOMTADD

These attributes are counters. The counters can be accessed using these field
names in the & VARTABLE QUERY statement.

AOMTHIT

Counts the total number of LOOKUP statements, with TOTAL specified, that
found a matching table entry.

.AOMTMISS

Counts the total number of LOOKUP statements, with TOTAL specified, that did
not find a matching table entry (including those that later added a new entry).

.AOMTADD

Counts the total number of LOOKUP statements, with TOTAL specified, that
added a new entry. These are also counted in the . AOMTMIS, since no match is
found.

These counters are initialized to zero when a table is allocated or reset.

Chapter 5: Variables, Substitution, and Assignment 81

Chapter 6: Arithmetic in NCL

This section contains the following topics:

About Arithmetic in NCL (see page 83)

Integer Arithmetic (see page 84)

Real Number Arithmetic (see page 84)
Arithmetic Expressions (see page 85)
Arithmetic Operators (see page 86)

NCL Substitution and Expressions (see page 90)

Signed Numbers (see page 90)
Format Numbers (see page 91)

About Arithmetic in NCL

Arithmetic NCL statements yield the mathematical result of a calculation and place it in
a nominated variable.

Arithmetic is therefore performed as an explicit assignment operation. NCL arithmetic
statements are simply a special type of assignment statement.

NCL supports simple or compound arithmetic expressions involving positive or negative
numbers. NCL classifies numbers as follows:

m Real numbers that are whole numbers, or numbers containing a decimal fraction.
Real numbers can be expressed using scientific notation. The range of numbers
supported are those with positive absolute values not higher than +1E+70 and not
less than +1E-70, and with negative absolute values not higher than -1E-70 and not
less than -1E+70.

m Integer whole numbers only, which are a subset of the real number range, but are
not expressed in scientific notation, and lie in the range +2147483647 to
-2147483648.

Note: Positive and negative real numbers that lie in the range +1E-70 down to -1E-70
are treated as 0.

Chapter 6: Arithmetic in NCL 83

Integer Arithmetic

Inteder Arithmetic

NCL performs integer arithmetic by default. This means that an expression that contains
only integers yields only integers as a result.

The problem with integer arithmetic is that it does not allow you to use decimal
calculations to get accurate results. The use of integer arithmetic is controlled by the
&CONTROL INTEGER operand.

Example: Integer Arithmetic

The following example yields the answer 2:

10 / 4 (10 divided by 4)

Real Number Arithmetic

NCL treats numbers with decimal points, or expressed in scientific notation, as real
numbers and uses floating point arithmetic in the evaluation of real number
expressions. The result of a real number calculation, as with integer arithmetic, is placed
in a target variable. Unlike integer arithmetic however, the result is not a simple integer
but is maintained in the scientific notation form.

The number 22.8 is therefore held in a variable as:
+.22800000000000E+02

which means:

0.228 times 10 to the power of 2

A special built-in function, &NUMEDIT (see page 91), is used to reformat real number
results into conventional format so that they can be displayed as standard decimal
numbers.

84 Network Control Languade Programming Guide

Arithmetic Expressions

&CONTROL REAL

NCL always uses real number arithmetic if the &CONTROL REAL operand is in effect. This
means that even if an operation contains only integers, real number arithmetic is used
and the result is placed in the target variable in scientific notation form. It also means
that calculations are performed accurately, so that whereas, in the example of integer
arithmetic given earlier, the result of dividing 10 by 4 is given as 2, with real arithmetic
the answer would be the precise answer of 2.5 but expressed in the result variable as:

+.250000000000000E+01

If you do not code & CONTROL REAL (which means that the default & CONTROL INTEGER
is in force), NCL automatically performs real number arithmetic if real numbers are
present in any arithmetic expressions. This automatic switch to real number mode is
transparent to your arithmetic functions but is of significance if you want to perform
comparison operations where real numbers are involved.

Comparisons With Real Numbers

You must use &CONTROL REAL to switch to real number operation if you want to
perform comparisons of real numbers. This is because the &IF statement does not know
implicitly whether a variable containing a value such as:

+.986000000000000E+05

is a real number in scientific notation or simply a character string that starts with a plus
sign.

Arithmetic Expressions

A simple arithmetic expression in NCL consists of two numbers (real or integer)
separated by an arithmetic operator. For example:

1+2

497021 - 7832
0.08 + 76.889
38 - 97

1E5 - 22.9
44 / 11

A number can also be the name of a variable that contains a numeric value, for example:

SA +1
&COUNTER + &INCREMENT

The number on the left is operated on by the number on the right. There must be one or
more blanks between the operator and the numbers on each side of it.

Chapter 6: Arithmetic in NCL 85

Arithmetic Operators

An expression can also be enclosed in parentheses, in which case blanks are not
mandatory between the numbers and the operator. Parentheses can also be used to
control the order in which the statement expressions are evaluated.

A compound arithmetic expression consists of two or more numbers and operators,
surrounded by parenthesis, which are processed according to the standard rules of
precedence to yield a result, for example:

(32 +6) - (7.8 * 2)
would yield 38 - 15.6 giving an answer of:

+.224000000000000E+02 equivalent to 22.4.

Arithmetic Operators

The arithmetic operators are symbols used to specify the operation required when a
simple expression is evaluated. The operators used by NCL are, in precedence groups:

%%k

Exponentiation

/

Divide (REAL number arithmetic)
/

Divide quotient (INTEGER arithmetic)
\

Divide remainder (INTEGER arithmetic)
*

Multiplication

Subtraction
+

Addition

Within each group, the individual operators have equal precedence. The multiplication
operator is therefore no more or less significant than the divide operators. Processing of
these operators takes place in strict left to right sequence within the expression.

While most of the operators are familiar, the divide options differ depending upon the
arithmetic mode that is being used, REAL or INTEGER.

86 Network Control Languade Programming Guide

Arithmetic Operators

Divide (REAL Arithmetic)

When a division operation is performed in which one or both numbers are real, the
result is placed in the target variable as a single real number in scientific notation. The
result is not split into quotient and remainder.

Example: Divide
&RESULT = (288.5 / 45)

yields a value in &RESULT of:

+.641111111111110E+01 equivalent to 6.41.

Divide Quotient (INTEGER Arithmetic)

When you are using integer arithmetic, the Divide Quotient operator (/) produces
division of the leftmost number by the rightmost number and yields the quotient as the
result.

Example: Divide Quotient
5/ 2 is 2.

Note: If you code & CONTROL INTEGER, where either operand is a non-integer real
number, the operation is treated as a real number division and yields a real number
result in the target variable.

Divide Remainder (INTEGER Arithmetic)

Divide by Zero

When you are using integer arithmetic the Divide Remainder operator (\) produces
division of the leftmost number by the rightmost number and yields the remainder as a
result.

Example: Divide Remainder

5\ 2 is 1.

This operator is invalid for real number arithmetic and causes a syntax error when
encountered.

An attempt to divide by zero causes a syntax error and terminates the procedure.

Chapter 6: Arithmetic in NCL 87

Arithmetic Operators

Precedence of Operators

In a simple expression there is only one operator so no precedence considerations arise.
The calculation is performed according to the operator.

In a compound expression, the evaluation proceeds from left to right with operators
being processed according to the standard rules of precedence. So, in a compound
expression such as:

(243 %4 %*2)

there are three operators, which are processed in the order:

%%

Exponentiation

Multiplication

Addition

The expression is therefore processed in three steps as follows:
4 ** 2=16

16 * 3=48

48 + 2=50

So an assignment statement coded as:

SA = (2 + 3 * 4 ** 2)

results in &A being assigned a value of 50.

88 Network Control Languade Programming Guide

Arithmetic Operators

Parentheses to Control Evaluation Order

Although optional, it is often easier to code an expression in parentheses so that the
formula being calculated is easier to read. In fact, you might have to code expressions in
parentheses to ensure that your calculation is processed as you intend.

For example, the previous example shows that the result of the compound expression:
(2 + 3 % 4 xx2)

is 50.

However, you might have meant something different and coded:
(((2+3)*4) *2)

In this case the expression contained in the deepest pair of parentheses is always
evaluated first, which causes the calculation to proceed as follows:

(2+3) =5
(5*4) =20
(20 ** 2)=400

which is obviously a completely different result from the one obtained when the same
expression was coded without parentheses.

The use of parentheses to delimit the simple expressions within a compound expression
is recommended for clarity of understanding.

Chapter 6: Arithmetic in NCL 89

NCL Substitution and Expressions

NCL Substitution and Expressions

Where a variable is to be used as input to an arithmetic expression, the variable should
be enclosed in parentheses to ensure that it is evaluated before an operator is applied
to it. This is important where the variable contains a signed number.

For example, consider the following:
SA ** 2

When &A contains 5, the value is 25. However, if &A contained -5, the answer would be
-25. This is due to NCL substitution, which evaluates the expression as follows:

5 %% 2= -(5 % 2) =-25

To ensure that the sign of the variable value is interpreted correctly, parentheses should
be used as follows:

(&A) ** 2

This will give the correct answer of 25.

Signed Numbers

Positive and negative numbers are supported. The result of an expression which yields a
negative number carries a minus sign when assigned to the variable that is the target of
the assignment statement.

Example: Signed Numbers
&A =5 -8

assigns a value of -3 to &A.
&A = (288.5 * 2)

assigns a value of +.577000000000000E+03 to &A.

90 Network Control Languade Programming Guide

Format Numbers

Format Numbers

When you need to display a number, either integer or real, that is held in a variable, you
will often have to format the output so that it is aligned correctly in a field or column of
numbers.

The &NUMEDIT built-in function lets you reformat any number held in a variable by
specifying three parameters:

m The number of characters that the mantissa (the number to the left of the decimal
point) is to occupy, padded on the left with blanks if necessary.

m The number of significant decimal positions that is required.

m Optionally, whether the number is to be kept in exponent format.
Examples: &NUMEDIT Usage

In these examples the character ” represents a blank.

&A = (2 * 88) results in (&A = 176)

&B = SNUMEDIT (0,2,0) results in &A(&B = 176.00)

8A = (2 * 88) results in (&A = 176)

&B = SNUMEDIT (5,2,0) results in &A(&B = ~"176.00)

SA = (4.8 + 6.998) results in (&A = +.117980000000000E+02)
&B = SNUMEDIT (8,5,) results in &A(&B = ~"""11.79800)
SA = (2.3 ** 2) results in (&A = +.529000000000000E+01)

&B = &NUMEDIT (4,4,E) results in 8A(&B = ~""5.2900E+00)

For more information, see the Network Control Language Reference Guide.

Note: The width of the mantissa will always be at least the number of characters in the
mantissa, even if the mantissa parameter is less than the actual number of characters.
The first example shows this, where the mantissa parameter is 0 but the mantissa
length is three characters (176).

The E format of &NUMEDIT always returns one decimal digit to the left of the decimal
point.

Chapter 6: Arithmetic in NCL 91

Chapter 7: Designing Interactive Panels
(Panel Services)

This section contains the following topics:

About Panel Services (see page 93)

Panel Design (see page 96)

Analyze Panel Input (see page 101)

Monitor Panel Return Codes (see page 103)

Handle Errors (see page 105)

Find Out Which Input Fields Have Changed (see page 112)
Output Padding and Justification (see page 113)

Input Padding and Justification (see page 116)

Process with Light Pens/Cursor Select (see page 118)
Intercept Function Keys (see page 119)

Panels on Different Screen Sizes (see page 121)

Control Cursor Positioning (see page 123)

Dynamically Alter Panel Designs (PREPARSE) (see page 124)
Control the Formatting of Input Fields (see page 129)
Retrieve Panels from Panel Libraries (see page 130)
Display Panels on OCS Windows (see page 131)
Asynchronous Panels (see page 133)

Panel Control Statements (see page 137)

About Panel Services

The Panel Services facility lets you design and implement your own full-screen display
formats. Using this facility, you can create NCL procedures for communicating with
terminals using full-screen displays, referred to as panels. These panels enable NCL
processes to display output data for you, and can be designed with input fields for
communicating back to these NCL processes:

m Panel Services can be used by NCL processes executing in any NCL environment
associated with a display window.

m Panel Services is supported by an online editor which can be used to create and
modify panels.

m Panels can be defined to take advantage of such 3270 features as light-pen and
cursor selection. Full-color and extended highlighting support is available on the
appropriate terminals.

m Internal editing and validation can be selected for individual input fields to minimize
the validation required within NCL procedures.

Chapter 7: Designing Interactive Panels (Panel Services) 93

About Panel Services

Logical Screen Manader

Display panels are monitored by a Logical Screen Manager (LSM) which means that only
changed data is written to the screen. This ensures that the minimum amount of
necessary data is transmitted. Wherever possible, LSM compresses datastreams to
ensure they operate efficiently. Using an LSM provides other benefits:

m The peppering effect of data as it is written to some displays is eliminated.

m Screen flashing is minimized.

How You Create or Chande Panels

You create and change panels by using an online editor-select option P from the MODS :
Primary Menu. You must be authorized to use this facility. Sites can limit the number of
concurrent users by restricting the amount of storage available to the online editor.

Note: For more information about using the online editor, see the Managed Object
Development Services Guide.

When you create a panel, you give it a unique 1- to 12-character name, which is
nominated whenever a request is made to display the panel. Once defined, panel details
are stored in a VSAM database and can be updated as required.

The standard split-screen facilities are useful when designing panels. The panel editor
can be used on one window, while the panel test facility of Edit Services displays the
current version of the panel being developed on the other.

Invoke Full-screen Panels

Once defined and saved, a panel can be displayed immediately. Panels for display are
usually selected using an NCL procedure containing an &PANEL statement. Other NCL
statements such as &LOGON can nominate a panel for display under specific
circumstances.

If you try to display a panel that has not been defined, the procedure terminates and
displays an error message. You can use the & CONTROL PANELRC statement to receive
notification of processing anomalies (including referencing non-existent panels). Your
procedure can detect this fact and pre-empt termination to continue processing.

94 Network Control Language Programming Guide

About Panel Services

Synchronous and Asynchronous Panel Displays

An NCL procedure can issue an asynchronous panel statement or a synchronous panel
statement:

Asynchronous panel statements provide a panel display, but the procedure
continues execution without waiting for input from the terminal.

If a synchronous panel is displayed, further processing of the NCL procedure stops
until you press an Enter key, a Function key, or provide some other input from a
light pen or cursor select key. Control then returns to the NCL procedure following
the & PANEL statement. The NCL procedure can then process the data just entered
from the terminal.

If a synchronous panel has been displayed for a specific length of time without input
from an operator, control can be returned to an NCL procedure automatically. The
default panel operation is synchronous.

Note: The synchronous state is simpler to understand than asynchronous, and
descriptions of panel operations assume synchronous operation unless stated
otherwise.

Fixed and Variable Data in Panels

Panels contain a combination of fixed data and variable output data:

Fixed data is the screen captions, field identification text, and other static screen
information defined when the panel is created. This does not change when the
panel is displayed.

Variable output data is data generated by the system when the panel is displayed. It
replaces variables positioned within the panel created by the editor. Data is
extracted from NCL variables available at the time the panel is invoked.

Variable output data can be displayed in one of the following:

Protected output-only fields (where the data comprises either system or user
variables).

Unprotected input fields, for any user variables. Once displayed, you can enter data
into the unprotected input fields. Panel Services then inserts this data into the user
variable for each field, so it is available for further processing by NCL procedures.

Chapter 7: Designing Interactive Panels (Panel Services) 95

Panel Design

Panel Design

Each panel design can contain a series of up to 62 lines, each 80 characters long, and
one or more fields. A field character precedes each field. The field character identifies
the attributes for that field. These attributes prescribe the following:

Design Guidelines

The field type (input, output, selector pen detectable, or null)
The intensity (brightness) of the display
Optional editing rules

The color and extended highlighting used when the field is displayed (for
appropriate terminals)

When creating or modifying a panel, enter panel details exactly as you want them to
display. To avoid confusing the users of your panel:

Give careful consideration to the use of highlighting and color. Ensure these are not
used excessively and do not detract from their effectiveness.

Use color selection and message placements consistently for all panels in a similar
series.

Clearly identify and caption input fields to describe the input data you require.

Do not have too many fields on a panel. If necessary, spread data or solicit input
over several panels to avoid crowding a single panel.

When a panel is to be displayed, its associated control statements are parsed and any
variable substitution performed. This allows control statements to be dynamically
tailored.

96 Network Control Language Programming Guide

Panel Design

Field Characters

Field Types

Each panel line has one or more fields, starting with a field character which prescribes
the field attributes.

You must specify a #FLD control statement for each field character your panel requires.
There are two ways of defining field characters:
Character mode

To specify character mode, use any special character other than an alpha or
numeric character, and excluding ampersand (&), blank, or null.

Hexadecimal mode

To specify hexadecimal mode, enter the hexadecimal value for the character (for
example, X'FA'). Use any hexadecimal value in the range X'01' to X'FF', excluding the
values X'OE', X'OF' and any values which correspond to the EBCDIC values of
characters not allowed on character mode fields. Hexadecimal mode is used where
you need a very large number of field types within one panel and there are
insufficient special keyboard characters available to accommodate all of the field
characters you require.

Note: If using hexadecimal mode field characters, you must prime the panel definition
with the preparse option to assign correct values to field character positions in the
actual panel.

Each field is allocated a field type which prescribes the method for processing the field.
Four field types are supported:

OUTPUT
Display only. No data can be entered from the screen.
INPUT
You can both display and enter data.
SPD
Selector pen detectable; data cannot be typed in.
NULL
Display only. Although unprotected, any data entered will be ignored.

Any mixture of these field types can be defined to suit the requirements for a panel you
are designing.

Chapter 7: Designing Interactive Panels (Panel Services) 97

Panel Design

The field character that precedes each field determines:
m The field type
m The display characteristics of the field (intensity, color, highlighting)

m (Forinput fields) the internal validation rules that must be obeyed for data entered
in that field. Such rules can specify, for example, that a field is mandatory, must be
numeric, cannot contain imbedded blanks, or must be a valid date, and so on.

Each field character you define, occupies the equivalent screen position when the panel
is displayed, but appears as a blank character (the attribute byte).

The field proper starts from the next position after the field character, and continues to
the next field position on the same line, or to the end of that line where there is no
intervening field. Fields do not wrap round from one line to the next.

The three standard default field characters are:

%

high-intensity, protected (no input)

low-intensity, protected (no input)

high-intensity, unprotected (input, no validation).
These do not require definition by a #FLD statement.

Define any additional field characters you need using the #FLD statement. The attributes
for the defaulted characters can be modified. The #OPT statement can be used to
nominate alternative standard field characters, so that %, +, and _ can be used within
the panel and not processed as field characters.

Column 1 of each line of a panel must be a valid field character; if one is not defined, the
attributes for the second standard field character, (normally as +, for low-intensity,
protected) are used to replace any data incorrectly placed in that column.

98 Network Control Language Programming Guide

Panel Design

Sample Panels

The following sample panel uses default field characters.

R e T Electronic Memo -------------mmmmmmmmmnnon
+SELECT OPTIONSs===> SELECT+

1+Create a Memo

2+Send a memo

3+Display incoming memo

4+Delete an incoming memo

5+Exit from this function

o® 0° o o° o°

In this sample panel, all fields preceded by % display in high-intensity and are protected
from data entry. All fields preceded by + display in low-intensity and are also protected.
The only field available for input is on the third line, preceded by an underscore (_). The
word SELECT identifies the NCL user variable that receives the data you enter in this
field once the Enter key is pressed.

By default, the cursor is placed at the SELECT field, as this is the first (and only) field
requiring input; no other cursor position has been specified.

Note: The ampersand (&) normally associated with a variable is omitted here.

Assume that our sample panel is called PANEL1. The NCL procedure to display this panel
is:

&PANEL PANEL1

When displayed, field characters are removed and the required terminal attribute
characters are substituted.

The following sample panel shows how the panel defined in PANEL1 appears, when
displayed.

Note: In all figures, the underline symbol (_) designates the cursor location.

-------------------- Electronic Memo ------------ccmmommmmamnnn
SELECT OPTION ===>_
1 Create a Memo
2 Send a memo
3 Display incoming memo
4 Delete an incoming memo
5 Exit from this function

Chapter 7: Designing Interactive Panels (Panel Services) 99

Panel Design

Override the Input Attribute

Panels generally contain a set of input and output fields which remain relatively fixed.
The fields might need to be switched from input to output as a group.

For example, a panel used to add, browse, and update a record has three groups of
input fields. They can be:

® Onlyinput during add
®m Input during an update (data fields)

m Always input (command fields and so on.)

Separate field attribute characters can be used and switched from TYPE=INPUT to
TYPE=OUTVAR.

There are however special cases (field level security for example) where individual fields
or unpredictable groups of fields might need to be protected. The &ASSIGN
OPT=SETOUT verb can be used to force the protection of a variable, even if it appears in
an input field in a panel. A check is made against the current standard field attributes
when a field is forced to output. If the attributes of the field match the attributes of one
of the standard input fields, the field attributes (such as color and highlighting) are
switched to the attributes of the corresponding output field.

Control How Long a Panel is Displayed

Panels do not always have to accept operator input, although this is the most common
mode of operation. NCL interfaces to other system components allow you to set up
monitoring functions with display-only panels requiring little or no operator entry.

Alternatively, you might want an NCL procedure to resume control if no input is
received within a certain time.

By default, whenever a synchronous panel is displayed, Panel Services waits indefinitely
for entry from an operator. However, the INWAIT operand of the #OPT control
statement lets you override this.

INWAIT lets you specify a time (in seconds or parts of seconds) for Panel Services to wait
before control is returned to the invoking NCL procedure. During this interval, standard
keyboard entry is accepted and processed normally. Once the time interval expires,
control returns to the invoking NCL procedure.

100 Network Control Language Programming Guide

Analyze Panel Input

This facility has many applications. For example:

m If a panel displays many high-intensity fields for long periods, you can get screen
burnout. Use INWAIT to force a return of control after 20 minutes (for example),
when a blank panel replaces the display panel. The original panel can be
redisplayed when any input is received.

m [f you specify INWAIT=0, keyboard entry is not accepted and control returns to the
NCL procedure once the panel is displayed. This could be useful for displaying a
message while the NCL processes the last user request.

For more information about the format of the INWAIT operand, see the #OPT statement
description in the reference section.

Note: The INWAIT function does not apply to asynchronous panel operations.

Analyze Panel Input

The &INKEY system variable returned to the NCL procedure following a synchronous
&PANEL statement, is set to indicate how input was made (for example, by using the
Enter key).

After a panel is displayed, Panel Services waits for either of the following conditions:

m For you to complete input (signaled by pressing the Enter key or some other
function key)

m For a time-out interval to expire (where an INWAIT period has been specified on the
#OPT control statement)

The &INKEY system variable can be tested to find out whether operator input has
occurred, and to provide support for Function keys.

If the INWAIT time period elapses, &INKEY is set to a null value. If INWAIT did not expire,
&INKEY is set to one of the strings in the following table:

Entry Type &INKEY Value

Enter key ENTER

Function key FO1 through F24 (always four characters)
PA key PA1 through PA3

Light pen ENTER

Note: If &CONTROL PFKMAP is in effect, F13 to F24 are presented as FO1 to F12.

Chapter 7: Designing Interactive Panels (Panel Services) 101

Analyze Panel Input

&INKEY can be tested like any other system variable, for example:

&IF &INKEY EQ PFO1 &THEN &PANEL HELP

Remember that where INWAIT is used a null value can be set for & INKEY. Therefore, &IF
statements using &INKEY must allow for a possible null value syntax error if &INKEY is
eliminated from the statement by variable substitution. This allowance can be achieved
as follows:

&IF .&INKEY EQ . &THEN &GOTO .NOINPUT

Alternatively, to determine if the INWAIT timer has expired, use return codes from
Panel Services as requested by & CONTROL PANELRC. In this case, a return code of 12 is
set in the &RETCODE system variable to indicate the INWAIT time interval has expired.

Note: For information about how to simplify testing individual function key values by
using direct branching techniques, see the &GOTO verb in the Network Control
Language Reference Guide.

Example: Panel Input

&CONTROL NOLABEL

.DISPLAY
&PANEL MYMENU
&GOTO .MENU&INKEY

drops through if key not supported.

&SYSMSG = &STR INVALID SELECTION
&GOTO .DISPLAY
.MENUENTER-* comes here if ENTER key pressed

.MENUPFO1-* comes here if F1 pressed

.MENUPFO2-* comes here if F2 pressed

102 Network Control Language Programmming Guide

Monitor Panel Return Codes

The &GOTO .MENU&INKEY statement is resolved as an &GOTO to label constructed by
the current value of &INKEY suffixed to .MENU. If the label is not found, the &GOTO acts
as a null statement. Control passes to the next statement because the & CONTROL
NOLABEL operand was used.

Note: &INKEY is a system variable, so any attempt to assign a value into &INKEY results
in an error.

Monitor Panel Return Codes

An NCL procedure can enhance the available synchronous panel processing options by
issuing an & CONTROL PANELRC statement before displaying a panel. If this option is
used, then:

m After panel processing has completed (that is, following execution of an & PANEL
statement) the &RETCODE variable is set to indicate a particular processing
condition and control passes to the NCL statement immediately following the
&PANEL statement.

m The NCL procedure is responsible for testing the value of &RETCODE immediately
after the associated &PANEL statement and processing accordingly.

Note: Failure to test &RETCODE can result in unexpected results.

Asynchronous &PANEL statements always set an &RETCODE completion code, even if
&CONTROL PANELRC has not been issued.

The return codes 0, 4, and 8 are set as a result of a process called internal validation,
which automatically edits input fields according to rules prescribed in the panel
definition. The internal validation process is described fully in subsequent sections.

&RETCODE =0

For synchronous panel operations: One or more panel input fields have been
modified. This return code indicates if any field data have been changed. You could
use this to decide if any further validation is required. If data has been overtyped
but not altered, it is not considered to have been modified. If internal validation
detects an error, return code 8 is set.

If & CONTROL FLDCTL is set and any input field on the panel has MODIFIED attribute,
the panel returns &RETCODE O, even if the user did not physically change the field.

For asynchronous panel operations: The panel has not been updated but input has
been received for an earlier display of the same panel. In this case, you can now
process the input, but you must reissue the & PANEL statement to update the panel
display.

Chapter 7: Designing Interactive Panels (Panel Services) 103

Monitor Panel Return Codes

&RETCODE =4

The same as for return code 0, except that no input fields on the panel have been
modified. This return code can be used with return code 0 to decide whether
further data processing is required.

Important! Take care when using this return code if multiple interactions with the
panel can occur.

If internal validation detects an error, return code 8 is set. Return codes 0 and 4
apply only to the last input from the screen; if the procedure accepts input from a
screen where some data is changed and redisplays the panel, which is then not
modified, any earlier indications of data modification are lost. Your procedures
must allow for this situation.

This return code can be produced for both synchronous and asynchronous panel
operations.

&RETCODE = 8

An internal validation error has been detected. When &CONTROL PANELRC is in
effect, automatic error condition processing is suppressed so the procedure is
notified by this return code. The &SYSMSG variable contains the text of the error
message (for example, NOT WITHIN RANGE). The &SYSFLD variable contains the
name of the input field in error; this is the name of the variable (minus the & prefix)
which receives data entered into that field. When this return code is set, the
procedure can ignore the error and take alternative action. For example:

m Displaying a Help panel

m Altering the error message text by assigning a new message to the &SYSMSG
variable

m Redisplaying the panel by having the #OPT ERRFLD facility display the error
message unchanged and putting the cursor on the field in error. In this case,
the ERRFLD operand can be defined on the #OPT statement as
ERRFLD=&SYSFLD to simplify processing.

Using &RETCODE = 8 is an ideal way of providing an escape mechanism (such as F3),
even though the panel has been defined as having mandatory fields REQUIRED=YES.

&RETCODE =12

For synchronous panel operations: The panel display time-out limit specified by the
H#OPT INWAIT operand has elapsed without any data entry. The & INKEY system
variable is null.

For asynchronous panel operations: This return code means that the panel has
been displayed and has returned to the issuing procedure. Successive updates of
the panel can be made by repeating the & PANEL statement; &RETCODE = 12
indicates the panel will be redisplayed and that no input has been received from
earlier displays of the same panel. (The availability of input from a previous display
of the panel is indicated by return codes 0 or 4.)

104 Network Control Language Programmming Guide

Handle Errors

Handle Errors

&RETCODE =16

The panel requested is not defined in the current panel library path, or else some
other serious error has occurred which prevents the panel displaying. The &SYSMSG
system variable contains a message describing the error condition.

If & CONTROL PANELRC is not in effect, the following processing occurs:

m [f required, the NCL procedure determines whether any input fields have been
modified

m [nternal validation handles all error processing automatically and redisplays the
panel if errors occur.

m The NCL procedure can only determine whether the INWAIT interval has expired by
testing the & INKEY variable for a null value.

m [f arequested panel does not exist in the current panel library path, or some other
serious error occurs, the NCL procedure terminates with an error message.

NCL procedures that use Panel Services usually contain processing to validate operator
input. If an error is detected, the procedure must be able to notify you about the field in
error and the nature of the error.

Errors can be identified by taking advantage of the variable substitution performed for
panel control statements, setting appropriate variables for the #OPT control statement
CURSOR and ALARM operands, moving suitable text into an error message variable, and
redisplaying the panel.

This technique works well, but places additional responsibility on your NCL procedure to
ensure that the correct variables are set and cleared later if no errors are detected. (The
situation is compounded as the number of fields on the panel increases.)

It also helps the end-user if you highlight those fields in error by switching them to
another color, or by using facilities such as blinking or reverse-video on terminals that
support these facilities. This can also be achieved by substituting variables in control
statements, but becomes unwieldy.

Chapter 7: Designing Interactive Panels (Panel Services) 105

Handle Errors

Panel Services facilities are provided to simplify the notification of errors. These facilities
assume that error reporting includes additional attention-getting operations such as:

m Ringing the terminal alarm

m Placing the cursor on the field in error

m Displaying error message text

m Changing the field in error to high-intensity

m Switching the field in error to a different color

m Displaying the field in error in reverse-video

The #ERR control statement lets you design a common environment (that is, a common

set of attributes) for error conditions. This environment is then applied whenever an
input field is nominated as being in error by one of the following methods:

m Using the &ASSIGN verb. (For more information about the syntax and usage of the
&ASSIGN verb, see the Network Control Language Reference Guide. Note especially
the OPT=SETERR and OPT=RESETERR options.) This method lets you set the error
attribute for multiple fields

m By nominating the field name in the ERRFLD operand of the panel services #OPT
statement. This method allows the error attribute to be set for a single field. The
ERRFLD operand normally specifies a variable (for example, ERRFLD=&SYSFLD).
When the NCL procedure wants to mark a field as being in error, it places the name
of the field in error into the variable (for example, &SYSFLD = FIELD1).

The following sample panel shows the ERRFLD operand in use.

#0PT ERRFLD=&SYSFLD
#ERR ALARM=YES INTENS=HIGH COLOR=RED HLIGHT=REVERSE

% mmmmmmmmmmmm e Name and Address -----------=-------~---------
%8SYSMSG

+ENTER NAMESs===_ NAME
+ENTER ADDRSs===_ ADDR1
+ENTER ADDRSs===_ADDR2
+ENTER ADDRSs===_ADDR3
+ENTER ADDR%=== ADDR4

+ENTER ADDR%s===_ADDR5

This sample panel illustrates the use of the #OPT ERRFLD method. This method requires
two items in the panel control statements: a #OPT ERRFLD statement and a #ERR
statement.

Assume the ADDRS field data must be XYZ; initially the panel is displayed with the
&SYSFLD variable set to null. Because the ERRFLD operand does not nominate a field,
the #ERR statement is ignored and the panel is displayed normally.

106 Network Control Language Programming Guide

Handle Errors

On subsequent entry, the validation procedure checks the ADDRS field and determines
that it is wrong. The &SYSFLD variable is set to the name of the incorrect field (ADDRS5),
the appropriate error text is assigned to the &SYSMSG variable, and the panel is
redisplayed.

.DISPLAY
&PANEL MYPANEL

&IF .&ADDR5 NE .XYZ &THEN &GOTO .ERROR
other processing

.ERROR
&SYSFLD = ADDR5
&SYSMSG = &STR DATA MUST BE XYZ, RE-ENTER
&GOTO .DISPLAY

When the panel is redisplayed, the cursor is positioned on the last address field, ADDRS5.
This field is displayed in high-intensity and the terminal alarm rings (on a color terminal,
the field is displayed in reverse-video and red.)

To achieve the same result using &ASSIGN verb instead, remove the #OPT statement
from the panel definition and replace the line:

&SYSFLD = ADDR5
with
&ASSIGN OPT=SETERR VARS=ADDR5

This method lets you use the #ERR attributes for more than one field.

If the ADDRS field is corrected and the panel redisplayed, the ADDRS5 field returns to its
original attributes.

If the erroneous field is a non-display field (such as those used to enter passwords), the
overriding attributes that force the entered data to be displayed are ignored and the
field remains a non-displayed field.

Note: The variable &SYSFLD is a special variable, which is cleared by Panel Services after
the panel is displayed. If you use another variable such as &ERROR, you should clear it
after all error conditions are corrected. This ensures that if another panel that uses the
same variable is displayed, it does not incorrectly signal an error. The &SYSMSG variable
need not be cleared by the NCL procedure because it is always reset to null by Panel
Services before returning to the NCL procedure.

Chapter 7: Designing Interactive Panels (Panel Services) 107

Handle Errors

Internal Validation

In your own NCL procedure, you can perform all necessary panel field validations. Panel
Services also includes powerful automatic editing capabilities for this function, called
internal validation.

The Electronic Memo panel definition shown in the previous sample panel does not
specify any Panel Services validation for data entered in the SELECT field. You need to
define an NCL procedure to validate input and redisplay the panel with an error
message.

You can do this by using the following code:

&CONTROL NOENDMSG
. PANEL
&PANEL PANEL1
&IF .&SELECT EQ . &THEN &GOTO .ERR1
&A = &TYPECHK (NUM) &SELECT
&IF .&A NE .NUM &THEN &GOTO .ERR2
&IF &SELECT GT 5 OR +
&SELECT LT 1 &THEN &GOTO .ERR2

other processing
:ERRl

k;uild error message and then redisplay the panel.
:ERR2

k;uild error message and then redisplay the panel.

Panel Services can provide internal validation at a field level. This can perform most of
the basic editing required for a field and can greatly simplify the processing required
within an NCL procedure.

The type of field validation you require can be specified on the #FLD statement for the
field character attributes marking the start of a field. Multiple #FLD control statements
can be used to specify different validation criteria for individual fields.

108 Network Control Language Programming Guide

Handle Errors

The following sample shows a panel that includes the #FLD statement to define
validation requirements.

#FLD _ REQUIRED=YES BLANKS=TRAIL RANGE=(1,5)

T R EE TP Electronic Memo ------------mmmmmom o
+SELECT OPTION%s===> SELECT + %
&SYSMSG

% 1+Create a memo

% 2+Send a Memo

% 3+Display incoming memos
% 4+Display incoming memo
% 5+Exit from this function

In this sample, the standard underscore character (_) has been redefined:

m To specify internal validation for ensuring the field is not omitted (REQUIRED=YES)
m So that trailing blanks but not imbedded blanks can be accepted (BLANKS=TRAIL)

m So that the entered data must be numeric and in a range from 1 to 5 (RANGE=(1,5))
Internal validation error processing depends on how the & CONTROL PANELRC option is

set. If &CONTROL PANELRC is not in effect, automatic internal validation occurs; if it is in
effect, advanced internal validation can be used.

Chapter 7: Designing Interactive Panels (Panel Services) 109

Handle Errors

Automatic Internal Validation

An input error detected by internal validation where & CONTROL PANELRC is not in
effect, is automatically handled by Panel Services. Control is not returned to the NCL
procedure.

When an error is detected by internal validation, Panel Services assigns the appropriate
error text to the &SYSMSG variable, automatically redisplays the panel, rings the
terminal alarm, and places the cursor at the field in error. The display options defined
within the #ERR statement for the panel are applied to the erroneous field (for example,
color or highlighting attributes).

When designing your panel, ensure the &SYSMSG variable field is described somewhere
on it:

m Position the &SYSMSG field towards the top of the panel so any message it includes
is visible in split screen mode. If &SYSMSG is not provided, the error text cannot
display and the operator might not be able to find the cause of error. (The error
message texts used by internal validation are detailed in the #FLD control
statement EDIT operand.)

m The field for the &SYSMSG variable is normally a high-intensity field, or some
prominent color such as red (for color terminals).

m &SYSMSG always resets to a null value when control returns to the NCL procedure if
no internal validation is performed and no errors are detected. This ensures an NCL
procedure does not have to explicitly clear the &SYSMSG variable if no error is
found.

The &SYSMSG variable is not limited to internal validation uses. NCL procedures can use
it to display error messages or text assigned during processing.

Internal validation facilities cannot address all of the validation requirements a
procedure needs to perform. Like other user variables, the &SYSMSG variable does not
span different nesting levels; it is unique to each level unless made available using the
&CONTROL SHRVARS option.

Note: Assigning multiple word error text to the &SYSMSG variable requires that you use
the NCL &STR or &ASISTR function. For example:

&SYSMSG
&SYSMSG

&STR INVALID SERIAL NUMBER
&ASISTR RESOURCE NOT ACTIVE

110 Network Control Language Programming Guide

Handle Errors

Advanced Internal Validation

While the automatic internal validation greatly simplifies an NCL procedure, sometimes
you might want a procedure to continue processing when a validation error is detected,
bypassing the automatic reshow normally performed. For example, if a field is specified
as mandatory (REQ=YES), automatic internal validation forces the field to be entered
and issues this message:

REQUIRED FIELD OMITTED

Alternatively, you might want a system where a field is mandatory unless F1 is pressed
to display a Help panel, or where F12 indicates the entry is to be bypassed. You might
also want to change the text of the messages supplied by internal validation.

An & CONTROL PANELRC statement issued before an & PANEL statement tells Panel
Services processing that the NCL procedure is designed to cater for a range of & PANEL
return codes. These return codes accommodate a variety of conditions possible when
processing a panel, and signify there is no automatic reshow performed after an error is
detected.

If &KCONTROL PANELRC is used, the procedure receives control if internal validation
detects that a required field has been omitted (or some other error). The name of the
field in error is supplied in a variable called &SYSFLD and the text of the error message
registered by internal validation is supplied in the &SYSMSG variable.

In the previous example, where F1 and F12 require special processing, the procedure
tests &INKEY for PFO1 or PF12, ignores the error, and reacts as required. If F1 or F12 is
not pressed, the procedure redisplays the panel with the error message.

When redisplaying the panel, the &SYSFLD variable containing the name of the field in
error can be referenced on the #OPT statement ERRFLD operand (ERRFLD=&SYSFLD).
This initiates the processing which positions the cursor on the field in error (and possibly
a #ERR statement designating special attributes to be applied to the field in error). The
text in the &SYSMSG variable can be modified if required, or assigned into another
variable.

If a procedure uses this technique, it must be written to handle all return codes possible
from the & PANEL statement.

If no internal validation is performed or no internal validation error is detected,
&SYSMSG and &SYSFLD are set to a null value when control is returned to the NCL
procedure after the & PANEL statement. This ensures that the NCL procedure does not
have to explicitly clear variables if an error is not found.

Chapter 7: Designing Interactive Panels (Panel Services) 111

Find Out Which Input Fields Have Changed

Like &SYSMSG, the &SYSFLD variable is not limited to internal validation uses. It can also
be used by the NCL procedure for its own error indications:

m Once a procedure has detected an error it can assign error message text into the
&SYSMSG variable, place the name of the field in error in &SYSFLD, and redisplay
the panel.

m [f the panel uses the ERRFLD option on the #OPT statement, the error message is
displayed and the cursor positioned at the field in question. Any other error
processing defined on the #ERR statement is also performed.

Like other user variables, the &SYSFLD variable does not span different NCL procedure
nesting levels and is unique to each level unless shared under & CONTROL SHRVARS.
Regardless of other uses, &SYSFLD resets to null after the & PANEL verb unless an error
is detected by internal validation.

Find Out Which Input Fields Have Changed

NCL procedures need a simple mechanism for finding out which input fields have been
modified on a display panel with multiple fields. This lets you validate only those fields
which were changed.

When an NCL procedure executes with the & CONTROL FLDCTL option set, Panel
Services processing automatically creates a stack of all modified input fields returned
from the terminal. This stack is built by scanning the input panel line by line from top to
bottom, and from left to right. The system variable & MODFLD is primed with the name
of the input field variable that is logically at the top of the stack. Each time the
&ZMODFLD variable is referenced, its value changes to the name of the variable
associated with the next modified input field on the panel. When the procedure
processes the last panel input field variable name, & MODFLD is reset to a null value.

112 Network Control Language Programmming Guide

Output Padding and Justification

Example: Find Out Changed Input Fields

&CONTROL NOLABEL

&PANEL GETABC -* Display panel containing input fields
-* &A, &B, and &C.

-* User enters fields A and C.

-* Procedure resumes processing
-* &MODFLD = A

. INPUTLOOP
&GOTO .&ZMODFLD -* Process next modified field -* variable
&GOTO .NEXTPANEL -* No more fields...issue next panel.
AL -* Process input variable A. This is
-* the first reference to &MODFLD,
-* whose value now changes to the next
-* variable name on the stack, that is, C.
&GOTO .INPUTLOOP
.C... -* Process input variable C. This is
the second reference to &ZMODFLD,
whose value now becomes null, since C
is the last modified field variable.
&GOTO .INPUTLOOP

An NCL process can have one active & MODFLD stack at a time. If another panel is
displayed while the & CONTROL FLDCTL option is still in force, then the current
&ZMODFLD stack is rebuilt. & MODFLD variables that are not accessed remain in the
stack if they are in the panel just displayed.

Alternatively, if &CONTROL NOFLDCTL is issued to suspend the & MODFLD stack
generation, any number of other panels can be presented without destroying the
&ZMODFLD stack. The &ZMODFLD stack is available for use unchanged as soon as
&CONTROL FLDCTL is reissued. Certain options of the &ASSIGN verb help manipulate
the &ZMODFLD stack. For more information about the &ASSIGN verb, see the Network
Control Language Reference Guide.

Output Padding and Justification

Careful use of padding and justification greatly enhances the usability of panels for
end-users. Panel Services includes extensive facilities to manipulate displayed data.
Padding and justification qualities are specified by the #FLD statement. There are two
justification categories—field level justification and variable level justification. Both can
be used concurrently.

Chapter 7: Designing Interactive Panels (Panel Services) 113

Output Padding and Justification

Field Level Justification

This is performed on an entire field as delimited by defined field characters. Field
justification analyzes the entire field, strips trailing blanks, and pads and justifies the
remaining data. The #FLD operands controlling field level justification are JUST and PAD.

The various ways data can be manipulated are best described by a series of examples.
These examples show a mix of fields each defined with a different field character and
each showing a different display format. Study the #FLD statements and observe the
results achieved.

#NOTE This sample panel definition gives examples of the
#NOTE use of field level justification and padding.

#FLD#

#FLD$ JUST=RIGHT

#FLD@ JUST=LEFT PAD=<
#FLD? JUST=RIGHT PAD=>
#FLD/ JUST=CENTER PAD=.
#SVARO1 +

$&VARO2 +

@&VARO3 +

7&VARO4 +

/&VAROS +

Assume the following variable assignment statements are executed by the NCL
procedure before displaying the sample panel:

&/ARO1 = &STR Left justified null padding
&/ARO2 = &STR Right justified null padding
&/ARO3 = &STR Left justified with padding
&/ARO4 = &STR Right justified with padding
&V/ARO5 = &STR Center justified with padding

The default values are JUST=LEFT and PAD=NULL, as shown by the first line in the
following example, where field character # is used with no attributes other than the
defaults. The sample panel is displayed as follows:

Left justified null padding

Right justified null padding
Left justified with padding<<<<<<<<<<<<<<<<LLLLLLLLKLLLLLLL
SSSSSS>>>>SS>>>>>>>>>>>>>>>>>>Right justified with padding
.............. Center justified with padding...............

114 Network Control Language Programming Guide

Output Padding and Justification

Variable Level Justification

This operates independently of field level justification, and applies to the data
substituted for field variables defined as requiring variable level justification. Variable
level justification is designed to help tabulated output, where data of differing lengths is
substituted for a series of variables and where the normal substitution process would
disrupt display formats. The #FLD operands that control field level justification are
VALIGN and PAD.

The substitution process normally substitutes data in place of the &variable without
creating additional characters. Thus, if a variable (for example, & VARIABLE) is replaced
by data, any characters following this are moved left to occupy any spaces remaining
after substitution (that is, if spaces are freed going from a long variable name to a
shorter data length).

#NOTE This sample panel definition gives examples of the
#NOTE use of variable justification, padding, and field
#NOTE justification.

#FLD # VALIGN=LEFT

#FLD $ VALIGN=RIGHT

#FLD @ VALIGN=CENTER

#FLD ? VALIGN=LEFT PAD=.

#FLD / VALIGN=RIGHT PAD=.

#FLD } VALIGN=CENTER PAD=.

#FLD ! VALIGN=LEFT JUST=RIGHT PAD=.

#SVARIABLE other data+

$&VARIABLE other data+

@&VARIABLE other data+

?&/ARIABLE other data+

/&VARIABLE other data+

}&VARIABLE other data+

!&/ARIABLE other data+

Variable level justification controlled by the VALIGN operand of the #FLD statement, lets
you influence the way substitution is performed.

Note: Variable level justification is only performed if the length of the data being
substituted is less than the length of the variable name being replaced, including the
ampersand (&).

Assume the following variable assignment statement has been executed by the NCL
procedure before displaying the sample panel:

&ARIABLE = Data

Chapter 7: Designing Interactive Panels (Panel Services) 115

Input Padding and Justification

&VARIABLE is the only variable within a field which contains the words 'other data'.
Where both field justification and variable alignment are used, the padding character
applies to both, as shown by the last line of the example for field character |. The
sample panel is displayed as follows:

Data other data
Data other data
Data other data
Data..... other data
..... Data other data
..Data... other data
........................... Data..... other data

Input Padding and Justification

Fields to which the PAD and JUST operands of the #FLD statement are applied can be
defined as input fields. If an input field is primed with data during the display process,
the alignment of data within that field when displayed is as described in the previous
section on Output Padding and Justification, except that JUST=CENTER is treated as
JUST=LEFT. When Panel Services processes input from the screen, input fields defined
using the PAD and JUST operands are processed using the following rules:

m Trailing blanks and pad characters are stripped off, unless the pad character is
numeric.

m [f JUST=RIGHT is specified for the field, then leading blanks and pads are stripped
off (including numeric pads).

m |f JUST=ASIS is specified for the field, then trailing blanks and pads are stripped off,
but leading blanks and pads remain intact.

#NOTE This sample panel definition gives examples of the
#NOTE use of input padding and justification.

#FLD # TYPE=INPUT

#FLD $ TYPE=INPUT JUST=RIGHT

#FLD @ TYPE=INPUT PAD=< JUST=LEFT

#FLD ? TYPE=INPUT PAD=> JUST=RIGHT

#FLD / TYPE=INPUT PAD=0 JUST=LEFT

#FLD } TYPE=INPUT PAD=1 JUST=RIGHT

#VARO1
$VARO2
@VARO3
?VARO4
/VARO5
}VARO6

+ + + + + +

116 Network Control Language Programming Guide

Input Padding and Justification

Assume the following variable assignment statements are executed by the NCL
procedure before displaying the sample panel:

&VAROL = Walt
&ARO2 = Tom
&VARO3 = Dick
&/ARO4 = Harry
&ARO5 = John
&ARO6 = Vicky

The sample panel is displayed as:

WALT

TOM
DI CK<<<<<<g<<<<<<L<<L<<<L<LL<LL<LL<L<<L<<
SSSSSSSSSSSSSSSSSS>SSS>>>>>>>>>>>>>HARRY
JOHNOOOO000E00OOE00EAEOEOEOEEOEOEEOEOOA
111111111111111111711111111111111111VICKY

If control is passed back to the NCL procedure without any data entered into the input
fields, the variables are set to the following values:

&/AROL = WALT
&/ARO2 = TOM
&/ARO3 = DICK
&/AR04 = HARRY
&/ARO5 = JOHN

&/ARO6 = VICKY

Note: If the line John000... had been modified, it would have been padded to the right
with zeros.

The variable values are translated to uppercase because the default for input fields is
CAPS=YES.

Chapter 7: Designing Interactive Panels (Panel Services) 117

Process with Light Pens/Cursor Select

Process with Light Pens/Cursor Select

Panel Services lets you use both light pens and the cursor select key. Such fields are
termed selector pen detectable, or SPD fields.

Specify an SPD field by the TYPE=SPD operand on the #FLD statement. An SPD field can
be regarded as an input field and the processing and formatting options apply
accordingly. However, you cannot enter data into an SPD field because it is protected.

An SPD field must nominate a single variable (minus the &). This field can contain data
to be displayed when the panel is displayed. It is set to the word SELECTED if you do
either of the following:

m Press the light pen against the screen anywhere in the field.
m Press the CURSOR SELECT key when the cursor is positioned anywhere in the field.
In accordance with hardware requirements, a field specified as TYPE=SPD must start

with either ampersand (&), question mark (?), or a blank (). These characters are
termed designator characters and have the following meaning:

m A question mark (?) designates a selection field. If you choose this field, the ? is
changed to a greater-than symbol (>) by the hardware to show successful selection
(it can be deselected by reselecting it once more).

m An ampersand (&) designates the first format for an attention field-select this field
in the normal way. (Selecting this field is also equivalent to pressing the Enter key,
which transmits all modified screen data.)

m Ablank designates the second format of an attention field. It operates like the &
field, but modified data is not transmitted.

The designator character can be followed by one or more blanks and then the name of
the variable (without the &) that is to receive notification of the selection. For example:

#NOTE This sample panel definition gives an example of the
#NOTE use of SPD fields.

#FLD / TYPE=SPD

/? SELECTION1

If you use a light pen or the cursor select key to select this field, the variable
&SELECTION1 is set to the value SELECTED on return to the NCL procedure.

118 Network Control Language Programming Guide

Intercept Function Keys

Mix SPD Fields with Normal Input Fields
While you can mix TYPE=SPD fields with TYPE=INPUT fields, some care must be taken.

A normal input field (TYPE=INPUT) lets you key data into it. This data is transmitted to
the system when the Enter key or a Function key is pressed. If an attention SPD field
(designated by the blank selection character) is used to replace the Enter key, data
entered into normal input fields is not transmitted, and the variables associated with
those fields are set to null. Therefore, CA recommends that when you mix SPD fields
with normal input fields, you use only SPD fields specifying ? or & designator characters.

Hardware Restrictions
When using a light pen, you must observe some hardware requirements if you define
multiple fields on the one line:
® A minimum of three blank or null characters must precede an SPD field.
® A minimum of three blanks or nulls must follow displayed data in the field before

the next field starts.

These restrictions do not apply if you are using the CURSOR SELECT key.

Intercept Function Keys

By default, Panel Services intercepts certain function key actions in an identical manner
to the rest of the system, as follows:

F2 or F14
Screen split operation
F3 or F15
Terminate NCL procedure
F4 or F16
Terminate NCL procedure
F9 or F21
Screen split/swap operation
While the use of these keys is transparent to NCL procedures invoking full-screen

panels, this might not always be desirable. A procedure might want to intercept all
function keys and invoke alternative functions.

Chapter 7: Designing Interactive Panels (Panel Services) 119

Intercept Function Keys

Panel Services offers two levels of function key interception which can be requested
using an &CONTROL verb, before issuing the &PANEL statement where they are to
apply. To simplify processing, you can perform optional function key mapping, where
F13 to F24 are mapped to their F1 to F12 counterparts.

&CONTROL PFKSTD

PFKSTD stops the interception of F3/15 and F4/16, which normally terminate the
invoking NCL procedure. Using these keys returns you to the NCL procedure with
the appropriate value set in the & NKEY system variable. F2/F14 and F9/F21
operate as normal, providing screen split/swap facilities.

&CONTROL PFKALL

PFKALL lets you allocate alternative functions to all Function keys, or to block screen
splitting, if required. PFKALL stops all Function key interceptions and returns to the
NCL procedure with the appropriate value set within &INKEY. In this case, screen
split and swap facilities are not available unless your NCL procedure issues the
appropriate SPLIT or SWAP command when the associated keys are pressed.

&CONTROL NOPFK
Returns PFKSTD or PFKALL to standard operation.
&CONTROL PFKMAP
This option can simplify the number of keys which a procedure must allow for.

PFKMAP maps F13 to F24 against their counterparts before presenting them to the
NCL procedure in the &INKEY system variable. When this option is in effect, the
procedure does not have to cater for F13 to F24 because F13 is presented as F1, F14
is presented as F2, and so on.

&CONTROL NOPFKMAP
NOPFKMAP turns off function key mapping.
Function keys are presented to the procedure unchanged, so that all function keys

are available for separate uses.

Note: Terminals under EASINET control always operate as though & CONTROL PFKALL is
in effect, and cannot operate in split screen mode.

120 Network Control Language Programming Guide

Panels on Different Screen Sizes

Panels on Different Screen Sizes

The maximum number of display lines that can be defined for a panel is 62. This does
not include control statements. It is possible that a panel may exceed the size of the
terminal or the size of the current operational window (if operating in split-screen
mode). If this happens, Panel Services truncates the panel.

An invoking NCL procedure can use the &LUROWS and &LUCOLS system variables to
determine the dimensions of the processing window. The &ZROWS and &ZCOLS system
variables can be used to determine the dimensions of the physical terminal. The
&ZCURSFLD and &ZCURSPOS system variables are used to determine the actual field
which contains the cursor. Using these variables, a procedure can tailor its processing
accordingly.

&LUROWS Variable

&LUCOLS Variable

The & LUROWS system variable is provided to let an NCL procedure test the number of
screen lines currently available for displaying a full-screen panel.

When in split screen operation, this is the number of lines available within the current
screen window. Use & LUROWS for multi-screen output displays to determine the
maximum number of lines that can be displayed in the available operational window.

You are responsible for subtracting any fixed overheads associated with displaying the
panel, such as heading lines, and so on, and for operating within the available space.
You should also allow for small windows, where there might not be sufficient lines to
display data.

The &LUCOLS system variable lets an NCL procedure test the number of screen columns
currently available for displaying a full-screen panel. & LUCOLS can be used for
multiscreen output displays to determine the maximum width that can be displayed in
the available operational window.

You should cater for small windows, where there might not be sufficient columns to
display data.

Chapter 7: Designing Interactive Panels (Panel Services) 121

Panels on Different Screen Sizes

&CURSCOL Variable

The &CURSCOL system variable is set on returning from an & PANEL statement and is
used to determine the column where the cursor was positioned when the last entry was
made.

If operating in split screen mode, the value in & CURSCOL is relative to the start of the
operational window regardless of where that window is positioned on your screen. If
the last entry was caused by the INWAIT timer expiring, the value returned in
&CURSCOL is unreliable.

&CURSROW Variable

The & CURSROW system variable is set on returning from an &PANEL statement and can
be used to determine the row where the cursor was positioned when the last entry was
made.

If operating in split screen mode, the value in & CURSROW is relative to the start of the
operational window regardless of where that window is positioned on your screen. If
the last entry was caused by the INWAIT timer expiring, the value returned in
&CURSROW is unreliable.

Determine the Field Location of the Cursor

The &ZCURSFLD and &ZCURSPOS system variables are used to determine the actual
field location of the cursor. This is useful for providing context sensitive help.

The &ZCURSFLD system variable contains the name of the field the cursor was in. This
applies to TYPE=INPUT and TYPE=OUTVAR fields only-output fields have no name.

The &ZCURSPOS system variable provides the offset within that field where the cursor
was positioned.

122 Network Control Language Programming Guide

Control Cursor Positioning

Control Cursor Positioning

The cursor position on a panel is controlled either implicitly by Panel Services (for
example, to identify a field in error), or by an explicit request from the procedure issuing
the panel.

For explicit cursor positioning, use the #OPT statement CURSOR operand. Either specify
the name of an input field defined on the panel, or supply screen coordinates as a row
and column number.

m [f using the name of an input field, enter the name of the variable minus the
ampersand, as defined in the panel to receive any data entered in that field. Define
the CURSOR operand as:

#0PT CURSOR=&CURSOR

Then assign the required field name into the & CURSOR variable before displaying
the panel. For example:

&CURSOR = FIELD2 -* note omission of ampersand
&PANEL MYPANEL

m Alternatively, specify explicit cursor positioning by supplying the row and column
where the cursor is to be positioned. The CURSOR operand of the #OPT statement
can also be used, but then the row and column coordinates must be specified. For
example:

#0PT CURSOR=&ROW, &COL

Row and column coordinates are then set from the procedure before displaying the
panel. For example:

&ROW = 10
&COL = 30
&PANEL MYPANEL

Note: If the row and column coordinates that you specify lie outside the boundaries of
the current operating window, the cursor is positioned on row 1, column 1 of the
window.

A procedure can also influence the implicit positioning of the cursor by Panel Services.
Use the &ASSIGN SETERR operand to let the procedure identify one or more fields
which can be classified as being in error.

Alternatively, a procedure can use the #OPT panel statement ERRFLD operand to
identify a particular field which is in error.

Chapter 7: Designing Interactive Panels (Panel Services) 123

Dynamically Alter Panel Designs (PREPARSE)

Cursor Positioning Hierarchy

Cursor location is determined in the following sequence:

The first field in error detected by internal validation
m Afield identified as being in error by #OPT ERRFLD
m The first field designated as being in error by &ASSIGN OPT=SETERR

Any field designated by &ASSIGN OPT=SETERR that is also identified by #OPT
CURSOR takes precedence.

m Afield or position identified by #OPT CURSOR=/oc
m The first input field processed top to bottom, left to right
m The upper left corner of the panel (row 1, column 1 of the window)

m [f the selected field cannot be displayed within the current window dimensions, the
upper left corner of the panel (row 1, column 1 of the window)

Dynamically Alter Panel Designs (PREPARSE)

When a panel is designed, the location and layout of input and output fields within it is
normally fixed when the panel is created using Edit Services. This means the field
characters that define the location of fields (by default %, +, or _), are positioned as
required and remain fixed. It is the data or variables within those fields that then
change.

However, under some circumstances, you might need to dynamically alter the attributes
of fields, or to add or delete entire fields. For example, you might want the color and
highlighting for a field to change depending on the data content. (This might be
necessary if you are designing a panel that monitors network status, where you want to
vary the color of a field to alert an operator).

Some scope for doing this exists by supplying variable data for use on #FLD statements
where the variable data is used to alter the characteristics of the field. However, the
actual addition or deletion of fields cannot be achieved using this technique and it
becomes cumbersome if the attributes of many fields must be altered.

Panel Services lets you dynamically create panel definitions by using a preparsing
concept. Preparsing is requested by the #OPT panel statement PREPARSE operand, and
makes a preliminary scan of the required panel lines before building the panel.

During this preliminary phase, field characters are ignored and substitution used to
change a panel line in any way you require. Only after preparsing is complete, is the
normal panel building process performed.

124 Network Control Language Programming Guide

Dynamically Alter Panel Designs (PREPARSE)

Substitution normally uses the occurrence of ampersand (&) to indicate the start of a
variable string. These strings can be resolved to reflect the content of the variable, as
set by the procedure before the & PANEL statement.

The PREPARSE operand has the following format:
#0PT PREPARSE=($,S)

#0PT PREPARSE=(!,D)

The first character in the parentheses defines the alternative substitution character
(other than an &) to be used during the PREPARSE operation.

The second character specifies the alignment option for the display fields affected by
PREPARSE substitution. These options (for Dynamic and Static preparsing) are explained
in the following sections.

The alternative substitution character (for example, a dollar sign) is used as the
substitution character for the preparse stage of processing. The panel line is scanned for
occurrences of the preparse character and the variables are isolated. The variables are
then resolved using the values of the corresponding variables set from the procedure.
Using an alternative substitution character allows panels to contain a mix of
conventional and preparse fields.

Before displaying this panel (see the following sample, which shows the panel before
PREPARSE substitution), the procedure tests the values in the variables &FIELD2 and
&FIELD3 and appends the appropriate field character to display the field. In this
example, using the > character displays the field in red and reverse video, but using the
? character displays the field in yellow without any other highlighting.

#OPT PREPARSE=($,d) INWAIT=60
#FLD > COLOR=RED HLIGHT=REVERSE TYPE=OUTPUT
#FLD ? COLOR=YELLOW TYPE=OUTPUT

5= === mmmmmmammmee Network Monitor -----------ommmommmonn
+$FIELD1

+NETWORK STATUS AS AT &TIME ON &DATE3

+NCP1 is currently $FIELD2

+NCP2 is currently $FIELD3

In this example, FIELD2 and FIELD3 are output fields. FIELD1 is an output field too, by
default, but the logic below also converts the FIELD1 position to an input command line
if the user ID happens to be USERO1. The value assigned to FIELD1 actually contains the
new field characters that are to be substituted into the panel definition. The preparse
function then builds the new fields before the panel is displayed, so that an input field
appears on the terminal.

Chapter 7: Designing Interactive Panels (Panel Services) 125

Dynamically Alter Panel Designs (PREPARSE)

The following logic shows this procedure:

&IF &STATUS2 EQ INACT &THEN &FIELD2 = >&STATUS2
&ELSE &FIELD2 = ?&STATUS2
&IF &STATUS3 EQ INACT &THEN &FIELD3 = >&STATUS3

SELSE &FIELD3 = ?8STATUS3

&IF SUSERID = USERO1 &THEN &FIELD1 = &STR Command +
%===>_COMMAND

SPANEL MYPANEL

Note: Although the variables on the panel start with the preparse substitution character
(S), they are still referred to in the NCL procedure as starting with an ampersand.

Preparsing is regarded as a completely separate substitution phase. Therefore, if a
preparse character other than an & is designated, this process can substitute data that
includes other variables, which are resolved when the standard substitution process for
each field is performed. The following sample show a panel after PREPARSE substitution.

#0PT PREPARSE=($,D) INWAIT=60

#FLD > COLOR=RED HLIGHT=REVERSE

#FLD ? COLOR=YELLOW

% mmmmmmm e mm oo e Network Monitor --------------------------
+Command %===> COMMAND

+NETWORK STATUS AS AT &TIME ON &DATE3
+NCP1 is currently >INACT

+NCP2 is currently ?ACT

Dynamic PREPARSE Option

In panel lines with more than one preparse character or field character, the effect of
substituting variable data within the line might cause the final text of the line to be
longer or shorter than the original text. In this case, fields that follow the substituted
data move to the left or right of their original column.

Shifting preparse or field characters to accommodate differing substituted data lengths
is the system default, and is called dynamic preparsing.

126 Network Control Language Programming Guide

Dynamically Alter Panel Designs (PREPARSE)

Static PREPARSE Option

If you want to display a panel where column alignment is important for the
presentation, but you are using preparse to substitute data into each line, you could find
the columns are not aligned properly in the final display. This occurs because the
substituted data varies in length from line to line.

To correct this, use the static preparse option. This lets you specify on the #OPT
statement that the location of preparse and field characters is to be preserved, despite
differing data substitution lengths. Here, data is truncated to fit if the substituted data
exceeds the space available to the left of the next preparse or field character.

Example: PREPARSE Option
If a panel uses $ as its preparse character and contains the following line:
$VAR1 $VAR2

An NCL procedure sets the variable as follows:

&AR1 = &STR !ABCDEFGHIJKLMNOPQRSTUVWXYZ
&AR2 = &STR 112345

Dynamic preparse displays:
ABCDEFGHIJKLMNOPQRSTUVWXYZ 12345
Static preparse displays:

ABCDE 12345

Chapter 7: Designing Interactive Panels (Panel Services) 127

Dynamically Alter Panel Designs (PREPARSE)

Considerations When Using PREPARSE

Preparsing substitutes by using the specified character. After the preparse is complete,
standard panel field processing proceeds.

Take care that the data substituted does not contain unwanted field characters which
introduce unexpected fields if not removed. Preparsing may generate an entire line of
data that is expected to be output only.

If this data contains any underscore characters (indicating an input field) errors will
probably occur because the field format is incorrect. Overcome this by ensuring that the
data substituted by preparsing does not contain such unwanted field characters. Varying
the default field characters can help here.

Allowing the panel to perform substitution after preparse prevents this problem. For
example, change the NCL code as follows:

&IF &STATUS2 EQ INACT &THEN +
&FIELD2 = &CONCAT > &STATUS2

Display Function Key Prompts

The SAA Common User Access (CUA) standards require that a list of function keys and
their functions be displayed at the bottom of a panel. The #TRAILER control statement
can be used by NCL procedures to nominate lines which appear at the bottom of the
panel. The function key prompts are then always displayed at the bottom of the panel
regardless of the screen size.

128 Network Control Language Programming Guide

Control the Formatting of Input Fields

Control the Formatting of Input Fields

When a panel is displayed, a data stream is created to format the physical screen as
defined in the panel definition. For example, a panel may be displayed repeatedly as a
monitor screen or similar, where the display time is controlled by the INWAIT operand.
In this example, the INWAIT timer can expire while data or a command is still being
entered in the panel. The entered data is ignored and the input field cleared when the
panel is refreshed. The cursor position might also change.

You can use the #OPT FMTINPUT statement to avoid this problem by letting the
procedure determine when input fields are formatted. So, if you are entering data when
the screen is refreshed, and the FMTINPUT=NO specification is used, the entered data
remains and you can complete entry unaffected.

By varying the FMTINPUT operand setting (through a variable set from within the
procedure) from YES to NO, the procedure can toggle input field formatting on and off.
For example:

#OPT FMTINPUT=&FMT

The first time a panel is displayed, it should always specify FMTINPUT=YES to ensure
that the physical screen is correctly formatted. On subsequent refreshes (usually after
INWAIT expires), FMTINPUT=NO can be used.

For example:

.FMTYES
&FMT = YES
&GOTO .DISPLAY
.FMTNO
&FMT = NO
.DISPLAY
&PANEL MYPANEL
&IF .&INKEY EQ . &GOTO .FMTNO

standard processing
&GOTO .FMTYES

Note: The FMTINPUT operand is designed to work in conjunction with the INWAIT
facility and must be used with care, or panel errors can result.

Chapter 7: Designing Interactive Panels (Panel Services) 129

Retrieve Panels from Panel Libraries

Allow Long Field Names in Short Fields

Panel Services panel definition screens look similar to the panel which is to be displayed.
The panel definition screen contains attribute characters followed by the field data (for
TYPE=OUTPUT fields) or variable names (for TYPE=INPUT or TYPE=OUTVAR fields). The
next field attribute character is placed at the start position of the next field.
Unfortunately this means that input fields cannot be any shorter than the variable name
which is to contain the input data.

To overcome this, you can use the #ALIAS control statement to define a short alias name
for a variable. The alias name can be used where the variable would have been used.
You can define a range or list of variables and refer to them by the same alias name in
the panel definition.

Retrieve Panels from Panel Libraries

Panels are created using an online editor and are stored in a panel library. When a user
is defined, the panel library, or sequence of panel libraries that they are to use, is
defined. This is called the panel library path. When required, panel specifications are
retrieved from a library in the user's current path.

To eliminate overheads associated with retrieving the panel from the library, an
in-storage queue of active panels is maintained. When a panel is first referenced, it is
retrieved from a panel library and stored on the active panel queue.

Thereafter, the panel is retrieved from the active panel queue without reference to the
panels library. If one of these panels is modified (using the online editor), the old copy is
removed from the active panel queue so that the next reference retrieves the updated

panel from the panel library path.

Note: If a panels library is being shared by more than one system, the old version of a
modified panel is only removed from the active panel queue of the system on which the
panel change has been made. The other systems continue to use the old panel until it is
rolled off the active panel queue by other panels being used in the system. The LIBRARY
REFRESH command can be used to drop all panels loaded from a library from the active
panel queue.

The SHOW PANELS command can be used to list the panels that are retained in the
active panel queue.

130 Network Control Language Programming Guide

Display Panels on OCS Windows

Display Panels on OCS Windows

Full-screen displays can be invoked from an OCS window. OCS windows normally
operate in roll mode from top to bottom of the window.

Any NCL process executing in the NCL processing environment associated with an OCS
window can issue &PANEL in an attempt to take over the window and place it in
full-screen mode.

OCS always grants this bid for the display area if it is operating in its usual rolling mode.
It places the window in full-screen mode and initiates queuing of any messages that are
directed to the OCS window while it is operating in full-screen mode.

On completion of the NCL procedure that has taken over the window, or when the
procedure issues an &PANELEND statement, the OCS window reverts to standard roll
mode operation and any queued messages are displayed.

If the number of queued messages exceeds the size of the OCS window, the window is
automatically placed in AUTOHOLD mode to ensure you have time to observe all
messages.

NCL Processes Competing Adainst OCS for the OCS Window

If an NCL process executing in an OCS window's NCL processing environment issues an
&PANEL statement while the OCS window is in its usual roll mode, OCS (the current
owner of the window) always allows the panel to be displayed.

If an NCL process attempts to issue an & PANEL statement when the OCS window is in
Holding or Autohold On mode, the & PANEL statement is suspended. The OCS window is
placed into FS-HOLD mode and requires operator input before the NCL process panel is
allowed to take over the window. At this stage, (Holding or Autohold) the OCS window is
logically considered to be in an & CONTROL NOSHAREW condition. That is, OCS owns the
presentation area and is not prepared to release it.

Operator input releases the Holding or Autohold mode; OCS immediately switches to
the logical & CONTROL SHAREW condition and allows the panel to be displayed.

Chapter 7: Designing Interactive Panels (Panel Services) 131

Display Panels on OCS Windows

Competition Between NCL Processes for an NCL Environment Window

Many NCL processes can execute concurrently in an NCL processing environment. If the
NCL environment is associated with a window, any process can issue &PANEL in an
attempt to take over the window's presentation area to show you their particular
panels.

At all times there is a logical owner for the presentation area represented by the
window. For an OCS window this is OCS itself most of the time, but when an NCL
process issues &PANEL it acquires logical ownership of the window and OCS operates in
the background.

The same applies for other NCL processing environments. For example, the Primary
Menu is initially owned by the Primary menu NCL process. If that process STARTs other
NCL processes which then execute within the same NCL processing environment, these
other NCL processes can bid for the window to display their own panels by issuing an
&PANEL.

Once a process succeeds in becoming the (temporary) owner of a window, it can
indicate its willingness to give up its ownership through the & CONTROL SHAREW option.

If the current owner of the window is executing with & CONTROL SHAREW in effect, it
will automatically give up its ownership to any other process that issues & PANEL. The
previous owner is then logically stacked behind the new owner. When the new owner
ends or issues &PANELEND the previous owner's panel is redisplayed.

One of the most common usages of asynchronous NCL processes competing for a
window is in an OCS environment. A user can have several independent NCL processes
executing in the NCL processing environment associated with an OCS window. These
processes might monitor the status of various items in the network and report to the
operator when an error condition occurs, by issuing an &PANEL statement to takeover
the window.

These processes are written to use &CONTROL NOSHAREW, preventing any other
process from stealing the window from them once they displayed their panel. On
acknowledgement of their panel by the operator the process issues &PANELEND to
release their ownership. The window then reverts to the next waiting process or to OCS.

Note: If a panel is defined with INWAIT=0, indicating that the issuing procedure regains
control immediately the panel is displayed, the system guarantees to display the panel
before the issuing procedure is allowed to continue. This might mean waiting for some
other process to release control of the window.

132 Network Control Language Programming Guide

Asynchronous Panels

Asynchronous Panels

NCL lets you write procedures that interact with a display area either synchronously or
asynchronously. If you operate in synchronous mode, when a screen panel is issued the
procedure is suspended until input is received from the device or until a timeout (as
specified by INWAIT) expires.

This mode of operation suits applications where direct interaction with an operator is
expected. The INWAIT function also allows interval-based dynamic updating of screen
displays.

Synchronous mode operation does not suit applications which require dynamic updating
of screen displays as events occur, or circumstances in which screen displays might have
to be updated without necessarily involving any operator input.

To solve these requirements there is a mode of panel operation called asynchronous
operation.

Asynchronous Operation Concepts

Asynchronous panel operation lets you write an NCL procedure that can issue a panel
for display but then continue execution without being suspended to wait for operator
input or timeout expiry.

This means that you can develop procedures to drive dynamically updated event panels
to display new event information as it happens (rather than at fixed intervals) while
retaining the ability to interact with an operator. It also lets you update operator
information screens at any time without requiring operator input to trigger resumption
of processing.

Chapter 7: Designing Interactive Panels (Panel Services) 133

Asynchronous Panels

Invoke an Asynchronous & PANEL Operation

Waiting for Input

To issue a panel in asynchronous mode, code the TYPE=ASYNC operand on the &PANEL
statement. Your procedure is suspended until the nominated panel is scheduled for
display, and then control returns from the procedure to the statement immediately
following the & PANEL statement.

At this stage, the system variable &RETCODE is set to indicate the result of the &PANEL
statement.

The values in &RETCODE are equivalent to the return codes set if you specified
&CONTROL PANELRC.

&RETCODE can contain one of the following values:
0

The display operation has not been performed because the nominated panel has
already been displayed and input is now available from that earlier display.

This happens if your procedure repeatedly updates a panel but, between updates,
the operator enters some input into a field on the panel and causes an input
operation by pressing Enter or a function key. The input variables defined for the
panel now contain the updated values as entered by the operator.

As for &RETCODE = 0, except no input fields have been changed, so the operator
has only pressed Enter or a function key. Again, the display operation does not take
place.

12

The display operation has been scheduled. The panel is displayed either for the first
time or to update an earlier display of the same panel.

The meaning of &RETCODE = 12 is completely different from the same return code
if a synchronous &PANEL statement is issued.

Long-running NCL procedures do not execute continuously. At some point in their logic
they go into a wait state, waiting for some event to occur that triggers them to start
processing again. A typical example of such an event is input received from the
operator.

With synchronous &PANEL operation, the &PANEL statement implies a wait-for-input
condition. With asynchronous &PANEL operation, the panel statement itself does not
wait for input from the terminal, so another mechanism is needed which tells the
procedure when input has been received. The mechanism used is & NTREAD and the
procedure's dependent request queue (see page 42).

134 Network Control Language Programming Guide

Asynchronous Panels

When an asynchronous panel is displayed and something happens on the window (for
example, the operator enters input to the panel), a special message is delivered to the
procedure's dependent request queue in the format:

NOO101 NOTIFY: PANEL EVENT: event-type RESOURCE:panelname

where event-type describes the type of input activity that is being notified.

When the procedure reaches a point in its logic where it needs to wait for input from
the terminal, it issues an &INTREAD TYPE=REQ statement. This automatically places it in
a wait state until a request message arrives on its dependent request queue.

When input is entered by the operator, the NO0101 message is delivered to the
dependent request queue, satisfies the & NTREAD statement and the procedure wakes
up. By examining the contents of the NO0101 message the procedure can determine
that it is a notification of a panel event occurring on the asynchronous panel.

It is important to note that the message is only a notification that a panel event has
occurred. The action taken by the NCL procedure after reading the message depends on
the event. The possible events and associated actions are:

INPUT

Input has been received from the terminal. For the input to be made available to
the NCL procedure in the associated panel input variables, it is necessary for the
procedure to issue an &PANEL TYPE=ASYNC statement.

CHANGE

The terminal window conditions have been changed. This could indicate that a
redefinition of the window dimensions has occurred (a SPLIT or SWAP operation
has taken place).

BCAST

A broadcast has been sent to the panel. For the broadcast to appear on the
asynchronous panel currently displayed, it is necessary for the procedure to issue
another &PANEL statement.

TAKEOVER

Another NCL process has attempted to take over the window. The NCL process is
only notified of this event if it is the window owner and & CONTROL NOSHAREW is
in effect. To allow another NCL process to acquire ownership of the window, the
NCL procedure can issue a &PANELEND or a & CONTROL SHAREW statement.

If an INPUT, CHANGE, or BCAST event occurs, the NCL procedure very often issues an
&PANEL statement to obtain the input to the asynchronous panel. This statement must
specify the name of the panel being displayed when the &INTREAD statement was
issued. The & PANEL statement completes with the appropriate &RETCODE return code
value, as described previously. If an & PANEL statement specifying another panel name is
issued after the NO0101 message is read, the input is no longer available.

Chapter 7: Designing Interactive Panels (Panel Services) 135

Asynchronous Panels

Coordinate Other Processing with Input Notification

The fact that input from a panel can be notified not by completion of the &PANEL
statement but instead by the arrival of a trigger message on the procedure's internal
request queue means that a procedure has the ability to wait for more than one source
of input to act as a trigger for it to resume processing.

For example, consider a procedure that has the role of maintaining a dynamically
updated screen display which has to be refreshed with new information as soon as it
arrives, but which can receive an input command from the screen.

Such a procedure needs to be able to listen for new information that is to be displayed
as well as listening for input received from the screen display.

By designing the procedure so that it receives all its input via &INTREAD TYPE=ANY, it
can receive new display messages from its dependent response queue (for example
from other procedures operating in its dependent environment) and notification of
screen input via its dependent request queue.

This concept therefore allows a procedure to have a single point in its logic at which it
can wait for multiple different forms of input, and so synchronize its processing of
different input streams.

Control Input Field Initialization

When displaying an asynchronous panel, it is possible to receive output directed to the
panel while input is being entered. This could result in partially updated panel input
fields being reset when the panel is redisplayed to reflect the received output.

The FMTINPUT operand of the #OPT statement in a panel definition determines if input
fields are formatted when a panel is displayed. This operand can be used to control
input field re-initialization for both synchronous and asynchronous panels.

In the case of asynchronous panels, if the FMTINPUT operand is not specified in the
panel definition, the input fields are reset only the first time the panel is displayed or
when the panel is redisplayed after the operator has signaled the end of input (by
pressing Enter or a defined Function key). This means that input can be entered
continuously by the operator while the panel output fields are being rewritten as output
is directed to the terminal. If the FMTINPUT operand is specified in the panel definition,
input field initialization is processed as defined by the operands to #OPT statement.

136 Network Control Language Programming Guide

Panel Control Statements

Managde I/0 Contention

Using the CDELAY operand of the &PANEL statement, it is possible to prevent output to
a terminal in input mode being delayed, irrespective of the value of the SYSPARMS
CDELAY operand. This is advisable in situations where output can affect the structure of
a panel being displayed.

For example, members might be asynchronously inserted into a selection list while
selections are being made by the operator. In this situation, the chosen selection
variable may be associated with a certain entry before the list is updated and a
associated with a different entry afterward. Specifying CDELAY=N synchronizes the
arrival of the output with its appearance on the panel.

For more information about the CDELAY concept, see the Reference Guide.

Panel Control Statements

Optional control statements can precede a panel to specify the particular requirements
for that panel. These are:

HALIAS
Defines alternative field names
HERR
Defines the action to be taken for an error condition
H#FLD
Defines or modifies a field character's attributes
#NOTE
Provides installation documentation (this is ignored during processing)
#OPT
Defines optional operational requirements
#TRAILER
Defines trailing lines for the panel
Control statements included within panel definitions must precede the displayable

portion of the panel which is determined by the first line that is not a control statement.
Control statements must start in column 1 of the lines on which they appear.

Note: You cannot include comments on the same line as a control statement (except
#NOTE).

Chapter 7: Designing Interactive Panels (Panel Services) 137

Panel Control Statements

#ALIAS Control Statement—Define Alternative Name for Input Variables

This control statement allows the panel definition to contain alternative names for
variable names in TYPE=INPUT and TYPE=OUTVAR fields.

This facility is useful if you want to have short fields with long variable names. Each
reference to name in the panel definition is regarded as a reference to the next name
from the list of VARS specified.

This control statement has the following format:

#ALIAS name
{ VARS=prefix*[RANGE=(start,end) 1 |
VARS={ vname | (vname,vname, ..,vname) } }

name

Specifies the alias name that appears in the panel definition. Whenever this name
occurs in a field declared as TYPE=INPUT or TYPE=OUTVAR on the #FLD statement,
Panel Services logically replaces it with the next available name from the VARS list.

The name can be from one to eight characters in length. The first character must be
an alphabetic or national character. The remaining characters, if any, must be
alphanumeric or national characters.

The same name can be used on multiple #ALIAS statements. The variable names are
simply added to the end of the list of names to which the alias name refers.

VARS=prefix* [RANGE=(start,end)] |
VARS=(vname,vname, ..., vname)

Specifies the list of names to replace the alias name in the panel definition. Each
time the alias name is encountered in the panel definition, it is replaced by the next
available name from this list. The formats of the operands associated with VARS=
are as follows:

m VARS=prefix* denotes that the variable names used are prefix1, prefix2, and so
on. The RANGE= operand can be specified to indicate a starting and ending
suffix number. The default is RANGE=(1,64). The format prefix* cannot be used
with other variable names on the same #ALIAS statement.

m VARS=vname is the name of a variable, excluding the ampersand (&).

Examples: #ALIAS Control Statement

#ALIAS Z VARS=LONGNAME
#ALIAS Z123 VARS=(SATURDAY ,SUNDAY)
#ALIAS AVAR VARS=LINE* RANGE=(10,20)

138 Network Control Language Programming Guide

Panel Control Statements

Notes:

m Multiple #ALIAS statements can be used for the same alias name if insufficient
space is available on a single statement.

m [f an alias name appears in the panel definition after all the variable names in the
alias list have been used up, the alias name itself appears in the panel.

m Symbolic variables can be included in the #ALIAS statement. Variable substitution is
performed before the statement is processed, using variables available to the NCL
procedure at the time the & PANEL statement is issued.

#ERR Control Statement—Define Action Taken During Error Processing

This control statement determines the processing required when a panel is being
redisplayed following an error condition.

An error condition can be detected either by Panel Services internal validation or by the
processing NCL procedure. If detected by internal validation (and & CONTROL PANELRC
is not in effect), Panel Services invokes error processing automatically. If detected by the
processing NCL procedure, error processing is invoked in one of two ways:

m By using the &ASSIGN OPT=SETERR verb

m By nominating the name of the variable that identifies the invalid input field on the
ERRFLD operand of the #OPT statement

This is dynamically invoked by using a symbolic variable with the ERRFLD operand
and setting this variable to the name of the variable (minus the ampersand) that
identifies the field in error.

When #ERR processing is initiated, the cursor is positioned to the first field in error. The
panel is redisplayed, applying the attributes defined on the #ERR statement to the fields
in error. This technique provides the panel user with a simple means of drawing the
terminal operator's attention to the field in error. This is particularly effective on color
terminals where the color of any field in error can be altered and reverts to normal
when the error condition is rectified.

Normally only one #ERR statement is defined. However, if required to accommodate the
operands, multiple statements can be defined. They can be defined in any order.
However, as with #0PT, #FLD, and #NOTE statements, any #ERR statement must
precede the start of the panel, as determined by the first line that is not a control
statement.

Chapter 7: Designing Interactive Panels (Panel Services) 139

Panel Control Statements

This control statement has the following format:

#ERR [INTENS={ HIGH | LOW }]
[{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |
TURQUOISE | YELLOW | WHITE | DEFAULT }]
[{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }]
[ALARM={ YES | NO }]

INTENS={ HIGH | LOW }

Determines the intensity of the error field when displayed. The INTENS operand is
ignored for terminals with extended color and highlighting when either the COLOR
or HLIGHT operand is specified.

HIGH
Specifies that the field is displayed in double intensity.
Low
Specifies that the field is displayed in low or standard intensity.

{ COLOR | COLOUR }={BLUE | RED | PINK | GREEN |
TURQUOISE | YELLOW | WHITE| DEFAULT}

Determines the color of the field. The operand applies only to IBM terminals with
seven-color support and Fujitsu terminals with three- or seven-color support.

If the terminal does not support extended color, the COLOR operand is ignored. This
feature enables COLOR to be specified on panels that are displayed on both color
and non-color terminals. COLOR can be used with the HLIGHT operand.

For Fujitsu terminals that support extended color data streams, but support only
three colors, the following color relationships are used:

Specified Result (on Fujitsu three-color terminal)
GREEN GREEN

RED RED

PINK RED

BLUE GREEN

TURQUOISE GREEN

YELLOW WHITE

WHITE WHITE

DEFAULT GREEN

140 Network Control Language Programming Guide

Panel Control Statements

Fujitsu seven-color terminals are treated the same as IBM seven-color terminals.

The DEFAULT keyword indicates that the color of the field is to be determined from
the INTENS operand. This feature is useful if you want to set the color from an NCL
procedure (that is, COLOR=&COLOR is specified and the NCL procedure can set the
&COLOR variable to DEFAULT).

{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }

Applies only to terminals with extended highlighting support, and determines the
highlighting to be used for the field.

The HLIGHT operand is ignored if the terminal does not support extended
highlighting, so HLIGHT can be specified on panels that are displayed on terminals
that do not support extended highlighting. HLIGHT can be used with the COLOR
operand.

When NONE is specified, the HLIGHT operand is ignored and no extended
highlighting is performed for this field.

ALARM={ YES | NO }

Determines whether to ring the terminal alarm when the panel is displayed with an
error condition. This alarm works independently of the ALARM operand on the
#OPT control statement.

Examples: #ERR Control Statement

#ERR COLOR=RED HLIGHT=REVERSE ALARM=YES
#ERR COLOR=YELLOW HLIGHT=BLINK INTENS=HIGH

Notes:

Only those attributes defined on the #ERR statement are modified for the field in
error. All other attributes associated with the original field, such as internal
validation, remain intact.

Symbolic variables can be included in a #ERR statement. Variable substitution is
performed before processing the statement, by using variables available to the NCL
procedure at the time the & PANEL statement is issued.

When &CONTROL PANELRC is in effect, internal validation does not automatically
reshow the panel with the error message, and so on. In this case, the procedure
regains control following the &PANEL statement with the &RETCODE system
variable set to 8 to indicate that an error has occurred. The &SYSMSG variable
contains the text of the error message that describes the error and the &SYSFLD
variable contains the name of the field in error. This name is the name of the
variable in an input field that would receive the data entered into that field.

The &ASSIGN statement SETERR option provides a mechanism for assigning #ERR
field attributes to multiple (input field) variables before displaying a panel. This
feature lets you accept input from a number of different fields on a panel, validate
all the fields, and redisplay the panel with all incorrect fields displayed with the
HERR attributes. The user sees all the errors at one time, rather than field by field.

Chapter 7: Designing Interactive Panels (Panel Services) 141

Panel Control Statements

#FLD Control Statement—Define or Modify a Panel Definition Field Character

This control statement tailors the operational characteristics of a panel.

When a panel is defined, it is made up of a number of lines, which in turn are made up
of a number of fields. Each field commences with a field character, which appears as a
blank on the panel when displayed. Each field character determines the attributes to
associate with the field following the field character itself. A field is delimited by the
next field character or the end of the panel line. Fields cannot wrap from one line to the
next.

The first field on a line always starts in column 1. If no field character is defined in the
first position of the line, the attributes of the second of the three standard field

characters are forced. These attributes are usually a plus sign (+), TYPE=OUTPUT, and
INTENS=LOW. They replace any non-field character incorrectly placed in this position.

Before parsing, the #FLD statement is scanned and variable substitution is performed.
This process makes it possible to tailor dynamically any of the options or operands on
the statement.

You can specify as many #FLD statements as required, and you can define them in any
order. However, as with #OPT, #ERR and #NOTE statements, all #FLD statements must
precede the start of the panel, as determined by the first line that is not a control
statement.

This control statement has the following format:

#FLD { ¢ | X'xx' }

[BLANKS={ TRAIL | NONE | ANY }]

[CAPS={ YES | NO } 1]

[{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |
TURQUOISE | YELLOW | WHITE | DEFAULT } 1]
CSET={ ALT | DEFAULT }]
EDIT={ ALPHA | ALPHANUM | DATEn | DSN | HEX |
NAME | NAME* | NUM | REAL | SIGNNUM | TIMEn }]

HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }]
INTENS={ HIGH | LOW | NON }]
JUST={ LEFT | RIGHT | ASIS | CENTER | CENTRE }]
MODE={ SBCS | MIXED }]
NCLKEYWD={ YES | NO } 1]
OUTLINE={ {L R T B} | BOX }]
PAD={ NULL | BLANK | char }]
PSKIP={ NO | PMENU }]
RANGE=(min,max)]
REQUIRED={ YES | NO } 1]
SKIP={ YES | NO }]
SUB={ YES | NO }]
TYPE={ OUTPUT | INPUT | OUTVAR | SPD | NULL } 1
VALIGN={ NO | LEFT | RIGHT | CENTER | CENTRE }]

—_— —

— e e e e e e e e e e ey

142 Network Control Language Programming Guide

Panel Control Statements

c| X'xx'

Specifies the field character that is used in the panel definition to identify the start
of the field.

c
Specifies a single character that is not alphanumeric. Any special character (for
example, an exclamation mark) can be used, except an ampersand (&), which is
reserved for use with variables.

X'xx'

Specifies the hexadecimal value of the field character. Use this notation to
specify any value in the range X'01' to X'3F'. Do not use values which
correspond to alphanumeric characters, or X'OE' (shift in) or X'OF'(shift out).

Although the panel editor prevents you from entering non-displayable
hexadecimal attributes (X'01' to X'3F') in the body of the panel, you can use the
PREPARSE option to prime the field character value in the panel before issuing
the &PANEL statement.

The first #FLD statement to reference a particular field character defines a new
character. Subsequent statements referencing that same field character modify
or extend the attributes of the field character. Three standard field characters
(%, +, _, unless altered by the #OPT statement) are provided. If a default field
character (usually % + or _) is referenced, it is the same as extending or
modifying the attributes of an existing field character.

If no additional operands are defined following a new field character, then the
following defaults apply:

TYPE=OUTPUT INTENS=LOW

No special attributes or internal validation apply.

Chapter 7: Designing Interactive Panels (Panel Services) 143

Panel Control Statements

BLANKS={ TRAIL | NONE | ANY }

For input fields, this operand determines the format the entered data must take. By
default, a field can contain embedded blanks (BLANKS=ANY). Specification of this
operand helps ensure that the entered data does not contain embedded blanks,
and contains only trailing blanks (TRAIL) or no blanks at all (NONE). This operand
works independently of the REQUIRED operand. For optional fields, this operand
can still be specified to help ensure that any data entered is in the correct format. If
&CONTROL PANELRC is not in effect, BLANKS=TRAIL is specified, and the data is in
error, Panel Services redisplays the panel with the &SYSMSG variable set to:

INVALID IMBEDDED BLANKS

If BLANKS=NONE is specified and the data is in error, Panel Services redisplays the
panel with the &SYSMSG variable set to:

INCOMPLETE FIELD

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG the error message
text.

CAPS={ YES | NO }

(Input fields only) Determines whether to convert entered data to uppercase before
passing it to the NCL procedure in the nominated variable. Conversion to uppercase
is also performed for the data associated with an input variable before displaying
the panel. This does not affect the current contents of the variable, unless the data
is modified and entered by the operator. Output fields are displayed exactly as
defined and are not subject to uppercase conversion.

Uppercasing data for CAPS=YES fields uses the language code of the user region to
select the character set that is used as the basis of the translation. Where the
language code of the user is not one of the supported values, the language code of
the system is used. Where the language code of the system is not one of the
supported values, a translation based on EBCDIC codes is performed.

Note: Because data can be converted to uppercase before performing the
assignment, the effect of CAPS=NO can be negated if the variable that receives the
data is used in an assighment statement (for example, &A = &DATA) within the
processing NCL procedure. See the & CONTROL UCASE option.

The CAPS operand is ignored when operating in a system executing with SYSPARMS
DBCS=YES.

{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |

TURQUOISE | YELLOW | WHITE | DEFAULT}

Applies only to IBM terminals with seven-color support and Fujitsu terminals with
three- or seven-color support, and determines the color of the field.

If the terminal does not support extended color, the COLOR operand is ignored. This
feature enables COLOR to be specified on panels that are displayed on both color
and non-color terminals. COLOR can be used with the HLIGHT operand.

144 Network Control Language Programming Guide

Panel Control Statements

For Fujitsu terminals that support extended color data streams where only three
colors are available, the following color relationships are used:

Specified Result (on Fujitsu three-color terminals)
GREEN GREEN

RED RED

PINK RED

BLUE GREEN

TURQUOISE GREEN

YELLOW WHITE

WHITE WHITE

DEFAULT GREEN

Fujitsu seven-color terminals are treated the same as IBM seven-color terminals.

The DEFAULT keyword indicates that the color of the field is to be determined from
the INTENS operand. This feature is useful if you want to set the color from an NCL
procedure (that is, COLOR=&COLOR is specified and the NCL procedure can set the
&COLOR variable to DEFAULT).

CSET={ ALT | DEFAULT }

(Output fields only) Determines which terminal character set to use to display the
field. If you specify CSET=ALT (or ALTERNATE), you can draw boxes using the
following characters:

e is displayed as|

s is displayed as —

D is displayed as|

E is displayed a [

M is displayed as]

N is displayed as]

F is displayed as |

Gis displayed as L

O is displayed as | (rotated 90° counter-clockwise)
P is displayed as L (rotated 180°)
L is displayed as +

Note: CSET=ALT supersedes CSET=ASM in version 3.1

Chapter 7: Designing Interactive Panels (Panel Services) 145

Panel Control Statements

EDIT={ ALPHA | ALPHANUM | DATEn | DSN | HEX | NAME |
NAME* | NUM | REAL | SIGNNUM | TIMEn }

(Input field) Determines additional internal editing that Panel Services perform. By
default no editing is performed. Specification of this operand helps ensure that the
entered data conforms to the nominated type. If a field is mandatory, then also
specify REQ=YES.

ALPHA

Accepts A to Z only.
ALPHANUM

Accepts A to Z, 0 through 9, #, @, and $ only.
DATEn

Field must be a valid date. The DATEn keyword must correspond to one of the
&DATEnN system variables, and the input field must contain date in the format
associated with that system variable. For example, EDIT=DATES5 indicates that
the input field must always contain a date in the format corresponding to the
&DATES system variable (MM/DD/YY).

DSN

Specifies a valid OS/VS format data set name. If necessary, a partitioned data
set (PDS) member name or Generation Data Group (GDG) number can be
specified in brackets as part of the name.

HEX
Accepts 0 through 9 and A to F only.
NAME

Commences with alpha (Ato Z, #, @, or S) and followed by alphanumerics (A to
Z,0through 9, #, @, or $).

NAME*

Commences with alpha (A to Z, #, @, or $) and followed by alphanumerics (A to
Z, 0 through 9, #, @, or $), but can be terminated with a single asterisk (*). This
asterisk allows a value to be entered that can be interpreted as a generic
request by the receiving procedure.

NUM
Accepts 0 through 9 only.
REAL

Input in this field must conform to the syntax for integers, signed numbers or
real numbers, including scientific notation.

SIGNNUM

Field must be numeric but can have a leading sign (+ or -).

146 Network Control Language Programming Guide

Panel Control Statements

TIMEn

Specifies a valid time. The TIMEn keyword must correspond to one of the
&ZTIMEn system variables, and the input field must be in the format associated
with that system variable.

When invalid data is detected and & CONTROL PANELRC is not in effect, Panel
Services invokes standard error processing. Control is not returned to the NCL
procedure until the error is corrected.

m For EDIT=NUM, the panel is redisplayed with the &SYSMSG variable set to:
FIELD NOT NUMERIC

m For EDIT=REAL, the panel is redisplayed with the message:
FIELD NOT REAL NUMBER

m For EDIT=ALPHA, ALPHANUM, HEX, or NAME, the panel is redisplayed with
the &SYSMSG variable set to:

INVALID VALUE

m For EDIT=DATEn, the panel is redisplayed with the &SYSMSG variable set
to:

INVALID DATE

m For EDIT=DSN, the panel is redisplayed with the &SYSMSG variable set to
one of the following values:

INVALID DATASET NAME
INVALID MEMBER NAME

m For EDIT=TIMEn, the panel is redisplayed with the &SYSMSG variable set
to:

INVALID TIME

In all cases, the terminal alarm is rung and the cursor is positioned to the field
in error. If a #ERR statement has been included in the panel definition,
processing of the error condition is performed as defined on that statement.

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG the error
message text.

Note: Use of the EDIT operand might also require the use of the BLANKS
operand to help ensure that entered data does not include embedded blanks.
Regardless, editing is performed only for the length of the data entered and not
for the length of the input field. If you want to enter the entire field, specify the
BLANKS=NONE operand.

Chapter 7: Designing Interactive Panels (Panel Services) 147

Panel Control Statements

{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }

Applies only to terminals with extended highlighting support, and determines the
highlighting to be used for the field.

If the terminal does not support extended highlighting, the HLIGHT operand is
ignored. This feature enables HLIGHT to be specified on panels that are displayed
on terminals that do not support extended highlighting. HLIGHT can be used with
the COLOR operand.

You can use NONE as a no-impact value when the highlighting of a field is being
dynamically determined from the NCL procedure and set using variable substitution
of the #FLD statement. When NONE is specified, the HLIGHT operand is ignored.

INTENS={ HIGH | LOW | NON }
Determines the intensity of the field when displayed.
HIGH

The field is displayed in double intensity. High intensity is typically associated
with input fields and other important data. Minimize its use to maintain its
effectiveness.

Low
The field is displayed in low or standard intensity.
NON

The field is displayed in zero intensity, that is, any data within the field is not
visible to the operator.

This operand is typically used for input fields for entering sensitive data such as
passwords. Use of this attribute for output fields is meaningless. Color or extended
highlighting attributes are ignored when used with this attribute.

148 Network Control Language Programming Guide

Panel Control Statements

JUST={ LEFT | RIGHT | ASIS | CENTER | CENTRE }

For output fields, this operand determines the alignment of the data within the
field after trailing blanks have been stripped. Justification is applied at a field level.
Do not confuse with VALIGN that applies to the individual variable only.

m JUST=LEFT results in padding to the right

m JUST=RIGHT results in padding to the left

m JUST=ASIS is treated as JUST=LEFT for output fields

m JUST=CENTER results in padding to both the left and the right.

For input fields, justification occurs both when the data is being displayed and when
the data is being processed on subsequent entry. When an input field is formatted
for display (the value currently assigned to the variable defined in the input field is
substituted in place of the variable's name):

m The datais justified to the left and padded to the right for JUST=LEFT.
m The datais justified to the right and padded to the left for JUST=RIGHT.
m The datais aligned for JUST=CENTER as the data is aligned for JUST=LEFT.

m The datais positioned exactly as defined in the variable and padding to the
right is performed for JUST=ASIS.

On subsequent reentry, trailing blanks and pad characters are stripped, unless the
trailing pad character is a numeric, in which case it is not stripped:

m For JUST=RIGHT, leading blanks and pads are also stripped (including
numerics). Use of JUST=RIGHT for input fields can inconvenience terminal
operators because it is necessary to cursor across to the commencement of the
data in the field.

m For JUST=ASIS, trailing blanks and pads are stripped, but leading blanks and
pads remain intact.

MODE={ SBCS | MIXED }

Applies to IBM terminals capable of supporting DBCS data streams. If a panel is sent
to such a device, input fields on the panel that use this #FLD character allow the
operator to enter DBCS characters if MODE=MIXED is specified.

IBM DBCS terminals do not allow DBCS character entry in input fields that specify
MODE=SBCS (single-byte character stream).

This operand does not apply to Fujitsu terminals, which allow DBCS character entry
at any time.

NCLKEYWD={ YES | NO }

Specifies whether fields that use this FLD character accept input of words that
conflict with NCL keywords. The default is YES. If you attempt to enter any NCL
reserved keyword NO causes it to be rejected.

Chapter 7: Designing Interactive Panels (Panel Services) 149

Panel Control Statements

OUTLINE={{LRTB} | BOX}

Specifies the extended highlighting outlining option required for this field. Any
combination of L (left), R (right), T (top), or B (bottom) can be coded. The field is
outlined at the top or bottom with a horizontal line and at the left or right border
with a vertical line, according to the options specified. Alternatively, you can specify
the BOX option, which is equivalent to specifying LRTB. This option is
terminal-dependent.

PAD={ NULL | BLANK | char}
Applies to INPUT, OUTPUT, and SPD fields.

For output fields, PAD works with both the JUST and VALIGN operands, one of
which must be specified for PAD to take effect. The operand determines the pad or
fill character to use when the field is displayed.

The variable substitution process substitutes the data currently assigned to any
variables within the field being processed. When substitution is complete, any
difference between the length of the field defined on the panel and the length after
substitution (after stripping trailing blanks) is padded with the specified PAD
character.

NULL

Helps ensure that the terminal operator can use keyboard insert mode when
entering data. Padding is performed either to the left or to the right, as
specified in the JUST operand.

char
Specifies a single character that is to be the pad character (for example, PAD=-).

You can use any character, including the use of any of the field characters
defined on #FLD statements. Take care when using numeric pad characters
because their use affects the pad character stripping process on subsequent
entry.

Using PAD characters with input fields invokes special processing on subsequent
input to help ensure that unnecessary pad characters are stripped before returning
the entered data in the nominated variable.

PSKIP={ NO | PMENU }

(Input fields only) Determines if panel skip requests are accepted in this field. A
panel skip request is entered in an input field in the format =m.m, where m.mis a
menu selection. When this request is entered in an appropriate field, a panel skip to
the specified menu selection is performed.

NO
The input field is not scanned for panel skip requests.
PMENU

The input field is scanned for panel skip requests and action taken in response.

150 Network Control Language Programming Guide

Panel Control Statements

RANGE=(min,max)

(Numeric field) Specifies the range of acceptable values. The range includes all
numbers, from the minimum number (min) to the maximum number (max). Both
min and max must be specified, and max must be equal to or greater than min. Use
of this operand forces EDIT=NUM. If the entered number falls outside the
acceptable range and & CONTROL PANELRC is not in effect, Panel Services redisplays
the panel, with the &SYSMSG variable set to:

NOT WITHIN RANGE

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG the error message
text.

REQUIRED={ YES | NO }

Specifies whether a field is mandatory and the user must complete it. If &CONTROL
PANELRC is not in effect, Panel Services rejects any entry by the user unless the
mandatory field has been entered. If it is not entered, Panel Services redisplays the
panel with the &S YSMSG variable set to:

REQUIRED FIELD OMITTED

The terminal alarm is rung and the cursor is positioned to the omitted field. If a
HERR statement has been included in the panel definition, processing of the error
condition is performed as defined by the #ERR statement. Failure to include the
&SYSMSG variable on the panel suppresses this error message. This operand can be
abbreviated to REQ=.

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG contains the error
message text.

SKIP={ YES | NO }

(Output field only) Determines whether to assign the skip attribute to the field. If
the preceding input field is entered in full and the intervening output field is
specified with the SKIP operand, this option causes the cursor to skip to the next
input field.

This operand is NO by default, because field skipping can unexpectedly place the
cursor in the wrong screen window when operating in split screen mode.

SUB={ YES | NO }

(Output field only) Determines whether to perform variable substitution. This
operand is typically used only for fields where data contains the & character.
Substitution results in the current value of that variable being substituted or, if no
value is assigned, the variable being eliminated. This operand is ignored for both
INPUT and SPD fields.

Chapter 7: Designing Interactive Panels (Panel Services) 151

Panel Control Statements

TYPE={ OUTPUT | INPUT | OUTVAR | SPD | NULL }

Determines whether to process the field as an output-only field (OUTPUT and
OUTVAR), input field (INPUT), Selector Pen Detectable (SPD) field, or pseudo input
field (NULL).

OUTPUT

A protected field is created, which does not allow keyboard entry. This field can
contain a mixture of fixed data and variables. Each variable must commence
with an ampersand (&). Substitution of variables is performed using the
variables available to the invoking NCL procedure at the time the & PANEL
statement is issued. Global variables can be referenced in an output field.
Alignment and padding are performed according to the rules defined for the
field.

INPUT

An unprotected field is created, which allows keyboard entry. This field must
contain a single variable name (without the ampersand). This single variable
must immediately follow the field character. System variables and global
variables cannot be used in an input field. Subsequent data entered into this
field is made available to the invoking NCL procedure in this variable on return
from the & PANEL statement. Specification of multiple variables or a mixture of
variables and fixed data in an input field results in an error.

OUTVAR

Is the same as TYPE=OUTPUT, except that Panel Services inserts an & between
the field attribute and the next character. This feature means that you can
follow a TYPE=OUTVAR field character with a variable name without the
ampersand. This facility makes it easy to create fields which switch between
input and output under NCL control. For example, a panel contains the
statements:

#FLD $ TYPE=&INOUT
+ Record Key $RKEY +

An NCL procedure would then set the variable &INOUT to control whether the
data in the variable &RKEY is output only or an operator can modify it:

&INOUT
&INOUT

OUTVAR -* the value is output only.
INPUT -* the Operator can modify the
-* field.

A similar effect can be achieved using &ASSIGN OPT=SETOUT.

152 Network Control Language Programmming Guide

Panel Control Statements

SPD

A protected field is created in selector pen detectable format. This value
enables the terminal operator to select the field using either a LIGHT PEN or
the CURSOR SELECT key. The SPD field characters must be immediately
followed by one of the three designator characters (?, &, or a blank), which can
in turn optionally be followed by one or more blanks. A single variable with no
other fixed data must also be defined within the field. This single variable must
be defined without the ampersand (&) and cannot be a system or global
variable. If selected by the user, the variable nominated in the SPD field is set
to the value SELECTED on return to the NCL procedure. If not selected, the
variable is set to a null value.

NULL

An unprotected field is created, which allows keyboard entry. However, the
name of an input variable to receive data entered in the field is not required
because any data entered by the terminal operator in a TYPE=NULL field is
ignored. Display data in this field can be in any format. The NULL option
accommodates four-color terminals where the field attribute byte is used to
determine the color in which the field is displayed. (Seven-color terminals use
an extended data stream to set the color). The NULL option indicates that Panel
Services is to use an unprotected field attribute with the INTENS operand value
to determine the color of the field.

VALIGN={ NO | LEFT | RIGHT | CENTER | CENTRE }

(Output fields only) Determines the alignment of data for an individual variable
only. Do not confuse with the JUST operand, which applies to field alignment after
all variable substitution has been completed. The VALIGN operand is designed to
facilitate tabular output without the need to specify many individual field
characters on the panel. If specified for an input field, the operand is ignored.

The substitution process normally substitutes the data assigned to a variable in
place of the variable name. No additional blanks are created or removed during this
process. Thus, if the data being substituted is shorter than the name of the variable
(for example, variable & OUTPUTDATA set to 5678), then data following the variable
name is shifted left to occupy the area remaining after the removal of the variable
name. This shift would destroy any tabular alignment where the length of the data
for each variable differed. If the data being substituted is shorter than the variable
name, the VALIGN option helps ensure that the data to the right of the variable is
not shifted to the left. The length of the variable name (including the ampersand) is
the important factor and determines the number of character positions to preserve
during the substitution process.

Chapter 7: Designing Interactive Panels (Panel Services) 153

Panel Control Statements

However, data is not truncated and, if the data being substituted is longer than the
variable name, then the data to the right is moved to accommodate all the
substituted data. VALIGN works with the pad character specified on the PAD
operand. The pad character is used to fill any difference between the data being
substituted and the length of the variable name being replaced.

VALIGN=NO
No alignment or padding is performed.
VALIGN=LEFT

Data is aligned to the left and padded to the right. An abbreviation of L is
acceptable.

VALIGN=RIGHT

Data is aligned to the right and padded to the left. An abbreviation of R is
acceptable.

VALIGN=CENTER

Data is centered (or one position to the left for an odd number of characters)
and padded both to the left and to the right. An abbreviation of C is acceptable.

Examples: #FLD Control Statement

#FLD # TYPE=INPUT REQ=YES EDIT=NUM COLOR=RED RANGE=(1,3)
#FLD # BLANKS=TRAIL PAD=_

#FLD # TYPE=OUTPUT COLOR=&COLOR HLIGHT=SHLIGHT

#FLD (TYPE=INPUT INTENS=HIGH EDIT=DATE4

#FLD @ HLIGHT=BLINK

#FLD / TYPE=SPD

#FLD % JUST=R PAD=- -* supplementing default output char
#FLD _ JUST=ASIS -* supplementing default input char
#FLD + VALIGN=RIGHT JUST=CENTER -* null pad assumed

Notes:

m [f insufficient space is available on a single statement, multiple #FLD statements can
be used for the same field character.

m Symbolic variables can be included in a #FLD statement. Variable substitution is
performed before the statement is processed, using variables available to the NCL
procedure at the time the &PANEL statement is issued.

®m You can alter the default field characters by using the DEFAULT operand of the
#OPT control statement.

154 Network Control Language Programmming Guide

Panel Control Statements

®m You can use the #ERR control statement to simplify redisplaying a panel to indicate
a field in error.

m The &CONTROL PANELRC operand can be used to specify that the NCL procedure
receives control for further processing when internal validation detects an error in
data entered by the operator. When this technique is used, the procedure can
determine the field in error (from the &SYSFLD variable) and the error message to
issue (from the &SYSMSG variable). With this information, it can alter its processing
accordingly, including altering the text of the error message in the &SYSMSG
variable if necessary.

#NOTE Control Statement—Allow User Comments in a Panel Definition

This control statement provides a means of placing documentation within a panel
definition. The #NOTE statement is not processed and is ignored. Multiple #NOTE
statements can be specified. However, as with the #FLD, #ERR, and #OPT statements, all
#NOTE statements must precede the start of the panel. The start of a panel is
determined by the first line that is not a control statement or #NOTE statement.

This control statement has the following format:

#NOTE any text
any_text

Specifies any free-form user text.

Examples: #NOTE Control Statement

#NOTE This panel is used by the Network Error Log System
#NOTE INWAIT=60 CURSOR=&CURSORFLD

As shown in the example, the #NOTE statement can provide a simple means of

temporarily nullifying another control statement, allowing for easy reinstatement when
required.

#OPT Control Statement—Define Panel Processing Options
This control statement tailors the processing options for a panel.

Before parsing, the #OPT statement is scanned and any variables are substituted. This
process makes it possible to tailor dynamically any of the operands on the statement.

Multiple #OPT statements can be specified. However, as with #FLD, #ERR, and #NOTE
statements, all #OPT statements must precede the start of the panel, as determined by
the first line that is not a control statement.

Chapter 7: Designing Interactive Panels (Panel Services) 155

Panel Control Statements

This

#OPT

control statement has the following format:

ALARM={ YES | NO } 1]

BCAST={ YES | NO } 1]
CURSOR={ varname | row,column }]
DEFAULT={ hlu | X'xxxxxx' } 1]
ERRFLD=varname]

FMTINPUT={ YES | NO } 1
IPANULL={ YES | NO } 1
INWAIT=ss.th]

LSM={ YES | NO }]
PREPARSE={ (c,S) | (c¢,D) } 1
UNLOCK={ YES | NO }]

[
[
[
[
[
[
[
[
[
[
[
[MAXWIDTH={ YES | NO } 1]

ALARM={ YES | NO }

Determines whether to ring the terminal alarm when the panel is displayed.
Dynamic control of the alarm can be achieved by changing the value of the ALARM
operand using a variable set before issuing the & PANEL statement.

If internal validation has detected an error and the panel is being redisplayed to
indicate the error, this operand is ignored and the terminal alarm rung. The #ERR
statement can be used to alter the processing performed when an error condition is
detected.

BCAST={ YES | NO }

Specifies whether to redisplay the panel automatically when a broadcast is
scheduled. By default, the only panels that are redisplayed automatically are those
panels that contain one or more of the special broadcast variables, &BROLINEn. If
BCAST=YES is coded, a broadcast redisplays the panel even if it does not contain any
of the &BROLINEn variables.

156 Network Control Language Programmming Guide

Panel Control Statements

CURSOR={ varname | row,column }

Specifies the name of a variable in either an INPUT or an SPD field where the cursor
is to position. Alternatively, the precise coordinates for the cursor can be defined
(see page 124) as row,column.

The value of varname is the variable name without the ampersand, as used in the
INPUT or SPD field (for example, CURSOR=FIELD5).

Where coordinates are specified, row must be specified in the range 1 through 62
and column in the range 1 through 80. The row and column values are always
relative to the start of the current window and therefore remain unchanged when
operating in split screen mode. The & CURSROW and & CURSCOL system variables
can be used to determine the location of the cursor on input to the system.

Dynamic positioning of the cursor can be achieved by using a variable or variables
(including the ampersand) in place of varname or row,column. The invoking NCL
procedure can set the variables to the name of the field to contain the cursor or the
coordinates before issuing the & PANEL statement.

If internal validation has detected an error and the panel is being redisplayed to
indicate the error, the CURSOR operand is ignored and the cursor is positioned to
the field in error.

Specifying varname with a name other than the name of a variable used in an
INPUT or SPD field results in an error. If coordinates are used and they lie outside
the dimensions of the window currently displayed, the cursor is positioned in the
upper left corner of the window.

Chapter 7: Designing Interactive Panels (Panel Services) 157

Panel Control Statements

DEFAULT={ hlu | X"xxxxxx"' }

Alters the three standard default field characters. If the #OPT statement is omitted
or the DEFAULT operand not used, then three standard field characters are
provided for use when defining the panel. They are:

% = protected, high-intensity
+ = protected, low-intensity
_ = unprotected, high-intensity

It is sometimes necessary to select alternative field characters, for example, if the
underscore character is required within the body of the panel for some reason.

The DEFAULT=hlu operand must always specify three characters. The characters
chosen must not be alphanumeric, that is, any special character except ampersand
(&), which is reserved for variables. They must not duplicate another field
character, except one already defined as a default. The order of the characters is
significant, as the attributes of the standard default characters apply in the order
described.

Therefore specification of DEFAULT=*+/ results in:

* = protected, high-intensity

+ = protected, low-intensity

/ = unprotected, high-intensity

You can also specify the default field characters in hexadecimal in the format:
DEFAULT=X" xxxxxx "

Each xx pair represents a hexadecimal number in the range X'00' to X'FF'. All
numbers except X'00” (null), X'40' (blank), and X'50' (ampersand), are valid. This
format even allows alphanumeric characters to be used as field characters. For
example, if you specify X'C1', any occurrence of the letter A in the panel definition is
treated as the default character. However, we recommend using hexadecimal
values that do not correspond to alphanumeric characters.

For example, specification of DEFAULT='010203"' would result in:
X'01' = protected, high-intensity
X'02' = protected, low-intensity

X'03' = unprotected, high-intensity

158 Network Control Language Programming Guide

Panel Control Statements

ERRFLD=varname

Specifies the name of a variable in an INPUT field that is in error and for which to
invoke error processing, as defined on a #ERR statement. Use of this operand
without including a #ERR statement within the panel definition results in an error.
The ERRFLD operand provides a simple way of informing Panel Services that the
field identified by varname is in error. Panel Services displays the panel using the
options defined on the #ERR statement. The #ERR statement could indicate to
display the error field in reverse video, colored red and the terminal alarm rung.
The assignment of error text into a variable appearing on the screen to identify the
nature of the error typically accompanies the use of the ERRFLD operand.

This operand is typically specified with the name of a variable (including the &) that
is set to null unless an error occurs. On error, the NCL procedure sets the variable to
the name of the field in error before issuing the & PANEL statement to display the
panel.

ERRFLD provides the panel designer with a simple means of changing the attributes
of a field (such as color and highlighting) without needing to resort to dynamic
substitution of #FLD statements.

Consider the case where an input field &INPUT1 is found to be in error and the
#OPT statement has been defined with ERRFLD=&INERROR. The NCL procedure
simply assigns the name of the variable used to identify the input field, in this case
INPUT1 (minus the &), into & NERROR and then redisplays the panel.

&INERROR = INPUT1
&SYSMSG = &STR THIS FIELD IS WRONG
&PANEL MYPANEL

In this example, the text that identifies the nature of the error has been assigned
into the variable &SYSMSG which would be defined somewhere on the panel.

&ASSIGN OPT=SETERR is effective only if &CONTROL FLDCTL is in effect.
FMTINPUT={ YES | NO }

Determines whether input fields are to be formatted when a panel is displayed. This
specialized option is designed to be used with INWAIT. When processing with
INWAIT, the time interval could expire at the instant when the operator enters
data. If the same panel is redisplayed to update the screen contents, the data
entered by the operator is lost as the new panel is written. FMTINPUT can be used
to bypass formatting of input fields and hence when the panel is redisplayed only
output fields are written. The value of this operand is typically assigned to a variable
from within the NCL procedure, and changed between YES and NO as required
(#HOPT FMTINPUT =&YESNO). Take care when using this facility because incorrect
use of FMTINPUT=NO can result in validation errors. Ideally, a panel is displayed
initially with FMTINPUT=YES and only when the INWAIT timer expires would it be
redisplayed with FMTINPUT=NO.

Chapter 7: Designing Interactive Panels (Panel Services) 159

Panel Control Statements

IPANULL={ YES | NO }

Specifies whether to set all variables associated with the panel input fields to null
when the panel is displayed with the INWAIT option, and the time specified on the
INWAIT expires so that control is returned to the procedure without any panel input
or a PA key causes the input.

If you do not want to erase input field variables if INWAIT completes or a PA key is
pressed, specify IPANULL=NO.

Default: YES

INWAIT=ss.th

Specifies the time in seconds and parts of seconds that Panel Services is to wait for
input from the terminal before returning control to the NCL procedure following
the & PANEL statement. By default, the system, having displayed a panel, waits
indefinitely for input. This indefinite wait is not always desirable, as is the case
where a terminal is performing a monitoring function where input can be
infrequent or never occur. If INWAIT is utilized and the specified time elapses,
control is returned to the NCL procedure with all input or SPD variables set to null. If
input is made during the time interval, the time period is canceled and standard
processing proceeds.

The maximum value that can be specified for INWAIT is 86400.00 seconds (24
hours).

Specification of part seconds is possible. For example:

INWAIT=.5
INWAIT=20.5
INWAIT=.75

Any redisplay of a panel (for example, by use of the clear key) causes the time
interval to be reset. If the time interval expires before input is received,
specification of internal validation options (such as REQUIRED=YES) is ignored.

Specification of INWAIT=0 or INWAIT=0.00 indicates to accept no input, and control
is returned to the NCL procedure immediately after the panel has been displayed. In
this case, subsequent action taken by the procedure determines the period that the
panel remains displayed.

The invoking NCL procedure can determine, by testing the & INKEY system variable,
whether the INWAIT time elapsed or data was entered. & INKEY is typically set to
the character value of the key pressed by the operator to enter the data (for
example, Enter or F1). If the INWAIT time interval elapsed and no entry was made,
the &INKEY variable is set to null. If processing with & CONTROL PANELRC in effect,
&RETCODE is set to 12 to indicate that the INWAIT timer has expired.

INWAIT is ignored for asynchronous panels.

Default: Wait indefinitely for input.

160 Network Control Language Programming Guide

Panel Control Statements

LSM={ YES | NO }

If you do not want the LSM to control a particular panel, then code #OPT LSM=NO
in the panel definition. The entire panel is then written to the terminal each time. If
large numbers (thousands) of EASINET terminals are being supported, the reduction
in storage can become significant.

PREPARSE={ (c,S) | (c,D) }

Preparsing provides a means for dynamically modifying the location of field
characters in a panel. Normally, the position of field characters (as defined by the
#FLD control statement) is determined when Panel Services creates the panel and
remains fixed until the panel is modified.

Although you can modify the attributes of each field character (such as the color of
the field) by using variables in the #FLD statement, you are limited in the number of
variations.

The PREPARSE operand requests that Panel Services performs a preliminary
substitution scan of each panel line before processing the line for field characters.
The PREPARSE operand specifies a substitution character (c) that is used to
determine where substitution takes place. This character is processed in the same
manner as an ampersand (&) is processed during standard substitution.

The ability to specify a character other than an ampersand means that preparsing
does not affect standard substitution when it is performed following preparsing.
You can use preparsing for the following purposes:

m Alter a field character that appears in a particular position to allocate a new set
of attributes to the field.

m Create entire new fields (or complete lines) that in themselves contain the
required field characters.

(c,S)

Indicates that the character c is used as the preparse character for the panel,
but that the Static Preparse Option applies during preparse processing. This
option prevents the movement of preparse or field characters during the
substitution process. This option is useful when panels are being dynamically
modified to hold data that can vary in length but displays in columns.
Substituted data can be truncated if it is too long to fit into its target field
without overwriting the next occurrence of a preparse or field character on the
same line.

(c,D)

Indicates that the character c is used as the preparse character for the panel,
but that the Dynamic Preparse Option applies during preparse processing. The
dynamic option allows the movement of preparse or field characters to the left
or right of their original position to accommodate differing lengths of data
being substituted into the panel.

Chapter 7: Designing Interactive Panels (Panel Services) 161

Panel Control Statements

UNLOCK={ YES | NO }

Determines whether the terminal keyboard is unlocked when the panel is
displayed. Specification of UNLOCK=NO prevents entry of data by the terminal
operator. NO is typically used with the INWAIT operand where a panel is being
displayed for a short period before progressing to some other function.

MAXWIDTH={ YES | NO }

When MAXWIDTH=NO is specified or defaulted, the panel display is limited to the
standard 80-column width. If you are designing a panel for a wider screen (for
example, a model 5 terminal), specify MAXWIDTH=YES to allow the full width of the
screen to be used.

Examples: #OPT Control Statement

#OPT DEFAULT=#$%

#OPT INWAIT=60 CURSOR=&CURSORFLD

#OPT CURSOR=IN1 ALARM=YES

#OPT ALARM=S&ALARM PREPARSE=($,D)

#OPT ERRFLD=&INERROR

#OPT INWAIT=.5 UNLOCK=NO PREPARSE=($,S)
#OPT CURSOR=5,75

#OPT CURSOR=SROW,&COLUMN FMTINPUT=&FMT

Notes:

m Multiple #OPT statements can be used if necessary.

m Symbolic variables can be included in a #OPT statement. Variable substitution is
then performed before the statement is processed.

m Apanelis redisplayed automatically following use of the CLEAR key. Control is not
returned to the invoking NCL procedure.

m The attributes of the standard default characters can be modified using a #FLD

statement that adds additional attributes (such as color) or alters existing
attributes.

#TRAILER Control Statement—Place Lines at Screen End

This control statement positions function key prompts at the bottom of the screen.

Indicate the start of the trailer lines with a #TRAILER START statement. Then enter the
lines to appear at the end of the screen, followed by a #TRAILER END statement.

This control statement has the following format:

#TRAILER [START | END]

[POSITION={ YES | NO } 1]

162 Network Control Language Programming Guide

Panel Control Statements

START

Specifies the start of the lines in the trailer. Each line following this line until a
HTRAILER END statement or another control statement such as #FLD is placed in the
trailer.

END

Specifies that the end of the lines in the trailer. There must have been a #TRAILER
START statement earlier in the panel definition.

No other operands can be specified on a #TRAILER END statement.
POSITION={ YES | NO }
Specifies whether to display the trailer lines.
YES
The trailer lines are displayed on the final lines of the physical screen.
NO
This value can be used to suppress the display of the trailer lines, even though

they remain in the panel definition.

Examples: #TRAILER Control Statement

#TRAILER START
%This appears on the last line of the panel
#TRAILER END

Notes:

m The #TRAILER statements must appear before the first panel line in the definition. If
you want to preparse the lines, you place the #TRAILER statements after the #OPT
PREPARSE= statement.

m The field attribute characters which you use in the trailer lines can be defined
before or after the trailer lines in the panel.

m The trailer lines cover any panel lines that would otherwise have been displayed.

m The trailer lines are positioned so that they end at the bottom of the physical screen
if the window starts at the top of the screen.

Chapter 7: Designing Interactive Panels (Panel Services) 163

Chapter 8: NCL File Processing

This section contains the following topics:

UDB File Formats (see page 165)
Work with UDBs (see page 168)
Work with Files (see page 186)
Work with Data (see page 190)

UDB File Formats

The term UDB refers to any file processed with the NCL file processing statements.
Three types of physical file come under this heading:

m Mapped format files
m Unmapped format files

m Delimited format (or UDB format) files

Mapped Format Files

Mapped format processing can be used on any file which is arranged in a manner that is
describable to Mapping Services using a map. A map is used to describe a file in terms of
structures or components understood by Mapping Services.

Mapped format file access is the preferred method of file processing in NCL. The
advantages of mapped format processing are:

m Allows for transparent data to be placed in the file

m Allows for upward compatibility

m Combined with Mapping Services, allows NCL to operate at a logical level, even
when dealing with complex data formats

Default Map

A default mapping, using the SNCL map can be used to maintain NCL variable data in a
file. Individual data records up to 32K and containing transparent variable data, are
supported in this manner. Each variable exists in a vector format and can be isolated
using length fields and data tags.

When using the SNCL map, the file statements reference one or more NCL variables in
the normal manner. The actual structure of the record can be understood by referring
to the distributed SNCL map.

Chapter 8: NCL File Processing 165

UDB File Formats

Other Maps

When a retrieval is being carried out from a file using a mapped format, the contents of
the file records are read into a mapped data object (MDO). A map is attached to the
MDO to provide NCL with a means of interpreting its contents. The &ASSIGN verb can
then be used to reference certain sections of the data by name and extract these from
the MDO into NCL tokens (variables). Mapping Services does the work of locating the
sections of data which are being extracted by using the map. By doing the work of
locating components within the data, Mapping Services can save a considerable number
of NCL statements, particularly for files that have a complicated format, and also for
files that contain non-printable data.

Because the map definition is a separate entity within your product, it is also possible
that subsequent changes to the file format will only require changes to be made to the
map definition, and not to the NCL code itself.

Mapping Services can be used to define maps capable of interpreting most data
formats.

Unmapped Format Files
NCL can also be used to process records from VSAM files for which no map is available.

Unmapped mode processing is generally used in applications where UDBs created or
used by NCL procedures are to be processed offline by other systems.

NCL file processing statements allow the NCL user to indicate that a particular UDB is to
be processed in unmapped mode, causing NCL to bypass any attempt to identify
individual fields within records read from or written to the file.

While still allowing all the simplicity of access to the file, unmapped mode processing
means the NCL user must know the structure of records on the file. Consequently more
attention must be paid to this aspect of file processing than is the case for the simpler
delimited format files.

166 Network Control Language Programmming Guide

UDB File Formats

Print (Using Unmapped Format File Support)

Unmapped format is for processing data of any format including binary or non-printable
data. It is also useful for report generation where the data is to be directed to a system
printer. On a z/0S system, the unmapped format is ideal for generating reports that are
to be routed to JES SYSOUT for printing either on local or remote printers. The NCL
provides operands that help control report formatting.

For more information about the &FILE ADD statement, see the Network Control
Language Reference Guide.

If required, a mapped format or delimited format file can be processed in unmapped
mode.

The processing mode (UDB format, mapped, or unmapped) for any file can be swapped
at any time during NCL procedure processing and this might become necessary if special
key structures are being used.

Delimited Format Files

Data in UDB format files is stored in records that contain any number of fields to a
maximum total record size of 32K, which is the maximum statement size that can be
processed by NCL. Each field is isolated from the next by a high-value (X'FF') field
separator and the last field in a record is followed by a field separator. The length of a
field is determined by the length of data supplied by the NCL user. The occurrence of
two consecutive field separators indicates the presence of a null field that contained no
data when the record was created, even though the field concerned is logically part of
the record. The total length of any record includes the key and all field separators.

The rules for field separators within UDB format files are:
m Afield separator follows each field

m No field separator follows the key

m Atrailing field separator follows the last field, unless it is a key-only file with no data
other than the key

m Two consecutive field separators indicate a field of 0 length (a null field)

Chapter 8: NCL File Processing 167

Work with UDBs

Multiple File and Alternate Index Support

NCL supports the concurrent processing of multiple files (including a mixture of
delimited format, mapped format, and unmapped format files) in addition to the use of
VSAM alternate indexes that allow records to be retrieved using keys based on different
parts of the data. For example, a UDB used to maintain Help Desk problem information
might contain a sequentially allocated problem number, in addition to the name of the
resource to which the problem was related. Using alternate indexes, it is possible to
retrieve records in both problem number order and resource name order.

Work with UDBs

UDB support is a standard function of NCL. NetMaster Databases (NDBs) provide more
advanced facilities for users with requirements for more complex, high-performance
data management within their NCL procedures.

NCL supports the following techniques for VSAM user database (UDB) files:
m Processing by specific key (KSDS)

m Processing by partial or generic key (KSDS)

m Sequential processing (KSDS), in ascending or descending key order

m Retrieval for update or deletion (KSDS)

m Deletion by specific key (KSDS)

m Multiple record deletion by generic key (KSDS)

m Sequential processing, forwards or backwards (ESDS)

m Emptying (resetting) of data sets (KSDS)

®m Processing of SYSOUT data sets (z/OS only)

NCL uses the VSAM access method for its speed and flexibility. The high-level NCL
implementation shields the user from all VSAM complexities.

UDBs are keyed VSAM data sets (KSDS) or sequential VSAM data sets (ESDS). For keyed
data sets, any key length from 1 to 255 characters can be selected. Standard VSAM
restrictions regarding duplicate keys apply.

168 Network Control Language Programming Guide

Work with UDBs

Allocate UDBs

You can allocate UDBs dynamically by using the ALLOCATE command.
Note: For more information about the ALLOCATE command, see the online help.

The UDBs allocated in this manner must be identified to your product as UDBs through
use of the UDBCTL command as follows:

UDBCTL OPEN=ddname ID=file id options
ddname

Specifies the data definition (DD) name of the DD card defining the UDB.
file-id

Specifies a logical file ID. You can specify ID=* to use the same value for both
ddname and file_id.

options

Specifies any special processing attributes to apply to this UDB.

Dynamically allocated UDBs can be deallocated (using the DEALLOCATE command) after
the UDBCTL command has been used to close them.

Prepare to Use a UDB

The process to create and use a UDB is:

m Determine the format of the data set, the length of the records it is to contain and
the size of the key to be used. If records are to be added or updated on-line, the key
must commence in the first position of the record (unless the data set is to be
processed in unmapped mode). The amount of space required should also be
determined at this stage. Remember to take the presence of field separators into
account when deciding on record length. Normally field separators have little effect
on overall record length, but they can become significant when a record contains
numerous very short fields.

m Use the IDCAMS VSAM utility to define the data set. The DEFVSAM member in the
distribution library contains an example of defining a VSAM data set.

m Allocate the file dynamically with the ALLOCATE command.

Chapter 8: NCL File Processing 169

Work with UDBs

UDB Initialization

m Use the UDBCTL command to open the UDB and assign a logical file ID, and any
special processing attributes that might be required. This makes the file available
for processing.

®m Include the appropriate &FILE OPEN statement in the NCL procedure.

After these steps have been performed, the file is available for processing using
standard NCL statements.

Your product attempts to open UDBs when a UDBCTL OPEN command is processed. If
the open fails, the system internally uses IDCAMS to verify the data set and then retry
the open. Therefore it is not necessary to include verification steps in the system JCL.

Initialization of KSDS UDBs

If the data set requires an initial load, the system loads a single record with a key of all
X'00' and then deletes it. If this load fails, the data set is closed and is classified as
unusable, and is blocked from further processing until the problem has been rectified.
Use the SHOW UDB command to determine the cause of the error.

Initialization of ESDS UDBs

Empty ESDSs identified as UDBs are initialized by loading a single record which has the
format:

N28510 VSAM INITIAL LOAD PERFORMED AT hh.mm.ss ON day-dd.mon-year

This record is always the first record of an ESDS UDB, unless the ESDS already contains
records when opened by your product. NCL procedures that reference the UDB should
ignore this first record. If preparing for unmapped processing of an NCL-created ESDS
UDB, use IDCAMS to REPRO the data set skipping, the first record.

170 Network Control Language Programming Guide

Work with UDBs

Write to SYSOUT as an ESDS

An ESDS UDB that is actually a SYSOUT data set (z/OS systems only), allocated
dynamically using the ALLOCATE command, does not require initialization and therefore
this processing is bypassed. SYSOUT data sets can therefore be written directly from NCL
procedures without an initialization record appearing on the output.

Notes:

m Your product does not load alternate indexes. You must do this using the IDCAMS
BLDINDEX function.

m The Dataset Services SUBMIT option provides a simpler way of creating SYSOUT
data sets.
For more information about Dataset Services options, see the Network Control
Language Reference Guide.

Control UDB Performance and Resource Usage

The techniques used by NCL should ensure efficient processing of VSAM files. Additional
performance gains can be obtained by the allocation of additional buffers and
processing strings. This is achieved using the JCL AMP statement sub parameters on the
DD statement for the file or options on the UDBCTL command:

BUFNI

The number of index buffers to be allocated by VSAM
BUFND

The number of data buffers to be allocated by VSAM
STRNO

The maximum number of concurrent strings VSAM is to use

By default, your product allocates 2 data buffers, 3 index buffers and 2 processing
strings unless alternative values are provided as described.

This buffer allocation applies per string-that is, allocation of a complete set of buffers is
performed by VSAM for each concurrent position held on the UDB. Where the usage of
a UDB is such that a large number of concurrent accesses to the UDB might be possible,
care must be taken that VSAM buffer allocations do not lead to storage shortages
affecting the performance of other product functions. Also, in cases such as these, NCL
procedures should be written to avoid the maintenance of generic UDB processing
environments over long periods.

While varying these parameters can offer significant performance benefits, they should
only be changed if the impact on VSAM processing is clearly understood. Incorrect
changes can impose severe storage overheads which could impact the operation of
other system components.

Chapter 8: NCL File Processing 171

Work with UDBs

Add Records to a UDB

The &FILE ADD statement is used to add new records to a UDB. The &FILE PUT
statement can also be used to add records. However, whereas &FILE ADD receives an
error indication if a record with a like key exists, &FILE PUT will replace a record with a
like key. If an NCL procedure is known to be creating new records then &FILE ADD
should be used.

Before a record can be added, the key of the record must be identified. This is done
using the KEY= or the KEYVAR= operand on the &FILE statement. The KEY= operand can
be used in conjunction with the ADD and PUT operands.

The &FILE ADD statement is used to supply the data of the record to be added to the
UDB. Depending on the format of the UDB this could be a text string, tokens, or an
MDO.

The success of the &FILE ADD statement can be tested using the &FILERC (file return
code) system variable. If the &FILE ADD statement was not successful, the & VSAMFDBK
system variable will contain a standard VSAM completion code indicating the type of
error that occurred. For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED
&FILE ADD ID=MYFILE KEY='RECORD1' VARS=A* RANGE=(1,7)
&IF &FILERC NE O &THEN &WRITE ERROR CODE=&VSAMFDBK

SYSOUT Considerations

A SYSOUT data set (z/0S) can be defined as a UDB and be the subject of &FILE ADD (or
&FILE PUT) statements. The SYSOUT data set appears to your product as a VSAM ESDS.

NCL procedures can use &FILE ADD or &FILE PUT statements to write to SYSOUT UDBs.
The UDB should be treated as a mapped or unmapped format file and processed using
the unmapped format option.

NCL supports both ANSI and machine print control characters. However, CA
recommends that you use ANSI characters because they are easier to use.

On z/0S systems, NCL determines the record format (RECFM) of a SYSOUT data set to
decide if the data set is to be supported with ANSI print control characters (RECFM=A)
or machine control characters (RECFM=M). When the SYSOUT data set is dynamically
allocated the PRTCNTL operand can be used to specify which format is required.

172 Network Control Language Programmming Guide

Work with UDBs

Format SYSOUT Output

When processing SYSOUT data sets in ANSI format the &FILE PUT/ADD statement
supports specification of formatting options such as skipping to new pages, line spacing,
bolding, and underscoring using the PRTCNTL operand. As such the print character is
never formatted by the user as part of the output data. When processing with machine
control characters, the user is responsible for formatting the output data with the
appropriate control character as the first character of the output data.

When processing an ANSI format SYSOUT file (RECFM=A or PRTCNTL=A) additional
sub-operands of PRTCNTL allow left or right justification or centering of the data. In such
cases the logical width of the report is determined by the logical record length (LRECL)
of the data set. This too can be specified on the ALLOC command using the LRECL
operand. The width specified does not include the print control character which will be
allowed for and added internally.

If the data set is the z/OS internal reader (INTRDR, which must be allocated
dynamically), it can be treated as an unmapped format UDB, in which case written
records are interpreted as JCL. In this way, jobs can be submitted for execution.

When submitting jobs in this way, the job number of the submitted JCL stream can be
obtained by issuing &FILE GET ID=name END. The job number is returned in the variable
&ZJOBNUM.

Update Records in a UDB

The &FILE PUT statement is also used to update records in a UDB. A record can either be
updated by first reading it with an &FILE GET statement and then replacing it with an
&FILE PUT statement or by replacing it directly with an &FILE PUT statement. The
method chosen will be determined by the application. Regardless of the method to be
utilized the key of the record is identified using the KEY= or KEYVAR= operand on the
&FILE statement.

If the key was specified on the &FILE GET statement, there is no need to specify it again
on the &FILE PUT statement because the retrieved key remains current for the file.

If the possibility exists that multiple updates for the same record can be attempted
concurrently, precautions must be taken to ensure that updates are not lost or
inadvertently overwritten.

Chapter 8: NCL File Processing 173

Work with UDBs

The success of the &FILE PUT statement can be tested using the &FILERC system
variable. If the &FILE PUT statement is not successful the & VYSAMFDBK system variable
contains a standard VSAM completion code indicating the type of error that occurred.
For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED
&FILE GET ID=MYFILE KEY='RECORD1' VARS=B*
&IF &FILERC NE O &GOTO .NORECORD

update data

&FILE PUT ID=MYFILE ARGS RANGE=(1,7)
&IF &FILERC NE O SWRITE DATA=ERROR CODE=&VSAMFDBK

&FILE PUT will replace a record which already exists. Where multiple concurrent
updates are possible the NCL procedure must ensure that it has exclusive control of a
record prior to issuing the &FILE PUT statement to update it. This can be achieved by
first reading the record with an &FILE GET statement that specifies the OPT=UPD
operand. This operand indicates that exclusive control of the record is required. If the
record is already in use, the &FILE GET statement fails with &FILERC set to 8 and
&VSAMFDBK set to 14. The NCL procedure can then take alternative action, such as
delaying processing for a short period before retrying the &FILE GET. Having obtained
the record the &FILE PUT statement can be issued to complete the update.

When using &FILE GET with the UPD option, the NCL procedure should complete
processing of the record as quickly as possible. It is not good practice to obtain exclusive
control of a record and then issue a full-screen panel which waits for operator input.
This can delay other users for excessive periods.

174 Network Control Language Programmming Guide

Work with UDBs

An example of a procedure using the &FILE GET ... OPT=UPD operand follows. This
example issues a one second delay if exclusive control of the record cannot be obtained,
and then retries the &FILE GET.

&FILE OPEN ID=MYFILE FORMAT=DELIMITED
.RETRY
&FILE GET ID=MYFILE KEY='RECORD1' OPT=UPD ARGS
&IF &FILERC EQ O &THEN &GOTO .UPDATE
&IF &FILERC EQ 8 AND &SAMFDBK EQ 14 &THEN &GOTO .WAIT
&ENDAFTER SWRITE DATA=ERROR CODE=&VSAMFDBK

JWAIT
&DELAY 1
&GOTO .RETRY
.UPDATE

update data

&FILE PUT ID=MYFILE ARGS RANGE=(1,7)
&IF &FILERC NE O &THEN &WRITE DATA=ERROR CODE=&VSAMFDBK

Delete Records from a UDB

The &FILE DEL statement is used to delete records from a UDB. Two techniques can be
used:

m Deletion by specific key-the full key of the record to be deleted is supplied. Only the
record with this key is deleted.

m Deletion by generic key-a partial key is supplied. Any record that matches this
partial key (KEQALL) or is equal to or greater than this partial key (KGEALL) is
deleted.

The KEY= or KEYVAR= operand can be used to specify the full or partial key to be used
for the delete.

Deletion of a single record can be achieved as shown in the following example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED
&FILE DEL ID=MYFILE KEY='RECORD1'

If a partial key is provided for a single record delete, NCL deletes the first record on the
file that matches the partial key.

Chapter 8: NCL File Processing 175

Work with UDBs

If a group of records is to be deleted, a partial key that identifies the first record in the
group must be specified on the KEY= or KEYVAR= operand. Then either of the following
two values must be set for the OPT= operand.

KEQALL

Delete this record and all following records that have keys equal to the partial key
provided.

KGEALL

Delete this record and all following records that have keys equal to or greater than
the partial key provided.

The success of the &FILE DEL statement can be tested using the &FILERC system
variable. If the &FILE DEL statement was not successful, the &VSAMFDBK system
variable will contain a standard VSAM completion code indicating the type of error that
occurred. For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED
&FILE DEL ID=MYFILE KEY='RECORD' OPT=KEQALL
&IF &FILERC NE O SWRITE DATA=ERROR CODE=&VSAMFDBK

The number of records deleted by an &FILE DEL statement is returned in the system
variable &FILERCNT, which can then be used, for example, as feedback information for
display on a panel. That is:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED
&FILE DEL ID=MYFILE KEY='RECORD' OPT=KGEALL
SWRITE &FILERCNT RECORDS DELETED

&FILERCNT remains until the next &FILE DEL, or the file is closed, or processing changes
to a different file. In the last case, &FILERCNT changes to reflect the number of records
deleted on the file that is now being processed.

Use of generic delete functions is of value when large numbers of records are to be
deleted from a UDB and gives better performance than the use of multiple single record
deletes.

176 Network Control Language Programming Guide

Work with UDBs

Retrieve Records from a UDB

The &FILE GET statement is used to retrieve records from a UDB. A number of
techniques can be used:

m Retrieval by specific key-the full key of the required record is supplied. Only a
record with this key will be returned.

m Retrieval by generic key-a partial key is supplied. Several values can then be used on
the OPT= operand to determine the first record retrieved and the direction in which
processing will continue: KEQ, KGE and KGT return the first record with a key equal
to, equal to or greater than, or greater than the partial key (respectively), and set
the retrieval direction to forwards, while KEL, KLE and KLT return the highest record
with a key equal to, equal to or less than, or less than the partial key (respectively),
and set the direction to backwards.

m Sequential retrieval-no key is supplied. Records can be returned in ascending or
descending key order, commencing with the lowest key or highest key in the file
respectively, and continuing forwards or backwards through the file until sequential
retrieval is terminated.

Before a record can be retrieved (except for sequential retrieval) a key or partial key
must be identified. This is done using the KEY= or KEYVAR= operand on the &FILE GET
statement. It is possible to identify the key prior to the &FILE GET (for example, for
sequential retrieval) by specifying the KEY= or KEYVAR= operand on a &FILE SET
statement.

The success of the &FILE GET statement can be tested using the &FILERC system
variable. If the &FILE GET statement was not successful the & VYSAMFDBK system
variable contains a standard VSAM completion code indicating the type of error that
occurred. &FILERC signals end-of-file conditions as well as error conditions.

If generic retrieval or sequential retrieval is performed, the full key of the retrieved
record is placed in the &FILEKEY system variable. For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED
&FILE SET KEY='REC'
.NEXTREC
&FILE GET OPT=KEQ VARS=A*
&IF &FILERC EQ 4 &THEN &ENDAFTER SWRITE DATA=END-OF-FILE
&ELSE &IF &FILERC NE O &THEN &ENDAFTER S&WRITE +
DATA=ERROR=&VSAMFDBK
SWRITE DATA=THE RECORD KEY RETURNED = &FILEKEY
&GOTO .NEXTREC

Continuation of a generic retrieval depends on the next &FILE statement. Any statement
other than another &FILE GET, destroys the current file position, and ends the generic
retrieval. If an &FILE GET statement is issued with a different key from that issued on
the first generic &FILE GET, the generic retrieval ends, otherwise the key used on the
statement is ignored, and retrieval is determined by the current file position.

Chapter 8: NCL File Processing 177

Work with UDBs

When a generic read is performed (for example, when using the OPT=KEQ or OPT=KGE
operand on &FILE GET), NCL maintains a generic environment until the NCL procedure
specifically stops using generic retrieval, for example by issuing & FILE GET OPT=END.
The maintenance of this generic environment holds the current position within the UDB,
but in doing so necessarily uses VSAM buffer space. In procedures such as EASINET
where there can be much concurrent UDB activity, it is important to keep the length of
time that generic environments are open to a minimum and to avoid the use of generic
processing where it is not necessary-for example, if &FILEKEY has been set to the full
key of a record, do not use &FILE GET OPT=KEQ to read the record.

Restrictions When Using UDBs

When designing facilities that will use file processing the following must be taken into
account:

m All records must be keyed, unless processing with an ESDS.

m Keys must range in size from 1 to 255 bytes.

m Keys for base clusters must start in position 0 (unless processing in unmapped
mode) of the record. This is often termed relative key position (RKP) 0.

m Allowance should be made for field separators, or length and tag bytes added by
NCL when determining record sizes for mapped or delimited files.

m The maximum record size is 32K when doing I/O from NCL variables. Otherwise it is
the maximum record size for the file.

m When retrieving records, fields are returned in variables which have a maximum
length of 256 characters. Creating fields in excess of this length might not be
practicable, although a field in excess of 256 characters can span multiple variables
after an &FILE GET.

m Unmapped format UDBs have no record structure maintained by NCL. The user is
responsible for determining the record format of unmapped format files.

m Mapped and unmapped format UDBs can contain non-character data. The user
must make allowance for this and might want to convert the data to expanded
hexadecimal format after it is retrieved from an unmapped format UDB.

m |fa UDB is of a format describable to Mapping Services using a map, then mapped
format processing can be performed on it.

178 Network Control Language Programming Guide

Work with UDBs

Create UDBs with Alternate Indexes

The description of UDB usage in the preceding sections has been restricted to the
processing of records that are identified by a record key starting at position 0 in the
record. This is referred to as the base key for the file.

The base key allows an NCL procedure to position a UDB to a particular record or group
of records within the file, based on the comparison of a key provided as an argument
against the keys of records present on the file.

This method of accessing records is adequate for many NCL applications. However,
there are other applications which might require access to records within the UDB
based on more than one argument.

The use of alternate indexes provides a means by which many arguments can be used to
position a UDB to a particular record or record group and allows many different views of
the same data held in a single UDB.

As an example, an installation that runs EASINET to provide access to all VTAM
applications within its network uses the special LOGPROC NCL procedure to monitor the
passing of EASINET controlled terminals to different applications. Each time a logon
request is processed, a message is written to the activity log. It is intercepted by
LOGPROC and a record written to a UDB that records the time, target application, and
name of the terminal concerned.

This information is built up over time and NCL procedures are written to analyze the
activity represented by the data on the UDB, where analysis is required by time, by
application and by terminal name.

If the base key of the UDB starts with, for example, a time stamp, then the UDB is seen
by NCL as being sorted in ascending time stamp order. In this case UDB processing using
the time as an argument is very simple; however, if an analysis of the UDB by terminal
name is required, the UDB can still be positioned only by the time argument, which is
not what is required.

Alternate indices which allow the UDB to be viewed by NCL as being sorted in orders
other than by time (for example, by terminal name or by target application name),
simplify the processing required in procedures that need to analyze the UDB using
arguments that are not satisfied by the base key of the file.

The following sections describe the steps required to create alternate indices for a UDB,
the use of alternate indices within NCL procedures and the considerations associated
with their use.

Chapter 8: NCL File Processing 179

Work with UDBs

VSAM Considerations for Alternate Indexes

An alternate index is an individual VSAM data set, maintained by VSAM, which contains
information and keys to the base cluster VSAM data set to which the index applies. It
can be regarded as providing the user with a different view of the data within the base
cluster. As changes are made to records on the base cluster, VSAM (provided that the
correct options are defined) automatically updates the alternate indexes associated
with the cluster.

VSAM relates an alternate index to its target base cluster with a definition known as a
path. It is this path which NCL uses to retrieve data using keys from the alternate index.

A given base cluster can have many alternate indices, depending on the complexity of
the record formats maintained on the UDB and the number of different ways those
records are to be accessed.

The process to establish a new base cluster with an alternate index is:

m Define the base cluster using the IDCAMS DEFINE CLUSTER function.

m Load the base cluster. This is done using the VSAM IDCAMS utility REPRO
statement.

m Define the alternate index using the IDCAMS DEFINE AIX function.

m Define the path using the IDCAMS DEFINE PATH function.

m Build the alternate index using the IDCAMS BLDINDEX function.
This cannot be done for an empty base cluster.

Add DD statements to the system JCL for both the base cluster and the path (but
not the alternate index).

m Assign file IDs to UDBs using the UDBCTL statement.

Notes:

m When defining a base cluster with an alternate index, both the base cluster and the
alternate index must be defined with VSAM SHAREOPTIONS

m of (3 3). This is necessary as two ACBs will be used, one to reference the base
cluster and a second to reference the path. A reference to a path causes both the
base cluster and its associated alternate index to be opened. VSAM therefore sees
two concurrent users of the base cluster.

m [f duplicate keys are to be allowed on the alternate index, the NONUNIQUEKEY
operand must be used when the index is defined. Duplicate keys on the alternate
index are likely when the alternate index key is positioned over part of the base key
of a cluster.

m To establish an alternate index for an existing base cluster, the same procedure is
followed but with the omission of the first two steps (that is, defining and loading
the base cluster).

180 Network Control Language Programming Guide

Work with UDBs

Key Structures and Alternate Indexes

The record key used when processing a base cluster UDB can be 1 to 255 bytes in length
and usually starts at offset 0 in the record.

When accessing a base cluster by an alternate index, a key is still used, but the key could
be located anywhere within the record that it identifies. The precise location of the key
within the record is defined (as an offset from the start of the record) when the
alternate index is defined.

IRIEICICIRIDIOJOJOT[LIU[4]2|6]0|0|Alalalalalalalalal]

IRIEICICIRIDIOJOJO|Z[LIU[O|1|2]9|0|A]b|b|b[b[b]b[b|b]

Base Key Alt. Index Key Data Field

This figure shows a representation of two records on a base cluster. The base key of
each record starts at offset 0 and is 10 bytes long. In the example the base keys of the
two records are:

RECORD0OO01
RECORD0002

An alternate index is associated with the base cluster and has been defined with a key
that is 8 bytes long and starts at offset 10 in the record, that is, it follows the base key of
the record.

In the example the alternate index keys have values of:

LU42600A
LUO1290A

Additional alternate index keys can be defined which span different strings within the
base cluster record.

Chapter 8: NCL File Processing 181

Work with UDBs

Retrieve Data Using Alternate Indexes

Access to UDBs via an alternate index is similar to standard base key access, but the way
the data is presented to the NCL procedure after completion of the &FILE GET is
different.

As with standard base cluster usage, the NCL procedure must nominate the UDB to be
processed:

m For base cluster processing, the ID operand on the &FILE statement is used to
identify the logical file ID associated with the DD statement that defines the base
cluster data set in the execution JCL.

m For alternate index processing the ID operand on the &FILE statement identifies the
logical file ID associated with the DD name that defines the Path to be used.
(Remember that access to a cluster using an alternate index is achieved via a VSAM
path definition only and that no direct processing is done on the alternate index
cluster itself.)

Base key view of record data:

IRIEICIOIR|DIO|O[O[1|L|U[4]|2]|8|0[0[Alalalalalalalala]

[IRIE|C|IOIR|D|OJO[O|2|LIUJO[1|2]8|0[A|b]|b[b|b[b]|b]blb]|

Alternate key view of record data:

[IRIE|C|IOIR|D|OJOJO|Z2|LIU[O[1|2[8|0[Alb]|b[bIb[b]b]blb|

IRIEICIO|R|D|O|OJO[1|L|UJ4[2]|8|0[0|Alalalalalalalala]

182 Network Control Language Programming Guide

Work with UDBs

This figure shows the different views of the data in two records on a base cluster that
are seen when the UDB is accessed through the base key or through the alternate index
key. (In each of the example records shown, the key portion is shown in plain text and
the data portion is shown underlined.)

&FILE OPEN ID=MYBASE FORMAT=DELIMITED ...access to be by base key
&FILE SET ID=MYBASE KEY="RECORD' ...access to be by base key
&FILE GET OPT=KEQ VARS=(1,2,3) ...access to be by base key

1st Record on UDB is:

BASE KEY FIELD 1 FIELD 2
IRIEICIOIRIDIO[OJO[T[LIU[4]2|6[0|0|Alalalalalalala]a]

Result after &FILE GET is:

&FILEKEY=RECORDO0001 &1=LU42600A &2=aaaaaaaa &3=null:

&FILE GET ID=MYBASE OPT=KEQ VARS=(1,2,3) ...read next record

2nd Record on UDB is:
BASE KEY FIELD 1 FIELD 2
[RIE|IC|IO|R|D|OJO|O[2]LIUO[1]2]9[|0[A[b|b|b|b|b|b]|b]|b]

Result after &FILE GET is:

&FILEKEY=RECORDO0002 &1=LU01290A &2=bbbbbbbb &3=null:

This figure show an example of reading records by using the base key. In the example
shown in these figures, the UDB is a UDB (or delimited) format file and each record
contains two data fields. The data fields are each terminated by a field separator (X'FF'),
although these are not shown in the diagrams. The alternate index key in this example is
chosen to overlay exactly the first data field, but does not include the field separator
character at the end of the field.

The base key's view of a record on the UDB is that the first 10 bytes of a record are its
key and that everything else is data. The alternate index view shows that everything is
data, apart from the 8 bytes starting at offset 10 in each record. following example
shows the effect of these conflicting views on the data actually presented to an NCL
procedure on completion of an &FILE GET statement.

Chapter 8: NCL File Processing 183

Work with UDBs

For the example, we will assume that the logical File ID to be used when accessing the
base cluster directly is MYBASE and the logical file ID used to access the base cluster via
its alternate index is MYPATH.

&FILE OPEN ID=MYPFATH FORMAT=DELIMITED ...access by alternate index
&FILE SET ID=MYPATH KEY=LU’ ...set partial key
&FILE GET ID=MYPATH OPT=KEQ VARS=(1,2,3) ...read first record

1st Record on UDB is:
BASE KEY FIELD 1 FIELD 2

IRIEJC|O|RID[OJOJO[2[L{U[O[1]|2]9|0[A|b|b[b|b|b]|b[b|b]

Result after &FILE GET is:

&FILEKEY=LU01290A &1=RECORD0002 &2=null &3=bbbbbbbb:

&FILE-GET ID=MYPATH OPT=KEQ VARS=(1,2,3) ...read next record

2nd Record on UDB is:
BASE KEY FIELD 1 FIELD 2
IRIEIC|O|R|ID|OJOJO[1[L|U[4]2|6]0|0|Alalalalalalala]a]
Result after &FILE GET is:

&FILEKEY=LU4260A &1=RECORDO0001 &2=null &3=aaaaaaaa:

The previous figure shows how data is presented to an NCL procedure that reads
records from the example UDB, using the base key to access the file. As noted before, it
is assumed here that the alternate key is in fact a separate field within the record,
although this does not have to be the case.

This figure shows the same sequence of events, but with access to the UDB being via the
alternate index. There are two significant differences in the results of the &FILE GET
statements compared with using the base key:

m The order of the records is different.
m The data presented in the &FILE GET variables is different.

Records on the UDB are always arranged in ascending key order, according to the key
being used to access the UDB.

184 Network Control Language Programming Guide

Work with UDBs

Therefore, when using the base key the order of the records on this example UDB is:

RECORDOOOL.
RECORDOOO2. and so on.

However, when viewed from the perspective of the alternate index, the order of the
records on the UDB has nothing to do with the value of the base key; as far as the
alternate index is concerned the UDB is arranged in ascending order of the alternate
keys of the various records on the file. As a result, when accessing records via the
alternate index, the order becomes:

LUOI290A.......
LU426006A. and so on.

and so, as shown in the figures, the order in which the physical records are retrieved
from the UDB depends upon which key is being used to access the file.

Control UDB Availability

As described earlier, UDBs are made available to NCL procedures through the UDBCTL
command, which assigns a logical file ID. For more information about the UDBCTL
command, see the Online Help.

For a variety of reasons you might want to change the availability of UDBs from time to
time. The UDBCTL command provides the following facilities:

Stop a UDB

This logically blocks all further attempts to access the specified UDB from any
procedure, so that no further &FILE statements which specify the ID for this UDB
will be allowed. The physical data set remains open. STOP is rejected if there is any
current user of the file.

Close a UDB

Implies a STOP and physically closes the file. This might be necessary if external
updating of the UDB is required while the file is still allocated to your product.

Reset a closed UDB

In VSAM terms, RESET causes your product to open the VSAM ACB with the RST
option, which has the effect of emptying the entire file. VSAM constraints mean
that RESET cannot be used on UDBs unless they are sub allocated (in those levels of
VSAM that support sub allocation) and is not allowed if the cluster is defined with
KEYRANGES or has alternate indexes associated with it.

Chapter 8: NCL File Processing 185

Work with Files

Open a UDB

Reopens a previously-closed UDB. If the UDB had also been RESET and has not been
loaded externally before re-opening, Your product will initialize (see page 170) the
file. A UDB that is OPENED requires re-assignment of its logical file ID before it
becomes available for processing again.

These UDBCTL options provide operational control over the availability of UDBs to the
product region. UDBCTL can itself be issued from within NCL procedures by
suitably-authorized users.

Work with Files

NCL includes an &FILE verb that provides the high-level interface to its file processing
facilities. The verb has seven major operands:

&FILE OPEN
Opens a file and identifies its processing mode
&FILE SET

Sets the default file ID, sets the full or partial key, sets the processing mode for
subsequent processing

&FILE ADD

Adds a record
&FILE GET

Retrieves a record
&FILE PUT

Adds or updates a record
&FILE DEL

Deletes a current record
&FILE CLOSE

Releases file processing connections

The following system variables are provided to help test the success of functions:
&FILERC

the completion code for the last function
&FILERCNT

the number of records processed by the last generic delete (&FILE DEL) operation

186 Network Control Language Programming Guide

Work with Files

&VSAMFDBK
the VSAM RPL feedback code from the last function
&FILEKEY

the key of the last record referenced

Note: For more information about the &FILE verb and system variables, see the Network
Control Language Reference Guide. For more information about the UDBCTL command,
which is used to control the availability of UDBs for processing, see the online help.

Logical File Identifiers

When using NCL, files are referenced by a logical file identifier or file ID. The file ID
provides a logical connection to the physical data set. A file ID must be assigned using
the UDBCTL command before a file can be referenced by an NCL procedure.

Suppose, for example, that you want to process a file called HELPDESK.DATA, which is
defined by using the ALLOCATE command with a DD name of HELPDB1 and all NCL
procedure references to the physical file are to be made to the symbolic name
HELPDESK.

Before the file HELPDESK.DATA can be processed by NCL, a UDBCTL command must be
executed specifying the symbolic name by which this file will be referenced from NCL
procedures. This UDBCTL command relates the DD name of the data set with its
symbolic name and is coded:

UDBCTL OPEN=HELPDB1 ID=HELPDESK options

For a particular NCL procedure to access the file that has now been assigned the
symbolic, or logical name of HELPDESK, the procedure must contain an &FILE OPEN
statement specifying the file that is to be processed:

&FILE OPEN ID=HELPDESK FORMAT=DELIMITED

This approach offers considerable flexibility when it becomes necessary to change the
system configuration, since all NCL procedures reference files using their logical file ID
and are therefore shielded from external changes.

Chapter 8: NCL File Processing 187

Work with Files

Should a data set become full, a single UDBCTL command can simultaneously migrate all
NCL procedures to reference a new data set without change to the NCL procedures.
Consider our example using the HELPDESK file. It might be desirable at the end of the
day to swap to another data set and perform other processing on the previous day's
data while continuing to record new problems in another file. You would allocate
multiple data sets and use a UDBCTL command at the appropriate time to swap to an
alternative data set. For example:

UDBCTL STOP=HELPUDB1(stop current use)
UDBCTL OPEN=HELPUDB2 ID=HELPDESK(swap to new file)

The NCL procedures continue to use the same ID on the &FILE statement, but now use a
different physical data set as the UDBCTL command has changed the logical
relationship:

&FILE OPEN ID=HELPDESK FORMAT=DELIMITED

(NCL procedure is unchanged)

Release File Processing Resources

The &FILE OPEN statement allocates certain resources to the requesting NCL procedure.
It is not normally necessary to release file processing resources within an NCL
procedure. This is performed automatically when the NCL procedure terminates.

Under certain circumstances, such as in an EASINET procedure, where there might be
many concurrent users performing file processing, it might be desirable to release any
file processing overheads when they are no longer required, to ensure that system
overheads are minimized.

This can be accomplished using the & FILE CLOSE statement. &FILE CLOSE allows specific
files or all files to be freed. When this is done, any storage associated with processing
the file is released and the connection is logically severed for that user.

Having used &FILE CLOSE to release a particular file, connection can be re-established
using another &FILE OPEN statement.

&FILE CLOSE destroys any generic retrieval position a user might have established within
a file and any subsequent reference would have to reestablish that position if required.

188 Network Control Language Programming Guide

Work with Files

Display File Information

The SHOW UDB command can be used to display details about files available to the
system. This information includes details about the number of active users, space usage,
and the status. In addition, any open error codes that caused a file to be disabled are
displayed.

The SHOW VSAM command is used to display the VSAM attributes of the various VSAM
data sets in use by your product. Information presented by this display includes:

m Record sizes

m Control Interval sizes

m Control Interval and Control Area split statistics

m Current index and data buffer allocations

m [Information about string and buffer shortages

m SR pool statistics (in z/OS systems)

The SHOW UDBUSER command is used to obtain information about current usage of

particular UDBs in the system. The display lists all UDBs showing DD names, file IDs, and
the names of the user IDs and NCL procedures that are currently accessing each UDB.

Note: For more information about the SHOW UDB, SHOW VSAM, and SHOW UDBUSER
commands, see the online help.

Specify the File Processing Mode

The &FILE statement has a mandatory ID=file_id operand. This operand identifies the
UDB on which the NCL verb acts. The ID operand enables several files to be open and
processed simultaneously. You specify a FORMAT operand with the OPEN or SET
operands (that is, &FILE OPEN ID=... FORMAT=... and &FILE SET ID=... FORMAT=...). The
FORMAT operand is used to specify the current processing mode for a file (delimited,
unmapped, or mapped). You can switch between two file formats without losing
position.

Chapter 8: NCL File Processing 189

Work with Data

Specify the File Key

You can specify a file key on an &FILE statement in several ways. The way in which the
value is specified on the KEY= operand is independent of the current processing mode
(delimited, mapped, or unmapped). The value of the KEY= operand is interpreted as a
character string by default. The value can be specified inside quotes, and substitution is
carried out on any variables contained inside the quotes. You can put the letter X after
the quotes to indicate that the data between the quotes is to be hexadecimal-packed to
create the key.

Example: Specify the File Key

If &A=AAAA, both examples indicate a key of 'AAAA 0001":
KEY="'&A 0001’

KEY="'C1C1C1C140FOFOFOF1'X
also indicates a key of 'AAAA 0001'

There is also a KEYVAR= operand on the &FILE verb, which is an alternative to the KEY=
operand. The KEYVAR operand is used to specify a variable whose contents is used as
the key. For example, KEYVAR=A indicates that the contents of the variable &A is used
as the key. In this case, if &A contains non-printable characters or trailing blanks, they
appear in the key unchanged.

Work with Data

As with other NCL functions, data manipulated by file processing is usually maintained in
tokenized form (for example, as NCL variables). The &FILE verb also enables data to be
maintained in an MDO, but only for mapped format file processing. A typical NCL
procedure might accept input from a full-screen panel in a series of tokens or variables
and then add this data to a UDB. Alternately, it can receive data from another
application using APPC into an MDO, and then add this data to a mapped format UDB.

The physical representation of the data on the UDB depends on its format:

®m For mapped format files using SNCL map, the record consists of a list of vectors.
Each vector has a two byte length field followed by a two byte tag which is followed
by the data from the token. The entire list is encapsulated with its own two byte
length and tag fields. For more information about the data structure and tag values,
see the distributed SNCL map.

m For unmapped format files, the file processing statements still use variables, but
NCL does not regard each variable as a field within the record. When writing a
record to an unmapped format UDB all variables are written contiguously (that is,
no field separators are inserted). The structure of the data within the record is
therefore the responsibility of the user.

190 Network Control Language Programmming Guide

Work with Data

m For delimited format files, each variable is treated by NCL as a field within a record,
each field being separated from its neighbor by a field separator. When data is
retrieved it is returned in a series of variables using the field separators to
determine the size of each field. This approach relieves the procedure of having to
define the format and structure of data in UDBs.

When data is retrieved from an unmapped format UDB, NCL again makes no attempt to
identify individual fields within the record. The entire record is read from the UDB and
then split into as many variables as are necessary to hold the data that has been read.
Alternatively, the user can indicate how many bytes of data from the record are to be
placed into each variable on the &FILE GET statement.

When data is retrieved from a mapped format UDB it is placed into an MDO unchanged
from the way it existed on the file. It is also possible to specify the name of a map on the
file verb which will be attached to MDO when data is placed into it. When writing to a
file using mapped format, the contents of the MDO are simply placed on the file as they
are.

Data Set Positioning and Generic Retrieval

NCL supports both sequential and generic retrieval from keyed data sets. Such functions
imply that a current position within the file is maintained so an NCL procedure can
simply request the next record and it will be supplied. No incrementing of keys by the
NCL procedure is necessary.

Under certain circumstances, such as with generic retrieval, it might be necessary to
alter the retrieval sequence and commence retrieval using a different key.

NCL must be informed that such a change is required and that the current retrieval
sequence is to be stopped. This is done using the &FILE GET ID=name OPT=END
statement. This indicates to NCL that generic retrieval is to be terminated in anticipation
of some other processing.

If an end-of-file condition is signaled, no &FILE GET ID=name OPT=END is required. The
use of a non-generic function, such as the specific retrieval of a record, or the use of the
KEY= or KEYVAR= operand on the &FILE verb to set the current key, will also cancel a
previous generic function.

You can use KEY="'"and the generic option together, in which case the key is used to
gain initial position for the generic retrieval. Subsequent generic retrieval requests
continue from this position, as long as the key supplied (if any) is the same as the initial
key.

Chapter 8: NCL File Processing 191

Work with Data

Mapped Format Files: Data Representation

When a file is processed using the mapped format processing option, a map is used to
describe the arrangement of the records. The map describes the records in terms of
structures or components. Maps are managed by Mapping Services and exist as
separate entities within your product. When carrying out a retrieval using mapped
format processing, the contents of the file record are usually placed into an MDO, and a
map is then used to interpret the contents of the MDO.

It is also possible to read and write NCL tokens using mapped format processing. This is
a special case of mapped format processing and a special system map called SNCL is
used for this purpose. When NCL variables are written to a file using mapped format
processing, and the SNCL map, they appear on the file as sub vectors. The sub vectors
consist of a header followed by data. There is one sub vector for each token written to
the file. The sub vector headers consist of a 2 byte length field followed by a 2 byte key
where the key is X'0000'. (For example, a variable containing the value X'C1C1' would
appear on a file record as: X'00060000C1C1', where 0006 is the length, 0000 is the key,
and C1C1 is the data.)

The process of writing variables to a mapped format file using the SNCL map is
reversible. This means that if a set of variables is written to a record under these
conditions, and the contents of this record are then read back into the variables at some
other stage, the original values contained in the variables will be the restored.

Note: This allows tokens containing non-printable characters to be handled, that is, data
transparent.

Unmapped Format Files: Data Representation

Unmapped format UDBs, which are usually files created or processed by mechanisms
other than NCL, can contain noncharacter hexadecimal data (for example, records can
contain strings of binary zeros). When data is read from a file using unmapped mode,
the entire record is read in byte-for-byte as is, and non-printables remain as they
appeared on the file. The data is placed into variables in lots of 256 bytes (the maximum
variable size) unless otherwise specified. If the data contains non-printables, expand the
data to hexadecimal using the &HEXEXP statement before processing it. You can specify
a length of 128 for each variable on the &FILE GET statement, so that no overflow
occurs when the data is hexadecimal expanded.

Note: Most data formats are most conveniently processed using mapped format files
and maps developed using Mapping Services.

192 Network Control Language Programming Guide

Work with Data

When writing to an unmapped file, the contents of the output buffer are placed onto
the file unchanged, including non-printables. If VARS= or ARGS is specified on the &FILE
PUT/ADD statement, the contents of each of the variables are concatenated and placed
onto the file. Any non-printables that were contained in the variables are also placed
onto the file. If DATA= is specified on the &FILE PUT/ADD, substitution takes place on
the buffer before it is written to the file.

If any of the variables specified following the DATA= operand contain non-printables,
these are preserved. Spaces and text between variables is also written to the file.

For example, if the variable &A contains X'C100C1' and the variable &B contains
X'C200C2', then after the following statement is executed:

&FILE PUT ID=MYFILE DATA=8A XXX &B

the following result appears on the file:

X'C100C140E7E7E740C200C2"

One of the principal uses for unmapped format processing is in the dynamic preparation
of reports from NCL procedures (particularly on z/0S systems):

1. An ESDS UDB is allocated dynamically to SYSOUT.
2. Report lines are written in unmapped format.
3. The UDB is then closed for immediate printing.

When using &FILE PUT/ADD to write to SYSOUT file, carriage control options are
available to assist with report formatting.

Note: For more information about the PUT and ADD operands, see the &FILE verb in the
Network Control Language Reference Guide.

DBCS Considerations When Using Files

If you write data to a UDB that represents a DBCS data stream, the data stream is
written to the file using shift characters that depend on the DBCS mode in which your
product is operating. This is determined by the SYSPARMS DBCS= operand. A system
that reads that file must therefore operate in the same DBCS mode as the system that
originally wrote the data, otherwise the reading system will not be able to recognize the
shift characters present in the data.

Chapter 8: NCL File Processing 193

Work with Data

&FILE GET Statement and Unmapped Format UDBs

The &FILE GET statement is used to retrieve data from any type of UDB and when issued
causes NCL to present data to the NCL procedure in a series of variables, or as an MDO.

It is only possible to use the MDO= operand for mapped format processing. As described
earlier, if the UDB is a delimited format file, each variable on the &FILE GET statement is
returned with the contents of field, where the fields are segments in the record
delimited by X'FF'.

However, if the UDB is an unmapped format UDB, NCL cannot provide the data to the
procedure as a set of individual fields-NCL has no knowledge of field boundaries within
the record.

Therefore, for unmapped format UDBs, NCL treats the record read from a UDB as a
single string and then splits this string into as many full-length variables as are required
to hold all the data, or as many as are provided on the &FILE GET statement, whichever
is the smaller number.

A full-length variable is 256 characters long. It is also possible to indicate explicitly how
many bytes are to be placed into each variable.

For example:

&FILE GET ID=MYFILE VARS=(A(10),B(100),C(40))

indicates that the first 10 contiguous bytes of the record being read will be placed
unchanged into the variable &A, the next 100 bytes will be placed into variable &B, the
next 40 bytes will be placed into variable &C, and any remaining bytes will not be placed
into any variable (that is, they will be ignored).

The following shows an example of using &FILE GET on an unmapped format file.

&FILE OPEN ID=MYFILE FORMAT=UNMAPPED
&FILE SET ID=MYFILE KEY= 'RECORD1
'&FILE GET ID=MYFILE ARGS

Record contents
|C1|C2|C3]|15|C4|15|F3|C5|15|15|15|F1|15||C1|C2|C3|15|C4|15|F3|C5|15|15|15|F1|15]

:&1 contents after &FILE GET:
|C1]C2|C3|15|C4|15|F3|C5|15|15|15|F1|15]||C1|C2|C3|15|C4|15|F3|C5|15|15|15|F1]|15|

194 Network Control Language Programming Guide

Work with Data

Data Conversion and Unmapped Format UDBs

If data on an unmapped format UDB is expected to contain non-printable characters it is
wise after reading the data into variables to convert it to an expanded hexadecimal form
to preserve the non-printables (this is because many NCL verbs automatically translate
non-printables to blanks-X'40Q's).

Regardless of the data representation format selected on the &FILE OPEN/SET
statement, data read from or written to an unmapped format UDB might require
conversion from expanded hexadecimal format to character format, or conversion from
character to expanded hexadecimal format. Two NCL statements, &HEXPACK and
&HEXEXP provide this facility.

For example, where &HEXEXP is being used for file processing and data is being read
from a file which has records which consist of a 1 byte error code followed by text. If the
error code is not X'00', then there is a problem with the record.

A record could be read from the file as follows:

&FILE OPEN ID=MSGFILE FORMAT=UNMAPPED

&FILE GET ID=MSGFILE KEY='00000001'X VARS=(ERRCODE(1),MSGTEXT)
&TEMP = &HEXEXP &ERRCODE

&IF &TEMP GT 00 &THEN &GOTO .ERROR

SWRITE DATA=FOLLOWING MESSAGE READ FROM FILE: &MSGTEXT

The record with a key of X'00000001' was read into two variables, &ERRCODE and
&MSGTEXT. A subscript was used to indicate that the first byte was to go into
&ERRCODE, and the remaining bytes (up to 256) were to be placed into the variable
&MSGTEXT.

An &HEXEXP statement was used to convert the &ERRCODE variable from binary
(Packed hexadecimal) format into NCL format. (For example, if &ERRCODE was X'00',
&HEXEXP would convert it to X'FOFQ'). This enabled the value of it to be tested for an
error condition.

Note: A map could be used to describe the file, and then the record could be read into
an MDO using mapped format.

Chapter 8: NCL File Processing 195

Work with Data

Key and Data Differentiation

When a record is read from the UDB, whether it is a delimited format or an unmapped
format file, NCL normally performs the following steps when preparing the data for
presentation to the procedure, regardless of the key under which the record has been
retrieved.

m The record is read as a single string.
m The full key of the record is extracted and placed in &FILEKEY.

m [f the file being processed is a delimited format file and the record is not read under
the base key, the section of the record previously occupied by the key is replaced by
a field separator (X'FF').

m The remaining data is placed into the variables nominated on the &FILE GET
statement according to the rules applicable to the type of UDB being processed.

The significant point here is that the key under which the record is retrieved is not, by
default, regarded by NCL as part of the record data and does not therefore appear in the
&FILE GET variables.

The result of this is that the same fields within a given record can be relocated into
different &FILE GET variables, depending upon which key is used to read the record.

Previous figures show that when the records in the example are read by successive
&FILE GET statements, the two separate fields of which the records are composed are
placed into the two variables &1 and &2, as expected. &3, specified on the &FILE GET
statement, is set to null since no data was available to place into it.

However, a different &FILE GET results when the alternate index is used to read the
same two records. NCL has obeyed the rules for data presentation with the following
result:

m Therecord is read under the alternate index key.

m The key used (LU0O1290A) is extracted and placed in &FILEKEY and replaced with a
X'FF' field separator. Remember that the key in this case is followed by a field
separator too, so now there are two consecutive field separators in the record.

196 Network Control Language Programmming Guide

Work with Data

m The datais placed into the nominated variables field-by-field, starting at the
left-hand end of the record. This results in values:

- &1 =RECORD0002
- &2 =null
- &3 =Dbbbbbbbb

— The reason that &2 is null is because that which used to be the key value has
been extracted from the record and replaced with a field separator. As NCL
scans the data to determine the location of the various fields, two consecutive
field separators are found indicating the presence of a null, or zero-length field.
Consequently, &2 becomes a null variable. The result of this is that the data
(bbbbbbbb) is no longer located in the same variable as it was when the record
was read under the base key.

Note: When processing with alternate indices the positioning of the alternate key can
significantly impact the way in which an NCL procedure must process the UDB. It is
therefore recommended that you familiarize yourself with this process and try a few
simple examples first, to ensure you understand it.

Key Extraction Options

The rules for data presentation allow accurate prediction of what each &FILE GET
variable contains regardless of which key is used to retrieve a record. However, the
effects of key extraction from record data can sometimes prevent the use of common
processing logic when the same procedure uses different keys to access the same UDB.

The & CONTROL option NOKEYXTR lets you leave the key in the data portion of the
record (as well as placing a copy of the key in &FILEKEY as usual). This option applies
only when reading data using a key that does not start at offset 0 within the record.

The effect of NOKEYXTR is to eliminate null variables occurring after an &FILE GET
(where the null represents the original location of the key). NOKEYXTR also eliminates

the splitting of single fields into two when the key happens to overlay part of a single
field.

Use NOKEYXTR in procedures that reference a UDB under multiple keys where you want
to provide common processing routines for specific fields within the records.

Chapter 8: NCL File Processing 197

Work with Data

Update Restrictions on Alternate Indexes

NCL supports the retrieval of data across any number of alternate indexes. However,
data updating is restricted to the base cluster for delimited format files. If a record that
has been retrieved using an alternate index is to be updated, the ID operand on the
&FILE statement is used to indicate that processing has swapped to the base cluster,
and that the necessary key must be set (either on an &FILE SET or on the &FILE PUT)
before the record can be written back to the UDB.

Even when using the base cluster, the base key must start at offset 0 within the record
(RKP 0) for a UDB (or DELIMITED) format file. No updating is allowed for any cluster
which violates this rule.

This restriction does not apply to unmapped format UDBs which can be updated even if
the key does not start at offset 0. In this case if insufficient data is supplied to the left of
the start of the key, null padding (X'00') is added up to the start of the key location.

Offline Processing of Data Sets

On z/0S systems, the DEALLOCATE command can be used to release a UDB for offline
processing. Before you deallocate the UDB, it must be closed using the UDBCTL
command.

This can only be performed once all current users have ceased using the UDB. If
deallocation cannot be used, the stripping of files created by NCL for further offline
processing can be achieved without a restart of the system if the following rules are
followed:

m VSAM SHAREOPTIONS must allow concurrent access to the data set.
m DISP=SHR must be specified on the data set (Z/OS only).

m The UDBCTL CLOSE=xxxxx operand is used to stop further logical connections to the
file and to close the physical data set. This is allowed only if there are no users
currently referencing the file.

m Use a utility to strip the file (for example, the VSAM REPRO utility). Any offline
processing programs must take any high-value (X'FF') field separators into account
when determining record formats on UDB format files.

198 Network Control Language Programming Guide

Work with Data

Back Up Online Data Sets

While standard batch utilities can be used to back up offline VSAM data sets, they
cannot be safely used to back up active online data sets.

Use an offline utility to back up only data sets that are closed and preferably deallocated
from your product.

If an offline utility is used to back up an active online data set, the backup completes as
though it were successful. A later restoration of that data set could result in a corrupted
file. The offline utility has no knowledge of the state of the file, or any in-storage indexes
or buffers that could have been written to the file at the time of the backup.

To resolve this problem, perform online backups of active data sets. You can use the
Dataset Services UTILITY option to invoke the IDCAMS utility and perform a backup.
When operating in this manner, the online utility has access to the in storage buffers
and indexes, and can guarantee a usable backup of the data set.

Note: For more information about Dataset Services options, see the Network Control
Language Reference Guide.

For operational reasons, it is still desirable to halt activity on a file temporarily so that a
precise recovery time is known.

Chapter 8: NCL File Processing 199

Chapter 9: System Level Procedures

This section contains the following topics:

System Level Procedures (see page 201)

Message Profile Concept (see page 203)

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures) (see page
204)

Intercept OCS Messages (MSGPROC Procedures) (see page 208)

User ID Considerations for System Level Procedures (see page 210)

System Level Procedures

Activity Log

NCL can be used to write private programs that are executed by command from your
OCS windows, or implicitly from options such as the User Services panel.

Another class of NCL process called system level procedures executes exclusively in the
NCL processing regions of certain background virtual users. These system level
procedures have access to the special information flows that occur within your product
region, namely:

m The activity log
m VTAM messages
m EASINET terminal control data

m OCS window traffic

The stream of output messages to the activity log provides a serial record of all activity
in the system. Therefore, it is an ideal source of real-time information about system
events. While the log is accessible for on-line review by real operators, there is a special
background virtual user environment called LOGPROC that directly accesses every
message written to the activity log through special NCL verbs:

m The LOGFILES Customizer parameter group nominates the name of a procedure
that is to act as the LOGPROC procedure. As such, it can execute these special verbs
to see and modify messages destined for the activity log.

m LOGPROC is a system level procedure (one per system) that can act as a central
intelligence point to monitor events being reported to the log. As such, it can
observe and react to unusual or critical conditions, and provide a platform for
automatic recovery action.

Chapter 9: System Level Procedures 201

System Level Procedures

VTAM Messades

The VTAM primary program operator (PPO) interface lets your product receive
unsolicited messages from VTAM about network events that occur for reasons other
than from operator commands. For example, if an NCP fails, VTAM will generate
unsolicited messages notifying the PPO application of the occurrence.

The PPO interface can also be fed with commands and responses resulting from
operator action at the system console and from OCS windows within the region.

The stream of PPO messages represents a serial record of all unexpected events within
the VTAM network. As such it is an ideal source of information about real time network
failures.

While PPO messages can be routed automatically to OCS and system console operators
for their attention, there is also a virtual user environment within your product called
PPOPROC that directly accesses every message (or a chosen subset of messages)
received from VTAM. This PPO message flow is accessed only through special NCL verbs:

m The SYSPARMS PPOPROC command nominates the name of a procedure that is to
act as the PPOPROC procedure, and as such can execute these special verbs to see
and modify PPO messages received from VTAM.

m PPOPROC is a system level procedure (one per system) that acts as a central
intelligence point to monitor events being reported by VTAM. As such, it can
observe and react to unusual or critical conditions and provide a platform for the
collection of additional information about the event and for the initiation of
automatic recovery action.

EASINET Terminal Control

The EASINET feature lets you place all idle network terminals under the control of your
product whenever they are not natively logged on to another network application.

The logic of the EASINET procedure determines how the feature handles terminals.

Note: For more information, see the CA SOLVE:Access Session Management
Administration Guide.

202 Network Control Language Programming Guide

Message Profile Concept

OCS Window Traffic Handling

Each user operating one or two OCS windows is entitled (depending on their user ID
profile) to nominate a system level procedure to help them filter and monitor messages
sent to those windows.

These procedures are called MSGPROCs. The name of the procedure executed for a user
to act as the MSGPROC for each user OCS window is defined as part of their user profile:

m A MSGPROC procedure has access to the serial stream of messages sent to the OCS
window for which it is executing and can receive, modify, delete, or react to any
message or message group sent to the window.

m MSGPROC procedures can therefore act as preprocessors for messages that an
operator would otherwise have to monitor.

Messade Profile Concept

System level procedures access the messages flowing on their particular stream by
issuing specialized NCL verb read requests that are unique to each type of system level
procedure. For example, PPOPROC uses &PPOREAD to obtain the next PPO message.

The processing that each system level procedure undertakes depends on analyzing the
messages that are supplied to it. To help analyze the message received and decide the
specific processing required, the concept of message profiling is used.

A message that satisfies a system level procedure read request has a profile containing
the attributes associated with that message. For example, a MSGPROC message profile
includes not just message text but other information about color, highlight options, or
message origins that the MSGPROC procedure might want to know or change or base
some decision upon.

On completion of the read statement, all applicable message attributes are made
available to the system level procedure as a series of reserved system variables known
as message profile variables. An examination of the message profile variables is often
sufficient to make a decision on whether to perform further analysis of the message, or
to show that the message is of no interest to the procedure.

More information:

Message Profile (see page 472)

Chapter 9: System Level Procedures 203

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

Intercept Solicited and Unsolicited VTAM Messades (PPOPROC

Procedures)

The primary program operator interface (PPO) in VTAM can be defined so that your
product receives both solicited and unsolicited VTAM messages. An NCL interface,
named PPOPROC, is available to the VTAM PPO facility. PPOPROC can use this
information to monitor status changes of VTAM resources. By being aware of status
changes, PPOPROC can be the primary source of decisions controlling automated
reaction to events that occur within the network.

PPOPROC has four possible sources of information:

m The VTAM PPO interface that delivers both unsolicited VTAM-generated messages
and optional, solicited messages from VTAM commands issued at system consoles

This source depends on the VTAM PPOLOG initialization parameter.

m Copies of commands and command responses resulting from operator activity

m Messages delivered to PPOPROC from &PPOALERT statements issued by another
NCL process

This facility generates test messages, and delivers them to PPOPROC for
development and testing. The facility also lets you generate a new PPO message
with more or less information than the original.

m PPOPROC-related messages of the three preceding types routed from remote
regions across the Inter-System Routing (ISR) facility

PPOPROC messages from these sources can be used to report network resource status
changes to a central point. The change can be unexpected (in which case VTAM reports
the event as an unsolicited message) or in response to an operator command.

Centralization can be achieved by routing all relevant PPO messages to a central region.
Several ISR options are used to facilitate this centralization.

You set up the central region for monitoring PPO messages with the ISR ENABLE=PPO
UNSOLICIT=INBOUND command. This setup allows the region to receive PPO messages
from remote regions. The remote regions specify ISR ENABLE=PPO UNSOL=OUTBOUND
to enable delivery of messages to the central PPO processing link.

204 Network Control Language Programming Guide

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

Filter Messadges Seen by PPOPROC

PPOPROC is not necessarily interested in every message that could be sent to it. To limit
the number of messages PPOPROC has to process, your product uses the message
definition table (DEFMSG table), which specifies VTAM message numbers that PPOPROC
wants to see.

Very high message rates can occur at the PPO interface. Therefore the more you can
decrease the number of messages delivered by the DEFMSG filter, the more efficiently
your system will perform.

Modify the Messagde Definition Table: DEFMSG Command

Message Filtering;:

The DEFMSG command lets you control message delivery for solicited and unsolicited
VTAM messages. Three delivery destinations can be specified for each message:

. PPOPROC
m |LOCAL (that is, to OCS operators)
m REMOTE (that is, systems linked by ISR)

In addition, EDS events can be defined in the DEFMSG table for VTAM messages.

A default class of messages has been pre-defined to the message table and initially set
for delivery to all destinations. The delivery options for the default class messages can
be altered using the DEFMSG command; however they always remain in the default
class.

Solicited Messades

Solicited messages are those generated as a result of VTAM commands. VTAM
commands can be sourced from a system console or issued by OCS operators or NCL
procedures. These messages always pass through message definition table (DEFMSG)
processing. Only those messages indicating PPOPROC delivery in the DEFMSG table will
be passed to PPOPROC for processing.

Note: Because they are normally displayed to the operator making a specific request,
these messages are never delivered to other LOCAL receivers.

Chapter 9: System Level Procedures 205

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

Messagde Filtering: Unsolicited Messagdes

Unsolicited messages are generated by VTAM to notify of an unexpected status change
in the network-that is, a change which has not resulted from operator action.

Unsolicited messages are only delivered to the destinations specified for the VTAM
message numbers in the DEFMSG table. If no delivery options have been set for an
unsolicited message number, the delivery options for the unsolicited class entry are
used, which, by default, are not set. To specify the delivery options, issue a DEFMSG
UNSOL DELIVER=delivery command.

Design a PPOPROC Procedure

A PPOPROC procedure should be written as a closed loop. When invoked, it processes
until the first &PPOREAD statement is detected and then suspends processing until a
message arrives.

As each message arrives, the procedure logic should branch to an appropriate
processing point for that message. After processing the message or a group of
associated messages, the procedure should then return to the initial &PPOREAD where
processing is suspended once again.

PPOPROC should be designed to START worker processes to analyze any serious events
reported and initiate recovery procedures so the main PPOPROC process remains free
to continue monitoring the unsolicited VTAM message flow.

Important! Be particularly careful when using verbs that are dependent on events
outside PPOPROC control (such as &INTCMD followed by & INTREAD) as these can tie up
PPOPROC processing and result in long PPO message queues.

If PPOPROC does end, an NRD message is sent to all monitor status OCS operators, and
normal PPO processing resumes.

Messades from PPOPROC

Messages from PPOPROC, including those issued by & WRITE statements or resulting
from commands executed from within PPOPROC, (unless &INTCMD is used) are
displayed, prefixed with a P, at all monitor status terminals.

206 Network Control Language Programming Guide

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

PPOPROC Statements

Test PPOPROC

Special processing verbs are provided for PPOPROC use:

m &PPOREAD retrieves the next PPO message for processing
m &PPOCONT returns a PPO message for normal delivery

m &PPODEL deletes a PPO message

m &PPOREPL replaces PPO message text

m &PPOALERT generates a message to send to PPOPROC

Note: For more information about these verbs, see the Network Control Language
Reference Guide.

Multiple occurrences of any of these statements simplifies the processing of group
messages. The procedure can be structured for each type of message being processed.

In addition, PPOPROC can start worker processes to gather other relevant network
information to act on PPO messages.

The SYSPARMS PPOPROC command is used to invoke PPOPROC, and can also be used to
flush it. This allows a new copy of the PPOPROC procedure to be invoked from a
subsequent SYSPARMS command.

The &PPOALERT statement lets you generate test PPO messages which can be used to
check the logic of PPOPROC without having to wait for a real occurrence of the message.

Note: The base PPOPROC procedure never uses a preloaded copy of the procedure, so it
is unnecessary to use the UNLOAD command. Other procedures invoked from within
PPOPROC will observe the normal preload conventions.

Chapter 9: System Level Procedures 207

Intercept OCS Messages (MSGPROC Procedures)

PPOPROC Prerequisites

The following prerequisites apply:

m Before your product can receive messages from VTAM, a PPO START command
must be successfully executed to authorize the system for the receipt of unsolicited
VTAM messages. The PPO START opens the VTAM ACB specified on the SYSPARMS
PPOACBNM-= to gain access to VTAM messages. The STATUS command can be used
to determine whether the system has successfully executed a PPO START
command.

m To start your PPOPROC, specify SYSPARMS PPOPROC=procname.

m |f you want to receive copies of VTAM commands in your PPOPROC, you must have
SYSPARMS PPOSOCMD=PPOPROC specified and verify that PPOLOG=YES is specified
in your VTAM startup.

m To receive specific messages, issue DEFMSG DELIVER=PPO commands either in your
PPOPROC, or before starting it.

m PPO message delivery to PPOPROC begins after the first &PPOREAD has been
issued.

Note: For more information about the SYSPARMS command, see the Reference Guide.
For more information about the PPO, STATUS, and DEFMSG commands, see the online
help.

Intercept OCS Messages (MSGPROC Procedures)

Your product can intercept all messages being sent to an OCS screen or background
environment.

This facility is supported by a procedure known as MSGPROC. Before this facility can be
utilized, a MSGPROC must be defined for each user ID requiring message interception.

To do this, update the user ID definitions (using UAMS, or an external security system)
to define the name of the MSGPROC to be invoked.

The name provided in the MSGPROC field of the user ID definition is the name of a
procedure in the procedure library. Different user IDs can have different MSGPROCs,
while some user IDs might have no MSGPROC at all. You can change or flush the
MSGPROC value with the PROFILE command.

Note: MSGPROC is supported for OCS mode and INMC users with ROF sessions,
including background user IDs and console user IDs. However, you cannot use MSGPROC
in dependent processing environments associated with &INTCMD use.

208 Network Control Language Programming Guide

Intercept OCS Messages (MSGPROC Procedures)

MSGPROC Statements

Special processing verbs are provided for MSGPROC use:
m &MSGREAD makes the next message available.

m &MSGCONT returns a message for normal delivery.
m &MSGDEL deletes a message.

m &MSGREPL replaces the text of a message.

Note: For more information about these verbs, see the Network Control Language
Reference Guide.

Multiple occurrences of any of these verbs simplifies the processing of group messages,
as the procedure can be structured for the type of messages being processed.

In addition, MSGPROC can use the &INTCMD processing facilities to perform other
functions while processing a message.

Note: An MSGPROC procedure receives all messages that appear on your OCS window.
The procedure can therefore be used for various purposes, for example:

m Acting on unsolicited messages received on MAI sessions

m Reformatting VTAM messages

m Recognizing events and prompting an operator to take appropriate action

Operators with suitable authority can change the name of their MSGPROC procedure or
flush it, using the PROFILE command.

Design MSGPROC Procedures

You write an MSGPROC procedure as a closed loop. When invoked, it processes until the
first &MSGREAD statement is detected again and then suspends processing until a
message arrives for your terminal.

As each message arrives, the procedure logic branches to an appropriate processing
point for that message, or issue an &MSGCONT if the message is of no interest. After
processing the message or a group of associated messages, the procedure then returns
to the initial & MSGREAD where processing is suspended once again.

If the logic of the MSGPROC procedure allows it to terminate, an error message is issued
and normal message processing resumes.

MSGPROC can also use the START command to create worker processes that process
events or message groups asynchronously. This lets MSGPROC continue monitoring the
flow of OCS window messages.

Chapter 9: System Level Procedures 209

User ID Considerations for System Level Procedures

Messages from MSGPROC

Test MSGPROC

If a user ID is defined with a MSGPROC, all messages destined for that user's OCS
window are directed to the MSGPROC for processing. Messages that come from within
the MSGPROC itself (such as those from &WRITE statements, or comments written to
the user's terminal), are not passed to the MSGPROC for processing. This prevents
recursive looping.

MSGPROC is invoked when you enter OCS mode. MSGPROC processes until the first
&MSGREAD statement is encountered. The procedure remains active until terminated
by an error (in which case normal message delivery resumes), or until you exit OCS
mode. Exiting OCS mode flushes the MSGPROC procedure.

Subsequent reentry to OCS mode invokes the latest copy of the procedure, unless the
procedure has been preloaded. If the procedure has been preloaded, you first unload it
using the UNLOAD command and LOAD the replacement procedure.

The system is distributed with an MSGPROC example. Before you write your own
MSGPROCs, review SMSGPROC in the distribution library.

Define a temporary user ID where SMSGPROC is defined as the required MSGPROC,
then log on to this user ID and enter OCS mode to invoke the MSGPROC.

SMSGPROC intercepts VTAM display commands and provides a single-line summary.
The procedure extracts information from various lines generated by the VTAM
command, analyzes them within the procedure, and generates a response to the
operator. You can tailor the example for your VTAM level.

User ID Considerations for System Level Procedures

All NCL processes execute on behalf of an authorized user ID. Private users who log on
and execute NCL processes, execute their NCL processes within their own NCL
processing regions.

System level procedures also require an NCL processing region for execution. The
principal procedures, LOGPROC and PPOPROC execute under special internal user ID
environments. LOGPROC executes under a special user ID, and PPOPROC executes
under a special PPO interface user ID.

The internal user IDs, which provide the execution environments for these system level
processes, are regarded as standard users. They are logged on in the standard way and
can have UAMS (or security exit) user ID definitions. If you want to profile these internal
user IDs in special ways, you can define them in the same way as real users.

210 Network Control Language Programming Guide

Chapter 10: Implementing User Programs

This section contains the following topics:

About the SUBSYS Facility (see page 211)

Send Parameter Lists to the Subsystem (see page 213)
Control Subsystems (see page 213)

Write a SUBSYS Program (see page 215)

SUBSYS Callback API (see page 219)

About the SUBSYS Facility

The SUBSYS facility lets you call user programs and have them run in a separate subtask.
This lets you:

m Enhance the & CALL NCL verb by attaching a long-running subtask to handle & CALL
requests

m Preserve the state of system resources, such as open files, external database
interfaces, and so on

m Reduce the system overheads associated with each call

The SUBSYS facility is supported by the SUBSYS command, and extensions to the & CALL
NCL verb.

You should not confuse the subsystems provided by the SUBSYS facility with the z/0S
Subsystem Interface, or other z/OS subsystems. These are purely internal subsystems
managed by your product.

Use &CALL Without SUBSYS

If you are using &CALL without the SUBSYS facility, the following disadvantages are
encountered:

m Anz/OS ATTACH is issued for each call. This means that the called program cannot
easily remember things across calls.

m Significant CPU time is expended in ATTACH processing
m Continual opening and closing of files by z/0S

m Use of either &LOCK (in NCL) or ENQ/DEQ_(in assembler) to serialize

Chapter 10: Implementing User Programs 211

About the SUBSYS Facility

Use &CALL With SUBSYS

To counter the disadvantages of using &CALL, you can use the SUBSYS facility. This
provides the following:

m The target program is only attached once and all work is queued to it
m The target program can easily keep files open
m The target program is informed of NCL process termination, and of subsystem start

and stop. It is also notified of system shutdown.

The SUBSYS program is attached once, as a long-running task so that you can open files,
get storage, and so on. These resources are not released when you return.

Extensions to &CALL

The SUBSYS command lets you nominate a subsystem as a complete & CALL
replacement. This means that any existing NCL procedures that have used &CALL to call
a program, for example, X, can be automatically redirected to a SUBSYS defined as X.
This command is one way to gain immediate improvements in performance for some
programs.

Note: For more information about the & CALL verb, see the Network Control Language
Reference Guide.

Uses of SUBSYS

Some examples of the use of the SUBSYS facility are:

m Access to foreign DBMS

m The ability to read and write non-supported file formats from NCL
m High-performance reworks of existing & CALL programs

m [nterfaces to some IBM utilities such as IDCAMS. One example is UTILO035.

212 Network Control Language Programming Guide

Send Parameter Lists to the Subsystem

Send Parameter Lists to the Subsystem

When a call is made to an NCL procedure using the SUBSYS facility, parameters are
passed to that procedure. These parameters are passed in a list which can be in an old
or a new format.

Note: For more information about the old parameter format, see the description of
&CALL in the Network Control Language Reference Guide.

The new parameter list format is available for direct call-attach and is specified in the
PARMLIST=NEW operand of the SUBSYS DEFINE command. The new format provides the
following:

m Called programs can determine whether or not they have been called with an old or
new format list.

m Provides more information about the environment. There are sections that describe
the current product region, USER, and NCL processes.

m Additional NCL process termination, initialization, and shutdown calls.

m NCL process correlators which allow you to be independent of the shared NCL
process correlator by writing reentrant SUBSYS code.

m Callback application program interface (API) entry point that your program can use
to send messages back to the region.

The PARMLIST format is described in the distributed macro, SNMNCPL.

Note: The new format PARMLIST is compatible with high-level languages that use
standard IBM linkage conventions.

Control Subsystems

In order to control your subsystems you need to be able to perform various actions on
them. Each subsystem can be:

m Defined
m Started

m Stopped
m Deleted

m Reloaded

m Have its status displayed

Chapter 10: Implementing User Programs 213

Control Subsystems

Define a Subsystem

To define a subsystem to your product, use the SUBSYS DEFINE command. When this

command is issued, the nominated subsystem is defined and the indicated program is
loaded into storage. By default, the subsystem is also started. To prevent a subsystem
being started when being defined, specify the NOSTART parameter.

Note: For more information about the SUBSYS DEFINE command, see the online help.

Start a Subsystem

A subsystem must be started before it can accept work. To start a subsystem, use the

SUBSYS START command. This command is used to start a defined or inactive

subsystem. A subsystem can also be automatically started when it is defined.

When a subsystem is started, the following processing occurs:

m A small part of your product is attached

®m Aninitialization of the attached product code occurs

m [f the subsystem has PARMLIST=NEW in effect, an initialization call is made to the
subsystem code [NCPFFUNC = NCPFFSIN (8)].

The subsystem is now allowed to accept calls (&CALL statements).

Stop a Subsystem

A subsystem can be stopped. This allows it to stay defined, but calls are no longer
permitted. To stop a subsystem, use the SUBSYS STOP command. When the SUBSYS
STOP command is entered, the following occurs:

m [f the subsystem is defined with PARMLIST=NEW, a stop call [NCPFFUNC =
NCPFFSTM (12)] is made to the program. This allows the program to clean up any
important resources.

m The subsystem is detached
m Any pending &CALL requests are rejected. No further &CALL requests are
permitted.

A stopped subsystem can be restarted by the SUBSYS START command.

214 Network Control Language Programming Guide

Write a SUBSYS Program

Force a Subsystem to Stop

Sometimes a subsystem hangs in the user code. This could be caused by a loop, or an
unsatisfied WAIT. Regardless of the reason, all NCL processes waiting on a call may wait
indefinitely. This is especially likely while developing subsystem code. To find out
whether the subsystem has hung, use the SHOW SUBSYS command.

You can stop a hung subsystem with the SUBSYS FORCE command. The subsystem is
force-detached, cleaned up and then assumes the STOP status.

Delete a Subsystem

A subsystem definition can be deleted by using the SUBSYS DELETE command. You must
stop the subsystem before it can be deleted. Any following requests to this subsystem
are rejected.

Reload the Program

If, while developing a subsystem, a new version of the program is required, then the
SUBSYS RELOAD command can be used, as an alternative to STOP/DELETE/DEFINE.

The indicated subsystem must be stopped. The program is deleted (provided that it has
no other users), and a new copy is requested. The subsystem can then be restarted by
using the SUBSYS START command.

Note: If the program has other users, the delete does not work, and the reload obtains
the same version as before.

Display the Status of a Subsystem

To display the status of all defined subsystems, use the SHOW SUBSYS command.

Write a SUBSYS Program

A SUBSYS program has to be able to handle the following events:
m An NCL process that called the subsystem terminates.

®m Aninitialization call is made.

m A SUBSYS STOP command is executed.

® Your product starts to shut down.

m Asubsystem cleanup is performed.

Chapter 10: Implementing User Programs 215

Write a SUBSYS Program

To make it easy to track data associated with a given environment (such as an NCL
procedure), various correlator words are provided from which you can anchor control
block structures.

The following sections describe how to write a SUBSYS program using the new
parameter format list.

Note: For more information about how to write a program using the old parameter list,
see the & CALL description in the Network Control Language Reference Guide.

Subsystem Program Considerations

When writing a subsystem program, the following should be considered:

Use the new format parameter list. Remember that you can validate the format by
checking that the value pointed to by R1 on entry is equal to R1.

C R1,0(,R1)

BE NEWFMT
B OLDFMT

The following facilities are only available if the new parameter list format is used:
- An NCL process cleanup call

- System initialization calls

- System shutdown calls

- Private correlator calls

- Callback API

Check whether your program has been called as a subsystem rather than an & CALL
attach. If an asterisk is found in the subsystem name field in the (new) parameter
list, then it is an &CALL attach, not a SUBSYS call.

A subsystem gets a private correlator word for each unique NCL process that calls it.
This correlator word can be altered (it starts as 0) and is remembered and returned
on the next call for that NCL process. It is an ideal place to anchor process-related
control blocks. The shared correlator is shared with all subsystems or other
&CALLed programs for this NCL process.

Any NCL process that calls a subsystem using the new parameter list causes a
cleanup call to be provided to that subsystem. This call is made regardless of the
type of NCL process termination (normal, abnormal, and so on). The private
correlator is provided, and this allows the subsystem to clean up any control blocks
as required. If an NCL process is flushed while on a SUBSYS call, the subsystem is not
notified of the fact until later. It need not worry about the process disappearing
while actually processing the current call.

216 Network Control Language Programming Guide

Write a SUBSYS Program

A SUBSYS DEFINE (without NOSTART) or SUBSYS START command sends an
initialization call to the subsystem. This allows the subsystem to initialize its
environment. It should anchor any control blocks in the SUBSYS correlator in the
new format parameter list.

A SUBSYS STOP sends a termination call to the subsystem program. This allows the
subsystem to clean up any control blocks, and so on, prior to being detached.

If your product is shut down, a system shutdown call is sent to the subsystem. It
must quickly clean up its environment. It is force-detached several seconds later
regardless of whether it is finished or not.

Only as many parameters as were passed can be returned to a caller. This is the
same as the previous &CALL. Each parameter is limited to 256 characters of data.
Binary values are preserved both on input and on return. Be sure to set the lengths
correctly.

All calls to a specific subsystem are queued and processed in turn. This means that,
if the subsystem code takes a long time to process a call (for example, issuing a
WAIT on VTAM input), all pending calls are also delayed. This is a restriction of the
current implementation.

This can be avoided by queuing requests to the subsystem to a manager process
(using the INTQ command and a globally known NCLID). This manager process talks
to the subsystem on behalf of all users of the subsystem. Then the subsystem code
can wait on many events and return the first event to the manager, which can then
pass it back to the requestor.

If the subsystem ABENDs, the subsystem will stop. It can be restarted.
SUBSYS FORCE is useful when a subsystem hangs.

The subsystem load module must reside in a library accessible to your product
region. Typically this is the STEPLIB. Remember that your product libraries must be
authorized. This means that any libraries in this STEPLIB concatenation must also be
authorized. This is a security consideration.

31-bit mode programs are supported. All supplied control blocks (for example
PARMLIST) are always below the 16mb line.

If performing multiple functions, use the first parameter passed, as a function
indicator:

&CALL SUBSYS=SUB1 OPEN
&CALL SUBSYS=SUB1 READ
&CALL SUBSYS=SUBL1 READ
&CALL SUBSYS=SUB1 CLOSE ...

Chapter 10: Implementing User Programs 217

Write a SUBSYS Program

Write a Subsystem Program in High-level Languages

The new format parameter list makes it possible to write both one-time programs using
the & CALL command and subsystems in high-level languages, for example COBOL and
PL/1.

There are several considerations for high-level languages:

Always use a new format parameter list. The old format is incompatible with
high-level languages.

In COBOL, define the input parameters in the LINKAGE SECTION. COBOL cannot
easily handle a variable number of parameters, but as long as the extra parameters
on a specific call are not referred to (that is, the count is obeyed) then no problems
should arise. Another technique may be used to access a variable number of
parameters. The individual parameters are actually in contiguous storage. Thus,
instead of individual parameters, just define the first one, as an array:

LINKAGE SECTION.
. other parms
01 NCPC.

03 NCPCCNTPIC S9(9) COMP.

01 PARMS OCCURS 1. ... actual count is NCPCCNT
03 LENPIC S9(9) COMP.

03 VALPIC X(256).

PROCEDURE DIVISION USING PLIST NCPC PARMS.

Dope vectors are not set up for PL/1. Because of this, define all individual input
parameters as FIXED BIN(31) and BASE a structure over them:

DCL NCPN_ FIXED BIN(31),
1 NCPNBASED ADDR(NCPN_F),
3 NCPNPROC CHAR(8),

The suggestion for COBOL regarding variable parameter counts applies to PL/1 also.
Since the actual number of parameters is not part of the pseudo-array, a REFER
structure cannot be used. Use PARMS(1) on the DCL.

Do not compile with SUBSCRIPTRANGE in effect.

Use the RETURN-CODE variable in COBOL to set the return code. Use CALL PLIRETC
(code) IN PL/1.

Use GOBACK rather than STOP RUN in COBOL to return.

Both COBOL and PL/1 have large overheads for establishing the run-time
environment. When repeated calls are necessary, these overheads can be
excessive. Consult the relevant programmer's guide for details on callable interfaces
that can perform a one-time build of this environment.

218 Network Control Language Programming Guide

SUBSYS Callback API

SUBSYS Callback API

If the subsystem is using the new format parameter list, then a callback APl is available.
You can call this APl from a SUBSYS program, including any subtasks of that program, to
perform several services. (For an example of the use of this APl in a subtask, see the
source of the UTILO035 program.)

The address of the API entry point is in the NCPSAPIE field, as defined by the SNMNCPL
macro. The address in this field is different for each active subsystem and does not
change during the life of that subsystem. You can save it elsewhere (for example, for use
by subtasks), but must not share it across subsystems or across subsystem restarts.

After loading the entry point into Register 15 (R15), you can call the API by a standard
BALR R14,R15 instruction. The caller can be in any AMODE, but all addresses passed in
the parameter lists must be valid 31-bit addresses.

The API expects a standard format parameter list. Depending on the request, the list
contains three or four parameters.

Register 1 must point to a list of addresses, each address in turn pointing to a
parameter. The end-of-list bit is not required and not checked.

The first parameter is a fullword binary function code: 0, 4, and 8, which are described
in the following sections.

Function Code 0—Queue a Messade to the INTCMD Environment of an NCL
Process

Function Code 0 queues a message to the INTCMD environment (response queue) of a
nominated NCL process. Three additional parameters follow the function code:
parameter_2

Specifies the length of the message in fullword binary format.

Limits: 1 to 256
parameter_3

Specifies the message to queue.
parameter_4

Specifies the NCL ID of the NCL process in fullword binary format.

Limits: 1 to 99999

Chapter 10: Implementing User Programs 219

SUBSYS Callback API

The process must have issued a request to the subsystem; otherwise, the message is
discarded.

Important! If the message is discarded, the caller does not receive any indication.

Function Code 4—Send a Messade to an NCL Process
Function Code 2 sends a message to the standard message environment of a nominated
NCL process. Three additional parameters follow the function code:
parameter_2
Specifies the length of the message in fullword binary format.
Limits: 1 to 256
parameter_3
Specifies the message to send.
parameter_4
Specifies the NCL ID of the NCL process in fullword binary format.
Limits: 1 to 99999

The process must have issued a request to the subsystem; otherwise, the message is
discarded.

Important! If the message is discarded, the caller does not receive any indication.

Function Code 8—Send a Messade to MONITOR Receivers
Function Code 8 sends a message to all MONITOR receivers in the region. Two
additional parameters follow the function code:
parameter_2
Specifies the length of the message in fullword binary format.
Limits: 1 to 256.
parameter_3

Specifies the message to send.

220 Network Control Language Programming Guide

SUBSYS Callback API

Return Codes

Following a call to the API, R15 is set to one of the following values:
0

Indicates that the function works.

Indicates that the specified length of the message is invalid.

Indicates that the specified NCL ID is invalid.
24

Indicates that the specified function code is not supported.
28

Indicates storage shortage.
32

Indicates that the caller is not executing as a subsystem.
Example: Send a Message
This example shows how a message can be sent to the current caller's environment. (It

is assumed that an &CALL request is being processed by the subsystem code, and that
addressability to the NCPS and NCPN areas has been set up.)

MvC CBFC,=F'4' FUNC CODE

MVC CBML,=A(L'MSG1) MSG LENGTH

L R15,NCPSAPIE GET API EPA

CALL (15), CALL API *
(CBFC,CBML,MSG1,NCPSNCLI), WITH THESE PARMS *
MF=(E, CWA) PLIST BUILT HERE

MSG1 DC C'HELLO FROM A SUBSYSTEM'

CWA DS 4F PARMLIST BUILT HERE

CBFC DS F FUNCTION CODE
CBML DS F MESSAGE LENGTH

Chapter 10: Implementing User Programs 221

Chapter 11: Synchronizing Access to
Resources

This section contains the following topics:

Use NCL to Synchronize Access to Resources (see page 223)
Resources and Resource Locks (see page 224)

Resource Name Hierarchy (see page 225)

Resource Naming Conventions (see page 226)

&LOCK Verb (see page 226)

Resources as Semaphores (see page 228)

Use NCL to Synchronize Access to Resources

NCL applications involving multiple users often need a mechanism for controlling access
to the same data or resource, by different users or processes. This control is particularly
important in NCL systems that use UDBs to hold application-related data that can be
updated by some users, and concurrently read by others.

NCL provides this mechanism through the use of locks which allow or deny access to
resources. The same mechanism is also used to synchronize activity between separate
processes by providing a semaphore capability.

Chapter 11: Synchronizing Access to Resources 223

Resources and Resource Locks

Resources and Resource Locks

Resource Groups

A resource, as used here, is not a real entity such as a file or a variable. It is a name,
consisting of a primary name and optionally a minor name, to which NCL procedures
refer.

The purpose of the lock mechanism is to provide assurance that a specific operation can
be performed, at a particular point within an NCL procedure's logic, without
interference or damage by other NCL processes that might be attempting to use the
same data at the same time.

A common example is the case where a process needs to update a record on a UDB. The
process reads the target record, changes it and writes it back to the file, but it also
needs to guarantee that no other process updates the same record at the same time. To
achieve this guarantee, the process first obtains exclusive access to a resource that
symbolizes the record update process.

Once it has obtained this exclusive access, the procedure is free to perform as much
work on the target record as it needs, knowing that no other procedure can access the
same record in the meantime because no other procedure would be able to gain access
to the resource lock.

It is important to remember that it is not the data itself that is protected by the lock
mechanism, only the resource. If controlled access to an item of data is required then all
procedures that change that data must gain access to the lock before updating the data.

To explain the concept of a resource group, take the previous example of a file record,
in which a procedure uses resource locking to guarantee exclusive access to a file record
for the purpose of updating it, without having to worry about any other process
changing the record at the same time. In this example, the resource could be a name
that represents the entire file; in other words, you could organize your procedure to
have exclusive read/write access to a whole database.

Alternatively, and probably in preference, you would like other processes to continue to
have access to the file as a whole, as long as they could not access the specific record
that your process is updating. To achieve this, you would assign a resource primary
name to represent the file (UDB), and then decide on a naming convention that allows
individual records within the file to be identified by a minor name.

For example, if you have a UDB containing NCP configuration data keyed by line name,
you might assign a primary name of CONFIG to represent the UDB itself and use the line
name as a minor name to represent each line record as a resource within the UDB. To
retrieve information about a line, your procedure first obtains exclusive access to the
appropriate line record resource by requesting exclusive control of the appropriate
primary/minor name resource lock.

224 Network Control Language Programming Guide

Resource Name Hierarchy

Primary Names

Minor Names

In this example, your procedure would execute the following & LOCK statement to gain
exclusive permission to process the record on the UDB that contains information about
line 23:

&LOCK TYPE=EXCL PNAME=CONFIG MNAME=LINE23

You could code the following statement if your naming convention for resource locks
uses XYZ to identify the record on the database that describes the configuration of line
23:

&LOCK TYPE=EXCL PNAME=CONFIG MNAME=XYZ

In this example, the primary name (CONFIG) represents a resource group. The
combination of the primary name and a minor name identifies a resource within the

group.

The primary name is the part of the resource name that uniquely identifies the resource
group. It is a 1- to 16-character string of your choice. Logically, the primary name
represents the root of a (potential) two-level hierarchy, below which one or more
dependent minor names can exist.

The minor name of a resource, if required, is a 1- to 256-character string, which qualifies
the resource's primary name to identify a specific resource within a resource group. For
example, the primary name CONFIG represents both a resource group and a specific
resource. The resources CONFIG.ABC and CONFIG.XYZ represent specific resources
within the CONFIG resource group.

Resource Name Hierarchy

Specific resource names, that is, those that are explicitly defined by primary and minor
name, are peers within their resource group.

Any process that obtains exclusive control of the resource CONFIG prevents any other
process in the system from gaining access to any other resource below CONFIG in the
hierarchy. Therefore no process can gain access to the CONFIG.XYZ resource, until the
first process releases its exclusive control of the CONFIG resource lock.

Alternatively, a process that requests exclusive control of the CONFIG.ABC resource
does not prevent any other process from accessing the CONFIG.XYZ resource.

Chapter 11: Synchronizing Access to Resources 225

Resource Naming Conventions

Resource Naming Conventions

&LOCK Verb

Since resources are only names, not real entities, the NCL procedures that use the
locking mechanism to control and synchronize their access to different resources must
agree on the resource names that they will use. They must also agree that a resource
name means the same thing to all procedures. Once the resource names have been
agreed, all procedures must use the &LOCK verb to obtain the resource lock to access
resources, otherwise protection cannot be guaranteed.

It is very important that you define a naming convention for resource identification.
Ideally your naming convention should apply to all product regions within your
organization. Alternatively, naming conventions can apply within a given system or
within a specific NCL system.

The &LOCK verb lets you obtain and release resource locks.
m &LOCK operates systemwide; it is not restricted to your NCL region alone.

m &LOCK s used to designate a particular resource lock that the procedure wants to
control, and specifies the type of control that is required.

If a process has exclusive control of a resource lock, all other processes in the system are
prevented from gaining access to the resource at the same time. Alternatively, the
process can gain shared access to the resource lock, which prevents any other
procedure from being granted exclusive access. If necessary, you can alter the status of
the lock from shared to exclusive, or from exclusive to shared, during processing.

A procedure can also use &LOCK to test whether any other procedure is holding a lock
that it wants to access.

Note: For more information about the &LOCK verb, see the Network Control Language
Reference Guide.

226 Network Control Language Programming Guide

&LOCK Verb

Wait for Access to a Resource

If a procedure issues &LOCK to request access to a resource lock, but the required
access cannot be granted immediately, the WAIT operand specifies whether the system
will return control to the procedure immediately, or wait for the resource to become
available.

If you specify WAIT=YES, your procedure will be suspended indefinitely until access to
the required resource can be obtained. You should avoid this, unless you are certain
that a deadlock condition with another process in the system will not result.

Rather than code WAIT=YES, CA recommends that you use the WAIT=nnnn option. This
instructs the system to wait for the required resource for a certain number of seconds
(as specified by the nnnn variable), rather than waiting indefinitely. If the lock is still not
available after that time, the procedure resumes processing. This stops deadlock
conditions occurring.

Alter the Status of a Resource Lock

Alter the Status from

Alter the Status from

If required, you can alter the resource lock status of a process during processing by
using the ALTER=YES operand on the &LOCK verb. Altering the lock status from exclusive
to shared is always possible, however there are some restrictions when altering the lock
status from shared to exclusive.

EXCL to SHR

During processing of the & LOCK request, any other lock requests that are waiting for
shared access to the resource become valid for shared ownership. They are granted
shared access to the resource immediately, causing the requesting procedures to
resume execution.

SHR to EXCL

The following conditions must be satisfied before a request to alter a resource lock
status from shared to exclusive will be successful:

m No other procedures can have shared ownership of the resource

m [f the resource is the primary resource, there must be no other minor resources

(with shared or exclusive status) with the same primary name

If any other shared requests for the lock arrive before the status is altered to exclusive,
these new shared requests are given precedence over the change to exclusive, and are
granted shared ownership of the lock

If the request is successful the procedure owns the lock exclusively.

Chapter 11: Synchronizing Access to Resources 227

Resources as Semaphores

WAIT Operand

As with normal shared and exclusive requests, the WAIT operand plays an important
part in determining the success or failure of a request to alter the lock status. However,
the waiting period is only significant for a request to change from shared to exclusive, as
the request to change from exclusive to shared is always satisfied immediately.

When WAIT=NO is specified, the request fails unless it is satisfied immediately.

When WAIT=nnnn or WAIT=YES is specified, the requesting process can wait for the
specified period of time for the change to be successful (this will happen when another
process releases its lock).

If the status type on the &LOCK ALTER request is the same as the current status, the
request is treated as a request to alter the lock text only-for example, the process holds
a shared lock then issues a shared lock request with the ALTER=YES operand. This
request is always successful.

Associate Text with a Resource Lock

To assist recognition or provide information to other processes that want to interrogate
the status of a lock, the &LOCK verb can specify text associated with your procedure's
ownership of the lock. This text appears in the SHOW NCLLOCKS command display,
which is used to display the locks held by the different processes in the system. The text
is also made available to a procedure issuing an & LOCK statement with the TYPE=TEST
option.

Note: For more information about the SHOW NCLLOCKS command and its use, see the
online help.

Resources as Semaphores

Using &LOCK to synchronize the use of a resource between competing processes solves
the problem of access to real resources. The same technique can be employed to signal
between co-operating processes, in particular with the use of the TEST facility of &LOCK.
In this case, the resource is not a real resource but a signal or semaphore.

Semaphores are a useful mechanism for synchronizing the processing of related
procedures. Take an example of Procedure A that needs to suspend processing until
Procedure B reaches a particular point in its processing.

228 Network Control Language Programming Guide

Resources as Semaphores

Procedure A's logic could look like this:

-* process
&LOCK WAIT=YES TYPE=TEST PNAME=XYZ

At this point, Procedure A is suspended until another &LOCK request is made for the
resource XYZ.

Procedure B in the meantime continues processing until it completes the function which
it knows procedure A has to wait for. At this point, procedure B issues the same &LOCK
request for the resource XYZ:

&LOCK WAIT=YES TYPE=TEST PNAME=XYZ

Both the &LOCK verbs complete with &RETCODE = 8, indicating that both procedures
have reached the synchronization point. If Procedure B reaches the point first, its & LOCK
would suspend it until Procedure A issued its & LOCK statement.

Chapter 11: Synchronizing Access to Resources 229

Chapter 12: NCL Debug Facility

Overview

This section contains the following topics:

Overview (see page 231)

Security (see page 232)

NCL Debug Facilities (see page 233)

Control the Execution of NCL Processes (see page 235)

The NCL Debug facility is a powerful tool to assist in the debugging of NCL procedures.

The DEBUG command has various operands which provide the NCL developer with the
ability to establish a debug session. This debug session can be targeted at one or more
debug scopes. A debug scope can be any of the following:

® An NCL process
m All the processes within a particular user's window
m All the processes within a particular user's logon region

m All the processes for a particular user ID (that is, all regions for that user ID)

You can have one or more debug sessions active simultaneously, each being initiated
from a different environment.

A debug session is associated with a particular region that is referred to as the
debugger. This region is the only region from which debug commands are accepted for
the session. Any command environment can be a debugger. These environments
include OCS and any &INTCMD environments.

An NCL process that falls into the scope of a debugger is associated with that debugger's
environment and is referred to as a debugged NCL process. Only one debugger can
debug an NCL process at a time.

After a debug session has been started, you can set break points in any procedure of any
NCL process that has been attached to the debug session. The breakpoints can be set at
particular points within the executed code, against the action of updating a variable, or
against the execution of a nominated verb. The debugger can view or alter the data of
the target NCL process. These breakpoints are external to the source and allow you to
debug a process without having to modify the source code.

Chapter 12: NCL Debug Facility 231

Security

You can control execution of an NCL process by setting various breakpoints throughout
the process. The DEBUG commands allow you to halt the execution of a process, resume
execution (after a halt or breakpoint has been reached) or to step through a fixed
number of process statements. You can also suspend the debug session and reestablish
it at a later time. Any breakpoints or suspended processes is preserved in their current
state.

The SHOW DEBUG command lets you see all your current debug sessions and their
associated scopes and, optionally, the debug sessions of other users.

Note: For more information about the DEBUG and SHOW DEBUG commands, see the
online help.

Security

A set of security constraints is incorporated with this flexible debugging interface, to
protect against intentional access to user's NCL processes that are running.

m Command authority level can be used to stop a user from debugging the
procedures of another user.

m NCL Debug is a feature of your product and therefore can be excluded from a
product region using an EXC= JCL parameter.

Note: For more information about using the EXC= parameter, see the Reference
Guide.

® You can replace the DEBUG command by an NCL procedure using the SYSPARMS
CMDREPL operand.

Note: For more information, see the Reference Guide.

m The DEBUG DISPLAY command can be used to display the contents of variables but
it does not display the &USERPW variable.

232 Network Control Language Programming Guide

NCL Debug Facilities

NCL Debug Facilities

NCL Debug provides the following facilities:

m Allows observation of the execution of an NCL procedure from an external source,
that is, another environment, another user region, window, or NCL environment.

m Eliminates the need for code changes to debug a procedure. For example, there is
no need to add &CONTROL or & WRITE statements.

m Provides comprehensive control over the NCL procedure as it is being executed,
supporting statement stepping, alteration of variable contents and attributes, and
so on.

m Allows specification of criteria for debugging, before the target NCL begins
execution.

NCL Debug Facility

The NCL Debug facility is made up of a set of commands that allow you to do the
following:

Start and stop an NCL debug session

m Control the execution of NCL processes

m Display and modify the contents of NCL variables, independent of the nesting level
of the process

m List the procedure and subroutine nesting levels

m Display the source code that is being executed (not the source currently on disk,
that is, without comments or indentations)

m Receive NCL trace output at another region, thus being able to view the trace
output concurrently as the debugged process executes

Start and Stop an NCL Debug Session

An NCL debug session is started in an environment by issuing the first DEBUG START
command. The environment and scope of the session are defined using the operands of
the DEBUG START command. Subsequent DEBUG START commands add additional
scopes to the debug environment already established.

When the DEBUG START is processed, any NCL processes that fall within the specified
scope, and which are not already debugged, will be attached to the debugger's session.
If an NCL process starts, and its environment is being debugged, or it falls within the
scope of a debug session, it will be attached to that debug session.

Chapter 12: NCL Debug Facility 233

NCL Debug Facilities

Once an environment has established a debug session, other debug commands can be
issued to control the NCL processes that have been attached. The commands to
manipulate these processes must be issued from the same environment that issued the
DEBUG START. The process has no awareness of being debugged.

Once debugging is complete, the debug session can be terminated using the DEBUG
STOP command. There are three options for the DEBUG STOP command that affect the
actual processes that have been attached to the debugger.

m The CONTINUE option tells debug to remove all breakpoints from the processes and
resume any that are suspended, leaving them to continue as if no debugging had
taken place.

m The FLUSH option causes all attached processes to be flushed.

m The SUSPEND option leaves the debug environment intact and disconnects it from
the debugger's environment (the debug session is suspended).

The CONTINUE and FLUSH options both result in the debug session being deleted. All
breakpoints and scopes are cleared and any new processes that start, and fall within the
scope, will not be attached.

The SUSPEND option leaves the debug environment intact. Breakpoints and scopes
remain in effect. If a process starts within a scope, that process will be attached to the
debug environment and any breakpoints that are pertinent will be applied. The debug
session will be flagged as suspended, and a debug ID will be assigned to it. When the
debug session needs to be reconnected, a DEBUG START command can be issued
specifying the DEBUGID that was assigned to the suspended debug session.

A debug session can be reconnected to another environment of the same user ID.
Conversely, a session can be reconnected from another environment of the same user
ID. During the time that the session was suspended, new processes can be attached
from the debug session. If an attached process encounters a breakpoint, it is suspended,
and remains suspended until the debug session is reconnected and a command issued
to resume processing for the process. The same applies for a process that was
suspended at the time the debug session was suspended.

The following sequence of commands shows how to establish and stop a debug session:

DEBUG START WINDOW=2 -* debug any procedure in
-* window 2
DEBUG START USER=NM1BSYS PROCEDURE=MYBPROC
-* debug background procedure
-* in BSYS region
-* other debug commands control the process in the two scopes
DEBUG STOP TYPE=FLUSH-* terminate the debug
-* session and flush the
-* procedures

234 Network Control Language Programming Guide

Control the Execution of NCL Processes

Control the Execution of NCL Processes

Once a debug session has been established, the debugger can issue various commands
to control the execution of the processes that are subsequently attached to the debug
session. The commands that can be used have the effect of either suspending a process,
resuming the execution of a process, or both.

The following commands can be used to suspend an NCL process while it is executing:
DEBUG HOLD

This command flags the process for immediate suspension, before the next
statement is executed.

DEBUG STEP

This command indicates to debug that the process is to be suspended after the
specified number of statements have been executed. The NEXT= operand can be
used to indicate how many statements of the process to allow before the process is
suspended.

Both commands have the effect of putting the NCL process into a wait state. The SHOW
NCL command indicates that the process has been suspended.

Another way for a process to become suspended is indirectly, using the DEBUG
BREAKPOINT command. The DEBUG BREAKPOINT command defines a condition that
must be satisfied before the process is suspended. The following conditions can be
specified:

m Statement

m Verb

Variable

m Procedure ENTRY

Procedure EXIT

Statement Breakpoints

A statement breakpoint can be used when the process is to be suspended if the
statement identified by the STMT= operand of the DEBUG BREAKPOINT command is
about to be executed. The statement is identified using the line number found in
columns 73 to 80 of the source, or a relative number if the source is unnumbered.

Chapter 12: NCL Debug Facility 235

Control the Execution of NCL Processes

Verb Breakpoints

A verb breakpoint can be used when the process is to be suspended if the statement to
be executed contains the verb identified by the VERB= operand of the DEBUG
BREAKPOINT command. The process is suspended immediately before the verb is
executed.

Variable Breakpoints

A variable breakpoint can be used when the process is to be suspended if a variable,
identified by the VARS= operand of the DEBUG BREAKPOINT command, is updated. The
process is suspended immediately after the statement that caused the variable to be
updated. Optionally, the command can specify the DATA= operand to limit the
breakpoint to updates of the variables with a particular value.

Procedure ENTRY Breakpoints

A procedure ENTRY breakpoint can be used to suspend execution of a procedure before
the first statement of the procedure is executed.

Procedure EXIT Breakpoints

A procedure EXIT breakpoint can be used to suspend execution of a procedure after the
last statement of the procedure has been executed. This includes any normal
termination statements which end the procedure (for example, &END or &RETURN).

BREAKPOINT Command

Breakpoint definitions are associated with the debug session, and are applied to
procedures both when they are executed and when the breakpoint is defined. Thus,
breakpoints can be defined before any processes have been attached to the debug
session. When a process issues an EXEC command, the procedure being executed has
any relevant breakpoints applied.

Statement breakpoints require a privately loaded copy of the procedure. (This is not
necessary for the other types of breakpoint.) If the procedure is the target of a
statement breakpoint, the debugger will automatically request that a procedure be
privately loaded. Otherwise, normal procedure loading will remain in effect, as
controlled by the SYSPARMS NCLTEST or PROFILE command.

236 Network Control Language Programming Guide

Control the Execution of NCL Processes

Once breakpoints have been established, any NCL process that satisfies the conditions
of a breakpoint is suspended. Breakpoints can be listed and cleared using the DEBUG
LIST BREAKPOINTS command and the DEBUG CLEAR respectively. These commands are
useful for controlling processes that have already started.

If you need to stop a process on the first statement, use the DEBUG SET NEWHOLD=YES
profile command. Once set, it indicates to debug that all processes that are attached to
this debug session are to be immediately suspended before the execution of the first
statement.

When a process is suspended, other debug commands can be used to display variables
and the source code.

To resume the execution of the process after all the required information has been
displayed, use the following commands:

DEBUG RESUME

RESUME flags the process identified as ready to continue execution. The process is
made eligible for execution and the statement step counter, set by the DEBUG STEP
command, is reset.

DEBUG STEP

The process is resumed in the same way as with the DEBUG RESUME command and
the statement step counter is set to the value specified on the NEXT= operand. This
will result in the process again being suspended after the specified number of
statements have executed.

Chapter 12: NCL Debug Facility 237

Control the Execution of NCL Processes

Sample Debug Session

The following sequence of commands shows how to set breakpoints and control the
execution of a process:

-* The debug session has already been established
DEBUG SET NEWHOLD=YES -* Ensure the procedure is stopped
-* on the first statement
DEBUG BREAKPOINT PROCEDURE=MYPROC STMT=1250000
-* Suspend the procedure if it
-* tries to execute statement 1250000
DEBUG BREAKPOINT PROCEDURE=MYPROC VERB=APPC
-* Suspend background procedure on
-* first APPC verb
DEBUG BREAKPOINT PROCEDURE=MYPROC VARS=WKTRANID DATA=CH22
-* Suspend the procedure when it sets
WKTRANID to the data that causes
the error. The procedure MYPROC is
started in window 2 and is
immediately suspended
DEBUG STEP NEXT=10 -* Execute the first 10 statements
Using the display commands the procedure is
verified as to the current state of its variables
Let process continue
until first breakpoint
The procedure is suspended on the APPC verb. Using the
display commands, the procedure is verified as to the
current state of its variables. They are set correctly
DEBUG LIST BREAKPOINTS -* List all current breakpoints
DEBUG CLEAR BREAKPOINT=2 -* (Clear the breakpoint on the
-* APPC verb
DEBUG RESUME -* Let the process continue until
-* next breakpoint
-* Process continues

DEBUG RESUME -

Display and Modify the Contents of NCL Variables

Once the procedure has reached a particular point in its processing and it has been
suspended, the DEBUG DISPLAY and DEBUG MODIFY commands can be used to display
and modify the contents of variables and MDOs. The entire contents of the variable or
MDO are displayed.

The modify command can be used to alter the attributes and contents of variables and
MDOs. Multiple variables can be altered by specifying the operands of the modify in a
similar fashion to using the &ASSIGN verb, however the new value can only be specified
using the DATA= operand.

238 Network Control Language Programming Guide

Control the Execution of NCL Processes

List Procedure and Subroutine Nesting Levels

The DEBUG TRACE command is used to list all the procedures. Subroutine nesting levels
can also be obtained. The listing shows a general display of the identified process, and
then a detailed list of each procedure and the subroutines that the procedure has
entered.

Display the Executed Source

The DEBUG SOURCE command lets you list the statements of a procedure, as they are
stored in memory. The listing represents what the system will actually execute, as
opposed to what is currently on disk. This can be useful in verifying that the procedure
being debugged is the correct version.

Receive NCL Trace Output

When debugging full screen procedures, the output from the NCLTRACE facility is not
available for viewing until the process has completed, or the window has been released
by the process. This can be undesirable if the process has been suspended after a panel
has been sent and the process still owns the window. The trace output will not be seen
until the process releases ownership of the window.

Using the DEBUG SET NCLTRACE=YES profile command, the trace output from a process
being debugged will be delivered to the debugger's environment.

Example: Debug Session

The following sequence of commands shows how a debug session could proceed:

DEBUG START WINDOW=2 -* Debug any procedures in
-* window 2
DEBUG START USER=NM1BSYS PROCEDURE=MYPROC
-* Debug background procedure
-* MYPROC in BSYS region
DEBUG SET NEWHOLD=YES -* Ensure procedure is
-* stopped on 1lst statement
DEBUG BREAKPOINT PROCEDURE=MYPROC STMT=1250000
-* Suspend the procedure if it
-* tries to execute statement
-* number 1250000
DEBUG BREAKPOINT PROCEDURE=MYPROC VERB=APPC
-* Suspend background
-* procedure on the first
-* APPC verb

Chapter 12: NCL Debug Facility 239

Control the Execution of NCL Processes

DEBUG BREAKPOINT PROCEDURE=MYPROC VARS=WKTRANID DATA=CH22
-* Suspend the procedure when
is sets WKTRANID to the
data that causes the error
The procedure MYPROC is started in window 2 and
is immediately suspended
DEBUG STEP NEXT=10 -* Execute the first 10
-* statements
DEBUG DISPLAY VARS=WK* GENERIC
-* Verify that the work
-* variables have been set
-* correctly
DEBUG RESUME-* Let the process continue
-* until the first breakpoint
-* The procedure is suspended on the APPC verb
DEBUG DISPLAY VARS=WKTRANID -* The variable has the
-* correct value - continue

DEBUG LIST BREAKPOINTS -* List the current
-* breakpoints

DEBUG CLEAR BREAKPOINT=2 -* (Clear the breakpoint on
-* the APPC verb

DEBUG RESUME -* Let the process continue

-* until the next breakpoint
-* The procedure is suspended after updating WKTRANID
to
-* CH22
DEBUG DISPLAY VARS=WK* GENERIC-* The display indicates that
-* WKTRANPREF was incorrect
DEBUG MODIFY VARS=WKTRANPREF DATA=ZCH
DEBUG MODIFY VARS=WKTRANID DATA=ZCH22
-* Fix the variables
DEBUG CLEAR -* Clear all the breakpoints
DEBUG BREAKPOINT VARS=WKTRANPREF
-* Stop the procedure when
-* WKTRANPREF is updated
DEBUG RESUME -* Let the process continue
-* until the next breakpoint
-* The procedure is suspended after updating
WKTRANPREF
DEBUG TRACE -* Display the nesting
-* levels.
-* The display indicates that a subroutine was
-* called at the wrong place
DEBUG MODIFY VARS=WKAPPPPLCTR DATA=2
-* Change the loop counter to
-* go through the process again

240 Network Control Language Programming Guide

Control the Execution of NCL Processes

NCLTRACE ON ID=123-* Set tracing on
DEBUG SET NCLTRACE=YES-* Have the trace output sent
-* here
DEBUG STEP NEXT=80-* Check the results
-* After seeing the trace, it is clear that the
-* variable WKHSGT is incorrectly set. The source is
amended.
-* The bug had been found, so stop the debug
-* session and flush the process.
DEBUG STOP TYPE=FLUSH -* Terminate the debug
-* session and flush the
-* procedures

Chapter 12: NCL Debug Facility 241

Chapter 13: About Mapping Services

This section contains the following topics:

What Is Mapping Services? (see page 243)

Mapping Services Processing (see page 244)

Mapping Concepts (see page 245)

Data Sources (see page 246)

Naming (see page 246)

Mapping Services, Mapping Support, and NCL Processing (see page 247)
Connection to Mapping Support (see page 248)

Sourcing Data (see page 248)

Manipulate and Extract Data (see page 249)

Use a Map in NCL Processing (see page 249)

What Is Mapping Services?

Mapping Services is a facility that provides NCL with enhanced capabilities for
manipulating data with various formats.

Early versions of NCL stored program data only as tokens (or NCL variables). Mapping
Services enhances NCL by introducing Mapped Data Objects (MDOs) as an alternative to
tokens and as a means of storing data. Data can easily be transferred between MDOs
and tokens. MDOs can also be written directly to files and are supported by a number of
specialized NCL functions such as &ASSIGN and &APPC. MDOs can be used in many
situations where tokens are used.

An MDO can contain any data that can be represented as a continuous string of bytes in
storage. The primary advantage of an MDO over NCL tokens is that particular
substructures within an MDO can be located and referenced by name from NCL, using
various rules which Mapping Services understands. Various segments within these
substructures can also be referenced. The substructures which can be referenced within
MDO data are generically known as components.

To distinguish between various substructures which exist within a particular MDO, a
unique tag or key is assigned to each component. To determine what names are to be
associated with particular components within an MDO, and their tag values, a map is
used. A map enables the NCL language to associate names with the various components
which exist within a particular MDO. Thus a map provides NCL with the ability to
interpret the data contained within an MDO.

Chapter 13: About Mapping Services 243

Mapping Services Processing

Mapping Services Processing

MDOs

Maps

NCL Procedures

Mapping Services extends the flexibility of NCL to include the manipulation of data in
any format. There are three key components involved in Mapping Services processing:

m MDOs
® Maps

m NCL procedures

Mapping Services provides a set of facilities that effectively mediates between these
three components and manages them. This allows components to exist as separate
entities, which interact during NCL processing to perform data manipulation.

Mapping Services can operate on any data item that can be represented as a continuous
string of bytes in storage. In addition, Mapping Services understands certain rules which
let it locate substructures within those data items if they are composed of variable data
structures.

To assist with uniformity of processing, Mapping Services treats the entire data item as
a structure called an MDO. An MDO has a name that is supplied by the NCL procedure
to reference that instance of data.

Maps are defined using the Abstract Syntax Notation One (ASN.1) language. They are
then compiled and loaded for use in NCL.

Note: For more information about defining maps, see the Managed Object Development
Services Guide.

NCL procedures are written to access data through one or more of the standard NCL

verbs. When data is provided by one of the verbs that support Mapping Services, the
procedure can request that it be treated as an MDO. It provides a name for the MDO,
and (optionally) the name of a map that can be used to interpret the data.

Once the data has been internally accessed, and before the NCL verb completes,
Mapping Services makes a connection between the MDO and the designated map. The
NCL procedure can then reference data components within the MDO using the symbolic
names defined in the map.

244 Network Control Language Programming Guide

Mapping Concepts

Example: NCL Procedure

The following example shows how the three components interact in NCL.

&ASSIGN MDO=filelrec MAP=filelmap
-* the map called filelmap is attached
-* to the MDO called filelrec.
-* This statement indicates to Mapping
-* Services that this map is to be used
-* to interpret any data in the MDO.

&FILE OPEN ID=FILE1 FORMAT=MAPPED MAP=filelmap
-* Open file in mapped processing mode.

&FILE GET ID=FILE1 KEY='00000000' MDO=filelrec
-* Read a record from the
-* file into the MDO.

&ASSIGN VARS=A FROM MDO=filelrec.luname
-* Locate a component within the MDO
-* data and copy its contents into the
-* variable &A.
-* Mapping Services uses the map to find
-* out how to locate and recognize the
-* structure referred to as luname-* within NCL.

Mapping Concepts

A map effectively describes the following to NCL:

m The names that will be used to reference various components within an MDO
m The relationship between these data components

m The means of identifying each component

m The way in which the data is represented

Until a map is associated with an MDO, NCL cannot reference components in the data
by name. However, NCL can still process the MDO as a whole.

Chapter 13: About Mapping Services 245

Data Sources

Data Sources

Naming

NCL processing can move data directly into an MDO using many verbs, via the following
sources:

m From files

m Across APPC transactions

m From NCL tokens (as variables and arguments, or args)
®m Across PPl transactions

m Using &INTREAD, &LOGREAD, &MSGREAD, &PPOREAD
®m From vartables

® From CNM

m Using BER encode/decode

It is possible to reference structures within MDO data by name from NCL. A map must
be attached to the MDO so NCL can use this map to associate names with physical
structures which can occur within the data. By definition, components are hierarchically
arranged. This means that to reference one component enclosed within another, a
concatenation of the enclosing structure names is required to identify the enclosed one.

For example, the name:

MDO=FILE1REC.DOMAIN.SUBDOMAIN.LU

might be used to reference the structure LU, within a structure called SUBDOMAIN,
which is contained in a structure called DOMAIN, which is within the data in an MDO
called FILE1REC.

To reference all data contained within an MDO, only specify the single MDO name
segment, as follows:

MDO=FILE1REC

246 Network Control Language Programming Guide

Mapping Services, Mapping Support, and NCL Processing

Transfer MDOs Between Nested NCL Procedures

It is possible to share an MDO between nested procedures by using SHRVARS options.
Any MDO selected by the current SHRVARS option is shared in the same manner that
NCL tokens are shared.

Example: Transfer MDOs Between Nested NCL Procedures

In the following example, the MDO called ABC is available in the nested procedure but
the MDO called XYZ is not.

&ASSIGN MDO=ABC MAP=MAP1 DATA=XXXX
-* Create an MDO called ABC, attach the
-* map called MAP1 to it, and assign
-* data into it.
&ASSIGN MDO=XYZ MAP=MAP2 DATA=yyyy
-* Create an MDO called XYZ
&CONTROL SHRVARS=(A)
-* Set SHRVARS option.
-EXEC PROC2-* Call procedure PROC2.

Note: There is no support for passing an MDO as an invoked or returned parameter on
nested calls. Only NCL tokens can be passed in this manner. However, MDOs can be
transferred from one NCL process to another using &WRITE and &INTREAD or any of a
number of other verbs.

Mapping Services, Mapping Support, and NCL Processing

Before structures can be referenced within an MDO by name from NCL, a map must be
assigned to the MDO. The map provides NCL with the following information about an
MDO:

m The type of structures which can be expected within the MDO data

m How to locate and recognize these structures

m The names which will be used in NCL to reference these structures

Maps defined to Mapping Services are loaded automatically the first time they are

referenced from NCL. They can also be loaded manually by entering the LOAD
MAP=mapname command.

The LOAD MAP command will only load a map not already in memory. To reset a map in
memory (for example, after modifying an existing map), use the UNLOAD
MAP=mapname command. It will be automatically reloaded on demand.

Chapter 13: About Mapping Services 247

Connection to Mapping Support

Connection to Mapping Support

An MDO is usually attached to mapping support at the same time it is created or data is
first placed into it. The MAP= operand is available on many verbs and is used to attach a
map to an MDO.

Example: Connect to Mapping Support

&ASSIGN MDO=xxx MAP=MYMAP
-* This creates the MDO if it didn't already
-* exist, and assigns a map to it.
&FILE GET ID=FILEID MDO=yyy MAP=MYMAP2
-* This creates the MDO if it didn't
-* exist, places data from the file record into
-* it, and attaches the map to it.
&APPC SEND... VARS=a* MAP=MYMAP2
-* This transmits the data in the variables, and
-* the mapname.
&APPC RECEIVE... MDO=zzz
-* This receives the data into the MDO, and
-* automatically attaches any map received to the
-* MDO as well.

Sourcing Data

MDO data can be sourced from NCL tokens, many NCL input verbs or as a hard-coded
string. An MDO does not have to be attached to a map before data can be placed into it,
because MDOs and maps are separate entities. It is possible to attach a map to an MDO
before or after data has been placed into it.

Example: Sourcing Data

&ASSIGN MDO=ccc DATA=data

-* assign data into the MDO
&ASSIGN MDO=ccc MAP=mapname

-* attach a map to the MDO.

Note: After map connection, the &MDORC system variable should be checked to
ensure the connection was good. If Mapping Services detects a mismatch between the
map definition and the MDO data, &MDORC contains a non-zero value and subsequent
access to the MDO can produce name checks or type checks.

248 Network Control Language Programming Guide

Manipulate and Extract Data

Manipulate and Extract Data

Data in an MDO is manipulated using the &ASSIGN statement. There are two major
operand forms on the &ASSIGN statement; an MDO stem name, and a compound name.

Stem Name: MDO=vvv
Compound Name: MDO=aaa.bbb.ccc

The stem name is used to refer to the entire data portion of an MDO. An MDO does not
have to have a map attached to it to be referenced by its stem.

The compound name is used to refer to a structure within the MDO. A map must be
attached to the MDO for this type of reference, otherwise NCL will not be able to locate
the structure. (NCL cannot make sense of the data without a map.)

The &ASSIGN verb is useful when extracting individual components in an MDO into NCL
tokens.

Use a Map in NCL Processing

After a map is defined, it can be used to interpret the contents of MDOs in NCL.

The following example demonstrates how MDOs can be used for the encapsulation and
transmission of data in NCL.

Procedure A can receive messages from procedure B, and perform some desired action
on some of the data in the message. If the action is completed successfully, procedure A
will return the modified data to the initial sender (procedure B), with a message
indicating the operation was successful. If the action is not completed successfully,
procedure A will carry out some extra error processing and then return a message to the
sender indicating that the operation was unsuccessful.

The message data is mapped with a map that contains the following components:
ACTION

The action to be performed.

ASN.1 Type: GraphicString
DATA

The data on which to perform the action.

ASN.1 Type: OCTET STRING

Chapter 13: About Mapping Services 249

Use a Map in NCL Processing

ACTIONRESULT
The result of the action processing.

ASN.1 Type: ENUMERATED

Procedure A could be as follows:

.RECEIVELOOP
&INTREAD MDO=ACTIONPARMS -* Read the MDO from the sender
&ASSIGN VARS=SENDER FROM MDO=$INT.SOURCE.NCLID
-* Extract the senders NCLID
-* from the system MDO, $INT,
-* which is always set after an
-* &INTREAD operation, and is
-* mapped by the $MSG system map
&ASSIGN VARS=ACTION FROM MDO=ACTIONPARMS.ACTION
-* Extract the type of
-* action to be performed
&ASSIGN VARS=ACTIONDATA FROM MDO=ACTIONPARMS.DATA
-* Extract the data on which
-* to perform the action
-EXEC ACTPROC ACTION=S8ACTION ACTIONDATA=SACTIONDATA
-* Call proc to carry out
-* action
&IF SRETCODE EQ @ &THEN + -* Check return code from action
&D0
&ASSIGN MDO=ACTIONPARMS.DATA FROM VARS=ACTIONDATA
-* Set modified data in MDO
&ASSIGN MDO=ACTIONPARMS.ACTIONRESULT DATA=0K
-* Set result of action in MDO
SWRITE NCLID=&SENDER MDO=ACTIONPARMS
-* Return modified MDO to caller
&DOEND
&ELSE +
&D0
&GOSUB . ERRORPROC -* Do error processing
&ASSIGN MDO=ACTIONPARMS.ACTIONRESULT DATA=FAIL
-* Set results of action in MDO
SWRITE NCLID=&SENDER MDO=ACTIONPARMS
-* Return MDO to caller
&DOEND
&GOTO .RECEIVELOOP -* Loop to process next message

You can see that Mapping Services greatly simplifies the NCL required to process
complicated data formats. Often, externally-sourced data has a format which is
awkward to manage in NCL. In these situations, Mapping Services can prove to be a very
useful tool.

250 Network Control Language Programming Guide

Chapter 14: Using Mapping Services

This section contains the following topics:

Overview (see page 251)

MDO Behavior and NCL Processing Conventions (see page 252)
&ASSIGN Verb (see page 256)

Query MDO Components (see page 261)

NCL Reference, Type Checking, and Data Behavior (see page 265)
Type Conversion for MDO Assignment (see page 277)

Overview

Mapping Services uses the ISO standard Abstract Syntax Notation One, or ASN.1, as the
map definition language. The added sophistication that ASN.1 brings to the definition
phase leads to greatly improved application use of Mapped Data Objects (MDOs).

By understanding ASN.1 and how Mapping Services implements its concepts, significant
advantages in NCL processing of complex data structures can be realized. Using ASN.1 in
defining maps, all MDO components have a data type. Only data that is of the correct
type for the component can be assigned into a component. An attempt to place an
invalid value into an MDO component fails with a type check return code.

Two types of data are available:

m Simple—for simple data types, the assigned data must be of the correct format for
the component type. Otherwise, type check results.

m Constructed—for constructed data types, entire construction must be valid
according to the logical type (described by the ASN.1 type definition) and the
physical type (described by any Mapping Services implementation-specific
definitions). Otherwise, type check or data check results.

Chapter 14: Using Mapping Services 251

MDO Behavior and NCL Processing Conventions

MDO Behavior and NCL Processing Conventions

After using any verb that references an MDO, the MDO return code (& MDORC) and
feedback (&ZMDOFDBK) system variables are set. Therefore, check most verbs when
using operations involving MDOs.

Because &ASSIGN is used more frequently to process MDO data, an alternative exists. If
&CONTROL MDOCHK is in effect, any error situations that normally result in a return
code of 8 or higher cause the NCL procedure to terminate, but only if &ASSIGN sets the
return code or feedback variable.

If &FILE GET MDO=xxx sets &MDORC to greater than 8, the process will not terminate
if &CONTROL MDOCHK is in effect. However, if the default & CONTROL NOMDOCHK is in
effect, all error checks are reported through the return code and feedback values.

The possible values of the return code and feedback system variables and their
meanings are shown in the following table.

&ZMDORC &ZMDOFDBK Meaning
0 0 ok
4 0 null: optional component present but empty,

or null data assigned to optional component

1 null: optional component not present

2 null: mandatory component present but
empty, or null data assigned to mandatory
component

3 null: mandatory component not present

4 string was truncated (applies to FIX offset or

length components only)

8 0 type check: data is invalid for type

1 data check: data is invalid structurally -a
common cause is data too long or too short

12 0 name check: component not defined

1 name check: index position invalid or value is
out of range

252 Network Control Language Programming Guide

MDO Behavior and NCL Processing Conventions

&ZMDORC &ZMDOFDBK Meaning

16 0 map check: map not found
1 map check: map contains errors, load failed
2 map check: map/data mismatch

To minimize the use of these return codes it is necessary to understand the general
behavior of MDOs with NCL.

An &ZMDORC value of 0 means that the data referenced was of a valid type for the
component referenced. On assignment, the data is formatted and placed in the target
component, resulting in an &MDOFDBK value of 0.

An &ZMDORC value of 4 is returned when an MDO component has a null, or empty,
value (unless it was the NULL type in which case & MDORC is 0). Any component,
regardless of its type, can be set to a null value. & MDORC is also set to 4 when a string
type is truncated and an &MDOFDBK value of 4 is returned, but only if it is a
fixed-length component.

An &ZMDORC value of 8 is returned if &CONTROL NOMDOCHK is in effect, and the data
referenced does not conform to the type of the component referenced or cannot be
assigned for other reasons. In exceptional circumstances, a type check or data check can
result on a read intent operation. More usually, however, it occurs on an update intent
operation where the data being assigned is invalid for the data type and a type check
results. If on an update operation the function cannot be performed for other reasons,
due to insufficient available space in a component that cannot be further extended, a
data check results. In all such cases the operation fails, and the referenced MDO
component is unchanged.

An &ZMDORC value of 12 is returned under the following conditions:

m &CONTROL NOMDOCHK is in effect and the MDO is mapped but the specific
component referenced was not defined in the map

m The name is valid, but an index was used on a component that is not allowed to be
indexed

m The index exceeds the defined index range

An &ZMDORC value of 16 is returned if, on any verb, a map connection request fails.
&ZMDOFDBK indicates the reason that the map connection failed.

Other system variables available to interrogate error conditions are:
&ZMDOID

Contains the identifier of the last known MDO involved in the last operation.

Chapter 14: Using Mapping Services 253

MDO Behavior and NCL Processing Conventions

&ZMDOMAP
Contains the map name for &ZMDOID.
&ZMDONAME

Contains the fully qualified name of the MDO component involved in the last
operation.

&ZMDOCOMP

Contains the name of the component. The value is the last name segment of the
fully qualified name for the MDO component involved in the last operation, if
applicable.

&ZMDOTYPE
Contains the type of & MDOCOMP, if applicable.
&ZMDOTAG

Contains the tag value of the component involved in the last operation, if
applicable.

Input Operations on an MDO

A number of NCL verbs allow input operations on an entire MDO. These are:
= &APPC RECEIVE

= &ASSIGN

= &CNMREAD

= &DECODE
= &ENCODE
m &FILE GET
m &INTREAD
m &LOGREAD

m &MSGREAD

m &PPI RECEIVE

m &PPOREAD

m &VARTABLE GET

254 Network Control Language Programming Guide

MDO Behavior and NCL Processing Conventions

When the MDO is targeted for input the MAP operand is allowed to define the mapping
of the data object being accessed. The state of the MDO following any such input
operation is determined by a number of factors that apply generally to all verbs.
Together these considerations produce an MDO behavior which is predictable, as
follows.

m [f the verb return code indicates that the request was not satisfied, either due to
some error, or because no data satisfied the particular request (perhaps due to
timeout, or selection criteria or similar), the target MDO is deleted. Subsequent
reference to the MDO or its components is invalid, and will produce a name check
return code.

m [f the verb return code indicates that the request was satisfied, then the target
MDO always exists, even if it is null (or empty). If no map name was supplied on the
input operation, and no default map name applies, then the MDO is unmapped. If a
map name was supplied but either the map could not be found, was in error, or the
data did not conform to the map definition, then the map check return code is set
with a feedback indicating the nature of the error. If the map was not found, the
data is present in the MDO which is unmapped. Otherwise, if no errors are
encountered, the MDO will exist and is mapped according to the map name
implied.

After performing a successful input operation on an MDO, the & MDORC system
variable should always be checked to ensure that the outcome was good, and that the
MDO is still mapped. Failure to do so can cause the NCL procedure to be terminated if a
reference to an MDO component is made, the MDO is unmapped, and &CONTROL
MDOCHK is in effect.

However, once the MDO is bound to the map without error, its contents are guaranteed
valid by Mapping Services and there is usually no need to check the return codes for
every access to MDO components, but they are available if required.

Chapter 14: Using Mapping Services 255

&ASSIGN Verb

Output Operations from an MDO
A number of NCL verbs allow output operations from an entire MDO. These include the
following:
m &APPC SEND
m &ASSIGN
m & CNMALERT

m &CNMSEND
m &DECODE

= &ENCODE
m &EVENT

m &FILE PUT
m &PPI SEND

m &VARTABLE PUT
m &WRITE

Read exceptions from an MDO are rare, and are confined to a name check if an
undefined component is referenced, or a data check if the data does not conform to the
mapping rules. However, in some instances where the component definitions of fixed
fields overlap each other type checks on read are possible.

&ASSIGN Verb

The &ASSIGN verb provides the only access to and from individual components within
an MDO.

Note: For more information about the &ASSIGN verb, see the Network Control
Language Reference Guide.

Create and Delete MDOs

To create a mapped MDO using the &ASSIGN verb, issue one of the following
statements:

&SASSIGN MDO=mdo MAP=mapname [DATA=data]
&ASSIGN MDO=mdo MAP=mapname [FROM VARS=vars... 1]
To copy an MDO:

&ASSIGN MDO=mdo FROM MDO=sourcemdo

256 Network Control Language Programming Guide

&ASSIGN Verb

To create an unmapped MDO:

&ASSIGN MDO=mdo DATA=data

To delete an MDO entirely:

&ASSIGN MDO=mdo

Assignment of Data into an MDO

The &ASSIGN OPT=DATA option is the default and can be used to set MDO components
from:

m Another MDO component

m One or more NCL variables

m User-supplied data

When assigning into an MDO component of a simple type from NCL variables or

constant data, the input supplied must be in the valid external form for the component
type or a type check results.

When assigning into an MDO component of a simple type from another MDO
component the input selected must have a local form valid for the target component
type. If the types are different, type conversion takes place where possible. Otherwise, a
type check results.

When assigning into an MDO component that is a constructed type, the following
conditions must be satisfied:

m The data must be valid in its physical format according to the structuring rules for
the target component.

m Each embedded component must be in its valid local form.
If the conditions are not satisfied, a type check results.

Note: For more information about the external form and local form of data for each
type, see Managed Object Development Services Guide.

Chapter 14: Using Mapping Services 257

&ASSIGN Verb

Assign into/from a Single MDO Component

The following assign statements can be used to set the value of a single target MDO
component, which can be the entire MDO, from NCL variables or constant data:

&ASSIGN MDO=a.b.c DATA=xxx

&ASSIGN MDO=a.b.c FROM VARS=vars...

In either case the input string must be valid external form for the component or a type
check results.

When multiple NCL variables are specified as the source data, they are concatenated
together to form the input string. The exception to this is if the assignment is into an
entire MDO mapped by SNCL. In this case, a standard variable structure is built and
maintains the variable boundaries.

The following assign statement can be used to get the value of a single target MDO
component, which can be the entire MDO, into NCL variables:

&ASSIGN VARS=vars FROM MDO=a.b.c

In all cases, the result is a valid external form for the component unless a type check or
data check occurs.

When multiple NCL variables are specified as the target data, they are segmented
according to the maximum variable size (or specific segment sizes if supplied) from the
entire output string. The exception to this is if the assignment is from an entire MDO
mapped by SNCL. In this case, the NCL variables are updated according to the variable
boundaries within the MDO.

The following assign statement can be used to move the value of a single target MDO
component to another MDO component:

&ASSIGN MDO=a.b.c FROM MDO=x.y.z

In this case the assignment takes place using the normal local form for the component
(not the external form) and as usual unless the input is valid, a type check results.

258 Network Control Language Programming Guide

&ASSIGN Verb

Assign into/from Multiple MDO Components within a SEQUENCE or SET Type

When an MDO component is a structure defined with a type of SEQUENCE or SET, you
can assign into or from some or all of the components that comprise the structure by
name. This is a generic form of assign with the following possible options and syntax:

&ASSIGN MDO=a.b.*
{ GENERIC | ADD | REPLACE | UPDATE }
DATA=data

&ASSIGN MDO=a.b.*
FROM
VARS=vars*
{ GENERIC | ADD | REPLACE | UPDATE }

&ASSIGN MDO=a.b.*
{ GENERIC | ADD | REPLACE | UPDATE }
{ FROM | PRESENT IN | DEFINED IN }
MDO=x.y.*

&ASSIGN VARS=vars*
{ GENERIC | ADD | REPLACE | UPDATE }
{ FROM | PRESENT IN | DEFINED IN }
MDO=x.y.*

Note: The asterisk (*) must be in place of the last component name only.

In all cases:

m The multiple assignment proceeds as though a separate assignment was issued for
each component selected.

m The PRESENT_IN and DEFINED_IN keywords apply only to a source MDO, not a
target MDO.

m The GENERIC, ADD, REPLACE, and UPDATE keywords affect target MDO
components or NCL variables only.

For all options, when assigning data into an MDO, the process is driven by the
components defined within the map for the target MDO. Each component defined
within the parent structure is a target for an assign.

m |f the DATA keyword is used as the source, all target components are subject to
assignment of the same data value.

m [f the VARS keyword is used as the source, each target component name is used to
access a source NCL variable. The name of the variable is constructed by appending
the component name to the supplied VARS prefix.

m |f the MDO keyword is used as the source, each target component name is used to
access a source component. The name of the source component is constructed by
adding the component name as the last name segment in the generic source MDO
name.

Chapter 14: Using Mapping Services 259

&ASSIGN Verb

When selecting data for assignment from an MDO, the FROM keyword is used to select
only source components that have a data value that is not null. The PRESENT_IN
keyword is used to select from all source components that are present. For both FROM
and PRESENT_IN options, any component that is defined but not present is deemed to
be null. When the DDEFINED_IN keyword is used, all components defined in the target
map for the generic name level indicated take part in the operation, regardless of
whether any data exists. Components not defined are deemed to be null.

When assigning data from an MDO into NCL variables, the process is driven by the
components defined in the source MDO. Target NCL variable names are constructed by
appending selected component names to the supplied VARS prefix.

When the GENERIC keyword is used, any existing target NCL variables or MDO
components are first deleted, then each is assigned the value from the corresponding
source component. If no source data exists no assignment takes place.

When the ADD keyword is used, only those NCL variables not currently present, or MDO
components defined but not currently present in the target structure, take part in the
assignment process. That is, only new NCL variables or MDO components are added and
no existing ones are affected.

When the REPLACE keyword is used, only those NCL variables that are present, or MDO
components that are defined and are present in the target structure, take part in the
assignment process. That is, no addition takes place. Only existing NCL variables that
have new source data or existing MDO components that have new source data are
affected, but those variables that have no new source data are not affected.

When the UPDATE keyword is used, both addition and replacement take place, but
existing NCL variables or MDO components that have no new source data are
unaffected.

Assidn into/from Components within a SEQUENCE OF or SET OF Type

When an MDO component is a structure defined with a type of SEQUENCE OF or SET OF,
you can assign into or from some or all of the components that comprise the structure
by a generic index value. This form of assign uses a varying range, and the syntax is as
follows:

&ASSIGN { MDO=a.b.{*} | VARS=aaa*}
RANGE=(n,m)
{ DATA=data |
{ FROM { VARS=bbb* | MDO=x.y.{*} }
[RANGE=(p,q) 1} }

260 Network Control Language Programming Guide

Query MDO Components

Note: The asterisk in braces ({*}) must replace a SET OF or SEQUENCE OF index only. The
asterisk can appear once only anywhere within the MDO name referenced.

The target component names of the form a.b.{i}, where i = n up to m, take part in the
assignment from the corresponding source variable. The multiple assignments take
place as though a separate assighment was issued for each item within the SET OF or
SEQUENCE OF structure. The variable index can be the last part of the MDO name (as
shown in the previous example), or more name segments can follow (for example,
MDO=a.b.{*}.c).

Query MDO Components

Once an MDO is connected to a map, it is possible to query its structure (as present in
the MDO), or its definition (as defined in the map). The syntax used is part of an
&ASSIGN, where the results of the query must be placed into NCL variables.

&ASSIGN OPT={ NAMES |
TAGS |
TYPE |
LENGTH |
#ITEMS |
NAMEDVALUES |
VALIDVALUES }
VARS=vars. ..
{ PRESENT IN | DEFINED IN | MANDATORY }
MDO=mdo_name

When the PRESENT_IN keyword is specified the information is returned only for those
components that are found to be present within the MDO. When the DEFINED_IN
keyword is used, the information is returned for all those components defined within
the connected map, regardless of their presence or absence in the MDO itself. If the
MANDATORY keyword is used then only those defined components that are mandatory
are selected.

Chapter 14: Using Mapping Services 261

Query MDO Components

The various options and their meanings are as follows:

OPT=NAMES (or OPT=NAME)

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and returns the
component names associated with the target mdo_name as follows:

If only an MDO stem name is specified (for example, MDO=abc), then the name
of the connected map is returned as the defined component name, but only if
the MDO exists.

If mdo_name is a compound name (for example, MDO=a.b.c), the name of the
last component in the name list is returned (that is, c), depending upon the
PRESENT_IN, DEFINED_IN, or MANDATORY option.

If the mdo_name is a compound generic name (for example, MDO=a.b.c.*),
multiple names can be returned, where each name returned is a
subcomponent of the nominated component. For example, for MDO=a.b.c.*,
all components defined within “c” are returned. This format is useful in
determining the names of all components that are either present in, or defined
within, a given structure. It is also useful in determining which component is
within a structure that is a CHOICE type. However, for SEQUENCE OF and SET
OF items, it is possible to have null named components because the SEQUENCE
or SET OF items are processed by index value only.

A compound variable indexed name (for example, MDO=a.b{*}.c, or
MDO=a.b.{*}) is not supported on this query.

OPT=TAGS

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and returns the
component tags used by Mapping Services associated with the target mdo_name.
Component selection is as for OPT=NAMES.

OPT=TYPE

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and returns the
component type defined within the map and associated with the target mdo_name.
Component selection is as for OPT=NAMES.

OPT=LENGTH

Applies only when PRESENT_IN is specified and returns the local form data length
within the MDO of the target components. Component selection is as for
OPT=NAMES.

262 Network Control Language Programming Guide

Query MDO Components

OPT=H#HITEMS

Applies only when PRESENT_IN is specified, and returns the number of items within
a nominated component as follows:

m |f mdo_name is a stem name (for example, MDO=stem) or a compound name
(for example, MDO=a.b.c), then a count of 0 is returned if the component does
not exist. Otherwise, it is 1.

m |f mdo_name is a compound generic name (for example, MDO=a.b.c.*), a count
of 0 is returned if the nominated component a.b.c is one of the following:

— Does not exist
- Exists but is empty
— Exists but is not constructed

Otherwise, it provides the number of components present within the structure
a.b.c.

m |f mdo_name is a compound variable indexed name (for example, MDO=a.b{*}
or MDO=a.b.{*}), the number of components present in the SET OF or
SEQUENCE OF structure is returned. If the structure does not exist or is empty,
0 is returned. The variable index must be in the last name segment.

OPT=NAMEDVALUES

Applies to components that have named values associated with their type. These
types are limited to BIT STRING, INTEGER, and ENUMERATED. Other types return
null results. No generic indexes or generic names are allowed on this option.

If DEFINED_IN is specified a list of the named values defined in the map for the
specified component is returned.

PRESENT_IN is invalid for OPT=NAMEDVALUES.
OPT=VALIDVALUES

Applies to string types that can have their character set constrained to particular
characters or strings. This option only works with the defined keyword. If a string
type (for example, GraphicString) has been constrained to a particular set of
characters or strings, then this option returns the valid characters or strings in the
target variable. If there are no constraints then no values are returned on
assignment. The &ZVARCNT system variable is set to indicate the number of target
variables set by the assignment.

Chapter 14: Using Mapping Services 263

Query MDO Components

Example 1: Query MDO Components

The following component is defined:
datax GraphicString ("ABCD" | "xyz" | "QQQ")
You use the following statement to query the component:

&ASSIGN VARS=X* OPT=VALIDVALUES DEFINED MDO=... datax

The following variables are returned:

&X1=ABCD
&X2=xyz
&X3=000

Example 2: Query MDO Components

The following component is defined:
datax GraphicString (FROM ("A"c | "C" | "Y"C | "X"))
You use the following statement to query the component:

&ASSIGN VARS=X* OPT=VALIDVALUES DEFINED MDO=... datax

The following variables are returned:

&X1=A
&X2=C
&X3=Y
&X4=X

264 Network Control Language Programming Guide

NCL Reference, Type Checking, and Data Behavior

NCL Reference, Type Checking, and Data Behavior

When referencing an MDO in an NCL procedure, Mapping Services validates that the
named component is defined (according to the name hierarchy supplied), and that the
data within the component is valid, according to its underlying ASN.1 type. Each ASN.1
type can contain only certain valid values. Mapping Services checks the data value when
retrieving data from, or assigning data into, an MDO. An operation attempting to
retrieve or assign invalid data is rejected by Mapping Services with a feedback indicating
type check.

In order to perform type checking Mapping Services first determines the base ASN.1
type of the component. Where a component is of a user defined type, the base ASN.1
type of the user defined type is inherited by the component. It is possible to have a
number of levels of indirection between a user defined type and its base ASN.1 type.

The valid NCL values allowed for each of the base ASN.1 types is termed the external
form. In addition to the set of valid values for each type, a specific component can be
further constrained in what values are acceptable. Such constraints can be the result of
either ASN.1 definitions or compiler directives. Finally, when data representing a valid
NCL value is accepted for a component update, it is subject to a transformation from
external form to local form, which is the MDO internal representation of data. This
process can carry with it further constraints.

The valid external form values, and the behavior of data managed by Mapping Services,
is described for each type in the following sections.

Notes:

m |n the following descriptions, all string types that are defined as fixed (using the
--<FIX(n)>-- directive) are subject to padding and truncation, without any indication
in the return codes.

® Any types constrained by the SIZE parameter are not subject to padding or
truncation. The data supplied must be within the SIZE constraints specified, or a
type check results.

Chapter 14: Using Mapping Services 265

NCL Reference, Type Checking, and Data Behavior

BOOLEAN Type

INTEGER Type

The BOOLEAN type is used to represent a value of true or false only.
External Form - Input

The local character strings TRUE and FALSE (not case sensitive) are accepted, while
the digit 0 is interpreted as false, and the digit 1 is true.

External Form - Output
The digit O (false) or 1 (true) is always returned.
Local Form and Behavior

Internally, Mapping Services stores a value of X'00' for false, and X'01' for true (and
accepts any value other than X'00' as true).

For an input operation, where the component is variable length, its length is always
set to 1. Where the component length is fixed and is greater than 1, the value
occupies the first byte only (that is, it is left-aligned) and the remainder of the
component's data is set to zeros.

For an output operation, where the component is located and has a length greater
than 1, only the first byte is inspected as the value.

The INTEGER type is used to contain any positive or negative whole numbers in the
range -2,147,483,648 to 2,147,483,647 (that is, it is a signed 32 bit number).

External Form - Input

Valid input consists of a string of up to 15 digits optionally preceded by a plus sign
(+) or minus sign (-) providing the sign (positive or negative) of the value (positive if
omitted). All other characters must be valid digits (that is, 0 through 9).
Alternatively, if the map definition included named values for this component, the
symbolic name of the named value can be supplied as external form input.

External Form - Output

Output consists of a string of one or more local characters. If the integer value is
negative the first character is a minus sign (-), otherwise the sign is omitted. All
other characters are numeric characters. Leading zeroes are stripped.

Local Form and Behavior
Internally, Mapping Services can store integers in one of three formats:
binary

Can be up to 4 bytes in length. If the length is not fixed then the value is kept in
the smallest number of bytes possible. If the length is fixed then the value is
right-aligned and sign extended to the left.

266 Network Control Language Programming Guide

NCL Reference, Type Checking, and Data Behavior

packed

Can be up to 8 bytes in length. The integer value is converted to the packed
decimal equivalent. If the length is not fixed then the value is kept in the
smallest number of bytes possible. If the length is fixed then the value is
right-aligned and zero padded to the left.

zoned

Can be up to 15 bytes in length. The integer value is converted to the zoned
decimal equivalent. If the length is not fixed then the value is kept in the
smallest number of bytes possible. If the length is fixed then the value is right
aligned and zero padded to the left.

For any format, if a value exceeds that which can be stored without loss of
significance a type check results. If a named value is input then the map definition is
used to determine the actual integer value.

BIT STRING Type

The BIT STRING type is used to contain any data where individual bit values might have
meaning. Mapping Services supports two types of BIT STRING access, standard and
boolean.

Standard BIT STRING Access

Standard BIT STRING access deals with the string as a whole, allowing manipulation of
the entire component through a single operation, as for most other types.

External Form - Input

Valid external form can be a string of one or more digits, each a 0 or 1. However,
where named values are defined for the BIT STRING type, a list of named values,
each separated by a plus sign (+) or a minus sign (-), is an acceptable alternative. A
named value preceded by a plus sign indicates that the named bit value should be
set to true (the bit is set to 1), and a minus sign indicates that the value should be
set to false (the bit is set to 0).

External Form - Output

The output format depends upon whether or not named values are defined for the
BIT STRING type. Where no named values are defined the output consists of a string
of zero or more (always a multiple of 8) digits, each a 0 or 1. Where one or more
named values do exist the output is a character string comprised of every named
value corresponding to a set bit preceded by a plus sign meaning the value is true
(the named bit is 1). The names of bits which are not set are not returned.

Chapter 14: Using Mapping Services 267

NCL Reference, Type Checking, and Data Behavior

Local Form and Behavior

When a string if 0's and 1's are supplied as input, each digit in the input sequence is
treated (left to right) as the value of the corresponding bit in that position of the
local form data. If the number of bits supplied is not a multiple of 8, then trailing
bits are set to zero and padded to a byte boundary. If the component has a fixed
length exceeding that of the input string the value is left-aligned, and all
unreferenced bytes are set to X'00'. If the component cannot contain the number of
input bytes supplied, a data check results.

When a list of named values, each preceded by a plus sign or a minus sign, is
supplied as input only the named bits take part in the operation. Each named bit
preceded by a plus sign is set to 1 (true), while each bit preceded by a minus sign is
set to O (false). All other bits in the BIT STRING are unaffected by the input
operation.

When fetching the value of a BIT STRING, a named value list is returned if any
named values are defined for the type, else a string of 0's and 1's is returned
corresponding to the BIT STRING values. When named values are defined, all other
bits in the BIT STRING are ignored on output regardless of their value.

Boolean BIT STRING Access

Boolean BIT STRING access deals with individual bit level access and operates only
through named values. This access is recommended because program access to bits is
only via their symbolic named values, thus removing from NCL the need to know relative
bit positions.

For Boolean BIT STRING access to be invoked, the named value of a bit is provided by
NCL as an additional name segment after the BIT STRING component name. Since the
BIT STRING type is primitive, the additional name in the name hierarchy is understood
to be a named value, and is treated as a BOOLEAN type. No matter where the named
value is in the BIT STRING the value of the bit is always 0 or 1, as for a BOOLEAN type.

External Form - Input

The local character strings TRUE and FALSE (not case sensitive) are accepted, while
the digit 0 is interpreted as false, and the digit 1 is true. Null is a type check in this
case.

External Form - Output
The digit O (false) or 1 (true) is always returned.
Local Form and Behavior

The component name plus the named value is treated as a reference to a specific
bit (the bit position within the component being defined by the named value), and
that bit is set to 0 or 1 depending upon the input. No other bits in the BIT STRING
component are affected. If the component is extended to accommodate the input
then all other bits are set to 0.

268 Network Control Language Programming Guide

NCL Reference, Type Checking, and Data Behavior

OCTET STRING Type

HEX STRING Type

NULL Type

The OCTET STRING type is used to contain any data where no formatting is required.
External Form - Input
Any data.
External Form - Output
Data is returned unchanged.
Local Form and Behavior

Data is stored as is. If the component has a fixed length exceeding that of the input
string, the data is left-aligned, and all unreferenced bytes are set to X'00'. If the
component cannot contain the number of input bytes supplied, a data check
results.

The HEX STRING type is a Mapping Services extension to ASN.1, but is processed as a
base ASN.1 type. It is identical in all respects to the ASN.1 OCTET STRING type except for
its external form representation.

External Form - Input

Valid input consists of a string of one or more local characters, each selected from
the set 0123456789ABCDEF. Each pair of hexadecimal characters represents a
single byte value. If an odd number of characters is supplied the string is treated as
though padded on the left with a single zero.

External Form - Output

Data is returned in hexadecimal characters, as for input. An even number of
characters is always returned.

Local Form and Behavior

Each two hexadecimal characters of input represents the actual data to be stored in
a single byte. Otherwise behavior is as for OCTET STRING.

The NULL type is used where data in a component either must be null (that is, empty),
or not accessible.

External Form - Input

The only valid input is a null value.

Chapter 14: Using Mapping Services 269

NCL Reference, Type Checking, and Data Behavior

External Form - Output
A null value is always returned.
Local Form and Behavior

The component can be created by an input operation, but no contents are
modified. If it already exists no data is modified.

OBJECT IDENTIFIER Type

The OBJECT IDENTIFIER type is used to contain object identifier values that uniquely
identify registered objects.

External Form - Input

Any sequence of characters (from the set 0123456789.) that does not begin or end
with a period (.), contains no consecutive periods, but contains at least one period.
Each sequence of decimal digits punctuated by a period represents a sub-identifier
in the series of sub-identifiers that comprise an object identifier value.

External Form - Output
As for input.

Local Form and Behavior

The data format is as supplied for input, however truncation is not allowed. If the
component is fixed length then it must be able to contain the input string, and if
necessary will be padded with blanks, otherwise a data check results.

ObjectDescriptor Type

The ObjectDescriptor type is used to contain object descriptions for registered objects.
External Form - Input
As supplied.
External Form - Output
As supplied.
Local Form and Behavior

The data format is as supplied for input. Normal string padding and truncation rules
apply.

270 Network Control Language Programming Guide

NCL Reference, Type Checking, and Data Behavior

REAL Type

The REAL type is used to contain floating-point, or scientific notation, numbers in the
range 107 to 10”.

External Form - Input

+or-
(Optional) Plus or minus sign.

nnnnnn
(Optional) Any number of digits.

period (.)
(Optional) Decimal place.

mmmmmm
(Optional) Any number of digits.

Esxx
(Optional) Signed exponent power of 10.
Range: -99 to 99

Either, or both, nnnnnn and mmmmmm are present, and the resulting REAL number

is within the allowable range.

Examples: External Form - Input

14578923455096765442839404
-123.567

.555

.0023E-23

3.142776589E+66

Chapter 14: Using Mapping Services 271

NCL Reference, Type Checking, and Data Behavior

External Form - Output
Normalized decimal real number.
+or-

Plus or minus sign of the value.

Decimal place indicator.
nnnnnn

15 significant fraction digits.
Esxx

Signed exponent power of 10.

Examples: External Form - Output

+.314277658900000E- 10
-.123456789000000E+52

Local Form and Behavior

For IBM mainframes, local form is a 64-bit long floating-point value, and the
component must be at least 8 bytes in length. Truncation is not allowed, but if the
component has a fixed length greater than 8 bytes the value is left-aligned and
padded on the right with zero bytes.

ENUMERATED Type

The ENUMERATED type is used to constrain a component to a defined set of values.
Each defined value is named using a name identifier similar to a component name.
Associated with each name is a unique integer value (which can be signed), for example:

Color ::=ENUMERATED { red(0),blue(1),yellow(2),
green(3),black(7) }

External Form—Input

The external form must be one of the names listed in the ENUMERATED type. The
enumerated values are not allowed (that is, red is valid, 0 is not).

External Form—Output
Same as input.
Local Form and Behavior

Internally, the ENUMERATED value is kept in the same manner, and is subject to the
same local form constraints, as an INTEGER of the binary local form.

272 Network Control Language Programming Guide

NCL Reference, Type Checking, and Data Behavior

NumericString Type

The NumericString is a subset of GeneralString which comprises:
® 0to 9 Numeric characters
m () Space or blank character
External Form - Input
Any string of valid characters, as described.
External Form - Output
Same as input.
Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation rules
apply.

PrintableString Type

The PrintableString is a subset of GeneralString which comprises:
m atoz(lowercase alphabetic characters)
m AtoZ(uppercase alphabetic characters)
m 0to9 (numeric characters)
m () (the space, or blank character)
m '()+,-./:=7(special characters)
External Form - Input

Any string of valid characters, as described.
External Form - Output

Same as input.
Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation rules
apply.

Chapter 14: Using Mapping Services 273

NCL Reference, Type Checking, and Data Behavior

TeletexString Type

Not used in NCL.
External Form - Input
As supplied.
External Form - Output
As supplied.
Local Form and Behavior

As for OCTET STRING.

VideotexString Type

Not used in NCL.
External Form - Input
As supplied.
External Form - Output
As supplied.
Local Form and Behavior

As for OCTET STRING.

IA5String Type

Transparent general character set. (VisibleString plus control characters).
External Form - Input
As supplied.
External Form - Output
As supplied.
Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation rules
apply.

274 Network Control Language Programming Guide

NCL Reference, Type Checking, and Data Behavior

UTCTime Type

Date and time, as Universal Coordinated Time (year without century numbers), in the
format:

YYMMDDHHMMI(SS]Z
GMT date and time (to minutes or seconds); Z indicates GMT time
YYMMDDHHMMI[SS]sHHMM

Local date and time (to minutes or seconds); with signed zone offset from GMT
time (s=+or-)

External Form - Input

Any valid input, as described.
External Form - Output

Any valid data, as described.
Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length then a short
input string will be padded with blanks. Truncation is not allowed.

GeneralizedTime Type

Date and time, as GeneralizedTime (year includes century numbers), in the format:

YYYYMMDDHH[MM[SS]1[.f]Z
GMT date and time (to hours, minutes or seconds); with optional fractional time
units to any significance (hours, minutes or seconds); Z indicates GMT time
YYYYMMDDHH[MM[SS]][. f] [sHHMM]

Local date and time (to hours, minutes or seconds); with optional fractional time
units to any significance (hours, minutes or seconds); with signed zone offset from
GMT time (s =+or -)

External Form - Input

Any valid input, as described.
External Form - Output

Any valid data, as described.
Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation rules
apply.

Chapter 14: Using Mapping Services 275

NCL Reference, Type Checking, and Data Behavior

GraphicString Type

Transparent character set of graphic characters only.
External Form - Input
As supplied.
External Form - Output
As supplied.
Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation rules
apply.

VisibleString Type

Transparent character set of graphic characters only.
External Form - Input
As supplied.
External Form - Output
As supplied.
Local Form

On input data is stored as supplied. Normal string padding and truncation rules
apply.

GeneralString Type

Transparent character set of both graphic and control characters.
External Form - Input
As supplied.
External Form - Output
As supplied.
Local Form

On input data is stored as supplied. Normal string padding and truncation rules
apply.

276 Network Control Language Programming Guide

Type Conversion for MDO Assignment

Type Conversion for MDO Assignment

Normally, when assigning data from one MDO component to another, the type of each
component is identical so that data can be moved unchanged. However, if the target
component is not of the same type as the source component type conversion is
automatically performed where possible. Hence the result of the following assignment
depends on the type of a.b.c and x.y.z:

&ASSIGN MDO=a.b.c FROM MDO=x.y.z

When assigning into an MDO from external data, or from NCL variables the data type of
the input can be nominated for the MDO assignment. If the MDO component is not of
this type then type conversion is performed, for example:

&ASSIGN MDO=a.b.c TYPE=INTEGER FROM DATA=123

&ASSIGN MDO=a.b.c TYPE=HEXSTRING FROM VARS=HEXDATA

Similarly, when assigning data from an MDO into NCL variables, the data type of the
output can be nominated for the MDO assignment, for example:

&ASSIGN VARS=ABC FROM MDO=a.b.c TYPE=BITSTRING

Valid type operands are:

BOOLEAN or BOOL

INTEGER or INT

BITSTRING or BIT

OCTETSTRING or OCTET

NULL

OBIJECTIDENTIFIER or OBJECTID or OID

OBJECTDESCRIPTOR or OBJECTDESC or ODESC
REAL

HEXSTRING or HEX

NUMERICSTRING or NUMERICSTR or NUMSTR
PRINTABLESTRING or PRINTABLESTR or PRTSTR
IASSTRING or IA5STR

UTCTIME or UTC

GENERALIZEDTIME or GTIME

GRAPHICSTRING or GRAPHICSTR or GRAPHSTR

Chapter 14: Using Mapping Services 277

Type Conversion for MDO Assignment

m VISIBLESTRING or VISIBLESTR or VISSTR

m GENERALSTRING or GENERALSTR or GSTR

Type conversion is attempted regardless of the source and target types. Thus,
depending on the actual value of the source data and target type, some assignments
produce valid results, while others produce a type check.

The ASN.1 types can be classified into three groups:

m Graphic-oriented types:

OBJECT IDENTIFIER, OBJECT DESCRIPTOR, UTCTime, GeneralizedTime,
NumericString, PrintableString, TelexString, VideotexString, IA5String,GraphicString,
VisibleString, and GeneralString.

m Numeric-oriented types:
BOOLEAN, INTEGER, BIT STRING, REAL, and ENUMERATED.
m Transparent types:
OCTET STRING, HEX STRING, SEQUENCE (OF), SET (OF), and ANY.

The following table shows the general rule for type conversion. The table lists the
formats of the source data value used for assignment into the target type.

SOURCE\\TARGET Graphic- Numeric- Transparent
oriented oriented

Graphic-oriented External form External form Local form

Numeric-oriented External form Local form Local form

Transparent Local form Local form Local form

Note: For more information about the acceptable external and local form values for
each type, see the Network Control Language Reference Guide.

278 Network Control Language Programming Guide

Type Conversion for MDO Assignment

Graphic-oriented Source Type

Where the target is one of the graphic- or numeric- oriented types, the external form
output of the source data is assigned to the target as though it was external input. The
following is an exception: Conversion between UTCTime and GeneralizedTime results in
the insertion/stripping of the century value (insert 19 if yy greater than 50, otherwise
insert 20).

Where the target is one of the transparent types, the local form of the source data is
assigned to the target unchanged; that is, the local form of the source data becomes the
local form of the target. However, the external outputs of the source and target can
differ depending on their respective types. In either case, a type check results if the data
is invalid for the source or target types.

Example: Graphic-oriented Source Type

&ASSIGN MDO=a.b.utc TYPE=GTIME DATA=19921012145000+1000

-* target type is UTCTime
&ASSIGN VARS=RESULT FROM MDO=a.b.utc

-* returns &RESULT = 921012145000+1000
&ASSIGN MDO=a.b.num DATA=0123

-* source type is NumericString

&ASSIGN VARS=RESULT FROM MDO=a.b.num TYPE=REAL

-* output type is REAL

-* returns S&RESULT = +.123000000000000E+03
&ASSIGN MDO=a.b.graph DATA=ABCD

-* source type is GraphicString
&ASSIGN MDO=a.b.hex FROM MDO=a.b.graph

-* target type is HEX STRING
&ASSIGN VARS=RESULT FROM MDO=a.b.hex

-* returns SRESULT = C1C2C3C4

Chapter 14: Using Mapping Services 279

Type Conversion for MDO Assignment

Numeric-oriented Source Types

Where the target is one of the numeric-oriented or transparent types, the local form of
the source data is converted to the local form of the target. The source and target local
form values are equal in most cases, although their external form output can differ
depending on their respective types. The following, however are exceptions:

m [f the source type is REAL and the target type is either BOOLEAN, INTEGER or
ENUMERATED, then floating point integer value conversion (with rounding) is
performed on the local form of the source data. Similarly, integer to floating point
conversion is performed if the process is reversed.

m Conversion of local form source data to a BOOLEAN type target, results in X'00'
(FALSE) if the source is non-zero. Otherwise, the target local form is converted to
X'01' (TRUE).

Where the target is one of the graphic-oriented types, the external form output of the
source data is assigned to the target as though it was external input.

In either case a type check results if the data is invalid for the source or target types.

Example: Numeric-oriented Source Types

&ASSIGN MDO=a.b.int TYPE=REAL DATA=99.99

-* target type is INTEGER
&ASSIGN VARS=RESULT FROM MDO=a.b.int

-* returns &RESULT = 100 (value rounded)
&ASSIGN MDO=a.b.bool DATA=TRUE

-* source type is BOOLEAN
&ASSIGN VARS=RESULT FROM MDO=a.b.bool TYPE=HEX

-* output type is HEX STRING

-* returns &RESULT = 01 (that is, TRUE)
&ASSIGN MDO=a.b.bit DATA=11101

-* source type is BIT STRING
&ASSIGN MDO=a.b.num FROM a.b.bit

-* target type is NumericString
&ASSIGN VARS=RESULT FROM MDO=a.b.num

-* returns &RESULT = 11101000

Transparent Source Types

Regardless of the target type, the local form of the source data is assigned to the target
unchanged, that is, the local form of the source data becomes the local form of the
target.

An exception is that the conversion of local form source data to a BOOLEAN typed target
results in local form X'00' (FALSE) if the source is non-zero. Otherwise, the target local
form is converted to X'01' (TRUE).

280 Network Control Language Programming Guide

Type Conversion for MDO Assignment

The external outputs of the source and target values can differ, depending on their
respective types.

A type check results if the data is invalid for the source or target types.

Example:Transparent Source Types

&ASSIGN MDO=a.b.prt TYPE=OCTET DATA=AB.C

-* target type is PrintableString
&ASSIGN VARS=RESULT FROM MDO=a.b.prt

-* returns &RESULT = AB.C
&ASSIGN MDO=a.b.hex DATA=FF

-* source type is HEX STRING
&ASSIGN VARS=RESULT FROM MDO=a.b.hex TYPE=INT

-* target type is INTEGER

-* returns &RESULT = -1
&ASSIGN MDO=a.b.any DATA=DEFG

-* source type is ANY
&ASSIGN MDO=a.b.hex FROM MDO=a.b.any

-* target type is HEX STRING
&ASSIGN VARS=RESULT FROM MDO=a.b.hex

-* returns &RESULT = C4C5C6C7

Chapter 14: Using Mapping Services 281

Chapter 15: NDB Concepts

Note: Familiarity with standard UDBs is assumed, including the use of the &FILE verbs,
and the UDBCTL command.

This section contains the following topics:

What Is an NDB? (see page 284)

NDB Structure (see page 287)

Record ID (see page 288)

Alerts for VSAM Monitoring (see page 289)

NDB Data Formats (see page 290)

Null Values and Null Fields (see page 291)

NDB Transaction Management: Database Protection (see page 293)
NDB Journaling (see page 294)

How to Respond to an Alert for File Size or File Full (see page 295)
Fix a Corrupted NDB (see page 295)

Chapter 15: NDB Concepts 283

What Is an NDB?

What Is an NDB?

NDBs let NCL programmers define, create, update, and search a database based on a
collection of user-defined fields. NDBs support information storage and retrieval
through the CA NetMaster and SOLVE functions. Your product provides this enhanced
database manipulation facility for NCL procedures.

For example, a SHOW NDB=ALL command typically shows up to five NDBs, depending
on the product.

This facility allows data to be stored, to be retrieved or updated later, in a formatted
database known as a NDB. The NDB format is more powerful than standard VSAM data
sets.

Note: In this guide, the term database manager refers to the assembler code that
controls NDBs. There is a database manager for each active NDB.

An NDB is a formatted VSAM key-sequenced data set (KSDS). It should be accessed only
by using the & NDB verbs. An NDB supports the following:

m Multiple keys, without any VSAM alternate indices

m Logical record size not limited by the defined VSAM record size

m Data access by named field, not relative field position in a record (as in a UDB)

m Transaction integrity, guaranteeing a non-corruptible file

m Multiple users, without VSAM string limitations

m Different data types, including character, numeric, floating point, hexadecimal, and
date format data. The Database Manager prevents data that is not in the defined
format and invalid data, from being stored (for example, the value ABC could not be
stored in a field defined as numeric).

m An extremely powerful search capability, that makes full use of keys wherever
possible, but does not require any keying of the search arguments.

m Null field support, which allows multiple record types to co-exist in a single NDB.

m Forward recovery facilities, minimizing the risk of data loss.

284 Network Control Language Programming Guide

What Is an NDB?

Work with NDBs

Uses of NDBs

You can use NDB commands to start, stop, reset, and lock (for example to prevent
access while running a backup), an NDB. For more information, see the Online Help.

You can also use NCL verbs to insert or delete field definitions, add, delete, update and
retrieve records, and to search an NDB for all records that match a supplied set of
criteria. These verbs also allow access to the database and field level definitions, making
it easy to provide utility procedures that need only be told the name of the NDB to be
accessed.

An NDB can be used in any application where a flexible data storage mechanism is
required. Applications that have complex retrieval needs are especially suited to NDBs.
The ease of access of data makes such things as selection list scrolling very easy to
perform.

NDBs are not suited to applications that have a large amount of high-speed record
addition, update, or deletion.

Differences Between NDBs and UDBs

Both NDBs and UDBs are always VSAM data sets. An NDB is always a VSAM KSDS,
whereas a UDB can be either a KSDS or an ESDS (a non-keyed VSAM data set).

The UDBCTL command is used to open a VSAM data set for access by the Virtual File
Services (VFS). Thus, although an NDB should not be used as a UDB, the UDBCTL

command is still used to open and close it.

Important! Do not access an NDB using the &FILE verbs, as if it were a UDB. If any
access is done in this way, the NDB can be corrupted.

The following table summarizes the differences between UDBs and NDBS:

uDB NDB

Can be a VSAM KSDS or ESDS. Always a VSAM KSDS.

If KSDS, key length can be from 1 to 255.

Key length must be from 16 to 255.

VSAM maximum data length can be any
valid value.

VSAM maximum data length has a
minimum value restriction

Data is built or accessed by relative
position in a record.

Data is accessed by field name.

Chapter 15: NDB Concepts 285

What Is an NDB?

ubDB

NDB

Record length is limited by either the
VSAM record length or the maximum NCL
statement length after substitution.

Record length is independent of the VSAM
record length or NCL statement length.
The length is logically limited by the
restriction of the 32 KB named fields.

Only one, unique, sequence key is
provided, unless VSAM alternate indexes
are used.

There is no requirement for any key. There
can be any number of keys, and they need
not be unique. There can, optionally, be a
unique sequence key.

Multiple record structures to support
multiple keying, and so on. Have no
update integrity. A system failure can
logically or physically corrupt the
database.

Internal update journaling guarantees
integrity of the multiple VSAM record
structures used to support the NDB
features.

Concurrent access can result in VSAM
string waits or lockouts.

Concurrent access has no restrictions.

Complex searching is slow, as the logic
must be implemented in NCL.

Complex searching runs at assembler
speed. Keys are used whenever possible.

Multiple positioning (for sequential
retrieval) by one NCL procedure is not
possible.

An NCL procedure can have any number of
simultaneous positions in an NDB.

UDBs are accessed using the &FILEOPEN
verb. The first &FILE OPEN for a given
UDB performs a logical open for the NCL
process. Because the &FILE GET and
similar verbs have no way of specifying
the UDB they refer to, the last executed
&FILE OPEN statement sets the UDB for
these statements. Thus, &FILE OPEN has
a double meaning.

NDBs are accessed using the &NDBOPEN
verb. Each NDB accessed must be opened
by an &NDBOPEN statement. The other
&NDBxxx verbs allow specification of the
database name and there is no need for
repeated &FILE OPEN-like use of the
&NDBOPEN verb.

Data in a UDB has no associated type. No
validity checking is performed on the
stored data.

Data in an NDB has a type. Invalid data (for
example, nonnumeric for a numeric field)
cannot be stored.

When an NDB is active, VFS prevents any access to it as a UDB. For example, if an
&FILEID statement refers to an active NDB, it causes the NCL procedure to terminate

with an error message.

Similarly, if an NDB is being accessed as a UDB, it cannot be accessed by NDB commands

or &NDB statements.

286 Network Control Language Programming Guide

NDB Structure

NDB Types

NDB Structure

Control Record

The RAMDB (Automation Database File) and RSDB (Network Model File) are stable NDBs
that rarely require attention; however, they should be backed up periodically to secure
changes. For example, changes to resource definitions and Automation Services
processes are stored in the RAMDB.

The Alert History File (SALERTH), File Transfer Event Database (EVNTDB), and IPLOG
Event History File (IPLOG) are used to store data cumulatively for searching, which is
why they have user-defined parameters such as the number of days to keep data.

The internal structure of an NDB is described in this section. The records are described
in ascending VSAM key sequence.

The first record (key is always all binary 0) in an NDB is a control record. It identifies this
data set as an NDB, and contains other control information (for example, the number of
defined fields and the number of records). This record is inserted when the NDB CREATE
command formats an NDB. It is updated by other NDB commands and NCL statements.
It also contains the domain ID (JCL parameter NMD ID) and NDB name. These are used
to prevent concurrent update access by more than one region.

Journal Control Record

This record, also inserted when the NDB is formatted, is used to manage the NDB
transaction journal (see page 293).

Journal Data Records

These records are used to journal update activity, to allow update retry after a system
failure. There are n of these records, the number being determined either by the value
of the NDBLOGSZ SYSPARM when the NDB CREATE command was issued for the NDB, or
by the LOGSIZE parameter on the NDB CREATE command.

Field Definition Records

These records, one for each field defined on the database, contain information about
the fields (for example, the field name, data format, and key options).

Chapter 15: NDB Concepts 287

Record ID

Key Statistics Records

These records, one for each field, contain key statistics information collected during an
NDB ALTER BLDX or an NDB START KEYSTATS run.

Key Records

For fields defined as keyed (except a sequence key), these records contain the key
values, and, for each key value, a list of the record IDs of records containing that value.

RID-Sequence Key Records

For NDBs defined with a sequence key, these records act as a link record, keyed by
record ID, and contain the sequence key value of the record.

Data Records

These records hold the actual data for each record stored in the NDB. They are keyed by
record ID, or by sequence key value (if a sequence key is defined for this NDB). If a given
logical record has more data than will fit into a single VSAM record, it is automatically
spanned across multiple records.

Record ID

Each record in an NDB is assigned a Record ID (RID), which is unique identifier of a
logical record in an NDB.

Note: All dynamic data NDBs do not require reorganization to reclaim free space.

The RID is assigned by the Database Manager, when a record is added to an NDB. The
RID is a number, from 1 to 1 billion (actually, 2**30 - 1), that uniquely identifies this
record in the NDB. All internal access to a record is made by providing the RID. The RID
assigned to a record never changes, and (currently) is not reassigned to another record
when a record is deleted.

Note: The RID cannot be assigned by the user. The assigned value is made available to
the NCL process that inserts a record via the &NDBRID system variable.

288 Network Control Language Programming Guide

Alerts for VSAM Monitoring

The RID is necessary, as an NDB does not need to have a sequence key (or any key, for
that matter), and a way of uniquely identifying a record is always required.

Whenever a record is retrieved by an &NDBGET NCL statement, the RID of that record is
returned in &NDBRID. The record could have been retrieved by a key, or from an
&NDBSCAN result list, but the RID is always made available, so that a following
&NDBUPD or &NDBDEL statement can refer to the correct record.

RID Reuse

RID reuse accumulates ranges of unused RIDs from deleted records during a KEYSTATS
run, which is performed automatically during the daily old record deletion process for
NDBs such as the Alert History File. By reusing RIDS, free space in the VSAM cluster is
also reused.

Note: Do not reorganize NDBs when RID reuse is active.

You can find the messages in the log output from an SALERTH daily purge by looking at
the purge or delete time for the file in the Customizer Parameter group (/PARMS), and
then locating that time in the log using the T hh.mm command.

Alerts for VSAM Monitoring

You can create alerts for VSAM files allocated to your CA Mainframe Network
Management product region. This includes the NDBs because they use the same VSAM
API. Event Distribution Services (EDS) creates events for file open, close, allocate,
unallocated, and so on.

In addition, you can also use the following events that are triggered by VSAM return and
feedback codes:

m SSSYS.FILE.EOV for End Of Volume (new data or index extent)

m SSSYS.FILE.CA.SPLIT for a VSAM control area split (not used by the VSAM monitor)
B SSSYS.FILE.FULL for a file full condition

m SSSYS.FILE.SHORTAGE for a string or buffer shortage

m $SSYS.FILE.ERROR for a VSAM error condition

These events are trapped by the VSAM monitor and alerts are raised if required. Log

files and files opened for input are excluded from alerts related to file size because log
files wrap and input files cannot be extended by the region's activity.

Alerts for String / Buffer shortage or file extensions are optional. If you do not want the
IPLOG or EVNTDB to be automatically resized, you should clear the file extension
severity count; otherwise, resize is attempted when the Extents count is exceeded.

Chapter 15: NDB Concepts 289

NDB Data Formats

NDB Data Formats

An NDB supports the following data formats:
CHAR

Data is provided, and stored, as a character string. NCL restricts character data to
printable characters. The maximum length of a character field is 255 characters if
not keyed, or (VSAM key length - 8) if keyed. Character fields collate (for keying, or
sorting in a scan) on ascending EBCDIC value. Trailing blanks are not significant and
are removed from stored data. The option to automatically make data upper case is
available. Alternatively, data can be stored as lower case but searched as if it were
upper case.

NUMERIC

Data is provided as an optionally signed number, from -2,147,483,648 to
+2,147,483,647. Numeric fields collate on ascending binary value (-10 before -5
before 0 before +5 before +10). The minimum VSAM key length for an NDB
guarantees that numeric data can always be keyed.

HEX

Data is provided as an even number of hexadecimal characters (0-9, A-F, or a-f).
Trailing blanks are eliminated from the value. Trailing zeros are significant, and are
stored. The maximum length of the character representation of a HEX field is 254,
giving a maximum binary length of 127. If keyed, the maximum character
representation length is ((VSAM key length - 9) * 2). A null-valued HEX field can be
represented by a character value of one blank. HEX fields collate on ascending
binary value, with values that are equal except for the number of trailing zeros
collating on increasing length.

DATE

Data is provided in one of several formats, controlled by the user and/or system
language code, and the current &NDBCTL DATEFMT setting. Basically, the provided
value is in YYMMDD format. The data is stored internally as packed digits in the
form YYMMDD. Date fields collate on ascending date value. The minimum VSAM
key length for an NDB guarantees that date data can always be keyed.

As the DATE format does not include a century, CA recommends use of the CDATE
format instead.

CDATE

Data is provided in one of several formats, controlled by the user and/or system
language code, and the current &NDBCTL DATEFMT setting. The data is stored
internally as a 3-byte binary number, being the numbers of days from 1/1/0001.

TIME

Data is provided in HHMMSS.TTTTTT format (the decimal point and fraction can be
truncated or omitted). The data is stored internally as a 5-byte binary number,
being the number of microseconds since midnight.

290 Network Control Language Programming Guide

Null Values and Null Fields

TIMESTAMP

Data is provided in YYYYYMMDDHHMMSS.TTTTTT format. The data is stored
internally as a concatenation of a 3-byte CDATE and 5-byte TIME.

FLOAT

Data is provided as a floating point number. It is stored internally in IBM 8-byte
normalized floating point format. The numbers are stored to 15 significant digits
and with an exponent of +70. Floating point fields are collated on ascending
numeric value.

Null Values and Null Fields

One of the most powerful features of NDBs is the use of null fields, an understanding of
which is essential to the effective use of an NDB.

An NDB is a field-oriented database. Data is always accessed by field name. Other
databases may have the concept of a record or group, being a collection of fields, that
can be accessed by the name of the record or group. An NDB record is the actual,
complete record, as logically accessed by RID.

At first, then, it might seem that an NDB can contain only one record-type, where
record-type corresponds to a supplier, an order, or a customer record, for example. This
is not the case. In fact, an NDB can contain almost any number of logical record types,
each of which can be accessed separately. To achieve this, an NDB uses the concept of
the null field. A null field is simply a defined field that is not present in a record.

The number of defined fields in the control record includes the number of null fields and
each null field has a field definition record. However, the field is not physically present
in the record. This is clearly not the same as a field that is present, but contains a null
value (for example, blank).

Even if the field is defined as keyed, a null field is never keyed. Thus, any attempt to
access by using keys will never retrieve a record that has that field null.

For any data format, a field can have one of the following logical values:

m Not present (that is, null field).

m Present, but null-valued. For a character field, this is defined as all blank. For a
numeric or floating point field, this is defined as 0, for a hexadecimal field, this is
defined as all blank (stored as present with a length of 0), and for a date field, this is
defined as YYMMDD = 000000 (the only invalid date value allowed).

m Present, with a value other than the null value described previously.

Chapter 15: NDB Concepts 291

Null Values and Null Fields

In NCL terms, the following statements illustrate the three states of a field:
&VALUE =

Sets &VALUE to not-present (the actual variable is deleted from the NCL
procedure's variable pool).

&VALUE = &SETBLNK 1
Sets &VALUE to present, with the value of one blank.
&VALUE = value

Sets &VALUE to present, with the value of value.

Rules for Null Fields

There are several rules regarding null fields:

m Anullfield is never keyed. Thus, access using keys for that field name will never
retrieve a record with that field a null field.

m A null field never matches anything, not even another null field. For example, none
of the following & NDBSCAN statements will retrieve the entire database, if field
NAME is null in some records.

&NDBSCAN dbname FIELD NAME EQ VALUE 'FRED' OR +

FIELD NAME NE VALUE 'FRED'
&NDBSCAN dbname FIELD NAME EQ FIELD NAME

In the second example, comparing a field to itself in a record, it might seem that
some records should be selected. The rule about null fields is still honored in this
case.

®m You cannot retrieve a record with null fields. Retrieving a record with null fields
causes the NCL variables receiving the requested null fields to be deleted (that is,
set to null).

m Anullfield can be indicated on an &NDBADD statement by omitting the fieldname =
fieldvalue clause for that field, or, on an &NDBADD or an &NDBUPD statement, by
using a currently undefined (that is, null) NCL variable as the fieldvalue, for
example, FIELDX = &NULL, or by using the syntax FIELDX NULL.

m The only way that records containing a particular null field can be selected in an
&NDBSCAN is to use the PRESENT and ABSENT or IS [NOT] NULL operators. These
operators allow records to be selected that contain the nominated field (PRESENT)
or records that do not contain the nominated field (ABSENT).

292 Network Control Language Programming Guide

NDB Transaction Management: Database Protection

Using null fields, the previous example of a database containing supplier, order, and
customer records can be built by inserting only supplier fields for supplier records, order
fields for order records, and customer fields for customer records. The records are now
disjoint. A retrieval by CUSTNO, for example, would only retrieve records containing the
CUSTNO field, and so on for supplier and order.

When defining fields in an NDB, a field can be made mandatory by specifying
NULLFIELD=NO.

NDB Transaction Management: Database Protection

An NDB is protected against system failures that might occur when an update to the
VSAM data set is in progress. Database record locking prevents data corruption caused
by multiple users accessing the same record simultaneously.

If it is possible for more than one user to access an NDB record at once, use the &LOCK
verb (see page 226) to ensure exclusive access to the record while it is being accessed.
That is, perform an &LOCK on a record before any operation that accesses that record
proceeds. If another user subsequently accesses the record, any modifications made by
the second user do not proceed until the first accessing procedure concludes and the
record ceases to be locked.

Protection against system failures is achieved as follows:

m A preformatted journal area is built when the NDB is created. This area consists of a
journal control record, and n journal records.

m When an operation that involves updating the NDB starts, the journal area is used
to record the updates, but they are not actually performed.

m When the updates are complete, the journaled updates are used to physically
update the data set. Before this starts, a flag is set in the journal control record,
indicating an update apply procedure is in progress, and the journal control record,
and all journal data records are force-written to the VSAM data set.

m |f the update apply completes successfully, then buffers are flushed, the journal
control record flag is reset, and the journal control record is rewritten.

m |f the update apply is interrupted by a system failure, then, when the NDB is next
activated, the journal control record flag indicates that an update apply was in
progress at the time of the failure. The entire update apply is redone (ignoring
errors due to duplicate or already deleted records). Thus database integrity is
assured.

m Physical errors on the VSAM data set (for example, out of space) are handled in the
same way. Once the data set has been copied to a larger version, the reapply works
in the same way.

Chapter 15: NDB Concepts 293

NDB Journaling

NDB Journaling

In addition to the preformatted journal area kept within an NDB, an external journal can
be created. This journal allows:

m Continuous availability of an NDB that cannot regularly be stopped for backups
m Recoverability of an NDB to the time of last update, even in the event of physical

data set failure

To enable journaling on an NDB, specify the JOURNAL operand on the NDB START
command. This operand causes the after images of all NDB record updates to be written
to the journal.

Note: Before images are not kept; therefore data set back out is not possible.

Continuous Availability

NDB Recovery

If your NDB cannot be stopped for backup because of availability requirements, you can
use the journal to keep a current backup copy. A backup copy is created once and the
journal is applied to it each time the journal is swapped.

Note: A journal swaps if a JOURNAL SWAP command is issued, or if the current journal
runs out of space.

Use the batch forward recovery utility (UTIL0O010) to apply the journal. The name of the
journal to be applied can be determined using the &ZJRNALT system variable. The
sample batch forward recovery JCL (SNDUTO010) is available in the distribution library
and must be tailored using the installation data set names.

Whenever a journal swap occurs, an NCL procedure is started in the BSYS environment

to assist in the automation of forward recovery. The name of this procedure is specified
using the SYSPARMS JRNLPROC command (default is SNDJPROC). Use this procedure to
submit your NDB forward recovery JCL.

If you intend to continue taking regular backups of your NDBs, then you can choose to
apply journals only in the event of physical loss of an NDB. When taking regular backups
of your NDB you only need to backup your journal data sets whenever a journal swap
occurs. The NDB can then be restored from a backup, applying all journals since backup
in sequence.

294 Network Control Language Programming Guide

How to Respond to an Alert for File Size or File Full

How to Respond to an Alert for File Size or File Full

When recovering a full or near-full NDB to a larger file, you must disconnect the old and
new files completely from the region during the REPRO of old file records into a new,
empty file so that there are no problems with control record corruption.

Note: The event data is not recorded during this time; however, the automatic resize of
IPLOG and EVNTDB does cache data during the resize.

Fix a Corrupted NDB

An NDB full or region canceled event can corrupt an NDB. To recover the data, use the
NDB ALTER OPT=BLDX command to rebuild the indexes.

Note: This procedure applies to an IPLOG file. Similar steps apply to all NDBs.

To fix a corrupted NDB
1. Create a work file. The size must relate to the number of records in the NDB.
The following shows some sample JCL:

//DEFWRK EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

DELETE (hlq.TEST.NDBWORK) CL

DEFINE CLUSTER (NAME(hlq.TEST.NDBWORK) -
MGMTCLAS (DEFAULT) -
STORCLAS (NMDPOOL) -
INDEXED -
RECORDS (1000000 100000) -
SPEED -
SHAREOPTIONS(2 3) -
) -

DATA (NAME (hlq.TEST.NDBWORK.D) -
CONTROLINTERVALSIZE (4096) -
RECORDSIZE (1017 4089) -
FREESPACE (O 0) -
KEYS(4 0) -
) -
INDEX (NAME(hlq.TEST.NDBWORK.I) -

CONTROLINTERVALSIZE(1024))

/*

Chapter 15: NDB Concepts 295

Fix a Corrupted NDB

Issue the following command from OCS to allocate the work file to the region:
ALLOCATE DD=NDBWORK DSN=hlq.TEST.NDBWORK DISP=SHR

Issue the following command to open the work file as a VSAM file.

UDBCTL OPEN=NDBWORK STRNO=3 BUFNI=5 BUFND=6

Issue the following command to remove the NDB bad-locked status:

NDB PURGE IPLOG

Issue the following command to stop the NDB to prevent access:

NBD STOP IPLOG IMM

Issue the NDB ALTER command to verify the indexes, as follows:

NDB ALTER IPLOG OPT=CHKX DB WORK=NDBWORK DETAIL=YES SORT=100000

Minimizing 1/0O on the work file by specifying the maximum value for sort memory
reduces execution time.

Issue the following command to close and free the work file:

UDBCTL CLOSE=NDBWORK
UNALLOC DD=NDBWORK

Review the CHKX. If it shows an error, rebuild the indexes by redefining the work
file to empty it. Then, use the BLDX option of NDB ALTER, by issuing the following
command:

NDB ALTER IPLOG OPT=BLDX DB WORK=NDBWORK DETAIL=YES SORT=100000

Minimizing I/O on the work file by specifying the maximum value for sort memory
reduces execution time.

If the NDB ALTER BLDX action fails, the work file must be unallocated and the file
must be redefined before you reissue the command.

Reallocate the NDB by actioning the IPFILES - TCP/IP File Specifications Customizer
Parameter Group.

296 Network Control Language Programming Guide

Chapter 16: NetMaster Database
Administration

Note: Familiarity with standard User Databases (UDBs) is assumed, including the use of
the &FILExxx verbs, and the UDBCTL command. A knowledge of VSAM, the IDCAMS
utility program, and JCL (for the relevant operating system) is also assumed.

This section contains the following topics:

How to Create an NDB (see page 297)

Delete an NDB (see page 304)

Alter Field Definitions in an NDB (see page 305)
Back Up an NDB (see page 308)

Restore an NDB (see page 308)

Monitor NDB Activity (see page 309)

Monitor NDB Performance (see page 310)
Multiple System Access to an NDB (see page 311)
How to Implement NDB Journaling (see page 312)

How to Create an NDB

Perform the following tasks to create an NDB:

Define the VSAM data set (see page 298)

Calculate the key length (see page 298)

Calculate the record length (see page 299)

Allocate the VSAM data set (see page 300)

Create the NDB (see page 301)

Start the database (see page 302)

Insert field definitions (see page 302)

1
2
3
4
5. Open the VSAM data set (see page 300)
6
7
8
9

Load initial data (see page 303)

Read the complete description of each task carefully before performing the task.

Chapter 16: NetMaster Database Administration 297

How to Create an NDB

Define VSAM Data Set

Use IDCAMS to define a VSAM KSDS. The following parameters are required:
INDEXED
Indicates a KSDS
KEYS (len 0)
key length (see Task 2)
RECORDSIZE (avg max)

Indicates average and maximum record size (see Task 3).
Other parameters, such as SPEED, REPLICATE, IMBED, can be used at your discretion.

Do not use SPANNED. Logical records longer than the VSAM data record length are
handled automatically.

The REUSE parameter can be used, but, for NDBs used in a production environment, it is
not recommended, as omission prevents the accidental emptying of an NDB by use of
the UDBCTL OPEN RESET command.

Calculate Key Length

Calculate the key length to use for the NDB as follows:
L1=

Longest desired length for any keyed CHAR field
L2 =

Longest desired length for any keyed HEX field (as displayable characters)

Maximum of (L1 + 8), (L2 /2 +9), and 16
KL

Minimum of L3, and 255.

298 Network Control Language Programming Guide

How to Create an NDB

Calculate Record Length

Calculate the average and maximum record lengths as follows:

Average Record Length:
m Greater than the VSAM key length
m The approximate size of a stored data record. A stored data record needs:
- KL (from above) +10 +
- 3 times number of present fields +
— 4 times number of present numeric fields +
- 3 times number of present date or cdate fields +
- 8 times number of present floating point or timestamp fields +
- 5 times number of present time fields +
- Total number of characters in present hexadecimal fields / 2
- Number of characters in present character fields (less trailing blanks) +
Note: A data record can span multiple VSAM records. If there are some records in your
design that can be very large, but most are short, calculate the sizes using most
common record structure.
Maximum Record Length:
® A maximum of 274 + 2 times the VSAM key length
m Average record length (calculated above) + VSAM key length + 6

VSAM requires the maximum record length to be less than the data Cl size less 7. Use a
figure that leaves minimum wastage in a Cl.

The only VSAM records in an NDB that have the maximum VSAM record length are the
NDB transaction data records. These are inserted during processing of the NDB CREATE
command.

Chapter 16: NetMaster Database Administration 299

How to Create an NDB

Example: VSAM Definition

This example of a definition is a good starting point for your own definitions.

DELETE clustername CL
DEFINE CLUSTER(NAME(clustername) -
VOL (volume) -
INDEXED-
SHAREOPTION(2 3) -
DATA (NAME(dataname) -
KEYS(60 0) -
CISZ(4096) -
RECSZ(200 1020) -
FSPC(20 20))-
INDEX (NAME(indexname) -
CISZ(2048))

Allocate the VSAM Data Set

Use the ALLOCATE command to dynamically allocate the data set to an active region:

ALLOC DSN=clustername DD=dbname DISP=0LD

Open the VSAM Data Set

Use the UDBCTL command to open and initialize the data set. Whether the database will
use the VSAM LSR pool depends on the options specified on the UDBCTL command.

By convention, the database name is the same as the DD name (z/OS) or file name
(z/vM).

If you do not want the database to use the LSR pool, issue the following UDBCTL
command:

UDBCTL OPEN=dbname ID=* STRNO=7 BUFNI=10 BUFND=10

The values for STRNO, BUFNI, and BUFND are the suggested defaults.

The STRNO value should be 3 + (value of NDBSUBMX SYSPARM - 1, times 2). A lower
value can lead to string space being dynamically acquired by VSAM (z/0S) or string waits

(z/VM) if several &NDBSCAN statements are executing concurrently.

If you want the database to use the LSR pool, issue the following UDBCTL command:

UDBCTL OPEN=dbname ID=* LSR

300 Network Control Language Programming Guide

How to Create an NDB

Create the NDB

Use the LSRPOOL command to define the LSR buffer pool sizes and the number of
buffers for each size. LSR is the recommended way of running an NDB.

You might want to use deferred I/O when running the NDB. Deferred 1/0 involves
sharing of buffers in between requests and enhances performance but possibly at the
expense of integrity. Deferred 1/0 is not recommended when running an NDB in an
online transaction update environment.

If you want to run deferred I/O you must use the DEFER option of the UDBCTL command
to open the file:

UDBCTL OPEN=dbname ID=* LSR DEFER

You must also use the DEFER option on the NDB START command. For more information
about the NDB START command, see the Online Help.

To do this, issue the NDB CREATE command:

NDB CREATE dbname [LOGSIZE=n] [LOADMODE] [LANG=1c]

The NDB CREATE command formats the UDB into an NDB by inserting control records
that identify it as an NDB, and builds journal records for transaction management.

The nominated data set (UDB, and so on) cannot be created into an NDB unless the data
set is empty and it meets the requirements such as KSDS, key length, and record length.

The NDB can be created as language-specific by specifying the LANG= operand. The
uppercase translation table for the language specified is then used for all uppercase
processing.

Specify the number of log blocks to format with the LOGSIZE parameter. If you want to
fast-load data, use the LOADMODE option to put the database into load mode.

Following the NDB CREATE command, the data set is now formatted as an NDB, with no
field definitions and no data records. From this point on, the other NDB command
options and the &NDBxxx verbs can refer to it.

Chapter 16: NetMaster Database Administration 301

How to Create an NDB

Start the Database

To allow NCL access to the database, the NDB START command must be used to keep
the database active:

NDB START dbname [DEFER | NODEFER] [LOADMODE]

If the database is to be bulk-loaded (described in Task 9), consider using the DEFER
option of the NDB START command. This option tells the database manager not to flush
buffers after each update command (including &NDBADD, &NDBDEL, &NDBUPD), which
improves performance at the expense of integrity. The DEFER option of the NDB START
command is effective only if the database was opened with the UDBCTL command using
the LSR and DEFER options. The LOADMODE option can be used to indicate that
bulk-loading is to occur.

Insert Field Definitions

An NDB cannot be used without field definitions. Field definitions can be added to or
deleted from an NDB, using the NDB FIELD command at any time. Just after the
successful completion of an NDB CREATE followed by an NDB START is a good time to
add field definitions.

Example: Insert Field Definitions

The following example shows how to add field definitions:

NDB FIELDdbname ADD=SURNAMEFMT=C KEY=Y +
NULLFIELD=N NULLVALUE=N

NDB FIELDdbname ADD=FIRSTNAMEFMT=C KEY=N
NDB FIELDdbname ADD=DOBFMT=D KEY=N

NDB FIELDdbname ADD=ADDR1FMT=C KEY=N

NDB FIELDdbname ADD=ADDR2FMT=C KEY=N

NDB FIELDdbname ADD=ADDR3FMT=C KEY=N

NDB FIELDdbname ADD=ADDR4FMT=C KEY=N

NDB FIELDdbname ADD=SEXFMT=C KEY=N

NDB FIELDdbname ADD=NAME

Note: The definitions could also have been added by using the & NDBDEF verb.

If the database is to have a sequence key, then the definition for it must be added first.
A sequence key is defined by specifying KEY=SEQUENCE (can be abbreviated to KEY=S)
on the field definition. A sequence key is forced to have the attributes UPDATE=NO, and
NULLFIELD=NO. Records must always have a unique value for the sequence key field
(like KEY=UNIQUE). A sequence key field definition cannot be deleted.

302 Network Control Language Programming Guide

How to Create an NDB

Load Initial Data

If the database needs to have data loaded into it (for example, a table or reference
database), then the data can be loaded using an NCL procedure to read the input data
(for example, from a UDB, either a KSDS or an ESDS), and use &NDBADD to add it to the
NDB.

If a large amount of data is to be loaded this way, then use the DEFER option of the NDB
START command to prevent buffer flushing during the load.

When the load completes successfully, use an NDB START NODEFER command to
remove the defer status. There is no need to stop and restart the database.

Another way to speed up loading of large amounts of data is to create or start the
database in LOAD MODE. In this case, no keys are manipulated while loading, making
the load run much faster.

The NDB ALTER command must then be used to build all keys in a single pass.

Note: If a region failure occurs while an NDB is open in DEFER mode, then it is flagged as
unusable, and must be restored or recreated.

If the database is in LOAD MODE, it must have an NDB ALTER command run against it to
build keys.

The load program should use the EXCLUSIVE option of the & NDBOPEN statement to
prevent other users accessing the database while it is running.

The progress of the load program can be monitored by periodic use of the SHOW
NDB=dbname command. This command displays information about the database,
including the number of database requests executed (this is the sum of NDB commands
and &NDB NCL statements) since it last started.

This completes the process of initialization (and initial loading) of an NDB. The tasks are
the same as required for any other UDB, except for the NDB CREATE and field definition
tasks.

Most of the initialization tasks can be combined into one NCL procedure, using
&INTCMD/&INTREAD to issue and check the commands, and &NDBxxx statements to
perform the definition and load. In a z/OS or MSP environment, UTILOO07 can be used
to perform the VSAM DELETE/DEFINE from NCL.

Chapter 16: NetMaster Database Administration 303

Delete an NDB

Delete an NDB

An NDB can be deleted by using the standard VSAM (IDCAMS) DELETE command:

DELETE clustername CL

If the NDB is in use, then it must first be closed. To accomplish this, issue the following
commands:

NDB STOP dbname IMM LOCK
UDBCTL CLOSE=dbname
UNALLOC DD=dbname

The NDB STOP command, with the IMM and LOCK operands, immediately stops the
database, if it is active, and locks it from further access by any NDB commands or
&NDBxxx statements. Any currently signed on users are given response 250 on their
next request.

The UDBCTL CLOSE command physically closes the data set.
The UNALLOC command frees the data set so that it can be deleted.

Following the successful completion of the commands, the IDCAMS DELETE can then be
issued.

If the NDB is being deleted in preparation for reuse as an empty database, then the NDB
RESET command provides a more convenient way to do this. Alternatively, if the data
set was defined to VSAM with the REUSE option, then a UDBCTL OPEN RESET command
causes VSAM to clear the data set back to empty.

304 Network Control Language Programming Guide

Alter Field Definitions in an NDB

Delete All Data in an NDB

If an NDB is being used as a journal file (that is, it is cleared regularly after a specified
time or number of records, for example), it can be cleared in three ways:

Write an NCL procedure that reads the entire database sequentially (for example,
by RID) and deletes all records-this method is slow and tedious.

Physically delete the data set (or issue a UDBCTL OPEN RESET command if the data
set is defined with REUSE), and re-create it, as described previously-this method has
practical uses, such as when the data set must be relocated on DASD or needs more
space.

Use the NDB RESET command-this method is normally the best approach.

The NDB RESET command deletes all data records (and their keys) from an NDB, but
preserves the field definitions. Thus, it is equivalent to deleting, defining,
re-creating, and reissuing all &NDBDEF ADD statements or NDB FIELD commands
required to build the field definitions.

An NDB must not be active when the NDB RESET command is issued. This prevents
active users from having the database cleared underneath them. A LOCKED
database cannot be reset.

The following sequence of commands resets an NDB:
NDB STOP dbname IMM
NDB RESET dbname

If the database is not active, then the NDB STOP command effectively does nothing.
The RESET command gives you the option of placing the database into LOAD MODE.

Alter Field Definitions in an NDB

Altering field definitions can be broken into three activities:

Adding new field definitions to an NDB
Deleting field definitions from an NDB
Updating field definitions in an NDB

The first two can be done directly, at any time, even while users are accessing the
database. Use the NDB FIELD ADD= fieldname and NDB FIELD DELETE= fieldname
commands.

Chapter 16: NetMaster Database Administration 305

Alter Field Definitions in an NDB

Add Field Definitions

Adding a field definition makes the field immediately available to all users.

When adding field definitions after data is already in an NDB, defining a field with
NULLFIELD=NO causes errors on the update of any record that existed prior to the
definition, if the newly defined field is not included in the update list. This is because it is
a required field, and is not in the record.

Delete Field Definitions

Deleting a field definition logically removes the field from the database. Following the
delete, all data values for that field become inaccessible.

Deleting a field immediately makes the field inaccessible to NCL procedures. Any
currently active sequences (&NDBSEQ) defined on that field, if it is keyed, are given a
response code on the next &NDBGET referring to that sequence. Predefined formats
(&NDBFMT) referring to the field still valid until they are redefined. An in-progress
&NDBSCAN could get undefined results.

Deleting a field causes a physical VSAM delete to be performed for all the associated key
records. The data records, however, are not updated. To do so would create an
unacceptable overhead. Instead, the field value in each data record is regarded as
logically deleted. It is inaccessible. Whenever a data record is updated, all logically
deleted fields are removed.

306 Network Control Language Programming Guide

Alter Field Definitions in an NDB

Update a Field Definition

A field definition can be updated at any time. However, not all field attributes can be
changed at any time. Some changes require the database to be empty (that is, just
created or reset), or in LOAD MODE. Some field attribute alterations are prohibited.
The following field attributes can be changed at any time:

m DESC = description

m USER1, USER2, USER3, USER4

m NULLVALUE

m NULLFIELD (except for KEY = SEQ field)
m UPDATE (except for KEY = SEQ field)
m KEY=YtoKEY=N

m KEY=UtoKEY=YorN

NEWNAME (to rename the field)

The following attribute can be changed if the field is not keyed (that is, KEY=NO):
m CAPS = YES to CAPS = SEARCH

The following attributes can be changed if the database is in the LOAD MODE or empty:
m KEY (except to/from SEQ)
m CAPS = SEARCH/NO to CAPS = NO/SEARCH

The following attributes can be changed if the database is empty:
. FMT

m CAPS

m KEY (except to/from SEQ)

The following attribute cannot be changed:

m KEY =SEQ (to or from)

Note: A field can also be changed from KEY = N to KEY = Y by using the NDB ALTER
command.

Chapter 16: NetMaster Database Administration 307

Back Up an NDB

Back Up an NDB

Back up an NDB with the standard IDCAMS utility functions (that is, REPRO or EXPORT).
For integrity, the data set should not be open. Issue the following commands to ensure
this:

NDB STOP dbname IMM LOCK
UDBCTL CLOSE=dbname

Following completion of the backup, issue the following command to make the NDB
available again:

UDBCTL OPEN dbname options

NDB START dbname UNLOCK options

The options on these commands should agree with any standard options specified (for
example, LSR/DEFER on the UDBCTL statement).

Restore an NDB

If an NDB must be restored from a backup copy, then use the standard IDCAMS restore
facility associated with the backup copy. For example, if REPRO was used to backup the
database, then use REPRO to restore it; if EXPORT was used to backup the database,
then use IMPORT to restore it.

When using REPRO, define the database with REUSE to allow the REUSE option of
REPRO to be used. This makes a DELETE/DEFINE prior to the restore unnecessary.

The database must not be open while a restore is in progress. To create a consistent
environment for NCL procedures using the NDB, issue an NDB STOP LOCK command
prior to the restore. This causes all &NDBOPEN statements executed to get a database
locked response.

Upon completion of the restore, issue the UDBCTL OPEN, as required, and an NDB
START UNLOCK command to restart the database, and release the lock.

308 Network Control Language Programming Guide

Monitor NDB Activity

Monitor NDB Activity

Use the SHOW NDB, SHOW NDBUSER and the TRACE option of the NDB START
command to monitor NDB activity.

To determine the number of NDBs currently active, issue the command:

SHOW NDB

The output from this command shows the number of NDBs active, locked, and stopping.
To obtain detailed statistics about all active or locked NDBs, or a specific NDB, use the
command(s):

SHOWNDB=ALL-* for all, or
SHOWNDB=dbname-* for a specific NDB.

The output from these commands indicates the status of the NDB(s), the number of
signed on users, the number of commands processed, and whether the database was
started in DEFER status.

This display is particularly useful for monitoring the progress of long-running procedures
that are loading or reading large numbers of records.

To determine the user ID(s) of users signed on to all active NDBs, issue the command:

SHOW NDBUSER

The output from this command, which is similar to the SHOW UDBUSER command,
indicates details such as the database, user ID, and LU name (terminal) for all users
signed on to any NDB.

Note: A SHOW UDBUSER shows *NDB as the only user of a UDB that is an NDB. This
serves as an indication to the issuer of the SHOW UDBUSER command that a SHOW
NDBUSER command is required for this UDB/NDB to obtain a list of signed on users.

Using the TRACE option of the NDB START command causes a message to be written to
the activity log every time an &NDB verb or an NDB command is issued involving that
particular NDB. Tracing can be stopped at any time by issuing an NDB START command
specifying NOTRACE.

Chapter 16: NetMaster Database Administration 309

Monitor NDB Performance

Monitor NDB Performance

Monitoring is used, for example, for physical tuning and buffer tuning. Use a periodic
IDCAMS LISTCAT command to monitor the physical attributes of the NDB, including
DASD space, number of extents, and ClI splits.

An NDB itself does not need reorganization internally. VSAM, however, might need to
reorganize to remove excessive Cl and/or CA splits if a large amount of key addition,
deletion, or value changing takes place. This can be accomplished by using standard
IDCAMS services to backup, delete, redefine, and restore the data set.

Important! You must not change the VSAM key length or maximum record length
during this reorganization. If you do, the NDB will not be usable.

If you need to increase the key length, the NDB must be logically unloaded, deleted,
recreated, and logically reloaded.

The SHOW VSAM command allows you to determine whether the NDB performance
would benefit from increased buffering, if not running from the LSR pool, or from
increases or changes in the LSR pool definition. Standard VSAM tuning techniques
should be followed.

Improve Performance by Using LOAD MODE

As NDBs use inverted-list indexes, bulk record addition, update, or deletion can be slow.
This is because of the large number of physical file updates required to manage all the
keyed field indexes.

To allow fast loading (in particular), an NDB can be placed in LOAD MODE. In LOAD
MODE, no keys (other than the optional sequence key) are maintained. This greatly
improves record add speed.

When in LOAD MODE, records can be added, updated, deleted, retrieved, or scanned.
However, none of these operations use keys. This means that GET or SEQ by a key is not
allowed. Only RID access is permitted.

The only way to take an NDB out of LOAD MODE is to use the NDB ALTER command.
This command, using the BLDX DB option, reads all the NDB data records, extracts all
keys, sorts them, and writes them in a single pass. It checks for errors (for example,
unique key violation) and, when finished, resets LOAD MODE.

310 Network Control Language Programming Guide

Multiple System Access to an NDB

Check an NDB for Consistency

If you want to validate the relationship between keys and data in an NDB, you can use
the NDB ALTER command CHKX option to do this. It extracts and sorts all keys from the
data and then compares them with the actual key records in the NDB. All errors are
reported.

Multiple System Access to an NDB

An NDB may be corrupted by:
m The database being opening by two regions (same machine or shared DASD)

m The database being opened twice (under different file IDs) on the same region

There are several internal protection mechanisms that attempt to prevent such
corruption:

m The VSAM timestamp of the NDB is compared with all other open NDBs. A match
prevents the NDB from opening. This blocks one NDB from being opened twice by
the same region.

It is not totally foolproof, as VSAM updates the timestamp each time the VSAM
data set is physically closed (that is, UDBCTL CLOSE occurs).

While an NDB is open, the control record contains the domain ID of the accessing
product region. This field is closed when the NDB is closed.

If, when opening an NDB, a non-blank domain ID is found, and it is not the same as
the current domain ID, then the NDB does not open unless the FORCE operand of
the NDB START command is used.

This prevents a database being opened by two different regions. Use the FORCE
operand if there is a system failure and the NDB must be opened on a different
region.

m The name used to open the NDB (that is, UDBCTL ID = operand value) is stored in
the NDB control record. If a mismatch occurs on open, a Important! message is
written. The open is allowed to continue unless other problems occur.

m Despite the previous precautions, an NDB can always be opened in INPUT MODE.
This bypasses all the checks but no updates can be performed.

m NDB security-NDBs can be protected by the NCL security exit, NCLEXO01 (see
page 517). This protection can be used to restrict users' NCL procedures to specific
NCL statements for functions such as updating and adding.

Chapter 16: NetMaster Database Administration 311

How to Implement NDB Journaling

How to Implement NDB Journaling

To implement NDB journaling, perform the following steps on your region:

1. Define two journal data sets (see page 312)

Allocate the data sets to the product region (see page 312)

Add the duplicates to the batch forward recovery JCL (see page 313)

2
3. Make duplicates of the NDBs (see page 313)
4
5

Start the NDBs (see page 314)

Define Two Journal Data Sets
Use IDCAMS to define two VSAM entry-sequenced data sets (ESDS). The following
parameters are required (use sample SNDIDCDJ):
NONINDEXED
Indicates an ESDS.
REUSE
Journal is cleared when opened for update.
RECORDSIZE
Journal record size should be greater than the record size minus key length + 60 of

the largest NDB using the journal.

The space allocated to the journal depends on the number of NDB updates occurring on
the system, and the frequency with which you swap journals for batch processing. The
volume should ideally be on a separate unit to the NDBs being journaled.

Allocate Data Sets to the Product Region

Allocate the two journal data sets, using DISP=SHR, to the product region by either
including them in the JCL, declaring them in the NETMASTR SYSIN deck, or allocating
them in NMINIT or NMREADY NCL procedures.

312 Network Control Language Programming Guide

How to Implement NDB Journaling

Make Duplicates of the NDBs

Stop the NDBs you want to journal and create duplicates of them using IDCAMS REPRO.

The duplicate must be created after the NDB CREATE has been performed to initialize
the NDB.

Once the duplicate has been created, it is important to keep it synchronized with the
primary copy by ensuring that all NDB journal records written after the duplicate was
made are applied to it.

For an existing NDB which has already been loaded, the decision to start journaling
updates can be made at any time.

If you regularly shut down your product region, CA recommends that you resynchronize

your NDB backups with the primary copy. Do not apply journals created before the new
backup copy.

Add the Duplicates to the Batch Forward Recovery JCL

The batch forward recovery utility (UTILO010) applies the NDB journal to a duplicate
copy of the NDBs.

Add the data set name of the NDB duplicate to your batch forward recovery JCL (use
sample SNDUT010).

Make sure you have updated the JOURNL1 and JOURNL2 DD statements in the sample
with the two journal data set names you defined in Task 1.

Include in the utility JCL all NDBs which require forward recovery. By default, the utility
attempts to forward recover all NDBs which have journal records present in the journal
data set. The DD name for the NDB should be the same as the NDB name used to
identify it to the product region.

Use the control cards on the U10IN data set to specify a subset of NDBs.

The format of a U10IN control card is:

RECOVER NDB=ndbid [,DD=name]

where the DD operand can be used to specify an override DD name for the NDB.

RECOVER ALL is used to indicate that all NDBs are to be forward recovered. This is the
default.

Chapter 16: NetMaster Database Administration 313

How to Implement NDB Journaling

Start the NDBs

The following is a sample JCL specification for the forward recovery utility:

//FWDRECVR EXEC PGM=UTILO010,PARM='JOURNAL=JOURNL1'
//STEPLIB DD DSN=steplib,DISP=SHR
//UL1OPRINT DD SYSOUT=*
//U10IN DD*

RECOVER ALL
//JOURNL1 DD DSN=USER.NDB.JOURNAL1,DISP=SHR
//JOURNL2 DD DSN=USER.NDB.JOURNAL2,DISP=SHR
/7*
//NDB1 DD DSN=USER.NDB.BACKUP.NDB1,DISP=SHR
//NDB2 DD DSN=USER.NDB.BACKUP.NDB2,DISP=SHR
//NDB3 DD DSN=USER.NDB.BACKUP.NDB3,DISP=SHR
/7*

Note: The JOURNAL=JOURNL1 parameter specified on the EXEC UTILO010 statement is
used to override the journal DD name. If this parameter is not specified, then the DD
name used is JOURNAL.

Issue an NDB START command with the JOURNAL operand specified.

The first time an NDB START command (with the JOURNAL operand) is issued, it causes
the journal data sets to be opened. The system normally checks both journal data sets
and begins processing with the oldest one. This gives you time to run the forward
recovery utility if the system was restarted after failure.

If JOURNL1 is empty, then no attempt is made to check the second data set, and
journaling begins immediately on JOURNL1.

314 Network Control Language Programming Guide

How to Implement NDB Journaling

NDB Journal Swapping

Journals swap if a JOURNAL SWAP command is issued or if the journal in use runs out of
space.

Each time a journal is swapped, the journal control NCL procedure is started to assist the
automation of forward recovery. The SYSPARMS JRNLPROC command can be used to
specify the procedure name (the default is SNDJPROC).

If the system terminates abnormally, submit the NDB forward recovery job manually (or
from an alternate automation process), as the other journal is used after the restart,
and a swap effectively occurs.

Forward recovery must be performed before a journal swap occurs after the system
restart.

We recommend that you apply journals to the NDB backups as soon as they are
swapped.

Chapter 16: NetMaster Database Administration 315

Chapter 17: Using &NDB Verbs

This section provides examples of the use of the NCL verbs related to NetMaster
Databases (NDBs). There are examples that include adding, deleting, updating, and
retrieving records, as well as examples that use information about the database.

The success or failure of many &NDB verbs is indicated as a completion or error code
returned in the system variables &NDBRC and & NDBERRI on completion of the function.
Throughout this section, reference is made to specific return codes that can occur on
particular conditions.

This section contains the following topics:

Relationship Between &FILE and &NDBxxx Verbs (see page 317)
Access an NDB (see page 318)

Work with NDBs (see page 319)

Notes on Sequential Retrieval (see page 328)

Obtain Information About an NDB (see page 331)

Change NDB NCL Processing Options (see page 333)

Put It All Together—Unload or Reload an NDB (see page 334)

Relationship Between &FILE and &NDBxxx Verbs

Although the &NDB verbs are functionally similar to the &FILE verbs, there are some
significant differences.

More information:

Differences Between NDBs and UDBs (see page 285)

Protect Your Data Values with &NDBQUOTE

Several &NDB verbs use a free-form text syntax.

For more information about the &NDBSCAN verb syntax, see the Network Control
Language Reference Guide.

When processing the free-form text, certain characters, for example, '(', ',' and ')', act as

delimiters. If the data value contains one of these characters, it could cause a syntax
error, and will not be preserved.

To prevent this, data values can be quoted, using either single (') or double (”) quotes. If
the data contains the selected quote character, two of that character must be used.

Chapter 17: Using &NDB Verbs 317

Access an NDB

The &NDBQUOTE built-in function automatically quotes the data when required. It
knows the characters that require quoting, and picks single or double quotes as
required. It also handles doubling of embedded quotes.

Preserve Lowercase Data

If the data you store in an NDB contains lowercase characters, ensure that &CONTROL
NOUCASE is in effect in all procedures that use the & NDBADD or &NDBUPD verbs.
Failure to do so could mean the accidental folding of data to uppercase. This
requirement also applies to &NDBDEF and the NDB FIELD command when adding field
descriptions or USER1-4.

Define and Delete Fields in an NDB

An NDB has no predefined fields. All fields must be defined once before they can be
used. This is normally done by the Database Administrator when the NDB is defined.

Field definitions can be added or deleted at any time, even while other users are
accessing the NDB, although you might not want to do this.

The names and attributes of defined fields can be obtained by using the &NDBINFO
verb.

More information:

Alter Field Definitions in an NDB (see page 305)
Obtain Information About an NDB (see page 331)

Access an NDB

Before any records can be added to, deleted from, or retrieved from an NDB, the NCL
process must sign on, or connect itself to the NDB. This is accomplished using the
&NDBOPEN verb:

&NDBOPEN dbname

This statement registers the NCL process as a signed-on user of the nominated NDB.

If you want the NCL process to have exclusive control over the NDB, then specify the
keyword, EXCLUSIVE, after the database name.

If you want to perform input only operations, then use the INPUT keyword.

318 Network Control Language Programming Guide

Work with NDBs

If a security exit is being used, the DATA keyword can be used to allow up to 50
characters of data to be passed to the exit.

The &NDBRC system variable should always be checked after &NDBOPEN, to ensure it
was successful. If the value of &NDBRC is not 0, then the open has failed, except for
response 34, which indicates that the NCL process is already signed on.

When an &NDBOPEN is executed, &NDBCTL ERROR=CONTINUE is always assumed, to
allow the NCL process to handle errors at this point. If an open failure occurs, and no
action is taken, then the next &NDBxxx statement for that database will get a not open
response. Response 34 (already open) will terminate the procedure unless an explicit
&NDBCTL ERROR=CONTINUE is in effect.

The &NDBOPEN verb is analogous to the &FILE OPEN verb. However, there is no need to
reissue &NDBOPEN after referencing an NDB of another name. This is because &NDB
statements that refer to an NDB require the name of the NDB that is to be accessed,
whereas the &FILE verbs assume the UDB named in the last executed &FILE OPEN
statement.

EASINET Considerations

Close an NDB

If NDBs are being accessed by EASINET procedures, they should not be open across the
&PANEL statement that displays the network logo. To do so would increase the amount
of storage each network terminal would need.

When an NCL process has completed use of an NDB, use the &NDBCLOSE verb to sign
off (disconnect) the NCL process from the NDB:

S&NDBCLOSE dbname

The &NDBCLOSE verb disconnects the NCL process from the nominated NDB, if it is
connected (signed on).

All storage associated with the process is freed. This includes storage for defined
formats (&NDBFMT), sequences (&NDBSEQ), and scan result lists (&NDBSCAN).

&NDBCLOSE is analogous to the &FILE CLOSE verb.

Work with NDBs

You can use NCL verbs to add records to and update, delete, and retrieve them from an
NDB.

Chapter 17: Using &NDB Verbs 319

Work with NDBs

Add Records to an NDB

The &NDBADD verb is used to add records to an NDB. The fields for the new records
must be named on the &NDBADD statement, along with their values. Not all fields need
to be supplied. For the database manager, only those fields with the attribute
NULLFIELD = NO need be supplied-this includes the sequence key, if one is defined.

If you only need to supply a few fields on the &NDBADD statement, code it as follows:

SNDBADD dbname DATA namel = valuel name2 = value2 ...

If you need to supply a large number of fields, or you are not sure of the exact content
of the new record (for example, table driven systems), the second format of the
&NDBADD verb can be used:

&NDBADD dbname START

&NDBADD dbname DATA namel = valuel
&NDBADD dbname DATA name2 = value2
&NDBADD dbname DATA name3 = value3
&NDBADD dbname DATA name4 = value4d

&NDBADD dbname END
This syntax allows a record of any length to be created.

The fields need not be in any order, and the collection of &NDBADD statements need
not be adjacent. For example, a loop could be used, with complex substitution, to build
the list of field names and values:

SNDBADD MYNDB START
& =1
S&DOWHILE &I LE &NFLDS
&ALUE = &NDBQUOTE &FV&I
&NDBADD MYNDB DATA &FN&I = &VALUE
& =681 +1
&DOEND
S&NDBADD MYNDB END -* this statement calls the DBMS

In this example, you loop through a table of field names and values, adding each field.

Following the &NDBADD, or &NDBADD END, if you are using START/DATA/END, the
&NDBRC system variable contains 0 if no errors were encountered. If not 0, an error
response indicates the problem, and &NDBERRI might have additional information. An
error message is also displayed unless &NDBCTL MSG=NO is in effect.

If the response is 0, &NDBRID contains the RID assigned to the new record. This RID can
be used in other &NDB statements to refer to the new record.

320 Network Control Language Programming Guide

Work with NDBs

Update Records in an NDB

A record in an NDB can be updated using the &NDBUPD verb. Unlike the &FILE PUT
verb, an &NDBUPD verb only updates the nominated fields. All other fields retain their
existing value. The &FILE PUT verb replaces the entire record.

The RID(s) of the record(s) to be updated must be known. Normally, the RID is
determined by a preceding &NDBGET or &NDBSCAN.

To update just a few (fixed amount) fields, code:

SNDBUPD dbname RID=rid DATA namel = valuel name2 = value2

where namel, name2, ... are the names of the fields to be updated, and valuel, value2,
... are the values.

If you need to update a large number of fields, or you are not sure of the exact content
of the update, an alternative format of the &NDBUPD verb can be used:

SNDBUPD dbname RID=n START
SNDBUPD dbname DATA namel = valuel

&NDBUPD dbname DATA name2 = value2
&NDBUPD dbname DATA name3 = value3
S&NDBUPD dbname DATA name4 = value4

&NDBUPD dbname END
This syntax allows any number of fields to be updated.

The fields need not be in any order, and the collection of &NDBUPD statements need
not be adjacent. For example, a loop could be used, with complex substitution, to build
the list of field names and values:

&NDBUPD MYNDB RID=S&UPDRID START
& =1
&DOWHILE &I LE &NFLDS
&NDBUPD MYNDB DATA &FN&I = &VALUE
& =& +1
&DOEND
&NDBUPD MYNDB END -* this statement calls the DBMS

In this example, we loop through a table of field names and values, updating each
nominated field.

Note: Fields defined with UPDATE=NO can be specified in the update list, as long as the
same value as is currently in the record is supplied.

Chapter 17: Using &NDB Verbs 321

Work with NDBs

A field that is to be set to null (not present) can be represented by coding:

fieldname = &NULL

where &NULL is an undefined variable. If the field definition has NULLFIELD=NO, an
error response will be given.

Following the &NDBUPD or &NDBUPD END, if you are using START/DATA/END, the
&NDBRC system variable contains 0 if no errors were encountered. If not 0, an error
response indicates the problem, and &NDBERRI might have additional information. An
error message is also displayed unless &NDBCTL MSG=NO is in effect.

If the response is 0, &NDBRID contains the RID that was supplied on the &NDBUPD verb.

Delete Records from an NDB

To delete records from an NDB, use the &NDBDEL verb. The RID(s) of the record(s) to be
deleted must be known. The RID is normally obtained from a preceding &NDBGET or
&NDBSCAN.

To delete a record, code:

SNDBDEL dbname RID=&rid

where &rid is an NCL variable that contains the RID.

There is no direct equivalent to the &FILE DEL KEQALL/KGEALL generic delete. However,
embedding an &NDBDEL in a loop controlled by an &NDBGET GENERIC or &NDBGET
SEQUENCE=name allows easy deletion of any group of records (particularly powerful
after an &NDBSCAN).

Example: Delete Records from an NDB

This example shows how to delete all records that have SURNAME = SMITH and STATUS
= DEPARTED.

&NDBSCAN MYNDB SEQ=S1 DATA SURNAME = SMITH AND STATUS = +
DEPARTED
&IF &NDBRC = 0 &DO
&NDBGET MYNDB SEQ=S1 FORMAT NO-FIELDS
&DOWHILE &NDBRC = 0
&NDBDEL dbname RID=&NDBRID
&NDBGET dbname MYNDB SEQ=S1 FORMAT NO-FIELDS
&DOEND
&DOEND

Following the & NDBDEL, the &NDBRC system variable is set to 0 if the delete was
successful, or 1 if no record with the supplied RID was found.

322 Network Control Language Programming Guide

Work with NDBs

Retrieve Records from an NDB

To retrieve records from an NDB, use the &NDBGET verb. There are two related verbs:

&NDBFMT, used to predefine a list of the fields to be returned by &NDBGET
&NDBSEQ, used to define a sequential read path for an NDB

You can retrieve records from an NDB in several ways:

Direct by RID, allowing EQ, GE, GT, LE, LT relationships with your RID value. This is
useful when you know the RID of the record you want.

Direct by any keyed field. The key field value of the returned record can be EQ, LE,
LT, GE, GT, or generically equal to the supplied key. If the key field is not unique,
only the record with the lowest RID for any set of records with the same key field
value can be accessed this way.

Sequentially by RID. Records are returned in ascending or descending RID sequence.
For databases without a sequence key, this is the fastest way to read the entire
database. Optionally, a starting and/or ending RID can be nominated. The last
record read can also be re-read without knowing its RID.

Sequentially by any key field (including a sequence key, if defined). Records are
returned in ascending or descending key field sequence. If the key is not unique,
RID is used to sequence records with an equal key field value. For databases defined
with a sequence key, retrieval by that field is the fastest way to read the entire
database. Optionally, a starting and/or ending key value can be nominated. The last
record read can also be re-read without knowing its RID.

Sequentially, from a list of records that passes an &NDBSCAN.
Indirectly by a keyed field where its value is stored in another record in the NDB.

You can also retrieve statistical information about any key field (also known as a
histogram).

More information:

Scan Processing (see page 345)

Chapter 17: Using &NDB Verbs 323

Work with NDBs

Define Fields to Return (&RNDBFMT)

When retrieving records from an NDB, it is likely that not all the fields in a record are
needed. Also, it might be desirable to return the fields in NCL variables with different
names. The &NDBFMT verb lets you define any number of named formats, that can be
nominated on an &NDBGET statement, referring to the same NDB. The nominated
format determines which fields will be returned, and the names of the NCL variables
that will receive the values.

The defined format can request that all fields defined in the database be returned
(ALL-FIELDS), or that all fields defined as keyed be returned (KEY-FIELDS), or that no
fields be returned (NO-FIELDS) (useful for just checking for existence of a record), or that
a list of nominated fields be returned, optionally in NCL variables with a different name.

Note: A format can also be specified directly on the &NDBGET statement, but this is not
recommended, particularly if the &NDBGET statement is in a loop. The format definition
must be parsed and encoded every time the &NDBGET statement is executed.

A format stays defined until explicitly deleted (by & NDBFMT ... DELETE), or until an
&NDBCLOSE is executed for that NDB.

The following are examples of predefined formats:

&NDBFMT MYNDB DEFINE FORMAT=FMT1 DATA ALL-FIELDS
&NDBFMT MYNDB DEFINE FORMAT=FMT2 DATA NO-FIELDS
&NDBFMT MYNDB DEFINE FORMAT=FMT3 START

&NDBFMT MYNDB DATA FIELDS

&NDBFMT MYNDB DATA SURNAME FIRSTNAME

&NDBFMT MYNDB DATA (LNAME = LASTNAME)

&NDBFMT MYNDB END

It is evident that the START/DATA/END syntax, as described under &NDBADD and
&NDBUPD, is also available when using &NDBFMT. Thus, complex variables and
open-ended formats can be defined. The START/DATA/END syntax is not available on
the & NDBGET verb. Any format defined in an &NDBGET statement must fit on the
&NDBGET statement itself.

The examples all assume predefined formats.

324 Network Control Language Programming Guide

Work with NDBs

Determine Which Fields Are Present

Since NDBs support null fields, it might be necessary to determine, when a particular
record is read, which fields are present and which are not. The MODFLD option on the
&NDBGET verb allows the use of &ZVARCNT and &ZMODFLD to access the modified

fields:

SNDBGET dbname retrieval-method format-method MODFLD=YES
&fieldl = &ZMODFLD

&field2 = &ZMODFLD

Retrieve Records Directly by RID

When you know the RID of the record that you want, perhaps from an earlier
&NDBADD, you can retrieve it by coding:

&NDBGET dbname RID=ridvalue FORMAT=fmtname
ridvalue is a variable containing an RID obtained elsewhere.

You can also code OPT=KGE, and so on, to retrieve a record with an RID satisfying the
coded option. For example, OPT=KGT returns the record with the next-highest RID than
the value passed. It is possible to simulate sequential reading by RID using this
technique.

Retrieve Records by Key Field

When you know the value for a key field, retrieve a record matching that key field by
coding:

SNDBGET dbname FIELD=fieldname VALUE=value FORMAT=fmtname

Code OPT=KGE to return a record where the key field satisfies the coded option. For
character or HEX fields, OPT=GENERIC is also supported. Use OPT=KGT for forward, or
OPT=KLT for backward, and supply the last key field value as the search argument to
simulate sequential reading.

For key fields that are not unique, this technique always returns the record with the
lowest RID, from the set of records having the same key field value. The other records
cannot be accessed this way.

Chapter 17: Using &NDB Verbs 325

Work with NDBs

Read Sequentially by RID

When the entire database, or a large portion of it, must be read sequentially, and the
order of returned records is unimportant, the following technique should be used.

&NDBSEQ dbname DEFINE SEQ=SEQ1l RID
&NDBGET dbname SEQ=SEQ1 FORMAT=fmtname
&DOWHILE S&NDBRC = 0
process record
&NDBGET dbname SEQ=SEQl FORMAT=fmtname
&DOEND

The &NDBSEQ statement sets up a sequential retrieval definition, that can be used on
an &NDBGET statement to retrieve records sequentially by RID. By default, the options
SKIP=+1 and DIR=FWD are assumed on the &NDBGET, so the database is read from
lowest RID to highest RID.

Options on the &NDBSEQ statement allow specification of a low and high RID.

If the database has a sequence key, the next method will perform better.

Retrieve Records Sequentially by Key Field

When you want to retrieve records by any key sequence, the following technique can be
used:

&NDBSEQ dbname DEFINE SEQ=seqname FIELD=keyfieldname +
FROM=fromvalue TO=tovalue
SNDBGET loop as coded in previous example.....

This use of &NDBSEQ and & NDBGET allows sequential retrieval by any key field, and, for
non-unique key fields, records with the same key field value are returned in RID
sequence within the value.

The FROM and TO operands on &NDBSEQ are optional. If omitted, the lowest (FROM) or
highest (TO) key values are used. For non-unique key fields, VALUE=value can be coded
to indicate the from and to values are the same. This is useful when you want to read all
records with the same non-unique value. For character and HEX fields, GENERIC=value
can be coded to indicate the range is to cover all records with that generic key value.

Retrieve Records Indirectly by Key Field Stored in Another Record

If the NDB has multiple record types (see page 291), the key identifying the desired
record is not always known immediately. The identifying key might be stored in the field
of another record.

For example, if the NDB contains an ordering system, it might be necessary to access a
customer record, given only an order number, the order record of which contains a key
identifying a separate customer record.

326 Network Control Language Programming Guide

Work with NDBs

NDBs allow this type of access through the .LINK option of the &NDBGET/&NDBFMT
verbs. The technique is:

&NDBGET dbname RID=record ID FORMAT FIELDS .LINK +
(FROM=fldname TO=keyed-fieldname) FIELDS formatlist

Up to 16 different records can be accessed in the one &NDBGET statement using linking;
that is, one primary and up to 15 secondary records.

Any access method can be used for retrieving the first record. The retrieval method for
subsequent records is equivalent to an OPT=KEQ get.

Retrieve Keyed Field Statistics (Histogram)

All keyed fields in an NDB (except the sequence key) contain statistical information on
the number of records that have a particular unique key value.

The KEY option of &NDBGET and &NDBSEQ allow retrieval, not of a record, but of a key
value and record count. Thus, statistical information can be obtained. This is very fast, as
no data is accessed. When reading the NDB in this way, the format specified on
&NDBGET is completely ignored. (You can, for example, code FORMAT = NO.) Instead,
the data is returned in two NCL variables:

SNDBKEYVALUE keyed field value

SNDBKEYCOUNT keyed field record count

For example, to find out how many records have field surname with a value of 'Smith":

&NDBGET dbname KEY=SURNAME VALUE='SMITH' FORMAT=NO

To get a sequential breakdown of a key field's contents and counts:

&NDBSEQ dbname DEFINE SEQ=S1 KEY=SURNAME
&NDBGET dbname SEQ=S1 FORMAT=NO
&DOWHILE &NDBRC=0
SWRITE &NDBKEYVALUE &NDBKEYCOUNT
&NDBGET dbname SEQ=S1 FORMAT=NO
&DOEND

Chapter 17: Using &NDB Verbs 327

Notes on Sequential Retrieval

Notes on Sequential Retrieval

The &NDBSEQ verb and the &NDBSCAN verb let you specify a name for a sequence.
Unlike the &FILE verbs, an NCL process can have any number of concurrent sequences
defined on any number of databases. Positioning is handled internally, with no need to
use accompanying number of VSAM strings.

The only overhead is an internal NDB control block that maintains positioning.

Performing a direct get does not destroy any positioning maintained by active
sequences.

KEEP=YES on &NDBSEQ

By default, a sequence is automatically deleted when an end-of-file response is returned
(&NDBRC = 2). This is normally what is wanted, and saves you coding an &NDBSEQ
DELETE. If, however, you want the sequence to stay defined, you can code KEEP=YES on
the & NDBSEQ DEFINE, and the sequence stays defined until explicitly deleted, or the
NDB is closed.

&NDBSEQ RESET

A defined sequence can also be reset, allowing you to restart the sequence at any point.
For example, after reading forward, and getting an EOF response, you are positioned
after the last record in the sequence. Forward gets will continue to return the EOF
response. To re-read from the beginning, issue an &NDBSEQ RESET as shown:

SNDBSEQ dbname RESET SEQ=segname

Optionally, you can nominate a key value to reposition to. The next get will return the
first record with the matching, or higher, or lower, if no match, and depending on the
direction:

SNDBSEQ dbname RESET SEQ=seqname REPOS=value

328 Network Control Language Programming Guide

Notes on Sequential Retrieval

&NDBGET DIR= and SKIP=

When reading sequentially, the &NDBGET verb lets you specify the direction of retrieval,
FWD or BWD, and a skip amount.

The default is DIR=FWD and SKIP=+1, which causes the next-higher key record to be
read.

SKIP=0 causes a re-read of the last record read in that sequence. This is useful where
you are retrieving only a subset of fields, and sometimes need to obtain extra fields. You
need not specify a direct get by RID.

A skip amount (n) greater than 1 will allow you to skip n-1 records on each &NDBGET.
This is extremely useful when extracting samples from a database, and especially useful
when scrolling in selection lists (see the following examples).

A negative skip amount causes the specified or defaulted direction to be inverted. For
example, SKIP=-5 is equivalent to SKIP=5 with DIR=BWD.

Specifying DIR=BWD allows a backward read to be performed. Thus, when you need to
retrieve records in descending key sequence, DIR=BWD can be used.

Read by Sparse Keys

When defining a sequence on a key field that is defined (or defaulted) with
NULLFIELD=YES, it is possible that some records do not contain the field. These records
will not be returned when reading by that sequence. This is because no index record is
built for fields not present in a data record. This can be especially useful when the
database contains multiple record types, as illustrated in one of the following examples.

Chapter 17: Using &NDB Verbs 329

Notes on Sequential Retrieval

Example 1: Read by Sparse Keys

This example shows how two sequences defined on a single database, where the logical
record types are disjoint, using different key fields, can perform a master/transaction
update.

&NDBSEQ MYNDB DEFINE SEQ=MAST FIELD=MASTKEY
&NDBSEQ MYNDB DEFINE SEQ=TRAN FIELD=TRANKEY
&GOSUB .READMAST -* read mast, set &MASTKEY to 999999 if
-* eof
&GOSUB .READTRAN -* read tran, set &TRANKEY to 999999 if
-* eof
SDOWHILE &MASTKEY.&TRANKEY NE 999999.999999
&IF S&MASTKEY = &TRANKEY &DO
...process match
&GOSUB .READTRAN
&DOEND
&ELSE &IF &MASTKEY GT &TRANKEY &DO
...process unmatched transaction
&GOSUB .READTRAN
&DOEND
&ELSE &DO
...process unmatched master
&GOSUB .READMAST
&DOEND
&DOEND

Example 2: Read by Sparse Keys

This example shows how to use SKIP= to extract a subset of a database, perhaps for
statistical analysis.

&NDBSEQ MYNDB DEFINE SEQ=S1 RID
&NDBINFO MYNDB DB -* obtain # records in DB
&SKIP = &NDBDBNRECS / 1000 -* determine skip to get 1000
-* recs
&NDBGET MYNDB SEQ=S1 SKIP=&SKIP FORMAT ALL-FIELDS
&DOWHILE &NDBRC = 0
...write sampled record.
&NDBGET MYNDB SEQ=S1 SKIP=&SKIP FORMAT ALL-FIELDS
&DOEND

330 Network Control Language Programming Guide

Obtain Information About an NDB

Example 3: Read by Sparse Keys

This example shows how to process a selection list using a sequence and SKIP/DIR.

&NDBSEQ MYNDB DEFINE FIELD=SURNAME KEEP=YES
&SKIPVAL = 1 -* initial skip
.LOOP &GOSUB .BUILD PANEL -* builds panel.
-* position now is last record on screen
&PANEL XYZPANEL
&IF &INKEY = PFO8 &THEN &DO
&SKIPVAL = +1 -* skip to next record after bottom

&GOTO .LOOP
&DOEND
&ELSE &IF &INKEY = PFO7 &DO

&SKIPVAL = (0- (&LUROWS*2))
-* skip top + back 1
-*screens length
&GOTO .LOOP
&DOEND

Obtain Information About an NDB

The &NDBINFO verb lets you obtain information about the current state of an NDB, or
any of the defined fields in an NDB.

To obtain information about the database, code:

SNDBINFO dbname DB

This statement sets several user NCL variables, prefixed by &NDBDB, with database
information.

For more information about the fields, see the &NDBINFO verb description in the
Network Control Language Reference Guide. Useful fields are:

&NDBDBNRECS

Contains the current number of records in the database.
&NDBDBNFLDS

Contains the current number of fields defined in the database.
&NDBDBVKL

Contains the VSAM key length of the database.
&NDBDBVRL

Contains the VSAM maximum record length of the database.

Chapter 17: Using &NDB Verbs 331

Obtain Information About an NDB

These fields can be used to determine if two NDBs are compatible (for example, for
backup purposes).

The &NDBINFO verb also allows retrieval of information about fields defined in the
database. Information can be retrieved about a field with a specific name, or by relative
field number, where the number is from 1 to the value returned in &NDBDBNFLDS. This
relative number is not fixed, but changes as field definitions are added and deleted. For
this reason, inquiry by number should only be used in a loop (from 1 to &NDBDBNFLDS),
with the database open EXCLUSIVE.

To retrieve information about a specific field, where the name is known, code:

SNDBINBFO dbname NAME=fieldname

To retrieve information about relative field number n, code:

&NDBINFO dbname NUMBER=n

In both cases, information is returned in several user NCL variables, prefixed by
&NDBFLD. Following are several useful variables.

For more information about the returned variables, see the description of the
&NDBINFO verb in the Network Control Language Reference Guide.
&NDBFLDNAME

Contains the name of the field (useful when retrieving by relative number)
&NDBFLDFMT

Contains the format of the field, for example, CHAR
&NDBFLDKEY

Contains the key option for the field, for example, UNIQUE
This information can be used in a table-driven database query and update program to

edit or display data without needing to code specific details about each NDB. It is also
useful for unload and reload programs.

332 Network Control Language Programming Guide

Change NDB NCL Processing Options

Change NDB NCL Processing Options

The &NDBCTL verb is used to alter processing options associated with the executing NCL
process. Options that can be changed are:

Issuing messages on error conditions. By default (MSG=YES), a message is sent to
the environment the NCL procedure is running under. For a normal NCL procedure,
this is the OCS window. The messages are also logged. By specifying MSG=LOG,
error messages are only sent to the activity log.

By specifying MSG=NO, no error messages are issued. Only database integrity
messages that are sent to monitor receivers are issued.

Handling database error conditions. By default (ERROR=ABORT), a response code
greater than 29 (in &NDBRC) causes the process to be terminated with an error
message.

By specifying ERROR=CONTINUE the process retains control, but must check
&NDBRC for error responses.

&NDBOPEN is always processed as if &NDBCTL ERROR=CONTINUE is in effect,
except for response 34 (already open). The same applies to &NDBCLOSE, except for
response 35 (not open).

The format that dates can be entered (by &NDBADD/&NDBUPD, and & NDBSCAN),
and returned (by &NDBGET). By default (DATEFMT=*), the user's UAMS language
code, or, if no specific language code is in the user definition, the system language
code, determines whether dates can be entered in DD/MM/YY (UK or DATE4), or
MM/DD/YY (US or DATES) format.

You can specify DATEFMT values of DATE1 to DATE10, UK (=DATE4), or US
(=DATES5), or * (meaning as described previously).

The need to quote values for characters, hexadecimal (FMT=HEX), hexadecimal
numbers (FMT=NUM BASE=HEX) and date format data using the QUOTE operand.
By specifying QUOTE=NO (the default) these data types need not be quoted and
embedded blanks in NCL variables in free-form text are ignored.

By specifying QUOTE=YES all of the previously listed data types must be quoted and
embedded blanks are treated as real blanks, causing &NDBQUOTE to force-quote
all non-null data.

Tracing of the parsing of free-format text. By default (TRACE=NO), no trace
messages are produced.

By specifying TRACE=YES, a message is produced for each token in the free-form
text. This message is subject to the &NDBCTL MSG= setting. The first 20 characters
of each token are traced.

Dumping a scan action table. By default (SCANDEBUG=NO), no dump is produced.
By specifying SCANDEBUG=YES, a dump of the generated scan action table is
produced. At completion of the scan, a second dump shows record counts.

Chapter 17: Using &NDB Verbs 333

Put It All Together—Unload or Reload an NDB

These options allow you to easily develop applications using NDBs, and to make the
procedures robust.

For example, while developing code, use MSG=YES and ERROR=ABORT. This will give
useful messages and stop a procedure at the error point. From time to time, TRACE=YES
can be used to track obscure syntax errors in free-form text (particularly scan
expressions, and problems caused by failing to quote data containing delimiter
characters).

When the code is finished, specifying MSG=NO (or MSG=LOG), and ERROR=CONTINUE
allows the procedures to handle unexpected errors gracefully.

The DATEFMT= option lets you control the input and formatting of dates. The default
behavior (honoring the user or system date format) is normally the best setting.
However, when unloading or reloading data, &NDBCTL DATEFMT=NO lets you be
independent of the current language settings.

Put It All Together—Unload or Reload an NDB

The following examples illustrate many of the points covered previously. In these
examples, a simple pair of procedures is developed to unload and reload logically a
database.

These procedures unload any NDB to a VSAM ESDS. The unloading is in RID sequence,
unless the database has a sequence key, in which case that key sequences the
unloading.

Note: This procedure is described to illustrate some of the features of NDBs. It is not
recommended as the best way to unload files. The command NDB UNLOAD unloads an
NDB in the same format as the following procedure. The NDB ALTER command can be
used to speed up a reload.

Define an Unload File

A file to hold the unloaded data is needed. This example uses a VSAM ESDS. The
following definition could be used:

DEFINE CLUSTER (NAME(NDB.UNLOAD) -
NIXD -
RECORSIZE(40 500) -
CISZ(4096))

This data set must be allocated to your product region:

ALLOC DD=UNLOAD DSN=NDB.UNLOAD

334 Network Control Language Programming Guide

Put It All Together—Unload or Reload an NDB

The data set must be made available to NCL, via the UDBCTL statement. When an empty
ESDS is opened, a dummy record is written. Our reload program must skip this record.

UDBCTL OPEN=UNLOAD ID=* BUFND=5

The unload can now be performed.

Open the Database and Output Unload File

The unload procedure must now open the database, and the destination unload file.
Assume that the procedure is invoked from OCS with the name of the NDB and the
name of the unload file:

$NDBUNLD dbname esdsname

Open the database in exclusive mode, to prevent other users updating it while it is being
unloaded:

&DBNAME = &1 -* save db name to unload

SUNNAME = & -* save esds name

&NDBOPEN &DBNAME EXCLUSIVE

&IF SNDBRC NE 0 &THEN &GOTO .OPENERROR -* unable to open
&FILE OPEN &UNNAME

&IF &FILERC NE 8 &THEN &GOTO .OPENERROR -* cant add recs

To preserve any lower-case data, issue &CONTROL NOUCASE:

&CONTROL NOUCASE -* don't fold lower case data

Unload Database Level Information

The first step is to write information about the database. You should write a record
identifying this as an NDB unload data set, and then write the information returned
from an & NDBINFO DB. Use a record type of 01 for the header, and 02 for the database
information:

&FILE ADD 01 NDB UNLOAD OF &DBNAME &DATE7 &TIME

&NDBINFO &DBNAME DB

&FILE ADD 02 S&NDBDBNAME&NDBDBVKL &NDBDBVRL +
SNDBDBNFLDS&NDBDBNRECS&NDBDBNRID

This information will be used by the reload program to verify the key and records
lengths of the destination NDB.

Chapter 17: Using &NDB Verbs 335

Put It All Together—Unload or Reload an NDB

Obtain and Unload Field Level Information

To unload and reload the data, you need to know the names of the fields you are
unloading, and their attributes. Use &NDBINFO NUMBER= to extract field level
information. This information (record type 10) will be written, and vartable built for use
when processing data records.

To allow the reload program to easily perform field-level deletion, and so on, you should
also write the relative field number as well as the field name when you unload.

Before reading the field information, set up parameters for the sequence that you will
define later, defaulting it to RID. If you encounter a sequence key definition, alter the
sequence parameter to FIELD=fieldname.

At the end of the field definitions, write a record type 11 to indicate the end:

&VARTABLE ALLOC ID=FTAB KEYFMT=NUM DATA=1
&SEQBY = RID
&FNUM = 0
&DOUNTIL &FNUM EQ &NDBDBNFLDS
&FNUM = &FNUM + 1
&NDBINFO &DBNAME NUMBER=&FNUM
&VARTABLE ADD ID=FTAB KEY=FNUM FIELDS=DATA +
VARS=NDBFLDNAME
&IF &NDBFLDKEY = SEQUENCE &THEN &SEQBY = +
FIELD=&NDBFLDNAME
&FILE ADD 10 &FNUM +
SNDBFLDNAMESNDBFLDFMTENDBFLDKEY — +
SNDBFLDNULLF&NDBFLDNULLVENDBFLDUPD +
SNDBFLDCAPSS&NDBFLDMAXLSNDBFLDDESC +
SNDBFLDUSER1&NDBFLDUSER2&NDBFLDUSER3 +
SNDBFLDUSER4
&LOOPCTL 1000
&DOEND
&FILE ADD 11

336 Network Control Language Programming Guide

Put It All Together—Unload or Reload an NDB

Build a Format for Reading Data

To efficiently read the data, you predefine a format that contains all fields. However,
you rename each field to Fnnnn on retrieval. This prevents any clashes with the control
fields, if, for example, the database contains a field called I. You also ask that null fields
not be returned, to save processing overheads.

You then loop through the vartable built previously, to build a format using
START/DATA/END:

& =1

&NDBFMT &DBNAME DEFINE FORMAT=UFMT START

&NDBFMT &DBNAME DATA FIELDS

&DOWHILE &I LE &FNUM
&VARTABLE GET ID=FTAB KEY=I FIELDS=DATA VARS=FNAME
&NDBFMT &DBNAME DATA (F&I = &FNAME NULLFIELD=NORETURN)

& =6&I +1
&LOOPCTL 1000
&DOEND

&NDBFMT &DBNAME END

Define the Sequence for Reading

Unload the Data

The sequential retrieval path must be defined. The &NDBSEQ verb is used to accomplish
this:

&NDBSEQ &DBNAME DEFINE SEQ=USEQ &SEQBY

The type of sequence, RID or FIELD=sequence key, was set when you read the field
definitions.

You are now in a position to unload all the data in the NDB.
First, write a header record for the data (type 20).

Write out each record as follows:

m A header record, containing the RID and the number of non-null fields in this
record. (The RID is only for information, as the reload assigns new RIDs). (Type 21).

m nfield records, one for each non-null field in the NDB data record (type 22). These
records contain the relative field number, field name, and field value.

m Atrailer record, indicating the complete NDB data record has been written (type
23). You include the number of non-null fields in the record.

Chapter 17: Using &NDB Verbs 337

Put It All Together—Unload or Reload an NDB

At the end of all data records, a type 29 record indicates the end of the data. This record
contains the count of the number of logical records unloaded.

To protect the unloaded data from the current language (and therefore date) settings,
issue an &NDBCTL DATEFMT=NO to force dates to be returned in YYMMDD format:

&NDBCTL DATEFMT=NO

The data unload code is as follows:

&FILE ADD 20 -* header for data portion
&NRECS = 0 -* num records unloaded
&NDBGET &DBNAME SEQ=USEQ FORMAT=UFMT MODFLD=YES

-* read a record, return the fields modified in ZMODFLD,

-* ZVARCNT

&DOWHILE &NDBRC = 0 -
&NRECS = &NRECS + 1 -
&FILE ADD 21 &NDBRID &ZVARCNT -
& =1 -
&DOWHILE &I LE &ZVARCNT -

&FX = &SUBSTR &ZMODFLD 2 -

&ARTABLE GET ID=FTAB + -

KEY=FX +
FIELDS=DATA +
VARS=FNAME
&FILE ADD 22 &FX &FNAME &FX -

&LOOPCTL 1000 -
&DOEND -
&FILE ADD 23 &ZVARCNT -*

*
*
& =8I +1 -*
*
*

till eof

1 more record
record header

field index counter
for all defined
fields

get unique field
number

and associated
field name

write field
num/name/value
next field
prevent blowup
end all fields
end record

&NDBGET &DBNAME SEQ=USEQ FORMAT=UFMT MODFLD=YES

&LOOPCTL 1000 ¥
&DOEND _k
&FILE ADD 29 &NRECS -*

get next

prevent blowup

end record loop
num logical records

This code completes the unloading of data. All that is left is to close the files:

&NDBCLOSE &DBNAME
&FILE CLOSE &UNNAME

Other people can now use the database. The unloaded data can be processed as

necessary, for example, copied to tape.

This example procedure is in the NCL distribution library as member SNDBUNLD. The
code is as shown previously. See the source for more information.

338 Network Control Language Programming Guide

Put It All Together—Unload or Reload an NDB

Unload Subsets Using Sparse Keys

If an NDB contains disjoint record types, using keys on fields that are not in all records,
you can unload just one record type by using one of those keys as the unload sequence.
This can be useful for extracting subsets of the database.

Reload an NDB from an Unload File

Having unloaded an NDB, you might want to reload it, possibly to restore the NDB to a
previous state, or to take it to another system.

It is assumed that the reload is to a new NDB that has been defined with IDCAMS,
allocated to your product region, and an NDB created.

For the purposes of the example, only minimal error checking is performed. The sample
procedure can be enhanced in many ways. Some of these are:

m Allow merging of the unload data into an existing NDB

m Display a field selection list and allow field attribute changes, field renaming, and
field deletion

m Subset data selection, and so on

m Using LOAD MODE to greatly speed up the load. This requires use of NDB ALTER to
build keys.

Chapter 17: Using &NDB Verbs 339

Put It All Together—Unload or Reload an NDB

Open the Database and the Input Unload File

The procedure must first open the database, and the input unload file. It is assumed
that the procedure is invoked from OCS with the name of the NDB and the name of the
unload file:

$NDBRELD dbname esdsname

To speed up the reload, start the NDB in DEFER mode. This mode inhibits the database
manager from flushing buffers after each &NDBADD, at the expense of an unusable
database if the system fails while open this way. To set DEFER mode, the database must
have been opened by the UDBCTL command with the options LSR and DEFER. The
following NDB command causes deferred 1/0:

NDB START &DBNAME DEFER
Note: The NDB START command can be issued at any time.

Set & CONTROL NOUCASE to protect lower case data:

&CONTROL NOUCASE

Open the database in exclusive mode, to prevent other users accessing it while it is
being reloaded:

&DBNAME = &1 -* save db name to reload
SRLNAME = &2 -* save esds name
SNDBOPEN &dbname EXCLUSIVE

&IF &NDBRC NE 0 &THEN &GOTO .OPENERROR -* unable to open
&FILE OPEN &RLNAME

&IF &FILERC GT 8 &THEN &GOTO .OPENERROR -* unable to open

You must now verify the input file. Read the initial load record (and ignore it), and the
second record, which should be the header record:

&FILE GET SEQ ARGS -* should be initld record
&IF &FILERC NE O &THEN &GOTO .READERR
&FILE GET SEQ ARGS -* should be 01 ndb

&IF &FILERC NE O &THEN &GOTO .READERR
&IF &1.&2.&3.8&4. NE 01.NDB.UNLOAD.OF. +
&THEN &GOTO .BADFILE
&INDBNAME = &5
&INULDATE = &6
&INULTIME = &7
SWRITE RELOAD FROM BACKUP OF &INDBNAME TAKEN &INULDATE +
&INULTIME

340 Network Control Language Programming Guide

Put It All Together—Unload or Reload an NDB

Check Database Attributes
You must now ensure that the destination database can support the reload. Check the
following:
m New database VSAM key length is GE unload NDB key length.
m New database is empty of both fields and records.
m New database is freshly created, that is, next RID is 1. (A database emptied by
deleting all records, and deleting all field definitions is not suitable).

These tests could be relaxed in a full-function reload.

The code to perform the verification is as follows:

SNDBINFO &DBNAME DB -* get info about dest
&FILE GET SEQ ARGS -* read next record
=% (02)
&IF .&1 NE .02 &THEN &GOTO .READERR -* validate
&IF SNDBDBVKL LT &3 &THEN &DO -* dest keylen short
SWRITE destination key length short, load aborted
&END 16
&DOEND
&IF S&NDBDBNFLDS NE © &THEN &DO -* dest db has fields

S8WRITE destination database has fields defined, +
load aborted
&END 16
&DOEND
&IF SNDBDBNRECS NE O &THEN &DO -* dest db has records
S8WRITE destination database has records present, +
load aborted
&END 16
&DOEND
&IF SNDBDBNRID NE O &THEN &DO -* dest not just
-* created
S8WRITE destination database not freshly created, +
load aborted
&END 16
&DOEND

Chapter 17: Using &NDB Verbs 341

Put It All Together—Unload or Reload an NDB

Build Field Definitions

The next records in the unload file are the field definition records. Read them and build
field definitions in the new NDB.

Note: Because &10 contains the field maximum length, it is not used.
&FILE GET SEQ ARGS -* read next record

At this point, changes to field attributes could be processed. For example:

&IF .&3
&IF .&3

.SURNAME &THEN &5 = UNIQUE
.DOB &THEN & = YES

Also, the relative field number used during unload is available in &2. This can be used
during data reloading to alter field values, and so on.

At the end of this step, the new database has all the fields defined.

Load the Data

You can now reload the data records. Each NDB record is represented by one type 21
record, n type 22 records, one for each non-null field, and one type 23 record.

342 Network Control Language Programming Guide

Put It All Together—Unload or Reload an NDB

Use &NDBADD START/DATA/END to load the records:

&FILE GET SEQ ARGS -* should be type 20
&IF .&1 NE .20 &THEN &GOTO .READERR -* bad
SNLOAD = 0 -* num recs loaded
&0K = YES -* flag
&DOUNTIL &K = NO -* rest of DB
&FILE GET SEQ ARGS -* get a record
&IF .&1 = .22 &THEN &DO -* field (most common)
-* see note (1) -* poss changes to
-* data
SNDBADD &DBNAME DATA +
& = &4 -* add the data
&DOEND
&ELSE &IF .&1 = .21 &THEN &DO -* start of record
SNDBADD &DBNAME START -* start add of record
&DOEND
&ELSE &IF .&1 = .23 &THEN &DO -* end record
SNDBADD &DBNAME END -* add the record
SNLOAD = &NLOAD + 1 -* bump num recs
&DOEND
&ELSE &0K = NO -* otherwise exit
-* until
&LOOPCTL 1000 -* prevent blowups
&DOEND

&IF .&1 NE .29 &THEN &GOTO .READERR -* unrecognized record
&IF & NE &NLOAD &THEN &GOTO .CNTERR
-* record cnt mismatch

Note: Special code, to alter or skip certain fields for example, can be added here.

This completes the reload. All that is left is to close the files:

&NDBCLOSE &DBNAME
&FILE CLOSE &RLNAME

To flush the database buffers, and protect the reload, re-issue the NDB START with the
NODEFER option:

NDB START &DBNAME NODEFER

This example procedure is in the NCL distribution library as member SNDBRELD. The
code is basically as shown previously. See the source for more information.

Chapter 17: Using &NDB Verbs 343

Chapter 18: Using &NDBSCAN Statements

This section contains the following topics:

Scan Processing (see page 345)

Control &NDBSCAN Resource Usage (see page 347)
Scan Expressions (see page 348)

SQL-like Operators (see page 355)

Efficient Use of &NDBSCAN (see page 356)

Scan Processing

Note: For more information about the steps taken to process an &NDBSCAN statement,
see the &NDBSCAN verb description in the Network Control Language Reference Guide.

A scan has the following processing steps:

1. The scan request is parsed, and an action table built. The action table is then
optimized.

2. The action table is processed and, for each action that can be processed using keys,
the key records in the database are used to build intermediate results.

3. If part of the request could not be processed using keys, the final result list (from
Step 2) is processed by reading records, and each record is validated against the
scan criteria.

If none of the criteria could be processed using keys, the entire database is
scanned.

4. If asort was requested, the sort keys are extracted from passing records, and an
internal sort is performed.

The final result list is built. Sorting is done during Step 3 or 4 as part of its
processing.

These steps seem complex, but no knowledge of the internal processing is necessary to
use &NDBSCAN. However, when performance is an issue, use of keyed fields becomes
important.

Display the Generated Scan Action Table

The &NDBCTL statement provides an operand that lets you obtain a display of the
generated scan action table, both before the scan is processed, and after. This scan
debug information can be quite useful for determining why a scan request does not
return the expected records.

Chapter 18: Using &NDBSCAN Statements 345

Scan Processing

To obtain this display, code the following statement prior to the &NDBSCAN request:
&NDBCTL SCANDEBUG=YES

&NDBCTL MSG=YES or MSG=L0G must be in effect, otherwise no messages are returned.

The first part of the displayed table represents the parsed scan request. Each relation in
the request, for example, X =Y, generates a line in the table. All generic or range field
names are expanded to the full list, and actions to combine previous results, using AND,
OR, or NOT, are shown. The text of the &NDBSCAN request is also displayed.

The second part of the table, produced after the scan completes, shows how many
records passed each phase, and whether a scan of the actual data was required.

Process Scan Results

An &NDBSCAN statement can generate a list of the records that pass the supplied
criteria. The list is optional, and, if it is not needed, just the number of records and the
RID of the first passing record can be returned.

This list is treated like a sequence, defined by an &NDBSEQ statement. Records can be
read using the &NDBGET statement, using SEQUENCE=name, where name is the same
name as specified on the &NDBSCAN SEQUENCE=name.

The list can be read forward or backward, and records can be skipped.

The order of records returned is undefined, unless SORT=expression was specified on
the & NDBSCAN statement. This is to allow the scan request to be optimized. If the scan
was sorted, the records are ordered based on the nominated sort fields, when retrieving
FWD.

A sorted scan list that has exactly one full-field sort key, can be repositioned by
&NDBSEQ RESET REPQOS, and, as an extra option available only to sequences built by
&NDBSCAN, can be repositioned to the record having a specific RID.

The &NDBSCAN statement lets you specify KEEP=YES, to prevent the scan result list
being deleted when an EOF response is returned by & NDBGET.

346 Network Control Language Programming Guide

Control &NDBSCAN Resource Usage

Differences Between &NDBSCAN Sequences and &NDBSEQ Sequences

There are some important differences between sequences defined by &NDBSEQ, and
sequences built by &NDBSCAN:

m &NDBSEQ-defined sequences do not have an in-storage list of records associated
with them. Thus, skipping forward and backward automatically takes into account
record deletions. For example, if you are reading by RID, and you are positioned on
RID 10, a GET FWD SKIP=5 returns RID 15, assuming RIDS 11-14 all exist. If, while
positioned on RID 15, RIDs 12 and 14 are deleted, a GET BWD SKIP=5 does not
position you on RID 10, but, rather, RID 8 (assuming 8 and 9 exist).

&NDBSCAN-built sequences are represented as an in-storage list of RIDs (the actual
order depending on SORT, and so on). If the list is ordered on RID, the previous
example repositions from 10 to 15, and back to 10, as SKIP=n instructs &NDBGET to
skip over n-1 entries in the list. Only when the target RID has been deleted, does
&NDBGET proceed to the next RID in the list, until a non-deleted record is found.

m &NDBSEQ-defined sequences each take a small, fixed amount of storage to hold
information about the sequence.

&NDBSCAN-built sequences take storage proportional to the number of matching
records to hold the list. Thus, you should try to minimize the number of concurrent
scan sequences in use, particularly if using &NDBSCAN in an EASINET procedure.

Control &NDBSCAN Resource Usage

Since &NDBSCAN can perform large amounts of /0O, or use large amounts of storage,
particularly when sorting, there are four limits that prevent any one scan request from
tying up excessive resources. They are:

m Logical VSAM I/0O limit
m Working storage limit
m Elapsed time limit

®m Passing records limit

These limits are specified using the SYSPARMS command. Each limit can have a default
value, to be applied if an &NDBSCAN does not specify an overriding value, and a
maximum limit, that is always used to constrain the maximum value which can be coded
in any &NDBSCAN.

The &NDBSCAN statement lets you specify overriding values for any of the limits. These
values replace the SYSPARM-specified defaults for that scan. If any supplied value
exceeds the SYSPARM-specified maximum, the SYSPARM maximum is used.

An &NDBSCAN request that exceeds one of these limits is terminated, and a response
code, indicating which limit was exceeded, is returned. The scan debug display indicates
the limit values assigned to the scan request.

Chapter 18: Using &NDBSCAN Statements 347

Scan Expressions

Scan Expressions

A scan request contains a free form text scan expression. This expression contains:
m Fields - for example, SURNAME, DOB

m Values - for example, SMITH, 04/12/58

m Operators - for example, =, NE

m Connectors - for example, AND, OR
Parentheses can be used to group parts of the expression.

The expression can be spread across several NCL statements, using the
START/DATA/END syntax, as per the &NDBADD, &NDBUPD, and &NDBFMT statements.
This syntax also allows construction of the scan expression. This is especially useful in
table-driven systems, for example, the features table.

The expression consists of a number of scan-tests, connected by AND, OR, NOT, and
parentheses. Each test can:

m Test a field, or list of fields (including generic and range field names), against a
value, list of values, or generic value(s) or against other fields. This is called a field to
field compare.

m The comparison can use the standard relational operators, for example, EQ, NE, GT,
and =, >, as well as, special operators:

— PRESENT-to test for presence
- ABSENT-to test for absence
- LIKE-to perform a pattern match

— CONTAINS-to test, for character fields, for one field containing a value, or other
field value

m SQL-like capabilities exist that allow nested scans, where field values from the inner
scans are used as input to the tests in the outer scan(s).

The following are examples of valid scan expressions:

SURNAME = SMITH AND DOB LT 600101
DESC* CONTAINS MVS

DATECLOSED ABSENT OR DATECLOSED DATEOPEN PLUS 5

NAME LIKE 'J% SMITHS'

SEX = 'F' AND (STATUS = 'SINGLE' | STATUS = 'DIVORCED')
SEX = 'F' AND STATUS = ANY 'SINGLE', 'DIVORCED'

The last two expressions are equivalent. The parentheses are required in the first of
these to bind the OR (|) tests together, as AND takes precedence over OR.

348 Network Control Language Programming Guide

Scan Expressions

Reserved Words

The syntax for a scan expression shows words such as ALL, ANY, FIELDS, and VALUES.
These words are used to indicate options in scan tests. Although it might appear that
these are reserved words, and thus cannot be used as field names, or unquoted field
values, this is not the case.

Note: For more information about the syntax for a scan expression, see the &NDBSCAN
verb description in the Network Control Language Reference Guide.

There are no reserved words in the syntax for a scan expression.

All keywords are resolved by context. That is, if a certain keyword is allowed at a point in
the expression, the presence of that keyword at that point in an expression is regarded
as being that keyword. At any other point, that keyword is regarded as a name, value,
and so on.

For example, the following are valid scan expressions. Keywords are shown in bold
typeface. (Assume that field names and so on are defined.)

FIELD ALL = VALUE ANY
ANY FIELDS VALUE, FIELD, ALL CONTAINS ALL VALUES FIELD, + VALUE, ANY

This can cause some confusion. Obviously, fields names of FIELD, ALL, and so on, are not
recommended.

When generating scan expressions dynamically, it is always a good idea to insert all the
optional keywords, to prevent a syntax error when, for example, a search value of
FIELDS is provided. For example:

&NDBSCAN ... DATA FIELD1 = &SCHVALUE

If the variable &S CHVALUE contained the characters FIELDS, without the quotes, the
scan would fail with a syntax error, as the keyword FIELDS is not followed by a field
name.

To prevent this, the previous example could be coded:

&NDBSCAN ... DATA FIELD1 = VALUE &SCHVALUE

Chapter 18: Using &NDBSCAN Statements 349

Scan Expressions

Null Fields

Null (that is, not present) fields are handled in a special way by & NDBSCAN:

m Anull field never matches a field to value test. A record with field SURNAME not
present is not equal to a supplied value, nor is it not equal to a supplied value. This
'null result’ carries through the scan action table.

m Anullfield can only be selected using the ABSENT or IS NULL operators.

This handling of null fields by &NDBSCAN is consistent with other &NDB verbs. Thus,
disjoint record types work as expected.

Field to Field Comparisons

You can compare one field with another in a record. A good example of this is finding all
records with WITHDRAWALS GT BALANCE.

Note: Field to field comparisons involve scanning records. Always try to have other
(keyed) criteria ANDed with these criteria.

When performing field to field comparisons on numeric, float or date fields, an
adjustment amount (taken as a number of days, for date format data), can be specified.
For example, the following statement matches all records where the field DATECLOSED
was greater than the field DATEOPEN plus 10 days:

DATECLOSED GT DATEOPENED PLUS 10
The amount must be an integer; floating point numbers are not supported.

When performing nested scans (sub-selects), you can perform a field-to-field
comparison when one of the fields is the current value in an outer scan. This is called a
correlated query.

Use &NDBQUOTE to Protect Special Characters

The &NDBQUOTE built-in function should be used to protect data values whenever
there is the possibility of delimiter characters (for example, =, &) being present. This
recommendation also applies to arguments supplied in a scan expression.

For example, to search for a value of A=B, use these statements:

&SCHARG = &NDBQUOTE A=B
&NDBSCAN MYNDB SEQ=S1 DATA FIELD1 = &SCHARG

Failure to quote the value results in a syntax error because the equal sign is treated as a
delimiter.

350 Network Control Language Programming Guide

Scan Expressions

Search for Lowercase Data

An NDB can store character data in lowercase. When a character field is defined,
CAPS=YES is assumed, which means that both the stored data and the key are folded to
uppercase. Two other options are available:

CAPS=NO

The data is left as is, that is, lowercase data is left lowercase, including in the key.
For example, ABC and abc are regarded as different values.

CAPS=SEARCH

The data is left as is, that is, lowercase data is left lowercase. If the data is keyed,
the key is folded to uppercase. Thus, the values ABC and abc are regarded the same
when building a key, but, when data is returned, the lowercase version is retained.

For & NDBSCAN, CAPS=SEARCH also applies to non-keyed fields for processing. That
is, when reading data records, fields defined with CAPS=SEARCH are folded to
uppercase when they are examined.

Supplied search arguments are retained in lowercase (or as entered), and are upper
cased as required (that is, when comparing to CAPS=YES or CAPS=SEARCH fields).

Note: &CONTROL NOUCASE must be in effect to preserve lowercase information
supplied on an &NDBSCAN statement.

Chapter 18: Using &NDBSCAN Statements 351

Scan Expressions

CONTAINS

The CONTAINS operator is extremely useful when scanning text in a database. When
combined with generic or range field names, a single expression can perform quite
sophisticated lookups.

Some notes about the use of CONTAINS:

m CONTAINS involves scanning records. Always try to have other criteria ANDed with
CONTAINS, to reduce the number of records that must be scanned.

m The field(s) on the left of CONTAINS are padded at each end with one blank, for the
purposes of searching. This allows words to be searched for, by providing blanks
around your search arguments, without worrying that a word at the front or back of
a field will not be matched. For example, a field value of A SENTENCE OF WORDS is
regarded as A SENTENCE OF WORDS when processed by CONTAINS. Thus, searching
for the value A will succeed, even though the data does not contain a blank in front
of the A.

m The ANY and ALL keywords allow some requirements for text to be adjacent to be
tested. For example the following statement only matches records where any one
of the fields prefixed by DESC contains both WORD1 and WORD2:

ANY FIELD DESC* CONTAINS ALL WORD1, WORD2.

If each DESC... field held a sentence, this is equivalent to asking for a sentence
containing both words.

Fields in the same record can contain the search argument(s). Thus, it is possible to
find all records where a given character field in the records is contained within
another character field.

LIKE

The LIKE operator allows pattern matching to be performed. The NOT LIKE operation
does the same, but matches records without the pattern.

The argument string for LIKE can contain any characters except for two special
characters: _ (underscore) and % (percent). These characters only match themselves
(the CAPS=NO/SEARCH rules are honored).

The special characters obey the following rules:

m Underscore (_) matches any one character, but there must be a character in the
data at this position.

m Percent (%) matches zero or more characters.

352 Network Control Language Programming Guide

Scan Expressions

These special characters can be used as many times as required in a search string. Some
examples follow:

ABC

Matches only records with ABC in the field.
ABC%

Matches on values starting with ABC
ABC_%

As above, but at least one character must follow ABC
%XYZ

Matches fields ending in XYZ
%mmm%

Matches fields with mmm somewhere in them
%FRED%_%BLOGGS%

Matches a field containing the strings FRED and BLOGGS in that order, with at least
one character between them

Matches a field exactly 3 characters long
__XY_%
Matches a field at least 5 characters long, with XY in columns 3 and 4

It is evident that LIKE is a powerful operator and consequently can use significant CPU
resources.

The first two examples in this table can also be done using keys. LIKE attempts to use
keys to fully or partially (whenever a LIKE argument has non-special leading characters)
determine matching records.

Chapter 18: Using &NDBSCAN Statements 353

Scan Expressions

Use the Results of a Previous &NDBSCAN

The syntax, SEQUENCE seqname allows a scan to use as part of its input, the result list
from a previous scan. This avoids having to re-evaluate an entire previous scan, just to
add some more criteria to it.

In interactive applications, this can be very powerful. For example, after performing a
scan based on user input, a panel can be displayed informing the user of the number of
hits. One option the user can have is to add extra criteria, and see the result of the extra
criteria, as applied to the current result list. The display, extra criteria, and so on, cycle
could be repeated. By using the previous scan as input, large amounts of system
resources can be saved. Also, as the user ascends the nested levels of display, previous
results are still valid.

This option is also useful when a scan expression that is too complex to handle in one
statement is needed. It can be broken into parts, and the results combined.

For example:

&NDBSCAN MYNDB SEQ=S1 DATA SURNAME = 'SMITH'

&NDBSCAN MYNDB SEQ=S2 DATA DOB LT 600101

&NDBSCAN MYNDB SEQ=RESULTS DATA SEQUENCE S1 AND +
SEQUENCE S2

A scan expression can just include a previous scan result. This is useful when you want
to re-sort a scan result without rebuilding as list. For example:

&NDBSCAN DB2 SEQ=S1 SORT=FIELD1 DATA ...scan expr
&NDBSCAN DB2 SEQ=S2 SORT=FIELD2 DATA SEQUENCE S1

354 Network Control Language Programming Guide

SQL-like Operators

SQL-like Operators

Scans can perform some SQL-like functions:

m The IS [NOT] NULL operators provide equivalent functionality to the PRESENT and
ABSENT operators, but are SQL-compatible.

m The [NOT] BETWEEN operators are equivalent to the =value:value and
p=value:value operators, and are SQL-compatible.

m The [NOT} IN operators are equivalent to the [p]= value-list operators, and are
SQL-compatible.

m The SELECT clause lets you perform sub-selects, where a list of values derived from
a set of records matching some criteria can be used as input to an outer-level scan.

The EXISTS operator uses the fact that at least one record exists in the inner select/scan
to determine truth or falsity.

A correlated select is possible. This causes an inner scan to be re-executed once for each
other outer record that passed part of a scan. The outer record field values are used in
the inner scan as comparison values.

Chapter 18: Using &NDBSCAN Statements 355

Efficient Use of &NDBSCAN

Efficient Use of &NDBSCAN

&NDBSCAN can be misused. The scan limits discussed previously are designed to
prevent excessive use of resources. When designing applications that use &NDBSCAN,
the following should be taken into account:

Although you can search on any field, use of keyed fields, connected by AND, at the
outer level of the scan expression, greatly reduces I/O and elapsed time. Even one
keyed field can have a significant impact. For example, the following statement
reads every record on the database, if field NAME has no key:

NAME = 'SMITH' AND ADDRESS CONTAINS 'STREET'

PRESENT and ABSENT use keys if possible. PRESENT makes better use of keys. LIKE
uses keys if there are non-special ('_', '%') characters at the front of the pattern. It
might still need to examine the actual record.

The CONTAINS operator always requires records to be read to evaluate success or
failure. If you are performing many keyword searches of text using CONTAINS,
consider storing the words of the text field as individual, keyed fields. These can
then be searched for directly. For example the following statement scans the entire
database:

DESCRIPTION CONTAINS 'WORD'

If, however, as well as field DESCRIPTION, you had fields DESCWDO01-DESCWD10, all
keyed, containing the individual words of the field DESCRIPTION (&PARSE could be
used), you could code the following statement which could use keys:

ANY DESCWD* = 'WORD'

For interactive applications, encourage the use of scan criteria which reduce the
number of hits. If a given scan returns more hits than could be validly processed by
the user, display a message requesting more and/or more selective criteria. The
scan option to use the results of a previous scan can also be useful in this case.

Avoid the use of OR at the highest level of the scan expression, if either side of the
OR involves a non-keyed field, or PRESENT, ABSENT, or CONTAINS-a full database
scan results.

Only use SORT when absolutely necessary. Sorting will normally involve reading all
the records that pass the criteria, extracting the sort field, performing an in-storage
sort, and then building the result list. The sort key extraction is done concurrently
with final record scanning if non-keyed, and so on, criteria are to be processed.

This processing can consume large amounts of I/0, as well as storage for the sort
keys, and can take significant time.

Nested scans (SELECT causes) can use large amounts of storage to store inner
results.

Correlated scans can perform multiple passes over the database. This is because an
inner scan can be called once for every record in the NDB, and it too can read the
NDB, or a large portion of it.

356 Network Control Language Programming Guide

Efficient Use of &RNDBSCAN

If you only want to know whether any records at all have, or have not, passed the
scan criteria, and you are not interested in the exact number or specific IDs of any
such records, then use parameter RECLIMIT=1. &NDBSCAN RECLIMIT=1 does not
set the &NDBRID variable.

If sorting is unavoidable, for example, because you need to be able to reposition in
the output sequence, always try to minimize the number of records passing the
scan.

Chapter 18: Using &NDBSCAN Statements 357

Chapter 19: Using Advanced
Program-to-Program Communication

This section contains the following topics:

Advanced Program-to-Program Communication (APPC) (see page 359)
Conversation Allocation (see page 365)

Attach a Procedure (see page 367)

Send Operations (see page 368)

Receive Operations (see page 372)

Error Processing (see page 375)

Conversation Deallocation (see page 376)

&APPC Return Code Information (see page 377)

Application Design (see page 378)

Advanced Program-to-Program Communication (APPC)

The SNA APPC is a high-level application programming interface that allows
program-to-program communications and the development of distributed applications
between network nodes that support Logical Unit type 6.2 (LU6.2). LU type 6.2
communication facilities form the basis for SAA's Common Programming Interface for
Communications (CPI-C).

In this implementation of APPC, the high-level application programming interface is
provided by the NCL &APPC verb which provides access to a full set of LU6.2, or APPC,
programming capabilities.

These facilities let an NCL procedure communicate with another APPC application in a
structured manner as defined by the LU6.2 protocol. The partner application can exist
within the same, or a remote system, or any other application system that supports
LU6.2 protocols.

In addition, this implementation of APPC supports a number of extensions that assist
the development of client/server applications within NCL or spanning other APPC
platforms.

Before writing NCL procedures that use these APPC facilities, you should familiarize
yourself with the fundamental APPC concepts and implementation procedures. For
more information, see the Reference Guide. In addition, see IBM's Communications
Server SNA Programmer's LU 6.2 Reference, which is the authoritative source for
detailing the LU6.2 verb set.

Chapter 19: Using Advanced Program-to-Program Communication 359

Advanced Program-to-Program Communication (APPC)

APPC Conversations

LU6.2 Verb Set

NCL procedures (and transaction programs in general) communicate by establishing a
communication path called a conversation. Conversations use LU6.2 sessions to
exchange data and protocols between the communicating procedures. All conversations
consist of three main phases:

m Conversation initiation (allocation and attach processing)
m Data exchange (sending and receiving data operations)

m Conversation termination (deallocation processing)

Once a conversation is allocated to a session, a send-receive relationship is established
between the participating programs. Initially, the procedure that requested the
conversation is allowed to issue send data verbs while the other procedure issues
receive data verbs. This send-receive relationship can change many times during the life
of the conversation.

To terminate the conversation the procedures request deallocation processing, by
issuing the appropriate deallocate verb. The following sections give a detailed
description of the conversation phases and the associated verbs.

Note: This implementation of APPC enables NCL procedures on the same system to
communicate without the need to use SNA sessions. This is a highly effective means of
data transfer between NCL processes.

The LU6.2 verb set defines a structured means of communication between two
programs. A strict protocol exists at many layers in the LU6.2 implementation, including
the definition of the application verb set and conversation states. Most APPC requests
are handled by the NCL &APPC verb, while conversation state and other status
indicators are accessible to NCL through a range of system variables.

360 Network Control Language Programming Guide

Advanced Program-to-Program Communication (APPC)

&APPC Verb

All actions on a conversation are supported through the &APPC verb. The specific
request is identified by the keyword immediately following the &APPC verb. In general,
the keyword identifying each request corresponds closely to the LU6.2 architected verb
syntax such that the specific LU6.2 architected verb is apparent from the NCL syntax.
The relationship between the NCL options and the LU6.2 architected verb set is
described in the reference section for the particular &APPC request. The set of &APPC
requests is as follows:

m &APPC ALLOCATE_DELAYED
m &APPC ALLOCATE_IMMEDIATE
m &APPC ALLOCATE_NOTIFY

m &APPC ALLOCATE_SESSION

= &APPC CONFIRM

m &APPC CONFIRMED

m &APPC DEALLOCATE

m &APPC FLUSH

= &APPC PREPARE_TO_RECEIVE
= &APPC RECEIVE_AND_WAIT

= &APPC RECEIVE_IMMEDIATE

m &APPC RECEIVE_NOTIFY

m &APPC REQUEST_TO_SEND

= &APPCSEND_DATA

= &APPCSEND_ERROR

= &APPCTEST

Note: Your product does not support LU6.2 sync-point processing, and hence the verbs
and states that implement this are unsupported.

Chapter 19: Using Advanced Program-to-Program Communication 361

Advanced Program-to-Programsn Communication (APPC)

Conversation States

Conversations are managed by transition through a number of states. The state of a
conversation is reflected in the &ZAPPCSTA system variable, and can be one of the

following:
= RESET
m SEND
m RECEIVE

m DEFER_RECEIVE

m DEFER_DEALLOCATE

m CONFIRM

m CONFIRM_SEND

m CONFIRM_DEALLOCATE
= DEALLOCATE

362 Network Control Language Programming Guide

Advanced Program-to-Program Communication (APPC)

Conversation Processing

Only a small number of verbs are acceptable to NCL from any given conversation state,
otherwise a state error ensues. Following the successful completion of each verb, either
the state remains unchanged, or a single state transition is possible. This means that the
programmer can always determine the next course of action for the conversation. If
verb completion is not successful then further analysis of the reason, by examination of
conversation status fields, might be required to determine the most appropriate course
of action to follow.

In the simplest analysis, the APPC protocol is a flip-flop communication channel where,
in normal operation, the procedure currently sending controls the data flow. Hence, the
first speaker procedure continues sending data until it decides to stop. It might decide
to stop only when all data has been sent. For example, after sending a request for a
database query, to reverse the direction of data flow and receive the response. Or it
might pause during transmission to request confirmation (actual receipt by the partner
procedure) of that portion of the data sent so far.

Only when the current speaker changes direction can the partner procedure send data
the other way. However, if some condition arises that is generally unrecoverable, an
error indication can be sent to the current sender to cause transmission to cease, and
allow the current receiver to enter send state.

Within your product, all information being sent is buffered until enough data is accrued
to warrant transmission, or the need for some application response dictates that an
actual network transmission take place. This provides for efficient use of network
resources, but means that to synchronize local and remote processing, the application
must manage the protocol appropriately. This is achieved through use of the
confirmation protocols.

Return Codes and System Variables

Following each verb the &RETCODE and &ZFDBK system variables are set to indicate the
success or otherwise of the &APPC request.

In addition, for each conversation, a set of system variables is maintained that provides
information concerning the conversation status:
&ZAPPCELM
Message from an error log GDS variable
&ZAPPCELP
Product set information from an error log GDS
&ZAPPCID

Conversation identifier

Chapter 19: Using Advanced Program-to-Program Communication 363

Advanced Program-to-Program Communication (APPC)

&ZAPPCIDA

The conversation identifier for the transaction that started the NCL process
&ZAPPCLNK

Local link name
&ZAPPCMOD

Session mode name
&ZAPPCQLN

Network qualified local luname
&ZAPPCQRN

Network qualified remote luname
&ZAPPCRM

Current receive map name
&ZAPPCRPI

Received protocol indicators
&ZAPPCSM

Current send map name
&ZAPPCSTA

Conversation state
&ZAPPCSYN

Conversation sync_level
&ZAPPCTYP

Conversation type
&ZAPPCWR

What_received indicator
&ZAPPCWRI

What_received short indicator
&ZAPPCRTS

Request_to_send indicator
&ZAPPCTRN

Transaction identifier

364 Network Control Language Programming Guide

Conversation Allocation

Conversation Allocation

An executing procedure establishes a communication path, termed a conversation, by
the process known as allocation. An allocation request is deemed to take place from
reset state, and can be issued as one of the following verb options:

m &APPC ALLOCATE_SESSION (or just &APPC ALLOCATE)
m &APPC ALLOCATE_DELAYED

m &APPCALLOCATE_IMMEDIATE

m &APPCALLOCATE_NOTIFY

Transaction Identifier

One of the parameters supplied on the allocate verb is the TRANSID (transaction
identifier) which directs your product to the APPC Transaction Control Table, or TCT. An
appropriate TCT entry for the transaction must be located or the conversation fails. The
TCT entry is used to verify the request before further information is extracted to
complete the request if necessary.

Destination Selection

The TCT entry can contain default destination information, by way of a link name or
network LU name, to be used for the request. However the LINK or LUNAME parameters
on the allocate verb can be used to override any TCT destination information (and will
be required if the TCT has no default destination information).

Once a destination has been isolated resources are allocated to set up the
communication path, and eventually a procedure or program is attached in the target
system to service the request.

If the target system is the local system, an NCL procedure is started as an attached
procedure. Such procedures are generally written to perform a specific function, or
possibly a range of functions, on behalf of the invoking procedure.

If the target system is outside of the local system, an SNA LU6.2 session connecting the
remote destination must be located. This session is then allocated to the conversation
for the conversation duration. The fact that a session is interposed between the
communicating procedures is completely transparent to the allocating procedure.

Chapter 19: Using Advanced Program-to-Program Communication 365

Conversation Allocation

Allocation and Sessions

To complete an allocation to a remote destination a session is required. If no session to
that destination currently exists, then for all requests except &APPC
ALLOCATE_IMMEDIATE, an attempt will be made to establish an APPC link to the
remote LU. Other than the fact that it is an automatic link activation request, the result
is no different from an operator starting a link by command.

For the & APPC ALLOCATE_SESSION and ALLOCATE_NOTIFY requests, the verb will not
complete until a session can be assigned for the conversation. This can involve waiting
for new sessions to be established, or waiting for active conversations to end and free
up a session.

For the &APPC ALLOCATE_DELAYED request, a delayed session assignment is allowed.
The verb completes as though a session can be assigned and processing continues.
However, if transmission is actually required at some stage, the procedure will be
suspended until session assignment can be performed.

The &APPC ALLOCATE_IMMEDIATE request only completes successfully if a session can
be guaranteed immediately for transmission.

Set Program Initialization Parameters

User data can be passed as parameters on the allocate verb. These can be in the form of
one or more NCL tokens. Each NCL token passed as a parameter on the allocation will
appear as a separate parameter in the remote end. These parameters are available to
the attached procedure as program initialization parameters, described in the next
section.

Allocation Completion

After a successful allocation, the procedure is placed in send state and the &ZAPPCID
system variable is set to provide the identifier of the conversation created. More than
one conversation can be allocated and operated concurrently by a single NCL
procedure.

Note: The allocation can complete without any transmission taking place, and hence the
procedure enters send state before the target procedure is invoked to service the
request.

366 Network Control Language Programming Guide

Attach a Procedure

Attach a Procedure

At some time following allocation, data is actually transmitted to the target system in
the form of an attach request.

When an attach request is received by your product, the TCT is examined to locate the
procedure that will service the request. The procedure is said to be attached and a copy
of the procedure is invoked as a new NCL process.

Client/Server Terminology

Client/server processing lends itself well to the use of APPC as a protocol. For this
reason, the term client is often used to mean the allocating procedure, and server to
mean the attached procedure. Many of the &APPC verb extensions are designed to
support the client/server model.

Execution Environment

If the conversation is executed as an unsecured transaction, the procedure will execute
in the background server (BSVR) environment. Otherwise an APPC user region is located
(or created and signed on if none exists), for the user ID carried in the attach request,
and the procedure started within that user region. When no further NCL activity exists in
an APPC user region it is signed off and deleted.

Access Program Initialization Parameters

Once attached, the NCL procedure begins execution as any other NCL procedure, except
that it already has an active conversation.

If program initialization parameters were passed on the allocation request, they are
accessible as the standard NCL parameters &1 &2 &3through to &n in the usual manner.
Each token represents a single passed parameter and hence the data available is limited
to the current maximum token size.

Attach Processing

The conversation that attached the procedure is identified by the &ZAPPCIDA system
variable and is also the current conversation identified by the &ZAPPCID system
variable. The procedure is in receive state on this conversation. An attached procedure
has access to all the usual NCL facilities and can allocate further conversations if desired.

Chapter 19: Using Advanced Program-to-Program Communication 367

Send Operations

Send Operations

Send Data

Data can be sent on a conversation only from send state. Send state is entered in one of
the following ways:

m Automatically following a successful allocation

m At any time when the remote conversation partner that is currently sending decides
to stop sending and enter receive state, thereby placing the local end in send state.

m After issuing a SEND_ERROR which forces send state locally

The only verb used to send data is:

&APPC SEND DATA

Data can be in the form of one or more NCL tokens, or it can be a Mapped Data Object,
or MDO. Even where multiple tokens are identified on the send operation, they are
packaged as a single unit of transmission, called a GDS variable, to the remote end
where they will eventually become available from a single receive request.

There is no limit to the number of variables or MDOs, or total size of the GDS variable
used for transmission.

Following a successful send data operation the conversation remains in send state.
Otherwise the return code information should be examined for details on the send
failure.

Data Mapping Support

APPC can send a map name of up to 64 characters as control information when data is
sent. This map name is used by the remote system to interpret the contents of the data
transmitted and indicates how it should build any local data structures.

368 Network Control Language Programming Guide

Send Operations

Data Mapping for NCL Tokens

When sending NCL tokens, a map name of SNCL is sent by default with the data to
indicate that the data is comprised of one or more NCL tokens. If the receiving system
understands the SNCL structure, it can decompose the datastream into the individual
tokens sent. In this way NCL allows a single send to specify multiple tokens as a range or
list, and in the target system a single receive can re-create such a range or list. For
example, the request:

&APPC SEND_DATA VARS=A* RANGE=(1,10)

can be sent, and satisfies a remote request:

&APPC RECEIVE_AND WAIT VARS=B*

such that the variables B1,B2,...,B10 in the remote system are created with the same
values as A1,A2,...,A10 in the sending system.

You can override the map name sent. However, if a map name other than SNCL is
specified the tokens are not structured as above for output, but are simply
concatenated together to form the single GDS variable which is the unit of transmission.
When communicating with a non-NCL system, this may let you construct the
appropriate pieces of the data in separate tokens before sending them as a single
datastream. The interpretation of the block of data received in the remote system is
then implied by the map name sent.

Chapter 19: Using Advanced Program-to-Program Communication 369

Send Operations

Data Mapping and Mapping Services

When sending data from an MDO, the MDO name specified determines the length of
the data unit to be sent. The map name sent by default is the fully qualified map name
hierarchy as defined to Mapping Services.

For example, if a CNM alert record was in an MDO named NEWS, mapped by the map
named CNM, then the second Product Set Identifier sub-vector within that record might
be referenced from NCL as:

NEWS .NMVT . ALERT . PSID{2}

If the Product Identifier sub-vector within it was the subject of a send operation it can
be sent by:

&APPC SEND DATA MDO=NEWS.NMVT.ALERT.PSID{2}.PRODID
However, the fully qualified map name hierarchy for the object is:

CNM. NMVT . ALERT . PSID.PRODID

as defined to Mapping Services, and this will be the map name sent. If the target system
understands this mapping hierarchy it will reconstruct the MDO and map it accordingly.
For example a receive request of:

&APPC RECEIVE AND WAIT MDO=NEWSREC
would result in the object being:

NEWSREC.NMVT . ALERT.PSID.PRODID
Note: All name instances are now implied to be 1, as only the second PSID instance was
selected for the send. No data existing in any of the elements of the intervening name

segments is sent, however the qualified names are sent to provide the context of the
actual data transmitted.

If the entire MDO had been sent, for example:
&APPC SEND_DATA MDO=NEWS

then both PSIDs would be received and the entire NEWSREC structure received would
be identical to the NEWS structure sent.

Again, you can choose to override the map name sent, allowing the target system to
implement data interpretation independently.

370 Network Control Language Programming Guide

Send Operations

Send Data When Data Mapping Is Not Supported

Not all LU6.2 systems support data mapping. If data mapping is not supported (as
defined in the Option Set Control Table selected for the destination system) then no
map names are sent and all data sent is always transmitted as is.

If a number of tokens are specified on the SEND_DATA request then they are simply
concatenated together to form the single unit of data transmission. If an MDO is sent
then the data from the MDO comprises the entire data unit. The structure of this data
unit, and its interpretation in the remote system are the responsibility of the application
developer.

Request Confirmation of Data Sent

While in send state a procedure can request confirmation of any data sent. This is
achieved by the verb:

&APPC CONFIRM

Processing is suspended until the remote procedure has received all data sent up until
that point and receives the confirmation request. The normal response is:

&APPC CONFIRMED

This response indicates that all data was received and processed normally. The receipt
of the confirmed response satisfies the confirm request and allows the sending
procedure to continue processing in send state.

Force Data Transmission

If deemed necessary by the procedure it can, while in send state, force the transmission
of any data buffered by APPC with the request:

&APPC FLUSH

All queued data is scheduled for transmission by this request, however it is usually
unnecessary as data will be transmitted as it accumulates during normal send
operations. When a reasonable amount of data is buffered, or if requests which require
some response (such as an &APPC CONFIRM) are issued, then a transmission is
scheduled automatically by the system. A flush operation does not alter the state.

Chapter 19: Using Advanced Program-to-Program Communication 371

Receive Operations

Switch State from Send to Receive

When a procedure has completed all send operations and expects some response data
from the conversation partner it can switch from send to receive state by issuing:

&APPC PREPARE TO RECEIVE
&APPC PREPARE TO RECEIVE TYPE=FLUSH
&APPC PREPARE_TO RECEIVE TYPE=CONFIRM

If no type is specified then it will default to FLUSH if the conversation has a sync_level of
NONE, or CONFIRM if the conversation has a sync_level of CONFIRM (as set by the
allocation request and reflected in the &ZAPPCSYN system variable).

The FLUSH option simply ensures all data is sent to the other end with a request to
change direction. For the CONFIRM option the remote procedure must issue an &APPC
CONFIRMED request before the verb completes and receive state is entered.

If data is expected in response then a confirmation can usually be avoided by simply
issuing, from send state, either request:

&APPC RECEIVE AND WAIT
&APPC RECEIVE_NOTIFY

These requests will perform an implied &APPC PREPARE_TO_ RECEIVE TYPE=FLUSH
before placing the procedure in receive state.

Receive Operations

Data can be received on a conversation only while in receive state. Receive state is
entered in one of the following ways:

m Automatically when a procedure is attached by an allocation request

m At any time when the procedure decides to stop sending and enter receive state
voluntarily

m When an error is received from the remote system, forcing the local procedure into
receive state

372 Network Control Language Programming Guide

Receive Operations

Receive Data

The verb options available for requesting received data are:

&APPC RECEIVE AND WAIT
&APPC RECEIVE IMMEDIATE

while an asynchronous notification that data has been received (without actually
receiving it into target variables) can be requested by:

&APPC RECEIVE NOTIFY

Following notification, the RECEIVE_IMMEDIATE request can be used to retrieve the
data. When data is received, it can be placed in one or more tokens, or into an MDO.

Following a receive operation the &APPCWR and &ZAPPCWRI indicators are set
explaining the nature of the data received. It is possible to get a successful receive
(&RETCODE 0) when no data is placed into the target variables. However the
what-received indicator could show that some request, such as a confirm, has been
received and hence the procedure should issue the &APPC CONFIRMED response.

Receive Data into NCL Tokens

Either a list or range of NCL tokens can be specified as the target variables for a receive
operation. For example:

&APPC RECEIVE AND WAIT VARS=$* RANGE=(1,20)
&APPC RECEIVE AND WAIT VARS=(A,B,C,D)

The contents of each variable will be set depending upon the data mapping for the
conversation. If no mapping is supported, or if the map name is other than SNCL, then
the received GDS variable (which is the unit transmitted) is segmented according to the
maximum token size by default. You can specify individual segment sizes when using the
list form by specifying a parenthesized integer after each variable name, for example:

&APPC RECEIVE AND WAIT VARS=(A(10),B(8),C(4),D(32))

If mapping is supported and the map name is SNCL, then the received GDS variable,
which is the unit transmitted, is assumed to be correctly formatted by the sending NCL
system. Its structure maintains the contents of the individual tokens that were specified
on the send operation, and the target variables are reconstructed identically.

In any case, no data transformation takes place. If the transmitted data contains
characters that cannot be displayed, subsequent processing might require its conversion
to hexadecimal characters (through the & HEXEXP built-in function). This is your
responsibility.

Chapter 19: Using Advanced Program-to-Program Communication 373

Receive Operations

If insufficient variables are supplied to receive all the data transmitted in the data unit,
the residual data is lost.

Note: The received map name is in the &APPCRM system variable.

Receive Data into an MDO

As an alternative to the use of NCL tokens an MDO can be specified as the target for a
receive operation, for example:

&APPC RECEIVE_AND_WAIT MDO=APPCREC

The MDO is structured depending upon the data mapping for the conversation. If no
mapping is supported, or if the map name is unknown to Mapping Services, then the
data from the received GDS variable which is the unit transmitted forms the entire
contents of the MDO. The MDO is unmapped, but the MDO name refers to the entire
data transmitted.

If mapping is supported and the map name is known, then the data from the received
GDS variable which is the unit transmitted, is assigned into the MDO, specified
according to the map name received. If the map name consisted of more than one name
segment, then the first name segment is assumed to be the actual map name, and the
remaining segments qualify the data in the usual Mapping Services manner.

For example, if the map name received was:

CORPORATE . PAYROLL . EMPLOYEE

and the receive specified was:

&APPC RECEIVE AND WAIT MDO=USER

then the MDO structure named USER.PAYROLL.EMPLOYEE and mapped by the Mapping
Services map name CORPORATE, is assigned the received data. However if the map
name CORPORATE was unknown to Mapping Services then the MDO structure named
USER contains all the data and it is unmapped.

You can determine the received map name through the &ZAPPCRM system variable and
process the MDO contents accordingly. For example, if a transmitted map name is
unknown to Mapping Services, or is an invalid Mapping Services map name, the data
can be placed into an unmapped MDO. The map name is then examined and the MDO
assigned to a new structure with Mapping Services mapping through the &ASSIGN verb.

374 Network Control Language Programming Guide

Error Processing

Respond to a Confirmation Request

Following a receive operation, the & APPCWR might indicate that a confirmed response
is required if the &APPCWR value is:

CONFIRM
CONFIRM SEND
CONFIRM DEALLOCATE

in which case the procedure can respond:
&APPC CONFIRMED

after which receive state, send state, or deallocate state is entered respectively.

Receive a Send Indication

Following a receive operation, the & APPCWR can indicate that the local procedure has
entered send state if the & APPCWR value is SEND. This indicates that the remote end
has completed its send operations and has entered receive state.

Receive a Deallocation Indication

Following a receive operation, the &APPCWR can indicate that the conversation has
been terminated unconditionally by the remote procedure. In this case &RETCODE 4 is
returned, and the &ZAPPCWR value is DEALLOCATE, the only allowable action is to
issue:

&APPC DEALLOCATE TYPE=LOCAL

after which all conversation information is removed from the system.

Error Processing

Either conversation partner can send an error indication at any time by issuing &APPC
SEND_ERROR.

When issued from send state, the remote end (in receive state) will get a return code
indicating program_error_no_truncation, and &RETCODE is 8. This indicates that the
error sent did not cause any loss of data. No state changes occur.

When issued from receive state, the remote end (in send or receive state) will get a
return code indicating program_error_purging, and &RETCODE is 8. This indicates that
the receiver is purging all subsequent data sent and the sender has an obligation to
enter receive state (if it has not already done so).

Chapter 19: Using Advanced Program-to-Program Communication 375

Conversation Deallocation

The effect of a SEND_ERROR is to halt communication and place the error sender in
send state. However it should be used with discretion as it is most disruptive of normal
data flows. Usually a reason for the error will follow as a normal data send operation.

Some errors can be detected by the APPC Services layers, and will appear as
svc_error_purging and so on. For example, if a procedure which is one end of a
conversation terminates abnormally, a deallocate abend condition is raised and an error
notification is sent to the other partner. A message accompanies such a condition and
will appear in the log of the remote system. It can be accessed through the &ZAPPCELM
system variable before the &APPC DEALLOCATE TYPE=LOCAL statement is issued.

Conversation Deallocation

Regardless of which end started a conversation, any procedure can terminate it from
send state by issuing one of the deallocate requests:

&APPC DEALLOCATE

&APPC DEALLOCATE TYPE=FLUSH
&APPC DEALLOCATE TYPE=CONFIRM
&APPC DEALLOCATE TYPE=ABEND

If no type is specified, then it will default to FLUSH if the conversation has a sync_level
of NONE, or CONFIRM if the conversation has a sync_level of CONFIRM (as set by the
allocation request and reflected in the &ZAPPCSYN system variable).

A TYPE=CONFIRM deallocation is conditional upon the remote procedure issuing an
CONFIRMED response. The only other valid response is a SEND_ERROR, which means
the conversation remains active and the error sender is placed in send state. If
&RETCODE of 0 is returned the deallocation was successful.

A TYPE=FLUSH or TYPE=ABEND is unconditional as long as the request is accepted. A
&RETCODE of 0 indicates that the conversation is terminated.

Sample Conversations

A set of simple APPC conversations illustrating the use of the &APPC verb is provided in
the distributed sample library.

More information:

Run the Sample APPC Conversations (see page 494)

376 Network Control Language Programming Guide

&APPC Return Code Information

&APPC Return Code Information

All &APPC verb options complete by setting a number of NCL variables with return code
information.

General completion information is contained within the &RETCODE system variable and
qualified by the &ZFDBK system variable. &RETCODE values of 0 and 4 occur in normal
operation, while &RETCODE values of 8 or higher indicate an error condition. If an error
is detected, the &SYSMSG user variable is set providing an explanation of the error
condition.

A number of APPC system variables are available providing information about the
current conversation being operated. For example, following a receive operation the
&ZAPPCWR and &ZAPPCWRI (what-received indicators) provide information about what
satisfied the operation.

Note: For more information about &RETCODE and &ZFDBK system variable settings, see
the &APPC verb description in the Network Control Language Reference Guide.

Chapter 19: Using Advanced Program-to-Program Communication 377

Application Design

Application Design

An important aspect of APPC programming is the consideration of application design.
The protocol and verb set provided by APPC does not dictate a specific mode of use and
can be flexibly adapted to a number of situations. In this sense, the application's use of
the APPC verb set should be considered as part of the overall application design, and
this further implies that the application spans the conversation.

Thus what is ostensibly a single application can be split into two (or more) procedures
which communicate using the NCL &APPC verb. This form of application lends itself well
to client-server type roles. Commonly, the client procedure will act as the man-machine
interface, providing the presentation aspects of the application.

The server procedure can deal with the data organizational aspects of the application,
fetching and returning to the presentation procedure one or more records depending
upon the request.

There are some important advantages in this approach:

m The code for handling the functional or presentation aspects is physically separate
from the code for dealing with data organization aspects. This simplifies the
processing required in each part, and assists future maintenance. For example, the
server procedure could be completely replaced at any stage to handle a new
database or file system.

m Asthe code is separate, the procedures can be executed in different systems
without any change to the application. For example, the client end can always
reside in a work station while the server end is in a host system. However, they can
also execute within the same system. An additional advantage is that should a
server procedure need to be moved to another system, for example if a database
has been moved, then no code changes are necessary. Simple changes to the APPC
Control Tables can be used to redirect transactions to the new system.

m Procedures are executed on demand. Rather than initializing a process to wait for
work, the required procedure can be attached when a demand for its services is
received.

More information:

APPC Client/Server Processing (see page 384)

378 Network Control Language Programming Guide

Chapter 20: Advanced Program-to-Program
Communication Extensions

Your product offers a number of extensions to assist in establishing communications
using client/server processing concepts. These extensions assist in application
development between different platforms, but might not be supported by other
products which implement APPC.

This section contains the following topics:

APPC Extended Verb Set (see page 380)

APPC Transactions (see page 381)

APPC Client/Server Processing (see page 384)
Server Processes (see page 385)

Client/Server Connection Mode (see page 385)
Transfer a Conversation (see page 388)

Chapter 20: Advanced Program-to-Program Communication Extensions 379

APPC Extended Verb Set

APPC Extended Verb Set

The following verbs are available to the APPC in your product:
= &APPC ATTACH_DELAYED

m &APPC ATTACH_IMMEDIATE

m &APPC ATTACH_NOTIFY

m &APPC ATTACH_SESSION

m &APPC CONNECT_DELAYED

= &APPC CONNECT_IMMEDIATE

= &APPC CONNECT_NOTIFY

m &APPC CONNECT_SESSION

m &APPC DEREGISTER

m &APPCREGISTER

m &APPCRPC

m &APPCSEND_AND_CONFIRM

m &APPCSEND_AND_DEALLOCATE
m &APPCSEND_AND_FLUSH

m &APPC SEND_AND_PREPARE_TO_RECEIVE
m &APPC SET_SERVER_MODE

m &APPCSTART

m &APPC TRANSFER_ACCEPT

m &APPC TRANSFER_CONNECT

m &APPC TRANSFER_REJECT

m &APPC TRANSFER_REQUEST

380 Network Control Language Programming Guide

APPC Transactions

APPC Transactions

In addition to user-defined transactions, the APPC in your product supports a number of
system transactions that assist in NCL communication, especially in the area of
client/server processing. These transactions are as follows:

START
This is used to initiate a new NCL process in either the local or a remote system
RPC

This is used to call a procedure in either the local or a remote system in the manner
of a remote procedure call

ATTACH

Establishes a standard APPC conversation by attaching an NCL procedure by name,
rather than indirectly through a transaction identifier

CONNECT

Establishes a conversation connection to an existing NCL process in either the local
or a remote system.

These system transactions are automatically defined in the Transaction Control Table
during system initialization, but can be modified by the installation if necessary using
the REPTRANS, DELTRANS and DEFTRANS commands.

Chapter 20: Advanced Program-to-Program Communication Extensions 381

APPC Transactions

START Transaction-Remote Process Start

The APPC in your product incorporates the system START transaction that allows any
NCL procedure to be started as a new process through the &APPC START request. For
example:

&APPC START PROC=proc DOMAIN=test ...

The system TCT entry for the START transaction is used to complete the conversation
setup options, including the transaction security requirements.

Any procedure that is designed to be started through the usual START command can be
started in this manner by using APPC. The started procedure need not be aware that it
was started through APPC. It has no access to the APPC conversation that established
the new process and has no requirement to use any APPC facilities.

The new process can be created in any of the following ways:
m Asadependent process (of the requesting process) in the local region
m Asanindependent process within the same region as the requesting process

®m Asanindependent process within any APPC region (where authorized) in the local
APPC system

®m Asanindependent process within any APPC region (where authorized) in any
connected product APPC system

The initiating process can request an immediate indication of the success or failure of
the new process creation. It can pass the usual procedure initiation parameters to the
target procedure. In addition, any subset of NCL variables, or MDO data, can be copied
from the environment of the initiating procedure to that of the new process. Once the
request completes all links between the initiating process and the new process are lost,
and the new process operates completely independently of the initiating process.

Note: When a process is started as a dependent process, the usual NCL relationships
hold true.

382 Network Control Language Programming Guide

APPC Transactions

Remote Procedure Call (RPC) Transaction

The APPC in your product incorporates the system RPC transaction that allows any NCL
procedure to be executed from the context of the calling procedure through the &APPC
RPC request. For example:

&APPC RPC PROC=proc LINK=1ink23 PARMS=(A,B,C)

The system TCT entry for the RPC transaction is used to complete the conversation
setup options, including the transaction security requirements.

Many procedures that are designed to be called from another procedure through the
usual EXEC command can operate successfully in this manner using APPC. However, the
only context that can be transferred between the calling procedure and the remote
procedure, is in the form of NCL variables and MDO data. All other resources in the
calling environment (such as files, internal read queues, and so on) remain the strict
domain of the calling procedure. The called procedure need not be aware that it was
started by using APPC, has no access to the APPC conversation that established the call
path, and has no requirement to use any APPC facilities.

The target procedure is started as an independent process in the same or any connected
product APPC system, with the context passed. The calling procedure is suspended until
the remote procedure completes its execution and terminates. However, the called
procedure need not be aware that it was invoked via a remote procedure call.

When the remote procedure terminates, control is returned to the calling procedure
with an indication of the success or failure of the request. Shared NCL variable
information can be passed back on return. If the called procedure terminates
abnormally, or APPC communication is lost to a remote system, the appropriate error
information is returned.

The new process can be created in any of the environments allowed for a remote
process start.

ATTACH Transaction-Allocate a Procedure

The APPC in your product incorporates the system ATTACH transaction that allows any
NCL procedure to be attached and establishes the usual APPC conversation connection.
For example:

&APPC ATTACH PROC=proc DOMAIN=test

This form of allocation proceeds as a special internal transaction. It sets up the
conversation with the nominated procedure without the requirement to set up a
Transaction Control Table entry for the procedure. The system TCT entry for the ATTACH
transaction is used to complete the conversation setup options, including the
transaction security requirements.

Chapter 20: Advanced Program-to-Program Communication Extensions 383

APPC Client/Server Processing

Note: This form of allocation can be useful between systems where the procedure name
is obtained indirectly, but should not be thought of as a general replacement for the use
of the Transaction Control Table.

Once started, the conversation is available in the attached procedure, exactly as it
would had a standard allocation request been issued. The conversation is operated by
both partners in the usual manner.

CONNECT Transaction-Connect to an Active Process

The APPC in your product incorporates the system CONNECT transaction that requests a
connection between the a client procedure and any other active NCL process to act as a
server. It establishes the usual APPC conversation connection. For example:

&APPC CONNECT NCLID=nclid DOMAIN=test

This form of allocation proceeds as a special internal transaction, and sets up the
conversation between the client and the nominated server process if permitted by the
server. The system TCT entry for the CONNECT transaction is used to complete
allocation options.

Note: The process must be active or the conversation will terminate with an allocation
failure.

Once connected, the conversation is available in the target procedure exactly as it
would had a standard allocation request been issued. The conversation is operated by
both partners in the usual manner.

APPC Client/Server Processing

APPC is a general application protocol for communication between any two programs in
an SNA environment. It can be used to deliver data in substantially one direction-such as
a file transfer. It can be used for a complicated dialog-such as a terminal to application
datastream. However, it can be easily adapted to implement communication along the
client/server processing model.

The usual model of client/server processing is that there are potentially many clients,
and usually a smaller number of servers, in a distributed processing environment. The
clients request information and they are served that information by a server. A simple
guestion, followed by one or more related responses, is an example of this approach,
however the actual dialog could be more complicated.

Ideally the client does not nominate the server, but merely requests a particular type of
service, and depending upon configuration options, the transaction will be directed to
an appropriate server for processing.

384 Network Control Language Programming Guide

Server Processes

Server Processes

A server is a single NCL process that can accept connections from one or more clients,
either serially or concurrently, at the server's discretion. Registration of the server is
successful if the server name is unique within some scope, as determined by the server
name registration request. Registration of the server name can be tied to process
creation such that if the registration is unsuccessful the process creation fails.
Alternatively, an executing process can attempt to register itself as a server at any time.

A transaction that starts an NCL procedure can now indicate, through the Transaction
Control Table, that, once attached, the target NCL procedure is to be registered as a
server process. A server process can also be started by the usual START command
before any communication is necessary.

In general, any NCL process, regardless of whether or not it has a registered server
process name, can in fact behave as a server process. That is, any active NCL process can
accept client connections. Server name registration provides a mechanism for
preventing duplication of server processes, but, more importantly, assists in targeting
the correct server by supplying a meaningful name. While a server is active, new
transactions can target the process and request connection. Such transactions can, at
the server's discretion, be queued to the server through the APPC transfer mechanism
in your product or automatically connected to the server for immediate operation.

Any process that has a registered server name can be targeted, by defining transactions
in the TCT that allocate that particular server name. If the server is not active, the first
transaction selecting a TCT entry for that server name will start the server process.
Subsequent transactions locate the active server process and queue a connection
request. Any user defined transaction can target a server in this manner. In addition, the
ATTACH and CONNECT transactions allow a server to be targeted by the requestor.

Client/Server Connection Mode

During server process creation and initialization, all client connection requests that
target the process remain pending until the server declares its operational mode for
client connection. It can choose to automatically accept new connections, request
notification before accepting connections, or reject connections.

Connections only apply to new conversations targeting an active process such as:

m Any standard transaction where the TCT entry indicated a server name as target,
and the server is active

m Any ATTACH transaction that targets a server name, and the server is active

m Any CONNECT transaction that always targets an active NCL process

Chapter 20: Advanced Program-to-Program Communication Extensions 385

Client/Server Connection Mode

However an explicit conversation transfer request, resulting from an &APPC TRANSFER
operation, is not considered a connection request and its mode of operation is
unchanged.

The connection mode chosen by the server depends upon whether it intends to serialize
connection processing, or operate multiple conversations concurrently. It can also
depend on whether the server makes any use of the PIP data sometimes present with
new conversations.

Automatic Connection Mode

The server declares it will operate in automatic connection mode by issuing the
following statement after process initialization:

&APPC SET SERVER MODE CONNECT=ACCEPT
or

&APPC REGISTER SERVER=server CONNECT=ACCEPT

Following this statement any pending connection requests, or any subsequent
connection requests, are automatically connected to the server and available to operate
immediately in receive state. When using this mode no access to the PIP data, if
present, for a new conversation is available. Hence this mode of operation is unsuitable
for servers that service transactions making use of PIP data.

Since all new conversations connect in receive state, after an automatic connection they
would satisfy a receive request that specifies any active clients. For example:

&APPC RECEIVE AND WAIT ID=CLIENTS VARS=A*

or

&APPC RECEIVE NOTIFY ID=CLIENTS

Any conversation that connected to the server, that is any client conversation, can
satisfy such a receive. However, conversations started by the server, even if they are in
receive state, do not satisfy these requests. In either case a new connection, or an
existing conversation where more data had just arrived, could satisfy the receive
request.

Conversations are serviced in the order that data arrives. The actual conversation
satisfying the receive is identified by the usual &ZAPPCxxx system variables. The server,
having received some data, can choose to operate that conversation specifically to
satisfy the client, before issuing the generic receive against all clients to process the next
item of work, thus serializing server activity.

386 Network Control Language Programming Guide

Client/Server Connection Mode

Notification Mode

As an alternative, the server can declare it will operate in notification mode by issuing:

&APPC SET SERVER MODE ... CONNECT=NOTIFY
or
&APPC REGISTER ... CONNECT=NOTIFY

Once this mode is set any pending connection requests, or any subsequent connection
requests, are notified to the server by an event message being queued to the process's
internal environment. This message is the same as that created by a transfer request
from another process, and the server accepts or rejects these connections in the same
manner as a transfer request. An &INTREAD statement can be used to receive the
notification, informing the process of the conversation identifier that is pending
connection. The server can choose to accept the connection request and begin
processing the transaction. For example:

&APPC TRANSFER ACCEPT ID=&id VARS=PIP*

In this case, it is possible for the server to obtain any PIP data present in the attach
request. However, the server might choose to reject the new transaction. For example:

&APPC TRANSFER_REJECT ID=&id RETRY=YES

This is manifested in the remote allocation system as an allocation failure, with a reason
of either:

TRANS_PGM NOT AVAIL RETRY
or

TRANS PGM _NOT AVAIL NO RETRY

If the connection is accepted, the conversation is connected in receive state and is
operated in the usual manner. This form is most useful when the server is to continue
to operate in notification mode, by using the asynchronous form of receipt. For
example:

&APPC RECEIVE NOTIFY ID=CLIENTS

Chapter 20: Advanced Program-to-Program Communication Extensions 387

Transfer a Conversation

Rejection Mode

Servers can optionally mask off further connections by setting the connection mode to
reject, as follows:

&APPC SET SERVER MODE CONNECT=REJECT RETRY=NO

In this case the RETRY option can be YES or NO, and subsequent connections are
rejected as for a transfer reject. This can be useful where the server is terminating to
indicate whether or not processing can be retried.

Transfer a Conversation

Your product supports some implementation-specific &APPC verb options that allow an
active conversation to be transferred from one NCL process to another. These are as
follows:

&APPC TRANSFER REQUEST
&APPC TRANSFER ACCEPT
&APPC TRANSFER REJECT

The TRANSFER_REQUEST option requires that a target NCL identifier be specified. This
NCL process is then notified of the transfer request by a message queued to its internal
environment. It can accept or reject the conversation transfer (as indicated by the
syntax shown previously) which completes the transfer request. After the transfer, the
requesting procedure has no access to the conversation.

A transfer can only take place while the conversation is in send or receive state. Most
likely this is immediately following the completion of an allocate or attach request.
Using this technique it is possible to pass additional conversations to a process that is
already handling other conversations.

388 Network Control Language Programming Guide

Chapter 21: Using APPC to Communicate
with Other Systems

About APPC

This section contains the following topics:

About APPC (see page 389)

Define APPC Links (see page 394)

Define APPC Tables (see page 396)

APPC Security (see page 403)

Activate APPC Links (see page 406)

APPC Link Definition Examples (see page 412)

APPC allows programs to communicate and exchange data using a common set of
communication protocols. Communication takes place between programs using LU
Type 6.2 sessions.

APPC is supported on a wide variety of both IBM and non-IBM platforms. This allows
distributed applications to be developed in a heterogeneous networking environment.
Although APPC standardizes communication between such applications, the programs
themselves can reside on differing hardware and software platforms, and be written in
different programming languages.

APPC employs a peer protocol. This means that a program's APPC behavior is not
restricted in operation due to the network node where it resides. Nor is the node's
communications ability a determining factor in application design.

APPC provides a set of common services available to an application through an
architected verb set. The verb set has a direct relationship with underlying LU6.2 session
protocols, but the application itself is written in a manner totally independent of SNA
sessions. Only those internal services that support the verb set in a particular product
implementation are concerned with managing session activity.

Chapter 21: Using APPC to Communicate with Other Systems 389

About APPC

Transaction Programs and Conversations

When two programs communicate using APPC, they do so via a communication path
called a conversation. All activity that occurs as a result of APPC communication is called
a transaction and the programs involved are known as transaction programs. Terms
such as client/server processing or distributed transaction processing, are often used to
describe this form of data processing.

One feature of APPC is that two programs do not have to be running to start
communications. APPC allows a program in any LU to request the invocation of a
program in any other LU to fulfill its processing requirement. The program achieves this
through a process known as allocation, which establishes a conversation, and sends an
attach request that the nominated program be invoked to service the remote LU of the
conversation.

The invoked program is said to be attached in the remote LU. An attached program can
itself attach other programs. These all form part of the same transaction, but each
communication instance between programs is considered a separate conversation.

Within the product region, any NCL procedure can issue an allocation request to start a
conversation with another procedure or program. These can be in the same or another
network LU. When the region receives an incoming request to attach a program, an NCL
procedure is started to service the conversation.

Conversations and Sessions

Each conversation is mapped to an LU6.2 session. While a conversation is active it has
exclusive use of that session. An active conversation must terminate before any other
can begin on that same session. This means that any one session is seen by LU6.2
conversations as a serially-shared resource.

Concurrent Conversations

To conduct concurrent conversations between any two programs, the use of parallel
sessions must be supported between them. The number of concurrent conversations
that can be established between programs is dependent upon the number of parallel
sessions available.

Note: Applications running under a PU Type 2.0 node, such as PC-based applications,
must always play the role of Secondary LU and are restricted to a single LU6.2
conversation at any given time. Use of Node Type 2.1 and independent LUs allows such
devices to play the role of a Primary LU (BIND sender) and also allows a parallel session
capability.

390 Network Control Language Programming Guide

About APPC

Share a Single Session

To share a single session for all transactions, conversations should be relatively
short-lived. The conversation turnover and available session limit should be considered
in program design and session configuration.

Conversation Handling

Session Polarity

Within the product region, NCL procedures acting as transaction programs are
concerned only with the management of their conversations. All aspects of conversation
to session mapping and session management are handled by the LU Services
components of your product region and VTAM.

Each LU6.2 session has a designated polarity indicating which LU is the contention
winner. This polarity can be negotiated during the session BIND phase but is then fixed
for the session.

The LU designated as contention winner controls conversation allocation activity for the
connection. It has the right to initiate conversations at any time without notifying the LU
at the other end. Conversely, the LU designated as contention loser must request
permission from the contention winner LU before it can start a conversation on that
session.

For a parallel session connection the typical configuration is to support enough
contention winner sessions in each direction to service concurrent demand for
conversation initiation from each LU of the connection.

Conversation Types

There are two types of conversation supported by APPC:
m Basic conversations-for use by SNA Services programs only

m Mapped conversations-support user transaction programs

Both basic and mapped conversations use the LU 6.2 session in the same way. The only
difference is the manner in which they are operated at the LU6.2 protocol boundary. At
this boundary there is one verb set for mapped conversations, and another for basic
conversation. There are also some type-independent verbs.

Your product supports the allocation of conversations as mapped or basic. Because of
the high level nature of the NCL verb interface, all conversation operation is equivalent
to the LU6.2 mapped conversation verb set.

Chapter 21: Using APPC to Communicate with Other Systems 391

About APPC

APPC Option Sets

APPC consists of basic facilities that all implementations must support. In addition to
these facilities there are other more advanced facilities that are named option sets. An
option set is comprised of a number of optional facilities. Optional facilities are grouped
into sets so that the implementation choices are restricted to these sets, and not each
individual option.

A full list of all LU6.2 Option Sets is contained in the SNA Transaction Programmer's
Reference Manual for LU Type 6.2. The following section describes the option sets that
are supported by your product.

APPC Option Set Support

The following option sets are supported:
Conversations between programs located at the same LU

Allows a program to allocate a conversation where the remote program is in the
same LU as the local program.

Delayed allocation of a session

Allows a program to allocate a conversation and begin sending data before a
session can be assigned to support the conversation.

Immediate allocation of a session

Allows a program to allocate a contention-winner session only if one is immediately
available, otherwise the allocation fails.

Session-level LU-LU verification

Provides LU security by designating a password to verify the identity of a remote
LU.

User ID verification

Allows a program to allocate a conversation with user verification by means of a
supplied password or an already-verified indicator where appropriate.

PIP data

Allows a program to allocate a conversation and supply program initialization
parameters to the attached remote program.

Logging of data in a system log
Allows a program to record error information in a system log.
Flush the LU's send buffer

Allows a program to explicitly cause data transmission on a session.

392 Network Control Language Programming Guide

About APPC

Prepare to receive

Allows a program to change from send to receive state with a number of different
options.

Receipt with wait

Allows a program to operate a number of conversations and be notified when
information is available on any one of them.

Receive immediate

Allows a program to request any data on a conversation but continue processing if
none is available.

Test for request-to-send received

Allows a program to test whether a request to send indication has been received on
a conversation.

Data mapping
Allows a program to request the mapping of data by the local and remote LUs.
Get attributes

Allows a program to obtain information about a mapped conversation.

Supported APPC Products

This implementation of APPC lets you communicate with the following products or
components:

®m Other domains

m CICS/0S/VS V1.7

m 0S/2 Comms/Manager
m CommLink SNA/LU6.2
m APPC/MVS

It is possible that other APPC products that have not been tested will also operate with
your product.

Chapter 21: Using APPC to Communicate with Other Systems 393

Define APPC Links

Define APPC Links

APPC links can be defined in two ways:

m Statically-using the LINK command

m Dynamically-using APPC table definitions

The type of APPC link you define is dependent on your needs. A static APPC link is used

for one-off APPC connections. A dynamic APPC link is necessary if you want APPC links
to be established on demand.

For more information about static APPC links, see the Reference Guide.

Define Dynamic APPC Links

To define dynamic APPC links identify the components that can take part in APPC
communication and their operational requirements to the local domain. These
definitions are kept in APPC tables maintained by a set of product commands. The table
definitions perform the following functions:

m Relieve NCL from the task of fully specifying all the parameters required to initiate a
conversation. This simplifies allocation requests.

m Provide validation for both locally and remotely initiated conversation requests.
This provides a level of integrity before allowing communication to take place.

m [nclude information concerning destination attributes relevant to LU6.2 usage and
for controlling resources such as sessions. This information allows your product to
modify its behavior to suit a variety of LU6.2 implementations.

m Most importantly, these tables allow on-line maintenance of LU6.2 operational
facilities, including aspects of control over NCL transactions without resorting to the
modification of NCL procedures.

The APPC tables support the separation of the APPC programming facilities from the
session support facilities. This allows NCL procedures to be developed and maintained
in isolation from the changing network requirements.
There are four control tables that can be defined:
Transaction Control Table (TCT)

Associates transaction program identifiers with transaction program names
Dynamic Link Table (DLT)

Defines those LUs with which the local domain allows LU 6.2 sessions to be
established.

394 Network Control Language Programming Guide

Define APPC Links

Option Set Control Table (OSCT)

Defines those options, supported by a particular LU, that are connected to your
product through LU 6.2 session communication

Mode Control Table (MCT)

Defines mode names, the session characteristics they represent, and the number of
sessions they support

APPC Table Requirements

Although there are four APPC tables and each supports many parameters, it is not
necessary to define all of the tables or parameters. In most cases the system provides
default values. The following gives an indication of table definition requirements:

m Transactions for which both ends of the conversation run in the same domain, need
only a TCT definition to define for each transaction the name of the NCL procedure
that will service the request.

m LU6.2 connections that use the default option set, only need TCT and DLT
definitions. This is sufficient to authorize single session connections to service
conversations requiring no security and no data mapping support, and is
appropriate for typical communication between your product region and work
stations running APPC.

m LU6.2 connections that use advanced options (for example, specific logmode) need
all four table definitions. Such advanced options are likely to be required to enable
sophisticated use of APPC between one domain and other domains or CICS systems.

How APPC Control Tables Interact

An APPC link can be started from either the remote or the local domain as a result of a
conversation allocation request (for example, an &APPC ALLOCATE) or an operator
command (for example, LINK START). In either case the relevant DLT entry is located
using the link name or LU name depending on which one was provided.

A DLT definition is needed for each remote LU that is to be connected to your product
region using LU6.2 sessions.

Link activation processing will then locate the OSCT entry nominated in the DLT
definition and its associated MCT entries. The information from these tables is used to
activate a link with the desired properties (for example, parallel sessions). If no OSCT or
MCT entries are associated with a DLT definition default options and modes are used.

Chapter 21: Using APPC to Communicate with Other Systems 395

Define APPC Tables

Example: APPC Table Interactions

When an NCL procedure issues an allocation request the transaction ID is used to locate
the TCT entry. If no destination information was provided in the &APPC ALLOCATE verb
the link name or LU name in the TCT are used (if defined) to determine if the link is
active. If the link is not active, the LU name or link name is used to locate the relevant
DLT entry and link activation then proceeds as described in the following figure.

This figure show APPC table interactions during the activation of links.

TCT
&APPC ALLOCATE » TRANSID=DBQUERY
LINK=NMB
DLT OSCT MCT
LINK STARTp»-

LINK=NMB OPSET=NMOPSET MODE=LU62PARL
OPSET=NMOPSET MODE=LU62PARL

Define APPC Tables

The following sections describe how to define each of the APPC control tables.

396 Network Control Language Programming Guide

Define APPC Tables

Define a Transaction Control Table

The Transaction Control Table (TCT) is used to define all transactions to your product.
Each TCT entry can be used to control allocation requests, attach requests, or both. A
conversation cannot proceed without referencing a valid TCT entry.

All transaction identifiers and transaction program names (TPN) must be defined in a
TCT to relate each transaction identifier to the appropriate TPN. Therefore, when a
program issues an allocation request it uses a transaction identifier to indicate which
transaction program it wants to communicate with. The system relates this identifier to
the TPN.

The TPN is carried in the attach request sent to the remote domain. At the remote
domain attach processing will use the TPN to start the correct program to service the
request. The TPN is therefore known to both LUs that are to participate in a
conversation. Transaction identifiers are only known locally to each LU.

Define Transactions

The DEFTRANS command is used to define a TCT. This command lets you define
transactions between your domain and another LU.

Example: Define Transactions

To define a transaction with a transaction ID of DBQUERY and a TPN of DBO1, enter the
following command:

DEFTRANS TRANSID=DBQUERY TPN=DBO1

When an NCL procedure wants to invoke a transaction with a transaction ID of
DBQUERY, the TCT entry is located and the associated TPN is extracted. The TPN and
any other information specified in the TCT entry is sent in an attach request to the
remote system specified by the NCL procedure on the &APPC ALLOCATE verb.

If you want the transaction to start the NCL procedure DBQRYO1 in the remote system,
define the name of the procedure by using the PROC operand of the DEFTRANS
command. This TCT entry must reside in the remote system.

Define a Qualified Transaction

You can use the same transaction ID to invoke a different TPN name during certain
circumstances, such as, testing a new version of an NCL procedure.

Do this by defining a qualified transaction entry in the TCT and specify the same qualifier
in the DLT entry that defines the remote LU to the local domain. The qualifier is
specified by the QUAL operand of the DEFTRANS and DEFLINK commands.

Chapter 21: Using APPC to Communicate with Other Systems 397

Define APPC Tables

More information:

Run a Qualified Transaction (see page 415)

Generic Transactions

A transaction identifier can have the same common suffix as the name of the
transaction procedure it subsequently invokes-for example, the transaction identifier
DBUPDT and the procedure APPCUPDT have the suffix UPDT in common. If there are
many transactions starting with a fixed prefix such as DB that invoke procedures with a
fixed prefix such as APPC but with the same variable suffix, a single generic transaction
definition can be used to service them.

Generic transactions are defined by specifying masks for the transaction IDs, TPNs, and
procedures in the TCT entry.

More information:

Run a Generic Transaction (see page 416)

Specify a Default Destination

The destination of an APPC transaction request can be specified by using the &APPC
ALLOCATE verb or in the TCT definition. If no destination is specified on the &APPC
ALLOCATE verb, the destination in the TCT is used. If no destination is specified on the
&APPC ALLOCATE verb or in the TCT, a default destination of ENV=CURRENT is assumed.

If the same destination always services a transaction request, you can specify a default
destination in the TCT definition. To specify a default destination in a TCT definition,
specify one of the following on the DEFTRANS command:

® Alink name using the LINK operand
® An LU name using the LUNAME operand
® A product domain ID, using the DOMAIN operand

m The NCL environment using the ENV operand (for local conversations)
Example: Specify a Default Destination

To define an APPC link with a transaction ID of DBQUERY, a TPN of DB01, and a link
name of NMB, enter the following command:

DEFTRANS TRANSID=DBQUERY TPN=DBO1 LINK=NMB

Note: For more information about the options that can be specified in a TCT, see the
description of the DEFTRANS command in the online help.

398 Network Control Language Programming Guide

Define APPC Tables

Maintain TCT Definitions

You can replace or delete a TCT definition by using product commands. The REPTRANS
command lets you replace an existing TCT definition with new values. The DELTRANS
command lets you delete a TCT table definition.

Note: For more information, see the online help.

Define a Dynamic Link Table

A Dynamic Link Table (DLT) is used to support the dynamic addition of different types of
links, including INMC and APPC links. In the case of APPC the DLT is used to define those
LUs with which the local system will allow automatic link activation. Two types of APPC
links can be defined, those that support parallel LU6.2 sessions and those that support
only a single LU6.2 session.

To specify a DLT, use the DEFLINK command.
Example: Define a Dynamic Link Table

To allow an APPC link with an LU of NM1, enter the following command:

DEFLINK TYPE=APPC LUNAME=NM1 LINK=NM1

The DLT supports other options including the specification of a password for link level
security.

More information:

APPC Security (see page 403)

Specify an Option Set

To include support for option sets, specify an OSCT definition with the OPSET operand.
When an APPC link is activated, the OSCT is then accessed to determine the optional
features it is to support.

If an option set is not nominated or the one nominated can not be found during link
activation, the system uses a default option set. The default defines a parallel session
link with no data mapping support and no conversation level security support for the
connected system.

Chapter 21: Using APPC to Communicate with Other Systems 399

Define APPC Tables

Maintain DLT Definitions

DLTs are maintained by using the REPLINK and DELLINK commands. REPLINK lets you
replace a DLT definition. DELLINK lets you delete a DLT definition. For more information,
see the Online Help.

Define an Option Set Control Table

An Option Set Control Table (OSCT) is used to define the optional features that the APPC
link supports during communication. The option sets provide these optional features.

To define an OSCT, use the DEFOPSET command. You can specify single or parallel
session links by using the PARSESS operand. However, if not specified, the default is
parallel sessions.

During the activation of a link, the OSCT entry nominated in the DLT definition for the
destination is used to determine the supported options and to indicate the associated
mode names.

Example: Define an Option Set Control Table

To define an OPSET of NMOPSET with single session links issue the following command:

DEFOPSET OPSET=NMOPSET PARSESS=NO

Note: For more information, see the description of the DEFOPSET command in the
online help.

Nominate Mode Names

An OSCT entry can be associated with up to four mode names. You can use the MODE
operand to specify the names of the MCT entries that define the LU6.2 mode names
associated with this OSCT entry. Multiple mode names are useful for parallel session
links to group sessions with similar characteristics. If no mode names are specified in the
OSCT definition, a default mode is used during link activation.

Maintain OSCT Definitions
OSCTs are maintained with the REPOPSET and DELOPSET commands. Use the REPOPSET
command to replace an OSCT definition and the DELOPSET command to delete an OSCT

definition.

Note: For more information, see the online help.

400 Network Control Language Programming Guide

Define APPC Tables

Define a Mode Control Table

To request a session with certain characteristics specify a mode name on the allocation
request or a Mode Control Table (MCT) definition in the OSCT. The MCT definition
specified contains an LU6.2 mode name which has associated session characteristics.

To define an MCT entry, use the DEFMODE command.
Example 1: Define a Mode Control Table

To define an MCT entry with the name LU62PARL which references the LU62PARL mode
name, enter the following command:

DEFMODE MODE=LU62PARL MODENAME=LU62PARL
Example 2: Define a Mode Control Table

To define an MCT entry without the MODENAME operand enter the following
command.

DEFMODE MODE=LU62PARL

The name of the MCT entry is used as the LU6.2 mode name.
VTAM Logmodes

To associate an LU6.2 mode name with specific session characteristics (for example,
Class of Service, session level pacing), some implementations of APPC require the
matching VTAM logmode names with the derived characteristics to be defined to the
MCT via the LOGMODE parameter. If omitted, the VTAM default logmode values for
those parameters are used.

Note: Your product can successfully initiate sessions using LU6.2 mode names with or
without matching VTAM logmode names. However, other implementations, such as
CICS and 0S/2, require the LU6.2 mode name to match the VTAM logmode name to
successfully activate sessions initiated by these products.

Specify Modes for Single Session Links

If you are using single session links, the primary use of the MCT entry is to derive a
VTAM logmode name if session establishment is initiated by your product.

Chapter 21: Using APPC to Communicate with Other Systems 401

Define APPC Tables

Specify Modes for Parallel Session Links

Default Modes

If you are using parallel session links, mode names can be used to partition the available
sessions into logical groups, with slightly different characteristics.

Example: Specify Modes for Parallel Session Links

To define a parallel session mode that supports a maximum of ten sessions, a minimum
of two contention winner sessions for the local domain, and a minimum of two
contention winner sessions for the remote system enter the following command.

DEFMODE MODE=LU62PARL SESSLIM=10 MINWIN=2 MINLOSE=2

If you do not nominate an option set in the DLT definition, both the default OSCT and
the default MCT are used at link activation. The default MCT is the first entry in the MCT
or if no entries are defined an internal default applies with MODENAME=APPCMODE,
SESSLIM=20, MINWIN=5 and MINLOSE=5, no logmode name is defined. The same
applies if you nominate an MCT entry in your OSCT but the nominated modes can not
be found.

Maintain MCT Definitions

MCT entries are maintained with the REPMODE and DELMODE commands. The
REPMODE command lets you replace an MCT entry. The DELMODE command lets you
delete and MCT entry.

Note: For more information about these commands, see the online help.

402 Network Control Language Programming Guide

Chapter 22: APPC Security

APPC links provide the following two levels of security:
m Link level security, or LU-LU verification

m Conversation level security

This section contains the following topics:

Link Level Security (see page 403)

Conversation Level Security (see page 404)

Run a Secured Transaction (see page 404)

Conversation Level Security and NCL Procedure Environments (see page 405)
Specify Security for APPC Links with Remote Systems (see page 405)

APPC Region Use (see page 406)

Link Level Security

Link level security is a session level security protocol exchanged during session
activation to confirm the identity of the partner LU. This confirmation requires the use
of an eight-character password known to both LUs that comprise the link. The password
is not transferred on the session but used to encrypt data. The other LU analyzes the
encrypted data to determine whether the password is correct.

The password is a 2- to 16-byte hexadecimal string. The string is defined on the DEFLINK
command or supplied by an operator on a LINK START request. When a password is
present, your product invokes LU-LU session verification processing. If verification fails
for any reason, then link and session activation fails.

Example: Link Level Security

To specify a password of X'A1B2C3D4' in a DLT definition for SYSB, enter the following
command:

DEFLINK LINK=B LU=SYSB TYPE=APPC PASSWORD=A1B2C3D4

If PASSWORD is not specified when defining the DLT and a password is not given in the
LINK START command, LU-LU verification is not performed.

Chapter 22: APPC Security 403

Define APPC Tables

Conversation Level Security

Conversation level security is used to verify the identity of the partner transaction
program. The relevant security information (for example, user ID and password) is sent
in the attach request and is verified by the receiving LU. If the correct security
information is not supplied the request is rejected.

A TCT is used to define the level of conversation security required by a given
transaction. When an NCL procedure issues an allocation request the TCT entry is used
to determine the level of security information that needs to be included in the attach
request to be sent to the remote LU.

Run a Secured Transaction

To run a secure transaction define the SECURITY operand of the DEFTRANS command in
a TCT entry. Options on the operand are: NONE, SAME, USER, and USERPSWD. The
default is NONE which means that the transaction runs without security.

Example: Run a Secured Transaction

To secure the transaction for DBQRYO1 with the user's password, enter the following
command:

DEFTRANS TRANSID=DBQRY®1 TPN=DBO1 SECURITY=USERPSWD

When an allocation for the DBQRYO01 transaction is issued, the password for the user
environment is passed to the destination for verification.

Security Options

If you specify SECURITY=SAME in the TCT, the allocation assumes the security of the
request source. If you specified the user ID and password on the allocation request, it
assumes the same as if you had specified SECURITY=USER. If you do not specify any user
information, it assumes the same as if you had specified SECURITY=NONE.

For allocation requests, security is performed for a transaction under the following
conditions:

m The NCL procedure which issued the request is running in a signed-on environment

m The USERID and PASSWORD operands were specified in the allocation request
Otherwise it will run as an unsecured transaction.

Incoming attach requests that contain security information result in a secured
transaction and if no security information is present the transaction runs as unsecured.

404 Network Control Language Programming Guide

Define APPC Tables

Conversation Level Security and NCL Procedure Environments

NCL procedures running in a signed-on user environment can issue allocation requests
for secured transactions without specifying their user ID and password. If an NCL
procedure is running in an environment that is not protected by a user ID and password
signon, such as EASINET, it can only request allocation of secured transactions by
specifying the USERID and PASSWORD operands in the allocation request.

For incoming attach requests the TCT security level determines the type of NCL
environment in which the NCL procedure nominated to service the transaction is run.
An attach request for an unsecured transaction results in the NCL procedure being
started in the background server (BSVR) region.

If the request is for a secured transaction, a special APPC region is created (if none
already exists) for the user. The user is signed on using normal security procedures. This
happens before the transaction can be started.

Secured transactions require a signed-on environment before execution is permitted.
An attempt to start such a transaction in some other environment fails with a security
error return code.

Specify Security for APPC Links with Remote Systems

The OSCT is used to indicate the security options that can be accepted from a remote
LU. To specify security parameters, use the SECURITY operand of the DEFOPSET
command. The options for the operand are: NONE, USER, and USERPSWD.

If you specify NONE, the local system does not process any security information sent by
the remote LU in an attach request. The remote LU can invoke unsecured transactions
only.

If you specify USERPSWD, user IDs and passwords are accepted from the remote LU and
passed to the local security system for verification. However, the already verified
indicator is not accepted.

If you specify USER, then USERPSWD is assumed and in addition the already verified
indicator is also supported. If the indicator is set, a request for user ID authorization is
made to the local system to validate the region without a password.

Chapter 22: APPC Security 405

Activate APPC Links

APPC Region Use

NCL procedures, defined in the TCT to service secured transactions, execute in a special
APPC region built-in response to an attach request for a specific user ID. Normally all
attached requests for the same user ID execute in the same APPC region. When the last
NCL procedure completes execution the region is deleted.

To restrict the building of an APPC user region to a given user ID, specify a DLT entry

using the USERENV operand of the DEFLINK command. The options for the operand are
GLOBAL or LINK.

If GLOBAL (the default) is specified, an APPC region is built to service all attach requests
from the same user ID from any remote LU.

If LINK is specified, an APPC region is built to service attach requests, for a given user ID,
received from the remote LU defined by the DEFLINK definition.

Activate APPC Links

You can activate a link in the following ways:
m Manually-via a LINK START command

m Automatically-as the result of an allocation request

Start Links Manually

To start an APPC link manually use the LINK START command.
Example: Start Links Manually

To start an APPC link from SYSA, issue the following command:

LINK START=NMB TYPE=APPC

406 Network Control Language Programming Guide

Activate APPC Links

Deactivate Links Manually

Regardless of the way an APPC link is started it remains active while any sessions are
active even when all conversation activity ceases. If all sessions on the link have closed
then the link will automatically deactivate.

To stop the link at any other time, use the LINK STOP command. You can specify
different options (DRAIN, QUIESCE, and FORCE) to influence the way the link
deactivates.

If DRAIN is used (the default), all conversation activity is serviced before closing the link.
If QUIESCE is used, active conversations are allowed to complete normally, but pending
conversations complete with an allocation error. If FORCE is used, all conversations are
terminated (with a resource failure return code) and link deactivation proceeds
immediately.

Example: Deactivate Links Manually

To deactivate the link to NMB by using the LINK STOP command with the DRAIN option,
enter the following command:

LINK STOP=NMB TYPE=APPC

Start Links Automatically

A request to establish an APPC link may come from:
m The remote LU

m The local domain via a conversation request

® An operator request

Provided the correct definitions are in place any program issuing an allocation request
can cause link activation if the link is not already active.

The LU name of a network node must be defined in the DLT (see page 399) to authorize
automatic LU6.2 session activation between the remote LU and the local domain.

Chapter 22: APPC Security 407

Activate APPC Links

Session Initiation Requests

For a link to be activated automatically, a request to initiate an LU6.2 session must come
from a source in the network. All requests can be categorized as coming from one of
three sources:

m An external logon request

m An external BIND request

m Aninternal NCL procedure request

Whenever the first session between your product region and some other network node

is requested, the Dynamic Link Table is examined to determine whether the link is
authorized, and establish any special options for the link.

External Logon Request

An external logon request arises when these three conditions occur:

m An LU in the network requests a session between the product region and either
itself, or some other LU

m The product region is to be the primary session partner

m The logmode specified contains LU6.2 session parameters

Successful processing of such a request results in a BIND being issued to the target LU.
The target LU can accept the BIND as it is, negotiate certain BIND parameters, or reject
the BIND outright. If not rejected, the negotiated (or unchanged) BIND response is

returned to your product region and, if acceptable, the session establishment is
complete.

External BIND Request

An external BIND request arises when these three conditions occur:

m An LU in the network requests a session between the product region and itself
m The product region is to be the secondary session partner

m The BIND contains LU6.2 session parameters

Successful processing of such a request results in your product accepting (or
negotiating) the BIND from the LU, and the session is established.

408 Network Control Language Programming Guide

Activate APPC Links

Internal NCL Procedure Request

The internal NCL request, &APPC ALLOCATE, can be sourced from any executing NCL
procedure to request an APPC conversation with some remote LU. If no suitable
sessions are available to that LU, and the session limit (as defined in the MCT) has not
yet been reached, then the product region issues a session setup request to VTAM using
the logmode name from the MCT, whereupon session initiation proceeds as for an
external logon request.

Note: Wherever your product initiates a session, it is the primary session partner, and
no logmode is required because the LU6.2 BIND is formatted according to the options
for the link.

Sessions where your product region is the secondary session partner must be initiated
by the other (primary) session partner. This does not restrict any session usage as it is a
peer relationship, and aspects regarding session polarity (such as which LU is contention
winner) are negotiable.

How Session Establishment Works

Regardless of the source of the session initiation request, and whether your product
region is to be the primary or secondary session partner, session establishment
proceeds through a number of phases:

m Phase 1. Session parameter validation ensures that the BIND to be sent (when
processing a logon request), or BIND received (when processing an unsolicited
BIND), is a valid LU6.2 BIND within the parameters supported by the product region.

If necessary, the BIND parameters are modified before being sent to the secondary
LU, or negotiated with the primary LU, so that they are within the bounds
supported by the product region.

m Phase 2. The unqualified network LU name provided by VTAM is extracted. If other
LU6.2 sessions already exist with this network node, or are in the process of being
established, then Step 3 is performed; otherwise Step 4 is performed next.

m Phase 3. Where other LU6.2 sessions exist, or are activating, to the destination
involved, additional checks are made to determine whether the new session is
acceptable within the session limits determined by the MCT entries (see Step 5). If
so, the session is accepted as a parallel session without further processing;
otherwise it is rejected.

Chapter 22: APPC Security 409

Activate APPC Links

Single Session Links

m Phase 4. Where no other LU6.2 sessions exist, and none are being activated, to the
destination involved, the unqualified network LU name is used to locate a matching
entry in the DLT. If an entry cannot be located the session initiation is rejected.
Otherwise the DLT details are extracted and used to initialize the APPC link
connection. If an OSCT entry was nominated in the DLT, it is located and the
processing options are extracted.

m Phase 5. The OSCT entry determines whether this link supports parallel sessions or
not. Any mode names listed for the OSCT entry are used to locate the
corresponding MCT entries, and the details of each MCT is extracted to form a valid
MODE name list for this destination. For each mode name, this list contains the
session limits for that mode, as well as other session control information.

Note: If a session initiation request comes from an & APPC ALLOCATE verb, Phase 4 and
5 are performed first, before the session setup request is passed to VTAM. Following
this, and for all other session initiation types, processing begins at Phase 1 when VTAM
notifies the region of the arrival of a logon request or BIND request.

When the OSCT entry indicates that parallel sessions are not supported, an external
BIND request to establish a parallel session link is rejected. Only a single session link can
be established if the OSCT entry has been defined with PARSESS=NO. Hence only one
conversation at a time can be active on such a link, and other conversation requests
must queue, pending session availability.

If the session setup request comes from the local domain (via a LINK command or NCL
procedure allocate request), the product region attempts to set up a contention winner
session. However, the polarity of the session can be negotiated by the secondary LU. If
the session setup request comes from outside the local domain, the region accepts the
session polarity without negotiation.

410 Network Control Language Programming Guide

Activate APPC Links

Parallel Session Links

When the OSCT entry indicates that parallel sessions are supported, an external BIND
request to establish a single session link is accepted, and a single session link is set up.
An external BIND request to establish a parallel session link is accepted and session
limits negotiation is initialized.

For a parallel session link, the product region initializes the link session limit as the sum
of the session limits for each mode defined for the link. An attempt is made to initially
activate sessions within each mode to at least reach the minimum contention winner
counts for the mode. Additional sessions may be activated if conversation demand
cannot be immediately serviced by the available sessions.

During link initialization a special transaction known as Change Number of Sessions
(CNOS) is executed for parallel links. This transaction negotiates the session limits for
the defined modes before sessions are established. The CNOS transaction may be
subsequently invoked on demand, such as by remote LU request, to renegotiate session
limits at any stage of link operation.

Session Selection for Conversations

When an allocation request targets a particular link an attempt is made to locate a
session to be used by the conversation. If an idle contention winner session is located
then it is assigned. If not, the conversation goes into a pending allocation state, awaiting
a session for the conversation.

For a pending allocation on a parallel session link, further efforts are made to isolate a
usable session. Where the number of contention winners can be increased (according to
the session limits) then a new session is started. Otherwise, if an idle contention loser
session is located, a bid is made to use that session.

For a pending allocation on a single session link, if the session is a contention loser
session and it is idle, a bid is made to use that session.

In general, when a conversation enters a pending allocation state, one of three events
can occur to provide a session for its use:

m An active conversation ends, freeing up a contention winner session for the pending
conversation.

® A new contention winner session starts and becomes available for the pending
conversation.

m Aresponse to previous bid indicates that the remote end will allow the
conversation to commence on a contention loser session.

Conversations remain pending until one of these events frees a session for use, or until
the allocation request is otherwise canceled. An allocation may time out (if a time-out
period is specified on the allocation), or a link termination condition may cause the
cancellation of all pending requests for the link.

Chapter 22: APPC Security 411

APPC Link Definition Examples

Deactivate Links Automatically

APPC links deactivate automatically when all sessions on the link have been closed.

APPC Link Definition Examples

The following examples illustrate typical APPC table definition requirements to establish
LU6.2 connections between the following:

m Two domains (SYSA and SYSB)

m Two domains (SYSA and SYSB) that require security verification
m The product region and a remote LU

m Two domains (SYSA and SYSB) using a qualified transaction

m Two domains (SYSA and SYSB) using a generic transaction

Each example uses a database query application with transaction identifier DBQUERY, a
TPN of DB0O1, and a server NCL procedure DBQRYO1.

When defining mode names in the examples, the MODENAME parameter has been
omitted in the DEFMODE command, so that the LU6.2 mode name defined is the same
as the name of the MCT entry (MODE parameter).

Run Conversations Within the Same Domain

The two LUs of an APPC conversation are run in the same domain to develop a database
query application and test it. No sessions are established, no session related definitions
are needed, and session overheads are eliminated. Only the TCT entry needs to be
defined, with the name of the local domain as the destination LU.
To define an APPC link within the same domain, SYSA
1. Define the following TCT entry in SYSA:

DEFTRANS TRANSID=DBQUERY TPN=DB01 LU=SYSA PROC=DBQRYQ1l
2. Issue an allocation request from an NCL procedure in SYSA for DBQUERY.
The allocation processing locates the TCT entry and determines that the destination is

the local domain. This has the effect of starting DBQRYO1 in SYSA. During this processing
there is no need to reference any of the session related tables DLT, OSCT or MCT.

412 Network Control Language Programming Guide

APPC Link Definition Examples

Run with Already Verified Security

An APPC link is to be established between two domains SYSA and SYSB. The link is to
service transactions that may require data mapping support.

To define a link between SYSA and SYSB with data mapping support

1.

Define the following DLT entries in SYSA and SYSB that specifies an OSCT entry that
supports data mapping:

DEFLINK LINK=LO1 LU=SYSB TYPE=APPC OPSET=NMMAP (in SYSA)
DEFLINK LINK=L02 LU=SYSA TYPE=APPC OPSET=NMMAP (in SYSB)
Define the following OSCT entry, NMMAP, in both domains:
DEFOPSET OPSET=NMMAP MODE=MODELU62 SEC=USER MAP=YES +
LOG=YES PARSESS=YES

SEC=USER indicates that the already verified indicator is to be accepted from the
remote domain

Note: If you want the link to be a single session link, specify the PARSESS=NO
operand and a MODE that supports single session links in the OSCT entry.

Define the following MCT entry, MODELU62 in both domains:

DEFMODE MODE=MODELU62 SESSLIM=4 MINWIN=1 MINLOSE=0

The LU6.2 mode name defined is MODELU62 which supports a maximum of 4
sessions.

Define the following TCT definitions in each domain to allow the invocation of the
DBQURY01 NCL procedure:

DEFTRANS TRANSID=DBQUERY TPN=DBO1 LINK=LO1

MODENAME=MODELU62 (in SYSA)

DEFTRANS TRANSID=DBQUERY TPN=DBO1 PROC=DBQRYO1 (in SYSB)

A default mode name for conversation allocation has been specified.
An NCL procedure in SYSA issues an allocation request for DBQUERY.

The TCT entry is located and an attach request for DBO1 built. The link name LO1 in
the TCT is used to locate the DLT and to determine the LU name of the destination,
SYSB. The OSCT entry NMMAP nominated in the DLT and the corresponding MCT
entry MODELU62 nominated in the OSCT are also located. If the link is not already
active the DLT entry is used to start link activation and a parallel session link with
data mapping support is established.

Once the link is active and a session is available the attach request for DB0O1 is sent
to SYSB. Attach processing finds the TCT entry for DBO1 and the NCL procedure,
DBQRYO01 is started.

Chapter 22: APPC Security 413

APPC Link Definition Examples

Run an APPC Link Between a Domain and a Remote LU

An APPC link is to be established between a domain and an 0OS/2 work station. The link
is to service transactions with no data mapping requirements.

0S/2 requires that the mode name match a valid LU6.2 VTAM logmode, therefore in
addition to a DLT, you need to define an OSCT and its associated MCT.
To run an APPC link between your domain and an 0S/2 workstation
1. Define the following DLT in your domain:
DEFLINK LINK=WRKSO1 LU=0S2001 TYPE=APPC OPSET=WRKSOPST
WRKSOPST is the name of the OSCT entry to be used.
Note: Ensure that you enable APPC links in your OS/2 system.
2. Define the following OSCT entry in your domain:
DEFOPSET OPSET=WRKSOPST MODE=LU62SESS LOG=YES MAP=NO
LUG2SESS is the name of the MCT entry to be used.

Note: If you want the link to be a single session link, specify the PARSESS=NO
operand and a MODE that supports single session links in the OSCT entry.

3. Define the following MCT entry in your domain:
DEFMODE MODE=LU62SESS LOGMODE=LU62SESS SESSLIM=20 +

MINWIN=1 MINLOSE=0

The LU6.2 mode name defined is LU62SESS and supports a maximum of 20 sessions.
A logmode has been specified and is the same as the LU6.2 mode name LU62SESS.
0S/2 requires mode names to match a valid VTAM logmode entry.

4. Define the following TCT entries so that the DBQUERY transaction can be invoked
from the workstation and the database interrogated in SYSA:

DEFTRANS TRANSID=DBQUERY TPN=DBO1 PROC=DBQRYO1

5. A program running in the workstation issues an allocation request for TPN DBO1.

Your domain receives an LU6.2 session request from LU 0S2001. The LU name is used to
locate the DLT for LU 0S2001. The associated OSCT and MCT are also located. A parallel
session link with no data mapping support is established. The workstation sends an
attach request for DBO1 to your domain. The TCT for DBO1 is located by your domain
and the procedure DBQRYOL1 is started to service the transaction.

414 Network Control Language Programming Guide

APPC Link Definition Examples

Run a Qualified Transaction

A database query application runs between two domains SYSA and SYSB. The DBQUERY
transaction is invoked from SYSA to send an attach request for DBO1 to SYSB, where the
NCL procedure DBQRYO1 is run. A new version of this procedure (DBQRYO1T) needs to
be tested using TPN DBO1TEST and the transaction qualifier TEST.

To use the APPC link to test the new NCL procedure

1.

4.

Define the qualifier TEST in the DLT entry in SYSA by issuing the following
command:

DEFLINK LINK=B LU=SYSB TYPE=APPC QUAL=TEST
Ensure that you stop and restart the link to put this qualifier into effect.

Define the qualified entry in the TCT entry in SYSA by issuing the following
command:

DEFTRANS TRANSID=DBQUERY TPN=DBO1TEST QUAL=TEST

Define a TCT entry in the remote system (SYSB) for the procedure being tested by
issuing the following command:

DEFTRANS TRANSID=DBQUERY TPN=DBO1TEST PROC=DBQRYOIT

Issue an allocation request for DBQUERY.

The existing unqualified TCT entry is used to resolve the name of the destination. The
destination name is used to determine that the qualifier TEST is in effect (as defined in
the DLT). The TCT entry for DBQUERY qualified by TEST is located and used to complete
the allocation request. An attach request for DBO1TEST is sent to SYSB where the TCT
entry for DBO1TEST is found and DBQRYO1T is run.

Chapter 22: APPC Security 415

APPC Link Definition Examples

Run a Generic Transaction

Two domains SYSA and SYSB are connected via an APPC link. Transactions starting with
the prefix DB (for example, DBQUERY, DBPUT, DBUPDT) are to be allocated in SYSA. The
NCL procedures to service these transactions start with the prefix APPC (for example,
APPCQRY, APPCPUT, APPCUPDT). This can be done using a single generic TCT entry.

To define a single TCT entry to service all of the above transactions
1. Define the following TCT entry in SYSA:

DEFTRANS TRANSID=DB* TPN=TP* LINK=B
2. Define the following TCT entry in SYSB:

DEFTRANS TRANSID=DB* TPN=TP* PROC=APPC*
3. Issue an allocation request in SYSA for transaction ID DBUPDT.
This matches the TCT entry DB*. The matching characters in the transaction name are
removed and the remaining characters (UPDT) are appended to the generic TPN (TP*) to
get TPUPDT. This is the TPN sent to the remote domain. It matches the TCT entry for TP*
and again the matching characters are removed. The remaining characters UPDT are

appended to the generic procedure name APPC* to form the NCL procedure name
APPCUPDT to be started.

416 Network Control Language Programming Guide

Chapter 23: Program-to-Program Interface

Uses of PPI

This section contains the following topics:

Uses of PPI (see page 417)

CNMNETM Module (see page 418)

Structure and Data Flow (see page 419)

Interface Details (see page 420)

&PPI Verb (see page 421)

Access PPI Facilities (see page 424)

Access PPI Facilities from Other Programs (see page 426)
Check PPI Status (see page 431)

Control Receiver Programs (see page 432)

Send a Generic Alert (see page 440)

Control Data Buffers (see page 442)

Wait on an ECB (see page 447)

Obtain a Unique Sender or Receiver ID (see page 448)
Receive Information from a Receiver Program (see page 450)
Trace the Cause of a Processing Error (see page 452)

Program-to-Program Interface (PPI) provides a general-purpose facility for programs,
written in any language, to exchange data. It also provides a facility for any program to
forward a generic alert to your product.

As PPl is available to any environment, not just NCL, PPl provides a simple, powerful
technique to access your product from outside.

For example, an NCL process could provide a batch program with the ability to issue
selected product commands and return the results of the command to it.

No special authorization is required to use PPI, and it does not depend on having your
product running. The PPl implementation can use either Cross-Memory Services or
Service Request Block (SRB) scheduling.

The NCL &PPI verb provides access to the Program-to-Program Interface in your
product. This interface allows any programs, executing on the same system, written in
almost any programming language to freely exchange information.

The API provided by the Program-to-Program Interface is described in IBM's Tivoli
NetView Application Programming Guide: Program to Program Interface.

The PPI services can be provided by the subsystem interface for your product (SSI) or by
the Tivoli NetView Subsystem Interface.

Chapter 23: Program-to-Program Interface 417

CNMNETM Module

CNMNETM Module

The IBM Tivoli NetView Application Programming Guide: Program to Program Interface
discusses the CNMNETV module that you call when using the PPl API. A similar module,
CNMNETM, with an alias of CNMNETV, is provided. This module can be loaded by
application programs, or link-edited with them. It is fully re-entrant and can be placed in
the PLPA, if so desired.

At this time, the IBM version and this version of the module are incompatible with each
other's implementation of the PPI. That is, the IBM CNMNETV module will not work in
your product's PPl environment, and conversely.

A subsystem is available for your product, which runs as a separate job or started task.
This allows PPI to stay active regardless of whether your product is active or not. A
command control interface between the subsystem and your product allows control of
the subsystem from any suitably authorized product command environment.

418 Network Control Language Programming Guide

Structure and Data Flow

Structure and Data Flow

MV S
Application gpp”caﬁﬂn Product SOLVE SSl
Program 2 Cg?lgram region address
CNMNETV address space
space (PPI Servern)
il Pz
Call
CNMNETV
- -
NCL
&PPI Verbs
il Fioa-

As this illustration shows, programs issue calls to CNMNETM (CNMNETV) to send data to
the nominated receiver program. The data is buffered in the SSI address space in queues
associated with each receiver. When data is available for a given receiver, your product
posts an ECB that the receiver can wait on. The receiver can then call CNMNETM using a
receiver function to obtain the next data buffer.

Note: Data is not directly moved from sender to receiver. The buffering allows the
sender or receiver to run asynchronously.

Chapter 23: Program-to-Program Interface 419

Interface Details

Interface Details

A brief overview of the interface follows.

m Programs construct a request parameter block (RPB) that contains details about a
call to PPL.

m A program then issues a CALL to CNMNETV (CNMNETM), passing the RPB as the
only parameter (standard linkage, R1 pointing to the word containing the RPB
address).

m Upon return, the RC field in the RPB contains the return code. Depending on the call
and the return code, other data can be provided.

For more information about the correlation between the &ZFDBK and &RETCODE
system variables, see the &PPI verb description in the Network Control Language
Reference Guide.

The following functions can be provided in the RPB function code field:

Function code 1-inquire about PPI status

This function code allows an application program to determine if PPl is available
and active in the system. A return code of 10 indicates that it is available.

Function code 2-obtain receiver status

This function code allows an application program to determine the status of a
named receiver program. Return codes indicate whether the receiver is defined or
not, and whether it is presently active or not.

Function code 3-obtain ASCB and TCB addresses

This function code allows programs written in languages that do not support the
ability to obtain ASCB or TCB addresses, the addresses of these control blocks. They
are needed for other PPI calls.

Function code 4-define and initialize receiver

This function code allows a program to define itself as a receiver. The program
provides a unique 1 to 8 character receiver name and queue limit. Following this
call, the receiver is defined, and other programs can send data to it.

The receiver can optionally be defined as authorized. This prevents programs that
are not APF authorized from sending data to it.

Function code 9-deactivate a receiver

This function code allows a defined receiver program to deactivate itself. The queue
limit can be optionally altered. If a receiver program (Task) terminates without
issuing this call, it is automatically deactivated.

420 Network Control Language Programming Guide

&PPI Verb

&PPI Verb

Function code 12-send a generic alert

This function code allows any program to send a generic alert to your product. It is
sent to the defined receiver NETVALET, which receives these generic alerts in NMVT
format, and forwards them on to NEWS.

Function code 14-send a data buffer

This function code allows any program to send a data buffer to any defined receiver
(active or inactive). The receiver will be notified if necessary.

Function code 22-receive a data buffer

The function code allows a receiver program to receive the next available data
buffer. If no buffers are available, a return code informs the receiver.

Function code 24-wait on an ECB

This function code allows a program written in a language that does not support
ECB waiting, to wait for data to arrive.

Function code 60-obtain a unique name

This function code, available only in this implementation of PPI, allows a program to
obtain a unique 8 character ID. Although programs that only send data need not
have a unique ID, all receivers must have a unique ID. This service is provided to
allow a sender to obtain a unique ID so that it can register itself as a receiver for a
two-way conversation.

All PPI facilities can be accessed using the &PPI verb. A keyword immediately following
the &PPI verb identifies the specific request. These keywords generally correspond to
the various functions described in the API.

The full set of &PPI requests is:

m &PPI ALERT

= &PPIDEACTIVATE

m &PPI DEFINE

= &PPIRECEIVE

m &PPISEND

m &PPISTATUS

Note: For more information about the &PPI verb, see the Network Control Language
Reference Guide.

Chapter 23: Program-to-Program Interface 421

&PPI Verb

Return Codes, System Variables, and User Variables

Following each execution of the &PPI verb, the &RETCODE and &ZFDBK system variables
are set to reflect the success or otherwise of the request. &RRETCODE contains a
normalized return code. &ZFDBK contains the PPl return code.

Note: For more information about the correlation between the &ZFDBK and &RETCODE
system variables, see the &PPI verb description in the Network Control Language
Reference Guide. A table shows the returned values of each of these system variables.
Other system variables are:
&ZPPI

Indicates whether this system appears to support PPl or not.
&ZPPINAME

Contains the PPl receiver ID that this NCL process is registered as.

Some &PPI functions set specific NCL user variables:
&PPISENDERID

Set to the PPI ID of the sender of a received message.
&PPIDATALEN

Set to the actual received data length, in bytes.

Determine PPI or Receiver Status

The STATUS option of the &PPI verb allows an NCL process to determine the status of
PPl itself (available or not), or the status of a PPI RECEIVER (by using the ID=name
operand).

In either case, the process can examine the &RETCODE and &ZFDBK system variables
after the request. If &RETCODE is 0, then PPI or the receiver is available or defined.

Define the Process as a Registered PPI Receiver

By using the DEFINE option of the &PPI verb, an NCL process can register itself as a
receiver. A 1- to 8-character name can be supplied, which must be unique (that is, not
presently defined to PPI or currently inactive). If your product is providing PPI services,
an alternative is to use the ID=* option, which causes PPl to provide a unique name. This
option is useful when talking to globally named servers, as you need not worry about
trying to find a unique name.

A process need not be defined to send data using the SEND and ALERT options. In this
case, a sender ID of #nclid (7 characters, for example #001352) is used.

422 Network Control Language Programming Guide

&PPI Verb

Send a Generic Alert

One function of the PPI facility is to collect generic alerts and forward them to general
CNM reporting (for example, NEWS). The &PPI ALERT verb allows any NCL process to
send an alert to CNM. The alert must be formatted as an NMVT, including the NMVT
header.

Send Data to a Receiver

The &PPI SEND verb option allows any NCL process to send data to a nominated
receiver. This receiver must be defined, but can be inactive (in which case data is
gueued unless the queue limit is reached).

Note: The receiver cannot be an NCL process at all and can reside in another address
space.

The data to be sent can be a character string, HEX data that is packed before sending, or
an MDO.

Receive Data

An NCL process can receive data directed to its defined receiver ID using the RECEIVE
option of the &PPI verb. That data can come from other NCL processes, including other
systems, or from other programs.

Standard parsing options, as on the other &xxxREAD verbs, can be used. Alternatively,
MDOs can be received.

The WAIT operand allows the procedure to indicate whether or not it will wait if no data
is available, and, if no data is available, how long it will wait. Alternatively, the process
can use WAIT=NOTIFY, to cause a message to be delivered to the dependent response
gueue when data arrives, thus allowing other work to be performed. When the
notification arrives via &INTREAD, the process can reissue the &PPI RECEIVE.

Deactivate the Receiver ID

The &PPI DEACTIVATE option allows an NCL process to disconnect itself from a defined
PPl receiver ID. Optionally, a queue limit can be specified, allowing data to be queued
even though no receiver is present. The ID can be reactivated later, by this or any other
NCL process.

If an NCL process that is defined to PPl terminates, an automatic deactivation occurs.

Chapter 23: Program-to-Program Interface 423

Access PPI Facilities

Access PPI Facilities

To access PPI facilities, use the &PPI verb. A keyword specified after the verb identifies
each facility. The facilities take the form of requests that can be sent to other programs,
including:

m &PPIALERT

m &PPIDEACTIVATE
= &PPIDEFINE

m &PPIDELETE

m &PPIRECEIVE

m &PPISEND

m &PPISTATUS

Note: For more information about the &PPI verb and its use, see the Network Control
Language Reference Guide.

Access PPI from NCL Processes

To access PPI facilities in NCL, use the &PPI NCL verb and two NCL system variables,
&ZPPl and &ZPPINAME.

Note: For more information about these verbs and system variables, see the Network
Control Language Reference Guide.

After an &PPI verb is executed from an NCL process, the &RETCODE NCL system variable
contains the return code that indicates success or failure. This value can be used as a
quick test to check whether the operation worked or not. Generally, 0 indicates that
there are no problems, 4 is a warning, 8 or 12 indicate errors of some sort. Return code
20 is only returned after &PPI RECEIVE WAIT=NOTIFY if a notification message arrives
later.

If an error code is returned in &RETCODE, the &ZFDBK system variable can be used to
investigate the error further. &ZFDBK contains the actual PPI return code as returned in
the RPB after a call, or a simulated return code if NCL detected an error condition itself.

Any NCL process in the system can use PPl services with the following restrictions:

m To receive data, a process must register itself to PPl with a unique name, using the
&PPI DEFINE option.

m |f a process does not register itself, and sends data, the PPl sender ID used is the
6-digit NCLID (leading zeros) prefixed with a hash (#) character.

m An NCL process can be defined as only one receiver at a time.

424 Network Control Language Programming Guide

Access PPI Facilities

NCL PPI System Variables

The following system variables are available with the NCL PPI facility:
&ZPPI

Indicates whether or not PPl is available in this system.
&ZPPINAME

Contains the defined receiver ID of the current NCL process.
&RETCODE

Contains a normalized return code after &PPI verb execution. For more
information, see the &ZFDBK system variable.

As &RETCODE is set by many NCL statements, it should be inspected immediately
after an &PPI statement, or saved in a user variable for later inspection.

&ZFDBK

Contains the actual PPI RPB RETCODE value after an &PPI verb execution. It can be
inspected as required when &RETCODE indicates an error condition to determine
the exact error.

As &ZFDBK is set by many NCL statements, it should be inspected immediately after
an &PPI statement, or saved in a user variable for later inspection.

&ZVARCNT
Set after a successful &PPI RECEIVE to indicate the number of NCL tokens that have
had data placed in them.
NCL PPI User Variables

The following NCL user variables can be set by some &PPI verb operations:
&PPISENDERID

Set to the sender ID of a data buffer after a successful &PPI RECEIVE operation. The
sender ID can contain ampersand (&) characters.

&PPIDATALEN

Set to the actual byte length of the received data buffer after a successful &PPI
RECEIVE operation.

The &PPI RECEIVE also sets nominated user variables with the received data.

Chapter 23: Program-to-Program Interface 425

Access PPI Facilities from Other Programs

Access PPI Facilities from Other Programs

Make PPI Calls

Construct an RPB

To access PPI facilities from programs other than this product, you construct calls to the
PPI. To make a call, you have to know the code for the request you are making,
construct a Request Parameter Block (RPB), and specify the PPI API.

IBM's PPl uses an API module named CNMNETV to manage the data that is exchanged
between programs. This product provides CNMNETM as the PPI APl which has an alias
of CNMNETV.

To make a PPI call
1. Construct a request parameter block (RPB) in a block of storage.

2. Make the call.

All PPI calls require an RPB. An RPB is a block of storage and must be exactly 56 bytes
long. An RPB describes the request you want to make of the PPI. The fields specified in
the RPB depend on the type of request you are making. PPI uses other fields in the RPB
to return data to your program.

The following table shows the request parameter block (RPB) format and describes the
fields that can be used to construct the RPB:

Note: Some fields overlap.

Bytes Name Description

00-03 RPBLEN A binary fullword that must contain the length of the RPB.
This field must be set to 56 (decimal or 38 hexadecimal).
For compatibility with earlier releases of PPI, a length of 40
(28 hexadecimal), 46 (2E hexadecimal), or 52 (34
hexadecimal) is permitted.

04-05 REQUEST A binary halfword that must be set to the request code for
the PPI call. Valid request codes are described later.

06-07 RECOPT A binary halfword that must be set to one of the following
values:

m O0—No recovery is requested.

m 1—ESTAE recovery is requested. Not valid if the
program is executing in cross-memory mode.

426 Network Control Language Programming Guide

Access PPI Facilities from Other Programs

Bytes

Name

Description

08-11

RETCODE

A binary fullword that PPI sets with the return code from
the requested function. For more information about
possible return codes, see the function descriptions.

12-15

WORKADR

A binary fullword that must be set to the address of a
128-byte work area. This area must be provided on all calls
to the PPI. It need not be preserved across calls.

16-19

ASCBADDR

A binary fullword, that is used to contain or return the
ASCB address of the current address space. This field is
used in various PPI calls.

16-23

SENDERID

For those calls that require it, the one- through
eight-character sender ID. If the supplied ID is less than
eight characters, it must be left-justified and blank-padded.

20-23

ECBADDR

A binary fullword, returned when a receiver is defined,
containing the address of an ECB that PPl posts when data
arrives.

20-23

BUFFQL

A binary fullword, supplied when defining or inactivating a
receiver, that contains the receiver buffer queue limit. The
supplied value is used to limit the number of buffers that
can be queued to the receiver.

24-31

RECVERID

For those calls that require it, the one- through
eight-character receiver ID. If the supplied ID is less than
eight characters, it must be left-justified and blank-padded.

32-35

BUFFLEN

A binary fullword, supplied on some PPI calls, and returned
on others, that contains the length of a supplied buffer or
data, or the returned actual data length.

32-33

AUTHIND

A binary halfword, used when defining a receiver to
indicate whether senders must be APF authorized or not.
The following values are allowed:

m 0—No APF authorization is required.

m 1—Senders must be APF authorized to send to this
receiver.

34

FLAG1

Bit 0 (X'80Q') is set or reset by a request code 2 (query
receiver) to indicate whether the receiver queue is full. The
bit is set if the queue is not full or reset if full.

3639

BUFFADDR

A binary fullword that must be set to the address of a
sending or receiving buffer on some calls. The length of
this buffer must be set in the BUFFLEN field.

Chapter 23: Program-to-Program Interface 427

Access PPI Facilities from Other Programs

Bytes Name Description

36-39 TCBADDR A binary fullword that must be set to the address of the
current TCB when defining a receiver, or is returned on the
'get TCB/ASCB addrs' call.

40-45 RESERVED These fields are not used in z/OS.

46 REQIND1 Request indicator 1.
If you do not want to change an existing receiver definition
(even when the TCB/ASCB addresses match), set bit 0
(X'80') before issuing a DEFINE RECEIVER (request code 4).
A return code of 16 is returned instead.

If you want to determine the version of PPl in use, set bit 1
(X'40') before issuing a QUERY PPI STATUS (request code

1).
47 REQIND2 Request indicator 2 (presently unused).
48-51 VERSION Request code 1 returns the PPl version here if requested to

(by setting REQUIND1 to X'40' before the call). The version
returned is a fullword 1 indicating Tivoli NetView 2.4.

52-55 RESERVED Presently unused.

Specify Sender and Receiver IDs
The SENDERID and RECVERID fields of the RPB are used to specify sender and receiver
IDs as required. These IDs must adhere to the following rules:

m 1 to 8 characters-if shorter than 8 characters, must be left justified and blank
padded, embedded blanks are not allowed.

m The following characters can be used: A-Z, 0-9, @, #, S, %, &; no other characters
are allowed.

m |Ds starting with NETV or NETM are reserved and can only be defined by your
product's main task.

428 Network Control Language Programming Guide

Access PPI Facilities from Other Programs

Make the Call

When making the PPI call, the following conventions must be followed:

m Register 1 must point to a full word in storage that points to the RPB. The end of
parmlist bit (bit 0) of the full word can, but need not, be set.

m Register 13 must point to a standard 18-word save area.

m Register 14 must contain the return address in the calling program. This is normally
done using the BALR instruction.

m Register 15 must contain the entry point of CNMNETM (or CNMNETV).

m The program must be in primary addressing mode, not secondary, AR, or HOME
mode. It must be in TCB mode. SRB mode callers and cross-memory callers are not
supported.

In an XA or ESA environment, all addresses in these registers and in the pointer to the
RPB must be valid for the AMODE of the calling program. There is no requirement to be
in 31 bit mode.

Note: If a LOAD macro was used to obtain the address of CNMNETM (CNMNETV), the
top bit of the returned address can be set. It is acceptable to use BALR, BASR, or BASSM
to call it.

Most high-level languages follow the conventions automatically.

Upon return, registers are restored. Register 15 is set to 0. It does not contain a return
code. The return code is in the RPB.

Chapter 23: Program-to-Program Interface 429

Access PPI Facilities from Other Programs

Sample PPI Calls

Some examples of PPI calls in various languages follow:
Assembler

CALL CNMNETV, (RPB)

CALL (R15), (RPB)
PL/1

CALL CNMNETV (RPB);

CNMNETV (RPB);
COBOL
CALL 'CNMNETV' USING RPB

Notes:
m CArecommends that CNMNETV not be link-edited with the program.

m In Assembler, use the LOAD macro to load CNMNETV and save the returned
address.

® |nPL/1, use the FETCH statement to load CNMNETV.
m |n COBOL (VS COBOL Il, pointer ability is needed), use the DYNAM option.

430 Network Control Language Programming Guide

Check PPI Status

Check PPI Status

To check the status of PPI, use request code 1. This request code allows an application
program to inquire about the status of the PPI facility. The return code indicates
whether it is active or not.

The RPB fields in the following table must be set:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 1.

12-15 WORADDR The address of a 128-byte work area.

46 REQIND1 Bit 1(X'40') if you want the PPI version
returned.

48-51 VERSION Binary 0 so that a back-level PPI can be

detected correctly.

The RPB fields in the following table are returned after the call:

Bytes Field Name Contains
08-11 RETCODE The return code.
48-51 VERSION The PPI version number if RETCODE 10 is

returned. F'1' indicates Tivoli NetView 2.4. F'0'
indicates a prior release.

The following return codes are possible:
10
PPl is active and available to process requests.
24
PPl is not active.
28
PPI requests are not supported.
90

A processing error occurred.

Chapter 23: Program-to-Program Interface 431

Control Receiver Programs

Control Receiver Programs

There are a number of request codes that can be used to obtain information from, and
control receiver programs:

2
Check the status of a receiver program
3
Obtain the ASCB and TCB addresses of a receiver program
4
Define and initialize a receiver program
9
Deactivate a receiver program
10

Delete an active receiver program

Each of these functions is described in the following sections.

Check the Status of a Receiver Program

To check the status of a receiver program, use request code 2. The return code from this
request indicates whether the receiver is defined, active, or inactive.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 2.

12-15 WORADDR The address of a 128-byte work area.

24-31 RECVERID The name of the receiver you want to query.

432 Network Control Language Programming Guide

Control Receiver Programs

The RPB fields in the following table are returned after the call:

Bytes Field Name Contains
08-11 RETCODE The return code.
34 FLAG The status of the receiver queue (for RETCODE

14 and 15). Bit 0 is set if there is space on the
receiver queue or cleared if the receiver queue
is full.

The following return codes are possible:
14

The receiver program is active.
15

The receiver program is not active.
22

The requestor is not in primary addressing mode.
24

PPl is not active.
26

The receiver program is not defined.
28

PPI requests are not supported.
90

A processing error occurred.

Chapter 23: Program-to-Program Interface 433

Control Receiver Programs

Obtain ASCB and TCB Addresses

To obtain ASCB and TCB addresses, use request code 3. This request code allows
application programs written in languages that do not allow you to obtain the ASCB and
TCB addresses of the current program, to obtain them. These addresses are required for
some other PPI request codes.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 3.

12-15 WORADDR The address of a 128-byte work area.

The RPB fields in the following table are returned after the call:

Bytes Field Name Contains

08-11 RETCODE The return code.

16-19 ASCBADDR The address of the current ASCB.
36-39 TCBADDR The address of the current TCB.

The following return codes are possible:
0
Request completed successfully.
22
The requestor is not in primary addressing mode.
24
PPl is not active.
28
PPl requests are not supported.
90

A processing error occurred.

434 Network Control Language Programming Guide

Control Receiver Programs

Define and Initialize a Receiver

To define or initialize a receiver, use request code 4. This request code lets you perform
the following functions:

m Define a receiver—it declares the name of the receiver and the buffer limit.

m |nitialize a receiver that does not exist.

m Reactivate a defined but inactive receiver.

m Alter the buffer queue limit. This function can be performed at any time, as long as
all the fields are specified, and the TCB/ASCB addresses match those addresses of
the defined receiver.

Changing the value of the buffer queue limit does not drop buffers if it is reduced.
The change only prevents additional buffers from being queued.

Prevent the accidental overwrite of an existing receiver definition by setting
REQIND1 to X'80'. This flag causes an exclusive-active check to be made, that is, if
the receiver is presently active, no change is made to it, regardless of a match on
the TCB/ASCB addresses.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 4,

06-07 RECOPT A recovery option as required.

12-15 WORADDR The address of a 128-byte work area.

16-19 ASCBADDR The address of the current ASCB (can be
obtained by a request type 3).

20-23 BUFFQL The buffer queue limit: 0 to PPl maximum
parameter.

24-31 RECVERID The receiver ID.

32-33 AUTHIND 0 if senders do not require authorization or 1 if
senders must be APF authorized.

36-39 TCBADDR The address of the current TCB (can be
obtained by a request type 3).

46 REQIND1 Bit 0 (X'80") if an exclusive-active check is

wanted.

Chapter 23: Program-to-Program Interface 435

Control Receiver Programs

The RPB fields in the following table are returned after the call:

Bytes Field Name Set to...
08-11 RETCODE The return code.
20-23 ECBADDR The address of the receiver ECB.

The following return codes are possible:

0
Request completed successfully—ECB address is set.
16
The receiver program is already active, and the TCB/ASCB address did not match, or
they matched but the exclusive-active check flag (REQUIND=X'80') is set.
22
The requestor is not in primary addressing mode.
24
PPl is not active.
25
The ASCB address is not correct.
28
PPl requests are not supported.
32
No storage is available.
36
ESTAE could not be established as requested.
40
Receiver ID is invalid.
90

A processing error occurred.

436 Network Control Language Programming Guide

Control Receiver Programs

Notes:

m Only this product can define receiver ID names starting with NETM or NETV, unless
the PPINETM/R parameters are set to NO.

m The returned ECB-address field provides the address of an ECB, in the TCB key of
the caller, in a protected subpool (that is, cannot be freed by user code), that is
posted when buffers are available to the receiver. Do not alter this ECB, which is
automatically cleared and posted when relevant.

m The return code is O if buffers are available, and 99 if the PPI facility is shutting
down.

m Tivoli NetView 2.4 lets you define a receiver passing a zero ASCB address—in this
case, it does not allocate an ECB. The SOLVE PPI does not support this feature and
returns RETCODE=25 (invalid ASCB address).

Deactivate a Receiver

To deactivate a receiver program, use request code 9. If a receiver is not deactivated
explicitly, it is deactivated at end of task or end of address space of the associated
task/address space. Explicit deactivation lets you reset the buffer queue limit.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 9.

06-07 RECOPT A recovery option as required.

12-15 WORADDR The address of a 128-byte work area.
16-19 ASCBADDR The address of the current ASCB (can be

obtained by a request type 3).

20-23 BUFFQL The buffer queue limit: 0 to PPl maximum
parameter.
24-31 RECVERID The receiver ID.

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08-11 RETCODE The return code.

Chapter 23: Program-to-Program Interface 437

Control Receiver Programs

The following return codes are possible:

0
Request completed successfully—ECB address is set.
15
The receiver program is already inactive.
22
The requestor is not in primary addressing mode.
24
PPl is not active.
25
The ASCB address is not correct.
26
The receiver program is not defined.
28
PPI requests are not supported.
36
ESTAE could not be established as requested.
40
Receiver ID is invalid.
90

A processing error occurred.

Note: Only the owning task/address space can explicitly deactivate a receiver.

438 Network Control Language Programming Guide

Control Receiver Programs

Delete an Active Receiver

To delete an active receiver program, use request code 10. Any unreceived data buffers

are purged.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 10.

06-07 RECOPT A recovery option as required.

12-15 WORADDR The address of a 128-byte work area.

16-19 ASCBADDR The address of the current ASCB (can be
obtained by a request type 3).

24-31 RECVERID The receiver ID.

The RPB field in the following table is returned after the call:

Bytes

Field Name

Set to...

08-11

RETCODE

The return code.

The following return codes are possible:

0

Request completed successfully—the receiver has been deleted.

15

The receiver program is already inactive.

22

The requestor is not in primary addressing mode.

24

PPl is not active.

25

The ASCB address is not correct.

26

The receiver program is not defined.

Chapter 23: Program-to-Program Interface 439

Send a Generic Alert

28

PPl requests are not supported.

36

ESTAE could not be established as requested.

40
Receiver ID is invalid.

920

A processing error occurred.

Note: Only the owning task or address space can explicitly delete a receiver.

Send a Generic Alert

To send a generic alert, use request code 12. No special PPl setup is required.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 12.

06-07 RECOPT A recovery option as required.

12-15 WORKADDR The address of a 128-byte work area.
32-35 BUFFLEN The length of the generic alert data.
36-39 BUFFADDR The address of the generic alert data.

The RPB field in the following table is returned after the call:

Bytes Field Name

Set to...

08-11 RETCODE

The return code.

440 Network Control Language Programming Guide

Send a Generic Alert

The following return codes are possible:
0

Request completed successfully.

The ALERT receiver task (NETVALERT) is not active—the alert has been queued.
22
The requestor is not in primary addressing mode.
24
PPl is not active.
26
The NETVALERT receiver program is not defined.
28
PPl requests are not supported.
32
No storage is available.
33
The buffer length is invalid.
35
Alert receiver buffer queue is full.
36
ESTAE could not be established as requested.
40
Sender ID is invalid.
90

A processing error occurred.
Note: The generic alert must include the 8-byte NMVT header.
The default buffer queue limit for the alert receiver is 1000 generic alerts.

A return code of 22 or greater means that the alert has not been copied to the alert
receiver queue.

Chapter 23: Program-to-Program Interface 441

Control Data Buffers

If no hierarchy or resource list subvector is provided in the generic alert, the sender ID is
used as the resource name.

PPl does not release the data buffer storage. Your program must release storage if
necessary.

Control Data Buffers

There are a number of request codes that can be used to control the sending and
receiving of data buffers:

14

Sending a data buffer to a receiver program
22

Allowing a receiver program to receive a data buffer
23

Purging a data buffer from a receiver program

Send a Data Buffer to a Receiver
To send a data buffer to a receiver program, use request code 14. The receiver program
does not need to be active. As long as its buffer queue limit is not exceeded, the data

buffer is queued to it.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 14.

06-07 RECOPT A recovery option as required.

12-15 WORKADDR The address of a 128-byte work area.
16-23 SENDERID Avalid sender ID.

24-31 RECVERID The target receiver ID.

32-35 BUFFLEN The length of the data buffer to send.
36—-39 BUFFADDR The address of the data buffer to send.

442 Network Control Language Programming Guide

Control Data Buffers

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08-11 RETCODE The return code.

The following return codes are possible:
0

Request completed successfully.

The specified receiver is not active-the buffer has been queued.
22
The requestor is not in primary addressing mode.
23
The sender program is not authorized.
24
PPl is not active.
26
The receiver program is not defined.
28
PPl requests are not supported.
32
No storage is available.
33
Buffer length is invalid.
35
The receiver buffer queue is full.
36
ESTAE could not be established as requested.
40
Sender ID is invalid.
90

A processing error occurred.

Chapter 23: Program-to-Program Interface 443

Control Data Buffers

Notes:

m [f sending a buffer to a receiver defined as authorized, the sender must be APF

authorized.

m After the call the data buffer is queued to the nominated receiver.

m The PPl does not release the data buffer storage. Your program must release the
storage if necessary.

Allow a Receiver to Receive a Data Buffer

To allow a defined, active receiver to receive a data buffer, use request code 22. The
next buffer in the receiver buffer queue is made available in the user-provided area.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 22,

06-07 RECOPT A recovery option as required.

12-15 WORKADDR The address of a 128-byte work area.

16-19 ASCBADDR The receiver ASCB address.

20-23 ECBADDR The receiver ECB address—this field is set only
when RETCODE 30 is returned.

24-31 RECVERID The target receiver ID.

32-35 BUFFLEN The length of the data buffer to send.

36—-39 BUFFADDR The address of the data buffer to send.

The RPB fields in the following table are returned after the call:

Bytes Field Name Set to...

08-11 RETCODE The return code.

16-23 SENDERID The ID of the sender of this buffer.
32-35 BUFFLEN The actual data buffer length.

444 Network Control Language Programming Guide

Control Data Buffers

The following return codes are possible:
0
Request completed successfully.
22
The requestor is not in primary addressing mode.
24
PPl is not active.
25
The ASCB address is not correct.
26
The receiver program is not defined.
28
PPl requests are not supported.
30
No data buffers are in the receiver buffer queue.
31
The receiver buffer size is not large enough for the incoming data buffer.
33
Buffer length is invalid.
35
The receiver buffer queue is full.
36
ESTAE could not be established as requested.
40
Sender ID is invalid.
90
A processing error occurred.

The correct ASCB address is required. This address is the ASCB address provided when
the receiver was defined.

One data buffer at a time can be received. They are provided first-in-first-out order. If
the call is successful, the sender ID of the sending program is provided.

Chapter 23: Program-to-Program Interface 445

Control Data Buffers

The length of the incoming buffer is provided in the BUFFLEN field after the call. If a
return code 31 (buffer too small) is given, BUFFLEN contains the required length to
receive the buffer successfully. The call can be reissued after obtaining a large enough
buffer.

If no data is queued, a return code of 30 is given and the ECBADDR field is set to the ECB
address, as returned by DEFINE RECEIVER. The receiver can wait (using the WAIT macro
or request code 24) until more data arrives.

Purdge the Data Buffer

To allow the caller to purge the front buffer on a receiver queue, use request code 23. It
is equivalent to receiving the buffer and ignoring it, except that no receiver buffer is
needed, which is useful for purging buffers that are too long.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 23.

0607 RECOPT A recovery option as required.

12-15 WORKADDR The address of a 128-byte work area.
16-19 ASCBADDR The address of the current ASCB.
24-31 RECVERID The target receiver ID.

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08-11 RETCODE The return code.

The following return codes are possible:
0
Request completed successfully—the front data buffer has been purged.
22
The requestor is not in primary addressing mode.
24

PPl is not active.

446 Network Control Language Programming Guide

Wait on an ECB

25
The ASCB address is not correct.
26
The receiver program is not defined.
28
PPl requests are not supported.
30
No data buffers are in the receiver buffer queue.
36
ESTAE could not be established as requested.
40
Sender ID is invalid.
90

A processing error occurred.

Notes:

m The correct ASCB address is required-that is, the ASCB address provided when the
receiver was defined.

m Only one data buffer at a time can be purged.

m [f no buffers are queued, return code 30 is returned.

Wait on an ECB

To allow the caller to wait on an ECB, use request code 24. This request code allows
receiver programs written in languages that do not support a WAIT service to wait for
input.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 24.

12-15 WORKADDR The address of a 128-byte work area.
20-23 ECBADDR The address of the ECB.

Chapter 23: Program-to-Program Interface 447

Obtain a Unique Sender or Receiver ID

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08-11 RETCODE The return code.

The following return codes are possible:
0
Request completed successfully—the ECB has been posted.
18
The ECB was not 0 on entry to this function—it might have been already posted.
22
The requestor is not in primary addressing mode.
24
PPl is not active.
28
PPl requests are not supported.
Important! Use this function only if your programming language does not support a

WAIT facility. Unpredictable results can occur if the PPl subsystem is terminated while
you are waiting using this request.

The ECB address is returned by a request code 4 (define a receiver).
You can wait using request code 24 after receiving a return code 30 from receive.

Remember to test the ECB post code in the last byte of the ECB for 0 (data available) or
99 (PPI shutting down).

Obtain a Unique Sender or Receiver ID

To obtain a unique sender or receiver ID, use request code 60. This request code is
useful when establishing a bidirectional conversation with another program. The other
program can be a globally known program, with a known ID. However, this program
cannot use a reserved, unique ID. In this case it can use this service to obtain a valid,
unique ID.

This service is only supported by this product's implementation of PPl (known as SOLVE
PPI).

448 Network Control Language Programming Guide

Obtain a Unigque Sender or Receiver ID

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00-03 RPLEN 56.

04-05 REQUEST 24,

12-15 WORKADDR The address of a 128-byte work area.

The RPB fields in the following table are returned after the call:

Bytes Field Name Set to...
08-11 RETCODE The return code.
24-31 RECVERID The returned unique ID.

The following return codes are possible:
0
Request completed successfully—a unique ID has been allocated.
20
Function is invalid (not the SOLVE PPI).
22
The requestor is not in primary addressing mode.
24
PPl is not active.
28
PPl requests are not supported.
90
A processing error has occurred—this error also indicates that no more unique IDs

are available.

The returned ID is in the format: pppp&nnn where pppp is the 1- to 4-character PPI
name prefix, as set by one of the PPI SSI JCL parameters. If less than four characters, it is
padded to four characters with ampersand (&) characters. Position 5 is always an
ampersand. Positions 6 through 8 are allocated from the following characters: 0 through
9, Athrough Z, @, #, S, and %. This allocation allows up to 64000 unique IDs.

Chapter 23: Program-to-Program Interface 449

Receive Information from a Receiver Program

Unique IDs can be reused. If an ID is obtained, defined and inactivated, and nothing is
queued to it, then, subject to the PPIINATO and PPIREUSE SSI startup parameter values,
the ID can be made available for reuse.

If the PPI prefix is set to the same value as the domain ID associated with the product,
then these IDs are also unique across the connected network.

Receive Information from a Receiver Program

When you receive information from a receiver program after sending a PPl call, a
number of return codes are possible. The following table provides a full list of possible
PPl return codes, a complete description of the possible causes, and all request codes
that can cause that return code.

Note: These are the RPB return codes. NCL interface return codes (in &RETCODE) are
different. The NCL interface returns the PPI return code in &ZFDBK for information

purposes.
Return Description Returned on
Code Requests
0 The PPl request has completed successfully. The 3,4,9,12, 14,
requested function has been performed with no errors 22,24, and 60
or warnings.
4 The specified receiver is not presently active. The data 12and 14
buffer or generic alert has been queued. (The receiver
buffer queue was not full).
10 The PPI facility is active and can be used. This return 1
code is good.
14 The receiver program is active. 2
15 The receiver program is (already) inactive. The program 2 and 9
is defined, but has been explicitly or implicitly
deactivated.
16 The receiver program is already active. The program 4
cannot be defined.
18 The ECB is not 0 (normally the receiver ECB). This 24

condition is not necessarily an error because the ECB can
be posted after it was last checked.

450 Network Control Language Programming Guide

Receive Information from a Receiver Program

Return Description Returned on

Code Requests

20 Request type is invalid. The passed request code was not Any incorrect
valid. This condition can occur with request code 60 if request

this product is not providing the PPI. Otherwise, it is
probably an error in formatting of the RPB.

22 The program is not executing in primary addressing 1,2,3,4,9 12,
mode. Programs must not call the PPl in secondary mode 14, 22, 24, and
(z/0S). They must be in primary mode, although they can 60
be in cross-memory mode (that is primary A= home).

23 The program is not authorized. Attempt to send a buffer 14
to a receiver defined as authorized.

24 PPl is not active. The SSl is not active or PPl is not running All
on a SOLVE SSI or Tivoli NetView SSI. In this product's
implementation, can also indicate that this system does
not support PPI, as it has not built the relevant control
block structure.

25 The ASCB address is not correct. To deactivate a receiver 9 and 22
or receive data, the correct ASCB address must be
supplied.

26 The receiver is not defined. The supplied receiver name 2,9, 12, 14, and
has never been defined to this execution of PPI. 22

Note: This condition could occur if the PPl-owning SSI is
stopped and restarted.

28 This product does not support PPI. This return code All
cannot occur with the implementation of the SOLVE PPI.
It can occur if Tivoli NetView is providing PPI services.

30 No data buffers are available in the receiver queue. 22
There is no data to be received. PPI clears the receiver
ECB automatically.

31 The receiver data buffer length is too short to receive the 22
next data buffer. The RPB buffer length contains the
length of the pending buffer.

32 No storage available. Unable to obtain storage required 4, 12, and 14
to complete the requested function.

33 Invalid buffer length. The supplied RPB or data buffer All
length was not valid. For a data buffer, the length must
be less than 1 or greater than the PPl maximum buffer
size JCL parameter.

Chapter 23: Program-to-Program Interface 451

Trace the Cause of a Processing Error

Return Description Returned on
Code Requests
35 The receiver buffer queue is full. As the queue is full, the 12 and 14

new data buffer is not added to the queue.

36 Unable to establish ESTAE protection as requested. All
Either the caller is not in home mode, or the ESTAE gave
a nonzero return code.

40 The specified receiver or sender ID is invalid. The value 4,9,12, 14, and
does not satisfy the documented rules for these IDs, or 22
(when defining, deactivating, or receiving for a receiver),
starts with NETV or NETM and the requesting task is not
the SSl-connected product region.

90 A processing error has occurred. This return code is a All
catch-all that covers many things:

m ESTAE-trapped ABENDs

m Various internal errors

In addition to these return codes, some fundamental errors can cause SOC4 ABENDs.
These errors would include an RPB that cannot be referenced, or a bad work-storage
address. A bad save area address (for example, a 31-bit address for a 24-bit mode caller)
can also cause it.

Trace the Cause of a Processing Error

Return code 90 indicates that a processing error occurred. This return code has a trace
facility that lets you determine the cause of the processing error. This facility is enabled
during SOLVE SSI setup.

When you issue a PPI call, processing messages from the receiver program are written
as WTOs to your system console. If tracing is enabled, and a return code of 90 is
recorded in register 15, register 0 records debugging information which is also sent to
the system console. This additional information can be used by you to debug the
processing error.

Note: For more information about PPl parameters, see the SOLVE Subsystem Interface
Guide.

452 Network Control Language Programming Guide

Trace the Cause of a Processing Error

Register O contains the debugging information as follows:

X'rrrrmm5A*
rrrr

Is the reason code of the debugging information, in signed hexadecimal, length 2
bytes. For example, a reason code of 10 would be X'000A' and -141 would be
X'FF73".

mm

Is the module identification of the debugging information in hexadecimal. For
example, 35 would be X'23'.

5A
Is 90 in hexadecimal, which indicates that the debugging information has been set

in RO.

Following is the resulting message format that you receive on the system console:

NS3580 PPI RC=90 MOD=aa REAS=bbbbbb - RPB FOLLOWS...
NS3581 RPB +nnn XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
NS3581 ... (for total RPB length)

NS3582 *END*

The fields in the messages are:

MOD=aa

Contains the module identification of the debugging information, in decimal. For
example, MOD=35.

REAS=bbbbbb

Contains the (signed) reason code of the debugging information, in decimal. For
example, REAS=-00121.

+nnn

Contains the offset, in hexadecimal, of the start of the hexadecimal dump of the
RPB (up to 16 bytes is dumped per line).

XXXXXXXX

8 hexadecimal digits representing RPB data.

Chapter 23: Program-to-Program Interface 453

Trace the Cause of a Processing Error

Debudding Codes

The following table provides a list of all the most likely combinations of debugging
module IDs and reason codes, with a brief description of the causes of each. If you
receive any other module IDs, contact the help desk.

MOD REASON RO Description

35 1 0001235A No work storage address or bad address

35 2 0002235A Recovery optionnotOor 1

35 4 0004235A ESTAE exit driven

36 4 0004245A ESTAE exit driven

36 5 0005245A Bad BUFQ-LIM value

36 6 0006245A Bad RPB AUTH-IND option value (not 0 or 1)
37 1 0001255A Define receiver TCB/ASCB not correct

37 2 0002255A Redefine inactive receiver TCB/ASCB incorrect
37 4 0004255A FRR driven during Send Buffer processing
37 5 0005255A FRR driven during Receive Buffer processing
37 6 0006255A All unique names in use (PPI func. 60)

454 Network Control Language Programming Guide

Chapter 24: &NDB Verbs, Built-in Functions,
and System Variables

This section provides a summary of verbs, built-in functions, and system variables used
by NetMaster databases (NDBs).

Note: For more information about these verbs, see the Network Control Language
Reference Guide.

This section contains the following topics:

&NDB Verb Summary (see page 456)
Built-in Function Summary (see page 457)
System Variable Summary (see page 457)
Free-form Syntax (see page 458)

Chapter 24: &NDB Verbs, Built-in Functions, and System Variables 455

&NDB Verb Summary

&NDB Verb Summary

&NDBADD

Adds a new record to an NDB.
&NDBCTL

Sets NDB NCL processing options.
&NDBCLOSE

Signs off (disconnect) from an NDB.
&NDBDEF

Adds or deletes field definitions to/from an NDB.
&NDBDEL

Deletes a record from an NDB.
&NDBFMT

Defines a data format list for retrieval of data from an NDB.
&NDBGET

Retrieves a record from an NDB.
&NDBINFO

Retrieves information about an NDB or field definitions in the NDB.
&NDBOPEN

Signs on (connect) to an NDB.
&NDBSCAN

Finds a set of records in an NDB that matches a set of search criteria.
&NDBSEQ

Defines a sequential retrieval path into an NDB.
&NDBUPD

Updates a record in an NDB.

456 Network Control Language Programming Guide

Built-in Function Summary

Built-in Function Summary
&NDBPHON

The &NDBPHON function is a phonetic conversion function which allows conversion
of a character string into a phonetic key. The conversion algorithm supplied is
SOUNDEX. However, a user-supplied exit can be called. The user exit can implement
any approach to phonetic conversion.

The SOUNDEX algorithm is as per KNUTH (Art of Computer Programming, Volume
). The returned value is Knnn where K is the first character and nnn is the
SOUNDEX coded value.

A sample exit, PHONEXO01, shows how to write a phonetic exit. The NDBPHONX
SYSPARMS supply the name of the user exit.

&NDBQUOTE

Allows an NCL procedure to automatically quote data for the &NDBADD, & NDBGET,
&NDBSCAN, and &NDBUPD statements.

System Variable Summary
&NDBERRI

Provides extra information about some errors.

&NDBRC
Provides a return code indicating success or otherwise after an &NDB statement.
&NDBRID

Provides the current record ID after some &NDB statements.

&NDBSQPOS

Indicates the position of a returned record in a sequence built by &NDBSCAN.

Chapter 24: &NDB Verbs, Built-in Functions, and System Variables 457

Free-form Syntax

Free-form Syntax

Several NCL statements use a special syntax, different from normal NCL syntax, to allow
easy coding of data definitions and scan requests. The relevant statement descriptions
indicate the part of the statement that uses the free-form syntax. The free-form part
must always be coded after any fixed-form, standard NCL-syntax parameters on the
same statement. The rules for this free-form syntax are:

m Blanks are only required to delimit adjacent words, except inside data values.
Blanks are not required, but may be specified, around or next to special characters
that act as delimiters.

Blanks inside data values are significant, except that trailing blanks are never stored
in character-format data.

NCL variables with blanks in the value are regarded as a special case, and the blank
is regarded as part of the data value. This is because blanks inside NCL variables are
represented internally in a special way.

m The following special characters act as delimiters, unless enclosed in a quoted
string. They have special meaning to the syntax:

(Left bracket

) Right bracket

: Colon (meaning: range)

= Equal sign

- Not sign

< Less than sign

> Greater than sign

& Ampersand (meaning: AND)
| Bar (meaning: OR)

, Comma

Real blank (not embedded in an NCL variable)

Certain combinations of these characters are treated as a single token for parsing.
These combinations are p =, <=, >=, and =<, =>, meaning not equal, less than or
equal, greater than or equal, less than or equal, and greater than or equal,
respectively.

458 Network Control Language Programming Guide

Free-form Syntax

Values may be enclosed in quoted strings whenever the value contains a special
character, or a real blank.

The quotes can be single (') or double(”). If the data value being quoted contains a
single or double quote, you can quote the data with the other quote, or double up
each occurrence of the quote character.

For example, 'It”s a quoted value' will be regarded as the value It's a quoted value.

The &NDBQUOTE built-in function provides an easy way to automatically quote
data when necessary.

A data value can always be quoted, even date, hexadecimal, or numeric values.
Quoting also prevents any possibility of the value being regarded as a keyword.

The following words can be used instead of special characters, as an aid to clarity. If
surrounded by other words, ensure at least one blank separates them.

- EQcan be used to replace =
— NE can be used to replace -=
— LT can be used to replace<

- GTcan be used to replace >
— LE can be used to replace=<
— GE can be used to replace=>
— AND can be used to replace&
— ORcan be used to replace |
— TO can be used to replace :

— NOT can be used to replace -~

Chapter 24: &NDB Verbs, Built-in Functions, and System Variables 459

Free-form Syntax

m Several statements support a START/DATA/END construct to allow free-form
expressions to be constructed that are longer than a single NCL statement is
allowed to be. These statements can be coded as:

SNDBxxxx dbname [parameters] [DATA] free-form text
if the free-form text can fit on one statement (with possible continuations).

To overcome NCL statement length limitations, and also to allow the free-form text
to be built piece-meal (for example, by indirect variable reference), the statements
can also be coded as:

SNDBxxxx dbname [parameters] START
SNDBxxxx dbname [DATA 1 part-of-free-form-text
&NDBxxxx dbname END

The free-form text can be broken anywhere a blank is valid. Any number of
intermediate statements can be used to build the complete free-form text. The
database is not called until the END statement is encountered.

Any other parameters must be coded on the & NDBxxx START statement.

Note: The statements may be interspersed with other NCL statements, including
statements referencing other or even the same database, and even statements
building free-form text for the same database, as long as they are different
statements. That is, you can be concurrently building a multi-statement add and
update for the same database, but not two different adds for the same database.

To cancel a partially built statement, use:
&NDBxxx dbname CANCEL

This statement is valid even if no current START/END set is being built; thus it can
be used in general error routines.

460 Network Control Language Programming Guide

Appendix A: NCL VSAM Techniques

This section contains the following topics:

Initialization and ACB Open Processing (see page 461)
RPL Handling (see page 463)

Obtain I/O Buffers (see page 463)

Concurrent Access to Multiple UDBs (see page 463)

Data Set Positioning and Generic Retrieval (see page 464)
Release File Processing Resources (see page 465)

Display File Information (see page 465)

Control UDB Performance (see page 466)

Offline Processing of Data Sets (see page 466)

Initialization and ACB Open Processing

You can allocate and open UDBs at any time by using the ALLOCATE and UDBCTL
commands. With certain UDBs, you might want to use some of the more advanced
VSAM facilities that your product supports. For example, you might want to specify use
of the LSR pool or sequential insert strategy (SIS) to improve system performance.

Use of these optional facilities must be requested on the UDBCTL command at open
time. During the open process, a VSAM ACB is generated for each data set and an open
attempted. If the open fails, the system internally links to IDCAMS to perform a verify of
the data set. Therefore, it is not necessary to include verify steps in the system JCL.

Automatic Verification and Loading

On completing the verify function, the open is re-attempted. If the data set is empty,
the system closes and re-opens the data set in create mode and attempts to perform a
load according to the following rules:

Appendix A: NCL VSAM Techniques 461

Initialization and ACB Open Processing

For Entry-Sequence Data Sets (ESDS)

For an ESDS a single record in the following format is loaded:

N28510 VSAM INITIAL LOAD PERFORMED AT hh.mm.ss
ON day-dd.mon.year

This initial load record remains in the ESDS and if necessary can be skipped during
offline processing by using the IDCAMS utility to REPRO the data set specifying the
SKIP=1 operand.

Note: This load process is performed only if the data set is classified by VSAM as being
empty. This implies that the high-order RBA is 0. If data exists within the data set when
it is opened, then the load process is bypassed.

In a z/OS environment, where output is sent directly to JES2 or JES3, no load processing
is required and hence the N28510 message is not the first record in the file.

If the load fails, the data set is classified as unusable and is blocked from further
processing until the problem is corrected. The SHOW UDB command can be used to
determine the current status of a UDB and displays any error code detected during open
processing. If necessary, the data set in a z/OS environment can be de-allocated using
the DEALLOC command to assist in offline correction of problems.

For Key-Sequenced Data Sets (KSDS)

For a KSDS, a single record with a key of all X'00' is inserted into the data set. If the load
is successful, the data set is closed and re-opened in update mode and the initial load
record deleted. If the load fails, the data set is classified as unusable and is blocked from
further processing. The SHOW UDB command can be used at any time to determine the
status of a UDB and if necessary to obtain any error code set during open processing.

The loading of alternate indices by your product is not supported. This must be
performed using the IDCAMS BLDINDEX function. Once built, these indices are
maintained correctly.

462 Network Control Language Programming Guide

RPL Handling

RPL Handling

Until a file is opened (using an &FILE OPEN statement) by an NCL procedure, no RPLs are
created and no work buffers allocated.

Before a UDB can be referenced by a procedure, the UDBCTL command must be used to
assign a logical file ID to the physical data set. This command can be included in the
NMINIT procedure or entered from OCS.

To open a file, an NCL procedure uses an &FILE OPEN statement. This statement
references the logical file ID previously assigned by the UDBCTL command, and in doing
so completes the link between the NCL procedure and the actual data set.

It is at this time that a VSAM RPL is created for use by the NCL procedure. This RPL is
used in all subsequent requests for this data set by the procedure. The RPL remains in
existence until either explicitly freed by the &FILE CLOSE statement, or termination of
the NCL procedure. When processing with multiple files, one RPL is created for each
new file ID the first time that the file is opened.

Obtain I/0 Buffers

At the time the RPL is generated an I/O buffer is also obtained. This buffer is large
enough to hold the largest record that could be read from, or written to, the UDB.
Therefore, it is important to accurately define the record sizes when the VSAM cluster is
allocated. Specification of record sizes in excess of that required not only impacts VSAM
algorithms for space allocation, but also forces your product to obtain buffers of an
unnecessary size, thus wasting storage.

Concurrent Access to Multiple UDBs

An NCL procedure can actively process several UDBs at a time. The mandatory ID=
operand on the &FILE verbs, indicates which UDB the verb is to be actioned upon. Each
file must be opened separately, using an &FILE OPEN statement before reads and writes
can be performed on it. There is no overhead in processing several files simultaneously,
because NCL merely swaps pointers between the work buffers and RPLs used for each
file, according to the ID specified on the &FILE verb.

Current keys and data set positioning are remembered by NCL when processing swaps
from one file to another, so it is not necessary for the NCL procedure to remember
these.

The example in the next section, of copying one file to another, shows how processing
can be alternated between two files.

Appendix A: NCL VSAM Techniques 463

Data Set Positioning and Generic Retrieval

Data Set Positioning and Generic Retrieval

NCL supports both sequential and generic retrieval from keyed data sets. Such functions
imply that a current position within the file is maintained. Thus, the NCL procedure can
simply request the next record and it is supplied.

Example: Data Set Positioning and Generic Retrieval

&FILE OPEN ID=FILE1 FORMAT=DELIMITED -* Open file 1
&FILE OPEN ID=FILE2 FORMAT=DELIMITED -* Open file 2
.LOOP
&FILE GET ID=FILE1 OPT=SEQ VARS=A* RANGE=(1,6)
-* Read record
&IF &FILERC NE O &THEN &GOTO .ENDPROC
-* End if not O
&X = &FILEKEY -* Copy key of
-* record that was
-* read into
-* variable
&FILE PUT ID=FILE2 KEYVAR=X VARS=(Al,A2,A3,A4,A5,A6)
-* Write record
&GOTO .LOOP -* Loop to read
-* next record on
-x file 1

Note: This example does not fully cater for such things as error conditions.
It is not necessary for the NCL procedure to increment keys.

Under certain circumstances, such as with generic retrieval, it might be necessary to
alter the retrieval sequence and commence retrieval using a different key.

NCL must be informed that such a change is required and that the current retrieval
sequence is to be stopped. This is done using the &FILE GET ID=fileid OPT=END
statement. This indicates to NCL that generic retrieval is to be terminated in anticipation
of some other processing.

If an end-of-file condition is signaled, no &FILE GET ID=fileid OPT=END is required. The
use of a non-generic function, such as the specific retrieval of a record, also cancels a
previous generic function.

464 Network Control Language Programming Guide

Release File Processing Resources

Release File Processing Resources

The &FILE OPEN statement allocates certain resources to the requesting NCL procedure.
It is not normally necessary to release file processing resources within an NCL
procedure. This is performed automatically when the NCL procedure terminates.

Under certain circumstances, such as in an EASINET procedure, where there can be
many concurrent users performing file processing, it might be desirable to release any
file processing overheads when they are no longer required, to ensure that system
overheads are minimized.

This can be done with the &FILE CLOSE statement. &FILE CLOSE allows either specific
files or all files to be freed. When this is done, any storage associated with processing
the file is released and the connection is logically severed for that user.

Having used &FILE CLOSE to release a particular file, connection can be re-established
using another &FILE OPEN statement.

&FILE CLOSE destroys any generic retrieval position a user might have established within
a file and any subsequent reference would have to re-establish that position if required.

Display File Information

The SHOW UDB command can be used to display details about files available to the
system. This information includes details about the number of active users, space usage,
and the status. In addition, any open error codes that caused a file to be disabled are
displayed.

The SHOW VSAM command can be used to obtain additional details about the system's
VSAM files. These include record and Control Interval sizes, statistics on the number of
Cl and CA splits and details of any buffer or string shortages that have been
experienced. In OS/VS systems, this display also provides details on the performance of
the Local Shared Resource (LSR) pool if one is in use.

Note: For more information about the SHOW UDB and SHOW VSAM commands and
their use, see the online help.

Appendix A: NCL VSAM Techniques 465

Control UDB Performance

Control UDB Performance

The techniques used by NCL should ensure efficient processing of VSAM files. Additional
performance gains can be obtained by the allocation of additional buffers and
processing strings.

This is achieved using the JCL AMP statement sub parameters on the DD statement for
the file, or by specification of these options on the UDBCTL command:
BUFNI
The number of index buffers to be allocated by VSAM
BUFND
The number of data buffers to be allocated by VSAM
STRNO

The maximum number of concurrent strings to be used by VSAM

Additional facilities are offered as options on the UDBCTL command. They include:
SIS
Use Sequential Insert Strategy
DEFER
Use deferred writes
LSR
Use Local Shared Resource pool
Important! These parameters should only be changed if the impact on VSAM processing

is clearly understood. Inadvertent changes can impose severe storage overheads which
could impact the operation of other system components.

Offline Processing of Data Sets

In a z/0OS environment, the DEALLOCATE command can be used to release a UDB for
offline processing. Conversely, the ALLOCATE command can be used to bring a UDB
on-line for processing.

In non-z/0S environments, the stripping of files, created by NCL for further offline
processing, can be achieved without a restart of the system if the following rules are
followed:

m VSAM SHAREOPTIONS must allow concurrent access to the data set.

m DISP=SHR must be specified on the data set.

466 Network Control Language Programming Guide

Offline Processing of Data Sets

m The UDBCTL CLOSE command is used to stop further logical connections to the file
and to physically close the file. This is only successful if there are no active users
currently referencing the file. The SHOW UDBUSER command can be used to display
the current user of a UDB.

m Use a utility to strip the file (for example, the VSAM IDCAMS utility REPRO facility).

If the UDB has been processed using standard format, any offline processing programs
must take the high-value (X'FF') field separators into account when determining the
format of data within records.

To allow non-UDB format files to be processed, your product provides a format operand
on the &FILE OPEN and &FILE SET statements, that designates the format of the files
being processed.

Appendix A: NCL VSAM Techniques 467

Appendix B: System Level Procedures:
Messade Profiles

This section contains the following topics:

Use NCL Verbs to Retrieve Messages (see page 469)

System Level Procedure Environments (see page 469)

Message Handling and Processing by System Level Procedures (see page 470)
Decide What to Do with a Message (see page 471)

Message Profile (see page 472)

&INTREAD Message Profile (see page 478)

&LOGREAD Message Profile (see page 483)

&MSGREAD Message Profile (see page 486)

&PPOREAD Message Profile (see page 489)

Use NCL Verbs to Retrieve Messades

There is a series of NCL verbs that are used to retrieve messages that are queued to
particular NCL process environments. The verbs of this type are:

m &INTREAD

m &LOGREAD
= &MSGREAD
= &PPOREAD

In addition, there is the &AOMREAD verb if you have the AOM feature and &CNMREAD
if you have the NEWS feature on your system.

System Level Procedure Environments

The term system level procedure applies to those specific NCL procedures that have
access to specialized flows of information in a product region. In this region, there are
several system level procedures, the principal ones being LOGPROC and PPOPROC.
LOGPROC has access to and control over the flow of messages to the activity log.
PPOPROC receives unsolicited messages from VTAM about events within the network.

The significant aspect of the special procedures is that there is only one of each in the
system, and they have particular privileges and responsibilities that do not apply to the
usual NCL procedures executed by product users.

Appendix B: System Level Procedures: Message Profiles 469

Message Handling and Processing by System Level Procedures

MSGPROC Viewed as a System Level Procedure

Each OCS window can have a MSGPROC procedure associated with it. There is only one
MSGPROC per window and it has the ability to review and process every message sent
to its associated OCS window from any source, before the messages are actually
delivered to the window for display.

Just as LOGPROC is the only procedure in the system that can review the messages
flowing to the activity log, so an OCS window's MSGPROC is the only NCL procedure that
can review and process the message traffic flowing to that OCS window.

In this respect a MSGPROC is classified as a system level procedure, even though there
can be many MSGPROC procedures active in a region on behalf of many different OCS
windows; MSGPROC has access to and control over a specific message flow and has
privileges not open to the usual NCL procedures executed by users.

&INTREAD: Dependent Processing Environment

The last form of privileged access to traffic flow within a region occurs when &INTCMD
and &INTREAD statements are used to execute commands or other NCL processes
within an NCL dependent processing environment.

When a procedure executes an &NTCMD statement, command results are returned to
that procedure. These results are queued and can then be read back by the original
procedure through the &INTREAD statement.

&INTREAD therefore provides privileged access to the flow of command result messages
produced by the various commands and NCL procedures that execute within the original
procedure's dependent processing environment.

&INTREAD is also able to access unsolicited messages, such as monitor messages, for
which the independent environment is profiled.

Messade Handling and Processing by System Level Procedures

All system level procedures that have privileged access to a particular message flow
have the following capabilities:

m They can read the next message from the traffic flow by using a privileged NCL verb
statement which provides access to the queue of messages. The following verbs are
used by specific system level procedures:

&LOGREAD

Used by the LOGPROC procedure to get a copy of the next message that is to
be written to the activity log.

470 Network Control Language Programming Guide

Decide What to Do with a Message

&PPOREAD

Used by the PPOPROC procedure to get a copy of the next message received
from VTAM.

&MSGREAD

Used by a MSGPROC procedure to read the next message queued for display
on the OCS window with which the procedure is associated.

&INTREAD

Used by any NCL procedure to read the next request or response queued to it
via its dependent processing environment.

m They can indicate what is to be done with the message that they have received as a
result of executing the 'read' statement. Typically, once a message has been
received, the procedure can indicate that the message is to be processed normally
(for example, & LOGCONT, &PPOCONT, &MSGCONT), or deleted and not
propagated any further (for example, & LOGDEL, & MSGDEL), or replaced with an
alternative message (for example, & MSGREPL).

Decide What to Do with a Message

While the system level procedures have verbs for accessing the message flow that they
are to monitor and verbs for indicating the course of action to be taken with a message
when it has been read, the procedures must also contain the logic necessary to analyze
the messages that are read to determine what action is required.

The logic of these procedures is usually built on the concept of filtering the message
flow, searching for messages that are defined as being of interest based on arguments
such as message numbers or certain values that occur within the message.

In addition to processing options based on message text content, messages can also
have a large number of other attributes that are not textual in nature. For example, a
message can have a color attribute that causes it to be displayed in red when it is sent
to a terminal.

Other messages can have the non-roll delete attribute, meaning that they will not roll
off an OCS window display until specifically deleted.

To assist with the logic necessary to process the text and non-text attributes of each
message, when a message is read by one of the system level procedure verbs listed
earlier a message profile is created for analysis and interrogation by the procedure.

Appendix B: System Level Procedures: Message Profiles 471

Message Profile

Messagde Profile

The concept of the message profile is that all the attributes of a message should be
available as specific settings of a special group of system variables. The profile variables
can be tested for specific values to assist the procedure in deciding whether special
processing is needed for a message or whether the message is of no importance to the
procedure. Since testing variables for specific values is easier than scanning text strings,
examination of a message's profile provides a simpler and more efficient method of
message analysis.

All profile variables are available in Mapped Data Object (MDO) format for the
&INTREAD, &LOGREAD and &MSGREAD verbs. The object stem name for each verb is
unique, but they are all mapped by the same map, that is SMSG.

®m For &INTREAD the stem name is SINT.
® For &LOGREAD the stem name is SLOG.
m For &MSGREAD the stem name is SMSG.

The SMSG MDO can contain additional information that is not available in the profile
variables.

The SMSG map definition is part of the your product's distributed system and can be
reviewed from Mapping Services (option D.M from the Primary Menu).

Note: Most of the data components are optional.

Message Profile Variables

Following execution of any of the & NTREAD, & _LOGREAD, &PPOREAD, or &MSGREAD
verbs, message profile variables are set to reflect the message profile of the message
read by the verb statement. The particular variables that are set depend on the verb
executed and on the class of message received.

This section describes the different values that can be set in the variables that apply to
the &INTREAD, & LOGREAD, and &VISGREAD verbs, and the conditions under which
each of the variables can be set. The individual variables that form the message profiles
of the message flows handled by the different verbs are then cross-referenced against
the individual verbs in the remaining sections.

Note: System profile variables are available immediately after the &xxxREAD statement
is executed and are generally available until another NCL statement is executed that
alters the profile. System variables are valid only within the scope of the procedure and
their values are unpredictable when control is passed to another procedure level. MDOs
can be shared between called procedures using SHRVARS and explicitly on the &return
statement.

472 Network Control Language Programming Guide

Messagde Profile

Following is a list of the complete set of message profile variables that apply to these
three verbs. Their MDO equivalents are included in brackets, where relevant.

Note: stem can be SMSG, SINT or SLOG depending on which verb caused the variable to
be set.
&ZINTYPE

Specifies whether an &INTREAD operation has been satisfied by a request message
or a response message. Values are REQ (request message) or RESP (response
message) or NONE (no message).

&ZMALARM (stem.MSGATTR.ALARM)

Indicates whether the message will cause the terminal alarm to sound. Value is YES
or NO.

&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command. Value is
YES or NO.

&ZMCOLOUR (stem.MSGATTR.DISPLAY.COLOUR)

Indicates the color attribute of the message. Value can be any one of NONE, RED,
BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE.

&ZMDOM

Indicates whether the message is a delete operator message instruction. Value is
YES or NO. This value is dependent also on the setting of the &MTYPE variable.

&ZMDOMID (stem.DOMID)

Contains the delete operator message identifier (domid) of the message read, if the
message has the non-roll delete message attribute, as determined by the setting of
the &ZMNRD variable. If & MNRD=NO, this variable is set to null.

&ZMEVONID (stem.SOURCE.NCLID)

Is set when the incoming message was generated by an &EVENT verb and contains
the nclid of the procedure which issued the &EVENT.

&ZMEVPROF (stem.SOURCE.EVENTPROFILE)

Is set for incoming event messages (N00102) and represents the EDS profile name
which resulted in delivery of the event notification.

&ZMEVRCDE (stem.EVENT.ROUTECDE)

Contains the routecde of the incoming event message (N00102) if the ROUTECDE
operand was specified on the originating &EVENT verb.

&ZMEVTIME (stem.SOURCE.TIME.HHMMSSTTT)

Is set for incoming event messages (N00102) to the time the event originated. Time
isin the format HH.MM.SS.TTT.

Appendix B: System Level Procedures: Messade Profiles 473

Message Profile

&ZMEVUSER (stem.SOURCE.USER)

Is set when the incoming message was generated by an &EVENT verb and contains
the user ID of the user who issued the &EVENT verb. This variable is also set for
some system events and represents the user who was responsible for the event
generation.

&ZMFTSMSG

Indicates whether the message originated from File Transmission Services (FTS).
Value is YES or NO.

&ZMHLIGHT (stem.MSGATTR.DISPLAY.HLITE)

Indicates the display highlighting attributes of the message. Values are NONE,
USCORE, REVERSE, or BLINK.

&ZMINTENS (stem.MSGATTR.DISPLAY.INTENS)

Indicates the display intensity attribute of the message. Values are HIGH or LOW or
null if no message is being processed.

&ZMLNODE (stem.SOURCE.REGION)

Indicates the terminal name of the user to whom a log message is to be attributed.
Value is the name of a terminal. (This is available to & LOGREAD only.)

&ZMLOGCMD

Indicates whether a log message is an echo to the log of a command. Value is YES or
NO. (This is available to & LOGREAD only.)

&ZMLSRCID (stem.PREFIX.LASTMSGID.ID)
Contains the message prefix of the last handler of the message just received.
&ZMLSRCTP (stem.PREFIX.LASTMSGID.TYPE)
Indicates the type of the last handler of the message just received. Values can be:
null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
&ZMLTIME

Contains the timestamp of a log message. (This is available to & LOGREAD only.)
Time is in the format HH.MM.SS.TTT.

474 Network Control Language Programming Guide

Messagde Profile

&ZMLUSER (stem.SOURCE.USER)

Contains the user ID to whom generation of the log message is to be attributed.
(This is available to & LOGREAD only.)

&ZMAPNAME (stem.MAPNAME)

Contains the mapname of the object in SMSG.USERMDO for the current message (if
present).

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values are YES
or NO.

&ZMMSG

Indicates whether the message received is a standard message or not. The setting
of this variable is always opposite to the setting of the & MDOM variable and is
dependent on the setting of the &MTYPE variable.

&ZMMSGCD (stem.MSGATTR.MSGCODE)

Indicates the (hexadecimal) message code attribute of this message. Value can be
00-FF. The message code dictates which user IDs are eligible to receive the
message.

&ZMNMDIDL (stem.SOURCE.LAST.DOMAIN)

The domain ID of the last region to handle this message. This can be the same as
the originating system, or different if the message was originated by a remote
system and then routed onwards by an intermediate system.

&ZMNMDIDO (stem.SOURCE.ORIG.DOMAIN)

The domain ID of the region from which this message originated. If sourced from
the local system it will contain the local system's domain ID. If sourced from a

remote system this variable carries the domain ID of the originating system even
though the message might have been routed onwards by intermediate systems.

&ZMNRD
Indicates whether the message carries the non-roll delete attribute. Values can be:
NO
Not a non-roll delete message.
YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

Appendix B: System Level Procedures: Message Profiles 475

Message Profile

&ZMNRDRET

Indicates whether the message has been received as a result of a NRDRET
command being issued by the user. This allows an NCL procedure to detect
redisplayed messages and ignore them for event analysis purposes. Value is YES or
NO.

&ZMOSRCID (stem.PREFIX.ORIGMSGID.ID)
Contains the message prefix of the originator of the message just received.
&ZMOSRCTP (stem.PREFIX.ORIGMSGID.TYPE)
Indicates the type of the originator of the message just received. Values can be:
null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
&ZMPPODTA

Indicates whether any PPO message profile information is available concerning this
message. Value is YES or NO. If YES, then other message profile variables are
available containing information relating to certain PPO attributes of the message.

&ZMPPOMSG
Indicates whether the message originated from PPO. Value is YES or NO.
&ZMPPOSEV (stem.MSGATTR.SEVERITY)

If & MPPODTA = YES, then the severity level of the PPO message is available in this
variable. Value can be U (undeliverable), | (information), W (Important!), N
(normal), or S (severe).

&ZMPPOTM (stem.SOURCE.TIME.HHMMSSTTT)

If & MPPODTA = YES, this variable contains the time that the message originated.
Time is in the format HH.MM.SS.TTT.

&ZMPPOVNO (stem.PPOCNTL.VTAMNUM)

If & MPPODTA = YES, this variable contains the VTAM message number of the PPO
message.

&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values, for
example MAI OC session identifier or ROF message prefix. Values are YES or NO.

476 Network Control Language Programming Guide

Messagde Profile

&ZMPTEXT

Is set to the entire message text, prefixed with any ROF or MAI OC session
identifiers according to the current profile settings, as it will appear on the OCS
window if the message is allowed to flow to the window unchanged.

&ZMREQID

If &ZINTYPE=REQ (&INTREAD satisfied by a request message), this variable is set to
the user ID of the user that issued the INTQUE command that generated the
message, or to the NCL ID of the NCL process that issued the INTQUE command or
the & WRITE statement. This variable is dependent on &ZINTYPE for relevance, and
its setting is categorized by the & MREQSRC variable which will also be set. (This is
available to & NTREAD only.)

&ZMREQSRC

If &ZINTYPE=REQ (&INTREAD satisfied by a request message), this variable indicates
whether the process that generated the message was a user, another NCL process
or a system notification. Values are USER, NCL or SYSTEM respectively. (This is
available to & INTREAD only.)

&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited message is
usually a command response. Values are YES (solicited) or NO.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables. The suite
of message profile variables remain set until changed by the execution of another
verb that modifies the suite. Values are:

m INTREAD
m LOGREAD
= MSGREAD

Appendix B: System Level Procedures: Message Profiles 477

&INTREAD Message Profile

&ZMTEXT (stem.TEXT)
m Contains the text of the message received. Values are:
m Message text if the message is a standard text message
m Request message (that is, if &ZMTYPE=MSG or REQ)
m Nullif the message is a delete operator message instruction (DOM)

After &LOGREAD, this variable does not include the standard log message heading
information of user ID, time, and terminal name. These values are available from
other message profile variables that are set after &LOGREAD.

&ZMTYPE
Specifies the type of message received after execution of the read verb. Values are:
MSG
The message is a standard text message.
DOM
The message is a delete operator message instruction.
REQ

The message is a request message that has satisfied &INTREAD TYPE=ANY or
TYPE=REQ.

&INTREAD Messade Profile

The message profile variables set following & INTREAD are as follows. Depending on the
setting of certain key variables, some profile variables can be null.

&ZINTYPE

Specifies whether an &INTREAD operation has been satisfied by a request message
or a response message. Values are REQ (request message) or RESP (response
message) or NONE (no message).

&ZMALARM

Indicates whether the message will cause the terminal alarm to sound. Value is YES
or NO, or null if &ZINTYPE=REQ.

&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command. Value is
YES or NO, or null if &ZINTYPE=REQ.

&ZMCOLOUR

Indicates the color attribute of the message. Value can be any one of NONE, RED,
BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE. This attribute is null if
&ZINTYPE=REQ.

478 Network Control Language Programming Guide

&INTREAD Messade Profile

&ZMDOM

Indicates whether the message is a delete operator message instruction. Value is
YES or NO. This value is dependent also on the setting of the & MTYPE variable.

&ZMDOMID

Contains the delete operator message identifier (domid) of the message read, if the
message has the non-roll delete message attribute, as determined by the setting of
the &MNRD variable. If & MNRD=NO or &ZINTYPE=REQ, this variable is set to null.

&ZMEVONID

Is set when the incoming message was generated by an &EVENT verb and contains
the nclid of the procedure which issued the &EVENT.

&ZMEVPROF

Is set for incoming event messages (N00102) and represents the EDS profile name
which resulted in delivery of the event notification.

&ZMEVRCDE

Contains the routecde of the incoming event message (N00102), if the ROUTECDE
operand was specified on the originating &EVENT verb.

&ZMEVTIME

Is set for incoming event messages (N00102) to the time the event originated. Time
isin the format HH.MM.SS.TTT.

&ZMEVUSER

Is set when the incoming message was generated by an &EVENT verb and contains
the userid of the user who issued the &EVENT verb. This variable is also set for
some system events and represents the user who was responsible for the event
generation.

&ZMFTSMSG

Indicates whether the message originated from the File Transmission Services (FTS)
optional feature. Value is YES or NO, or null if &ZINTYPE=REQ.

&ZMHLIGHT

Indicates the display highlighting attributes of the message. Values are NONE,
USCORE, REVERSE, or BLINK. This attribute is null if &ZINTYPE=REQ.

&ZMINTENS

Indicates the display intensity attribute of the message. Values are HIGH or LOW or
null if no message being processed. This attribute is null if &ZINTYPE=REQ.

&ZMLNODE

Always null.

Appendix B: System Level Procedures: Message Profiles 479

&INTREAD Message Profile

&ZMLOGCMD
Always null.
&ZMLSRCID
Contains the message prefix of the last handler of the message just received.
&ZMLSRCTP
Indicates the type of the last handler of the message just received. Values can be:
Null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
This attribute is null if &ZINTYPE=REQ.
&ZMLTIME
Always null.
&ZMLUSER
Always null.
&ZMAPNAME

Contains the mapname of the object in SMSG.USERMDO for the current message (if
present).

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values are YES
or NO. This attribute is null if &ZINTYPE=REQ.

&ZMMSG

Indicates whether the message received is a standard message or not. The setting
of this variable is always opposite to the setting of the & MDOM variable and is
dependent on the setting of the & MTYPE variable. This attribute is null if
&ZINTYPE=REQ.

480 Network Control Language Programming Guide

&INTREAD Messade Profile

&ZMNRD
Indicates whether the message carries the non-roll delete attribute. Values can be:
NO
Not a non-roll delete message.

YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

&ZMOSRCID

Contains the message prefix of the originator of the message just received. Will be
null if &ZINTYPE=REQ.

&ZMOSRCTP
Indicates the type of the originator of the message just received. Values can be:
Null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
This attribute is null if &ZINTYPE=REQ.
&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values, for
example MAI OC session identifier or ROF message prefix. Values are YES or NO.
This attribute is null if &ZINTYPE=REQ.

&ZMPTEXT

Is set to the entire message text, prefixed with any ROF or MAI OC session
identifiers according to the current profile settings, as it will appear on the OCS
window if the message is allowed to flow to the window unchanged. Will be null if
&ZINTYPE=REQ.

Appendix B: System Level Procedures: Message Profiles 481

&INTREAD Message Profile

&ZMREQID

If &ZINTYPE=REQ (& INTREAD satisfied by a request message), this variable is set to
the user ID of the user that issued the INTQUE command that generated the
request message, or to the NCL ID of the NCL process that issued the INTQUE
command. This variable is dependent on &ZINTYPE for relevance, and its setting is
categorized by the & MREQSRC variable which will also be set. (This is available to
&INTREAD only.)

This attribute is null if &ZINTYPE=RESP.

&ZMREQSRC

If &ZINTYPE=REQ (&INTREAD satisfied by a request message), this variable indicates
whether the source of the INTQUE command that generated the message was a
user or another NCL process. Values are USER or NCL respectively. (This is available
to &INTREAD only.)

This attribute is null if &ZINTYPE=RESP.

&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited message is
usually a command response. Values are YES (solicited) or NO. This attribute is null
if &ZINTYPE=REQ.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables. It will
always be INTREAD for the & NTREAD message profile. The suite of message profile
variables remain set until changed by the execution of another verb that modifies

the suite.

&ZMTEXT

Contains the text of the message received. This attribute is null if &ZMTYPE=DOM.

&ZMTYPE

Specifies the type of message received after execution of the read verb. Values are:
MSG

The message is a standard text message.
DOM

The message is a delete operator message instruction.

REQ

The message is a request message that has satisfied &INTREAD TYPE=ANY or
TYPE=REQ.

482 Network Control Language Programming Guide

&LOGREAD Messade Profile

&LOGREAD Messagde Profile

The message profile variables set following & LOGREAD are as follows. Depending on the
setting of certain key variables, some profile variables can be null.

&ZMALARM

Indicates whether the message will cause the terminal alarm to sound. Value is YES
or NO.

&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command. Value is
YES or NO.

&ZMCOLOUR

Indicates the color attribute of the message. Value can be any one of NONE, RED,
BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE.

&ZMDOM
Value is always NO.
&ZMDOMID

Contains the delete operator message identifier (domid) of the message read, if the
message has the non-roll delete message attribute, as determined by the setting of
the &ZMNRD variable. If & MNRD=NO, this variable is set to null.

&ZMFTSMSG

Indicates whether the message originated from the File Transmission Services (FTS)
optional feature. Value is YES or NO.

&ZMHLIGHT

Indicates the display highlighting attributes of the message. Values are NONE,
USCORE, REVERSE, or BLINK.

&ZMINTENS

Indicates the display intensity attribute of the message. Values are HIGH or LOW or
null if no message being processed.

&ZMLNODE

Indicates the terminal name of the user to whom a log message is to be attributed.
Value is the name of a terminal. (This is available to & LOGREAD only.)

&ZMLOGCMD

Indicates whether a log message is an echo to the log of a command. Value is YES or
NO. (This is available to & LOGREAD only.)

&ZMLSRCID

Contains the message prefix of the last handler of the message just received.

Appendix B: System Level Procedures: Message Profiles 483

&LOGREAD Message Profile

&ZMLSRCTP
Indicates the type of the last handler of the message just received. Values can be:
Null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
&ZMLTIME
Contains the timestamp of a log message. Time is in the format HH.MM.SS.TTT.
&ZMLUSER
Contains the user ID to whom generation of the log message is to be attributed.
&ZMAPNAME

Contains the mapname of the object in SMSG.USERMDO for the current message (if
present).

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values are YES
or NO.

&ZMMSG
Value is always YES.
&ZMNRD
Indicates whether the message carries the non-roll delete attribute. Values can be:
NO
Not a non-roll delete message.
YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

&ZMOSRCID

Contains the message prefix of the originator of the message just received.

484 Network Control Language Programming Guide

&LOGREAD Messade Profile

&ZMOSRCTP
V the type of the originator of the message just received. Values can be:
Null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values, for
example MAI OC session identifier or ROF message prefix. Values are YES or NO.

&ZMPTEXT

Value is always null.
&ZMREQID

Value is always null.
&ZMREQSRC

Value is always null.
&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited message is
usually a command response. Values are YES (solicited) or NO.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables. This will
always be LOGREAD for the & LOGREAD message profile. The suite of message
profile variables remain set until changed by the execution of another verb that
modifies the suite.

&ZMTEXT
Contains the text of the message received.

After &LOGREAD, this variable does not include the standard log message heading
information of user ID, time, and terminal name. These values are available from
other message profile variables that are set after & LOGREAD.

&ZMTYPE

Value is always MSG.

Appendix B: System Level Procedures: Message Profiles 485

&MSGREAD Message Profile

&MSGREAD Messagde Profile

The message profile variables set following & MSGREAD are as follows. Depending on
the setting of certain key variables, some profile variables can be null.

&ZMALARM
Indicates terminal alarm. Values are YES or NO.
&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command. Value is
YES or NO, or null if &ZMTYPE=DOM.

&ZMCOLOUR

Indicates the color attribute of the message. Value can be any one of NONE, RED,
BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE. This attribute is null if
&ZMTYPE=DOM.

&ZMDOM
If &ZMTYPE=DOM, value is DOM; otherwise, it is NO.
&ZMDOMID

Contains the delete operator message identifier (domid) of the message read, if the
message has the non-roll delete message attribute, as determined by the setting of
the &ZMNRD variable. If & MNRD=NO, this variable is set to null.

&ZMFTSMSG

Indicates whether the message originated from the File Transmission Services (FTS)
optional feature. Value is YES or NO. This attribute is null if & MTYPE=DOM.

&ZMHLIGHT

Indicates the display highlighting attributes of the message. Values are NONE,
USCORE, REVERSE, or BLINK. This attribute is null if &ZMTYPE=DOM.

&ZMINTENS

Indicates the display intensity attribute of the message. Values are HIGH or LOW or
null if no message being processed. This attribute is null if &ZMTYPE=DOM.

&ZMLOGCMD
Value is always null.
&ZMLNODE

Value is always null.

486 Network Control Language Programming Guide

&MSGREAD Message Profile

&ZMLSRCID

Contains the message prefix of the last handler of the message just received. Values
can be:

Null
Message generated internally by this system.
ROF msgid
Message prefix of the ROF session which delivered the message.
MAIOC sessionid
The session ID of the MAI OC session that delivered the message.
This attribute is null if & MTYPE=DOM.
&ZMLSRCTP
Indicates the type of the last handler of the message just received. Values can be:
Null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
This attribute is null if & MTYPE=DOM.
&ZMLTIME
Value is always null.
&ZMLUSER
Value is always null.
&ZMAPNAME

Contains the mapname of the object in SMSG.USERMDO for the current message (if
present).

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values are YES
or NO.

&ZMMSG
Value is YES or NO.

Appendix B: System Level Procedures: Message Profiles 487

&MSGREAD Message Profile

&ZMNRD
Indicates whether the message carries the non-roll delete attribute. Values can be:
NO
Not a non-roll delete message.
YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

&ZMOSRCID

Contains the message prefix of the originator of the message just received. Will be
null if & MTYPE=DOM.

&ZMOSRCTP
Indicates the type of the originator of the message just received. Values can be:
Null
If the message was generated within this system.
ROF
If the message was delivered across a ROF session.
MAIOC
If the message was delivered across an MAI OC session.
This attribute is null if &ZMTYPE=DOM.
&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values, for
example MAI OC session identifier or ROF message prefix. Values are YES or NO.
This attribute is null if & MTYPE=DOM.

&ZMPTEXT

Is set to the entire message text, prefixed with any ROF or MAI OC session
identifiers according to the current profile settings, as it will appear on the OCS
window if the message is allowed to flow to the window unchanged. This attribute
is null if & MTYPE=DOM.

&ZMREQID
Value is always null.
&ZMREQSRC

Value is always null.

488 Network Control Language Programming Guide

&PPOREAD Message Profile

&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited message is
usually a command response. Values are YES (solicited) or NO. This attribute is null
if &ZMTYPE=DOM.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables. This will
always be MSGREAD for the & MSGREAD message profile. The suite of message
profile variables remain set until changed by the execution of another verb that
modifies the suite.

&ZMTEXT

If &ZMTYPE=MSG, &ZMTEXT contains the entire message text. If &ZMTYPE=DOM,
then &ZMTEXT is null.

&ZMTYPE
Specifies the type of message received after execution of the read verb. Values are:
MSG
The message is a standard text message.
DOM
The message is a delete operator message instruction.
REQ

The message is a request message that has satisfied &I NTREAD TYPE=ANY or
TYPE=REQ.

The value DOM is possible only if DOM=YES is coded on the & MSGREAD statement.

&PPOREAD Messagde Profile

The message profile variables set following &PPOREAD are private to the PPOPROC
system procedure, and are different from the variables that form the message profile
for the &INTREAD, & LOGREAD and &M MSGREAD verbs.

&PPOALERT

Value is YES if this message was routed to PPOPROC as a result of a &PPOALERT
verb. &PPOALERT can be used to send messages to PPOPROC either locally or in
remote systems. If the message was not originated by a & PPOALERT then value is
NO.

&PPOCOLOR
Value is set according to the SYSPARMS PPOCOLOR= operand.

Appendix B: System Level Procedures: Message Profiles 489

&PPOREAD Message Profile

&PPODEFM

Value is YES if the message number has been defined by the DEFMSG command for
delivery to PPOPROC. This variable can be set to NO if delivery for the UNSOLICITED
class of messages PPOPROC delivery IS set but specific delivery for this message
number is NOT.

&PPODOMID

The delete operator message identifier (DOMID) of the message if the PPO message
is non-roll delete. Value is DOMID if &PPONRD = YES; otherwise, this variable is set
to null value.

&PPODLOC

Value is YES if the message number is one that has been defined through the
DEFMSG command for LOCAL delivery. Value is NO if message has not been defined
for delivery to local receivers.

&PPODREM

Value is YES if the message number is one that has been defined through the
DEFMSG command for REMOTE delivery. Value is NO if message has not been
defined for delivery to remote receivers.

&PPOFIRST

Indicates the first message from a possible multi-line message block delivered to
PPOPROC. The purpose of this variable is to indicate a new VTAM message group
but not necessarily the first message of the group delivered by VTAM as these
might not be eligible for delivery to PPOPROC.

&PPOHLITE
Value is set according to the SYSPARMS PPOHLITE= operand.
&PPOLDID

Domain ID of the last region to handle this PPO message. If generated by the local
system, this variable will contain the domain ID of the local system. The value can
be different from the originating domain ID if the message was onward routed by
an intermediate system.

&PPOMSGNO

The VTAM message number of the PPO message just received. Note that this value
is also available in the & MPPOVNO message profile variable following a
&INTREAD, &LOGREAD, or & MSGREAD operation.

&PPOMSGSV

The VTAM message severity level associated with the PPO message just received.
Value can be U (undeliverable), | (information), W (Important!), N (normal), or S
(severe).

Note that the value is also available in the & MPPOSEV message profile variable
following a &INTREAD, &LOGREAD, or & MSGREAD operation.

490 Network Control Language Programming Guide

&PPOREAD Messadge Profile

&PPONRD

Value is YES if the PPO message has the non-roll delete attribute (which occurs if a
reply is required to the message). Otherwise, value is NO.

&PPOODID

The domain ID of the region from which the PPO message originated.

&PPOONETN
The network name of the VTAM that generated the PPO message.

&PPOONMID

The region ID (from the SYSPARMS ID= operand) of the system that generated the
message.

&PPOPRIRN

If the PPO message contains qualified network resource names this is the primary
NETWORK name.

Your product analyzes message text based on VTAM tables to extract resource
names. This extraction does not necessarily reflect SNA class resources, and can
vary with the version of VTAM.

CA recommends that resource extraction be performed at message level by
PPOPROC, as the extracted values might not reflect the true resource hierarchy in
the VTAM multi-line messages.

&PPOPRIRS

If the PPO message contains network resource names this is the primary resource
name. In the context of PPOPROC, this is the resource name of the first message in
a VTAM multi-line display.

Your product analyzes message text based on VTAM tables to extract resource
names. This extraction does not necessarily reflect SNA class resources, and can
vary with the version of VTAM.

CA recommends that resource extraction be performed at message level by
PPOPROC, as the extracted values might not reflect the true resource hierarchy in
the VTAM multi-line messages.

&PPOSECRS

If the PPO message contains network resource names this is the secondary resource
name. If the message is part of a VTAM multi-line message, this is the first resource
name in the current message.

&PPOSECRN

If the PPO message contains qualified network resource names, this is the
secondary NETWORK name.

Appendix B: System Level Procedures: Message Profiles 491

&PPOREAD Message Profile

&PPOOSSCP

The SSCP name of the VTAM that generated the PPO message.
&PPOTEXT

The PPO message text.
&PPOTIME

The PPO message generation time in HH.MM.SS.TTT format. For messages
delivered across an ISR link it reflects time from the remote system converted to
the time on the local system.

&PPOTYPE

Defines the type of PPO message received. Value is PPO if the message is a standard
unsolicited message delivered from VTAM, SPO if the message is actually the reply
to a command issued by an OCS operator or NCL procedure or CMD if the message
is a copy of a command entered by an OCS operator or NCL procedure.

&PPOUID

The user ID associated with a message or command which has &PPOTYPE = CMD or
&PPOTYPE = SPO, or for which &PPOALRT = YES.

&PPOVMSG

Indicates (YES or NO) whether a message was found as a VTAM message in the
DEFMSG table.

492 Network Control Language Programming Guide

Appendix C: Sample APPC Conversations

This section contains the following topics:

Sample Conversations Between Two Systems (see page 493)
Run the Sample APPC Conversations (see page 494)

Sample Conversations Between Two Systems

The purpose of the sample APPC conversations is to illustrate the use of the &APPC NCL
verb. The samples are provided in the distribution library. A complete list of sample
conversations and detailed instructions on how to run them are also given in the
member SSAAPDOC.

Source and Tardet NCL Procedures

When two NCL procedures communicate using an APPC connection, the one requesting
the connection (via the &APPC ALLOCATE verb) is called the source procedure. As a
result of the allocation request, a target procedure is started or attached in the remote
system. All the sample conversations involve a source and a target procedure pair.

To allocate a conversation, the source procedure issues an &APPC ALLOCATE verb
specifying the appropriate transaction identifier. In the sample conversations, source
and target NCL procedure pairs are denoted by SSAAPSxx and SSAAPTxx respectively
and the associated transaction identifier by SSATRNxx.

Appendix C: Sample APPC Conversations 493

Run the Sample APPC Conversations

Run the Sample APPC Conversations

To run the sample APPC conversations, choose one or more of the transactions available
(SSATRNxx) and one of the following environments. The sample conversations are
assumed to run between a source system (NMA) and a target (NMB). If you want to run
the samples, you should replace these by the LU names of your particular systems.

Running the APPC samples involves the following steps:

m APPC environment definitions. This involves defining transactions and APPC links to
both the source and the target systems. Examples of three different environments
are provided.

m Running the APPC transactions. This involves starting the source procedure
SSAAPSxx in the source system NMA. Information about the completion of &APPC
verbs (from &RETCODE and &ZFDBK), the 'what-received' indicator (from
&ZAPPCWR) and the state of the conversation (from &ZAPPCSTA) is reported in
messages written to the system log. A description of the first three sample
conversations is given.

Environment 1: Local Conversations

This environment involves only one system. Both the source procedure $SAAPSxx and
the target procedure $SAAPTxx run in the same system and the same NCL region. Since
no LU6.2 sessions are established no link definitions are necessary. Environments 1 and
2 are the simplest in which to run the sample conversations and require only transaction
definitions, as follows:

DEFTRANS TRANSID=$SATRNxx PROC=$SAAPTxX

The default destination information for the transaction is omitted, causing the
ENV=CURRENT parameter to be assumed, which indicates that SSAAPTxx is to be started
in the same system and the same NCL region as the source procedure.

Environment 2: Same LU Conversations

This environment involves only one system. Both the source procedure SSAAPSxx and
the target procedure SSAAPTxx run in the same system. In this case, however, the target
procedure is started in the background server environment, BSVR. As no LU6.2 sessions
are established, no link definitions are necessary. Environments 1 and 2 are the simplest
in which to run the sample conversations and require only transaction definitions, as
follows:

DEFTRANS TRANSID=$SATRNxXLU=NMA PROC=$SAAPTxx

The operand LU=NMA indicates that SSAAPTxxis to be started in the same system as the
source procedure.

494 Network Control Language Programming Guide

Run the Sample APPC Conversations

Environment 3: Conversations Between Two Systems

In this environment, the source procedure, SSAAPSxx, is started in NMA and the target
procedure, SSAAPTXxx, is started in NMB. A single session APPC link is established
between NMA and NMB and both link and transaction definitions are needed.

Definitions in the source system NMA:

DEFTRANS TRANSID=$SATRNxx LINK=NMB
DEFLINK TYPE=APPC LINK=NMB LU=NMB MON=YES

Definitions in the target system NMB:

DEFTRANS TRANSID=$SATRNxx PROC=$SAAPTXxx
DEFLINK TYPE=APPC LINK=NMA LU=NMA

Appendix C: Sample APPC Conversations 495

Appendix D: NDB Response Codes

This section contains the following topics:

About Response Codes (see page 497)
Error Information (see page 497)
Response Codes (see page 498)

About Response Codes

The response codes fall into three categories:
m All OK (response 0)
m Warning conditions (1 to 29)

m Error conditions (30 to 255)

An NCL procedure terminates if an error response is returned, unless &NDBCTL
ERROR=CONTINUE is in effect, except as follows:

m &NDBOPEN is always processed as if &NDBCTL ERROR=CONTINUE is in effect,
except for response 34 (already open), which honors the actual setting of &NDBCTL
ERROR.

m &NDBCLOSE is always processed as if &NDBCTL ERROR=CONTINUE is in effect,
except for response 35 (not open), which honors the actual setting of &NDBCTL
ERROR.

These exceptions allow a procedure to recover from any error conditions encountered
when opening or closing an NDB, except for the obvious programming error (already
open or closed). This should encourage you to develop exception handling logic when
first writing a procedure.

If an error response from an &NDBOPEN is ignored, the next &NDB statement referring
to that NDB will cause the procedure to abnormally terminate (as a result of trying to
access an NDB that has not been opened).

Error Information

Each response code description includes an indication of the information that will be
provided in the &NDBERRI system variable. N/A means there is no information
provided, and &NDBERRI is null.

Appendix D: NDB Response Codes 497

Response Codes

Response Codes

The response codes are listed in ascending order:

0
ERRI=N/A
Database processing completed with no errors.
1
ERRI=N/A
Record with requested key or RID not found (GET/UPD/DEL), OR reposition RID not
in scan result list (SEQ RESET).
2
ERRI=N/A
End of file on GET sequential (forward or backward).
3
ERRI=field name
Named field not found for INFO on field name.
4
ERRI=N/A
No records found for supplied SCAN criteria.
5
ERRI=N/A
SCAN terminated-exceeded 1/0 limit.
6
ERRI=N/A
SCAN terminated-exceeded time limit.
7
ERRI=N/A
SCAN terminated-exceeded storage limit.
8

ERRI=N/A

SCAN terminated-met or exceeded number of records limit.

498 Network Control Language Programming Guide

Response Codes

10-19

20

21

29

30

31

32

33

34

35

ERRI=N/A
Linked & NDBGET/&NDBFMT-extra no find return code as used in the link definition.

ERRI=format name

FMT del, format name not found.

ERRI=sequence name

SEQ del, sequence not found.

ERRI=N/A

Maximum possible Important! code-currently not assigned.

ERRI=N/A

Error in request (catch-all). See command/messages.

ERRI=N/A

Logic error in request: not signed on to database (NDB). For example, if the NCL
procedure is paused and the database stopped/started, then the next call gets this
error.

ERRI=N/A

Insufficient storage to process request.

ERRI=N/A

OPEN request rejected, database is stopping.

ERRI=N/A
&NDBOPEN-already open to this NDB.

ERRI=N/A
&NDBCLOSE-not open to this NDB.

Appendix D: NDB Response Codes 499

Response Codes

36

37

38

39

40

41

51

52

53

ERRI=N/A
NDB PURGE-nominated NDB not found, could not purge.

ERRI=N/A
NDB PURGE-nominated NDB not locked, cannot purge.

ERRI=N/A

Load for load module for requested NDB function failed.

ERRI=N/A

Requested option not allowed-NDB is in load mode.

ERRI=N/A
&NDBOPEN failed by NCLEXO1 user exit.

ERRI=N/A
This &NDB... verb blocked by &NDBOPEN user exit (NCLEX01) return mask.

ERRI=N/A

Database open failure: VFS open for database failed.
Possible causes:

m File not allocated to your product.

m UDBCTL OPEN not done or in error.

ERRI=N/A

Database open failure: Specified database name is not a VSAM KSDS.

ERRI=N/A
Database open failure: VSAM relative key position (RKP) not 0.

500 Network Control Language Programming Guide

Response Codes

54

55

56

57

58

59

60

61

62

63

ERRI=N/A

Database open failure:

valid NDB database.

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

ERRI=N/A

Database open failure:

VSAM key length too short (that is, fewer than 16) to be a

VSAM data length too short to be a valid NDB database.

Read of control record failed.

Control record not valid.

Unable to get storage to contain control record.

Read of transaction control record failed.

Transaction control record not valid.

Unable to get storage to contain transaction control record.

Unable to get storage to contain transaction data record.

Error building field name indexes.

Appendix D: NDB Response Codes 501

Response Codes

64

65

66

67

68

69

70

71

72

ERRI=N/A

Database open failure: Error re-applying pending transaction. Probable file full
condition.

ERRI=N/A

Database open failure: Database flagged as in DEFER status. Probable file corrupt
condition, system has failed with database started in DEFER mode.

ERRI=N/A

Database open failure: UDB is open by other users.

ERRI=N/A
UDB is open INPUT and NDB START or &NDBOPEN is not for INPUT only mode.

ERRI=N/A

Domain ID on NDB control record and this system mismatch, and FORCE not on
NDB START. NDB is not started. Important!-it might be currently open in another
system.

ERRI=N/A

NDB version in this NDB control record not supported.

ERRI=N/A

This NDB is open under another file ID on this system (VSAM timestamp match).

ERRI=N/A

Request not allowed on active database. For example, NDB CREATE, NDB RESET,
NDB ALTER, or NDB UNLOAD.

ERRI=N/A

User ID required for request. Internal failure, should never occur with NDB
command.

502 Network Control Language Programming Guide

Response Codes

73

74

75

76

77

78

79

80

81

ERRI=sequence name

Specified sequence name not defined.

ERRI=sequence name

Sequence name required or already defined.

ERRI=N/A
Free-format text had an invalid token:
m Toolong

m Unmatched quotes

ERRI=N/A

Logic error-not signed on to database (NDB). For example, if NCL proc is paused,
and DB stopped/started, then next call will get this error.

ERRI=N/A

This user ID has an asynchronous request running. Internal failure; should never
occur with NDB command or &NDB statements.

ERRI=N/A

Request internally canceled.

ERRI=N/A
OPEN EXCLUSIVE-other users on database.

ERRI=N/A

OPEN-database locked by an exclusive user.

ERRI=field name if relevant

Add, update, or delete field, an error in the field list syntax, and so on.

Appendix D: NDB Response Codes 503

Response Codes

82
ERRI=N/A
Add, update, or delete field, an internal error in the field index.
83
ERRI=field name
Value for named field is bad, not recognizable as valid data.
84
ERRI=field name
Value for named field is too long.
85
ERRI=field name
Value for named numeric field is not numeric, or outside range:
-2,147,483,648 : 2,147,483,647.
86
ERRI=field name

Value for named hexadecimal field is not a valid hexadecimal string, or is an odd
number of characters.

87

ERRI=field name

Value for named DATE or CDATE field is not valid.
88

ERRI=field name

Field name is not a valid floating point number.
89

ERRI=field name

Supplied value is not a valid hexadecimal number.
90

ERRI=field name

Value for named time field is not a valid time, in the format:

HHMMSS or HHMMSS. TTTTTT.

504 Network Control Language Programming Guide

Response Codes

92

93

94

101

102

103

104

105

106

107

ERRI=N/A

Operation not allowed. NDB or user open in input-only mode.

ERRI=field name

Field update request-could not read field record from NDB.

ERRI=field name
Supplied value is not a valid timestamp, in the format:

YYYYMMDDHHMMSS. TTTTTT.

ERRI=token in error

ADD or UPD, field=value list syntax error.

ERRI=field name
ADD or UPD, required field not provided.

ERRI=field name

ADD record, sequence key value already on database (that is, not unique).

ERRI=field name
ADD/UPD record, KEY=UNIQUE field value not unique.

ERRI=field name
UPD record, UPDATE=NO value change for field.

ERRI=format name

Format specified on an ADD or UPD does not exist.

ERRI=format name

Format specified on an ADD or UPD exists but is an INPUT format and cannot be
used for output.

Appendix D: NDB Response Codes 505

Response Codes

111
ERRI=format name
FMT add, format name '*' is invalid.
112
ERRI=format name
FMT add, format name already exists.
114
ERRI=token in error
FMT/GET, format list syntax error.
115
ERRI=field name
FMT/GET, field name not defined in database.
116
ERRI=format name
Format specified on a GET exists but is an OUTPUT format and cannot be used for
input.
117
ERRI=field name
You have referenced an NDB field twice in an OUTPUT format definition.
118
ERRI=field name
You have used an NCL keyword name in an OUTPUT format, but the keyword is not
an NCL system variable name.
121
ERRI=format name
GET, supplied format name not defined.
122
ERRI=field name
GET by key, key field not defined on database.
123

ERRI=field name
GET by key, field not keyed.

506 Network Control Language Programming Guide

Response Codes

124

ERRI=sequence name

GET by sequence, sequence ID not defined.
125

ERRI=sequence name

GET by sequence, key field for sequence has been deleted (by &NDBDEF DELETE).
126

ERRI=sequence name

GET by sequence, skip=0 specified and not currently positioned.
127

ERRI=sequence name

GET by sequence, skip=0 specified and currently at EOF (front or back).
128

ERRI=field name

GET by key field, GENERIC= is invalid for this field format. Generic access is only
allowed for character and HEX fields.

130

ERRI=field name

&NDBGET histogram (KEY=) on sequence key not supported.
131

ERRI=sequence name

SEQ DEF-invalid sequence name.
132

ERRI=sequence name

SEQ DEF, sequence name already exists.
133

ERRI=N/A

SEQ DEF, from or to RID invalid.
134

ERRI=sequence name

SEQ DEF, field name not found or is not a key.

Appendix D: NDB Response Codes 507

Response Codes

135
ERRI=N/A
SEQ DEF, from or to values not valid.
136
ERRI=field name
SEQ DEF, generic invalid with field format.
137
ERRI=N/A
SEQ DEF, invalid null value for GENERIC=.
139
ERRI=sequence name
SEQ RESET, sequence not found.
140
ERRI=invalid data value
SEQ RESET, REPOS= value invalid or null.
141
ERRI=N/A
SEQ RESET, REPOS= not valid on a scan sequence that is not sorted, or, while sorted,
the primary sort field was substringed.
142
ERRI=sequence name
SEQ RESET, REPOS by RID only valid for a SCAN sequence.
143
ERRI=N/A
&NDBSEQ histogram (KEY=) on sequence key not supported.
144
ERRI=sequence name
RELPOS sequence is not a sequence constructed by &NDBSCAN.
151

ERRI=N/A

INFO by field number, number It 1 or gt number fields in database.

508 Network Control Language Programming Guide

Response Codes

161
ERRI=sequence name
SCAN sequence ID is already defined.
162
ERRI=sequence name
SCAN sequence ID is currently in use, by an active scan for this user.
163
ERRI=field name
SCAN SORT= field name not defined on database.
183
ERRI=N/A
SCAN syntax error in scan request.
191.
ERRI=N/A
Unload failed. Accompanying messages will indicate the cause of the failure
193
ERRI=N/A
NDB ALTER failed.
237
ERRI=N/A

File integrity error, get if continuation DBDR failed. Database possibly corrupted.
Contact Technical Support.

238
ERRI=field name

File integrity error, get XFF if DBKR failed. Database possibly corrupted. Contact
Technical Support.

239
ERRI=field name

File integrity error, get KGE if DBKR failed. Database possibly corrupted. Contact
Technical Support.

240
ERRI=N/A

VSAM 1/O Error. See log for more information.

Appendix D: NDB Response Codes 509

Response Codes

241
ERRI=N/A

Request not processed-invalid request code (internal error), should never occur
with NCL (&NDB) or NDB command.

242
ERRI=N/A

Request not processed-RPL busy flag set (internal error), should never occur with
NCL (&NDB) or NDB command.

243
ERRI=N/A

Request not processed-insufficient storage to queue request to database handler.
Try again.

244
ERRI=N/A

Request not processed-required text parameter not provided (internal error).
Should never occur with NCL (&NDB) or NDB command.

245

ERRI=N/A

Request not processed-Database not started.
246

ERRI=N/A

Request not processed-required VAL1 parameter not provided (internal error).
Should never occur with NCL (&NDB) or NDB command.

247
ERRI=N/A

Request not processed-required VAL2 parameter not provided (internal error).
Should never occur with NCL (&NDB) or NDB command.

248
ERRI=N/A

Request not processed-database not LOCKED. Only applicable to NDB START
UNLOCK command.

250
ERRI=N/A
Request not processed-database is LOCKED or STOPPING.

510 Network Control Language Programming Guide

Response Codes

251
ERRI=N/A

Request not processed-long running command currently in progress. For example,
NDB UNLOAD.

252
ERRI=abend code

This return code indicates that an NDB operation was terminated due to a logical
abend caused by a possible NDB corruption. The log will contain useful debugging
information.

For update requests, the NDB will be stopped and locked. For read/scan requests,
the request is terminated but the NDB will continue to process other requests.

254
ERRI=N/A

Request not processed-feature not present, or your product is shutting down.

Appendix D: NDB Response Codes 511

Appendix E: Using Key Randges with an NDB

If an NDB contains large amounts of data, or if you want to separate the data records
from the key and control records, you can use the KEYRANGES AMS parameter. The
information about the key structure of an NDB enables you to do separate the records.

Note: This information is for guidance only. The key structures can alter with future
product releases. If you divide NDBs by key ranges, review this information whenever
you install a new release of your product.

This section contains the following topics:

NDB Key Structure (see page 513)
Suggested Key Ranges (see page 516)
Other Considerations (see page 516)

NDB Key Structure

The VSAM key in an NDB is divided into the following parts:
m Atype prefix, two bytes long

m For some records, a field code, two bytes long

Key data, either the rest of the key, or four bytes shorter

m For some keys, a suffix, four bytes long

The following shows the key structures in ascending order:
m Control record (always first record in data set)
Rectype: X'0000'
Rest of key: All binary 0
m Transaction control record (always second record in data set)
Rectype: X'0010'
Rest of key: All binary 0
® Transaction journal records
Rectype: X'0011'
Sequence number: 2 bytes, binary (X'0001' to nnnn)
Rest of key: All binary O

Appendix E: Using Key Ranges with an NDB 513

NDB Key Structure

m Field information records (2 types)
- First (Basic Field Information):
Rectype: X'0020'
Field code: 2 bytes binary
Rest of key: All binary 0
- Second (Contains Key Statistics):
Rectype: X'0021"
Field code: 2 bytes binary
Rest of key: All binary 0
m Key records
Rectype: X'0030'
Field code: 2 bytes binary
Field value: (keylen - 8 bytes, see Storage of Values)
Suffix: 4 bytes, binary
m RID to sequence key records (present only if NDB defined with a sequence key)
Rectype: X'0032'
RID: 4 bytes, binary
Rest of key: All binary 0

m Data records. There are 2 formats, depending on whether the NDB has a sequence
key, or not:

- For databases defined without a sequence key, the format is:

Rectype: x'0040'

RID: 4 bytes, binary

Reserved: (keylen - 10) bytes long

Sequence number: 4 bytes binary (usually 0, used to handle large data records)
— For databases defined with a sequence key, the format is:

Rectype: x'0040'

field code: 2 bytes, binary; always x'0001'

Seq key value: (keylen - 8 bytes, see Storage of Values)

Sequence number: 4 bytes binary (usually 0, used to handle large data records)

514 Network Control Language Programming Guide

NDB Key Structure

Storade of Values

Field values and sequence key values are stored as follows:
CHAR fields

The character field value, padded to (keylen-8) with blanks.
NUM fields

4 bytes, binary, with the sign bit inverted (that is, 0 is stored as X'80000000', 100 is
X'80000064'). Padded to (keylen-8) with binary 0.

HEX fields

Stored in compressed hexadecimal format. Padded to (keylen-9) with binary 0. The
last byte (of the value part, not of the total key) contains the significant length in
binary (so X'ABCD' and X'ABCDOOQ"' are distinct; X'ABCD' is stored as
X'ABCD0000...02"' and X'ABCDOQ' is stored as X'ABCD0000...03').

DATE fields

Stored in unsigned packed. For example, 21 September 2004 is stored as X'040921".
Padded to (keylen-8) with binary 0.

FLOAT fields

Stored in 8-byte floating point, with the following change to force character
compares to work correctly:

m [f sign bitis O (that is, number is 0 or positive), invert the sign bit.
m Ifthe sign bitis 1 (that is, a negative number), invert the entire 8-byte field.
m Key length padding is binary 0.

CDATE fields

Stored internally in 3-byte binary with value 1 (x'000001') representing 1/1/0001.
Key length padding is binary 0.

TIME fields

Stored internally in 5-byte binary as a number of micro-seconds, values from 0 to
86,399,999,999 (86,400 seconds in a day, times 1000000 for microseconds, -1
microsecond). The largest hexadecimal value is x'141DD75FFF'. Key length padding
is binary 0.

TIMESTAMP fields

Stored internally as a concatenation of the CDATE (3-byte) and TIME (5-byte) fields
(CDATE first). Thus a TIMESTAMP takes 8-bytes. Key length padding is binary 0.

Appendix E: Using Key Ranges with an NDB 515

Suggested Key Ranges

Sugdested Key Randes

The following are suggested key range breakups:
X'0000' to X'002F'

Includes the control, transaction, and field records. The transaction records have
the most activity. The field records can be in the same key range, as they are only
referenced on NDB START, or when an &NDBDEF statement is processed.

X'0030' to X'003F'

Includes all the key records, and, for databases with a sequence key, the RID to
sequence key relation records.

Splitting the key records by field is not feasible because the field code is not readily
determined. If fields have been added or deleted, the code can change if an NDB is

unloaded and reloaded. The only field code that is guaranteed is the field code for a
sequence key, which is always X'0001".

If field codes are necessary for splitting key records, the field information records
(record type X'0020') contain the field code in bytes 3 through 4 of the key. The
code is also in the data, in the 2 bytes immediately following the key. The next 12
bytes after the field code in the data contain the field name. Remember that this
field code can be different if an NDB is unloaded and reloaded.

X'0040' to X'FFFF'
Contains all data records.

For NDBs with a sequence key, the data can be broken on sequence key value by
preceding the value limits with X'00400001'. For example, if an NDB has a character
sequence key, and you want to break A-K, and L-Z, you can use:

X'00400001C1' to X'00400001D2' (A-K)
X'00400001D3" to X'00400001E9' (L-Z)

Other Considerations

Failure to provide complete key ranges could lead to VSAM errors if a key value cannot
be matched to a key range.

Using key ranges other than to separate control, key, and data records, or, for NDBs
with a sequence key, sequence key ranges, is not recommended.

516 Network Control Language Programming Guide

Appendix F: Using NCLEXO1 for NDB

Security

A user-nominated NCLEXO1 exit can be invoked if SYSPARMS NDBOPENX is set to YES. In
this case, all &NDBOPEN statements that actually open the NDB (for this process) result
in the nominated NCLEXO1 exit being called.

This section contains the following topics:

NDB Open Exit Call Details (see page 517)

NDB Open Exit Call Details

The following describes the parameter list passed on an &NDBOPEN call to NCLEX01:

The standard parameter list, as mapped by the SNMNCEX1 macro.

This parameter list contains information common to all calls to NCLEXO1 for various
reasons. It contains a function code, and information about the current user ID, and
so on. The security correlator is passed to allow access to any security information

provided by any security exits.

On an &NDBOPEN call, the NEXFUNC field has a value of 12 (decimal).

Field NEXNDEX1 contains a pointer to a supplementary parameter list containing

additional information.

A supplementary parameter list, mapped by the NEXND DSECT. This DSECT is in the

NCLEXO1 macro.

Fields in this DSECT include:

NEXNDNAM DS CL8
NEXNDFL1 DS X
NEXNDOPX EQU
NEXNDOPI EQU
NEXNDOKM DS
NEXNDOK1 DS
NEXNDGTO EQU
NEXNDSCO EQU

X'80'
X'40'
0XL2

X'80'
X'40'

NDB name being opened
Flag byte

... EXCLUSIVE on &NDBOPEN
... INPUT on &NDBOPEN

Following 2 bytes.
Note: initialized to 2X'FF'.

... first OK operations flag.
... 1 = &NDBGET ok.
... 1 = &NDBSCAN ok.

Appendix F: Using NCLEXO1 for NDB Security 517

NDB Open Exit Call Details

NEXNDADO EQU X'20' ... 1 =&NDBADD ok.

NEXNDUPO EQU X'10' ... 1 =&NDBUPD ok.

NEXNDDLO EQU X'08' ... 1 =&NDBDEL ok.

NEXNDDFO EQU X'o4' ... 1 = &NDBDEF ok.

NEXNDINO EQU X'02' ... 1 =&NDBINFO ok.

NEXNDOK2 DS X ... 2nd ok operations flag.

NEXNDUDL DS H Length (0-50 decimal) of user data from
&NDBOPEN statement.

NEXNDUDT DS CL50 User data (padded/truncated to 50 chars)
from &NDBOPEN statement (pad is
blank).

These fields can be referenced to determine the action to take.

By returning R15 not equal to 0, all access to the NDB from the NCL process is denied.
ASN NDB response code of 40 is returned, and this is handled based on the & NDBCTL
ERROR= setting.

If R15 is returned with a 0, the 2-byte NEXNDOKM field is examined. If all of the defined
bits are off (as listed previously), then the effect is the same as setting R15 not 0. Note
that the NEXNDOKM field is initialized to all bits on before the call.

If any bits in the NEXNDOKM field are off, the associated &NDBxxxx verb cannot be
used. Attempts to use it results in an NDB response code of 41. This too is handled as
per the &NDBCTL ERROR= setting.

You can deny the use of the &NDBDEF verb with this exit. This forces the use of the NDB
FIELD command to add, update, or delete field definitions from the database.

If the exit terminates abnormally while processing the &NDBOPEN request, the NCL
process is terminated with an error.

The exit is attached as a subtask in all environments. It should be coded re-entrant
because multiple copies may be executing simultaneously.

518 Network Control Language Programming Guide

Appendix G: Using the Batch Command

Interface

This section contains the following topics:

Batch Command Interface (see page 519)

BCI Command Types (see page 520)

BCl Input (see page 520)

BCI OQutput (see page 521)

BCILOGON Command—Establish Session (see page 521)
BCIDISC Command—Terminate Session (see page 523)
BCIEXITC Command—Control Command Exit (see page 523)
BCI Operation (see page 524)

BCI Command Exit (see page 526)

JCL Return Codes (see page 528)

Batch Command Interface

You invoke the Batch Command Interface (BCl) by executing the NMBCI program in a
batch processing environment or by calling it from other programs.

Note: The BCl is available on z/0S systems only.

Commands are read from a nominated input device (in card image format) and the
replies received are routed to the nominated output device. A user command exit can
also be called where commands may be added, changed, or deleted. Return codes from
an executed NCL procedure may be translated to JCL return codes, which can then be
interpreted using conditional JCL statements.

Requests are executed by NCL procedures running under the User Services option, and
the unformatted results of these requests are returned to the output device.

This interface may be used to connect to a product region operating within the same or
within a different VTAM domain.

Appendix G: Using the Batch Command Interface 519

BCI Command Types

BCI Command Types

Commands read from an input file fall into two categories:

m BCl control commands used to provide details for session establishment, to request
activation of a BCl command exit, and to disconnect the session. These commands
are described in a following section.

m Any other commands, which are routed unchanged to the target region for
interpretation and execution. These are processed by NCL procedure SUSERBCI,
which runs under the User Services option.

Once a BCI command exit has been activated, all non-BCl input commands are passed
for pre-processing before continuing. The exit can add new control or user commands,
and can modify command contents or delete commands.

BCI Input

Commands are extracted from an input file in card-image format. The input file is
referenced by the SYSIN DD statement and may be any LRECL=80 data set.

Only the first 72 columns of the record can contain command data; the remainder of the
record is ignored. A command may be preceded by one or more spaces and is
terminated by a space. Any data (including additional blanks) after the command, is
assumed to be operands or parameters associated with the command.

520 Network Control Language Programming Guide

BCI Output

BCI Output

An activity log is directed to the nominated output file and consists of 121-character
print lines where the first byte is a machine control character. The file is referenced by
the SYSOUT DD statement and should be specified as RECFM=FBM with an appropriate
block size.

The activity log records the commands processed by the BCl, the user commands (after
insertion or modification by any command exit), the replies from the User Services

procedure, and any messages issued by the BCl itself.

The column headed Terminal indicates the device that issued the command as one from
the following:

m The system input file name
m The LU name of the virtual terminal used for the session

m The name of the command exit (if the command is added or modified)

An additional flag character preceding the command or message reply indicates the
source as follows:

+ Indicating it was read from the system input file.
- Shows it was inserted or changed by the command exit.
= Indicates a message issued by the BCI.

A blank indicates a reply from the User Services procedure.

BCILOGON Command—Establish Session

The BCILOGON command establishes a session with the desired product region on
behalf of the specified user.

This command has the following format:

BCILOGON applname
USER userid (/password | PASSWORD password)
[MENU menu]
[LUNAME applid | LUPREF luprefix]

applname

Is the VTAM APPL name of the product region to which you want to connect. This
value must be the first parameter following the BCILOGON command.

Appendix G: Using the Batch Command Interface 521

BCILOGON Command—Establish Session

USER userid { /password | PASSWORD password }

Provides the valid user ID and password combination to use for the session. The
user ID and password can be specified in a single string after the USER keyword
(that is, as USER userid/password) or provided separately (that is, as USER userid
PASSWORD password). Both the user ID and password must be specified if
BCILOGON is run as a batch job on demand.

If accessing BCI from another program, the user ID and password for that system (as
taken from the UAMS database or the equivalent security exit procedure) are
defaulted for the interface. Logging on to BCl is transparent, without you having to
provide user ID and password, or the ID of the user who submitted the batch job.

MENU menu

Specifies the initial menu selection data for the User Services facility. This value can
contain up to five characters. If present, the characters U.menu are passed to the
product region to perform initial menu selection.

If omitted, the User Services procedure defined for the BCl user ID is selected (this
should be SUSERBCI in the BClI facility distributed). However, if the user is set up to
use the standard SUSERSER procedure, a menu option of BCl can be specified.

LUNAME applid or LUPREF luprefix

Specifies the entire ACB name (LUNAME applid) or a one- through five-character
LUNAME prefix (LUPREF luprefix) that the BCI attempts to open to connect to the
product region. If an open fails for any reason, interface processing terminates
immediately.

When the LUPREF operand is used, a three-digit number (nnn) is appended to the
LU prefix value. Initially nnn is set to 001 and an attempt to open ACB /uprefix001 is
performed. If this ACB is in use or varied inactive, the suffix keeps incrementing. The
open is retried until one of the following conditions occur:

m The open is successful.
m Anunrecoverable open error occurs.
m Thellist of defined ACBs is exhausted.

If you do not specify the LUNAME and LUPREF operands, then an LUPREF of NMBCI
is assumed.

522 Network Control Language Programming Guide

BCIDISC Command—Terminate Session

Examples: BCILOGON Command
BCILOGON NMCDRSC USER XYZ/XYZ
BCILOGON NMMAIN USER ANET LU ABCINET PASSWORD GO

BCILOGON NMTEST USER OPER LUPREF NMTSO PASSWORD XYZZY
Note: A user command exit can generate the BCILOGON command.

Other than the app/lname parameter that must be the first parameter after the
BCILOGON command, subsequent parameters can be entered in any order.

BCIDISC Command—Terminate Session

The BCIDISC command terminates the session with the product region after processing
with that system is complete.

The BCIDISC command has no parameters and has the following format:

BCIDISC

This command logs you off the product region and frees the VTAM ACB being used this
session. If the end of the input file is reached and an active session exists, then a
BCIDISC command is assumed.

BCIEXITC Command—Control Command Exit

The BCIEXITC command activates or deactivates a user command exit. You can use a
user command exit program to inspect user commands before being processed by the
BCI.

This command has the following format:

BCIEXITC [exit name]
exit_name

Is the one- to eight-character name of the program to be loaded as the user exit for
the BCI. The program must reside in a standard load library. Specifying the exit
name on the BCIEXITC command loads the module only. The exit is not called until a
command is next read from the input file.

If the exit name is omitted, any currently executing exit is deactivated.

Only one command exit can be active at any one time. If you must invoke a
different exit, first use a BCIEXITC command to deactivate the current exit.

Appendix G: Using the Batch Command Interface 523

BCI Operation

BCI Operation

After completing a successful BCILOGON command, BCI converses with a User Services
procedure defined to the product region. The BCILOGON command makes an initial
menu selection of U (for the User Services menu).

By using the optional MENU operand of the BCILOGON command, additional data can
be passed to the initial procedure to invoke a special procedure for conversing with BCI.
This initial procedure uses the &ZPSKIP NCL statement to receive and process this data
in the usual manner.

Note: For more information, see the Network Control Language Reference Guide.

As previously mentioned, BCl makes use of the Virtual 3270 Interface. The User Services
procedure (and its associated panel) used for the conversation must meet certain basic
requirements (see page 529). The first screen line on the panel should contain three
output fields for control information. The second line is an input command line, and the
remaining lines are used to return any output data. The supplied procedure (SUSERBCI)
and panel (SUSV3270) conform to these standards and should be used as a model.

BClI defines itself to the Virtual 3270 Interface as a 3270 Model-4 and, while it will only
send a single command on the first input line of the panel, it will accept up to 41 data
lines in the response (the Model-4 type terminal contains 43 lines of 80 characters
each).

After any command has been processed by the procedure, including the BCILOGON
command, the first two control fields are reported as the panel name and procedure
name respectively. The third field is regarded as a return code, and set as &RETCODE. If
this is non-zero, the user is disconnected and documentary messages written to the
system output file. The job is canceled with a JCL return code of 12.

Procedure $USERBCI

Procedure SUSERBCI contains all the commands necessary to communicate with a
virtual BCI 3270. It may also be used for a real 3270 and be extended by the installation
to cater for additional functions. The procedure contains comments which adequately
describe the basic functions it performs.

SUSERBCI recognizes several commands as functions it must execute. Any other
commands received are assumed to be product commands and are processed by
specifying them on an &INTCMD statement. This makes the procedure as powerful as
the privileges associated with the particular user ID for which it is invoked, and can be
restricted at the installation's discretion.

The results of an &INTCMD command are accumulated by issuing &INTREAD statements
and placing the resulting messages on the output lines of the panel.

524 Network Control Language Programming Guide

BCI Operation

If all panel output lines are used, the data is sent to BCl by issuing an & PANEL
statement. The messages are extracted and BCl awaits further output. More than one
panel may be required to send the results of some commands. This process is
automatically handled by the interface.

The following commands are not passed to the product region but are processed by the
distributed procedure SUSERBCI:

ECHO [nn] [text]

Is recognized by SUSERBCI as a test command. The specified text is echoed nn times
(up to 41 maximum) in the output lines of the panel. If nn is omitted or
non-numeric, the text is echoed 3 times. If no text is supplied, a sequence of
characters is returned.

EXIT

May be used to emulate the F3 key and will end procedure SUSERBCI. This can be
useful if SUSERBCI is nested from another BCI NCL procedure. It is not used to
terminate the BCl session (see page 523).

INVRC [nn]

Is used by SUSERBCI to set &RETCODE to nn. If this is a non-zero value, the batch
program will terminate immediately with message N96009 issued.

MORE

A request to perform another &INTREAD operation. After an &INTCMD has been
issued, the results are read using &INTREAD commands. Since an unknown number
of messages may be returned, the procedure makes some assumptions as to when
the last message has been read. If you suspect more messages are available, these
can be solicited through the MORE command. Any number of MORE commands
may be issued.

NOMORE

Signifies that any outstanding messages not yet returned should be purged. This
results in the procedure issuing an &INTCLEAR statement to discard any such
outstanding responses.

TRACE ON| OFF

May be used to issue an NCL & CONTROL TRACE or & CONTROL NOTRACE command
in the BCI NCL procedure. This may be useful for debugging BCI NCL procedures.

Appendix G: Using the Batch Command Interface 525

BCI Command Exit

Customize $USERBCI

An installation may further tailor the SUSERBCI procedure to extend its function. For
example, certain commands could be recognized to invoke other procedures or panels if
desired.

If the procedure is modified by the installation, CA recommends that you test it using a
real 3270 before testing it on the BCIl. The procedure can be tested at any 3270 (this
does not have to be a Model-4, as the number of screen lines is handled by the
procedure).

If a 132-column screen is used, output is truncated by BCI to the first 79 characters.
When testing at a real terminal, MORE command processing can be abandoned by
pressing F12 or F24.

For ease of testing or occasional usage, we suggest you amend the existing User Services
procedure and its associated panel, to allow entry to the tailored procedure from a
normal session. If you do this, then users won't have to log onto the product using a BCI
user ID. This eliminates a potential conflict between BCl and online usage.

BCI Command Exit

When a record is read from the system input file, it is first scanned to determine
whether it is a BCl control command. If not, it is recognized as a user command to pass
to the product region. However, before it is passed, it is reformatted to remove leading
blanks. If a command exit is active, it is called passing the command as a parameter. The
command exit can then choose to modify the command, to reject it, or to insert
additional commands into the input stream.

On entering the exit, Register 1 contains the address of a 76-byte area as follows:

Bytes 1 through 4

Contain a binary fullword indicating the length of the following data which can be a
maximum of 72 bytes.

Bytes 5 through 76

Contain the user command and data with leading blanks removed and any unused
characters to the right filled with blanks.

Before returning, the exit sets Register 15 with a return code to indicate what action BCI
is to take with the returned data.

526 Network Control Language Programming Guide

BCI Command Exit

Return Codes

Indicates to pass the command to the product region. The actual command may
have been modified and its length changed by updating the 76-byte area as passed
as the parameter to the exit. The reformatted command is reported on the system
print file (except the BCILOGON command).

Indicates to pass the command to the product region (as for R15=0). However, after
it has been fully processed, the exit is invoked again instead of reading the next
card from the system input file. Therefore, this return code is used to insert
commands. The user command area presented on the subsequent invocation
contains the command as returned on the last such call, and not the original
command.

Indicates to ignore and not report the command.

The command exit can be used to generate a BCILOGON command to generate
automatically user ID and password data. If a BCILOGON command is returned, only the
command and the product region VTAM APPL name are reported on the system print
file.

The command exit is especially useful for removing superfluous commands that, for
example, a library system generates. However, any user commands before the BCI
command is detected are ignored, so the BCIEXITC command itself can exist in a library
member and be detected correctly.

As the command exit is loaded by the BCIEXITC command and merely executed on each
subsequent command until deactivated, the program is effectively resident. Therefore,
data areas can be defined within the exit to control calls to the exit during insertion
processing. Additionally, if a short command is returned in the command area, the exit
can use the rest of the area because that area is not inspected, amended, or reported by
BCI. If the length field is greater than 72, it is assumed to contain 72. Similarly, if the
length is zero or negative, it is assumed that no command is present and no action is
taken. However, if the return code is 4, the exit is invoked again. In both instances, BCI
does not modify the length field.

Appendix G: Using the Batch Command Interface 527

JCL Return Codes

JCL Return Codes

When the BCI program terminates, it sets a JCL return code which may be tested for
successful completion. The return code will have one of the following values:

0
No errors detected.

4
BCI has processed all input cards and issued Important! messages. Check the
messages to ensure that BCl has made the correct assumptions.

8
BCl has processed all input cards and has found that serious errors and incorrect
results are likely. Check the messages and correct the input.

12
BCl has detected serious errors processing all input cards. The results are
incomplete. Check the message and correct the input.

1001-1009
The BCI NCL procedure has ended with a non-zero return code (&RETCODE). The JCL
return code is the value in &RETCODE plus 1000. For example, if &RETCODE is set to
2, then the JCL return code returned will be 1002. BCI will issue message N96009
and terminate the job with the JCL return code.

U4095

BCl has detected a serious problem. The BCl output file will contain messages that
indicate the nature of the error; it may be an internal error. A dump is produced
which may be required for problem diagnosis by your product supplier.

Example: JCL Return Codes

//NMBCI JOB etc

//NMBCI EXEC PGM=NMBCI

//SYSOUT DD SYSOUT=A

//SYSIN DD *

BCILOGON NMTEST USER TESTBCI/TESTPSWD MENU BCI LU NMDOSBCI TRANSMIT TESTFILE
SHOW USERS

LIST $USERBCI

EXEC TESTPROC

BCIDISC

BCILOGON NMACCTS PASSWORD MONEY USER WAGES
TRANSMIT PAYROLL

BCIDISC

/*

//

528 Network Control Language Programming Guide

Appendix H: Virtual 3270 Interface

This section contains the following topics:

About the Virtual 3270 Interface (see page 529)
Virtual 3270 Interface (see page 529)
Control the Conversation (see page 531)

About the Virtual 3270 Interface

The Virtual 3270 Interface allows an external program to communicate with your
product, in particular with NCL procedures, using full-screen dialog.

Requests are normally passed to NCL procedures running under the User Services
option. The interface user program and NCL procedure can determine the state and
flow of data on the conversation as they desire.

This interface may be used to connect to a product region operating in the same or a
different VTAM domain.

Virtual 3270 Interface

Various calls to the interface are supported to simplify session establishment and
termination, and for reading and writing the information contained in 3270 data
streams.

A parameter list supplied as the DSECT SNMVTAP in the product distribution library is
used for communication. Once output has been received on the session a Field
Descriptor List is built and the address placed in the main parameter area. This allows
the interface user program to examine the contents of the panel and to update input
fields for return your product.

Appendix H: Virtual 3270 Interface 529

Virtual 3270 Interface

The NMV3270I load module can be linked to a program requiring interface services, or
loaded as part of an initialization process. Calls to the interface are then supported by
passing the initialized parameter area to provide the following functions:

Open

Starts a session with the product region using parameter list information to
determine the target system applid, the local VTAM ACB name to be used for the
session, the user ID and password for the user requesting the logon, the virtual
3270 screen size, and any initial menu selection required.

If an LUNAME prefix is used for the ACB name (APPLID) and the ACB fails to open
because the APPL has been varied inactive, the operation retries using the next
generic ACB name. This process is repeated until an open is successful, or until five
successive inactive or unknown ACB name errors occur.

Receive

Is used to receive a full-screen of data and builds a Field Descriptor List which
describes all input (and optionally output) fields found on the panel. This may then

be examined by the calling application to determine the contents of the various
fields.

Send

Is used to return data to the product region. The Field Descriptor List may be
plugged with the address of input data which is to be placed in panel input fields. A
code specifying the function key to be pressed can also be set (the default is the
Enter key).

Send, then Receive

Performs both send and receive functions before returning control to the calling
program. This is useful when issuing a request which expects to solicit some data in
reply.

Send, then Terminate

Performs a Send then awaits session termination before returning control (for
example, after a LOGOFF command has been sent). If the session does not shut
down in an orderly fashion, then it is disconnected before control is returned to the
calling application.

Terminate
Closes the session immediately without further I/O and returns to the caller.

More documentation may be found in the DSECT SNMVTAP describing the fields which
can be set for the various calls, and those which may be set by the interface on return.

The supplied DSECT SNMFLDDS can be used to map the data returned in the Field
Descriptor List obtained from the panels used in a conversation. See those DSECTS in the
distributed NMMACLIB for details on this facility.

530 Network Control Language Programming Guide

Control the Conversation

Control the Conversation

By default, NMV3270I selects the User Services menu as the initial menu selection. This
can be modified on the Open call. However, no matter what function gets control and
issues the first 1/0, it is the responsibility of the program calling the interface and the
NCL procedure (or other function) to agree to some protocol and maintain proper
synchronization.

The Virtual 3270 Interface provides services which simplify VTAM session
communication, and let you analyze the data being passed across the session using a
3270 full-screen conversation.

Interface to NCL Procedures

Once a session has been established through the Virtual 3270 Interface and has made
an initial menu selection that passes control to an NCL procedure, the procedure begins
the conversation by issuing an & PANEL statement. This results in a 3270 data stream
being sent to the interface.

The interface user must issue a Receive call at which time the virtual panel image and
Field Descriptor List are built and returned to the caller.

By requesting a Send (or a Send then Receive) function, any input is returned with the
appropriate attention key set. This satisfies the & PANEL statement at which time the
procedure can examine the input fields through their token names, and the key through
the &INKEY system variable in the usual manner.

Panel Characteristics

While any panel definition could be used for this conversation, the simpler the panel
definition the easier it is for the interface user to process. Panel SUSV3270 is used by
both the Batch Command Interface and the TSO Command Interface and uses specific
conventions.

The panel is defined as a Model-4 (43 line) panel, the first line containing three
protected fields as follows:

m The first field contains the characters SUSV3270 and can be used to verify that the
interface user is connected to an NCL procedure designed to handle this type of
communication.

m The second field contains the system variable &0. On output this will be substituted
and contains the name of the currently executing procedure. This helps maintain
synchronization throughout the conversation.

m The third field contains the system variable &RETCODE which can be used to
determine the status of processing within the procedure.

Appendix H: Virtual 3270 Interface 531

Control the Conversation

The contents of these fields are extracted and placed into defined areas of the
parameter list passed between the user program and the interface, regardless of
whether the user requested all or only input fields be built in the Field Descriptor List.
Hence there is an advantage in maintaining this first line convention for any application.

The second line of panel SUSV3270 is an input field and contains the token name
&REQUEST. This of course appears to the user program as the first input field in the
Field Descriptor List and hence is easily accessible. Normally this would be used to
describe the type of function that the interface user is requesting from the NCL
procedure.

Subsequent lines of the panel are all input lines and may be used to contain qualifying
input from the user application, or for returned text data from the NCL procedure.

Where any external application is required to use the services of the Virtual 3270
Interface, CA recommends that the procedures and panels described be used as models
to assist development.

532 Network Control Language Programming Guide

Index

#

HERR panel control statement e 95, 139
#OPT panel control statement PREPARSE operand
PREPARSE operand » 124

$

SCAGLB e 59, 165

SNCL map subvectors ¢ 192

SNMNCPL macro » 213

SUSERBCI * 520, 524
customizing ¢ 526

&

&APPC verb « 361
&ASSIGN verb ¢ 69, 105, 112
assigning values to variables ¢ 67
&CONTROL NOUCASE operand ¢ 68
&CONTROL verb
CONT operand continuation reactivation e 45
NOCMD operand ¢ 50
NOCONT operand continuation deactivation e 45
NODUPCHK operand no label checking ¢ 53
NOLABEL operand e 52
NOMDOCHK operand ¢ 252
NOPFKEY operand ¢ 119
NOPFKMAP operand ¢ 119
PFKALL operand ¢ 119
PFKMAP operand ¢ 119
PFKSTD operand » 119
SHAREW operand ¢ 132
SHRVARS operand ¢ 58, 110
&CURSCOL system variable « 122
&CURSROW system variable ¢ 122
&FILE verb » 186
ADD e 172
CLOSE » 188
KEY operands in UDB processing ® 190
KEYVAR operand ¢ 190
OPEN » 187
&HEXEXP verb ¢ 192, 195
&HEXPACK verb ¢ 195
&INKEY system variable ¢ 119
&INTCLEAR verb ¢ 35
&INTCMD verb * 35

&LOCK verb ¢ 211, 226
ALTER= operand e 227
resource locking ¢ 226
WAIT= operand ¢ 227
&LOOPCTL verb ¢ 29
&LUCOLS system variable ¢ 121
&LUROWS system variable « 121
&MSGREAD verb ¢ 209
&NDB statements relation to &FILE statements
built-in functions ¢ 457
syntax ¢ 458
verb summary ¢ 456
&NDBCLOSE verb ¢ 319
&NDBFMT verb ¢ 324
&NDBGET verb ¢ 329
&NDBINFO verb ¢ 331
&NDBOPEN verb ¢ 318
&NDBQUOTE built-in function protecting data values
* 317
&NDBSCAN statement ¢ 345
efficient use of ® 356
&NDBSEQ verb
KEEP ¢ 328
RESET ¢ 328
&NDBUPD verb ¢ 321
&PANEL verb ¢ 94
&PARSE verb ¢ 68
&PPl verb ¢ 421, 423
&PPIDATALEN user variable 422
&PPISEDNERID user variable ¢ 422
&PPOALERT verb ¢ 207
&RETCODE system variable ¢ 422
&RETURN verb ¢ 58
&SETVARS verb ¢ 68
&SYSFLD system variable « 111
&SYSMSG system variable ¢ 110
&VARTABLE verb ¢ 72,73, 76
retrieval ® 70
&VSAMFDBK system variable ¢ 172
&WRITE verb ¢ 65
displaying information e 49
&ZCURSFLD system variable e 122
&ZCURSPOS system variable ¢ 122
&ZFDBK system variable ¢ 422
&ZMDOCOMP system variable o 252

Index 533

&ZMDOFDBK MDO return code ¢ 252
&ZMDOID system variables e 252
&ZMDOMAP system variable ¢ 252
&ZMDONAME system variable ¢ 252
&ZMDORC MDO return code ¢ 252

&ZMDORC system variable to check map connection

* 249
&ZMDOTAG system variable ¢ 252
&ZMDOTYPE system variable ¢ 252
&ZMODFLD system variable stack ¢ 112
&ZPPI system variable ¢ 422
&ZPPINAME system variable « 422

3

3270
data stream ¢ 531
full-screen conversation ¢ 531
interface ¢ 523, 531
Model ¢ 524

A

Abnormal termination ¢ 315
Access Control Block (ACB) » 523
access to resources ¢ 228
competition for e 228
synchronizing processes ¢ 228
activity log ¢ 521
logon request message ¢ 179
suppression of comments ¢ 50
adding records to an NDB e 320
aligning variables » 64
ALL-FIELDS » 324
ALLOCATE command ¢ 170
allocating UDBs dynamically « 169
altering resource lock status ¢ 227
alternate indexes ¢ 235
definition » 179
update restrictions ¢ 198
alternate indexes and VSAM e 180
alternative function keys on panels ¢ 119
alternative substitution character Panel Services
124
APPC « 389
&APPC verb set ¢ 361
application design ¢ 378
attach procedure ¢ 365
ATTACH transaction allocate a procedure » 383
client/server definition ® 367

Common Programming Interface for
Communications ® 359

confirm data sent ¢ 371

confirmed response ¢ 375

CONNECT transaction connect to active process
384

conversation states &ZAPPCSTA system variable
® 362

conversation types ¢ 391

conversations between two systems ¢ 495

data mapping * 368

data mapping and Mapping Services ¢ 370

default modes ¢ 392

definition examples ¢ 412

destinations ¢ 398

error processing ® 375

establishing sessions ¢ 409

force data transmission (FLUSH) 371

GDS variables » 368

local conversations ¢ 494

log modes ¢ 401

LU verb set ¢ 360

mapped conversations ¢ 391

nominating mode names ¢ 400

notification mode ¢ 369

parallel session links 409

program initialization parameters ¢ 366, 367

programming facilities e 359

receive state ¢ 372

rejection mode ¢ 388

Remote Procedure Call (RPC) transaction 383

return code information ¢ 377

running sample conversations ¢ 494

same LU conversations ¢ 494

sample conversations ¢ 376, 493

send state ¢ 368

session ® 366

session initiation ¢ 408

session polarity ¢ 391

sessions for conversations ¢ 411

single session links ¢ 410

source procedure ¢ 493

source system ¢ 493

switching states ¢ 372

target procedure ¢ 493

target system e 493

transferring a conversation ¢ 388

using ¢ 359

APPC, client/server connection mode

534 Network Control Language Programming Guide

automatic connection mode ¢ 386
notification mode ¢ 387
rejection mode ¢ 388
server processes ® 385
APPC, conversation ¢ 360
attach processing ¢ 367
communication path ¢ 365
data flow ¢ 363
deallocate ¢ 376
destination information e 365
execution environment ¢ 367
initiation (allocation and attach) ¢ 360
processing ¢ 363
receive state ¢ 367
return codes ¢ 363, 377
send operations ¢ 368
send state ¢ 368
sending and receiving data ¢ 360
sending data ¢ 368
states ¢ 362
status (system variables) ¢ 363
system variables ¢ 363, 377
termination (deallocation) * 360
APPC, conversation allocation ¢ 365
completion ¢ 366
destination ¢ 365
program initialization parameters ¢ 366
sessions ¢ 366
Transaction Control Table (TCT) 365
transaction identifier e 365
APPC, conversation deallocation ¢ 376
APPC, execution environment
background server ¢ 367
user region ¢ 367
APPC, extensions ¢ 380
ATTACH transaction e 383
automatic connection mode ¢ 386
client/server connection mode ¢ 385
client/server processing * 384
CONNECT transaction » 384
extended verb set (list) ¢ 380
notification mode ¢ 387
rejection mode ¢ 388

Remote Procedure Call (RPC) transaction 383

server processes ¢ 385

START transactions e 382

transactions ¢ 381

transferring a conversation ¢ 388
APPC, implementing security * 394

from a remote system ¢ 405
region use ¢ 406
APPC, links
activating automatically e 407
activating manually ¢ 406
deactivating manually * 407
defining » 394
APPC, LU type 6.2
option sets ¢ 392
sessions ¢ 390
APPC, receiving data ¢ 373
confirmation request ¢ 375
deallocation indication ¢ 375
error processing ¢ 375
into MDOs « 374
into NCL tokens ¢ 373
send indication ® 375
switching states ¢ 372
APPC, sending data * 368
error processing ¢ 375
forcing transmission ¢ 371
GDS variables » 368
mapped * 368
mapping NCL tokens ¢ 369
Mapping Services ® 370
MDQOs e 244
NCL tokens ¢ 369
requesting confirmation ¢ 371
switching states ¢ 372
when data mapping is not supported ¢ 371
APPC, START transactions ¢ 382
dependent process ¢ 382
independent process ¢ 382
APPC, tables
Dynamic Link Table (DLT) » 399
interactions ¢ 395
Mode Control » 400
Mode Control Table (MCT) ¢ 401, 402
Option Set Control Table (OSCT) ¢ 400
requirements ¢ 395
Transaction Control Table (TCT) ¢ 397
APPC, transactions
generic ¢ 398
qualified 397
transaction identifier (TRANSID) ¢ 365
arithmetic in NCL » 56
&CONTROL REAL operand e 85
arithmetic expressions * 85
arithmetic operators » 86

Index 535

compound expressions ¢ 85
controlling evaluation order 89
divide quotient * 87
divide remainder 87
division * 87
division by zero ¢ 87
evaluation of expressions ¢ 89
formatting numbers (&NUMEDIT) ¢ 91
integer arithmetic ¢ 84
negative numbers ¢ 90
operator precedent 88
positive numbers ¢ 90
real number arithmetic 84
signed numbers ¢ 90
substitution and expressions ¢ 90
using parentheses ¢ 89
ASCB address using PPl e 434
ASN.1
defining maps ¢ 252
map definition ¢ 244
using with Mapping Services ¢ 252
ASN.1 data types ¢ 252
constructed ¢ 252
simple e 252
assigning values to variables ¢ 56
assignment statements
definition * 56
explicit ® 66
format ¢ 56
asynchronous panels
display ¢ 95
operation ¢ 134
using ¢ 133
ATTACH command ¢ 212
attribute byte ¢ 97
autohold screen mode ¢ 131
automatic internal validation in Panel Services ¢ 110

B

background
environments ¢ 33
logger * 33
LOGPROC ¢ 210
monitor ¢ 33

backing up * 308

base clusters ¢ 180
keys o 178
processing ¢ 182

base keys definition ¢ 179
Batch Command Interface (BCl) ¢ 520, 531
batch forward recovery ¢ 294, 312
batch processing environment ¢ 520
BCl command exit ¢ 520
BCl control commands ¢ 520, 526
BCIDISC 523, 524
BCIEXITC e 523
BCILOGON e 521
bidding for windows ¢ 132
binary full word e 526
BIND command e 407
blanks
significance in data ¢ 290
trailing ¢ 458
use as delimiters ¢ 458
blinking facility on panels e 105
broadcast messages ¢ 134
buffering increasing 329
built-in functions ¢ 66
definition 55
format ¢ 55

C

callback APl » 213, 219

function codes ¢ 219

return codes ¢ 221
calling program e 529
canceling procedures ¢ 28

using FLUSH or END command e 28
captions (panels) » 96
card image format ¢ 520
case data ¢ 318, 351
changed fields in panels » 112
changing resource lock status e 227
CHAR data ¢ 290
characters special * 350
CMS files (VM systems)

NCL library storage ¢ 25

NCL procedure library storage ¢ 32
CNMNETM module » 418, 426
CNMNETV module » 418, 426
CNOS transaction ¢ 409
color in panels * 96
color terminals panel error displays 139
column alignment problems preparsing on panels ¢

127

command data ¢ 520

536 Network Control Language Programming Guide

command execution
dependent ¢ 38
inline * 38
command exit ® 521, 526
command statements ¢ 56
commands

&CONTROL CONT reactivating continuation ® 45
&CONTROL NOCONT deactivating continuation e

45

ALLOCATE ¢ 171

correlation of results ¢ 38

DEALLOCATE » 169, 198

DEFMSG modifying table ® 205

END ¢ 28

EXEC e 28

FLUSH « 28

LIST « 30

NCLCHECK ¢ 26

NCLTEST 27

routing to another system e 39

SHOW EXEC e 29

SHOW LOCKS TEXT= operand e 228

SHOW NCL » 44

SHOW UDB e 189, 465

SHOW UDBUSER e 465

SHOW USERS » 33

SHOW VSAM e 189, 465

START » 28

UDBCTL » 185, 198
commands specific

ATTACH » 211

BIND e 408

DELLINK e 400

DELOPSET ¢ 401

LINK START ¢ 406

REPLINK e 400

REPOPSET e 400

SHOW SUBSYS e 215

SUBSYS DEFINE ¢ 213

SUBSYS FORCE » 215

SUBSYS RELOAD e 215
commands, DEBUG ¢ 231

BREAKPOINT e 235, 236

CLEAR ¢ 236

DISPLAY e 238

HOLD e 235

LIST BREAKPOINTS » 236

MODIFY e 238

RESUME » 236

SET NCLTRACE= 239
SOURCE » 239
START e 233
STEP # 235, 236
STOP ¢ 233
commands, INTQ ¢ 41
correlation of results ¢ 39
dependent execution ¢ 38
inline « 38
issuing from an NCL process ® 37
message delivery rules ¢ 39
commands, SYSPARMS
CMDREPL ¢ 233
JRNLPROC operand ¢ 294, 315
LOGPROC operand e 37
MENUPROC operand ¢ 36
NCLGLBL operand e 58
PPOPROC operand » 37, 207
comment lines in NCL
displayable ¢ 49
highlighting keywords e 49
comments suppression character ¢ 50
&CONTROL NOCMD e 50
Common Programming Interface for
Communications ¢ 359
communicating between NCL processes ¢ 41
using PPl » 417
complex variables ¢ 67
table manipulation ¢ 69
concurrent conversations (APPC) ¢ 390
concurrent execution of processes ¢ 34
slave processes ¢ 34
connecting a process to NDB » 318
consistency checking ¢ 311
CONTAINS operator e 352
Control Area statistics SHOW VSAM e 465
control information ¢ 521
Control Interval data display SHOW VSAM e 189
control record ¢ 287
control statements for panels ¢ 137
conversations APPC ¢ 390
concurrent ¢ 390
security ¢ 403
types ¢ 391
correlating commands and results ¢ 38
corruption (tables) » 73
CPC ¢ 359
creating an NDB ¢ 297
cursor position controls Panel Services 123

Index 537

cursor position hierarchy Panel Services ¢ 124

cursor select key ¢ 118

D

DASD space ¢ 310
data
deleting in an NDB file » 305
integrity e 224
records e 288
types ¢ 290
variable output ¢ 95
data buffers
controlling « 442
purging ¢ 446
receiving ¢ 444
sending ¢ 442
DATA keyword » 318
data sets
defining journal e 312
offline processing » 198
VSAM e 294
DATE data ¢ 290
DBCS ¢ 58, 60
data streams (in UDBs) » 193
device support ¢ 60
DBMS access ¢ 212
deactivating a receiver in PPl ¢ 437
DEALLOCATE command ¢ 169, 198
deallocating UDBs ¢ 198
DEBUG command ¢ 239
debugging BCI NCL procedures ¢ 526
debugging codes PPl ¢ 454
debugging NCL procedures
breakpoints in procedures ¢ 231
debug session ¢ 233
debugger definition ¢ 231
execution status SHOW NCL e 235
listing nesting levels ¢ 239
modifying variables and MDOs e 238
procedure breakpoints ¢ 235
sample debug session ¢ 239
scope definition ¢ 231
security e 232
session definition ¢ 231
source code, displaying ¢ 239
starting and stopping NCL debug ¢ 233
SYSPARMS CMDREPL e 233
trace messages ® 65

trace output viewing ¢ 239

variables and MDQOs, displaying ¢ 238
default panel field characters ¢ 97
defining fields » 285, 324
DEFMSG command

EDS events ¢ 205

message definition table ¢ 205
DEFTRANS command LINK operand ¢ 397
deleting

an NDB « 304

data in an NDB file records ¢ 305
delimited format files e 192
delimiters ® 317, 458
DELLINK command e 402
DELOPSET command ¢ 400
dependent

command execution ¢ 38

message delivery ¢ 41

processing environment ¢ 35

request queue ¢ 42,134

response queue ¢ 39
designator characters Panel Services » 118
directing messages to the operator NCL comments

48

disconnecting from an NDB ¢ 319
displaying

commands (echoing) ¢ 50

file details » 189
distribution ¢ 529
DLT defining » 399
documentary messages ¢ 524
domain ID location ¢ 287
duplicate keys VSAM alternate indexes ¢ 180
dynamic

preparsing Panel Services ¢ 124

tailoring of panels » 96

updating of screens » 133
Dynamic Link Table defining * 399

E

EASINET ¢ 319
procedure ¢ 202
releasing resources ¢ 188
terminal control ¢ 202
ECB waiting ¢ 447
END command e 28
end-of-file condition e 47
environment dependent processing 35

538 Network Control Language Programming Guide

errors
display (HERR statement) ¢ 139
how to find 311
in Panel Services procedures ¢ 105
messages ® 45
tracing cause PPl e 452
exclusive access ensuring ¢ 293
EXCLUSIVE keyword * 318
EXEC command ¢ 28, 31, 34, 36
executing procedures ¢ 28
execution concepts ¢ 31
exiting OCS procedure flushing 28
explicit
assignment ¢ 66
process execution ¢ 36
expression scan e 348
extensions to &CALL » 212
extracting
keys o 197
MDO data * 249

F

fast loading * 329
field
characters in panel definition ¢ 97
definition ¢ 324
determining the presence of e 325
null 350
separators ¢ 167
type on panel ¢ 97
field descriptor list 529, 531
field-to-field comparison ¢ 350
fiellevel
internal validation on panels ¢ 108
justification ¢ 114
file
IDs e 187
processing releasing resources ¢ 188
return code ¢ 172
stripping ¢ 198
fill characters » 64
filtering messages VTAM to PPOPROC e 205
FLOAT data ¢ 290
FLUSH command e 28
forcing subsystem to stop ¢ 215
formats
named ¢ 324
PARMLIST e 213

forward recovery NDB ¢ 284
free-form text ¢ 318

FS-HOLD mode (OCS panels) Panel Services » 131

full-screen dialog 529
function keys
interception on panels ¢ 119
mapping ¢ 119

G

generic
data set retrieval » 191
reads (UDB files) e 177

global
tables definition 70
variables ¢ 47

group message processing
MSGPROC « 209
PPOPROC verbs » 206

H

help facilities constructing » 49
heterogeneous networking ¢ 389
HEX data ¢ 290
highlighting
fields in panels » 97
keywords in comments ¢ 49
support Panel Services ¢ 139
histogram e 327

I

IDCAMS UDB initialization ¢ 212
IDCAMS utility interface to 169
imbedded blanks in panel fields « 108
implicit

assignment ¢ 68

process execution ¢ 36
indexes ¢ 310
indicating error on panel input ¢ 105
initializing

input fields on panels ¢ 136

UDBs » 170
inline command execution ¢ 38
input command line 524
input fields

field type ¢ 97

format controls on panels ¢ 129
input padding panel design ¢ 116
interactive panels ¢ 133

Index 539

intercepting function keys in panels ¢ 119
intercepting messages
VTAM PPOPROC ¢ 204
internal
environments ¢ 33
validation 139
INTQ command ¢ 41
isolating messages © 42
ISR PPOPROC related messages ¢ 204
issuing commands from NCL ¢ 37
dependent execution ¢ 38
inline » 38
message delivery rules ¢ 39

J

JCL

conditional statements ¢ 520

return codes ¢ 520, 524, 528
journal

control record ¢ 287

data record ¢ 287

data sets ¢ 315

file deleting data in an NDB ¢ 305
journaling « 294
justification of panel output « 113

K

Kanji script e 60
KEY-FIELDS » 324
keys
base cluster 178
length increasing ¢ 310
records e 288
structures in alternate indexes ¢ 181
value ¢ 327
key-sequenced data set (KSDS) » 284
keywords ¢ 349
DATA » 318
EXCLUSIVE 318

L

label statements ¢ 51
duplicate ¢ 53
minimizing ¢ 53
variables ¢ 52

labels
duplicates ¢ 53
minimizing ¢ 53

rules for definition ¢ 51
variables ¢ 52
leading blanks in an NCL statement ¢ 45
light pens for panel input » 118
LIKE operator ¢ 352
limit on scanning ¢ 347
link level security (APPC) ¢ 403
LINK START command ¢ 406
LIST command e 30
listing procedures ¢ 30
load library e 523
LOAD MODE ¢ 310
loading
fast 310
maps ¢ 248
Local Shared Resource (LSR) pool * 465
lock access to record e 293
locking tables ¢ 73
LOGFILES parameter group ¢ 201
logging off ¢ 523
Logical Screen Manager (LSM) ¢ 94
LOGP user ID ¢ 37
LOGPROC procedure
background environment ¢ 37
background logger ¢ 210
LSR pool statistics displays SHOW VSAM e 189
LU type 6.2
option sets ¢ 392
sessions ¢ 390

M

macros SNMNCPL e 213
managing |I/O contention on panels ¢ 134
manipulating MDO data ¢ 249
mapped conversations (APPC) ¢ 391
mapped formats ¢ 166
file processing ® 165
files 192
mapping concepts (Mapping Services) » 245
using maps ¢ 249
Mapping Services
ASN.1 e 251
assigning data to component ¢ 258
assigning data to MDOs e 257
attaching maps ¢ 249
creating MDOs ¢ 256
data type checking ¢ 265
data types 277

540 Network Control Language Programming Guide

deleting MDOs ¢ 256
loading maps * 248
map management e 192
Mapped Data Objects » 243
mapping concepts ¢ 245
mapping support ¢ 247
MDOs e 252
NCL processing conventions e 252
overview e 243
processing ¢ 244
querying MDO components ¢ 261
return codes ¢ 252
storing and transferring data ¢ 244
using maps ¢ 249
mapping support connection ¢ 248
MCT defining ¢ 401
MDO data types ® 265
BIT STRING type 267
BOOLEAN type * 266
conversion e 277
ENUMERATED type » 272
GeneralizedTime type ¢ 275
GeneralString type * 276
graphic-oriented source types ¢ 279
GraphicString type ¢ 276
HEX STRING type ¢ 269
IA5String type ¢ 274
INTEGER type ¢ 266
NULL type ¢ 269
numeric-oriented source types ¢ 273
NumericString type ¢ 273
OBJECT IDENTIFIER type ¢ 270
ObjectDescriptor type ® 270
OCTET STRING type ¢ 269
PrintableString type 273
REAL type ¢ 271
TelexString type ¢ 274
transparent source types ¢ 280
UTCTime type ¢ 275
VideotexString type * 274
VisibleString type » 276
MDOs e 166
APPC » 190
assigning data to ¢ 257
assigning data to component ¢ 258
behavior (Mapping Services) e 252
components e 243
creating ¢ 256
data format » 243

data transfer ¢ 243

data type conversion ¢ 277
data types ¢ 279

definition 244

deleting 256

extracting data ¢ 249
input operations ¢ 254
manipulating data ¢ 249
naming ¢ 248

output operations ¢ 256

querying MDO components ¢ 261

receiving data using PPl ¢ 423
return codes ¢ 252
SEQUENCE OF type ® 260
SEQUENCE type * 260

SET OF type ® 259

SET type ® 259

sourcing data ¢ 248

transferring between procedures ¢ 247

using the &ASSIGN verb ¢ 256
message delivery rules » 39
message filtering

PPOPROC » 205

VTAM messages ® 206
message interception ¢ 205
message processing group messages

MSGPROC ¢ 209
message profiles ¢ 203

variables ¢ 203
messages

directing to operator using NCL comments ¢ 49

MSGPROC errors ¢ 209
queuing to a process ¢ 41
minor resource name ¢ 224

monitoring messages sent to OCS windows ¢ 210

MSGPROC procedure ¢ 37
monitoring NDB ¢ 309
monitoring OCS MSGPROC ¢ 208
MSGPROC

designing procedures ¢ 209

flushing the procedure ¢ 210

messages ¢ 210

OCS message interception ¢ 208

testing 210

verbs ¢ 209
multiple

assignment operations ¢ 68

file support 168

substitutions ¢ 67

Index 541

system access ¢ 311
target variables ¢ 68

N

named formats ¢ 324
national language enabling (NDB CREATE) » 301
NCL ¢ 30

NCL procedure debugging, controlling execution of

processes e 235
BREAKPOINT command e 235
breakpoints ¢ 236
DEBUG BREAKPOINT command e 235
HOLD command e 235
sample session ¢ 238

APPC programming facilities ® 359
arithmetic » 56

assigning values to variables ¢ 56
assignment statements ¢ 56
branching conditional » 47
built-in functions ¢ 55

command statements ¢ 56
comment lines highlighting ¢ 49
comment suppression &CONTROL NOCMD e 50
comments within code ¢ 48
condition testing ¢ 47

conditional branching ¢ 47
conventions e 47

creating procedures ® 26
debugging procedures ¢ 239
divide by zero « 87

ending a procedure ¢ 47

error messages ¢ 45

nesting of procedures ¢ 47

null statements ¢ 45

number classification for arithmetic ¢ 84
private programs execution from OCS ¢ 201
procedure library storage ¢ 25, 31
process e 44

process identifier (NCLID) o 32
processing ¢ 33

read verbs ¢ 470

real number arithmetic » 84
regions e 44

ROF ¢ 39

sighed numbers ¢ 90

statement ¢ 56

substitution and expressions ¢ 90
syntax ¢ 47

system level procedures ¢ 37
table manipulation ¢ 69
uncontrolled looping ¢ 29
variables ¢ 46

verbs ¢ 54

VSAM techniques ¢ 461

word size restrictions ® 47

STEP command ¢ 235
NCL procedures accessing PPl facilities from e 424
NCL procedures, debug commands
DEBUG BREAKPOINT ¢ 233, 235
DEBUG CLEAR ¢ 236
DEBUG DISPLAY e 238
DEBUG HOLD e 235
DEBUG LIST BREAKPOINTS e 236
DEBUG MODIFY e 238
DEBUG RESUME e 236
DEBUG SET NCLTRACE= ¢ 239
DEBUG SET NEWHOLD= ¢ 236
DEBUG SOURCE e 239
DEBUG START ¢ 233
DEBUG STEP ¢ 236
DEBUG STOP « 233
DEBUG TRACE » 236
NCL, debug facilities » 231
external control of process ¢ 233
external to NCL procedure ¢ 233
observing process execution ¢ 233
security ¢ 232
specifying debug criteria » 231
NCLCHECK command e 26
NCLTEST command e 26
NDB
access while active 168
accessing ¢ 318
adding records to ¢ 320
backing up ¢ 308
checking for consistency 311
closing » 285
creating » 297
current state of ¢ 321
deleting » 322
deleting records ¢ 322
internal reorganization ¢ 310
journal » 294
monitoring ¢ 309
multiple access ¢ 311
physical attributes ¢ 310
reload » 339

542 Network Control Language Programming Guide

response codes ¢ 497
restoring ¢ 308
retrieving records ¢ 323
security e 287
structure e 287
unload/reload ¢ 324
updating records ¢ 321

NDB CREATE command LANG= operand ¢ 301

nested procedures ¢ 58
nesting levels » 110

&SYSMSG system variable e 110
networking heterogeneous ¢ 389

NL character set support creating language specific

NDB using NDB CREATE ¢ 312
non-printable data ¢ 192
normalizing function keys on panels ¢ 119
null fields ¢ 291, 350
how to code » 321
on panels ¢ 97
NUMERIC data ¢ 290

0]

OCS » 28
exiting procedure flushing ¢ 28
message interception ¢ 208
MSGPROC procedure * 208
panel displays ¢ 131
windows ¢ 203

OCST defining 400

online editor « 94

online editor Panel Services ¢ 94

option sets LU6.2 (APPC) ¢ 392

output fields on panels » 97

P

padding output panel design ¢ 113
panel characteristics ® 531
panel definition ¢ 531
panel definition field character ¢ 142
panel design

dynamic alteration ¢ 124

input padding and justification ¢ 116
panel library path definition e 130
panel preparsing ® 96
panel processing options #OPT panel control

statement ¢ 155

panel retrieval ® 130

HALIAS statement ¢ 138

H#ERR statement ¢ 139

H#FLD statement ¢ 142

#NOTE statement ¢ 155

#OPT statement ¢ 155

HTRAILER statement ¢ 162
&CONTROL PANELRC and &RETCODE » 103
&PANEL verb ¢ 94

altering panel designs dynamically « 124
asyncronous panels e 133

changing panels ¢ 94

color in panels * 96

controlling cursor position ¢ 123
cursor location ¢ 122

cursor positioning hierarchy ¢ 124
cursor select » 118

default field characters 97

defining field attributes * 96
dependent request queue ¢ 134
designator characters » 118

designing screen display » 93
displaying panels on OCS windows ¢ 131
dynamic PREPARSE option ® 126

field character ¢ 97

field types ¢ 97

finding out which fields have changed » 112
fixed data in panels ® 95

function keys ¢ 119, 128

handling errors ¢ 105

hardware restrictions ¢ 119
hexadecimal preparse * 96
highlighting in panels ¢ 96
implementing screen display ¢ 94
indicating error in input on pane ¢ 105
input fields « 129

input padding and justification ¢ 116
input/output contention 137
internal validation of fields e 97
Logical Screen Manager (LSM) ¢ 94
panel testing facility « 93

PREPARSE facility » 126

split-screen facilities » 94

static PREPARSE option e 127
synchronous panel displays ¢ 95
time-out intervals ¢ 101

variable data in panels ¢ 95

waiting for input ¢ 134

panel testing ® 93

Panel Servi 93
anetoervices © parallel sessions links ¢ 402

Index 543

parameter definition ¢ 60
parameter groups LOGFILES » 201
partial keys » 186
partitioned data sets (OS/VS)
NCL procedure library » 31
NCL procedure library storage * 25
paths alternate indexes ¢ 180, 181
peer protocol ¢ 390
performance monitoring ® 310
persistent global variables 59
physical terminal dimensions Panel Services ¢ 121
PPI
accessing ¢ 424, 426
ACSB and TCB addresses, obtaining » 434
application ¢ 417
checking status 431
controlling « 442
data buffers ¢ 442
deactivating a receiver ¢ 423
debugging codes ¢ 454
defining a process as a receiver » 422
determining status ¢ 422
facilities » 417
interface functions ¢ 420
making calls » 426, 429
NCL &PPI verb « 421
receiver programs ¢ 432
receiving data ¢ 373
request codes ¢ 426
sender and receiver IDs ¢ 426
sending a generic alert 440
sending data to receive ¢ 423
Subsystem Interface (SSI) Tivoli NetView ¢ 417
tracing cause of error ¢ 452
unique sender or reciever ID, obtaining ¢ 448
PPO interface receiving unsolicited messages ¢ 202
PPOP user ID ¢ 37
PPOPROC
messages ¢ 206
prerequisites ¢ 208
procedures ¢ 206
virtual user environment ¢ 252
preparsing on panels ¢ 124
column alignment 126
dynamic ¢ 126
static e 127
things to consider 128
primary resource name ¢ 225
private programs execution from OCS ¢ 201

procedure definition ¢ 31
procedures

canceling » 28

concurrent execution ¢ 34

creating » 26

definition « 31

EASINET e 202

filtering VTAM messages ® 205

invoking e 28

library e 31

listing » 29

LOGPROC » 201

MSGPROC e 202

naming conventions e 26

nesting ® 26

PPOPROC » 207, 208

preloading ¢ 26

retention queue ¢ 26

serial execution ¢ 34

storage ¢ 25

testing » 26

uncontrolled looping ¢ 29
process

communicating between processes ¢ 41

execution ® 36

identifier (NCLID) e 32

processing region ¢ 33

table definition ¢ 70
processing

environments ¢ 33, 35

region ¢ 33

windows ¢ 33

Q

gueuing messages to a process
dependent request queue ® 42
dependent response queue * 43
quoting ¢ 318

R

receiver

ID » 448

programs e 432

receiving data using PPl « 423
record

adding ¢ 320

control « 287

count e 327

544 Network Control Language Programming Guide

data 287
disjoint ¢ 292
disjoint types ¢ 339
field definition e 287
firstin any NDB e 287
how to delete » 322
ID » 288
journal control e 287
journal data ¢ 287
keyed » 288
lock ¢ 293
retrieve from an NDB ¢ 323
RID-sequence key * 288
size display SHOW VSAM e 189
updating ¢ 321
reformatting VTAM messages using MSGPRO ¢ 209
region use (APPC) e 406
regional table definition e 70
relative key position (RKP) e 178
reloading ¢ 339
REPLINK command e 400
REPOPSET command ¢ 400
reports unmapped format files
generation ¢ 167
routing to JES SYSOUT e 167
request codes PPl » 426
request discipline ¢ 43
requests &CALL » 211
reserved words ¢ 349
resource
access synchronizing ¢ 224
definition ¢ 224
group ¢ 224
locks 227
name e 225
resources and resource groups
access lock (&LOCK verb) » 226
access waiting ¢ 227
altering lock status (&LOCK ALTER) ¢ 227
controlling access to data » 224
controlling access to resources * 224
controlling access to UDBs ¢ 224
definition ¢ 224
lock ¢ 226
minor name ¢ 225
naming conventions ¢ 226
naming hierarchy e 225
primary name e 225
resource lock ¢ 224

resources as semaphores ¢ 228

synchronizing access ¢ 228
response

codes ¢ 497

discipline » 43
restoring an NDB e 308
retention queue (procedures) ¢ 26
retrieval sequential ¢ 328
retrieving

records » 177, 323

vartable entries ¢ 76
return codes ¢ 527, 528
return codes panels

&CONTROL PANELRC » 103
RID-sequence key records ¢ 288
ROF

LOGPROC user ID » 363

messages ® 40, 43

NCL processes ¢ 39

session ¢ 40

using INTQ across a session e 43
routing commands ¢ 39
RPB constructing ® 426

S

scan

expression ¢ 345

limits o 347

processing ¢ 345

tests ¢ 348
screens Panel Services

sizes e 121

splitting « 119

swapping ¢ 119
security ¢ 311

for APPC links ¢ 403

NCL debugging procedures ¢ 233
selector pen detectable fields 97
sender ID

specifying in PPl 426

unique using PPl ¢ 448
sending data buffers using PPl ¢ 442
sending in PPI

data ¢ 423

generic alerts ¢ 423
sequential insert strategy (SIS) » 461
sequential retrieval

data sets ¢ 191

Index 545

sequences ¢ 328
serial execution of processes ¢ 34
session establishment (APPC) ¢ 409
sessions APPC ¢ 390
shared panel libraries » 130
shared tables ¢ 70
updating ¢ 73
SHOW EXEC command ¢ 29
SHOW LOCKS command TEXT= operand ¢ 228
SHOW NCL command ¢ 44
SHOW SUBSYS command e 215
SHOW UBD command e 189, 465
SHOW UDBUSER command ¢ 189
SHOW USERS comman e 33
SHOW VSAM command e 189, 465
single session links ¢ 401
sourcing MDO data ¢ 248
SPD fields use in panel design ¢ 118
special characters protecting ¢ 350
START command e 28, 31
starting an NCL procedure ¢ 31
statement continuation e 45, 47
continuation character ¢ 47
deactivation & CONTROL NOCON e 45
reactivation &CONTROL CONT e 45
statement labels ¢ 48
statistics
how to obtain ¢ 309
keyed field » 327
stem name &ASSIGN ¢ 248
subsets unloading ¢ 339
SUBSYS DEFINE command ¢ 213
SUBSYS facility » 211
callback APl » 219
PARMLIST format » 213
reloading the program e 215
sending parameter lists ¢ 213
subsystems ¢ 213
using ¢ 212
writing a program e 215, 218
SUBSYS FORCE command ¢ 215
SUBSYS RELOAD command ¢ 215
subsystems
defining « 214
deleting » 215
displaying status 215
reloading the program ¢ 215
sending parameter lists ® 213
starting « 214

stopping ¢ 214
synchronizing access to resources ¢ 224
synchronous panel
displays 95
operations return codes ¢ 103
syntax ¢ 47,458
errors in assignment statements ¢ 66
free-format ¢ 458
rules e 45
SYSOUT
asan ESDS UDB ¢ 170
formatting » 173
SYSPARMS command
JRNLPROC operand ¢ 294
LOGPROC operand e 37
MENUPROC operand ¢ 36
NCLGLBL operand e 58
PPOPROC operand ¢ 207
system level procedures ¢ 201
EASINET procedure ¢ 202
environments ¢ 469
LOGPROC » 469
message handling and processing ¢ 470
message profile e 472
message profile variables ¢ 472
MSGPROC procedure » 37
PPOPROC procedure ¢ 207, 208
user ID considerations ¢ 210
verbs to retrieve messages ¢ 469
system variables
&APPC ¢ 363
&CURSCOL » 122
&CURSROW ¢ 122
&FILERC » 172
&INKEY ¢ 119
&LUCOLS » 121
&LUROWS » 121
&RETCODE ¢ 422
&SYSMSG » 110
&VSAMFDBK ¢ 172
&ZCURSFLD ¢ 122
&ZCURSPOS ¢ 122
&ZFDBK ¢ 422
&ZJRNALT « 294
&ZMDOCOMP e 252
&ZMDOID e 252
&ZMDOMAP e 252
&ZMDONAME e 252
&ZMDORC to check map connection ¢ 248

546 Network Control Language Programming Guide

&ZMDOTAG ¢ 252
&ZPPl 422
&ZPPINAME » 422
definition ¢ 57

-

table manipulation ¢ 69
tabulated data » 64
tailoring SUSERBCI ® 526
TCB address using PPl 434
TCT defining 397
terminal control EASINET e 202
testing NCL procedures ® 26
NCLTEST command e 27
using the NCL debug facility e 231
testing PPOPROC e 207
time-out
APPC e 412
panel « 101
toggling input fields on panels ¢ 129
tokenized data ¢ 190
TPN specifying 397
trace messages ® 65
tracing cause of error PPl » 452, 454
trailer panel control statement » 162
trailing blanks ¢ 458
on panel fields » 108
transaction programs ¢ 390
trigger messages on panels ¢ 136
TSO command interface ¢ 531

U

UDB
alternate indexes ¢ 179
availability e 185
base cluster keys ¢ 179
base key definition ¢ 179
compared with NDB e 284
DBCS data streams ¢ 193
deallocate (UDBCTL) » 466
display details (SHOW UDB) ¢ 465
dynamic allocation ¢ 169
genericread ¢ 177
initializing 170
performance 171, 466
preparing to use ¢ 170
record retrieval « 177
restrictions ¢ 178

time stamp ¢ 179
unmapped data conversion ¢ 195
updating records ¢ 173
VSAM user database ¢ 168
UDBCTL command « 171, 185
UDBs
controlling access ¢ 224
controlling performance * 466
denied access ® 224
locked data ¢ 224
undefined labels ¢ 52
underscore characters on panels 128
unload/reload an NDB e 334
unmapped format file support » 166
unmapped mode processing ® 166
unrecoverable open error ¢ 523
unsolicited messages ¢ 37
filtering « 206
on MAI sessions MSGPROC e 209
VTAM e 202
unusable data sets ¢ 170
updating records
NDB e 321
UDB e 173

User Access Maintenance Subsystem (UAMS) ¢ 521

user command exit ¢ 520
user comments in panel definitions e 112
user correlator ¢ 76
considerations ¢ 70, 73
user ID
considerations ¢ 210
LOGP « 37
PPOP e 37
virtual ¢ 33
User Services ® 524, 526
user variables
&PPIDATALEN e 422
&PPISENDERID ¢ 422
definition ¢ 58
passing across nested procedures ¢ 58
using with MDOs
extensions ¢ 212
requests e 211
using with SUBSYS facility ® 212
using without SUBSYS facility » 211

Vv

validation « 311

Index 547

variable level justification in panels ¢ 115
variables
aligning ¢ 64
global « 58
multiple target » 68
passing to another procedure ¢ 47
substitution ¢ 46, 61
types ¢ 57
using in assignment statements ¢ 67
VARTABLES
facilities » 70
reading sequentially » 76
scope ¢ 70
verbs
&APPC 361
&ASSIGN ¢ 68
&CONTROL ¢ 119
&FILE » 116
&FILE ADD 172
&HEXEXP ¢ 192
&HEXPACK ¢ 195
&INTCLEAR ¢ 35
&INTCMD e 35
&LOCK e 211
&LOOPCNTL » 29
&MSGCONT e 209
&MSGDEL ¢ 209
&MSGREAD e 209
&MSGREPL ¢ 209
&PANEL 94
&PARSE ¢ 68
&PPl e 421, 424
&RETURN e 58
&SETVARS * 68
&VARTABLE » 72, 77
&WRITE ¢ 49, 65
MSGPROC ¢ 37, 209, 470
PPOPROC ¢ 207, 208
types ¢ 54
VFS e 285
virtual user environment ¢ 201
PPOPROC ¢ 202
virtual user IDs ¢ 33
background logger ¢ 33
background monitor ¢ 33
VSAM
alternate indexes ¢ 168, 180

buffer allocations storage shortages » 171

duplicate keys ¢ 180

file formats 166
IDCAMS BLDINDEX function ¢ 462
UDBs » 168
VSAM techniques ¢ 461
accessing multiple UDBs » 463
automatic verification and loading ¢ 461
data set positioning ¢ 464
displaying file information e 465
efficient processing ¢ 466
generic retrieval » 464
I/0O buffers ¢ 463
loading a KSDS ¢ 462
Local Shared Resource (LSR) pool » 189
offline processing » 198
releasing file processing resources 188
RPL handling » 463
sequential insert strategy (SIS) ¢ 461
UDB performance ¢ 466
VTAM
access control block ¢ 521, 529
domain ¢ 520, 529
filtering messages ¢ 205, 206
message definition table PPOPROC procedure
205
PPO interface » 202
reformatting messages using MSGPROC e 209
unsolicited messages PPOPROC procedure ¢ 204

w

wait-for-input condition ¢ 134
waiting on an ECB ¢ 447
windows
bidding ¢ 132
competition e 132
OCS message monitoring ¢ 203
OCS traffic handling « 203
words reserved ¢ 349
writing SUBSYS programs e 218
in high-level languages ¢ 218

548 Network Control Language Programming Guide

	CA Mainframe Network Management Network Control Language Programming Guide
	Contents
	1: Introduction
	About this Guide
	What You Need to Know Before Using NCL
	Related Documentation

	2: About Network Control Language
	What Is Network Control Language (NCL)?
	Create NCL Procedures
	Check NCL Syntax
	Test NCL Procedures
	Test in Production and Testing Environments

	Debug an NCL Procedure

	Invoke and Cancel NCL Procedures
	Invoke NCL Procedures
	Cancel NCL Procedures

	Exit OCS During Execution
	Control Runaway Loops
	List Procedure Names
	List the Contents of NCL Procedures

	3: NCL Concepts
	Where Does NCL Execute?
	What Is an NCL Procedure?
	What Is an NCL Process?
	Nesting
	NCL Process Identifier

	NCL Processing Region
	NCL Processing Environment

	Execute NCL Processes Serially
	Execute NCL Processes Concurrently
	Dependent Processing Environment
	&INTCMD Verb
	Explicit NCL Process Execution
	Implicit NCL Execution
	System Level Procedures
	MSGPROC Procedure

	Issue Commands from an NCL Process
	Inline Command Execution
	Dependent Command Execution
	Review of Message Delivery Rules

	NCL Processes and the Remote Operator Facility (ROF)
	Message Flow on a ROF Session

	Communication Between Processes
	INTQUE Command
	Dependent Request Queue
	Request and Response Disciplines
	INTQUE Across ROF Sessions

	Scope of the NCL Processing Region
	Find Out Which NCL Processes Are Executing

	4: NCL Statement Types and Syntax
	NCL Statements
	Format of NCL Statements
	Statement Continuations
	Variable Substitution

	NCL Conventions and Syntax
	Comments in NCL Procedures
	Comments on NCL Statements
	Displayable Stand-alone Comment Lines
	Highlighted Key Words in Comment Lines
	Non-displayable Stand-alone Comment Lines
	Suppression Character

	Label Statements
	Valid Labels:
	Invalid Labels:
	Label Variables
	Undefined Labels
	Duplicate Labels
	Minimize Labels

	Verb Statements
	Built-in Function Statements
	Assignment Statements
	Arithmetic

	Command Statements

	5: Variables, Substitution, and Assignment
	What Is a Variable?
	Variable Types
	System Variables
	User Variables
	Global Variables
	Persistent Global Variables

	Parameters

	DBCS Device Support
	Variable Substitution
	Undefined Variable Substitution

	Complex Variable Substitution
	Align Substitution Data
	Lowercase Data
	Debugging Procedures
	Set Variables to a Particular Value
	Explicit Assignment: Assignment Statement
	Complex Variables in Assignment Statements
	Implicit Assignment: Using &ASSIGN
	Implicit Assignment: Using Other NCL Verbs
	Uppercase and Lowercase Variables
	DBCS Support and Lowercase Data
	Variables and Storage Usage

	NCL Table Manipulation
	Vartable Facility
	&ZFDBK Values
	&VARTABLE Manipulation Facilities
	Shared Table Updating
	Retrieval Techniques
	OPT=IGEN

	&VARTABLE Syntax Descriptions
	Mirrored Vartables
	Differences Between Mirrored and Standard Vartables
	Update Mirrored Vartables
	AOM Attributes of Mirrored Vartables

	6: Arithmetic in NCL
	About Arithmetic in NCL
	Integer Arithmetic
	Real Number Arithmetic
	&CONTROL REAL
	Comparisons With Real Numbers

	Arithmetic Expressions
	Arithmetic Operators
	Divide (REAL Arithmetic)
	Divide Quotient (INTEGER Arithmetic)
	Divide Remainder (INTEGER Arithmetic)
	Divide by Zero
	Precedence of Operators
	Parentheses to Control Evaluation Order

	NCL Substitution and Expressions
	Signed Numbers
	Format Numbers

	7: Designing Interactive Panels (Panel Services)
	About Panel Services
	Logical Screen Manager
	How You Create or Change Panels
	Invoke Full-screen Panels
	Synchronous and Asynchronous Panel Displays

	Fixed and Variable Data in Panels

	Panel Design
	Design Guidelines
	Field Characters
	Field Types
	Sample Panels
	Override the Input Attribute
	Control How Long a Panel is Displayed

	Analyze Panel Input
	Monitor Panel Return Codes
	Handle Errors
	Internal Validation
	Automatic Internal Validation
	Advanced Internal Validation

	Find Out Which Input Fields Have Changed
	Output Padding and Justification
	Field Level Justification
	Variable Level Justification

	Input Padding and Justification
	Process with Light Pens/Cursor Select
	Mix SPD Fields with Normal Input Fields
	Hardware Restrictions

	Intercept Function Keys
	Panels on Different Screen Sizes
	&LUROWS Variable
	&LUCOLS Variable
	&CURSCOL Variable
	&CURSROW Variable
	Determine the Field Location of the Cursor

	Control Cursor Positioning
	Cursor Positioning Hierarchy

	Dynamically Alter Panel Designs (PREPARSE)
	Dynamic PREPARSE Option
	Static PREPARSE Option
	Considerations When Using PREPARSE
	Display Function Key Prompts

	Control the Formatting of Input Fields
	Allow Long Field Names in Short Fields

	Retrieve Panels from Panel Libraries
	Display Panels on OCS Windows
	NCL Processes Competing Against OCS for the OCS Window
	Competition Between NCL Processes for an NCL Environment Window

	Asynchronous Panels
	Asynchronous Operation Concepts
	Invoke an Asynchronous &PANEL Operation
	Waiting for Input
	Coordinate Other Processing with Input Notification

	Control Input Field Initialization
	Manage I/O Contention

	Panel Control Statements
	#ALIAS Control Statement--Define Alternative Name for Input Variables
	#ERR Control Statement--Define Action Taken During Error Processing
	#FLD Control Statement--Define or Modify a Panel Definition Field Character
	#NOTE Control Statement--Allow User Comments in a Panel Definition
	#OPT Control Statement--Define Panel Processing Options
	#TRAILER Control Statement--Place Lines at Screen End

	8: NCL File Processing
	UDB File Formats
	Mapped Format Files
	Default Map
	Other Maps

	Unmapped Format Files
	Print (Using Unmapped Format File Support)

	Delimited Format Files
	Multiple File and Alternate Index Support

	Work with UDBs
	Allocate UDBs
	Prepare to Use a UDB
	UDB Initialization
	Initialization of KSDS UDBs
	Initialization of ESDS UDBs
	Write to SYSOUT as an ESDS

	Control UDB Performance and Resource Usage
	Add Records to a UDB
	SYSOUT Considerations
	Format SYSOUT Output
	Update Records in a UDB
	Delete Records from a UDB
	Retrieve Records from a UDB
	Restrictions When Using UDBs
	Create UDBs with Alternate Indexes
	VSAM Considerations for Alternate Indexes
	Key Structures and Alternate Indexes
	Retrieve Data Using Alternate Indexes
	Control UDB Availability

	Work with Files
	Logical File Identifiers
	Release File Processing Resources
	Display File Information
	Specify the File Processing Mode
	Specify the File Key

	Work with Data
	Data Set Positioning and Generic Retrieval
	Mapped Format Files: Data Representation
	Unmapped Format Files: Data Representation
	DBCS Considerations When Using Files

	&FILE GET Statement and Unmapped Format UDBs
	Data Conversion and Unmapped Format UDBs
	Key and Data Differentiation
	Key Extraction Options
	Update Restrictions on Alternate Indexes

	Offline Processing of Data Sets
	Back Up Online Data Sets

	9: System Level Procedures
	System Level Procedures
	Activity Log
	VTAM Messages
	EASINET Terminal Control
	OCS Window Traffic Handling

	Message Profile Concept
	Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)
	Filter Messages Seen by PPOPROC
	Modify the Message Definition Table: DEFMSG Command
	Message Filtering: Solicited Messages
	Message Filtering: Unsolicited Messages
	Design a PPOPROC Procedure
	Messages from PPOPROC
	PPOPROC Statements
	Test PPOPROC
	PPOPROC Prerequisites

	Intercept OCS Messages (MSGPROC Procedures)
	MSGPROC Statements
	Design MSGPROC Procedures
	Messages from MSGPROC
	Test MSGPROC

	User ID Considerations for System Level Procedures

	10: Implementing User Programs
	About the SUBSYS Facility
	Use &CALL Without SUBSYS
	Use &CALL With SUBSYS
	Extensions to &CALL
	Uses of SUBSYS

	Send Parameter Lists to the Subsystem
	Control Subsystems
	Define a Subsystem
	Start a Subsystem
	Stop a Subsystem
	Force a Subsystem to Stop

	Delete a Subsystem
	Reload the Program
	Display the Status of a Subsystem

	Write a SUBSYS Program
	Subsystem Program Considerations
	Write a Subsystem Program in High-level Languages

	SUBSYS Callback API
	Function Code 0--Queue a Message to the INTCMD Environment of an NCL Process
	Function Code 4--Send a Message to an NCL Process
	Function Code 8--Send a Message to MONITOR Receivers
	Return Codes

	11: Synchronizing Access to Resources
	Use NCL to Synchronize Access to Resources
	Resources and Resource Locks
	Resource Groups
	Primary Names
	Minor Names

	Resource Name Hierarchy
	Resource Naming Conventions
	&LOCK Verb
	Wait for Access to a Resource
	Alter the Status of a Resource Lock
	Alter the Status from EXCL to SHR
	Alter the Status from SHR to EXCL
	WAIT Operand

	Associate Text with a Resource Lock

	Resources as Semaphores

	12: NCL Debug Facility
	Overview
	Security
	NCL Debug Facilities
	NCL Debug Facility
	Start and Stop an NCL Debug Session

	Control the Execution of NCL Processes
	Statement Breakpoints
	Verb Breakpoints
	Variable Breakpoints
	Procedure ENTRY Breakpoints
	Procedure EXIT Breakpoints
	BREAKPOINT Command
	Sample Debug Session
	Display and Modify the Contents of NCL Variables
	List Procedure and Subroutine Nesting Levels
	Display the Executed Source
	Receive NCL Trace Output

	13: About Mapping Services
	What Is Mapping Services?
	Mapping Services Processing
	MDOs
	Maps
	NCL Procedures

	Mapping Concepts
	Data Sources
	Naming
	Transfer MDOs Between Nested NCL Procedures

	Mapping Services, Mapping Support, and NCL Processing
	Connection to Mapping Support
	Sourcing Data
	Manipulate and Extract Data
	Use a Map in NCL Processing

	14: Using Mapping Services
	Overview
	MDO Behavior and NCL Processing Conventions
	Input Operations on an MDO
	Output Operations from an MDO

	&ASSIGN Verb
	Create and Delete MDOs
	Assignment of Data into an MDO
	Assign into/from a Single MDO Component
	Assign into/from Multiple MDO Components within a SEQUENCE or SET Type
	Assign into/from Components within a SEQUENCE OF or SET OF Type

	Query MDO Components
	NCL Reference, Type Checking, and Data Behavior
	BOOLEAN Type
	INTEGER Type
	BIT STRING Type
	Standard BIT STRING Access
	Boolean BIT STRING Access

	OCTET STRING Type
	HEX STRING Type
	NULL Type
	OBJECT IDENTIFIER Type
	ObjectDescriptor Type
	REAL Type
	ENUMERATED Type
	NumericString Type
	PrintableString Type
	TeletexString Type
	VideotexString Type
	IA5String Type
	UTCTime Type
	GeneralizedTime Type
	GraphicString Type
	VisibleString Type
	GeneralString Type

	Type Conversion for MDO Assignment
	Graphic-oriented Source Type
	Numeric-oriented Source Types
	Transparent Source Types

	15: NDB Concepts
	What Is an NDB?
	Work with NDBs
	Uses of NDBs
	Differences Between NDBs and UDBs
	NDB Types

	NDB Structure
	Control Record
	Journal Control Record
	Journal Data Records
	Field Definition Records
	Key Statistics Records
	Key Records
	RID-Sequence Key Records
	Data Records

	Record ID
	RID Reuse

	Alerts for VSAM Monitoring
	NDB Data Formats
	Null Values and Null Fields
	Rules for Null Fields

	NDB Transaction Management: Database Protection
	NDB Journaling
	Continuous Availability
	NDB Recovery

	How to Respond to an Alert for File Size or File Full
	Fix a Corrupted NDB

	16: NetMaster Database Administration
	How to Create an NDB
	Define VSAM Data Set
	Calculate Key Length
	Calculate Record Length
	Allocate the VSAM Data Set
	Open the VSAM Data Set
	Create the NDB
	Start the Database
	Insert Field Definitions
	Load Initial Data

	Delete an NDB
	Delete All Data in an NDB

	Alter Field Definitions in an NDB
	Add Field Definitions
	Delete Field Definitions
	Update a Field Definition

	Back Up an NDB
	Restore an NDB
	Monitor NDB Activity
	Monitor NDB Performance
	Improve Performance by Using LOAD MODE
	Check an NDB for Consistency

	Multiple System Access to an NDB
	How to Implement NDB Journaling
	Define Two Journal Data Sets
	Allocate Data Sets to the Product Region
	Make Duplicates of the NDBs
	Add the Duplicates to the Batch Forward Recovery JCL
	Start the NDBs
	NDB Journal Swapping

	17: Using &NDB Verbs
	Relationship Between &FILE and &NDBxxx Verbs
	Protect Your Data Values with &NDBQUOTE
	Preserve Lowercase Data
	Define and Delete Fields in an NDB

	Access an NDB
	EASINET Considerations
	Close an NDB

	Work with NDBs
	Add Records to an NDB
	Update Records in an NDB
	Delete Records from an NDB
	Retrieve Records from an NDB
	Define Fields to Return (&NDBFMT)
	Determine Which Fields Are Present
	Retrieve Records Directly by RID
	Retrieve Records by Key Field
	Read Sequentially by RID
	Retrieve Records Sequentially by Key Field
	Retrieve Records Indirectly by Key Field Stored in Another Record
	Retrieve Keyed Field Statistics (Histogram)

	Notes on Sequential Retrieval
	KEEP=YES on &NDBSEQ
	&NDBSEQ RESET
	&NDBGET DIR= and SKIP=
	Read by Sparse Keys

	Obtain Information About an NDB
	Change NDB NCL Processing Options
	Put It All Together--Unload or Reload an NDB
	Define an Unload File
	Open the Database and Output Unload File
	Unload Database Level Information
	Obtain and Unload Field Level Information
	Build a Format for Reading Data
	Define the Sequence for Reading
	Unload the Data
	Unload Subsets Using Sparse Keys
	Reload an NDB from an Unload File
	Open the Database and the Input Unload File
	Check Database Attributes
	Build Field Definitions
	Load the Data

	18: Using &NDBSCAN Statements
	Scan Processing
	Display the Generated Scan Action Table
	Process Scan Results
	Differences Between &NDBSCAN Sequences and &NDBSEQ Sequences

	Control &NDBSCAN Resource Usage
	Scan Expressions
	Reserved Words
	Null Fields
	Field to Field Comparisons
	Use &NDBQUOTE to Protect Special Characters
	Search for Lowercase Data
	CONTAINS
	LIKE
	Use the Results of a Previous &NDBSCAN

	SQL-like Operators
	Efficient Use of &NDBSCAN

	19: Using Advanced Program-to-Program Communication
	Advanced Program-to-Program Communication (APPC)
	APPC Conversations
	LU6.2 Verb Set
	&APPC Verb
	Conversation States
	Conversation Processing
	Return Codes and System Variables

	Conversation Allocation
	Transaction Identifier
	Destination Selection
	Allocation and Sessions
	Set Program Initialization Parameters
	Allocation Completion

	Attach a Procedure
	Client/Server Terminology
	Execution Environment
	Access Program Initialization Parameters
	Attach Processing

	Send Operations
	Send Data
	Data Mapping Support
	Data Mapping for NCL Tokens
	Data Mapping and Mapping Services
	Send Data When Data Mapping Is Not Supported
	Request Confirmation of Data Sent
	Force Data Transmission
	Switch State from Send to Receive

	Receive Operations
	Receive Data
	Receive Data into NCL Tokens
	Receive Data into an MDO
	Respond to a Confirmation Request
	Receive a Send Indication
	Receive a Deallocation Indication

	Error Processing
	Conversation Deallocation
	Sample Conversations

	&APPC Return Code Information
	Application Design

	20: Advanced Program-to-Program Communication Extensions
	APPC Extended Verb Set
	APPC Transactions
	START Transaction-Remote Process Start
	Remote Procedure Call (RPC) Transaction
	ATTACH Transaction-Allocate a Procedure
	CONNECT Transaction-Connect to an Active Process

	APPC Client/Server Processing
	Server Processes
	Client/Server Connection Mode
	Automatic Connection Mode
	Notification Mode
	Rejection Mode

	Transfer a Conversation

	21: Using APPC to Communicate with Other Systems
	About APPC
	Transaction Programs and Conversations
	Conversations and Sessions
	Concurrent Conversations
	Share a Single Session
	Conversation Handling

	Session Polarity
	Conversation Types
	APPC Option Sets
	APPC Option Set Support

	Supported APPC Products

	Define APPC Links
	Define Dynamic APPC Links
	APPC Table Requirements
	How APPC Control Tables Interact

	Define APPC Tables
	Define a Transaction Control Table
	Define Transactions
	Define a Qualified Transaction
	Generic Transactions
	Specify a Default Destination
	Maintain TCT Definitions

	Define a Dynamic Link Table
	Specify an Option Set
	Maintain DLT Definitions

	Define an Option Set Control Table
	Nominate Mode Names
	Maintain OSCT Definitions

	Define a Mode Control Table
	VTAM Logmodes
	Specify Modes for Single Session Links
	Specify Modes for Parallel Session Links
	Default Modes
	Maintain MCT Definitions

	22: APPC Security
	Link Level Security
	Conversation Level Security
	Run a Secured Transaction
	Security Options

	Conversation Level Security and NCL Procedure Environments
	Specify Security for APPC Links with Remote Systems
	APPC Region Use
	Activate APPC Links
	Start Links Manually
	Deactivate Links Manually
	Start Links Automatically
	Session Initiation Requests
	External Logon Request
	External BIND Request
	Internal NCL Procedure Request
	How Session Establishment Works
	Single Session Links
	Parallel Session Links
	Session Selection for Conversations

	Deactivate Links Automatically

	APPC Link Definition Examples
	Run Conversations Within the Same Domain
	Run with Already Verified Security
	Run an APPC Link Between a Domain and a Remote LU
	Run a Qualified Transaction
	Run a Generic Transaction

	23: Program-to-Program Interface
	Uses of PPI
	CNMNETM Module
	Structure and Data Flow
	Interface Details
	&PPI Verb
	Return Codes, System Variables, and User Variables
	Determine PPI or Receiver Status
	Define the Process as a Registered PPI Receiver
	Send a Generic Alert
	Send Data to a Receiver
	Receive Data
	Deactivate the Receiver ID

	Access PPI Facilities
	Access PPI from NCL Processes
	NCL PPI System Variables
	NCL PPI User Variables

	Access PPI Facilities from Other Programs
	Make PPI Calls
	Construct an RPB

	Specify Sender and Receiver IDs
	Make the Call
	Sample PPI Calls

	Check PPI Status
	Control Receiver Programs
	Check the Status of a Receiver Program
	Obtain ASCB and TCB Addresses
	Define and Initialize a Receiver
	Deactivate a Receiver
	Delete an Active Receiver

	Send a Generic Alert
	Control Data Buffers
	Send a Data Buffer to a Receiver
	Allow a Receiver to Receive a Data Buffer
	Purge the Data Buffer

	Wait on an ECB
	Obtain a Unique Sender or Receiver ID
	Receive Information from a Receiver Program
	Trace the Cause of a Processing Error
	Debugging Codes

	24: &NDB Verbs, Built-in Functions, and System Variables
	&NDB Verb Summary
	Built-in Function Summary
	System Variable Summary
	Free-form Syntax

	A: NCL VSAM Techniques
	Initialization and ACB Open Processing
	Automatic Verification and Loading
	For Entry-Sequence Data Sets (ESDS)
	For Key-Sequenced Data Sets (KSDS)

	RPL Handling
	Obtain I/O Buffers
	Concurrent Access to Multiple UDBs
	Data Set Positioning and Generic Retrieval
	Release File Processing Resources
	Display File Information
	Control UDB Performance
	Offline Processing of Data Sets

	B: System Level Procedures: Message Profiles
	Use NCL Verbs to Retrieve Messages
	System Level Procedure Environments
	MSGPROC Viewed as a System Level Procedure
	&INTREAD: Dependent Processing Environment

	Message Handling and Processing by System Level Procedures
	Decide What to Do with a Message
	Message Profile
	Message Profile Variables

	&INTREAD Message Profile
	&LOGREAD Message Profile
	&MSGREAD Message Profile
	&PPOREAD Message Profile

	C: Sample APPC Conversations
	Sample Conversations Between Two Systems
	Source and Target NCL Procedures

	Run the Sample APPC Conversations
	Environment 1: Local Conversations
	Environment 2: Same LU Conversations
	Environment 3: Conversations Between Two Systems

	D: NDB Response Codes
	About Response Codes
	Error Information
	Response Codes

	E: Using Key Ranges with an NDB
	NDB Key Structure
	Storage of Values

	Suggested Key Ranges
	Other Considerations

	F: Using NCLEX01 for NDB Security
	NDB Open Exit Call Details

	G: Using the Batch Command Interface
	Batch Command Interface
	BCI Command Types
	BCI Input
	BCI Output
	BCILOGON Command--Establish Session
	BCIDISC Command--Terminate Session
	BCIEXITC Command--Control Command Exit
	BCI Operation
	Procedure $USERBCI
	Customize $USERBCI

	BCI Command Exit
	Return Codes

	JCL Return Codes

	H: Virtual 3270 Interface
	About the Virtual 3270 Interface
	Virtual 3270 Interface
	Control the Conversation
	Interface to NCL Procedures
	Panel Characteristics

	Index

