CA Mainframe Network
Manadement

Manaded Object Development Services
Guide
Release 12.1

eeeeeeeeeeee

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2008 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

m CASOLVE:InfoMaster™

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
® Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents

Chapter 1: Introduction 15
(1Y (0] D - Tol |11 =T PSSP TPTRPPR 16
WWNGE S IMIODS? .ttt ettt ettt ettt ettt st sit e st e st sa e e s ate e sabeesabeesabeesabeesabeesaseesabeesaseesabaesabeesabeesaseesataesasaesasaesaseess 17
[\ To) & 1 aTe] a1 I @] 0 1V7=T oY d o T o [PPSR 18
[0 T a=To I D oYl oo 1=T o - 4 [o IS 18
(0o Tol=T o1 K31 Yo I o= Vot L A =TSSP 19
(1Y [0] D - Tol |11 =T TSP PUSSTP 19
APPHCATION REGISTON ..ttt ettt ettt e st e st e e st e e sab e e sab e e sabeeeabeesabeesaneesabeesnneesabeesaneesn 21
[L] Y =T 0T =T - [oo PSS 21
CommON APPLICAtION SEIVICES (CAS) ..euuiiieieiiiieett ettt ettt ettt ettt e st st esteesae e bt estesatesseesbe e beenbeenbesnsesneesneeses 22
[0=] o To w1V = 11] (=T 0 F= 1 ool =IO RN 31
1Y T o] o1 Y=Y =] AV ol =SOSR OON 33
MODS AdMINIStration FACHITIES ..eeeeeviiiiiiiie i ee e et e e st e e e s ate e e seabaeeesnteeeensseeesanneeas 35
LTIV o1 o T PR 38
Chapter 2: Accessing the MODS and CAS Facilities 39
ACCESSING MODS FACHTIES ..veiiierieiiiiee ettt et se e sete e e et e e e sate e e s aae e e e ateee s aseeeesabaeeeansseeesansaeeesnsaeeeansseeesnnseens 39
1Y L@ 1D e g T o T TV 1Y/ =Y o U S ON 39
LY 0] DY YooY AN U d o [o oY AU SUPTTN 40
ACCESSING CAS FACHITIES ..uuuvviiiieeiieiiitiie e e e e e e st e e e e e e s et btaeeeeeeseasaetaeeeaaesessstaaneaeseesasssaneeaeessanssssens 40
CAS MaAiNTENANCE IMBNU ... ueiiiiiiiiieieitte e etee ettt sttt e s e e s e et esemee e e s sabeeeseneeeesnseeeeanreeesannneeesnnneeeanrenesannne 41
(@7 YAV oY o] [ToF- 14 o] o 1 @foT 1 g e Yo o [=T ¥ £ SRR 42
Chapter 3: Maintaining Application Components 43
N T a1 =] =L oo =T o S 43
APPIICAtION DEFINITIONS ... uiiiiiiee ettt e et e e e sttt e e et e e e eebaeeesbbeeeeastaeeeansaaeessseseessaeeeansaeeessrenanns 43
Maintaining Application Component DefiNitioNS.........ciiciiii i e et e e e abe e e e eaae e e s treeeens 45
g I LT o Ta Y= T I Y oo x-S 46
WY oY o] [Tor= 1 o] o TN D T=Y i 1o Vi o] o -3 SR 46
(D L] T o T TaY =4 T2 Y o] o] L= Lo o S 47
Maintaining APPlICAtION GIOUPSuuiiiiiiiiiciiiiiiee e e et e e e ee st e e e e e e setbbereeeaeesesabaaaeeaeeeseassstaeseaessesanssraneaasaasas 48
1Y 1T & 1T 0T Y= o= T V=] £ USSP 48
PaNEl IMTAINTENANCE «...eiiieiiieeeece ettt et esa b e st e e s ab e e sa b e e s bt e e s h b e e sateesabeesbeeesabe e steesnteebbeesareenns 49
Defining and Maintaining PAneIScocueiiiiiiii ettt e e e e st ae e e e st e e senaaeeesnteeeenntaeesnnnneas 50
(D LSTY =g YT o= o= T o 1= S 56
PaNEl SEAtEMENTS ettt e et e e s bt e e e s bt e e st e e e sttt e e e be e e s eabtee e aabbeeeeeabaeesaaraeas 66

Contents 5

MAINTAINING IMIENUS ...t e et s e e s bt e e e s et e s b e e e s s sa e e e e s b e e e seabeeeesanbeeessnraeesannne 92

Adding @ MENU DEFINITION ..eoueiiiiiiiie ettt e st et sa bt e st e e st e e s ae e e sareesaneesateesaneesn 93
VIeWINg @ MENU DEFINITION.......iiiiiiee ettt s e e et e e e et e e e stbeeeestaeeseasseeesnsseeeassaeesansseeesnsseeanns 96
IMIAINEQINING LiSTS e e s s s s s s s s s s s s s sssssssnssssnssnsnsnsnsnsssnsnnnns 96
[T YT T I S 97
LiSt DESCIIPLION PANEI ...ttt sttt st b e s bt e bt e s b et e bt e s be e e ssbeebeeesaneeneis 98
LISt CrIteIIA PANEI coeeiieeeiiee ettt e ettt e e st e e s st e e e s e abee e e s abbeeeesbeeesaasbeesssbeeeensbaeeeesraeesnnsaens 99
List Entry Line Presentation Attributes PAn@lcoocuiiiiiiiii ittt et e e s s 100
LISt FOIMAt PANEl.ciueiiiiieeiieeiiieeee ettt ettt ettt e st e st esbe e s ke e s abee s abeeesbeesabeesabeesabeeenbeesabeessaesnbaesseesane 101
List ENTry LiN@ FIelds PAn@l ...c...oooueiiiiiieiieiitee ettt sttt sttt st et e st e e bt e s e e neesabeesneenane 103
RESELEING The LISt CAC@ .e.eeeiiiiieeeeeee ettt e st e st e e bt e st e e e aeesbeeeneesane 104
MAINTAINING HEID .ttt e e st e st e s a b e et e e sab e e s abeesabeeeabeesabeesabeesabeeenseesabaeanseenane 104
[= T D= TV o o RSP 105
PrINTING HEIP FIlES ..neeiiiieieie ettt e e e e e e et e e e et e e e s tb e e e e ateeeeeasaaeesataaeeastaeesassaaeesntsaeaanseeesnnsenas 105
VIEWING HEIP FIlES ..ttt ettt b e st e bt e s at e e bt e e s ab e e bt e e s st e e bt e e ssneeneeesaneenees 105
Maintaining FUNCLION-LEVEI HEIP ..couveiiiiiieee ettt ettt s e snee s beesnee e 106
Maintaining WiNAOW-LEeVEI HEIPc.ueiieiieeete ettt st ettt ettt e et sbe e e snee s beesneenaee 107
MaiNtaiNINg FIEIA-LEVEI HEIP ...uuii ettt e e st e e e st e e ettt e e e s tae e e eataeeeeasaeeesnsbaeeanntaeesnnsaeas 107
Facilities for Help Text Editing and FOrMattingcocvuieeiiiiie ettt e etre e e e e et e e e eanaeas 108
MAINTAINING IMESSAEES. . ceiiuuitieiiiieee ettt ettt et e st s bt e e s s bt e s e b et e e s asb e e e s aa b e e e s enre e e samse e e s s baeesenreeesennneeesaneeeeeas 110
MESSAZE DEFINITIONS ..ttt ettt ettt e e bt e st e e et e e sabe e e bt e sabeesaseesabeesneesabeeenneenane 111
Defining Message DEfiNItIONSccciii it e et e e et e e e et e e e s bt e e e eata e e eeasaaeessbeeeanataeeennsaeas 111
MaAINTAINING TADIES .ocetiieeeeee e et e e et e e e e etbe e e e s baeeeebteeesasaeeasstaeeeanssseesassaaeeantasaeenssasseasseeesnsreeaans 113
Defining and Maintaining Table DefinitioNS........ccuiiiiiiee ettt e et e e e e e s ba e e e e abe e e eanaeas 113
MaiNtAINING TADIE ENTIIES .eeiiuviieeeiiii ettt e esee ettt e et e e e et e e st e e e sate e e ssaate e e sbaeeeesteeesesseeeesnsaeesanreeesnnnnens 115
Reloading Validation Tablesccciiii ittt e e e e e e e st ae e e e ate e e s eanaeeessaeeeennsaeesnnneeas 116
Y 1Tl = T T La Y- O oL (=T o TP 116
(O = o T DL T Vi AT o [OOSR 117
(DT YL T O =T T TSP 119
[V T 11T =0 oTa o = Y2 Vo 3P0 SR 121
CoMMANT DEFINITIONS .eenviiiiieeiie ettt ettt e e st e et e st e e sabeesabeesabeesabeesaneesabeesaneens 122
DEfiNE @ COMMANG....iiiiiiiieeiiieite et ste et e st e st e st e st e e sbee s beeeabeesabeesabeesabaeesbeesabeeenseesabeesnseesabessnseesnbeeensensnse 122
Reloading Command DefinitioNS.........ocuiii ittt et e e e et e e e e ate e e eeataeeeebbeeeenataeeennnaeas 125
IMAINTAINING IMIAPS weviiiiiiiiiiiieee ettt e e e ettt e e e se st et et e e e s esaaabateeeessassasbateaeessssassbesaeaessssasssnsaaaeesssanssnsaeeesssnsnnnens 125
Y5 o I =Y T3V T o TSRS 126
[T YL Y=a= T Y, T o J SRS 128
Maintaining Map DEfiNitiONSuiiiieiiieiiiee e et e e e e s e st b e e e e e e e e seaabsbaeeeeaeseeantbaneaaesennns 130
Printing MODS COMPONENT REPOIES ..uuuiiiiiiiieieieieieieieses s s s s s s s s s s s e s s e s s s e s e s e s e s e s e s e e e e s e e e sn s e s seseaesesnsnsesesesssnns 134
IMODS COMPONENT REPOITS ..ciiiiiiiiiiiiiiiiiiieieieteteteieretereteretereterereretererereteterereteren 135
Printing Components Using the REP OPLiON ...cccccuuiiiiciiee ettt st e e et e e s e e e s e e e e e e e snnneas 135

6 Managed Object Development Services Guide

Chapter 4: MODS Administration 139

MaiNtAiNING Pan@l LIDrariescc.ueiuiiiiiieiiieeie ettt sttt e st e st e s bt e e bt e s bt e e bt e sabeeebeesabeeeneesane 139
Lo T] o T [T OO O PP UPPPROPPRPRNE 139
Accessing the Panel Library Maintenance FacCilities.......ccccouuiiiiiiee et 140
Copying Panels BEtWEEN LIDIArIiEScccccuiiiiiiiee et e eetee sttt e s ettt e e s etae e e s aaeeeesateeesensaeeesasseaesstaeeesnsaeesnseeeans 140
Maintaining Library DefinitioNsS..........eooiiiiiiiiee ettt st et ae e s snee e 142

Maintaining the MODS CONTIOl Filecoiuiiiiiiiiiieeie ettt sttt st b e st s bt e s be e e neesbeeenneenane 143
(6o aTa o] I 11T PO OO UORTUPTPRI 143
Browsing Definitions in @ CONTIOL FIlecoviii it et e e e e et e e e eaar e e e st e e e e ntaeeernnneas 146
Copying and Moving Definitions Between Control FIl€S........cuuiieiiiiiiciiie e sree e 147
Deleting Definitions From @ CONTIOl FilEcoouiiiiiiiieeiiieeee ettt sttt st nee e 148
USING the AUGIT LOE . .veeiueieeieieiie ettt ettt ettt et e bt e s it e e bt e sab e e bt e e sab e e eat e e sabeesaeeesabeennseesabaesnneenn 148
SEArChING the CONTIOl FIlE ... et e st e e e et e e st e e e e e abaeeeeatee e e abaaeesataeeeensraeessseeas 150
ReESETHING The IMODS CaACKEeiieceiee ettt et e e st e e et e e s e bt e e e sbbeeeeataeeeeasaaaesnsbeeeanntaeesnnsanas 151

Chapter 5: CAS Programming Interface ($CACALL) 153

CAS INTEITACE DVEIVIEBW .ot utieiiiiiiiie sttt st e st e et e st e et esbe e sbee s beessbeesabeesabeesabeesaseesabaesaseesabeeesseesabeessseesataesnseesnbaesnseens 153

SCACALL FUNCHIONS ettt et e et e e et e st e eeeaee st e eeeaee st eeseaeeseseesaeeseseesaaeesaneesasteseseesaaeeseneesaseesannesaneens 154

LY 7Y oY Y = R 155
INPUL VAIADIES ..ottt ettt e et st e et e s bt e e bt e sabe e e bt e sabeeeabeesabeesneesabeeeneenane 156
(Vs RV Ta T] o] [P OPUROPROUPRTRN 156
REEUIN COBS ... ittt ettt et e e e s et e e e s a bt e e e bt e e e sa bt e e e e bt e e e s abbeeesabbeeeaabeeesnsbeeesabbaeeennbaeesnaneeas 156
FEEADACK COURS ..ottt et s e et s bt e et e st e s bt e st e e s abeesabeesabeesabeeeabeesabeeeaseesabeesneesabeesseesane 156

ActioN=BUILD CIaSS=CRITERIAetiiitieiteiteenite ettt et et sit e et e e s it e e sat e e sateesbeeesabeesbeeesabeesbeeesabeebeeesnteenneeennneennes 157
FaT oYU Y T o F=1 o] =TSSR 158
REEUIN Valiabl@S ..o ettt ettt e e st e e e a bt e e s eab b e e e sabbeeesabeeesasbeessabbeeeeanbaeesnaneeas 159
FEEADACK COUES ..ottt ettt e e ettt e s et e e e st e e e a bt e e s abte e e sabbeeeeaabeeesasbeessabbeeeeanbaeesnaneeas 159
3T [4 o L= SRS 160

ACLIONZBUILD CIASSTFKA ...ttt ettt ettt ettt e ht et s bt e bt e sht e e bt e e sab e e bt e e st e e sbeeessbeebeeesateebeeesaneennes 160
Fa oYU Y T o F=1 o] =TSSP USURN 161
REEUIN Valiabl@S .. ettt ettt ettt e st e e e a bt e e s ab bt e e sabbeeesabeeesabbeessabbeeeeanbaeesnaneeas 161
FEEADACK COUES ..ottt ettt e e ettt e e ettt e st e e e a bt e e s b be e e sabbeeeeabeeesaabbeessabeeeeannbaeesnaneeas 162
3T [4T o L= SRS 162
Predefined FUNCLION KBY ATaS ...cccuuiiiicieieeiiieeeeiee e setee e e sttt e e ee et e e e steeeesateeesassteeesasaeeeasteeessnseeeesnsseeeannsaeesnnnnns 163

ACLIONZBUILD ClasSTIDTEXT ...uuuvieiiiiiteeeeiietesitteeestteeesrtteeesettaeessubeeesssteeesausaeessabeeesssseeesssaeesssbaeessssseeesasseeessseeessnnee 164
TaT oYU Y T F=1 o] LTS USURN 164
RELUIN VariableS...cineiiiiieee ettt ettt sttt e st e s be e st e e sabeesbeesabeesabeesabeesneesabaesseenane 165
FEEADACK COURS ..einiiiiiiiiiieeitie ettt ettt ettt s e st e e s bt e s be e s bt e s e beesabeesabeesabeesabeesnbeesabeesabeesabeesnsaesabaesseesane 165
3T [4T o =SSP 165

ACtiON=BUILD CIaSSTIMIESSAGEuiiiiiiiie ittt ettt ettt e e sttt e s bt e e s st e e e e s abe e e satteeesabbeessasbeeesnbaeesanbaeesnanes 166
TaT oYU Y T F=1 o] [T TSP URURN 166

Contents 7

AT Y Ta T o] L= PSPPI
[TSTo loF: [ol [6 Yo LT3 PSPPI
3T [4 o L= SRS
ACLION=DISPLAY CIaSSTDATAee ittt ettt st e sttt e st e ettt sbte e be e e sbteesbe e e sbteesabeeshbeesbeeesabeenbeeessbeenbaeesnteenbaeennseenses
T o T YT o =3RS
AT Y Ta T o] L= SRS PPPUPP
[T=To | oF- [ol [6 Yo LT3 PSP PUPPR
ST [4 o L= SRS
ACHION=DISPLAY CIASSTHELPeeieie ittt ettt ettt ettt e sit et e sttt e shbe e bt e e sabe e bt e e sabeesbeeesabeebaeesaseenbaeenaseenes
INPUL VAIADIES ...ttt st e et s e e bt e sab e et e e s bt e e bt e sabeeeabeesabeeeneesbeeeneenane
AT g Y Ta T o] L= OO PPUPP
[Tl o [ol . 6 Yo L= PSP
[T [4 o] L= RSP
ACTIONZDISPLAY ClasSmLIST ..eiiuitiiuiteiieiititesite ettt e st e site e sttt estteestteesteeesaeeesseeessteessteesateesbaeessseenbeeessseenseeesssesnseeensseensees
INPUL VAIADIES ..ttt ettt e st e s bt e e bt e s bt e e abee st e e e bt e sabeesaseesabeesneesabeeeneenane
IR T Y Ta T o] L= PSP
[Tl o [ol . 0 Yo L= PSP
[T [4 o] (=SSP
ACtiON=DISPLAY CIaSSEIMENUcccutiiiiiiiiiteiieesitesieesteesite ettt e siteesteeesieeesaeeessteessseesateessaeessseensesesssesnsesesssesnsseessseensens
INPUL VAIADIES ..ttt ettt et e s bt e s bt e st e e et e e s beeeabeesabeesaseesabeesnneesabeeeneenane
I T L Y Ta T o] L= PSP
FEEUADACK COUBS ..viiuiiiiiiiiieeitiieete ettt e st e st e st e s bt e s bt e s be e sateesabeesabeesabeesabeesabeessbeesabeeeabeesabeesnbaesabeesnseesnbaesnseesnss
[T [4T o] L= SRS
ACtiON=DISPLAY CIaSSTIMIESSAGEcoiiiiiiiiitee ettt ettt e sttt e e sttt e e s abte e s sa bt e e e ebbeeesbateeesnbbeeeensaeesansaeessnbaeesnnnee
T o LU YT =1 o 1= SRR
RELEUIN VariableS ...ttt et sttt st e s bt e st e et e e sabe e s bt e sabeeeabeesabeeeneesabeesseenane
FEEADACK COUES ..ottt ettt e s ettt e st e e e sa bt e e st te e e sabbeeeeabeeesansbeessabbeeeeanbaeesnaneeas
1T 2] o] LTSS USURN
ACHIONZEDIT ClasSTDATA ...ttt ettt ettt ettt e e ettt e sttt e e s aab et e e s abe e e s aubteessabeeeeaasbeeesasateeeaabbeesaasbeeesnsaeesnnbaeesnnnee
T o T YT =1 o 1= SRR
RELEUIN Variables...c ittt st e st s bt e e bt e st e e et e e s beesbeesabeeeabeesabeesneesabeeeneesane
FEEADACK COUES ..ottt ettt et e sttt e e et e e st e e e a bt e e s eabte e e sabbeeeeaabeeesaasbeessabbeeeesnbaeesnaneeas
Y21 o] LSRR USURN
Action=EXECUTE ClIasSTCOMMANDuttiitirtieiieentee st esiteesite ettt site e sttt e sate e sttt e sateesbeeesateesbeeessseessseesaseessseesaseennns
T o LU Y2 T =1 o 1= 3SR
RELUIN VariabIeS...c ittt sttt e st e s bt e s be e st e e sabe e s beesabeesabeesabeesneesabaesneesane
(=TT | oF- ol [6 Yo [T OO SO P PP PUPPRRRP
T Y221 o] LTSS UUSURN
Action=LOAD ClasSTCOMMANDceiritiiieertienieenteeste et e site e sttt e siteesbeeesateesteeesabeessaeessbessbeeesaseessseesasesssseesseennees
T o T YT =1 o 1= SRS
RELUIN VariabIeS...c ittt sttt e st e s bt e s be e st e e sabe e s beesabeesabeesabeesneesabaesneesane
(=TT | oF: [ol [6 Yo [T O OO SO PRR PP

8 Managed Object Development Services Guide

EXAIMIPIE ettt st e et s bt e e b e s b e e e bt e s bt e e bt e s be e e bee s bt e e nnee s beeenneenare 188

ACLION=GET ClaSSETENTRY ..iiiiutiiiiiiieeeeitieeesitteeesttee e sttt e sstaaeessubeeessaseeesausaeessabeeesasseeesasseeessssaeessssseeesnsseeesssenesnnnes 188
T o T Y= T o =3RS 189
RELUIN ValiabIES..ceieiiiiieeie ettt st st e st e e s bee s e ba e s abeesabeessbeesabeesabeesabeeesaesnbaesseesase 189
FEEADACK COURS ..viiiiiiiiiiiieeitte ettt st s e st s bt e st esa bt e st e s beesabeesabeesabeesabaesabeesabeesabeesabaesnbaesabeessaesnbaesseesase 190
EXAIMIPIE ettt ettt e e bt s bt e e b e s b e e e bt e s bt e e bt e s b e e e bt e e beeenee s beeenneenane 190

ACtiON=LOAD ClasS=PDOIMAINccutteieiitteeiitteestee e sttt e sstteeesbeeessateeesausaeessabeeesassseeesasseeessssaeesssssesesnsseeesssseeesnsnes 190
T o T YT o =3RS 191
RELUIN Valiables..ce ittt sttt st e s bt e st e e s be e s ba e s abeesabeeeabeesabeesabeesabeessaesabeesseesase 191
[T=To L oF: [ol [6 Yo LT3 PSPPI 191
EXAIMIPIE ettt ettt e e bt s bt e e bt e s b e e e bt e s b et e bt e s be e e bt e s beeennee s beeenreenane 192

ACLIONZLOAD ClaSSSTABLE ...coieeiiiteeeee ettt ettt e e e e ettt e e e e e e s e aataeeeeeeeesaasbaaeeeeeeesasstssaeeeeeesaansssaeaeesesannnnrnes 192
T o T Y T =1 o =TSSP 192
(Vs Y Ta T o] [P P U URRPROPPRTRN 193
[T=To l o [ol . 0 Yo L= PSP 193
EXAIMIPIE ettt st e ettt e et e s a bt e e bt e s b e e e b ee s bt e e bt e s beeebee e beeennee e beeenneenare 193

ACtiON=NAVIGATE ClasS=PDOMAINcoeiiiiiriieeeeeeecitteeee e e eeeiareeeeeeesestrtaeeeeeeeessstaseeeeeeesasstssaeeeeeesaassssaeseaeesenanrees 194
T o T Y T =1 o =TSSP 195
(Vs RV Ta T o] [OO U PPOPPRTRN 196
[Tl o [ol . 0 Yo L= PSP 196
EXAIMIPIE ettt st st e e st e et e skt e e bt e s b e e e bt e s bt e e bt e s bt e e bee e beeennee s beeenneenate 197

ACtION=VALIDATE ClasS=DATAcuttiittiriterieesttesteeste e sttt estteestteesteeesteeesseeessteessseessteessseesssesssesessseensssesssesnseeenssesnsens 197
T o T Y T =1 o =TSSP 201
REEUIN Variabl@S .. ittt ettt e st e e e a bt e e s ab b e e e sabbeeeeabeeesabbeessabbeeeenabaeesaaneeas 201
FEEADACK COURS ...einuiiiiiieiiteritee ettt ettt s e st e et e st e e bt e st e e s abeesabeesabeesabeesabeesabeeenseesabeesneesabeesneesane 202
3T [4 o L= SR 202

Chapter 6: Menu Service Procedure Interface 203

MENU SEIVICE PrOCEUUIES .. .eeiiiieiiieeitee ittt sttt sttt st e st e st e e bt e s bt e e abeesabeesabeesabeeeaseesabeeenbeesabeeenseesabaeaseenane 203

Menu Service ProCedUIre STatemMENTS. ...coouiiii ettt e e ettt e e et e e s sabt e e s s abbeeeeabaeeseabeeeesanbeeeans 204
SIVIHOPTEENTRY Stat@mM Nt .a.eeeeieeeeeeeeeeeeeeeeee e ettt e e et e eeeeeeeeseeteseasteeesaseaaessasetessasesesansseessasseeesasseeesasseeesasseeeens 204
&SIMHOPTESELECT STATEMENT ..veuviuvetiivieieeiitetetist et etest et et s b e b ese st e sesesbe b eseesesbeseesebessesesbessesessessesessensesessesseneans 206
&SMHOPT=RETURN SEALEMENT ...veuveviivieieriitieetiititetesteaeses et stesaesessebesessesbeseesesbessesessessesessessessssessesessessenenns 207
SIMHOPTEEXIT STAtEMENT...c.eevitieietiitiietiit ittt ettt sttt e s e s b e b e seesesbeseesesbessesesbessesessessesesbesseseesenseseesesseneans 208
ESMHOPTECOMMANDooiutiitiitie ittt ettt et e et e eteeete e teesbeesbesaeesaeesaeesseensseaseeaseesseetsebeenteensesasesasesreeteentesareans 209
BISMHOPTETIMEOUT SEAEMENT .eeeeeeeieeeeeeee e et e et e e et e e e et e e e et eeesaeeaeessaateseaseeeesaasseessaseeeseaseeesaaseeesasaeeeens 210

Chapter 7: List Service Procedure Interface 213

LISt SEIVICE PrOCEAUIES. ..ci ittt ettt ettt ettt ettt e ettt e e sttt e sttt e e e st b eeeeabeeesasteessabbeeeeanbeeesaasaaesaabbeeeesbaeesaasaaeesasseaanas 213

List SErvice ProCedUIe STat@MIENTS . ..ccuiiiiiieiee ittt sttt e st e st e e s bee st e e sbeesabeessbeesabaesseesabaeenseesane 214
&SLHOPT=ACTION STALEMENT....eviietiitiietiitit ettt ettt et e e st sse e st e sbesesbesbe st esesbeseesesbessesesbessesesbasseseebesseseesesseneans 214

Contents 9

QSLHOPTZADD STATEMENT ..ttt ettt ettt et e et e et e e e et e st e eeeateseaeeeeateseseesaeesseesseesseesaeesseesseesseesneess 217

B S LHOPTEALL SEAtEMENT. .. ettt ettt ettt ettt e et e et e et e et e st e eeeate s st e eaateseteesatesaseesstesseesaeesseesseesseesneess 219
&SLHOPT=COMMAND STAtEMENT c.viviivieeieiieiertisie i eteseeteestestessesteste s e eraessessessessestessessesseessessessessessessessesssessens 222
B S LH O P T oG ET StatMEBNT . eeeeeee ittt e ettt ettt e et e e ettt e s e eeesseneeeseasteeesaesaeessasetessansesesansaeessaseeessasesesanseeessaraeesans 224
B SLHOPTEINIT SEAtEMENT..uecuiiteiieteie ettt et ete e e et e e ete e e e e be st e s testeeseessessessessestesseaseeseessessessessessessessesssaseans 229
QSLHOPTETERM STAtEMENT ..ttt ettt et ettt e et e et e et eeeeaeeseaeeeeatesebeesaeesbeesaseessteeaeesaseesseesasaesaneess 232
Chapter 8: List Exit Procedure Interface 235
[A L o e Yol <To [N YU PP 235
List EXit ProCEAUIE STAatEMENTSiiiiiiiiieiie ettt r e e e sttt e s sate e e e s beeeesabeeesaaseeessabeeeeestaeesasseeessnseeeenns 235
B SLHOPTEINIT SEAtEMENT.cuecuiiieiticieiie ettt et et et et e e te e et e s et e st e s testeetsessessesbesbesbesbeebaeseessessesesessessesseessessans 236
&SLHOPTEENTRY SEAEMENT...cviiiiitiiiiciieieeietertestesteete s et e st et e e st e s testeetaessessesbesbesbesbeebaeseessessessestessessseseessessans 238
SLHOPTETERM STALEMENT 1..vviiuviieieieee ettt ettt et e et eteeatesaaesaeesreesaeesaseneseneseaesesesebsenteenteeneesaeesaeesaeenssentssneeans 240
Chapter 9: Criteria Exit Procedure Interface 243
(O 1T T N e e Tol=To [TSR 243
Criteria EXit ProCEAUIE STatEMENTS . ccccuiii it eiiieeeeiee ettt ettt e e st e e st e e et e e ssaee e e s baeeeeateeesssteeesnsaeeeennseeesnnseens 244
U SCROPTEINIT STATEMENT.c..cuvevetieteiieeteeeeterte e ste st e eteeteeteesaesebesbesteeteesaessessessessesbessessaeseessessessessessessesseessassans 244
&SCROPTETERM STAtEMENT..uiiuiiiiiteiieetieieetiete e estesteetesteete e st e s e besbestesteetsessessesbesbestesbestaessessessessestesseesaeseessassans 246
Chapter 10: Table Entry Validation Exit Procedure Interface 249
Table Entry Validation EXIt PrOCEAUIEScciiiiiiiiiee ettt e ettt e e e et e e e e e e e s etbaar e e e e e e seasbtaeeeeessennssanneeeseannns 249
Table Entry Validation Exit Procedure StatemMENtscuuviiiiiii et e e e e e s esarrae e e e e e seaes 249
&SVIMEXFUNCEADD STAtEMENTcvvcviiieieeitieettitetetestet st teae st stesae e s tebesessesbeseesesbessesesbessesestessesessessesessesseneans 250
&SVMEXFUNCEDELETE STATEMENT ...vevivievitieetiitiietestetetes et ste st stesse e s tesbesaesesbessesesbesaesessessessssensesessessenenns 251
SISVIMEXFUN CEUPDATE SEatEMENT c.eeveteeeeeeeeeeeeeeeeeeeeeeeeeeeseteeeateeesaesaeessasetessasseresessseessaseeessasseeesassseessasseeeens 252
Chapter 11: Report Writer 255
(8T To [T e =T o [T Y=d 20T o Lo o A VA o 1 =T P URTRN 255
T o Yo Y d IV g Y gl o= Tl L =PSRRI 255
=Tl U) 2V PSPPSR PPUPPPTRRPIE 257
[2L=T oo T fl D=3 T o T o o L3PPSR 257
[y T Y[Y a2 U=T o Yo T Y o] o] Lfor 1 o] o SRS 262
(0= oo] o aCT=] g T=T o 1 (o Y o PPNt 263
DLl a1 o F= = B Yel a =T LU] (=TSP UURURN 264
N [0 [0 =T o - [ol OO OO P O OU PP PPRTPUPRPPPROt 265
NOTALIONAI CONVENTIONS euvviiiiiieiiteiiee ettt sttt st e st sa e s bt e s abe e s bt e sabeesabeesabeesabeesabeesabeesabeesneesabaesseesane 265
SRWOCALL OPTEGENERATE ...ttt ittt ettt ettt e ettt eteeateenaesatesteesaeesaeentseaeseaseeseeetsenbeenteensesasesasesaeenseensesnreens 267
SRWECALL OPTEINFO ..ecuviivieeieeeeectee et eteeeteeeteeteetteeteeeteeteesteenaesaeesaeesaeesseenssenssenssesseetsenbeenteensesasesasesaeenseenteenreans 271

10 Managed Object Development Services Guide

SRWOCALL OPTEIVIENU ...vvviieiietiiteeeetisteseetestet st stesaese st esses e sessesesseseseesessesessessensesessessesesansesensansesessensesessensenenns 274

SRWECALL OPTESTATUS ittt ettt ettt ettt ete et eteeateeaaesaeesaeesaeesasensseaeseaesebeeetsenteenteentesasesaeesaeentsentsenteans 276
2T o To a3 ol o o Yol =Te [V YRS 277
LU T o ot f o] o RPN OSSP RO PR PURTPN 277
J T =] o LT PP U TP 278
2L AT 1 e Lo [PPSR 281
[N o 1T PP PO PTOUPPPPPPPPPUPPPPPPPRt 281
YT (o=l o Yo=Y o U] o PP PP ST SRTR 281
LU T o ot f o] o RO OO URP PP PUPTPN 281
AV 1S =1 o] LT PP 282
2L AT 1 e Lo [PSPPI 284
GENEIAOr LOGIC FIOW ...ttt ettt ettt e e st e et e st e e abeesabeeeabeesabeesabeesabeenaneess 285
DiStriDULEA SEIVICE PrOCEAUIES ...c..viieiiieiiieeiee ittt stte st e st esbe e sbee s teesbeesabeesbeesabeesabeesabeesnseesabaesnsaesabeesnseesnbassnseesans 286
DiStriDULEA SEIVICE PrOCEAUIESiiiitiiiieeiiteeiee sttt e ste e st este e s be e s beesabeessbeesabeessbeesabeesnbeesabeesnseesbeeenseesnss 287
V(OB A 2T o To] o PSP PP PPN 288
N1 B =T oo o PSP PP PPN 289
NEWS REPOIES ..ttt ettt et et e e et e a et e e e s e sabaa et e e e s e s e anraeereeeseans 290
(07 R O RVAH 131 1e1\Y, X3 ¢ N o] o] o= dToT d W 2U=T o Lo o &SRR SP 291
CA SOLVE:INTOMaASTEI SYSTEM REPOITS ..ccuiiiieiiiieeeiiie e ettt ettt e e et eeetae e e s tbe e e s tteeeeeasaeeesbseaeeassseesanseaeessseeaans 292
UAIMS REPOIES ..ttt ettt et e e s bbb et et e e et b et e e e e s s arb et e se s et esaaraneeeeeseans 293
Chapter 12: Mapping Services Facility 295
Y Y o] o1 a YY1 oV ol TP TPPPPTRRRPINE 295
ADSEract SYNtaX NOTATION ONE.....cciiiiieiciii et e st e e et e e s saaee e e st eeseateeessaeeeesssaeeeanseeeesnseeeennsenesannes 295
FN N PO R Yo Lol X T V0 01T L £SO 296
Defining the Logical StrUCTUIE Of DAtacc.ueiiiiiiee ettt e e e et e e e et e e e eeabaeeesabbeeeestaeseeasaaeessraeaans 297
Referencing Logical Data Structures from NCLoeeiciiie it eetee e st e e et e e eeaa e e e sbaeeeenataeeseasaeeesanreeaans 299
Defining the Physical StrUCtUIE OF DAtaccocciiiiiiiiee ettt s et e et e e st e s saae e e s sba e e e estaeesennaeeesnseeeens 300
COMPONENT TAES oieeeieiiieieieieieeeeere e s s e s e se s e s e s e s e s e s e se s e s e s e s e s e s e sesesesesasasasasasasasasasasssssesasasesesasasasesnsnsesesnsesesnsnss 300
(o Yol e T o H T T O P TP RSUP PP PTORPPPPPTROT 300
Data Interchange BetWEEN OPEN SYSTEMSuiiiiiiiiiciciieeeee ettt e e e e sttt e e e e e e st re e e e e e e seabataeeeeeesesssstnneeaassennsnrens 301
YT I 10 ol D= TVl oo TS SR 301
YT I L e AN VB Y [Yo [0 =3 PSP 301
F N IS Y oo [N L= I 1Yo T S 302
ASN.1 Compiler’s Interpretation of the ASN.1 MOdUIEoeiiiiiiiiiiiiiie e e e aaaees 304
[V Tl @eTa] o Yo T T=1 0] K- PPNt 306
D - I T=d <1 o - PSP PUPPPN 308
Y T od o T a Y= D =T 1 Y=L PP PUPPPN 310
Type Description @nd FOIMMALSciiiciiiieiiiieceiee e ccee e e see e et e st e e et e e e s aeeeeesnaeeeesteeesassseeesnnseeeesseeesnnsneeesnseenans 314
FN N B R Yo 1L Nt 314
NCL Reference, Type Checking, and Data BENAVIOrccciiiiciiiiiiiec ettt e e e arre e e e e e 315

Contents 11

] = I Y/ < TP TP PTPRPI 316

] = IO o =P T P PTPTPI 318
SEQUENCE TYPE wetiutttiiieeiiteenite ettt ettt esite e sttt esiteesteeesbteesbeeesateesbeeessteenseeessbeessteesabeeseeessbeebeeensaeenseeensteensseesaseesss 319
SEQUENCE OF TYPE eetiuutteitieeitieeitieestteestteesitee sttt esuteessteesseeesseessseeesssesssseessseessssesssesssssesssessseeessseessesssssessseeesssesssses 320
(01 [0 0] S KV T PO UORTSPPR 321
BOOLEAN TYPE .o.erveoeereeieeeeessessessessessessens 322
INTEGER T e veoeeoveeeeeeseseesesssssessessessassssssesessssssassssssssasssssssssssssssssssssssssessssssssenns 323
BIT STRING TP ettiutieiieeniteesiteeste e sttt e steesiteesateesabeesabeesabeesabeesabeesaseesabeesabeesabaesaseesabeesaseesabeesnbaesabeesseesbaesnsaesase 324
OCTET STRING TYPE .uvteeutteeieeeteeeiteesteesiteesbeeseeesabeesabeesabeessseesabaesaseesabeesaseesabaessseesabaessseesabeesaseesateensseesssaesnseenn 327
HEX STRING TYPE «.vvoveovereeoeeeeeeesesseessessessens 327
NULL TYP@ ettt st et e e s b s s e s e e e s e bbb s s e e e e s e s baa s e e s e e s s e nabaseseeesesans 328
OBJECT IDENTIFIER Ty P e e e s s e s e s e s e s e s e s e s e s e s e s e se s e s e s e s e s e sasasasasasasasasasasasasasasasasss 329
(0] o =Tot{ D IT o g1 o] {o Y gl 1Y/ o T=TR RSP PRUP 329
EXTERNAL TYPE otttiitteiieesteesitt et e st e steeseteesiteesabeessseesabaesabeesabeesasaesabaesabaesabeessbeesabeeenseesabeesnsaesabeesnseesbeeenseesnse 330
T i 1773 330
ENUMERATED TPttt ettt ettt e tetetetetetetetetetetetet et et e tet et etereretetereratetereteteretererererererererererererens 333
ST a g = TN o o= Y o1 PSSP PSP PTPPOP 334
A TaN =] o] (=R g TV RV o T TSRS 335
RIS S o 1oV Y o 1T RSP UUSUNS 336
V0 EOTEXSEIING TYPE o netiiiteeite ettt ettt ettt e b e e be e s at e e e bt e e s ab e e bt e e sab e e bt e e sabe e bt e e saneebeeesabeenbeeesaneenees 337
TN o T = Y/ o TIPSO PP PP P PPPPOP 339
OO T g 1T Y/ o LTSS 340
GENEIAlIZEATIME TYP weriiieiiiieeiitee e ettt e ettt e e et e e e ettt e e eebaee e staee e e staeeeassaaeesassaaeessaesaansaaeesasseaeassaeesanssesessseeaans 340
LG =T o] o Ton A oY= 1Y/ o TS RUR 341
RV AT] o E (T Y= Y/ oY= SRR 342
(CT=Y T =Y T Y= Y7 o 1TSS 343
F N A Ta o AN D= T 1Y o = PR UPUUUOE 344
Appendix A: Text Editor Commands 347
Using the Text Editor COMMANGS........uuiiiiiei ettt e e st e e e e e e s ebatr e e e e e e sesabataeeaeeesesssstaaseeesseannssraneeassannes 347
LiNE COMIMANTS .. .etieeiitiee ettt ettt ettt e sttt e e e sttt e e e sttt e e s ab e e e e ubeeesaasteeesasbeeesaabeeeaaanbeeesaaseeesaabbeeeanbaeesaaseeeesasbeaeans 347
Line COMMANT EXGMPIES ..eiiiiiiieieiiiieccieeeesteeee e sttt e e e st e e e et e e e s ateeeessteeesesseeeesnsaeeeestaeeensseeeesnsanesanseeesnnsnes 351
A Taa T TV @o Y0 0 s = o Lo -3 SR 353
Appendix B: Shorthand Time and Date Formats 355
Shorthand Time and Date FOIMALScoouiiiiiiiiiierieente ettt ettt sat e e sbe e e sateesbe e e sabeesateesabeesabeesaseenaes 355
Shorthand TiMe FOrmMats (HH.IMIM)eoei oottt ettt e et e et e e e e e et aae e e e e eeseasbaaeeeeeeesenssssaeeeeessensnrees 355
Shorthand Time FOrmats (HH.MIVLSS)uii ittt e ettt e et e e e ettt e e e etbe e e e aaaeaeeabaeeeessaeeeassaeaeensseaeennes 356
SHOMTNAN DAt FOIMALS ..eviiiiiiei ettt ettt rb e e sttt e s ab e e e s st b e e e saabeeesabtteeesabbeessasbeeesnbaeesanbaeeenanes 357

12 Managed Object Development Services Guide

Appendix C: List Panel Attributes

List Panel AttribUTESc.oooviiiiiiiiiies

Appendix D: Web File Utilities

WED File SYStEM ..ottt
Accessing Web File ULilITies.....ccvvieiieeeeiie e
Top Level Directory SUMMaAry Panelcccceeecviiiiciiee i ecee e
Directory Panel for Selected DireCtory......ccccceecveeeiecieeecciee e

Index

Contents 13

Chapter 1: Introduction

This section contains the following topics:

MODS Facilities (see page 16)
Concepts and Facilities (see page 19)

Chapter 1: Introduction 15

MODS Facilities

MODS Facilities

This section introduces facilities provided by Managed Object Development Services
(MODS). MODS is a development environment that provides you with powerful tools for
creating and customizing NCL applications. It provides comprehensive
menu-and-panel-driven facilities for the definition and maintenance of data,
presentation and behavior of applications.

MODS includes the Common Application Services (CAS) functions. These special purpose
routines define application elements such as menus and lists that are common to all
applications and provide a consistent user interface.

These same facilities let you easily customize delivered applications to your installation’s
requirements.
MODS provides the following benefits:

m Ability to quickly develop NCL based applications through the use of sophisticated,
interactive development tools

m High reliability due to the use of common routines for standard application
components

m Asingle interface for accessing data and invoking functions for all applications

m Ability to maintain test and production libraries and utilities to move components
from one library to another

m Whole applications or individual components can be easily isolated, modified, or
replaced due to the registration of application components
The MODS maintenance facilities have the following features:

m Panel Driven—Tailoring is performed through full-screen interactive panels. You do
not need a knowledge of NCL to perform tailoring.

m Data Input Assistance—Selection lists of valid input are available to assist you in
performing tailoring and maintenance functions.

m Text Editor—The editor allows easy text entry and alteration. The editor is available
for maintaining help text, message text, panels, and presentation formats for lists
and reports.

m Help—Comprehensive online help is available throughout the MODS maintenance
functions. Help is invoked by entering the HELP command or pressing F1 (Help).

16 Manadged Object Development Services Guide

MODS Facilities

What is MODS?

The MODS environment comprises the following:
Application Register

The application register maintains application definitions. All applications that are
built using MODS must first be defined in this register; applications are assigned an
application identifier that is used to name all components that belong to that
application.

Panel Maintenance
A facility for creating and tailoring full-screen panel definitions.
Common Applications Services (CAS)

The Common Application Services (CAS) functions are a collection of high quality
special-purpose NCL routines designed to facilitate program development. The CAS
application components manage the presentation aspects of applications—such as
menus, lists, messages, online help, and panel navigation.

Report Writer

Report Writer (see page 255) is a facility for creating and tailoring report definitions,
enabling you to tailor reports to your exact requirements.

Mapping Services

A facility that lets programmers define complex data structures for use by NCL
applications.

Administration Functions

Facilities for maintaining MODS control libraries (for application component
definitions) and panel libraries (for panel definitions).

Chapter 1: Introduction 17

MODS Facilities

Notational Conventions

The following conventions apply to statement and function descriptions in this guide:
UPPERCASE Characters

Commands and operands are presented as uppercase characters, but can be
entered in upper or lower case.

Italic Characters

Italic characters represent variables and show the type of information, rather than
the exact information, that must be supplied. The actual entry replaces the italic
description. The types of valid data are described in the Operands section of each
command.

Underscored Values

An underscored value indicates the default optional value that is assumed for an
operand if that operand is not specified.

Braces { }

Braces indicate the available options for a required operand. One of the alternatives
listed must be selected. Do not include the braces when entering the desired
option.

Square Brackets []

Operands in square brackets, including any accompanying equal signs, are optional.
Do not include the square brackets when entering the desired option.

Or-sign |

The or-sign is used to separate options. If a group of options is enclosed by square
brackets, and the individual options are separated by or-signs, none of the options
in the group must be chosen. If none of these operands is entered, the default value
is used (default values are always underscored).

Commas, Quotes, and Equal Signs

Commas, quotes and equal signs must be entered as shown. When commas and
equal signs appear within brackets, they are optional and are only used if the
accompanying optional operand is used.

Related Documentation

Other documentation useful for MODS administrators includes:
m Reference Guide
m Network Control Language Programming Guide

m Network Control Language Reference Guide

18 Managed Object Development Services Guide

Concepts and Facilities

Concepts and Facilities

MODS Facilities

This section describes the MODS development environment. MODS provides facilities
for defining and maintaining common application components used to build an
application.

MODS gives you a powerful set of development tools for building your own, or
customizing delivered, applications.

MODS provides you with facilities for defining, customizing, and printing the following
application components: panels, menus, lists, reports, help text, messages, commands,
criteria and tables.

Programming interfaces are available that let you include these components in your
own NCL applications.

Note: Delivered applications should be customized only if this is expressly stated in the
application-specific manuals.

The Mapping Services facility provided by MODS lets you provide a logical view of data
without needing to understand its physical representation.

Chapter 1: Introduction 19

Concepts and Facilities

The following figure illustrates the components of an NCL application in the MODS

environment.

Help text

Panel Domains

Panels

Reports

Primary Menu

Records By Creation Date

APPLICATION

Criteria
Messages

INVALID COMMAND

RECORD ALREADY EXISTS

&USERTD=6ADMINTD
OVERTYPE TO MODIFY RECORD DELETED

NO RECORD FOUND
INVALID SCROLL AMOUNT

RECORD NOT FOUND END OF FILE
UPDATE CANCELLED

Commands

NCSTAT

Mapping
Services

-

Tables

m—
-
m—

ASN.1

H - Hardware
S - Software
C - Comms
CA - Cable

20 Managed Object Development Services Guide

Concepts and Facilities

Application Register
All applications must be defined in the Application Register.

When you define an application you must specify a unique 3-character identifier (the
Application ID), which is used to tag all MODS components belonging to the application.

More information:

Naming Standards (see page 43)
Registering an Application (see page 46)

Panel Maintenance
The screens used in the applications are referred to as panels. Applications can make
use of four general types of panels:
® Menu panels
m List panels
m Data-entry panels
m Text-entry panels

Menu and list panels are defined using the CAS Menu and List maintenance functions
and their presentation is controlled by using these facilities.

Data entry panels are defined using MODS Panel Maintenance. A panel definition
specifies the input and output fields that appear on a panel (as well as some aspects of
their behavior), and controls the appearance of the text on the panel (for example, color
and highlighting). These panels are invoked using the & PANEL NCL statement.

Note: For more information, see the Network Control Language Programming Guide.
Text-entry panels are used to display and maintain freeform text. These panels differ
from other panels in that you do not need to provide a panel definition—a standard
panel is presented by the CAS text editor (see page 30) facility.

More information:

Maintaining Panels (see page 48)

Chapter 1: Introduction 21

Concepts and Facilities

Common Application Services (CAS)

Common Application Services (CAS) consists of development facilities that are used to
define CAS components and run-time services that control interaction with these

components during execution.

CAS application components are defined using the MODS maintenance facilities.

NCL based applications must use a controlling NCL procedure to invoke CAS run-time
services through the CAS application programming interface (AP1), SCACALL. The
relationship between panels, CAS application component definitions, and CAS run-time
services is shown in the figure below.

CAS Component
Maintenance

Menus

Lists

Panel Domains
Help
Messages
Tables

88?%%83nds

MODS
Control

File

Invoke
run-time
services

Controlling
NCL
Procedure

-
Data-entry

MODS
Maintenance
Facilities

$CACALL

Menu
List
Text-entry

\

Panel
Maintenance

&PANEL
PANEL SERVICES

22 Managed Object Development Services Guide

Concepts and Facilities

CAS Programming Interface

Menus

The CAS application programming interface (SCACALL) is used to invoke CAS run-time
services from a controlling NCL procedure.

The API requires you to specify the action that you want to perform and the type and
name of the component to which the action applies.

For example, you can specify a class of MENU with the action DISPLAY and specify the
menu name in order to display a menu definition that you have defined using the MODS

menu definition facility.

Additional parameters may be required depending on the application component and
action being performed.

More information:

CAS Interface Overview (see page 153)

A menu is a panel that presents the user with a number of options. Each option
performs a specified action.

A menu is built from a menu definition that defines the format of the menu, the menu
options and their associated actions, and any input fields required to support an option.

CAS supports panel-skipping between menus. For example, entering D.C.O.L goes
directly to the last option specified, skipping the display of the three intervening menus.

You can control the behavior of a menu at various processing points, by specifying a
menu exit procedure.

When a menu is invoked using the CAS API, CAS builds and displays the menu, and
processes the user’s selection. When a user selects an option from the menu, and at
other defined processing points, CAS calls the menu exit procedure, if it is defined, to
perform installation specific processing.

The action that is associated with a menu option can be a further call to the API. For
instance, a menu option on a primary menu often leads to a submenu—you can display
this menu by specifying a call to the CAS API as the action associated with the menu
option. You can invoke other application components (a list, for example) from a menu
definition in this way.

Chapter 1: Introduction 23

Concepts and Facilities

Lists

A list displays a series of items from which the user can make a selection of, or perform
an action against, one or more items.

A list definition contains identifying information, the name of a service procedure that
retrieves the list’s entries, the identifier of an (optional) criteria definition that filters
items for inclusion in the list, the name of an (optional) exit procedure that performs
installation specific processing at various points, and the display format for the list.

The format of a list specifies the placement of list items and static text on the list panel.
A list format can cover up to ten screens. That is, if the information you want to display
for each item does not fit on a single screen, you can add a second screen, third screen,
and so on. The user can scroll between these screens by entering the RIGHT and LEFT
commands (or using the appropriate function keys).

The list service procedure retrieves list items and processes requests to perform actions
against list items.

The list service procedure checks the list’s data source (if it is defined) in order to
determine how to retrieve list entries for different sources of data. For example, the
data source could be an CA SOLVE:InfoMaster category or a file name. This lets multiple
list definitions share the same service procedure. A data source need not be
specified—in this case the service procedure retrieves entries from a source defined
within the procedure.

A list can contain the identifier of an exit that is an NCL procedure used to perform
installation specific processing. The exit procedure (see page 235) is called at various
processing points; for example, during list initialization, or after an entry is retrieved.

The same list definition can be used to build four types of lists:

m Action lists—let the user apply actions (for example, Browse, Update, Delete,
Copy) to one or more items on the list.

m Single Select lists—let the user select one item from the list. The selected item is
passed back to the calling procedure.

m Multiple Select lists—let the user select one or more items from the list. All items
selected by the user are passed back to the calling procedure.

m Numbered lists (Pick lists)—let the user select one item from the list by entering
the appropriate number in the Select Entry field. The item corresponding to the
number that the user selected is then returned to the calling procedure.

You specify the type of list that is to be built from a given list definition in the call to the
CAS API.

24 Managed Object Development Services Guide

Concepts and Facilities

Help

Help Hierarchy

The CAS list maintenance facilities (see page 96) enable you to define list definitions for
use by your applications as well as modifying supplied list definitions.

CAS handles the selection of items for the list and the display of lists to the user,
providing: full scrolling functions, the FIND and LOCATE commands, and confirmation of
the user’s selection.

CAS provides a facility to define and display help text. Help text can be structured in
panel format, in simple text format, or using a combination of both.

Facilities for constructing help menus, selection lists of help topics, help indexes and
tutorials are available. Help text can be merged or copied, both during maintenance and

while being displayed.

Help text is associated with a particular function, window (a logical area that facilitates
context sensitivity), or field.

More information:

Maintaining Help (see page 104)

There are three levels of help. Help text can be defined at any or all of these levels, as
shown in the following figure.

1 Field-Level Help

2 Window-Level Help

3 Function-Level Help

Chapter 1: Introduction 25

Concepts and Facilities

The order in which help is presented to the user is levels 1 to 3, that is, beginning with
the most specific help available, and becoming more generalized.

m Field-Level Help describes a single field, the data that can be entered by the user,
and what happens as a result.

m Window-Level Help provides help for a group of logically related fields within a
panel. A window is an area that covers part or all of a physical panel. There can be
many windows defined for one panel; windows can overlap.

m Function-Level Help describes the function that the user is currently performing.
Function-level help relates to one particular function within the application (for
example, the Add Record function within a maintenance application).

For example, a panel might have two help windows defined as shown in the following

diagram:

P Sample Application : Add Record -------------- Page 1 of 1
Command ===> Function=Add
Record ID o X Userid

Record Name X Date

Description

Window A Window B
F1l=Help F2=Split F3=File F4=Save F9=Swap F12=Cancel

m |f a user enters the HELP command from this panel, with the cursor positioned in
the Record ID field, then CAS displays the field-level help describing the Record ID.

m [f the user then re-enters the HELP command, CAS displays the window-level help
for Window A (this file describes the Record ID, Record Name and Description
fields).

m Entering the HELP command again displays the function-level help for the Add
Record function

26 Managed Object Development Services Guide

Concepts and Facilities

Messades

Validation

A message is a text string that is used to communicate information to the user—for
example, an error message. CAS provides facilities for maintaining, building, and
displaying messages.

Each message has a unique identifier and associated text containing an explanation of
the message, the system action and the action that should be taken by the user when
the message is displayed.

Variables can be included within messages. When a message is built the variables are

substituted into the message to provide specific information relating to the

message—for example, an error code.

CAS provides centralized control of messages. All applications call CAS to build messages
for display.

More information:

Maintaining Messages (see page 110)

CAS provides facilities to validate data entered in input fields (or any other data) against
either:

m Atable of defined values

m Predefined rules (for example, a range test or a date format)

Chapter 1: Introduction 27

Concepts and Facilities

Tables
Tables contain a set of entries against which data can be validated.
A table comprises a table definition and a number of table entries that represent the

valid values. CAS provides a facility for creating and maintaining table definitions and
entries (see page 113).

Each table entry can have an abbreviated value, description, and up to ten associated
data fields.

Valid values in a table can be specified explicitly as table entries or can be drawn from
the following sources:

m Alist of values in a field of a CA SOLVE:InfoMaster category
m Alist of field names in a CA SOLVE:InfoMaster category
m Alist of entries supplied dynamically through the CAS API

You can define an exit procedure for a table that performs installation specific
processing during table entry maintenance—for example, to validate table entries or
restrict the deletion of entries.

Prompted Fields

CAS supports field prompting: if the data to be validated contains a question mark (?),
then CAS displays a list of all valid values for the field, with a description of each. The
data can contain just part of the value, followed by a question mark; this displays all
valid values that generically match the supplied value.

When you use the CAS API to validate data against a table this facility is provided by CAS
with no additional code required on your part. This facility can be turned off through a
parameter to the API (for instance, when you want a question mark to be valid input).

Other Types of Validation

CAS provides other types of validation including alphanumeric, hexadecimal, NCL
keyword, and time. You pass the input you want validated to the CAS APl and specify
the type of validation. You do this by specifying one or more edit numbers in a
parameter to the CAS API.

28 Managed Object Development Services Guide

Concepts and Facilities

Criteria

Commands

A set of criteria is a set of rules that can be used to test a condition. For instance, a set
of criteria can be used to select items to go in a list, or items to go on a report, or to
validate users’ input.

Criteria can simply compare static values or can be complex, combining numerous
operators and values. Values can be variable (for example, the current date can be used
as a value).

When you recall a set of criteria through the CAS API to perform a test, variable values
are supplied by the calling procedure, interactively by the user (through a run-time
panel), or by an exit procedure that you define. The criteria exit can process the entries
made on a run time panel and also determine whether the panel was actioned or
canceled.

You can specify a data source for the set of criteria, which the exit uses to determine
how the criteria are processed. You can define exit parameters within the criteria
definition for the exit. This lets you change the criteria behavior without having to
rewrite the exit procedure and also lets you write a generalized exit that can then be
used by other criteria definitions.

More information:

Maintaining Criteria (see page 116)
Criteria Exit Procedures (see page 243)

CAS provides facilities for defining and processing commands issued by users and by
applications.

A command definition contains the unique identifier of the command and an action to
be performed when the command is executed.

The CAS API can be invoked to execute defined commands.

More information:

Maintaining Commands (see page 121)

Chapter 1: Introduction 29

Concepts and Facilities

Text Editor

Text Browse Facility

Function Key Areas

The CAS text editor is a full screen editor that can be included in any NCL application,
providing the user with comprehensive editing facilities for up to 32767 lines of text
(each of up to 256 characters in length).

m Standard text manipulation facilities are provided via line commands: insert, delete,
move, copy, repeat, queue, text split, text flow, and text entry. These are supported
singly and as block commands.

m Scrolling functions are supported (FORWARD, BACKWARD, LEFT, and RIGHT),
including the ability to specify scroll amounts.

m The ability to find occurrences of a text string is supported, as well as the ability to
change one or all occurrences of a nominated text string.

m The ability to position the text on a given line number is also supported.

You can provide text editing facilities from your application by invoking the text editor
through the CAS API and passing the text to be edited. The edited text is returned to the
calling procedure.

More information:

Using the Text Editor Commands (see page 347)

Text can be displayed in Browse mode, letting users view but not update text. This
facility can be included in any application, providing comprehensive text browsing
facilities for up to 32767 lines of text.

The text browse facility is invoked through the CAS API.

The function key area (FKA) refers to the bottom two lines of a panel, where function
keys and their labels are displayed.

You can modify the labels and actions associated with function keys through the CAS
API.

CAS provides predefined function key sets for specific purposes, such as Browse and
Update.

The FKA lines are formatted and returned to the calling procedure either when the CAS
APl is invoked to set key settings or when the KEYS command is executed by the user.

30 Managed Object Development Services Guide

Concepts and Facilities

Report Maintenance
Report Writer is an application that is used to define user reports.

Report Writer has the following features:

m A full screen report design and maintenance facility

m Areport generation facility

m Ascheduler for automating the production of reports

® A maintenance function for defining applications to Report Writer

A report definition is created using a text editor that lets you define the layout of a

report on the screen. Report definitions are stored on a database and can be recalled at
any time to produce the report or modify its format and contents.

Report Writer is designed to operate independently of the database in which the report
data is contained and can create reports from data stored in any database that is
defined to it.

A report definition consists of the following components:

Description

Defines control information about the report such as its name, description, and the
application that it belongs to.

Sort fields
Define the order in which records are sorted on the report.
Format items

Are lines of text that are printed on the report—each format can consist of any
number of lines, made up of both constant and variable data.

Chapter 1: Introduction 31

Concepts and Facilities

The following report items are defined for each report:
Report Header

Defines material printed at the top of the report.
Page Header

Defines material printed at the top of every page.
Data Formats

Define material printed for each record that is passed to Report Writer—there can
be multiple data formats.

An NCL exit procedure can be used to determine which data format or group of
data formats to use for each individual record. If there is no exit procedure, all data
formats are printed.

Control Break Headers

Prints headings above groups of data. Control break headers can be printed each
time a field on which the data is sorted changes value.

Control break Trailers

Prints trailers below groups of data. Control break trailers can be printed each time
a field on which the data is sorted changes value and are commonly used for
printing subtotals and totals.

Page Trailer
Defines material printed at the bottom of every page.
Report Trailer
Defines material printed at the end of the report.
Data is secured against illegal access by using the User Access Maintenance Subsystem

(UAMS) facility. Report Writer interfaces to Print Services Manager (PSM) for the
management of report output.

32 Managed Object Development Services Guide

Concepts and Facilities

Mapping Services

Mapping Services is a facility that gives NCL access to complex data structures.

Mapping Services is designed to separate the application’s data processing
requirements from a need to understand the actual organization of the data.

It means that NCL procedures deal with the logical relationships and usage of data (the
data protocol), while the system manages and maintains the physical representation of
the data (the data format).

Conventional NCL processing deals with simple data items accessed as NCL variables (or
tokens). If a number of variables are logically related, the programmer must understand,
through naming conventions or other disciplines, how data items are related and how
they must be managed.

Difficulties arise in a number of circumstances, such as where data to be processed by
NCL is sourced externally, or where NCL must define an interface to some other
processing system. In such cases data is exchanged across a program interface,
according to a strict protocol, and can be conveniently represented as some sort of
protocol data unit. Such a protocol data unit is usually composed of one or more logical
components, but must be presented across the interface as a series of bytes, and hence
is structured according to some encoding technique.

Nearly all management data conforms to this simple model; however, there are many
different encoding techniques employed. These range from very simple rules involving
fixed length fields, one following another, to more complicated rules involving variable
length structures, and even more complex rules involving self-defining lengths, tags, or
similar structures.

The use of variable length data items, and tagged data structures, is popular because it
encourages programming precision, and provides a continuous upward migration path.
By extending the length of existing structures, or inventing new ones within a data unit,
it can retain its original character while evolving to keep pace with new requirements.

Chapter 1: Introduction 33

Concepts and Facilities

Maps and Mapped Data Objects

Map Library

Mapping Services provides NCL with a logical view of data, while removing from NCL the
requirement to understand the physical representation of data. It does this by
interposing a map that is used to interpret the data. A map contains the definition of the
logical components of a complex data structure, as well as the data’s physical
representation.

A complex data structure is processed by NCL as a Mapped Data Object (MDO). The NCL
procedure can connect an MDO to a map. Only through the map can the NCL procedure
access the logical components of the MDO. Once the map connection is made, the NCL
procedure can reference the logical entities contained within the MDO by their symbolic
names defined within the map.

Each time NCL references a symbolic name, Mapping Services locates the definition
within the map, determines how the component is organized, and with a knowledge of
the physical representation, navigates the data structure to access the logical data
items.

Using this technique, only the system need be aware, through definitions contained
within the map, of the actual representation of the data. The NCL programmer, and the
procedure itself, need only understand and reference the logical data components.

By modifying the map alone, it is possible to alter the underlying physical data
definitions as managed by the Mapping Services facility, without having to change any
NCL code.

Maps comprise a number of definition records, and are compiled to a loadable form.
Map source can be kept in any convenient source library in a similar fashion to NCL
procedures.

All compiled maps are lodged in a file that serves as the Map Library. From this library,
the loadable form of a map can be accessed on demand. Normally a map is loaded only
when specifically requested for use by an NCL procedure. When no longer required, it
can be deleted from storage by the system.

Note: For more information about the use of maps in NCL procedures, see the Network
Control Language Programming Guide and the Network Control Language Reference
Guide.

More information:

Mapping Services (see page 295)

34 Managed Object Development Services Guide

Concepts and Facilities

MODS Administration Facilities

This section provides an overview of MODS administration facilities. Use these facilities
to control the storage and maintenance of:

m Panel definitions in panel libraries and the panel paths to be used to retrieve panel
definitions

m MODS component definitions in the MODS Control File and the concatenation path
to be used when retrieving definitions

Panel Library Maintenance

Concatenation Path

Panel definitions are stored in VSAM data sets for fast retrieval and update. A VSAM
data set containing panel definitions is called a panel library. Multiple panel libraries are
supported.

Individual panel definitions are referred to as library members.
A library can be used as the sole source of panel definitions, or it can be concatenated
with other libraries defined to the system. A concatenation of libraries is called a panel

path. Each user can be defined to use a different path.

The administration functions let you:
m Define and maintain panel libraries
m Copy panels between libraries on different paths

m Temporarily define and maintain panel libraries
More information:

Maintaining Panels (see page 48)

The concatenation path can contain multiple files. The concatenation path is defined
during initialization in the PANELLIBS parameter group.

Chapter 1: Introduction 35

Concepts and Facilities

MODS Control File Maintenance

A MODS control file contains the following records:
m Application dependent components:
- SAR—Application Definitions
- SCR—Criteria
- SHM—Help
- SLD—Language Services Definitions
- SLH—Lists
- SMH—Menus
- SMS—Messages
- SRW—Reports
- SVM—Tables
m Common (non-application dependent) components:
- SCM—Commands
- SPS—Print Services Manager (PSM) Definitions
- SLD—Language Definitions

Control File Maintenance Facilities

The control file maintenance facilities let you:

m Copy records from one control file to another (for example, from test to
production)

m Delete records from a control file
m Browse the records stored on a control file

m Search records stored on a control file

Control File Concatenation

Control file concatenation lets you access multiple control files concurrently via the
concatenation path, and provides a distinct separation between distributed, production,
and test definitions to simplify maintenance and provide control over the development
environment.

The concatenation path can contain multiple files. The concatenation path is defined
during initialization in the MODSFILES parameter group.

36 Managed Object Development Services Guide

Concepts and Facilities

Merded View

Automatic Promotion

All MODS component lists display a merged view of all files in the path. This means that
the distinctions between individual files are ignored and the contents of all files in the
concatenation path are eligible for selection.

In the case of duplicate components present at different levels in the path, the topmost
instance has precedence over those at lower levels. The identifier of the file in which the
component is located is displayed on the right side of component lists.

Only the topmost file in the path is modifiable by means of any of the maintenance
facilities. A request to update any definition not resident in the top file retrieves the
definition from the lower file and stores it into the topmost file (this is known as
automatic promotion). New records are always added to the topmost file in the path.

Manual Demotion (Lodgement)

Sharing Control Files

To move any definition downward in the path, the MODS : Definition Utilities must be
used and the source and destination files specifically named.

These utilities also provide a means of viewing the contents of files in isolation. That is,
they do not present a merged view, but list only those components that are actually
contained in the named file.

Two major benefits flow from control file concatenation:
Operational Flexibility

The ability to give multiple groups of users of the same application different views
of that application. A view in this context constitutes both presentation and
behavioral differences. Views can be used to implement significant usage
differences, such as TEST and PRODUCTION.

Maintenance Advantages

Library concatenation greatly eases maintenance difficulties and facilitates better
change control with inbuilt backout capability. It also lets you manage changes to
distributed applications.

MODS control files can be shared between regions where multiple product regions exist
(for example, a production and test region). You must ensure, however, that only one of
these regions is capable of updating records stored on the shared control files. Data
corruption can occur if this is not done.

Update capability is specified when defining the concatenation path in the MODSFILES
parameter group for each product region.

Chapter 1: Introduction 37

Concepts and Facilities

WebCenter

The WebCenter files are stored in MODS. These files have no relation to the other
MODS components.

38 Managed Object Development Services Guide

Chapter 2: Accessing the MODS and CAS
Facilities

This section contains the following topics:

Accessing MODS Facilities (see page 39)
Accessing CAS Facilities (see page 40)

Accessing MODS Facilities

All facilities described in this guide are accessed through the MODS : Primary Menu. You
can display this menu by entering /MODS at the command prompt.

MODS Primary Menu

The MODS menu structure is displayed in the following figure.

PROD--------mmmmmm e - MODS : Primary Menu --------------ccmmmmomnon /MODS
Select Option ===>

C - Common Application Services CAS

P - Panel Maintenance PANELS

M - Mapping Services MAPMENU

R - Report Maintenance RWDEFN

AD - Administration MODSAD

REP - Reports -

X - Exit

The following options appear on the MODS : Primary Menu:
C - Common Applications Services Maintenance

This option displays the CAS : Maintenance Menu used to maintain CAS application
components (see page 40).

P — Panel Maintenance

This option lets you maintain individual panels (see page 48).

M — Mapping Services

This option lets you maintain ASN1 maps (see page 125).

R — Report Maintenance

This option lets you add, update, delete, copy, list and view report definitions (see
page 255).

Chapter 2: Accessing the MODS and CAS Facilities 39

Accessing CAS Facilities

AD - Administration
This option displays the MODS : Administration Menu, giving you access to:

m Panel library maintenance facilities (see page 139)

m MODS control file maintenance facilities (see page 143)

REP — Reports

This option displays a list of predefined MODS reports that you can generate (see
page 134).

X - Exit

This option returns you to wherever you were prior to accessing the
MODS : Primary Menu.

MODS Access Authority

To access the MODS : Primary Menu, you need to have the Managed Object Dev.
Services field on the UAMS : Access Authorities panel set to Y.

Note: For more information about the MODS : Primary Menu, see the Security Guide.

Accessing CAS Facilities

All Help facilities described in this guide are accessed through the CAS : Maintenance
Menu. You can display this menu by entering /CAS at the command prompt or entering
C at the MODS Primary Menu.

40 Managed Object Development Services Guide

Accessing CAS Facilities

CAS Maintenance Menu

This menu enables you to maintain CAS definitions, including menus, messages, and
help definitions that you may use when developing applications.

The CAS menu structure is displayed in the following figure.

PROD---------mmmmmmmeme oo CAS : Maintenance Menu ------------------------ /CAS
Select Option ==

A - Application Register CASAR

C - Commands CASCMD

CR - Criteria CASCRIT

H - Help CASHELP

L - Lists CASLIST

M - Menus CASMENU

MP - Maps MAPS

MS - Messages CASMSG

P - Panels PANELS

T - Tables CASTAB

X - Exit
Application ID ..+ Reqd (H) Opt (ACRLMMPT)
Name Prefix Opt (CCRHLMMST)
Type .ooovvniinns, Opt (CRL)
User ID Prefix ... Opt (CRL)

The following options appear on the CAS : Maintenance Menu:
A — Application Register

This option lets you maintain application definitions. The first step when creating an
application is to define the application in the Application Register.

C — Commands
Displays a list of command definitions.
CR — Criteria
Displays a list of criteria definitions.
H - Help
Displays a list of function-level help definitions.
L — Lists
Displays a list of list definitions.
M - Menus

Displays a list of menu definitions.

Chapter 2: Accessing the MODS and CAS Facilities 41

Accessing CAS Facilities

MP — Maps
Displays a list of map definitions.
MS — Messages
Displays a list of message definitions.
P - Panels
Displays the MODS Panel Maintenance Menu.
T - Tables

Lists table definitions.

CAS Application Components

You can maintain the following CAS application component types:

m Application Register (see page 46)

m Commands (see page 121)

m (Criteria (see page 116)

m Help (see page 104)

m Lists (see page 96)

m Menus (see page 92)

m Messages (see page 110)

m Tables (see page 113)

Select any of these options to display a list of application component definitions where
common actions are provided to maintain individual definitions as follows:

®m To add a definition, press F4 (Add).

m To browse, delete, copy, or update a definition, enter the appropriate mnemonic

(B, D, C, or U) beside the entry for the definition.

The panels that appear vary depending on the application component type. Some of the
application component types support additional actions.

42 Managed Object Development Services Guide

Chapter 3: Maintaining Application
Components

This section contains the following topics:

Naming Standards (see page 43)

Maintaining Application Component Definitions (see page 45)
Registering an Application (see page 46)
Maintaining Panels (see page 48)

Maintaining Menus (see page 92)

Maintaining Lists (see page 96)

Maintaining Help (see page 104)

Maintaining Messages (see page 110)

Maintaining Tables (see page 113)

Maintaining Criteria (see page 116)

Maintaining Commands (see page 121)
Maintaining Maps (see page 125)

Printing MODS Component Reports (see page 134)

Naming Standards

This section describes naming standards that must be used for applications that you
develop.

Note: These standards do not generally apply when you are customizing a supplied
product. Where customization is permitted for a given product, the specific standards
that apply are described in the documentation for that product.

More information:

Application Register (see page 21)

Application Definitions
The primary method of applying naming standards is through an application identifier.
An application is a group of logically related functions and/or data. Every application is

defined in the Application Register and named with a unique identifier. This application
identifier provides a unique name space for application components.

Chapter 3: Maintaining Application Components 43

Naming Standards

Before you can define application components, you must define an application
definition within the Application Register.

The following sections detail how individual application components are named.

Note: For applications that you define, ensure that the first character of the application
identifier is Y. This provides name space protection from distributed product definitions
and your applications.

Messages

The message prefix, specified within an application definition, must be the same as
the application identifier.

Panels

The first three characters of the Panel identifier must be the same as the
application identifier.

NCL Procedures

The first three characters of the procedure name must be the same as the
application identifier.

CAS Components

The application identifier must be explicitly specified for Menus, Lists, Panel
Domains, Help, Tables, and Criteria Definitions.

Note: The help function names OVERVIEW and INDEX are reserved for application
overview help and the help index, respectively.

The first three characters of Message and Command identifiers must be the
application identifier.

Reports

The first three characters of a report application identifier must be the same as the
application identifier.

The Report Application Identifier must be explicitly specified within Report
Definitions.

Map Definitions

The first three characters of a Map Name must be the application identifier.

44 Managed Object Development Services Guide

Maintaining Application Component Definitions

Externally Visible Entities

In addition to application components there are other entities that are visible
outside an application and therefore require name space protection by prefixing
their names with the application identifier. These include the following:

Global variables

Global vartables

Locks

Variables/MDOs that are shared between applications
Data Domain names

File identifiers

NDB identifiers

EDS events

NDB Global Format names

Maintaining Application Component Definitions

You can do the following with application component definitions:

Browsing an Application Component Definition

Select option B to browse an application component definition. The panels that
appear will be specific to the type of definition that is selected. The function is
Browse and the fields cannot be modified.

Updating an Application Component Definition

Select option U to update an application component definition. The panels that
appear will be specific to the type of definition that is selected. When you have
finished updating the definition, press F3 (File). To cancel the update, press F12
(Cancel).

Deleting an Application Component Definition

Select option D to display a message requesting you to confirm the deletion. Press
Enter to delete the definition, or press F12 (Cancel) to cancel the deletion.

Chapter 3: Maintaining Application Components 45

Registering an Application

Copying an Application Component Definition

Select option C to copy an existing application component definition. The panels
that appear will be specific to the type of definition that is selected.

The panels are primed with data from the copied definition. Modify the new
definition as required.

When you have finished updating the definition, press F3 (File). To cancel the
update, press F12 (Cancel).

Adding Application Component Definitions

You can create an application component definition by adding a new definition,
either by using F4 (ADD) on a list, or by copying an existing definition and making
changes to the copy.

When you have finished adding the definition, press F3 (File). To cancel the update,
press F12 (Cancel).

Note: For information about the fields and actions on any of the CAS panels, press F1
(Help).

Regdistering an Application

An application is a group of logically related functions and/or data. Before an
application’s components can be defined, an application definition must be created in
the application register.

This section describes the facilities available for adding and maintaining application
definitions.

More information:

Application Register (see page 21)

Application Definitions

An application definition consists of a three-character identifier, a descriptive name, a
one- to eight-character message prefix, and, optionally, some comments.

The application identifier (or application ID) provides a unique naming space (see
page 43) for an application’s components—it prefixes the identifiers of all these
components. This makes it easy to find all components that are used by a particular
application and simplifies maintenance of component definitions.

46 Managed Object Development Services Guide

Registering an Application

Defining an Application

You must specify the following information when defining an application:
m Application ID
m A brief description

m A message prefix

This is shown in the following sample.

PROD---------mommmemm - - CAS : Application Definition --------------- Page 1 of 1
Command ===> Function=Browse
Application ID ... $AN
Description SNA Management Services (APPN)
Message Prefix ... AN
Comments
Fl=Help F2=Split F3=Exit
F9=Swap

For information about the fields displayed on the panel, press F1 (Help).

After specifying this information, press F3 (File) to add the application definition. To
cancel the application specification, press F12 (Cancel).

Chapter 3: Maintaining Application Components 47

Maintaining Panels

Maintaining Application Groups

Any application that uses lists and reports must have its own copy of the table
SADGROUP in which the names of associated groups are defined. The SADGROUP table
is currently available only to CAS List Services and Report Writer. Regardless of which
application contains the table, SADGROUP’s attributes must always be defined (except
for the Appl ID and Field description fields, which need to be changed for the relevant

application).
PROD---------m-mmmemame o CAS : Table Description ----------------- Page 1 of 2
Command ===> Function=Browse
Appl IDcvvviinnnnn, $AD Field name $ADGROUP
Field description Sample Group Defn.
Edit type TABLE (TABLE, OSATT, OSFLD, IMFLD or IMREC)
For Edit type = TABLE:
Validation exit $CAVMO40
Sequence numbers NO (YES or NO)
Load table?coiiinn. YES (YES or NO)
Max abbreviation length (3 - 8 or blank if none)
Max full value length 12 (3 - 20)
Max description length 38 (3 - 38 or blank if none)

For Edit type = IMFLD or IMREC:
InfoMaster category
For Edit type = IMREC:
InfoMaster field
InfoMaster description field
For Edit type = OSATT or OSFLD:
Object Services Class ID
For Edit type = NDBFL:

F1l=Help F2=Split F3=Exit F6=Entries
F8=Forward F9=Swap

More information:

Maintaining Tables (see page 113)

Maintaining Panels

This section describes the MODS (see page 50) : (see page 50) Panel Maintenance
facilities (see page 50) for creating, maintaining, and customizing full-screen panel
definitions (see page 56).

More information:

Panel Maintenance (see page 21)
Panel Library Maintenance (see page 35)

48 Managed Object Development Services Guide

Maintaining Panels

Panel Maintenance

Panel definitions can be used by NCL processes executing in any NCL environment
associated with a display window. The panels enable NCL processes to display output
data, and can be designed with input fields for communicating back to these NCL
processes.

For information about how NCL processes use panel definitions, see the Network
Control Language Programming Guide.

Panels are created and changed using an online editor. You must be authorized to use
this facility, and installations can limit the number of concurrent edit users by restricting
the amount of storage available to the editor.

The split-screen facilities are very useful when designing panels: the panel editor can be
used on one window, while the panel view facility of MODS : Panel Maintenance
displays the current version of the panel being developed on the other.

Concepts and Terminology

Panels are stored in VSAM data sets for fast retrieval and update. A VSAM data set
containing panel definitions is called a panel library, with individual panel definitions
being termed members of the library. Each member maintains details on the date of
creation, the date of last modification, the user ID, the number of statements in the
member, and the modification level.

The product region supports multiple panel libraries. A library can be used as the sole
source of panel definitions, or it can be concatenated with other libraries defined to the
system. A concatenation of libraries is called a panel path. When a user is defined, the
panel path they use is defined. Each user can be defined to use a different path. The
default path is called PANELS. For more information about panel paths, see the
Administration Guide for your product.

When a library is defined, the person defining it can determine if the library can be
edited on the system. When a path is defined, the definer can choose to allow or

disallow edit of selected libraries in the path.

Note: To update panel definitions in a library using the MODS panel maintenance
facilities, the library must have edit allowed by both the library and path definitions.

More information:

Maintaining Panel Libraries (see page 139)

Chapter 3: Maintaining Application Components 49

Maintaining Panels

Retrieving Panels From Panel Libraries

When required, panel specifications are retrieved from a library in the user’s current
path.

To eliminate overheads associated with retrieving the panel from the library, an
in-storage queue of active panels is maintained. When a panel is first referenced it is
retrieved from a panel library and stored on the active panel queue.

Thereafter, the panel is retrieved from the active panel queue without reference to the
panel’s library. If one of these panels is modified (using the online editor), any old copy
is removed from the active panel queue so that the next reference retrieves the
updated panel.

Note: If a panel library is being shared by more than one product region, a modified
panel is only removed from the active panel queue of the product region on which the
panel change has been made. The other product regions continue to use the old panel
until it is rolled off the active panel queue by other panels being used in the system. The
LIBRARY REFRESH command can be used to drop all panels loaded from a library from
the active panel queue.

Defining and Maintaining Panels

You can create a new panel definition by selecting the Add Panel option from the
MODS : Panel Maintenance Menu, or by copying an existing panel definition using the
Copy panel option on a list of panels. You can browse, update, delete, list, view, print,
rename, and display existing panels using options on the list of panels.

50 Managed Object Development Services Guide

Maintaining Panels

MODS : Panel Maintenance Menu

The MODS : Panel Maintenance Menu can be accessed by selecting option P from the
MODS : Primary Menu (or use the /PANELS shortcut).

PROD---------mooommoon MODS : Panel Maintenance Menu ------------------- /PANELS
Select Option ===>

A - Add Panel

I - Display Panel Information

L - List Panels

M - Move/Copy Panels Between Libraries
S - Search Panels

X

- Exit
Path PANELS
Panel Name (Required A I Optional L M)
Library Name ..+ PANLUSR (Required A L S Optional M)
Fl=Help F2=Split F3=Exit F4=Return

F9=Swap

All panel maintenance facilities operate within the path defined for your user ID. The
editing options shown on the MODS : Panel Maintenance Menu let you add or list
panels, or copy the source data for online panels within libraries or between libraries in
your path. You can also display or test existing panels.

Your library path is the name of the panel library path defined for you in your user ID
definition. The default path name is PANELS.

For information about the fields displayed on the MODS : Panel Maintenance Menu
press F1 (Help).

Chapter 3: Maintaining Application Components 51

Maintaining Panels

Library Selection List

If you enter a question mark (?) in the Library Name field on the MODS : Panel
Maintenance Menu or the MODS : Panel Move/Copy Menu when you select an option,
the MODS : Panel Library List is displayed.

All libraries in the current path are displayed. If you select a library by entering its
number in the Select Option field, processing continues as if you had typed the library

name yourself on the original menu and pressed Enter.

The top right corner of the panel shows the path name. The fifth line of the panel
displays the path name and its description.

Note: For information about the fields and options on the panel, press F1 (Help).

Selecting a Panel Maintenance Function

Select one of the functions displayed on the MODS : Panel Maintenance Menu by
entering the letter next to the desired option in the Select Option field, and pressing
Enter.

Some options require that a library name is specified in the Library Name field. This
defaults to the first editable library in your path. You can change this to any other library
in your path. If you are unsure what libraries are in your path, enter a question mark (?)
next to this field. The MODS : Panel Library List is displayed, which is a selection list of all
libraries in the current path.

Note: You can only use panel maintenance facilities on libraries in your path.

Adding a Panel Definition

Select option A to create a new panel definition. Enter the name of the library where
you want the panel to be stored in the Library Name field and the name of the panel in
the Panel Name field on the MODS : Panel Maintenance Menu. The library name
entered must be editable on your library path.

52 Managed Object Development Services Guide

Maintaining Panels

Listing Panel Definitions

Select option L from the MODS : Panel Maintenance Menu to display a list of panels
defined in a particular library.

Enter the name of the library in the Library Name field on the MODS : Panel
Maintenance Menu. The MODS : Panel List panel is displayed, showing information
about each panel defined in the library.

If you make an entry in the Panel Name field on the MODS : Panel Maintenance Menu,
MODS : Panel List displays the list of panel definitions starting with the panel name that
matches the value you enter. (If this is a partial panel name match, the first panel name
that partially matches the value that you entered appears as the second item in the
displayed list.)

Note: For information about the fields and actions on the panel, press F1 (Help).

Special List Commands

In addition to the standard commands available with all lists, the following special
commands are available on the MODS : Panel List:

S panelname

This command lets you select a new or existing panel for update, without having to
scroll to the correct place in the selection list. Similarly, any of the other line
selections (except Delete) can be entered as primary commands if followed by the
panel name. For example, you can view a panel named MYPANEL by entering V
MYPANEL on the command line.

SORT

This primary command can be used to change the sort order of the list. The list is
normally sorted by name, but the sort command can be used to sort it by any of the
other columns displayed on the list. For example, SORT CRE can be used to sort the
list by creation date.

Secondary sort fields can also be specified. For example, SORT ID SIZE sorts the list
by the name of the user who last updated the panel, and by size for each user ID.
The valid sort fields are Name, Created (or Cre), Modified (or Mod), Mlev, and ID.
The sort process can take some time if you are listing a large panels data set.

Viewing a Panel Definition in Display Format

On the Panel List panel, enter V beside a panel definition to see what it looks like when
displayed by an NCL procedure.

The view function displays the panel in the nominated library. Note that the displayed
panel is not necessarily the panel that would be displayed by any NCL user with the
same panel library path. A panel with the same name can be in another library in the
path.

Chapter 3: Maintaining Application Components 53

Maintaining Panels

Printing a Panel Definition

On the Panel List panel, enter P beside a panel definition to print it. The panel definition
is printed using Print Services Manager (PSM).

For more information, see the User Guide for your product.
More information:

MODS Component Reports (see page 135)

Renaming a Panel Definition

On the Panel List panel, enter R beside a panel definition to rename it within the
selected library.

Display Information About a Panel Definition

From the Panel Maintenance Menu, select option | to display a list of all the libraries, in
your path, that contain a specified panel. You must specify the name of the panel in the
Panel Name field on the menu.

All libraries in your path are displayed in concatenation order.
The top left of the display shows the library name that was specified on the
MODS : Panel Maintenance Menu, called the current library. The top right of the panel

displays the path name.

If the panel is not defined in a library, *Not Present is displayed next to the library
definition. For information about the displayed fields, press F1 (Help).

Statistics for the panel in the current library are displayed in high intensity. This
information tells you where the highest instance of a member is in the library

concatenation.

Enter an S or B next to a library to browse the panel definition stored in that library.

Moving and Copying Panel Definitions Between Libraries

From the Panel Maintenance Menu, select option M from the MODS : Panel
Maintenance Menu to move or copy panels from one library to another within your
path.

If you enter a name in the Library Name field or the Panel Name field on the
MODS : Panel Maintenance Menu, this information is used on the Move/Copy Menu.

Note: You can also copy panels between libraries on different paths (see page 139).

54 Managed Object Development Services Guide

Maintaining Panels

The MODS : Move/Copy Menu is displayed, letting you select the libraries and panels
that you want to move or copy.

PROD-------mmmmmmemee o MODS : Panel Move/Copy Menu -------------cmmmmommmmnon
Select Option ===>
C - Copy Panel Definitions
M - Move Panel Definitions
X - Exit
Pathiiiit PANELS (Your path name)
"From’ Library +
'To’ Library + WORK
Panel Name (Blank, Full or Generic name,
e.g. '*' for all panels, or
'D*’ for all starting with D)
Replace Like-Named Panels? NO (YES or NO)
Copy All Matching Panels? NO (YES or NO)
Fl=Help F2=Split F3=Exit F4=Return
F9=Swap

When the Copy option is chosen, the definition is loaded from the FROM Library and
stored into the TO Library. When the Move option is chosen, the definition is deleted
from the FROM Library and added to the TO Library.

To Move or Copy a panel, enter the names of the FROM Library and TO Library. Both
libraries must be in your path (your path name is displayed on the screen, and cannot be
changed). The TO Library must be editable. For Move processing, the FROM Library
must be editable as well. To select from a list of library names in your path, enter a
question mark (?) next to either Library field.

For information about the fields on the panel, press F1 (Help).
Panel Move/Copy List

The MODS : Panel Move/Copy List is displayed when you select Move or Copy on the
MODS : Panel Move/Copy Menu and leave the Panel Name blank or specify a generic
panel name.

The top left of the display shows the name of the library being listed (the FROM Library);
the top right of the display shows the FROM Library and the TO Library. The list shows
panels in the FROM Library, based on the panel name you specified.

Chapter 3: Maintaining Application Components 55

Maintaining Panels

Search Panels for a Character String

You can search all or specific panels defined in a particular library for a string of
characters.
To search panels for a character string

1. Onthe MODS : Panel Maintenance Menu, specify the name of the library that
contains the panels to be searched in the Library Name field and select Option S.

The MODS : Search Panel Definitions panel appears, letting you enter the character
string and optionally a panel name prefix.

Search String
Panel Name Prefix

Note: For information about the fields, press F1 (Help).
2. After you fill in the fields, press F6 (Action).
The PSM : Confirm Printer panel appears.

3. If necessary, change the values in the fields, then press F6 (Confirm) to start the
search.

If the number of panels to be searched is 100 or more, a panel appears on your
screen to advise you of the progress of the search. When the search is complete, a
message appears on your screen to advise you of the success or failure of the
search. The search results in a PSM report that lists the panels containing the
specified string of characters. If the report is on hold, you can use the PQ[UEUE]
command to access the PSM output queue and view the report.

Designing Panels

This section describes what to put in a panel definition: how to define constant data,
and input and output fields. The panel control statements can be used to embed
comments in panel definitions, to define fields, and to interact with NCL processes.

Note: For information about how NCL processes use panel definitions, see the Network
Control Language Programming Guide.

56 Managed Object Development Services Guide

Maintaining Panels

Panel Control Statements

Data in Panels

Optional control statements can precede a panel to specify the particular requirements
for that panel. These are as follows:

#ALIAS
Defines an alternative name for an input variable.
#OPT
Defines optional operational requirements.
#FLD
Defines or modifies a field character’s attributes.
HERR
Defines the action to be taken for an error condition.
#NOTE
Provides installation documentation (this is ignored during processing).
#TRAILER
Provides a means of placing specified panel lines at the end of the panel (regardless

of screen size).

Control statements included within panel definitions must precede the displayable
portion of the panel (as determined from the first non-control statement encountered).
Control statements must start in column 1 of the lines on which they appear.

Before a panel is displayed, its associated control statements are parsed and any
variable substitution performed. This lets you tailor control statements dynamically.

Panels contain a combination of fixed data and variable output data:

m Fixed data is the screen captions, field identification text, and other static screen
information defined when the panel is created. This does not change when the
panel is displayed.

m Variable output data is data generated by the system while the panel is being
displayed. It replaces variables positioned within the panel created by the editor.
Data is extracted from NCL variables available at the time the panel is invoked.

Chapter 3: Maintaining Application Components 57

Maintaining Panels

Variable output data can be displayed in:

Protected output-only fields (where the data comprises either system or user
variables), or

Unprotected input fields, for any user variables. Once displayed, you can enter data
into the unprotected input fields. Panel Services then inserts this data into the user
variable for each field, so it is available for further processing by NCL procedures.

You can use syntax to define variables within a panel (see page 71).

Panel Design

A panel design contains a series of lines, each of which can contain one or more fields.

Each field is preceded by a field character that identifies the attributes for that field.
These attributes specify:

Field Characters

The field type (input, output, selector pen detectable (SPD), or null)
The intensity (brightness) of the display

Optional formatting rules

Optional editing rules

The color and extended highlighting used when the field is displayed (for
appropriate terminals)

Each panel line has one or more fields, starting with a field character that specifies the
field attributes.

Within the #FLD control statement (see page 71) at the top of the panel definition, you
must specify which characters are required for different types of field.

You can use the following methods to define field characters:

Character mode—To specify character mode, use any special character other than
an alpha or numeric character, and excluding ampersand (&), blank, or null.

Hexadecimal mode—To specify hexadecimal mode, enter the hexidecimal value for
the character (for example, as X‘FA’). Use any hexidecimal value in the range X‘00’
to X‘FF’, excluding the values X‘00’ (null), X‘40’ (blank), X‘50’ (ampersand—&J), X‘OF’,
and X‘OF’. Hexadecimal mode is used when you need a very large number of field
types within one panel and there are insufficient special keyboard characters
available to accommodate all of the field characters you require.

58 Managed Object Development Services Guide

Maintaining Panels

Field Types

Each field is allocated a field type that specifies the method for processing the field. The
following field types are supported:

OUTPUT
Display only—no data can be entered from the screen.
INPUT
You can both display and enter data.
SPD
Selector pen detectable—data cannot be typed in.
NULL
Display only—although unprotected, any data entered is ignored.
Any mixture of the above field types can be defined to suit the requirements for a panel
you are designing.
The field character that precedes each field determines:
m The field type.

m The display characteristics of the field (such as intensity, color, highlighting,
justification, and capitalization).

m For input fields, the internal validation rules that must be obeyed for data entered
in that field. Such rules can specify, for example, that a field is mandatory, must be
numeric, cannot contain imbedded blanks, or must be a valid date.

Each field character that you define occupies the equivalent screen position when the
panel is displayed, but appears as a blank character (the attribute byte).

The field proper starts from the next position after the field character, and continues to
the next attribute byte on the same line, or to the end of that line where there is no
intervening field. Fields do not wrap round from one line to the next.

Field characters can be specified either in character, in which case they are always
special characters (non-alpha, and non-numeric; for example, *, %), or in hexadecimal.

Chapter 3: Maintaining Application Components 59

Maintaining Panels

The standard default field characters are as follows:
%

High-intensity, protected (no input)

Low-intensity, protected (no input)

High-intensity, unprotected (input, no validation)

These standard default field characters do not require definition by a #FLD Statement
statement.

Define any additional field characters you need using the #FLD Statement statement.
The attributes for the above default field characters can be modified. You can use the
#OPT statement (see page 85) to nominate alternative standard field characters, so that
%, +, and _ can be used within the panel and not processed as field characters, if
required.

Column 1 of each line of a panel must be a valid field character; if one is not defined,
then the attributes for the second standard field character (normally +, for
low-intensity, protected) are used to replace any data incorrectly placed in that column.

In the figure below, all fields preceded by a percent sign (%) display in high-intensity and
are protected from data entry. All fields preceded by a plus sign (+) display in
low-intensity and are also protected. The only field available for input is on line 16 of the
text data, preceded by an underline (_). The word newpanel identifies the NCL variable
that receives the data that the user enters in this field once the Enter key is pressed.

60 Managed Object Development Services Guide

Maintaining Panels

By default, the cursor is placed at the beginning of the cmd field, as this is the first field
requiring input—no other cursor position has been specified.

Note: The ampersand (&) that precedes a variable is omitted when specifying an input
field.

LIB: PANLUSR-----------mmmmmm- MODS : Edit Panel ---------------- NAME: PANELOO1
Command ===> Scroll ===> (SR
LINE <---+----10---+----20---+----30---+----40---+----50---+----60---+----70-->
HoAokok TOP OF DATA

%MODS : Rename Panel
+Command ===> cmd
% Current Panel Definition
+ Path %&path +
+ Library ol %&lib +
+ Panel Name %&oldpanel +
% Enter New Panel Name
+ New Panel Name _newpanel +

When a panel is displayed, field characters are removed and the required terminal
attribute characters substituted. The following figure shows how the panel is displayed.

Note: In all figures, the underline symbol (_) designates the cursor location.

Command ===> _

Current Panel Definition

Library

Panel Name

Enter New Panel Name

New Panel Name

MODS :

Rename Panel

Chapter 3: Maintaining Application Components 61

Maintaining Panels

Allowing Long Field Names in Short Fields

An input field is defined on a panel by inserting an appropriate attribute character
followed by the name of the NCL variable that contains the input data. Unfortunately
this means that input fields cannot be any shorter than the variable name that contains
the input data.

The #ALIAS control statement lets you define an alias name for a variable. The alias can
be used where the variable would have been used. A range or list of variables can be
defined and referred to by the same alias name in the panel definition.

Output Padding and Justification

Careful use of padding and justification greatly enhances the look and effectiveness of
panels for end-users.

Panel Services includes extensive facilities to manipulate displayed data. Padding and
justification qualities are specified by the #FLD Statement statement. There are two
justification categories—field-level justification, and variable-level justification. Both can
be used concurrently.

Field-Level Justification

This is performed on an entire field as delimited by defined field characters. Field
justification analyzes the entire field, strips trailing blanks, and pads and justifies the
remaining data. The #FLD Statement operands controlling field-level justification are
JUST and PAD.

The various ways data can be manipulated are best described by a series of examples.
These examples show a mix of fields each defined with a different field character and
each showing a different display format. Study the #FLD Statement statements and
observe the results achieved.

#NOTE This sample panel definition gives examples of the
#NOTE use of field level justification and padding.

#FLD
#FLD
#FLD
#FLD
#FLD
#SVARO1
@SVARO3
?7&VARO4
/&VARG5

JUST=RIGHT
JUST=LEFT PAD=<
JUST=RIGHT PAD=>
JUST=CENTER PAD=.

N V@ e

+ o+ + o+

62 Managed Object Development Services Guide

Maintaining Panels

Assume the following variable assignment statements are executed by the NCL
procedure before displaying the sample panel:

&/ARO1 = &STR Left justified null padding
&ARO2 = &STR Right justified null padding
&/ARO3 = &STR Left justified with padding
&/ARO4 = &STR Right justified with padding
&/ARO5 = &STR Center justified with padding

The default values are JUST=LEFT and PAD=NULL, as shown by the first line in the
example below, where field character # is used with no attributes other than the
defaults. The sample panel is displayed as follows:

Left justified null padding

Right justified null padding
Left justified with padding<<<<<<<<<<<<LLLLLLLLLLLLLLLLLLL
SSSSSSSSSSSSSSS>S>>>>>>55>>>>>Right justified with padding
.............. Center justified with padding...............

Variable-Level Justification

This operates independently of field-level justification, and applies to the data
substituted for field variables defined as requiring variable-level justification.
Variable-level justification is designed to help tabulated output, where data of differing
lengths is substituted for a series of variables and where the normal substitution process
disrupts display formats. The #FLD Statement operands that control variable-level
justification are VALIGN and PAD.

Chapter 3: Maintaining Application Components 63

Maintaining Panels

The substitution process substitutes data in place of the &variable without creating
additional characters. Thus, if a variable (for instance, &VVARIABLE) is replaced by data
(for example, Data), any characters following this are moved left to occupy any spaces
remaining after substitution (this occurs if spaces are freed going from a long variable
name to a shorter data length).

#NOTE This sample panel definition gives examples of the
#NOTE use of variable justification, padding, and field
#NOTE justification.

#FLD # VALIGN=LEFT

#FLD $ VALIGN=RIGHT

#FLD @ VALIGN=CENTER

#FLD ? VALIGN=LEFT PAD=.

#FLD / VALIGN=RIGHT PAD=.

#FLD } VALIGN=CENTER PAD=.

#FLD ! VALIGN=LEFT JUST=RIGHT PAD=.
#S&VARIABLE other data

$&VARIABLE other data

@&VARIABLE other data

?8VARIABLE other data

/&VARIABLE other data

}&VARIABLE other data

!&VARIABLE other data

+ + + + + + +

Variable-level justification, controlled by the VALIGN operand of the #FLD statement,
lets you influence the way substitution is performed.

Note: Variable-level justification is only performed if the length of the data being
substituted is less than the length of the variable name being replaced, including the
ampersand (&).

Assume the following variable assignment statement has been executed by the NCL
procedure before displaying the sample panel:

&VARIABLE = Data

&VARIABLE is the only variable within a field that contains the words ‘other data’.
Where both field justification and variable alignment are used, the padding character
applies to both, as shown by the last line of the example for the field character !. The
sample panel is displayed as follows:

Data other data

Data other data

Data other data

Data..... other data

..... Data other data

..Data... other data
................................. Data..... other data

64 Managed Object Development Services Guide

Maintaining Panels

Input Padding and Justification

Fields to which the PAD and JUST operands of the #FLD statement are applied can be
defined as input fields. If an input field is primed with data during the display process,
the alignment of data within that field when displayed is similar to output padding and
justification, except that JUST=CENTER is treated as JUST=LEFT.

When Panel Services processes input from the screen, input fields defined using the PAD
and JUST operands are specially processed using the following rules:

m Trailing blanks and pad characters are stripped off, unless the pad character is
numeric.

m [f JUST=RIGHT is specified for the field, leading blanks and pads are stripped off
(including numeric pads).

m [f JUST=ASIS is specified for the field, trailing blanks and pads are stripped off, but
leading blanks and pads remain intact.

#NOTE This sample panel definition gives examples of the
#NOTE use of input padding and justification.

#FLD # TYPE=INPUT

#FLD $ TYPE=INPUT JUST=RIGHT

#FLD @ TYPE=INPUT PAD=< JUST=LEFT
#FLD ? TYPE=INPUT PAD=> JUST=RIGHT
#FLD / TYPE=INPUT PAD=0 JUST=LEFT
#FLD } TYPE=INPUT PAD=1 JUST=RIGHT
#VARO1

$VARO2

@VARO3

?VARO4

/VARO5

}VARO6

+ + + 4+ + +

Chapter 3: Maintaining Application Components 65

Maintaining Panels

Assume the following variable assignment statements are executed by the NCL
procedure before displaying the sample panel:

&VAROL = Walt
&ARO2 = Tom

&VARO3 = Dick
&/ARO4 = Harry
&ARO5 = John
&ARO6 = Vicky

The sample panel is displayed as:

WALT

TOM
DICK<<<<<<g<<<<<<L<<L<<<L<<L<LL<LL<L<L<L<<
SSSSSSSSSSSSSSSSSS>SSS>>>>>>>>>>>>>HARRY
JOHNOOOO000E00OOE00EAEOEOEOEEOEOEEOEOOA
11111111111111111111111111111111111VICKY

If control is passed back to the NCL procedure without any data entered into the input
fields, the variables are set to the following values:

&ARO1 = WALT
&/ARO2 = TOM

&ARO3 = DICK
&/ARO4 = HARRY
&/ARO5 = JOHN
&/ARO6 = VICKY

Note: If the line JOHNOOO... is modified, it is padded to the right with zeros. The variable
values are translated to uppercase because the default for input fields is CAPS=YES.

Displaying Function Key Prompts
The SAA Common User Access (CUA) standards require that a list of function keys and
their functions be displayed at the bottom of a panel. These function key prompts are
displayed on the last lines of the physical screen.
The #TRAILER control statement can be used by NCL procedures to nominate lines that

appear at the bottom of the panel. The function key prompts are then always displayed
at the bottom of the panel regardless of the screen size.

Panel Statements

This section describes the panel statements.

66 Managed Object Development Services Guide

Maintaining Panels

#ALIAS Statement

This statement defines an alternative name for input variables and allows the panel
definition to contain alternative names for variable names in TYPE=INPUT and
TYPE=OUTVAR fields.

This facility is useful if you require short fields with long variable names. Each reference
to name in the panel definition is regarded as a reference to the next name from the list
of VARS specified.

This statement has the following format:

#ALIAS name
{ VARS=prefix*[RANGE=(start,end)] |
VARS={ vname | (vname,vname,..,vname) } }

name

Specifies the alias name that appears in the panel definition. Whenever this name
occurs in a field declared as TYPE=INPUT or TYPE=OUTVAR on the #FLD statement,
panel services logically replaces it with the next available name from the VARS list.

The name can be from one to eight characters in length. The first character must be
an alphabetic or national character. The remaining characters, if any, must be
alphanumeric or national characters.

The same name can be used on multiple #ALIAS statements. The variable names are
added to the end of the list of names to which the alias name refers.

VARS=prefix* [RANGE=(start,end)] |
VARS=(vname,vname, ..., vname) }

Specifies the list of names that replaces the alias name in the panel definition. Each
time the alias name is encountered in the panel definition it is replaced by the next
available name from this list. The format of the operands associated with VARS= is:

VARS=prefix* denotes that the variable names used are prefix1, prefix2, and so on.
The RANGE= operand can be specified to indicate a starting and ending suffix
number. The default is RANGE=(1,64). The format prefix* cannot be used in
conjunction with other variable names on the same #ALIAS statement.

VARS=vname is the name of a variable excluding the ampersand (&).

Examples:

#ALIAS Z VARS=LONGNAME
#ALIAS 7123 VARS=(SATURDAY, SUNDAY)
#ALIAS AVAR VARS=LINE* RANGE=(10,20)

Chapter 3: Maintaining Application Components 67

Maintaining Panels

#ERR Statement

Notes:

m Multiple #ALIAS statements can be used for the same alias name if insufficient
space is available on a single statement.

m [f an alias name appears in the panel definition after all the variable names in the
alias list have been used up, the alias name itself appears in the panel.

m Symbolic variables can be included in the #ALIAS statement. Variable substitution is
performed prior to processing the statement, using variables available to the NCL
procedure at the time the & PANEL statement is issued.

This statement defines action to be taken during error processing.

The #ERR statement is a panel control statement that determines the processing
required when a panel is being redisplayed following an error condition.

An error condition can be detected either by Panel Services internal validation or by the
processing NCL procedure. If detected by internal validation (and & CONTROL PANELRC

is not in effect), error processing is automatically invoked by Panel Services. If detected

by the processing NCL procedure, error processing is invoked in one of two ways:

m Using the &ASSIGN OPT=SETERR verb

®m By nominating the name of the variable that identifies the invalid input field on the
ERRFLD operand of the #OPT statement. This is dynamically invoked by using a
symbolic variable with the ERRFLD operand and setting this variable to the name of
the variable (minus the ampersand) that identifies the field in error.

Note: For information about using this technique, see the Network Control Language
Programming Guide.

When #ERR processing is initiated, the cursor is positioned to the first field in error and
the panel is redisplayed, applying the attributes defined on the #ERR statement to the
fields in error. This technique provides the panel user with a simple means of drawing
the terminal operator’s attention to the field in error. This is particularly effective on
color terminals where the color of any field in error can be altered for the duration of
the error, and reverts to normal when the error condition is rectified.

One or more #ERR statements can be defined in any order. However, as with #OPT,
#FLD, and #NOTE statements, any #ERR statement must precede the start of the panel,
which is determined by the first line that is not a control statement.

68 Managed Object Development Services Guide

Maintaining Panels

This statement has the following format:

#ERR [INTENS={ HIGH | LOW }]
[{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |
TURQUOISE | YELLOW | WHITE | DEFAULT }]
[{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }]
[ALARM={ YES | NO }]

INTENS={ HIGH | LOW }

Determines the intensity of the error field when displayed. The INTENS operand is
ignored for terminals with extended color and highlighting when either the COLOR
or HLIGHT operands are specified.

HIGH specifies that the field is displayed in double intensity.
LOW specifies that the field is displayed in low or standard intensity.

{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN | TURQUOISE |
YELLOW | WHITE| DEFAULT }

Determines the color of the field. It applies only to IBM terminals with seven-color
support and Fujitsu terminals with three- or seven-color support.

The COLOR operand is ignored if the terminal does not support extended color. This
enables COLOR to be specified on panels that are displayed on both color and
non-color terminals. COLOR can be used in conjunction with the HLIGHT operand.

For Fujitsu terminals that support extended color data streams, but support only
three colors, the following color relationships are used:

GREEN

When GREEN is specified, it produces a result of GREEN on a Fujitsu three-color
terminal.

RED

When RED is specified, it produces a result of RED on a Fujitsu three-color
terminal.

PINK

When PINK is specified, it produces a result of RED on a Fujitsu three-color
terminal.

BLUE

When BLUE is specified, it produces a result of GREEN on a Fujitsu three-color
terminal.

TURQUOISE

When TURQUOISE is specified, it produces a result of GREEN on a Fujitsu
three-color terminal.

Chapter 3: Maintaining Application Components 69

Maintaining Panels

YELLOW

When YELLOW is specified, it produces a result of WHITE on a Fujitsu
three-color terminal.

WHITE

When WHITE is specified, it produces a result of WHITE on a Fujitsu three-color
terminal.

DEFAULT

When DEFAULT is specified, it produces a result of GREEN on a Fujitsu
three-color terminal.

Fujitsu seven-color terminals are treated the same as IBM seven-color terminals.

The DEFAULT keyword indicates that the color of the field is determined from the
INTENS operand. This is particularly useful if you want to set the color from an NCL
procedure (that is, COLOR=&COLOR is specified and the NCL procedure can set the
&COLOR variable to DEFAULT).

{ HLIGHT | HLITE } = { USCORE | REVERSE | BLINK | NONE }

Applies only to terminals with extended highlighting support, and determines the
highlighting to be used for the field.

Because the HLIGHT operand is ignored if the terminal does not support extended
highlighting, HLIGHT can be specified on panels that are displayed on terminals that
do not support extended highlighting. HLIGHT can be used with the COLOR
operand.

When NONE is specified, the HLIGHT operand is ignored and no extended
highlighting is performed for this field.

ALARM={ YES | NO }

Turns the terminal alarm on or off if the panel is displayed with an error condition.
This works independently of the ALARM operand on the #0PT control statement.

Examples:

#ERR COLOR=RED HLIGHT=REVERSE ALARM=YES
#ERR COLOR=YELLOW HLIGHT=BLINK INTENS=HIGH

70 Managed Object Development Services Guide

Maintaining Panels

#FLD Statement

Notes:

® Only those attributes defined on the #ERR statement are modified for the field in
error. All other attributes associated with the original field, such as internal
validation, remain intact

m Symbolic variables can be included in a #ERR statement. Variable substitution is
performed before processing the statement, by using variables available to the NCL
procedure at the time the & PANEL statement is issued.

m When &CONTROL PANELRC is in effect, internal validation does not automatically
reshow the panel with the error message, and so on. In this case, the procedure
regains control following the &PANEL statement with the &RETCODE system
variable set to 8 to indicate that an error has occurred. The &SYSMSG variable
contains the text of the error message that describes the error and the &SYSFLD
variable contains the name of the field in error. This name is the name of the
variable in an input field that receives the data entered into that field.

m The &ASSIGN statement SETERR option provides a mechanism for assigning #ERR
field attributes to multiple (input field) variables before displaying a panel. This lets
you accept input from a number of different fields on a panel, validate all the fields
and then redisplay the panel with all incorrect fields displayed with the #ERR
attributes. This shows the user all the errors at one time, rather than field by field.

This statement defines or modifies a panel definition field character.

The #FLD statement is a panel control statement used to tailor the operational
characteristics of a panel.

When a panel is defined, it is constructed of a number of lines that, in turn, are made up
of a number of fields. Each field commences with a field character that appears as a
blank on the panel when displayed. Each field character determines the attributes that
are to be associated with the field following the field character itself. A field is delimited
by the next field character or the end of the panel line. Fields cannot wrap from one line
to the next.

The first field on a line always starts in column 1. If no field character is defined in the
first position of the line, the attributes of the second of the three standard field
characters (usually a plus sign (+), TYPE=OUTPUT, INTENS=LOW) are forced and replace
any non-field character incorrectly placed in this position.

Before parsing, the #FLD statement is scanned and variable substitution is performed.
This makes it possible to dynamically tailor any of the options or operands on the
statement.

Chapter 3: Maintaining Application Components 71

Maintaining Panels

As many #FLD statements as required can be specified. They can be defined in any
order. However, as with #OPT, #ERR and #NOTE statements, all #FLD statements must
precede the start of the panel, which is determined by the first line that is not a control
statement.

This statement has the following format:

#FLD { ¢ | X'xx' }
[BLANKS={ TRAIL | NONE | ANY }]
[CAPS={ YES | NO } 1
[{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |
TURQUOISE | YELLOW | WHITE | DEFAULT }]

CSET={ ALT | DEFAULT } 1
EDIT={ ALPHA | ALPHANUM | DATEn | DSN | HEX |

NAME | NAME* | NUM | REAL | SIGNNUM | TIMEn }]
{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE } 1]
[INTENS={ HIGH | LOW | NON }]
[JUST={ LEFT | RIGHT | ASIS | CENTER | CENTRE }]
[MODE={ SBCS | MIXED }]
[NCLKEYWD={ YES | NO }]
[OUTLINE={ {L RT B} | BOX }]
[PAD={ NULL | BLANK | char } 1]
[
[
[
[
[
[
[

—_— —

PSKIP={ NO | PMENU }]

RANGE=(min, max) 1]

REQUIRED={ YES | NO } 1

SKIP={ YES | NO }]

SUB={ YES | NO }]

TYPE={ OUTPUT | INPUT | OUTVAR | SPD | NULL }]
VALIGN={ NO | LEFT | RIGHT | CENTER | CENTRE }]

c| Xxx’
The field character:
c is the character that is used in the panel definition to identify the start of the field.
This is known as a field character. This must be a single non-alpha and non-numeric

character. Any special character (for example, an exclamation mark) can be used,
with the exception of an ampersand (&), which is reserved for use with variables.

Xxx’ is the hexadecimal value of the field character. Use this notation to specify any
value in the range X‘01’ to X’3F’. Do not use values that correspond to
alphanumeric characters, or X‘OE’ (shift in) or X‘OF (shift out).

72 Managed Object Development Services Guide

Maintaining Panels

Although the panel editor does not let you enter non-displayable hexadecimal
attributes (X'01’ to X’3F’) in the body of the panel, you can use the preparse option
to prime the field character value in the panel before issuing the &PANEL
statement.

The first #FLD statement to reference a particular field character defines a new
character. Subsequent statements referencing that same field character modify or
extend the attributes of the field character. Three standard field characters (%, +, _
unless altered by the #OPT statement) are provided. If a default field character
(usually % + or _) is referenced, it is the same as extending or modifying the
attributes of an existing field character.

If no additional operands are defined following a new field character, the following
defaults apply:

TYPE=OUTPUT INTENS=LOW
No special attributes or internal validation apply.
BLANKS={ TRAIL | NONE | ANY }

This determines the format for entering data in input fields. By default, a field can
contain imbedded blanks (BLANKS=ANY). Specification of this operand ensures that
the entered data does not contain imbedded blanks and contains only trailing
blanks (TRAIL) or no blanks at all (NONE). This operand works independently of the
REQUIRED operand. For optional fields this operand can still be specified to ensure
that when data is entered, it is in the correct format. If & CONTROL PANELRC is not
in effect, BLANKS=TRAIL is specified, and the data is in error, Panel Services
redisplays the panel with the &SYSMSG variable set to:

INVALID IMBEDDED BLANKS

If BLANKS=NONE is specified and the data is in error, Panel Services redisplays the
panel with the &SYSMSG variable set to:

INCOMPLETE FIELD

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG the error message
text.

Chapter 3: Maintaining Application Components 73

Maintaining Panels

CAPS={ YES | NO }

Applies to input fields only and determines if entered data is converted to upper
case before passing it to the NCL procedure in the nominated variable. Conversion
to upper case is also performed for the data associated with an input variable
before displaying the panel. This does not impact the current contents of the
variable unless the data is modified and entered by the operator. Output fields are
displayed exactly as defined and are not subject to upper case conversion.

Note: The effect of CAPS=NO can be negated if the variable that receives the data is
used in an assignment statement (for example, &A = &DATA) within the processing
NCL procedure, as data can be converted to upper case before performing the
assignment; see the &CONTROL UCASE option. The CAPS operand is ignored when
operating in a system executing with SYSPARMS DBCS=YES.

{ COLOR | COLOUR } = { BLUE | RED | PINK | GREEN |

TURQUOISE | YELLOW | WHITE | DEFAULT }

Applies only to IBM terminals with seven-color support and Fujitsu terminals with
three- or seven-color support, and determines the color of the field.

Because the COLOR operand is ignored if the terminal does not support extended
color, COLOR can be specified on panels that are displayed on both color and
non-color terminals. COLOR can be used in conjunction with the HLIGHT operand.

For Fujitsu terminals that support extended color data streams where only three
colors are available, the following color relationships are used:

GREEN

When GREEN is specified, it produces a result of GREEN on a Fujitsu three-color
terminal.

RED

When RED is specified, it produces a result of RED on a Fujitsu three-color
terminal.

PINK

When PINK is specified, it produces a result of RED on a Fujitsu three-color
terminal.

BLUE

When BLUE is specified, it produces a result of GREEN on a Fujitsu three-color
terminal.

TURQUOISE

When TURQUOISE is specified, it produces a result of GREEN on a Fujitsu
three-color terminal.

YELLOW

When YELLOW is specified, it produces a result of WHITE on a Fujitsu
three-color terminal.

74 Managed Object Development Services Guide

Maintaining Panels

WHITE

When WHITE is specified, it produces a result of WHITE on a Fujitsu three-color
terminal.

DEFAULT

When DEFAULT is specified, it produces a result of GREEN on a Fujitsu

three-color terminal.

Fujitsu seven-color terminals are treated the same as IBM seven-color terminals.

The DEFAULT keyword indicates that the color of the field is determined from the
INTENS operand. This is particularly useful if you want to set the color from an NCL
procedure (that is, COLOR=&COLOR is specified and the NCL procedure can set the

&COLOR variable to DEFAULT).

CSET={ ALT | DEFAULT }

Applies to output fields only. The operand determines which terminal character set
to use to display the field. If you specify CSET=ALT (or ALTERNATE), you can draw
box shapes using the following characters:

€

5

D

M

L

15 displayed as
15 displayed as
15 displayed as
15 displayed as
15 displayed as
15 displayed as
15 displayed as
15 displayed as
1s displayed as
1s displayed as

1s displayed as

+—=L =T 0L 17

Note: CSET=ALT supersedes CSET=ASM in Version 3.1.

EDIT={ ALPHA | ALPHANUM | DATEn | DSN | HEX | NAME |
NAME* | NUM | REAL | SIGNNUM | TIMEn }

For input fields this determines additional internal editing to be performed by Panel
Services. By default no editing is performed. Specification of this operand ensures
that the entered data conforms to the nominated type. If a field is mandatory, then

REQ=YES should also be specified.
ALPHA

Only accept A to Z.

ALPHANUM

Only accept AtoZ,0to 9, #, @ and S.

Chapter 3: Maintaining Application Components 75

Maintaining Panels

DATEn

Field must be a valid date. The DATEn keyword must correspond to one of the
&DATEN system variables, and indicates that the input field must contain date
in the format associated with that system variable. For example, EDIT=DATE5
indicates that the input field must always contain a date in the format
corresponding to the &DATES system variable (MM/DD/YY).

DSN

Field must be a valid OS/VS format data set name. If required, a partitioned
data set (PDS) member name or Generation Data Group (GDG) number can be
specified in brackets as part of the name.

HEX
Only accept0to9and AtoF.

NAME
Field must commence with alpha (Ato Z, #, @ or $) and be followed by
alphanumerics (AtoZ,0t0 9, #, @ or $).

NAME*
Field must commence with alpha (Ato Z, #, @ or $) and be followed by
alphanumerics (AtoZ, 0to 9, #, @ or S) but can be terminated with a single
asterisk (*). This allows a value to be entered that can be interpreted as a
generic request by the receiving procedure.

NUM
Only accept 0 to 9. Specifying EDIT=NUM, in addition to internal Edit validity
checking, sets a hardware flag to inhibit alpha input. This flag is display system
dependent for its implementation; either in hardware or emulation software.

REAL
Input in this field must conform to the syntax for integers, signed numbers or
real numbers, including scientific notation. For information about real number
support, see the Network Control Language Programming Guide.

SIGNNUM
Field must be numeric but can have a leading sign (+ or -).

TIMEn

Field must be a valid time. The TIMEn keyword must correspond to one of the
&ZTIMEn system variables and indicates that the input field must be in the
format associated with that system variable.

When invalid data is detected and & CONTROL PANELRC is not in effect,
standard error processing is invoked by Panel Services and control is not
returned to the NCL procedure until the error is corrected.

76 Managed Object Development Services Guide

Maintaining Panels

For EDIT=NUM the panel is redisplayed with the &SYSMSG variable set to:
FIELD NOT NUMERIC

For EDIT=REAL the panel is redisplayed with the message:

FIELD NOT REAL NUMBER

For EDIT=ALPHA, ALPHANUM, HEX or NAME the panel is redisplayed with the
&SYSMSG variable set to:

INVALID VALUE

For EDIT=DATEnN the panel is redisplayed with the &SYSMSG variable set to:
INVALID DATE

For EDIT=DSN the panel is redisplayed with the &SYSMSG variable set to:
INVALID DATASET NAME or INVALID MEMBER NAME

For EDIT=TIMEn the panel is redisplayed with the &SYSMSG variable set to:
INVALID TIME

In all cases the terminal alarm sounds and the cursor is positioned to the field
in error. If a #ERR statement has been included in the panel definition,
processing of the error condition is performed as defined in that statement.

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG the error
message text.

Note: Use of the EDIT operand might also require the use of the BLANKS
operand to ensure that entered data does not include imbedded blanks.
Regardless, editing is performed only for the length of the data entered and not
for the length of the input field. If the entire field must be entered, the
BLANKS=NONE operand should be specified.

{ HLIGHT | HLITE } = { USCORE | REVERSE | BLINK | NONE }

Applies only to terminals with extended highlighting support, and determines the
highlighting to be used for the field.

Because the HLIGHT operand is ignored if the terminal does not support extended
highlighting, HLIGHT can be specified on panels that are displayed on terminals that
do not support extended highlighting. HLIGHT can be used with the COLOR
operand.

The NONE keyword is provided as a no-impact value that can be used when the
highlighting of a field is being dynamically determined from the NCL procedure and
set using variable substitution of the #FLD statement. When NONE is specified, the
HLIGHT operand is ignored.

Chapter 3: Maintaining Application Components 77

Maintaining Panels

INTENS={ HIGH | LOW | NON }

Determines the intensity of the field when displayed.

HIGH

The field is displayed in double intensity. High intensity is normally associated
with input fields and other important data and its use minimized to maintain its
effectiveness.

Low

The field is displayed in low or standard intensity.

NON

The field is displayed in zero intensity. Any data within the field is not visible to
the operator. This is normally used for input fields where sensitive data such as
passwords are entered. Use of this attribute for output fields is meaningless.
Color or extended high-lighting attributes are ignored when used in
conjunction with this attribute.

JUST={ LEFT | RIGHT | ASIS | CENTER | CENTRE }

For output fields, this determines the alignment of the data within the field after
trailing blanks have been stripped. Justification is applied at a field level and should
not be confused with VALIGN, which applies to the individual variable only:

LEFT results in padding to the right

RIGHT results in padding to the left

ASIS is treated as JUST=LEFT for output fields

CENTER results in padding to both the left and the right.

For input fields justification occurs both when the data is being displayed and
when the data is being processed on subsequent entry. When an input field is
formatted for display (the value currently assigned to the variable defined in
the input field is substituted in place of the variable’s name) the data is justified
to the left and padded to the right for JUST=LEFT or justified to the right and
padded to the left for JUST=RIGHT. JUST=CENTER is treated like JUST=LEFT. For
JUST=ASIS data is positioned exactly as defined in the variable and padding to
the right is performed.

On subsequent re-entry, trailing blanks and pad characters are stripped, unless
the trailing pad character is a numeric, in which case it is not stripped:

For JUST=RIGHT leading blanks and pads are also stripped (including numerics).
Use of JUST=RIGHT for input fields can inconvenience terminal operators, as it
is necessary to move the cursor to the commencement of the data in the field.

For JUST=ASIS trailing blanks and pads are stripped, but leading blanks and
pads remain intact.

78 Managed Object Development Services Guide

Maintaining Panels

MODE={ SBCS | MIXED }

Applies to IBM terminals capable of supporting DBCS data streams. If a panel is sent
to such a device, input fields on the panel that use this #FLD character let the
operator enter DBCS characters if MODE=MIXED is specified. IBM DBCS terminals
do not allow DBCS character entry in input fields that specify MODE=SBCS (single
byte character stream).

Note: This operand does not apply to Fujitsu or Hitachi terminals, which allow DBCS
character entry at any time.

NCLKEYWD={ YES | NO }

Specifies whether fields that use this FLD character accept input of words that
conflict with NCL keywords. The default is YES. NO causes an attempt to enter any
NCL reserved keyword to be rejected.

OUTLINE={ {LRTB } | BOX }

Specifies the extended highlighting outlining option required for this field. Any
combination of L (left) R (right) T (top) or B (bottom) can be coded. The field is
outlined at the top or bottom with a horizontal line and at the left and right border
with a vertical line according to the options specified. Alternatively the BOX option
can be specified, which is equivalent to specifying LRTB. This option is terminal
dependent.

PAD={ NULL | BLANK | char }
Applies to INPUT, OUTPUT, and SPD fields.

For output fields PAD works in conjunction with both the JUST and VALIGN
operands, one of which must be specified for PAD to take effect. Determines the
pad or fill character to be used when the field is displayed.

The variable substitution process substitutes the data currently assigned to any
variables within the field being processed. Having completed substitution, any
difference between the length of the field defined on the panel and the length after
substitution (after stripping trailing blanks) is padded with the specified PAD
character.

For input fields, use of the NULL character ensures that the terminal operator can
use keyboard insert mode when entering data. Padding is performed either to the
left or the right as specified in the JUST operand.

char

Specifies a single character that is to be the pad character (for example, PAD=-).
There is no restriction on the character used including the use of any of the
field characters defined on #FLD statements. Care should be taken when using
numeric pad characters as their use impacts the pad character stripping
process on subsequent entry.

Note: Using PAD characters with input fields invokes special processing on
subsequent input to ensure that unnecessary pad characters are stripped before
returning the entered data in the nominated variable.

Chapter 3: Maintaining Application Components 79

Maintaining Panels

PSKIP={ NO | PMENU }

Applies to input fields only and determines if panel skip requests are accepted in
this field. A panel skip request is entered in an input field in the format =m.m,
where m.m is a menu selection. When entered in an appropriate field a panel skip
to the specified menu selection is performed.

NO
The input field is not scanned for panel skip requests.
PMENU

The input field is scanned for panel skip requests and actioned.

RANGE=(min,max)

For numeric fields, specifies the range of acceptable values. The range includes all
numbers, from the minimum number (min) to the maximum number (max). Both
min and max must be specified and max must be equal to or greater than min. Use
of this operand forces EDIT=NUM. If the entered number falls outside the
acceptable range, and & CONTROL PANELRC is not in effect, Panel Services
redisplays the panel with the &SYSMSG variable set to:

NOT WITHIN RANGE

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG the error message
text.

REQUIRED={ YES | NO }

Specifies that this is a mandatory field that must be entered by the user. If
&CONTROL PANELRC is not in effect, Panel services rejects any entry by the user
unless this field has been entered. If not entered, Panel Services redisplays the
panel with the & YSMSG variable set to:

REQUIRED FIELD OMITTED

The terminal alarm sounds and the cursor is positioned to the omitted field. If a
HERR statement has been included in the panel definition, processing of the error
condition is performed as defined by the #ERR statement. Failure to include the
&SYSMSG variable on the panel suppresses this error message. This operand can be
abbreviated to REQ=.

If & CONTROL PANELRC is in effect, control is returned to the NCL procedure for
error handling instead of being handled totally by Panel Services. In this case,
&SYSFLD contains the name of the field in error and &SYSMSG the error message
text.

80 Managed Object Development Services Guide

Maintaining Panels

SKIP={ YES | NO }

For output fields only, determines if the skip attribute is to be assigned to the field.
The result of using this option is that the cursor skips to the next input field if the
preceding input field is entered in full and the intervening output field is specified
with the SKIP operand.

Note: This operand is NO by default, as field skipping can unexpectedly place the
cursor in the wrong screen window when operating in split screen mode.

SUB={ YES | NO }

For output fields only, determines if variable substitution is to be performed. This
operand can be used for fields where data contains the & character. This results in
the current value of that variable being substituted, or the variable being
eliminated if no value was assigned. This operand is ignored for both INPUT and
SPD fields.

TYPE={ OUTPUT | INPUT | OUTVAR | SPD | NULL }

Determines if the field is to be processed as an output-only field (OUTPUT and
OUTVAR), input field (INPUT), Selector Pen Detectable (SPD) field or pseudo input
field (NULL).

OUTPUT

A protected field is created that does not allow keyboard entry. This field can
contain a mixture of fixed data and variables. Each variable must commence
with an ampersand (&). Substitution of variables is performed using the
variables available to the invoking NCL procedure at the time the & PANEL
statement is issued. Global variables can be referenced in an output field.
Alignment and padding is performed according to the rules defined for the
field.

INPUT

An unprotected field is created that allows keyboard entry. This field must
contain a single variable name (without the ampersand). This single variable
must immediately follow the field character. System variables and global
variables cannot be used in an input field. Subsequent data entered into this
field is made available to the invoking NCL procedure in this variable on return
from the & PANEL statement. Specification of multiple variables or a mixture of
variables and fixed data in an input field results in an error.

Chapter 3: Maintaining Application Components 81

Maintaining Panels

OUTVAR

The same as TYPE=OUTPUT except that an & is inserted by Panel Services
between the field attribute and the next character. This means that you can
follow a TYPE=OUTVAR field character with a variable name without the
ampersand. This facility makes it easy to create fields that switch between
input and output under NCL control. For example, a panel could contain the
statements:

#FLD $ TYPE=&INOUT
+ Record Key $RKEY +

An NCL procedure then sets the variable &INOUT to control if the data in the
variable &RKEY is output only, or if it can be modified by an operator:

&INOUT = OUTVAR -* the value is output only.
&INOUT = INPUT -* the Operator can modify the
-* field.

Note: A similar effect can be achieved using &ASSIGN OPT=SETOUT.
SPD

A protected field is created in selector pen detectable format. This enables the
terminal operator to select the field using either a LIGHT PEN or the CURSOR
SELECT key. SPD field characters must be immediately followed by one of the
three designator characters (?, &, or a blank), which can in turn optionally be
followed by one or more blanks. A single variable with no other fixed data must
also be defined within the field. This single variable must be defined omitting
the ampersand (&) and cannot be a system or global variable. If selected by the
user, the variable nominated in the SPD field is set to the value SELECTED on
return to the NCL procedure. If not selected, the variable is set to a null value.

NULL

An unprotected field is created that allows keyboard entry. However, the field
need not contain the name of an input variable to receive data entered in the
field as any data entered by the terminal operator in a TYPE=NULL field is
ignored. Display data in this field can be in any format. The NULL option is
supplied to accommodate 4 color terminals where the field attribute byte is
used to determine the color in which the field is displayed (7 color terminals
utilize an extended data stream to set the color). The NULL option indicates
that Panel Services is to use an unprotected field attribute in conjunction with
the INTENS operand value, to determine the color of the field.

82 Managed Object Development Services Guide

Maintaining Panels

VALIGN={ NO | LEFT | RIGHT | CENTER | CENTRE }

Applies to output fields only and is ignored if specified for an input field.
Determines the alignment of data for an individual variable only. This should not be
confused with the JUST operand, which applies to field alignment after all variable
substitution has been completed. The VALIGN operand is designed to facilitate
tabular output without the need to specify many individual field characters on the
panel.

The substitution process substitutes the data assigned to a variable in place of the
variable name. No additional blanks are created or removed during this process.
Thus, if the data being substituted is shorter than the name of the variable itself (for
example, the variable &OUTPUTDATA is currently set to 5678) then data following
the variable name is shifted left to occupy the area remaining after the removal of
the variable name. This destroys any tabular alignment where the length of the
data for each variable differs. The VALIGN option ensures that the data to the right
of the variable is not shifted to the left if the data being substituted is shorter than
the variable name. The length of the variable name (including the ampersand) is the
important factor and determines the number of character positions to be preserved
during the substitution process.

However, data truncation is not performed and if the data being substituted is
longer than the variable name, the data to the right is moved to accommodate all
the substituted data. VALIGN works in conjunction with the pad character specified
on the PAD operand. The pad character is used to fill any differences between the
data being substituted and the length of the variable name being replaced.

VALIGN=NO
No alignment or padding is performed.
VALIGN=LEFT

Data is aligned to the left and padded to the right. An abbreviation of L is
acceptable.

VALIGN=RIGHT

Data is aligned to the right and padded to the left. An abbreviation of R is
acceptable.

VALIGN=CENTER

Data is centered (or one position to the left for an odd number of characters)
and padded both to the left and to the right. An abbreviation of C is acceptable.

Chapter 3: Maintaining Application Components 83

Maintaining Panels

Examples:

#FLD # TYPE=INPUT REQ=YES EDIT=NUM COLOR=RED RANGE=(1,3)
#FLD # BLANKS=TRAIL PAD=_

#FLD # TYPE=OUTPUT COLOR=&COLOR HLIGHT=&8HLIGHT

#FLD (TYPE=INPUT INTENS=HIGH EDIT=DATE4

#FLD @ HLIGHT=BLINK

#FLD / TYPE=SPD

#FLD % JUST=R PAD=- -* supplementing default output char
#FLD JUST=ASIS -* supplementing default input char

#FLD + QALIGN=RIGHT JUST=CENTER

-* null pad assumed

Notes:

#NOTE Statement

Multiple #FLD statements can be used for the same field character if insufficient
space is available on a single statement.

Symbolic variables can be included in a #FLD statement. Variable substitution is
performed prior to processing the statement, using variables available to the NCL
procedure at the time the &PANEL statement is issued.

The default field characters can be altered using the DEFAULT operand of the #OPT
control statement.

The #ERR control statement can be used to greatly simplify the redisplay of a panel
to indicate a field in error.

The & CONTROL PANELRC operand can be used to specify that the NCL procedure
receives control for further processing when internal validation detects an error in
data entered by the operator. When this technique is used the procedure can
determine the field in error (from the &SYSFLD variable) and the error message to
be issued (from the &SYSMSG variable) and alter its processing accordingly,
including altering the text of the error message in the &SYSMSG variable if required.

The #NOTE statement provides a means of placing documentation within a panel
definition. The #NOTE statement is not processed and is ignored. Multiple #NOTE
statements can be specified. However, as with #FLD, #ERR, and #OPT statements, all
#NOTE statements must precede the start of the panel. The start of the panel is
determined by the first line that is not a control statement or #NOTE statement.

This statement has the following format:

#NOTE any text

any text

Any free form user text.

84 Managed Object Development Services Guide

Maintaining Panels

#0OPT Statement

Examples:

#NOTE This panel is used by the Network Error Log System
#NOTE INWAIT=60 CURSOR=&CURSORFLD

Note: As shown in the example above the #NOTE statement can provide a simple means

of te

mporarily nullifying another control statement allowing for easy reinstatement

when required.

This

Befo

statement defines panel processing options.

re parsing, the #OPT statement is scanned and any variables are substituted. This

makes it possible to dynamically tailor any of the operands on the statement.

Multiple #OPT statements can be specified. However, as with #FLD, #ERR and #NOTE
statements, all #OPT statements must precede the start of the panel, which is

dete

This

#OPT

rmined by the first line that is not a control statement.

statement has the following format:

[ALARM={ YES | NO }]
[BCAST={ YES | NO }]
[CURSOR={ varname | row,column } 1]
[DEFAULT={ hlu | X'xxxxxx' } 1
[ERRFLD=varname]

[FMTINPUT={ YES | NO }]

[IPANULL={ YES | NO }]

[INWAIT=ss.th]

[PREPARSE={ (c,S) | (c,D) } 1]

[UNLOCK={ YES | NO } 1]

[MAXWIDTH={ YES | NO }]

ALARM={ YES | NO }

Determines whether the terminal alarm is to be rung when the panel is displayed.
Dynamic control of the alarm can be achieved by changing the value of the ALARM
operand using a variable set prior to issuing the &PANEL statement.

If internal validation has detected an error, and the panel is being redisplayed to
indicate the error, this operand is ignored and the terminal alarm rung. The #ERR
statement can be used to alter the processing performed when an error condition is
detected.

BCAST={ YES | NO }

Specifies that the panel is to be redisplayed automatically if a broadcast is
scheduled. By default, the only panels that are redisplayed automatically are those
that contain one or more of the special broadcast variables, &BROLINEn. If
BCAST=YES is coded, a broadcast causes the panel to be redisplayed even if it does
not contain any of the &BROLINEn variables.

Chapter 3: Maintaining Application Components 85

Maintaining Panels

CURSOR={ varname | row,column }

Specifies the name of a variable in either an INPUT or SPD field where the cursor is
to be positioned. Alternatively, the precise co-ordinates for the cursor can be
defined as row,column.

The value of varname should be the variable name WITHOUT the ampersand, just
as used in the INPUT or SPD field (for example, CURSOR=FIELDS5).

Where co-ordinates are specified, row must be specified in the range 1 to 62 and
column in the range 1 to 80. The row and column values are always relative to the
start of the current window and therefore remain unchanged when operating in
split screen mode. The &CURSROW and &CURSCOL system variables can be used to
determine the location of the cursor on input to the system.

Dynamic positioning of the cursor can be achieved by using a variable or variables
(including the ampersand) in place of varname or row,column. The invoking NCL
procedure can set the variables to the name of the field to contain the cursor or the
coordinates prior to issuing the & PANEL statement.

If internal validation detects an error, and the panel is being redisplayed to indicate
the error, the CURSOR operand is ignored and the cursor is positioned to the field in
error.

Specifying varname with a name other than the name of a variable used in an
INPUT or SPD field results in an error. If coordinates are used, and they lie outside
the dimensions of the window currently displayed, the cursor is positioned in the
upper left corner of the window.

DEFAULT={ hlu | X‘xxxxxx' }

This operand alters the three standard default field characters. If the #OPT
statement is omitted, or the DEFAULT operand not used, three standard field
characters are provided for use when defining the panel. They are as follows:

%

protected, high-intensity

protected, low-intensity

unprotected, high-intensity

It might be necessary to select alternative field characters, for example if the
underline character is required within the body of the panel for some reason.

The DEFAULT=hlu operand must always specify three characters. The characters
chosen must be non-alpha and non-numeric, that is, any special character except
ampersand (&), which is reserved for variables. They must not duplicate another
field character, except one already defined as a default. The order of the characters
is significant, as the attributes of the standard default characters apply in the order
described above.

86 Managed Object Development Services Guide

Maintaining Panels

Therefore specification of DEFAULT=*+/ results in:

*

protected, high-intensity

protected, low-intensity

unprotected, high-intensity

You can also specify the default field characters in hexadecimal in the following
format:

DEFAULT=X"xxxxxx"

Each xx pair represents a hexadecimal number in the range X‘00’ to X‘FF’. All
numbers except X‘00’ (null), and X‘40’ (blank) or X‘50" (ampersand), are valid. This
even allows alphanumeric characters to be used as field characters. For example, if
you specify X‘C1’, any occurrence of the letter A in the panel definition is treated as
the default character. (It is advisable to use hexadecimal values that do not
correspond to alphanumeric characters.)

For example, specification of DEFAULT='010203’ results in the following:
X‘or’
protected, high-intensity
X‘02’
protected, low-intensity
X‘03’
unprotected, high-intensity
ERRFLD=varname

Specifies the name of a variable in an INPUT field that is in error and for which error
processing is to be invoked as defined on a #ERR statement. Use of this operand
without including a #ERR statement within the panel definition results in an error.
The ERRFLD operand provides a simple way of informing Panel Services that the
field identified by varname is in error. Panel Services displays the panel using the
options defined on the #ERR statement. The #ERR statement could indicate that the
error field is to be displayed in reverse-video, colored red and the terminal alarm
sounded. Use of the ERRFLD operand can be accompanied by the assignment of
some error text into a variable appearing on the screen that identifies the nature of
the error.

The operand can be specified with the name of a variable (including the &) that is
set to null unless an error occurs, in which case the NCL procedure sets the variable
to the name of the field in error prior to issuing the &PANEL statement to display
the panel.

Chapter 3: Maintaining Application Components 87

Maintaining Panels

ERRFLD provides the panel designer with a simple means of changing the attributes
of a field (such as color and high-lighting) without the need to resort to dynamic
substitution of #FLD statements.

Consider the case where an input field &INPUT1 is found to be in error and the
#OPT statement has been defined with ERRFLD=&INERROR. The NCL procedure
assigns the name of the variable used to identify the input field, in this case INPUT1
(minus the &), into &INERROR, and then redisplays the panel.

&INERROR = INPUT1
&SYSMSG &STR THIS FIELD IS WRONG
&PANEL MYPANEL

Note: In this example, the text that identifies the nature of the error has been
assigned into the variable &SYSMSG, which is defined somewhere on the panel.

The same effect can be achieved by using the &ASSIGN OPT=SETERR verb. This
allows more than one field to be marked as in error.

Note: ASSIGN OPT=SETERR is only effective if &CONTROL FLDCTL is in effect.
FMTINPUT={ YES | NO }

Determines if input fields are to be formatted when a panel is displayed. This is a
specialized option that is designed to be used in conjunction with INWAIT. When
processing with INWAIT, the time interval might expire at the instant when data is
being entered by the operator. If the same panel is redisplayed to update the
screen contents, the data entered by the operator is lost as the new panel is
written. FMTINPUT can be used to bypass formatting of input fields and hence
when the panel is redisplayed only output fields are written. The value of this
operand can be assigned to a variable from within the NCL procedure and changed
between YES and NO as required (HOPT FMTINPUT =&YESNO). Care must taken
when using this facility, as incorrect use of FMTINPUT=NO can result in validation
errors. ldeally, a panel should be displayed initially with FMTINPUT=YES and only
when the INWAIT timer expires is it redisplayed with FMTINPUT=NO.

IPANULL={ YES | NO)

The default YES, specifies that if the panel is displayed with the INWAIT option and
the time specified on the INWAIT expires so that control is returned to the
procedure without any panel input, or input is caused by a PA key, all variables
associated with the panel input fields are to be set to null value.

If you do not want input field variables to be erased, if INWAIT completes, or a PA
key is pressed, specify IPANULL=NO.

88 Managded Object Development Services Guide

Maintaining Panels

INWAIT=ss.th

Specifies the time in seconds and/or parts of seconds that Panel Services is to wait
for input from the terminal prior to returning control to the NCL procedure
following the & PANEL statement. By default the system waits indefinitely for input
having displayed a panel. This might not always be desirable, as is the case where a
terminal is performing a monitoring function where input might be infrequent or
never occur. If INWAIT is utilized and the specified time elapses, control is returned
to the NCL procedure with all input or SPD variables set to null. Should input be
made during the time interval, the time period is canceled and standard processing
will proceed.

The maximum value that can be specified for INWAIT is 86400.00 seconds (24
hours).

Specification of part seconds is possible. For example:

INWAIT=.5
INWAIT=20.5
INWAIT=.75

Any redisplay of a panel, for example, by using the clear key, causes the panel to be
redisplayed and the time interval reset.

Specification of internal validation options, such as REQUIRED=YES are ignored if
the time interval expires before input is received.

Specification of INWAIT=0 or INWAIT=0.00 indicates that no input is to be accepted
and control is returned to the NCL procedure immediately after the panel has been
displayed. In this case the period that the panel remains displayed is determined by
subsequent action taken by the procedure.

The invoking NCL procedure can determine if the INWAIT time elapsed or if data
was entered by testing the &INKEY system variable. &INKEY is set to the character
value of the key pressed by the operator to enter the data (for example, Enter or
F1). If the INWAIT time interval elapsed, and no entry was made, the & INKEY
variable is set to null. If processing with & CONTROL PANELRC is in effect, &RRETCODE
is set to 12 to indicate that the INWAIT timer has expired.

Note: INWAIT is ignored for asynchronous panels.
PREPARSE={ (c,S) | (c,D) }

Preparsing provides a means for dynamically modifying the location of field
characters in a panel. The position of field characters (as defined by the #FLD
control statement) is determined when the panel is created by Panel Services and
remains fixed until the panel is modified.

Although the attributes of each field character (such as the color of the field) can be
modified by the use of variables in the #FLD statement, this technique is limited in
the number of variations that can be achieved.

Chapter 3: Maintaining Application Components 89

Maintaining Panels

The PREPARSE operand requests that Panel Services perform a preliminary
substitution scan of each panel line prior to processing the line for field characters.
The PREPARSE operand specifies a substitution character c that is to be used to
determine where substitution is to take place. This character is processed in exactly
the same manner as an ampersand (&) is processed during standard substitution.

The ability to specify a character other than an ampersand means that preparsing
does not impact standard substitution when it is performed following preparsing.
Preparsing can be used to alter a field character that appears in a particular
position, thereby allocating a new set of attributes to the field or to create entire
new fields (or complete lines) that in themselves contain the required field
characters.

(c,S)

Indicates that the character c is to be used as the preparse character for the
panel, but that the Static Preparse Option is to apply during preparse
processing. This prevents the movement of preparse or field characters during
the substitution process. This option is useful when panels are being
dynamically modified to hold data that can vary in length but is to be displayed
in columns. If necessary, substituted data can be truncated if it is too long to fit
into its target field without overwriting the next occurrence of a preparse or
field character on the same line.

(c,D)

Indicates that the character c is to be used as the preparse character for the
panel, but that the Dynamic Preparse Option is to apply during preparse
processing. The dynamic option allows the movement of preparse or field
characters to left or right of their original position to accommodate differing
lengths of data being substituted into the panel.

UNLOCK={ YES | NO }

Determines if the terminal keyboard is to be unlocked when the panel is displayed.
Specification of UNLOCK=NO prevents entry of data by the terminal operator, and
can be used in conjunction with the INWAIT operand where a panel was being
displayed for a short period, prior to progressing to some other function.

MAXWIDTH={ YES | NO }

Specify MAXWIDTH=YES to indicate the display is to be wider than the standard 80
character width. MAXWIDTH=YES means that panel services will use the number of
columns available on the terminal (&ZCOLS).

Examples:

#OPT DEFAULT=#%%

#0PT INWAIT=60 CURSOR=&CURSORFLD

#0PT CURSOR=IN1 ALARM=YES

#0PT ALARM=&ALARM PREPARSE=($,D)

#0PT ERRFLD=&INERROR

#OPT INWAIT=.5 UNLOCK=NO PREPARSE=($,S)
#0PT CURSOR=5,75

#0PT CURSOR=&ROW,&COLUMN FMTINPUT=&FMT

90 Managed Object Development Services Guide

Maintaining Panels

#TRAILER Statement

Notes:
m Multiple #OPT statements can be used if required.

m Symbolic variables can be included in a #OPT statement. Variable substitution is
performed prior to processing the statement.

m Panel redisplay following use of the CLEAR key is automatic. Control is not returned
to the invoking NCL procedure. The attributes of the standard default characters
can be modified using a #FLD statement that adds additional attributes (such as
color) or alters existing attributes.

This statement provides a means of placing specified lines at the end of the screen,
regardless of screen size.

The #TRAILER statement can be used to position function key prompts at the bottom of
the screen.

Indicate the start of the trailer lines with a #TRAILER START statement. Then enter the
lines to appear at the bottom of the screen, followed by a #TRAILER END statement.

This statement has the following format:

#TRAILER [START | END]
[POSITION={ YES | NO }]

START

Indicates the start of the lines to be placed in the trailer. Each line following this line
until a #TRAILER END statement or another control statement such as #FLD is
placed in the trailer.

END

Indicates that this is the end of the lines to be placed into the trailer. There must
have been a #TRAILER START statement earlier in the panel definition. No other
operands can be specified on a #TRAILER END statement.

POSITION={ YES | NO }
Specifies if the trailer lines are to be displayed. The values available are as follows:
YES
The trailer lines are displayed on the final lines of the physical screen.
NO

This value can be used to suppress the display of the trailer lines, even though
they remain in the panel definition.

Chapter 3: Maintaining Application Components 91

Maintaining Menus

Examples:

#TRAILER START
%This appears on the last line of the panel
#TRAILER END

Notes:

m The #TRAILER statements must appear before the first panel line in the definition. If
you want to preparse the lines, you must place the #TRAILER statements after the
#OPT PREPARSE= statement.

m The field attribute characters that you use in the trailer lines can be defined before
or after the trailer lines in the panel.

m The trailer lines cover any panel lines that would otherwise have been displayed.

m The trailer lines are positioned so that they end at the bottom of the physical screen
if the window starts at the top of the screen.

Maintaining Menus

This section describes the Common Application Services (CAS) Menu facility.

CAS builds and presents menus, manages user interaction with menus, and provides you
with facilities for maintaining menu definitions.

A menu definition contains the information required to build a menu and display it to
the user.
A menu definition consists of the following:

m A menu description that includes the menu identifier, its title and other
presentation settings

m Aseries of menu options to be displayed on the menu and their corresponding
actions

m Aseries of menu input fields when data needs to be entered on a menu panel in
support of a particular option

92 Managed Object Development Services Guide

Maintaining Menus

Adding a Menu Definition

Defining a menu requires you to

fill in three panels. The first of these contains menu

identification and presentation details; the second defines the menu options and their
corresponding actions; and the third specifies the input fields required for each menu

option.

The first panel is the CAS : Menu Description panel.

Menu Title
Is This a Primary Menu?
Display Userid Info Box? ...
Menu Shortcut
Menu Service Procedure

PROD--------mmmmmm oo CAS : Menu Description ----------------- Page 1 of 3
Command ===> Function=Update
AppL ID ...ovviiiiieienen + TST
Menu Number 001

Top Left Corner Display SOLVPROD
Top Right Corner Display ... TSTO01
Menu Input Field Attributes:

Mandatory Input B

Optional Input

High Intenstity Output

Low Intensity Output

Fl=Help F2=Split F3=File F4=Save
F9=Swap Fll=Page 2 F12=Cancel

Test Application Menu

YES (YES or NO)
NO_ (YES or NO)

For information about the fields

displayed on the panel, press F1 (Help).

Chapter 3: Maintaining Application Components 93

Maintaining Menus

After completing the menu definition details, press F11 (Page 2). The CAS : Menu
Options panel is displayed. Specify menu options using this panel.

PROD-------mmmmmm e CAS : Menu Options -------------------- Page 2 of 3
Command ===> Function=Update
Appl ID ... TST Menu Number ... 001

Opt Description Shortcut
1A ... Application Register

Shrvars NONE
Action EXEC $CACALL OPT=ACTION CLASS=MENU ACTION=DISPLAY
NAME='APPL=TST MENU=20"’

2 C_ ... Common Application Services Maintenance
Shrvars NONE
Action EXEC $CACALL OPT=ACTION CLASS=MENU ACTION=DISPLAY_
NAME="APPL=TST MENU=30"'

Fl=Help F2=Split F3=File F4=Save
F7=Backward F8=Forward F9=Swap F10=Page 1 Fll=Page 3 F12=Cancel

Enter the following four fields once for each option to be displayed on the menu. (You
can define up to 15 options; use F8 (Forward) and F7 (Backward), to scroll between
them.)

For information about the fields displayed, press F1 (Help).
If you do not want any input fields to appear on the menu, then the definition is

complete when you have finished specifying the menu options. Press F3 (File) to save
the menu definition.

94 Managed Object Development Services Guide

Maintaining Menus

If any of the options on your menu require data from the user, you need to define input
fields. Press F10 (Page 3) to go to the CAS : Menu Input Fields panel.

PROD-------mcommeeeee - CAS : Menu Input Fields ----------------- Page 3 of 3
Command ===> Function=Update
Appl ID ... TST Menu Number ... 001

Use the attributes below to build the field input line beneath Related Options.
_=Input (Mandatory) \=Input (Optional) i=Output (High) ‘=0utput (Low)
1 Required for ... A
Optional for ...
‘Application ID..... \#LH* (Required 'A*)

2 Required for ...
Optional for ...

3 Required for ...
Optional for ...

4 Required for ...
Optional for ...

Fl=Help F2=Split F3=File F4=Save
F7=Backward F8=Forward F9=Swap F10=Page 2 F12=Cancel

Enter the following data on the CAS : Menu Input Fields panel to define up to 15 input
fields on the menu (use F8 (Forward) and F7 (Backward) to scroll between them).

For information about the fields displayed, press F1 (Help).

The line editor commands available in the CAS : Menu Options panel are available on
this panel.

After specifying the menu’s input fields, press F3 (File) to add the menu definition. To
cancel the menu specification, press F12 (Cancel).

Chapter 3: Maintaining Application Components 95

Maintaining Lists

Viewing a Menu Definition

Option V displays the menu as the user will see it.

PROD-------ommmeeem - Test Application Menu ---------------cummmm--
Select Option ==

A - Application Register

C - Common Application Services Maintenance

X - Exit
Application ID..... o (Required A)

Fl=Help F2=Split F3=Exit F4=Return
F9=Swap

Maintaining Lists

This section describes the Common Application Services (CAS) List facility and how to

create and maintain list definitions.

Lists (see page 24) are defined and then stored on a database. They can be recalled to
display a series of items as required on a panel. These items are typically objects and are
identified with a series of attributes that relate to the object. For example, they may be

identified with the object’s identifier and description.

The list facility provides a generalized method for displaying and allowing selection of
list items. The same list definition can be used to display the following lists:

Action List

Displays a series of objects against which actions can be applied

Single Select

Displays a series of items from which one is selected

96 Managed Object Development Services Guide

Maintaining Lists

Defining a List

Multiple Select

Displays a series of items from which one or more are selected

Numbered List

Displays a series of items that are numbered—an item is selected by entering its
corresponding number

The type of list that is created from a list definition is determined by the call to SCACALL,
the CAS interface (see page 153).

To create a list, specify a list definition. A list definition comprises the following:

Identifying information about the list and a specification of its behavior
The source of the data to be displayed on the list
A service procedure that is used to retrieve items to be included in the list

A criteria definition to be used to determine an item’s eligibility for inclusion on the
list

A sort expression to determine how items in the list are sorted

Line entry presentation attributes that let you highlight specific records in a list
based on a condition that you specify

The format of the list

To define a list, complete information on the following panels:

List Description panel

List Criteria panel

List Entry Line Presentation Attributes panel
List Format panel

List Entry Line Fields panel

Chapter 3: Maintaining Application Components 97

Maintaining Lists

List Description Panel

The CAS : List Description panel, shown below, is the first panel that appears.

7210 CAS

List Name
Description

: List Description

(PUBLIC or PRIVATE)
(Userid if PRIVATE)

Title ..o,

--Page 1 of 4
Function=Add

Status0 ACTIVE
Service Procedure
Get ALl Entries? YES
Add Allowed? YES
Default Mnemonic B
Entry Msg Position 2
Present Empty List? ... YES

Comments

Group «...vvvvnnnnnn +
Data Source

Exit Name
Help Name
Select Mnemonic S
Entry Msg Length
Auto Refresh Rate ...

Heading Sub Char

Fl=Help F2=Split

F8=Forward

F3=File
F9=Swap

F4=Save

F12=Cancel

The list description panel is used to specify identifying information about the list and its

behavior.

You can specify whether a list is active or inactive. Inactive list definitions cannot be
used and do not appear on a list of lists. A list can also be defined as private to a specific
user—unlike a public list that is available to all users.

Lists can, optionally, be defined as belonging to a group. A group is a logical collection of
lists and represents a convenient way of displaying only those lists that are relevant
when a list of lists is displayed. For example, you could assign all lists relating to problem

management to a group.

The list service procedure retrieves list items and processes requests to perform actions
against list items. A list service procedure is dependent on the list’s data source.

You can specify the identifier of the help definition to be used when help is requested in
the list panel. In addition you can specify the name of a list exit procedure to perform

application specific processing.

For information about the fields and options displayed, press F1 (Help).

98 Managed Object Development Services Guide

Maintaining Lists

List Criteria Panel

After entering the list description details, press F8 (Forward) to specify the list criteria
on the CAS : List Criteria panel.

PROD------mmmmm e CAS : List Criteria ------------------ Page 2 of 4
Command ===> Function=Add
Appl ID ...viivivnnn TST
List Typecvvnnn. PUBLIC (PUBLIC or PRIVATE)
Userid (Userid if PRIVATE)
List Name TSTOO1
Criteria Appl ID +
Type covvvveen (PUBLIC or PRIVATE or FREEFORM)
Userid (Userid if PRIVATE)
Name +

Sort Expression

Format List Appl ID ..+

Type — (PUBLIC or PRIVATE)
Userid
Name +
Fl=Help F2=Split F3=File F4=Save
F7=Backward F8=Forward F9=Swap F12=Cancel

This panel is used to optionally specify a criteria, sort expression and existing list format
to be used by the list definition.

A criteria can be associated with a list (that is used by the service procedure) to filter
items to be included on the list. This criteria can be an existing criteria definition or a
freeform criteria in which the user enters the details of the criteria at run time.

You can specify a sort expression to determine the order that items are displayed. The
sort expression is used by the list service procedure and thus the syntax and complexity
of this expression is dependent on this procedure. If a sort expression is not specified,
items are displayed in the order in which they are retrieved by the service procedure.

This panel also lets you specify the identifier of an existing list definition from which the
format and presentation attributes for the current list are drawn.

For example, if you want to define several lists that share the same format, you can
define a list to be used as a template. This list should be set to INACTIVE so that it
cannot be used, and does not appear on a list of lists. You can then define subsequent
lists in the same format as the template list.

For information about the fields and options displayed, press F1 (Help).

Chapter 3: Maintaining Application Components 99

Maintaining Lists

List Entry Line Presentation Attributes Panel

After entering the list criteria details, press F8 (Forward). The CAS : Entry Line
Presentation Attributes panel appears.

PROD- - ------ CAS : List Entry Line Presentation Attributes ----- Page 3 of 4
Command ==> Function=Add

Appl ID ... TST Type.Userid ... PUBLIC Name ... TSTO01

Attr Test

HRN &PRIORITY
HPN &PRIORITY
HWN &PRIORITY =
HTN &PRIORITY
HBN &PRIORITY

o WN R
~N U

Fl=Help F2=Split F3=File F4=Save
F7=Backward F8=Forward F9=Swap F12=Cancel

This panel lets you specify presentation attributes (color and highlighting) for specific
records based on a condition (a boolean expression) that you specify. This means that
you can highlight particular records of interest in a list to make them easier to identify.

For example, consider a list of problem records. You can specify a condition to identify

all problem records that have the status of OPEN and set the display attributes to show
those records in, for example, red, flashing text. You need to enter a code representing
the presentation attributes and a matching boolean expression for the record that you

want highlighted. Enter up to 15 presentation attribute / boolean test pairs to highlight
the specified entries within the list.

In the example shown, records with a priority of 1 are shown in high intensity red, with
priority 2 are shown in high intensity pink, with priority 3 in high intensity white, with
priority 4 or 5 in high intensity turquoise, and those with a priority of 6 or 7 in high

intensity blue.

Note: If you specified that the format for the list be drawn from an existing list
definition, you cannot define entry line presentation attributes.

A text editor (see page 347) is included that contains commands that you can use.

For information about the fields and options displayed, press F1 (Help).

100 Managed Object Development Services Guide

Maintaining Lists

List Format Panel

After entering the Entry Line Presentation Attributes, press F8 (Forward) to specify the
list format on the CAS : List Format panel.

PROD----- - mmmm e CAS : List Format ------------------- Page 4 of 4
Command ===> Function=Add Scroll ===> PAGE
Appl ID ... TST Type.Userid ... PUBLIC Name ... TSTO01

LINE <---+----10---+----20---4----30---+----40---+----50---+----60---+----70---
Fokokok sokkkolkkkkokkkokkkRkokoRkkkk TOP OF DATA Rrskskkskskokskstokskoksksokskokkofok ok ok kokok o
0001 A>S/B=Browse U=Update C=Copy P=Print D=Delete

0002 M>S/=Select

0003 S>S/=Select (one only)

0004 Number Description

0005 &PROBID &DESCRIPTION

0006 Number Severity Status Occurred Date/Time

0007 &PROBID &SEV &STATUS &OCCURDATE &OCCURTIME

0008 Number Created Last Updated

0009 &PROBID &CRTDATE &UPDDATE &UPDTIME &UPDUSERID
kR sRRsskokkkokokokkokokk BOTTOM OF DATA RHkkkkskskstoooosooookokokokkokokokok

Fl=Help F2=Split F3=File F4=Save F5=Fields F6=Change
F7=Backward F8=Forward F9=Swap Fl10=Left F11=Right F12=Cancel

A list’s format determines how list items are displayed, the other attributes that are
displayed about each item, and static heading and option text. This panel displays a text
editor that is used to define the format of a list.

A list format consists of:

m Up to four comment lines; one for each list type

m Up to 10 screen formats. Each screen format defines a screen that is displayed
when the list is presented to a user (that is, a list can be presented over ten
screens). F11 (Right) and F10 (Left) can be used to scroll between the screens.

A screen format consists of:
m Upto 10 heading lines

m An entry line, which contains the list data. (Each line of a displayed list is referred to
as an entry line.)

At the top of the CAS : List Format panel text area, you can enter up to four comment
lines, one for each type of list, to display specific instructions to the user. When the list
is displayed, the appropriate comment line is shown on line 4 of the list panel. Comment
lines are optional.

Chapter 3: Maintaining Application Components 101

Maintaining Lists

Use the following codes at the beginning of your comment line as follows:
A>
Defines instructions for an Action List.
M>
Defines instructions for a Multiple Select List.
S>
Defines instructions for a Single Select List.
N>

Defines instructions for a Numbered List.

Comment lines can contain NCL variables. For instance, you might want a comment line
for an Action List to describe only those actions for which a user is authorized. You could
achieve this by setting the entire comment line through a variable set by the list’s
service or exit procedure.

Any NCL variables defined in the comment line (except for system variables) must be set
by the service procedure or list exit. The variable data in the comment line is then
substituted by the system when a list is displayed using the list definition.

After entering the comment lines, to display the actual list entries you must define one
or more screen formats (up to a maximum of 10). Each of these screen formats consists
of a heading and an entry line.

Notes:

m If you specified that the format for the list be drawn from an existing list definition,
you cannot define a list format.

m A heading (up to 10 lines long) can contain constant or variable data, or both.
Constant data is static, while variable data is set by the service procedure or list exit
and substituted into the expression when the heading is displayed. For variables to
be recognized, a Heading Sub Char must be specified; for example, if the NCL
variable &USERID is used in the heading definition and the Heading Sub Char has
been defined as &, the variable is replaced by the user’s user ID when the heading is
displayed.

If you wanted the & to appear as a constant in the heading, you would have to
define a different Heading Sub Char; therefore, if you specify the ~ character as the
Heading Sub Char, for the previous example you would use ~USERID instead of
&USERID.

m An entry line consists of entry line fields (NCL variables), each of which is replaced
by an attribute of the list item when the list is displayed. An entry line can also
contain constant data. Note, however, that the first non-blank character on the line
must be an ampersand (&).

Entry line fields can be the following:

102 Managed Object Development Services Guide

Maintaining Lists

m Real variables

m Aliases for real variables

List Entry Line Fields Panel

To use aliases, press F5 (Fields). The CAS : List Entry Line Fields panel is displayed. This
panel displays all the entry line fields defined on the CAS : List Format panel.

PROD----------mmmmmeeoo CAS : List Entry Line Fields -------------------------
Command ===> Function=Add Scroll ===> PAGE
Appl ID ... TST Type.Userid ... PUBLIC Name ... 001
Entry Line Field Real Field
A TSTID
B TSTTYPE
C TSTTIME
D TSTDATE
E TSTGROUP
F NAME
G PHONE
CREDAT CREDAT
CRETIME CRETIME
CREUSER CREUSER
UPDTDATE UPDTDATE
UPDTTIME UPDTTIME
UPDTUSER UPDTUSER

Fl=Help F2=Split F3=File F4=Save F5=Format
F7=Backward F8=Forward F9=Swap F12=Cancel

This panel is used to assign aliases to attribute identifiers used on the list format panel.

Entry line fields can sometimes be longer than the data to be displayed, meaning the
NCL variable to be defined in the entry line might not fit.

To overcome this, you can define a shorter variable name in the entry line, and then
assign the name of the real field that is to be substituted when you display a list using

the definition.

The value of an entry line field can be the same as that of the associated real field (when
its length does not cause formatting difficulties).

For information about the fields and options displayed, press F1 (Help).

After entering the list definitions, press F3 (File). To cancel the list specification, press
F12 (Cancel).

Chapter 3: Maintaining Application Components 103

Maintaining Help

Resetting the List Cache

When a list definition is recalled for use it is loaded into a VARTABLE for optimum
performance. This is referred to as the List Cache. As different lists are used they are
added to this cache.

Use F12 (ResCache) to reset the list cache and clear all list definitions from the cache. If
the MODS file is shared the list cache needs to be reset on all systems except the system
being used to maintain the list definitions. It also needs to be done if lists have been
moved, copied, or deleted using the Definition Utility. Reset the list cache only after you
have changed, moved, copied, or deleted list definitions on the maintenance system.

If you do not perform this action, the modified list definitions may not take effect on the
other systems until the next time the product region is started up.

Note: You do not need to reset the list cache on the maintenance system after you
delete or update a list definition. In either action, the list definition is deleted from the
list cache on the maintenance system automatically (but not on other systems). The

next time you access the list definition on the maintenance system, an updated copy is
retrieved from the database.

Maintaining Help

This section describes the Common Application Services (CAS) Help facility, which is
used to define and maintain online help for applications.

This facility provides a flexible means of defining context sensitive help at various
application levels.

More information:

Help (see page 25)

104 Managed Object Development Services Guide

Maintaining Help

Help Definitions

Printing Help Files

Viewing Help Files

When a user presses F1 (Help), one or several panels are displayed that contain help
information. The help that is displayed is dependent on where the user pressed F1
(Help). For example, if the user requests help while the cursor is located in an input field
then the help associated with that field is displayed.

Note: Not all fields are supported by the CAS Help facility.

Help text can be structured in panel format, in scrollable text format, or using a
combination of both. Facilities for constructing menus, help indexes and tutorials within
the help file are also available. Help files can be merged or copied, both during
maintenance and while being displayed.

A text editor is available to define and maintain help text. Optional embedding of
control codes is provided to make control of text color, highlight, intensity and
formatting as easy as possible. Facilities for browsing (which displays the help file) and

viewing (which displays the help as the user sees it) are available.

Help files can be added and maintained at either application level, function level,
window level, or field level.

Use option P to print the contents the help file in the format that a user sees when they
request help.

More information:

MODS Component Reports (see page 135)

Use option V to view the help file in the format that a user sees when they request help.

Chapter 3: Maintaining Application Components 105

Maintaining Help

Maintaining Function-Level Help

Function-level help describes a particular function within an application. Typically, each
function-level help file is associated with one of the application’s panels.

Function-level help can also include the following:
Tutorial

A tutorial for the application can consist of just a single help file, or it can refer to
other help files through the .CP and .MU macros. If you define a function-level help
file called TUTORIAL, CAS automatically assigns a function key to access the tutorial
in the Function Key Area on the screen, and display your tutorial file when the user
presses that key.

Help Index

A help index can consist of a menu of all help available for the application (using the
.MU macro). If you define a function-level help file called INDEX, CAS automatically
assigns a function key to access the index in the Function Key Area on the screen,
and display your index file when the user presses that key.

You have to write your own help index file. The help index file typically contains a
number of .MU macros that display a menu of help topics from which a user may
select. For an example of a help index file, view the INDEX function-level help for
the SCA application ID.

Use option H (Help) on the CAS : Maintenance Menu (/CAS) and specify an application
ID to access function-level help. The CAS : Function Level Help List for the selected
application appears. This panel lets you maintain function-level help or list field and

window-level help for a help function.

For information about the fields and actions on this panel, press F1 (Help).

Adding a Function-Level Help File

Use F4 (Add) to create a new function-level help file. A panel appears where you must
enter the name of the new function.

Note: The application ID appears and may not be changed.

Press F3 (File) to display the CAS : Function Level Help Definition panel. Enter a
description of the help file in the Help Description field, then the text of the file.

A text editor (see page 347) is available to edit the help files.

106 Managed Object Development Services Guide

Maintaining Help

Listing Function-Level Help Files

Use option H (Help) on the CAS : Maintenance Menu to display a selection list of
function-level help files.

When specifying this option, the Appl ID field must also be specified.
You can optionally specify a prefix in the Name Prefix field to limit the selection of

records to be displayed on the list. For example, to list all function-level help whose
Function Name starts with the S character, specify $ in the Name Prefix field.

Maintaining Window-Level Help
Window-level help describes a particular window on a panel. Use option LW (List
Windows) beside an entry on the CAS : Function Level Help List to access window-level
help.
For information about the fields on this panel, press F1 (Help).

Adding a Window-Level Help File

Use F4 (Add) to create a new window-level help file. A panel appears where you must
enter the coordinates of the new window.

Note: The application ID and function name appear and may not be changed.

Press F3 (File) to display the CAS : Window Level Help Definition panel. Enter a
description of the help file in the Help Description field, then the text of the file.

A text editor (see page 347) is available to edit the help files.

Maintaining Field-Level Help

Field-level help defines help for a specified field on a panel. Use option LF (List Fields)
beside an entry on the CAS : Function Level Help List to access field-level help.

For information about the input fields, press F1 (Help).

Adding a Field-Level Help File

Use F4 (Add) to create a new field-level help file. A panel appears where you must enter
the field name.

Note: The application ID and function name appear and may not be changed.

Chapter 3: Maintaining Application Components 107

Maintaining Help

Press F3 (File) to display the CAS : Field Level Help Definition panel. Enter a description
of the help file in the Help Description field, then the text of the file.

A text editor (see page 347) is available to edit the help files.

Facilities for Help Text Editing and Formatting

The text contained within help files can be modified using the help text editor (see
page 347). There are also text formatting macros available that you can embed in the
help text to control the appearance of the text when displayed to the user.

Help Macros

Help macros can be embedded in help files to control the appearance of text when
displayed on a panel. They must start in column 1, and there can be only one macro per
line.
You can use the following macros to perform actions:
AT
Define a display attribute.
.BX
Draw a box around trailing text.
.CE
Center trailing text.
.CH
Center a heading.
.CM
Add a comment.
.CP
Copy a help file.
.CT
Control help.
.DE
Selectively display help text depending on terminal types .
.LI

Selectively display help text depending on licensed features.

108 Managed Object Development Services Guide

Maintaining Help

.LN
Draw a line across the screen.

.MU

Define a menu line.
.NP

Skip to a new page.
.OP

Selectively display help text depending on the operating system.
.PH

Define a primary heading.
.RA

Remove a display attribute.
.SH

Define a sub heading.
.SP

Skip lines.
T

Define the title line.

Note: For full descriptions, see the online help.

Chapter 3: Maintaining Application Components 109

Maintaining Messages

Display Attributes

Some of the macros allow characters to be specified that are used as display attributes
(for example, to control color and highlighting).

The following predefined attribute characters are provided:

! (hexadecimal value X’5A’)

This display attribute is used to highlight important help text—for example, the
name of a command. It is based on the system variable &ZPOUTHIC.

‘ (hexadecimal value X’79’)

This display attribute is used for normal help text. It is based on the system variable
&ZPLABELC, which is the default text display attribute.

| (hexadecimal value X’6A’)

This display attribute is used for headings when you are not using the .PH and .CH
macros. It is based on the system variable &ZPSUBTLC.

Note: This is the EBCDIC broken bar character.

You should use this predefined set of display attributes to ensure that help text is
consistent in appearance and conforms to installation standards.

If you need to use one of the above attribute characters as a real character, the .RA help
macro can be used to remove a predefined attribute character definition.

Note: Do not use the asterisk (*) or ampersand (&) characters as display
attributes—these characters are reserved by the system.

Maintaining Messages

This section describes the Common Application Services (CAS) Message facility.
Messages are items of text that are displayed on a panel in response to specific events
(such as error conditions). Use information in this section to define and maintain
message definitions.

More information:

Messages (see page 27)

110 Managed Object Development Services Guide

Maintaining Messages

Messade Definitions
A message definition contains message identifying information as well as the actual
message text, an explanation of its purpose and a description of system and user action

taken.

Because message definitions are not defined as belonging to particular applications, any
defined message can be used by all applications.

To assist in maintaining message definitions, a full-screen text editor is provided.

Defining Message Definitions
Defining message definitions requires you to complete two panels. The first of these
defines the message ID, text, and explanation; the second specifies the Action and User

Action.

The first panel is the CAS : Message Text/Explanation panel.

PROD--------mmmmaoo o CAS : Message Text/Explanation ------------- Page 1 of 2
Command =—=> Function=Add
Message ID

Substitution Char .. & _

Message Text

Message Explanation

F1l=Help F2=Split F3=File F4=Save
F8=Forward F9=Swap F11=Edit F12=Cancel

You can extend the Message Explanation text by tabbing the cursor to any of its data
entry lines and pressing F11 (Edit).

A text editor (see page 347) is available to edit the text.

Chapter 3: Maintaining Application Components 111

Maintaining Messages

After completing this panel, press F8 (Forward). The CAS : Message System/User panel is

displayed.
PROD-----------un--- CAS : Message System/User Action ------------- Page 2 of 2
Command ===> Function=Add
Message ID

Substitution Char .. &

System Action

User Action

Fl=Help F2=Split F3=File F4=Save
F7=Backward F9=Swap F11=Edit F12=Cancel

You can extend the System Action or User Action text by tabbing the cursor to any of
the action’s data entry lines and pressing F11 (Edit).

For information about the field and options on this panel, press F1 (Help).

After completing the message definition, press F3 (File). To cancel the definition, press
F12 (Cancel).

Viewing a Messagde Definition
Select option V to display a message definition in the format that a user would see the

message help. Use F7 (Backward) and F8 (Forward) to scroll up and down and use F6
(NewMsg), F10 (Prevmsg) and F11 (Nextmsg) to view other message definitions.

112 Managed Object Development Services Guide

Maintaining Tables

Maintaining Tables

This section describes the Common Application Services (CAS) Table facility. Tables
contain sets of table entries that are used to validate data entry, and how to create and
maintain table definitions and table entries.

A table (see page 28) consists of a table definition and a series of table entries. It defines
the location and type of data against which input for a field is validated. Table

definitions can be created, updated, browsed, deleted, copied or listed using the
CAS : Table Definition List.

Entries can be stored as data within a MODS control file. The entries can also be CA
SOLVE:InfoMaster field names or values of an CA SOLVE:InfoMaster field.

Note: Table entries can only be added to tables that have an Edit type of TABLE.
More information:

Maintaining Application Groups (see page 48)

Defining and Maintaining Table Definitions

Defining a table requires you to fill in two panels. The first of these defines the actual
table, the second specifies all the fields required for each entry in the table.

PROD-------mmmmmmm e - CAS : Table Description ----------------- Page 1 of 2
Command ==> Function=Add
AppL ID ..o ~ Fiedname

Field description
Edit type ...t TABLE (TABLE, OSATT, OSFLD, IMFLD or IMREC)

For Edit type = TABLE:
Validation exit
Sequence numbers (
Load table?ccovinnnn -
Max abbreviation length (3 - 8 or blank if none)
(
(

Max full value length

Max description length
For Edit type = IMFLD or IMREC:

InfoMaster category
For Edit type = IMREC:

InfoMaster field

InfoMaster description field ...
For Edit type = OSATT or OSFLD:

Object Services Class ID
For Edit type = NDBFL:

Fl=Help F2=Split F3=File F4=Save
F8=Forward F9=Swap F12=Cancel

Chapter 3: Maintaining Application Components 113

Maintaining Tables

For information about the fields and options on this panel, press F1 (Help).

If the table has an Edit type of TABLE, you have the option of specifying additional input
fields to appear on the Table Entry panel:

m [f you do not require any extra data for the table entries, press F3 (File) to create
the table definition. To cancel the create, press F12 (Cancel).

m To define extra input fields for the Table Entry panel, press F8 (Forward). The
CAS : Table Text Fields panel is displayed.

PROD------=mm e CAS : Table Text Fields ----------------- Page 2 of 2
Command =—=> Function=Update
ApPL ID ..t TST
Field name TSTEO1
Field Text description Length(4-38)
1 I/M Application 4
2 Service Procedure 8
3 System Name 24
4 Record Category 24
5 _
6
7
8
9
10
Fl=Help F2=Split F3=File F4=Save F6=Entries
F7=Backward F9=Swap F12=Cancel

For information about the fields and options on this panel, press F1 (Help).

After defining the validation table, press F3 (File). To cancel the table specification, press
F12 (Cancel).

114 Manadged Object Development Services Guide

Maintaining Tables

Maintaining Table Entries

Adding a Table Entry

Table entries represent the valid values for a data entry field. You must define a table
definition before you can define its table entries.

Note: Table entries are only entered for tables that are defined with an edit type of
Table. Entries for other types are validated against the external source, such as an
InfoMaster field.

To maintain table entries, use option LE (List Entries) beside an entry on the CAS : Table

Definition List. The CAS : Table Entry for Field (field name) appears. This list provides
options to maintain table entries.

Use F4 (Add) to create a new table entry. A panel appears where you must enter the full
value of the new table entry.

Note: The application ID and field name appear and may not be changed.

PROD-------mmmmmmmmmm o CAS : Table Entry Definition --------------- Page 1 of 1
Command =—=> Function=Add

Appl IDvviviiinnnt TST
Field name TSTEO1

Full value

Abbreviated value

Description

Sequence number

Active?iel, YES (YES or NO)

I/M Application
Service Procedure
System Name
Record Category

Fl=Help F2=Split F3=File F4=Save
F9=Swap F12=Cancel

Note: Only Appl ID, Field name, Full value, and Active? fields appear on every Table
Entry Definition panel. The other fields depend on how the table is defined.

For information about the fields and options on this panel, press F1 (Help).

Chapter 3: Maintaining Application Components 115

Maintaining Criteria

Any additional fields that are specified in the table definition also appear on the Table
Entry Definition panel. Complete these fields as required.

After specifying the table entry, press F3 (File).

Reloading Validation Tables

Whenever table entries or table definitions are added, updated or deleted (from a table
that has already been loaded), a reload must be performed. This means that all table
definitions for the application are loaded from the control file into memory.

If a table is flagged for loading and has an Edit type of TABLE, all its entries are also
loaded into memory.

A reload can be initiated from a list of tables by selecting option R. A confirmation
message is displayed when the reload is complete.

Maintaining Criteria

This section describes the Common Application Services (CAS) Criteria facility, and how
to define and maintain criteria definitions.

Criteria are rules that can be used in a test, for example, the expression on an
&BOOLEXPR statement or the scan expression on an &NDBSCAN statement. They are
used as a condition for the occurrence of some event—such as the inclusion of a record
in a list, for example.

More information:

Criteria (see page 29)

116 Managed Object Development Services Guide

Maintaining Criteria

Criteria Definitions

Run Time Panel

Criteria Exit

A criteria definition for a set of criteria consists of an identifier, a description of its
behavior, a run time panel, a help name, a criteria exit, a data source, exit parameters,
and the criterion condition.

A set of criteria can simply compare static values (for example, numbers or field names)
or can be complex, combining numerous operators, attributes, connectors, parentheses,
and values.

Criteria values can be variables (for example, the current date). When a set of criteria is
recalled to perform a test, variable values are supplied either interactively by the user,
using a run time panel, or by an exit procedure.

Criteria are used for the following purposes:

m Selection of objects for inclusion in a list

m Inclusion of objects in a report when using Report Writer

m The condition for display of a panel within a panel domain

Criteria definitions can be public or private. Public definitions are available to all users,
while private definitions are available only to their owner.

Criteria can be predefined and reused. A criteria definition specifies the set of criteria
and is named with a unique identifier. Criteria are stored on a database so that they can
be recalled to provide the test that they define.

A criteria definition can include the identifier of a run time panel, to enable interactive
entry of variable data for the criteria. This panel must request entry of data for variables
within the set of criteria.

You can specify a criteria exit, an NCL procedure to be executed during the process of
building the set of criteria. The purpose of the criteria exit is to enable the initialization
and editing of the run time panel and specification of variable data that is to be included
in the set of criteria.

More information:

Criteria Exit Procedures (see page 243)

Chapter 3: Maintaining Application Components 117

Maintaining Criteria

Data Source

You can specify a data source for the criteria definition. The purpose of this is to allow
the criteria exit to determine the type of data to which the criteria are applied. This
enables the definition of a general purpose criteria exit that can be used by multiple
criteria definitions (since the exit determines the type of data and processes
accordingly).

Exit Parameters

Exit parameters are passed to the criteria exit when it is executed in the process of
building a set of criteria. A criteria exit can base its behavior on the exit parameters
defined within a criteria definition. Thus it is possible to modify the behavior of a set of
criteria by changing the exit parameters without having to change the exit procedure.

Substituting Variable Data

The NCL built-in function &ZSUBST is used to substitute variable data into the criteria.
The ampersand character (&) is used as the substitution character. The variables defined
within the criteria can be set by the user through entry of data on a run time panel or by
the criteria exit procedure.

118 Managed Object Development Services Guide

Maintaining Criteria

Defining Criteria

Defining a criteria requires you to complete a description panel, which identifies the
criteria, and then specifying the actual criteria expression on a second panel.

You can also, optionally, define a series of exit parameters on a third panel if your
criteria makes use of the criteria exit.

Description

Data Source

Fl=Help

————————————— CAS : Criteria Description ---------------Page 1 of 3
Command =—>

Appl ID L
Criteria Type (PUBLIC or PRIVATE)
Userid
Criteria Name

Run Time Panel ...
Help Name ..
Exit Name ..

Comments ...

Function=Add

...... (Userid if PRIVATE)

F2=Split F3=File F4=Save F5=Parms
F8=Forward F9=Swap F12=Cancel

For information about the fields and options on this panel, press F1 (Help).

Chapter 3: Maintaining Application Components 119

Maintaining Criteria

After completing the criteria description, press F8 (Forward) to specify the actual criteria
on the Criteria Text panel.

PROD-------mmmmmmmm e - CAS : Criteria Text ------------------ Page 2 of 3
Command ===> Function=Add Scroll ===> PAGE
Appl ID ... ZPR Type.Userid ... PUBLIC Name ... ASSIGN1
LINE <---+----10---+----20---4----30---+----40---+----50---+----60- - -+----70-->
HoAokok TOP OF DATA
0001 STATUS NE ALL 'CLOSED’,’CANCELLED' AND ASSIGNEE EQ ’'&USERID’

HoAokok BOTTOM OF DATA
Fl=Help F2=Split F3=File F4=Save F5=Find F6=Change
F7=Backward F8=Forward F9=Swap F12=Cancel

The criteria text panel is used to define the condition (or rule) for criteria. For example,
the expression on an &BOOLEXPR statement or the scan expression on an &NDBSCAN
statement.

The simplicity or complexity of the criteria and its syntax is dependent on what it is to be
used for. For example, if it is to be used as the scan expression on an &NDBSCAN
statement then it must obey the syntax rules for an &NDBSCAN scan expression.

Criteria can consist of constant and variable data. Constant data never changes, for
example, the identifier of an attribute. Variable data can change, for example, the
current date. Variable data in the criteria is represented by an NCL variable, for
example, &USERID. The NCL variables defined in the criteria, except system variables,
must be set by the criteria exit or by the user entering data on the run time panel. The
variable data in the criteria is substituted by the system when the criteria is built.

In the panel shown before, the criteria specifies all problems that are not closed or
canceled that belong to the current user.

If the criteria uses an exit procedure, you can define exit parameters to be used by that
procedure. To achieve this, press F5 (Parms) in the CAS : Criteria Description panel.

120 Managed Object Development Services Guide

Maintaining Commands

After the above action, the CAS : Criteria Exit Parameters panel is displayed.

PROD--------mmmmmommmo - CAS : Criteria Exit Parameters ------------- Page 3 of 3
Command ==> Function=Add Scroll ===> PAGE
Appl ID ... ZPR Type.Userid ... PUBLIC Name ... ASSIGN1

Blkk okl TOP OF DATA rkkokkokkskaiofofokokkokatoookokokokakofokokokok
SEVERITY=50
FINALDAY=MON

Fl=Help F2=Split F3=File F4=Save F5=Find F6=Change
F7=Backward F8=Forward F9=Swap F12=Cancel

This panel lets you enter parameters for the exit procedure in the format required by
the exit.

After specifying the criteria, press F3 (File).

Maintaining Commands

This section describes the Common Application Services (CAS) Commands facility. This
facility provides you with the ability to define commands to perform your own
specialized functions.

More information:

Commands (see page 29)

Chapter 3: Maintaining Application Components 121

Maintaining Commands

Command Definitions

A command definition contains identifying information about the command and
specifies an action that occurs when the command is executed.

Unlike the other CAS components, commands are not defined as belonging to a

particular application. This means that all commands defined to CAS can be used by all
applications.

Define a Command

You must specify the following information when defining a command:
m Command name
m A brief description

m The action to perform

122 Managed Object Development Services Guide

Maintaining Commands

Using the Action Field

To define a command

1. Onthe CAS : Maintenance Menu, select Option C.

The Command Definition List panel appears.
2. Press F4 (Add).

The Command Definition panel appears.

Note: For information about the fields, press F1 (Help).
3. Specify the required information, and press F3 (File).

The command is defined.
Example: Command Definition

This example shows a MYCMD command that executes a procedure.

PROD-------mmmmmmmee e - CAS : Command Definition ---------------- Page 1 of 1
Command ===> Function=Add
Command ID ... MTCMD___

Description .. Execute the named procedure

Comments

Action EXEC &$CMPARML

The action field specifies the action to be taken when this command is entered.
An action consists of any of the following commands, or a word recognized by the
calling procedure, together with any required parameters.
CMD [command)]

Enter the Command Entry facility and prime the command field with the command.
EXEC procname [parameters]

Execute the procedure procname with specified parameters.
DISCONN

Disconnect the session.

Chapter 3: Maintaining Application Components 123

Maintaining Commands

HELP
Display online Help information.
KEYS [PRI | ALT | OFF | SET]
PRI
Build and return Primary function key area.
ALT
Build and return Alternate function key area.
OFF
Turn function key display off.
SET
Lets user set function keys 13-24.
The default is to toggle between PRI and ALT.
LOCK
Lock the session.
NOTEPAD
Invokes the CAS Notepad facility.
PASSWORD
Lets user change password and/or user details.
PQUEUE [user ID]

List queued print requests for user ID. Defaults to your user ID and can be a generic
ID if terminated by an asterisk.

PSKIP [options]
Jump to the specified panel (equivalent to the ‘=" panel skip command).
RETRIEVE [? prefix]

Retrieve the last command. ? is for prompt support. If followed by a prefix, obtains
a list of commands starting with that prefix.

SPLIT
Split the window at the current cursor position.
START procname [parameters]

Start NCL procedure procname with specified parameters.

124 Manadged Object Development Services Guide

Maintaining Maps

SWAP
Swap to the other window.
WHERE
Display current NCL procedure details.
When the command is entered and passed to CAS (through SCACALL) by the controlling
NCL procedure, CAS either:
m Performs the required action (if the action is from the table below)
m Returns the unknown command (and any parameters) to the calling procedure
The parameters can include constant or variable data, or both. Variable data consists of
NCL variables that are set by CAS when the command is processed.
Valid variables are as follows:
&SCMPARMS
Contains all data entered by the user following the command.
&S$CMPARML ... &$CMPARM64
Contains the command parameters (delimited by a space) entered by the user

following the command.

After completing the command definition, press F3 (File).

Reloading Command Definitions

Use F12 (Reload) to reload command definitions when you make a change to one or
more commands.

A reload should be performed when any command maintenance is carried out—if a

reload is not performed, the changes do not take effect until the next time your product
region is started.

Maintaining Maps

This section describes the facilities for creating, maintaining and compiling map
definitions for ASN.1 source code.

Chapter 3: Maintaining Application Components 125

Maintaining Maps

Map Definitions

Map Library Structure

Map definitions comprise a number of source statements, and are compiled to a
loadable form. Map source can be kept in any convenient source library in a similar
fashion to NCL procedures.

All compiled maps are lodged in the OSCNTL file that serves as the Map Library. From
this library the loadable form of a map can be accessed on demand. A map is loaded
only when specifically requested for use by an NCL procedure.

The Map Library is a keyed file that contains:

® Map registration records

m ASN.1 source records

m Load module records

For each map defined to the system there is one map registration record. This
registration record contains global information that registers the unique map name, and

other identification data. It also contains information about the system data set where
the source statement file can be located.

One or more load module records exist for each map. These records are compiled from
the map source statements, and represent the amalgamation of the logical and physical
data structure information into a form understandable by the Map loader.

The source records contain the ASN.1 source code from the last successful compile of
the map.

Creating and Maintaining the Map Source

A map must first be registered to the system before it can be used by Mapping Services.
The process of registration defines some of the global attributes of the map that let it
co-exist as a unique entity in the system.

Before adding maps to the Map Library, you should consider the restrictions (see
page 302) placed on the ASN.1 language by the Mapping Services implementation.

126 Managed Object Development Services Guide

Maintaining Maps

Compiling a Map

After a map is registered and its ASN.1 source location defined, the map can be
compiled to produce the map load module. This module is a series of records kept in the
Map Library that are accessed by the Mapping Services Loader when a map is loaded for

use in the system.

If the compilation is successful, the source is stored in the Map Library for reference

purposes.

The process of registering and compiling a map is as follows:

Get Map Registration and
OSCNTL Location of Source

N

Get ASN.1
Source

N

COMPILATION ‘

\ Store:

Map Definition

OSCNTL ASN.1 Source
Load Module
Records

Chapter 3: Maintaining Application Components 127

Maintaining Maps

Loading a Map

Defining a Map

During the load phase the contents of the load module records are reduced to an
internal format that can be used by Mapping Services. Since references to imported
definitions are resolved on load, the load module containing the imported definitions
must be previously compiled.

Any inconsistencies in either the ASN.1 logical structuring, or the Mapping Services local
form definitions, causes the map load to fail.

Once compiled, maps can be loaded from the Map Library to validate that they load
without problems. Maps are normally loaded automatically when they are first
referenced, requiring no action on your part. You might, however, want to load a map,
using the LOAD MAP command, to determine if it can be loaded successfully.

The UNLOAD MAP command may be used to remove an old copy of a map from
storage. The SHOW MAPS command displays a list of maps that are currently loaded.

You can define a new map by selecting the appropriate option from the Mapping
Services Primary Menu or from a list of existing map definitions (by pressing F4 (Add)).
You can also create a new map by copying an existing map definition.

128 Managed Object Development Services Guide

Maintaining Maps

Mapping Services Primary Menu

To access the Mapping Services : Primary Menu, enter /MAPS. This panel lets you
maintain map definitions, and to compile ASN.1 source code for the map.

Select

(%]
'

><<2r'umccmm>
' '

Fl=Help

Map Name ...

Mapping Services : Primary Menu

Option ==>

Add Map

Browse Map

Browse Map Source
Update Map

Delete Map

Copy Map

Print Map

List Maps

Compile Map

View Map Structure
Exit

(Required BBSUD CPV
Optional ACM L)

F3=Exit
F9=Swap

F2=Split F4=Return

The Map Name field lets you enter the identifier of a map in support of the relevant
menu option (for instance if you select the Update Map option you must specify the
map that you want to update.)

Chapter 3: Maintaining Application Components 129

Maintaining Maps

Adding a Map Definition

Select option A from the Mapping Services : Primary Menu to display the Mapping
Services : Map Definition panel. Use this panel to define a new map definition.

PROD-----------mnmmmn Mapping Services : Map Definition ----------- Page 1 of 1
Command ===> Function=Add
Map Name

Description
Commentsoouune

Generated by Appl ID
Source Member Name Number of Source Lines ..
Source DDNAME

Modification Level

Last Compiled On

Fl=Help F2=Split F3=File F4=Save
F9=Swap F12=Cancel

For information about the fields displayed on the Mapping Services : Map Definition
panel, press F1 (Help).

After completing the Mapping Services : Map Definition panel, press F3 (File) to create
the map.

Maintaining Map Definitions

This section describes the maintenance facilities available for existing map definitions.

130 Managed Object Development Services Guide

Maintaining Maps

Listing Map Definitions

Select option L to display map definitions that are already defined. If you make an entry
(or partial entry) in the Map Name field on the menu panel, the list is constrained to
map definitions that generically match your entry.

Map definitions are displayed over four panels. Use F11 (Right) and F10 (Left) to scroll
between the panels of the list.

PROD-------------- Mapping Services : Map Definitions List --------------------
Command ===> Scroll ===> PAGE
S/B=Browse BS=BrowSrc U=Update D=Delete C=Copy P=Print CM=Compile V=View
Map Name Description
$ACMPGNR Disconnect data for VTAM Generic Resource
$ACMPMSD Global Session Criteria Definition Map
$ACMPMSL Global Session List Map
$ACMPMSR Global Session Criteria List Map
$ACMPSDD SOLVE:Access - Individual session definit
$ACMPSDL SOLVE:Access - Session Definition List re
$ACMPSRQ SOLVE:Access : Session Replay Request
$AMACPRM Alert Monitor - Action Parameter
$AMACTN Alert Monitor - Action Template Class
$AMACTNA Alert Monitor - Actions for the Action Cl
$AMALCLS Alert Monitor - Alert Class (metaclass)
$SAMALERT Alert Monitor Map
$AMALRUL Alert Monitor - Alert Rule Object
$AMAPPL Alert Monitor - Application
$AMFILTR Alert Monitor - Filter
$AMHIST™M Alert Monitor - History Logging Config Re
F1l=Help F2=Split F3=Exit F4=Add F5=Find F6=Refresh
F7=Backward F8=Forward F9=Swap F11=Right

For information about the fields and actions on the panels, press F1 (Help).

Chapter 3: Maintaining Application Components 131

Maintaining Maps

Browsing the ASN.1 Source Code for a Map

Option BS displays the ASN.1 source code for the map (from the last successful compile).

PROD-----------m--- Mapping Services : ASN1 Map File Source ----Columns 001 072
Command ==> Function=Browse Scroll ===> PAGE

Map Name $0SSDU Source Member ... $0SSDU
Description ... Service Data Unit Source DDNAME ... COMMANDS

Hokokok TOP OF DATA
0001 -- ++INCLUDE #0SVERSD
0002 = 2 RSRoRSROoKR Rk Rk Rk Kok ok ok ok sk ok sk ke ok sk ok sk Sk sk Sk >k ke ok kok sk sk sk sk sk ke ok skok sk sk sk sk sk sk sk sk sk sk k sk sk sk sk sk skok sk k sk kokskokkok kk
0003 --
0004 -- NAME 1 $0SSbU
0005 --
0006 -- DESCRIPTION : ASN.1 map for Service Data Unit used in calling
0007 -- Object Services
0008 --
0009 -- CREATE DATE : 31-0CT-1991
0010 --
0011 --
0012
0013 -- ++INCLUDE #NMCOPYD
0014
Fl=Help F2=Split F3=Exit F4=Return F5=Find
F7=Backward F8=Forward F9=Swap FlO=Left F11=Right

* K K K XK X X ¥

Printing a Map Definition and Its ASN.1 Source Code

Option P displays the PSM : Confirm Printer panel for you to enter the required printing
details. Press F6 (Confirm) to confirm the action.

More information:

MODS Component Reports (see page 135)

132 Managed Object Development Services Guide

Maintaining Maps

Compiling a Map’s ASN.1 Source Code

Select option CM from the Mapping Services : Primary Menu to compile the map.
The map definition is displayed. Check (and modify if necessary) the Source Member
and DDName fields. You can use the BROWMEM and BROWSRC keys to browse the

member definition and source definition, respectively, from this panel.

Press F6 (Action) to compile the map.

If any warnings or errors occur, the Mapping Services : Compiler Messages screen is

displayed.
PROD--------mmmmo - Mapping Services : Compiler Messages ---------------------
Command ===> Scroll ===> PAGE
S/H=Help
Error and/or Warning Messages for ASN.1 Compile
DDO904 THE FOLLOWING MESSAGES WERE ISSUED BY COMPILER FOR MAP $0SSDU
DD0361 Warning: line 147 - unnamed component
F1l=Help F2=Split F3=Exit F5=Find F6=Refresh
F7=Backward F8=Forward F9=Swap F11=Right

Chapter 3: Maintaining Application Components 133

Printing MODS Component Reports

Viewing a Map Structure

Select option V to display the compiled map structure of the map definition that you
specify in the Map Name field.

PROD---------------- Mapping Services : View Map Structure --Line 1 to 17 of 17
Command ===> Function=Browse Scroll ===> CSR
Map Name $AMMPFD

NAME

DESCRIPTION

CREATED . DATE

CREATED. TIME

CREATED . USERID

LASTUPDATED . DATE

LASTUPDATED . TIME

LASTUPDATED . USERID

FILTER.{*}.LPAREN

FILTER. {*}.LPARENVAL

FILTER. {*}.ATTR

FILTER. {*}.0PER

FILTER. {*}.VALUE

FILTER. {*}.GENERIC

FILTER. {*}.BOOLEAN

FILTER. {*}.RPAREN

Fl=Help F2=Split F3=Exit F4=Return F5=Find
F7=Backward F8=Forward F9=Swap Fl0=Left F11=Right

Printing MODS Component Reports

This section describes how to print MODS component reports by using option REP from
the MODS : Primary Menu.

134 Managed Object Development Services Guide

Printing MODS Component Reports

MODS Component Reports

The report types that can be obtained using option REP are as follows:
m Application definitions
m CAS components, including:

® Messages

m Help
® Menus
m Lists
m Criteria
= Tables

m Commands

m Print Services Manager (PSM) definitions

m Report Writer report definitions

Note: Help text and message text can also be printed by other means, for example, by
printing help text (see page 105) in either of two different formats by using the various
CAS : Help Definition menus, and by printing message text using the CAS : Message
Definition Menu.

You cannot use option REP to print the following:

m Map definitions (see page 132) and their ASN.1 source code

m Panel definitions (see page 54)

Printing Components Using the REP Option

You can print MODS component reports by selecting option REP from the

MODS : Primary Menu. The Report Writer : Report List panel is displayed. The panel lists
the component reports that you can print. For each report, you can select the
definitions to be included.

There are two report formats for each component: detail and summary. A detail report
contains exact copies of the selected definitions within a component. A summary report
contains single line descriptions of the selected definitions within a component.

If you need to restrict the definitions that are listed when the report is generated, you
can provide test criteria on the following panel.

Chapter 3: Maintaining Application Components 135

Printing MODS Component Reports

Note: You must know the fields (variable names) that can be specified. To determine
which fields apply to each report, enter LF next to the report and make a note of the
required fields names before continuing.

Command ===>

Description

Application Definition Detail
Application Definition Summary
Command Definition Detail
Command Definition Summary
Criteria Definition Detail
Criteria Definition Summary
Default Printer Assignment Detail
Default Printer Assignment Summary
Form Definition Detail

Form Definition Summary

Help Definition Detail

Help Definition Summary

List Definition Detail

List Definition Summary

Menu Definition Detail

Menu Definition Summary
Message Definition Detail
Message Definition Summary
Printer Definition Detail
Printer Definition Summary
Report Definition Detail
Report Definition Summary
Setup Definition Detail

Setup Definition Summary
Table Definition Detail

Table Definition Summary

F1l=Help F2=Split F3=Exit
F7=Backward F8=Forward F9=Swap

Report Writer :

Report List

Scroll ===> PAGE

S/=Select I=Information LF=List Fields

F5=Find

F6=Refresh

To select a report for printing, type S or / next to the report and press Enter. The
PSM : Confirm Printer panel is displayed. If necessary, change the values in the fields,
then press F6 (Conform).

136 Managed Object Development Services Guide

Printing MODS Component Reports

The MODS : Definition Report Search panel is displayed.

PROD--------mmmmmommmo - MODS : Definition Report Search ------------------o----
Command ===> Function=Search
Appl ID Prefix ..
Testovvntt
Fl=Help F2=Split F3=Exit F6=Action
F9=Swap

Use the panel to restrict the definitions you want to include in the report. If you do not
fill in any fields, all definitions of the selected component are printed.

Note: Depending on the selected component, the panel displayed might have a
different title and first field. For example, the title is MODS : Command Definition
Report Search and the field is Command ID Prefix for command definitions.

Use the prefix field to restrict the definitions to be included in the report for a particular
MODS component: for example, SLH indicating the CAS list definitions. Use the Test
fields to further restrict the definitions by a Boolean expression. For the syntax of
Boolean expressions, see the Network Control Language Reference Guide. The
expression tests for certain values within a definition. The following example restricts
the report to private list definitions belonging to USERO1:

&$LHLDTYPE="PRIVATE’ AND &$LHLDUSERID='USERO1’
To identify the variables that hold these values, use the LF=List Fields action.

Note: If reports for help or messages are selected, the panel will contain a language
code field. The language code is that of the records for which you want to produce the
report. If this field is left blank, the report will be produced for English language help or
messages.

Chapter 3: Maintaining Application Components 137

Printing MODS Component Reports

After you specify the restrictions, press F6 (Action) to print the report.

If the report is on hold, you can use the PQ[UEUE] command to access the PSM output
queue and view the report.

138 Managed Object Development Services Guide

Chapter 4: MODS Administration

This section contains the following topics:

Maintaining Panel Libraries (see page 139)
Maintaining the MODS Control File (see page 143)

Maintaining Panel Libraries

Panel Libraries

A panel library contains a series of panel definitions. This section describes the facilities
for:

m Defining and maintaining panel libraries

m Copying panels between libraries on different paths
More information:

Concepts and Terminology (see page 49)

Panels are stored in VSAM data sets for fast retrieval and update. A VSAM data set
containing panel definitions is called a panel library. Multiple panel libraries are applied.

Individual panel definitions (see page 48) are referred to as library members. A library
can be used as the sole source of panel definitions, or it can be concatenated with other
libraries defined to the system. A concatenation of libraries is called a panel path. Each
user can be defined to use a different path. The default path is called PANELS. The
PANELLIBS parameter group specifies the libraries and the paths.

For information about panel paths, see the Administration Guide for your product.

Chapter 4: MODS Administration 139

Maintaining Panel Libraries

Accessing the Panel Library Maintenance Facilities

The panel library maintenance facilities are accessed through the MODS : Panel Library
Maintenance Menu (/MODSAD.P).

PROD----------mmmm-- MODS : Panel Library Maintenance Menu ---------------------
Select Option ==>
C - Copy Panel(s)
L - Library Definitions
X - Exit
'"From’ Library + (Required C)
'To’ Library + (Required C)
Panel Name (Blank, Full or Generic name,
e.g. '*' for all panels, or
'D*" for all starting with D)
Replace Like-Named Panels? NO_ (Required C YES or NO)
Copy All Matching Panels? NO_ (Required C YES or NO)
Fl=Help F2=Split F3=Exit F4=Return
F9=Swap

The MODS : Panel Library Maintenance Menu lets you:

m Copy panel definitions from one library to another (regardless of which paths the
libraries are in), as described below

m Access the MODS : Library Definition Menu to maintain library definitions

Copying Panels Between Libraries

To copy a panel library, select option C from the MODS : Panel Library Maintenance
Menu. For information about the fields, see the online help.

After completing the fields on the MODS : Panel Library Maintenance Menu, press
Enter. The Copy is performed as follows:

m |f you specified one particular panel in the Panel Name field, or entered YES in the
Copy All Matching Panels field, the Copy is performed when you press Enter.

m If you left the Panel Name blank, or specified a generic panel name and entered NO
in the Copy All Matching Panels field, the MODS : Panel Copy List is displayed when
you press Enter. Use this list to select the actual panels to be copied from the From
Library.

140 Managed Object Development Services Guide

Maintaining Panel Libraries

Selecting Panels to Copy

The MODS : Panel Copy List displays panels in the From Library that generically match
the Panel Name you specified (or all panels in the From Library, if you left Panel Name

blank).
The top left of the display shows the name of the From Library (LODGED) and the To
Library (TEST).
LODGED TO TEST------------- MODS : Panel Copy List ---------commmmmmmmnnn CoPY
Command ===> Scroll ===> PAGE
S/C=Copy R=Replace B=Browse
Name Created Modified Size Mlev Id
$ADEX20MC 20-NOV-1992 20-NOV-1992 15.08 30 6 USERO1
$DDCOMPP 26-NOV-1992 26-NOV-1992 15.09 62 0 USERO1
$DDEQUEP 26-NOV-1992 26-NOV-1992 15.09 62 0 USERO1
$DDIMPEP 26-NOV-1992 26-NOV-1992 15.09 62 0 USERO1
$DDMAPEP 26-NOV-1992 26-NOV-1992 15.09 62 0 USERO1
$DDTAGEP 26-NOV-1992 26-NOV-1992 15.09 62 0 USERO1
$DDTYPEP 26-NOV-1992 26-NOV-1992 15.09 62 0 USERO1
$EASIUPD2 01-NOV-1992 25-NOV-1992 11.31 35 1 USERO1
$SEDTEXTEDIT 01-NOV-1992 19-NOV-1992 12.04 88 3 USERO1

For information about the fields and actions, press F1 (Help).

You can select panels for copying by placing an S, C, or R beside them and pressing
Enter.

After copying all required panels, press F3 (Exit). The MODS : Panel Library Maintenance
Menu is displayed with a message telling you how many panels were copied and
replaced.

Chapter 4: MODS Administration 141

Maintaining Panel Libraries

Maintaining Library Definitions

Option L from the MODS : Panel Library Maintenance Menu displays the MODS : Library
Definition Menu.

This menu can be used to define a library temporarily (for example, if you want to copy
panels to or from a panels data set defined to another system). If you require a
permanently available library, you should define it by using the PANELLIBS parameter

group.

To make a library available for use, the data set must be allocated to the product region,
opened, and defined as a library. These steps can be performed using the ALLOC,
UDBCTL OPEN, and LIBRARY commands respectively.

The MODS : Library Definition Menu, shown in the following sample, provides facilities
for performing these steps, and for reversing them, without the need for you to issue
any commands.

Select Option ==>

- Allocate, Open and Define Library

- Open and Define Library

- Define Library

Remove Library Definition

- Remove Library Definition and Close

- Remove Library Definition, Close and Unallocate
- Exit

XcCcNIXoOOX>
\

Library Name ...

FitleID (Optional AO D)
DD Name (Optional A 0)
Edit Allowed ... YES (Required A 0 D YES or NO, Default YES)
Description DEFINED BY USERO1 (Required AO D)
Dataset Name ... (Required A)
Fl=Help F2=Split F3=Exit F4=Return
F9=Swap

For information about the fields and options on this panel, press F1 (Help).

142 Managed Object Development Services Guide

Maintaining the MODS Control File

Maintaining the MODS Control File

Control Files

This section discusses the facilities available for maintaining Managed Object
Development Services (MODS) control files.

The facilities for control file maintenance let you do the following:

Copy data from one control file to another (for example, from TEST to
PRODUCTION).

Move data from one control file to another.
Delete data from a control file.

Browse a MODS definition of a control file as if browsing the definition through the
MODS primary menu.

Reset / Clear all MODS definitions from the MODS cache table.

A MODS control file contains component definitions for use by NCL applications. It
contains both application and common components as follows:

Application dependent components:

- SAR—Application Definitions

- SCR—Criteria

- SHM—Help

- SLD—Language Services (Presentation Elements and String Definitions)
- SLH—Lists

- SMH—Menus

- SMS—Messages

- SRW—Reports

- SVM—Tables

Common (non-application dependent) components:
- $CM—Commands

- SLD—Language Services (Language Definitions)

- SPS—Print Services Manager (PSM) Definitions

Chapter 4: MODS Administration 143

Maintaining the MODS Control File

The components contained within a control file consist of the following sub components
and entities Subcomponents preceded with the square bullet can be acted upon as
individual entities, while those preceded with a hyphen (—) are acted upon
automatically when the parent subcomponent is affected.

SAR - Application Register
Contains the following subcomponent:
m Application Identifiers

SCR - Criteria
Contains the following subcomponent:
m Criteria Definitions

SCM - Commands
Contains the following subcomponent:
m Command Definitions

SHM - Help
Contains the following subcomponents:
m Function-level help
- Window-level help
- Field-level help

SLD - Language Services (Language Definitions)
Contains the following subcomponent:
m Language Definitions

SLD - Language Services (Presentation Elements and String Definitions)
Contains the following subcomponents:
m Presentation Elements
m String Definitions

SLH - Lists
Contains the following subcomponent:
m List Definitions

$MH - Menus
Contains the following subcomponent:

m Menu Definitions

144 Managed Object Development Services Guide

Maintaining the MODS Control File

SMS - Messages

Contains the following subcomponent:

Message Definitions

SPS - Print Services Manager (PSM) Definitions

Contains the following subcomponents:

Printer Definitions
Form Definitions
Setup Definitions

Default Printer Assignments

SRW - Reports

Contains the following subcomponents:

Report Definitions
Report Descriptions
Report Headers

Page Headers

Control Break Headers
Data Formats

Control Break Trailers
Page Trailers

Report Trailers

Sort Fields

SVM - Tables

Contains the following subcomponents:

Table Definitions

Table Entries

Important! Due to the logical relationships between the records in a control file, you
must not perform maintenance using REPRO or other file utilities. These utilities should
not be used for any purpose other than to perform backups as they cannot take account
of these logical relationships and could corrupt the control file with unpredictable
consequences.

Chapter 4: MODS Administration 145

Maintaining the MODS Control File

Accessing the Control File Maintenance Facilities

The control file maintenance facilities are accessed through the MODS : Entity
Administration Menu (/MODSADE).

PROD----------------- MODS : Entity Administration Menu --------------- /MODSADE
Select Option ===>

B - Browse Definitions -
C - Copy Definitions -
M - Move Definitions -
D - Delete Definitions -
AL - View Audit Log -
X

- Exit
From File ID ..+ Opt (BCMD)
or DSN Opt (BCMD)

To File ID+ Opt (CM)

or DSN Opt (CM)
Entity Type ...+ Opt (BCMD)
Application ID + Opt (BCMD)
Audit Log? NO Opt (CMD)

Fl=Help F2=Split F3=Exit F4=Return

F9=Swap

For information about the options available, press F1 (Help).

Note: The MODS : Entity Administration Menu does not support the WebCenter system.
You cannot use these utilities to maintain WebCenter files.

Browsing Definitions in a Control File
Option B is used to browse definitions from a control file. This function does the
following:
m Specifies a source (From) control file as either a File ID (DD name) or data set name.

m Browses selected definitions from the source file.

The From control file is specified as one of the following:
m The File ID (DD name) of a MODS Control File that has been allocated and opened.

m The data set name of another MODS Control File that must already exist. The data
set is temporarily allocated and opened, components browsed, and the data set
then closed and unallocated.

146 Managed Object Development Services Guide

Maintaining the MODS Control File

A list of definitions that exist in the From file is displayed. This is the Entity List and is
used to select the definitions to browse. The Entity Type and Application ID fields
provide filters to limit the definitions displayed. Each of these fields support field
prompts.

Note: We recommend that you specify the Entity Type field. When specified, the Entity
List is specific to the selected entity type and the response time is fast. If the Entity Type
field is not specified, the Entity List is generic and the response time is slow.

To browse a definition, select (S) the definition from the Entity List.

Copying and Moving Definitions Between Control Files

Options C and M are used to copy or move definitions from one control file to another.
These two functions do the following:

m Specify a source (From) control file as either a File ID (DD name) or data set name.

Specify a target (To) control file as either a File ID (DD name) or data set name.

m Copy selected definitions from the source to the target

Delete the selected components from the source Control File (Move option)

Optionally maintain an Audit Log of the definitions that are copied or moved. See
Using the Audit Log below.

The From and To control files are each specified as either:

m the File ID (DD name) of a MODS Control File that has been allocated and opened.
The target (To) File ID must be opened for output use. The source (From) File ID
must also be open for output operation if components are being moved but may be
open input-only for the copy operation

m the data set name of another MODS Control File that must already exist. The data
set is temporarily allocated and opened, components copied or moved, and the
data set then closed and unallocated.

A list of definitions that exist in the From file is displayed. This is the Entity List and is
used to select the definitions to copy or move. The Entity Type and Application ID fields
provide filters to limit the definitions displayed. Each of these fields support field
prompts.

Note: We recommend that you specify the Entity Type field. When specified, the Entity
List is specific to the selected entity type and the response time is fast. If the Entity Type
field is not specified, the Entity List is generic and the response time is slow.

Chapter 4: MODS Administration 147

Maintaining the MODS Control File

To copy or move a definition, select one of the following definitions from the Entity List:

m The default option S (Noreplace) only moves or copies the definition if it does not
exist in the target file.

m Option SR (Replace) replaces the definition if it exists in the target file.

Deleting Definitions From a Control File
Option D is used to delete definitions from a control file. This function does the
following:
m Specifies a source (From) control file as either a File ID (DD name) or data set name.
m Deletes selected definitions from the source file.
m Optionally maintains an Audit Log of the definitions that are deleted. See Using the

Audit Log below.

The From control file is specified as one of the following:

m The File ID (DD name) of a MODS Control File that has been allocated and opened.
The File ID must be opened for output use.

m The data set name of another MODS Control File that must already exist. The data
set is temporarily allocated and opened, components deleted, and the data set then
closed and unallocated.

A list of definitions that exist in the From file is displayed. This is the Entity List and is
used to select the definitions to delete. The Entity Type and Application ID fields provide
filters to limit the definitions displayed. Each of these fields support field prompts.

Note: We recommend that you specify the Entity Type field. When specified, the Entity
List is specific to the selected entity type and the response time is fast. If the Entity Type

field is not specified, the Entity List is generic and the response time is slow.

To delete a definition, select (S) the definition from the Entity List.

Using the Audit Log

When definitions are copied, moved, or deleted, it may be useful to provide an audit
trail of the definitions that were selected. The Audit Log provides this function.

148 Managed Object Development Services Guide

Maintaining the MODS Control File

The Audit Log is enabled by specifying YES in the Audit Log? field on the MODS : Entity
Administration Menu at the same time as the From and To files are specified. When
enabled, entries are written to the Audit log for the following:

m Each menu option selection showing the action type (Move, Copy, Delete) and
control file details (From or To DD name, DSN)

m Each definition selected. The entry contains multiple lines, one for each physical
entry and action. For example, if a Help Function is defined with three field-level
help members and it is moved from one file to another, there will be entries for
'Added to Target' for the function and each field, followed by 'Deleted from Source'
for the function and each field.

The Audit Log may be browsed using one of the following methods:

m Option AL on the MODS : Entity Administration Menu
m F12 (=AuditLog) on the Entity List

The following commands are supported when the Audit Log is browsed:

m PRINT - Prints the Audit log using PSM. The PSM: Confirm Printer panel is displayed
to allow printer specification and other options.

m CLEAR - Clears all entries from the Audit Log. The Audit Log is automatically deleted
on exit from the MODS : Entity Administration Menu.

Chapter 4: MODS Administration 149

Maintaining the MODS Control File

Searching the Control File

Option S from the MODS : Administration Menu displays the MODS : Search Definitions
panel.

This panel specifies the control file to search, and the character string to search for.
Each instance of the string found by the search is listed in a PSM report.

Command ===>

Appl IDovivviinennn +
Component +
Search String
File IDovvvvininnnnn +
Exclude Help and Messages? YES
Language Code UK

Fl=Help F2=Split F3=Exit F6=Action
F9=Swap

For information about the fields on the panel, press F1 (Help).

The search results in a PSM report that lists MODS records (if found) containing the
specified string of characters.

To start the search, press F6 (Action). The PSM : Confirm Printer panel is displayed.

If necessary, change the values in the fields, then press F6 (Confirm) to start the search.
If the number of records to be searched is 100 or more, a panel appears on your screen
to advise you of the progress of the search. When the search is complete, a message
appears on your screen to advise you the success of failure of the search.

If the report is on hold, you can use the PQ[UEUE] command to access the PSM output
gueue and view the report.

150 Managed Object Development Services Guide

Maintaining the MODS Control File

Considerations

When you study your search results, consider the following:
m The search result lists only the first instance of a found string in a record.
m Record keys longer than 34 characters are truncated.

m During the search, a MODS record is accessed in chunks. The search is performed
on each chunk and not across chunks: that is, if a string straddles two chunks, the
string is not found. Shortening the search string can minimize this problem.

Resetting the MODS Cache

Select option RC from the MODS : Administration Menu to reset the MODS cache, the
list cache, and the report cache.

This clears all the MODS definitions from the MODS cache, the list definitions from the
list cache, and the report definitions from the report cache. Select option RC after you
have used the MODS definition utility, so that any changes you make take effect. If you

do not do this, the changes you have made may not take effect until the next time the
product region starts.

Chapter 4: MODS Administration 151

Chapter 5: CAS Programming Interface

($CACALL)

This section contains the following topics:

CAS Interface Overview (see page 153)

SCACALL Functions (see page 154)
SCACALL API (see page 155)

Action=BUILD Class=CRITERIA (see page 157)
Action=BUILD Class=FKA (see page 160)

Action=BUILD Class=IDTEXT (see page 164)
Action=BUILD Class=MESSAGE (see page 166)

Action=DISPLAY Class=DATA (see page 168)

Action=DISPLAY Class=HELP (see page 171)

Action=DISPLAY Class=LIST (see page 173)
Action=DISPLAY Class=MENU (see page 176)

Action=DISPLAY Class=MESSAGE (see page 177)

Action=EDIT Class=DATA (see page 179)
Action=EXECUTE Class=COMMAND (see page 183)

Action=LOAD Class=COMMAND (see page 187)

Action=GET Class=TENTRY (see page 188)
Action=LOAD Class=PDOMAIN (see page 190)

Action=LOAD Class=TABLE (see page 192)
Action=NAVIGATE Class=PDOMAIN (see page 194)

Action=VALIDATE Class=DATA (see page 197)

CAS Interface Overview

The SCACALL procedure is the application program interface (API) to Common

Applications Services (CAS).

When SCACALL (see page 155) is invoked, you specify an action and a class to determine
which CAS function is invoked. For example, to display a menu, you invoke SCACALL
with the action set to DISPLAY and the class set to MENU.

More information:

CAS Programming Interface (see page 23)

Chapter 5: CAS Programming Interface ($CACALL) 153

$CACALL Functions

$CACALL Functions

SCACALL gives you access to the following functions:
BUILD CRITERIA
Builds and returns the specified criteria.
BUILD FKA
Builds the specified function key area.
BUILD IDTEXT

Builds lines of text containing details of the specified user ID together with the
current date and time.

BUILD MESSAGE

Builds a message from the specified parameters.
DISPLAY DATA

Displays text in browse mode.
DISPLAY HELP

Displays the help text applicable to the user’s current context.
DISPLAY LIST

Builds and displays a list from the specified list definition.
DISPLAY MENU

Builds and displays a menu from the specified menu definition.
DISPLAY MESSAGE

Displays the specified message.
EDIT DATA

Displays text in edit mode and returns the edited text to the caller.
EXECUTE COMMAND

Executes the specified command.
GET TENTRY

Retrieves one or all entries from a table.
LOAD COMMAND

Loads the command table.
LOAD TABLE

Loads the specified table.

154 Manadged Object Development Services Guide

$CACALL API

$CACALL API

LOAD PDOMAIN

Loads the specified panel domain.
NAVIGATE PDOMAIN

Determines the next panel to be displayed.
VALIDATE DATA

Validates data according to the specified parameters.

The syntax for invoking SCACALL is as follows:

-EXEC $CACALL OPT=ACTION
ACTION={BUILD | DISPLAY | EDIT | EXECUTE | GET |
LOAD | NAVIGATE | VALIDATE}

CLASS={COMMAND | CRITERIA | DATA | FKA |

HELP | IDTEXT | LIST | MENU | MESSAGE |

PDOMAIN | TABLE | TENTRY}

[NAME= ‘attributel=valuel attribute 2=valuel ...
attributen=valuen’]

[PARMS= ‘parml=valuel parm2=valuel ... parmn=valuen’]

OPT=ACTION
Specifies an optional parameter indicating the option required.

ACTION={BUILD | DISPLAY | EDIT | EXECUTE | GET | LOAD |
NAVIGATE | VALIDATE}

Specifies a required parameter indicating the action to perform.

CLASS={COMMAND | CRITERIA | DATA | FKA | HELP | IDTEXT | LIST |
MENU | MESSAGE | PDOMAIN | TABLE | TENTRY}

Specifies a required parameter that identifies the class on which the action is to be
performed.

NAME='attributel=valuel attribute2=value2 ... attributen=valuen’

Specifies an optional parameter that provides the attribute IDs and values that
identify the object to process.

PARMS='parm1=valuel parm2=value2 ... parmn=valuen’

Specifies optional keyword parameters. These parameters are documented with
the individual calls.

Note: If any value (that is, valuel..n) specified in the NAME or PARMS operand contains
embedded blanks, quotes, or double quotes, then the value and the entire operand
must be quoted as described in the &ZQUOTE verb description in the Network Control
Language Reference Guide.

Chapter 5: CAS Programming Interface ($CACALL) 155

$CACALL API

Input Variables

Any required input variables are described for the individual calls.

Return Variables

Any variables set by SCACALL are described for the individual calls.

Return Codes

SCACALL sets one of the following return codes:
0
OK

Error

Feedback Codes

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:

0
No feedback code set
1
Definition not found
2
No data found
3
Canceled by exit
4
Canceled by user
5
End of sequence
6

Unable to obtain lock

156 Managed Object Development Services Guide

Action=BUILD Class=CRITERIA

User not authorized
Processing error

Return requested
10

Nesting level exceeded
11

Definition not eligible for processing

Action=BUILD Class=CRITERIA

This statement builds a criteria using the criteria definition. You can supply values for
the variables used in the definition. Items can be tested against the built criteria.

This statement has the following format:

&CONTROL SHRVARS=($CR, pref, ...pref)
-EXEC $CACALL OPT=ACTION
ACTION=BUILD
CLASS=CRITERIA
NAME=‘APPL=application id
[TYPE={PUBLIC | PRIVATE | FREEFORM}]
[USER=userid]
NAME=criteria name’
PARMS=‘MESSAGE=message’

Chapter 5: CAS Programming Interface ($CACALL) 157

Action=BUILD Class=CRITERIA

APPL=application id

A required parameter (not applicable for TYPE=FREEFORM) giving the application
identifier of the criteria.

TYPE={PRIVATE | PUBLIC | FREEFORM}
An optional parameter giving the type of the criteria. Valid values are as follows:
PUBLIC
Public criteria—available for general use.
PRIVATE
Private criteria—owned by a specific user ID.
FREEFORM
Free-form criteria—presents a panel for the user to enter criteria.

Note: If you do not specify TYPE or USER, the function attempts to find a PRIVATE
definition owned by the invoking user ID first. If unsuccessful, the function uses a
PUBLIC definition.

USER=userid

An optional parameter (not applicable for TYPE=PUBLIC and TYPE=FREEFORM)
giving the user ID of the user owning the criteria. Default is the user ID of the user
invoking the function.

NAME=criteria name

A required parameter (not applicable for TYPE=FREEFORM) giving the name of the
criteria.

MESSAGE=message

A message to be displayed on the criteria panel, if one is defined.

Input Variables

Variables with prefixes as specified in SHRVARS.

158 Managed Object Development Services Guide

Action=BUILD Class=CRITERIA

Return Variables

Feedback Codes

This statement contains the following return variables:
&SCRCRITnnnn

The criteria lines.
&SCRCRITTOTAL

The total number of criteria lines built (up to 9999). The value gives the number of
&SCRCRITnnnn variables.

&SCRPANEL
Set to YES or NO indicating whether a run time panel is defined.
&SCRPANELCMD

Set to EXIT or ACTION indicating the command executed to terminate the run time
panel, if a run time panel is defined, otherwise set to null.

&SYSMSG

System message. Contains the error message (for return code 8).

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:

1
Definition not found
3
Canceled by exit
8
Processing error
10

Nesting level exceeded

Chapter 5: CAS Programming Interface ($CACALL) 159

Action=BUILD Class=FKA

Example

The following statements build the public criteria ZPRPROO1 for the application
identified by the ID ZPR:

&CONTROL SHRVARS=($CR, ZPR)
-EXEC $CACALL OPT=ACTION +
ACTION=BUILD +
CLASS=CRITERIA +
NAME=‘APPL=ZPR +
TYPE=PUBLIC +
NAME=ZPRPR0OO1’

Action=BUILD Class=FKA

This statement builds a function key area. You can build the function key area by using a
predefined one or from scratch. Your procedure should call the BUILD FKA function
before displaying a panel.

This statement has the following format:

&CONTROL SHRVARS=($FK)
-EXEC $CACALL OPT=ACTION
ACTION=BUILD
CLASS=FKA
[NAME=‘ FKA=function key area’]

FKA=function key area

An optional parameter identifying the predefined function key area (see page 163)
on which to base the new function key area.

160 Managed Object Development Services Guide

Action=BUILD Class=FKA

Input Variables

Return Variables

This statement contains the following input variables:
&SFK1...&S$FK24

The function key actions for any or all of the keys F1 to F24. Specify NOACT to
inactivate and remove a function key from the function key area.

&SFKLAB1...&SFKLAB24

The labels that are displayed in the function key area (the bottom two lines of the
displayed screen). Each label can be up to eight characters in length. If not
specified, the label for a key defaults to the first word of the key’s action.

&SFKS1...&S$FKS24

These variables are used internally by the function. Do not alter the values of these
variables.

&SFKSLAB1...&SFKSLAB24

These variables are used internally by the function. Do not alter the values of these
variables.

&SFKOPTS

This variable is used internally by the function. Do not alter the value of this
variable.

This statement contains the following return variables:
&SFK1...&SFK24

The function key actions for keys F1 to F24.
&SFKLAB1...&SFKLAB24

The function key labels for keys F1 to F24.
&SFKS1...&SFKS24

These variables are used internally by the function. Do not alter the values of these
variables.

&SFKSLAB1...&SFKSLAB24

These variables are used internally by the function. Do not alter the values of these
variables.

&SFKOPTS

This variable is used internally by the function. Do not alter the value of this
variable.

Chapter 5: CAS Programming Interface ($CACALL) 161

Action=BUILD Class=FKA

&SFKA1

Function key area line 1.
&SFKA2

Function key area line 2.

Note: Depending on the user’s current function key area display option, &SFKA1
and &SFKA2 can contain F1 through F12, F13 through F24, or nothing.

&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes
If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:
8
Processing error
10
Nesting level exceeded
Example

The following statements build a function key area by using the predefined function key
area SCAADD, explicitly setting F5 to HISTORY and F6 to TEXT, and disabling F7 and F11:

&$FK5 = HISTORY

&$FK6 = TEXT

&$FK7 = NOACT

&$FK11 = NOACT

&CONTROL SHRVARS=($FK)

-EXEC $CACALL OPT=ACTION +
ACTION=BUILD +
CLASS=FKA +
NAME=" FKA=$CAADD

162 Managed Object Development Services Guide

Action=BUILD Class=FKA

Predefined Function Key Areas

The function keys described in this topic apply to the following predefined function key

areas:
m SCAADD
= SCABRO
= SCADEL
= SCAUPD
= SIMADD
= SIMBRO
= SIMDEL
= SIMUPD

You can use the following function keys in these areas:
F1 (HELP)
Displays Help.
F2 (SPLIT)
Creates a new session.
F3 (FILE, EXIT, or CANCEL)
In SCAADD, SCAUPD, SIMADD, and $IMUPD
Files your work.
In $CABRO, $SIMBRO, and SIMDEL
Exits or cancels without saving.
F4 (SAVE)
Saves your work (only on SCAADD and SCAUPD).
F5 (HISTORY)
Displays history (only on SIMBRO and SIMUPD).
F6 (TEXT)
Displays text (only on SIMADD, SIMBRO, and SIMUPD).
F7 (BACKWARD)
Displays previous page in multi-page panels.
F8 (FORWARD)

Displays next page in multi-page panels.

Chapter 5: CAS Programming Interface ($CACALL) 163

Action=BUILD Class=IDTEXT

F9 (SWAP)

Toggles between multiple sessions.
F10 (CANCEL)

Cancels without saving (only on SIMADD and SIMUPD).
F12 (CANCEL)

Cancels without saving.

Action=BUILD Class=IDTEXT

Input Variables

This statement builds the ID text that contains information about a user.

This statement has the following format:

&CONTROL SHRVARS=($CAID)
-EXEC $CACALL OPT=ACTION
ACTION=BUILD
CLASS=IDTEXT
[NAME="USER=userid’]
[PARMS=" [BORDER={YES | NO}]
[LENGTH={80 | Iength}]
[DATE=date]
[TIME=t7ime] ']

USER=userid

An optional parameter giving the ID of the user whose ID text is to be built. The
default is the current user ID.

BORDER={YES | NO}

An optional parameter specifying whether there are borders at the top and bottom
of the built ID text. The default is YES.

LENGTH={80 | length}

An optional parameter specifying the length of the horizontal border lines if
BORDER=YES. The default is 80, and the range is 1 through 255.

DATE=date

An optional parameter specifying the date (in DATE3 format) to be included in the
built ID text. The default is the current date.

TIME=time

An optional parameter specifying the time (in hh.mm.ss format) to be included in
the built ID text. The default is the current time.

This statement has no input variables.

164 Managed Object Development Services Guide

Action=BUILD Class=IDTEXT

Return Variables

This statement contains the following return variables:
&SCAIDTXn

Contains the built ID text strings.
&SCAIDTXTOT

Contains the number of ID text strings built. The value gives the number of
&SCAIDTXn variables.

&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes
If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:
8
Processing error
10
Nesting level exceeded
Example

The following statements build the ID text for the current user. The text contains the
current date and time, and has 80-character borders at the top and bottom.

&CONTROL SHRVARS=($CAID)
-EXEC $CACALL OPT=ACTION +
ACTION=BUILD +
CLASS=IDTEXT +
NAME=‘USER=&USERID’ +
PARMS='BORDER=YES +
LENGTH=80"

Chapter 5: CAS Programming Interface ($CACALL) 165

Action=BUILD Class=MESSAGE

Action=BUILD Class=MESSAGE

Input Variables

Return Variables

This statement builds a message using a message definition. The BUILD MESSAGE
function returns the built message in &SYSMSG.
This statement has the following format:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION
ACTION=BUILD
CLASS=MESSAGE
NAME=‘MESSAGE =message i1d’
PARMS=*PROCNAME=procedure name
[Pl=parameterl... PlO=parameterl®] ’

MESSAGE=message id
A required parameter giving the identifier of the message to be built.
PROCNAME=procedure name

A required parameter giving the name of the procedure that requested the
message to be built.

Pl=parameterl...P10=parameter10

Optional parameters providing data values to be substituted into the message
definition.

This statement has no input variables.

This statement contains the following return variables:
&SYSMSG

System message. Contains either:
m The requested message (for return code 0)

m The error message (for return code 8)

166 Managed Object Development Services Guide

Action=BUILD Class=MESSAGE

Feedback Codes

Example

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:

1

Definition not found
8

Processing error
10

Nesting level exceeded

The message definition for message SAMPO1 is as follows:

VSAM ERROR ON FILE ~P1 RC=~P2 FDBK=~P3

Use the following statements to build the SAMPO1 message:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION
ACTION=BUILD
CLASS=MESSAGE
NAME=‘MESSAGE=SAMPO1’
PARMS="PROCNAME=80
P1=&FILEID
P2=&FILERC
P3=&VSAMFDBK’

&0 contains the name of your procedure; &FILEID, &FILERC, and &VSAMFDBK contain,
respectively, the values for ~P1, ~P2, and ~P3 in the message definition.

Chapter 5: CAS Programming Interface ($CACALL) 167

Action=DISPLAY Class=DATA

Action=DISPLAY Class=DATA

This statement displays text in browse mode. The DISPLAY DATA function provides text
browsing facilities for up to 9999 lines of text. When a user requests help, help text
associated with the specified application ID and function name is displayed.

This statement has the following format:

&CONTROL SHRVARS=($ED)
-EXEC $CACAL OPT=ACTION
ACTION=DISPLAY
CLASS=DATA
PARMS=*APPL=application id
FUNC=function name
[TITLE=t7t!Ie]
[LINECNT={0 | n}]
[LINELEN={256 | n}]
[LINENUM={YES | NO}]
[INDENT={0 | n}]
[TOPEXIT={YES | NO}]
[MESSAGE=message]
[USERFUNC=function]
[LINETOP={1 | n}]
[CANCEL={YES | NO}]
[LMARGIN={1 | n}]
[RMARGIN=m] ’

APPL=application id

A required parameter giving the application identifier.
FUNC=function name

A required parameter indicating the function being performed.
TITLE=title

An optional parameter giving the title to be displayed at the top of the panel. The
default is CAS : Text Editor.

LINECNT={0 | n}

A required parameter giving the total number of lines of text. The default is 0, and
the range is 0 through 9999.

LINELEN={256 | n}

An optional parameter indicating the maximum line length. The default is 256, and
the range is 1 through 256.

LINENUM={YES | NO}

An optional parameter that indicates whether to display line numbers. The default
is YES.

INDENT={0 | n}

An optional parameter that indicates the number of positions to indent the text
lines. The default is 0, and the range is 0 through 256 minus the value in LINELEN.

168 Managed Object Development Services Guide

Action=DISPLAY Class=DATA

TOPEXIT={YES | NO}

An optional parameter indicating whether executing the BACKWARD
command—when the display is positioned at the top of the text—ends the text
display and causes control to be returned to the caller. The default is NO.

MESSAGE=message

An optional parameter specifying a message to be displayed on line 3 of the panel,
on initial entry.

USERFUNC=function

An optional parameter specifying the logical function being performed (for
example, Browse). If specified, the function is displayed on line 4 of the panel as
Function=function. function must not be longer than eight characters.

LINETOP={1 | n}

An optional parameter specifying the number of the line to be displayed as the first
line of text, on initial entry. The default is 1, and the range is 1 to the value in
LINECNT.

CANCEL={YES | NO}

An optional parameter specifying whether the CANCEL command is supported. The
default is NO.

LMARGIN={1 | n}

The left margin (in characters) used by the text editor. The default is 1, and the
range is 1 through the value in LINELEN.

RMARGIN=n

The right margin (in characters) used by the text editor. The default is the lesser of
the value in LINELEN and the logical screen width. The range is the value of
LMARGIN plus 20 to the value in LINELEN.

Chapter 5: CAS Programming Interface ($CACALL) 169

Action=DISPLAY Class=DATA

Input Variables

Return Variables

This statement contains the following input variables:
&SEDFK1...8&SEDFK24

The function key actions for any or all of the keys F1 to F24. Specify NOACT to
inactivate and remove a function key from the function key area.

&SEDFKLABL...&$SEDFKLAB24

The labels that are displayed in the function key area (the bottom two lines of the
displayed screen). Each label can be up to eight characters in length. If not
specified, the label for a key defaults to the first word of the key’s action.

&SEDCOMMENTN

Contains the comment lines to be displayed (up to nine) above the text lines.
&SEDLINEnnnn

Contains the text lines to be displayed (up to 9999).
&SEDEXITCMDS=command1, command?2, ...

Specifies commands that are accepted as valid exit commands. That is, if a specified
command is executed, control is returned to the caller.

This statement contains the following return variables:
&SEDCMDEXIT

The command which was entered by the user to exit (normally EXIT).
&SEDCMDPARMS

The parameters for the exit command in &S EDCMDEXIT.
&SEDCOMMAND

The entire contents of the exit command including parameters.
&SEDLINETOP

The line number at the top of the display on exit.
&SYSMSG

System message. Contains the error message (for return code 8).

170 Managed Object Development Services Guide

Action=DISPLAY Class=HELP

Feedback Codes
If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:
8
Processing error
10
Nesting level exceeded
Example

The following statements display the contents of &SEDLINE1 and &SEDLINE2 in two
lines on a panel titled Problem Text:

&$EDLINE1 = &STR Problem text line 1
&$EDLINE2 = &STR Problem text line 2
&CONTROL SHRVARS=($ED)
-EXEC $CACALL OPT=ACTION +
ACTION=DISPLAY +
CLASS=DATA +
PARMS=‘APPL=ZPR +
FUNC=BROWSE +
TITLE="Problem Text” +
LINECNT=2"'

Action=DISPLAY Class=HELP

This statement displays online help. You determine the application, the function, the
field, and the window on which the user requires help, and supply the values to the
DISPLAY HELP function to display the appropriate help. If the required help has not been
added, the function displays the next more general help in the order field-level help,
window-level help, function-level help, and application-level help.

This statement has the following format:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION
ACTION=DISPLAY
CLASS=HELP
NAME=‘APPL=application id
[FUNC=function name]
[FIELD=Ffield name] ’
[PARMS = ‘CROW=cursor row
CCOL=cursor column’
MODE={VIEW | BROWSE}]

Chapter 5: CAS Programming Interface ($CACALL) 171

Action=DISPLAY Class=HELP

Input Variables

Return Variables

Feedback Codes

APPL=application id

A required parameter giving the identifier of the application for which help is to be
displayed.

FUNC=function name

An optional parameter (required if either the FIELD=, CROW= or CCOL= keywords
are specified) giving the name of the function for which help is to be displayed.

FIELD=field name
An optional parameter giving the name of the field for which help is to be displayed.
CROW-=cursor row

An optional parameter giving the cursor row position when help was requested.
This defaults to the value of &CURSROW.

CCOL=cursor column

An optional parameter giving the cursor column position when help was requested.
This defaults to the value of & CURSCOL.

This statement has no input variables.

This statement contains the following return variables:
&SYSMSG

System message. Contains the error message (for return code 8).

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:

8
Processing error
10

Nesting level exceeded

172 Managed Object Development Services Guide

Action=DISPLAY Class=LIST

Example

The following statements display the field-level help for the ZPRSTATUS field for the
UPDATE function in the application identified by the identifier ZPR if the help is
available; otherwise, the next more general help is displayed:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION +
ACTION=DISPLAY +
CLASS=HELP +
NAME=‘APPL=ZPR +
FUNC=UPDATE +
FIELD=ZPRSTATUS’

Action=DISPLAY Class=LIST

This statement displays a list.

This statement has the following format:

&CONTROL SHRVARS=($LH)
-EXEC $CACALL OPT=ACTION
ACTION=DISPLAY
CLASS=LIST
NAME=‘APPL=application id
[TYPE={PUBLIC | PRIVATE}]
[USER=userid]
NAME=17st name’
[PARMS=" [FORMAT={ACTION | MSELECT |
SSELECT | NUMBERED}]
[CRITERIA=criterial
[MAXSEL={9999 | nnnn}]
[AUTOSEL={YES | NO}1’1]

APPL=application id
A required parameter giving the application identifier of the list.

TYPE={PRIVATE | PUBLIC}

An optional parameter giving the type of list. Valid values are as follows:
PUBLIC
Public list—available for general use

PRIVATE
Private list—owned by a specific user ID

Note: If you do not specify TYPE or USER, the function attempts to find a PRIVATE

list owned by the invoking user ID first. If unsuccessful, the function uses a PUBLIC
list.

Chapter 5: CAS Programming Interface ($CACALL) 173

Action=DISPLAY Class=LIST

Input Variables

USER=userid

An optional parameter (if TYPE is not PUBLIC) giving the user ID of the user owning
the list. Default is the user ID of the user invoking the function.

NAME-=list name

A required parameter giving the name of the list.

FORMAT={ACTION | MSELECT | SSELECT| NUMBERED}

An optional parameter indicating the format in which the list is to be displayed.
Valid values are as follows:

ACTION

Action list
MSELECT

Multiple selection list
SSELECT

Single selection list
NUMBERED

Numbered list

The default is ACTION.

CRITERIA=criteria

A criteria statement used to select items to go in the list. The format must conform
to that required by the service procedure specified in the list definition. If specified,
this criteria overrides any criteria specified in the list definition, and no
&SLHCRITnnnn variables can be set.

MAXSEL={9999 | nnnn}

The maximum number of items that can be chosen from a list in format MSELECT
(multiple selection list). The default is 9999, and the range is 1 through 9999.

AUTOSEL={YES | NO}

Determines whether an entry in a list is automatically selected if it is the only entry
in the list. The default is NO.

This statement contains the following input variables:

&SLHCRITnnnn

Criteria variables (up to 9999 variables can be given). Cannot be specified if the
CRITERIA operand is specified. The format must conform to that required by the
service procedure specified in the list definition.

174 Manaded Object Development Services Guide

Action=DISPLAY Class=LIST

Return Variables

This statement contains the following return variables:
&SLHENTTOTAL

The total number of entries selected (up to 9999).
&SLHENTIDnnnn

The IDs of the list entries selected.
&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:

1

Definition not found
2

No data found
3

Canceled by exit
4

Canceled by user
8

Processing error
9

Return requested
10

Nesting level exceeded
11

Definition not eligible for processing

Chapter 5: CAS Programming Interface ($CACALL) 175

Action=DISPLAY Class=MENU

Example

The following statements display action list ZPRPRALL in the application identified by the
ID ZPR. A private list is displayed in preference to a public list.

&CONTROL SHRVARS=($LH)

-EXEC $CACALL OPT=ACTION +
ACTION=DISPLAY +
CLASS=LIST +
NAME=‘?APPL=ZPR +
NAME=ZPRPRALL " +
PARMS=‘FORMAT=ACTION’

Action=DISPLAY Class=MENU

This statement displays a menu.

This statement has the following format:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION
ACTION=DISPLAY
CLASS=MENU
NAME=‘APPL=application id
MENU=menu 7d’
[PARMS=‘PSKIP=xxx.xxx]

APPL=application id

A required parameter giving the application identifier.
MENU=menu id

A required parameter giving the menu identifier.
PSKIP=xxx.xxx

Panel skip setting.

Input Variables

This statement has no input variables.

Return Variables

This statement contains the following return variables:
&SYSMSG

System message. Contains the error message (for return code 8).

176 Managed Object Development Services Guide

Action=DISPLAY Class=MESSAGE

Feedback Codes

Example

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:

8

Processing error
9

Return requested
10

Nesting level exceeded

The following statements display menu 030 in the application identified by the ID ZPR:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION +
ACTION=DISPLAY +
CLASS=MENU +
NAME=‘APPL=ZPR +
MENU=030"

Action=DISPLAY Class=MESSAGE

Input Variables

This statement displays a message and its associated explanation, system action and
user action.

This statement has the following format:

&CONTROL NOSHRVARS

-EXEC $CACALL OPT=ACTION
ACTION=DISPLAY
CLASS=MESSAGE
NAME=‘MESSAGE =message 7d’

MESSAGE=message id

A required parameter giving the identifier of the message to be displayed.

This statement has no input variables.

Chapter 5: CAS Programming Interface ($CACALL) 177

Action=DISPLAY Class=MESSAGE

Return Variables

This statement contains the following return variables:
&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes
If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:
1
Definition not found
8
Processing error
10
Nesting level exceeded
Example

The following statements display information about message PV7014:

&CONTROL NOSHRVARS

-EXEC $CACALL OPT=ACTION +
ACTION=DISPLAY +
CLASS=MESSAGE +
NAME=‘MESSAGE=PV7014’

178 Managed Object Development Services Guide

Action=EDIT Class=DATA

Action=EDIT Class=DATA

This statement displays text in edit mode. The EDIT DATA function provides editing
facilities for up to 9999 lines of text, each of up to 256 characters in length. When a user
requests help, help text associated with the specified application ID and function name
is displayed.

This statement has the following format:

&CONTROL SHRVARS=($ED)
-EXEC $CACALL OPT=ACTION
ACTION=EDIT
CLASS=DATA
PARMS=*APPL=application id
FUNC=function name
[TITLE=t7tle]
[LINECNT={0 | n}]
[LINELEN={256 | n}]
[MAXLINES={9999 | n}]
[EDTLINES=n]
[TOPEXIT={YES | NO}]
[MESSAGE=message]
[USERFUNC=function]
[LINETOP={1 | n}]
[LMARGIN={1 | n}]
[RMARGIN=1] ’

APPL=application id

A required parameter giving the application identifier.
FUNC=function name

A required parameter indicating the function being performed.
TITLE=title

An optional parameter giving the title to be displayed at the top of the panel. The
default is CAS : Text Editor.

LINECNT={0 | n}

A required parameter giving the number of lines of text. The default is 0, and the
range is 0 through 9999.

LINELEN={256 | n}

An optional parameter indicating the maximum line length. The default is 256, and
the range is 1 through 256.

MAXLINES={9999 | n}

An optional parameter indicating the maximum number of lines of text that can
exist. The default is 9999, and the range is 1 through 9999.

EDTLINES=n

An optional parameter giving the number of lines that can be edited. If specified,
the first n lines can be edited. If not specified, the number of lines that can be
edited defaults to the value of the LINECNT parameter—that is, all lines can be
edited. The range is 0 to the value in LINECNT.

Chapter 5: CAS Programming Interface ($CACALL) 179

Action=EDIT Class=DATA

TOPEXIT={YES | NO}

An optional parameter indicating whether executing the BACKWARD
command—when the display is positioned at the top of the text—ends the text
display and causes control to be returned to the caller. The default is NO.

MESSAGE=message

An optional parameter specifying a message to be displayed on line 3 of the panel,
on initial entry.

USERFUNC=function

An optional parameter specifying the logical function being performed (for
example, Update). If specified, the function is displayed on line 4 of the panel as
Function=function. function must not be longer than eight characters.

LINETOP={1 | n}

An optional parameter specifying the number of the line to be displayed as the first
line of text, on initial entry. The default is 1, and the range is 1 through the value in
LINECNT.

LMARGIN=(1 | n}

The left margin (in characters) used by the text editor. The default is 1, and the
range is 1 through the value in LINELEN.

RMARGIN=n

The right margin (in characters) used by the text editor. The default is the lesser of
the value in LINELEN and the logical screen width. The range is the value of
LMARGIN plus 20 to the value in LINELEN.

180 Managed Object Development Services Guide

Action=EDIT Class=DATA

Input Variables

This statement contains the following input variables:
&SEDFK1...8&SEDFK24

The function key actions for any or all of the keys F1 to F24. Specify NOACT to
inactivate and remove a function key from the function key area.

&SEDFKLABL...&$SEDFKLAB24

The labels that are displayed in the function key area (the bottom two lines of the
displayed screen). Each label can be up to eight characters in length. If not
specified, the label for a key defaults to the first word of the key’s action.

&SEDCOMMENTN

Contains the comment lines to be displayed (up to nine) above the text lines.
&SEDLINEnnnn

Contains the text lines to be displayed for edit (up to 9999).
&SEDEXITCMDS=command1, command?2, ...

Specifies commands which are accepted as valid exit commands. That is, if a
specified command is executed, control is returned to the caller.

Chapter 5: CAS Programming Interface ($CACALL) 181

Action=EDIT Class=DATA

Return Variables

Feedback Codes

This statement contains the following return variables:
&SEDLINEnnnn

The edited text lines.
&SEDLINECNT

The number of edited text lines. The value gives the number of &SEDLINEnnnn
variables.

&SEDMODIFIED

Whether any lines were modified (YES or NO).
&SEDCMDEXIT

The command that was entered by the user to exit (normally FILE or SAVE).
&SEDCMDPARMS

The parameters for the exit command in & EDCMDEXIT.
&SEDCOMMAND

The entire contents of the exit command including parameters.
&SEDLINETOP

The line number at the top of the display on exit.
&SYSMSG

System message. Contains the error message (for return code 8).

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:

4

Canceled by user
8

Processing error
10

Nesting level exceeded

182 Managed Object Development Services Guide

Action=EXECUTE Class=COMMAND

Example

The following statements display the contents of &SEDLINE1 and &SEDLINE2 in two
lines on a panel titled Problem Text for editing:

&$EDLINEL = &STR Problem text line 1
&$EDLINE2 = &STR Problem text line 2
&CONTROL SHRVARS=($ED)
-EXEC $CACALL OPT=ACTION +
ACTION=EDIT +
CLASS=DATA +
PARMS="'APPL=ZPR +
FUNC=UPDATE +
TITLE="Problem Text" +
LINECNT=2"'

Action=EXECUTE Class=COMMAND

Executes a command if it is known. When a user requests help, help text associated with
the specified application ID, function name, and message ID (if specified) is displayed.

This statement has the following format:

&CONTROL SHRVARS=($FK, $CM)
-EXEC $CACALL OPT=ACTION
ACTION=EXECUTE
CLASS=COMMAND
[NAME=‘ COMMAND=commana’]
[PARMS=“APPL=application 1d]
[FUNC=Ffunction name]
[KEY =key]
[MESSAGE=messageid]
[CURSFLD=cursorfield value] ’]

APPL=application id

An optional parameter giving the application identifier (required for the HELP
command).

FUNC=function name

An optional parameter indicating the function currently being performed (required
for the HELP command).

COMMAND=command

An optional parameter giving the command to be executed (required if the KEY
keyword is not used). If you use both the COMMAND and KEY keywords, and a
command is assigned to the function key specified in KEY, the command assigned to
the function key takes precedence.

Chapter 5: CAS Programming Interface ($CACALL) 183

Action=EXECUTE Class=COMMAND

The following commands (or any command defined using the CAS Command
Definition facility) can be specified:

CMD

Invokes the Command Entry facility.
EX[EC]

Executes an NCL procedure.
DISC[ONN]

Disconnects the session.
HELP

Display help information.
KEYS

Switches FKA display.
LOCK

Locks the session.
NOTEPAD

Displays the CAS Notepad.
PASSWORD

Sets the user password.
PQ[UEUE]

Displays the PSM print queue.
PSKIP

Skips panels.
RETRIEVE

Retrieves the last command.
SPLIT

Splits the window.
START

Starts an NCL procedure.
SWAP

Swaps the window.
WHERE

Displays NCL procedure details.

184 Manadged Object Development Services Guide

Action=EXECUTE Class=COMMAND

Input Variables

Return Variables

KEY=key

An optional parameter giving the last function key (&INKEY value) that was pressed
(required if the COMMAND keyword is not used). If you use both the COMMAND
and KEY keywords, and a command is assigned to the function key specified in KEY,
the command assigned to the function key takes precedence.

MESSAGE=message id

An optional parameter giving the message identifier of the currently displayed
message (for example, when a user requires help on a message).

CURSFLD=cursorfield value

An optional parameter containing the value of the field in which the cursor is
located.

This statement has no input variables.

This statement contains the following return variables:
&SFK1...&SFK24

The function key actions for keys F1 to F24.
&SFKLAB1...&S$FKLAB24

The function key labels for keys F1 to F24.
&SFKA1

Function key area line 1.
&SFKA2

Function key area line 2.
&SCMDI

Set to Y or N to indicate if an action was performed. For example, a command is not
executed if it is not in the command table.

&SCMDS

Set to C, K, or N indicating the source of the action (Command, Key, or None).
&S$CMD

The first word of the action.

Chapter 5: CAS Programming Interface ($CACALL) 185

Action=EXECUTE Class=COMMAND

&SCMDPARMS

The remaining operands or parameters of the action.
&SCMDR

The retrieved command (when COMMAND=RETRIEVE).
&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes
If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:
7
User not authorized
8
Processing error
9
Return requested
10
Nesting level exceeded
Example

The following statements execute the command in variable & COMMAND or assigned to
the key indicated in variable &INKEY; the APPL, FUNC, and MESSAGE keywords are
specified and are referenced if the command is HELP.

&CONTROL SHRVARS=($FK, $CM)
-EXEC $CACALL OPT=ACTION +
ACTION=EXECUTE +
CLASS=COMMAND +
NAME=‘ COMMAND=&COMMAND " +
PARMS=‘APPL=ZPR +
FUNC=UPDATE +
KEY=&INKEY +
MESSAGE=PV7014 "

186 Managed Object Development Services Guide

Action=LOAD Class=COMMAND

Action=LOAD Class=COMMAND

Loads the command table into memory (normally during system initialization). You must
perform the LOAD COMMAND function before you can execute a defined command.

This statement has the following format:
&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION

ACTION=LOAD
CLASS=COMMAND

Input Variables

This statement has no input variables.

Return Variables

This statement contains the following return variables:
&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:

2
No data found
6
Unable to obtain lock
8
Processing error
10

Nesting level exceeded

Chapter 5: CAS Programming Interface ($CACALL) 187

Action=GET Class=TENTRY

Example

The following statements load the command table:

&CONTROL NOSHRVARS

-EXEC $CACALL OPT=ACTION +
ACTION=LOAD +
CLASS=COMMAND

Action=GET Class=TENTRY

Retrieves one or all entries from a table.

This statement has the following format:

&CONTROL SHRVARS=($VM)
-EXEC $CACALL OPT=ACTION
ACTION=GET
CLASS=TENTRY
NAME="APPL=application id
FIELD=f7eldName
[VALUE=fullValue]’
[PARMS="ACTIVE={YES | NO | ANY}’]

APPL=application id

A required parameter giving the identifier of the application.
FIELD=fieldName

A required parameter giving the name of the table.
VALUE=fullValue

An optional parameter giving the full value of the entry to be retrieved. If omitted,
all entries in the table are returned.

ACTIVE={YES | NO | ANY}

An optional parameter that indicates which entries are to be retrieved from the
table if the VALUE parameter is omitted.

YES

Only active table entries are to be retrieved. This is the default.
NO

Only inactive table entries are to be retrieved.
ANY

All table entries are to be retrieved.

188 Managed Object Development Services Guide

Action=GET Class=TENTRY

Input Variables

This statement has no input variables.

Return Variables

This statement contains the following return variables:
&SYSMSG

System message. Contains the error message (for return code 8).

If a full value is supplied, the following variables are returned:
SVMABBR
The abbreviated value of the table entry.
SVMFULL
The full value of the table entry.
SVMDESC
The description of the table entry.
SVMTEXTn

The text fields of the table entry.

If a full value is not supplied, the following variables are returned:
SVMTOTAL
The total number of entries in the table.
SVMABBRn
The abbreviated value for each table entry.
SVMFULLn
The full value for each table entry.
SVMDESCn

The description of each table entry.

Chapter 5: CAS Programming Interface ($CACALL) 189

Action=LOAD Class=PDOMAIN

Feedback Codes

Example

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:

2

No data found
8

Processing error
10

Nesting level exceeded

The following statements retrieve the entry SNDSYS from the Report Writer table:

&CONTROL SHRVARS
-EXEC $CACALL OPT=ACTION +
ACTION=GET +
CLASS=TENTRY +
NAME="‘APPL=$RW +
FIELD=APPL +
VALUE=$NDSYS’

Action=LOAD Class=PDOMAIN

Loads panel domains (normally during the initialization of an application). You must
perform the LOAD PDOMAIN function before you can use the NAVIGATE PDOMAIN
function.

This statement has the following format:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION
ACTION=LOAD
CLASS=PDOMAIN
NAME=‘APPL=application id
[TYPE={PUBLIC | PRIVATE}]
[USER=userid]
[NAME=domain name]’

190 Managed Object Development Services Guide

Action=LOAD Class=PDOMAIN

APPL=application id
A required parameter giving the identifier of the application.
TYPE={PUBLIC | PRIVATE}
An optional parameter giving the type of panel domain. Valid values are as follows:
PUBLIC
Public domain—available for general use.
PRIVATE
Private domain—owned by a specific user ID.
USER=userid

An optional parameter (if TYPE is not PUBLIC) giving the user ID of the user owning
the panel domains.

NAME=domain name
An optional parameter giving the name of the panel domain.

Note: The LOAD PDOMAIN function loads all panel domains matching the supplied
operands.

Input Variables

This statement has no input variables.

Return Variables

This statement contains the following return variables:
&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes
If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:
8
Processing error
10

Nesting level exceeded

Chapter 5: CAS Programming Interface ($CACALL) 191

Action=LOAD Class=TABLE

Example

The following statements load the panel domains for the application identified by ID
ZPR:

&CONTROL NOSHRVARS

-EXEC $CACALL OPT=ACTION +
ACTION=LOAD +
CLASS=PDOMAIN +
NAME=‘APPL=ZPR’

Action=LOAD Class=TABLE

This function loads the tables for an application (typically during system initialization).
You perform the LOAD TABLE function before you can use the tables to validate data.

This statement has the following format:

&CONTROL NOSHRVARS
-EXEC $CACALL OPT=ACTION
ACTION=LOAD
CLASS=TABLE
NAME=‘APPL=application id
[FIELD=field name]’
[PARMS='RELOAD={YES | NO}']

APPL=application_id
Specifies the identifier of the application.

FIELD=field_name
(Optional) Specifies the name of the table if you only want to load one table.
Default: All tables for the specified application are loaded.

RELOAD={YES | NO}

(Optional) Specifies whether you want to reload previously loaded tables for the
application.

Default: NO

Input Variables

This statement has no input variables.

192 Managed Object Development Services Guide

Action=LOAD Class=TABLE

Return Variables

Feedback Codes

Example

This statement contains the following return variables:
&SYSMSG

System message. Contains the error message (for return code 8).

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:

8
Processing error
10

Nesting level exceeded

The following statements load the tables for the application identified by ID ZPR. Any
tables already loaded are reloaded.

&CONTROL NOSHRVARS

-EXEC $CACALL OPT=ACTION +
ACTION=LOAD +
CLASS=TABLE +
NAME=‘APPL=ZPR’ +
PARMS=‘RELOAD=YES'

Chapter 5: CAS Programming Interface ($CACALL) 193

Action=NAVIGATE Class=PDOMAIN

Action=NAVIGATE Class=PDOMAIN

This statement determines the next panel to be displayed. You determine the panel by
specifying the direction of movement (backward or forward) and the number of panels
to skip, or by specifying the name of the panel domain element.

This statement has the following format:
&CONTROL SHRVARS=($PV, pref,...pref)
-EXEC $CACALL OPT=ACTION
ACTION=NAVIGATE
CLASS=PDOMAIN
NAME=‘APPL=application id
[TYPE={PUBLIC | PRIVATE}]
[USER=userid]
NAME=domain name’
[PARMS=" [CURRENT=element name]
[NEXT={element name | *}]
[SKIP={1 | n}]
[LOAD={YES | NO}1’1
APPL=application id
Specifies the application identifier of the panel domain.
TYPE={PRIVATE | PUBLIC}
(Optional) Specifies the type of panel domain. Valid values are as follows:
PUBLIC
Public domain—available for general use.
PRIVATE
Private domain—owned by a specific user ID.

Note: If you do not specify TYPE or USER, the function attempts to find the panel
domain definition owned by the invoking user ID. If unsuccessful, the function uses
a public panel domain definition.

USER=userid

(Optional) (if TYPE=PRIVATE) Specifies the user ID of the user owning the PRIVATE
panel domain.

Default: User ID of the user invoking the function
NAME=domain name

Specifies the name of the panel domain.
CURRENT=element name

(Optional) Specifies the current element. If this keyword is blank, the current
element is assumed to be ##TOP## (if DIR=FORWARD) or ##END## (if
DIR=BACKWARD).

Note: DIR or SKIP is mutually exclusive to NEXT. If you do not specify DIR, NEXT, and
SKIP, the default is DIR=FORWARD and SKIP=1.

194 Manadged Object Development Services Guide

Action=NAVIGATE Class=PDOMAIN

DIR={FORWARD | BACKWARD}
(Optional) Specifies the direction in which navigation is to occur.
Default: FORWARD

NEXT={element name | *}

(Optional) Specifies the next element to progress to. If blank, the next element is
determined based upon the defined paths (from the current element) and the
direction of travel. If an element name is specified, navigation occurs to this
element if it is currently eligible. If "*’ is specified, a pick list of all eligible elements
in the domain (excluding the element specified in the CURRENT= keyword) is
presented.

SKIP={1 | n}

(Optional) Specifies the number of times to perform a panel navigation. Use this
parameter when the user specifies a numeric or MAX scroll amount.

Default: 1
Limits: 1 through 9999
LOAD={YES | NO}
(Optional) Specifies whether to load a domain if it is not currently loaded.

Default: YES

Input Variables

This statement contains variables with prefixes as specified in SHRVARS.
&SPVNESTnnn

Tracking variables used by CAS to maintain the last nnn elements visited in the
current direction (up to 999 elements). These variables are supplied by CAS. Do not
modify these variables.

&SPVCRITnnnn

Criteria variables containing the criteria used to specify eligible panel domain
element types.

&SPVCRITTOTAL

The total number of criteria variables. The range is 0 through 9999.

Chapter 5: CAS Programming Interface ($CACALL) 195

Action=NAVIGATE Class=PDOMAIN

Return Variables

This statement contains the following return variables:
&SPVELEMENT

The name of the next element to progress to.
&SPVPANEL

The name of the panel associated with the next element.
&S$PVDESC

The description of the next element.
&SPVHELP

The name of the function-level help associated with the next element.
&SPVTYPE

The type (PANEL or TEXT) of the next element.
&SPVTITLE

The title of the next element (if type is TEXT).
&SYSMSG

System message. Contains the error message (for return code 8).

Feedback Codes

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in &S CAFDBK:

1

Definition not found
4

Canceled by user
5

End of sequence
6

Unable to obtain lock
8

Processing error
10

Nesting level exceeded

196 Managed Object Development Services Guide

Action=VALIDATE Class=DATA

Example

The following statements identify the next panel for display following the panel in
&SPVELEMENT. The panel domain is ZPRPROB in the application identified by ID ZPR. A
private panel domain is used in preference to a public panel domain.

&CONTROL SHRVARS=($PV,ZPR)

-EXEC $CACALL OPT=ACTION +
ACTION=NAVIGATE +
CLASS=PDOMAIN +
NAME=‘APPL=ZPR +
NAME=ZPRPROB’ +
PARMS=" CURRENT=&$PVELEMENT '

Action=VALIDATE Class=DATA

This statement validates data against predefined values or edit rules.

This statement has the following format:

&CONTROL SHRVARS=(field name,$VM)
-EXEC $CACALL OPT=ACTION
ACTION=VALIDATE
CLASS=DATA
PARMS=* [APPL=application id]
FIELD=f7eld name
[LIST=n]
[TEXT={YES | NO}]
[ACTIVE={YES | NO | ANY}]
DESC=description
EDITS=edit number 1,edit number 2, ...
[IMSYS=system name]
[PROMPT={YES | NO}1’

APPL=application id
(Optional) (required only for EDITS=17) Specifies the application identifier.
FIELD=field name

Specifies the name of the field that is to be validated. This field name must also be
included in the SHRVAR= operand.

LIST=n

(Optional) (required only for EDITS=18) Specifies the number of valid values
supplied using the &SVMFULLnnn variables. The &SVMABBRnnn and
&SVMDESCnnn variables can also be defined. The range is 1 through 999.

TEXT={YES | NO}

(Optional) (applicable only for EDITS=17) Specifies whether the text fields
associated with the selected or supplied field value are to be returned.

Default: NO

Chapter 5: CAS Programming Interface ($CACALL) 197

Action=VALIDATE Class=DATA

ACTIVE={YES | NO | ANY}

(Optional) (applicable only for EDITS=17) Specifies which entries from the table
defined for the field in FIELD are to be considered as valid values. Valid values are as
follows:

YES

Only active table entries are to be considered as valid values. This is the
default.

NO
Only inactive table entries are to be considered as valid values.
ANY

All table entries are to be considered as valid values.

DESC=description

(Optional for EDITS=17) Specifies the description of the field for use in selection list
headings, help panels and error messages.

EDITS=edit numberl,edit number 2,...

Specifies the edit numbers that indicate how the field is to be validated (multiple
numbers can be specified, separated by commas). Valid values are as follows:

1))

YES/NO—The field can only contain YES (or a string beginning with Y) or NO (or
a string beginning with N). If the length parameter (/) is coded, the field is set to
that length. For example, 1(1) returns Y or N only.

2
Unsigned Integer—The field can only contain a positive number with no sign or
decimal point.

3
Date—The field can only contain the date format dd-mmm-yyyy or a shorthand
date format (see page 355).

4
Time—The field can only contain the time format hh.mm or a shorthand time
format (see page 355).

5
Hexadecimal—The field can only contain values in expanded hexadecimal.

6

Signed Numeric—The field can contain a signed or unsigned number with no
decimal point.

198 Managed Object Development Services Guide

Action=VALIDATE Class=DATA

7
Real Numbers—The field can only contain real numbers. This includes (signed
and unsigned) integers, numbers containing a decimal point, and numbers
expressed in scientific notation within the range -1E-70 to +1E+70.

8
Name—The field can only contain numbers, alphabetic characters (upper case),
and the characters @, #, and S. The first character in the field cannot be a
number.

9(/:h)
Range—The field can only contain a value within the defined range, where /is
the lowest valid value and h is the highest. If [is omitted, the value is only
checked for being less than or equal to h; if h is omitted, the value is only
checked for being greater than or equal to /, for example:
m 9(1:10) accepts values from 1 to 10
m 9(:3) accepts values less than or equal to 3
m 9(12:) accepts values greater than or equal to 12

10
Alphanumeric—The field can only contain numbers and alphabetic characters.
Lower case characters are converted to upper case.

11
Alphabetic—The field can only contain alphabetic characters. Lower case
characters are converted to upper case.

12
National—The field can only contain numbers, alphabetic characters, and the
characters @, # and $. Lower case characters are converted to upper case.

13
Data Set Name—The field can only contain a valid data set name, with no
quotes. Lower case characters are converted to upper case.

14
No Embedded Blanks—The field cannot contain any imbedded blanks.

15(I:h)

Length Of The Field—The length of the field must be within the defined range,
where | is the lowest possible length and h is the highest. If | is omitted, the
length is only checked for being less than or equal to h; if h is omitted, the
length is only checked for being greater than or equal to /. The default value for
lis 1.

Chapter 5: CAS Programming Interface ($CACALL) 199

Action=VALIDATE Class=DATA

16

17

18

19

20

21

22

23

24

Scroll Amounts—The field value must be one of the following valid scroll
amounts:

m MAX (or a string beginning with M)
m CSR (or a string beginning with C)

m DATA (or a string beginning with D)
m PAGE (or a string beginning with P)
m HALF (or a string beginning with H)

m A number between 1 and 99999 (if the string starts with a number, it is
truncated at the first non-numeric character)

Table—The field is validated against the values held in the table defined for the
field in FIELD.

List—The field is validated against the values given in &SVMFULLnnn,
&SVMABBRnnn, and &SVMDESCnnn.

NCL Keyword—The field must not contain an NCL keyword.

Time—The field can only contain the time format hh.mm.ss or a shorthand
time format (see page 355).

Hexadecimal Characters—The field can only contain hexadecimal characters,
that is, 0—9 and A-F.

IP Address—The address must be a valid IP address, in the format A.B.C.D,
where each of A, B, C, and D have a valid range of 0 to 255.

Time—The field must contain the time format hh:mm:ss or a shorthand time
format (see page 355). The returned string is in the format hh:mm:ss.

Time—The field can only contain the time format hh:mm or a shorthand time
format (see page 355). The returned string is in the format hh:mm.

200 Managed Object Development Services Guide

Action=VALIDATE Class=DATA

Input Variables

Return Variables

IMSYS=system name

(Optional) (required for EDITS=17 where the table type is IMFLD or IMREC) Specifies
the CA SOLVE:InfoMaster name.

PROMPT={YES | NO}

(Optional) (applicable only for EDITS=17 or 18) Specifies whether a list of valid
values is to be displayed if the field value contains a question mark character (?).
Specifying NO lets values be defined which contain a question mark (?), and also
lets validation occur from a non-full screen environment.

This statement contains the following input variables:
field name

The data to be validated
&SVMFULLnnn

The full values of the values (up to 20 characters) against which the field is to be
validated (applicable only for EDITS=18). Up to 999 full values can be specified.

&SVMABBRnnn

The abbreviations of the values (up to eight characters) against which the field is to
be validated (applicable only for EDITS=18). Up to 999 abbreviations can be
specified.

&SVMDESCnnn

The descriptions of the values (up to 38 characters) against which the field is to be
validated (applicable only for EDITS=18). Up to 999 descriptions can be specified.

This statement contains the following return variables:
field name
The validated data.
&SVMSELABBR
The abbreviated value of the selected value (applicable only for EDITS=17 or 18).
&SVMSELDESC

The description of the selected value (applicable only for EDITS=17 or 18).

Chapter 5: CAS Programming Interface ($CACALL) 201

Action=VALIDATE Class=DATA

Feedback Codes

Example

&SVMTEXT1..10

The text associated with the value (applicable only for EDITS=17 and returned only
if TEXT=YES).

&SYSMSG

System message. Contains the error message (for return code 8).

If a return code of 8 is set, then additional information is available as one of the
following feedback codes, set in & CAFDBK:

8
Processing error
10

Nesting level exceeded

The following statements validate the &PCODE field against edit numbers 2 (unsigned
integer) and 9 (range). The value of &PCODE must be an unsigned integer in the range 1
through 10. In the example, because & PCODE has a value of 12, an error message is
returned in &SYSMSG.

&PCODE = 12
&DESC = &STR Priority Code
&CONTROL SHRVARS=(PCODE, $VM)
-EXEC $CACALL OPT=ACTION
ACTION=VALIDATE
CLASS=DATA
PARMS="APPL=$ML
FIELD=PCODE
DESC=&DESC
EDITS=2,9(1:10)"

202 Managed Object Development Services Guide

Chapter 6: Menu Service Procedure
Interface

This section contains the following topics:

Menu Service Procedures (see page 203)
Menu Service Procedure Statements (see page 204)

Menu Service Procedures

A menu service procedure interface is available for Common Application Services (CAS)
menus.

Menu service procedures are installation written NCL procedures that are available for
performing specialized processing on menus.

Menu service procedures provide a convenient means of extending the functionality of
menus.

Menu service procedures are optional. You specify the menu service procedure when
you define a menu.

A menu service procedure performs site-specific menu processing at defined points
during invocation and processing of a menu:

m Oninitial entry to the menu

m After a user makes a selection but before acting on it

m After a user acts on a selection

® Prior to exiting the menu

® When a user enters an unrecognized command

m [f the menu times out when an INWAIT value is specified

You write your own menu service procedures by using the variables described in the
following sections.

Chapter 6: Menu Service Procedure Interface 203

Menu Service Procedure Statements

The variables can be divided into two groups as follows:

m The first group of variables provide information to the procedure and are not
modifiable (read-only). In particular, check the value of & MHOPT to determine the
stage of menu processing for you to implement the required special processing.

m The second group of variables are modifiable and enable the procedure to return
information to the system.

You can use your own variables in the menu service procedure. However, do not use
variable names that start with #MH. The menu service procedure is called with
NOSHRVARS=(#MH). After you specify your own variables, these variables are persistent
through the different stages of menu processing. That is, if you specify &A =
variable_value, the value of this variable is available on each subsequent call to the
procedure.

Menu Service Procedure Statements

This section contains descriptions for the menu service procedure statements.

$MHOPT=ENTRY Statement

This statement indicates initial entry into a menu. When the value of & MHOPT is
ENTRY, you can use the menu service procedure to perform any special processing that
is required before the display of the menu.

Read-Only Variables

This statement contains the following read-only variables:
&SMHOPT
This variable is set to ENTRY.
&SMHAPPLID
This variable is set to the ID of the application to which the menu belongs.
&SMHMENUNUM

This variable is set to the menu number.

204 Managed Object Development Services Guide

Menu Service Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:
&SMHAUTHMAP

Use this variable to control the access to menu options. This variable can be set to a
map (15 characters in length) with each character corresponding to a menu option.
Valid values for each character are as follows:

1
Access to the menu option is allowed.
0
Access to the menu option is not allowed. If this variable is set, it is used as the
menu map for the user. If it is not set, access is allowed to all menu options.
&SMHINWAIT

Use this variable to set a time-out when the menu is not receiving any input. This
variable can be set to an INWAIT value (between 0 and 86400 seconds) that is used
when displaying the menu. If this value is zero, the menu does not time out. If the
INWAIT time expires, the service procedure is called with & MHOPT set to
TIMEOUT.

&SMHDOUBLESPC

Use this variable to specify whether a blank line should be inserted before each
input line on the menu. If this variable is set to YES (the default), a blank line is
inserted before each input field line on the menu. If this variable is set to NO, input
field lines are displayed as defined for the menu.

&SMHINPUTIUST

Use this variable to specify the value of the JUST keyword on the #FLD panel
statement. Valid values are LEFT, RIGHT, ASIS, and CENTER. The default is LEFT.

&SMHINPUTMODE

Use this variable to specify the value of the MODE keyword on the #FLD panel
statement. Valid values are SBCS and MIXED. The default is SBCS.

&SMHCOMMAND

Use this variable to enable the processing of commands that are not known to the
system. If this value is YES, the service procedure is called with &S MHOPT set to
COMMAND.

&SMHFK1..24

Use these variables to override the standard function key actions.

Chapter 6: Menu Service Procedure Interface 205

Menu Service Procedure Statements

Return Codes

&SMHFKLAB1..24
Use these variables to override the standard function key labels.
&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

The variable &RETCODE must be set by the menu service procedure to one of the
following return codes:

0

Proceed; display the menu

Terminate the menu

&$MHOPT=SELECT Statement

Read-Only Variables

This statement indicates that the user has selected a menu option. When the value of
&SMHOPT is SELECT, you can use the menu service procedure to perform any special
processing that is required upon a menu option being selected.

This statement contains the following read-only variables:
&SMHOPT

This variable is set to SELECT.
&SMHAPPLID

This variable is set to the ID of the application to which the menu belongs.
&SMHMENUNUM

This variable is set to the menu number.
&SMHSELECT

This variable is set to the option the user selects from the menu.
&SMHSELECTNUM

This variable is set to the relative numeric position of the selected option on the
menu, as defined on the CAS : Menu Options panel.

206 Managed Object Development Services Guide

Menu Service Procedure Statements

Modifiable Variables

Return Codes

This statement contains the following modifiable variables:
&SMHERRLIST

Use this variable to return the names of the input fields that contain incorrect

values to the system. This variable can be set to the input fields that are in error in
the form fieldnamel, fieldname2...fieldnameN. The fields are placed in error status
on the panel, and the cursor is located in the first field that is in error.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

The variable &RETCODE must be set by the menu service procedure to one of the
following return codes:

0

Proceed; execute the action

Error; redisplay the menu

&$MHOPT=RETURN Statement

Read-Only Variables

This statement indicates that the action for a selected menu option has completed.
When the value of & MHOPT is RETURN, you can use the menu service procedure to
perform any special processing that is required on the completion of the action.

This statement contains the following read-only variables:
&SMHOPT
The variable is set to RETURN.
&SMHAPPLID
This variable is set to the ID of the application to which the menu belongs.
&SMHMENUNUM
This variable is set to the menu number.
&SMHSELECT

This variable is set to the menu option for which the action has completed.

Chapter 6: Menu Service Procedure Interface 207

Menu Service Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:

&SYSMSG
Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Return Codes

The variable &RETCODE must be set by the menu service procedure to one of the
following return codes:

0

Proceed; display the menu
1

Terminate the menu and return to the previous primary menu
4

If &SYSMSG is set, redisplay the menu with the value of &SYSMSG as the error
message; if &SYSMSG is not set, terminate the menu and return to the previous
primary menu

All other return codes are treated as errors, and &SYSMSG must be set. The menu is
redisplayed with the value of &SYSMSG as the error message.

&$MHOPT=EXIT Statement

This statement indicates that a menu is terminating. When the value of & MHOPT is
EXIT, you can use the menu service procedure to perform any special processing that is
required on the termination of the menu.

Read-Only Variables

This statement contains the following read-only variables:
&SMHOPT
This variable is set to EXIT.
&SMHAPPLID
This variable is set to the ID of the application to which the menu belongs.
&SMHMENUNUM

This variable is set to the menu number.

208 Managed Object Development Services Guide

Menu Service Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:

&SYSMSG
Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Return Codes

The variable &RETCODE must be set by the menu service procedure to one of the

following return codes:

0
Proceed; exit from the menu

16

Do not exit; redisplay the menu

&$MHOPT=COMMAND

This statement indicates that a command that is not known to the system has been
issued from the menu. When the value of & MHOPT is COMMAND, you can use the
menu service procedure to perform any special processing that is required to process
the command.

Read-Only Variables

This statement contains the following read-only variables:
&SMHOPT
This variable is set to COMMAND.
&SMHAPPLID
This variable is set to the ID of the application to which the menu belongs.
&SMHMENUNUM
This variable is set to the menu number.
&$SMHCMD
This variable is set to the command.
&SMHCMDPARMS

This variable is set to the command parameters.

Chapter 6: Menu Service Procedure Interface 209

Menu Service Procedure Statements

Modifiable Variables

Return Codes

This statement contains the following modifiable variables:
&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

The variable &RETCODE must be set by the menu service procedure to one of the
following return codes:

0

Command processed successfully

Command in error; if &YSMSG is not set, the error message MH0003 is displayed

&$MHOPT=TIMEOUT Statement

Read-Only Variables

Modifiable Variables

This statement indicates that the menu has timed out. When the value of & MHOPT is
TIMEOUT, you can use the menu service procedure to perform any special processing
that is required when the menu times out.

This statement contains the following read-only variables:
&SMHOPT
This variable is set to TIMEOUT.
&SMHAPPLID
This variable is set to the ID of the application to which the menu belongs.
&SMHMENUNUM

This variable is set to the menu number.

This statement contains the following modifiable variables:
&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

210 Managed Object Development Services Guide

Menu Service Procedure Statements

Return Codes

The variable &RETCODE must be set by the menu service procedure to one of the
following return codes:

0

Redisplay the menu
1

Terminate the menu, and return to the previous primary menu
q

Terminate the menu

Chapter 6: Menu Service Procedure Interface 211

Chapter 7: List Service Procedure Interface

This section contains the following topics:

List Service Procedures (see page 213)

List Service Procedure Statements (see page 214)

List Service Procedures

A list service procedure interface is available for Common Application Services (CAS)

lists.

List service procedures are installation-written NCL procedures that are available for
performing specialized processing on lists.

A list service procedure must be present for the CAS list component to work. You specify
the list service procedure when you define a list.

CAS executes the list service procedure at the following processing points:

On initial entry to the list—&SLHOPT=INIT

To retrieve a list entry—&SLHOPT=GET

To process an action against a selected entry—&SLHOPT=ACTION

To process an add request—&SLHOPT=ADD

To process the ALL command —&SLHOPT=ALL

Prior to terminating the list—&SLHOPT=TERM

To process a command not recoghized by CAS—&SLHOPT=COMMAND

You write your own list service procedures by using the variables described in the
following sections.

The variables can be divided into the following groups:

The first group of variables provide information to the procedure and are not
modifiable (read-only). In particular, check the value of &SLHOPT to determine the
stage of list processing for you to implement the required special processing.

The second group of variables are modifiable and enable the procedure to return
information to the system. Some of these variables are set with values already, but
the procedure can change those values.

Chapter 7: List Service Procedure Interface 213

List Service Procedure Statements

You can use your own variables in the list exit procedure. However, do not use variable
names that start with #LH. The list service procedure is called with NOSHRVARS=(#LH).
Once you specify your own variables, these variables are persistent through the
different stages of list processing. That is, if you specify &A = variable_value, the value
of this variable is available on each subsequent call to the procedure.

List Service Procedure Statements

This sections contains descriptions of the List Service Procedure statements.

&$LHOPT=ACTION Statement

This statement indicates that a list entry has been selected for actioning. When the
value of &SLHOPT is ACTION, you can use the list service procedure to perform any
special processing that is required to apply an action on the list entry.

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to ACTION.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION

An action list
MSELECT

A multiple select list
SSELECT

A single select list
NUMBERED

A numbered list

&SLHAPPLID

This variable is set to the ID of the application to which the list belongs.

214 Managed Object Development Services Guide

List Service Procedure Statements

&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC
This variable is set to the data source defined for the list.
&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 to 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to be included in the list, if variable &SLHCRITTOTAL is
greater than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHSORT
This variable is set to the sort expression defined for the list.
&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes that can be used to set the intensity,
color, and highlighting for data within an entry line.

&SLHACTION

This variable is set to the mnemonic entered by the user next to the entry to be
actioned.

Chapter 7: List Service Procedure Interface 215

List Service Procedure Statements

Modifiable Variables

&SLHENTID
This variable is set to the identifier of the entry selected by the user for actioning.
&SLHENTD

This variable is set to the data associated with the entry selected by the user for
actioning.

This statement contains the following modifiable variables:
&SLHSPDc

These variables contain service procedure data as set by the caller of SCACALL; c is
between 0 and 5 alphanumeric and/or national characters. These variables are
never set or cleared by the system and must be completely managed by your
installation-written NCL procedures.

&SLHREBUILD

Use this variable to indicate whether the entry line is to be rebuilt. This variable can
be set to YES or NO. If set to YES, all the attributes to be used to rebuild the entry
line must be set to the appropriate values. The default is NO. This variable is cleared
by the system before calling the service procedure for ACTION processing.

&SLHENTMSG

Use this variable to set a message that is to overlay the entry line. The offset and
length used are those defined in the list definition. This variable is cleared by the
system before calling the service procedure for ACTION processing.

&SLHREFRESH

Use this variable to indicate whether the list is to be refreshed. This variable can be
set to YES or NO. If set to YES, variables &SLHREBUILD and &SLHENTMSG are
ignored. The default is NO. This variable is cleared by the system before calling the
service procedure for ACTION processing.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

216 Managed Object Development Services Guide

List Service Procedure Statements

Return Codes

The variable &RETCODE must be set by the list service procedure to one of the following
return codes:

0

Continue processing
4

Request denied or error; redisplay the list with the mnemonic set in error
8

An error occurred; terminate the list

&$LHOPT=ADD Statement

This statement indicates that the user has executed the ADD command. When the value
of &SLHOPT is ADD, you can use the list service procedure to perform any special
processing that is required to process the ADD command.

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to ADD.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION

An action list
MSELECT

A multiple select list
SSELECT

A single select list
NUMBERED

A numbered list

&SLHAPPLID

This variable is set to the ID of the application to which the list belongs.

Chapter 7: List Service Procedure Interface 217

List Service Procedure Statements

&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC
This variable is set to the data source defined for the list.
&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 through 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to include in the list, if variable &SLHCRITTOTAL is greater
than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHSORT
This variable is set to the sort expression defined for the list.
&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

218 Managed Object Development Services Guide

List Service Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:
&SLHSPDc

These variables contain service procedure data as set by the caller of SCACALL; c is
between 0 and 5 alphanumeric and/or national characters. These variables are
never set or cleared by the system and must be completely managed by your
installation-written NCL procedures.

&SLHREFRESH

Use this variable to indicate whether the list is to be refreshed. This variable can be
set to YES or NO. The default is NO. This variable is cleared by the system before
calling the service procedure for ADD processing.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Return Codes

The variable &RETCODE must be set by the list service procedure to one of the following
return codes:

0
Continue processing
4
Request denied or error; redisplay the list with the error message
8
An error occurred; terminate the list
&$LHOPT=ALL Statement

This statement indicates that the user has executed the ALL command. When the value
of &SLHOPT is ALL, you can use the list service procedure to perform any special
processing that is required for ALL command processing.

Chapter 7: List Service Procedure Interface 219

List Service Procedure Statements

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to ALL.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION
An action list
MSELECT
A multiple select list
SSELECT
A single select list
NUMBERED
A numbered list
&SLHAPPLID
This variable is set to the ID of the application to which the list belongs.
&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC

This variable is set to the data source defined for the list.

220 Managed Object Development Services Guide

List Service Procedure Statements

Modifiable Variables

&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 to 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to be included in the list, if variable &SLHCRITTOTAL is
greater than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHSORT
This variable is set to the sort expression defined for the list.
&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

&SLHACTION

This variable is set to the mnemonic entered by the user as the parameter on the
ALL command.

This statement contains the following modifiable variables:
&SLHSPDc

These variables contain service procedure data as set by the caller of SCACALL; c is
between 0 and 5 alphanumeric and/or national characters. These variables are
never set or cleared by the system and must be completely managed by your
installation-written NCL procedures.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Chapter 7: List Service Procedure Interface 221

List Service Procedure Statements

Return Codes

The variable &RETCODE must be set by the list service procedure to one of the following
return codes:

0

Continue processing
4

Request denied or error; redisplay the list with the error message
8

An error occurred; terminate the list

&$LHOPT=COMMAND Statement

This statement indicates that the user has executed a command not recognized by the
system. When the value of &S LHOPT is COMMAND, you can use the list service
procedure to perform any special processing that is required to process the command.

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to COMMAND.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION

An action list
MSELECT

A multiple select list
SSELECT

A single select list
NUMBERED

A numbered list

&SLHAPPLID

This variable is set to the ID of the application to which the list belongs.

222 Managed Object Development Services Guide

List Service Procedure Statements

&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC
This variable is set to the data source defined for the list.
&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 through 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to include in the list, if variable &SLHCRITTOTAL is greater
than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHSORT
This variable is set to the sort expression defined for the list.
&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

Chapter 7: List Service Procedure Interface 223

List Service Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:
&SLHSPDc

These variables contain service procedure data as set by the caller of SCACALL; c is
between 0 and 5 alphanumeric and/or national characters. These variables are
never set or cleared by the system and must be completely managed by your
installation-written NCL procedures.

&SLHCOMMAND

This variable is set to the entered command. This variable can be set to a value that
is to be displayed in the Command field on the list when & SLHSETCMDFLD is set to
YES.

&SLHSETCMDFLD

Use this variable to indicate whether the value of &SLHCOMMAND is to be set in
the Command field on the list when &RETCODE is set to 4. This variable can be set
to YES or NO. The default is NO.

&SYSMSG
Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Return Codes

The variable &RETCODE must be set by the list service procedure to one of the following
return codes:

0

Continue processing
4

Invalid command or error; redisplay the list with the error message
8

An error occurred; terminate the list

&$LHOPT=GET Statement

This statement indicates that a list entry is to be retrieved. When the value of &S LHOPT
is GET, you can use the list service procedure to perform any special processing that is
required to get a list entry.

224 Managed Object Development Services Guide

List Service Procedure Statements

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to GET.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION
An action list
MSELECT
A multiple select list
SSELECT
A single select list
NUMBERED
A numbered list
&SLHAPPLID
This variable is set to the ID of the application to which the list belongs.
&SLHLISTTYPE

This variable is set to the type of the displayed list. This variable is set to one of the
following:

PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC

This variable is set to the data source defined for the list.

Chapter 7: List Service Procedure Interface 225

List Service Procedure Statements

&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 to 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to be included in the list, if variable &SLHCRITTOTAL is
greater than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHSORT
This variable is set to the sort expression defined for the list.
&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

&SLHTIMEOUT

This variable is set to indicate whether the list panel timed out. This variable is set
to one of the following values:

NO
The list panel did not time out.
YES
The list panel timed out.
&SLHRFRESHCMD

This variable is set to indicate whether the REFRESH command was executed by the
user. This variable is set to one of the following values:

NO

The REFRESH command was not executed.

YES

The REFRESH command was executed.

226 Managed Object Development Services Guide

List Service Procedure Statements

&SLHDIRECTION

This variable is set to indicate the retrieval direction. This variable is set to one of
the following values:

FWD

Get an entry in a forward direction.

BKWD

Get an entry in a backward direction.

LOCATE

Get the entry with an identifier that matches the value set in &SLHSKIP, if not

found, get the first entry which has an identifier less than the value set in
&SLHSKIP.

If the value of this variable is null, get the entry identified in &SLHENTID.
&SLHGETALL

This variable is set to indicate whether all entries for the list are retrieved during

initialization processing for the list. This variable is set to one of the following
values:

NO

Entries are retrieved as required for display on the list.

YES

All entries for the list are retrieved during initialization processing for the list.

&SLHSUPPRESS

This variable is set to indicate whether entries will be suppressed from the list by
this procedure when getting entries, by the list exit procedure during entry
processing, or by both procedures.

&SLHSKIP

This variable is set to indicate the number of entries to be skipped if
&SLHDIRECTION is set to FWD or BKWD. If &SLHDIRECTION is set to LOCATE, it is

set to the identifier of the entry to be located, that is, the locate string entered by
the user.

&SLHGETFWD#

This variable is set to indicate the number of entries that are to be retrieved in a
forward direction until the list is displayed.

Chapter 7: List Service Procedure Interface 227

List Service Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:

&SLHSPDc

These variables contain service procedure data as set by the caller of SCACALL; c is
between 0 and 5 alphanumeric and/or national characters. These variables are
never set or cleared by the system and must be completely managed by your
installation-written NCL procedures.

&SLHENTTOTAL

Use this variable to specify the number of list entries to get for display. This variable
can be set to the total number of entries to be displayed on the list when &SLHOPT
is set to GET and &SLHRFRESHCMD or &SLHREFRESH is set to YES. The value of this

variable is displayed in the top right corner of the list.

&SLHENTID

This variable is set to the identifier of the entry from which to start reading. If
&SLHDIRECTION and &SLHSKIP are null, get the entry that has an identifier that
matches the value of this variable and if not found return NOT FOUND condition. If
this variable is null and & SLHDIRECTION is set to FWD or BKWD, get the first or last
entry respectively. You must set this variable to the identifier of the entry returned.

&SLHENTD

This variable is set to the data associated with the entry identified in &SLHENTID.
This variable can be set to the data to be associated with the entry returned.

&SLHENTPOS

Use this variable to specify the position of the entry being returned within the list. If
&SLHSUPPRESS is not set to YES and the Get all Entries field in the list definition is
set to NO, the value of this variable is displayed in the top right corner of the list in
front of the total.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

228 Managed Object Development Services Guide

List Service Procedure Statements

Return Codes

The variable &RETCODE must be set by the list service procedure to one of the following
return codes:

0

Continue processing
4

Entry not found
8

An error occurred; terminate the list

&$LHOPT=INIT Statement

This statement indicates initialization of a list. When the value of &SLHOPT is INIT, you
can use the list service procedure to perform any special processing that is required
before the display of the list.

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to INIT.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION

An action list
MSELECT

A multiple select list
SSELECT

A single select list
NUMBERED

A numbered list

&SLHAPPLID

This variable is set to the ID of the application to which the list belongs.

Chapter 7: List Service Procedure Interface 229

List Service Procedure Statements

&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC
This variable is set to the data source defined for the list.
&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 through 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to include in the list, if variable &SLHCRITTOTAL is greater
than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHSORT
This variable is set to the sort expression defined for the list.
&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

230 Managed Object Development Services Guide

List Service Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:

&SLHSPDc

These variables contain service procedure data as set by the caller of SCACALL; c is
between 0 and 5 alphanumeric and/or national characters. These variables are
never set or cleared by the system and must be completely managed by your
installation-written NCL procedures.

&SLHSUPPRESS

This variable is set to indicate whether entries will be suppressed from the list by
this procedure when getting entries, by the list exit procedure during entry
processing, or by both procedures. Set this variable to YES if you want to suppress
entries; otherwise, set this variable to NO (the default).

&SLHADDALLOW

This variable is set to the Add Allowed setting defined for the list. It is set to YES if
the list supports the ADD command, and it is set to NO if the list does not support
the ADD command. The value of this variable can be modified to YES or NO. This
variable is ignored if the list is a single or multiple select, or numbered list.

&SLHGETALL

This variable is set to the Get All Entries setting defined for the list. It is set to YES if
all entries for the list are retrieved during initialization processing for the list. It is
set to NO if entries are retrieved as required for display on the list. The value of this
variable can be modified to YES or NO.

&SLHBUILDBKWD

This variable is set to indicate whether entries for the list can be built in a
backwards direction when processing the BACKWARD command—this means that
the entries are retrieved in a backwards direction. Set this variable to YES if entries
can be built in a backwards direction; otherwise, set this variable to NO. The default
value is YES.

&SLHACTIONS

This variable must be set to the mnemonics of the supported actions in the format
mmm,mmm,mmm....

&SLHCONFIRM

This variable can be set to the mnemonics of the actions that are to be confirmed
before the action occurs, in the format mmm,mmm,mmm....

Chapter 7: List Service Procedure Interface 231

List Service Procedure Statements

&SLHENTTOTAL

Use this variable to specify the total number of entries to be displayed on the list.
The value of this variable is displayed in the top right corner of the list if
&SLHSUPPRESS is not set to YES.

&SYSMSG
Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Return Codes

The variable &RETCODE must be set by the list service procedure to one of the following
return codes:

0

Continue processing
4

No entries found; terminate the list
8

An error occurred; terminate the list

&$LHOPT=TERM Statement

This statement indicates the termination of a list. When the value of &SLHOPT is TERM,
you can use the list service procedure to perform any special processing that is required
for terminating the list.

232 Managed Object Development Services Guide

List Service Procedure Statements

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to TERM.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION
An action list
MSELECT
A multiple select list
SSELECT
A single select list
NUMBERED
A numbered list
&SLHAPPLID
This variable is set to the ID of the application to which the list belongs.
&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC

This variable is set to the data source defined for the list.

Chapter 7: List Service Procedure Interface 233

List Service Procedure Statements

&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 to 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to be included in the list, if variable &SLHCRITTOTAL is
greater than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHSORT
This variable is set to the sort expression defined for the list.

&SLHATB*
These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

Modifiable Variables

This statement contains the following modifiable variables:
&SLHSPDc

These variables contain service procedure data as set by the caller of SCACALL; c is
between 0 and 5 alphanumeric and/or national characters. These variables are
never set or cleared by the system and must be completely managed by your
installation-written NCL procedures.

&SYSMSG
Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Return Codes

The variable &RETCODE must be set by the list service procedure to one of the following
return codes:

0

Continue processing

An error occurred

234 Managed Object Development Services Guide

Chapter 8: List Exit Procedure Interface

This section contains the following topics:

List Exit Procedures (see page 235)
List Exit Procedure Statements (see page 235)

List Exit Procedures

A list exit procedure interface is available for Common Application Services (CAS) lists.

List exit procedures are installation-written NCL procedures that are available for lists to
perform specialized processing.

List exit procedures are optional. You specify the list exit procedure when you define a
list (see page 24). CAS executes the list exit procedure at three processing points:
initialization, entry processing, and termination.

You write your own list exit procedures by using the variables described in the following
sections.

The variables can be divided into two groups as follows:

m The first group of variables provide information to the procedure and are not
modifiable. In particular, check the value of &SLHOPT to determine the stage of list
processing for you to implement the required special processing.

m The second group of variables are modifiable and enable the procedure to return
information to the system. Some of these variables are set with values already, but
the procedure can change those values.

You can use your own variables in the list exit procedure. However, do not use variable
names that start with #LH. The list exit procedure is called with NOSHRVARS=(#LH).
Once you specify your own variables, these variables are persistent through the
different stages of list processing. That is, if you specify &A = variable_value, the value
of this variable is available on each subsequent call to the procedure.

List Exit Procedure Statements

This section contains descriptions of the List Exit Procedure statements.

Chapter 8: List Exit Procedure Interface 235

List Exit Procedure Statements

&$LHOPT=INIT Statement

This statement indicates initialization of a list. When the value of &SLHOPT is INIT, you
can use the list exit procedure to perform any special processing that is required to
initialize the list.

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to INIT.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION
An action list
MSELECT
A multiple select list
SSELECT
A single select list
NUMBERED
A numbered list
&SLHAPPLID
This variable is set to the ID of the application to which the list belongs.
&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME

This variable is set to the name of the list.

236 Managed Object Development Services Guide

List Exit Procedure Statements

&SLHDESC

This variable is set to the description of the list.
&SLHDATASRC

This variable is set to the data source defined for the list.
&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; nis in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

Modifiable Variables

This statement contains the following modifiable variables:
&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 to 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to be included in the list, if variable &SLHCRITTOTAL is
greater than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHSUPPRESS

Use this variable to specify whether entries are to be suppressed from the list by
this procedure during entry processing. Set this variable to YES if you want to
suppress entries; otherwise, set this variable to NO (the default).

&SLHADDALLOW

This variable is set to the Add Allowed setting defined for the list. It is set to YES if
the list supports the ADD command, and it is set to NO if the list does not support
the ADD command. The value of this variable can be modified to YES or NO. This
variable is ignored if the list is a single or multiple select, or numbered list.

&SLHGETALL

This variable is set to the Get All Entries setting defined for the list. It is set to YES if
all entries for the list are retrieved during initialization processing for the list. It is
set to NO if entries are retrieved as required for display on the list. The value of this
variable can be modified to YES or NO.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Chapter 8: List Exit Procedure Interface 237

List Exit Procedure Statements

Return Codes
The variable &RETCODE must be set by the list exit procedure to one of the following
return codes:
0

Continue processing

An error occurred; terminate the list

&$LHOPT=ENTRY Statement

This statement indicates entry processing. When the value of &SLHOPT is ENTRY, you
can use the list exit procedure to perform any special entry processing that is required
for the list.

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to ENTRY.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION
An action list
MSELECT

A multiple select list
SSELECT

A single select list
NUMBERED

A numbered list

&SLHAPPLID

This variable is set to the ID of the application to which the list belongs.

238 Managed Object Development Services Guide

List Exit Procedure Statements

Modifiable Variables

&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC
This variable is set to the data source defined for the list.
&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 to 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to be included in the list, if variable &SLHCRITTOTAL is
greater than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

This statement contains the following modifiable variables:
&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Chapter 8: List Exit Procedure Interface 239

List Exit Procedure Statements

Return Codes

The variable &RETCODE must be set by the list exit procedure to one of the following
return codes:

0

Continue processing
4

Suppress the entry from the list
8

An error occurred; terminate the list

$LHOPT=TERM Statement

This statement indicates termination of a list. When the value of &SLHOPT is TERM, you
can use the list exit procedure to perform any special processing that is required to
terminate the list.

Read-Only Variables

This statement contains the following read-only variables:
&SLHOPT

This variable is set to TERM.
&SLHLISTFMT

This variable is set to indicate the format of the list. This variable is set to one of the
following values:

ACTION

An action list
MSELECT

A multiple select list
SSELECT

A single select list
NUMBERED

A numbered list

&SLHAPPLID

This variable is set to the ID of the application to which the list belongs.

240 Managed Object Development Services Guide

List Exit Procedure Statements

Modifiable Variables

&SLHLISTTYPE
This variable is set to the type of the list. This variable is set to one of the following:
PUBLIC
The list is a public list.
PRIVATE
The list is a private list.
&SLHLISTUSER
This variable is set to the user ID of the user who owns the list, if it is a private list.
&SLHLISTNAME
This variable is set to the name of the list.
&SLHDESC
This variable is set to the description of the list.
&SLHDATASRC
This variable is set to the data source defined for the list.
&SLHCRITTOTAL

This variable is set to the number of &SLHCRIT variables that contain criteria. The
value of this variable is in the range 0 to 9999.

&SLHCRITn

These variables are set to the criteria which the service procedure uses to
determine the entries to be included in the list, if variable &SLHCRITTOTAL is
greater than zero; n is in the range 1 to the value of &SLHCRITTOTAL.

&SLHFMTFLDn

These variables are set to the names of the real fields defined for the list; n is in the
range 1 to the number of real fields defined.

&SLHATB*

These variables are set to the panel attributes (see page 359) that can be used to
set the intensity, color, and highlighting for data within an entry line.

This statement contains the following modifiable variables:
&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Chapter 8: List Exit Procedure Interface 241

List Exit Procedure Statements

Return Codes

The variable &RETCODE must be set by the list exit procedure to one of the following
return codes:

0

Continue processing

An error occurred

242 Managed Object Development Services Guide

Chapter 9: Criteria Exit Procedure Interface

This section contains the following topics:

Criteria Exit Procedures (see page 243)
Criteria Exit Procedure Statements (see page 244)

Criteria Exit Procedures

A criteria exit procedure interface is available for Common Application Services (CAS)
criteria.

Criteria exit procedures are installation-written NCL procedures that are available for
performing specialized processing when criteria are built.

Criteria exit procedures are optional. You specify the criteria exit procedure when you
define a set of criteria. A criteria exit procedure performs installation-specific criteria
processing at defined points during the building of a set of criteria:

m Oninitialization

m When a user performs one of the following from a run-time criteria panel:
®m Press Enter

m |ssue the ACTION command

m |[ssue the EXIT command

You write your own criteria exit procedures by using the variables described in the
following sections.

The variables can be divided into two groups as follows:

m The first group of variables provide information to the procedure and are not
modifiable (read-only). In particular, check the value of & CROPT to determine the
stage of criteria processing for you to implement the required special processing.

m The second group of variables are modifiable and enable the procedure to return
information to the system.

You can use your own variables in the criteria exit procedure. However, do not use
variable names that start with #CR. The criteria exit procedure is called with
NOSHRVARS=(#CR). Once you specify your own variables, these variables are persistent
through the different stages of criteria processing. That is, if you specify &A =
variable_value, the value of this variable is available on each subsequent call to the
procedure.

Chapter 9: Criteria Exit Procedure Interface 243

Criteria Exit Procedure Statements

More information:

Criteria (see page 29)
Criteria Exit (see page 117)

Criteria Exit Procedure Statements

This section contains descriptions of the Criteria Exit Procedure statements.

&$CROPT=INIT Statement

This statement indicates initialization processing on the criteria. When the value of
&SCROPT is INIT, you can use the criteria exit procedure to perform any special
initialization processing on the criteria.

Read-Only Variables

This statement contains the following read-only variables:
&SCROPT
This variable is set to INIT.
&SCRAPPLID
This variable is set to the ID of the application to which the criteria set belongs.
&SCRCRITTYPE
This variable is set to one of the following types:
PUBLIC
The criteria set is public.
PRIVATE
The criteria set is private.
&SCRCRITUSER

If the criteria set is private, this variable is set to the ID of the user to whom the
criteria set belongs. If the criteria set is public, this variable is not set.

&SCRCRITNAME
This variable is set to the name of the criteria.
&S$CRDESC

This variable is set to the description of the criteria.

244 Managed Object Development Services Guide

Criteria Exit Procedure Statements

Modifiable Variables

Return Codes

&SCRPANEL

This variable is set to the name of the run-time panel defined for the criteria.
&SCRDATASRC

This variable is set to the data source defined for the criteria.
&SCREPARMTOT

This variable is set to the number of exit parameter lines defined for the criteria in
the range 0 to 9999.

&SCREPARMN

This range of variables are set to the exit parameters defined for the criteria if
&SCREPARMTOT is greater than zero; n is in the range 1 to the value of
&SCREPARMTOT.

&SCRFKA1

This variable is set to the first line of the function key area if a run-time panel is
defined for the criteria. If a run-time panel is defined, this variable must be
specified as an output variable on the first line of the #TRAILER statement in the
panel definition.

&SCRFKA2

This variable is set to the second line of the function key area if a run-time panel is
defined for the criteria. If a run-time panel is defined, this variable must be
specified as an output variable on the second line of the #TRAILER statement in the
panel definition.

This statement contains the following modifiable variables:
&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

The variable &RETCODE must be set by the criteria exit procedure to one of the
following return codes:

0

Continue processing

An error occurred; terminate building the criteria

Chapter 9: Criteria Exit Procedure Interface 245

Criteria Exit Procedure Statements

&$CROPT=TERM Statement

This statement indicates one of the following occurred from a run-time criteria panel:
m Enter key pressed

m ACTION command issued

m EXIT command issued

This call is not applicable if there is no run-time criteria panel. When the value of

&SCROPT is TERM, you can use the criteria exit procedure to perform any special
processing on the run-time criteria.

Read-Only Variables

This statement contains the following read-only variables:
&SCROPT
This variable is set to TERM.
&SCRAPPLID
This variable is set to the ID of the application to which the criteria set belongs.
&SCRCRITTYPE
This variable is set to one of the following types:
PUBLIC
The criteria set is public.
PRIVATE
The criteria set is private.
&SCRCRITUSER

If the criteria set is private, this variable is set to the ID of the user to whom the
criteria belongs. If the criteria set is public, this variable is not set.

&SCRCRITNAME
This variable is set to the name of the criteria.
&S$CRDESC
This variable is set to the description of the criteria.
&SCRPANEL
This variable is set to the name of the run-time panel defined for the criteria.
&SCRDATASRC

This variable is set to the data source defined for the criteria.

246 Managed Object Development Services Guide

Criteria Exit Procedure Statements

Modifiable Variables

&S$SCREPARMTOT

This variable is set to the number of exit parameter lines defined for the criteria in
the range 0 through 9999.

&SCREPARMN

This range of variables are set to the exit parameters defined for the criteria if
&SCREPARMTOT is greater than zero; n is in the range 1 to the value of
&SCREPARMTOT.

&S$CRCURSOR

This variable is set to the current cursor position if a run-time panel is defined for
the criteria. If a run-time panel is defined, this variable must be specified on the
CURSOR parameter of the #OPT statement in the panel definition.

&S$CRCOMMAND

This variable is set to the command executed from the run-time panel. The value is
null if the Enter key was pressed and no command was entered. This variable must
be used as the input field for the Command field on the run-time panel. This
variable, when set, contains one of the following commands:

ACTION

The ACTION command was executed to allow the specification of variable data
from the run-time panel to be included in the criteria.

EXIT

The EXIT command was executed to terminate the run-time panel.

This statement contains the following modifiable variables:
&SCRALARM

Use this variable to control the terminal alarm if a run-time panel is defined for the
criteria. Valid values are YES to turn the alarm on and NO otherwise. This variable
must be specified in the ALARM parameter of the #ERR statement in the panel
definition.

&S$CRERRFLDS

Use this variable to return the names of the input fields that contain incorrect
values to the system. This variable can be set to the input fields that are in error in
the form fieldnamel, fieldname?2...fieldnameN.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Chapter 9: Criteria Exit Procedure Interface 247

Criteria Exit Procedure Statements

Return Codes

The variable &RETCODE must be set by the criteria exit procedure to one of the
following return codes:

0

Continue processing
4

Redisplay the run-time panel (not valid if & CRCOMMAND is set to EXIT)
8

An error occurred; terminate building the criteria

248 Managed Object Development Services Guide

Chapter 10: Table Entry Validation Exit
Procedure Interface

This section contains the following topics:

Table Entry Validation Exit Procedures (see page 249)
Table Entry Validation Exit Procedure Statements (see page 249)

Table Entry Validation Exit Procedures

A table entry validation exit procedure interface is available for Common Application
Services (CAS) tables.

Table entry validation exit procedures are installation-written NCL procedures that are
available for performing specialized processing when a table entry is being maintained.

Table entry validation exit procedures are optional. You specify the table entry
validation exit procedure when you define a table. The table entry validation exit
procedure is called during table entry maintenance functions Add, Update, and Delete.

You write your own table entry validation exit procedures by using variables described
in the following sections.

The variables can be divided into two groups as follows:

m The first group of variables provide information to the procedure and are not
modifiable (read-only). In particular, check the value of &SVMEXFUNC to determine
the operation being processed for you to implement the required special
processing.

m The second group of variables are modifiable and enable the procedure to return
information to the system. Some of these variables are set with values already, but
the procedure can change those values.

Table Entry Validation Exit Procedure Statements

This sections contains descriptions of the Table Entry Validation Exit Procedure
statements.

Chapter 10: Table Entry Validation Exit Procedure Interface 249

Table Entry Validation Exit Procedure Statements

&$VMEXFUNC=ADD Statement

Read-Only Variables

Modifiable Variables

This statement indicates that a table entry is being added. When the value of
&SVMEXFUNC is ADD, you can use the table entry validation exit procedure to perform
any special processing that is required when adding a table entry.

This statement contains the following read-only variables:
&SVMEXFUNC

This variable is set to ADD.
&SVMEXAPPL

This variable is set to the application ID of the table definition.
&SVMEXFIELD

This variable is set to the field name of the table definition.

This statement contains the following modifiable variables:
&SVMEXFULL

This variable is set to the full value of the table entry.
&SVMEXABBR

This variable is set to the abbreviated value of the table entry.
&SVMEXDESC

This variable is set to the description of the table entry.
&SVMEXSEQ

This variable is set to the table entry sequence number.
&SVMEXACTIVE

This variable is set to indicate whether the table entry is active (YES or NO).
&SVMEXTXTL...10

These variables are set to additional information about the table entry.
&S$VMEXERRFLD

Use this variable to identify the name of the variable in the table entry definition
thatis in error.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

250 Managed Object Development Services Guide

Table Entry Validation Exit Procedure Statements

Return Codes
The variable &RETCODE must be set by the table entry validation exit procedure to one
of the following return codes:
0

Continue processing

Do not complete the operation; redisplay the panel

&$VMEXFUNC=DELETE Statement

This statement indicates that a table entry is being deleted. When the value of
&SVMEXFUNC is DELETE, you can use the table entry validation exit procedure to
perform any special processing that is required when deleting a table entry.

Read-Only Variables

This statement contains the following read-only variables:
&SVMEXFUNC

This variable is set to DELETE.
&SVMEXAPPL

This variable is set to the application ID of the table definition.
&SVMEXFIELD

This variable is set to the field name of the table definition.
&SVMEXFULL

This variable is set to the full value of the table entry.
&SVMEXABBR

This variable is set to the abbreviated value of the table entry.
&SVMEXDESC

This variable is set to the description of the table entry.
&SVMEXSEQ

This variable is set to the table entry sequence number.
&SVMEXACTIVE

This variable is set to indicate whether the table entry is active (YES or NO).
&SVMEXTXT1...10

These variables are set to any additional information about the table entry.

Chapter 10: Table Entry Validation Exit Procedure Interface 251

Table Entry Validation Exit Procedure Statements

Modifiable Variables

This statement contains the following modifiable variables:

&SYSMSG
Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

Return Codes

The variable &RETCODE must be set by the table entry validation exit procedure to one

of the following return codes:

0

Continue processing

Do not complete the operation; redisplay the panel

&$VMEXFUNC=UPDATE Statement

This statement indicates that a table entry is being updated. When the value of
&SVMEXFUNC is UPDATE, you can use the table entry validation exit procedure to
perform any special processing that is required when updating a table entry.

Read-Only Variables

This statement contains the following read-only variables:
&SVMEXFUNC

This variable is set to UPDATE.
&SVMEXAPPL

This variable is set to the application ID of the table definition.
&SVMEXFIELD

This variable is set to the field name of the table definition.
&SVMEXFULL

This variable is set to the full value of the table entry.

252 Managed Object Development Services Guide

Table Entry Validation Exit Procedure Statements

Modifiable Variables

Return Codes

This statement contains the following modifiable variables:
&SVMEXABBR

This variable is set to the abbreviated value of the table entry.
&SVMEXDESC

This variable is set to the description of the table entry.
&SVMEXSEQ

This variable is set to the table entry sequence number.
&SVMEXACTIVE

This variable is set to indicate whether the table entry is active (YES or NO).
&SVMEXTXT1...10

These variables are set to additional information about the table entry.
&SVMEXERRFLD

Use this variable to identify the name of the variable in the table entry definition
thatis in error.

&SYSMSG

Use this variable to return a message. If an error occurs during special processing,
this variable must be set to an error message.

The variable &RETCODE must be set by the table entry validation exit procedure to one
of the following return codes:

0

Continue processing

Do not complete the operation; redisplay the panel

Chapter 10: Table Entry Validation Exit Procedure Interface 253

Chapter 11: Report Writer

This section contains the following topics:

Understanding Report Writer (see page 255)
NCL Interface (see page 265)

Report Exit Procedure (see page 277)

Service Procedure (see page 281)

Generator Logic Flow (see page 285)
Distributed Service Procedures (see page 286)

Understanding Report Writer

Report Writer lets users easily define report layouts and generate defined reports
immediately or at specified times. Report Writer is a facility within Managed Object
Development Services (MODS).

Report Writer is designed to operate totally independently of the database in which the
data to be used to generate a report is contained—it interfaces with the application, to
access that application’s data from the database. The User Access Maintenance
Subsystem (UAMS) facility secures data against illegal access.

Report Writer interfaces with Print Services Manager (PSM) for the management of the
report output.

Report Writer Facilities

Report Writer lets you do the following:

m Draw a report layout using an editor.

= View a report layout on screen.

m Generate a report on request by application or user.
m Generate reports automatically based on a schedule.

m Perform specialized processing using user exit points, such as field formatting,
complex arithmetic, and conditional suppression of data during report generation.

m Integrate Report Writer with other NCL-based components.
m Look at reports in progress in the system.
m [nteract with the user using System and Security services panels.

m Getinformation about any panel using the online help facility.

Chapter 11: Report Writer 255

Understanding Report Writer

Defining a Report

A Report Definition contains all the information required to format a report. It is created
using a specialized editor which lets you draw the layout of a report on the screen. The
report definition is then stored on the MODS file and can be recalled at any time to
produce a report. It can also be recalled to perform maintenance functions, such as
updating, copying, or deleting.

Viewing a Report Layout

The View Report Layout function lets you see how the report will appear before it is
generated.

Generating Reports

A report can be generated in the following ways:
m Requested by a user or application
m Generated automatically by Report Writer according to a user-defined schedule

For a report to be generated on request, you must pass the report name and the printer
destination to the generator.

For a report to be automatically generated, you must define a schedule that Report
Writer uses to determine which report is required and when and where it is to be
generated.

Printing Reports

Report printing and validation of printer names is controlled by PSM. You can choose to
print a report as soon as the printer is available or to hold the report output on the PSM
print spool where it can be viewed before printing.

Report Exit Procedures

A Report Exit is an NCL procedure that lets you do specialized processing of data while a
report is being generated. Functions that can be performed by a Report Exit procedure
are as follows:

m |nitialization processing, for example, opening files and defining vartables

m Specialized field formatting, for example, complex arithmetic and conditional
suppression of data

®m [tem processing, for example, retrieving data from another source

m Termination processing, for example, closing files and deleting vartables

256 Managed Object Development Services Guide

Understanding Report Writer

Reports in Progress

Security

Report Definitions

A list of reports currently in progress in the system can be displayed. From this list you
can view report output on the screen, or cancel processing or purge the report output.

Report Writer uses the User Access Maintenance Subsystem (UAMS) facility of
management services to control user access to data.

Security is based on user IDs. A user ID defines the function and privilege level that a
particular person is entitled to when they sign on to the system. It is associated with a
secret password, known only to the user.

To secure Report Writer from unauthorized use, users must be defined to the security
system with the required Report Writer resource keys. In general, all users can browse
any public reports, and their own private reports. Depending upon access privileges,
users can be prevented from adding, browsing, updating, deleting or generating any, or
all, reports.

Before a report can be produced, it must first be defined to Report Writer. Report
definitions are created using a specialized editor which is similar to the
industry-standard ISPF editor. This editor lets you draw the layout of a report on the
screen. The report definition is then stored on a database and can be recalled at any
time to produce the report or for maintenance functions.

A report definition contains the following components:

m Report description

m Sort fields

m Report header

m Page header

m Data formats

m Control break headers

m Control break trailers

m Page trailer

m Report trailer

Chapter 11: Report Writer 257

Understanding Report Writer

Report Description

The report description contains the following control information about the report:
m Report application

m Report type

m UserlID

® Report name

® Group hame

m Description

m Status

m Report width

m Suit single record indicator
m Criteria identifier

m Report exit name

® Comments

Report Application

The report application is the ID of the report application to which the report belongs.
The report application defines the service procedure and whether or not it supports sort
fields, and if so how many.

A report application ID must begin with an application ID that is defined in the
Application Register (see page 46). The report application must be defined in a
SRWAPPL table for the specified application. For example, given report application
YKZ123, the application YKZ must be defined in the Application Register and YKZ123
must be an entry in the YKZ.SRWAPPL table.

Report Type
Each report must be assigned a report type. Valid types are PUBLIC and PRIVATE. The

report type is used to secure reports from illegal access. Your UAMS definition defines
whether you can access PUBLIC or PRIVATE reports.

User ID
The user ID is used to define the owner of PRIVATE reports.

Report Name

The report name identifies the report within a report application.

258 Managed Object Development Services Guide

Understanding Report Writer

Group Name

Description

Status

Report Width

Groups are defined by your installation and are used to define different groups within
your organization, with different reporting requirements. Group names can be used to
simplify the administration of reports and maintaining report definitions. Valid group
names are stored in a SADGROUP table for the application to which the report belongs.

The report description indicates the use of the report (for example the CA
SOLVE:InfoMaster Category Summary report). This description appears in the report
selection list to assist in the selection of reports.

The report status indicates whether or not a report is disabled. When it is set to ACTIVE
the report can be generated and appears on selection list displays. When set to
INACTIVE, these functions are disabled.

The report width indicates the maximum number of columns that can be printed per
page for the report.

Suit Sindle Record Indicator

Criteria Identifier

Report Exit Name

The suit single record field indicates that the report definition is suitable for printing a
single record when set to YES, and that it is not suitable for printing a single record
when set to NO.

The criteria identifier is the identifier of a Common Application Services (CAS) criteria
definition or the value FREEFORM. When the report is generated, CAS is called to build
the criteria or to present the CAS Criteria panel when FREEFORM is defined. The criteria
received from CAS is then passed to the service procedure and the report exit
procedure. This enables criteria to be shared between different reports and for ad-hoc
inquiries to be easily handled.

A report exit is an installation-written NCL procedure which can be used if specialized
processing of data is to be carried out before printing.

Chapter 11: Report Writer 259

Understanding Report Writer

Comments

The comments give a more detailed description of the report and any associated
information.

Sort Fields

The sort fields are the fields on which data records will be sorted before printing. These
field names are stored with details of how sorting will be performed (for example,
whether in ascending or descending order).

Sort fields are assigned a number to allow data to be sorted on several fields within a
record. For example, if you want to sort Problem file records on severity within priority,
the severity field would be defined as sort field 1 and the priority field would be defined
as sort field 2.

The maximum number of sort fields that can be defined depends on the report
application for which the report is defined.

For each sort field, there can be defined a control break header and/or control break
trailer. These will be printed on a control break, that is, when the value of the sort field
changes. A control break header could be used, for example, to print column headings
that describe the data being printed. A control break trailer may be a total line, showing
the total values of the data in the reported group of records.

Control break headers and trailers are linked to the sort field by the sort field number,
which is stored as part of their definition. So, for example, when the value of sort field
number 1 changes, the control break trailer assigned to it (if one is defined) will be
printed before processing continues.

Format Items

The remaining report components are the format items, which are the lines that will be
printed on the report. Each format item may consist of any number of lines, made up of
both constant and variable data.

Constant data is printed exactly as it is entered or drawn on the screen. It is mainly used
to define headings and subheadings. Variable data is retrieved by the service procedure
from a database, or from a report exit procedure, to be displayed on the report.

Variable data is prefixed by an ampersand (&) to indicate it is a database field, or an
exclamation mark (!) to indicate it is a system field. Database field names are validated
against the field names in the Data Fields Table for the report application. System field
names are validated against the field names in the System Fields Table.

260 Managed Object Development Services Guide

Understanding Report Writer

Report Header

The report header is printed once at the beginning of a report. Report Headers can be
used to explain what the report is about and to indicate the beginning of a new report.

Pade Header

The page header is printed at the top of every page (including the report header and
trailer pages). It can consist of one or several lines of constant and/or variable data. A
page header may contain a description of the use of the report, for example, Weekly
Network Error Warning System (NEWS) Attention Summary. A page header may also
contain the date and page number.

Data Formats

Data Formats are the details that are printed for each record that is passed to Report
Writer by the service procedure. Any number of data formats can be defined. A report
exit NCL procedure can be used to determine which data format or group of data
formats is to be printed for each individual record. If there is no report exit, all data
formats will be printed in ascending order.

Control Break Headers
Control Break Headers are the details which are printed as a heading above a group of
records. If defined, a control break header will be printed each time the sort field to
which it is assigned, changes value.

Control Break Trailers
Control Break Trailers are the details which are printed as a trailer below a group of
records. If defined, a control break trailer will be printed each time the sort field to
which it is assigned, changes value. Control break trailers are most commonly used to
print sub-total and total lines.

Page Trailer
The Page Trailer is printed as a footer at the bottom of each page (including the report

header and trailer pages). It can contain, for example, your company name or the page
number.

Report Trailer

The Report Trailer is printed at the end of the report.

Chapter 11: Report Writer 261

Understanding Report Writer

Report Layout

The View Report Layout panel can be displayed at any time during the definition of a
report. This lets you see on the screen the layout of the report as it will be when it is
printed.

Defining a Report Application

Report applications are stored as entries in the SRWAPPL table for the specified
application—the application is indicated by the first three characters of the report
application. New report applications must be added using CAS.

Data fields for each application must be defined to Report Writer by defining a Data
Fields Table, using CAS.

If the data input to your report needs to be sorted before printing, the fields on which
the data will be sorted must be defined to Report Writer during definition of the report.
The sort fields are stored in a Sort Fields Table which is controlled by CAS.

262 Managed Object Development Services Guide

Understanding Report Writer

Report Generator
The Report Writer Report Generator controls the generation of reports. Reports can be
generated in two ways:
m Directly, on request by a user or application
m Automatically by the Schedule facility of Report Writer
The report generator reads the control information and report layout from the MODS
file and calls the service procedure to access data from the application database. If there

is a report exit associated with this report definition, the generator calls it to do any
specialized processing of data, then passes the formatted data to PSM for printing.

Report
Application
and
Definition

—_ -

Generator —» PSM

Report

Exit Database
Procedure Procedure

Service

Chapter 11: Report Writer 263

Understanding Report Writer

Service Procedure

The service procedure is an NCL procedure whose purpose is to provide the generator
with data to be used to generate a report. The service procedure knows the database
from which the data is to be retrieved and the format of the data. The name of the
service procedure is defined in the report application to which the report belongs and is
executed by the generator.

Functions of the service procedure are as follows:

m |nitialization processing, for example, opening files and searching the database

m Get the next record to be processed

m Get the value of the sort fields for the next record to be processed

m Termination processing, for example, closing files
Report Exit

The purpose of a report exit procedure is to let the user do specialized processing, based
on installation requirements, while the report is being generated. For example, data can
have arithmetic performed upon it or it can be conditionally suppressed.

The report exit procedure knows the format of the data, that is, the names of the
variables that contain the data and the format of that data. The name of the report exit
procedure is defined in the report definition and is executed by the generator.
Functions performed by the report exit procedure are as follows:

m |nitialization processing, for example, define vartables

m |tem processing, for example, complex arithmetic

m Termination processing, for example, delete vartables.

Defining a Schedule

Report Writer can automatically generate reports according to a user-defined schedule.
To do this you must first define the schedule.
A Schedule Definition consists of the following information:

m The name, report type, owner and associated information about the report to be
generated

m The intervals at which the report will be generated
m The printer name where the report will be printed

m Whether the report is required to be printed immediately the printer is available or
held on the PSM print spool until released for printing

264 Managed Object Development Services Guide

NCL Interface

NCL Interface

m Whether the report is to be kept on the print spool after it has been printed, or
deleted

m The number of copies to be printed

The Schedule function of Report Writer passes report control information to the
generator each time the report is scheduled to be generated.

A report can be scheduled to run, for example, on the first day of every month at
midday or at 10 a.m. on Mondays, Tuesdays, and Fridays.

This section describes the NCL interface for Report Writer.

The NCL interface for Report Writer performs the following functions:
m SRWCALL OPT=GENERATE - generate a report

m SRWCALL OPT=INFO - return report definition information, optionally presenting a
Report List

m SRWCALL OPT=MENU - present a Report Writer menu
m SRWCALL OPT=STATUS - present Reports in Progress

Notational Conventions

Each NCL call is described on a separate page under the following section headings,
where applicable:

Function:
Purpose of interface
Use:
General description of interface use
Operands:
Description of operands
Variables:
Fields used to pass variable data to the service procedure or report exit procedure
Return Codes:

Return code options set on completion of interface function, with an explanation

Chapter 11: Report Writer 265

NCL Interface

Examples:

Examples of interface syntax

Notes:

Interface Syntax

Any further information or special aspects

The precise syntax for each interface is defined in a box towards the top of each page.
For example:

&CONTROL NOSHRVARS

-EXEC $RWCALL OPT=STATUS

[USERID=userid]

On the left is the interface name (SRWCALL), and to the right are the permissible
operands. The syntax used observes the following guidelines:

UPPERCASE characters
Interface names or operands consisting of uppercase characters must be entered as
shown, but can be entered in upper or lower case.

Italic characters

These are variables that show the kind of information, rather than the exact
information that must be supplied. The actual entry replaces the italic description.
Valid types of data are described for each interface within the operands section.

Underscored values
Indicates the defaulted value that is assumed for an operand if one is not specified
in the interface.

{Braces}
These indicate the available options for an operand. One of the alternatives
described must be selected. Do not include braces when entering a specification.

[Square brackets]
Indicate optional specifications. Do not include square brackets when entering a
specification.

The Or Sign |

This separates options for an optional or mandatory specification. If a group of
options is enclosed by square brackets, and each is separated by an Or sign, none of
the options have to be chosen. If none are coded, the default value (underscored) is
used.

Commas and Equals signs

Commas and equal signs must be entered as shown. If commas or equal signs
appear within brackets, they are optional and used only if the accompanying
optional operand is used.

266 Managed Object Development Services Guide

NCL Interface

$RWCALL OPT=GENERATE

Operands

This function generates a report. Optionally, the function presents the Generate a
Report panel on which the report details can be entered, or the Report List.

This function has the following formats:
&CONTROL SHRVARS=($RW)

-EXEC $RWCALL OPT=GENERATE

MODE= { DEFGEN | GENERATE | PRTGEN }]
APPL= repapplid]

TYPE= { PUBLIC | PRIVATE }]
USERID=userid]

NAME=name]

PRINTER=printer 1]
OWNER=userid]

HOLD= { NO | YES }]

KEEP= { NO | YES }]
COPIES=n]

WAIT= { NO | YES } 1]
SYSTEM=system |
RECCAT=record category 1

—_r— —— e e e e e e e

-EXEC $RWCALL OPT=GENERATE
MODE=LIST
APPL=repapplid
GROUP=group]

—_

OPT=GENERATE

Generates a report.

Chapter 11: Report Writer 267

NCL Interface

MODE= { DEFGEN | GENERATE | PRTGEN | LIST }
Specifies the mode of operation.
DEFGEN
Displays the Generate a Report panel.
GENERATE
Generates the report.
PRTGEN

Generates the report and displays the PSM Confirm Printer panel for the
specification of printer details.

LIST

Displays a Report List in the form of an action list. The list contains all public
and private reports for the current user which belong to the report application
set in the APPL operand. Only those reports with a status of ACTIVE are listed.

APPL=repapplid
Specifies the ID of the report application to which the report belongs.
TYPE={ PUBLIC | PRIVATE }
Specifies the type of report.
PUBLIC
Specifies that the report is a public report.
PRIVATE
Specifies that the report is a private report.
USERID=userid
Specifies the user ID of the user who owns the report if it is a private report.
Default: Value of &USERID if TYPE is set to PRIVATE

Note: If MODE is GENERATE or PRTGEN, and TYPE and USERID are not specified, the
system looks for a PRIVATE report owned by the invoking user ID (that is, the value
of &USERID) with the name specified. If not found, the system looks for a PUBLIC
report with the name specified.

NAME=name
Specifies the name of the report.
PRINTER=printer

Specifies the name of the printer. The printer must have previously been defined to
PSM.

Default: Printer assigned to the owner of the report as their default printer

268 Manaded Object Development Services Guide

NCL Interface

Variables

OWNER=userid

Specifies the user ID of the user who is to own the report. This user ID is passed to
PSM as the owning user ID for the report. The default is the value of & USERID.

HOLD={ NO | YES }

Specifies whether PSM assigns the report a status of HELD when added to the Print
Spool File.

KEEP={ NO | YES}

Specifies whether PSM leaves the report on the Print Spool File after being printed.
COPIES=n

Specifies the number of copies of the report to print.

Default: 1

Limits: 1 through 255
WAIT={ NO | YES }

Specifies whether control is returned to the requester immediately after the report
is started or on completion of the report.

SYSTEM=system

Specifies the system name to use instead of the name defined in the table entry for
the specified report application.

RECCAT=record category

Specifies the record category to use instead of the category defined in the table
entry for the specified report application.

GROUP=group

Specifies the name of the group to which reports belong, to be included in the
Report List when the MODE operand is set to LIST.

&SRWCRITn

These variables can be set to the data criteria that is to be used by the service
procedure and/or report exit procedure in determining the data to be included in
the report when the MODE operand is not set to LIST. The valid value for n is in the
range 1 to 99999. The first blank variable indicates the end of the data criteria.

&SRWUSRDc

These user data variables can be set to user data that is to be used by the service
procedure and/or the report exit procedure when the MODE operand is not set to
LIST. The variable c is between 0 and 5 alphanumeric and/or national characters.
These variables are not set or cleared by the system, therefore must be completely
managed by your installation-defined NCL procedures.

Chapter 11: Report Writer 269

NCL Interface

Return Codes
&RETCODE =0
SRWCALL completed successfully. SRWFDBK is set as follows:
1
RETURN command entered or function key pressed
&RETCODE =4

SRWCALL completed successfully. Request denied. &SYSMSG is set to an error
message and &SRWFDBK is set to one of the following values:

1

User not authorized for the request

Report not defined
10
No report defined within the specified range
&RETCODE =8

An error occurred. &SYSMSG is set to an error message.

Examples

&CONTROL SHRVARS=($RW)
-EXEC $RWCALL OPT=GENERATE MODE=DEFGEN

&CONTROL SHRVARS=($RW)
-EXEC $RWCALL OPT=GENERATE MODE=DEFGEN APPL=$SAIMPB TYPE=PUBLIC

&CONTROL SHRVARS=($RW)

&$RWCRIT1 = &STR $PBSEVERITY=1

&$RWCRIT2 = &STR AND

&$RWCRIT3 = &STR $PBFIXED=NO

-EXEC $RWCALL OPT=GENERATE MODE=GENERATE APPL=$SAIMPB +
TYPE=PUBLIC NAME=OPENPROBLEMS

&CONTROL SHRVARS=($RW)
-EXEC $RWCALL OPT=GENERATE MODE=GENERATE APPL=$SAIMPB +
TYPE=PRIVATE USER=USERO1 NAME=TEST1

&CONTROL NOSHRVARS
-EXEC $RWCALL OPT=GENERATE MODE=LIST APPL=ZPRPROB

270 Managed Object Development Services Guide

NCL Interface

Notes

When MODE is set to DEFGEN, the APPL, TYPE, USERID, NAME, PRINTER, OWNER,
HOLD, KEEP and COPIES operands are used to initialize fields on the Generate a Report
panel.

When MODE is set to LIST, the variables & RWCRITn and &SRWUSRDn are ignored.
When MODE is set to PRTGEN, the PRINTER, HOLD, KEEP and COPIES operands are

ignored. Instead, the values entered on the Confirm Printer panel are used to generate
the report.

$RWCALL OPT=INFO

Use

Operands

This function returns report definition information. Optionally, the function presents a
list of reports from which a selection can be made.

This function has the following format:
&CONTROL SHRVARS=($RW)

-EXEC $RWCALL OPT=INFO

INFO=REPORT]

APPL={ repapplid | prefix? | ? }]
TYPE={ PUBLIC | PRIVATE }]
USERID={ userid | prefix? | ? } 1]
NAME={ name | prefix? | ? } 1]
GROUP={ group | prefix? | ? }]
SINGLE={ YES | NO }]

ORDER={ ID | DESC }]

STATUS={ ACTIVE | INACTIVE}]
AUTOSEL={ YES | NO } 1

—_r— ——— e e e

To validate report details entered by a user on a panel defined by your installation and
provide help on a panel defined by your installation by presenting a Report List from
which a selection can be made.

OPT=INFO
Specifies definition information is to be returned.
INFO=REPORT

Specifies report definition information is to be returned.

Chapter 11: Report Writer 271

NCL Interface

APPL={ repapplid | prefix? | ? }

Specifies the ID of the report application to which the report belongs. If a prefix
followed by a question mark (?)is specified, a Report List is presented from which a
selection can be made. The list will contain all reports that belong to report
applications with IDs starting with the prefix specified, and which match the other
criteria specified. If a question mark is specified without a prefix, all reports which
match the other criteria specified are listed on the Report List.

TYPE={ PUBLIC | PRIVATE }

Specifies the type of report. PUBLIC indicates that the report is a public report and
PRIVATE indicates that the report is a private report.

USERID={ userid | prefix? | ? }

Specifies the user ID of the user who owns the report if it is a private report. If a
prefix followed by a question mark (?) is specified, a Report List is presented from
which a selection can be made. The list will contain all private reports owned by
users whose user ID starts with the prefix specified, and which match the other
criteria specified. If a question mark is specified without a prefix, all reports that
match the other criteria specified are listed on the Report List.

NAME={ name | prefix? | ? }

Specifies the name of the report. If a prefix followed by a question mark (?) is
specified, a Report List is presented from which a selection can be made. The list
will contain all reports with names starting with the prefix specified, and which
match the other criteria specified. If a question mark is specified without a prefix,
all reports that match the other criteria specified are listed on the Report List.

GROUP={ group | prefix? | ? }

Specifies the group to which the reports belong that are to be presented in the
Report List. A Report List is presented from which a selection can be made. If a
prefix followed by a question mark (?) is specified, the list will contain all reports
that belong to groups with names starting with the prefix specified. If a question
mark is specified without a prefix, all reports that match the other criteria specified
are listed on the Report List.

SINGLE={ YES | NO }

Specifies the setting of the Suit Single Record field for reports that are to be
included in the Report List. If not specified, reports with a Suit Single Record setting
of YES or NO are included in the list.

272 Manaded Object Development Services Guide

NCL Interface

ORDER={ ID | DESC }
Specifies the order in which the Report List will be presented.
ID
Reports will be listed in user ID order.
DESC
Reports will be listed in description order.
STATUS={ ACTIVE | INACTIVE }

Specifies the status of reports to be included on the Report List. If not specified,
both active and inactive reports are included in the list.

AUTOSEL={ YES | NO }
Allows the automatic selection of a report, when set to YES, instead of displaying a
selection list containing only one report.
Return Codes
&RETCODE =0
SRWCALL completed successfully. The variables returned are as follows:
&SRWREPAPPL
Report Application
&SRWREPTYPE
Report type, PUBLIC or PRIVATE
&SRWREPUSERID
User ID of owner if it is a private report
&SRWREPNAME
Report name
&SRWREPDESC
Brief description of report
&SRWREPGROUP

Group

Chapter 11: Report Writer 273

NCL Interface

&RETCODE =4

Request denied. &SYSMSG is set to an error message and &SRWFDBK is set to one
of the following:

1

User not authorized for the request

Report not defined
10
No reports defined within the specified range
11
Report not selected from Report List
&RETCODE = 8

An error occurred. &SYSMSG is set to an error message.

Examples

&CONTROL SHRVARS=($RW)
-EXEC $RWCALL OPT=INFO INFO=REPORT NAME=?

&CONTROL SHRVARS=($RW)
-EXEC $RWCALL OPT=INFO INFO=REPORT TYPE=PUBLIC +
NAME=SUMMARY?

&CONTROL SHRVARS=($RW)
-EXEC $RWCALL OPT=INFO INFO=REPORT APPL=$SAIMPB +
TYPE=PUBLIC NAME=OPENPROBLEMS

Notes

Either the APPL, USERID, NAME, GROUP, SINGLE or STATUS operand must be specified.

$RWCALL OPT=MENU

This function presents a Report Writer menu.

This function has the following format:
&CONTROL NOSHRVARS

-EXEC $RWCALL OPT=MENU
[MENU={ PRIMARY | REPORT | SCHEDULE }]

274 Managed Object Development Services Guide

NCL Interface

Use

To present a Report Writer menu when a user selects an option from a menu defined by
your installation or enters a command written by your installation.

Operands
OPT=MENU
Specifies that a Report Writer menu is to be presented.
MENU={ PRIMARY | REPORT | SCHEDULE }
Specifies which Report Writer menu is to be presented.
PRIMARY
Presents the Report Writer Primary Menu.
REPORT
Presents the Report Definition Menu.
SCHEDULE

Presents the Schedule Definition Menu.

Return Codes
&RETCODE =0

SRWCALL completed successfully. &SRWFDBK can be set to the following:
1
RETURN command entered or function key pressed

&RETCODE =4

SRWCALL completed successfully. Request denied. &SYSMSG is set to an error
message and &SRWFDBK is set to the following:

1
User not authorized for the request
&RETCODE =8

An error occurred. &SYSMSG is set to an error message.

Chapter 11: Report Writer 275

NCL Interface

Examples

&CONTROL NOSHRVARS
-EXEC $RWCALL OPT=MENU

&CONTROL NOSHRVARS
-EXEC $RWCALL OPT=MENU MENU=PRIMARY

&CONTROL NOSHRVARS
-EXEC $RWCALL OPT=MENU MENU=REPORT

$RWCALL OPT=STATUS

This function presents the Reports in Progress list.

This function has the following format:
&CONTROL NOSHRVARS

-EXEC $RWCALL OPT=STATUS
[USERID= userid]

Use
To present Reports in Progress when a user selects an option from a menu defined by
your installation or enters a command written by your installation.

Operands
OPT=STATUS

Specifies the Reports in Progress panel is to be presented.
USERID=userid

Specifies the user ID of the user whose reports are to be displayed in the Reports in
Progress list.

276 Managed Object Development Services Guide

Report Exit Procedure

Return Codes

Examples

&RETCODE =0
SRWCALL completed successfully. &RWFDBK can be set to the following:
1
RETURN command entered or function key pressed
&RETCODE =4

SRWCALL completed successfully. Request denied. &SYSMSG is set to an error
message and &SRWFDBK is set to the following:

1
User not authorized for the request
&RETCODE =8

An error occurred. &SYSMSG is set to an error message.

&CONTROL NOSHRVARS

-EXEC $RWCALL OPT=STATUS

&CONTROL NOSHRVARS

-EXEC $RWCALL OPT=STATUS USERID=USERO1

Report Exit Procedure

Function

This section describes the variables that are passed to the report exit procedure and the
return codes and variables it can set.

The purpose of the report exit procedure is to let the user do specialized processing,
based on installation requirements, while a report is being generated. For example, data
can be conditionally suppressed from being processed or printed.

The report exit procedure must know the format of the data, that is, the name of the
variables that contain the data and the format of that data. The name of the report exit
procedure is defined in the report definition and is executed by the generator.

Chapter 11: Report Writer 277

Report Exit Procedure

Functions performed by report exit procedures are as follows:
m |nitialization processing, for example, open files or define vartables.

®m [tem processing, where an item is a report header or trailer, page header or trailer,
control break header or trailer or record (that is, data format or sequence of data
formats). For example, retrieve additional data from another source, and set it in
variables that are defined in the report or are to be used in later processing.

m Termination processing, for example, close files or delete vartables.

Variables

The share variables facility of NCL is used to pass data to the report exit procedure and
to let it pass data back to the generator. The report exit procedure is executed with
&CONTROL NOSHRVARS=(#RW) specified. All variables not starting with the characters
H#RW can be accessed and set by the report exit procedure and variables containing data
(data fields) can be modified. The variables set by the generator indicating the status of
the current environment are as follows:

&SRWOPT

This variable is set to indicate the processing that is to be performed by the report
exit. This variable can be set to one of the following variables:

INIT
Initialization processing is to be performed
TERM
Termination processing is to be performed
ITEM
Item processing is to be performed
&SRWAPPL

This variable is set to the ID of the report application to which the report being
generated belongs.

&SRWTYPE

This variable is set to the type of report being generated. Type can be one of the
following:

PUBLIC
The report is a public report
PRIVATE

The report is a private report

278 Managed Object Development Services Guide

Report Exit Procedure

&SRWUSERID

This variable is set to the user ID of the user who owns the report if it is a private
report.

&SRWNAME

This variable is set to the name of the report being generated.
&SRWDESC

This variable is set to the brief description of the report being generated.
&SRWITEM

This variable is set to indicate the item that is being processed when &SRWOPT is
set to ITEM. Item can be set to one of the following values:

RH

Report header
PH

Page header
CH

Control break header
DF

Data format or sequence of data formats
CT

Control break trailer
PT

Page trailer
RT

Report trailer

&SRWITEMKEY

This variable is set to the sort field number of the control break header or trailer
when &SRWITEM is set to CH or CT.

&SRWFMTSEQ

This variable is set to a list of all the data format numbers separated by commas
when &SRWITEM is set to DF. This variable can be modified to contain a list of data
format numbers that are to be printed, in the order they are to be printed,
separated by commas. To process but not print the record (that is, to perform
totalling) set this variable to null.

Chapter 11: Report Writer 279

Report Exit Procedure

&SRWSYSTEM

This variable is set to the system name that is defined in the table entry for the
report application to which the report belongs. The system name can be overridden
on the GENERATE call to SRWCALL.

&SRWRECCAT

This variable is set to the record category that is defined in the table entry for the
report application to which the report belongs. Record category can be overridden
on the GENERATE call to SRWCALL.

&SRWOWNER

This variable is set to the user ID of the user who is to own the report. This user ID is
passed to PSM as the owning user ID for the report.

&SRWPAGES

This variable is set to the number of pages that have been printed.
&SRWLINES

This variable is set to the number of lines that have been printed.
&SRWRECS

This variable is set to the number of records that have been processed.
&SRWCRITTOTAL

This variable is set to the number of & RWCRITn variables that contain data
criteria. The value of this variable is in the range 0 to 99999.

&SRWCRITn

These variables are set to data criteria if the & RWCRITTOTAL variable is greater
than zero. The variable n is a number in the range 1 to the value of
&SRWCRITTOTAL. The data criteria is used by the service procedure to determine
which data is to be included in the report. The format of these variables is
dependent on the service procedure.

&SRWUSRDc

This is user data and is as set by the caller of SRWCALL or the service procedure.
The variable c is between 0 and 5 alphanumeric and/or national characters. These
variables can be used to pass user data through the generator to the report exit
procedure. They can also be accessed by the service procedure. These variables can
also be modified by the report exit procedure. The variables are never set or
cleared by the system and must be completely managed by your
installation-defined NCL procedures.

280 Managed Object Development Services Guide

Service Procedure

Return Codes

Notes

&RETCODE =0

Indicates successful completion, continue processing. The system variable
&SRWFMTSEQ may be set to a list of data format numbers that are to be printed, in
the order they are to be printed, separated by commas. To process but not print
the record (that is, to perform totalling) set this variable to null.

&RETCODE =2

Indicates that the item is not to be printed. When &SRWITEM is set to DF also, do
not process the record, get the next record.

&RETCODE =8

Indicates that an error occurred, terminate processing. &SYSMSG may be set to an
error message.

The generator executes the report exit procedure to perform item processing
immediately before the item is to be printed.

If there is more than one data format, the report exit procedure is executed once,
before all the data formats are printed for a record.

Service Procedure

Function

This section describes the variables that are passed to the service procedure and the
return codes and variables it can set.

The purpose of the service procedure is to provide the generator with data to be used
to generate a report. The service procedure must know the database from which the
data is to be retrieved and the format of the data. The name of the service procedure is
defined in the table entry for the report application to which the report belongs and is
executed by the generator.

Functions of the Service Procedure are as follows:

m |nitialization processing, for example, open files, search database (&NDBSCAN)

m To get the next record to be processed (that is, set the data fields)

m To get the value of the sort fields for the next record to be processed

m Termination processing, for example, close files

Chapter 11: Report Writer 281

Service Procedure

Variables

The share variables facility of NCL is used to pass data to the service procedure and to
let it pass data back to the generator. The service procedure is executed with
&CONTROL NOSHRVARS=(#RW) specified. All variables not starting with the characters
#RW can be accessed and set by the service procedure. The variables set by the
generator are as follows:

&SRWOPT

This variable is set to indicate the processing that is to be performed by the service
procedure. This variable is set to one of the following values:

INIT
Initialization processing is to be performed
TERM
Termination processing is to be performed
GET
Get the next record to be processed by the generator
GETSF

Get the value of the sort fields for the next record to be processed by the
generator. The values must be returned in the variables & RWSFVALn and the
data fields for the previous record must not be modified. The service procedure
is called to do GETSF processing before each GET call only if control break
headers or trailers are defined in the report definition.

&SRWAPPL

This variable is set to the ID of the report application to which the report being
generated belongs.

&SRWTYPE
This variable is set to the type of report being generated.
PUBLIC
The report is a public report
PRIVATE
The report is a private report
&SRWUSERID

This variable is set to the user ID of the user who owns the report if it is a private
report.

&SRWNAME

This variable is set to the name of the report that is being generated.

282 Managed Object Development Services Guide

Service Procedure

&SRWDESC
This variable is set to the brief description of the report being generated.
&SRWSYSTEM

This variable is set to the system name that is defined in the table entry for the
report application to which the report belongs. System name can be overridden on
the GENERATE call to SRWCALL.

&SRWRECCAT

This variable is set to the record category that is defined in the table entry for the
report application to which the report belongs. Record category can be overridden
on the GENERATE call to SRWCALL.

&SRWOWNER

This variable is set to the user ID of the user who is to own the report. This user ID is
passed to PSM as the owning user ID for the report.

&SRWPAGES

This variable is set to the number of pages that have been printed.
&SRWLINES

This variable is set to the number of lines that have been printed.
&SRWRECS

This variable is set to the number of records that have been processed.
&SRWCRITTOTAL

This variable is set to the number of & RWCRITn variables that contain data
criteria. The value of this variable is in the range 0 to 99999.

&SRWCRITn

These variables are set to data criteria if &SRWCRITTOTAL is greater than zero. The
variable n is a number in the range 1 to the value of & RWCRITTOTAL. These
variables are to be used by the service procedure in determining the data to be
included in the report. The format of these variables is dependent on the service
procedure.

&SRWUSRDc

This is user data and is as set by the caller of SRWCALL or the report exit procedure.
The variable c is between 0 and 5 alphanumeric and/or national characters. These
variables are used to pass user data through the generator to the service procedure
and can also be modified by the service procedure. They can also be modified by
the report exit procedure. These variables are never set or cleared by the system
and must be completely managed by your installation defined NCL procedures.

Chapter 11: Report Writer 283

Service Procedure

&SRWSFFLDn

This variable is set to the name of the data field defined as a sort field in the report.
The variable n is a number in the range 1 to 10, corresponding to the sort field
number assigned to the sort field.

&SRWSFDIRn

This variable is set to the order defined in the report for the corresponding sort
field. The variable n is a number in the range 1 to 10. This variable may be as
follows:

A

Ascending order

Descending order

&SRWSFSTARTn

This variable is set to the start offset defined in the report for the corresponding
sort field, if the records are not to be sorted using the full value of the field. The
range is 1 to 255. The variable n is a number in the range 1 to 10.

&SRWSFENDn

This variable is set to the end offset defined in the report for the corresponding sort
field, if the records are not to be sorted using the full value of the field. The range is
the start offset to 255. The variable n is a number in the range 1 to 10.

Return Codes
&RETCODE =0

Indicates successful completion, continue processing. When &SRWOPT is set to
GETSF the following variable must be set: & RWSFVALn must be set to the value of
the sort fields for the next record that will be retrieved for processing. Where n is
the sort field number.

&RETCODE =4
Indicates the end of data if &SRWOPT is set to INIT or GET.
&RETCODE =8

Indicates that an error occurred, terminate processing. &SYSMSG may be set to an
error message.

284 Managed Object Development Services Guide

Generator Logic Flow

Generator Logic Flow

The diagrams in this section illustrate the flow of logic as the generator passes control to
the service procedure and the report exit procedure during generation of a report that
consists of all component types.

Generator

Print page header

Print report header

Print control break
header.

Print data formats
for first record.

If sort field value
changed

Print control break
trailer

Print control break
header

Print data formats

&$RWOPT=INIT

Service Procedure

_ &RETCODE &$RWCRIT n

&$RWOPT=INIT

Initialization processing. If data

o &RETCODE

\

criteria is supported, select the
records to be included in the
report, based on the &RWCRIT

&$RWOPT=GET

variables.

Getrecord processing.
Get the first record to be
included in the report.

_ &$RETCODE Data Fields

&$RWOPT=ITEM &$RWITEM=DF

\J

< &RETCODE &$RWFMTSEQ

&$RWOPT=ITEM &3$RWITEM=PH

\)

o &RETCODE

&$RWOPT=ITEM &$RWITEM=RH

< SRETCODE

\

&$RWOPT=ITEM &$RWITEM=CH

_ &RETCODE

\

&$RWOPT=GETSF

< $RETCODE &$RWSFVAL n

» Get sort fields processing.
Get the value of the sort
fields for the next record.

&$RWOPT=ITEM &$RWITEM=CT

\)

_ &RETCODE
<

&$RWOPT=ITEM &$RWITEM=CH

<SRETCODE

&$RWOPT=GET

_ &$RETCODE Data Fields
<

» Getrecord processing.
Get the next record to be
included in the report.

&$RWOPT=ITEM &$RWITEM=DF

o &RETCODE &$RWFMTSEQ

\

Report Exit Procedure

Initialization processing.

Perform record processing

Perform page header
processing

Perform report header
processing

Perform control break
header processing

Perform control break trailer
processing

Perform control break header
processing

Perform record processing

Chapter 11: Report Writer 285

Distributed Service Procedures

Generator

If the current item won't fit on the remainder of the page:

&$RWOPT=ITEM &$RWITEM=PT

Service Procedure

\J

Print page trailer <&RETCODE

&$RWOPT=ITEM &$RWITEM=PH

\

Print page header <&RETCODE

Report Exit Procedure

Perform page trailer
processing

Perform page header
processing

End of records to be included in the report is reached:

&$RWOPT=ITEM &$RWITEM=CT

\

Print control break &RETCODE
trailer -

&$RWOPT=ITEM &$RWITEM=PT

\

Print report trailer < &RETCODE

&$RWOPT=ITEM &$RWITEM=PT

< &RETCODE

\

Print page trailer

&$RWOPT=TERM

_ &RETCODE

&$RWOPT=TERM -

>

<« SRETCODE

Termination processing

Perform control break
trailer processing

Perform page trailer
processing

Perform page trailer
processing

Termination processing

Distributed Service Procedures

A Report Writer report application consists of several attributes, one of these being the
name of a service procedure. The purpose of the service procedure is to provide the
generator with the data that is to be used to generate a report.

Some components of system services provide a Report Writer service procedure that
can be used to generate reports for that feature. This appendix describes the service

procedures that are distributed with your product.

Note: These service procedures must not be modified.

286 Managed Object Development Services Guide

Distributed Service Procedures

Distributed Service Procedures

The names of the distributed service procedures are as follows:
SADRW50Z
MODS Reports
SNDRWO012
NDB Reports
SNWRW012
NEWS Reports
SIMRW272
CA SOLVE:InfoMaster Application Reports
SIMRW29Z
CA SOLVE:InfoMaster System Reports
$OSRW85Z
Object Services Application Reports
SUARWO01Z
UAMS Reports
Report applications, stored as entries in SRWAPPL tables, are also distributed with your
product. These report applications have one of the procedures listed as their service
procedure. Each distributed service procedure has particular values that must be

specified for each field in a report application when the procedure is specified as the
service procedure.

Following is a section on each procedure describing the values that must be specified in
the report application.

Chapter 11: Report Writer 287

Distributed Service Procedures

MODS Reports

The service procedure for MODS reports is SADRW50Z. When defining a report
application using this service procedure, the text fields must be set as follows:

I/M Application?
Set to NO.

System Name
Null.

Record Category

Set to the application ID followed by the category of the MODS records on which
the reports are to be based.

Maximum Sort Fields
Set to 0.

Sort Order Support
Set to A.

Sort Offset Support
Set to NO.

The IDs of the distributed report applications that use this service procedure, all begin
with the characters SAD.

This service procedure supports data criteria. The data criteria must be in the form of a
boolean expression. For details on the syntax of a boolean expression, see the
description of the &BOOLEXPR verb in the Network Control Language Reference Guide.

288 Managed Object Development Services Guide

Distributed Service Procedures

NDB Reports

The service procedure for NDB reports is SNDRWO01Z. When defining a report
application using this service procedure, the text fields must be set as follows:

I/M Application?
Set to NO.
System Name
Set to the file identifier of the NDB on which the reports are to be based.
Record Category
Null.
Maximum Sort Fields
Set to 0.
Sort Order Support
Set to A.
Sort Offset Support
Set to NO.
The ID of the distributed report application that uses this service procedure is SNDSYS.

This service procedure does not support data criteria, meaning it ignores the
&SRWCRITn variables.

Chapter 11: Report Writer 289

Distributed Service Procedures

NEWS Reports

The service procedure for NEWS reports is SNWRWO01Z. When defining a report
application using this service procedure, the text fields must be set as follows:

I/M Application?

Set to NO.
System Name

Set to the file identifier of the NEWS file on which the reports are to be based.
Record Category

Set to ATTN for attention records, EVENT for event records, RTM for response time
monitor statistics and TRAFFIC for traffic or error statistics.

Maximum Sort Fields
Setto 1.

Sort Order Support
Set to A.

Sort Offset Support
Set to NO.

The IDs of the distributed report applications that use this service procedure are
SNWATTN, SNWEVENT, SNWRTM and SNWTRAF.

This service procedure does not support data criteria, meaning it ignores the
&SRWCRITh variables.

290 Managed Object Development Services Guide

Distributed Service Procedures

CA SOLVE:InfoMaster Application Reports

The service procedure for CA SOLVE:InfoMaster application reports is SIMRW27Z. When
defining a report application using this service procedure, the text fields must be set as
follows:

I/M Application?
Set to YES.
System Name

Set to the name of the CA SOLVE:InfoMaster system identifier on which the reports
are to be based.

Record Category
Set to the name of the category on which the reports are to be based.
Maximum Sort Fields
Setto 7.
Sort Order Support
Set to MIXED.
Sort Offset Support
Set to YES.

The IDs of the distributed report applications that use this service procedure are
SSAIMCF, SSAIMCH and SSAIMPB.

This service procedure supports data criteria. The data criteria must be in the format of
an &NDBSCAN scan-expression. For an explanation of the &NDBSCAN scan-expression,
see the Network Control Language Reference Guide. If data criteria is not specified, all
the records defined in the category specified in the Record Category field are read from
the database.

Chapter 11: Report Writer 291

Distributed Service Procedures

CA SOLVE:InfoMaster System Reports

The service procedure for CA SOLVE:InfoMaster system reports is SIMRW29Z. When
defining a report application using this service procedure, the text fields must be set as
follows:

I/M Application?
Set to NO.

System Name
Null.

Record Category
Null.

Maximum Sort Fields
Set to 0.

Sort Order Support
Set to A.

Sort Offset Support
Set to NO.

The ID of the distributed report application that uses this service procedure is SIMSYS.

This service procedure does not support data criteria, meaning it ignores the
&SRWCRITh variables.

292 Manaded Object Development Services Guide

Distributed Service Procedures

UAMS Reports

The service procedure for UAMS reports is SUARWO1Z. When defining a report
application using this service procedure, the text fields must be set as follows:

I/M Application?
Set to NO.

System Name
Null.

Record Category
Null.

Maximum Sort Fields
Set to 0.

Sort Order Support
Set to A.

Sort Offset Support
Set to NO.

The ID of the distributed report application that uses this service procedure is SUASYS.
This service procedure does not support data criteria, meaning it ignores the

&SRWCRITn variables.

Chapter 11: Report Writer 293

Chapter 12: Mapping Services Facility

This section contains the following topics:

Mapping Services (see page 295)

Abstract Syntax Notation One (see page 295)

ASN.1 Type Assignments (see page 296)

Defining the Logical Structure of Data (see page 297)
Referencing Logical Data Structures from NCL (see page 299)
Defining the Physical Structure of Data (see page 300)

Data Interchange Between Open Systems (see page 301)
Map Source Definitions (see page 301)

Type Description and Formats (see page 314)

Mapping Services

Mapping Services is a facility that gives NCL access to complex data structures. It lets
NCL procedures deal with the logical relationships and usage of data (the data protocol),
while the system manages and maintains the physical representation of the data (the
data format).

More information:

Map Library (see page 34)

Abstract Syntax Notation One

ISO 8824 defines the Abstract Syntax Notation One (ASN.1) language as the standard
mechanism for describing abstract data structures. The Mapping Services facility has
adopted this language as the means to describe the logical (or abstract) data items
within a data structure. The physical representation of the data can be defaulted from
the ASN.1 definitions, or can be explicitly described by the inclusion of implementation
specific definitions. This aspect is discussed in more detail later.

Chapter 12: Mapping Services Facility 295

ASN.1 Type Assignments

ASN.1 Type Assignments

ASN.1 defines data in terms of types. There are ASN.1 defined basic types that describe
both simple data items, and constructed data items. By using these types as a
foundation, ASN.1 allows the definition of user types. By combining data components of
various types to form a new data type, complex data structures can be described.

The basic instrument of definition in the ASN.1 language is the type assignment. This
lets the programmer specify the name of a user type, and assign to that name one of
the ASN.1 basic types (or perhaps another user defined type). If the type assigned is an
ASN.1 constructed type, the definition is expanded to describe each of the components
that comprise the structure. The constructed types are as follows:

m SEQUENCE

m SEQUENCE OF
= SET

m SETOF

If a type is defined as a SEQUENCE (for example), then the components that comprise
that sequence are listed as part of the type assignment. Each component in the
constructed type is identified by a component name and its type.

A similarly useful type which is normally constructed is the type CHOICE which allows
the definition of a number of alternate data components, one of which is chosen to
complete an instance of data within a larger data structure.

As well as these five types there are a number of simple types, including INTEGER,
BOOLEAN and various character string types. These are introduced later.

Type definitions can be reused to describe the underlying characteristics of different
data items. For example, a data component named errorCount and another named
dayOfWeek can both be defined as INTEGER, although they should not be confused by a
programmer. Hence it is not the type that is significant in referring to the data items,
but rather the component names.

296 Managed Object Development Services Guide

Defining the Logical Structure of Data

Defining the Logical Structure of Data

Mapping Services uses ASN.1 as the source language for describing the logical structure
of data. Any number of ASN.1 type assignments can be combined to form a map. Such a
map is capable of describing a single data unit, or any number of differing data units.
However the component that is associated with the map itself (and not structures
defined within the map) must be defined as a single user type.

This is best explained by way of an example. Consider a Customer Order file that
contains two types of record. One record type is called CustomerDetail and it contains
customer specific information, such as name, address, contact, and so on. For each
record of this type there are zero or more records of a type called OrderDetail, each of
which contains specific order details related to the customer. The CustomerDetail and
OrderDetail records are quite different so you could choose to use a separate map for
each, but equally you can specify them in a single map as follows.

The map for the file is defined as being of type CustomerOrder. This is a user defined
ASN.1 type, so a type assignment for CustomerOrder must form part of the source
definition for the map. It need not be the first type assignment in the source definition
but it is usually convenient in understanding the map definition if it is.

Since, in the above example, there are two types of possible record on the file, the
CustomerQOrder type assignment is best described by the ASN.1 type CHOICE. Its ASN.1
language definition might look like:

CustomerOrder ::= CHOICE {
customer CustomerDetail
order OrderDetail }

Chapter 12: Mapping Services Facility 297

Defining the Logical Structure of Data

This means that the type CustomerOrder is a choice of either a component named
customer which is of type CustomerDetail, or a component named order which is of type
OrderDetail. Hence, although we have a map which consists of a single type, it
immediately diverges into the two possible different record types that the file can
contain. Subsequent type assignments specify the nature of CustomerDetail and
OrderDetail. These are likely to be structures themselves, for example:

CustomerDetail ::= SEQUENCE {
name GraphicString
address Address
openOrdersINTEGER }

Address ::= SEQUENCE {
number INTEGER
street GraphicString
suburb GraphicString }

and hence can contain either simple data items, such as openOrders and name, that are
defined as the ASN.1 basic types INTEGER and GraphicString, or constructed data items
such as address, which is of a user defined type Address. Eventually, through further
type assignments, such as the one for the type Address shown, all structures are defined
down to their elementary components.

298 Managed Object Development Services Guide

Referencing Logical Data Structures from NCL

Referencing Logical Data Structures from NCL

An NCL programmer can connect a data structure to a map in a number of ways. For
example, during retrieval from a file:

&FILE GET ID=CUSTFIL MDO=NEXTREC MAP=CUSTOMER

The user supplies a local name to the MDO (in this case, NEXTREC) when reading it from
the file, and nominates the map to be used to define the record contents (in this case,
CUSTOMER). If you continue with the sample map described above, this record is
defined as a CHOICE type. This means that you can refer to either NEXTREC.CUSTOMER,
if the record is of type CustomerDetail, or NEXTREC.ORDER, if the record is of type
OrderDetail.

You might know what type to expect (for example by understanding the key used to
retrieve the record) and can immediately reference the inner structure. Otherwise,
assuming that the records can be distinguished by Mapping Services due to some
physical characteristic in the record itself, the component name of the choice within a
particular record can be determined by using a query function.

In either case, reference to subsequent structures can proceed. The rules are simple. If a
component is defined as a constructed type, (one of SEQUENCE, SEQUENCE OF, SET, SET
OF, or CHOICE), then the one or more components within that construction are
referenced by using the constructed component name, followed by a period, then the
inner component names.

Hence in the example, the following logical components of a CustomerDetail record can
be referenced from NCL:

NEXTREC. CUSTOMER . NAME

NEXTREC. CUSTOMER . ADDRESS . NUMBER
NEXTREC. CUSTOMER . ADDRESS . STREET
NEXTREC. CUSTOMER . ADDRESS . SUBURB
NEXTREC. CUSTOMER . OPENORDERS

Chapter 12: Mapping Services Facility 299

Defining the Physical Structure of Data

Defining the Physical Structure of Data

Component Tags

Local Form

A Mapped Data Object is simply a series of bytes. A subset sequence of these bytes can
compose a logical structure. Some structures can be explicitly identified by the presence
of enclosing lengths and some form of identifier that prefaces the data. Other logical
structures might have no explicit identification but are defined only by external
knowledge of the meaning of some sequence of bytes. Whatever the case, the physical
representation of the data must be known to Mapping Services so that it can translate
any NCL reference of a logical structure into the correct access technique corresponding
to the physical data construction.

The system provides default rules for structuring data. If an MDO is created and always
processed by NCL, you can choose to accept the default physical structure provided by
the system. However, if an external data source is to be processed, or if a specific
format needs to be devised for communication with some other program, then control
of the physical representation is necessary.

Mapping Services allows the physical representation to be described by defining, for
each unique component name referenced in a map, a unique tag (alternatively known
as an identifier, or key), which is an integer that can be placed within the data to identify
a logical component. If the component is constructed, the way in which its contents are
represented can also be defined. This ensures that for a constructed component, each
of the separate items within it can be isolated according to a common access technique
and each can be independently identified by their unique tag values.

The definitions required to support the physical representation of data are not part of
the defined ASN.1 language. This is because ASN.1 does not define how data ought to
be represented, but only its abstract syntax. An implementation of ASN.1 represents
data in a local form that is convenient for subsequent processing in the local
environment.

This allows the physical representation, and hence the local form, to be customized, and
subsequently ensures that the data conforms to this defined view.

To allow the customization of local form data, the ASN.1 Compiler recognizes a
sequence of characters (which by definition are comments to ASN.1) and interprets the
contents as implementation specific directives. It is these directives that can be used to
instruct Mapping Services on the physical nature of the underlying data.

300 Managed Object Development Services Guide

Data Interchandge Between Open Systems

Data Interchange Between Open Systems

The other important aspect of ASN.1 is that the data it defines can be encoded for
transmission. The product region supports the encoding and decoding of data using the
Basic Encoding Rules (BER), ISO 8825. BER is specifically designed to interact with the
logical structure as defined by ASN.1.

Independently of local form (that is, regardless of the physical representation of the
data used for any MDO), the BER encoder can be used to build a data stream
corresponding to the ASN.1 definition. This data stream can be understood by any BER
decoder that has the same ASN.1 definition, even if it is a completely different ASN.1
platform.

For details on BER encoding and decoding, see the NCL &ENCODE and &DECODE verb
descriptions in the Network Control Language Reference Guide.

Map Source Definitions

In the following sections the way in which ASN.1 is implemented is explored, however it
is not the intention to give a detailed explanation of all aspects of the ASN.1 language.
You should refer to the official ISO documents for a complete understanding.

Only those aspects important and useful in understanding the mechanics of the
Mapping Services implementation are discussed in depth.

Maps and ASN.1 Modules

A set of ASN.1 source definitions that is compilable is termed an ASN.1 module. ASN.1
modules can be registered in the Map Library as a map. Modules are identified within
the ASN.1 source, and this name must correspond to the registered map name. An
ASN.1 module can also have a registered and unique identifier, called an object
identifier, that officially identifies this module amongst all registered objects.

In general ASN.1 modules have a very free syntax, but Mapping Services imposes some
restrictions on this for practical reasons.

Chapter 12: Mapping Services Facility 301

Map Source Definitions

Mapping Services Considerations

Mapping Services restricts all names, both component and type identifiers, to 32
characters in length. ASN.1 defines that a component name must start with a lowercase
alphabetic character, and a type name with an uppercase alphabetic. Remaining
characters can be chosen from the set of alphanumeric characters plus the hyphen. The
Mapping Services compiler does not permit a hyphenated name, but instead allows the
underscore (_) character.

The ASN.1 compiler does not support ASN.1 macros, nor does it support complex
subtyping. When introducing ASN.1 source containing macros or complex subtypes you
must edit the source to resolve macros manually, and remove complex subtyping
(possibly employing new code to perform value checks).

The ASN.1 compiler does support simple subtyping such as sizes, integer and real value
ranges and character set constraints.

The ASN.1 compiler ignores value assignments. The compiler checks the assignments,
but generate no output. However, named values appearing after a type assignment are
supported.

Support is provided for the ASN.1 import facility, however imports are resolved during
map load, and not during compilation. Any type definition can be imported from
another module, provided it is marked for EXPORT within that module. The compiler
produces an IMPORT list of types and the containing maps. All such maps must be
compiled for the import to be successful on map load. Because importing takes place at
map load time and not at compile time it is possible for a map load to fail due to
incomplete or inconsistent definitions.

ASN.1 Module Layout

An ASN.1 module has a layout depicted as follows:

Note: Uppercase values are entered as shown. Lowercase values are expanded in the
actual source. Angle brackets (<>) denote optional definitions and are not part of the
source. The vertical bar (|) denotes alternatives and is not part of the source.
Underlined values are defaults.

module identifier < module oid >

DEFINITIONS < EXPLICIT TAGS | IMPLICIT TAGS > :: =
BEGIN

< EXPORTS export list >

< IMPORTS import list >

< type assignments >

< value assignments >

END

302 Managed Object Development Services Guide

Map Source Definitions

ASN.1 Comments

Module Identifier

Module Definitions

Exports

Imports

Comments can be used anywhere within the module source. They begin with a
sequence of two adjacent hyphens (--) and terminate with another pair, or at the end of
the current line, for example:

-- this is an ASN.1 comment that ends here --
-- this is an ASN.1 comment that extends to the end of the line

The module identifier names the module and can optionally provide the unique object
identifier under which the module is registered.

Following the DEFINITIONS keyword the default tagging options can be set to EXPLICIT
TAGS (the default) or IMPLICIT TAGS. Tagging is discussed in more detail later. The
assignment sequence (::=) is then followed by the BEGIN keyword. The BEGIN and END
keywords bracket the module body.

The module body begins with an optional export sequence. This declares those
definitions from within the module that are externally referencable. It takes the form:

EXPORTS symbol < ,symbol,symbol, ...,symbol >

where each symbol is a typeReference or valueReference from the module body.

Exports are followed by an optional import sequence. This declares those external
definitions that are required to complete the definitions within this module. It takes the
form:

IMPORTS symbol < ,symbol,symbol,...,symbol > FROM module
< symbol < ,symbol,symbol,...,symbol > FROM module >

where symbol is a typeReference or valueReference defined in the identified module
which is a module identifier.

Chapter 12: Mapping Services Facility 303

Map Source Definitions

Type Assignments

The main portion of the module body usually comprises a number of type assignments.
Each type assignment has the form:

typeReference ::= typeDefinition

where the typeReference is the name of a user defined type. The typeDefinition expands
this user type according to any of the ASN.1 options which are discussed later.

Value Assignments

The module body can contain a number of value assignments. Each value assignment
has the form:

valueReference type ::= valueDefinition

where the valueReference is the name of a user defined value, of the type referenced,
and is assigned the valueDefinition referenced.

ASN.1 Compiler’s Interpretation of the ASN.1 Module

This section describes the characteristics of the ASN.1 compiler.
Use of Comments

The compiler ignores ASN.1 comments that are not interpreted as implementation
specific directives. It accepts Mapping Services directives, for manipulating the local
form data, embedded in ASN.1 comments that start with the sequence (--<) and
terminate with the sequence (>--). The Mapping Services directive start sequence must
be explicitly terminated with the end sequence:

--< directivel,directive2,...,directiven >--

The allowable directives, and where they can appear in the module source, are
explained in more detail later.

Module Identifier

The ASN.1 module identifier is checked by the compiler to be the same as the map
name that is being compiled. (This check is not case sensitive, only the uppercase
version of the names must agree). If an object identifier is included, all integer values
must be explicitly present for each portion of the registration arc.

304 Managed Object Development Services Guide

Map Source Definitions

Default Tadding

Exports

Imports

Type Assignments

Value Assignments

The compiler accepts the default tagging information as supplied.

The compiler accepts any EXPORT sequence. Only typeReferences and valueReferences
named in the export sequence can be imported by other maps. Imports and exports are
resolved at map load time.

The compiler accepts any IMPORT sequence, but the definitions are not imported during
compilation. The list of imports are remembered in the compiled output, and the
requested definitions imported only during map load in their compiled version. Hence
compilation is performed without resolving that all type definitions exist for the module.
However, the load fails unless resolution is complete following the import phase.

When a typeReference is imported, all contained component definitions are imported,
plus all supporting typeReferences. Thus importing represents a convenient technique
for rationalizing definitions such that several specific maps can include a set of common
definitions. Import resolution is discussed further in the section dealing with map
loading. In the map being used for importing, the export sequence must contain the
name of the Type Reference that is being imported.

The compiler processes all type assignments, producing compiled output for each type
and its constituent components. All ASN.1 base types are supported, except the
EXTERNAL type. (If required, it can be defined as a user defined type). Each type is fully
syntax checked, but cross-checking between individual components and their defined
types is not performed. During map load the fully resolved map definitions are validated
further to be logically consistent.

The compiler accepts value assignment definitions but produces no output. These
definitions are not used in NCL.

Chapter 12: Mapping Services Facility 305

Map Source Definitions

Map Components

Components are the data entities defined in a map that can be referenced by NCL. Every
component has some data type associated with it. Data types give components their
properties, but the types themselves are not referenced by NCL. A component’s type
can be a user defined type, which is defined by a type assignment within the source, or
it could be a primitive ASN.1 type. Even where a component’s type is a user defined
one, by going to that type assignment (and possibly repeating this process), the type
assignment specifies a primitive ASN.1 type. This primitive type is referred to as the
base type for the component.

Component Definition

Although each component is of some type, the components themselves can only be
defined within a type assighnment that has a base type which is a constructed type, that
is, one of SEQUENCE, SEQUENCE OF, SET, SET OF, or CHOICE. Hence to define any
components within a map at least one type assighment referencing one of the
constructed types is required.

For a data component to be usable, ASN.1 only requires it to have a type. The compiler
requires that the component is named (except in some circumstances discussed later).
The component name must be unique (in its uppercase form) within the construct in
which it is defined, and is the name used by NCL to reference that particular data entity.

Mapped Data Object as a Component

When an NCL procedure creates an MDO, or receives one through an NCL verb, it
connects explicitly or implicitly to a map. It is convenient to think of the MDO itself as a
component. However, the MDO name is supplied by the user and is not defined within
the map.

This component name (the MDO name) forms the first name segment when referencing
any component defined within the MDO. As for other components, this first component
is given a type, called the map type, which is the first typeReference encountered in the
module body.

306 Managed Object Development Services Guide

Map Source Definitions

Component Name Hierarchy

Map Closure

When, as is typical, the map type is a constructed type, then it contains the definitions
of one or more components that do (or can) comprise the data elements for that type.
These components are referenced from NCL by concatenating each component name to
the MDO name separated by a period, for example:

MDO=problem. number

where the MDO created by the user is the component problem, and the component
number is defined within the component list for the map type. Likewise, if a named
component itself has a type which is constructed, then the components defined within
its type form the next level in the component name hierarchy.

A map is given a map type by the compile process. This map type is the first type
definition encountered in the source. As described above, this type is typically a
constructed type, containing the definitions of its contained components. Each of these
components form the next level of the name hierarchy within the MDO. If they are
constructed, their components form the next level of the name hierarchy, and so on.

Overall, the relationship between components and their types maps out a complete
hierarchical structure where the type names form the linkage between component
names.

If a module contains type references which cannot be reached by following the
reference linkages, starting from the map type and working down, then these types are
not usable within this map. Such isolated definitions can be the subject of an import
statement from some other map, and hence such orphaned types are allowable.
However, it is possible that they were intended to form part of the module in which
they reside, and an unreachable reference is an indication that one of the following has
occurred:

m The wrong type was selected as the map type. (That is, a branch further down the
tree than intended was the first type reference and has become the map type,
leaving higher level types unreachable). This problem can be resolved by ensuring
that the correct type reference is the first in the module.

m The definitions as entered have more than one possible entry type. (That is, there
are a number of separate type and component hierarchies defined such that they
do not completely overlap). This problem can be resolved by introducing a superior
type containing components that refer to each of the possible entry types (for
example, by making it a CHOICE of these types).

This process is termed map closure, and helps ensure the completeness and consistency
of the supporting map definitions for use by NCL.

Chapter 12: Mapping Services Facility 307

Map Source Definitions

Data Tagging

ASN.1 Tags

This section describes the data tags used in Mapping Services.

Maps can be developed from ASN.1 for the purpose of driving a transfer syntax, such as
BER, in order to communicate in an open systems environment. The ASN.1 definitions
describe how the data is serialized for transmission, and how each data component is
tagged so that data items can be distinguished.

An ASN.1 tag consists of a tag class, and a tag number. There are the following ASN.1 tag
classes:

m UNIVERSAL tags—are defined by ISO bodies.

m APPLICATION tags—are unique throughout an application.
m PRIVATE tags—are defined by private agreement.
m CONTEXT-SPECIFIC tags—have meaning in the immediate context only.

The tag number is an integer value greater than 0.

When an ASN.1 tag is encoded both the class and number are used to create a unique
value such that the class and number remain separately decipherable.

Explicit and Implicit Tadging

Each ASN.1 base type has a predefined tag number in the UNIVERSAL tag class. Since all
data components must be of a base ASN.1 type a default tag value exists for all data
items. However ASN.1 allows these tags to be overridden and data to be explicitly
tagged with any tag value. In fact, any data component can be tagged more than once,
the tags being applied left to right in the order defined.

For example:

componentl [APPLICATION 23 1 [3] INTEGER

produces the following tags for component1:

m APPLICATION class, tag number 23

m CONTEXT-SPECIFIC (the default) class, tag number 3

m UNIVERSAL class, tag number 2 (for INTEGER)

In general, where a data component is explicitly tagged, it is followed by either more
explicit tags, or its UNIVERSAL tag for the underlying base type as shown in the example

above. However, use of the IMPLICIT keyword before a tag, or before a typeReference,
indicates that the next tag is understood (implied), and is not encoded.

308 Managed Object Development Services Guide

Map Source Definitions

MDO Tagds

For example:

componentl [APPLICATION 23] IMPLICIT INTEGER

produces just one tag: APPLICATION class, tag number 23.

The INTEGER tag is implied and not encoded due to the presence of the IMPLICIT
keyword.

Note that following the DEFINITIONS keyword in the module header the tagging defaults
can be set for the module. The default is EXPLICIT TAGS indicating all tags are produced
unless the IMPLICIT keyword is used to override. The IMPLICIT TAGS options can be used
to indicate that only the first tag encountered for a component is used, the rest being
implicit (except for the types CHOICE and ANY DEFINED BY, when all tags apply).

To differentiate between data items maintained internally in their local form, Mapping
Services also requires that all components have a recognizable tag.

Because a tag value prefixes most components in the MDO local form, the MDO is a
self-defining structure that allows, for example, an MDO to be stored and later retrieved
while the data within remains separately identifiable even where the map might have
altered slightly. As long as map maintenance does not change the relationship between
tag values and the components they represent, maps can be extended and modified
without affecting the ability to process an MDO defined under a previous map version.

Mapping Services ignores tag classes, and simply uses an integer value as a tag.
However, the MDO tag numbers must be unique within a logical structure in the same
way that component names must be unique within that structure. Hence, within any
structure (such as a sequence or a set), all components must have unique names
(enforced by ASN.1) and corresponding to each component a unique MDO tag number
(enforced by Mapping Services).

These MDO tags can be set explicitly and independently of ASN.1, or can be generated
by the compiler. However, the compiler can be directed to use the ASN.1 tag values as
MDO tag values. This is likely to be the case where the map being developed has no
requirement for BER encoding, hence all tag values are open to interpretation by
Mapping Services only.

Note: By defining the tags explicitly in the source data, the user is afforded a greater
level of protection against change. MDOs that are created using one version of the map
can often continue to be compatible with higher versions of the map, even though new
components are added. However, if the compiler generates the tags, this is unlikely to
be the case.

Chapter 12: Mapping Services Facility 309

Map Source Definitions

Mapping Directives

MDO Tag Generation

This section describes the directives available within Mapping Services.

Before the first ASN.1 statement in a module is encountered, one of the following
directives can be used to indicate how MDO tags are to be generated.

--< TAGS(ANY) >-- compiler is to generate tags
--< TAGS(EXPLICIT) >-- tags are explicitly coded in the source

ANY is the default, meaning that the compiler generates a unique tag value for each
component reference in a module. Even where a component name occurs more than
once in the module it is given a separate tag. In general this means that the actual tag
values used are unpredictable across compiles. If there is no desire to control any MDO
tag values, and no requirement to store MDOs in their local form, then this is the easiest
way to define MDO tagging.

If EXPLICIT tagging is used, the compiler assumes that the first explicit ASN.1 tag found
for a component is in fact the MDO tag value, regardless of its tag class. If no explicit tag
is found for a component, the compiler generates a tag value for it as described above
for TAG(ANY). Note that this means that the compiler does not use the default tagging
for ASN.1 base types as they are likely to lead to ambiguities.

When defining explicit tags care must be taken to ensure that a tag value is used only
once within a given structure. However, this tagging technique is very useful where
control over tag values is desirable but there is no requirement to BER encode the data,
and hence the tags used throughout the module need only be thought of as being MDO
tags.

Alternatively, where it is necessary to BER encode the data, but it is also desired to
control the MDO tags, the need might arise to use explicit MDO tags that are not part of
the ASN.1 source. This can be done by using the following compiler directive following
the component name being tagged:

<[nn]>--

310 Managed Object Development Services Guide

Map Source Definitions

Local Form Control

This directive follows the component name, but precedes any explicit ASN.1 tag or type
information, for example:

userid --< [10] >- [PRIVATE 23] GraphicString

In this example, the userid component has an MDO tag value of 10, but if BER encoded,
it is tagged with a private tag value of 23, and possibly the GraphicString universal tag,
depending upon whether the tag option is set to IMPLICIT or EXPLICIT. The tag option
immediately follows the word DEFINITIONS in an ASN.1 module.

Setting the MDO tag value this way always overrides any other MDO tag generation
option.

Mapping Services is capable of maintaining MDOs according to a number of local form
rules. By default it assumes all components are variable length items consisting of a tag
(or key), a length, and the data itself. The following Mapping Services directives can be
placed in the source to control the local form of data (k and / are integers in the range 0
to 4, where k is the length of the key, and I is the length of the length bytes):

--< KLO(k,l) >--tag, length, then data, length is of
data only.

--< KL1(k,l) >--tag, length, then data, length is of
length bytes + data.

--< KL2(k,1) >--tag, length, then data, length is of
tag +length + data.

--< LKO(l,k) >--length, tag, then data, length is of
data only.

--< LK1(l,k) >--length, tag, then data, length is of
tag bytes + data.

--< LK2(1,k) >--length, tag, then data, length is of
length + tag + data.

Such rules apply to structured components only. It is important to note that the rule
applying to a structured component describes the manner in which its embedded
components are managed and not the structure itself. The way in which the structure
itself is managed depends upon the rule applying to its parent structure.

Chapter 12: Mapping Services Facility 311

Map Source Definitions

These directives can be used before any ASN.1 type assignment statement to set the
compiler default for components encountered in the source module after that point, for
example:

--< KLO(2,2) >--

CustomerOrder ::= CHOICE {
customer CustomerDetail
order OrderDetail }

In this example the components customer and order carry the KLO(2,2) encoding rule
such that their embedded components (if any) are managed according to that rule.

This directive can also be applied to an individual component without changing the
compiler default, for example:

--< KLO(2,2) >-
CustomerOrder ::= CHOICE {
customer CustomerDetail
order --< KLO(4,4) >--OrderDetail }

In this example the customer component carries the compiler default KLO(2,2) encoding
rule, while the order component carries the KLO(4,4) rule.

Note that in both the above examples, the customer and order components must be
managed in the same manner. This is described by the encoding rule carried in the
component which is of type CustomerOrder (not shown here).

312 Managed Object Development Services Guide

Map Source Definitions

Default Formatting

Mapping Services can be used to map existing data structures and to accommodate this
it can also manage components that do not have explicit length and tags in the data.
Such data is considered fixed and fixed components can only be specified within a
SEQUENCE or SEQUENCE OF type definition, for example:

CreateDetails ::= SEQUENCE {
userid --< FIX(8) >-- GraphicString,

date --< FIX(8) >-- GraphicString,
--YY/MM/DD- -
time --< FIX(8) >-- GraphicString}
--HH:MM:SS- -

In this example the userid component occupies the first 8 bytes of the data, the date

component the next 8 bytes, and the time component the last 8 bytes. Although tags
are not used within the data, each component can still be defined with a tag value, or
the compiler generates one.

--< FIX(x,y) >--

In this example, the component is of length x, and starts at offset y within its enclosing
structure. If y (offset) is not specified, the offset is defaulted to the end of the preceding
component, or 0 (zero) if there is no preceding component.

All data types have both local form and external form defaults (see page 314). Local
form refers to the format that data is kept in within an MDO; external form refers to the
format of data as made available to, or supplied by, an NCL process.

However, some types have alternative formats that compiler directives can set and are
explained in the following sections.

Local Form for INTEGER

The local form of INTEGER types is, by default, a 1 to 4 byte signed binary field.
However, IBM packed decimal and zone decimal formats can be managed by setting the
options as one of the following (to request binary, packed decimal or zone decimal local
form respectively):

INTEGER- -< BINARY >--
INTEGER- -< PACK >--
INTEGER--< ZONE >--

Chapter 12: Mapping Services Facility 313

Type Description and Formats

External Form for REAL

The external form of REAL types is by default the NCL character representation of
floating point numbers. However the external form can be modified by setting the
number of integer digits and decimal places, for example:

REAL --< EF(6,2) >--

This example requests up to six significant leading digits followed by two decimal places
only.

Type Description and Formats

This section describes the types available within Mapping Services and their formats.

ASN.1 Types

The following simple types are defined by ASN.1, and most are supported by Mapping
Services:

BOOLEAN

INTEGER

m BIT STRING

m OCTET STRING

® NULL

m OBJECT IDENTIFIER
m ObjectDescriptor
= REAL

m ENUMERATED

® NumericString

® PrintableString
m |A5String

m UTCTime

314 Managed Object Development Services Guide

Type Description and Formats

m GeneralizedTime

m GraphicString

m VisibleString

m GeneralString

One extension supported by Mapping Services is HEX STRING. This is identical to the
ASN.1 type OCTET STRING except in the way it is presented to NCL, as described in a

later section. In addition, the following types are supported by the compiler, but have
no real application to NCL (and are supported as if they are OCTET STRINGS):

m TeletexString
m VideotexString
= ANY and ADB

There are also a number of constructed types defined by ASN.1, and all are supported
by Mapping Services:

m SET

m SETOF

m SEQUENCE

m SEQUENCE OF
= CHOICE

How Mapping Services implements each of these types is discussed in the following
sections.

NCL Reference, Type Checking, and Data Behavior

When referencing an MDO in an NCL procedure, Mapping Services validates that the
named component is defined (according to the name hierarchy supplied), and that the
data within the component is valid, according to its underlying ASN.1 type. Each ASN.1
type can contain only certain valid values. Mapping Services checks the data value when
retrieving data from, or assigning data into, an MDO. An operation attempting to
retrieve or assign invalid data is rejected by Mapping Services with a message indicating
a type check error.

In order to perform type checking Mapping Services first determines the base ASN.1
type of the component. Where a component is of a user defined type, the base ASN.1
type of the user defined type is inherited by the component. It is possible to have a
number of levels of indirection between a user defined type and its base ASN.1 type.

Chapter 12: Mapping Services Facility 315

Type Description and Formats

The valid NCL values allowed for each of the base ASN.1 types is termed the external
form. In addition to the set of valid values for each type, a specific component can be
further constrained in what values are acceptable. Such constraints can be the result of
either ASN.1 definitions or compiler directives. Finally, when data representing a valid
NCL value is accepted for a component update, it is subject to a transformation from
external form to local form, which is the MDO internal representation of data. This
process carries with it further constraints.

The valid external form values, and the behavior of data managed by Mapping Services,
is described for each type in the following sections.

SET Type

The SET type allows the definition of a fixed number of components where order is
irrelevant. Within the set each component must be given a name, unless its base type is
CHOICE. When a set is transferred from one system to another the items in the SET can
be sent in any order. Items in the set can be optional, as indicated by the OPTIONAL
keyword, for example:

Contact ::= SET {

name [11 GraphicString,
title [2] GeneralString,
businessNumber [31 NumericString,

afterHoursNumber [4] NumericString OPTIONAL}

When referring to SET items in NCL they are referenced by name, and hence the order
that the data is stored in within the set is unimportant, and is in fact arbitrary.

316 Managed Object Development Services Guide

Type Description and Formats

An item in a SET can be a CHOICE of a number of alternatives. Such an item need not be
explicitly named, but in this case each alternative of the choice must be named, and
each must be unique amongst all other items within the entire SET. Alternatively, the
SET item that is a CHOICE might indeed be named, and in this case only that name must
be unique, as the CHOICE components are pushed to the next level in the component
name hierarchy. For example, the following is valid:

Contact ::= SET {

name [4] GraphicString,
title [5]1 GeneralString,
businessNumber [6] NumericString,
CHOICE {

pagerNumber [1] NumericString,
homeNumber [2] NumericString

} r
additionalContact [9] CHOICE {
pagerNumber [1] NumericString,
homeNumber [2] NumericString

}

This results in allowing the following component names to be referenced from NCL:
® Name

m Title

m BusinessNumber

m PagerNumber

m HomeNumber

m AdditionalContact.pagerNumber

m AdditionalContact.homeNumber

All SET items must be differentiated by an ASN.1 tag value. It is good practice to
explicitly tag all SET items rather than default to tags of the ASN.1 base types.

External Form—Input and Output
All structures have an external form that is the same as their local form.

Local Form and Behavior

The local form of a SET is the data stream consisting of each set component, where each
component has its leading tag and length (as determined by the parent component) and
data in the local form for its type.

Chapter 12: Mapping Services Facility 317

Type Description and Formats

Named Values
Named values are not applicable to the SET type.
Constraints

Constraints are not applicable to the SET type.

SET OF Type

The SET OF type allows the definition of either an arbitrary or fixed number of items of
the same type, where order is not important. The definition includes only the type of
the SET item, and does not name the component, for example:

PokerHand ::= SET OF Cards

In NCL, SET OF items are referenced by index only, within their parent structure. In the
example above, the following index values are used to reference the set items of a
component named card of type PokerHand:

card.{1}
card. {2}

card.{n}

External Form—Input and Output
All structures have an external form that is the same as their local form.

Local Form and Behavior
The local form of a SET OF type is the data stream consisting of each set component,
where each component has its leading tag and length (as determined by the parent
component) and data in the local form for its type.

Named Values

Named values are not applicable to the SET OF type.

318 Managed Object Development Services Guide

Type Description and Formats

Constraints
An upper limit can be placed on the number of items that the set can contain by use of
the SIZE keyword. For example:

Pokerhand ::= SET SIZE(5) OF Cards
It is also possible to specify a SIZE range but the lower bound is ignored. For example,
the following is equivalent to the above:
Pokerhand ::= SET SIZE(2..5) OF Cards

SEQUENCE Type

The SEQUENCE type allows the definition of a fixed number of components where order
is relevant. As for a set, within a sequence each component must be given a name,
unless its base type is a CHOICE. When a sequence is transferred from one system to
another the items in the SEQUENCE are sent in the order defined. Items in the sequence
can be optional, as indicated by the OPTIONAL keyword.

Mapping Services allows items of a SEQUENCE, or a SEQUENCE OF, construct (and only
these constructs) to be of a fixed length. All other components must have a variable
length structure, with a tag value so that each component can be recognized. Mapping
Services ensures the sequence is reflected in the local form data. A compiler directive is
used to indicate fixed data items, for example:

Contact ::= SEQUENCE {

name --< FIX(20) >-- GraphicString,
birthDate --< FIX(8) >-- GraphicString,
-- YY/MM/DD

age --< FIX(3) >-- INTEGER

sex-- --< FIX(1) >-- ENUMERATED {
female(0),
male(1l) },

address [1] Address,

previousAddress [2] Address }

In this example the first four components are fixed, and occupy the first 32 bytes of the
SEQUENCE. The last two component are variable structures, and follow in sequence
after the first 32 bytes.

External Form—Input and Output

All structures have an external form that is the same as their local form.

Chapter 12: Mapping Services Facility 319

Type Description and Formats

Local Form and Behavior
The local form of a SEQUENCE is the data stream consisting of each sequence
component, where each component has its leading tag and length (where applicable, as
determined by the parent component) and data in the local form for its type.

Named Values
Named values are not applicable to the SEQUENCE type.

Constraints

Constraints are not applicable to the SEQUENCE type.

SEQUENCE OF Type

The SEQUENCE OF type allows the definition of either an arbitrary or fixed number of
items of the same type, where order is important. The definition includes only the type
of the SEQUENCE item, and does not name the component, for example:

Counters ::= SEQUENCE OF INTEGER

In NCL, SEQUENCE OF items are referenced by index only, within their parent structure.
In the example above, the following index values are used to reference the sequence
items of a component named counters of type Counters:

counter.{1}
counter. {2}

counter. {n}

External Form—Input and Output
All structures have an external form that is the same as their local form.

Local Form and Behavior
The local form of a SEQUENCE OF type is the data stream consisting of each set
component, where each component has its leading tag and length (where applicable, as
determined by the parent component) and data in the local form for its type.

Named Values

Named values are not applicable to the SEQUENCE OF type.

320 Managed Object Development Services Guide

Type Description and Formats

Constraints
An upper limit can be placed on the number of items that the sequence can contain by
use of the SIZE keyword. For example:
Counters ::= SEQUENCE SIZE(50) OF INTEGER
It is also possible to specify a range, but the lower bound is ignored.
CHOICE Type

The CHOICE type allows the definition of a number of components, each of which is an
alternative in the data structure. A CHOICE component can be named, such as the
details component in this example:

Person ::= SET {

name GraphicString,
birthDate GeneralString, -- YY/MM/DD
age INTEGER,

details CHOICE {
femalelnfo [1] Femalelnfo,
maleInfo [2] MaleInfo } }

The details component can contain either femalelnfo or malelnfo, but not both. In this
case the details component containing the choice can be referenced directly without
first knowing which choice was made. If this is changed to the following:

Person ::= SET {

name GraphicString,

birthDate GeneralString, -- YY/MM/DD
age INTEGER,

CHOICE {

femaleInfo [1] Femalelnfo,
maleInfo [2] MaleInfo } }

then both femalelnfo and maleinfo are alternatives within the SET type, and must have
unique names within that set. In this case, the actual choice that is present can only be
discovered by attempting to reference each possible one, and determining whether it
exists or not.

All alternatives of a CHOICE must have unique tags so that they can be differentiated. It
is good practice to use explicit tags for each CHOICE item.

External Form—Input and Output

This is the same as the CHOICE item.

Chapter 12: Mapping Services Facility 321

Type Description and Formats

Local Form and Behavior

This is the same as the CHOICE item.
Named Values

Named values are not applicable to the CHOICE type.
Constraints

Constraints are not applicable to the CHOICE type.

BOOLEAN Type

The BOOLEAN type is used to represent a value of true or false only.

External Form—Input

The local character strings TRUE and FALSE (not case sensitive) are accepted, but the
digit 0 is interpreted as false, and the digit 1 is true.

External Form—OQutput
The digit O (false) or 1 (true) is always returned.
Local Form and Behavior

Internally, Mapping Services stores a value of X'00’ for false, and X’01’ for true (and
accepts any value other than X’00’ as true).

For an input operation, where the component is variable length its length is always set
to 1. Where the component length is fixed and is greater than 1 the value occupies the
first byte only (it is left aligned) and the remainder of the component’s data is set to

Zeros.

For an output operation, where the component is located and has a length greater than
1, only the first byte is inspected as the value.

Named Values
Named values are not applicable to the BOOLEAN type.
Constraints

Constraints are not applicable to the BOOLEAN type.

322 Managed Object Development Services Guide

Type Description and Formats

INTEGER Type

The INTEGER type is used to contain any positive or negative whole numbers in the
range -2,147,483,648 to 2,147,483,647 (that is, a signed 32 bit number).

External Form—Input

Valid input consists of a string of up to 15 digits optionally preceded by a plus sign (+) or
a minus sign (-), which provides the sign (positive or negative) of the value. The sign is
positive, if omitted. All other characters must be valid digits (that is, 0 to 9).
Alternatively, if the map definition included named values for this component, the
symbolic name of the named value can be supplied as external form input.

External Form—Output

Output consists of a string of one or more local characters. If the integer value is
negative, the first character is a minus sign (-), otherwise the sign is omitted. All other
characters are numeric characters. Leading zeroes are stripped.

Local Form and Behavior

Internally, Mapping Services can store integers in one of the following formats:
Binary

Can be up to 4 bytes in length. If the length is not fixed, the value is kept in the
smallest number of bytes possible. If the length is fixed, the value is right aligned
and sign extended to the left.

Packed

Can be up to 8 bytes in length. The integer value is converted to the packed decimal
equivalent. If the length is not fixed, the value is kept in the smallest number of
bytes possible. If the length is fixed, the value is right aligned and zero padded to
the left.

Zoned

Can be up to 15 bytes in length. The integer value is converted to the packed
decimal equivalent. If the length is not fixed, the value is kept in the smallest
number of bytes possible. If the length is fixed, the value is right aligned and zero
padded to the left.

For any format, if a value exceeds that which can be stored without loss of significance a
type check results. If a named value is input, the map definition is used to determine the
actual integer value.

Chapter 12: Mapping Services Facility 323

Type Description and Formats

Named Values

Constraints

BIT STRING Type

It is possible to specify a range of names that correspond to particular integer values in
an INTEGER type definition. For example:

x INTEGER {red (1),
green (5)
blue (7)}
These names can then be used as external input to represent the corresponding value.
On retrieval the integer value is returned.

It is possible to constrain the allowed set of integers for an integer type. This is done by
specifying a list of integer ranges and/or single values. For example:

(1..10 | 20..30 | 50 | 100)

In the above example the integer values are restricted to numbers 50, 100 and the
range 1 to 30. If anything else is entered, a type check error results.

The BIT STRING type is used to contain any data where individual bit values might have
meaning. Mapping Services supports two types of BIT STRING access, Standard and
Boolean. These are described below.

Standard BIT STRING Access

External Form—Input

Standard BIT STRING access deals with the string as a whole, allowing manipulation of
the entire component through a single operation, as for most other types.

Valid external form can be a string of one or more digits, each a zero (0) or a one (1).
However, where named values are defined for the BIT STRING type, a list of named
values, each separated by a plus sign (+) or a minus sign (-) sign, is an acceptable
alternative. A named value preceded by a plus sign indicates that the named bit value
should be set to true (the bit is set to 1), and a named value preceded by a minus sign
indicates that the named bit value should be set to false (the bit is set to 0).

324 Managed Object Development Services Guide

Type Description and Formats

External Form—OQutput

The output format depends upon whether or not named values are defined for the BIT

STRING type. Where no named values are defined the output consists of a string of zero
or more (always a multiple of 8) digits, each a 0 or 1. Where one or more named values
do exist the output is a character string comprising each named value where the named
bit is 1 (meaning the value is true). Each name is delimited with a plus sign (+).

Local Form and Behavior

Named Values

When a string of 0’s and 1’s is supplied as input, each digit in the input sequence is
treated (left to right) as the value of the corresponding bit in that position of the local
form data. If the number of bits supplied is not a multiple of 8, trailing bits are set to
zero and padded to a byte boundary. If the component has a fixed length exceeding that
of the input string, the value is left aligned, and all unreferenced bytes are set to X’00’. If
the component cannot contain the number of input bytes supplied, the string is
truncated.

When a list of named values, each preceded by a plus sign (+) or a minus sign (-), is
supplied as input, only the named bits take part in the operation. Each named bit
preceded by a plus sign (+) is set to 1 (true), and each named bit preceded by a minus
sign (-), is set to O (false). All other bits in the BIT STRING are unaffected by the input
operation.

When fetching the value of a BIT STRING a named value list is always returned if any
named values are defined for the type, else a string of Os and 1s is returned
corresponding to the BIT STRING values. Note that when named values are defined all
other bits in the BIT STRING are ignored on output regardless of their value.

It is possible to specify a list of names corresponding to particular bit positions, starting
from zero. For example:

{ FLAG1(@), ALLSET (1), ...}

It is possible to use a list of these names, preceded by a plus or minus signs, to indicate
set or not set as external form input for the bit string component. When output the
names of the set bits, separated by plus signs are returned, for example:

+FLAGL+ALLSET ...

Chapter 12: Mapping Services Facility 325

Type Description and Formats

Constraints

It is possible to specify a size constraint on a bit string type using the SIZE keyword. For
example:

BIT STRING (SIZE(2.4))

The size refers to the maximum number of bits (not bytes) in the bit string. Internally,
the minimum is rounded down, and the maximum rounded up, to the nearest multiple
of 8.

Boolean BIT STRING Access

External Form—Input

Boolean BIT STRING access deals with individual bit level access and operates only
through named values. We recommend this access because program access to bits is
only via their symbolic named values, thus removing from NCL the need to know relative
bit positions.

For Boolean BIT STRING access to be invoked the named value of a bit is provided by

NCL as an additional name segment after the BIT STRING component name. Since the
BIT STRING type is primitive, the additional name in the name hierarchy is understood
to be a named value, and is treated as a BOOLEAN type. No matter where the named
value is in the BIT STRING the value of the bit is always 0 or 1, as for a BOOLEAN type.

The local character strings TRUE and FALSE (not case sensitive) are accepted, the digit 0
is interpreted as false, and the digit 1 is true.

External Form—OQutput

The digit O (false) or 1 (true) is always returned.

Local Form and Behavior

Named Values

The component name plus the named value is treated as a reference to a specific bit
(the bit position within the component being defined by the named value), and that bit
is set to 0 or 1 depending upon the input. No other bits in the BIT STRING component
are affected. If the component is extended to accommodate the input, all other bits are
setto 0.

Named values are not applicable to Boolean BIT STRING access.

326 Managed Object Development Services Guide

Type Description and Formats

Constraints

Constraints are not applicable to Boolean BIT STRING access.

OCTET STRING Type

The OCTET STRING type is used to contain any data where no formatting is required.

External Form—Input and Output

Any data is accepted and returned unchanged.

Local Form and Behavior

Named Values

Constraints

HEX STRING Type

External Form—Input

Data is stored as is. If the component has a fixed length exceeding that of the input
string, the data is left aligned, and all unreferenced bytes are set to X'00". If the
component cannot contain the number of input bytes supplied, the string is truncated.

Named values are not applicable to the OCTET STRING type.

The SIZE keyword can be used to constrain the length of an octet string to a certain
range or value. Length is measured in bytes. For example:

OCTET STRING (SIZE(4..8))

If the component is variable length, a type check error occurs if the size constraints are
breached.

The HEX STRING type is an Mapping Services extension to ASN.1, but is processed as a
base ASN.1 type. It is identical in all respects to the ASN.1 OCTET STRING type except for
its external form representation.

Valid input consists of a string of one or more local characters, each selected from the
set 0123456789ABCDEF. Each pair of hexadecimal characters represents a single byte
value. If an odd number of characters is supplied, the string is treated as though padded
on the left with a single zero (0).

Chapter 12: Mapping Services Facility 327

Type Description and Formats

External Form—OQutput

Data is returned in hexadecimal characters, as for input. An even number of characters
is always returned.

Local Form and Behavior

Each two hexadecimal characters of input represents the actual data to be stored in a
single byte. Otherwise, behavior is as for OCTET STRING.

Named Values
Named values are not applicable to the HEX STRING type.
Constraints

The SIZE keyword can be used to limit the size of a HEX STRING type. The size refers to
the length of the local form, not external form.

NULL Type

The NULL type is used where data in a component either must be null (that is, empty),
or not accessible.

External Form—Input

The only valid input is a null value.
External Form—OQutput

A null value is always returned.
Local Form and Behavior

The component can be created by an input operation, but no contents are modified. If it
already exists, no data is modified.

Named Values
Named values are not applicable to the NULL type.
Constraints

Constraints are not applicable to the NULL type.

328 Managed Object Development Services Guide

Type Description and Formats

OBJECT IDENTIFIER Type

The OBJECT IDENTIFIER type is used to contain object identifier values that uniquely
identify registered objects.

External Form—Input and Output
Any sequence of characters from the set 0123456789 and the period (.), is valid
provided it does not begin or end with a period (.), contains no consecutive periods, and
contains at least one period. Each sequence of decimal digits punctuated by a period (.),
represents a sub-identifier in the series of sub-identifiers that comprise an object
identifier value.

Local Form and Behavior
The data format is as supplied for input, however truncation is not allowed. If the
component is fixed length, it must be able to contain the input string, otherwise a type
check results. If necessary, it is padded with blanks.

Named Values
Named values are not applicable to the OBJECT IDENTIFIER type.

Constraints

Constraints values are not applicable to the OBJECT IDENTIFIER type.

ObjectDescriptor Type

The ObjectDescriptor type is used to contain object descriptions for registered objects.
External Form—Input and Output

All values are accepted as supplied.
Local Form and Behavior

The data format is as supplied for input. If the component is fixed length, a short input
string is padded with blanks, and a long input string is truncated.

Named Values

Named values are not applicable to the ObjectDescriptor type.

Chapter 12: Mapping Services Facility 329

Type Description and Formats

Constraints
A character set constraint can be specified for ObjectDescriptor types. In addition, a size
constraint can be specified.
More information:
GraphicString Type (see page 341)

EXTERNAL Type
The EXTERNAL type is not supported by Mapping Services. If required, define it as a
user-defined type.

REAL Type

The REAL type is used to contain floating point, or scientific notation, numbers in the
range 10-70 to 1070.

330 Managed Object Development Services Guide

Type Description and Formats

External Form—Input
Format allowed is as follows, such that either (or both) nnnnnn and mmmmmm are
present, and the resulting REAL number is within the allowable range:
+or-
(optional, plus or minus sign, followed by)
nnnnnn

(optional, any number of digits, followed by)

(optional, decimal place, followed by)
mmmmmm

(optional, any number of digits, followed by)
Esxx

(optional, signed exponent power of 10, range -99 to 99)

Examples:

14578923455096765442839404
-123.567

.555

.0023E-23

3.142776589E+66

Chapter 12: Mapping Services Facility 331

Type Description and Formats

External Form—OQutput

The default is a normalized decimal real number:
+or-

(plus or minus sign of the value, followed by)

(decimal place indicator, followed by)
nnnnnn

(15 significant fraction digits, followed by)
Esxx

(signed exponent power of 10)

Examples:

+.314277658900000E- 10
-.123456789000000E+52

A compiler directive is available to specify how a REAL type is to be presented
externally. For example:

X REAL --< EF(3,5)>--
The above directive gives an external form for the number +.314277658900000E-10 as
3.14277.

This has three digits before the decimal point, (including two blanks) and five digits after
the decimal point.

Space padding occurs on the left if required, and zero padding occurs on the right. No

truncation takes place. The external form expands to allow all of the digits that precede
the decimal point in a real number to be represented in full.

Local Form and Behavior
For IBM S/370 machines, local form is a 64-bit long floating point value, and the
component must be at least 8 bytes in length. Truncation is not allowed. If the

component has a fixed length greater than 8 bytes, the value is left aligned and padded
on the right with zero bytes.

Named Values

Named values are not applicable to the EXTERNAL type.

332 Managed Object Development Services Guide

Type Description and Formats

Constraints
Real types can be restricted to a set of real value ranges or simple real values. For
example:
REAL ({150, 10, -2}..{150, 10, -1})
The above example restricts the real type to the range (1.5...15). It is possible to specify
a real range using whole numbers as well, for example:
REAL (1..20)

ENUMERATED Type

The ENUMERATED type is used to constrain a component to a defined set of values.
Each defined value is named using a name identifier similar to a component name.
Associated with each name is a unique integer value (which can be signed), for example:

Color ::= ENUMERATED { red(0),blue(1),yellow(2),
green(3),black(7) }

External Form—Input and Output

The external form must be one of the names listed in the ENUMERATED type. The
enumerated values are not allowed (that is, red is valid, 0 is not).

Local Form and Behavior

Named Values

Constraints

Internally, the ENUMERATED value is kept in the same manner, and is subject to the
same local form constraints, as an INTEGER of the binary local form.

Named values are not applicable to the ENUMERATED type.

If a component indirectly references an enumerated type, it is possible to constrain it to
a subset of the set of named values. For example:

X Y(ONE, FIVE, SIX)
Y ::= ENUMERATED {ONE(1), TWO(2), THREE (3), FOUR (4), FIVE (5), SIX (6)}

Component X is restricted to a subset (one, five, six) of the named values of type Y (one,
two, three, four, five, six).

Chapter 12: Mapping Services Facility 333

Type Description and Formats

NumericString Type

The NumericString is a subset of GeneralString that comprises the following:
m 0to 9 (numeric characters)

m Space or blank character
External Form—Input and Output

This can be any string of valid characters as described above.
Local Form and Behavior

On input, data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks, and a long input string is truncated.

Named Values

Named values are not applicable to the NumericString type.

334 Managed Object Development Services Guide

Type Description and Formats

Constraints

There are three ways of constraining this type:

Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:

GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:

GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))

In the example, only strings consisting of the specified letters are treated as valid
external input.

Character string constraint—a set of valid character strings can be specified for this
type. For example:

GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)

The letter m can be placed after the string to indicate that case is irrelevant. The
letter c (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with
the applicable type.

PrintableString Type

The PrintableString is a subset of GeneralString that comprises the following:

a to z (lowercase alphabetic characters)
A to Z (uppercase alphabetic characters)
0 to 9 (humeric characters)

Space or blank character

"()+,-./:="7(special characters)

External Form—Input and Output

This can be any string of valid characters as described above.

Chapter 12: Mapping Services Facility 335

Type Description and Formats

Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks, and a long input string is truncated.

Named Values

Named values are not applicable to the PrintableString type.

Constraints

There are three ways of constraining this type:

m Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:
GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

m Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:
GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))
In the example, only strings consisting of the specified letters are treated as valid
external input.

m Character string constraint—a set of valid character strings can be specified for this
type. For example:
GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)
The letter m can be placed after the string to indicate that case is irrelevant. The
letter ¢ (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with

the applicable type.

TeletexString Type

There is no use for this type in NCL.
External Form—Input and Output

All values are accepted as supplied.

336 Managed Object Development Services Guide

Type Description and Formats

Local Form and Behavior
Data is stored as is. If the component has a fixed length exceeding that of the input
string, the data is left aligned, and all unreferenced bytes are set to X'00’. If the
component cannot contain the number of input bytes supplied, the string is truncated.

Named Values

Named values are not applicable to the TeletexString type.

Constraints

There are three ways of constraining this type:

m Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:
GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

m Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:
GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))
In the example, only strings consisting of the specified letters are treated as valid
external input.

m Character string constraint—a set of valid character strings can be specified for this
type. For example:
GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)
The letter m can be placed after the string to indicate that case is irrelevant. The
letter ¢ (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with

the applicable type.

VideotexString Type

There is no use for this type in NCL.

Chapter 12: Mapping Services Facility 337

Type Description and Formats

External Form—Input and Output
All values are accepted as supplied.
Local Form and Behavior

Data is stored as is. If the component has a fixed length exceeding that of the input
string, the data is left aligned, and all unreferenced bytes are set to X’00’. If the
component cannot contain the number of input bytes supplied, the string is truncated.

Named Values
Named values are not applicable to the VideotexString type.
Constraints

There are three ways of constraining this type:

m Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:

GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

m Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:

GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))

In the example, only strings consisting of the specified letters are treated as valid
external input.

m Character string constraint—a set of valid character strings can be specified for this
type. For example:

GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)

The letter m can be placed after the string to indicate that case is irrelevant. The
letter ¢ (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with
the applicable type.

338 Managed Object Development Services Guide

Type Description and Formats

IA5String Type

The IA5String type provides a transparent general character set (VisibleString plus
control characters).

External Form—Input and Output
All values are accepted as supplied.
Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks, and a long input string is truncated.

Named Values
Named values are not applicable to the IA5String type.
Constraints

There are three ways of constraining this type:

m Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:

GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

m Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:

GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))

In the example, only strings consisting of the specified letters are treated as valid
external input.

m Character string constraint—a set of valid character strings can be specified for this
type. For example:

GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)

The letter m can be placed after the string to indicate that case is irrelevant. The
letter ¢ (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with
the applicable type.

Chapter 12: Mapping Services Facility 339

Type Description and Formats

UTCTime Type

The UTCTime type provides date and time, as Universal Coordinated Time (year without
century numbers), in the format:

YYMMDDHHMM([SS]Z

GMT date and time (to minutes or seconds); Z indicates GMT time

YYMMDDHHMMI[SSIsHHMM

Local date and time (to minutes or seconds); with signed zone offset from GMT
time (s=+or-)

External Form—Input and Output
This can be any valid data as shown above.

Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks. Truncation is not allowed.

Named Values

Named values are not applicable to the UTCTime type.

Constraints

Constraints are not applicable to the UTCTime type.

GeneralizedTime Type
The GeneralizedTime type provides date and time, as GeneralizedTime (year includes
century numbers), in the format:

YYYYMMDDHH[MMISS]I[.f1Z

GMT date and time (to hours, minutes or seconds); with optional fractional time
units to any significance (hours, minutes or seconds); Z indicates GMT time

YYYYMMDDHH[MMISS]][.fllsHHMM]

Local date and time (to hours, minutes or seconds); with optional fractional time

units to any significance (hours, minutes or seconds); with signed zone offset from
GMT time (s=+or-)

External Form—Input and Output

This can be any valid data as shown above.

340 Managed Object Development Services Guide

Type Description and Formats

Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks. Truncation is not allowed.

Named Values
Named values are not applicable to the GeneralizedTime type.
Constraints

Constraints are not applicable to the GeneralizedTime type.

GraphicString Type

The GraphicString type provides a transparent character set of graphic characters only.
External Form—Input and Output

All values are accepted as supplied.
Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks, and a long input string is truncated.

Named Values

Named values are not applicable to the GraphicString type.

Chapter 12: Mapping Services Facility 341

Type Description and Formats

Constraints

There are three ways of constraining this type:

m Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:
GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

m Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:
GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))
In the example, only strings consisting of the specified letters are treated as valid
external input.

m Character string constraint—a set of valid character strings can be specified for this
type. For example:
GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)
The letter m can be placed after the string to indicate that case is irrelevant. The
letter c (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with

the applicable type.

VisibleString Type

The VisibleString type provides a transparent character set of graphic characters only.
External Form—Input and Output

All values are accepted as supplied.
Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks, and a long input string is truncated.

Named Values

Named values are not applicable to the VisibleString type.

342 Managed Object Development Services Guide

Type Description and Formats

Constraints

There are three ways of constraining this type:

m Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:
GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

m Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:
GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))
In the example, only strings consisting of the specified letters are treated as valid
external input.

m Character string constraint—a set of valid character strings can be specified for this
type. For example:
GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)
The letter m can be placed after the string to indicate that case is irrelevant. The
letter c (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with

the applicable type.

GeneralString Type

The GeneralString type provides a transparent character set of both graphic and control
characters.

External Form—Input and Output
All values are accepted as supplied.
Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length, a short input
string is padded with blanks, and a long input string is truncated.

Chapter 12: Mapping Services Facility 343

Type Description and Formats

Named Values

Named values are not applicable to the GeneralString type.

Constraints

There are three ways of constraining this type:

m Size constraint—the SIZE keyword can be used to constrain the number of bytes for
this type to a range of values or a single value. For example:
GRAPHICSTRING (SIZE(3..8))
GRAPHICSTRING (SIZE(5))

m Character set constraint—you can constrain the valid characters that are allowed
to be used on this type as external form data by using the FROM keyword to specify
a character set. For example:
GRAPHICSTRING (FROM("A"|"B"|"C"|"a"))
In the example, only strings consisting of the specified letters are treated as valid
external input.

m Character string constraint—a set of valid character strings can be specified for this
type. For example:
GRAPHICSTRING ("ABC"|"PaR"c|"xYz"m)
The letter m can be placed after the string to indicate that case is irrelevant. The
letter c (the default) is used to show case is relevant. If the case in the external
input does not match the string, the input is rejected.

Note: References to GRAPHICSTRING in the preceding examples should be replaced with

the applicable type.

ANY and ADB Types

The ANY and ADB types can contain any sort of data. The type can be changed
dynamically by attaching a map at runtime.

External Form—Input and Output

Any data is accepted and returned unchanged.

344 Managed Object Development Services Guide

Type Description and Formats

Local Form and Behavior
Data is stored as is. If the component has a fixed length exceeding that of the input
string, the data is left aligned, and all unreferenced bytes are set to X’00’. If the
component cannot contain the number of input bytes supplied, the string is truncated.
Named Values
Named values are not applicable to the ANY and ADB types.

Constraints

Constraints are not applicable to the ANY and ADB types.

Chapter 12: Mapping Services Facility 345

Appendix A: Text Editor Commands

This section contains the following topics:

Using the Text Editor Commands (see page 347)
Line Commands (see page 347)
Primary Commands (see page 353)

Using the Text Editor Commands

On the left of each line of text is a sequence number field. When updating or adding
text, line commands are entered into these fields to perform edit functions.

Primary commands are entered into the Command field.
More information:

Text Editor (see page 30)

Line Commands

The line on which the line command is entered is referred to as the current line in the
following text.
The following text editor line commands are supported:

Ann

Inserts copied or moved lines after the current line, nn times. If nn is omitted, the
lines are inserted once only.

Bnn

Inserts copied or moved lines before the current line, nn times. If nn is omitted, the
lines are inserted once only.

Cnn

Copies nn lines starting from the current line. To put the copy after or before a line,
enter A or B next to that line. To copy the text over a sequence of lines, enter Onn
or 00.

If nn is omitted, only the current line is copied.

Appendix A: Text Editor Commands 347

Line Commands

cC
Copies a sequence of lines.
1. Enter CC next to the first and last line you want to copy.

2. To put the copy after or before a line, enter A or B next to that line. To copy the
text over a sequence of lines, enter Onn or 0OO.

CcoLs
Inserts a line containing column numbers after the current line.
Dnn

Deletes nn lines starting from the current line. If nn is omitted, only the current line
is deleted.

DD
Deletes a sequence of lines. Enter DD next to the first and last line.
Inn

Inserts nn blank lines after the current line. If nn is omitted, one blank line is

inserted.

ID
Inserts lines of text containing the current date and time, the user ID, name and
telephone number.

LCnn
Converts alphabetic characters to lowercase on the next nn lines. If nn is omitted,
only the current line is converted.

LCLC
Converts alphabetic characters to lowercase in a block of lines. Enter LCLC next to
the first and last lines to convert.

Mnn
Moves nn lines starting from the current line. To move the lines after or before
another line, enter A or B next to that other line. To move the text over a sequence
of lines, enter Onn or 0O0.
If nn is omitted, only the current line is moved.

MM

Moves a sequence of lines.
1. Enter MM next to the first and last line you want to move.

2. To move the lines after or before another line, enter A or B next to that other
line. To move the text over a sequence of lines, enter Onn or 00.

348 Managed Object Development Services Guide

Line Commands

NA

Inserts the contents of the Notepad after the current line.
NB

Inserts the contents of the Notepad before the current line.
Nnn

Appends nn lines to the Notepad. If nn is omitted, only the current line is appended
to the Notepad.

NN
Appends a sequence of lines to the Notepad. Enter NN next to the first and last line.
Onn

Overlays copied or moved lines over the next nn lines. If nn is omitted, it defaults to
the number of lines being moved or copied.

oo

Overlays copied or moved lines over a sequence of lines. Enter OO next to the first
and last line in the sequence.

QA

Inserts queued lines after the current line.
QB

Inserts queued lines before the current line.
Qnn

Queues nn lines. If nn is omitted, only the current line is queued. This command
overwrites currently queued lines.

Q+nn

Appends nn lines to the end of the queue. If nn is omitted, only the current line is
appended.

QQ

Queues a sequence of lines. Enter QQ next to the first and last line. This command
overwrites currently queued lines.

Qa+

Appends a block of lines to the end of the queue. Enter QQ+ next to the first and
last line.

Rnn

Repeats the current line nn times. If nn is omitted, the current line is repeated once.

Appendix A: Text Editor Commands 349

Line Commands

RRnn

Repeats a sequence of lines nn times. Enter RRnn next to the first and last line to
repeat. If nn is omitted, the sequence of lines is repeated once only.

TE

Text entry mode. Blank input lines are inserted after the current line allowing the
entry of many lines of text. When the Enter key is pressed, the text is flowed within
the current margins and inserted.

TF

Flows text to the current right margin preserving the indentation of each line from
column 1. Text is flowed from the current line to the end of the paragraph. The end
of the paragraph is determined by a blank line or a change in indentation.

TFnn
This command is the same as TF except that it uses the right margin specified by nn.
TFM

Flows text to the current left and right margins preserving only the relative
indentation between the current line and the following line. Text is flowed from the
current line to the end of the paragraph. The end of the paragraph is determined by
a blank line or a change in indentation.

™

Merges text. The current line is split at the cursor position as for a TS command.
Text Entry mode is then invoked. On exit from Text Entry mode, a TF is performed
from the current line through to the end of the paragraph.

TS

Splits text. A new line is inserted after the current line, and the text from the cursor
position to the end of the line is moved to the new line.

UCnn

Converts alphabetic characters to uppercase on the next nn lines. If nn is omitted,
only the current line is converted.

ucuc

Converts alphabetic characters to uppercase in a block of lines. Enter UCUC next to
the first and last lines to convert.

)nn

Shifts the data on the current line nn positions to the right. Any data shifted beyond
the maximum record length is lost. If nn is omitted, the data is shifted one position
to the right.

350 Managed Object Development Services Guide

Line Commands

(nn

Shifts the data on the current line nn positions to the left. Any data shifted beyond
column one is lost. If nn is omitted, the data is shifted one position to the left.

))nn

Shifts the data on a block of lines nn positions to the right. Enter))nn next to the
first and last lines to have their data shifted. Any data shifted beyond the maximum
record length is lost. If nn is omitted, the data is shifted one position to the right.

((nn

Shifts the data on a block of lines nn positions to the left. Enter ((nn next to the first
and last lines to have their data shifted. Any data shifted beyond column one is lost.
If nn is omitted, the data is shifted one position to the left.

Line Command Examples

The following figures show some examples of commonly-used line commands.

PROD----- - mmmm e CAS : Notepad Editor ------------- Line 1 to 1 of 1
Command ===> Function=Update Scroll ===> PAGE
Hokotok TOP OF DATA

1501 To add lines, type 'i’ plus the number of lines to add in left column
Skokokok kokokoskokoke sk kok ok sk sk ok sk sk ok ok sk sk ok sk kok sk sk ok sk k ok BO‘|‘|’0M OF DATA Skokoke ok kok sk sk ok ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk kok ok k ko

Fl=Help F2=Split F3=File F4=Save F5=Find F6=Change
F7=Backward F8=Forward F9=Swap Fl0=Left F11=Right F12=Cancel

Appendix A: Text Editor Commands 351

Line Commands

PROD-------mmmmme e CAS : Notepad Editor ------------- Line 1 to 6 of 6
Command ===> Function=Update Scroll ===> PAGE
Hokook TOP OF DATA

0001 To add lines, type 'i’ plus the number of lines to add in left column
0002

0003 In this example ’'i5’ was typed into the left column, adding 5 lines to
0004 the Notepad text entry area.

0005

0006

Blkk okllllkkolkolkkoRokok BOTTOM OF DATA Hokkkksksistotokokkkatofofokokokokatododokokokok

Fl=Help F2=Split F3=File F4=Save F5=Find F6=Change
F7=Backward F8=Forward F9=Swap Fl0=Left F11=Right F12=Cancel

’

PROD---------mmmmmem oo CAS : Notepad Editor ----------- Line 1 to 14 of 14
Command ===> Function=Update Scroll ===> PAGE

0001

doo2 A letter ’'d’ in the first column will delete that one line

0003

dd04 To delete a block of text type 'dd’ into the left column of the first line
0005 of the block to be deleted.....

ddoe6 then type ’'dd’ in the last line of the block and press ENTER.
0007
c008 To copy one line of text type ’'c’ into the left column.
0009
cclO To copy a block of text type 'cc’ in the first line of the block...
ccll then type cc in the last line of the block and press ENTER.
0012
a013 The letter 'a’ in the left column will insert copied text after 'this line
0014
b015 The letter 'b’ will insert copied text before 'this line’
Hokokok BOTTOM OF DATA
Fl=Help F2=Split F3=File F4=Save F5=Find F6=Change

F7=Backward F8=Forward F9=Swap Fl0=Left F11=Right F12=Cancel

352 Managed Object Develop

ment Services Guide

Primary Commands

Primary Commands

In addition to the standard product commands, the following primary commands are
available to you within the text editor:

ALL string

Positions on the first occurrence of the specified string and displays a message
indicating the total number of occurrences that are found.

CHANGE from-string to-string [ALL]

Modifies a string of characters in the text. Enter CHANGE (or C) followed by the
character string to be changed, followed by the new character string, followed by
ALL, if every occurrence of character string is to be changed. If either character
string contains imbedded blanks, enclose the character string in single or double
quotes. If either character string contains quotes, the entire string must be enclosed
by the quote which does not appear in the string. To repeat the change enter the
CHANGE command with no operands. Change processing starts from the current
cursor position.

Note: If the from-string contains embedded blanks, the string is not changed unless
it is contained entirely within a single line.

FIND string

Searches for a string of characters in the text. Enter FIND (or F) followed by the
character string. To repeat the search press the FIND function key or enter the FIND
command with no operands. Searching starts from the current cursor position.

Note: If the string being searched for contains embedded blanks, it must be
enclosed in single or double quotes. In addition, the string is not found unless it is
contained entirely within a single line.

FIRST string

Starts a search at the top of the text and finds the first occurrence of the specified
string.

FLOW

Flows all text to the right margin preserving the indentation of each line from
column 1. To flow text to a specific right margin enter FLOW, followed by the right
margin column number. To flow text to the current right margin enter FLOW with
no operands.

FLOWM

Flows all text to the left and right margins preserving only the relative indentation
between the first and second lines of each paragraph. To flow text within specific
margins enter FLOWM, followed by the left margin and right margin column
numbers separated by a space.

Appendix A: Text Editor Commands 353

Primary Commands

LAST string

Starts a search at the bottom of the text and finds the first occurrence of the
specified string.

LCMD cmd

Executes the line command cmd. This can be used to assign often used line
commands to function keys.

LM nn

Sets the left margin of the text. Enter LM followed by the required left margin
column number.

MARGINS

Displays/sets the left and right margins of the text. To set the margins enter
MARGINS or MAR, followed by the left margin column number, followed by the
right margin column number. To display the current margin settings enter MARGINS
or MAR with no operands. Margin settings are only used when flowing text as a
result of the FLOW or FLOWM primary command or the TF, TFM or TE line
commands. The difference between the left and right margins must not be less than
20.

NEXT string

Searches forward through the text to find the next occurrence of the specified
string. This is the default.

NULLS

Pads text lines with nulls or blanks. To pad text lines with blanks enter NULLS OFF.
To pad text lines with nulls enter NULLS ON or NULLS.

NOTEPAD

Gives access to the Notepad facility which holds temporary text entered during the
session.

PREV string

Searches backward through the text to find the previous occurrence of the specified
string. This is the default.

PRINT

Prints the text on the printer of your choice.
RESET

Clears all pending line commands. This command can be abbreviated to RES.
RM nn

Sets the right margin of the text. Enter RM followed by the required right margin
column number.

354 Managed Object Development Services Guide

Appendix B: Shorthand Time and Date

Formats

This section contains the following topics:

Shorthand Time and Date Formats (see page 355)

Shorthand Time Formats (HH.MM) (see page 355)

Shorthand Time Formats (HH.MM.SS) (see page 356)

Shorthand Date Formats (see page 357)

Shorthand Time and Date Formats

CAS data validation supports shorthand entry of times and dates.

Time abbreviations and the corresponding values that are returned to the calling
procedure by CAS, are summarized in the tables in this section.

Shorthand Time Formats (HH.MM)

Abbreviation

Returns (Edit 4)

Returns (Edit 24)

The current time

The current time

+h Current time + h hours Current time + h hours
-h Current time - h hours Current time - h hours
h 0h.00 0h:00

hh hh.00 hh:00

hmm O0h.mm Oh:mm

hmm hh.mm hh:mm

h.m or h:m 0h.0m 0h:0m

h.mm or h:mm Oh.mm Oh:mm

hh.m or hh:m hh.0m hh:0m

hh.mm or hh:mm hh.mm hh:mm

Appendix B: Shorthand Time and Date Formats 355

Shorthand Time Formats (HH.MM.SS)

Abbreviation Returns (Edit 4) Returns (Edit 24)

.mor:m 00.0m 00:0m

.mm or :mm 00.mm 00:mm
Shorthand Time Formats (HH.MM.SS)

Abbreviation Returns (Edit 20) Returns (Edit 23)

The current time

The current time

h 0h.00.00 0h:00:00

hh hh.00.00 hh:00:00

hmm 0h.mm.00 0h:mm:00

hhmm hh.mm.00 hh:mm:00

hhmms hh.mm.0s hh:mm:0s

hhmmss hh.mm.ss hh:mm:ss

hh.mm.ss If hh or mm or ss are single digits, zero (0) is inserted

or before the digit. If hh or mm or ss are omitted, they are set
hh:mm:ss to 00—for example, .2. becomes 00.02.00

+o0r-hh.mm.ss
or
+o0r - hh:mm:ss

Same rules as above except that the time is added or
subtracted from the current time—for example, +1.5is 1

hour and 5 minutes from now

356 Managed Object Development Services Guide

Shorthand Date Formats

Shorthand Date Formats

Date abbreviations and the corresponding values that are returned to the calling
procedure by CAS are summarized in the table below. All dates are returned in

DD-MMM-YYYY format.

Abbreviation

Returns

Today’s date.

+d Today’s date + d days.

-d Today’s date - d days.

d The dth day of the current month and year.
dd The ddth day of the current month and year.
ddd The dddth Julian day of the current year.

ddmm or mmdd

The ddth day of the mmth month of the current year (order
depends on national language code).

yyddd The dddth Julian day of the year yy.

yy.ddd The dddth Julian day of the year yy.

ddmmyy or mmddyy The specified date (order depends on national language
code).

dd/mm/yy or The specified date (order depends on national language

mmy/dd/yy code). If dd or mm or yy are omitted, then they default to the
current day, month or year (for example, entering //96 on
the 3rd January 1992 returns 03-JAN-1996).

day-of-week The date of day-of-week

(MON/TUE/WED/THU/FRI/SAT/SUN) in the current week.

+day-of-week

The date of day-of-week in the following week.

-day-of-week

The date of day-of-week in the previous week.

Appendix B: Shorthand Time and Date Formats 357

Appendix C: List Panel Attributes

This section contains the following topics:

List Panel Attributes (see page 359)

List Panel Attributes

The following table shows list panel attributes that can be used to modify the intensity,
color, and highlighting of data within an entry line.

Variable Intensity Color Highlight
&SLHATBLBN Low Blue NONE
&SLHATBLGN Low Green NONE
&SLHATBLPN Low Pink NONE
&SLHATBLRN Low Red NONE
&SLHATBLTN Low Turquoise NONE
&SLHATBLWN Low White NONE
&SLHATBLYN Low Yellow NONE
&SLHATBHBN High Blue NONE
&SLHATBHGN High Green NONE
&SLHATBHPN High Pink NONE
&SLHATBHRN High Red NONE
&SLHATBHTN High Turquoise NONE
&SLHATBHWN High White NONE
&SLHATBHYN High Yellow NONE
&SLHATBLBR Low Blue REVERSE
&SLHATBLGR Low Green REVERSE
&SLHATBLPR Low Pink REVERSE
&SLHATBLRR Low Red REVERSE
&SLHATBLTR Low Turquoise REVERSE
&SLHATBLWR Low White REVERSE

Appendix C: List Panel Attributes 359

List Panel Attributes

Variable Intensity Color Highlight
&SLHATBLYR Low Yellow REVERSE
&SLHATBHBR High Blue REVERSE
&SLHATBHGR High Green REVERSE
&SLHATBHPR High Pink REVERSE
&SLHATBHRR High Red REVERSE
&SLHATBHTR High Turquoise REVERSE
&SLHATBHWR High White REVERSE
&SLHATBHYR High Yellow REVERSE
&SLHATBLBB Low Blue BLINK
&SLHATBLGB Low Green BLINK
&SLHATBLPB Low Pink BLINK
&SLHATBLTB Low Turquoise BLINK
&SLHATBLWB Low White BLINK
&SLHATBLYB Low Yellow BLINK
&SLHATBHBB High Blue BLINK
&SLHATBHGB High Green BLINK
&SLHATBHPB High Pink BLINK
&SLHATBHRB High Red BLINK
&SLHATBHTB High Turquoise BLINK
&SLHATBHWB High White BLINK
&SLHATBHYB High Yellow BLINK

360 Managed Object Development Services Guide

Appendix D: Web File Utilities

This section contains the following topics:

Web File System (see page 361)

Accessing Web File Utilities (see page 362)

Top Level Directory Summary Panel (see page 362)
Directory Panel for Selected Directory (see page 363)

Web File System

The Web file system contains all the files used by the Web Interface. The Web file
system is stored in the MODS file; however, it has no relation to the other MODS
components such as the Common Application Services (CAS) functions.

In general, the Web file system is accessed only by internal servers. For diagnostic
purposes, a limited range of Web file utilities are available online. This appendix
describes the Web file utilities.

Appendix D: Web File Utilities 361

Accessing Web File Utilities

Accessing Web File Utilities

The Web file utilities are accessed through the CAS : Maintenance Menu, by entering
EXEC SW3DB90L ACTION=TOPLEVEL from an Operator Console Services (OCS) or
Command Entry (CMD) window. The Web File Utilities : Top Level Directory Summary
panel is displayed:

PROD--------- Web File Utilities : Top Level Directory Summary ----------------
Command ==> Scroll ===> PAGE
W3DB9002 7 directories found, containing a total of 396 files.
(S = Display directory contents)
Directory Name # of files
COMMON 54
INTERNAL 6
JAVA 14
LOGON 3
NETSCAPEUPDA 1
PUBLIC 91
TCPIP 227
Fl=Help F2=Split F3=Exit F4=Return F5=Find F6=Refresh
F7=Backward F8=Forward F9=Swap

Top Level Directory Summary Panel

The Web File Utilities : Top Level Directory Summary panel is a summary of all files
present in the Web file system.

The display fields on the Web File Utilities : Top Level Directory Summary panel are as
follows:
Directory Name
Displays the top level or first segment of the full path name of the Web file.
of files

Displays the total number of Web files in all subdirectories contained in this top
level directory.

362 Manadged Object Development Services Guide

Directory Panel for Selected Directory

Directory Panel for Selected Directory

To display a list of files and subdirectories contained in a top level directory, enter S
beside the directory name. The Web File Utilities : Directory panel for the selected
directory is displayed:

PROD---------n---- Web File Utilities : Directory "COMMON" ----------cn-mmmon--
Command ===> Scroll ===> PAGE
W3DB9105 54 files found in "COMMON" and its subdirectories.
(S/B=Browse File or Subdirectory, E=Edit File, D=Delete File, I=File Info.)
File or Subdirectory Name Fix Lvl Type DD

AlertMonitor
chgpwdO1.esp
ContentMenu.esp

Directory
Install TEXT MODSTST1
Install TEXT MODSTST1

dataframework Directory
functions Directory
help Directory
javachart Directory
logoffi.html Install BINARY MODSTST1
registration Directory
SelectSolvelLinkSingle.htmlf Install TEXT MODSTST1
SolvelLinksSingle.htmlf Install TEXT MODSTST1
SolveMenu. shtml Install TEXT MODSTST1
SolveMenuApplet.esp Inhouse TEXT MODSUSR
SolveMenuApplet. shtml Install TEXT MODSTST1
SolveMenuLogo. shtml Install TEXT MODSTST1
Fl=Help F2=Split F3=Exit F4=Return F5=Find F6=Refresh

F7=Backward F8=Forward F9=Swap

The display fields on the Web File Utilities : Directory panel are as follows:
File or Subdirectory Name

Displays the file name of an individual Web file, or the name of a subdirectory.
Fix Lvl

Displays the fix level of the Web file.

Install

Indicates that this file is still at the level that was installed from the original
product tape.

NZ12345
Indicates that this file was modified by the fix identified by this fix number.
Inhouse

Indicates that this file has been modified at your site after installation.

Appendix D: Web File Utilities 363

Directory Panel for Selected Directory

Type (files only)
Indicates whether the data in the Web file is stored in text or binary format.
DD

Displays the DD name of the highest level in the MODS concatenation that this file
is presentin.

An identically named Web file can exist in more than one level in the MODS
concatenation, but is only retrieved from the highest level. In general, Web files
installed as directed from product or maintenance tapes are installed into the
MODSDIS level. Web files modified after installation appear in the MODSUSR level.

The Web File Utilities : Directory panel contains the following options:
S/B (text files)
Browse the source of the Web file. Only files containing text can be browsed.
S/B (subdirectories)
List the individual files and subdirectories contained in the subdirectory.
E (text files)

Allow editing of the source of the Web file. Only files containing text in lines of less
than 256 characters can be edited. An edited Web file, when saved, is placed in the
highest level of the MODS concatenation (usually MODSUSR). You should not edit
files unless asked to do so by CA Support.

D
Deletes the Web file from the DD level displayed. Only Web files in the highest level
(usually MODSUSR) can be deleted.

| (files only)

Display detailed information about the Web file. Information includes the file size
and the last updated details. This information is displayed separately for every DD
in the MODS concatenation in which this Web file is present.

364 Managed Object Development Services Guide

Index

#

#ALIAS panel control statement ¢ 62
HERR panel control statement ¢ 68
#FLD panel control statement ¢ 58

$

SADRW50Z distributed service procedure » 288
SCACALL

feeback codes ¢ 156

invoking 153

return codes * 156
SCACALL statements

BUILD CRITERIA 157

BUILD FKA » 160

BUILD MESSAGE » 164, 166

DISPLAY DATA » 168

DISPLAY HELP ¢ 171

DISPLAY LIST » 173

DISPLAY MENU ¢ 176

DISPLAY MESSAGE » 177

EDIT DATA » 179

EXECUTE COMMAND e« 183

LOAD COMMAND e 187, 190, 192

NAVIGATE PDOMAIN e 194, 197
SIMRW?27Z distributed service procedure 291
SIMRW?297Z distributed service procedure e 292
SNDRWO01Z » 289
SNWRWO01Z distributed service procedure ¢ 290
SUARWO01Z distributed service procedure ¢ 293

%
% field character (high intensity, protected) ¢ 59

&
&SCMPARMS command definition e 123

(

(command, text editor e 347

)

) command, text editor ¢ 347

?
? prompted fields ¢ 28

_ field character (high intensity, unprotected) ¢ 59

+

+ field character (low intensity, protected) ¢ 59

=command ¢ 123

A

A command, text editor e 347
access to MODS ¢ 40
action

command definition ¢ 123

for SCACALL » 153

lists ® 24

valid commands for defining « 123
adding a map definition ¢ 130
administration, accessing ¢ 39
ALL command, text editor e 353
application definition

browsing ¢ 45

copying ¢ 45

deleting * 45

updating e 45
Application Register » 21, 46

accessing ¢ 41
ASN.1 source code for a map » 132, 133
attribute byte, panel definition ¢ 59
automatic report production

using a schedule ¢ 264

B command, text editor e 347
browse facility, CAS ¢ 30
browsing a map definition 132

C

C command, text editor ¢ 347

Index 365

cache, reset for list « 104
CAS (Common Application Services) » 22
commands e 29
control file ¢ 36, 143
criteria e 29
Criteria Text panel » 119
help ¢ 25
lists » 24
maintenance ¢ 22, 39
menus e 23
messages ® 27
programming interface ¢ 23, 153
text editor ¢ 30
CHANGE command, text editor ¢ 353
class, SCACALL » 153
CMD command ¢ 123
color » 68
COLS command, text editor e 347
command definition
reloading ¢ 125
valid actions 123
commands
CAS » 29
text editor ¢ 347
comment line, list definition e 101
comments in report description ¢ 260
Common Application Services (CAS) ¢ 22
compiling a map ¢ 127
compiling ASN.1 sourcecode for a map ¢ 133
components
help ¢ 25
validation tables ¢ 27
components of a report
control break headers » 261
data formats ¢ 261
format items ¢ 260
overview e 257
page header ¢ 261
page trailer » 261
report description
comments ¢ 260
criteria identifier ® 259
description ¢ 259
group name e 259
report application ¢ 258
report exit name ¢ 259
report name e 258
report type ¢ 258
report width e 259

status ¢ 259
suit single record ¢ 259
user ID ¢ 258
report header « 261
report layout ¢ 262
report trailer e 261
sort fields 260
control break header ¢ 261
control break trailer e 261
control file » 36, 143
concatenation ¢ 36
definition ¢ 146
log » 143
searching ¢ 150
considerations ¢ 151
control statements, for panels ¢ 57
creating and maintaining maps ¢ 126
criteria » 29
definition ¢ 119
adding ¢ 119
maintaining ¢ 116
criteria identifier in report description ¢ 259

D

D command, text editor ¢ 347
data formats ¢ 261
data validation ¢ 27
database ¢ 36
date, shorthand entry ¢ 355
defining
defining a report ¢ 257, 258
map ¢ 128
report application ¢ 262
schedules » 264
Definition Report Search panel
using the test fields ® 135
DISCONN command e 123
display fields, defining 59
distributed service procedures
CA SOLVE:InfoMaster application reports,
SIMRW27Z » 291

CA SOLVE:InfoMaster system reports, SIMRW29Z

® 292
MODS reports, SADRW50Z » 288
NDB reports, SNDRWQ1Z » 289
NEWS reports, SNWRWO01Z 290
UAMS reports, SUARWO1Z » 293

366 Managed Object Development Services Guide

E

edit numbers, validating input fields ¢ 197
Edit Services » 48
editor ¢ 30

commands e 347
entry line, list definition ¢ 101
error display (HERR statement) » 68
EXEC command ¢ 123
exit procedure

criteria » 243

list ® 235

table entry validation e 249

F

feedback codes, SCACALL » 156
field characters, defaults
% (high intensity, protected) ® 59
_ (high intensity, unprotected) ® 59
+ (low intensity, protected) ¢ 59
field characters, panel definition
character mode ¢ 58
defining (#FLD) ¢ 58
hexadecimal mode ¢ 58
field types, panel definition
INPUT ¢ 59
NULL ¢ 59
OUTPUT ¢ 59
SPD ¢ 59
field validation « 27
field-level help, adding ¢ 107
FIND command, text editor ¢ 353
FIRST command, text editor ¢ 353
FLOW command, test editor e 353
format items ¢ 260
formatting help files 108
function key area, defining for panels ¢ 66
function-level help file
adding * 106
listing « 107

G

generating reports ® 263
automatically » 263
on request ¢ 263
report exit e 264
service procedure ¢ 264
group name in report description ¢ 259

H

heading list definition ¢ 101
help ¢ 25
display attributes ¢ 110
files, editing and formatting 108
hierarchy ¢ 25
index, defining 106
on messages ¢ 27,111
tutorial, defining » 106
HELP command e 123
help files
printing ¢ 105
viewing ¢ 105
help macros ¢ 108
highlighting support, Panel Services * 68, 71

I

| command, text editor ¢ 347
input fields
defining
menus ¢ 93
panels ¢ 59
validation ¢ 59
internal validation (error display) * 68

K
KEYS command ¢ 123
L

LAST command, text editor e 353
LC command, text editor e 347
library
member ¢ 49
panels ¢ 49
selection list e 52
list
defining » 97
definition ¢ 96
entry line ¢ 101
reset cache ¢ 104
list cache, reset e 104
list types
action e 24
multiple select 24
numbered (pick) ¢ 24
single select » 24
listing map definitions ¢ 131

Index 367

loading a map ¢ 128
LOCK command e 123

M

M command, text editor ¢ 347
maintaing criteria

about criteria ¢ 117

criteria exit 117

data source » 118

exit parameters ¢ 118

run time panel e 117

substituting variable data 118
maintaining maps

defintions ¢ 130

map library structure 126
Mapping Services

Abstract Syntax Notation One ¢ 295

accessing ® 39

data behavior ¢ 315

data interchange between open systems ¢ 301

data tagging ¢ 308

map components ¢ 306

map source definitions ¢ 301

mapping directives ¢ 310

primary menu e 129

referencing logical data structures from NCL e

299

type checking ¢ 315

type description and formats ¢ 314
Mapping Services, ASN.1 ¢ 295

compiler's interpretation ¢ 304

type assignments ¢ 296
Mapping Services, available types

ADB ¢ 344

ANY e 344

BIT STRING » 324

BOOLEAN e 322

CHOICE « 321

ENUMERATED e 333

EXTERNAL » 330

GeneralizedTime ¢ 340

GeneralString * 343

GraphicString ¢ 341

HEX STRING e 327

IA5String » 339

INTEGER ¢ 323

NULL » 328

NumericString ¢ 334

OBJECT IDENTIFIER * 329
ObjectDescriptor 329
OCTET STRING 327
PrintableString ¢ 335
REAL 330
SEQUENCE « 319
SEQUENCE OF ¢ 320
SET « 316
SET OF » 318
TeletexString ¢ 336
UTCTime * 340
VideotexString ¢ 337
VisibleString » 342
Mapping Services, data structure, defining
logical ® 297
physical 300
maps
about » 126
creating and maintaining maps ¢ 126
library structure 126
loading » 128
maintaining ¢ 125
maps, compiling ¢ 127, 133
primary menu * 129
viewing a map structure * 134
maps, definitions ¢ 126, 128
adding ¢ 130
browsing ¢ 132
listing » 131
maintaining ¢ 130
printing ¢ 132
MARGINS command, text editor ¢ 353
member of panel library ¢ 49
menu e 23
adding ¢ 93
input fields ¢ 93
maintaining ¢ 92
viewing ¢ 96
message definition ¢ 111
explanation 111
message help ¢ 27, 111
MODS
access authority ¢ 40
control file ® 36
database ¢ 36
overview ¢ 16
Panel List, sorting ® 53
MODS, component reports ¢ 135
formats » 135

368 Managed Object Development Services Guide

printing ¢ 134
restricting contents 135
multiple select list » 24

N

N command, text editor 347
naming standards ¢ 43
NCL interface to Report Writer ¢ 265
functions ¢ 265
generate a report 267
present Report Writer menu ¢ 274
present reports in progress list e 276
return report information ¢ 271
NEXT command, text editor ¢ 353
NOTEPAD command e 123
null fields, defining ¢ 59
NULLS command, text editor e 353
numbered list ¢ 24

0

0O command, text editor e 347
output-only fields, defining ¢ 59

P

page header ¢ 261
page trailer » 261
panel
#ALIAS control statement ¢ 62
processing options (#OPT panel control
statement) ¢ 85
queue ¢ 50
skipping ¢ 23
statistics ¢ 53
panel definition
adding ¢ 52
information e 54
listing 53
moving between libraries ¢ 54
printing ¢ 54
renaming ¢ 54
viewing in display format ¢ 53
panel definition field character, modifying « 71
panel definition, copying between libraries
different path * 140
same path ¢ 54
panel definition, designing
field characters 58
field types * 59

fields e 58
function key area ¢ 30
padding and justification 62, 65
panel control statements ¢ 57
panel error displays 68
panel library 49
accessing ¢ 140
copying panels between libraries ¢ 140
defining » 142
member ¢ 49
panel queue ¢ 50
selection list ® 52
statistics ¢ 53
panel maintenance, accessing * 39
panel path ¢ 35, 49, 139
default path (PANELS) ¢ 49
Panel Services, panel control statements
H#ALIAS » 67
HERR ¢ 68
HFLD o 71
H#NOTE » 84
HOPT o 85
HTRAILER ¢ 91
panel skipping * 23
panels
CAS Criteria Text ¢ 119
maintaining ¢ 48
searching for character strings ¢ 56
PASSWORD command e 123
path ¢ 35, 49, 139
path name, panel definition ¢ 51
pick list » 24
PQUEUE command ¢ 123
PREV command, text editor e 353
printing a map definition e 132
programming interface ¢ 23
prompted fields * 28
PSKIP command e 123

Q

Q command, text editor e 347

R

R command, text editor ¢ 347
reloading
command definitions ¢ 125
validation tables » 116
report application ¢ 258

Index 369

defining 262
report description ¢ 258
comments ¢ 260
criteria identifier ¢ 259
description 259
group name e 259
report application ¢ 258
report exit name ¢ 259
report name ¢ 258
report type ¢ 258
report width e 259
status ¢ 259
suit single record indicator ¢ 259
user ID ¢ 258
report exit
function in generating a report * 264
in report description ¢ 259
report exit procedure ¢ 277
return codes ¢ 281
share variables ¢ 278
report exit procedure, functions ¢ 277
data processing ¢ 277
initialization processing 277
termination processing ¢ 277
report generator
automatic generation ¢ 263
report exit function ¢ 264
reports on request ¢ 263
service procedure functions ¢ 264
report header 261
report layout 262
report maintenance, accessing ¢ 39
report name in report description ¢ 258
report selection, accessing ¢ 39
report trailer e 261
report type ¢ 258
report width in report description ¢ 259
Report Writer, overview e 31
report, MODS components ¢ 135
formats 135
printing ¢ 135
restricting contents ¢ 135
RESET command, text editor e 353
reset list cache » 104
RETRIEVE command e 123
return codes, SCACALL e 156

S

scheduling a report ¢ 264
searching character strings in panels ® 56
security, access to MODS » 40
selector pen detectable fields 59
service procedure
function in generating a report * 264
list © 213
menu ¢ 23, 203
return codes ¢ 284
variables ¢ 282
service procedure, distributed
CA SOLVE:InfoMaster application reports,
SIMRW27Z « 291

CA SOLVE:InfoMaster system reports, SIMRW29Z

® 292
MODS reports (SADRW50Z) » 288
NEWS reports (SNWRWO01Z) « 290
UAMS reports (SUARW01Z) » 293
service procedure, functions ¢ 281
get next record ¢ 281
get sort field values » 281
initialization processing ¢ 281
termination processing ¢ 281
shorthand time and date entry ¢ 355
single select list 24
sort fields 260
SPLIT command ¢ 123
START command e 123
status in report description ¢ 259
suit single record indicator in report description e
259
SWAP command e 123

T

TE command, text editor ¢ 347
terminals, panel error displays ¢ 68
text browse facility ¢ 30
text editor ¢ 30
ALL command ¢ 353
block commands ¢ 347
CHANGE command ¢ 353
commands ¢ 347
FIND command e 353
FIRST command ¢ 353
FLOW command e 353
FLOWM command e 353
LAST command ¢ 353

370 Managed Object Development Services Guide

MARGINS command ¢ 353
NEXT command ¢ 353
NULLS command e 353
PREV command ¢ 353
RESET command ¢ 353

text editor line commands

TF command, text editor ¢ 347
TFM command, text editor e 347

(*347

) » 347

A (After) e 347

B (Before) o 347

C (Copy) » 347

COLS » 347

D (Delete) » 347

| (Insert) » 347

LC (Lowercase) » 347
M (Move) » 347

N (Add to Notepad) 347
O (Overlay) » 347

Q (SAVE BLOCK) » 347
QA ¢ 347

QB ¢ 347

R (Repeat) ¢ 347

TE (Text Entry) 347
TF (Text Flow) e 347

TFM (Text Flow to Margins) ¢ 347

TS (Text Split) » 347
UC (Uppercase) 347

time, shorthand entry ¢ 355

trailer panel control statement ¢ 91
TS command, text editor e 347

tutorial, defining * 106

U

UC command, text editor ¢ 347
user comments in panel definitions, #NOTE panel

user ID in report description ¢ 258

Vv

validation table entry, adding ¢ 115
validation table, reloading » 116

control stateme ¢ 84

validation, data » 27
VALIGN operand ¢ 63
viewing a map structure ¢ 134

w

WHERE command ¢ 123
window-level help file, adding « 107

Index 371

	CA Mainframe Network Management Managed Object Development Services Guide
	Contents
	1: Introduction
	MODS Facilities
	What is MODS?
	Notational Conventions
	Related Documentation

	Concepts and Facilities
	MODS Facilities
	Application Register
	Panel Maintenance
	Common Application Services (CAS)
	CAS Programming Interface
	Menus
	Lists
	Help
	Help Hierarchy

	Messages
	Validation
	Tables
	Prompted Fields
	Other Types of Validation

	Criteria
	Commands
	Text Editor
	Text Browse Facility

	Function Key Areas

	Report Maintenance
	Mapping Services
	Maps and Mapped Data Objects
	Map Library

	MODS Administration Facilities
	Panel Library Maintenance
	Concatenation Path

	MODS Control File Maintenance
	Control File Maintenance Facilities
	Control File Concatenation
	Merged View
	Automatic Promotion
	Manual Demotion (Lodgement)
	Sharing Control Files

	WebCenter

	2: Accessing the MODS and CAS Facilities
	Accessing MODS Facilities
	MODS Primary Menu
	MODS Access Authority

	Accessing CAS Facilities
	CAS Maintenance Menu
	CAS Application Components

	3: Maintaining Application Components
	Naming Standards
	Application Definitions

	Maintaining Application Component Definitions
	Registering an Application
	Application Definitions
	Defining an Application
	Maintaining Application Groups

	Maintaining Panels
	Panel Maintenance
	Concepts and Terminology
	Retrieving Panels From Panel Libraries

	Defining and Maintaining Panels
	MODS : Panel Maintenance Menu
	Library Selection List
	Selecting a Panel Maintenance Function
	Adding a Panel Definition
	Listing Panel Definitions
	Special List Commands
	Viewing a Panel Definition in Display Format
	Printing a Panel Definition
	Renaming a Panel Definition
	Display Information About a Panel Definition
	Moving and Copying Panel Definitions Between Libraries
	Panel Move/Copy List
	Search Panels for a Character String

	Designing Panels
	Panel Control Statements
	Data in Panels
	Panel Design
	Field Characters
	Field Types
	Allowing Long Field Names in Short Fields

	Output Padding and Justification
	Field-Level Justification
	Variable-Level Justification

	Input Padding and Justification
	Displaying Function Key Prompts

	Panel Statements
	#ALIAS Statement
	#ERR Statement
	#FLD Statement
	#NOTE Statement
	#OPT Statement
	#TRAILER Statement

	Maintaining Menus
	Adding a Menu Definition
	Viewing a Menu Definition

	Maintaining Lists
	Defining a List
	List Description Panel
	List Criteria Panel
	List Entry Line Presentation Attributes Panel
	List Format Panel
	List Entry Line Fields Panel
	Resetting the List Cache

	Maintaining Help
	Help Definitions
	Printing Help Files
	Viewing Help Files
	Maintaining Function-Level Help
	Adding a Function-Level Help File
	Listing Function-Level Help Files

	Maintaining Window-Level Help
	Adding a Window-Level Help File

	Maintaining Field-Level Help
	Adding a Field-Level Help File

	Facilities for Help Text Editing and Formatting
	Help Macros
	Display Attributes

	Maintaining Messages
	Message Definitions
	Defining Message Definitions
	Viewing a Message Definition

	Maintaining Tables
	Defining and Maintaining Table Definitions
	Maintaining Table Entries
	Adding a Table Entry

	Reloading Validation Tables

	Maintaining Criteria
	Criteria Definitions
	Run Time Panel
	Criteria Exit
	Data Source
	Exit Parameters
	Substituting Variable Data

	Defining Criteria

	Maintaining Commands
	Command Definitions
	Define a Command
	Using the Action Field

	Reloading Command Definitions

	Maintaining Maps
	Map Definitions
	Map Library Structure
	Creating and Maintaining the Map Source
	Compiling a Map
	Loading a Map

	Defining a Map
	Mapping Services Primary Menu
	Adding a Map Definition

	Maintaining Map Definitions
	Listing Map Definitions
	Browsing the ASN.1 Source Code for a Map
	Printing a Map Definition and Its ASN.1 Source Code
	Compiling a Map’s ASN.1 Source Code
	Viewing a Map Structure

	Printing MODS Component Reports
	MODS Component Reports
	Printing Components Using the REP Option

	4: MODS Administration
	Maintaining Panel Libraries
	Panel Libraries
	Accessing the Panel Library Maintenance Facilities
	Copying Panels Between Libraries
	Selecting Panels to Copy

	Maintaining Library Definitions

	Maintaining the MODS Control File
	Control Files
	Accessing the Control File Maintenance Facilities

	Browsing Definitions in a Control File
	Copying and Moving Definitions Between Control Files
	Deleting Definitions From a Control File
	Using the Audit Log
	Searching the Control File
	Considerations

	Resetting the MODS Cache

	5: CAS Programming Interface ($CACALL)
	CAS Interface Overview
	$CACALL Functions
	$CACALL API
	Input Variables
	Return Variables
	Return Codes
	Feedback Codes

	Action=BUILD Class=CRITERIA
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=BUILD Class=FKA
	Input Variables
	Return Variables
	Feedback Codes
	Example
	Predefined Function Key Areas

	Action=BUILD Class=IDTEXT
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=BUILD Class=MESSAGE
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=DISPLAY Class=DATA
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=DISPLAY Class=HELP
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=DISPLAY Class=LIST
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=DISPLAY Class=MENU
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=DISPLAY Class=MESSAGE
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=EDIT Class=DATA
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=EXECUTE Class=COMMAND
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=LOAD Class=COMMAND
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=GET Class=TENTRY
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=LOAD Class=PDOMAIN
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=LOAD Class=TABLE
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=NAVIGATE Class=PDOMAIN
	Input Variables
	Return Variables
	Feedback Codes
	Example

	Action=VALIDATE Class=DATA
	Input Variables
	Return Variables
	Feedback Codes
	Example

	6: Menu Service Procedure Interface
	Menu Service Procedures
	Menu Service Procedure Statements
	$MHOPT=ENTRY Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$MHOPT=SELECT Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$MHOPT=RETURN Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$MHOPT=EXIT Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$MHOPT=COMMAND
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$MHOPT=TIMEOUT Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	7: List Service Procedure Interface
	List Service Procedures
	List Service Procedure Statements
	&$LHOPT=ACTION Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$LHOPT=ADD Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$LHOPT=ALL Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$LHOPT=COMMAND Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$LHOPT=GET Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$LHOPT=INIT Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$LHOPT=TERM Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	8: List Exit Procedure Interface
	List Exit Procedures
	List Exit Procedure Statements
	&$LHOPT=INIT Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$LHOPT=ENTRY Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	$LHOPT=TERM Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	9: Criteria Exit Procedure Interface
	Criteria Exit Procedures
	Criteria Exit Procedure Statements
	&$CROPT=INIT Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$CROPT=TERM Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	10: Table Entry Validation Exit Procedure Interface
	Table Entry Validation Exit Procedures
	Table Entry Validation Exit Procedure Statements
	&$VMEXFUNC=ADD Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$VMEXFUNC=DELETE Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	&$VMEXFUNC=UPDATE Statement
	Read-Only Variables
	Modifiable Variables
	Return Codes

	11: Report Writer
	Understanding Report Writer
	Report Writer Facilities
	Defining a Report
	Viewing a Report Layout
	Generating Reports
	Printing Reports
	Report Exit Procedures
	Reports in Progress

	Security
	Report Definitions
	Report Description
	Report Application
	Report Type
	User ID
	Report Name
	Group Name
	Description
	Status
	Report Width
	Suit Single Record Indicator
	Criteria Identifier
	Report Exit Name
	Comments

	Sort Fields
	Format Items
	Report Header
	Page Header
	Data Formats
	Control Break Headers
	Control Break Trailers
	Page Trailer
	Report Trailer
	Report Layout

	Defining a Report Application
	Report Generator
	Service Procedure
	Report Exit

	Defining a Schedule

	NCL Interface
	Notational Conventions
	Interface Syntax

	$RWCALL OPT=GENERATE
	Operands
	Variables
	Return Codes
	Examples
	Notes

	$RWCALL OPT=INFO
	Use
	Operands
	Return Codes
	Examples
	Notes

	$RWCALL OPT=MENU
	Use
	Operands
	Return Codes
	Examples

	$RWCALL OPT=STATUS
	Use
	Operands
	Return Codes
	Examples

	Report Exit Procedure
	Function
	Variables
	Return Codes
	Notes

	Service Procedure
	Function
	Variables
	Return Codes

	Generator Logic Flow
	Distributed Service Procedures
	Distributed Service Procedures
	MODS Reports
	NDB Reports
	NEWS Reports
	CA SOLVE:InfoMaster Application Reports
	CA SOLVE:InfoMaster System Reports
	UAMS Reports

	12: Mapping Services Facility
	Mapping Services
	Abstract Syntax Notation One
	ASN.1 Type Assignments
	Defining the Logical Structure of Data
	Referencing Logical Data Structures from NCL
	Defining the Physical Structure of Data
	Component Tags
	Local Form

	Data Interchange Between Open Systems
	Map Source Definitions
	Maps and ASN.1 Modules
	Mapping Services Considerations

	ASN.1 Module Layout
	ASN.1 Comments
	Module Identifier
	Module Definitions
	Exports
	Imports
	Type Assignments
	Value Assignments

	ASN.1 Compiler’s Interpretation of the ASN.1 Module
	Use of Comments
	Module Identifier
	Default Tagging
	Exports
	Imports
	Type Assignments
	Value Assignments

	Map Components
	Component Definition
	Mapped Data Object as a Component
	Component Name Hierarchy
	Map Closure

	Data Tagging
	ASN.1 Tags
	Explicit and Implicit Tagging
	MDO Tags

	Mapping Directives
	MDO Tag Generation
	Local Form Control
	Default Formatting
	Local Form for INTEGER
	External Form for REAL

	Type Description and Formats
	ASN.1 Types
	NCL Reference, Type Checking, and Data Behavior
	SET Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	SET OF Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	SEQUENCE Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	SEQUENCE OF Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	CHOICE Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	BOOLEAN Type
	External Form--Input
	External Form--Output
	Local Form and Behavior
	Named Values
	Constraints

	INTEGER Type
	External Form--Input
	External Form--Output
	Local Form and Behavior
	Named Values
	Constraints

	BIT STRING Type
	Standard BIT STRING Access
	External Form--Input
	External Form--Output
	Local Form and Behavior
	Named Values
	Constraints

	Boolean BIT STRING Access
	External Form--Input
	External Form--Output
	Local Form and Behavior
	Named Values
	Constraints

	OCTET STRING Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	HEX STRING Type
	External Form--Input
	External Form--Output
	Local Form and Behavior
	Named Values
	Constraints

	NULL Type
	External Form--Input
	External Form--Output
	Local Form and Behavior
	Named Values
	Constraints

	OBJECT IDENTIFIER Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	ObjectDescriptor Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	EXTERNAL Type
	REAL Type
	External Form--Input
	External Form--Output
	Local Form and Behavior
	Named Values
	Constraints

	ENUMERATED Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	NumericString Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	PrintableString Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	TeletexString Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	VideotexString Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	IA5String Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	UTCTime Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	GeneralizedTime Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	GraphicString Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	VisibleString Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	GeneralString Type
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	ANY and ADB Types
	External Form--Input and Output
	Local Form and Behavior
	Named Values
	Constraints

	A: Text Editor Commands
	Using the Text Editor Commands
	Line Commands
	Line Command Examples

	Primary Commands

	B: Shorthand Time and Date Formats
	Shorthand Time and Date Formats
	Shorthand Time Formats (HH.MM)
	Shorthand Time Formats (HH.MM.SS)
	Shorthand Date Formats

	C: List Panel Attributes
	List Panel Attributes

	D: Web File Utilities
	Web File System
	Accessing Web File Utilities
	Top Level Directory Summary Panel
	Directory Panel for Selected Directory

	Index

