CA Process Automation

Content Designer Reference
Release 04.3.00

eeeeeeeeeeee

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

CA Catalyst for CA Service Desk Manager (CA Catalyst Connector for CA SDM)
CA Client Automation (formerly CA IT Client Manager)

CA Configuration Automation (formerly CA Cohesion® Application Configuration
Manager)

CA Configuration Management Database (CA CMDB)
CA eHealth®
CA Embedded Entitlements Manager (CA EEM)

CA Infrastructure Insight (formerly Bundle: CA Spectrum IM & CA NetQoS Reporter
Analyzer combined)

CA NSM

CA Process Automation (formerly CA IT Process Automation Manager)

CA Service Catalog

CA Service Desk Manager (CA SDM)

CA Service Operations Insight (CA SOI) (formerly CA Spectrum® Service Assurance)
CA SiteMinder®

CA Workload Automation AE

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents

Chapter 1: Introduction to Operators 19
OPEIATON OVEIVIEW..cciiiiiiiiiiiiiiiiiieeeieeeeeeeteeeteteteteteteteeetetetetetetetetetetetetetetetererererereteteretereteretereteteretererererererererererererereren 19
Where OPerators Can RUN ...i..uiiiiiiee e ccieeeeteee sttt e ee et e e e sttt e e e stteeesesaeeesasseee e ssaeesanseasesssseeeanssseesansseeesssseaeassaeesnnsnes 21
Common Properties Of @ll OPEratorsc.c.ui ittt ettt e st e bt e s b e s bt e sbeeesaeesbeeeneeeane 27
EXECUtioN SETtiNGS (All OPEIAtOrS) ...ccueiiueiriieiieiteetieett ettt ettt sttt sb e et ettt e satesbe e bt e b e e abesatesatesaeesaeesbeenteentenas 27
Common Properties Of OPErators iN PrOCESSESccicuieieiiiieieireeeiiteeeesteeeeeireeesssbeesessteeesasseeesssseeeesssseesassasessnsees 32
(o Tol=E T =4 €] o 1 U] IO PPNt 33
SIMUIGEION PrOPEITIES. ..ceiviieiieeitieee ettt ettt st st e st e e st e e sat e e sa b e e easeesabeesnneesabeesaneesaseesaneesn 34
INTOIMATION PrOPEITIES. . eeuiieiiieeeee ettt ettt et et b e s bt e bt e e bt e e bt e s bt e e sbee s bt e e sateebeeesnneenees 37
Common Properties of Operators in SChEAUIESoouii i s 38
(07 1= o Lo E T Y=l 4 [T4 USSP 39
[V Yo TV YRV g el [Te [T I D Y <R 39
ManNUAIY EXCIUAEA DAtESeeiuvieeiieiiieeiee sttt ettt et sttt et s bt e b e s bt s bt e sab et e bt e s b e e e beesabeeesntesbeeesneeennees 40
I 11 S [1SS 40
Common Output Parameters for all OPEratorsooii ettt sttt e s b bt e sbeeesaeeeane 41
Chapter 2: Standard Operators 43
Y a0 1T =) o] RN 43
LaY U T =10 o (=1 (=T PPt 43
(o] 00T 0 =T oL (O] o 1= - | (o] SO PPt 43
INPUL PArameEters ...cceiiiiiiiiiiiiiiiieiieeeeeee ettt ettt ettt e et et et et et et et et et et et et e s et et et e s e s et et erereeeseeeserererererererererererererens 44
R (o] N U Lol ol T O] oT=] - {0 SO OROTRPOON 44
LY U T 10 o (= (=T PPNt 45
R] ol 2= 11 (VT AN @ o= - | o | U PPRRNt 46
LY U T 10 o (= (=T PPNt 46
PrOCESS PrOZreSS O P atOr .. s s s s s s s s s e s s s s s s s s e s n s e s n e e s nnsenaneaeeeanns 47
INPUL PArameEters ...cceiiiiiiiiiiiiiieiciieeeee ettt e e e e et et et et et et et et e tet et et e s et et et et e s et eterereseserarerererererererererererererens 47
(O 11) 4o 101 S T TS TP 47
F AN Te 0] o T=] = o] ST PPRRRt 48
(0107 1= - 1 (o] SHR PP PPPPPPPPPTPRE 48
=] @ =] =) o T TP TP PP PP TTPTPT 49
INPUL PAramELers ..oeieiieiiiiiiiiiiiiiieeeeeeeeeeete ettt ettt e e e e e e et e e e e et e tet e e e e e retet et et et et et et et et erareterereeesererererererererererererererenens 49
How the Reset Operator Works with the LOOP OPeratoreeeeiiiiiiiiiie ettt e e e e e e eaanaes 50
[eToT o @] 0 T=T - o TP TR 51
INPUL PAramELers ..ooieiieiiiiiiiiiiiiiieeeeeeeeeeee ettt r e e e e et et e e e e e teter et e reeet et e s et et et et et ereraretererereserererererererererererererererens 52
OUTPUL ParamEers oo s s s se s e s e s e s e s e s e s e s e e e s e s e s e sesesesesesasssasasasssnsasssssnsnsssnsnsesesasnsnsnns 54

Contents 5

Reset the Loop Operator Manually in @ PrOCESSccc.eiiiiiiiiiiiieeieeeee ettt 55

ChaNEE Lan@ OPEIator ..ccouueeeieiiiieeieeette ettt et e ettt et e st e e bt e sttt e bt e sab et e bt e st et e beesabeesbeesabeeeaseesabeeeseesabeesneesbaeeneenane 55
INPUL PAramMELEIS ..oiiiiiiiiiiiiiiiiiiiceeeeeeeeeeeee ettt et e e et et et et e eeeetete e et e te e et et et et et et et et ereraretereretererererererererererererererererens 55
(ol o1 o] g O oT=] - | o] cH PP T TP 55
INPUL PAramMELEIS .ceiiiiiiiiiiiiiiiieiiieeeeeeeeee ettt e e e et e e e e et e eeteeete e et et et et et et et et et et et ereratetereretererererererererererererererererens 56
[0TSR SURPTPPRRIN 56
LINK PrOPEITIES . .eeeeeeeietteete ettt sttt ettt s e e b e s bt e bt e s bt e e bt e s bt e e bt e e be e e bbe s be e e bt e e be e e sabeeabteesaneeneas 56
Chapter 3: Catalyst 59
LCT=T Tt o Tl U 1Y O] o 1T =L] O PP PPPRPP 59
(=) (-l 0] o1 - 1 (o] S T PP 59
(D] = @ T 1= =1 o] PSR 61
= Tol UL =@ 1= = | o OO OOPPPPPTRPPOt 62
LCT=1 RO ¢ T=T =1 {0 P PP PP PPPTPP 70
SUDSCrIDETOCHANEES OPEIAtON .. ciiiiiitiietieeiee ettt ettt ettt et sttt et s et sat e s bt s bt e sabe e s bt e sabe e e st e sabeeenseesbeeenneenane 71
o B L= =T g Tol WA 1Y W O o T=] - | o] TP 74
(07] =1 1L LoV g Y = T =T 1 =] =T TSP 77
Chapter 4. Command Execution 79
YU oI e o == 0 AT O 01T =) o TR 79
INPUT PAramELEIS ettt e et e e e e s e s a e e e e e s e s ar et e e e e e s nnnaee 80
OUTPUL ParamEers oo s e s e s e s e s e s e s e e e s e s e s e s e s e s e s e s e s e s e sasasasasasasasssasasasasasasesnsnsnsens 83
YU oI ol T o A o 1T - | o TR 84
LaY U T =10 o (=1 (=T PPNt 84
(010} 4o 10N Al o [=T 4 =] o] TSR 90
RUN SSH COMMANT OPEIATON . ..viiiieeiiie ettt sttt e ettt e eetee e st e e e s e e esssaeeesaaeaeesstaeeeasseaeessseeeessseeesansseessnsseeaansseeesannes 91
INPUL PArameEters ..ccceiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee ettt ettt e e et et et et et et et et et et et et et et et et e s e s et et e reresesereterererererererererererererens 91
(010} 4o 10N Al o [=T 4 =] o] TSR 98
(0] 1=1) o] gl 2o o {3 TSP 100
ST [4T o L= SR 101
RUN SSH SCIIPT OPEIATON ..uuviiiiiiiiiieiiittet e e ettt e e e ettt e e e s s st ettt e e e s e sasbateeeeesesassbesaeeessssassssaaaeesssansssaaesesssnnnnnens 102
INPUL PArameEters ..coiiiiiiiiiiiiiiieeeieeeeeeeeeeeeee ettt e et et et et et et et et e s et et et et et et et et et et e s et et eresetaserererererererererererererens 103
(1014 o1 0Ll o [=T 4 =] o] TP 112
(0] 1=1) o] gl 2o o {3 TSP 113
3T [4 o =SSR 115
U T =] oY=l A 0o Ya Y a =T o @) 01T 1 o | oSS 118
INPUL PAramMELOrsS ..ceeiiiiiiiiiiiiiiieieeieeeeeeeeeee ettt e et e e e e et et e eeretete e et e rete s e s et et e s e s e s et ereraretererarererererererererererererererens 118
(O 1014 o 10 Ll o= [=T 4 =] =] TR 125
(01 1=1) o] gl 2o o {3 TSP 127
3T [4T o =S RS 128
RO T =] Lo Y= Yol oL @] o 1T | o SR 130

6 Content Designer Reference

INPUT PArameTersS ..o e e e e e e s s r b e e e e e e aas 131

(010 o TV L =T = T 4 1= =T PSP PP PO PPPRTRTN 137

(0] 1=1) o] gl 2o] o £SO T T TP 138

3T [4T o L= SRS 139
Chapter 5: Databases 143
(0] 1ol L=l T =Y o =1 =T OO OO P TSR UPRRP

MSSQL Server Parameters
YA O 1 e T [4 1= =T O PP P TP OPPRT PPN
Y NN 2 - 1 0 (T TSR

Operator Level Properties
Database SErver LOZIN ParamEterscc.ueiiiuiieeeiiee e ciiee e e sttt e eeite e e siteeeestteeeseasteeesbbaeeastaeesessaeeesnssaeeannsaessnnsaeas 147
Bulk Insert into Database Operator

INPUT PArameETEIS i e e s r e e e e s e s a e e e e s s b et e s e e e s
OUTPUL PAramELErS ..ccieiiiiiiiiiiie ettt e e s s e et e e e s e b e e et e e e s e sranaeeee s
Delete from Database OPEIrator.......cuuii i iiieeecieee e citeeeertte e e erte e e e st eeeetre e e settaeeesabaeeeassaeesaasaaeeasbeseaastaeseassseesnsrenaans
LY o0 L T 10 (=1 (=T E PPNt
OUTPUL PAramMELErS ..ceiiiiiiiiieiiiee ettt e e s e e et e e e s e a e e e e e e s e saranaeeee s
Get Database SChEmM@ OPEIator......c.ui i ittt sttt et st e st e e bt e st e e e bt e st e e eabeesabeeeabeesabeesaseesabeesaneess
LY o0 L T 10 (=1 (=T E PPNt
(O 1014 o1 ULl o= [=T 4 =] o] TP
(O =TI - To SN O o 1T = o | PP PPPPPRPPRE
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens
OUTPUL ParamEers oo s e s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasnsssasasasasasesesnsnss
(O R (oY g=To I o Tol=To (U] f N @] 1= = o oSSR
FaY o0 L e T =10 (=L (=T PPNt
Output Parameters
LGy =1 o] LI @ o 1T o) SRR
INPUL PArameELers ..cciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt et et et e e et et et et e s et et et et et et et et e s et e s et etereseteserererererererererererererene
(1014 o1 0Ll o [=T 4 1= o] TR
(CT A U =Te I o Tl =l 0 o 1=T -1 o] PSR
Input Parameters
OUTPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s s sesesasasasasasasasasasasasesesesesnss
(O Y A=T 5 (o] W O] o1=] - | o] (PP
LY o TU L T €T 0 4 L1 (=] E PP PP PP PPPPPPPPRT
Output Parameters
Get View Operator
INPUL PAramMELers ..oeeeiiiiiiiiiiiiiieieiiieeeeeeeeeete ettt ettt e et e e e e et e e e eeteretet et e reteter et et et e s et et e s e s et etererarererererererererererererererens
Output Parameters
INSErt iNtO Database OPEIAtON ..ocoeiiiiiieee ettt e e e e e e e st e e e e e e e s bbb e e eeeeesesbaaaeaeaeeaassataeaeaaesanssssseesaassanssrnns
INPUL Par@mMETEIS ouuieiieieieiiiee ettt e ettt e s e e et e et ta e e e e et eteaaa e e e eeeeataa s seeeeaaetaasseeeeesssansssseeenssssnnseseeeessnnnns

Contents 7

OUTPUL PAramELEIS oottt et st e e s s et e s e e s et b e e e s sb b e e s s sre s e sennneeesnaeeeeas 168

QUETY Database OPEIator ...c...ii ittt ettt st e et e st e e bt e s bt e e bt e st e e e bt e sa bt e e bt e st e e e bt e sabeeeabeesabeesanee s 170
INPUL PAramMELEIS .ooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeete ettt et e et e e e e et e e et e eeeeteteee e et e eetete e et e ae e et e e et erereretereretererererererererererenerenenens 170
(O 1014 o1 0Ll o= [=T 4 = =] T PP 171
{0 I R o ¢ =Yo I o o Tol=To [I OO PP UPOR PPN 174
Select from Database OPEratoroo.ii ittt ettt et st e bt e e s bt e e s bt e e sabeesate e sareenateesareennees 176
INPUT PArameETErsS ..o e e e s e e e s s a e e s e e e 176
(O 1014 o1 0Ll o= [=T 4 = o] T T TP 178
(U1 2e LR W DY =] o = I O] o T=] =1 o] SR 179
INPUL PArameETErsS ..o e e e s e e e s s r e s e s e e e s aas 179
OUTPUE PAramELEIS oneeiiiiiieee ittt e st a e e s s et e s s sb e s et ba e e s sb et e s s sre e e sennneeesnaeeeeas 180
Chapter 6: Date-Time 183
Check Calendar OPEIatoreiiuie ettt ettt sttt e st e et e st e e bt e s bt e eabeesabeeeaseesabeesabeesabeesaseesabeesnneens 183
INPUT PAramETEIS it e et r e e e s e s e a et e e e s e st e e e e e e e s aas 183
(1014 o1 0Ll o= [=T 4 =] o] TR 185
(0 =Te QD1 (=R N0 TN O] o 1T =] o USRS 185
INPUT PAramETEIS it e e s e e e e e s e s a et e e e s e s b et et e e e s e 185
OUTPUL PAramMeLErS ..ccieiiiiiiiiiiiei et e e e st e et e s e s e b e a et e e e s e s aranaeeee s 186
Chapter 7: Directory Services 187
LDAP LOZIN PAramMeETErS . ..uuvviiieiieiiiiiiiteteeeeesiiteteeeessesatateeeeesesaasbataeeeesesssbateeeeesssasbsraeasssssasssssaaesesssnsssssseesesssnsnsnnens 187
Add Computer t0 DOMAIN OPEIator.....iiiiieiciiiiiee e e e cccttree e e e eerrre e e e e e s erbteeeeeeesesssstateeeeeeesaststaeeseessaassssranaesssensssnes 188
FaY o0 L T =10 (=L (=T PPNt 188
(1014 o1 0Ll o [=T 4 =] o] TR 189
3T [4T o L= S SS 189
(O] o1 1o T ol o= 11 [0 < USSP 189
Fi¥e [UL =T Jo M CT o T8 o W @ o T=T - o PR PURRRE 190
L] o0 Ll T =10 (= (=T PPNt 190
OUTPUL ParamEers oo s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasesasesesnss 190
3T [4T o L= SRS 190
(O] o1 1o T ol o= 11 [0 <SSP 191
(O (= CT o TUT o O] =T -1 (o] S PPNt 191
FaY oV T 10 (= (=T S PPNt 191
OUTPUL ParamEers oo s e s s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesesssasasasnsnsasssssssnsnsnsnsesnsnsnnnss 193
3T [4T o =S RS 194
(O] o1 = o T ol =11 [0 < SR 194
(O1g 1= O] o [=Toial O] o 1T =1 oY ST 195
LYoV A T 10 (= (=T PPNt 195
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 197
3T [4T o L= SRS 197

8 Content Designer Reference

(O] o1l 1 o T gl 2= 11 [V PP UPPPN 198

Create Organizational UNit OPEratoreioeie ettt ettt ettt e et st e et e s beeeabeesabeesanee s 199
INPUL PAramMELEIS .ooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeete ettt et e et e e e e et e e et e eeeeteteee e et e eetete e et e ae e et e e et erereretereretererererererererererenerenenens 199
(O 1014 o1 0Ll o= [=T 4 = =] T PP 199
3T [4T o L= SRS
OPEIALON FAIIUIE ...t ettt et st e et e s bt e e bt e sa b e e eabeesabeeeabeesabeeeaseesabeeenneenn
Create User Operator
INPUL PAramMELEIS «ooeiiiiiiiiiiiiiiiieiieeeeeee ettt ettt e et et et et et et e eeeeteteeeteee e et e te e et et et eretetererereteretereeererererererererererenererens 200
(O 101 4o 10 Ll o= [=T 4 = o] T T U PP 202
EXAIMIPIE ettt ettt e e bt bt e e bt e s bt e e bt e s bt e e bt e s bt e e bt e s beeennee s beeenneenare
OPEIALON FAIIUIE ...ttt s bt e e bt e sab e et e esa b e e eabeesa b e e eabeesabeeeaseesabeeeaneenn
Delete Object Operator
FaY o0 T 10 (=1 (=T E PPNt
(1014 o1 0Ll o= [=T 4 =] o] PP 205
EXAIMPIES ..ttt ettt s e st e et e st e et e e st e e e bt e s bt e e bt e e b e e e bt e s beeebee e beeennee e beeenneenate 205
Get DOMaiN CONLIOIEr OPEIatOrii ittt ettt st e e st e et e st e e bee st e e eabeesabeesaseesabeesaneens 211
Input Parameters
(1014 o1 0Ll o= [=T 4 =] o] TR 212
[T [4T o L= RS PS 213
OPEIALON FAIIUIE .. ettt ettt et e st e et e st e e eabeesabeesabeesabeesaseesabeesaseesabaesnneens 213
Get DOrmant ACCOUNT OPEIatOr.....cciiiiiiiiiiiiiii ittt e e e s r et e e e s e s eraaareee s 214
Input Parameters
(1014 o 10 Ll o= [=T 4 = o] TP 215
(CT= 0] o J[=Tot 0 0 1=T - o] PSR 216
INPUL PArameELers ..cciiiiiiiiiiiiiiieieieeeeeeeeeeeee ettt e e e et et et et et et et et et et et et et et e s et etete s et et et eseteserererarerererererererererens 217
OUTPUL ParamEers oo s s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasasasasasasasesesasnsnss 224
Examples......cccoovveeeennn.
Operator Failure
(O V=T O] o T=T =) o] PPNt
INPUL PAramEters ..cooiiiiiiiiiiiiiiiieiieeeeeeeeeeeee ettt ettt e et et et et et et et e s et et et et e s et et et etere s et eteresesasesererererererererererenerens 230
OUTPUL ParamEers oo e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasasasasasasasssasesnsnss 233
T T2 0] LTI PSSR USRS 235
(0] 1= = o ol o= | (U] S RURR 237
Vo)V N @ oY [=Tot @ =T - oY SRS 237
INPUL PAramMELEIS ..ceeiiiiiiiiiiiiiiieieeceeeeeeeeeeeee ettt ettt e e et e e e e et e e et e reteteretereteter et et e s et et et ererareterererererererererererererererererens 237
OUTPUL ParamEers oo s e e s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesssasasasasssnsasssnsnsnsnsnsesnsnsnsnss 238
T Y221 o] LTSS UUSURN 238
(0] 1< = o ol 2= | (U] o U UURR 238
RemMOVEe USEr from GroUP OPEIator......cccciiiiicieeeeiiieeeeiieeesetteeeesteeeesssreeessasseeesssseesassseeesasseesssseesesssseessnssneesnssesenns 238
INPUL PAramMELOrsS ..ceeiiiiiiiiiiiiiiieieeieeeeeeeeeee ettt e et e e e e et et e eeretete e et e rete s e s et et e s e s e s et ereraretererarererererererererererererererens

Output Parameters

T Y021 o] LTSS UUSURN

Contents 9

OPEIALON FAIIUIE ...t ettt e st e e bt e s bt e e bt esa b e e eabee st e e eabeesabeesabeesabeeenneens
Update Object AttriDULES OPEratorioiii ittt ettt ettt ettt e st e sbe e e sabe e s st e e sabeesabeesabeesabeesabeesaneens
INPUL PAramMELEIS .ooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeete ettt et e et e e e e et e e et e eeeeteteee e et e eetete e et e ae e et e e et erereretereretererererererererererenerenenens
(O 1014 o1 0Ll o= [=T 4 = =] T PP
(O] o1 =1 o T ol == 11 [0TSR
Update User Home Directory Operator
Input Parameters
(O 1014 o1 0Ll o= [=T 4 = o] T T TP
[T [4T o L= SRS

OPEIALON FAIIUIE ...ttt et s e e bt e st e et e e sa b e e eabeesa b e e eabeesabeeeabeesabeesaneess
Add an SSL Certificate t0 CA ProCess AUTOMATIONuuuuueuuuuuureriiuirieieisrererererererersrerererererer.......—.—.—.—.—.—.—.—.—.——....—.—.—.. 246

Chapter 8: Email 249

Common EMail Operator ParameELersoi e iiiiiiieeiee ettt ettt ettt ettt e et e st e e abee st e sabeesabeeeaseesabeesnnee s 249
MESSAZE FIlLEI CILEITA ..eeeueeieiieetee ettt et e st e et e st e e bt e s bt e et e e sab e e e bt e sabeesabeesabeesneesabeeeseenane 250
Y T Y QY T oY=l oW =T £ 1 41 €= SRS 252
(O N o] (o LT @] o 1T &1 o (USRS
INPUT PAramETEIS it e e s e e e e e s e s a et e e e s e s b et et e e e s e
OUTPUL PAramMeLErS ..ccieiiiiiiiiiiiei et e e e st e et e s e s e b e a et e e e s e s aranaeeee s
] e P T O] oY= =1 o] SRS
LY o0 L T 10 (=1 (=T S PPNt
(1014 o 10 Ll o= [=T 4 =] o] PP
D]l o] fo [T @] o Y=Y = o SRS
INPUL PArameELers ..cciiiiiiiiiiiiiiieieieeeeeeeeeeeee ettt e e e et et et et et et et et et et et et et et e s et etete s et et et eseteserererarerererererererererens
(1014 o1 0Ll o [=T 4 1= o] TR
1T 2] o] LSRR USURN
Get Email Content Operator
INPUL PArameELers ..ccciiiiiiiiiiiiiiieeeeieeeeeeeeeeeee ettt et et et et et et e e et et et e ter et et et e s et et et e s et etetesetesererarererererererererenerens
OUTPUL ParamEers oo s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasesasesesnss
(CT= o T N @l T0 g A O =T - | o | SRR
FaY o0 Ll T =10 (= (=T S PP P PRt

Output Parameters

Oyl oo T I S a1V o] TN @ o 1T o RS 260
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens 261
(O 1014 o 10 Ll o [=T 4 = =] TSR 262

(O o T L 0 o 1T =1 o SRR 263
Input Parameters
OUTPUL ParamBers oo e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasssasasasnsasssssssnsnsnsnsesnsnsnanss 263

Y oY =35 =TT I @ o T=T =1 o SR 264
LYoV T 10 (= (=T S PPNt 265
(O 1014 o 10 Ll o= [=T 4 = =] TSR 265

10 Content Designer Reference

PUIEE FOIARI OPEIALON ..ttt ettt st e et e st e et esab e e e bt e sa bt e eabeesabeeeabeesabeeeaneesabaeenseenane 266

[INPUT PArameETersS ..o e e e e e s s a e e e e e aas 266

(O 1014 o1 0Ll o= [=T 4 = o] T T TP 266
o F= Laa Tl o] (o L= ol @ o T=T - o oSSR 266

INPUL PAramMELEIS ..oiiiiiiiiiiiiiiiiieieeceeeeeee ettt ettt et e et et e e et e e et e eeeeteteteteeetete e et et e te e et et et eterereteretetererererererererererenenenerens 267

OUTPUL PAramELerS .ottt s e e s s bt e s s s b e e e s b a e e s sb e e e s s sre e e sannneeesnaeeeeas 267
Send Email Operator

INPUL PAramMELEIS «ooeiiiiiiiiiiiiiiiieiieeeeeee ettt ettt e et et et et et et e eeeeteteeeteee e et e te e et et et eretetererereteretereeererererererererererenererens 268

(O 101 4o 10 Ll o= [=T 4 = o] T T U PP 270
Chapter 9: File Management 271
Compress File Operator

Input Parameters

Output Parameters
COPY FIlE OPEIALON ..ottt ettt ettt e st e et e st e e s bt e s a b e e eabeesabeeeabeesabeeenbeesabeeeabeesateeeaseesabeesaneens

LY o0 L T 10 (=1 (=T E PP PPPPPPTRt

Output Parameters
Create Folder Operator
INPUT PAramETEIS it e e s r e e e e s e s e a et e e e s e st et e e e e e s e

Output Parameters
DECOMPIESS FIlE OPBIALON ..uviiiiiiieeeciee e ceitee e eiee et e e e e rtte e e ettt e e e s baee e e ataeeseasaeeesataeeeassseesassaaeeantseseanssaeesanseeessnsrenaans

LY o0 L T 10 (=1 (=T E PPNt
OUTPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e se s e s e s e sesesesesasasasasasasasasasasasesesasnsnss
D] T FN @ o 1T] o oSSR
FaY o0 Ll T =10 (= (=T E PPNt
(1014 o1 0Ll o [=T 4 1= o] TP
Get Directory Content Operator
INPUL PArameELers ..ccciiiiiiiiiiiiiiieeeeieeeeeeeeeeeee ettt et et et et et et e e et et et e ter et et et e s et et et e s et etetesetesererarererererererererenerens
OUTPUL ParamEers oo s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasesasesesnss
(O 1Tl A g1 U Y O] 1= = o] TSR
Input Parameters

Input Parameters

Output Parameters

Example....ccooeeeeveeennnns
Read from File Operator

INPUL PAramMELOrsS ..ceeiiiiiiiiiiiiiiieieeieeeeeeeeeee ettt e et e e e e et et e eeretete e et e rete s e s et et e s e s e s et ereraretererarererererererererererererererens

(O 10} 4o 10 Ll o= [=T 4 = =] TSRS

Example (Read from File OPEIAtOr)ueii ettt ettt e e e ettt e e e et e e e e etbeeeeeabeeeeeasaeaesnbseeaaastaeeeenseeas 286

Contents 11

RENAME FIlE OPEIAtON ...ttt ettt e et e st e et e st e e e bt e s b e e eabeesabeeenbeesabeeeaneesbaeenseenane
[INPUT PArameETersS ..o e e e e e s s a e e e e e aas
(O 1014 o1 0Ll o= [=T 4 = o] T T TP
SEArCh File CONTENT OPEIATONuiiiiiiieeeiiieeceitee e ceee e ettt e e e te e e e steeeeetreeeseasaeeasatseeeassseeessseeeasssseeaanssseesassaeesnssaeennnnns
INPUL PAramMELEIS ..oiiiiiiiiiiiiiiiiieieeceeeeeee ettt ettt et e et et e e et e e et e eeeeteteteteeetete e et et e te e et et et eterereteretetererererererererererenenenerens
OUTPUL PAramELerS .ottt s e e s s bt e s s s b e e e s b a e e s sb e e e s s sre e e sannneeesnaeeeeas
Update File Ownership Operator
INPUL PAramMELEIS «ooeiiiiiiiiiiiiiiiieiieeeeeee ettt ettt e et et et et et et e eeeeteteeeteee e et e te e et et et eretetererereteretereeererererererererererenererens

(O 101 4o 10 Ll o= [=T 4 = o] T T U PP
Update File PermisSion OP@rator......c.cui i ieiiiiiiiieeiiet et ettt ettt st sttt e sae e e bt e e sabeesaeeesabeesaeeesabeesnbeesabeesaseesabeesaneens 295
INPUT PArameETersS ..o e e e e e e s s a e e s e e e

Output Parameters
Update File TiMeSTamP OPEIrator.......ccuiiiciiiieiiiieeeciteeeesteeeeetteeestaeeeestteessesseeesassaseasstaesaassssesassseeeasseseanssssessnsens 296

Fa] o0 L T 10 (=1 (=T S P PPPPPPPPPRt 296

OUTPUL PArameLErS ..cciiiiiiiieiiiee ettt e e s e e e e s e b e e e e e e e s e s aranaeeee s 297
LR S el oIl - | (o] ST T T TP TP ST PP P PO UPTRPROP

Input Parameters
(1014 o1 0Ll o= [=T 4 =] o] TR 299

Chapter 10: File Transfer 301

(O =l D1 Yot o TRV A O o 1] =) o] AP PTPPPPTPRE 301
LY o0 L T 10 (=1 (=T E PPNt 302
OUTPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e se s e s e s e sesesesesasasasasasasasasasasasesesasnsnss 303

Bl D =T o) YA O] o 1T | o) SR 303
Delete REMOTE DirCtOrY PrOPerties. ..o iiiiieee ettt e e e e e e e e st be e e e e e e s abbteeeeeeeseeantbaneeaeeennes 303
Output Parameters

Delete File Operator...........

INPUL PArameELers ..ccciiiiiiiiiiiiiiieeeeieeeeeeeeeeeee ettt et et et et et et e e et et et e ter et et et e s et et et e s et etetesetesererarererererererererenerens

Output Parameters
B Lo XNV Y (oo I ST TN @ o= - 1 o U UPUPPPNE 307
LCT= A U= g oy A=l o Tl o o] o Y=T o =PRI 307
Output Parameters

Get File INFOrmation QP Iatoriii i iiiecciie e cteee et e s etee e st e e e et e e e st e e e s taeeseaaeee e s saeeeesseeesasseeeesnsanesasseessnnsees 309
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens
Output Parameters

Y 1o A N S L @] =T | o] PP PSPPRRPNE
Input Parameters

Output Parameters
LR Do)] Lo To I 1 TSl @ o =T o= o P 314
LYoV T 10 (= (=T S PPNt 315
(O 1014 o 10 Ll o= [=T 4 = =] TSR 316

12 Content Designer Reference

(0] 1] =) o] gl 2o] o &3S S T T U OU PP PPPT PP 316

TFTP UPIOad File OPEIatoree ettt ettt sttt sttt e st e et e s b e et e e s bt e e bt e sabeeeabeesabeeenbeesabeeeneenane 317
INPUL PAramMELEIS .ooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeete ettt et e et e e e e et e e et e eeeeteteee e et e eetete e et e ae e et e e et erereretereretererererererererererenerenenens 318
(O 1014 o1 0Ll o= [=T 4 = =] T PP 318
(0] 1=1) o] gl 2o] o £SO 319
UPIOAA FIlE OPOIAtOr. . .ciiiieiiieeite ettt ettt ettt et bt e s et e s bt e e s ab e e bt e e s st e e bt e e sabeeeneeesabeeenteesateesabeesabeesaneesn 320
INPUT PArameETErsS ..o e e e s e e e s s a e e s e e e 320
(O 1014 o1 0Ll o= [=T 4 = o] T T TP 322
Chapter 11: Java Management 323
Y D G o AT I T - [0 (=] (=T TP 323
Get MBEAN AttrIDULES OPEIATON. ... iiiiciiii e et ettt ettt e e e st e e e et e e e stbeeeesataeeeeasaseesatbeeeastaessanssaeesnsseeeanssaeeennsaens 324
INPUT PArameETEIS it e e st e e e s e s b et e e e s e s b e e e e e e e s 324
OUTPUL PAramELErsS ..ceoeiiiiiiiiiiei ettt e e s a e et e e e s e aa et e e e s e ssaraaaeeee s 325
EXAIMIPIE ettt st b e st e e bt e s a b e e e bt e s b e e e bt e s bt e e bt e s bt e e bee e beeennee s beeenneenate 326
Tl Y T T WA (= d oo T MO o 1T - 1 o | oSSR 327
LY o0 L T 10 (=1 (=T E PPNt 327
OUTPUL PAramELErS ..ccoeiiiiiiieiiiei et et e e s e e e s e s e aa et e e s s e saranaeeeess 328
EXAIMIPIE ettt st b e st e e bt e s a b e e e bt e s b e e e bt e s bt e e bt e s bt e e bee e beeennee s beeenneenate 329
Update MBean AttribULES OPEIALONcccccuiiiiiciiee ettt ettt e st e e e st e e e eette e e stbe e e e ataeeeessaeesssaeeeansseeeassaeesnnseeas 330
LY o0 L T 10 (=1 (=T S PPNt 330
(1014 o 10 Ll o= [=T 4 =] o] PP 331
3T [4T o L= SRS 332
Chapter 12: Network Utilities 335
Get Local NetWork INterfaces OPEIatorcuuii i iieeeeiiee e ccieeeesiee e eete e sttt e e et e e seaae e e s aaeeeessteeesensaeeesnsaeesensseeesnnsees 335
INPUL PArameELers ..cciiiiiiiiiiiiiiieeeeieeeeeeeeeeeee ettt e et ettt et e te e et et e s et et et et et et et et et et ereretererateserererererererererererenerens 335
(1014 o1 0Ll o [=T 4 =] o] TR 336
(0] 1=1) o] gl 2o o {3 TSP 337
ST [4T o L= SR 338
Get NetWOrk SErVICE STatUS OPEIatOr . .. uii i iieeiiiieeeeiiee e ectee e e sttt e e et e e sttt e e essteeeseaaeeessaeeeensseeesanseaeessseesensseeesnnsees 338
INPUL PArameEters ..coiiiiiiiiiiiiiiieeeieeeeeeeeeeeeee ettt e et et et et et et et et e s et et et et et et et et et et e s et et eresetaserererererererererererererens 339
(1014 o1 0Ll o [=T 4 =] o] TP 342
(0] 1=1) o] gl 2o o {3 TSP 343
O S Y Y T = o1 1Sl @ =T = o S 345
INPUL PAramMELErs ..ceeiiiiiiiiiiiiiiiiieiceeeeeeeeeeeeeeee ettt ettt e e et e e e e et e e e eetereteterereteter et et et e s e s et ereraretererarererererarerererererererererens 346
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 347
MONItOr SNIMIP Variable OPErator.......ueei et e ettt e ettt e e e e e sttt e e e e e e seabataeeeeeeseabaaaeeeeaesensssaessaessennssrens 348
LYoV A T 10 (= (=T PPNt 348
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 351
Y= o o R O o 1T =1 o Y SRR PPPPPRPNE 352

Contents 13

INPUT PArameTersS ..o e e e e e e s s r b e e e e e e aas 352

(010 o TV L =T = T 4 1= =T PSP PP PO PPPRTRTN 354
(0] 1=1) o] gl 2o] o £SO T T TP 356
Nl B Y L L= Vo J O e T=T = o 1 (R USN 356
INPUL PAramMELEIS ..oiiiiiiiiiiiiiiiiieieeceeeeeee ettt ettt et e et et e e et e e et e eeeeteteteteeetete e et et e te e et et et eterereteretetererererererererererenenenerens 357
OUTPUL PAramELerS .ottt s e e s s bt e s s s b e e e s b a e e s sb e e e s s sre e e sannneeesnaeeeeas 358
Update SNIMP Variable OPeratorc..ei ettt ettt ettt et e sat et e st e sabeesabeesareesabeesanee s 359
INPUL PAramMELEIS «ooeiiiiiiiiiiiiiiiieiieeeeeee ettt ettt e et et et et et et e eeeeteteeeteee e et e te e et et et eretetererereteretereeererererererererererenererens 359
(O 101 4o 10 Ll o= [=T 4 = o] T T U PP 360
Chapter 13: Process Control 361
F = W V=T = (O] oY= =1 o] USRSt 361
INPUT PArameETEIS it e e st e e e s e s b et e e e s e s b e e e e e e e s 362
OUTPUL PAramELErsS ..ceoeiiiiiiiiiiei ettt e e s a e et e e e s e aa et e e e s e ssaraaaeeee s 366
EXAIMIPIE ettt st b e st e e bt e s a b e e e bt e s b e e e bt e s bt e e bt e s bt e e bee e beeennee s beeenneenate 366
EVAlUGLE EXPreSSION OPEIAtONuiiiiiiieeeeiiee e ettt e e ettt e eestte e e eetteeeesbeeeeetbaeeseasaeeassbaeeeassseesassaseeantseseassaeesasssseesnsseeaans 369
LY o0 L T 10 (=1 (=T E PPNt 369
OUTPUL PAramELErS ..ccoeiiiiiiieiiiei et et e e s e e e s e s e aa et e e s s e saranaeeeess 370
Manage RESOUICES OPEIATON ..ccciiiiiiiiiiiii ittt e e s r e e e s e s ar e e e e e s e seraneeeeesesaananaee 370
LY o0 L T 10 (=1 (=T E PPNt 371
(O 1014 o1 ULl o= [=T 4 =] o] TP 373
YL oL O T o T=T - | o T TP 374
Y T o 11 o gl V= o A O T o T=T 4 | o) PP PUPTRN 374
YT g Lo I Y=Y oL @] o 1T] o oS UPSR 376
USQEE PatterNS fOr EVENTS ...oiiiiiiieeeciiie et ettt e ettt e e e et e e e e ette e e e eataeeesabaeeeettaeesasbasaesstaeeeasteeesssaaeeasseeesanses 377
Y [l o (ool O 1= = {0 SN 378
LY o0 L T =10 (=L (=T PPNt 378
OUTPUL ParamEers oo s s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasasasasasasasesesasnsnss 380
Chapter 14: Utilities 381
F AN oY YAV (o -1 o IO ¢ 1T o) SRR 381
INPUL PArameEters ..coiiiiiiiiiiiiiiieeeieeeeeeeeeeeeee ettt e et et et et et et et et e s et et et et et et et et et et e s et et eresetaserererererererererererererens 382
(1014 o1 0Ll o [=T 4 =] o] TP 383
FiN o Y I O T =T - | o] PR PURRRt 383
INPUL PAramMELEIS ..ceeiiiiiiiiiiiiiiieieeceeeeeeeeeeeee ettt ettt e e et e e e e et e e et e reteteretereteter et et e s et et et ererareterererererererererererererererererens 384
OUTPUL ParamBers oo s e s s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesesasasasasasssnsasssssnsnsnsnsnsnsesnanss 385
[T YA @ ¢ 1T | o) S 386
FaY oV T 10 (= (=T S PPNt 386
(01014 o 10 Ll o= [=T 4 = =] SRR 387
Ta iV I XYz @ o111 1 o SRS 388
INPUL PAramMELers ..coeiiiiiiiiiiiiiiieieieeeeeeeeeee ettt e e e e e e et e s e e et e te e et et e rere s et et et et et et et e s et et et ererereserererererererererererererens 388

14 Content Designer Reference

OULPUL PArameLerscoouiiiiiiiiii bbb bbb 400

JAVA EXAMIPIE ittt ettt e b e s bt e e bttt e e bt e s bt e e bt e s bt e e bt e s bt e e bee s b ee e bt e s beeenneenane 402
Resource for Running Invoke Java Operator EXamMPIeueieciiiieiiie ettt e e tvee e et 403
(0] 1=1) o] gl 2o] o £SO

Run JavaScript Operator
INPUL PArameETErsS ..o e e e e e a e e e s s r b e e s e e e aas

Output Parameters

Chapter 15: Web Services 407
HTTP Operators: Common INPUL PArameTtersccuuiiiiiiiiiiiiieeiiiiie ettt e s e sane e s snree e 407
HTTP URL INTOIM@TION ettt ettt sat e st st s bt e bt e bt et e eae e ebe e s b e e b e e b e ssbesmnesaeesanenae

HTTP ProXy INTOrMationccociiie ettt et e e et e e e st e e e e att e e e s tbeeeestaeeeensaaeesnbaaeeastaeesnsanas
HTTP Headers Information

HTTP Cookies Information

HTTP Response Content INfOrmMation...........eoouiiiiiiiiieiie ettt ettt st e s ne e s e e e nee e 416
HTTP Configuration INFOrMatioNnccuiiiiiiiie ettt e e tte e e s tre e e e ate e e e eataee e etbaeeentaeesannaeas 418
HTTP Operators: Common OULPUL ParameEters ... icicieieieiercieiesessss s s s s s s s s s s s s s s s s s s e s s s s s s s s s s s snsesesesnsnsnsnsesnenes 420
HTTP Operators: CommOon OULPUL POITS.........uiiiiiiiiiiiiiii ettt e e 424
HTTP DIt OPEIrator .cuueieeiieeiteeiiteette ettt sttt st e et s bt e st e st e e bt e sa bt e e bt e sab e e s bt e sabeeeaseesabeeeabeesabeeenseesabaeanneenane 426
LY o0 L T 10 (=1 (=T E PPNt 426
(O 1014 o1 ULl o= [=T 4 =] o] TP 428
[I S CT=Y O o T=T =) o TP 429
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens 430
OUTPUL ParamEers oo s e s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasnsssasasasasasesesnsnss 432
(0] 1= = o ol o= | (U] SRR

e W I o LT o O o1 o= o PRSPPIt
Input Parameters

Output Parameters
(O] o1 1o T ol o= 11 [0 < SRR
HTTP Options Operator
FaY o0 Ll T =10 (= (=T S PP P PRt
Output Parameters
HT TP POSE O at0r . s s s s s s s s e s s s e s s s s s s s s s s s s s e s snsannsasasasssasasennss
INPUL PArameEters ..cooiiiiiiiiiiiiiiiieiceeeeeeeeeeeee ettt et et et et et et et e s et e ter et et et e e et e e et e s et etereeeteserererarererererererenenerens
Output Parameters

(0] 1< = o ol 2= | (1] SRR
HTTP Post Form Operator
INPUL PAramMELers ..oeeeiiiiiiiiiiiiiieieiiieeeeeeeeeete ettt ettt e et e e e e et e e e eeteretet et e reteter et et et e s et et e s e s et etererarererererererererererererererens
OUTPUL ParamBLerS oo s e s s e s e s e s e s e s e e e s e s e s e s e s e s e sesesesesasnsssasasasnsnsssssssnsnsnsnsesnsnsnnnss
(0] 1< = o ol 2= | (U] o U UURR
[I I o U O T 0 1T = o TR

Contents 15

INPUT PArameTersS ..o e e e e e e s s r b e e e e e e aas 455

(010 o TV L =T = T 4 1= =T PSP PP PO PPPRTRTN 458
[N I e I ol O o T=T - | o TP 460

FaY o0 L T 10 (=1 (=T ST PP PPP PPNt 460

(1014 o1 0Ll o= [=T 4 = o] T T PP 461
INVOKE SOAP IMEEhOA OPEIator. ... viiiiieiiiieeiee ittt ettt et e e st e e bt e st e e s bt e s bt e eabeesabeeebeesabeeeneesane 462

INPUT PArameETErsS ..o e e e s e e e s s a e e s e e e 463

(O 1014 o1 0Ll o= [=T 4 = o] T T TP 482
INVOke SOAP MeEthod ASYNC OPEIAtON ..cc.uuiiiiciiieeceiiee ettt e e e e st e e e e re e e s ratee e e s taeeeeateeesaasaeeesnsseeeanssaeesensseeesnnsenaans 486

INPUL PArameETErsS ..o e e e s e e e s s r e s e s e e e s aas 486

OUTPUE PAramELEIS oneeiiiiiieee ittt e st a e e s s et e s s sb e s et ba e e s sb et e s s sre e e sennneeesnaeeeeas 505
Chapter 16: CA Process Automation System Functions 511
RETUIN TYPES ettt e e e e e s e a et e e e e s e s b e bt e e e e s e s b aa et eeesesanaaatesesssasannnaee 511
] o 1Y - o S 512
Lo U E A D TSR 513
AAJUSTRESOUICEVAIS ..eeeeeeeiiii ettt e ettt e e et e e e et e e e e s tbaeeeeabtaeesataeae e staeeeassaaeesasbesaanstaeesassaaeeantaeeeastaesennsanas 514
APPIYXPATN .t st e e bttt e e bt e bt e e bt e s bt e e bt e sa b e e e bt s beeebee s beeeareesabeesanee s 515
APPIYXPALNTOUNT ettt st e et e st e st esa b e e e ab e e sa b e e eabeesabeeenseesabeeeaseesabeesaseesabaenaneens 516
(ol oT=Tol {@r] =10 Yo -4 D - IO PP ORTSTPRRP 518
[olo] 0 1Y/=T o v Ko] o HO ST PP USTTT PRI 519
(ole] a1V =TV =Y (V10 oY, 42 1 OO OO PRSPPI 521
CONVEIEXIMI 1.ttt ettt et e sttt et e st e e sab e e s ab e e easeesab e e s aseesabeeeaseesabeeeabeesabeeeaseesabeeeabeesabeesaseesabaesaneess 522
CONVEIEXIMIUIT 1.t ettt s bt e st esab e s bt e sa b e e e a bt e sa b e e eabeesabeesaseesabeesabeesabeeeaseesabaesaneess 522
(o E=F: 11 1Y o 1= o KT oY PR 523
(o E=F L =T o U o<1 o 1= ot SRR 523
JElEtEATEACKHMENTSeii et e ettt e s et e e s bt e e e e b bt e e seabbe e e s bbeeeeabeeesabbeeeaabbeeeennbaeesnanaeas 524
o L= 1=y <T@ o [Tt S 524
EIETERESOUITE ..ttt ettt et b e et e st e st e e s ab e s bt e sa b e e sabeesa b e e eabeesabeesaseesabeesaneesabeesaseesabaesaneess 525
(o T L oA (V=LY =T o = o SRR 526
L £ 0 | 1= g To =T S PO PO PO O P O SO PO UPPRTUOPPPRRRPP 526
L) (1 £ OU) o]0 0] (ol] o HO PSPPSR 527
L I O U o] 0 10 o T=T =) o] SO UPPTRRP 527
Ly Y D | = 111 PSPPSR OTRPRP 528
Ly Y o] [0 [T OO OO ST U PROTPRTRP 529
[K Nl =T - Tt oY o] a¥=Yo T T=1S d Slo] o o o JPS P PPPPPPRE 530
) Y o o Tol < PSPPI 530
EXISESPIOCESSWALCN ..ttt sttt st e st e s b e st e s a b e e s abeesabeesabeesabeeeabeesabeeeabeesbaesanee s 531
EXISTSRESOUICEeeiiiieee ettt ettt ettt s e e ettt e sttt e e s be e e e e s b et e s as e ee e sabe e e s e s be e e s mnneeesaseeeeenreeesnnneeesasneeeenreeesannneas 532
L €N Yol s T=To [LT OO P SO U PP 532
Lo 1 a4 14 D | 1= OSSPSR PRRPUPOTPPRINt 533

16 Content Designer Reference

(o] d 00 1 A A4 [=TT T T PP TT PP PP P PO TPPTRPRPP 534

BEEAIIATEACIMENTS. ...ttt ettt e s et e bt e e s b et e bt e e shb e e bt e e s bt e e bt s e s abe e be e e sabeenabeesareenneis 535
Lo 1WAy a =Tl o[g 1= 0 (@0 T g =T | SRRt 535
Lo O U L {0 o YoT TN - | X J RS SNt 536
Lot = 1Y,V =T o oY =T o TSRSt 536
BEtEEMAIIfaCtTOKENFOIUSEL ..ottt et sh e st e bt e s ab e e sb et e sbb e e bt e e sabe e bt e e smbeeneeesnneenees 537
BELEEMCIEdentialSTOKEN ...ceiiiieiie ettt ettt et e bt e sht e e bt e s ab e e bt e e s bt e s bt e e sabe e bt e e smbeeneeesnneenneis 538
EEtEEMCredentialSTOKENFOIUSENcoic i cceiee ettt e ettt e e ettt e e st e e e st e e e e easrae e s saeeeesstaeeeessseessnsaeesansseeennnes 539
L2 =L LY AY - | OSSOSO PPPRPORPRPRPON 540
BELOICRESTIAtOIURL ..ottt ettt ettt e st e bt e s hb e e bt e e shb e e bt e e s bt e e abe e e s bt e ebeeesnneennneesaneennees 540
getPartialAttachmENTCONTENT ...ccc.eiiiiee ettt sb e s b e b e sibesebe e e saneenees 541
BEERESOUICEAVAIL...cneiiiieiee et ettt et e bt e e s bt e e bt e e sabeesbe e e s st e e bt e e sabeeabeeesabeesnbeesabeennes 541
Fo =T o 1N ol =]\ =Ty 1= OO PON 542
o0 T [N ol Ko - | I USRSt 542
BEETOUCRPOINES ..ttt ettt ettt e s bt e e bt e s bt e e bt e e sbee e bt e e sabe e bt e e sabeebeeesabeenteesaseennseesaneennnes 543
8EtValUEFIOMVAIUEMAPAITAY() «..eeivieieerieeieeteete et et ettt s tesatesatesaeesae e et esteeatesatesseenseenbeenbesnsesnsesneesaeesaeesseensesnseans 544
BV AIUBIMAPFIRIAS ...ttt sttt h e et s bt e e bt e s bt e e bt e e shb e e sbe e e s abeeebe e e e ab e e bt e e s b e e enbeesareennes 545
2etValueSFroOMValUEIMAPAITAY()..eciviieeeiiieeeeitee ettt e e ettt e et e e e st e e e ette e e s tbaeeesateeeeessaeesssaaeeastseeeasssessassasesanssesennes 546
T S T=] Lo O TSP RTSTPRRP 546
10Tl [0 T 1= S 547
ISFIPSIMIOOE ...eeeiee ettt ettt e ettt e e e e e e et ae e e e e e eesetbaaaeeeeeesasbaaaaaaeeesaasasaeaeeeesassssssaseaessansssasseeeseeannsssaseeeenanes 548
L1y Ko U 1ol Yo To T a1 U o SRR 548
[o T o [OOSR 549
[OCKRESOUICE ..ttt ettt ettt ettt e ettt e st e e e s a b et e e e bbe e e s ab e e e e sabbee e e s beeeseasbeeesasbeeeeasbaeeeaasbeeesanbbaeeanbbeeennnbaeesnraeas 550
1o =4 V=T o R 550
LT AY - 1 TU =] 1Y T o TR 551
A D | = <] PSSP PPPTPUUPPTIN 552
NEXEOPENDATE e 552
PEOW ..ttt e e e e e e ete b et e e e e e e use e et e e e e e e aane b et e e e e e e e asnbe e e e e e e e e aansbe e e e e e e e e a s b e et e e e e e e e n R R ee e e et e e e aanRneeeeeeeeeaannbeeeteeeeeannreeeeeeeeaaann 553
PArSED AT et e e e e e e e e e e et e e et et e e e e e e e e e e e e eaaaaaens 553
FESETRESOUICE .ttt ettt e e e e e e et et e e e s a et et e e e s ar et e e e s s s nr et e e eessesnsraeereeesenans 554
o111 T | PP OO P PSSP PP PP RTOPPPRRPP 555
011 T2 s TIPSO O PO PSP PO TP TOPPPRRPP 556
SAVEATEACMENTTOFIIE. ..ttt sttt st e et e st e st e st e e s bt e sabeesabeesabeesaneesabaesaneens 557
110 oI = o] (3] K= L AU [P PP PPPPPPPPPPPTPRE 557
=31 o Fo ol ol o < TP PRSP PPPPTPPPPPPPTPRE 558
Yo TU T ol o] -] F OO P ST PP PROTPRRP 559
L0 o F-)V PR PURRRRRt 560
Index 561

Contents 17

Chapter 1: Introduction to Operators

This reference contains information about the operators that are included as part of CA
Process Automation. Operators are grouped into categories. This guide groups the
descriptions of operator information by these categories.

The Content Designer Reference also describes system functions. Use the system
functions to write custom JavaScripts. These JavaScripts can be placed inside operators
to manipulate the data that is used inside CA Process Automation.

Operator Overview

Containers for operator categories are represented as folders in the Operators palette in
the Designer.

CA Process Automation contains the following categories of operators:

Standard (see page 43)

Standard operators include essential functionality operators that control workflows
in processes. Simple functionality such as starting, stopping, linking, and
commenting, are provided with the Standard operators. You can also set looping
and reset options, and incorporate the lane changes using these operators.

Catalyst (see page 59)

Catalyst operators support the UCF create, read, update, delete (CRUD), and event
subscription interfaces. These operators expose Unified Service Model (USM) object
types and properties.

Command Execution (see page 79)

Command Execution operators run processes and scripts on the host operating
environment.

Databases (see page 143)

Databases operators provide an avenue to communicate and run database queries
against different database servers.

Date-Time (see page 183)

Date-Time operators manage the date and time for the CA Process Automation
server.

Chapter 1: Introduction to Operators 19

Operator Overview

Directory Services (see page 187)

Directory Services operators support the Lightweight Directory Access Protocol. All
of these operators work with different LDAP servers except for operators specific to
the Active Directory.

Email (see page 249)

Email operators automate tasks that are performed on emails and folders in an
email server. Email operators read emails from the mail server through IMAP/POP3.

File Management (see page 271)

File Management operators monitor directories, files, and their contents. File
Management operators can be run either locally or on a remote system. These
operators create, delete, rename, compress and uncompress local files, and watch
files on the touchpoint where the File Management category is running.

File Transfer (see page 301)

File Transfer operators let you use FTP and SFTP.

Java Management (see page 323)

Java Management operators provide a management interface for systems that
support JIMX.

Network Utilities (see page 335)

Network Utilities operators allow the user to communicate to other network
devices through SNMP.

Process Control (see page 361)

Process Control operators run, monitor, and control CA Process Automation
processes.

Utilities (see page 381)
Utilities operators invoke external JARS in CA Process Automation.
Web Services (see page 407)

Web Services operators provide various standard network protocol utilities to the
automated business processes made possible by CA Process Automation.

20 Content Designer Reference

Where Operators Can Run

Where Operators Can Run

An operator runs on an Orchestrator by default, but you can specify a specific location
(target) in the execution settings.

Targets can be specified as a touchpoint, touchpoint group, agent ID, proxy touchpoint,
or an IP address or FQDN. See How Targets for an Operator Can Be Specified in the
Content Designer Guide for a description of each of these items. Each target ultimately
resolves to an Orchestrator, one or more agents, or a remote host with an SSH
connection to an agent. Where the operator runs is significant because in some cases
the process that is being designed must operate on a specific host. Many operators can
execute on either an Orchestrator or on agents. However, certain operators can execute
only on Orchestrators; another can execute only on agents. Others require that the
targeted remote host support SSH access.

We recommend that you dedicate an agent to running Invoke Java operators. This is the
only CA Process Automation operator than cannot run on an Orchestrator.

Note: Agents acting as proxy touchpoints have different category requirements.
Operations that target proxy touchpoints (or a remote host referenced by a host group)
go through SSH.

Category Operator Orchestrator Agent Remote
Host
(SSH
Target)
Catalyst (see page 59) All X

Command Execution
(see page 79)

Run Program X X X
Run SSH Command X X
Run SSH Script X X
Run Script X X X
Run Telnet Command x X
Run Telnet Script X X
Databases (see
page 143)
Bulk Insert into X X X
Database
Delete from Database x X X

Chapter 1: Introduction to Operators 21

Where Operators Can Run

Category Operator Orchestrator Agent Remote
Host
(SSH
Target)
Get Database Schema x X X
Get Free Space X X X
Get Stored Procedure x X X
Get Table X X X
Get Used Space X X X
Get Version X X X
Get View X X X
Insert into Database x X X
Query Database X X X
Select from Database x X X
Update in Database x X X
Date-Time (see
page 183)
Check Calendar X
Check Date-Time X
Directory Services (see
page 187)
Add Computer to X X
Domain
Add User to Group X X
Create Group X X
Create Object X X
Create Organizational x X
Unit
Create User X X
Delete Object X X
Get Domain X X
Controller
Get Dormant Account x X
Get Object X X

22 Content Designer Reference

Where Operators Can Run

Category Operator Orchestrator Agent Remote

Host
(SSH
Target)

Get User X X

Move Object X X

Remove User from X X

Group

Update Object X X

Attributes

Update User Home X X

Directory

Email (see page 249)

Create Folder X X
Delete Email X X
Delete Folder X X
Get Email Content X X
Get Email Count X X
Get Email Envelope X X
Get Email List X X
Move Email X X
Purge Folder X X
Rename Folder X X
Send Email X X
File Management (see
page 271)
Compress File X X X
Copy File X X X
Create Folder X X X
Decompress File X X X
Delete File X X X
Get Directory Content x X X
Get File Attributes X X X
Monitor File X X X

Chapter 1: Introduction to Operators 23

Where Operators Can Run

Category Operator Orchestrator Agent Remote

Host
(SSH
Target)

Read from File X X X

Rename File X X X

Search File Content X X X

Update File X X X

Ownership

Update File X X X

Permission

Update File X X X

Timestamp

Write File X X X

File Transfer (see

page 301)
Create Directory X X X
Delete Directory X X X
Delete File X X X
Download File X X X
Get File Information x X X
Move File X X X
TFTP Download File X X
TFTP Upload File X X
Upload File X X X
Java Management (see
page 323)
Get MBean Attributes x X
Invoke MBean X X
Method
Update MBean X X
Attributes

Network Utilities (see
page 335)

24 Content Designer Reference

Where Operators Can Run

Category Operator Orchestrator Agent Remote
Host
(SSH
Target)
Get Local Network X X
Interfaces
Get Network Services x X
Status
Get SNMP Variable X X
Monitor SNMP X X
Variable
Ping Host X X
Send SNMP Trap X X
Update SNMP X X
Variable
Process Control (see
page 361)
Assign User Task X
Evaluate Expression x
Manage Resources X
Monitor Event X
Send Event X
Start Process X
Standard (see page 43)
Start X
Comment X
Stop Success X
Stop Failure X
Process Progress X
And X
Or X
Reset X
Loop X
Change Lane X

Chapter 1: Introduction to Operators 25

Where Operators Can Run

Category Operator Orchestrator Agent Remote
Host
(SSH
Target)
Exception X
Utilities (see page 381)
Apply Xpath X
Apply XSLT X
Delay X
Invoke Java X
Run JavaScript X
Web Services (see
page 407)
HTTP Delete X X
HTTP Get X X
HTTP Head X X
HTTP Options X X
HTTP Post X X
HTTP Post Form X X
HTTP Put X X
HTTP Trace X X
Invoke SOAP Method x X
Invoke SOAP Method x X

Async

26 Content Designer Reference

Common Properties of all Operators

Common Properties of all Operators

Operator configuration options display in the Properties window when you double-click
an operator in a process or schedule object.

Configuration for operator categories is described in the Content Administrator Guide.

Note: Verify that the Properties check box is selected if the properties for an operator
do not display. Select View, Properties in the top right-hand corner of the Designer, then
maximize the Properties window at the bottom of the screen. If the operators
themselves do not display, click Operators under the View menu.

Execution Settings (ALl Operators)
Target

Specifies the target on which to run the operator. A target can be a touchpoint,
touchpoint group, Agent ID, proxy touchpoint, IP address, or FQDN. Be sure that
you enable the category for the operator on the touchpoint. To open the Object
Browser dialog and select a touchpoint, click Select.

Target is a calculated expression

Specifies the target using an expression. To specify a target dynamically at runtime,
use a calculated expression. Consider the following examples:

m Use a string dataset variable containing the name of the touchpoint.
m Use an Object Reference dataset variable that points to the touchpoint.

Important! When a process is destined for an import as a content package, specify
the IP address or FQDN in a dataset. A dataset can be modified in the import
environment, but the Target field cannot.

Match target in Host Groups only
Specifies how to resolve the target name.
Selected

Specifies that the Target field contains a host name or IP address that a host
group references.

Note: If the Target field contains touchpoint, a proxy touchpoint, or an agent
ID, the execution fails.

Cleared

Specifies that the Target field contains the name of a touchpoint, a proxy
touchpoint, or an agent ID.

Note: If the Target field contains a valid host group reference, the processing
succeeds but it is not optimized.

Chapter 1: Introduction to Operators 27

Common Properties of all Operators

Loop

CA Process Automation lets you loop an operator until some condition is met. The
Loop property specifies the number of times that an operator repeats.

The exit conditions and the connecting links from the operator that is running in a
loop are evaluated only when the loop completes.

Note: For more detailed information about using loops in CA Process Automation,
see the Content Designer Guide.

Repeat Count
Specifies the condition for looping. Two options are available:

m Specify an integer or a CA Process Automation expression that returns an
integer at run time. The default value of 1 executes a loop on an operator a
single time. To execute an infinite loop, click the Infinite loop check box.

m Specify a Boolean expression. The expression is evaluated after the
operator executes. If the expression evaluates to true, the loop continues.
If the expression evaluates to false, the loop completes.

Infinite Loop

When selected, Repeat Count is ignored and an infinite loop is created. The
operator keeps repeating until either:

m The process is interrupted.

m The loop is stopped from a different branch of the process (by processing a
stop loop command link to the Loop Operator (see page 51)).

Delay between iterations

Specifies the delay in seconds between each loop iteration (the default value is
0).

Timeout

Lets you set a timeout as part of every operator. If the operator does not finish by
the specified time, this setting provides an exit strategy. The Timeout option
provides the choice to either:

m End the operator and take the alternate timeout path.

m Let the operator continue while taking the timeout path.
m Reset the operator (run the operator again).

No Timeout

Specifies that the operator has no timeout. This check box is selected by
default.

28 Content Designer Reference

Common Properties of all Operators

Type

Select either Duration or Target Date.

Duration/Target Date and Time

If you select Duration:
Enter a timeout duration in seconds.

The proper format for this field is anything that can be treated as an
integer/long, or string literals (for example,"10").

The timeout is specific to each iteration of a loop. Therefore, a timeout occurs
only if a single iteration takes longer than the timeout duration.

If you select Target Date:
Enter a date and time when you want the operator to time out.

When a string literal is entered in this field, it can be in one of the following
formats:

m JVM Format - The date/time format that the Java application understands.
This format varies with the Java installation.

m If the JVM format is unknown, enter as "MM/dd/yyyy HH:mm:ss".

m Any other format must use a CA Process Automation library method
named "parseDate". This method takes in two parameters: (a) Date as a
string literal and (b) Format in which the string must be parsed. For
example, parseDate("10/10/2010 10:10:10"," dd/MM/yyyy HH:mm:ss")
returns this date: 10th of October 2010 10 hrs 10 mins and 10 secs.

If Target is selected as the Type, the Reset option (under Action) is
disabled.

Note: Be sure to enter this data in the proper format or else the operator
ignores these timeout settings.

Chapter 1: Introduction to Operators 29

Common Properties of all Operators

Action

Notes:
m This option is not available for schedules.

m When an operator is in a loop and a timeout is configured, then the
following options behave differently. See Loop and Timeout Scenarios (see
page 31) for the actions that are taken.

Select from one of the following actions:

Continue
If selected, the process proceeds in the following manner after a timeout:
1. The operator remains in running mode only.
2. The timeout path is taken.

3. The post-execution code only runs when the operator completes, not
when the timeout path was taken.

Reset
If selected, the process proceeds in the following manner after a timeout:
1. The operator is reset (that is, the operator starts executing again).
2. The timeout path is taken.

3. The post-execution code executes only if the operator completes (not
when the operator was reset).

Note: If Reset is selected, then the Target Date option is disabled in the
Type drop-down list.

Abort
If selected, the process proceeds in the following manner after a timeout:
1. The operator aborts.
2. The post-execution code executes.
3. The timeout path is taken.
Abandon
If selected, the process proceeds in the following manner after a timeout:
1. The operator times out.
2. The process continues to run in detached mode.

Note: An instance of a process started in detached mode has no parent
relationship to the process that started it. A detached process instance is
the root process in any call sequence originating from that process.

3. The post-execution code executes immediately.

4. The timeout path is taken.

30 Content Designer Reference

Common Properties of all Operators

Loop and Timeout Scenarios

If an operator is in a loop and the timeout is configured, then the following scenarios
take place for the selected actions:

Action
Select from one of the following actions:
Continue
If selected, the process proceeds in the following manner after a timeout:
1. The next iteration executes.
2. The post-execution code only runs if the iteration is complete.

Using the OverallLoopDuration dataset variable to continue looping an
operator that times out:

At the end of execution, the OverallLoopDuration contains the number of
seconds from the start of the first iteration until the end of the last iteration. If
the operator times out, the OverallLoopDuration does not contain the number
of seconds from the start of the first iteration until the time the operator times
out.

Reset
If selected, the process proceeds in the following manner after a timeout:
1. The iteration resets (that is, the particular iteration starts executing again).

2. The post-execution code executes only when the current iteration completes
(not when the iteration was reset).

3. The next iteration executes only when the iteration completes.

Note: If Reset is selected, then the Target Date option is disabled in the Type
drop-down list.

Using the OverallLoopDuration dataset variable to reset a looping operator
that times out:

If you set an operator to loop with a timeout action of Reset, CA Process
Automation checks the loop condition when moving from one iteration to
another. The loop condition is not checked when resetting an iteration. Also,
the OverallLoopDuration contains the number of seconds from the start of the
first iteration, including the time spent in all the reset iterations. Iteration
resets do not affect the OverallLoopDuration.

Abort
If selected, the flow proceeds in the following manner after a timeout:
1. The iteration aborts.
2. The post-execution code executes.

3. The next iteration executes.

Chapter 1: Introduction to Operators 31

Common Properties of Operators in Processes

Abandon
If selected, the process proceeds in the following manner after a timeout:
1. The iteration continues to run in detached mode.

Note: An instance of a process started in detached mode has no parent
relationship to the process that started it and is the root process in any call
sequence originating from that process.

2. The post-execution code executes.

3. The next iteration executes.

Common Properties of Operators in Processes

All operators have properties that configure their appearance and behavior when added
to a process.

A process does not have a limit on the number of operators it can include. However, CA
Technologies recommends that a process contains approximately 40-50 operators for
maximum performance. If a process starts to grow larger than 40-50 operators, consider
splitting the process into smaller components.

The properties described here are displayed in the Execution Settings, Simulation, and
Information properties only for an operator in a process.

Note: Operator-specific properties override the properties that are defined at the
category level.

32 Content Designer Reference

Common Properties of Operators in Processes

Processing Group

The following properties define conditions to meet before you run an operator, and
actions to perform before and after the operator runs. You can find these properties in
the operator Execution Settings.

Pre-execution Code

Lets you add code that runs before an operator runs. You can run any JavaScript
code. JavaScript code runs before the operator runs. Pre-execution code
manipulates the operator and process dataset in such a way that the dataset can be
used as input for the operator. In other words, you can manipulate the output
parameters from a previous operator dataset and then use them as input for a later
operator.

Pre-execution code can perform various tasks. For example, the following code sets
a Process-level variable:

if(Process.username==null)

{

Process.username="testuser";

}

Note: For more information about adding code, see the Run JavaScript operator
(see page 406).

Before the pre-execution code finishes and the operator runs, the operator has to
reach the code CanExecute = 1. The process variable CanExecute is added by default
to the operator. The default CanExecute value is 1. If you do not change the default,
the operator runs. This requirement lets you verify external conditions and proceed
only when an expected condition is met.

If you change the CanExecute value to 0 (Process.CanExecute =0), the operator does
not run. CA Process Automation waits 30 seconds, then reruns the pre-execution
code.

When there is no pre-execution code, the operator runs immediately. For example,
you could use pre-execution code to set up loop variables or other variables to use
as part of the operator.

For the code that runs in the operator, you can use the following syntax to access
the operator dataset:

Process[OpName] . fieldname

For example, the following code creates an operator dataset variable named iNow
that contains the following data:

m The name of the host
m Thecurrent date

m The current time in a single string

Process[OpName] .iNow = System.Host + + System.Date + + System.Time;

Chapter 1: Introduction to Operators 33

Common Properties of Operators in Processes

Post-execution Code

Lets you add code that runs after an operator completes. For example, you could
use post-execution code to modify loop variables or to process the results of an
operator.

For the code that runs in the operator, you can use the following syntax to access
the operator dataset:

Process[OpName] . fieldname

For example, the following code copies the value of the operator dataset variable
named Result to variable named iResult:

Process.iResult = Process[OpName].Result;

Run as Caller User

Simulation Properties

Specifies that the selected operator in a process must run under the identity of the
authorized user who started the process. This requirement is true whether the
entire process is running as the owner or not. Run as Caller User lets process
designers run processes that:

m Deliver a self-contained automation object (run as the owner)

m Require control of access rights to parts of the process (such as child processes
and touchpoints)

The Simulation properties let you configure how to simulate execution of an operator in
a process. Simulation can be used for testing branches of a process or to allow normal
processing to skip an operator without having to reroute the process.

You configure Simulation properties for a new process. For each operator in a process,
you can specify to inherit the Mode setting configured at the process level or specify a
different Mode setting. Double-click an operator to display the operator properties
pane. Then expand the Simulation tab to display the settings to configure.

34 Content Designer Reference

Common Properties of Operators in Processes

Mode

Simulation modes are available when you select the Override simulation option in
Process check box.

Inherit from Process

Specifies to use the setting (Off, Local, or Distant) configured for the parent
process of the operator.

off

Turns off simulation and enables normal processing of the operator. The End
Condition is set to Completed, Delay is set to 0, and Evaluate Pre-execution and
Post-execution Code is cleared.

Local

Disables the operator so that it is not processed. CA Process Automation does
not call the associated operator or monitor the operator parameters.
Parameter checks include looking for an application program or validating the
execution touchpoint for an operator.

Distant

Causes the engine to call the associated operator. The operator examines the
parameters before returning the result but does not actually run the operator.
If the parameters are incorrect, the simulated operator fails regardless of the
specified outcome. If the parameters are correct, the operator returns the
specified result.

Delay

Specifies the number of seconds to delay a process to simulate the time that the
operator uses during normal processing.

Chapter 1: Introduction to Operators 35

Common Properties of Operators in Processes

End

Condition

Specifies the exit condition for the simulated operator. You can use this option to
test or troubleshoot different branches in a process. The actual conditions depend
on the operator.

m The following end conditions apply when Mode is Off: Completed.

m The following end conditions apply when Mode is Local: Completed, Failed,
Timeout.

m The following conditions apply when Mode is Distant: Completed, Failed,
Timeout, Custom Result.

Completed

Causes the standard successful outcome exit link from the operator to process.
The Result variable in the operator dataset is set to 1. Any positive integer
value activates a standard successful exit link.

Failed

Causes the standard failed outcome exit link from the operator to process. The
Result variable in the operator dataset is set to 0. Zero or any negative integer
value activates the standard failed link.

Timeout

Causes the operator to take the timeout path when the given time is elapsed.
The Result variable in the operator dataset displays as timeout.

Custom Result

Specifies the integer value that the Result variable in the operator dataset
returns. You can set this parameter to any value (positive or negative) to
activate a custom port that tests for a particular value.

This option is available only when Custom Result is selected for End condition.

Evaluate Pre-execution and Post-execution Code

Indicates whether to evaluate the pre-execution and post-execution code during
operator simulation.

Selected
Specifies to evaluate the code and prevent side effects of ignoring the code.
Cleared

Specifies to not evaluate the code.

36 Content Designer Reference

Common Properties of Operators in Processes

Information Properties
The Information properties determine the name of the operator and visual
representation of the operator and its comments.
Override Object Preferences

Select this check box to override the default process settings and configure settings
specific to that operator.

Icon
Name

Specifies the name of an operator. The Name property is especially important
when configuring an operator that other operators reference. The Name
property is used with the following syntax in an expression to access variables
in the operator dataset of another operator in a process:

Process.Operator name.variable name
Operator names must be unique within the same process.
Use Default Icon

If checked, the operator uses the default icon. Clear this check box to use a
custom icon object for the operator instead of the default.

Browse

Click to select the custom icon object that you want to use for this instance of
the operator.

Label Display
Show Labels

Displays any icon information for the operator that you enter in the Name field.
Select one of the following options:

Truncated

Displays only a partial amount of the Name field next to the operator icon.
Long

Displays the entire length of the Name field next to the operator icon.
off

No label displays.

Chapter 1: Introduction to Operators 37

Common Properties of Operators in Schedules

Label Source
Object Name
Select to display the name of the operator as its label.
Comments

Select to display the operator comments (that you enter in the Comments text
box) as its label.

Label Colors
Click Choose Color to select a color for the following parts of the label:
m Text Color
m Background Color
m Border Color
Font

Configure the font properties of the operator icon label: Font Family, Font Style,
and Font Size.

Note: Select fonts that are generally available on computers hosting CA Process
Automation.

Preview
View your Font selections for the operator icon label before applying them.
Comments

Enter the comments that you want to display for the operator. If the value of Label
Source is Comments, this text displays in the label next to the operator.

Common Properties of Operators in Schedules

Operators in a schedule are started according to specified calendar and time conditions.
Properties groups for any operator added to a schedule associate calendar rules and
other time conditions with the operator. Click the Properties icon in the schedule editor
to view operator properties. General scheduling properties display on the General tab.
Operator-specific properties display on the Specific tab.

Specify the time to start the operator in the first drop-down menu in the Start Time
drop-down list. Specify repeating intervals through the Repeat Interval (minutes) check
box. Select this check box to execute the operator at fixed intervals. Select a time to
stop repeating the operator in the End Time drop-down.

Note: See the Content Designer Guide for more information about schedules.

38 Content Designer Reference

Common Properties of Operators in Schedules

Calendar Settings

The Calendar Settings properties let you include dates from a predefined calendar in a
schedule.

Include Calendar

Click the calendar icon to select a predefined calendar to include in your schedule.
Exclude Calendar

Click the calendar icon to select a predefined calendar to exclude in your schedule.

Days per Shift

The number of days to shift a scheduled date when the scheduled date falls on
a closed date. The shift can be negative or zero. When this value is negative the
date shifts forward. When this value is zero, closed dates are simply skipped
without rescheduling the task.

No excluded days

Select this check box to only count open days when shifting a scheduled date to
avoid a closed date.

Maximum Shift

When an original scheduled date falls on a closed day and the task is rescheduled,
the new date could also fall on a closed date. This parameter defines the maximum
number of shifts that are allowed.

Only manually selected

When a calendar is not specified in a schedule, CA Process Automation considers
the item scheduled every day. The exception is when you select this option. When
this option is selected, schedule the run dates (on the Manually Included Dates tab).

Manually Included Dates

The Manually Included Dates properties let you manually add dates to a schedule. These
properties display a list of dates that are manually scheduled. They also display a list of
dates that the calendar rules specify. Dates added here override closed days that the
Manually Excluded Dates properties specify.

When a schedule does not specify a calendar, the Manually Included Dates properties

can schedule dates; select the Only manually selected check box in the Calendar Settings
properties.

Click the appropriate option buttons to add, remove, or rearrange list items.

Chapter 1: Introduction to Operators 39

Common Properties of Operators in Schedules

Add Item

Adds a date to include in the list. To set the date, click the entry, then click the
calendar icon to select the dates to include.

Delete Item

Removes a selected date from the list.
Move Up

Moves up a selected date in the list.
Move Down

Moves a selected date down in the list.

Manually Excluded Dates

The Manually Excluded Dates properties let you manually remove dates from a
schedule. The Manually Excluded Dates properties list dates that you do not schedule
under any circumstances, regardless of all other rules or conditions.

Click the appropriate option button to add, remove, or rearrange list items.

Add Item

Adds dates to exclude to the list. To set the date, click the entry, then click the
calendar icon to select the dates to include.

Delete Item

Removes a selected date from the list.
Move Up

Moves up a selected date in the list.
Move Down

Moves down a selected date in the list.

Task Name

The Task Name specifies the name of the user defined task. When you add any operator
or process to the schedule, you can specify the custom name in this field. The
customized task name applies to corresponding runtime task instances.

40 Content Designer Reference

Common Output Parameters for all Operators

Common Output Parameters for all Operators

All operators contain the following output properties. Any further output parameters
are specified for each operator.

StartTime

The time the operator began in the process or schedule.
StartDate

The date the operator began in the process or schedule.
Reason

Specifies the reason if the operator fails after execution.

Result

Specifies the result of the operator execution.

Chapter 1: Introduction to Operators 41

Chapter 2

: Standard Operators

Start Operator

Input Parameters

Use the Standard operators to control workflows in processes.

Use the Start operator to start a workflow in a process. The Start operator is
automatically included in a process by default.

You can add more than one Start operator to a process. Each Start operator in a process
starts its own workflow when an Orchestrator starts the process.

You can also add a Start operator to terminate a cyclical sequence of operators. A Start
operator that terminates a workflow reinitializes the operators in the workflow. The
operator then loops processing back to the initial Start icon for the sequence of
operators that were executed between the Start operators.

Double-click the Start operator to configure its name and appearance using the
Information (see page 37) properties.

Comment Operator

-

The Comment operator adds comments to the process. Comments are important for
documenting steps in a process and allow more space than labels.

Follow these steps::

1. Dragthe Comment operator from the Standard folder to a location on one of the
editor tabs (main, exception handler, lane change handler).

2. Double-click the comment text to display the comment properties.

Chapter 2: Standard Operators 43

Stop Success Operator

Input Parameters
Background
Border Color
Click the Choose Color drop-down to select the color for the comment border.
Background Color
Select the color and transparency of the background for the comment text.
m Transparent for a transparent background.

m Opaque for a colored background. When you select this option, you can
also change the Color setting for the background.

Comments
Lets you enter or change the text of a comment.

m Configure the font properties: font, font style, size, effects (bold, italic, and
underline), color, and highlighting.

Select fonts that are likely to be installed on computers that host CA Process
Automation.

m Configure the alignment: left, right, or center horizontal alignment of the
comment text. Bulleted and numbered lists are also available.

m Click Hyperlink to turn selected text into a hyperlink.

m Click Source Edit to switch to source editing mode.

Stop Success Operator

The Stop Success operator terminates a process and determines it a success. A Stop
Success operator can terminate a process:

m At the end of a sequence of operators on the Main Editor tab.

®m In an exception on the Exception Handler tab.

®m |nalane change on the Lane Change Handler tab.

A Stop Success operator can be configured as either a Stop Success or a Stop Failure
operator (through its properties). When a process is run, the Stop Success operator sets

the Result variable for an operator dataset to 1 by default. You can override the positive
default to a negative one to change the Stop Success operator to a failure.

44 Content Designer Reference

Stop Success Operator

Input Parameters
Result

Specifies a result parameter. The result parameter is an integer expression which is
used to determine whether the flow ended correctly (positive value) or incorrectly
(zero or negative).

The default when you select a Stop Success end type is 1. The default when you
select Stop Failure is -1. You can also enter some other integer value or enter an
expression that returns a calculated value for the result code at run time.

The Result value for the Stop Success operator that terminates an instance of a
process is saved to the Result variable in the process dataset of the instance.

End Type
Select one of the following options:
Stop Success

Processes a normal end for a workflow. This option sets the Result code to 1. If you
change the Result value, use a positive integer to be consistent with a normal finish.

Stop Failure

Processes an abnormal end for a flow. This option sets the Result value to -1. If you
change the Result value, enter a negative integer to be consistent with an abnormal
finish.

Break Calling Loop

When the flow is invoked from another process, select this check box to break a
calling loop. Clearing this check box allows a calling loop to continue. This check box
only applies if the flow was called from within a loop in another process.

Ignore Running Tasks (Immediate Stop)

Ends a flow immediately without waiting for other operators to finish processing.
Clear this check box to wait for any operators still processing to finish before ending
the flow.

Chapter 2: Standard Operators 45

Stop Failure Operator

Stop Failure Operator

Input Parameters

The Stop Failure operator terminates a process and determines it a failure. A Stop
Failure operator can terminate a process:

m At the end of a sequence of operators on the Main Editor tab.

®m |n an exception on the Exception Handler tab.

®m |nalane change on the Lane Change Handler tab.

A Stop Failure operator can be configured as either a Stop Success or a Stop Failure
operator (through its properties). When a process is run, the Stop Failure operator sets

the Result variable for an operator dataset to -1 by default. You can override the
negative default to a positive one to change the Stop Failure operator to a success.

Result

Specifies a result parameter. The result parameter is an integer expression which is
used to determine whether the flow ended correctly (positive value) or incorrectly
(zero or negative).

The default when you select a Stop Failure end type is -1. The default when you
select Stop Success is 1. You can also enter some other integer value or enter an
expression that returns a calculated value for the result code at run time.

The Result value for the Stop Failure operator that terminates an instance of a
process is saved to the Result variable in the process dataset of the instance.

End Type
Select one of the following options:
Stop Success

Processes a normal end for a workflow. This option sets the Result code to 1. If you
change the Result value, use a positive integer to be consistent with a normal finish.

Stop Failure

Processes an abnormal end for a flow. This option sets the Result value to -1. If you
change the Result value, enter a negative integer to be consistent with an abnormal
finish.

46 Content Designer Reference

Process Progress Operator

Break Calling Loop

When the flow is invoked from another process, select this check box to break a
calling loop. Clearing this check box allows a calling loop to continue. This check box
only applies if the flow was called from within a loop in another process.

Ignore Running Tasks (Immediate Stop)

Ends a flow immediately without waiting for other operators to finish processing.
Clear this check box to wait for any operators still processing to finish before ending
the flow.

Process Progress Operator

Input Parameters

Output

The Process Progress operator lets you set the progress at different stages of a process.
Privileged users can monitor the progress of the process from any one of the following
ways:

® Process Dataset
m User-defined Reports
m Process Instances table in the Operations tab

Note: For more information about the privileged users, see the Permissions by Tab
section in the Content Administrator Guide.

Process Progress

Specifies the completion progress of a process as a percentage in the range 0
through 100. If the execution of a process reaches a Stop Success operator, the
process progress is 100. If a process fails after reaching a progress of 50, the Process
Dataset displays 50.

Progress

Displays the percentage completion of a process under Progress (variable name) in
the Process Dataset.

Chapter 2: Standard Operators 47

And Operator

And Operator

The And operator defines a synchronization point between all entry links to it. Exit links
from an And operator are activated only after all its entry links are activated. Use the
And operator to synchronize multiple branches of a process with a logical And condition
when two or more separate branches of a flow must all be completed before beginning
one or more additional branches.

You can include an And operator in a process in various ways.

Follow these steps::

1. Dragthe And operator from the Standard folder to one of the editor tabs (Main,
Exception Handler, Lane Change handler).

2. Link one or more input operators that the And operator can synchronize.

3. Link one or more output operators to follow completion of the And operator.
Parameters

The And operator does not contain any parameters.

Or Operator
The Or operator defines a synchronization point between all entry links to it. Exit links
from an Or operator are activated after at least one entry link to the operator has been

activated. At least one of two or more separate branches of a flow leading to an Or
operator be completed before beginning one or more exit branches.

The Or operator can be added to sequences of operators in a process on one of the
editor tabs (Main, Exception Handler, Lane Change Handler). Place an Or operator in a
process by dragging it from the Standard folder to any of those three editors. Link one
or more input operators that the Or operator can synchronize and link one or more
output operators to follow completion of the Or operator.

Parameters

The Or operator does not contain any parameters.

48 Content Designer Reference

Reset Operator

Reset Operator

Use the Reset operator to reset selected operators (typically an operator that caused an
exception) in a suspended process to their initial states. These reset operators act as if
they had not been executed and the process continues.

This operator also lets a user ignore an exception and continue with a process anyway.
The Reset operator lets a user set an operator in simulate mode and continue the
process with that operator simulated.

Input Parameters
Operators List

Click Add to add an operator to reset. A drop-down menu lets you select one of the
available operator names in the current process. Multiple operators can be added,
which can then be added, deleted, or sorted.

You can also enter an expression (instead of choosing an operator from the
drop-down menu) which resolves to a String (an operator name) or ValueArray (a
list of operator names) at runtime.

Continue with Result
Selected

The End Condition drop-down menu and the Evaluate pre-execution and
post-execution code check box become available.

Cleared

When an error-condition is met at runtime, CA Process Automation resets the
selected operators. CA Process Automation then continues with the process
flow

Chapter 2: Standard Operators 49

Reset Operator

End Condition

When you select the Continue with Result check box, the End Condition drop-down
menu becomes available with the following options:

Successful

CA Process Automation assumes that the selected operators are successful if
no error condition is met at runtime. CA Process Automation then continues
with the rest of the process flow.

Unsuccessful

CA Process Automation assumes that the selected operators have failed when
an error condition is met at runtime. CA Process Automation then continues
with the rest of the process flow.

Evaluate Pre-execution and Post-execution Code

Select this check box to evaluate pre-execution and post-execution code.

How the Reset Operator Works with the Loop Operator

The Reset operator works with the Loop operator as follows.

1. The Reset operator allows the Loop operator to be reset. The Reset operator resets
the Loop operator as follows:

m Resets all operators inside the Loop operator.
m Resets the Loop operator to the first iteration.
2. After the reset, the Loop operator restarts from the first iteration.
Note: The Loop operator does not support simulation. The Reset operator always resets
a Loop operator regardless of the values of the fields:
m Continue with Result
m End Condition

m Evaluate pre-execution and post-execution code

50 Content Designer Reference

Loop Operator

Loop Operator

The Loop operator loops an enclosed sequence of operators in a process either a
specified number of times or indefinitely. You can place it in a process and can resize the
box to accommodate any number of operators in the sequence.

T
7
L\m (Err J

The Loop operator can enclose a sequence of operators in a process on the Main Editor
pane, the Exception Handler pane, or the Lane Change Handler pane of the Designer
tab.

To place a Loop operator in a process

1. Drag the Loop operator from the Standard folder to an editor.

2. Dragone or more input links to the input portal, and one or more output links from
its output portal.

3. Add looped operators inside the Loop box.
4. Link the input portal to the first operator in the looped sequence.

5. Link the last operator in the sequence to the output portal.

Chapter 2: Standard Operators 51

Loop Operator

Input Parameters

Repeat Count

Specifies the number of times that an operator repeats. The following two options
are available:

m This value can be specified with an integer or a CA Process Automation
expression that returns an integer at run time. The default value of 1 executes
a loop on an operator a single time in a workflow. To execute an infinite loop,
click the Infinite Loop check box.

m A Boolean expression can also be used. As long as the expression evaluates to
true, an operator in a workflow executes a continual loop. If the expression is
false, the operator exits.

This value can also be specified using the loop variables in the dataset of the Loop
operator:

- CurrentLooplteration: A loop counter that starts at 0 during the first
iteration of the loop and increments by 1 for each additional iteration. This
variable is updated at the beginning and end of every iteration.

If the operator is configured to loop three times, at the end of execution of
all iterations, CurrentLooplteration is equal to:

-0initeration 1

- 1liniteration 2

52 Content Designer Reference

Loop Operator

- 2 initeration 3

- 3in the last iteration, which is not executed as it violates the loop
condition.

- OverallLoopDuration: A loop counter that specifies the amount of time (in
seconds) that has passed since the start of the first iteration of the loop.
This variable is updated at the beginning and end of every iteration and
includes any delay that is set between iterations of the loop.

Set the Repeat Count to:
Process[OpName].CurrentLooplteration < x
where

X is the number of times to run the operator.
Or, set Repeat Count to:
Process[OpName].OverallLoopDuration < x
where

x is the number of seconds to loop the operator. The operator does not stop at
the number of seconds specified when it is in the middle of an iteration.
Instead, if OverallLoopDuration is greater than the number of seconds
specified, the operator does not execute the next iteration.

CA Process Automation checks the loop condition between iterations.
Infinite Loop

When selected, Repeat Count is ignored and an infinite loop is created. The
operator keeps repeating until either:

m The process is interrupted.

m Theloop is stopped from a different branch of the process (by processing a
stop loop command link to the Loop Operator).

Chapter 2: Standard Operators 53

Loop Operator

Delay between iterations

Specifies the delay in seconds between each loop iteration.

While loop

Pre-

Output Parameters

When selected, the Loop operator behaves as a while loop. If unselected, the Loop
operator behaves as a do while loop.

While loop

The Loop operator checks the loop condition specified in the Repeat Count field
before it executes any iteration, including the first iteration.

Do while loop

The Loop operator checks the loop condition specified in the Repeat Count field
at the end of every iteration, so it is guaranteed to execute at least the first
iteration of the loop.

Note: All existing loop operators that are imported from CA Process Automation
before v4 have the While Loop field unchecked. These existing operators continue
to work as Do while loops, as they did in previous versions.

and Post execution Code

Use these fields to execute JavaScript code to execute with each iteration of the
loop.

The processing sequence of any Pre and Post condition depends on the type of
loop. See the Content Designer Guide to learn more about the logical sequence of a
loop.

CurrentLooplteration

A loop counter that starts at 0 during the first iteration of the loop and increments

by 1 for each additional iteration. This variable is updated at the beginning and end
of every iteration. If the Loop operator is configured to loop three times, at the end
of execution of all iterations, CurrentLooplteration is equal to:

m Oiniteration1
m liniteration?2
m 2initeration 3

m 3inthe last iteration, which is not executed as it violates the condition of the
Loop operator.

OverallLoopDuration

A loop counter that specifies the amount of time (in seconds) that has passed since
the start of the first iteration of the loop. This variable is updated at the beginning
and end of every iteration and includes any delay that is set between iterations of
the loop.

54 Content Designer Reference

Chande Lane Operator

Reset the Loop Operator Manually in a Process

See the Content Designer Guide for details on how to reset the Loop operator manually
in a process.

Change Lane Operator

The Change Lane operator initiates a series of lane changing rules in the Lane Change
Handler pane of the Designer.

To place the Change Lane operator in a process

Drag the Change Lane operator from the Standard folder onto one of the editors.

Input Parameters
Name

This option displays the name of the lane change. You can change the name by
editing the Name property under the Information properties group for the lane
change.

Source

Specifies the source lane for the lane change. Select All for a lane change from any
lane.

Destination

Specifies the destination lane for the lane change. Select All for a lane change to
any lane.

Exception Operator

vl

Use the Exception operator to initiate an exception, such as a termination due to system
errors or unidentified exit conditions. To place the Exception operator in a process, drag
it from the Standard folder onto the Exception Handler editor.

Chapter 2: Standard Operators 55

Links

Input Parameters
Name

Displays the name of the exception. To change the name, edit the Name property
under the Information properties group for the exception.

Exception type

Select System Error, Unidentified Response, Aborted, or Timeout from the
drop-down list to categorize the exception.

Links

Links define the structure of a process by creating sequences of operators.

(

To create a link
Click an exit link on an operator and drag it to the subsequent operator in the sequence.

If the link you want does not display, right-click the operator and then click the link type
(such as Failed, Completed, or Custom) on the shortcut menu.

Link Properties
Link properties display when you right-click a link in a process, then select Link
Properties.
Weight
Specifies the thickness of lines between operators.
Color

Opens the Choose Link Color dialog, in which you can change the color of links in
the process.

Shapes
Specifies the line shape for links between operators:
Straight

Creates straight links between operators.

56 Content Designer Reference

Links

Orthogonal
Creates right-angled links between operators.
Dashed

Click this check box to create a dashed (dotted) link.

Chapter 2: Standard Operators 57

Chapter 3: Catalyst

The Catalyst operators include create, read, update, delete, and event subscription
operators that can be invoked on any Catalyst connector. All operator parameters can
contain expressions for maximum flexibility in building content. CA Process Automation
processes can be created using any combination of these operators to construct
integrations across multiple products. In addition, the Catalyst operators could be used
as base operators to build custom operators for product-specific solutions.

All Catalyst connectors expose objects that comply with the Unified Service Model (USM
model). This common model facilitates cross product integrations.

The Catalyst operators contain are generic to any USM type. These operators also
contains operators that are specific to each USM type. See the Connector guide that is
provided with the applicable Catalyst connector for more information.

Catalyst nodes contain a broker, which is a directory of connectors. In design mode, the
Catalyst operators query the broker and display the connector names in the
MdrProdinstance list.

Generic USM Operators

The following operators are the more commonly used operators that apply to all USM
types.

Create Operator

The Create operator supports the CRUD create and update operations on any USM type.

Input Parameters
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct

Unique identifier of the connecting product.

Chapter 3: Catalyst 59

Generic USM Operators

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

Create
Indicates whether the operator:
m Creates an object
Or
m Updates an existing object.
Itemtype
Specifies the USM type of the object that is created or updated.
Values:
Alert, ComputerSystem, Router, Service, and so on.
For example:
itemtype=ComputerSystem
Properties

The operator parameters contain the properties of the USM type.
Customizing the Properties

The Properties form can be customized using the "Product property configuration file
name". If the MdrProduct and itemtype values match an entry in the "Product property
configuration file name", then the form displays according to the following rules:

m | the property is not defined in the USM type, then it is a custom property and that
property is added to the form.

m [f the property is defined in the USM type, then it is added to the form.

m If the property is defined in the USM type and it has an alias name, then it is added
to the form using the alias name.

60 Content Designer Reference

Generic USM Operators

For example, this entry displays the Alert form as shown.

<!-- SCOM -->
<MdrTypes MdrProduct="CA:00031">
<TypeMap name="Alert">
<Mapping propName="MdrProdInstance" aliasName="siloHost" />
<Mapping propName="MdrElementId" aliasName="Id" />
<Mapping propName="UrlParams" aliasName="" />
<Mapping propName="SeverityTrend" aliasName="" />
<Mapping propName="RelatedAlerts" aliasName="" />
<Mapping propName="AlertedMdrProdInstance" aliasName="siloHost" />
<Mapping propName="AlertedMdrElementID" aliasName="MonitoringObjectId"

/>
<Mapping propName="Summary" aliasName="Name" />
<Mapping propName="Message" aliasName="Description" />
<Mapping propName="Assignee" aliasName="Owner" />
</TypeMap>
</MdrTypes>

The tooltip of properties with alias names indicates the USM property name.

Delete Operator

The Delete operator supports the CRUD delete operation on any USM type. The
parameters identify the MDR and the object to delete.

Input Parameters
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct

Unique identifier of the connecting product.

Chapter 3: Catalyst 61

Generic USM Operators

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

MdrElementID

Unique identifier of the object in the connecting product.

ClassName

Execute Operator

Class name of the object (Alert, ComputerSystem, and so on.)

The Execute operator supports custom operations on any UCF Connector. The
parameters identify the MDR, the operation, and the operation parameters.

Input Parameters

CatalystBrokerURL

Defines the UCF Broker URL of your Catalyst server. This value defaults to the UCF
Broker URL in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
"http://hostname:7000/ucf/BrokerService"
When using secure Catalyst communications, specify the secure broker URL as:

"https://hostname:7443/ucf/BrokerService"

MdrProduct

Defines the unique identifier of the connecting product.
CA Process Automation is identified as:

"CA:00074 (CA Process Automation)"

MdrProdInstance

Defines the unique identifier of the instance of the connecting product as registered
in the UCF Broker. CA Process Automation queries the Catalyst Broker for the list of
available connectors and populates this field so you can select your connector from
the drop-down list.

CA Process Automation is identified as:

"CA:00074:01"

62 Content Designer Reference

Generic USM Operators

Operation Category

Specifies the loaded connector descriptors for the Catalyst operators. Select a
descriptor from the drop-down list.

Operation

Specifies the connector descriptor operations after you select an Operation
Category. Select a connector descriptor from the drop-down list.

ParameterExpression
Defines a value map that matches the expected parameter structure.

Use this operator when the Execute operator is used as a base operator of a custom
operator and the pre-execution code creates the value dynamically. You can use the
dataset of the Execute base operator as a reference to construct the value.

ParameterNamespaceExpression
Defines the namespaces that are used in the parameter expression.

Use this operator when the Execute operator is used as a base operator of a custom
operator and the pre-execution code creates the value dynamically. You can use the
dataset of the Execute base operator as a reference to construct the value.

Parameters

After you select an Operation, click Parameters to specify the input parameters for
the query. These fields vary according to the selected operation. Do not enter data
for them if you have already entered data in the Parameter Expression and
Parameter Namespace Expression fields.

Parameters for each operation can be found here.

Chapter 3: Catalyst 63

Generic USM Operators

Operation-Specific Parameters
Enter the following data about the selected operation.
Note: Do not enter data for them if you have already entered data in the Parameter
Expression and Parameter Namespace Expression fields.
AbortStartRequest
Instance
Specifies the instance of the start request to abort.
Cancel

MdrProduct

Specifies the unique identifier of the connecting product that you want to
cancel the request with.

Example: CA:00074 (CA Process Automation)
MdrProdinstance

Specifies the unique identifier of the instance of the connecting product (as
registered in the Catalyst Broker) that you want to cancel the request with.

Example: CA:00074:01
MdrElementID
Specifies the unique ID of the product element instances.
Example: Process instance ID to cancel.
DelegateTask
TaskID
Specifies the ID of the task that you want to cancel.
Export
Specifies information about the exported content.
ExportRequest

m Folder Name: Specifies the name of the folder that holds the exported
content.

m IsAbsolute

m SealModifiableReleaseVersions
ExportFileName

Specifies

m ExportlLocation

m OverwriteFile

64 Content Designer Reference

Generic USM Operators

Filter
ObjectTypes: Lets you filter a specific object type.
Hold
MdrProduct
Specifies the unique identifier of the connecting product.
CA:00074 (CA Process Automation)
MdrProdinstance

Specifies the unique identifier of the instance of the connecting product (as
registered in the Catalyst Broker).

Example: CA:00074:01

MdrElementID
Specifies the unique ID of the product element instances.
Example: Process instance ID to be put on hold.

Import

ImportLocation
Specifies the CA Process Automation library location to import the .xml.
Example: /Testimport/

Sourcelocation
Specifies the location from where to import the .xml.
Example: C:\test_import\import_test.xml

OverwriteAction

Import

Increase the version of the imported object if the same object exists in the
specified import folder. Overrides the release version if the same release
version exists.

DoNotimport
Do not import objects with the same name as an existing object.
ImportAndReplace

Import and replace the existing object. Deletes the previous versions of the
object.

SetCurrent

Boolean: true (sets the imported version to current) or false (set the imported
version as not current).

MakeAvailable

Chapter 3: Catalyst 65

Generic USM Operators

Boolean: true (sets the imported version as available) or false (sets the
imported version as not available).

QueryDatasetNames
PathName

Specifies the path that contains the name of the dataset that you want to run a
query on.

QueryDatasetParameters
PathName

Specifies the path that contains the name of the dataset that you want to run a
query on.

QueryModuleConfigProperties
ModuleName

Specifies the name of the CA Process Automation module properties that you
want to configure.

QueryModuleConfigs
(Optional) ModuleName
Specifies the name of the CA Process Automation module.
(Optional) The <ModuleType>

Specifies whether the standard module configuration or custom module group
configuration is returned. By default, the QueryModuleConfigs method returns
all the available modules. The <ModuleType> attribute takes the following
values:

All
Returns the standard modules and the custom modules configuration.
Standard
Returns only standard modules configuration.
Custom
Returns only custom modules configuration.
QueryStartRequestForms
LookUpPath

Specifies the path or the CA Process Automation library folder to query the
start request forms.

Example: /SRF_test
IsRecursive

Values:

66 Content Designer Reference

Generic USM Operators

m True: Specify true to search recursively over the child folders under the
specified folder.

m False: Specify false to not to search over the child folders under the
specified folder.

Keywords

Provide the start request forms Tags property as keywords to filter the list of
start request forms.

QueryStartRequests
Instance
Specifies the start request instance to query.
IsArchived
Specifies whether the start request instance is archived.
Values:

m True: CA Process Automation checks if the provided start request instance
is available in the archived table database. If the start request instance is
not in the archived table database, the provided instance name returns all
of the available archived instances from the database.

m False: CA Process Automation checks if the provided start request instance
is available in the current table database. If the start request instance is
not in the current table database, the provided instance name returns all
of the available unarchived instances from the database.

QueryTasks
TaskID
Specifies the ID of the task that you want to query.
RootUUID
Specifies the ROOTUUID of the process instance.
ProcessID
Specifies the process instance ID.

State

Specifics the state of the task, such as pending, taken, completed, failed, and
timeout.

Release
MdrProduct
Specifies the unique identifier of the connecting product.
Example: CA:00074 (CA Process Automation)

MdrProdinstance

Chapter 3: Catalyst 67

Generic USM Operators

Specifies the unique identifier of the instance of the connecting product (as
registered in the Catalyst Broker).

Example: CA:00074:01
MdrElementID
Specifies the unique ID of the product element instances.
Example: Process instance ID to be released.
ReplyTask
TaskID
Specifies the ID of the task that you want to reply to.
IsApproved
Specifies the ID of the task that you want to approve.
Values:
m True: Specifies approved.
m False: Specifies rejected.
Arguments

Specifies the arguments/parameters and their value for the forms that is
attached to the task.

ReturnTask
TaskID
Specifies the ID of the task that you want to return.
Start
MdrProduct
Specifies the unique identifier of the connecting product.
Example: CA:00074 (CA Process Automation)
MdrProdinstance

Specifies the unique identifier of the instance of the connecting product (as
registered in the Catalyst Broker).

Example: CA:00074:01
MdrElementID
Specifies the unique ID of the product element instances.
Example: Path to the process to start from the library.
Argument

Specifies the parameters and its values to be initialized when the process
starts.

68 Content Designer Reference

Generic USM Operators

SubmitStartRequestForm
Name
Specifies the name of the start request form to submit.
Path
Specifies the path of the start request form to submit.

Arguments

Specifies the parameters and their values to assign during when you submit the

start request forms.
StartDate
Specifies the start date of the start request form to submit.
StartTime
Specifies the time that the start request form you want to submit began.
Priority
Specifies the priority of the start request form that you want to submit.
TakeTask
TaskID
Specifies the ID of the task that you want to take.
TransferTask
TaskID
Specifies the ID of the task that you want to transfer.
Users
Specifies the user to transfer the task to.
Example: pamadmin or pamusers
Groups
Specifies the groups to transfer the task to.
Example: pamadmin groups, pamuser groups, pamdesigner groups
UpdateDatasetParameters
PathName

Specifies the name of the path for the dataset that contains the parameters
that you want to update.

Parameters

Specify a new parameter value for the dataset that you want to update.

Chapter 3: Catalyst 69

Generic USM Operators

Get Operator

The Get operator supports the CRUD read operation on any USM type. The parameters
identify the MDR and the UCF filter values (entitytype, itemtype, recursive, id, and
updatedAfter). In addition, the MaxNumberOfObjects parameter restricts the number
of objects that the operator returns.

Input Parameters
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct
Unique identifier of the connecting product.

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

entitytype
Specifies the type of the entity. Values can be "Alert", "ltem" or "Relationship".
For example:
entitytype=Item
itemtype
Specifies the type of item. If not specified, then all types are retrieved.
For example:
itemtype=ComputerSystem
recursive

Specifies if the connector recursively includes the item and its constituent children
and relationships.

Specifies a specific object identifier (same as the MdrElementID)

70 Content Designer Reference

Generic USM Operators

updatedAfter
Specifies only objects that are updated after a specific time.
MaxNumberOfObjects

Specifies the maximum number of objects to retrieve before the operator
completes.

SubscribeToChanges Operator

Input Parameters

The SubscribeToChanges operator supports event subscriptions on any USM type using
UCF filters. The parameters identify the MDR and the UCF filter values (entitytype,
itemtype, recursive, id, and updatedAfter). In addition, the MaxNumberOfObjects
parameter restricts the number of objects that the operator returns. The timeOut
parameter specifies the number of seconds after which the subscription expires. The
operator completes when either the number of objects are returned or the timeout
expires.

This operator takes the following input parameters:
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct
Unique identifier of the connecting product.

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

entitytype
Specifies the type of the entity. Values can be "Alert", "ltem" or "Relationship".
For example:

entitytype=Item

Chapter 3: Catalyst 71

Generic USM Operators

Example

itemtype
Specifies the type of item. If not specified, then all types are retrieved.
For example:
itemtype=ComputerSystem

recursive

Specifies if the connector recursively includes the item and its constituent children
and relationships.

Specifies a specific object identifier (same as the MdrElementID).
updatedAfter

Specifies only objects that are updated after a specific time.
timeOut

Specifies the number of seconds after which the subscription expires.
MaxNumberOfObjects

Specifies the maximum number of objects to retrieve before the operator
completes.

The Catalyst operators can be used directly in processes to build generic content. You
can also use the operators as base operators of custom operators for product-specific
content.

This example describes how to create Service Desk Incidents from SCOM Alerts.

To build a simple solution
1. Add the SubscribeToChanges operator to a process.

2. Select the SCOM Connector from the MdrProduct/MdrProdInstance lists and Alert
from the entitytype list.

72 Content Designer Reference

Generic USM Operators

3. Add the IncidentUpdate operator to the process. Select the Create check box and

the Service Desk Connector from the list.

2

| |SubseribeTochanges_1

UCF Security 7 | =

SubscribeToChanges o

Execution Settings -
Simulation i

Icon ~

SubscribeToChanges_1 Properties -

UCFBrokerURL:
MdrProduct:

CA:00031 (MS-Svstern Center Operations Manager) |7
MdrProdInstance:

"SCOMSO0 (CA:00031)" h
entitytype:

Alert i
iterntype:!
recursive:
id:
updatedafter:

timetut;

MaxNumberQfObjects:

<]

4. Set the values of the Incident properties using the properties of the SCOM Alert

object as variable expressions.
<

*i—v—-ﬂ SubscribeTaChanges_1

-’* | |IncidentUpdate_1

@
\.\:)

The content is now available for use.

IncidentUpdate_1 Properties =HFH

UCF Security = =

IncidentUpdate =y
UCFBrokerURL:

Create:

"true” T
MdrProduct:

"CA:D0020" T
MdrProdInstance:

"CASD (CA:00020)" ~
MdrElementID:

UrlParams:
Namedaliases:
Label:
SubscribsToChanges_1 Results[0].Summary
Description:

TenantlD:

Tags:

Chapter 3: Catalyst 73

Non-Generic USM Operators

Non-Generic USM Operators

In addition to the generic CRUD operators, there are specific Create/Update operators
for each USM type. The operator parameters are created from the properties of the
USM types. These operators are dynamically constructed from the USM schema during
the initialization of the Catalyst initialization.

The following operators are generated specifically from USM types:

Alert Update
ApplicationServerUpdate
ApplicationSystemUpdate
ApplicationUpdate
AssetUpdate
BackgroundProcessUpdate
BinaryRelationshipsUpdate
BootSoftwareUpdate
BusinessProcessServerUpdate
BusinessTransactionUpdate
ChangeOrderUpdate
ChangePackageUpdate
ClusterUpdate
CommentUpdate
CommunicationServerUpdate
ComplianceStatusUpdate
ComputerSystemUpdate
ConnectorlDUpdate
ConnectorUpdate
ContractUpdate
DatabaselnstanceUpdate
DatabaseUpdate
DirectoryServerUpdate
DiskPartitionUpdate
EntitylDUpdate
EntityUpdate

EnvironmentSensorUpdate

74 Content Designer Reference

Non-Generic USM Operators

ExtensionEntityUpdate
ExtensionRunningHardwareUpdate
FileUpdate
GenericlPDeviceUpdate
GroupUpdate
HypervisorManagerUpdate
IncidentUpdate
InterfaceCardUpdate
IPConfigUpdate
ITActivityProfileUpdate
ITActivityTemplateUpdate
ITActivityUpdate
LatestUsmBuildUpdate
LocationUpdate
MailServerUpdate
ManagedAccesssUpdate
ManagementAgentUpdate
MediaDriveUpdate
MemoryUpdate
MessageServerUpdate
MultiFunctionEntityUpdate
NetworkServerUpdate
NetworkUpdate
OperatingSystemUpdate
OrganizationalEntityUpdate
PersonUpdate
PhysicalContainerUpdate
PortUpdate
PowerSupplyUpdate
PrinterUpdate
PrintServerUpdate
ProblemUpdate

ProcessorUpdate

Chapter 3: Catalyst 75

Non-Generic USM Operators

m ProjectUpdate

m ProvisionedSoftwareUpdate
m RequestUpdate

m ResourceServerUpdate

m RouterUpdate

m RunningHardwareUpdate

®m RunningSoftwareUpdate

m SecurityServerUpdate

m ServiceSpecificationUpdate
m ServiceUpdate

® SnmpV1AccessUpdate

® SnmpV3AccessUpdate

m SoftwareComponentUpdate
m StorageArrayUpdate

m StoragePoolUpdate

m StorageVolumeUpdate

m SwitchUpdate

m TablespaceUpdate

® TransactionContextUpdate
® TransactionSegmentUpdate
m TransactionServerUpdate

m VirtualizationManagerUpdate
m VirtualSystemUpdate

m VMDataStoreUpdate

76 Content Designer Reference

Catalyst Security Parameters

Catalyst Security Parameters

Every Catalyst operator includes Catalyst Security parameters. These parameters
support authentications at the Catalyst level and at the connector level.

After access is granted to Catalyst nodes, you can use claims to get connector-specific
security information. See the Connector guide that is provided with the applicable
Catalyst connector for information about connector-specific claims.

Username
Defines the user ID that accesses Catalyst nodes.
Password
Defines the password that is associated with the Username.

Because you specify the password as an expression, the text you enter is visible.
Avoid using literal strings and specify an expression that references a password
variable in a global dataset.

Claims
These claims are not password-protected.

Click Add and enter the first claim name with its value. Repeat this step for each
claim. Use the up and down arrows to sequence or delete the claims as necessary.

Claim Name
Defines the name of the claim.
Claim Value
Defines the value of the named claim.
Passwordclaims

These claims are password-protected. CA Process Automation encrypts the
password values.

Click Add and enter the first password claim name with its value. Repeat this step
for each password claim. Use the up and down arrows to sequence or delete the
claims as necessary.

Claim Name
Defines the name of the claim.
Claim Value

Defines the value of the named claim.

Chapter 3: Catalyst 77

Chapter 4: Command Execution

The Command Execution operators run processes and scripts on host operating
environments.

Run Program Operator

The Run Program operator starts and monitors a program.

Run Fragram aperator

L™
lT‘?

o Completed &) Failed & Custam
Program ran and Frogram was not found, Boolean expression
finished narmally with could not be run, ended returns True
exit code of zero. with exit code other than
Fesult =0 zero, ar ather failure
ExitCode=10 Result = Alters hetween 1 and -1

For example: Invalid name returns result as 1
Mo input returns result as -1

ExitCode =0

Note: For almost all operators, Result is set to 1 upon successful execution and a
number other than 1 upon a failed execution. For this specific operator, Result is set to
0 upon successful execution and a number other than 0 upon a failed execution.

Chapter 4: Command Execution 79

Run Program Operator

Input Parameters

Program name

Profile

UNIX target: The program must be either a binary file or a shell script following
UNIX conventions (the first line of the file must have the full path of the shell,
as in #!/bin/ksh).

Windows target: The program must be an executable file or a script. The file is
typically specified by:

— The name of the file to execute in the working directory for the operator
Or

- In one of the directories specified by the PATH environment variable on
the target host.

The path relative to the Working directory specified for the UNIX Command

Execution operators.

UNIX

Specifies a host system profile to be “sourced” to define parts of the execution
context of the process.

For example:
"/home/username/appli_1 profile"

If no profile is specified here, the profile specified in the UNIX Command
Execution property settings (at the category level) is used. If no profile is
specified in either the operator or operator settings, then only the user profile
that runs the process is used.

Windows

Specifies the path to a batch (.bat) file in Windows that sets environment
variables to run by the process.

The variable settings that are defined by the batch file specified here are in
addition to any variable settings defined for the user profile that runs the

process. If no file is specified for this option, the operator uses the settings
defined by the Shell profile parameter set for the Windows process service.

80 Content Designer Reference

Run Program Operator

Working directory

Typically, this field specifies the folder that contains the program file or some
related files required by the program. Any file that is specified without an explicit
path is created or looked for in this directory.

The default if you do not specify a working directory is the home or working
directory for the user account that runs the operator.

UNIX
Specifies the working directory for the operator.
For example: "/home/userl"
User ID

Specifies the system user name under which to run the program. The user must
have execute permissions on the file.

If you leave this field blank, the default is the default user specified in the
configuration settings at the category level.

User names and passwords can be specified at the category level, or stored in
named dataset variables so they can be updated centrally without changing process
values.

Password
Specifies the current password for the specified user ID.

Specifying the password as a literal string value is considered a bad practice. A
much better method is to have the password kept in a dataset variable of type
password and to pass that variable.

Parameters
Specifies parameters to pass to the process.

The parameters are passed to the process in the same order that they are listed
here. Use the buttons to add, remove, or reorder parameters.

Program parameters are passed individually to the program on startup.
Standard out file

Specifies the file to capture text that the program writes to STDOUT.

For example:

/tmp/trace.log

You can specify the same file for both the standard error and standard out files.
However, no order is maintained for the different types of output.

Chapter 4: Command Execution 81

Run Program Operator

Stan

Post

dard error file
Specifies the file to capture text that the program writes to STDERR.
For example:

/tmp/trace.err

You can specify the same file for both the standard error and standard out files.
However, no order is maintained for the different types of output.

output to logs

Logs process output to the global log files.

Post output to dataset variable

Copies output of an operation (stdout and stderr) to the operator dataset variable
processOutput.

Truncate log file used for standard out

Replaces an existing log file with the same name every time new output is written.
Clear this check box to append output to an existing error log file with the same
name.

This check box also replaces an existing file even if it is also used for standard error
and the Truncate log file used for standard error check box is not selected.

Truncate log file used for standard error

Replaces an existing error file with the same name every time new output is
written. Clear this check box to append output to an existing error file with the
same name.

This check box also replaces an existing file even if it is also used for standard
output and the Truncate log file used for standard out check box is not selected.

Load OS user profile

Kill

Loads the operating system (typically Windows) profile that is associated with the
user account. The User ID specifies the profile (in addition to the profile specified by
Profile, which specifies environment variables). Typically this profile is not used
except to establish associations and similar Windows registry-based constructs for a
particular user. A performance penalty is associated with downloading user
information from a Domain server.

process on flow end

The OS process running the specified program is killed (if it has not already
terminated) once the CA Process Automation process completes.

82 Content Designer Reference

Run Program Operator

Output Parameters
programName
profile
workingDir
userlD
password
parameters
stdOutFileName
stdErrFileName
isPostToGlobalLog
isPostToOutVar
isTruncateForStdOut
isTruncateForStdErr
isLoadOSProfile
isKillProcessOnFlowEnd
processOutput
ExitCode
PID

Warnings

Chapter 4: Command Execution 83

Run Script Operator

Run Script Operator

The Run Script operator runs a script on a touchpoint host computer.

ﬁ_

Run Script operatar

W/
oo
I I
i Completed @ Custom
Script completed Boolean expression
Result=0 returns True
ExitCode =10 & Failed
Script ahorted

Fesult = Alters hetween 1 and -1

For example: Invalid name returns result as 1
MHoinput returns result as -1
ExitCode =10

Note: For almost all operators, Result is set to 1 upon successful execution and a
number other than 1 upon a failed execution. For this specific operator, Result is set to
0 upon successful execution and a number other than 0 upon a failed execution.

Input Parameters
Script extension

For Windows, specifies the extension that indicates the type of script. Select an
option from the drop-down list or type an extension.

84 Content Designer Reference

Run Script Operator

Inline script

Specifies a subscript for the script to run. Click the (...) button to open the editor to
enter the script to run.

UNIX

The script must be a script that can run according to UNIX protocols. The first
line of the script must indicate the full path of the shell that is used to interpret
the script (for example, #!/bin/sh).

Windows

The script must be a script that can run according to the Windows extension
specified in the Script extension field.

Note: See the Content Designer Guide for more information about using the CA
Process Automation Code Editor.

Profile
UNIX

Specifies a host system profile to use as the source to define parts of the
processing context for the script (for example,
/home/username/appli_1_profile).

If you do not specify a profile, the product uses the profile specified in the
Command Execution category property settings. The product uses the user file
that runs the process when the Command Execution category property settings
do not specify a profile.

Windows

Specifies the path to a batch (.bat) file in Windows that sets environment
variables for the process to run. The environment variable definitions in the
batch file are in the following format:

SET SOME_ENV_VAR=/tmp/PAM.exe
SET ANOTHER_ENV_VAR=/tmp/aaaa

The variable settings that the specified batch file defines are in addition to
settings that are defined for the user profile that runs the process. If this option
does not specify a file, the operator uses the settings that the Command
Execution category Shell profile parameter value defines.

Chapter 4: Command Execution 85

Run Script Operator

Working directory

UNIX

Specifies the working directory for the operator (for example, /home/userl).
Typically, the working directory is the folder that contains the program file or
related files that the program requires. The product looks in this directory for
files that are specified without explicit paths.

If you do not specify a working directory, the default value is the home
directory of the user account running the script.

Windows

Specifies the working directory for the operator. Typically, the working
directory is the folder that contains the script file or related files that the script
requires.

If you do not specify a working directory, the value defaults to the working
directory of the user account that runs the script.

User ID

Specifies the user name under which to run the script. The expression must have
run permissions on the file (for example, Process.Appli_1.User). If you leave the
User ID field blank, the value defaults to the user that the Command Execution
category configuration specifies.

User names (and their associated passwords) are typically stored in named dataset
variables so users can update them centrally without changing process values.

Password

Specifies the current password that is associated with the specified user ID. For
example, the following input sets the password to the value of the Process variable
Password:

Process.Password

The product typically evaluates the password against system information. However,
where nonstandard security mechanisms are defined on the target host,
administrators can deactivate this checking.

Because you specify the password as an expression, the text you enter must be
visible. Avoid using literal strings and refer instead to password dataset variables.

Parameters

Specifies parameters as in the following example to pass to the program:

/tmp/input file
/tmp/output file

The product passes parameters to the process in the order that they are listed.

86 Content Designer Reference

Run Script Operator

Program parameters are passed individually to the program on startup (that is, they
are not concatenated with spaces between them). For example, entering the
following expression on one line returns the single parameter “P1P2”:

P1 + P2

Entering the following expressions on two lines returns the two parameters “P1”
and “P2”:

n Pl n
||P2||

Standard out file

Specifies the standard output file for the script. If you do not specify the full path,
the Working directory parameter value defines the root directory for the path (for
example, /tmp/trace.log).

The Command Execution category directs the stdout stream from the process to the
specified file. You can specify the same file for both the standard error and standard
out files. However, the product does not maintain a relative order for the different
output types.

Standard error file

Specifies the standard error file for the script. If you do not specify the full path, the
Working directory parameter value defines the root directory for the path (for
example, /tmp/trace.err).

The Command Execution category directs the stderr stream from the process to the
specified file. You can specify the same file for both the standard error and standard
out files. However, the product does not maintain a relative order for the different
output types.

Post output to logs
Logs process output to the global log files.
Post output to dataset variable

Copies output of an operation (stdout and stderr) to an operator dataset variable
(for example, scriptOutput).

Truncate log file used for standard out

Select this check box to have the product replace an existing log file that has the
same name when it writes new output.

With the check box selected, the product replaces an existing file even when the
following items are true:

m Thefileis also used for standard error output
m The Truncate log file used for standard error check box is cleared

If the check box is cleared, the product appends output to an existing error log file
with the same name.

Chapter 4: Command Execution 87

Run Script Operator

Truncate log file used for standard error

Select this check box to have the product replace an existing error file that has the
same name when it writes new output.

With the check box selected, the product replaces an existing file even when the
following items are true:

m Thefileis also used for standard output
m The Truncate log file used for standard out check box is cleared

If the check box is cleared, the product appends output to an existing error file with
the same name.

Load OS user profile

Loads the operating system profile (typically Windows) that is associated with the
following items:

m The user account that the User ID specifies
m The profile that Profile specifies, which defines environment variables

The OS user profile is typically used only to establish associations and similar
Windows registry-based constructs for a specific user. Downloading user
information from a Domain server carries a performance penalty.

Kill process on flow end

If you select this option, the product ends the process when the process flow
finishes.

PowerShell Execution Policy

To run PowerShell scripts, Windows imposes a security in terms of its execution policy.
The Windows PowerShell execution policy determines whether scripts are allowed to
run and, if they can run, whether they must be digitally signed. It also determines
whether configuration files can be loaded.

The default execution policy of PowerShell on Windows is Restricted. To run a
PowerShell script, change the execution policy to any one of the following:

RemoteSigned
AllSigned

Unrestricted

88 Content Designer Reference

Run Script Operator

CA Process Automation provides an option during the installation of the agent or
Orchestrator to set the execution policy of the PowerShell script to Remote Signed
(meaning downloaded scripts must be signed by a trusted publisher before they can
execute). However, you always have an option to change the execution policy through
command prompt using the following PowerShell command:

Set-ExecutionPolicy

...followed by the appropriate policy name. For example, this command sets the
execution policy to AllSigned:

Set-ExecutionPolicy AllSigned

Chapter 4: Command Execution 89

Run Script Operator

Output Parameters
scriptType
inLineScript
profile
workingDir
userlD
password
parameters
stdOutFileName
stdErrFileName
isPostToGlobalLog
isPostToOutVar
isTruncateForStdOut
isTruncateForStdErr
isLoadOSProfile
isKillProcessOnFlowEnd
processOutput
StartDate
StartTime
Result
ExitCode
PID
Reason

Warnings

90 Content Designer Reference

Run SSH Command Operator

Run SSH Command Operator

Input Parameters

-

-I\y

The Run SSH Command operator is designed for use with targets such as network
devices or other non-server devices.

For executing on remote servers using SSH, it can be simpler to use the proxy
touchpoint or host group concepts.

Note: This operator does not require the user to specify the login sequence.

The Run SSH Command operator takes the following actions:
m Opens an SSH connection to the remote host.
m Sends one command at a time.

m Reads the output of the command until it sees the prompt to indicate that the
command is completed.

m Sends the next command.

You can set the maximum amount of time to wait for the prompt before failing the
operator. Verify that this setting is greater than the execution time of the longest
command that this operator can execute.

You can set this operator to switch to a different user (including root) after login and
before executing the commands. Switching users allows the commands to be executed
under a different user. Switching to a different user is done interactively.

For all input that can be specified as a regular expression in this operator, the operator
matches the entire reply data against the pattern. The Run SSH Command operator does
not match the pattern as a substring of the reply data). A dot ‘.’ matches a new line
terminator (can be used to match multiline reply data.

Chapter 4: Command Execution 91

Run SSH Command Operator

Commands

Remote Hosthame
The host name or IP of the computer to connect to.
Use Indexed String Variable for Commands?

If this check box is not selected, you can enter commands in the Commands field.
Select this field to specify the commands as indexed String variables in the
Commands Indexed String Variable field.

Commands

List of commands to execute on the remote host. Do not end the list with an 'exit'
command, as the operator automatically exits the SSH session after the last
command executes.

Commands Indexed String Variable

Name of the dataset variable that contains a list of commands to execute on the
remote host. Do not end the list with an 'exit' command, as the operator
automatically exits the SSH session after the last command executes.

Save Output to Dataset Variable?

Select this check box to copy the output of each command to the dataset of the
operator. The output of each command is stored in the SSHCommandsOutput
variable.

Commands Output Size limit

Specifies the maximum number of bytes of each command's output to save in the
dataset variable of the operator. If this number is not specified, the operator uses
value: 4096.

User Command Prompt
This field serves two purposes:

m Indicates that the user is logged in. The operator looks for this prompt after the
user logs in.

m Indicates that a command (in the list of Commands or Commands Array
executed on the SSH session under this user) has finished. The operator can
then send the next command in the list.

92 Content Designer Reference

Run SSH Command Operator

This field is generally an indication of the command prompt of the user. The field is
typically specified as "#", "$", ">", and so on, but must be specified as a regular
expression. For example: ".*[$>?:#]" to match any input (including new lines)
followed by $ or > or ? or : or #. Specify all the prompts that you expect to see
during the execution of the commands.

Important! Start the regular expression with .* to match all data returned by the
command until the prompt shows up. This regular expression should match all
output from the command until the next prompt.

Note: The brackets are required around the $ to indicate the S character. $ has a
special meaning in regular expressions if it is not surrounded by brackets.

Time to Wait for Prompts (sec):

The amount of time (in seconds) to wait for a prompt before giving up on the
prompt to send the commands. If this field is left blank, the operator uses value: 60.

This field applies to the prompts expected after executing each command specified
in the operator. The operator cannot tell if a command that executed in the SSH
session returned all its data. The operator keeps reading the output of the
command until it matches the specified User or Switch User Command prompt or
until this timeout is up (whichever comes first). The operator then proceeds to
process the output of the command before moving to the next command or failing
the operator.

Important! Set this time to be greater than the execution time of the longest
command that the operator executes.

Remote Login Information
Pseudo Terminal Type

The type of pseudo terminal to request on the SSH connection. This field overrides
the value specified at the category level. If the field is left blank, the operator uses
the default value set at the category level. If that value is blank, the operator
defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the SSH server
(commands output) contains control characters in the place of spaces. For
example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

m dumb
m xterm
= Vvt220

Chapter 4: Command Execution 93

Run SSH Command Operator

= vt320
m gogrid

Check your SSH server’s installation and configuration for the supported pseudo
terminals. Some SSH servers list the supported pseudo terminals in the TermInfo
folder.

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the SSH server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this SSH server’s limitation.
m Use JavaScript to polish/extract the output of the commands.

If you request a pseudo terminal that is not supported, some SSH servers return an
error while others ignore the requested pseudo terminal type and use another.
Review the SSH server’s logs for the pseudo terminal used when the operator is
running.

Port

The port to connect to on the remote host. This field overrides the value specified
at the operator category level. If this field is left blank, the operator uses the default
value set at the operator category level. If that default operator category value is
blank, the operator uses value: 22.

User name

The user name to use for logging in to the remote host. This field overrides the
value specified at the operator category level. If it is left blank, the operator uses
the default value set at the operator category level.

94 Content Designer Reference

Run SSH Command Operator

Use Private Key for Login?

Specifies if a private key should be used to log in to the remote host (rather than
the password information). This field overrides the value specified at the operator
category level. If it is left blank, the operator uses the default value set at the
operator category level. Select one of the following:

True
Prompts the operator to use a private key.

Selecting true enables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is disabled.

False
Prompts the operator to use password information.

Selecting false disables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is enabled.

Entering any other value prompts the operator to use false and enables all fields (to
accommodate the user entering an expression).

Password

The password used for logging in to the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

Private Key Input Source
Specifies how to provide the private key. Select from one of the following:
Inline Content

Enables Private Key Inline Content and disables Private Key Expression and
Private Key File Path.

File Path

Enables Private Key File Path and disables Private Key Inline Content and
Private Key Expression.

Expression

Enables Private Key Expression and disables Private Key Inline Content and
Private Key File Path.

Private Key Inline Content

The content of the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to Inline Content, the operator uses the default value set at
the operator category level.

Chapter 4: Command Execution 95

Run SSH Command Operator

Private Key Path

The path to the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to File Path, the operator uses the default value set at the
operator category level.

Private Key Expression

The dataset variable that contains the content of the private key for logging in to
the remote host.

Note: Ensure that the dataset variable is a multiline String.

Passphrase for key

Optional passphrase to unlock the content of the private key. This field is required if
the private key was created with a passphrase. This field overrides the value
specified at the operator category level.

A blank Passphrase for Key does not automatically prompt the operator to inherit
the Passphrase for Key value from the operator category settings. In fact, the
Passphrase for Key field is tied to the Private Key Inline Content, Private Key Path,
or Private Key Expression field as follows:

m [f the operator’s Passphrase for Key is specified, it is used by the operator.

m If the operator’s Passphrase for Key is blank, Private Key Inline Content is
specified (not blank), and the Private Key Input Source is set to Inline Content,
then the operator uses a blank Passphrase for key (passphrase not set).

m If the operator’s Passphrase for Key is blank, Private Key File Path is specified
(not blank), and the Private Key Input Source is set to File Path, then the
operator uses a blank Passphrase for key (passphrase not set).

m If the operator’s Passphrase for Key is blank, the Private Key Expression is
specified (not blank), and the Private Key Input Source is set to Expression, then
the operator uses a blank Passphrase for key (passphrase not set).

m For all other cases, the Run SSH Command operator uses the Default
Passphrase for key.

Note: The creation of SSH private/public keys is described in the Administration Guide.

Switch User Information

Run Commands/Script as Another User?

Should the specified commands be run as a different user? Select true to switch
users upon login or false to continue execution as the login user.

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

96 Content Designer Reference

Run SSH Command Operator

Switch User Command
The command to switch the user on the remote host. This is generally:
m SU-username
or
m sudo su - username

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

Switch User Password Text Prompt

The text prompt that indicates that the remote host requires a password for
switching the user to another user. This is generally:

m Password:
or
m password:

This parameter must be specified as a regular expression. For example, ".*assword:
" to match any input (including new lines) followed by "assword: ".

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

If a password is not required for switching to another user (for example, when
switching from root to another user), you can enter any value in this field. The
operator attempts to match the data read from the SSH session after submitting
the Switch User Command against the Switch User Password Text Prompt first, and
if it does not match, it then attempts to match the data against and the Switch User
Command Prompt to check if a password is required.

Switch User Password

The password to switch the user to another user. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

This field is not used if switching to another user does not require a password.
Switch User Command Prompt

This field serves two purposes:

m Toindicate that the user switch occurred.

m Toindicate that a command in the list of Commands or Commands Array
executed on the SSH session under the new user (that the operator switched
to) has finished, and the operator can send the next command in the list.

Chapter 4: Command Execution 97

Run SSH Command Operator

Output Parameters

This field is generally an indication of the command prompt of the new user (that
the operator switched to). It is generally "#","$", ">", etc. This field must be
specified as a regular expression. For example: ".*[$>?:#]" to match any input
(including new lines) followed by S or > or ? or : or #. Specify all the prompts that
you expect to see during the execution of the commands. Start the regular
expression with .* to match all data returned by the command until the prompt
shows up. This regular expression matches all output from the command until the

next prompt.

Note: The brackets are required around the $ to indicate the S character. $ has a
special meaning in regular expressions if it is not surrounded by brackets.

Be careful with the RegEx to avoid false positives, for example:
The user enters a bad password when switching to root:

su — root
Password:

The answer for a bad password ends with #:

su: Sorry
#

Which gives the same prompt as when the user enters a good password, where the
answer also ends with #:

Sun Microsystems Inc. SunOS 5.10 Generic January 2005
#

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

SSHSwitchUserPasswordPrompt

The actual Switch User Pasword Text Prompt read from the SSH session within the
time to wait for prompts. This is the data that was matched against the pattern
specified in the Switch User Pasword Text Prompt field. This field is empty if
switching the user did not require a password, such as when switching from Root to
any other user, or if the operator is not set up to switch users.

SSHSwitchUserCommandPrompt

The actual Switch User Command Prompt read from the SSH session (within the
time to wait for prompts) the first time after switching to the new user. This is the
data that was matched against the pattern specified in the Switch User Command
Prompt field. This field is empty if the operator is not set up to switch users.

98 Content Designer Reference

Run SSH Command Operator

SSHCommandsOutput

An indexed String containing the output read from each command (within the time
to wait for prompts) that ran on the remote host. The output for each command is
truncated to the value specified in Commands Output Size limit.

The full output of each command contains the next prompt.
SSHHost
CommandsAsAnArray
parameters
CommandsArray
isPostToOutVar
PostToOutVarSizeLimit
SSHHostUserCommandPrompt
SSHHostWaitTimeout
SSHPseudoTerminalType
SSHPort
SSHUsername
SSHUsePrivateKey
SSHPassword
SSHPrivateKeyOption
SSHPrivateKey
SSHPrivateKeyVar
SSHPrivateKeyPath
SSHPrivateKeyPassphrase
SSHSwitchUser
SSHHostSwitchUserCommand
SSHHostSwitchUserPasswordPrompt
SSHHostSwitchUserPassword

SSHHostSwitchUserCommandPrompt

Chapter 4: Command Execution 99

Run SSH Command Operator

Operator Ports
Success
| |

Failure

The operator completed successfully.

The operator depends on the patterns specified in User Command Prompt and
Switch User Command Prompt to decide if a command (and the operator)
succeeds or fails.

For example, a pattern of ".*#" succeeds the following command: ‘badCmd’:
1. The operator executes it:

badCmd
2. The output is read (which matches .*# prompt):

badCmd: not found
#

3. Execute the next command.

The user provides invalid input; for example, negative prompts timeout, blank
user command prompt, and so on.

Unable to establish a connection to the remote host. Check the remote host,
user name, password, and keys provided to the operator.

The user provides an unknown host in the remote host.

Unable to authenticate the user on the remote host:

- User/password authentication: user name or password is invalid
- User/private key authentication:

- A bad passphrase is provided for a passphrase-protected private key: the
operator indicates it cannot read the key due to an internal |10 problem

- The passphrase is missing for a passphrase-protected private key: the
operator indicates that the passphrase required for key authentication is
not supplied.

- A bad private key is provided: the operator indicates that it is unable to
parse the private key, the key format is not supported, or that it cannot
read the key due to an internal |0 problem.

- The path to the private key file is invalid, non-existent, or cannot be read.

Unable to switch user. Could not match the data read from the SSH session
(within the time to wait for prompts), with the specified Switch User Command
Prompt pattern.

Unable to switch user. Could not match the data read from the SSH session
(within the time to wait for prompts), with the specified Switch User Password
Text Prompt pattern.

100 Content Designer Reference

Run SSH Command Operator

Example

The user name/password provided are not allowed to log in through SSH.

The operator could not match the command prompt (specified in User
Command Prompt, or Switch User Command Prompt) with the output read
from a command within the time to wait for prompts. In this case either:

— The command finished execution and returned data that did not match the
pattern in User Command Prompt, or Switch User Command Prompt.

— The command’s execution is taking longer than the time to wait for
prompts and the operator stopped reading the output data before the
command finished. As a result, it did not match the data read with the
pattern in User Command Prompt, or Switch User Command Prompt. In
this case, you must increase the Time to Wait for Prompts to be greater
than the execution time of the longest command in the list.

Note: In this case, any subsequent commands in the list are not executed and
the SSHCommandsOutput only contains the output of the commands that were
executed before (including the output read for the current command).

Custom Ports

If set by the user during the process design.

This example explains how the Run SSH Command operator operates interactively.

Follow these steps::

1.
2.

Open an SSH connection to the remote host.

Log in non-interactively using one of the following:

A user name and password.
A user name and private key.

A user name, private key, and passphrase, if the private key was created with a
passphrase.

Read from the SSH session until one of the following occurs:

You match the pattern specified in User Command Prompt. Continue to step 4.

The Time to Wait for Prompts expires without matching the pattern specified in
User Command Prompt. Fail the operator.

Determine whether the operator is set to Run Commands as Another User.

If so, go to step 5.

If not, go to step 6.

Chapter 4: Command Execution 101

Run SSH Script Operator

5. Send the Switch User Command and read from the SSH session until one of the
following occurs:

You match the pattern specified in Switch User Password Text Prompt, which
requires a password to switch users.

- Send the Switch User Password.
- Read from the SSH session until one of the following occurs:

— You match the pattern specified in Switch User Command Prompt.
Continue to step 6.

— The Time to Wait for Prompts expires without matching the Switch User
Command Prompt. Fail the operator.

You match the pattern specified in Switch User Command Prompt, which
requires no password to switch users. Continue to step 6.

The Time to Wait for Prompts expires without matching the Switch User
Password Text Prompt and the Switch User Command Prompt. Fail the
operator.

6. The Run SSH Command operator has logged in and switched the user, if applicable.
The operator is now ready to execute the commands.

7. Loop through the commands, sending one command at a time, and read from the
SSH session until one of the following occurs:

You match the pattern specified in User Command Prompt, if we did not switch
to another user. Repeat step 7 and send the next command.

You match the pattern specified in Switch User Command Prompt, if we
switched to another user. Repeat step 7 and send the next command.

The Time to Wait for Prompts expires without matching the User Command
Prompt or the Switch User Command Prompt (whichever is applicable). Fail the
operator.

Run SSH Script Operator

102 Content Designer Reference

Run SSH Script Operator

Input Parameters

The Run SSH Script operator works in interactive mode to accommodate network
devices, where the presence of a file system is unknown.

Note: For non-interactive SSH communication, use a proxy touchpoint or a host group.

The operator uses the login credentials that you specify to do the following:

Open an SSH connection to the remote host.
Build a "conn" object.

Note: When you specify a script, either bean shell or JavaScript, the "conn" object is
made available in the scope of this script.

You can leverage the public methods of the "conn" object in the script. You can use
these public methods to automate operations executed on an SSH pseudo terminal.
Examples include sending commands to the remote SSH host, waiting for the
prompt after sending each command, and retrieving the output of each command
from the server through SSH.

Unlike the Run Telnet Script operator, the Run SSH Script operator provides you with
the "conn" object after logging in to the SSH host.

The difference between the Run SSH Script operator and the Run SSH Commands
operator is that in the Run SSH Commands operator:

The output of all commands can be automatically saved in the operator’s dataset.

The regular expression specified in the user command prompt field is used to match
the prompt after execution of all commands in the list.

The time to wait for prompts applies to all commands in the list, hence it should be
greater than the execution time of the longest command in the list.

While in the Run SSH Script:

You can specify which command output to view or save in the operator’s dataset by
calling the following commands in this sequence:

1. ‘conn.sendLine()’
2. ‘conn.waitFor()’
3. ‘conn.getlLastOutput()’

You can specify a different regular expression to match the prompt after execution
of each command.

You can specify a different time to wait for the prompt after execution of each
command.

Input parameters for the Run SSH Script operator include the following.

Chapter 4: Command Execution 103

Run SSH Script Operator

SSH Script Attributes
Remote Host name
The host name or IP of the computer to connect to.
Script Type:

The type of the script specified in the Inline Script field. Select from bean shell script
(.bsh) and JavaScript (.js). If this field is left blank, the operator defaults to .bsh.

Inline Script?

This operator provides two methods to provide the script: inline or as an
expression. Select this check box to provide the script inline.

Inline Script

The script, written in bean shell or javascript, uses the conn object and its APl as
follows:

m Send a command to the remote host
m Wait for the command to terminate
m Retrieve the output of the last command

The APIs that the conn object exposes are detailed in Run SSH Script Operator Inline

Script APIs (see page 106).
Script as Expression

Provides the script as an expression. See the Inline Script field for information about
the script itself.

Parameters

The CA Process Automation parameters to pass to the script. Only simple CA
Process Automation parameter types can be passed to the script as follows:

m PAM Boolean is passed as a Boolean object.

m PAM Date is passed as a Date object.

m PAM Double is passed as a Double object.

m PAM Integer is passed as an Integer object.

m PAM Long is passed as a Long object.

m PAM String is passed as a String object.

m PAM Object Reference is passed as a String object.

Complex CA Process Automation parameters types (indexed types, ValueMaps, and
so on) cannot be passed to the script.

The script can access these objects through the args array of objects, where args[0]
corresponds to the first parameter in the list, args[1] corresponds to the second
parameters, and so on.

104 Content Designer Reference

Run SSH Script Operator

Output Variable Names

The names of the variables, created in the script, to save in the operator dataset at
the end of the execution of the script.

The variables must be defined in the scope of the script so they are visible at the
end of the execution and can be saved in the operator’s dataset.

The output variables are saved as follows:

Boolean object saves as a PAM Boolean.

Date object saves as a PAM Date.

Integer object saves as a PAM Integer.

Number object saves as a PAM Long or Double object.
String object saves as a PAM string.

Character object saves as a PAM string.

An array of objects saves as an indexed PAM type, where the PAM type is
defined by the type of the first object in the array of objects.

Undefined saves as a PAM string with undefined as its value (the variable has
not been assigned a value).

Chapter 4: Command Execution 105

Run SSH Script Operator

Run SSH Script Operator Inline Script APIs

The product uses a script that is written in bean shell or JavaScript for the Run SSH Script
operator Inline Script field. The script uses the conn object, which exposes the following

APIs:

void send (String str, boolean log) throws Exception

This method sends data to the remote host.

String str

Defines the data to send to the remote host.

boolean log

Exposes or hides the data sent to remote host in the CA Process Automation
logs.

To debug, follow the interaction between the operator and the remote host.
Set the following code in the <install_dir>/server/conf/log4j.xml file:

<category name="com.company.c20.servicegroup.netutils">

<priority value="DEBUG" />
</category>

Also, set the CA Process Automation log file (c20.log) to accept the DEBUG
statements in log4j.xml.

When you set the debug level, the Command Execution operator category
starts logging to the CA Process Automation log file (c20.log) at the DEBUG
level. The CA Process Automation logs expose any data sent to the remote host
through send or sendLine.

Values:
True: Logs the String str value when logging at the DEBUG level.
False: Does not log the String str value.

Note: c20.log is the CA Process Automation log file, not the process logs. The
operators do not write messages to the process log.

This method has no return values. The product generates an exception if the API
cannot write the data to the remote host.

public void sendLine (String str, boolean log) throws Exception

This method appends a new line character to the data and sends it to the remote
host. To force the remote host to start running the command that is sent in the
parameter, use this method.

This method has the same parameters and values as void send (String str, boolean
log) throws Exception.

106 Content Designer Reference

Run SSH Script Operator

void send (String str) throws Exception

This method is equivalent to Send (String str, true).

void sendLine (String str) throws Exception

This method is equivalent to SendLine (String str, true).

public boolean waitFor(String pattern, int timeout) throws Exception

This method reads the output from the remote host and stops when either of the
following results occurs:

m The output matches the pattern that is specified in the parameters.

m The timeout interval expires.

The product stores the output from the remote host by each call to the waitFor
method in a buffer accessible through the getlLastOutput() method. Each waitFor
call overrides the buffer content from the previous call.

The next waitFor call starts reading the output from where the previous waitFor call
stopped reading. This is relevant when you use the method with getLastOutput.().
For example, if a waitFor call does not match the entire command output, the next
call can contain the remaining output from the previous command.

Important! To avoid mixing the previous command output with the current
command output, call waitFor after each sendLine call.

The Telnet script and SSH script operators use different mechanisms to read data
from the remote host:

m The Telnet waitFor starts reading data directly from the host and matches as it
reads from the host.

m The SSH waitFor retrieves the data read so far from a buffer and matches it
against the pattern.

m Calling waitFor after each sendLine call makes the SSH and Telnet operators
behave alike.

Chapter 4: Command Execution 107

Run SSH Script Operator

Parameters include:
String pattern

Defines a regular expression to match against the data that the product reads
from the remote host. Typically, this pattern matches any data up to the next
prompt (for example, ".*[$]"). Because you can match (and retrieve) the
command output data (including new lines up to the next prompt), start the
pattern with .*.

Note: The method matches the entire data read (during this waitFor call)
against the pattern. The method does not match the pattern as a substring of
the data read. Also, a dot (.) can match a new line terminator (it can be used
to match multiline reply data).

Int timeout

Defines the interval (in seconds) during which to read data from the remote
host and match it against the pattern.

Returns are Boolean:
True
The data read before the timeout expired matches the pattern.
False
The data read before the timeout expired does not match the pattern.

Note: The method returns a value as soon as it matches the pattern or the timeout
expires.

The product generates an exception in the following cases:
m The Int timeout parameter is less than or equal to 0.

m The String pattern parameter is null or empty.

m The product cannot read data from the SSH session.

m The pattern contains invalid syntax.

m An error occurs when matching the pattern to the data received.

public String getlLastOutput()

This method returns the content of the buffer where the last waitFor call saved the
data that it read from the remote host. This data does not always match the
waitFor pattern. The buffer stores whatever the most recent waitFor call read,
whether waitFor returned true or false.

This method has no parameters.

This method does not generate exceptions.

108 Content Designer Reference

Run SSH Script Operator

Remote Login Information
Pseudo Terminal Type

The type of pseudo terminal to request on the SSH connection. This field overrides
the value specified at the operator category level. If the field is left blank, the
operator uses the default value set at the operator category level. If that value is
blank, the operator defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the SSH server
(commands output) contains control characters in the place of spaces. For
example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

m dumb
m xterm
= Vvi220
= vt320
m gogrid

Check your SSH server’s installation and configuration for the supported pseudo
terminals. Some SSH servers list the supported pseudo terminals in the Terminfo
folder.

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the SSH server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this SSH server’s limitation.

m Use JavaScript to polish/extract the output of the commands.

If you request a pseudo terminal that is not supported, some SSH servers return an
error while others ignore the requested pseudo terminal type and use another.
Review the SSH server’s logs for the pseudo terminal used when the operator is
running.

Chapter 4: Command Execution 109

Run SSH Script Operator

Port

The port to log in to on the remote host. This field overrides the value specified at
the operator category level. If this field is left blank, the operator uses the default
value set at the operator category level; if that default operator category value is

blank, the operator uses value: 22.

User name

Use

The user name used for logging into the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

Private Key for Login?

Specifies if a private key should be used to log in to the remote host (rather than
the password information). This field overrides the value specified at the operator
category level. If it is left blank, the operator uses the default value set at the
operator category level. Select one of the following:

True
Prompts the operator to use a private key.

Selecting true enables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is disabled.

False
Prompts the operator to use password information.

Selecting false disables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is enabled.

Entering any other value prompts the operator to use false and enables all fields (to
accommodate the user entering an expression).

Password

The password used for logging in to the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

110 Content Designer Reference

Run SSH Script Operator

Private Key Input Source
Specifies how to provide the private key. Select from one of the following:
Inline Content

Enables Private Key Inline Content and disables Private Key Expression and
Private Key File Path

Expression

Enables Private Key Expression and disables Private Key Inline Content and
Private Key File Path

File Path

Enables Private Key File Path and disables Private Key Inline Content and
Private Key Expression

Private Key Inline Content

The content of the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to Inline Content, the operator uses the default value set at
the operator category level.

Private Key as Expression

The dataset variable that contains the content of the private key for logging in to
the remote host.

Note: Ensure that the dataset variable is a multiline String.
Private Key File Path

The path to the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to File Path, the operator uses the default value set at the
operator category level.

Passphrase for key

Optional passphrase to unlock the content of the private key. This field is required if
the private key was created with a passphrase. This field overrides the value
specified at the operator category level.

Chapter 4: Command Execution 111

Run SSH Script Operator

A blank Passphrase for key does not automatically prompt the operator to inherit
the Passphrase for Key value from the operator category. In fact, the Passphrase for
key field is tied to the Private Key Inline Content, Private Key File Path, or Private
Key as Expression field as follows:

If the operator’s Passphrase for key is specified, the operator uses it.

The operator uses a blank Passphrase for key (passphrase not set) if the
following conditions are set:

— The operator’s Passphrase for Key is blank
- Private Key Inline Content is specified (not blank)
- Private Key Input Source is set to Inline Content

The operator uses a blank Passphrase for key (passphrase not set) if the
following conditions are set:

— The operator’s Passphrase for key is blank
- Private Key File Path is specified (not blank)
— Private Key Input Source is set to File Path

The operator uses a blank Passphrase for key (passphrase not set) if the
following conditions are set:

— The operator’s Passphrase for Key is blank
- The Private Key Expression is specified (not blank)

— The Private Key Input Source is set to Expression

For all other cases, the Run SSH Script operator uses the Default Passphrase for key.

Note: The creation of SSH private/public keys is described in the CA Process Automation
Content Administrator Guide.

Output Parameters

Each variable in the Output Variable Names list is created with the corresponding CA
Process Automation type.

If a variable name in the Output Variable Names does not exist in the script, the
operator creates the corresponding variable as an empty String.

The bean shell interpreter provides a robust environment where if the script throws an
exception or contains an error, the variables defined and initialized in the script before
the occurrence of the error can be retrieved with their values. On the other hand, the
javascript interpreter does not allow for any variable to be retrieved with its value if the
script throws an exception or contains an error.

112 Content Designer Reference

Run SSH Script Operator

Operator Ports

Output parameters include:
SSHHost
inLineScriptLanguage
inlineScriptType
inLineScript
scriptExpression
parameters
outputVariables
SSHPseudoTerminalType
SSHPort

SSHUsername
SSHUsePrivateKey
SSHPassword
SSHPrivateKeyOption
SSHPrivateKey
SSHPrivateKeyVar
SSHPrivateKeyPath

SSHPrivateKeyPassphrase

Success
The operator completed successfully.
Failure
The operator fails for any of the following reasons

m The user provides invalid input; for example: empty inline script, empty remote
host, negative port, empty user name, and so on.

m The user specifies an Inline Script Type other than ‘.bsh’ and ‘.js’.

m Unable to establish a connection to the remote host. Verify the remote host
and port provided to the operator.

m The user provides an unknown host in the remote host.
m Unable to authenticate the user on the remote host:

- User/password authentication: user name or password is invalid.

Chapter 4: Command Execution 113

Run SSH Script Operator

- User/private key authentication:

- A bad passphrase is provided for a passphrase-protected private key: the
operator indicates it cannot read the key due to an internal 10 problem

- The passphrase is missing for a passphrase-protected private key: the
operator indicates that the passphrase required for key authentication is
not supplied.

- A bad private key is provided: the operator indicates that it is unable to
parse the private key, the key format is not supported, or that it cannot
read the key due to an internal 10 problem.

- The path to the private key file is invalid, non-existent, or cannot be read.
m The username/password provided are not allowed to log in through SSH.

m The user provides a complex data type in the list of parameters. Complex value
types (arrays, ValueMaps, and so on) cannot be passed to the script. Use simple
value types such as Double, Integer, Long, String, Date, and Boolean.

m When executing a ‘.bsh’ or ‘.js’ script:
— Parse or syntax error while evaluating the script.
— The script threw an exception.
- An error occurred when executing the script.

— Error when retrieving a variable from the script’s scope (at the end of
execution).

Custom Ports

If set by the user during the process design.

114 Content Designer Reference

Run SSH Script Operator

Example

The following procedure is an example of how to use the Run SSH Script operator.

Follow these steps::

1.

The Run SSH Script operator reads the login credentials you specify and uses them
as follows:

m To connect and authenticate to the remote SSH host.
m To create the "conn" object.

An example of a completed Remote Login Information panel for this operator
follows:

Remote Login Information &

Pseudo Terminal Type:

WTioo
Port:
22
User name:
admin
Use Private key for Login?:
False

Password:

Process.pwd
Private Key Input Source:

Inline Content il !

Private Key Infine Content:

Private Key as Expression:

Private Key File Path:

Passphrase for key:

Chapter 4: Command Execution 115

Run SSH Script Operator

2. Complete the Script parameters as follows:

a.

b.

Specify the remote host name.

Specify the parameters to pass to the script, where the values in this example
follow:

A string whose value is the word: "date".

Specify the name of the output variables that you create in the script (bean
shell or javascript), and that you want saved to the operator’s dataset at the
end of execution (here, "svrDate").

Note: The creation of dataset variables directly from the script is currently not
supported.

SSH Script Attributes o

Remote Hostname:

Process RemoteHost
Script Type:

| .bsh T @

¥ 1Inline Script?

Inline Script:
Script as Expression:

Parameters:

Parameters

1 “date"

Page | 1 of 1 Displaying 1 - 1 of 1

Output Variable Names:

lag] || 2]

@

Output ¥ariable Names

1 svrDate

F‘agell of 1

@

Displaying 1 -1 of 1

116 Content Designer Reference

Run SSH Script Operator

3. Intheinline script, you leverage the "conn" object as shown in the following bean
shell script example:

Private Key Inline Content H

String syrDate - ",

if (conn.waitFor” *[$] ",10 1) {
conn.sendlinglargs(0]);
if{conn waitFor(" *[$] ",10)} {
}m = conn.getlastOutputi);
ki

Cancel |; QI

a. Create the svrDate variable to be visible at the script scope, so it can be saved
to the dataset of the operator at the end of execution.

b. Use "conn.waitFor()" to wait for the first prompt “.*[$]” (Reg Ex) up to 10
seconds.

c. If the prompt is found within 10 seconds, then use "conn.sendLine()" to send
the value of the first parameter passed to the script, followed by a new line
character. In this example, the value is: args[0] = the word "date".

d. Use "conn.waitFor()" to wait for the next prompt ".*[S]” (Reg Ex) up to 10
seconds.

e. Ifthe prompt is found within 10 seconds, use ‘conn.getLastOutput()’ to retrieve
the output read during the last call of the method waitFor and store it in
svrDate.

At the end of execution, the operator saves the String object svrDate as a CA Process
Automation string in the dataset of the operator.

Note: The prompt that was matched appears in the output returned by
conn.getlastOutput(). Some SSH servers return this prompt twice in the output, while
others return it once.

Chapter 4: Command Execution 117

Run Telnet Command Operator

Run Telnet Command Operator

.ll\w

The Run Telnet Command operator takes the following actions:
m Opens a Telnet connection to the remote host.
m Sends one command at a time.

m Reads the output of the command until it sees the prompt to indicate that the
command was completed.

m Sends the next command.
Note: The Run Telnet Command operator and the Run SSH Command operator log in to

the remote host differently. The Run Telnet Command operator performs the login in an
interactive way.

You can set the maximum amount of time to wait for the prompt before failing the
operator. Verify that this setting is greater than the execution time of the longest
command that this operator executes.

You can set the Run Telnet Command operator to switch to a different user (including
root) after login and before executing the commands. Switching users allows
subsequent commands to be executed under a different user. Switching to different
user is done interactively.

Input Parameters

Notes:

m For all input that can be specified as a regular expression in the Run Telnet
Command operator:

— The operator matches the entire reply data against the pattern.
- The operator does not match the pattern as a substring of the reply data.

m Adot ‘.’ matches a new line terminator (it can be used to match multiline reply
data).

118 Content Designer Reference

Run Telnet Command Operator

Commands
Remote Hostname
The host name or IP of the computer to connect to.
Use Indexed String Variable for Commands?

If this check box is not selected, you can enter commands in the Commands field.
Select this option to specify the commands as indexed String variables in the
Commands Indexed String Variable field.

Commands

List of commands to execute on the remote host. Do not end the list with an exit
command, as the operator automatically exits the Telnet session after the last
command executes.

Commands Indexed String Variable

Name of the dataset variable that contains a list of commands to execute on the
remote host. Do not end the list with an 'exit' command. The operator
automatically exits the Telnet session after the last command executes.

Save Output to Dataset Variable?

Select this check box to copy the output of each command to the dataset of the
operator. The output of each command is stored in the TelnetCommandsOutput
variable.

Commands Output Dataset Variable Size Limit (bytes)

Specify the maximum number of bytes of each command's output to save in the
dataset variable of the operator. If this number is not specified, the operator uses
value 4096.

Remote Login Information
Pseudo Terminal Type

The type of pseudo terminal to request on the Telnet connection. This field
overrides the value specified at the operator category level. If the field is left blank,
the operator uses the default value set at the operator category level. If that value
is blank, the operator defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the Telnet
server (commands output) contains control characters in the place of spaces.
For example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

Chapter 4: Command Execution 119

Run Telnet Command Operator

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

m dumb
m xterm
= Vvi220
= Vvi320
m gogrid

Check your Telnet server’s installation and configuration for the supported pseudo
terminals.

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the Telnet server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this Telnet server’s limitation.
m Use JavaScript to polish/extract the output of the commands.

If you request a pseudo terminal that is not supported, some Telnet servers return
an error while others ignore the requested pseudo terminal type and use another.
Review the Telnet server’s logs for the pseudo terminal used when the operator is
running.

Remote Port

The port to connect to on the remote host. This field overrides the value specified
at the operator category level. If this field is left blank, the operator uses the default
value set at the operator category level; if that default category value is blank, the
operator uses value: 23.

Connection Timeout (sec)

The connection timeout in seconds before giving up on the connection. This field
overrides the value specified at the operator category level. If this field is left blank,
the operator uses the default value set at the operator category level; if that default
category value is blank, the operator uses value: 20.

120 Content Designer Reference

Run Telnet Command Operator

Login Scheme

The login scheme; select from one of the following:

0
Prompts the operator to use user name and password

1
Prompts the operator to use password only, which disables the following fields:
Password Text Prompt, and Password

2

Prompts the operator to use no user name and no password, which disables
the following fields: User login Text Prompt, User name, Password Text Prompt,
and Password

This field overrides the value specified at the operator category level. If you do not
specify a value and leave the field blank, the operator uses the value set at the
operator category level. Any other value prompts the operator to use user name
and password.

User Login Text Prompt

The text prompt that indicates that the remote host requires a login ID for logging
in. This is generally:

m Llogin:
or
m login:

This parameter must be specified as a regular expression. For instance: ".*ogin: " to
match any input (including new lines) followed by "ogin: ".

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

User name

The user name to be used for logging into the remote host. This field overrides the
value specified at the operator category level. If it is left blank, the operator uses
the default value set at the category level.

User Password Text Prompt

The text prompt that indicates that the remote host requires a password for the
user logging in. This is generally:

m Password:
or

m password:

Chapter 4: Command Execution 121

Run Telnet Command Operator

This parameter must be specified as a regular expression. For instance: ".*assword:
" to match any input (including new lines) followed by "assword: ". This field
overrides the value specified at the operator category level. If it is left blank, the
operator uses the default value set at the category level.

Password

The password used for logging into the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the category level.

User Command Prompt
This field serves two purposes:
m Toindicate that the user is logged in.

m Toindicate that a command in the list of Commands or Commands Array
executed on the Telnet session under this user has finished, and the operator
can send the next command in the list.

This field is generally an indication of the command prompt of the user. It is
generally "#","S", ">", and so on, but must be specified as a regular expression. For
example, ".*[$>?:#]" to match any input (including new lines) followed by $ or > or ?
or : or #. You should specify all the prompts that you expect to see during the
execution of the commands. The regular expression should start with .* to be able
to match all data returned by the command until the prompt shows up. This regular
expression should be able to match all output from the command until the next
prompt.

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

Note: The brackets are required around the $ to indicate the $ character. $ has a
special meaning in regular expressions if not surrounded by brackets.

Time to Wait for Prompt

The amount of time (in seconds) to wait for a prompt before giving up on the
prompt to send the commands. This field overrides the value specified at the
operator category level. If it is left blank, the operator uses the default value set at
the category level. If that default value is blank, the operator uses value: 60.

This field applies to the prompts expected after each command in the login and
switch user commands, and also the prompts expected after executing each
command specified in the operator. The operator cannot tell if a command
executed in the Telnet session returned all its data; hence it keeps reading the
output of the command until it matches the specified User or Switch User
Command prompt or until this timeout is up (whichever comes first). It then
proceeds to process the output of the command before moving to the next
command or failing the operator.

Important! Set this time to be greater than the execution time of the longest
command to be executed by the operator.

122 Content Designer Reference

Run Telnet Command Operator

Switch User Information

Run Commands/Script as Another User?

Should the script or the specified commands be run as a different user? Select True
or False.

m [f true, the current logged in user switches to another user before executing
the commands.

m [f false, the following fields are disabled: Switch User Command, Switch User
Password Text Prompt, Switch User Password, and Switch User Command
Prompt.

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

Switch User Command

The command to switch the user on the remote host. This is generally:
m suU-username

or
m sudo su - username

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

Switch User Password Text Prompt

The text prompt that indicates that the remote host requires a password for
switching the user to another user. This is generally:

m Password:
or
m password:

This parameter must be specified as a regular expression. For example, ".*assword:
" to match any input (including new lines) followed by "assword: ".

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

If a password is not required for switching to another user (for example, when
switching from root to another user), you can enter any value in this field. The
operator attempts to match the data read from the Telnet session after submitting
the Switch User Command against the Switch User Password Text Prompt first, and
if it does not match, it then attempts to match the data against the Switch User
Command Prompt to check if a password is required.

Chapter 4: Command Execution 123

Run Telnet Command Operator

Switch User Password

The password to switch the user to another user. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the category level.

This field is not used if switching to another user does not require a password.

Switch User Command Prompt

This field serves two purposes:
m Toindicate that the user switch occurred.

m Toindicate that a command in the list of Commands or Commands Array
executed on the Telnet session under the new user (that the operator switched
to) has finished, and the operator can send the next command in the list.

This field is generally an indication of the command prompt of the new user (that
the operator switched to). It is generally "#","$", ">", etc. It must be specified as a
regular expression.

For example: ".*[$>?:#]" to match any input (including new lines) followed by $ or >
or ? or : or #. Specify all the prompts that you expect to see during the execution of
the commands. The regular expression should also start with .* to match all data
returned by the command until the prompt shows up. This regular expression
should be able to match all output from the command until the next prompt.

Note: The brackets are required around the S to indicate the $ character. $ has a
special meaning in regular expressions if not surrounded by brackets.

Be careful with the RegEx to avoid false positives, for instance:
The user enters a bad password when switching to root:

su — root
Password:

The answer for a bad password ends with #:

su: Sorry
#

Which gives the same prompt as when the user enters a good password, where the
answer also ends with #:

Sun Microsystems Inc. SunOS 5.10 Generic January 2005
#

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

124 Content Designer Reference

Run Telnet Command Operator

Output Parameters
TelnetUserLoginPrompt

The actual User Login Text Prompt that was read from the Telnet session within the
time to wait for prompts. This is the data that was matched against the pattern
specified in the User Login Text Prompt field.

TelnetUserPasswordPrompt

The actual User Password Text Prompt that was read from the Telnet session within
the time to wait for prompts. This is the data that was matched against the pattern
specified in the User Password Text Prompt field.

TelnetUserCommandPrompt

The actual User Command Prompt that was read from the Telnet session (within
the time to wait for prompts) the first time, either after login or after connection (if
no login is required). This is the data that was matched against the pattern specified
in the User Command Prompt field.

TelnetSwitchUserPasswordPrompt

The actual Switch User Password Text Prompt that was read from the Telnet session
within the time to wait for prompts. This is the data that was matched against the
pattern specified in the Switch User Password Text Prompt field.

This field is empty if switching the user did not require a password; for example,
when switching from Root to any other user, or if the operator is not set up to
switch users.

TelnetSwitchUserCommandPrompt

The actual Switch User Command Prompt that was read from the Telnet session
(within the time to wait for prompts) the first time after switching to the new user.
This is the data that was matched against the pattern specified in the Switch User

Command Prompt field. This field is empty if the operator is not set up to switch
users.

Chapter 4: Command Execution 125

Run Telnet Command Operator

TelnetCommandsOutput

An indexed String containing the output read from each command (within the time
to wait for prompts) that ran on the remote host. The output for each command is
truncated to the value specified in Commands Output Size limit.

The full output of each command contains the next prompt.
TelnetHost
CommandsAsAnArray
parameters
CommandsArray
isPostToOutVar
PostToOutVarSizeLimit
TelnetPseudoTerminalType
TelnetPort
TelnetHostConnectTimeout
TelnetloginScheme
TelnetHostUserLoginPrompt
TelnetUsername
TelnetHostUserPasswordPrompt
TelnetPassword
TelnetHostUserCommandPrompt
TelnetHostWaitTimeout
TelnetSwitchUser
TelnetHostSwitchUserCommand
TelnetHostSwitchUserPasswordPrompt
TelnetHostSwitchUserPassword
TelnetHostSwitchUserCommandPrompt
TelnetSwitchUserPasswordPrompt
TelnetSwitchUserCommandPrompt
TelnetUserLoginPrompt
TelnetUserPasswordPrompt

TelnetUserCommandPrompt

126 Content Designer Reference

Run Telnet Command Operator

Operator Ports

Success
| |

Failure

The operator completed successfully.

The operator depends on the patterns specified in User Command Prompt and
Switch User Command Prompt to decide if a command (and the operator)
succeeds or fails.

For example, a pattern of ".*#" succeeds the following command: ‘badCmd’:
1. The operator executes it:

badCmd
2. The output is read (which matches .*# prompt):

badCmd: not found
#

3. Execute the next command.

The user provides invalid input; for example, negative remote port, negative
connection timeout, 0 or negative prompts timeout, blank user command
prompt, and so on.

Unable to log in. Could not match the data read from the Telnet session (within
the time to wait for prompts), with the specified User Login Text Prompt
pattern.

Unable to log in. Could not match the data read from the Telnet session (within
the time to wait for prompts), with the specified User Password Text Prompt
pattern.

Unable to log in. Could not match the data read from the Telnet session (within
the time to wait for prompts), with the specified User Command Prompt
pattern.

Unable to switch user. Could not match the data read from the Telnet session
(within the time to wait for prompts), with the specified Switch User Command
Prompt pattern.

Unable to switch user. Could not match the data read from the Telnet session
(within the time to wait for prompts), with the specified Switch User Password
Text Prompt pattern.

The user provided incorrect username/password login credentials.
The user provided incorrect username/password credentials to switch the user.

Unable to switch to another user unless the username/password scheme is
used to log in to the Telnet session.

Chapter 4: Command Execution 127

Run Telnet Command Operator

m The user provided an unknown remote host.
m Telnet connection to the remote host is refused (Telnet is not allowed).
m The username/password provided are not allowed to log in through Telnet.

m The operator could not match the command prompt (specified in User
Command Prompt, or Switch User Command Prompt) with the output read
from a command within the time to wait for prompts. In this case either:

— The command finished execution and returned data that did not match the
pattern in User Command Prompt, or Switch User Command Prompt.

- The command’s execution is taking longer than the time to wait for
prompts and the operator stopped reading the output data before the
command finished. As a result, it did not match the data read with the
pattern covered in User Command Prompt, or Switch User Command
Prompt. In this case, you must increase the Time to Wait for Prompts to be
greater than the execution time of the longest command in the list.

Note: In this case, any subsequent commands in the list are not executed and
the TelnetCommandsOutput only contains the output of the commands that
were executed before (including the output read for the current command).

Custom Ports

If set by the user during the process design.

Example
Use the Run Telnet Command operator interactively

The Run Telnet Command operator operates in the following interactive manner:
1. Open a Telnet connection to the remote host.
2. Do one of the following:

m If nologinis required, go to step 8.

m If password only login is required, go to step 4.

m If user name and password login is required, then read from the Telnet session
until one of the following occurs:

- You match the pattern specified in User Login Text Prompt. (Go to Step 3.)
— The Time to Wait for Prompts is up. If this time elapses, the operator fails.
3. Send the User name.
4. Read from the Telnet session until one of the following occurs:
m You match the pattern specified in User Password Text Prompt (go to Step 5).

m The Time to Wait for Prompts expires. If this occurs, fail the operator.

128 Content Designer Reference

Run Telnet Command Operator

Send the password, then:
a. Read from the Telnet session until one of the following occurs:
— You match the pattern specified in User Command Prompt, and continue.
- The Time to Wait for Prompts expires, then fail the operator.
b. Determine if the operator is set to Run Commands as Another User:
- Ifso, go to step 6.
- Ifnot,gotostep 7.
Send the Switch User Command and then do the following:
a. Read from the Telnet session until one of the following occurs:
- You match the pattern specified in Switch User Password Text Prompt.
- You match the pattern specified in Switch User Command Prompt.
— The Time to Wait for Prompts expires.
b. Take one of the following actions, based on the outcome:

- If you match the pattern for Switch User Password Text Prompt (password
required to switch user), send the Switch User Password, and read from
the Telnet session until one of the following occurs:

- You match the pattern specified in Switch User Command Prompt. Go to
Step 7.

- The Time to Wait for Prompts expires and the operator fails.

- If you match the pattern for Switch User Command Prompt (no password
required to switch user), go to Step 7.

- If the Time to Wait for Prompts expires, fail the operator.

The Run Telnet Command operator has logged in and switched the user, if
applicable. The operator is now ready to execute the commands.

Loop through the commands, send one command at a time, and read from the
Telnet session until one of the following occurs:

m You match the pattern specified in User Command Prompt (if we did not switch
to another user). Repeat step 8 and send the next command.

m You match the pattern specified in Switch User Command Prompt (if we
switched to another user). Repeat step 8 and send the next command.

m The Time to Wait for Prompts expires without matching the User Command
Prompt or the Switch User Command Prompt (whichever is applicable). Fail the
operator.

Chapter 4: Command Execution 129

Run Telnet Script Operator

Run Telnet Script Operator

The Run Telnet Script operator uses the remote host and port you specify to do the
following:

m Open a Telnet connection to the remote host.
m Build a "conn" object.

Note: When you specify a script, either bean shell or javascript, the "conn" object is
made available in the scope of this script.

You can leverage the public methods of the "conn" object in the script. The public
methods are used to authenticate on the Telnet session and automate operations
executed on a Telnet pseudo terminal. Examples of automated operations include
the following:

m Sending commands to the remote Telnet host.

m Waiting for the prompt after sending each command.

m Retrieving the output of each command.
Unlike the Run SSH Script operator, the Run Telnet Script operator does not
authenticate a user ID on the Telnet connection. Instead, you must leverage the ‘conn’
object’s methods to authenticate on the Telnet connection at the beginning of your
script.
Unlike the Run Telnet Command operator, the Run Telnet Script operator:

m Lets you specify which command output to view or save in the dataset of the
operator. You call the following methods in this sequence:

1. ‘conn.sendLine()’
2. ‘conn.waitFor()’
3. ‘conn.getlastOutput()’

m Lets you specify a different regular expression to match the prompt after the
execution of each command.

m Lets you specify a different time to wait for the prompt after the execution of each
command.

130 Content Designer Reference

Run Telnet Script Operator

Input Parameters

Script

Input parameters for the Run Telnet Script operator are as follows.

Remote Host name
The host name or IP of the computer to connect to.
Script Type:

The type of the script specified in the Inline Script field. Select from bean shell script
(.bsh) and JavaScript (.js). If this field is left blank, the operator defaults to .bsh.

Inline Script?

This operator provides two methods to provide the script: inline or as an
expression. Select this check box to provide the script inline.

Inline Script

The script, written in bean shell or javascript, uses the conn object and its APl as
follows:

m Send a command to the remote host
m Wait for the command to terminate
m Retrieve the output of the last command

The APIs that the conn object exposes are detailed in Run Telnet Script Operator's
Inline Script APIs (see page 133).

Script as Expression

Provides the script as an expression. See the Inline Script field for information on
the script itself.

Parameters

The CA Process Automation parameters to pass to the script. Only simple CA
Process Automation parameter types can be passed to the script as follows:

m PAM Boolean is passed as a Boolean object
m PAM Date is passed as a Date object

m PAM Double is passed as a Double object.
m PAM Integer is passed as an Integer object.
m PAM Long is passed as a Long object.

m PAM String is passed as a String object.

m PAM Object Reference is passed as a String object.

Chapter 4: Command Execution 131

Run Telnet Script Operator

Complex CA Process Automation parameters types (indexed types, ValueMaps, and
so on) cannot be passed to the script.

The script can access these objects through the args array of objects, where args[0]
corresponds to the first parameter in the list, args[1] corresponds to the second
parameters, and so on.

Output Variable Names

The names of the variables, created in the script, to save in the operator's dataset
at the end of the execution of the script.

The variables must be defined in the scope of the script so they are visible at the
end of the execution and can be saved in the operator’s dataset.

The output variables are saved as follows:

m Boolean object saves as a PAM Boolean

m Date object saves as a PAM Date

m Integer object saves as PAM Integer

m Number object saves as PAM Long or Double object
m String object saves as PAM string

m Character object saves as PAM string

m An array of objects saves as an indexed PAM type, where the PAM type is
defined by the type of the first object in the array of objects.

m Undefined saves as a PAM string with ‘undefined’ as its value.

132 Content Designer Reference

Run Telnet Script Operator

Run Telnet Script Operator Inline Script APIs

The product uses a script that is written in bean shell or JavaScript for the Run Telnet
Script operator Inline Script field. The script uses the conn object, which exposes the
following APls:

void send (String str, boolean log) throws Exception
This method sends data to the remote host.
String str
Defines the data to send to the remote host.
boolean log

Exposes or hides the data sent to remote host in the CA Process Automation
logs.

To debug, follow the interaction between the operator and the remote host.
Set the following code in the <install_dir>/server/conf/log4j.xml file:

<category name="com.company.c20.servicegroup.netutils">

<priority value="DEBUG" />
</category>

Also, set the CA Process Automation log file (c20.log) to accept the DEBUG
statements in log4j.xml.

When you set the debug level, the Command Execution operator category
starts logging to the CA Process Automation log file (c20.log) at the DEBUG
level. The CA Process Automation logs expose any data sent to the remote host
through send or sendLine.

Values:
True: Logs the String str value when logging at the DEBUG level.
False: Does not log the String str value.

Note: c20.log is the CA Process Automation log file, not the process logs. The
operators do not write messages to the process log.

This method has no return values. The product generates an exception if the API
cannot write the data to the remote host.
public void sendLine (String str, boolean log) throws Exception

This method appends a new line character to the data and sends it to the remote
host. To force the remote host to start running the command that is sent in the
parameter, use this method.

This method has the same parameters and values as void send (String str, boolean
log) throws Exception.

Chapter 4: Command Execution 133

Run Telnet Script Operator

void send (String str) throws Exception

This method is equivalent to Send (String str, true).

void sendLine (String str) throws Exception

This method is equivalent to SendLine (String str, true).

public boolean waitFor(String pattern, int timeout) throws Exception

This method reads the output from the remote host and stops when either of the
following results occurs:

m The output matches the pattern that is specified in the parameters.

m The timeout interval expires.

The product stores the output from the remote host by each call to the waitFor
method in a buffer accessible through the getLastOutput() method. Each waitFor
call overrides the buffer content from the previous call.

The next waitFor call starts reading the output from where the previous waitFor call
stopped reading. This is relevant when you use the method with getLastOutput.().
For example, if a waitFor call does not match the entire command output, the next
call can contain the remaining output from the previous command.

Important! To avoid mixing the previous command output with the current
command output, call waitFor after each sendLine call.

The Telnet script and SSH script operators use different mechanisms to read data
from the remote host:

m The Telnet waitFor starts reading data directly from the host and matches as it
reads from the host.

m The SSH waitFor retrieves the data read so far from a buffer and matches it
against the pattern.

m Calling waitFor after each sendLine call makes the SSH and Telnet operators
behave alike.

134 Content Designer Reference

Run Telnet Script Operator

Parameters include:
String pattern

Defines a regular expression to match against the data that the product reads
from the remote host. Typically, this pattern matches any data up to the next
prompt (for example, ".*[$]"). Because you can match (and retrieve) the
command output data (including new lines up to the next prompt), start the
pattern with .*.

Note: The method matches the entire data read (during this waitFor call)
against the pattern. The method does not match the pattern as a substring of
the data read. Also, a dot (.) can match a new line terminator (it can be used
to match multiline reply data).

Int timeout

Defines the interval (in seconds) during which to read data from the remote
host and match it against the pattern.

Returns are Boolean:
True
The data read before the timeout expired matches the pattern.
False
The data read before the timeout expired does not match the pattern.

Note: The method returns a value as soon as it matches the pattern or the timeout
expires.

The product generates an exception in the following cases:
m The Int timeout parameter is less than or equal to 0.

m The String pattern parameter is null or empty.

m The product cannot read data from the Telnet session.
m The pattern contains invalid syntax.

m An error occurs when matching the pattern to the data received.

public String getlLastOutput()

This method returns the content of the buffer where the last waitFor call saved the
data that it read from the remote host. This data does not always match the
waitFor pattern. The buffer stores whatever the most recent waitFor call read,
whether waitFor returned true or false.

This method has no parameters.

This method does not generate exceptions.

Chapter 4: Command Execution 135

Run Telnet Script Operator

Remote Login Information

Pseudo Terminal Type

The type of pseudo terminal to request on the Telnet connection. This field
overrides the value specified at the module level. If the field is left blank, the
operator uses the default value set at the module level. If that value is blank, the
operator defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the Telnet
server (commands output) contains control characters in the place of spaces.
For example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

m dumb
m xterm
= Vvi220
= vt320
m gogrid

Check your Telnet server’s installation and configuration for the supported pseudo
terminals.

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the Telnet server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this Telnet server’s limitation.
m Use JavaScript to polish/extract the output of the commands.

If you request a pseudo terminal that is not supported, some Telnet servers return
an error while others ignore the requested pseudo terminal type and use another.
Review the Telnet server’s logs for the pseudo terminal used when the operator is
running.

136 Content Designer Reference

Run Telnet Script Operator

Remote Port

The port to connect to on the remote host. This field overrides the value specified
at the module level. If this field is left blank, the operator uses the default value set
at the module level. If that default module value is blank, the operator uses value:
23.

Connection Timeout (sec)

The connection timeout in seconds before giving up on the connection. This field
overrides the value specified at the module level. If it is left blank, the operator uses
the default value set at the module level. If that default module value is blank, the
operator uses value: 20.

Output Parameters

Each variable in the Output Variable Names list is created with the corresponding CA
Process Automation type.

If a variable name in the Output Variable Names does not exist in the script, the Run
Telnet Script operator creates the corresponding variable as an empty string.

The bean shell interpreter provides a robust environment for the script. For example, if
the bean shell script throws an exception or contains an error, the variables defined and
initialized in the script, before the occurrence of the error, can be retrieved with their
values. Alternatively, if the javascript script throws an exception or contains an error,
the javascript interpreter does not allow for any variable to be retrieved with its value.
Output parameters include the following:

TelnetHost

inLineScriptLanguage

inlineScriptType

inLineScript

scriptExpression

parameters

outputVariables

TelnetPseudoTerminalType

TelnetPort

TelnetHostConnectTimeout

Chapter 4: Command Execution 137

Run Telnet Script Operator

Operator Ports
Success
The operator completed successfully.
Failure
The operator fails for any of the following reasons

m The user provides invalid input; for example: empty inline script, empty remote
host, negative port, and so on.

m The user specifies an Inline Script Type other than ‘.bsh’ and ‘.js’.

m Unable to establish a connection to the remote host. Review the remote host
and port provided to the operator.

m The user provides an unknown host in the remote host.

m The user provides a complex data type in the list of parameters. Complex value
types (arrays, Value Maps, and so on) cannot be passed to the script. Use
simple value types such as Double, Integer, Long, String, Date, and Boolean.

m When executing a “.bsh’ or “.js’ script:
— Parse or syntax error while evaluating the script.
— The script threw an exception.
- An error occurred when executing the script.

— Error when retrieving a variable from the scope of the script (at the end of
execution).

Custom Ports

If set by the user during the process design.

138 Content Designer Reference

Run Telnet Script Operator

Example

The following procedure provides an example of how to use the Run Telnet Script
operator.

1. The Run Telnet Script operator reads the login information you specify. The
operator uses this login information to connect to the remote Telnet host and to

create the "conn" object. The following Remote Login Information example shows
typical entries:

Remote Login Information L
Pseudo Terminal Type:

WT100 i
Remote Port:

23
Connection Timeout {sec):

20

Chapter 4: Command Execution 139

Run Telnet Script Operator

2. You specify the following in the Script palette:
m The remote host name.

m The parameters to pass to the script. In the following example, the user, the
password, and a string whose value is the word: "'date".

m The name of the output variables that you create in the script (bean shell or
javascript) that you want saved to the operator’s dataset at the end of
execution. If you do not want a variable saved into the operator’s dataset at
the end of execution, then you do not need to specify it here.

Note: The creation of dataset variables directly from the script is currently not
supported. The Output Variable Names field plays the role of C20SVD in this
case.

In this example, the following output variable names are saved to the dataset of the
operator at the end of execution: 'svrDate’, 'loginStr', 'pwdStr', and '‘promptStr'.

SSH Script Attributes S

Remote Hostname:

"hostname com"”
Script Type:

[6sh - @

[1nline Script?
Inline Script:

Script as Expression:

Parameters:
[| | [35 || f
Parameters

1 Process.user
2 Process.pwd
3 “date”

Page | 1 of 1

Output Variable Names:

Lot || 25 || 4

&

Displaying 1 - 3 of 2

Output ¥ariable HNames
svrDate
loginStr
pwdStr

O N

prormptSte

Page | 1 of 1

Displaying 1 - 4 of 4

&

140 Content Designer Reference

Run Telnet Script Operator

3. Inthe Inline script, you can leverage the 'conn' object, built by CA Process
Automation. How you can leverage the 'conn’ object is shown in the following bean
shell script example:

Inline Script

@ Lo @ e ﬂl [~ Case Sensitive [~ RegEx Replacal Al @

String syrDate, loginStn owd3t oramptstr = ™
if (Gonn.waitfert” *aain: ", 1000 {
laginstr = gonn.getkastoutputl);
. conn.sendlinelargs[01);
if (gonn.waitfor(" *assword: ", 109) {
padsty

= conn.getlastoutputi);
conn.sendline(args[1], falsel;
if { connwaitfar”. 1", 153) {

spnn
ann. ine(args[2]};
if {ponn.waitfor(" *[$] ",10) {
' s¥rRats = conn.gstlastOutnut()
¥
1
H

conce

a. Create the svrDate, loginStr, pwdStr, and promptStr variables to be visible at
the script scope, so they can be saved to the operator’s dataset at the end of
execution.

b. Use ‘conn.waitFor()’ to wait for the login prompt, “.*ogin: ” (Reg Ex) up to 10
seconds.

c. Ifthelogin prompt is found within 10 seconds, then use ‘conn.getLastOutput()’
to save the login prompt that was matched in the loginStr variable.

d. Use ‘conn.sendLine()’ to send the username passed as the first object in the list
of parameters: args/[0].

e. Use ‘conn.waitFor()’ to wait for the password prompt “. *assword: ” (Reg Ex) up
to 10 seconds

f. If the password prompt is found within 10 seconds, then use
‘conn.getlLastOutput() to save the password prompt we matched in the pwdStr
variable.

g. Use ‘conn.sendLine() to send the password passed as the second object in the
list of parameters: args([1].

Chapter 4: Command Execution 141

Run Telnet Script Operator

Use ‘conn.waitFor()’ to wait for the user prompt “.*/S] ” (Reg Ex) up to 15
seconds.

If the user prompt is found within 15 seconds, then use ‘conn.getLastOutput()’
to save the user prompt we matched in the promptStr variable.

Use ‘conn.sendLine()’ to send the command passed as the third object in the
list of parameters: args([2].

Use ‘conn.waitFor()’ to wait for the user prompt “.*/S]” (Reg Ex) up to 10
seconds.

’

If the user prompt is found within 10 seconds, then use ‘conn.getLastOutput()
to save the matched user prompt with the output of the command in the
svrDate variable.

At the end of execution, the Run Telnet Script operator saves the output
variables in the dataset of the operator as CA Process Automation objects.

The prompt that was matched appears in the output returned by
conn.getLastOutput().

142 Content Designer Reference

Chapter 5: Databases

Databases operators support JDBC type 2 drivers to communicate a database. Database
operators can perform different database operations such as queries on the database,
but they do not support administrative operations such as stopping a database server,
back up/recovery, and so on.

The connection string differs based on the server type.

The TNS name and thin driver type combination is supported only in Oracle 12.x
versions and up. CA Process Automation does not validate any combination or the
server credentials provided at the operator level.

Note: You can use the Databases operators with a different Relational Database
Management System (RDBMS) than the one used by the CA Process Automation
databases. For example, if CA Process Automation was installed using Microsoft SQL,
you can use the Databases operators with Oracle. However, the appropriate database
driver file must first be deployed correctly to your CA Process Automation installation.
See the Installation Guide for details.

Oracle Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Driver Type
Accepts one of the following options:
Thin
The thin driver is a pure Java implementation of Oracle's networking protocol

(Net8). Being self-contained, it may be used on any machine with or without
Oracle installed, or even distributed with application classes in an applet.

OcCl

The "OCI" (type 2) driver consists of Java wrappers to the low-level Oracle call
interface (OCI) libraries used by utilities like SQL*Plus to access the database
server. The OCI driver offers potentially better performance that the thin
driver. It however requires the OClI libraries to be installed on the local
machine.

KPRB

The "KPRB" driver is used for Java stored procedures and database JSP's.

Chapter 5: Databases 143

MSSQL Server Parameters

Driver

Specifies the Oracle JDBC driver.
Server Host

Specifies the host where the Oracle database is running.
UserName

Specifies the default Oracle database user.
Password

Specifies the password for the default Oracle user.
ServicelD

Specifies the Oracle service ID.
TNS Name

Oracle TNS Names translates a local database alias to all the connectivity
information needed to connect to the database. This includes IP address, port,
database Service ID or service name, and so on. This information is stored in a file
called tnsnames.ora in the Oracle directory.

Maximum Rows
Specifies the maximum rows to retrieve.
Client Encryption

Oracle supports multiple data encryptions for the client (RC4_40, RC4_56, RC4_128,
RC4_256, DES40C, DES56C, 3DES112, 3DES168, SSL, AES256, AES192, and AES128).
The user should provide one of these values. These values will be set as properties
as part of the connection. The encryption levels RC4_128 and RC4_256 are for
domestic editions only.

Client Checksum

Specifies checksums supported by Oracle. Refer to your Oracle documentation.

MSSQL Server Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Default Driver
Specifies the default MSSQL driver.
Default Server Host

Specifies the host where the MSSQL database is running.

144 Content Designer Reference

MySQL Parameters

Default Server Port

Specifies the default MSSQL database server port.
Default UserName

Specifies the default MSSQL database user.
Default Password

Specifies the password for the default MSSQL user.
Default Maximum Rows

Specifies the maximum number of rows to retrieve.
Default Database Name

Specifies the MSSQL database name.
Default Instance Name

Specifies the MSSQL instance name.

MySQL Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Default Driver

Specifies the default MySQL driver.
Default Server Host

Specifies the host where the MySQL database is running.
Default Server Port

Specifies the default MySQL database server port.
Default UserName

Specifies the default MySQL database user.
Default Password

Specifies the password for the default MySQL user.
Default Maximum Rows

Specifies the maximum number of rows to retrieve.
Default Database Name

Specifies the default MySQL database name.

Chapter 5: Databases 145

Sybase Parameters

Sybase Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Default Server Type

Specifies one of the following Sybase server types:

m Adaptive Server Anywhere (ASA) (the default value)

m Adaptive Server Enterprise (ASE)
Default Connection Protocol

Specifies the default connection protocol. The default value is Tds.
Default Driver

Specifies the default Sybase driver. The default value is
com.sybase.jdbc2.jdbc.SybDriver.

Default Server Host

Specifies the host were Sybase is running.
Default Server Port

Specifies the default Sybase server port.
Default UserName

Specifies the default Sybase username.
Default Password

Specifies the password for the Sybase user.
Default Maximum Rows

Specifies the maximum number of rows to retrieve. If blank, the default value is 10
rows.

Default Cache Buffer Size

The Sybase Cache Buffer Size is the amount of memory used by the driver to cache
insensitive result set data. Valid values are:

-1 = All data is cached.
0 = All data is cached up to 2GB.

X = Must be positive. This is the buffer size (must be a power of 2). This value is
specified in KB.

After the limit is reached (if any), the result set data is written to disk.

146 Content Designer Reference

Operator Level Properties

Default Batch Performance Workaround
The Sybase batch performance workaround is one of the following:
m Trueisthe JDBC v3.0 compliant mechanism.

m False is the native batch mechanism. False is the default.

Operator Level Properties

The following are connection parameters for the Database operators.

Database Server Login Parameters

The Database Server Login parameters configure settings that are required to log into
the database server and communicate with the database server.

User Name
Specifies the database username.
Password

Specifies the password for the database user.

Notes:

m |f"Other" is selected as the Database Type, enter the User Name and
Password port and other information to use to connect to the database (if
necessary). The connection wizard constructs a URL that is populated under the
operator properties.

m |f you want to use Windows Authentication, do not specify a User Name/Password
when configuring a Databases operator. See the Content Administrator Guide for
more information about configuring Windows Authentication for the Databases
Operators.

Connection Wizard

A wizard that lets you specify connection properties. You can enter the properties
(see page 148) that configure how the operator connects to the database.

Chapter 5: Databases 147

Operator Level Properties

Connection URL

Represents a Universal Resource Locator (URL) that specifies a particular type of
database server (compatible with the local JDBC driver) and a particular host.

Notes:

m [f "Other" is selected as the Database Type (in the Connection Wizard), you
must enter a JDBC URL in this field.

m If you want to use Windows Authentication, append the following string to the
Connection URL:

;integratedSecurity=true

Connection Wizard Properties
Database Type

Select the type of database from the drop-down list:

MySQL (default)
m Oracle

m SQLSERVER

m Sybase

m Informix

m Hypersonic

m Postgres

m DB2

m Interbase

m Ingres

m Other

148 Content Designer Reference

Operator Level Properties

Database Type, Server Host, Server Port, Database Name, Driver Name and
Connection URL are always displayed in the Connection Wizard. The remaining
fields are shown/hidden based on the selection of Database Type.

For example, if you select "Oracle" as a database type, then all the fields related to
Oracle are shown and the remaining fields are hidden.

Note: If you select SQLSERVER as the Database Type and you want to use Windows
Authentication (integrated security), leave all fields blank except the Connection
URL field. In this field, enter something similar to the following example:

"jdbc:sqlserver//ms-db-host:1433;DatabaseName=dbname;integratedSecurity=true

If you define Host, Port, Database Name or SQL Server Instance name, the operator

creates the URL based on those values instead of using the one you configured in
the Connection URL field with integratedSecurity set to true.)

Note: If Other is selected as the Database Type, enter the User Name and Password

to be used to connect to the database (if required) in the Database Server Login
parameters.

Other Database Type
If your database is not listed in the Database Type drop-down list, enter it here.
Server Host
Specifies the host where database is running.
Server Port
Specifies the database server port.
Database Name
Specifies the name of the database.
Driver Name

Specifies the database driver name (the Java class that interfaces with the
database).

Connection URL

Specifies a database URL is a Universal Resource Locator (URL) that specifies a
particular type of database server (compatible with the local JDBC driver) and a
particular host.

This field is updated as information is entered into the Connection Wizard.

The following properties only display if they apply to specified Database Type.

Chapter 5: Databases 149

Operator Level Properties

Sybase Cache Buffer Size

Available when Sybase is selected as the database type. This field specifies the
amount of memory used by the driver to cache insensitive result set data. Valid
values are:

-1

All data is cached.

All data is cached, up to 2GB.

This is the buffer size; must be positive, and a power of 2. This value is specified
in kilobytes.

Sybase Batch Performance Workaround

Available when Sybase is selected as the database type. Select from either True or
False.

m False is the default (native batch mechanism).
m Trueis for JDBC v3.0 compliant mechanism.
Sybase Connection Protocol

Available when Sybase is selected as the database type. Specifies the connection
protocol for Sybase. The default connection protocol is Tds. The connection string
differs based on the server type.

Sybase Server Type

Available when Sybase is selected as the database type. Specifies the Sybase server
types. Select one of the following from the drop-down list:

m Adaptive Server Anywhere (ASA) (default)
m Adaptive Server Enterprise (ASE)
Oracle Driver Type

Available when Oracle is selected as the database type. Specifies the driver type for
Oracle. Select one of the following from the drop-down list:

thin
The thin driver is a pure Java implementation of the Oracle networking

protocol (Net8). Being self-contained, it may be used on any machine with or
without Oracle installed, or distributed with application classes in an applet.

150 Content Designer Reference

Operator Level Properties

odCl

The OCI (type 2) driver consists of java wrappers to the low-level Oracle call
interface (OCI) libraries used by utilities such as SQL*Plus to access the
database server. The OCI driver can potentially improve performance over the
thin driver, however, it requires the OClI libraries to be installed on a local
machine.

KBRP
The KPRB driver is used for Java stored procedures and database JSPs.
Oracle Service ID

Available when Oracle is selected as the database type. A support expression that
specifies the Oracle service ID.

Oracle TNS Name

Available when Oracle is selected as the database type. Translates a local database
alias to all the connectivity information needed to connect to the database. This
includes IP address, port, database Service ID, or service name, and so on. This
information is stored in a file called tnsnames.ora in the Oracle directory.

Oracle Client Encryption

Available when Oracle is selected as the database type. Oracle supports the
following multiple data encryptions for the client:

RC4_40, RC4_56, RC4_128, RC4_256
DES40C, DES56C, 3DES112, 3DES168
SSL, AES256, AES192, AES128

Specify one of these values that will be set as properties as part of the connection.
The encryption levels RC4_128 and RC4_256 are for domestic editions only.

Oracle Client Checksum

Available when Oracle is selected as the database type. Specifies the Oracle Client
Checksum value (a number calculated by the database from all the bytes stored in a
data or redo block). Oracle supports MD5 checksum. For more information, refer to
the Oracle documentation.

SQLServer Instance Name

Available when SQLServer is selected as the database type. On a given server, you
can run multiple SQLServer services, each with their own ports, logins, and
databases. Each of these services is called an instance of SQL Server. This field
specifies a particular instance name for SQLServer.

Chapter 5: Databases 151

Bulk Insert into Database Operator

Hypersonic Database Type

Available when Hypersonic is selected as the database type. Select one of the
following from the drop-down list:

m Server
m File

m |In-memory

Bulk Insert into Database Operator

=]

Ly

The Bulk Insert into Database operator lets you quickly import a bulk number of rows
into a database table or view that you specify.

Input Parameters
Data Source
The table name to supply in the SQL statement, as a String or Variable.
Insert map array

An array of ValueMaps; each one represents a row to insert into the database.
Important! Verify that single quotes encapsulate any string values.

The ValueMap parameter name that you want to insert into a table must be same as its
associated column name.

Each of the variables within the value map must correspond to the columns in the table.
For example, if you have a table with two columns: "Name" and "Number", then your
ValueMap must be organized the same way.

152 Content Designer Reference

Delete from Database Operator

Output Parameters
DataSource
JDBCInsertMapArray
UserName Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Delete from Database Operator

Use the Delete from Database operator to delete rows in a table based on criteria that
you specify.

Chapter 5: Databases 153

Delete from Database Operator

Input Parameters

Input Source

Specifies that the user can choose to submit an SQL statement as an in-line
expression (the default) or data variable. Select either Inline Text or Expression
from the drop-down list.

Inline Text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Input Parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Output Parameters

Query Results
Returns the number of rows deleted.
Reason

Specifies the reason if the Operator fails after execution.

154 Content Designer Reference

Delete from Database Operator

Result

Specifies the result of the Operator execution.InputSource
InlineText
InputSourceExpression
JDBCInputParamArray
IsConstructSQLStatement
CompleteSQLStatement
DataSource
SelectionCriteria
UserName

Password

DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType

DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Chapter 5: Databases 155

Get Database Schema Operator

Get Database Schema Operator

Use the Get Database Schema operator to retrieve schema names from the database.

Input Parameters

The Database Server Login parameters (see page 147) are required for this operator.

Output Parameters
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

156 Content Designer Reference

Get Free Space Operator

Get Free Space Operator

Use the Get Free Space operator to return the free space (in MB) available in the
database.

Input Parameters
Schema Name

Specifies the name of the schema for which free space must be calculated.

Output Parameters
Query Results
Returns free space (in MB).
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 157

Get Stored Procedure Operator

Result

Specifies the result of the operator execution.
SchemaName
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort
ConnectionString

When the required input parameters are provided, ConnectionString is
automatically constructed.

Get Stored Procedure Operator

E

Use the Get Stored Procedure operator to return the stored procedure names available
in the database.

158 Content Designer Reference

Get Stored Procedure Operator

Input Parameters
Catalog Name

Must match the same catalog name as it is stored in the database. The values
and null indicate that the catalog name should not be used to narrow the search.

Schema Pattern

Must match the same schema name as it is stored in the database. The values
and null indicate that the schema name should not be used to narrow the search.
The pattern should be a regular expression.

Procedure Name Pattern

Must match the same procedure name as it is stored in the database. The pattern
should be a database-supported regular expression.

Output Parameters
Query Results
Returns an array in which each row is a procedure name.
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 159

Get Table Operator

Result

Specifies the result of the executed operator.
CatalogName
SchemaPattern
TableNamePattern
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerTypeDriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Get Table Operator

i

Use the Get Table operator to return the list of tables from the database.

160 Content Designer Reference

Get Table Operator

Input Parameters
Catalog Name

The catalog name must match the catalog name as it is stored in the database. The
values "" and null indicate that the catalog name should not be used to narrow the
search.

Schema Pattern

The schema pattern must match the schema name as it is stored in the database.
The values "" and null indicate that the schema name should not be used to narrow
the search. The pattern should be a regular expression.

Table Name Pattern

The table name pattern must match the table name as it is stored in the database.
The pattern should be a database-supported regular expression.

Output Parameters
Query Results
Returns an array in which each row is a table name.
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 161

Get Used Space Operator

Result

Specifies the result of the executed operator.
CatalogName
SchemaPattern
TableNamePattern
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Get Used Space Operator

This Get Used Space operator returns the used space (in MB) in the database.

162 Content Designer Reference

Get Used Space Operator

Input Parameters
Schema Name

Specifies the name of the schema for which the operation must return the used
space.

Output Parameters
Query Results
Returns free space (in MB).
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 163

Get Version Operator

Result

Specifies the result of the operator execution.
SchemaName
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Get Version Operator

=

,\‘g!)

Use the Get Version operator to return the name and version number of the database.

164 Content Designer Reference

Get View Operator

Input Parameters

The Database Server Login parameters (see page 147) are required for this operator.

Output Parameters

UserName

Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Get View Operator

=

Use the Get View operator to return a list of views from the database.

Chapter 5: Databases 165

Get View Operator

Input Parameters
Catalog Name

The catalog name must match the catalog name as it is stored in the database. The
values "" and null indicate that the catalog name should not be used to narrow the
search.

Schema Pattern

The schema pattern must match the schema name as it is stored in the database.
The values "" and null indicate that the schema name should not be used to narrow
the search. The pattern should be a regular expression.

View Name Pattern

The view name pattern must match the view name as it is stored in the database.
The pattern should be a regular expression.

Output Parameters
Query Results
Returns an array in which each row is a view name.
Reason

Specifies the reason if the operator fails after execution.

166 Content Designer Reference

Insert into Database Operator

Result

Specifies the result of the executed operator.
CatalogName
SchemaPattern
TableNamePattern
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Insert into Database Operator

=]

pCEy

Use the Insert into Database operator to insert a new row in a table.

Chapter 5: Databases 167

Insert into Database Operator

Input Parameters

Input Source

Specifies that the user can choose to submit an SQL statement as an in-line
expression (the default) or data variable. Select either Inline Text or Expression
from the drop-down list.

Inline Text

Only available when Inline Text is selected as the input source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Expression

Only available when Expression is selected as the input source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Input Parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Output Parameters

Query Results
Returns the number of rows inserted into a table.
Reason

Specifies the reason if the operator fails after execution.

168 Content Designer Reference

Insert into Database Operator

Result

Specifies the result of the executed operator.
InputSource
InlineText
InputSourceExpression
JDBCInputParamArray
IsConstructSQLStatement
CompleteSQLStatement
DataSource
ColumnNameMode
ColumnNames
ColumnNameAsArray
ColumnValueMode
ColumnValues
ColumnValueAsArray
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType

ServerHost

Chapter 5: Databases 169

Query Database Operator

ServerPort

ConnectionString

Query Database Operator

Input Parameters

=

@

Use the Query Database operator to issue a single SQL statement against the database.
This operator supports the JDBC escape syntax. The Query Database operator uses
CallableStatement and ParameterMetaData to gather information about the input and
output parameters prior to and after statement execution. If the JDBC driver does not
support this behavior, the Generic SQL operator may not be able to gather all of the
results from the SQL statements. Additionally, the JDBC driver supplied by the database
vendor may not support the use of all data types with the JDBC driver. For example, the
SQL Server JDBC driver does not support the SQL Server sgl_variant data type. Always
refer to your JDBC driver documentation for more information on what JDBC features
and data types are supported by the driver.

Input Source

Specifies that the user can choose to submit SQL statement as an in-line expression
(the default) or data variable. Select either Inline Text or Expression from the
drop-down list.

Inline Text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text.

Click the Inline Text field to open the Inline Text editor, where you can enter a
literal SQL statement.

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Maximum rows to retrieve

Specifies the maximum number of rows to retrieve. If blank, the default value is 10
rows. The Generic SQL Operator retrieves a maximum of 512 rows. Additional rows
will be truncated.

170 Content Designer Reference

Query Database Operator

Input parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Display null values

If checked, the Generic SQL Operator results will contain the field NullFieldFlags. If
the generic SQL statement returns results sets, this field can be used to distinguish
null values from default values.

For example, querying an integer column that contains a null value returns 0. The
NullFieldFlags value for this column would be true. However, if the table actually
stored the value 0, then the NullFieldFlags value would be false.

Output Parameters
ResultsSets

An array of indexed ValueMaps where each item contains the results of a query.
The size of ResultsSets matches the number of results sets returned by the SQL
statement. Each ValueMap contains the following fields:

Rows

An array of ValueMaps representing the rows of the result set. Each ValueMap
contains a field for each column and the value of the column in that particular
row.

NullFieldFlags

An array of ValueMaps. The fields of each ValueMap correspond to the fields in
rows. The value of each field is either true. The corresponding value in rows is
null, or false otherwise. This output only displays if Display null values is
selected.

UpdatedRowCounters

An array of integers representing the number of rows updated by the generic SQL
statement. If the generic SQL statement performs multiple updates, then this value
contains multiple values.

RowCount

(Deprecated) Returns either the row count for SQL Data Manipulation Language
(DML) statements or the number of rows in the first result set in ResultSets. If the
generic SQL statement performs no updates and returns no results sets, then this
value will be set to -1. This field is included for backward compatibility.

OutputParam

The value of the output parameter of the generic SQL statement. If the generic SQL
statement does not return any output parameters then this field will not be
included in the operator results. The outputParam fields are numbered; for
example: outputParam1l, outputParam?2.

Chapter 5: Databases 171

Query Database Operator

isNullOutputParam

A Boolean value indicating if the corresponding OutputParam value is null. This field
only displays if the generic SQL statement returns an output parameter and Display
null values is selected.

Reason
Specifies the reason if the operator fails after execution.
Result

Specifies the result of the executed operator.

172 Content Designer Reference

Query Database Operator

InputSource
InlineText
InputSourceExpression
MaximumRows
JDBCInputParamArray
JDBCReportNull
UserName

Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Chapter 5: Databases 173

Query Database Operator

Run a Stored Procedure

To run a stored procedure against a database, use the Query Database operator.

This example uses the SQL Server driver that CA Process Automation provides during
installation. To run the process against another database, upload the corresponding
JDBC driver from the Manage User Resources palette on the Configuration tab. CA
Process Automation can access the driver when you restart the Orchestrator service. For
more information, see the Content Administrator Guide.

You can duplicate this example in the SQL Server Management Studio in the
PAMReporting database. PAMReporting is the database name that is provided for the
CA Process Automation Reporting tables during the installation. You can use a different
name. You can also use any database of your choice.

174 Content Designer Reference

Query Database Operator

Follow these steps:

1.

Create a stored procedure that contains the following body:

USE PAMReporting
GO

-- Template generated from Template Explorer using:
-- Create Procedure (New Menu).SQL

-- Use the Specify Values for Template Parameters
-- command (Ctrl-Shift-M) to fill in the parameter
-- values below.

-- This block of comments will not be included in
-- the definition of the procedure.
SET ANSI NULLS ON
GO
SET QUOTED IDENTIFIER ON
GO
CREATE PROCEDURE sp getSOAPRows
-- Add the parameters for the stored procedure here

AS
BEGIN

-- SET NOCOUNT ON added to prevent extra result sets from

-- interfering with SELECT statements.

-- SET NOCOUNT ON;

-- Insert statements for procedure here
select count(*) from SOAPClientCall;

END
GO

The procedure returns the number of rows in a table that was called as a
SOAPClientCall.

Click Parse in the SQL Server Management Studio.

Click Execute in the SQL Server Management Studio.

CA Process Automation saves the new stored procedure in the PAMReporting
database.

Create a process with the Query Database operator, then enter the following line in
the Inline text for the operator:

EXECUTE sp_getSOAPRows

In the Database Server Login (see page 147) parameters, enter relevant details that
CA Process Automation requires to communicate with your database.

Save the process.

Chapter 5: Databases 175

Select from Database Operator

8. Run the process.

9. Open the operator dataset.

The number of rows the procedure returns is displayed as a result of the process.

Note: Your result depends on the number of rows in the SOAPClientCall table.

Select from Database Operator

Input Parameters

=

e

Use the Select from Database operator to selectively retrieve data from one or more
data sources with optional selection criteria.

Input Source

Specifies that the user can choose to submit SQL statement as an in-line expression
(the default) or data variable. Select either Inline Text or Expression from the
drop-down list.

Inline text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Maximum rows to retrieve

Specifies the maximum number of rows to be retrieved by the select statement.
This parameter overrides the property set at the operator category level.

Input parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

176 Content Designer Reference

Select from Database Operator

Display null values

If checked, the Generic SQL Operator results contain the field NullFieldFlags. If the
generic SQL statement returns results sets, this field can be used to distinguish null
values from default values.

For example, querying an integer column that contains a null value returns 0. The
NullFieldFlags value for this column is true. However, if the table actually stored the
value 0, then the NullFieldFlags value are false.

Chapter 5: Databases 177

Select from Database Operator

Output Parameters
QueryResults

An array of ValueMaps representing the rows of the result set. Each ValueMap
contains a field for each column and the value of the column in that particular row.

NullFieldFlags

An array of ValueMaps. The fields of each ValueMap correspond to the fields in
rows. The value of each field is either true (the corresponding value in rows is null)
or false (the corresponding field is not null). This output only displays if Display null
values is selected.

InputSource

InlineText
InputSourceExpression
MaximumRows
JDBCInputParamArray
JDBCReportNull
IsConstructSQLStatement
CompleteSQLStatement
ReturnValueMode ReturnValues
ReturnValuesAsArray
DataSourceMode
DataSources
DataSourcesAsArray
SelectionCriteria
SortCriteriaMode
SortCriteria
SortCriteriaAsArray
UserName Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround

ConnectionProtocol

178 Content Designer Reference

Update in Database Operator

ServerType

DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Update in Database Operator

Input Parameters

=

Use the Update in Database operator to update records in a table.

Input Source

Specifies that the user can choose to submit an SQL statement as an in-line
expression (the default) or data variable. Select either Inline Text or Expression
from the drop-down list.

Inline text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Input parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Chapter 5: Databases 179

Update in Database Operator

Output Parameters

Query Results

Returns the number of rows updated.
Reason

Specifies the reason if the operator fails after execution.
Result

Specifies the results of the executed operator.
InputSource
InlineText
InputSourceExpression
JDBCInputParamArray
IsConstructSQLStatement
CompleteSQLStatement
FieldValueModeArray
FieldvalueModeC20ValueMap
DataSource
FieldsValues
FieldsAsArray
ValuesAsArray
FieldvalueMap
SelectionCriteria
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName

CacheBufferSize

180 Content Designer Reference

Update in Database Operator

BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Chapter 5: Databases 181

Chapter 6: Date-Time

The Date-Time operators execute time and calendar constraints in processes. All
operators in this group can only be run on an Orchestrator.

Check Calendar Operator

The Check Calendar operator determines whether a date falls within a set of calendar

rules.
il
¢
C A]
[|
Inside Calendar 1 Outside Calendar © Failed
Branchwhen the evaluated Branch when the evaluated Operation aborted
iz inside ofthe specified date iz outside ofthe Result =0
calendar rules specified calendar rules
Fesult=1 Result=2

Input Parameters
Allow dates Calendar
Specifies the full path of the calendar. This expression defines the allowed dates for
subsequent branches in the process to be processed.
Click R to locate a calendar object. After you select a calendar, click Open to open

the calendar object in the calendar designer.

Exclude dates Calendar

Specifies the full path of the calendar used to define excluded days. Excluded days
are days when subsequent branches in the process may not be processed.

There are no excluded days when no calendar is specified.

Click > to locate a calendar object. After you select a calendar, click Open to open
the calendar object in the calendar designer.

Chapter 6: Date-Time 183

Check Calendar Operator

Delta

Specifies the number of days an allowed date is shifted when it falls on an excluded
date.

The shift depends on whether the value is positive, negative, or zero. A negative
value shifts forward (earlier), and a positive value shifts backward (later). When this
value is zero, the allowed date is skipped.

Open days only
Counts only open days when shifting an eligible date that falls on an excluded date.

Open days are those days not specified by a condition or rule that closes or
excludes dates.

Maximum shifts

This option defines the maximum number of shifts that are allowed if subsequent
shifts fall on a closed date.

This setting is only relevant if Open days only is selected.
Date
Specifies the date to test against the calendar rules.

Click the calendar icon to select a date. This option is unavailable if you select either
the Use current date or the Use calculated date check box.

Use current date
Specifies to use the current date to test against the calendar rules.

Clear this check box to specify a particular date in the Date field. This check box is
initially selected.

Use calculated date
Specifies to use the date from the Calculated date field.
Calculated date

If Use calculated date is selected, this parameter returns a date. Typical uses
include calculating a future date based on the current date.

184 Content Designer Reference

Check Date-Time Operator

Output Parameters

CalenderDate
VacationsDate
Delta

OpenDays
MaxShifts

Date
UseCurrentDate
UseCalculatedDate

CalculatedDate

Check Date-Time Operator

Input Parameters

The Check-Date Time operator conditionally executes branches in a process depending
on whether a specified date and time has passed. The Check-Date Time operator places
a date-time check condition in a process.

A date-time check condition allows processing to continue to subsequent branches in a
process before and after the date specified in the operator properties. The operator can
be used to place date and time conditions on different segments of processes that are
run several times a day. With this setting, you can add extra links on the operator to
specify branches that are to be processed before (<) or after (>) a date and time.

In contrast, when the Wait for specified date and time check box is initially selected, the
operator creates a date-time wait condition. Then, the operator only processes after (>)
extra links while ignoring any before (<) extra links.

Date

Specifies the date when to determine eligibility for processing subsequent branches
in the process.

Click the Calendar icon to open the calendar and select a date. This option is
unavailable if you select either the Use current date or the Use calculated date
check box.

Chapter 6: Date-Time 185

Check Date-Time Operator

Use current date

Specifies the date that the process is run to determine eligibility for processing
subsequent branches in the process.

Clear this check box to specify a particular date in the Date field. This check box is
initially selected.

Use calculated date

Returns a date. This expression lets you use the CA Process Automation date
variables and functions to return a date.

Calculated date

If Use calculated date is selected, this parameter specifies an expression that
returns a date. Typical uses include calculating a future date based on the current
date.

Time
Specifies a time in a 12-hour HH:MM PM/AM format.
For example: 07:30 PM

Wait for specified date and time

Creates a date-time wait condition. This property delays processing of subsequent
operators in a branch of the process until the specified time. Only exit links
designated to occur after (>) the specified time are processed.

Clear this check box to divert processing to different branches before or after the
specified date and time. The operator imposes the following conditions when the
Wait for specified date and time check box is cleared:

If the specified date and time are in the future, only exit links specified to be
processed before (<) are processed.

Output Parameters

Date
UseCurrentDate
UseCalculatedDate
CalculatedDate
Time

WaitForSpecifiedDate

186 Content Designer Reference

Chapter 7: Directory Services

The Directory Services operators provide an interface to support Lightweight Directory
Access Protocol (LDAP). You can automate the operations that are performed on LDAP
servers. All of these operators work with different LDAP servers except for operators
specific to the Active Directory. The Directory Services operators run on a CA Process
Automation Orchestrator or agent with the same results, regardless of the operating
system platform on which CA Process Automation is running.

LDAP Login Parameters

The default LDAP fields that are specified at the Directory Services category level can be
overridden on the LDAP Login Parameters page. This page is part of the input for each
Directory Services operator. If a field contains a value, it overrides the value that is
specified for the same field at the category configuration level.

Remote LDAP Host

Specifies the LDAP Server URL or IP.
Remote LDAP Server Port

Specifies the LDAP Server Port.
LDAP User

Specifies that the LDAP User who has access to the LDAP server can log in.
However, the operations that the user can perform are limited by the ACls set on
the LDAP entries.

LDAP Password for User
Specifies the password for the LDAP user.
Base DN

Specifies the base Distinguished Name (DN) to be used. This is the base DN where
the LDAP User is located.

Chapter 7: Directory Services 187

Add Computer to Domain Operator

User Prefix
Specifies the user prefix to use; either userid (uid) or commonName (cn).

Important! If you access Active Directory through LDAP, set this field to cn.
Otherwise the connection string uses uid, which causes an error.

For example, assume that you need to use the administrator credentials for this
operator.

The LDAP connection string would be:

cn=Administrator, cn=Users,dc=RBC,dc=com

If you do not set the User Prefix to cn, the connection string stays as:
uid=administrator, cn=users,dc=rbc,dc=com

...and an error occurs.

Set the LDAP connection string as:

User Prefix" = "LDAP User" + "," + "Base DN

Where User Prefix, LDAP User, and Base DN are the values of the corresponding
fields that are specified under LDAP Login Parameters.

Note: To get the User Prefix from Active Directory, follow these steps:
1. Look up the user DN.
2. Extract the values for the prefix, user, and the Base DN (as previously shown).

3. Specify them in the three fields under LDAP Login Parameters .
Add Computer to Domain Operator

I
q@.

The Add Computer to Domain operator to create a new computer object in the Active
Directory server. This operator applies to an Active Directory server only.

Input Parameters
Computer Path

Specifies the distinguished name of the object under which you want to create the
new computer object.

Computer Name

Specifies the name of the new computer object.

188 Content Designer Reference

Add Computer to Domain Operator

Output Parameters

Example

Operator Failure

LDAPADComputerBaseDn
LDAPADComputerName
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Add Computer to Domain o

Computer Path

"CHN=Computers,DC=itpam,DC=local"
Computer Name

"cn=PAM Cormputer 1"

Add the LDAP attribute to the name of the new computer object. Computer objects
typically use the attribute "cn" as part of the relative distinguished name (RDN) of the
Computer Name.

This operator fails in the following cases:
m The name of the new computer object is already used.

m Some of the mandatory attributes necessary to create the new computer object is
missing

m The path, under which computer object is to be created, is invalid.

m Unable to connect to the Active Directory server.

Chapter 7: Directory Services 189

Add User to Group Operator

Add User to Group Operator

s

St

The Add User to Group operator adds an LDAP user to an LDAP group on the LDAP
server.

Input Parameters
User DN
Specifies the distinguished name of the user that you want to add to the group.
Group DN

Specifies the distinguished name of the group to which you want to add the user.

Output Parameters
LDAPUserDn
LDAPGroupDn
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

Add_User_to_Group_1 Properties e W

Add User to Group Parameters £

User DN

"uid=15mith,ou=Ildapconnector,doc=ca,doc=car"
Group DN

cn=sers, do=ca, do=cam

190 Content Designer Reference

Create Group Operator

Operator Failure

This operator fails in the following cases:
m The useris already a member of the group.
m The group does not exist in the LDAP server.

m The Group DN points to an LDAP object that is not of type group, groupofnames or
groupofuniquenames.

m Unable to connect to the LDAP server.

Create Group Operator

Input Parameters

'y

The Create Group operator creates an LDAP group object on the LDAP server. This group
object can be of type: group, group of names, or group of unique names.

Group Path

Specifies the distinguished name of the object under which you want to create the
new group object.

Group Name

Specifies the name of the group you want to create. This is the CN attribute of the
group.

LDAP Group Type

Specifies the type of LDAP group. Select either group, group of names, or group of
unique names.

Use the specified array field for the Group Members
When checked, then the array of members is used for this request.
LDAP Group Members Array

Specifies the array of members of the group (required for Group of Names or Group
of Unique Names in Active Directory). This field is enabled only when the Use the
specified array field for the Group Members field is checked.

Chapter 7: Directory Services 191

Create Group Operator

LDAP Group Members

Specifies the members of the group (required for Group of Names or Group of
Unique Names in Active Directory). This field is enabled only when the Use the
specified array field for the Group Members field is unchecked.

Creating an object of type 'Group' in Active Directory?

Check if we are creating an object of type 'Group’, as specified in the LDAP Group
Type, in an Active Directory server. For an object "Group" in Active Directory, we
can set two extra attributes: Group Scope and Group Type.

Active Directory Group Scope

Specifies the scope of the group that is created in an Active Directory. Select either
Domain Local, Global, or Universal. This field is enabled only when you select the
Creating an object of type 'Group' in Active Directory? check box.

Active Directory Group Type

Specifies the type of the group that is created in an Active Directory. Select either
Security or Distribution. This field is enabled only when the Creating an object of
type 'Group' in Active Directory? field is checked.

Notes

m The Active Directory does not allow for a group of Universal scope to be of type
Security. The operation fails in this case.

m The values that are specified in the Active Directory Group Scope and Active
Directory Group Type fields are ignored when the LDAP Group Type field is not set
to the value "Group".

m AD Group Scope and AD Group Type fields are not ignored when LDAP Group Type
is not set to value "Group". Those fields are activated when you select the check
box Creating an object of type Group in AD (because there is no way to perform
multiple selections in CA Process Automation). The important thing is that the
values of these fields are only relevant when you create a "Group" in Active
Directory. In the Ul, they might still be active but, in the back end, they are ignored
in all other cases.

192 Content Designer Reference

Create Group Operator

Output Parameters
LDAPGroupBaseDn
LDAPGroupName
LDAPGroupType
LDAPGroupMembersType
LDAPGroupMembersArray
LDAPGroupMembers
LDAPISADGroup
LDAPADGroupScope
LDAPADGroupType
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 193

Create Group Operator

Example

Create Group Parameters &

Group Path

"OU=testUnit,DC=itpam,DC=ca,DC=local"
Group Name

"cn=Users"
LOAP Group Tvpe

Group of Unigue Names g

[T Use the specified array field for the Group Members
LDAP Group Members Array

LDAP Group Members:
| |5k +

LDAP Group Memhbers
1 "uid=memberl,ou=ldapconnectondec=ca,dc=com”

2 "wid=rmemberz,ou=ldapconnectordc=ca,dc=com"

Page [1 of 1 e »

[T creating an object of type 'Group' in Active Directory?
Active Directory Group Scope

Universal h

Active Directory Group Type

Security w2

Operator Failure

This operator fails in the following cases:

m The group exists already.

m Some of the mandatory attributes necessary to create the new group object are
missing.

m The path, under which the new group object is to be created, is invalid.

194 Content Designer Reference

Create Object Operator

m The LDAP server does not support the group type specified: group, groupofnames,
or groupofuniqguenames.

m The group is created in an Active Directory server with a 'Universal' scope and a
'Security' type.

m The object is created as a 'Group of Names' in Active Directory without any
members set in the operation.

m The object is created as a 'Group of unique Names' in Active Directory without any
members set in the operation.

m Unable to connect to the LDAP server.

Create Object Operator

The Create Object operator creates an LDAP object of any type on the LDAP server.

Input Parameters
Object Path

Specifies the distinguished name of the object under which you want to create the
new LDAP object.

Object Name
Specifies the name of the new LDAP object.

Be sure to add the LDAP attribute to the name of the new LDAP object. The
attribute could be "ou", "cn", "uid", and so on, and depends on the type of LDAP
object being created.

Use the specified array field for the Object's "objectclass" Attributes Values
If checked, the "objectclass" Attribute Values Array will be used for this request.
Object's "objectclass" Attribute Values Array

Specifies the array containing the values of the "objectclass" Attribute. This dataset
field must be defined as an array (indexed string). If Use the specified array field for
Object's "objectclass" Attributes Values is checked, this field will be used.

Object's "objectclass" Attribute Values

Specifies the values of the "objectclass" Attribute. If the Use the specified array field
for Object's "objectclass" Attributes Values is unchecked, this field will be used.

The "objectclass" is the LDAP attribute that defines the type of the new object.

Chapter 7: Directory Services 195

Create Object Operator

Additional Object's LDAP Attributes Value Maps

This is an array of value maps containing additional LDAP attributes to be set for the
new object. Each value map's Key must be of type string, Value must be of type
string or array of strings (indexed string). The key must be named Keys and the
value must be named Values.

The user can set the Values field to be of type string to create single-valued LDAP
attributes for the new LDAP object being created. For example:

4[5l newOhjattributes [1]
- [Element Type
4= [0]
4 (3 Parameters
keys description
Values This is an org unit that represents the unit test

The object newObjAttributes is an indexed ValueMap whose key fields are called
Keys and are of type string and value fields are called Values and are of type string.

Alternatively, the user can set the Values field to be of type array of strings (indexed
string) to create multi-valued LDAP attributes for the new LDAP object being
created.

The object newObjAttributes2 is an indexed ValueMap whose key fields are called
Keys and are of type string and value fields are called Values and are of type
indexed string. In this case the user can create both single-valued and multi-valued
LDAP attributes for the new LDAP object being created.

For example:
4 = newobjattributes2 [2]
- [Elernent Type
4= [0]

4[5l Parameters

Keys telephonenumber
4 (=l values [2]
(o] 555-55-5555
(1] 555-55-0000
4[=2[1]
F E.Parameters
Keys description
4 [=values [1]
[0] The test unit organization

196 Content Designer Reference

Create Object Operator

Within the same newObjAttributes2 object, we have a multi-valued
telephonenumber attribute and also a single-valued description attribute.

Note that if the same key appears multiple times within the indexed ValueMap,
only the last value associated with the key will remain.

Note that the attribute names entered in the Additional Object's LDAP Attributes Value
Maps must be the LDAP names of these attributes as specified in the LDAP server
schema. For instance, to set the value of the attribute "Last name" you must use the
LDAP name of this attribute: "sn", to set the value of the attribute "First Name", you
must use the attribute "givenname", and so on. See Common LDAP Attribute Names
(see page 221).

The LDAP names are different from the attributes display names.

Most LDAP servers differ in the display names of the LDAP attributes, but they all must
support the LDAP names of these attributes, thus the reason why we require the usage
of the LDAP names of the attributes instead of the display names.

Output Parameters
LDAPCreateObjectBaseDn
LDAPCreateObjectName
LDAPCreateObjObjectClassUseArray
LDAPCreateObjObjectClassArray
LDAPCreateObjObjectClass
LDAPCreateObjectAttributes
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

In this example, we are creating an organizational unit called Testing Unit. The
objectclass attribute defines the object to be of type 'top' and 'organizationalunit'. The
'top' type is the root of all LDAP types.

Chapter 7: Directory Services 197

Create Object Operator

We are also adding additional attributes to the new organizational unit through the

Process.newObjAttributes indexed value map.

Create Object Parameters

Object Path

"crn-testaroup,ou=ldapconnector,dc=ca,dc=com”
Object Name

"ou=Testing Unit"

[T Use the specified array field for the Object's "objectclass" Attribute Values

Object's "objectclass™ Attribute ¥Yalues Array

Object's "objectclass™ Attribute ¥alues
e 4+ |+

Object's "objectclass™ Attribute ¥alues
1 "top"

Z "organmizationalunit"

Page | 1 of 1 e

Additional Object's LDAP Attributes ¥Yalue Maps

Process.newObjattributes

Operator Failure

This operator fails in the following cases:

m The name of the new LDAP object is already used.

Displaying 1 -2 of 2

m Some of the mandatory attributes necessary to create the new LDAP object are

missing.

m The "objectclass" of the new LDAP object is missing or incorrect.

m Some of the attributes being created for the object contain invalid values.

m Some of the attributes being created for the object do not apply to this type of
object, for instance, you cannot add a 'mail' attribute to an LDAP object of type

Organizational Unit.

m The path, under which the LDAP object is to be created, is invalid.

198 Content Designer Reference

Create Ordanizational Unit Operator

m The user checked that an array of attributes is used for the "objectclass" attribute,
but the CA Process Automation object entered in the array field is actually not of
type array (indexed strings).

m Unable to connect to the LDAP server.

Create Ordanizational Unit Operator

Input Parameters

The Create Organizational Unit operator allows a user to create an LDAP object of type
Organizational Unit on the LDAP server.

Organizational Unit Path

Specifies the distinguished name of the object under which to create the new
organizational unit object.

Organizational Unit Name

Specifies the name of the new organizational unit object.

Output Parameters

Example

LDAPOrgUnitBaseDn
LDAPOrgUnitName
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 199

Create User Operator

Example

Organizational Unit Parameters o

Organizational Unit Path:

"ou=ldapconnector,dec=ca,dc=com"
Organizational Unit Name:

"pu=fssets"”

Important! Make sure to add the LDAP attribute to the name of the new organizational
unit. Organizational units usually use the attribute "ou" as part of the name's RDN
(relative distinguished name).

Operator Failure

This operator fails in the following cases:
m The name of the new organizational unit is already used.

m Some of the mandatory attributes necessary to create the new organizational unit
is missing.

m The path, under which the organizational unit is to be created, is invalid.

m Unable to connect to the LDAP server.

Create User Operator

A
EJ-'

The Create User operator creates an LDAP object of type user account on the LDAP
server.

Input Parameters
User Account Path

Specifies the distinguished name of the object under which you want to create the
new user account.

First Name

Specifies the first name of the user.

200 Content Designer Reference

Create User Operator

Middle initials

Specifies the middle initials of the user. Note that Active Directory does not allow
middle initials to be over six characters long.

Last name

Specifies the last name of the user.
UserID

Specifies the user ID for the user.
Password

Make sure you specify a password that conforms to the Password Policy
Requirements set in your LDAP server, especially for an Active Directory Server.

Active Directory?
Check if you are creating the new user account in an Active Directory server.
Create UserID as User Logon Name

Specifies whether you want the UserID to also be the user's logon name. In this
case, create a User Logon Name of the form "UserID@domain" where domain
represents the Active Directory's Domain. This field is enabled only when the Active
Directory? field is checked.

Enable user?

Select yes to make the new user active or no to make the new user inactive. This
field is enabled only when the Active Directory? field is checked.

Password Expires for User

Select whether the user password expires as per the Domain Policy or Never
expires. This field is enabled only when the Active Directory? field is checked.

When the user password is set to never expire, you are not be forced to change a
password at the first logon.

Password Change at First Login?

Forces the User to change password at first logon, this option is applicable only
when the password is chosen to expire. Note that the user could set the
combination Password to not expire and Password change required at first login. In
this case, CA Process Automation sets the password to not expire and ignores the
password change at first login request. This field is enabled only when the Active
Directory? field is checked.

Note that Active Directory will not allow for a user's password to be set unless CA
Process Automation is connected to the Active Directory server through SSL. If CA
Process Automation is not connected through SSL, the user account will be created
without a password and without the specified account controls (account
enabled/disabled, password expiration, password change at logon) and the operation
will fail in CA Process Automation.

Chapter 7: Directory Services 201

Create User Operator

See the topic Add an SSL Certificate to CA Process Automation (see page 246) to find out
how to import an Active Directory certificate to CA Process Automation. Once the
certificate is imported, you can change the Directory Services category's properties to
establish an SSL connection with the Active Directory server.

Output Parameters
LDAPUserBaseDn
LDAPUserFirstName
LDAPUserMiddlelnits
LDAPUserLastName
LDAPUserld
LDAPUserPwd
LDAPISAD
LDAPAsUserLogon
LDAPEnableUser
LDAPPwdExpire
LDAPForcePwdChg
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

202 Content Designer Reference

Create User Operator

Example

Create User Account Parameters =

User Account Path

"cn=Users,ou=|ldapconnector,dc=ca,dc=com”
First Name

"1ohn"
Middle Initials

"Michael"

Last Mame

"Smith"
UserID

"jsmith"
Password

"jsmithpwd"

¥ Active Directory?
Create UseriD as Hser logon Name

Use Specified Domain Controller
Enable User?

Tes e
Password Fxpires for liser

MNever
Password Change at First login?

Mo A

Operator Failure

This operator fails in the following cases:
m The user exists already.

m Some of the mandatory attributes necessary to create the new user account are
missing.

m The value of one of the attributes used to create the user account is invalid.
m The path, under which the new user account is to be created, is invalid.

m The new user account is created in an Active Directory server and not connected
through SSL.

m Unable to connect to the LDAP server.

® You specified a user password that does not conform to the Password Policy
Requirements set in your LDAP server, especially if it is for an Active Directory. In
this case, Active Directory returns a generic error message: WILL_NOT_PERFORM to
indicate that it cannot perform the operation.

Chapter 7: Directory Services 203

Delete Object Operator

Delete Object Operator

Input Parameters

o

>

The Delete Object operator deletes a single LDAP object or multiple LDAP objects from
the LDAP server.

Use the specified array field for the Objects Distinguished Names

If this is checked, then the Array of Distinguished Names will be used for this
request.

Objects Distinguished Names Array

Specifies the array of DNs of the objects you want to delete. This field is enabled
only when the Use the specified array field for the Objects Distinguished Names
field is checked.

Objects Distinguished Names

Specifies the DNs of the objects you want to delete. This window is enabled only
when the Use the specified array field for the Objects Distinguished Names field is
unchecked.

Objects Deletion Scope
Select one of the following:
Delete object (return an error if children exist)

To attempt to delete each object (from the list of objects in the Objects
Distinguished Names Array or Objects Distinguished Names fields) as if it does
not have a subtree under it in the LDAP tree. If a subtree exists for an object in
the list, then CA Process Automation will fail the operation; but will also
continue to delete all the other objects in the list of objects to be deleted.

Delete object and subtree (if exists)

To attempt to delete each object (from the list of objects in the Objects
Distinguished Names Array or Objects Distinguished Names fields) and the
entire subtree under it if such a subtree exists.

204 Content Designer Reference

Delete Object Operator

Output Parameters
NumberOfObjectsToDelete
Specifies the number of objects found to be deleted.

m [f the Objects Deletion Scope is set to Delete object and subtree then this
variable will return the number of all the objects found in the subtrees as well.

m If the Objects Deletion Scope is set to Delete object then this variable will
return the number of objects set in the operation.

NumberOfDeletedObjects
Contains the number of objects actually deleted.
DeletionFailures

Specifies an array of value maps created only when the operation fails. In this case,
this array of value maps will contain the DNs of the objects that were not deleted
along with error messages indicating why each object was not deleted.

Note that the delete operation will succeed when trying to delete an object that does
not exist in the LDAP server.
LDAPDeleteObjsUseArray
LDAPDeleteObjsArray
LDAPDeleteObjs
LDAPDeleteObjectsScope
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Examples

Examples of both a successful and failed deletion are provided here.

Chapter 7: Directory Services 205

Delete Object Operator

Operator Failure

This operator fails in the following cases:

m The operator was unable to delete any of the objects entered in the operation.

m Unable to connect to the LDAP server.

Failed Deletion

Delete a single object and set the operation to fail if any child objects (subtree) exist
under this object.

Delete Object Parameters

[Use the specified array field for the Objects Distinguished Mames
Objects Distinguished Names Array:

Zibjects Distinguished Mames:
|| &L

Objects Distinguished Names

0 "ou=ldaptestunit,dc=itpam,dc=cam"

Page | 1 of 1 et Displaying 1 -1 of 1
Ohjects Deletion Soope!

Delete object (return an error if children exist)

206 Content Designer Reference

Delete Object Operator

This is the operator dataset of a runtime instance:

4 [2 Delstionrailures [1]

- [Flement Tyoe

43 o7
Pl BROWO
D ou=ldaptestunit,de=itparn,dc=com
Reason [LDAP: error code 66 - Not Allowed ©n Mon-leaf]

After the operator runs, it fails and following data displays on the Operation Results tab.

Systemn Celete Object Par LODAF Login Paran Cperation Results
a

MurnberOfObiects ToDelete:

1
MurnberOfDeletedDbjects:

u]
DeletionFailures:

DM Reason
0 ou=ldaptestunit,dc=itparm,dc=com [LDAFP: error code 66 - Mot Allawed On Non-leaf]

Cancel

NumberOfObjectsToDelete

1 (as we only attempted to delete one object).

NumberOfDeletedObjects

0 (as we were unable to delete the object).

DeletionFailures
Specifies an array of ValueMaps with a single object that contains the DN of the
object you tried to delete, and the LDAP error message stating why it was not

deleted.

4 (A DeletionFailures
[0 &lerment Tyoe
=Yk
43 rowo
o

Regson

[1]

ou=ldaptestunit,dc=itpam,dc=com

[LDAP: error code 66 - Not allowed On Non-leaf]

The LDAP message indicates that this object has a subtree under it (it is a non-leaf).

Chapter 7: Directory Services 207

Delete Object Operator

Another failed deletion

Suppose you want to delete three objects within the same operation: two objects do
not have subtrees under them in the LDAP tree, and one object has a subtree under it.

Delete Object Parameters ES

[T Use the specified array field for the Objects Distinguished Mames
Objects Distinguished Narmes Array;

Objects Distinguished Names:
& 5| | ¥

Dbjects Distinguished Names
0 ou=testunitl,dc=itpam,dc=com
1 ou=testunitZ,dc=itpam,dc=com

Z ou=testunitd,dc=itpam,dc=com

Page | 1 of 1 e Displaying 1 - 3 of 3
Ohiects Deletion Soope;

Delete object (return an ervor if children exist)

In this example, the first and second objects do not have any subtrees under them. The
third object in the list has a subtree under it.

Note that you specified to delete the object (and return an error if children exist).
After the operation ran, it failed and the Operation Results page contains the following
data:
NumberOfObjectsToDelete

3 (as we attempted to delete 3 objects)
NumberOfDeletedObjects

2 (as we were able to delete only two objects)

208 Content Designer Reference

Delete Object Operator

DeletionFailures
Array of ValueMaps with a single object that contains:
m The DN of the object that we were unable to delete

m The LDAP error message stating why it was not deleted
[cperation Results

MomberOfObjects ToDelsts 3
MormnberOfDeletedObiects z
a4 (3 Deletionfailures [1]
- [0 Element Type
a3
a [AL mown

o ou=testunit3,dec=itparn,dc=com
Reason [LDAP: error code 66 - Mot Allowed On Mon-leaf]

Properties

Celete Object Par LDAP Login Paran Systemn Cperation Results

MurnberOfObiscts ToDelste!

3
MurnberOfDeletedObjocts:

2
DeletionFailures:

DN Reason

0 ou=testunit3,dc=itparn,dc=com [LDAF: error code 66 - Not Allowed On Non-leaf] —

Cancel

The LDAP message indicates that this object has a subtree under it (it is a non-leaf).

Keep in mind that the delete operation searches the entire list of objects to be deleted.
If an object fails to be deleted, the operation continues deleting all other objects in the
list, but the operation will also fail when it is over.

Chapter 7: Directory Services 209

Delete Object Operator

Operator Success

Attempt to delete the same object and all its children (subtree under it):

Delete Object Parameters £

[T Use the specified array field for the Objects Distinguished Marmes
Objects Distinguished Mames Array;

Ohjects Distinguished Marnes:
=S

Objects Distinguished Mames
0 "ou=testunit3,dc=itpam,dc=com"”

Page | 1 of 1 = Cisplaying 1 -1 of 1
Objects Deletion Scope!

Delete object and subtree (if exists) v

After the operation ran, the Operation Results show the following data:

4 [Al Cperation Results
Momberfiobjects ToDelete 25
MumberfDeletedDbiocts 25

NumberOfObjectsToDelete: 25 (as the object had 24 child objects in the subtree under
it).

210 Content Designer Reference

Get Domain Controller Operator

NumberOfDeletedObjects: 25 (as we were able to delete the object and all the child
objects in the subtree under it).

Properties
Delete Object Par LOAR Login Paran Systemn Cperation Results
MumberfObisctsToDelste:

25
MormberCfDeletedOhjects:
25

Cancel

Notice the DeletionFailures variable was not created.

If you had attempted to delete more than one object in the previous examples,
NumberOfObjectsToDelete and NumberOfDeletedObjects will represent the sum of all
'objects deleted' and 'objects to be deleted' for all objects entered in the operation
(including all their subtrees, if applicable).

Get Domain Controller Operator

Input Parameters

%I_U[f

The Get Domain Controller operator retrieves all domain controllers from the Active
Directory server. This operator applies to Active Directory only.

The Get Domain Controller operator does not include any input parameters. The
operator simply retrieves the Active Directory server information from the LDAP Login
Parameters page associated with the operation or from the default LDAP Login
information set at the Directory Services category level.

Chapter 7: Directory Services 211

Get Domain Controller Operator

Output Parameters
DomainControllers

Specifies an array of strings (indexed string) that contains all the domain controllers
retrieved from the Active Directory server. This variable is created if the operation
succeeds.

remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

212 Content Designer Reference

Get Domain Controller Operator

Example

This example shows a successful instance of the operator retrieving the
DomainControllers from an Active Directory server. The operator succeeds and the
DomainControllers variable is created with the following data:
4 [Operation Results
4 [DomainControllers [1]

fof SEA-ITC-AD.ssaitc.com

Properties
LOAFP Login Paran System Operation Results
DomainControlers! LI
DomainControllers

0 SSA-ITC-AD.ssaitc.com

Page | 1 of 1 = Displaying 1 -1 of 1

Cancel

In this example, we now have a single domain controller in this Domain.

Operator Failure

This operator fails in the following cases:

CA Process Automation is unable to retrieve the configurationNamingContext from
the Active Directory server.

No objects of type TDSDSA exist in the Active Directory server.

Unable to connect to the LDAP server.

Chapter 7: Directory Services 213

Get Dormant Account Operator

Get Dormant Account Operator

Input Parameters

AR

&l

Use the Get Dormant Account operator to retrieve all dormant accounts from the Active
Directory. You can specify a date and number of days as a dormant range, any user
account whose last logon date falls earlier than this range is considered dormant. This
operator applies to Active Directory only.

Days Dormant
Specifies the number of dormant days
Date

Specifies the designated date for dormant accounts. This field is enabled when the
Use Calculated Date? is unchecked. Click the calendar icon to select a date.

Use Calculated Date?

Specifies that the user can supply a dataset variable that contains a date value in
the Calculated Date field.

Calculated Date

Specifies the calculated date for dormant accounts. This field is enabled when the
Use Calculated Date? is checked.

214 Content Designer Reference

Get Dormant Account Operator

Last Logon Attribute
LastLogonTimeStamp

Select this field when retrieving dormant accounts from Active Directory
2003/2008 (NOT Active Directory 2000).

The LastLogonTimeStamp attribute contains the last logon date of a user; but it
is replicated across all Domain controllers only after a period of time defined in
the msDS-LogonTimeSynclinterval attribute of the Active Directory.

If the dormant date falls before "today's date - msDS-LogonTimeSyncinterval",
then using the lastLogonTimestamp retrieved from a single Domain controller
retrieves all the dormant accounts.

The msDS-LogonTimeSyncinterval attribute specifies the frequency (in days)
with which the last logon time for a user/computer, recorded in the
lastLogonTimestamp attribute, is replicated to all Domain Controllers in a
Domain.

When using LastLogonTimeStamp, CA Process Automation retrieves the
LastLogonTimeStamp information for each user from only one Domain
controller and uses it to determine if the user is dormant or not.

LastLogon

Select this field when retrieving dormant accounts from Active Directory 2000,
2003, and 2008.

The LastLogon attribute contains the last logon date of a user but it is NOT

replicated across all domain controllers.

In this case, CA Process Automation begins to retrieve the list of all domain controllers,
then review them to save the most recent lastLogon attribute value for each user.
Finally, the most recent lastLogon value for each user is used to determine the dormant
accounts.

Output Parameters
DormantAccounts

Specifies an array of value maps, where each value map represents a dormant
account. Each value map contains the following keys/values:

DN

Specifies the distinguished name of the dormant user account.

Chapter 7: Directory Services 215

Get Object Operator

Last Logon Date
Specifies the last logon date of the dormant user account.
Dormant Days

Specifies the number of days between the dormant user account's last logon date
and the dormant date set in the operation. Note that this number is rounded up,
for instance if a user's last logon date is May 15, 2009 12:25:49 PM and we have a
dormant date of: May 18, 2009, then the Dormant Days will be 4 (not 3).

The Last Logon Date and Dormant Days will both be set to -1 for each dormant user
account that's never logged in before.

NolLogonParameterAccounts

Specifies an array of strings (indexed string) that contains the DNs of the user
accounts that do not have the LastLogonTimeStamp or LastLogon attribute set in
the Active Directory (depending on which attribute was selected by the user for the
search). If all user accounts do have the selected attribute set then this variable will
be empty.

LDAPADDormantDays
LDAPADDormantDate
LDAPADUseCalculatedDate
LDAPADCalculatedDate
LDAPADLastLogonAttr
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Get Object Operator

O

The Get Object operator retrieves any type of LDAP objects from the LDAP server. You
can specify the search path, the search filter (see page 220), the search scope, the
attributes (see page 221) to retrieve with each object, and the sort criteria.

216 Content Designer Reference

Get Object Operator

Input Parameters

Get Criteria
Start Search Path

Specifies the start location for the search, such as Like
CN=Users,dc=domainpart,dc=company-name,dc=top-level-domain-name

Retrieve Scope
Select one of the following options:
Subtree Scope
Search the entire subtree (including the object at the search path).
One Level Scope
Search the objects directly under the object at the search path.
Object Scope
Search the object at the search path only.
Results Limit Count
Maximum number of entries to return.

m If you enter 0 or nothing in this field, CA Process Automation uses the value set
in the Max Number of Search Results field (from the Directory Services
category configuration).

m If you enter a value in this field, CA Process Automation uses the smaller value
between this field's value and the value set in the Max Number of Search
Results field (from the Directory Services category configuration).

Time Limit for Retrieve

Time in seconds to wait before timing out of this search. If this limit is O (or nothing
is entered), there is no time limit set on the search.

Retrieve Object Type
Select one of the following options:
m User
m Computer
m Group
m Organizational Unit
m Role
m Other

This field controls the filter value displayed in the Retrieve Filter field.

Chapter 7: Directory Services 217

Get Object Operator

Sort Criteria

Retrieve Filter
Choose the search filter to use for this search.
You can:

Use a generic filter by selecting User, Group, Organizational Unit, Role, or Computer
in the Retrieve Object Type field, which displays the associated filter value in the
Retrieve Filter field and makes this field read-only.

or

Enter your own filter by selecting Other in the Retrieve Object Type field, which
displays "objectclass=" in the Retrieve Filter field and makes this field writable so
you can fill out your own filter value. The expression must be syntactically correct
otherwise the search can fail. See LDAP Search Filter Basics (see page 220) for a
primer on LDAP search filters syntax.

Note that you can use different filters for User, Group, Organizational Unit, Role, or
Computer by selecting Other in the Retrieve Object Type field and entering his/her
filter value in the Retrieve Filter field. The provided generic search filters may not
work with some LDAP servers, especially if the LDAP server does not support some
of the object classes listed in the filters.

Retrieve Attributes specified as an Array Variable?

If checked, you can supply a dataset variable that contains an array of attributes to
retrieve.

Retrieve Attributes Array Variable

The dataset variable that supplies an array of attributes to retrieve. This field is
enabled when the Retrieve Attributes specified as an Array Variable? field is
checked.

Retrieve Attributes List

Specifies a list of attributes to retrieve for this search filter. This list is enabled when
the Retrieve Attributes specified as an Array Variable? field is unchecked.

Sort Fields specified as an Array Variable?

If checked, you can supply a dataset variable that contains an array of attributes
used for sorting the retrieved data.

Sort List Fields Array Variable

The dataset variable that supplies an array of attributes to use for the sort order.
This field is enabled when Sort Fields specified as an Array Variable? is checked.

218 Content Designer Reference

Get Object Operator

Sort List Order

List of attributes to use for the sort order. This list is enabled when the Sort Fields
specified as an Array Variable?: field is unchecked.

If nothing is entered in the Sort Criteria section, the retrieved objects are not
sorted.

Note that some LDAP servers (for instance OpenLdap) do not support "Sorting" of
data. In this case, the operator might fail with the following reason: [LDAP: error
code 12 - critical extension is not recognized]. Do not provide any sorting criteria in
this case. This is a limitation in the LDAP server, not CA Process Automation.

Chapter 7: Directory Services 219

Get Object Operator

LDAP Search Filter Basics

The LDAP search filter syntax is a logical expression in prefix notation, where the logical
operator appears before the associated arguments.

For example: (&(givenname=John)(sn=Green))

In the filter above & is the And operator and it appears before its arguments. In this
example, we are searching for LDAP objects with John as the givenname (givenname is
the LDAP attribute for first name), and sn as Green (sn is the LDAP attribute for last
name).

Each item in the filter is composed using an LDAP attribute identifier and either an
attribute value or symbols that denote the attribute value. Each item must also be
enclosed within a set of parentheses, as in "(sn=Green)".

Items within a filter are combined together using logical operators to create logical
expressions. Each logical expression can be further combined with other items that
themselves are logical expressions, as in some of the filters used in CA Process
Automation:

(&(| (objectclass=user) (objectclass=person)) (! (objectclass=computer)))

In this filter, we are searching for all objects where the objectclass is either user OR
person:

(| (objectclass=user) (objectclass=person))

AND the objectclass is not computer
(! (objectclass=computer))

Note the & at the beginning of the filter that combines these two segments together in
a logical AND.

Note that the LDAP attribute objectclass stores the type(s) of an LDAP object in the
LDAP directory.

Some of the logical operators used for creating filters are listed in the following table:

Symbol Description

= Equality
Example: (givenname=John)

Search for objects with John as first name.

220 Content Designer Reference

Get Object Operator

& Logical AND
Example: (&(givenname=John)(sn=Green))
Search for objects with John as first name and Green as last name

Logical OR
Example: (| (givenname=John)(givenname=Michael))

Search for objects with either John or Michael as first name

! Logical NOT
Example: (&(givenname=John)(!(sn=Green)))

Search for objects with John as first name and Green is not the last
name

>= Greater than
Example: (numsubordinates>=2)

Search for objects with 2 or more child nodes in the LDAP tree.

<= Less than
Example: (numsubordinates<=2)

Search for objects with 2 or less child nodes in the LDAP tree.

=* Presence
The object must have the attribute but its value is irrelevant.
Example: (givenname=%)

Search for objects with the givenname attribute.

* Wildcard
Example: (givenname=Joh*)

Search for objects whose givenname starts with Joh

Common LDAP Attribute Names

Some common LDAP attributes are listed below. The complete list of LDAP object
classes and attributes used in the LDAP server schema is located on the LDAP server.

LDAP Attribute Name Description

cn Common Name attribute, which contains the name of
the object

dc Domain Component attribute

objectClass Object Class attribute, which contains the LDAP

type(s) of the object

Chapter 7: Directory Services 221

Get Object Operator

LDAP Attribute Name

Description

distinguishedName

Distinguished Name attribute in Active Directory

This is the attribute that uniquely identifies the object
in the Active Directory.

entrydn Distinguished Name attribute in LDAP servers (other
than Active Directory)
This is the attribute that uniquely identifies the object
in an LDAP server.

o Organization Name attribute which contains the
name of the organization

ou Organizational Unit Name attribute which contains
the name of the organizational unit

sn Surname attribute which contains the family name of
an individual

givenName First name attribute which contains the first name of

an individual

personalTitle

Personal Title attribute which contains the personal
title of a person

Examples of personal titles are "Mr", "Dr", "Prof" and
llReVII.

initials Initials attribute which contains the initials of some or
all of an individual's names, but not the surname(s)

uid User ID attribute

userPassword Password attribute which contains a user's password
Passwords are stored using an Octet String syntax
and are not encrypted.

title Title attribute which specifies the designated position
or function of the object within the organization

mail Mail attribute which contains a user's email address

company Company or organization name attribute

department Department Name attribute

manager Boss, manager attribute

mobile Mobile Phone number attribute

homephone Home Phone number attribute

telephoneNumber

Telephone Number attribute

facsimileTelephoneNumber

Fax Number attribute

222 Content Designer Reference

Get Object Operator

LDAP Attribute Name

Description

postalAddress

Postal Address attribute, which contains information
required for the physical delivery of postal messages

postalCode Postal Code attribute
If this attribute value is present it will be part of the
object's postal address.

c Country Name attribute which contains a two-letter
ISO 3166 country code

| Locality Name attribute which contains the name of a
locality, such as a city, county or other geographic
region

st State Or Province Name attribute

street Street attribute which contains the physical address
of the object, such as an address for package delivery

owner Owner attribute which specifies the name of some
object which has some responsibility for the
associated object
The value is a Distinguished Name

description Description attribute which contains a
human-readable description of the object

seeAlso See Also attribute.

serialNumber

Serial Number attribute which stores the serial
number of a device

member

The member attribute is used in entries defining
groups

It has Distinguished Name syntax, so each value is
effectively a pointer to another entry in the directory.
Note that the standard groupOfNames object class
makes the member attribute mandatory. As
attributes cannot have empty values, this effectively
requires all groups to have at least one member at all
times.

uniqueMember

The uniqueMember attribute is similar to the
Member attribute stated above, and it is used to
store the unique members in a groupOfUniqueNames
object

sAMAccountName

Old NT 4.0 logon name attribute (Active Directory
only), which must be unique in an Active Directory
domain

Chapter 7: Directory Services 223

Get Object Operator

LDAP Attribute Name Description

LastLogonTimeStamp Last Logon Time Stamp attribute (Active Directory
2003/2008 only), which contains the last logon date
of a user; but it is replicated across all domain
controllers only after a period of time defined in the
msDS-LogonTimeSynclnterval attribute of the Active
Directory

LastLogon Last Logon attribute (Active Directory only), which
contains the last logon date of a user but it is NOT
replicated across all domain controllers

Output Parameters
RetrievedObjects

An array of value maps, where each value map contains the attributes retrieved for
each object. This variable is created only when the operation succeeds.

LDAPSearchPath
LDAPSearchScope
ResultsLimit
LDAPGetTimeLimit
LDAPSearchType
LDAPGetFilter
LDAPGetAttributesType
LDAPGetAttributesArray
LDAPGetAttributes
LDAPGetSortAttributesType
LDAPGetSortAttributesArray
LDAPGetSortAttributes
remoteLDAPHost
remotelLDAPPort
remotelLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

224 Content Designer Reference

Get Object Operator

Notes:

The attribute names entered in the sort and retrieve sections must be the LDAP
names of these attributes as specified in the LDAP server schema. For example, to
retrieve the attribute "Last name" you must use the LDAP name of this attribute:
"sn", to retrieve the attribute "First Name", you must use the attribute
"givenname", and so on. See Common LDAP Attribute Names (see page 221).

The LDAP names are different from the attributes display names.

Most LDAP servers differ in the display names of the LDAP attributes, but they all
must support the LDAP names of these attributes, thus the reason why we require
the usage of the LDAP names of the attributes instead of the display names.

You must provide the names of the attributes to be retrieved; otherwise CA Process
Automation will not return any data in the RetrievedObjects variable.

If no object was found under the specified search path, the search operation will
succeed and the RetrievedObjects variable will be empty. The search operation will
not fail in this case.

Chapter 7: Directory Services 225

Get Object Operator

Examples

Example - Use a generic filter

Get Criteria S

Start Search Path
"CN=Computers,DC=itpam,DC=ca,DC=local"
Retrieve Scope

Subtree Scope /!
Results Limit Count

Time Limit for Retrieve

Retrieve Object Type

Computer i
Retrieve Filter

"objectclass=computer”

[T Retrieve Attributes specified as an Array Variahle?
Retrieve Attributes Array Yariable

Retrieve Attributes List:
Retrieve Attributes List
"distinguishedname"

"objectCategaory”
"objectClass"

Bow oM R

"ot

Page | 1 of 1 & Displaying 1 - 4 of 4

In this example, we are trying to retrieve all computer accounts under the
"CN=Computers,DC=itpam,DC=ca,DC=local" path. We are specifically asking for the "cn",

"distinguishedname", "objectcategory", and "objectclass" attributes of these accounts.

Sort Criteria LS

[~ Sort Fields specified as an Array Wariable?
Sort List Fields Array ¥Yariable

Sort List Order
=] it 4
Sort List Order

1 "ent

page |1 of 1 & Displaying 1 -1 of 1

We are also sorting the returned user accounts by “cn”.

After the operation ran, it ended successfully and the RetrievedObjects variable was
created as follows:

226 Content Designer Reference

Get Object Operator

4 [A Cperation Results
4 [A RetrievedObiects (8]
4 [A Element Type

F] ERGWD

on

objectC ategory

objectClass

AisHnoushediame

For each value map in the RetrievedObjects variable, we now have the values retrieved
for each computer account attribute. In this example, the RetrievedObjects variable

contains eight objects.

Dataset

= Save Add Wariable X Delete Wariable

4 (A Cperation Resutts
4 [2 retrievedObiscts
4 [Flement Trpe
> [RowD
a3 o]
4 [Rowo
cn
objectCategory
objectCizss
distinguishedhame
R=Ye3
a[R gown
1 cn
objectCateqory
obiectCizss
qistinguishediame

> (3427

<

[2]

ALISYO5-SC0OM
CHN=Computer,CH=%chema,CN=Configurat

top|person|organizationalPerson|user|com..

CH=ALISY05-3COM,CN=Computers,DC=ss

BOBSRO1-CADE
CH=Computer,CH=5chema, CN=Configurat

Add Page X Delete Page

d General

Type:
Page:

Description:

Operation Results -

- array

Array
Dimension:

top|person|organizationalPerson|user|com..

CHN=BOBSRO1-CADE,CN=Computers,DC=5

| ot

Cancel

Also note that the values of multi-valued attributes (objectclass in this example) are
returned with a "|" between the multiple values:

abfectClass

top|person|organizationalPerson|user|computer

Chapter 7: Directory Services 227

Get Object Operator

Example - Use your own filter

Get Criteria

Start Search Path
"DC=itpam,DC=ca,DC=local"
Retrieve Scope

Subtree Scope
Results Limit Count

Time Limit for Retrieve

Retrieve Object Type
Other
Retrieve Filter

"objectclass=container"

[Retrisve attributes specified as an Array Variable?
Retrieve Attributes Array Yariable

Retrieve Attributes List
] 1+

Retrieve Attributes List
"distinguishedname"
"objectCategory”
"objectClass"

[

BowomoR

Dage'l of 1

@

Displaying 1 - 4 of 4

In this example, we are using our own filter (note retrieve Object Type is set to Other) to
retrieve all container accounts under the "DC=itpam,DC=ca,DC=local" path. We are
specifically asking for the "cn", "distinguishedname", "objectcategory", and
"objectclass" attributes of these accounts.

Sort Criteria

[T Sart Fields specified as an Array Yariable?
Sort List Fields Array Variable

Sort List Order
= 1+

Sort List Order

1 en

Page |1 of 1

[#*]

Displaying 1 -1 of 1

We are also sorting the returned user accounts by "cn".

After the operation ran, it ended successfully and the RetrievedObjects variable was
created as follows:

228 Content Designer Reference

Get Object Operator

4 [A Cperation Results
4 [A BetrisvedOhbiects [&]
4 [A Element Type
F] E Haowd
on
objectC ategory
objectClass

AisHnoushediame

4 | ol Qperation Hesults

4[4 RetrievedObiects [a]
- [0 Etement Type
4= oF
4 BROWG‘
[l {31B2F340-0160-1102-945F-00C04FB934F3
ohijects ateqor)y CHM=Group-Falicy-Caontainer, CN=5chema, CH=Configuratia...
objectllass top|container|groupPolicy Container
FistinguishedNarme CN={31B2F340-0160-1102-945F-00C04FB984F9} ,ChN=Foli...
4227
F BROWG‘
o {6AC17E6C-016F-11D2-945F-00C04fB984F 9} i
ohiectC ateqory CMN=Group-Policy-Container, CN=5chema,CHN=Configuratio...
ohjectllass top|container|groupPolicy Container

Properties

Retrieve Criteria Sort Criteria LOAP Login Paran System Operation Results

RetrievedObjects:

cn objectCategory objectClass disting

0 {31B2F340-0160-11.. CH=Group-Policy-Co... top|container|groupPolicyContainer CH={31
1 {6AC1786C-016F-11... CN=Group-Policy-Co... top|container|groupPolicyContainer CH={6{
Z Oe66lea3-8a5e-4495. CH=Container,CHN=5.. top|container CHM=0ef
3 10b3adZa-6883-4fa?.. CN=Container,CN=%.. top|container CH=10f
4 13d15cf0-e6c8-11d6-.. CHM=Container,CH=5.. top|container CHM=13¢
4| | I
Page | 1 lofza | bk M & Displaying 1 -5 of &

Cancel

Chapter 7: Directory Services 229

Get User Operator

In each value map in the RetrievedObijects variable, we now have the values retrieved
for each container account attribute. The RetrievedObjects variable contains 86 objects
in this example.

Please also note that the values of multi-valued attributes (objectclass in this example)
are returned with a "|" between the multiple values:

objectCiass top|container|groupPolicy Container

Operator Failure

This operator fails in the following cases:

m The search path does not exist on the LDAP server.

m The search time limit was exceeded.

m Unable to connect to the LDAP server.

This operation may fail in the following cases, depending on the LDAP server as some
LDAP servers consider these as errors while others do not:

m The search filter is invalid.

m The returning attributes are invalid.

m The sorting attributes are invalid.

Get User Operator

2

“;

The Get User operator retrieves LDAP objects of type user account from the LDAP
server. You can specify the search path, the search filter, the search scope, the
attributes to retrieve with each object, and the sort criteria.

Input Parameters

Input parameters for the Get User operator include get criteria and sort criteria.

230 Content Designer Reference

Get User Operator

Get Criteria
Start Search Path

Specifies the start location for the search, Like
CN=Users,dc=domainpart,dc=company-name,dc=top-level-domain-name.

Retrieve Scope
Select one of the following options:
Subtree Scope
Searches the entire subtree (including the object at the search path).
One Level Scope
Searches the objects directly under the object at the search path.
Object Scope
Searches the object at the search path only.
Results Limit Count
Maximum number of entries to return.

m Enter 0 or nothing in this field to use the value set in the Max Number of
Search Results field (from the Directory Services category configuration).

m Enter avalue in this field to use the smaller value between this field's value and
the value set in the Max Number of Search Results field (from the Directory
Services category configuration).

Time Limit for Retrieve
Specifies time in seconds to wait before timing out of this search.

If 0 or nothing is entered, there is no time limit set on the search.

Retrieve Filter
Specifies the search filter to use for this search.

m The generic search filter searches for user accounts in LDAP, and you can tweak
this filter as necessary. This field is writable (can be modified). See LDAP Search
Filter Basics (see page 220) for a primer on LDAP search filters syntax.

m The generic search filter may not work with some LDAP servers, especially if
the LDAP server does not support some of the objectclasses listed in the filter:

"(&(] (objectclass=user)(objectclass=person))(!(objectclass=computer)))"

Chapter 7: Directory Services 231

Get User Operator

m The expression must be syntactically correct, otherwise the search can fail.

m Consult with your LDAP administrator regarding the supported LDAP
objectclasses.

Retrieve Attributes specified as an Array Variable?

Check this box to supply a dataset variable that contains an array of attributes to
retrieve.

Retrieve Attributes Array Variable

Specifies the dataset variable that supplies an array of attributes to retrieve. This
field is enabled when the Retrieve Attributes specified as an Array Variable? check
box is enabled.

Retrieve Attributes List

Specifies a list of attributes to retrieve for this search filter. This list is enabled when
the Retrieve Attributes specified as an Array Variable? field is unchecked.

Sort Criteria
Sort Fields specified as an Array Variable?

Check this box to supply a dataset variable that contains an array of attributes used
for sorting the retrieved data.

Sort List Fields Array Variable

Specifies the dataset variable that supplies an array of attributes to be used for the
sort order. This field is enabled when the Sort Fields specified as an Array Variable?
check box is selected.

Sort List Order

List of attributes to be used for the sort order. This field is enabled when the Sort
Fields specified as an Array Variable? check box is unchecked.

If nothing is entered in the Sort Criteria section, the retrieved objects will not be
sorted.

Note: Some LDAP servers (such as OpenLdap) do not support "Sorting" of data. In
this case, the operation might fail with the following reason: [LDAP: error code 12 -
critical extension is not recognized]. Do not provide any sorting criteria in this case.
This is a limitation in the LDAP server, not CA Process Automation.

232 Content Designer Reference

Get User Operator

Output Parameters
UserAccounts

This is an array of value maps, where each value map contains the attributes
retrieved for the user. This variable is created only when the operation succeeds.

LDAPSearchPath
LDAPSearchScope
ResultsLimit
LDAPGetTimeLimit
LDAPGetFilter
LDAPGetAttributesType
LDAPGetAttributesArray
LDAPGetAttributes
LDAPGetSortAttributesType
LDAPGetSortAttributesArray
LDAPGetSortAttributes
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 233

Get User Operator

Attribute names entered in the sort and retrieve sections must be the LDAP names of
these attributes as specified in the LDAP server schema. For instance, to retrieve the
attribute "Last name" you must use the LDAP name of this attribute: "sn", to retrieve
the attribute "First Name", you must use the attribute "givenname", and so on. For
more information, see the topic "Common LDAP Attribute Names (see page 221)".

LDAP names are different from the attributes display names.

Most LDAP servers differ in the display names of the LDAP attributes, but they all must
support the LDAP names of these attributes, thus the reason why we require the usage
of the LDAP names of the attributes instead of the display names.

You must provide the names of the attributes to be retrieved; otherwise CA Process
Automation will not return any data in the UserAccounts variable.

If no user accounts were found under the specified search path, the search operation
will succeed and the UserAccounts variable will be empty. The search operation will not
fail in this case.

234 Content Designer Reference

Get User Operator

Examples

In this example, we are trying to retrieve all user accounts under the
"ou=Ildapconnector,dc=ca,dc=com" path. We specifically asked for the "entrydn", "uid",
and "objectclass" attributes of these accounts.

Get Criteria

Start Search Path

"ou=ldapconnector,dec=ca,dc=com"
Retrieve Scope

Subtree Scope
Results Limit Count

10

Time Limit for Retrieve
10

Retrieve Filter

"{&{|{objectclass=user)(objectclass=person)i{{objectclass=computer))"

[Retrieve attributes specified as an Array Variable?

Retrieve Attributes Array Yariable
Retrieve Attributes List
] + |+
Retrieve Attributes List
1 "entryDn"
5 g

3 "objectclass”

Page |1 of 1 e

Displaying 1 - 3 of 3

We are also sorting the returned user accounts by "entryDn" then "uid".
Sort Criteria

[Sort Fields specified as an Array Yariable?
Sort List Fields Array Variable

Sort List Order
=) T+

Sort List Order
1 ‘“entryDn"
5 idn

Page [1 of 1 e

Displaying 1 - 2 of 2

After the operator ran, it ended successfully and the UserAccounts variable was created
as follows:

Chapter 7: Directory Services 235

Get User Operator

a [3 Operation Resufts
4 B Liserdooounts
4 [AL Flement Type
4 B Ropd
wid
endrpin
objectClass
4 =2 o7
4 [A rowo
wid
entrpin
objectllass
a3

a = rowd

[10]

cn=testunituser,ou=testunit3,dc=itpam,dc=com

organizationalPerson|person|top

Properties
Retrieve Criteria Sort Criteria LD&FP Login Paran
Userdccounts:
uid entryDn

a cn=testunituser,ou=testunit3...
1 seealso=test,dc=itpam,de=c...
z abarnes uid=abarnes,ou=people,dc=...
3 abergin uid=abergin,ou=peaple,de=i...
4 achassin uid=achassin,ou=people,dc...

FPage | 1 of 2

b

Mo &

Operation Results

[

Systerm

objectClass
organizationalPerson|person...
top|person|inetdrgPerson|or...
top|person|organizationalPe...
top|person|arganizationalPe...

top|person|organizationalPe..

Displaying 1 - 5 of 10

[«

Cancel

Each ValueMap in the UserAccounts variable now shows the values retrieved for each
user account attribute. The operator returned only ten user accounts because we
specified our search results limit to be ten. The values of multi-valued attributes
(objectclass in this example) are also returned with a "|" between the multiple values:

objectClzss

organizationalPerson|person|top

236 Content Designer Reference

Move Object Operator

Operator Failure

This operator fails in the following cases:

m The search path does not exist on the LDAP server.

m The search time limit was exceeded.

= Unable to connect to the LDAP server.

This operation may fail in the following cases, depending on the LDAP server as some
LDAP servers consider these as errors while others do not:

m The search filter is invalid.

m The returning attributes are invalid.

m The sorting attributes are invalid.

Move Object Operator

Big

The Move Object operator moves an LDAP object from one location to another within
the LDAP server.

Input Parameters
Object Old DN

Specifies the distinguished name of the object that you want to move.

Object New DN

Specifies the destination for the distinguished name where you want the object to
be moved.

Chapter 7: Directory Services 237

Remove User from Group Operator

Output Parameters

LDAPMoveObjectOldDn

LDAPMoveObjectNewDn

remoteLDAPHost

remoteLDAPPort

remoteLDAPUser

remoteLDAPPassword

LDAPBaseDN

LDAPUserPrefix

Example

Operator Failure

Move Object Parameters

Object 0ld DN:

"cn=testgroup,ou=Ildapconnector,dc=ca,dc=com"

Object New DN:

"cn=testgroup,ou=groups,ou=ldapconnector,dc=ca,dc=com”

This operator fails in the following cases:

The old DN of the object does not exist in the LDAP server.
The new DN of the object exists already.

The LDAP server is setup to prevent a 'Move' Operator from occurring
programmatically.

Unable to connect to the LDAP server.

Remove User from Group Operator

s

The Remove User from Group operator lets you remove an LDAP user from an LDAP
group on the LDAP server.

238 Content Designer Reference

Remove User from Group Operator

Input Parameters
User DN

Specifies the distinguished name of the user that you want to remove from the
group.

Group DN

Specifies the distinguished name of the group from which you want to remove the
user.

Output Parameters
LDAPUserDn
LDAPGroupDn
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

Remove User from Group Parameters o

User DN:

"cn=JSmith,ou=Ildapconnector,de=ca,de=com”
Group DN:

"cn=Users,dc=ca,dc=com”

Operator Failure

This operator fails in the following cases:
m The user is not a member of the group.
m The group does not exist in the LDAP server.

m The Group DN points to an LDAP object that is not of type group, groupofnames or
groupofuniquenames.

m Unable to connect to the LDAP server.

Chapter 7: Directory Services 239

Update Object Attributes Operator

Update Object Attributes Operator

o

The Update Object Attributes operator performs all of the following tasks
simultaneously:

m Add new attributes to an existing LDAP object.
m Replace the values of attributes of an existing LDAP object.

m Remove attributes from an existing LDAP object.

You can perform all three operations on the same object at the same time, or you can
choose to ignore any of the operations by not entering anything in the operator's
parameters.

Note: The Active Directory will not allow for a user's password to be modified unless CA
Process Automation is connected to the Active Directory server through SSL. If CA
Process Automation is not connected through SSL, a replace operator on a user
password will fail.

For more information about how to import an Active Directory's certificate to CA
Process Automation, see Add an SSL Certificate to CA Process Automation (see

page 246). Once the certificate is imported, you can change the Directory Services
category's properties to establish an SSL connection with the Active Directory server.

Input Parameters
Input parameters for the Update Object Attributes operator are as follows.

Objects Parameters
Object Distinguished Name
Specifies the distinguished name of the LDAP object whose attributes you want to
modify.
Add Attributes Parameters Page

Use the Add Attributes Parameters page to enter all the attributes that you want to
create for the LDAP object.

Use specified array fields for the LDAP attributes to be added

Check this box to use the Attributes and Attributes Values arrays for this request.

240 Content Designer Reference

Update Object Attributes Operator

LDAP Attributes Array

The array containing the LDAP names of the attributes to be added to the object.
This Dataset field must be defined as an array (indexed string). If Use specified array
fields for the LDAP attributes to be added is checked, this field will be used.

LDAP Attributes Values Array

The array containing the values of the attributes to be added to the object. This
Dataset field must be defined as an array (indexed string). If Use specified array
fields for the LDAP attributes to be added is checked, this field will be used.

LDAP Attributes

The LDAP names of the attributes to be added to the object. If Use specified array
fields for the LDAP attributes to be added is unchecked, this field will be used.

LDAP Attributes Values

The values of the attributes to be added to the object. If Use specified array fields
for the LDAP attributes to be added is unchecked, this field will be used.

LDAP Attributes Value Maps

This is an array of value maps containing additional LDAP attributes to be added to
the object. Each value map's Key and Value must be of type string; moreover, the
key must be named Keys and the value must be named Values.

Example
Dataset Properties Wersions audit Trail
Filter: X General
Name Yalue Type: P =
- BParameters
4 [21 addattrHashMaparray [1] Page: Parameters v
4 [A Elemnent Type Description:
Fl BParameterS
keys
Values M Array
‘B Array Single v
4[5l parameters . Dimension:
leeys rmanager ;
Values Jnseph Srith

In this example, the object addAttrHashMapArray is an indexed ValueMap whose key
fields are called Keys and value fields are called Values.

Note that the user can use the LDAP Attributes Value Maps alone or as an addition to
any attributes (and associated attribute values) entered in the other fields of the page.

Chapter 7: Directory Services 241

Update Object Attributes Operator

Replace Attributes Parameters Page

Use the Replace Attributes Parameters page to enter all the attributes whose values you
want to replace in the LDAP object.

Use specified array fields for the LDAP attributes to be added

If this is checked, then the Attributes and Attributes Values arrays will be used for
this request.

LDAP Attributes Array

Specifies the array containing the LDAP names of the attributes whose values are to
be replaced in the object. This Dataset field must be defined as an array (indexed
string). If Use specified array fields for the LDAP attributes to be added is checked,
this field will be used.

LDAP Attributes Values Array

Specifies the array containing the new values of the attributes to be replaced in the
object. This Dataset field must be defined as an array (indexed string). If Use
specified array fields for the LDAP attributes to be added is checked, this field will
be used.

LDAP Attributes

Specifies the LDAP names of the attributes whose values are to be replaced in the
object. If Use specified array fields for the LDAP attributes to be added is
unchecked, this field will be used.

LDAP Attributes Values

Specifies the new values of the attributes to be replaced in the object. If Use
specified array fields for the LDAP attributes to be added is unchecked, this field will
be used.

LDAP Attributes Value Maps

Specifies an array of value maps containing the LDAP names and new values of the
attributes whose values are to be replaced in the object. Each value maps Key and
Value must be of type string; moreover, the key must be named Keys and the value
must be named Values.

Remove Attributes Parameters Page

The Remove Attributes Parameters page is used to enter all the attributes that you want
to remove from the LDAP object.

Use specified array field for the LDAP attributes to be removed

Check this box to use Attributes arrays for this request.

242 Content Designer Reference

Update Object Attributes Operator

LDAP Attributes Array

Specifies the array containing the LDAP names of the attributes to be removed from
the object. This Dataset field must be defined as an array (indexed string). If Use
specified array field for the LDAP attributes to be added is checked, this field will be
used.

LDAP Attributes

Specifies the LDAP names of the attributes to be removed from the object. If Use
specified array field for the LDAP attributes to be added is unchecked, this field will
be used.

Output Parameters
LDAPModifyObjAttrsDN
LDAPAddAttributesType
LDAPAddAttributesKeyArray
LDAPAddAttributesValueArray
LDAPAddAttributesKeys
LDAPAddAttributesValues
LDAPAddAttributesMap
LDAPRemoveAttributesType
LDAPRemoveAttributesKeyArray
LDAPRemoveAttributesKeys
LDAPReplaceAttributesType
LDAPReplaceAttributesKeyArray
LDAPReplaceAttributesValueArray
LDAPReplaceAttributesKeys
LDAPReplaceAttributesValues
LDAPReplaceAttributesMap
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 243

Update User Home Directory Operator

Operator Failure

This operator fails in the following cases:
m The LDAP object specified does not exist.
m One of the LDAP attribute you want to add, replace, or remove does not exist

m The list of attributes and attribute values of the 'Add' or 'Modify' pages do not
match in length.

m The user checked that an array of attributes and an array of attribute values are
used for the 'Add’, 'Replace’, or '/Remove' pages, but the CA Process Automation
object entered in the array field is actually not of type array (indexed strings).

m The LDAP server is setup to prevent any modifications of LDAP objects done
programmatically.

m Unable to connect to the LDAP server.

Update User Home Directory Operator

2
G

The Update User Home Directory operator sets up a share for a user in an Active
Directory server. The share includes a home drive, home directory, and log in script.

Input Parameters
User DN

Specifies the distinguished name of the user object for which you want to set the
home directory, home drive, and logon script.

Home Directory

Specifies the new home directory of the user.
Home Drive

Specifies the new home drive of the user.
Logon Script

Specifies the new logon script of the user.

244 Content Designer Reference

Update User Home Directory Operator

Output Parameters
LDAPUserDn
LDAPADHomeDirectory
LDAPADHomeDrive
LDAPADLogonScript
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

Active Directory Setup Share for User Parameters o

User DN:

"cn=lohn Srmith,DC=Users,DC=itparn,DC=ca,DC=local"
Home Directory:

"CivwDocuments and settingsi\\jsmith"
Home Drive:

Hy
Lagon Script:

"Chscriptsihlogon.vbs”

Operator Failure

This operator fails in the following cases:
m The user object does not exist.

m The Active Directory is setup to prevent any modifications of LDAP objects to occur
programmatically.

Chapter 7: Directory Services 245

Add an SSL Certificate to CA Process Automation

Add an SSL Certificate to CA Process Automation

To add an SSL certificate to CA Process Automation
1. Retrieve the certificate file from the Active Directory server.

For instance, to establish an SSL connection between CA Process Automation and
an Active Directory server, retrieve the certificate. Log in to the http://i.p./certsrv
where i.p. is the IP address of the Active Directory server, then download the
certificate.

2. Copy the certificate file to the computer where the CA Process Automation
Directory Services operators are running.

3. Import the certificate using the keytool command:

keytool -import -alias PAM -file certnew.cer -keystore "C:\\Program
Files\\Java\\jdk1l.6.0 03\\jre\\lib\\security\\cacerts"

Where certnew.cer is the path to the certificate file retrieved in step 1.

"C:\\Program Files\\Java\\jdk1.6.0_03\\jre\\lib\\security\\cacerts" is the path to
the cacerts file within the Java JRE or JDK.

m The keytool program is part of the Java installation.
m Keytool prompts for a password. The password is 'changeit' by default.
m Keytool prompts whether to 'Trust this certificate?[no]'. Enter yes.

4. Add the following lines in the CA Process Automation file:
PAM\server\c2o\bin\c2osvcw.conf
(or in the case of an upgrade): |
PAM DIR%\server\c2o\bin\c2osvcw.conf:

wrapper.java.additional.1ll=-Djavax.net.ssl.trustStore="C:\Program
Files\Java\jdkl.6.0 03\jre\lib\security\cacerts"
wrapper.java.additional.12=-Djavax.net.ssl.trustStorePassword="changeit"

The numbers might be different for you. Start with the next available number. If
wrapper.java.additional.11 is already defined, use 12 and 13.

The program folder is different for your JDK installation.
The password is "changeit".

5. Restart the CA Process Automation Touchpoint that contains the Directory Services
operators.

246 Content Designer Reference

Add an SSL Certificate to CA Process Automation

Set Up the Active Directory Server

To establish an SSL connection between the CA Process Automation-Directory Services
operators and an Active Directory server, verify that the Active Directory server is set

up:

1. The Certificate Services are installed on your Active Directory server (consult your
Active Directory admin for this task).

2. The Automatic Certificate Request is configured for Domain Controllers (consult
your Active Directory admin for this task).

Note: When you create a new user account or modify the password of an existing user
account in Active Directory, the Active Directory does not allow you to create or modify
a user password unless CA Process Automation is connected to the Active Directory
server through SSL.

Chapter 7: Directory Services 247

Chapter 8: Email

The Email operators can automate tasks that are performed on messages and folders in
an email server. Email operators communicate with your mail server remotely using one
of the following protocols:

Post Office Protocol version 3 (POP3)

POP3, suitable for single-user access to a mailbox, allows you to download email
messages to your local computer. By default, POP3 servers listen on TCP Port 110.

POP-SSL
By default, POP-SSL servers listen on TCP Port 995.
Internet Message Access Protocol (IMAP)

IMAP, suitable for multi-user access to a mailbox, allows simultaneous access by
multiple clients. By default, IMAP servers listen on TCP Port 143.

IMAP-SSL

By default, IMAP-SSL servers listen on TCP Port 993.
The Email operators can communicate with your mail server only if it supports either
IMAP or POP3. The Email operators perform actions such as get email counts. Both

protocols support this type of action. Some actions, such as delete folder, are supported
only by the IMAP protocol.

Common Email Operator Parameters

The following properties apply for various Email operators:
m Message Filter Criteria

m Mail Server Login Parameters

Chapter 8: Email 249

Common Email Operator Parameters

Messagde Filter Criteria
Message ID

Specifies the unique ID of the email to filter. You can also pass a substring of the
Message ID. If the IDs for the desired emails are not known, you can retrieve
Message IDs for messages using the Get Email List operator (see page 263). Action
is taken on all the emails that match the subject substring.

Note: This parameter is not available for all Email operators.
Message Number

Specifies the message number of the email to filter. This parameter is not a static
number for a message. If emails are deleted and moved to different folders, the
message number changes. If there are parallel actions taking place on the same
mailbox folder, we recommend using Message ID (rather than Message Number) to
specify messages.

Note: This parameter is not available for all Email operators.
Message Subject

Specifies the subject of the email that you want to match. This parameter can be a
substring or regular expression. Action is taken on all the emails that match the
subject substring.

Message Sender

Specifies the email sender that you want to match. This parameter can be a
substring or regular expression. Action is taken on all the emails that match the
subject substring.

Message Subject and Sender values are regular expressions

Select this check box to specify that Message Subject and Message Sender values as
regular expressions (rather than a simple string) when filtering email.

Important! To parse emails for the Email operators using regular expressions, all
emails must be retrieved from the mailbox and parsed at the client side. That is, on
the touchpoint where the operator runs. We recommend that you do not select this
field and use regular expressions only if it is required.

Message Body

Specifies as a substring of the email body that you want to match.

250 Content Designer Reference

Common Email Operator Parameters

Earliest Message Sent Time

Match emails that are sent after the time specified. This parameter identifies the
earliest time the email that you want to match was sent, specified in an CA Process
Automation variable.

Latest Message Sent Time

Match messages that are sent before the time specified. This parameter identifies
the latest time the message that you want to match was sent, specified in an CA
Process Automation variable.

Note: Earliest Message Sent Time and Latest Message Sent Time fields are CA Process
Automation date type variables. System functions like now() (see page 553) or today()
(see page 560) generate date type variables. A system function named parseDate (see
page 553) (stringDate, simpleDateFormat) creates the date properly. stringDate is the
date in string format and simpleDateFormat is the format to use to parse the date. This
function can be used to parse a string to a CA Process Automation date type variable.
For example:

parseDate("2010/07/28 13:00:01", "yyyy/MM/dd HH:mm:ss")

IMAP Message Flag

IMAP uses message flags to monitor the state of an email. These flags are stored on
the server. Different clients accessing the same mailbox at different times can
detect the changes that other clients make.

The following flags are valid and can be set programmatic by setting the values to
name of flags. The name of the flags is case-sensitive and is passed with all upper
cases.

Select the flag that you want to set for your message. These flags work in
conjunction with the IMAP Message Flag is set to true check box.

ANSWERED

When you select the IMAP Message Flag is set to true check box, only the
emails that have been answered return (those emails on to which the replies
were sent).

DELETED

When you select the IMAP Message Flag is set to true check box, any emails
that were not marked as deleted from the server return.

DRAFT

When you select the IMAP Message Flag is set to true check box, all emails that
are currently not in a draft state return.

FLAGGED

When you select the IMAP Message Flag is set to true check box, any emails
that are not flagged return.

Chapter 8: Email 251

Common Email Operator Parameters

RECENT

When you select the IMAP Message Flag is set to true check box, any emails
that were never opened (clicked) return.

SEEN

When you select the IMAP Message Flag is set to true check box, any email
which is marked as READ returns. When you do not select the IMAP Message
Flag is set to true check box, any email which is marked as UNREAD returns.

IMAP Message Flag is set to true

The IMAP flag name is set in the IMAP Message Flag drop-down list. Its Boolean
value can be selected from this check box. For example, if you want to select
Seen as true, select Seen from the drop-down and then select this check box.

Mail Server Login Parameters
Protocol for Connection

Select the email protocol to use to connect to the server:

. IMAP
m IMAP-SSL
m POP3
m POP3-SSL

Mail Server Host
Specifies the hostname/IP address of the mail server.
Mail Server Port
Specifies the port of the mail server.
Username
Specifies the username of the user to access the mail server.
Password

Specifies the password for the user to access the mail server.

252 Content Designer Reference

Create Folder Operator

Create Folder Operator

o

The Create Folder operator creates a folder on the mail server. Folders are created
recursively using the IMAP protocol.

If the folder exists, an exception is thrown that cites "Folder already exists".

Input Parameters
Mailbox Folder Name
Name of the folder to create in the mail server.

Mail Server Login Parameters (see page 252)

Output Parameters
FolderCreated
Returns true when the folder gets created successfully and false otherwise.
FolderName
Protocol
ServerHost
ServerPort
UserName

Password

Delete Email Operator

F .

w

The Delete Email operator deletes messages from the mailbox and returns the number
of messages deleted. This operator uses the IMAP protocol.

Note: If all fields are left blank, this operator deletes all messages from the mailbox (the
specified mailbox folder name).

Chapter 8: Email 253

Delete Folder Operator

Input Parameters
Mailbox Folder Name
Specifies the name of the folder that contains messages to delete in the mail server.

Message Filter Criteria (see page 250)

Mail Server Login Parameters (see page 252)

Output Parameters

DeletedCount
Returns the number of messages deleted.

FolderName
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Delete Folder Operator

LA

'S

The Delete Folder operator deletes a folder on the server using the IMAP protocol. The
folder is deleted even if it contains subfolders.

254 Content Designer Reference

Delete Folder Operator

Input Parameters
Mailbox Folder Name
Specifies the name of the folder to delete on the mail server.

Mail Server Login Parameters (see page 252)

Output Parameters
FolderCreated
Returns true when the folder is deleted successfully and false otherwise.
FolderName
Protocol
ServerHost
ServerPort
UserName

Password

Example
Important! The following scenario uses a hmail mail server. This scenario does not work
when a Dominos server is used.
1. Create hierarchy of folders, such as test1\test2\test3\test4 (parallel to "Inbox").
2. Create another hierarchy, test2\test5\test6 (parallel to "Inbox").

3. Delete "test2" folder using the Delete Folder operator.

Delete Folder o

Mailbox Folder Mame:

testz

Expected result
The hierarchy "test2\test5\test6" is deleted.
Actual result

The process runs successfully and returns false. Ideally it returns true. The folder
still exists on the mail server.

Chapter 8: Email 255

Get Email Content Operator

Get Email Content Operator

Q

The Get Email Content operator retrieves the email body and attachments. If the
message number field is not blank or null, then the operator retrieves a single email
(based on the message number) and the operator returns the details. Otherwise, the
operator returns the content of all the emails within the folder.

Note: If all fields are left blank, this operator retrieves the content of all the emails from
the specified mailbox folder.

Input Parameters
Mailbox Folder Name
Specifies the name of the folder that contains emails to process.
Set messages retrieved as seen
When selected, sets the retrieved messages as seen.
Start index of mail content to get in Dataset variable

If you enter an index in this field, content starting from that index displays in the
Dataset variable. Leave blank to start from the beginning.

Length of mail content to get in Dataset variable

If you enter an index in this field, content until that index displays in the Dataset
variable. Leave this blank to get the maximum mail content possible.

Process attachments of mail

When selected, attachments are also processed. The default is unchecked.

256 Content Designer Reference

Get Email Content Operator

Attachment Operation

Specifies one of the following operations that can be performed on the attachment.
This option is enabled when the user selects the Process attachments of mail check
box.

Save attachment to a file
Saves the attachment in the destination folder.
Get attachment content in Dataset variable
Writes the attachment contents to a dataset variable.

The property to retrieve mail email content is exposed as a configurable
property. The default size is 64K Add "mail.maximum.content.size=64" in the
OasisConfig.properties to configure the size. The unit of size is K.

Both
Performs both the save and Write Contents to Dataset variable operations.
Destination Folder Name
Specifies the destination folder where the attachment is saved.
Generate unique filenames to save attachment

When selected, provides the option to generate unique file names when saving
attachments.

Start index of attachment content to get in Dataset variable

If you enter an index in this field, attachment content starting from that index
displays in the Dataset variable. Leave blank to start from the beginning.

Length of attachment content to get in Dataset variable

If you enter an index in this field, attachment content until that index displays in the
Dataset variable. Leave this blank to get the maximum mail content possible.

Message Filter Criteria (see page 250)

Mail Server Login Parameters (see page 252)

Chapter 8: Email 257

Get Email Content Operator

Output Parameters
MessageContent

(ValueMap) Returns the message contents and attachment contents.

Contains:

ResultRow
AttachmentContents
MailContents
AttachmentFiles

FolderName
MarkMessagesAsSeen
MessageContentStartindex
MessageContentLength
IsProcessAttachement
ProcessAttachmentType
DestinationFolderName
GenerateUniqueName
MessageAttachmentStartindex
MessageAttachmentLength
MessagelD
MessageNumber

Subject

From

IsRegExp

Body

SentFromDate

SentToDate

FlagField

FlagValue

Protocol

ServerHost

ServerPort

UserName

Password

258 Content Designer Reference

Get Email Count Operator

Get Email Count Operator

Input Parameters

The Get Email Count operator returns the number of emails in the folder.

You can connect to the mail server either through the POP3 protocol or the IMAP
Protocol and, based on the protocol, the user must provide the appropriate port
number.

m The default port for POP3 is 110.
m The default port for IMAP is 143.

The default port for POP-SSL is 995.

The default port for IMAP-SSL is 993.

Mailbox Folder Name
Specifies the name of the folder that contains emails to process.

Message Filter Criteria (see page 250)

Mail Server Login Parameters (see page 252)

Chapter 8: Email 259

Get Email Envelope Operator

Output Parameters

MessageCount
Returns the number of emails in the folder.
FolderName
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Get Email Envelope Operator

W

The Get Email Envelope operator retrieves the email envelopes from the specified filter
criteria. If the message number is not blank or null (specified in the Message Filter
Criteria (see page 250)), then this operator retrieves a single email (based on the
message number) and the operator returns the details. Otherwise, this operator returns

envelopes of all the emails within the folder.

Note: If all fields are left blank, this operator retrieves the content of all the emails from

the specified mailbox folder.

260 Content Designer Reference

Get Email Envelope Operator

Input Parameters
Mailbox Folder Name
Specifies the name of the folder that contains emails to process.
Set messages retrieved as seen
When selected, sets retrieved emails as seen.

Message Filter Criteria (see page 250)

Mail Server Login Parameters (see page 252)

Chapter 8: Email 261

Get Email Envelope Operator

Output Parameters
MessageEnvelope
(ValueMap) Returns the envelope of messages in the folder.
Contains:
ResultRow
SentDate
Subject
To
Bcc
Cc
From
FolderName
MarkMessagesAsSeen
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

262 Content Designer Reference

Get Email List Operator

Get Email List Operator

The Get Email List operator retrieves a list of emails that match certain filter criteria. You
can configure fields described in the Message Filter Criteria (see page 250) to filter only
the emails you want to retrieve envelopes from. This operator can use both IMAP and
POP3 protocol. Use the Get Email List operator specifically to retrieve basic information
of emails. This information includes Message ID and Message Number that can be used
in other operators.

Note: The Get Email List operator can retrieve envelopes of a maximum of 512 emails in
one iteration.

Input Parameters
Mailbox Folder Name

Specifies the name of the target mailbox folder name that contains emails to be
processed. This field cannot be left blank.

Message Filter Criteria (see page 250)

Mail Server Login Parameters (see page 252)

Output Parameters
Messagelist

An array of ValueMaps. Each index of the array is a CA Process Automation
ValueMap data type. The ValueMap contains the following fields that hold the
following information in a single message:

MessagelD
UniquelD of the message.
MessageNumber

This message number can vary for the same email if emails are moved from the
folder to anther folder or deleted and expunged. We recommended using
MessagelD to specify emails uniquely.

Chapter 8: Email 263

Move Email Operator

Subject

Subject of the email.
SenderAddress

Address of the sender of the email.
SentDate

A CA Process Automation date type variable with date when the email was
sent.

ReceivedDate

A CA Process Automation date type variable with the date that the server
received the email. This value is only populated when using IMAP protocol to
connect to the server.

NumOfAttachments
An integer type variable to give number of attachments present in the email.
FolderName
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Move Email Operator

&

The Move Email operator moves the emails from one folder to another.

264 Content Designer Reference

Move Email Operator

Input Parameters
Mailbox Source Folder Name
Name of the source folder that contains the emails to move.
Mailbox Destination Folder Name

Specifies the name of the destination folder where the emails are copied.

Notes:

m [f the source folder does not exist, CA Process Automation throws an exception
saying "Source folder does not exist".

m If the destination folder does not exist, CA Process Automation creates the
destination folder and then moves the emails from the source folder to the
destination folder.

Message Filter Criteria (see page 250)

Mail Server Login Parameters (see page 252)

Output Parameters
MovedCount
SourceFolderName
DestinationFolderName
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Chapter 8: Email 265

Purge Folder Operator

Purde Folder Operator

1! —

The Purge Folder operator expunges (permanently removes) folders marked DELETED
and returns the number of emails expunged. This operator uses the IMAP protocol.

Input Parameters
Mailbox Folder Name

Specifies the name of the folder on the mail server that contains emails to delete
permanently.

Mail Server Login Parameters (see page 252)

Output Parameters
ExpungedCount
Returns the number of emails deleted.
FolderName
Protocol
ServerHost
ServerPort
UserName

Password

Rename Folder Operator

.

"

The Rename Folder operator renames the folder in the mail server. The operator uses
the IMAP protocol.

266 Content Designer Reference

Rename Folder Operator

Input Parameters

Current Mailbox Folder Name

Specifies the old name of the folder to be renamed.

New Mailbox Folder Name
Specifies the new name for the folder.

Mail Server Login Parameters (see page 252)

Output Parameters

FolderRenamed

Returns true when the folder is renamed successfully and false otherwise.

OldFolderName
NewFolderName
Protocol
ServerHost
ServerPort
UserName

Password

Chapter 8: Email 267

Send Email Operator

Send Email Operator

Use the Send Email operator to deliver email notifications to specified recipients.

The CA Process Automation email implementation supports sending mail through an
SMTP server. You can specify any valid email address that is supported by the SMTP
server. These addresses can include aliases, a mailing list, a fax address, or a digital
pager. The SMTP server, rather than CA Process Automation, handles the actual delivery
of a message.

-
| |
2 Completed & Failed
Operation succeadad Cperation Failed
Result=1 Result =0

The Send Email operator can include attached files. You can specify attachments to send
dynamically updated files rather than static information specified when you added a
Send Email operator to a process. This feature is useful for sending attachments such as
log and exception files.

The Send Email operator also supports HTTP/HTTPS URLs as an attachment path. The
Send Email operator fails if a path name is not valid at run time.

Tip: Specify that locations for attachments are relative to the touchpoint running the
Email operators.

Input Parameters
User Name

Specifies a valid user name or profile for sending mail on the SMTP server. For
example, Process.Email.Username.

Password
Specifies the password for the user name. For example, Process.Email.Password.
From

The email address to appear in the sender field of the outgoing email.

268 Content Designer Reference

Send Email Operator

To

Cc

Specifies the addresses of email recipients. Separate multiple email addresses with
either commas or semi-colons. For example, support@PAM.com, sales@PAM.com.

Specifies the addresses of recipients who receive copies of this email alert. Separate
multiple email addresses with either commas or semi-colons. For example,
system_administrator@PAM.com; support@PAM.com.

Subject

Specifies a brief description to appear in the subject of the email message. For
example, CA Process Automation Alert.

Message

Specifies the message that the email delivered. For example,

Notice
Backup problems on a Touchpoint: + Process.TouchpointName.

Send in HTML Format

When selected, CA Process Automation uses HTML text in the Message field. If this
option is not selected, CA Process Automation uses plain text.

For example, use the following text to display "Notice" in red font:

Notice

Attachment

Specifies the full paths for files to attach to the email. Separate multiple path names
by commas or semi-colons. You can also specify HTTP/HTTPS URLs for local and
remote locations.

This parameter must specify locations that are valid for the Email operators at
runtime, and on the touchpoint where the Email operators are running. For
example, C:\\CA Process Automation\\Data\\Log\\Global.log.

Receipt

Select this check box to request a delivery receipt for the message. The receipt is
typically a service that the recipient mail client provides. CA Process Automation
cannot guarantee the receipt.

Encoding

Specifies the encoding scheme that the reader receives the text in (UTF-8, UTF-16,
US-ASCII, Windows-1250, Windows-1252, Shift_JIS).

Chapter 8: Email 269

Send Email Operator

Output Parameters
user
password
from
to
cc
subject
text
isContentHtml
attachment

recpt

270 Content Designer Reference

Chapter 9: File Management

The File Management operators monitor directories, files, and their contents. These
operators can be run either locally or on a remote system. The File Management
operators also support operations on a proxy node. The process takes either a success
or a failure path, based on the results of the operation.

Use the File Management operators to create, delete, rename, compress and
uncompress local files. You can also use the File Management operators to watch files
on the touchpoint where the operators are running. All File Management operators run
under the same user name that is running the touchpoint, such as administrator on a
Windows touchpoint or root on a UNIX touchpoint.

The File Management operators can run on proxy agents. Properties in a normal and
proxy service are the same, but some behavior is different. For example, if the Process
Proxy Service is running with the log output option checked, then the log file is created
on the file system where the agent is running. The log file is not created on the machine
where the proxy agent resides.

Important! The following conditions apply to all operators in this category when running
them on a remote Windows host through a proxy touchpoint::

- Use UNIX-style paths for fields which are path-related (forward slashes and no
drive letter).

- Each SSH server can have a different location for its "root" directory. The
permitted commands that are relative to that root directory can vary too.

Compress File Operator

Prerequisites

)

The Compress File operator compresses a file or directory. In a Windows environment, it
is compressed using the WINZIP Command Line Utility. In UNIX environments, it is
compressed using the gzip utility.

m The WZZIP command line utility must be installed on the target host if it is a
Windows host. The WZZIP command line utility is a free add-on for users of WinZip
12 standard or pro with a valid license.

m The gzip utility is required for UNIX environments.

Chapter 9: File Management 271

Copy File Operator

Input Parameters
Source File/Directory Name
Specifies the name of file or directory to be compressed.
Notes: On the Windows host, the compressed file extension is ".zip".

On a UNIX host, if the source is a directory, then every file under that directory is
compressed and is replaced one with the extension ".gz".

Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user's home directory will be
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to be used while executing the operator on the host.
Overrides the user specified in the operator category level properties.

Password

Specifies the password for the user.

Output Parameters
fileName
workingDir
useriD

password

Copy File Operator

=

The Copy File operator copies source to destination. The source and destination can be
a file or a directory.

272 Content Designer Reference

Copy File Operator

Input Parameters

Source File/Directory Name
Specifies the file or directory to copy.
Destination File/Directory
Specifies the file or directory to copy.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user specified at the operator category level.

Password

Specifies the password for the user.

Notes:

m If the destination does not exist and the source is a file, then the destination is
assumed to be a file.

m |f the destination does not exist and the source is a directory, then the destination
is assumed to be a directory.

m Ona Windows host, a "cannot perform cyclic copy" error is thrown if the source
directory contains the destination directory.

Output Parameters

fileName
destinationFileName
workingDir

useriD

password

Chapter 9: File Management 273

Create Folder Operator

Create Folder Operator

Ly

The Create Folder operator provides the functionality to create a directory. The
operator does not throw an error if the directory already exists and the operator creates
directories recursively as needed.

Input Parameters
Directory Name
Specifies the directory to create.

Default Shell

Permission Modes (for UNIX only)

Sets permission mode. This input is valid for a UNIX host only.
Working Directory

Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category level properties.

Password

Specifies the password for the user.

274 Content Designer Reference

Decompress File Operator

Output Parameters
fileName
defaultShell
permission
workingDir
useriD

password

Decompress File Operator

-
The Decompress File operator extracts a compressed file/directory.

Prerequisites

® On a Windows host, the target computer must have the WZZIP command line utility
installed. The WZZIP command line utility is a free add-on for users of WinZip 12
standard or pro with a valid license.

m On UNIX environments, this operator uses the gzip utility.

Input Parameters
File/Directory Name to be Uncompressed
Specifies the file/directory to uncompress.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory is the
working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category level properties.

Password

Specifies the password for the user.

Chapter 9: File Management 275

Delete File Operator

Output Parameters
compressFileName
workingDir
userID

password

Delete File Operator

@

The Delete File operator removes (deletes) a file or directory.

Input Parameters
Source File/Directory Name
Specifies the file or directory to delete.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the home directory of the user is the
working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user specified in the operator category--level properties.

Password

Specifies the password for the user.

Notes:
® An attempt to delete a non-existent file or directory results in an error.

m An attempt to delete a file or directory with insufficient permission results in an
error.

276 Content Designer Reference

Get Directory Content Operator

Output Parameters
fileName
workingDir
userID

password

Get Directory Content Operator

The Get Directory Content operator builds a list of paths for all folders or files within a
specified directory that match a search condition.

Build a path list of matching
folders and files under a
hase directory

o
O 0 6
o Completed & Failed (& Tireout & Custom
Patterns matched Patterns not Tirmed out Boolean expression
Result=2 matched Result=1 returns True

Result=10

Input Parameters
Base directory
Specifies the path for the directory in which to start the search.
File path/name mask
Specifies the pattern that the operator detected.
Case sensitive pattern matching

When checked, matches upper-case and lower-case characters when searching for
a pattern. If unchecked, the letters in a pattern match both upper and lower-case
characters.

Sort items by last modification time

When checked, sorts the folders or files within a specified directory by the last
modification time.

Chapter 9: File Management 277

Get Directory Content Operator

Match pattern on file/directory name

When checked, matches only file or directory names, instead of anywhere in a path.
Directories included in results

Select from one of the following options:

m All directories under the base directory

m Directories that include matching files

m Directories with matching path or name
Recursion level

The number of directory levels to go down to when matching files or directories.
State timer (secs)

The minimum interval for which the condition must be maintained.

Output Parameters
DirectoryCount
DirectorylList
FilesCount
FilesList
fileName
Pattern
caseSensitive
timeSort
matchPath
dirFilterOptions
recursionlLevel
stateTimer

timeOut

278 Content Designer Reference

Get File Attributes Operator

Get File Attributes Operator

The Get File Attributes operator reads the attributes for a specified file and saves them
as variables (such as FileExists, FileSize, IsFile, IsLink) in its operator dataset.

Fetrieve file attributes in
icon datasetvariahles

0o
| |

2 Completed

File exists and attributes
retrieved successfully
Result=2

£ Failed @ Cushtom

Linable to read file
attributes.
Fesult=10

Boolean expression
returns True

To access an attribute in a CA Process Automation expression, use the following syntax:

Process.Operator name.field name

Process accesses the process dataset.

Operator_name specifies the operator dataset.

field_name specifies the attribute in the operator dataset.

Input Parameters

File/directory name

Specifies the full path for a file or directory. The location must be accessible to the
File Management operators on the touchpoint where they are running at run time.

For example:

/tmp/IT PAM/scripts/backup oral.log

If you specify a file or directory without specifying the full path, the File
Management operators use <install_dir>\server\c2o as the relative path for the
specified file or directory. In most cases, you can use the slash mark (/) character in

a path.

Chapter 9: File Management 279

Get File Attributes Operator

Output Parameters
@FileName
The full path for the file as calculated from the "File Name" expression.
FileExists
1 if a file exists, 0 if it does not exist.
FileName
FileTime
Specifies the file time.
FileDate
Specifies a file date.
IsDirectory
1 if describing a directory, 0 if not describing a directory.
IsFile
1 if describing a file, 0 if not describing a file.
IsLink
1 if the item is a symbolic link in UNIX, O otherwise.
FileOtherRead
FileOtherWrite
FilePermission
FileSize
The size of the file in bytes.
FileSizeKB

The size of the file in kilobytes (KB = 1,024 bytes). A fraction of a kilobyte is counted
as one kilobyte.

FileSizeMB

The size of the file in megabytes (MB = 1,024 KB). A fraction of a megabyte is
counted as one megabyte.

280 Content Designer Reference

Get File Attributes Operator

Example

FileGroup
FileOwner
FileGroupExec

1 if the group can execute, 0 if the group cannot execute.
FileGroupRead

1 if the group can read, 0 if the group cannot read.
FileGroupWrite

1 if the group can write, O if the group cannot write.
FileOtherExec

1 if others can execute, 0 if other cannot execute.
FileOwnerExec

1 if the owner can execute, 0 if the owner cannot execute.
FileOwnerRead

1 if the owner can read, 0 if the owner cannot read.
FileOwnerWrite

1 if the owner can write, 0 if the owner cannot write.
IsSpecial

1 if a special system file, O if not a special system file.

Note: The definition of a special system file is platform-dependent.

This operator can correspond to a socket or fifo on UNIX platforms.

Others (for example, FileOtherExec) refer to users that are not the owner or not in the
defined group for the specified permission.

Chapter 9: File Management 281

Monitor File Operator

Monitor File Operator

The Monitor File operator defines a wait for a condition on a file or directory. This
operator lets you delay processing in a process for the existence or absence of a file or

directory.
Wirait for a file condition to he satisfied
£
O © O
2 Completed @ Failed (@ Timeouk & Custom
Operator successful - Operatorfailed Operator timed Boolean expression
Result=2 Fesult=0 out returns True
Result=1

The available conditions are:
m The existence of a file, and optionally, a minimum size (in bytes).
m The absence of a file.

m The presence of strings matching a pattern in a file.

A stability timer specifies the minimum delay during which the condition must
continuously hold before returning that the operator is successfully completed. For
example, this operator can specify the minimum size of a file that an FTP transfer sends.

Tests on a file are discrete. This operator does not indicate that a condition is
continuously present. Rather, the Watch File operator indicates that the condition is
met at every test interval that the operator performs.

Input Parameters
File/directory name

Specifies the full path for a file or directory to watch. The location must be
accessible to the File Management operators on the touchpoint where they are
running at run time.

If you specify a file or directory without specifying the full path, the File
Management operators use the CA Process Automation Bin directory as the relative
path for the specified file or directory. Typically, you can use the slash mark (/)
character in a path.

282 Content Designer Reference

Monitor File Operator

State timer (secs)

Specifies the minimum delay in seconds during which the specified condition must
continuously hold before CA Process Automation executes branches for the
Completed state.

Condition
Specifies the condition to execute branches for the Completed state:

m Presence requires that the file exists and the file size is greater than the
"Minimum file size".

m Absence requires that the file does not exist.

m Pattern Matching specifies that a pattern of characters occurs in the contents
of a specified file or in the names of files in a specified directory.

Minimum file size

If "Presence" is specified for Condition, this option specifies the minimum file size in
bytes for this operator to execute branches for the Completed condition.

Pattern

If Pattern matching is specified for Condition, this option specifies a regular
expression that returns the pattern searched for by the operator (see Using Masks
to Specify Patterns in Strings in the Content Designer Guide).

To match any number of multiple lines, you can use the \n escape in the Pattern
field. The following example matches lines starting with “Log”, followed by any
number of intervening new lines and a string of text ending in “Error=89":

"Log.*\n.*Error=89"

If you are accustomed to using escape characters in programming languages, this \n
escape matches any number of new lines on either Windows or UNIX. This escape
does not match a single-line feed character.

Separator

Specifies the character that delimits the zone in Pattern to save to the variables that
Variable names specify.

Start from end of file

Starts searching from the end of a specified file to find the last occurrence of a
pattern in a file. This option lets you match the newest messages in a file.

Case sensitive pattern matching

Considers upper-case and lower-case characters when searching for a pattern. If
you do not select this check box, the letters in a pattern match both upper and
lower-case characters.

Chapter 9: File Management 283

Monitor File Operator

File Search Offset
Specifies a starting position for a search.

To perform a looped pattern match, you can use the MatchPos and MatchEntry
variables from the operator dataset to start where the previous match left off:

Process.Operator _name. MatchedPos+ Len(Process.Operator name.MatchedEntry)
Variable names

Specifies the variable names in which to save text that matches the delimited zones
in the pattern. Operator dataset variables are accessed through the process
dataset, using the keyword Process. For example, specifying the variable names
Level and Code would assign extracted substring values to the operator dataset
variables Process.Operator_name.Level and Process.Operator_name.Code. You can
add, remove, and order the variables that are used to store matched strings using
the toolbar.

Output Parameters
LastRead POs
MatchedEnd
MatchedEntry
MatchedPos
fileName
stateTimer
condition
minFileSize
Pattern
Separator
startFromEnd
caseSensitive
fileSearchOffset

variableNames

Example

This operator can wait for an outbound operator to spool and to delete a file. A problem
would be indicated if a file exists in the spool directory longer than a specified duration.
The process could then execute an alert to notify an operator of the problem.

284 Content Designer Reference

Read from File Operator

Read from File Operator

Input Parameters

The Read from File operator reads the content of the file into a dataset variable. The
user can also read specific lines.

The dataset variable can be a string or a string array. If the dataset variable is an array,
the maximum length can be 1024. Lines exceeding this limit are ignored and new
dataset variable field "warnings" are created after execution. This new warnings dataset
contains the warning message.

Source File Name
Specifies the file to read.
Return file contents in a string array

Specifies if the dataset variable is a string array. If checked, the dataset variable is
assumed to be a string.

From Line Number

Specifies the line number in the file from which the file content must be read. If this
field is left blank, this operator reads from line number 1. This field must contain
positive non-zero values only.

To Line Number

Specifies the line number in the file until where the content must be read. This field
must contain positive non-zero values only. If it is left blank, this operator reads to
the end of file.

Dataset Variable Name
Specifies the name for the dataset variable.

This field length can be a maximum of 1024. Lines exceeding this limit are ignored
and a new dataset variable field named "warnings" is created after execution
(which contains the warning message).

Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.

Chapter 9: File Management 285

Read from File Operator

User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user who is specified in the operator category configuration.

Password
Specifies the password for the user ID.

File Encoding

Specifies the encoding scheme that is used to read from the file (UTF-8, UTF-16,
US-ASCII, Windows-1250, Windows-1252, Shift_JIS).

Output Parameters
DatasetVariable

The dataset variable length can be a maximum of 1024 for an array. Lines exceeding
this limit will be ignored and a new dataset variable field "warnings" will be created
after execution, which contains the warning message.

fileName
isReturnAsStringArray
fromLineNumber
toLineNumber
datasetVariableName
workingDir

useriD

password

fileencoding

Example (Read from File Operator)

This example lets you read from a file named ReadFile.txt. The file content is as follows:

I ReadFile.txt - Notepad E”E|E|
File Edit Faormat Yiew Help

This s a test file

which s used

ta demo the

usage of Rread file operator
from the File Management
module

286 Content Designer Reference

Read from File Operator

This example considers the following scenarios:

m Read from the file

m Read from the file and save the file content as an array
m Read specific lines from the file

m Read from the file and save the file content in a dataset

Follow these steps:

1. Design a process with the Read from File operator as shown in the following
illustration:

2. Double-click the Read from File operator to open the Read from File properties, and
select the Read file into Dataset Variable panel.

To read from the file

3. Enter the following file path in the Source File Name.
(Windows) C:\\ReadFile.txt
(UNIX) /root/readfromfile.txt

4. Run the process.

5. Open the Operation Results to view the DatasetVariable value as shown in the
following illustration:

Dataset
.
Read_from_Fila_1 v K
Mame ¥Yalue

[=ead Fils into Dataset VVariabls
D Spstemn
4 [Cperation Results

SorptOutoUt 1 File{s) copied

ExitCode i}

FIi 52684

Heason

Datzsetliariable This is a test file which is used to derno the usage of Read file operator from the File Managerment module

Chapter 9: File Management 287

Read from File Operator

To read from file and save the file content as an array

6. Select the Return file contents in a string array check box.

The file content is available as an array as shown in the following illustration:

Dataset

To read specific lines in the file

Read_from_File_1_1

C Spstern
4 [Al Operation Results

seriptouiout

ExftCode

S0

Fegson

4 [Datasetliariable

{07
{17
{27
{37
{47
{57

-

al
L=

1 File(s) copied
o
49154

(5]

This is a test file

which is used

to demo the

usage of Read file operatar
frarn the File Managerment

rodule

7. Enter1inthe From Line Number file to read form the line one from the ReadFile.txt
file.

8. Enter 4 inthe To Line Number to read until the fourth line in the ReadFile.txtfile.

The file content is read and saved in the dataset form line 1 through 4 as shown in
the following illustration:

4 [Datasetlariable

fof
{17
{27
{37

[4]

This is a test file
which is used

to dermno the

usage of Read file operator

288 Content Designer Reference

Rename File Operator

To read the file and save the file content in a dataset variable

9. Enter DataRead as Dataset Variable Name.

The file content is saved in the DataRead dataset and not in the system dataset as

shown in the following illustration:

Datasetl ariziie
4 [Dataread
fof
{17
e
{37
47
{57

(o]

[e]

This is a test file

which is used

to demo the

usage of Read file operatar
from the File Management

rnodule

You can also specify the User ID and password of the user account to grant execute
permission on a process. When you provide User ID and password values at the
operator level you override the values that are defined in the Require user credentials
field. You define the Require user credentials field in File Management properties.

Note: Ensure that you grant Read permission to the user and Read and Execute
permissions to the PAM installation directory to run the ReadFile service operation. For
more information about how to configure file management, see the Configure File
Management section in the Content Administrator Guide.

Rename File Operator

The Rename File operator provides functionality to rename a file or a directory.

Input Parameters

Source File/Directory Name

Specifies the file/directory to rename.

New File/Directory Name

Specifies the new name for the file/directory.

Chapter 9: File Management 289

Rename File Operator

Working Directory
Specifies the working directory to execute the operator.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category level parameters.

Password
Specifies the password for the user ID.

Note: For UNIX, if the destination location is other than the source, the file moves to the
destination location.

Output Parameters
fileName
newFileName
workingDir
useriD

password

290 Content Designer Reference

Search File Content Operator

Search File Content Operator

The Search File Content operator extracts information from fairly small files. This
operator searches the content of a text file or directory for a string that matches a
specified pattern. The pattern can indicate substrings to extract into operator dataset
variables. Delimiters in the pattern can indicate the zones to extract into the variables.

m For afile, this operator searches the contents of the file for the specified pattern.

m Agroup search is recommended to search large files that contain gigabytes of
information efficiently.

Scan file for matching string pattern
and extract specified substrings into
icon datasetvariables.

w o
|‘|

o Completed © Failed & Custom
String pattern found String pattern not found Boolean exprassion
Result=2 Result=0 returns True

Input Parameters
File/directory name

Specifies the path for the file or directory to scan for pattern matches. The path
must be accessible to the File Management operators on the touchpoint where
they are running. For a file, the operator searches the contents of the file for the
specified pattern.

If you specify a file or directory without specifying the full path, the File
Management operators use <install_dir>\server\c2o as the relative path for the
specified file or directory. In most cases, you can use the slash mark (/) character in
a path.

Chapter 9: File Management 291

Search File Content Operator

Pattern

Specifies the pattern searched for by the operator (see Using Masks to Specify
Patterns in Strings in the Content Designer Guide).

The pattern uses the number symbol (#) used as the separator to return values for
the variables Level and Code:

"BACKUP LEVEL #.*# - CODE #.*#"

From the string “BACKUP LEVEL A400 - CODE FSC137.0359”, this pattern would
assign the substrings “A400” to the variable Level and “FSC731.0359” to the
variable Code. The assignment is made in the same order as the variables are
defined under Variable names.

To match any number of multiple lines, you can use the \n escape in the Pattern
field. The following example matches lines starting with “Log”, followed by any
number of intervening new lines and a string of text ending in “Error=89":

"Log.*\n.*Error=89"

If you are accustomed to using escape characters in programming languages, this \n
escape matches any number of new lines on either Windows or UNIX. This escape
does not match a single line feed character.

Separator

Specifies a character that is used to delimit the zone to save to the variables that
the variable names specify, such as the # symbol.

Start from end of file

Select this check box to start searching from the end of a specified file. This option
is used to find the last occurrence of pattern in a file. This option lets you match the
newest messages in a file.

Case sensitive pattern matching

Select this check box to take into account upper-case and lower-case characters
when searching for a pattern. If you do not select this check box, the letters in a
pattern match both upper and lower case characters.

File Search Offset

Specifies a starting position for a search. The value represents the number of
characters from the start of the file unless you select the Start from end of file
check box. In that case, the value represents the number of characters from the end
of the file.

To perform a looped pattern match, you can use the MatchPos and MatchEntry
variables from the operator dataset of an earlier Search File Content operator to
start where the previous match left off:

Process.Operator name.MatchPos + Len(Process.Operator name.MatchEntry)

292 Content Designer Reference

Update File Ownership Operator

Variable names

Specifies the variable names in which to save text that matches the delimited zones
in the pattern. Delimited zones are saved to the listed variables in the order defined
in the variable list. Operator dataset variables are accessed through the process
dataset, using the keyword process.

For example, specifying the variable names Level and Code to assign extracted
substring values to the operator dataset variables Process.Operator_name.Level
and Process.Operator_name.Code.

You can add, remove, and order the variables that are used to store matched
strings using the toolbar.

Output Parameters
fileName
Pattern
Separator
startFromEnd
caseSensitive
fileSearchOffset
variableNames
LastReadPos
MatchedEnd
MatchedEntry
MatchedPos

Update File Ownership Operator

[
Lol

The Update File Ownership operator changes the user and/or group ownership of each
given file. Only a super-user can change the owner and group to which a file belongs.
This operator is supported on a UNIX host only.

Chapter 9: File Management 293

Update File Ownership Operator

Input Parameters
User Name
Specifies the owner of the file.
Group Name
Specifies the group to which the file belongs.
Note: The user must provide an input for at least one of the User name or Group name
fields.
Source File/Directory Name
Specifies the name of the file or directory whose ownership is changing.
Recursive
When checked, specifies to change file ownership recursively.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host. This
field overrides the user specified in the operator category- level properties.

Password

Specifies the password for the user ID.

Output Parameters
userName
groupName
fileName
isRecursive
workingDir
userlD

password

294 Content Designer Reference

Update File Permission Operator

Update File Permission Operator

Input Parameters

The Update File Permission operator changes the permissions of each given file
according to mode, which can be either an octal number representing the bit pattern for
the new permissions or a symbolic representation of changes to make, (+-=
rwxXstugoa). This operator is supported on a UNIX host only.

Source File/Directory Name
Specifies the name of file or directory whose permission is changing.
Permission (Modes)

Specifies permission or mode for the file, which can be either an octal number
representing the bit pattern for the new permissions or a symbolic representation
of changes to make, (+-= rwxXstugoa).

Recursive

When checked, specifies to change files and directories recursively.
Working Directory

Specifies the working directory to execute this operator.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user specified in the operator category level properties.

Password

Specifies the password for the user ID.

Chapter 9: File Management 295

Update File Timestamp Operator

Output Parameters
fileName
permission
isRecursive
workingDir
useriD

password

Update File Timestamp Operator

10

The Update File Timestamp operator changes file timestamps, such as, update the
access and modification times of each file to the current time or user- specified
timestamp. This operator is supported on a UNIX host only.

Input Parameters
Source File/Directory Name
Specifies the name of file or directory whose timestamp is changing.
Timestamp ([[CC]YY]IMMDDhhmm([.ss]):
Use this field in ([[CC]YY]MMDDhhmm[.ss]) format instead of the current time.
Where each pair of letters represents the following information:
cC
Specifies the first two digits of the year (the century).
YY

Specifies the second two digits of the year. If "YY" is specified, but "CC" is not, a
value for "YY" between 69 and 99 results in a "CC" value of 19. Otherwise, a
"CC" value of 20 is used.

If the "CC" and "YY" letter pairs are not specified, the values default to the
current year.

MM

Specifies the month of the year, from 1 to 12.

296 Content Designer Reference

Update File Timestamp Operator

DD
Specifies the day of the month, from 1 to 31.
hh
Specifies the hour of the day, from 0 to 23.
mm
Specifies the minute of the hour, from 0 to 59.
ss
The second of the minute, from 0 to 61.
If the "ss" letter pair is not specified, the value defaults to 0.
Change Access Time
Specifies to change the access time. The default is checked.
Change Modification Time
Specifies to change the modification time. The default is checked.
Working Directory
Specifies the working directory to use to execute this operator.

Notes: If the working directory is not specified, the home directory of the user is the
working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category- level properties.

Password

Specifies the password for the user ID.

Output Parameters
fileName
timeStamp
isChangeAccessTime
isChangeModificationTime
workingDir
userlD

password

Chapter 9: File Management 297

Write File Operator

Write File Operator

Input Parameters

o

The Write File operator writes the content of the dataset variable to a file. The dataset
variable can be a string or a string array. This operator also provides an option to either
overwrite or append contents to an existing file.

File Contents as Array
When checked, specifies that the dataset variable is a string array.
File Contents

If you do not select the File Contents As Array check box, write the contents in this
field to the specified file.

File Contents as Array

If you select the File Contents As Array check box, write the contents in this field to
the specified file, with each index as a new line in the file.

You can add, remove, and order the variables using the toolbar.
Destination File Name
Specifies the name of the destination file.

Note: If the destination file does not exist, the file is created before writing data to
the file.

Append (if file exists)

Specifies that the content of the dataset variable is appended to a file if it already
exists. The default is checked.

Working Directory
Specifies the working directory to execute this operator.

Notes: If the working directory is not specified, the home directory of the user
becomes the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user-specified in the operator category level parameters.

298 Content Designer Reference

Write File Operator

Password
Specifies the password for the user ID.
File Encoding

Specifies the encoding scheme that is used to write to the file (UTF-8, UTF-16,
US-ASCII, Windows-1250, Windows-1252, Shift_JIS).

Output Parameters
fileContentsMode
fileContents
fileContentsAsArray
fileName
isFileAppend
workingDir
userlD
password

fileencoding

Chapter 9: File Management 299

Chapter 10: File Transfer

The File Transfer operators provide file transfer operators (FTP/SFTP).

Use the File Transfer operators to manage directories and files such as FTP or an SFTP
client. These operators connect to standard FTP servers on target computers. The
remote host for all File Transfer operators must have a configured FTP server.

Important! With the exception of the TFTP Download File operator and the TFTP Upload
File operator, the following conditions apply to all operators in this category when
running them on a remote Windows host through a proxy touchpoint:

- Use UNIX-style paths for fields which are path-related (forward slashes and no
drive letter).

- Each SSH server can have a different location for its "root" directory. The
permitted commands that are relative to that root directory can vary too.

Create Directory Operator

The Create Directory operator creates a directory on the remote file system.
To allow the operator to create a directory, the specified user credentials must have the

appropriate change directory and write permissions on the remote host. The remote
host must have a configured FTP server.

Create a directory
@
T

) Succeeded @ Failed
Cperatar succeeded Qperator failed
Fesult=1 Fesult=0

Chapter 10: File Transfer 301

Create Directory Operator

Input Parameters
Remote path
Specifies the path for the directory to create on the remote host. For example:
/temp/IT PAM/scripts

The parent directory (/temp/IT PAM in the example) must exist for the File Transfer
operators to complete this operator successfully. The relative path can also be
specified in this field and the path is relative to the home directory of the FTP user.

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, you can assign a private port to an FTP
site. Private ports range from 49152 to 65535. To specify a private FTP port, add a
colon (:) and then a private port number to the end of the address. For example,
the following specifies port 50021 on a remote FTP server:

172.24.36.107:50021
Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify an expression that returns
parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

302 Content Designer Reference

Delete Directory Operator

Output Parameters
remotedir
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand

siteParameters

Delete Directory Operator

The Delete Directory operator deletes a specified directory from the remote file system.
The specified directory must be empty before the process runs this operator.

Deleting a directory requires that the specified user credentials have the appropriate
change directory and write permissions on the remote host. The remote host must have
a configured FTP server.

Delete a directory

=
1

) Succeeded @ Failed
Operataor succeeded Cperator failed
Result=1 Result=0

Delete Remote Directory Properties
Remote path

Specifies the path for the directory to delete on the remote host. For example:
/temp/IT PAM/scripts. The specified directory must be empty for the File Transfer
operators to complete this operator.

Chapter 10: File Transfer 303

Delete Directory Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, you can assign a private port to an FTP
site. Private ports range from 49152 to 65535. To specify a private FTP port, add a
colon (:) and then a private port number to the end of the address. For example,
the following specifies port 50021 on a remote FTP server:

172.24.36.107:50021
Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use Secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify a CA Process Automation
expression that returns parameters for the SITE command.

Remove all files/subdirectories under the target directory

This option is used to delete a directory that is not empty. If this check box is
selected, all the directories under the specified directory are deleted including the
specified directory. If this check box is unchecked, any attempt to delete a directory
that is not empty results in service operator failure.

Site Parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

304 Content Designer Reference

Delete File Operator

Output Parameters
remotedir
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand
forceDelete

siteParameters

Delete File Operator

The Delete File operator removes a specified file from a remote location. The remote
host must have a configured FTP server. To allow the operator to delete a file, the
specified user credentials must have the appropriate write permissions on the remote

host.
Delete afile
1
o Succeeded & Failed
File rermoved successfully Cperator failed
Result=1 Result=10

Input Parameters
Remote path

Specifies the path for the file to delete on the remote FTP host. For example:
/tmp/IT PAM/scripts/script_oral.sh.

Chapter 10: File Transfer 305

Delete File Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, you can assign a private port to an FTP
site. Private ports range from 49152 to 65535. To specify a private FTP port, add a
colon (:) and then a private port number to the end of the address. For example,
the following specifies port 50021 on a remote FTP server:

172.24.36.107:50021
Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use Secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify an expression that returns
parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

Output Parameters
remoteFile
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand

siteParameters

306 Content Designer Reference

Download File Operator

Download File Operator

The Download File operator copies a file from a remote location. This operator
corresponds to the FTP get command.

The remote host must have a configured FTP server. To get a remote file, the specified
user credentials must have the appropriate change directory and read rights on the file.

Dowenload remote file

1
2 Succeeded @ Failed
File retrieved successfully Operator failed
Result=1 Result=0

Get Remote File Properties
Local file

Specifies the location to save the file locally. For example: /IT
PAM/import/script_oral.sh.

The location must be valid at run time on the touchpoint running the File Transfer
operators.

When you use Windows file nomenclature, backslashes must be escaped as follows:
C:\\IT PAM\\import\\script_oral.bat

We recommend using “normalized” file names, with slash marks (/), even when
specifying a path on a Windows host. For example: C:/IT
PAM/import/script_oral.bat.

Remote file

Specifies the full path for the file on the remote FTP host. For example: /tmp/IT
PAM/scripts/script_oral.sh.

Chapter 10: File Transfer 307

Download File Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, you can assign a private port to an FTP
site. Private ports range from 49152 to 65535. To specify a private FTP port, add a
colon (:) and then a private port number to the end of the address. For example,
the following specifies port 50021 on a remote FTP server:

172.24.36.107:50021
Remote user ID

Specifies the user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Binary transfer

Specifies to use the FTP binary mode for transferring binary files. For example:

Select a check box with the following types of files:

m Executable files

m SPSS System files

m SAS Transport files

m Stata datasets

m Graphics files
Convert from ASCII to EBCDIC

Specifies to convert ASCIl character code to EBCDIC before the file transfer. EBCDIC
is used in a z/OS environment, where the file needs to be readable in a z/OS host.

Use Secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

CA Process Automation uses the SSH2/SFTP protocol with user name/password
authentication. The SSH2/SFTP protocol only supports binary transfers.

308 Content Designer Reference

Get File Information Operator

Specify an optional SITE command

Uses the SITE command to invoke services that are specific to the host system. Then
use the SITE parameters field to specify a CA Process Automation expression that
returns parameters for the SITE command. This option is used, for example, to
dimension files on a target MVS system.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

Output Parameters
localFile
remoteFile
remoteHost
remoteUserld
remoteUserPassword
transferMode
secureFtp
siteCommand

siteParameters

Get File Information Operator

The Get File Information operator gets file attributes for a remote file and saves them to
variables (such as Permissions, Size, and Group) in its operator dataset.

The list of meaningful attributes is file system-dependent. To view the attributes for a
specified file or folder, view the operator's dataset.

Chapter 10: File Transfer 309

Get File Information Operator

The remote host must have a configured FTP server. The specified user credentials must
have the appropriate read permissions on the remote host.

Copies file information
into icon dataset variables
o
XN
| I

 Comnpleted © Failed & Cuskom
File information Dperatar failed Boolean expression
retrieved successiully Result=10 returns True
Result=1
Input Parameters
Remote file

Specifies the path for the file on the remote FTP host. For example: "/tmp/IT
PAM/scripts/script_oral.sh"

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, you can assign a private port to an FTP
site. Private ports range from 49152 to 65535. To specify a private FTP port, add a
colon (:) and then a private port number to the end of the address. For example,
the following specifies port 50021 on a remote FTP server:

172.24.36.107:50021
Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

310 Content Designer Reference

Get File Information Operator

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify a CA Process Automation
expression that returns parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

Chapter 10: File Transfer 311

Get File Information Operator

Output Parameters
remoteFile
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand
siteParameters
FileExists
FileName
FileTime
IsDirectory
IsFile
IsSpecial
FileGroup
FileGroupExec
FileGroupRead
FileGroupWrite
FileOtherExec
FileOtherRead
FileOtherWrite
FileOwner
FileOwnerExec
FileOwnerRead
FileOwnerWrite
FilePermission
FileSize
FileSizeKB
FileSizeMB

312 Content Designer Reference

Move File Operator

Move File Operator

The Move File operator moves a file from one remote location to another remote

location on the same server. You can use it to rename a file by specifying the same paths
for both the old name and the new name.

The remote host must have a configured FTP server. To move a file, the specified user
credentials must have the appropriate change directory and read rights on the file.

Maove file between locations

o
1
2 Succeeded @ Failed
File moved successiully Dperator failed
Fesult=1 Result=0

Input Parameters
New name
Specifies the path and new name for the file on the remote FTP server.
"/tmp/IT PAM/scripts/archived/IT PAM.new"
Current name

Specifies the existing path and name for the file on the remote FTP host. For
example: /tmp/IT PAM/scripts/IT PAM.old.

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, you can assign a private port to an FTP
site. Private ports range from 49152 to 65535. To specify a private FTP port, add a
colon (:) and then a private port number to the end of the address. For example,
the following specifies port 50021 on a remote FTP server:

172.24.36.107:50021
Remote user ID

Specifies a user ID to access the remote FTP host.

Chapter 10: File Transfer 313

TFTP Download File Operator

Remote user password
Specifies the password to access the remote FTP host.
Use secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify a CA Process Automation
expression that returns parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

Output Parameters
newName
currentName
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand

siteParameters

TFTP Download File Operator

|
b

The TFTP Download File operator receives a file from a host on a network through the
TFTP protocol. The host must have a running TFTP server.

Details on the TFTP protocol follow:

m Uses UDP to transfer the data.

®m |ssues sends and waits for ACKs.

314 Content Designer Reference

TFTP Download File Operator

Input Parameters

m Typically initiates data transfer on port 69.

m Typically sends data in a block size of 512b or smaller.

m Uses no authentication or authorization.

Important! Test TFTP functionality outside CA Process Automation before incorporating
it into CA Process Automation process flows. Firewalls or routing can block UDP to port
69 by default. Typically, the TFTP service is also either not installed or disabled.

Remote Hosthame
The host name or the IP address of the remote host.
Remote UDP Port for TFTP

The UDP port of the TFTP service on the remote host. If this parameter is specified,
this value overrides the value of the operator category field: Default UDP Port for
Trivial FTP. If none of these fields are specified, the operator uses the default value
of 69.

Remote File name

The name of the remote file to obtain from the remote host. This parameter is not
the path of the remote file on the remote host. Depending on its setup, the TFTP
server retrieves the file from its base directory in the remote host.

Data Transfer Type

BIN for binary or ASCII for ASCII (text). If this type is not specified, the operator uses
the default value: ASCILI. If any other value is specified (other than ASCII or BIN), the
operator uses the default value of ASCII.

Local File to Download

The fully qualified path of the local file (where you save the file retrieved through
TFTP).

Local Port Number (0 for anonymous port)

The local port number to use when retrieving data from the remote host/port. If 0,
an anonymous port is used. If the port is specified and the port is unavailable, the
operation could fail. If this number is not specified, the operator uses the default
value: 0.

Chapter 10: File Transfer 315

TFTP Download File Operator

Timeout (sec)

The timeout value to use when opening the connection to the TFTP server. If this
number is not specified, the value defaults to 20.

Maximum Retries after TFTP Timeout

The maximum number of times to retry the download file operation (not the entire
CA Process Automation operator) after a TFTP timeout. If this number is not
specified, the operator uses the default value: 5.

Output Parameters
Result:
m 1:If the operator finished successfully.
m -1:If the operator failed.
Reason:
m Completed: If the operator finished successfully,
m An error message if the operator failed.
remoteSSHHost
PORT
RemoteURL
TransferType
LocalFileName
LocalPort
Timeout

MaxRetries

Operator Ports
Success
The operator completes successfully.
Failure
The operator fails for any of the following reasons:

m Invalid input parameter from the user. The reason field contains an error
message specifying the problem.

m Thelocal file exists but cannot be written to.

316 Content Designer Reference

TFTP Upload File Operator

The local file is a directory.

The local file does not exist. Its parent directory cannot be written to due to the
current privileges and restrictions preventing CA Process Automation from
writing to the directory.

The current privileges and restrictions prevent CA Process Automation from
writing to the local file.

Unknown host specified.
IO error when receiving the remote file.

Timeout error if CA Process Automation is unable to connect to the remote
host at the specified remote port. In such a case, the operator does not time
out, as the TFTP client reports this issue as an |0 error (not a timeout error).

Others (specified in the reason field).

Custom Ports

If set by the user during the process design.

TFTP Upload File Operator

LU

The TFTP Upload File operator sends a file to a host on a network through the TFTP
protocol. The host must have a running TFTP server.

Details on the TFTP protocol follow:

Uses UDP to transfer the data.

Issues sends and waits for ACKs.

Typically initiates data transfer on port 69.

Typically sends data in a block size of 512b or smaller.

Uses no authentication or authorization.

Important! Test TFTP functionality outside CA Process Automation before incorporating
it into CA Process Automation process flows. Firewalls or routing can block UDP to port
69 by default. Typically, the TFTP service is either not installed or disabled.

Chapter 10: File Transfer 317

TFTP Upload File Operator

Input Parameters

Remote Hosthame
The host name or the IP address of the remote host.
Remote UDP Port for TFTP

The UDP port of the TFTP service on the remote host. If this port is specified, this
value overrides the value of the operator category field: Default UDP Port for Trivial
FTP. If none of these fields are specified, the operator uses the default value of 69.

Remote File name

The name to use when creating the file (being sent) on the remote host. This
parameter is not the path of the remote file on the remote host. Depending on its
setup, the TFTP server saves the file in its base directory in the remote host.

Data Transfer Type

BIN for binary or ASCII for ASCII (text). If not specified, the operator uses the default
value: ASCILI. If any other value is specified (other than ASCII or BIN), the operator
uses the default value of ASCII.

Local File to Upload
The fully qualified path of the local file to send through TFTP.
Local Port Number (0 for anonymous port)

The local port number to use when sending data to the remote host/port. If 0, an
anonymous port is used. If the port is specified and the port is unavailable, the
operation could fail. If this number is not specified, the operator uses the default
value: 0.

Timeout (sec)

The timeout value to use when opening the connection to the TFTP server. If this
number is not specified, the value defaults to 20.

Maximum Retries after TFTP Timeout

The maximum number of times to retry the upload file operation (not the entire CA
Process Automation operator) after a TFTP timeout. If this number is not specified,
the operator uses the default value: 5.

Output Parameters

Result:
m 1:If the operator finished successfully.

m -1:If the operator failed.

318 Content Designer Reference

TFTP Upload File Operator

Operator Ports

Reason:

m Completed: If the operator finished successfully,
®m An error message if the operator failed.
remoteSSHHost

PORT

RemoteURL

TransferType

LocalFileName

LocalPort

Timeout

MaxRetries

Success
The operator completes successfully.

Failure

The operator fails for any of the following reasons:

m Invalid input parameter from the user. The reason field contains an error

message specifying the problem.

m Thelocal file is either non-existent, invalid, or cannot be read.

m The current privileges and restrictions prevent CA Process Automation from

reading the local file.
m |0 error when sending the local file.

m Unknown host specified.

Timeout error if CA Process Automation is unable to connect to the remote
host at the specified remote port. In such a case, the operator does not time
out, as the TFTP client reports this issue as an 10 error (not a timeout error).

Others (specified in the reason field).

Custom Ports

If set by the user during the process design.

Chapter 10: File Transfer 319

Upload File Operator

Upload File Operator

The Upload File operator copies a file from a local location to a remote location. This
action corresponds to the FTP put command.

Uploading a remote file requires that the specified user credentials have the
appropriate change directory and write permissions on the remote host. The remote
host must have a configured FTP server.

Copies afile to a remate location

W
| .
2 Succeeded) Failed
File transfarred successiully Operator failed
Result=1 Result=0

Input Parameters
Local file

Specifies the full path for the local file to transfer. For example: C:\\IT
PAM\\import\\script_oral.sh. This option is unavailable if you select the Is inline
data check box.

Is inline data

When selected, transfers text stored with the operator in the library. Click the Inline
data field to enter data.

Inline data

Click this field to open the Inline data editor where you can enter the data to
transfer.

Remote file

Specifies the path for the file on the remote FTP host. For example: /tmp/IT
PAM/scripts/script_oral.sh. If you do not specify a file name, the operator saves
the file using the same name as the copied file. The location must be valid at run
time on the touchpoint running the File Transfer operators.

320 Content Designer Reference

Upload File Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, you can assign a private port to an FTP
site. Private ports range from 49152 to 65535. To specify a private FTP port, add a
colon (:) and then a private port number to the end of the address. For example,
the following specifies port 50021 on a remote FTP server:

172.24.36.107:50021

Remote user ID

Specifies a user ID to access the remote FTP host.

Remote user password

Specifies the password to access the remote FTP host.

Binary transfer

Uses the FTP binary mode for transferring binary files. For example, if selected, uses
the following types of files:

Executable files
SPSS System files
SAS Transport files
Stata datasets

Graphics files

Use Secure FTP (SFTP)

Select this check box to open a secure FTP (SFTP) session. SFTP is similar to FTP but,
unlike FTP, the entire session is encrypted. No passwords are sent in clear text
form, and are much less vulnerable to third-party interception.

Specify an optional SITE command

Select this check box to use the SITE command to invoke services that are specific to
the host system. Then use the Site parameters field to specify a CA Process
Automation expression that returns parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

Chapter 10: File Transfer 321

Upload File Operator

Output Parameters
localFile
isinline
Inline Data
remoteFile
remoteHost
remoteUserld
remoteUserPassword
transferMode
secureFtp
siteCommand

siteParameters

322 Content Designer Reference

Chapter 11: Java Management

The Java Management operators provide a management interface to external systems
that support JMX.

JMX Login Parameters

The JMX Login parameters display for each of the Java Management operators. These
parameters configure the settings that are required to log in to and communicate with
the JMX server.

Use user-specified JMX Service URL
Select this check box to specify a JMX Service URL instead of specifying a server.
When you select this check box, the following fields are enabled:
m JMXService URL
m Remote JMX User
m Remote JMX Password
When you select this check box, the following fields are disabled:
m Remote JMX Host
m Remote Registry Port
m Remote JMX Server
JMX Service URL
Specifies a JMX Service URL.

URL Pattern:

service:jmx:rmi:///jndi/rmi://<TARGET_MACHINE>:<RMI_REGISTRY_PORT>/JMXRM
IServer

For example:

TARGET_MACHINE: PA-w2k3-3
RMI_REGISTRY_PORT: 9999

JMX RMI Server: server

The URL looks like:
service:jmx:rmi:///jndi/rmi://PA-w2k3-2:9999/server

Chapter 11: Java Management 323

Get MBean Attributes Operator

Remote JMX Host

Specifies the host machine name for the JMX agent. You can specify the full
machine name or an IP address on your network.

When the JMX agent is running on the same machine as CA Process Automation,
localhost is the default.

RMI Registry Port
Specifies the connection port for the JMX agent.

The default port is 12345. However, you can run the JMX agent on an RMI Registry
port that you define.

Remote JMX Server
Specifies the name of the JMX server.
Remote JMX User

Specifies the user name to connect to the JMX agent on the MBean server. If
security is disabled for the JIMX agent, leave this option blank.

Remote JMX Password

Specifies the password to connect to the JMX agent on the MBean server. If security
is disabled for the JMX agent, leave this option blank.

Get MBean Attributes Operator

Input Parameters

@

W

The Get MBean Attributes operator gets the value of an MBean through JMX on a node.
The template operator requires the name of the MBean and contact information and
credentials for the JMX server. The retrieved values are placed in the process dataset.
The operator dataset variable is assigned the same name as the attribute and its value is
the retrieved value.

Managed Bean Name
Specifies the name of the management Bean to access.

From the drop-down list, select the name of the management Bean to access or you
can type in the user-defined Mbean name manually.

324 Content Designer Reference

Get MBean Attributes Operator

Managed Bean Attribute

Select or type the name of the attribute to fetch from the list.

JMX Login Parameters (see page 323)

Output Parameters
ManagedBeanName
ManagedBeanAttribute
State
UserSpecifiedURL
RemoteJMXURL
RemoteHost
RemoteRMIRegistryPort
RemoteJMXServer
RemoteUser

RemotePassword

Chapter 11: Java Management 325

Get MBean Attributes Operator

Example
This example shows a user-defined Managed Bean Name and Managed Bean Attribute.
Get MBean Attributes s

Managed Bean Mame:

"DefaultDomain:type=5Simplestandard,index=1" v
Managed Bean Attribute:

"State” v

In the JMX Login Parameters, a remote JMX Service URL is provided. The Remote JMX
Host, RMI Registry Port, and Remote JMX Server fields are disabled as a result.

The Remote JMX User and Remote JMX Password fields are blank, as the server does
not have security enabled.

IMX Login Parameters e

W Use user-specified IMX Service URL
MK Service URL:

"service:jrmx i AAAndifrmi Akomsr0l-w 2k 3-2:9999 server”
Rermote JMiK Host:

RMI Registry Port:

Remote JMx Server:

Rermote JMiK User:

Rerote JMx Password:

After the operator successfully executes, the State parameter returns as initial state
from the MBean, as shown in the output dataset of the operator from the Dataset
panel:

4 [Al Page JMXGetParameters

ManagedBeaniame DefaultDomaintype=SimpleStandard,index=1
ManagedBeanditribute State
State initial state

This information also appears in the operator output variable properties from the log
panel:

326 Content Designer Reference

Invoke MBean Method Operator

Properties

Get MBean Attrib M Login Parame System

Managed Bean Name:

DefaultDomain:type=SimpleStandard,index=1
Managed Bean Altrbute:

State
Stade:

initial state

Cancel

Invoke MBean Method Operator

@

L4
This Invoke MBean Method operator invokes a method on a JMX server.

Input Parameters
Managed Bean Name
Specifies the name of the management Bean to access.

From the drop-down list, select the name of the management Bean to access or you
can type in the user-defined MBean name manually.

Managed Bean Method

Specifies the method to invoke.
Method Parameters

Specifies parameters for the method.

Use the buttons on this field to add, remove, or reorder parameters.

JMX Login Parameters (see page 323)

Chapter 11: Java Management 327

Invoke MBean Method Operator

Output Parameters

ManagedBeanName
ManagedBeanMethod
ManagedBeanMethodParams
InvokeResults
UserSpecifiedURL
RemoteJMXURL

RemoteHost
RemoteRMIRegistryPort
RemoteJMXServer
RemoteUser

RemotePassword

328 Content Designer Reference

Invoke MBean Method Operator

Example

This example invokes the MBean method "sayHello" without any parameters from the
user-defined MBean.

Invoke MBean Method &

Managed Bean Name:

"DefaultDomain:type=Simplestandard,index=1" v
Managed Bean Method:

"zayHello"

Method Parameters:

Method Parameters

Page | 1 of 1 = Mo data to display

After the operator successfully executes, the MBean method returns the value to the
InvokeResults parameter, as shown in the output dataset of the operator from the
Dataset panel:

(2 rage maxinvoketarametears

ManagedBeaniame DefaultDornain:type=SimpleStandard,index=1
ManagedBeanMethod sayHello

ManagedBeanMethadFarams [o]

Invokefesuits ganbanz

This information also appears in the operator output variable properties from the log
panel:

Chapter 11: Java Management 329

Update MBean Attributes Operator

Properties

Invoke MBean ... IM¥ Login Para... Systern

Managed Bean Mame!
Managed Bean Mathod!

Method Parameters!
5| B | M| | W

Method Parameters

% 0 Page |1 of 1| b Bl & Mo data to display

InvokeResults!

[
LR Sove und Cluzz

Update MBean Attributes Operator

@

w

The Update MBean Attributes operator sets the MBean attribute value to the MBean
attribute.

Input Parameters
Managed Bean name
Specifies the name of the management Bean to access.

From the drop-down list, select the name of the management Bean to access or you
can type in the user-defined Mbean name manually.

Managed Bean Attribute

Specifies the name of a JIMX MBean attribute to update.

330 Content Designer Reference

Update MBean Attributes Operator

Attribute Value

Specifies a value which is set as the value of the JMX attribute.

JMX Login Parameters (see page 323)

Output Parameters
ManagedBeanName
ManagedBeanAttribute
ManagedBeanAttributeValue
UserSpecifiedURL
RemoteJMXURL
RemoteHost
RemoteRMIRegistryPort
RemoteJMXServer
RemoteUser

RemotePassword

Chapter 11: Java Management 331

Update MBean Attributes Operator

Example

This example illustrates:

m Updating the MBean attribute value from initial to intermediate using the Update
MBean Attribute operator.

m Obtaining the updated value of the MBean attribute state using the Get MBean
Attributes operator.

-4

@. Update MBean_Attributes State to_intermediate
L
oo
@' Get_MBean_Attributes_Updated State
LV
L X

332 Content Designer Reference

Update MBean Attributes Operator

These parameters are the Update MBean Attributes operator input parameters:

Update MBean Attributes o

Managed Bean Mame:
"DefaultDomain:type=SimpleStandard,index=1"
Managed Bean Attribute:

"State”

attribute Value:

"intermediate"

After the operator successfully executes, the MBean attribute State value is set to
intermediate, as shown in the output dataset of the operator from the Dataset panel:

4 [Al Page. JMXEetParameters

ManagedBeaniarme DefaultDomain:type=Simplestandard,index=1
ManagedBeandttribute State
ManagedBeandttributel aive intermediate

This information also appears in the operator output variable properties from the log
panel:

Properties

System Update MBean ... 1M Login Para...

Managed Bean Name!

Managed Bean Altrbute:

Aftribite lVaiue:

Cance! [ERPERTRII

Chapter 11: Java Management 333

Update MBean Attributes Operator

These variables are the operator output dataset variables from Dataset Panel of the Get
MBean Attributes. The State Value has been updated to intermediate.

4 [Al Fage JM¥Gettarameters

ManagedBeaniame DefaultDomain:itype=SimpleStandard,index=1
ManagedBeanditributes State
State intermediate

334 Content Designer Reference

Chapter 12: Network Utilities

The Network Utilities operators provide various standard network protocol utilities to
the automated business processes made possible by CA Process Automation. These
operators provide general utilities that validate various network interfaces and devices.
These operators also operate on remote services and servers and moves data as part of
the general automation process, thus reducing manual validation and verification.

The Network Utilities operators have the option to create custom exit ports. You can set
custom ports (nonautomatic exit ports) on the operator when you are creating the
process. These ports are in addition to the automatic exit ports that all operators have
(success and failure ports).

Use the Network Utilities operators to use native network interface utilities (rather than
use host- based scripting languages and other host-based utilities).

Get Local Network Interfaces Operator

Input Parameters

o0’

The Get Local Network Interfaces operator lists all the network interfaces in the local
host. The local host is the host on which the touchpoint for the operator is running.

For each network interface, the operator lists the following information:
m [nterface name

® Mac address

m Display name

m List of inetaddresses that are associated with the interface.

Note: Each InetAddress consists of its canonical name, host name, and IP address.

No operator input is required.

Chapter 12: Network Utilities 335

Get Local Network Interfaces Operator

Output Parameters
StartTime
StartDate
Networkinterfaces

Specifies an array of value maps containing the network interfaces associated with
the local host.

Each value map in NetworklInterfaces contains the following information:
Name
Specifies the name of the network interface.
Display
Specifies the display name of the network interface.
MacAddress

Specifies the hardware address, usually MAC address, of the network interface.
A blank in this field indicates that the operator is unable to retrieve the MAC
address from the network interface. The retrieve failure can be due to lack of
privileges or can be due to the lack of a MAC address for this network interface.

InetAddresses

Specifies an array of value maps containing the InetAddresses associated with
the network interface. Each value map in InetAddresses contains the following
information:

IpAddress
Specifies the IP address.
Host

Specifies the host name. The IP address is returned if the operator is
unable to perform a reverse lookup due to network setup.

CanonicalName

Specifies the canonical name. If the operator is unable to retrieve the
FQDN, an IP address is returned.

Result
One of the following items:
1

Indicates that the operator finished successfully.

Indicates that the operator failed.

336 Content Designer Reference

Get Local Network Interfaces Operator

Reason
One of the following items:
Completed
Indicates that the operator finished successfully.
<error message>

Specifies why the operator failed in an error message.

Operator Ports

Success
The operator finished successfully.

Failure
The operator failed for one of the following reasons:
m Unable to retrieve the list of local network interfaces of the local host.
m Other reasons specified in error messages.

Custom Ports

If set by the user during the process design.

Chapter 12: Network Utilities 337

Get Network Service Status Operator

Example

Example ValueMap: Network Interfaces and InetAddresses

Dataset

E Save Add ¥Yariable ¥ Delete Yariable @ Add Page

Get_Local_Network_Interfaces | * Filter: x
Name Value
K r_—l Sy=stem -
4 B Operation Results
4 [NetworkInterfaces [18]
4 [l Element Type |
4 [system 1
Name
Display

4 [InetAddresses [o]
a

Get Network Service Status Operator

[E

The Get Network Service Status operator lets you communicate with a local or remote
service, over TCP or UDP. You can use this operator to send data and then receive a
reply. This operator can validate the reply against a predetermined pattern to
determine if the network service is up. This type of validation enables the operator to
report the status of the service and the computer that is hosting that service.

Note: You cannot send a binary message using this operator, because only strings (text)
are supported.

338 Content Designer Reference

Get Network Service Status Operator

Input Parameters

TCP is a connection-oriented protocol. The operator lets you connect to the service,
send data, then receive a reply that can be matched against a pattern. Another service
can listen on the same port. Therefore, a successful connection does not necessarily
mean that a given service is running.

UDP is a connection-less protocol. The operator does not connect to the service to get
its status through UDP. To get the status, the operator sends a UDP message, reads the
reply, and verifies that the reply data matches a pattern.

Remote Hosthame
Specifies the hostname or FQDN of the computer that hosts the service.
Default

Blank - Indicates that the operator assumes that the service is running on the
touchpoint host.

Remote Port

Specifies the host port on which the service is listening. Some well-known and
registered ports include the following:

m 21: FTP - File Transfer

m 22:SSH - The Secure Shell (SSH) Protocol

m 23:Telnet

m 2483:Oracle TTC

m 25:SMTP - Simple Mail Transfer

= 3306: MySQL

m 69: TFTP - Trivial File Transfer

m 80:HTTP

m 1433: Microsoft SQL Server

You can specify any valid port in this field.
Local Port Number (0 for anonymous port)

Specifies the local port that the Get Network Service Status operator uses on the
touchpoint host to connect to the remote port.

Values
m 0 -Indicates that an anonymous port is used.
m Blank-Same as 0.

Note: If the specified port is unavailable, the operator fails.

Chapter 12: Network Utilities 339

Get Network Service Status Operator

Protocol to Use

Specifies the protocol to use when verifying the status of the service and sending
data. If UDP is specified, the Connection Timeout (sec) field is disabled because UDP
is a connectionless protocol.

Values

This value can be one of the following:

m TCP
s UDP
Default

TCP (if left blank).

Connection Timeout (sec)

Specifies the maximum amount of time that the operator waits for a connection to
the service before timing out. This field is applicable to TCP protocol only.

Values
This value can be one of the following:
m 0 (zero) - Indicates no timeout.
m Any positive integer (in seconds)
Default
20 seconds (if blank)
Data to send

(Optional) Specifies data to send to the service. Most services do not expect any
data.

Read Data from Service?
Specifies whether the operator reads data from the service after contacting it.
Values
This value can be one of the following:

m Selected - Indicates that the operator reads data from the service after
contacting it. Select this option to enable Time to Read Data (sec), Max
Data to Read (bytes), and Reply Pattern to match fields.

m Cleared - Indicates that the operator does not read data from the service
after contacting it. This value is appropriate for services that do not return
data.

340 Content Designer Reference

Get Network Service Status Operator

Notes:

m With UDP, all the data (if any) is read at once. If there is no data, the operator
waits until the Time to Read Data is up. All the Max Data to Read is read at
once in a string of length Max Data to Read.

m With TCP, the operator reads the data in chunks until it reaches one of the
following thresholds:

— Time to Read Data
- Max Data to Read
Time to Read Data (sec)

Specifies the amount of time to spend waiting for reply data from the service. This
field is specified because the data from the service does not have an EOF at the
end.

Values

This value is a positive integer. Zero (0) is not allowed. Otherwise, the operator
would wait for a long time until the service closes the socket.

Default
20 seconds (if blank).
Max Data to Read (bytes)
Specifies the maximum amount of data to read from the service.
Default
4096 bytes
Reply Pattern to match

(Optional) Specifies a pattern to use to match the data returned from the service. If
specified, pattern matching determines whether the operator succeeds or fails.

The operator matches the pattern against the data read during the time period
specified in Time to Read Data up to the number of bytes specified in Max Data to
Read.

The operator matches the pattern as a substring of the reply data.

m To match reply data that starts with a specific sequence, use » at the beginning
of the pattern.

m To match reply data that ends with a specific sequence, use $ at the end of the
pattern.

m To match a new line terminator, use dot (.). Dot is used to match multiline reply
data.

Chapter 12: Network Utilities 341

Get Network Service Status Operator

Output Parameters
ReplyMessage

Contains the data received from the service. This field is empty if the service did not
send data or if the operator does not read data from the service.

LocalAddressinfo

Information regarding the local address used to connect to the service, in the form
of:

localhost/IP:port

This information lets you identify the actual local port number used when the Local
Port Number (see page 339) is set to 0 for anonymous.

RemoteAddressinfo

Information regarding the remote address that the operator connected to, in the
form of:

Hostname/IP:port

Note: UDP is a connection-less protocol; this field is empty when UDP is selected in
Protocol to Use (see page 339).

Result
m 1: The operator succeeded.
m -1: The operator failed.
Reason
m Completed, if the operator finished successfully.
m An error message returns if the operator fails.
remoteSSHHost
PORT
LocalPort
SendProtocol
ConnTimeout
CommandData
IsReadData
ReadDataPeriod
ReadDataBytes
ReplyPattern
StartTime

StartDate

342 Content Designer Reference

Get Network Service Status Operator

Operator Ports
Success
m The operator finished successfully.

m If the operator is configured to read data from the service, then the operator
succeeds if:

- TCP:

a. It binds to the local port (if specified)

b. Connects to the remote host at the specified remote port

c. Writes data to the service (if specified)

d. Reads the reply data from the service

e. Verifies that the reply data matches the pattern (if specified).
- UDP:

a. It binds to the local port (if specified)

b. Sends a UDP message to the remote host at the specified remote port

c. Reads the reply from the service

d. Verifies that the reply data matches the pattern (if specified).

m If the operator is configured so it does not read data from the service, the
operator succeeds if:

- TCP:
a. It binds to the local port (if specified)
b. Connects to the remote host at the specified remote port
c. Writes data to the service (if specified).
- UDFP:
a. It binds to the local port (if specified)
b. Sends a UDP message to the remote host at the specified remote port.

This process does not mean that the UDP service is operational. We
recommend configuring the operator to read the response from the
service and match it to a pattern. Then, you can be sure that the UDP
service is up and running. You cannot be sure that a service is verified
properly through UDP when that service does not return any data.

Timeout

Timeout occurs when attempting to open a connection to the service through TCP.
The timeout value is specified in Connection Timeout (sec) (see page 339).

Chapter 12: Network Utilities 343

Get Network Service Status Operator

Failure

Reasons include:

The operator is set to read data from the service, but the data read did not
match the pattern specified by the user.

The user specifies invalid data. For instance: negative remote/local ports,
negative Connection Timeout (for TCP only), 0 or negative Time to Read Data
(sec).

The remote host is not known.

Cannot connect to the remote host at the remote port (or connection refused)
through TCP; the service could be down in this case.

Cannot bind to the specified local port.

Error when sending or receiving data to/from the service.

Custom Ports

Returned if set by the user during the process design.

344 Content Designer Reference

Get SNMP Variable Operator

Get SNMP Variable Operator

The Get SNMP Variable operator reads the value of a remote management information
base (MIB) variable. The object IDs (OIDs) and semantics of SNMP variables are
documented in the MIB of the remote SNMP Agent.

SNMP is a connectionless, unreliable protocol. A timeout option specifies the time that
is allowed for the request to reach the destination address. A retry option specifies the
number of times that a request is sent in case of failures. This operator may fail for
various error conditions, such as the SNMP variable is not found, read permission is
denied, or a device is unavailable.

m Fetrieve the value of an SHMP variable
frorm the MIB of a remote devicelhost

H]
LY
L Lo) o
@ Failed (& Timeout & Custam
Failed to retrieve Timed out Boaolean expression
the value Result=1 returns True
Result=0
 Completed

Retrieved the wvalue and placed itin a local
flowechart wariahle far funther pracessing (such
as to activate an alarm for certain conditions)
Fesult=2

Chapter 12: Network Utilities 345

Get SNMP Variable Operator

Input Parameters
Agent Host

Defines the IP address or fully qualified domain name for the agent host. For
example: 192.168.1.254.

To specify a port with the host name, use either of the following formats:

m host:port

m host/port

For example: comet.hg.company.com:10162
Community

Defines the community under which to access the variable (for example, public).
Object ID (OID)

Defines the object ID (OID) for the variable. The management information base
(MIB) associated with a remote agent documents the OIDs. For example:
1.3.6.1.2.1.1.1.0.

Retry Count

Defines how many times the product retries a failed request.
Time-Out Interval (secs)

Defines the interval in seconds until the operator times out.
SNMP Version

Specifies the SNMP agent version number. Select Version 1 or Version 2 from the
list.

346 Content Designer Reference

Get SNMP Variable Operator

Output Parameters
Object_ID
Retry_Count
Timeout
SNMP_Version
Community
Agent_Host
Port
OlIDValue
Agent_Host
Community
Requestid
Errorindex

ErrorStatus

Chapter 12: Network Utilities 347

Monitor SNMP Variable Operator

Monitor SNMP Variable Operator

The Monitor SNMP Variable operator waits until an SNMP variable has a value that
satisfied specified conditions. These conditions are defined by a pattern or a range of
values. The operator can extract substrings from a matched pattern.

This operator is implemented with an iterative Get SNMP Variable operator until the
specified condition is satisfied.

Wiait for a device to be in some state
LIC as reflected by selected walues of an
=" E MIB variable

v/ © o
& Custom (1 Timneout 2 Failed
Boolean expression Timed out Operatar failed
returns True Fesult=1 (unreachahle device or
some other ermar condition)
Fesult=0
= Completed

Dperator succeeded:
run dependent process
Result=2

Input Parameters
Agent Host

Defines the IP address or fully qualified domain name for the agent host. For
example: 192.#68.1.254

To specify a port with the host name, use either of the following formats:

m host:port

m host/port

For example: comet.hq.company.com:10162
Community

Defines the community under which to access the variable (for example, public).
Object ID (OID)

Defines the object ID (OID) for the variable. The management information base
(MIB) associated with a remote agent documents the OIDs. For example:
1.3.6.1.2.1.1.1.0

348 Content Designer Reference

Monitor SNMP Variable Operator

Retry Count
Defines how many times the product retries a failed request.
Time-Out Interval (secs)

Defines the interval in seconds the product waits for a Get SNMP variable before
the operator times out.

Variable Type

Specifies a data type for the variable. To configure this parameter, select a value
from the drop-down list.

Sleep Time (secs)

Defines the maximum interval in seconds between attempts to check the value of
the watched variable.

SNMP Version

Specifies the SNMP agent version number. Select Version 1 or Version 2 from the
list.

Low Value

Defines the minimum expected numerical value.
High Value

Defines the maximum expected numerical value.
Mask

Defines the pattern for which the operator searches (for more information, see the
Content Designer Guide).

Separators (#) in the pattern delimit the text to save to operator dataset variables.
Separator

Defines the character that delimits the zone to save to the variables that variable
names specify.

Chapter 12: Network Utilities 349

Monitor SNMP Variable Operator

Variable Names

Defines the variable names in which to save text that matches the delimited zones
in the pattern. The product saves delimited zones to the listed variables in order.
The product uses the keyword process to access operator dataset variables through
the process dataset.

For example, specifying the variable names V1 and V2 assigns extracted substring
values to the operator dataset variables Process.Operator_name.V1 and
Process.Operator_name.V2. To add, remove, and order the variables to store the
matched strings, use the toolbar.

Case Sensitive Pattern Matching
Specifies whether to use case-sensitive pattern matching.

Selected: Match upper-case and lower-case letters in a pattern only with letters of
the same case.

Cleared: Ignore case when matching the pattern.

350 Content Designer Reference

Monitor SNMP Variable Operator

Output Parameters
Object_OID
Retry_Count
Timeout
Variable_Type
Sleep Time
SNMP_Version
Low_Value
High_Value
Mask
Seperator
Variable_Names
IsCaseSensitivePatternMatching
Watch Expiration
Community
Agent_Host
Port
MatchedEntry
LastReadPos
Requestid
Errorindex
ErrorStatsu
Port
OIDValue

Chapter 12: Network Utilities 351

Ping Host Operator

Ping Host Operator

The Ping Host operator lets you evaluate access to a given host or IP Address. You can
specify the number of requests to make to the remote host, and the timeout and TTL
values. You can also specify the local IP address of the computer on which the operator
is running. In this case, the operator uses the local network interface that is associated
with the local IP address to initiate the ping operation.

The output variable: "isHostReachable" indicates whether the host is reachable.

m If any of the ping requests indicates that the host is reachable, then
"isHostReachable" is set to True.

m [f all ping requests indicate that the host is not reachable, then "isHostReachable" is

set to False and the operator fails.

The Ping Host operator fails when an error occurs or when all ping requests to a host
fail.

To ping the destination host, the Ping Operator uses ICMP echo requests if the privilege
can be obtained, otherwise it attempts to establish a TCP connection on port 7 (Echo) of
the destination host. Typically, port 7 is blocked and a TCP connection cannot be
established.

On Windows, the Ping Operator may not use ICMP protocol (a java limitation), hence,
run this operator on a *nix Agent or Orchestrator. Alternatively, you can use the Run
Script operator to call the OS Ping command.

Firewalls and server configuration may block a ping request, resulting in an unreachable
status.

Input Parameters
Remote Hosthame

Specifies the host name or the IP address to ping. For IPv6 address, use either the
form defined in RFC 2732 or the literal IPv6 address format defined in RFC 2373. If
not specified, the default is used.

Default

The loopback address of the host associated with the touchpoint.

352 Content Designer Reference

Ping Host Operator

Local IP Address

Specifies the local IP address of the host with the agent associated with the
touchpoint, whose network interface initiates the ping. If not specified, the Ping
Host operator uses the default.

Default
Blank - Indicates any interface.
Number of Requests

Specifies the number of times to run the operation that determines whether the
remote host is reachable. The Ping Host operator deems the remote host to be
unreachable when all of these requests return that the host is unreachable. If not
specified, the operator uses the default.

m If any of the ping requests indicates that the host is reachable, then
““sHostReachable’ is set to True.

m

m If all ping requests indicate that the host is not reachable, then
"isHostReachasble" is set to False and the Ping Host operator fails.

Default
1

Time to Live

Specifies the maximum time to live value for each request in the specified number
of requests. For pings (ICMP requests), it specifies the maximum number of hops
the packets should go through before giving up and deeming the remote host
unreachable. If not specified, the operator uses the default.

Default
30

Timeout (secs)

Specifies the time out in seconds, where the value applies to each request in the
specified number of requests. If a request times out before getting an answer, that
request deems the remote host to be unreachable. If not specified, the operator
uses the default.

Default
5

Chapter 12: Network Utilities 353

Ping Host Operator

Output Parameters
isHostReachable
isHostReachable is set to one of the following:
True
Indicates that at least one of the ping requests reached the host.
False
Indicates that none of the ping requests reached the host. The operator fails.
A request deems the host to be unreachable if:
m The host is not reachable
m TTL expires
m Timeout expires
HostlpAddress
The IP address of the remote host.
HostCanonicalName

The canonical name of the remote host. The operator retrieves either the FQDN or
the IP address depending on the underlying system configuration.

LocalNetworkinterface
One of the following:

The name of the local network interface used to send the requests to the remote
host.

Indicates the user specified a local IP Address.
Blank
Indicates that no local IP Address was specified in the operator input.
TotalRequests
The number of requests issued by the operator.

If no error occurs when running the operator, the TotalRequests should be equal to
the value of the Number of Requests.

SuccessfulRequests
The number of requests that reached the remote host.
FailedRequests

The number of requests that found the remote host to be unreachable.

354 Content Designer Reference

Ping Host Operator

FailurePercentage

FailedRequests * 100 / TotalRequests.

Result
1
Indicates that the operator finished successfully.
-1
Indicates that the operator failed.
Reason

One of the following:
Completed

Indicates that the operator finished successfully.
<error message>
Specifies why the operator failed in an error message.
remoteSSHHost

locallp

NUMBER_OF_REQUESTS
TTL

Timeout

Chapter 12: Network Utilities 355

Send SNMP Trap Operator

Operator Ports

Success

The operator finished successfully.

Failure

The operator failed for one of the following reasons:

isHostReachable is false.

A firewall or a network issue prevents CA Process Automation from looking up
or connecting to the machine.

Unknown remote hostname.
Invalid local IP address.

Unable to retrieve the local Network Interface associated with the local IP
address.

The local Network Interface associated with the local IP address is not up.
Timeout, number of requests, or time to live is less than or equal to O (zero).

Another reason, specified in the reason field.

Custom Ports

If set by the user during the process design.

Send SNMP Trap Operator

The Send SNMP Trap operator generates SNMP traps. A trap is an unsolicited message
that an SNMP agent sends to an SNMP management system. The agent sends a trap
when it detects that a specific type of event has occurred locally on the managed host.
For example, the agent can send a trap message on a system restart event. SNMP traps
are typically used to trigger alarms and notifications or to cause predefined actions by
remote devices (such as a device reboot or reset).

356 Content Designer Reference

Send SNMP Trap Operator

Input Parameters

The precise semantics of specific traps are defined in the SNMP agent MIB
(Management Information Base) documentation. For custom traps, see the destination
agent documentation.

E:J Send an SMMP trap to a network
mn:umtnrmg station (or to a device)

|.

w0

2 Completed) Failed & Cuskom
Trap sent successiully Failed to send trap Boolean expression
Result=1 thost unreachahle or returns True
some other error conditiomn
Result=0
Agent Host

Defines the IP address or fully qualified domain name for the agent host.
To specify a port with the host name, use either of the following formats:
m host:port
m host/port
For example: comet.hg.company.com: #####
Community
Defines the SNMP trap community name. For example: public.
SNMP Version

Specifies the SNMP agent version number. Select Version 2 from the list.

Chapter 12: Network Utilities 357

Send SNMP Trap Operator

Trap ID
Specifies one of the standard Trap IDs:
m Cold Start
m An enterprise-specific Custom Trap ID
m Egp Neighbor Loss
m Link Down
m Link Up
m Warm Start
m Authentication Failure
Custom Trap ID

When you set the Trap ID parameter to Custom, this parameter defines the
enterprise-specific Custom Trap ID. For more information, see the destination agent
documentation.

Payload Trap ID

Defines the payload Trap ID.
Payload Trap Type

Specifies the data type for the SNMP Trap message payload.
Payload Trap Value

Specifies the SNMP Trap payload value.

Output Parameters
SNMP_Version
Trap_ID
Custom_Trap_ID
Payload_Trap_ID
Payload_Trap_Type
Payload_Trap_Value
Community
Agent_Host
Port

Requestid

358 Content Designer Reference

Update SNMP Variable Operator

Update SNMP Variable Operator

The Update SNMP Variable operator sets the value of an SNMP variable that a remote
SNMP agent manages. In general, SNMP variables control the behavior of IP devices.
The precise semantics of SNMP variables are defined in the MIB associated with a
device.

To set the variable, the user account executing the Update SNMP Variable operator
must have write permission on the SNMP server to change the value of the OID.

Set an MIB variable of a device manage-
i ' I'I ahle through SKMP (asthe resualt of
=" some previous action

W
09

2 Completed) Failed @ Cusham

Set ShMP variahle Failed to et SMMP variable Boolean expression

of device ofdevice (unreachable, returns True

Result=1 permission denied, or some
other failure condition)
Result=0

Input Parameters
Agent host

Specifies the IP address or fully qualified domain name for the agent host. For
example: 192.#68.1.254.

You can specify a port along with the host name using either of the following
formats:

m host:port

m host/port
Community

Specifies the community under which the variable is accessed (for example, public).
Object ID (OID)

Specifies the object ID for the variable. Object IDs (OIDs) are documented in the
management information base (MIB) associated with a remote agent.

Chapter 12: Network Utilities 359

Update SNMP Variable Operator

Variable type

Specifies a data type for the variable. Select one of the list values to configure this
operator parameter.

Variable value
Specifies the value for the variable.
SNMP version

Specifies the version number for the remote SNMP Agent. Select Version 1 or
Version 2 from the list.

Output Parameters
Object_ID
Variable_Type
Variable_Value
SNMP_Version
Community
Agent_Host
Port
Requestid
Errorindex

ErrorStatus

360 Content Designer Reference

Chapter 13: Process Control

The Process Control operators run, monitor, and control CA Process Automation
processes. The Process Control operators start system processes from within a process.
The Assign User Task operator prompts users for information during execution of a
process.

All of the Process Control operators run only on Orchestrators, not on agents.

Assign User Task Operator

The Assign User Task operator displays a CA Process Automation interaction request
form to prompt a user and waits for input. The last page of an interaction request form
dialog prompts the user to approve or reject the interaction request form. You can
specify a time-out or can wait indefinitely. The user input values are saved to variables
in the Assign User Task operator dataset.

You can also use the Assign User Task operator to notify a user to respond to a specific
task through an embedded URL.

FPrompt user far input

“ and start flowechart
X ICH
— | [
0 Completed @ Failed @ Timeouk & Custom
Operatar succeeded Operator failed Operator tirmed out Boalean expression
Result=1 Result=-1 Result=-1 returns True

The Assign User Task operator has four standard (noncustomized) exit links:
Completed

Processed when a user does the following things:

m Successfully completes the interaction request form.

m Approves the user prompt on the last page of the interaction request form.

The parameter values are assigned to operator dataset variables. The Result
variable is set to “1” and the Reason variable is set to “COMPLETED.” The task
displays in the Task List on the Operations tab with a state of "Completed."

Chapter 13: Process Control 361

Assign User Task Operator

Canceled

Processed when:

A process has an Assign User Task operator running, and the task shows up in
the Task List and is waiting for a user to respond. Before anyone responds, the
process encounters a Stop Failure operator (typically because another path in
the process is still running while the Assign User Task is waiting for user
response).

The Assign User Task operator is aborted (manually or because the process
ended while the operator was still running).

A process is suspended and the Assign User Task operator aborted the task.

A process is suspended and the Assign User Task operator is reset (manually or
automatically).

A process execution bypasses the selection made in the user prompt (in the
Form Disposition field).

The Result variable is set to "-1" and the Reason variable is set to CANCELED. In
each case, the task displays in the Task List on the Operations tab with a state of
"Canceled."

Timeout

Processed if the user does not complete the interaction request form within an
optionally specified time-out interval. Any parameter values are assigned to
operator dataset variables. The Result variable is set to “-1” and the Reason variable
is set to “TIMEOUT.” The task displays in the Task List on the Operations tab with a
state of "Timeout."

Rejected

Processed if the user selects Reject at the user prompt (in the Form Disposition
field). The Result variable is set to “_” and the Reason variable is set to “REJECTED.”
The task displays in the Task List on the Operations tab with a state of "Rejected."”

Input Parameters

The Assign User Task operator includes the following input parameters.

Assignees Parameters

The Assignees parameters specify authorized CA Process Automation users or groups to
approve or reject the user prompt. The Assign User Task operator only verifies user
credentials when a user or group is specified.

362 Content Designer Reference

Assign User Task Operator

Users

Specifies the names of authorized CA Process Automation users who can approve or
reject the user prompt. Delimit multiple users with the colon (:) character. For
example: malcolm:samirab:sam:seren.

To open the Users dialog to select users, click P . Select individuals from the
Available Users list to move to the Selected Users list using the arrow buttons (or
the other way around). You can also enter a user name to search for in the text box.

Groups

Specifies the names of authorized CA Process Automation groups who can approve
or reject the user prompt. Delimit multiple groups with the colon (:) character. For
example: domainadmin:pamuser:envconfigadmin (or in the case of an upgrade:
domainadmin:pamuser:envconfigadmin).

To open the Groups dialog to select groups, click P . Select individuals from the
Available Groups list to move to the Selected Groups list using the arrow buttons
(or the other way around). You can also enter a group name to search for in the text
box.

Transfer/Delegates Parameters

The Transfer/Delegates parameters specify those individuals that are authorized by CA
Process Automation users or groups to approve or reject the user prompt. The Assign
User Task operator only verifies user credentials when a user or group is specified.

Users

Specifies the names of authorized CA Process Automation users who can approve or
reject the user prompt. Delimit multiple users with the colon (:) character. For
example: malcolm:samirab:sam:seren.

To open the Users dialog to select users, click P . Select individuals from the
Available Users list to move to the Selected Users list using the arrow buttons (or
the other way around). You can also enter a group name to search for in the text
box.

Groups

Specifies the names of authorized CA Process Automation groups who can approve
or reject the user prompt. Delimit multiple groups with the colon (:) character. For
example: domainadmin:pamuser:envconfigadmin (or in the case of an upgrade:
domainadmin:pamuser:envconfigadmin).

To open the Groups dialog to select groups, click P . Select individuals from the
Available Groups list to move to the Selected Groups list using the arrow buttons
(or the other way around). You can also enter a group name to search for in the text
box.

Chapter 13: Process Control 363

Assign User Task Operator

User Task Parameters
Title

Specifies a title for the user task (optional). This string describes the title of the form
to present to the user.

Description

Provides an optional description for the user task.

Interaction Request Form

Specifies the path in the CA Process Automation library for the interaction request
form object that prompts the user. The interaction request form must be in the
same library as the process. For example: /Backups/Forms/Input.

To locate an interaction request form in the CA Process Automation Library, click

p .

To view the interaction request form in the Form Browser once one has been
selected, click Open.

364 Content Designer Reference

Assign User Task Operator

Form data initialization code

Allows you to add code that dynamically initializes form fields at run time. This
allows you to display information in read-only fields or change default values for
editable fields.

To add CA Process Automation expressions to change field values, open a code
editor window.

In the editor, use the Form keyword to access operator dataset variables in the
following format:

Form.fieldname
Where:

fieldname represents the name of the field in the user interaction form object
definition. For example:

Form.DateTomorrow = System.tomorrow;
For the current operator.

Note: For more information about creating calculated expressions in CA Process
Automation, see the input parameters (see page 406) for the Run JavaScript
operator.

You can also use this field to dynamically initialize form fields at run time. The
initialization is not the same for simple and complex types.

m For simple types, if the interaction request form has a simple element (text
field) Var_0, this element can be initialized by providing:

Form.Var 0="text'

m For a ValueMap, if the interaction request form has a ValueMap that contains
ID value_map, along with a text field with ID text_field, the text_field must be
initialized in the following way:

Form.value map= newValueMap();
Form.valuemap.text field="test";

m [f the interaction request form has a nested ValueMap - specifically, if there is a
ValueMap inside a ValueMap with ID value_map_nested, and a variable inside
the same nested ValueMap with ID text_field_nested, the initialization must
be:

Form.value map.value map nested= newValueMap();
Form.value map.value map nested.text field nested="test";

Show approval page

Lets you approve or reject the task. If selected, the included form is presented with
an approval/rejected page at the end when replying, to decide the final outcome of
the form.

Chapter 13: Process Control 365

Assign User Task Operator

Output Parameters

Title

Description

inputForm

showAcceptanceScreen

Userinfo
InitialAssignedUsers
initialAssignedGroups
assignedUsersFilter
assignedGroupsFilter

Approve

RepliedBy

Task ID

initCode

dueDateTime

Example

This example explains how you can send a notification to a user to reply to a task using
an embedded URL in an email. You can include the Task ID output parameter of the
Assign User Task operator in the embedded URL to access a direct task. You can include
the embedded URL in the Send Email operator to notify the user through email to reply
to a task.

366 Content Designer Reference

Assign User Task Operator

The Assign User Task remains in a waiting state until the user responds. You can run a
notification process in parallel to notify the user with the direct URL to reply to the task
triggered from the Assign User Task operator, as shown here:

Evaluate_Expression_1

o

*I Assign_User_Task_1

L] %]

|
5

-

Send_Email_1

=\
o

X

You can use the Evaluate Expression operator to wait until the Assign User Task

expression evaluates to true while refreshing and evaluating the expression every five
seconds.

The Evaluate Expression parameters can be:

Evaluate Expression

Expression

Process.&ssign_ ser Task 1.TaskIDI=0

Refresh rate (secs)

]

Chapter 13: Process Control 367

Assign User Task Operator

Ensure that you select the No Timeout check box in the Assign User Task Timeout
parameters to avoid a timeout for this operator until the expression evaluates to true.

""" Timeout

Mo Timeout
Type
Curation
DurationfTargel Timeout Delay Type
u]

Action

abandon

Next, once the Task ID is calculated and is no longer zero, the expression evaluates to
true and the Send Email operator sends an email with the following embedded URL as
part of the message:

getOrchestratorURL() + "itpam" + "?ROID=" + Process.Assign User Task 1.TaskID +
"&page=replytask"

The And operator synchronizes the two branches of the process into a single one.

When the user receives the email, the task is presented in a URL that the user clicks to
continue to the Login page of CA Process Automation. After authentication, the user is
taken directly to the form attached to the task, and the user can then directly reply to
the specific task.

368 Content Designer Reference

Evaluate Expression Operator

Evaluate Expression Operator

Input Parameters

The Evaluate Expression operator delays processing on the branch of a process until a
condition that is represented by a Boolean expression evaluates to true. This operator
provides a mechanism to pause a process while waiting for a condition to change. The
operator is often used to synchronize interdependent processes or to control the use of
shared resources that are represented by variables.

2 = Wait for Boolean expression to be True

C

w O
| |
i Completed & Failed () Tirneout
Qperator succeeded Qperator failed Cperatar timed out
Result=1 Result=-1 Result=-1

The condition is evaluated periodically according to a specified rate. The rate must be
long enough to increase CPU usage within acceptable limits. When there is a condition
for some minimum known amount of time, the load can be further reduced by putting a
Delay operator (see page 386) before the Evaluate Expression operator. An example of
this situation occurs when another process uses a resource and the process does not
release the resource before a certain time of the day.

Expression

A Boolean expression that specifies a True condition when some condition is
satisfied. Here are two examples:

(Datasets["/exploit/variables/set 1"].varl == 1)
System.Time >= Process.FinishTime

Note: This field includes dataset assistance when using of any of the keywords.
Refresh rate (secs)

The interval in seconds at which to evaluate the condition for a True condition.

Chapter 13: Process Control 369

Manage Resources Operator

Output Parameters
Expression
RefreshRate
TimeOutSec

TimeOut

Manage Resources Operator

The Manage Resources operator executes actions on CA Process Automation resources.
These actions include taking resource units, freeing resource units, and locking and
unlocking resources.

The Manage Resources operator provides a way to validate and wait for particular
resources and to affect the state of such resources. The operator can make processing
of any branch of a process contingent on resource availability. Within an environment,
resource operators can be used to regulate and coordinate the processing of multiple
processes. The operators assure that individual processes have exclusive access to
external resources.

Take or free resource Units

 Hap
w Y
| |
2 Completed 2 Failed (2 Tirneouk
Qperator succeeded Operator failed Qperator timed out
Fesult=1 Fesult=-1 Result=-1

The Manage Resources operator has three possible exit links:
m Successful when actions are executed successfully before any specified timeout.
m Failed when resources do not exist or in the event of some other error condition.

m Timeout when the specified time-out expires before the required resources become
valid.

370 Content Designer Reference

Manage Resources Operator

Resources are typically taken from a resource quota before processing other operators
and then replaced when the operators are completed:

B

Take 1 resource from process quota

—

E\U/; Run application 1

Free 1 resource to process quota

Conditions on a resource must be evaluated periodically for possible changes. Be careful
to avoid specifying a refresh interval that is too short. Use a Check Date-Time operator
(see page 185) to add a delay before executing the Manage Resources operator if the
required resources are not available before:

m A specified interval of time has passed.

Or

m Before a specific date or time.

Input Parameters

Action

Lists the actions to execute. The Add, Delete, and Edit buttons add, remove, or
modify actions in this list. Each action specifies:

A resources object
The name of the resource in the object to use

The action to perform on the resource (take resources units, free units, lock, or
free a resource)

How many units of the resource to take or free

Chapter 13: Process Control 371

Manage Resources Operator

Action Properties

This dialog defines an action to perform on a resource. Click either the Add or
the Edit button next to the Action list box. This dialog opens the resources
properties for a Resources operator.

ResourcePath
Specifies a resources object. Enter the full path to the resource in the CA

Process Automation library or click £ to locate the object. Double
quotation marks must enclose a literal string. You can use a dataset
variable or an expression to specify the resources object. To open the
object in the resources editor, click the Open button.

ResourceName

Specifies the resource in the resources object on which to perform the
action. Type the name exactly as it is defined in the resources object.
Double quotation marks must enclose a literal string. You can use a dataset
variable or an expression to specify the resource.

Action
Select the action to perform on the resource:
TakeUnits
Takes the number of resource units specified in the Amount field.
FreeUnits
Returns the number of resource units specified in the Amount field.
LockResource

Locks the resource so other Resources operators cannot take resource
units or cannot lock the resource. This action effectively takes all unused
resource units for a resource. Actions can still free resource units that were
taken before a resource was locked. However, the freed units are only
available when the resource is unlocked.

UnlockResource
Unlocks a locked resource.
Amount

For the TakeUnits or FreeUnits actions, this value specifies the number of
resource units to take or free. Amount is disabled for the rest of the two
options, such as UnlockResource and LockResource.

372 Content Designer Reference

Manage Resources Operator

All resources must be available

If selected, all of the resources that are required by the actions that are listed under
Actions must become available within the constraints that the Timeout options
impose. The operator succeeds only if all of the resources become available within
the time-out constraints of the Timeout setting.

If unchecked, the operator completes successfully when the resources that are
required by at least one of the actions that are listed under Actions becomes
available within the constraints of the Timeout option. If resources for any of the
listed actions are available, the Process Control operator category processes the
Successful exit link for this operator.

Execute actions

Output Parameters

Determines whether the actions listed under Actions are executed. To only verify
whether resources are available without executing actions, clear this check box. The
operator then executes the Successful exit link. This link only executes if resources
are available within the constraints of the "Timeout" and "All resources must be
available" settings without executing any action.

This setting can be used with a resource that is set to enable or disable a whole set
of processes. Those processes verify that there is no lock on the resource before
starting their tasks. This lock check is done by attempting to take a single resource
unit from the resource. Depending on the outcome of the test, some other
mechanism can lock or unlock the resource, such as:

m Schedule tasks (where enabling or disabling of the processes is based on time
constraints)

m Manually started tasks (using a start request form)

m A process that an external monitoring application starts (using the CA Process
Automation Web services daemon)

m A process that monitors an internal or external condition in a loop.

ActionProperties

ResourcePath
ResourceName
Action

Amount

All resources must be available

Execute actions

TimeOut

Chapter 13: Process Control 373

Event Operators

Event Operators

CA Process Automation provides event management through two operators:
® Monitor Event
m Send Event

Other processes can post events. In addition, the Web services that are exposed by CA
Process Automation can also post events.

Note: These two operators run only on Orchestrators, not on agents.

Monitor Event Operator

W

The Monitor Event operator is used in a process to wait for certain events before
continuing down a path of execution. For example, a process can wait for an event that
signals that a ticket has been approved, instead of periodically querying the ticket and
checking the approval status.

The Monitor Event operator consumes the available/matching events as its default
behavior.

Note: Monitor Event cannot be scheduled (that is, it cannot be used in schedules).
However, a user can design a process with Monitor Event and then schedule the process
from the schedule editor.

Input Parameters

Event name

Specifies the name of the event. This expression is matched against Name of the
Event. This name can be a regular expression, a partial match that is based on user
choice, or both.

Event type

Specifies the type of event (optional). This expression is matched against Type of
the Event. This type can be a regular expression, a partial match that is based on
user choice, or both.

374 Content Designer Reference

Event Operators

Output Parameters

Event source

Specifies the source of the event. This expression is matched against Source of the
Event. This source can be a regular expression, a partial match that is based on user
choice, or both.

Event destination

Specifies the name of the Event destination (optional). This expression is matched
against Destination of the event. This destination can be a regular expression, a
partial match that is based on user choice, or both.

Expression

Specifies a CA Process Automation Boolean expression for additional event
parameters (optional). This expression is matched against Event Parameters field of
Event. Event Parameters can be accessed using a "payload" keyword (for example,
payload.ticketld=="1443132").

Note: This field includes dataset assistance when using of any of the keywords.

Retrieve all matching events

When selected, the Monitor Event operator receives all events, instead of the first
one that matches. Once these events are delivered, they are never sent to you
again. Any event that is delivered to you and is also marked as ‘deliver to single
subscriber’ is invalidated and is not delivered to anybody else.

Enable pattern matching

Enables pattern matching against the respective event attributes like Name, Type,
Source and Destination.

Allow partial match

Allows a partial match against the respective event attributes like Name, Type,
Source and Destination.

eventid
eventName
eventType
eventSource
eventDestination
toSingleSubsriber
payload
creationTime
expirationTime

user

Chapter 13: Process Control 375

Event Operators

Send Event Operator

Input Parameters

The Send Event operator is used to publish an event to the CA Process Automation
Orchestrator. The event manager running on the CA Process Automation Orchestrator
(which holds all the subscribers) receives an event. The event is checked against any
interested subscribers by matching the event parameters. All subscribers who are
waiting for this type of event are then notified. As a result, the Monitor Event operator
is completed and the process continues down the path of execution.

Send Event cannot be scheduled (that is, it cannot be used in schedules). However, a
user can design a process with Send Event and then schedule the process from the
schedule designer.

Note: The same event never gets delivered twice to the same operator, in the same
process instance.

Event name
Specifies the name of the event (mandatory).
Event type
Specifies the type of event (optional).
Event source
Specifies the Event Source (optional).
Event destination
Specifies the Event Destination (optional).

Subscribers of the event match a regular expression against these fields to decide if
they are interested in this event.

Deliver to single subscriber

When set to true, indicates that the events are not delivered to more than one
waiting process. The event is "consumed" by the first event handler that is
"consuming" events.

376 Content Designer Reference

Event Operators

Event parameters

Specifies additional event parameters that can be a CA Process Automation data
type (optional).

The Expression parameter in the Monitor Event operator is evaluated against Event
Parameters. These parameters can be accessed using a payload Keyword (for
example, payload.ticketld=="1443132").

Expire after (sec)

Specifies the number of seconds that an event can take to match with any
subscribers.

Output Parameters
expirationDuration
eventld
eventName
eventType
eventSource
eventDestination
toSingleSubsriber
payload
creationTime
expirationTime

user

Usade Patterns for Events

The following two usage patterns are available for events:
Queue pattern

Every event is delivered to a single consumer. You must mark the event accordingly
on the sending side (deliver to single subscriber). Events of this type are cleared as
soon as they are delivered or expire.

Note: This pattern affects triggers; see the Content Administrator Guide for more
information.

Chapter 13: Process Control 377

Start Process Operator

Notification Mechanism

The event is intended to signal a state to an arbitrary number of interested parties.
For instance, a notification signifies that something has changed, a system is
shutting down, and so on. Such an event is delivered once to all subscribers, until
the event times out.

Start Process Operator

)

e

Use the Start Process operator to start a process from within another process. The Start
Process operator creates an instance of a process on a touchpoint and queues a start
request with the appropriate engine. You can reference the child process dataset by the
operator name in the process dataset for the parent process. Use the following syntax:

Process.OperatorName.FieldName
OperatorName represents the name of the Start Process operator in the parent process.

FieldName is the dataset variable that you want to access in the child process.

Input Parameters
Process name

Specifies the path for the process in the CA Process Automation Library. The
process must be in the CA Process Automation Library of the touchpoint on which
the operator is configured to be executed.

For example: "/Doc/NT_Charts/Alert"
s

To select a process from the library, click
Open

Opens the process that is specified by process name for editing. This button is
available only after you enter the path to a process in the adjacent box.

378 Content Designer Reference

Start Process Operator

Process Dataset initialization code

Specifies statements that initialize dataset variables in the process that is being
started. For example:

m Process.WorkDir = "C:\temp";
m Process.User= Caller.User;
m Process.DatabaseServer=Caller.DatabaseServer;

In this box, the keyword Process refers to the dataset in the new instance of the
process that is specified by Process name. The keyword Caller refers to the dataset
of the process containing the Start Process operator.

The Process or Caller keyword is mandatory for referencing or creating variables in
the parent or child process dataset. Without either keyword, the dataset
initialization script always creates or attempts to reference a calculation variable.

Mode
Select from one of the following options:
Attached
Runs the child process as a separate process.

The Start Process operator does not complete until after the new instance
finishes processing. The process executing the operator is the parent process.

Detached
Runs a process in detached mode.

An instance of a process started in detached mode has no parent relationship
to the process that started it and is the root process in any call sequence
originating from that process.

Inline

Runs a child process as a part of parent process itself (that is, it is expanded
into the parent process).

Inherit Lane Change Handler from parent process

When selected, the child process inherits the lane change handler from the
parent process (if not already defined in the child process).

Start date

Specifies the date on which to start a detached instance of the process. The default
value is the date on which the operator is executed (System.Date). This option is
only available when Detached is selected as the process mode.

Chapter 13: Process Control 379

Start Process Operator

Start time

Specifies the time at which to start a detached instance of the process. The default
value is the time at which the operator is executed (System.Time). This option is
only available when Detached is selected as the process mode. Combined with the
Start date option, Start time allows a process to schedule the execution of another
process.

Output Parameters
32WorkflowName
Local (Process Dataset Initialization Code)
processMode (Attached, Detached, or Inline)

inheritLaneChangeFromParentProcess

380 Content Designer Reference

Chapter 14: Utilities

The Utilities operators can be used for utility purposes in processes.

Apply Xpath Operator

The Apply Xpath operator parses and retrieves data from an XML document. This
operator supports the following functions:

m Parses an XML document and retrieves specified data from the document.
m Stores the results into CA Process Automation datasets that subsequent operators
in a process can access.
Loads XML data from a
<[> specified file into ican dataset
(wariahles
L
2 Succeeded @ Failed

Operator successiul

Cperator failed
Fesult=1

Result=0

Chapter 14: Utilities 381

Apply Xpath Operator

Input Parameters

Input Source

Select the source for the SOAP service input request: Expression or Input File Name.

Expression

Specify the expression to load XML content. For example:

Process.xmlContent

or

Datasets["xmlData"].xmlContent

XML input file

Specifies the XML document from which to extract data. Enter an expression that
returns the path of the XML file for a valid XML document.

Strip Namespace in XML Structure

CA Process Automation provides an option to strip XML namespaces from a
response so that a user can provide simpler XPath expressions to look for a value of
specific element. This option is available in all the SOAP operators.

The following javascript functions are provided:
m applyXPath(xmldata,xpath_query,namespaceAware)
m applyXPathToUrl(urls,xpath_query,namespaceAware)

Note: The default value of namespaceAware is true. The value of namespaceAware
is false if you want stripping of Namespace in XML Structure (and true otherwise).

Process.x="<getMatchingEventsResponse
xmlns="http://www.ca.com/itpam'><events> <event
><eventName>test</eventName></event></events></getMatchingEventsResponse>";
Process.s=applyXPath(Process.x,"//eventName", true);
Process.aal=applyXPathToUrl("file:C:/test.xml","//message",true);
Process.aa2=applyXPathToUrl("file:C:/test.xml","//message", false);
Process.sl=applyXPath(Process.x,"//eventName", false);
Process.s2=applyXPath(Process.x,"//eventName") ;

Additional extracted data

Specifies XPath expressions to extract data from the XML document. For each
expression specified here, specify a dataset variable to which to store the extracted
data and a data type.

Use the Add, Edit, and Delete buttons to add, edit, or delete expressions from the
list box. The Add and Edit buttons open the Additional Extracted Data dialog.

382 Content Designer Reference

Apply XSLT Operator

Specify values for the following options:
Xpath expression

Specifies the XPath expression selected under Additional extracted data.
Dataset variable

Specifies the name of an operator dataset variable in which to save values
extracted based on the selected XPath expression.

Type

Specifies the type of element being extracted from the response. Select one of
the following currently supported types:

m Integer

Integer Array

m String

m String Array

m XML Fragment

m XML Fragment Array

Output Parameters
inputSource
ExtractedVarinfo (ValueMap)
xPathQuery
dataSetVa
type
expressionVal
xmlinputFileName

isStripXMLNamespaces

Apply XSLT Operator

XSLT applies a predefined style sheet to transform an XML source document to another
presentation-oriented format such as HTML, XHTML, or SVG.

Chapter 14: Utilities 383

Apply XSLT Operator

Input Parameters

Input XML Source
Defines the source XML document to transform to one of the following formats:
Expression

Defines a pattern for identifying a string of values. For example, you can define
the expression Datasets[“/VER2_Dataset”].srcXML

XML File Path

Defines the path of a file where an operator is executed. The file path can be a
shared location or a URL.

Consider the following examples:
m File path: c:\sourcefiles\books.xml
m Shared location: \\fileserver\sourcefiles\books.xml
m URL: http://fileserver:8080/sourcefiles/books.xml
Inline XML
Specifies the XML data that acts as an input.
Input XSLT Source
Specifies the source XSLT information in one of the following formats:
Expression

Defines a pattern for identifying a string of values. For example, you can define
the expression Datasets[“/VER2_Dataset”].srcXML

XSL File Path

Defines the path of a file where an operator is executed. The file path can be a
shared location or a URL.

Consider the following examples:
m File path: c:\sourcefiles\books.xs/
m Shared location: \\fileserver\sourcefiles\books.xs/
m URL: http://fileserver:8080/sourcefiles/books.xs/
Inline XSL
Specifies the XSL data that acts as an input.
XSLT Version

Specifies one of the following options to determine the XSLT version that is used to
transform the source XML:

m Version1l

m Version 2

384 Content Designer Reference

Apply XSLT Operator

m Specified in XSLT
Input Parameters

Specifies the input parameters as key-value pairs in XSLT Operator. You can
dynamically assign values to the input parameters (key) that are defined in XSL.

You can define a key (top-author) in XSL and can assign a value (Robert Kisosk) from
an XSLT Operator as in the following example:

<xsl:param name="top-author">Jasper Forde</xsl:param>

Key: top-author Value="Robert Kisosk”

Output Parameters

Displays the predefined output parameters as key-value pairs. The output parameters
are XSLT version-specific and based on the XSLT standards. For more information about
output parameters, see http://www.w3.org/TR/xsltH#output.

XML Output

You can view the XML output in the Dataset Variable or in a file placed in the
Output File Path.

You can assign a value (yes) to the key (include-content-type) from an XSLT
Operator as in the following example:

include-content-type="yes”

Chapter 14: Utilities 385

Delay Operator

Delay Operator

The Delay operator delays processing subsequent branches of a process until a specified
interval of days, hours, minutes and seconds has passed. The delay can be relative to
either when processing starts for the Delay operator or when processing starts for the

process.
(:) Fause in execution of the flow
o6
T T
I I
& Failed 0 Atter
Operatar abarted Delay caompleted normally
Fesult=0 Result=1
Input Parameters
Days
Specifies the number of days to delay processing subsequent branches of the
process.
Hours

Specifies any additional hours to delay processing subsequent branches of the
process.

To specify the portion of a day in hours, enter 0 to 23.
Note: The number of hours is an expression so there are no validations.

Minutes

Specifies any additional minutes to delay processing subsequent branches of the
process.

To specify the portion of an hour in minutes, enter 0 to 59.

Note: The number of minutes is an expression so there are no validations.

386 Content Designer Reference

Delay Operator

Seconds

Specifies any additional seconds to delay processing subsequent branches of the
process.

To specify the portion of a minute in seconds, enter 0 to 59.

Note: The number of seconds is an expression so there are no validations.

Relative to Process start time
Makes the delay relative to starting the process.

When this check box is cleared, the delay is after the process starts processing the
operator. For example, this option can be used to trigger an alarm if the process
does not end (reach a Stop operator) within a specified period of time.

Output Parameters
flowchart_start_time
Days
Hours
Minutes
Seconds
Relative_to_Flowchart
TargetTime

targetDate

Chapter 14: Utilities 387

Invoke Java Operator

Invoke Java Operator

The Invoke Java operator leverages the functionality that is contained in external JAR
files (or .class files) in CA Process Automation. You identify the JAR files or .class files by
specifying their location in the operator input parameters.

Once the JAR file is located, you can write Java code that references classes in the JAR
file. You can pass variables to this code by using the input parameters of the Invoke Java
operator. The code that you write goes in the main method of the operator.

You can specify to save a Java object in the operator dataset after execution of the code
by the operator. The Java object is saved in CA Process Automation under data type:
JavaObject. You can make this JavaObject data type available to subsequent Invoke Java
operators.

For example, say that you want to use the Invoke Java operator in a process. You include
it in a process in the process editor and name it Java Operator 1. Once the operator
runs, the Java object is saved to the operator dataset and displays as a JavaObject data
type. Now you have another Invoke Java operator later in your process. You can use that
same JavaObject from Java Operator 1 in your new Java Operator 2. You pass the saved
object from Java Operator 1 to Java Operator 2 as a JavaObject data type.

The Invoke Java operator cannot be executed on an Orchestrator. This operator only
runs on an agent.

Input Parameters
Input parameters for the Invoke Java operator are as follows.

Code
List External Jar Paths?

Select to provide a list of paths to the required external JARS in the External Jar
Paths as Expression field.

Clear to provide the paths to the required external JARs as an expression, that is, as
a dataset variable in the External Jar Paths as Expression field.

This check box is selected by default.

388 Content Designer Reference

Invoke Java Operator

External Jar Paths

Specifies the list of paths to the external JARs that are required by the main method
code of the operator, if any.

The Invoke Java operator loads the JARs listed in this field. Any JAR entered in this
list is available to the Java code executed by the operator. The classes defined in the
operator-level JARs override the same classes specified in the JARs at the operator
category level.

For each path, you can:

Enter the full path to a JAR file that resides on the host where the CA Process
Automation agent (mapped to the touchpoint) is running. The full path is
specified as follows:

— Starts with: /
— Starts with: \\

- Of the form: ~...* (a regular expression that starts with one character
followed by a colon - : - and then the rest of the string.)

Enter the path to a JAR file that is downloadable over HTTP. Verify that the
HTTP path does not require authentication and is not through an HTTP proxy.
The path to the JAR must start with http:// or https://.

Any other path is assumed to be a relative path to a JAR file that was uploaded
in the CA Process Automation user resources. CA Process Automation appends
the JAR file path to the path of the "CA Process Automation User Resources"

directory of the agent (that is mapped to the touchpoint) running the operator.

Do not start the JAR file relative path with:
-/
-\

Otherwise, CA Process Automation assumes that the JAR file path is a full path.

Resources within CA Process Automation, including user resources, are mirrored within
the mirroring interval of the agent. Verify that the JARs uploaded in the user resources
are already mirrored before using them in the Invoke Java operator.

Chapter 14: Utilities 389

Invoke Java Operator

Class Files
In addition to external JARS, you could load .class files as follows:

m For .class files in an unnamed package, enter a path that ends with the
directory that contains the .class files.

For example, if MyAccount.java does not belong to a package, and
MyAccount.class is located at:

C:\java\tests\MyAccount.class
...then set the operator to use the following path:
C:\\java\\tests

m For .class files in a named package, enter a path that ends with the
directory that contains the "root" package. This package is also known as
the first package in the full package name.

For example, if MyAccount.java belongs to package com.ca.tech, and
MyAccount .class is located at:
C:\java\othertests\com\ca\tech\MyAccount.class

...then set the operator to use the following path:
C:\\java\\othertests

If you specify the path to a directory (to load .class files), enter it as a full path.
You can also enter it as a relative path to CA Process Automation User
Resources. Do not enter the path as an HTTP path.

Specify the path to a directory to load .class files, not JAR files. Unlike .class
files, each JAR file requires a separate path that ends with the JAR file (not the
directory where it resides).

External Jar Paths as Expression

Specifies the indexed string dataset variable that contains the list of paths to the
external JARs required by the main method code of the operator, if any.

Enter Required Main Method?
Select to provide the Java code in the Required Main Method field.

Clear to provide the Java code as a dataset variable in the Required Main Method as
Expression field.

This check box is selected by default.

390 Content Designer Reference

Invoke Java Operator

Required Main Method

Specifies the Java code text of the main method. You can browse to locate any file
that contains this code. The main method consists of normal Java statements and
expressions. You must initialize and use objects defined in the Java SDK or the
external JARs.

Note: CA Process Automation parses the code and checks for its structural
validation when you click OK. An error message displays if an error is found in the
structure of the code.

See Java Code in the Invoke Java Operator (see page 393).

Required Main Method as Expression

Specifies the dataset variable that contains the content of the main method. The
main method consists of normal Java statements and expressions. You must
initialize and use objects defined in the Java SDK or the external JARs. No structural
validation is performed.

See Java Code in the Invoke Java Operator (see page 393).

Set Context Class Loader?

Set this field (to something different than default) if your main method/external
JARs rely on the Java context class loader to load classes. Set the Java context class
loader to either the operator class loader or the module class loader to avoid a
ClassCastException.

The Invoke Java operator uses a chain of class loaders to load classes while running
the Java code. This chain was designed as follows (among other class loaders):

1. Operator Class Loader: class loader that loads the classes provided at the
operator level

2. Module Class Loader: class loader that loads the classes provided at the module
level

3. Context Class Loader
4. Regular java Class.ForName

The operator consults each class loader before moving to the next (if the class is not
found).

This chain works as long as the code that you execute does not explicitly use its own
class loader to load a class. In this case, you see in the logs a 'ClassCastException'.

Chapter 14: Utilities 391

Invoke Java Operator

Example:

Consider class MyChildXMLParser extends class MyParentXMLParser. The following
code fragment listed creates a MyParentXMLParser by using a Java factory. This
factory actually loads and creates a MyChildXMLParser, which is then cast into a
MyParentXMLParser object:

public MyParentXMLParser() {
super((MyParentXMLParser)ObjectFactory.createObject("co
m.ca.parser.MyChildXMLParser"));

}
In this example, consider:

m The ObjectFactory.createObject() method actually calls its own class loader to
load the MyChildXMLParser class. This behavior is typical of Java factories,
where they either use the system class loader, or (if it exists) a context class
loader to load the class (instead of using the class loader that is used by the
executing program).

m The MyParentXMLParser class is loaded by the Invoke Java operator's class
loader (as selected using the previous chain.)

m The cast: ((MyParentXMLParser)ObjectFactory.createObject) throws a
ClassCastException. Although MyChildXMLParser extends MyParentXMLParser,
the two classes were loaded by different class loaders. As a result, they are
completely different from each other.

To resolve this issue, set the field ‘Set Context Class Loader’ to either:

m "1:Operatorclass loader": If the jar that contains ‘MyChildXMLParser’ and
‘MyParentXMLParser’ classes is provided in the operator properties.

m "2 :Module class loader": If the jar that contains ‘MyChildXMLParser’ and
‘MyParentXMLParser’ classes is provided in the module properties.

Note: "0 : Default" is used in all other cases where your Java code does not
explicitly load classes using its own class loader. This value is the default value of
this field.

By setting the context class loader to the class loader of the Invoke Java operator,
the Java factories that are called by the user’s code are forced to use the Invoke
Java operator class loader. This action removes ClassCastException.

392 Content Designer Reference

Invoke Java Operator

Java Code in the Invoke Java Operator

When using the Invoke Java operator, use the following guidelines for implementing
Java code:

CA Process Automation executes the Java code in a BeanShell interpreter. Use this
operator with Java code syntax or BeanShell scripting syntax without use of
BeanShell commands, in the following cases:

BeanShell commands do not work under Strict Java Mode (set at the module
level).

BeanShell commands that modify the classpath are not recommended. They
can affect the way CA Process Automation saves Java Object instances from the
running Java code into the dataset of the operator.

BeanShell commands that modify the classpath can affect the way CA Process
Automation loads Java Object instances from a CA Process Automation dataset
into the code.

For more information about BeanShell syntax and commands, see the following

site:

You

You

http://www.beanshell.org/

can use the standard Java variable modifiers on typed variables:
private / protected / public

transient

volatile

static

final

The BeanShell interpreter only implements "final" (and ignores the others).
can use the standard Java modifiers on methods:

private / protected / public

final

native

abstract

static

synchronized

Only "synchronized’ is currently implemented. The BeanShell interpreter
ignores the others.

Chapter 14: Utilities 393

Invoke Java Operator

m Complete all class definitions in external JARS and use them in the Main Method
code of the operator.

m The java rt.jar, which contains all the core java libraries, is automatically placed in
the classpath of the operator at runtime.

m The JAR files used by CA Process Automation are in the classpath of the operator at
runtime. Your code can work, even without listing all the needed JARS in the
operator/category, if you happen to use classes already used by CA Process
Automation.

m Common Java core packages and some extensions are automatically imported into
your Java code at runtime. You do not need to import them in your code. Packages
are as follows:

javax.swing.event
javax.swing
java.awt.event
java.awt

java.net

java.util

java.io

java.lang
bsh.EvalError

bsh.Interpreter

394 Content Designer Reference

Invoke Java Operator

m The Java code can consist of normal Java statements and expressions. You can also
define your own methods and use them inside the code. An example is as follows:

// Import the classes that you want to use
import ca.tech.pam.MyAccount;
// Note: no need to import StringBuffer and Date because they are part of the
// automatically imported packages
// import java.lang.StringBuffer;
// import java.util.Date;
// Note: the jar that contains the ca.tech.pam.MyAccount class
// must be in the list of External Jars of the operator or the module;
// but java lang and java util are in rt.jar, which is automatically put in the classpath
MyAccount acct = new MyAccount(newDate(),100);
// Use the public methods of the MyAccount object
acct.addFunds(34);
acct.subFunds(10);
// Define your own method
String getStatement(MyAccount acc) {
StringBuffer strBuff = new StringBuffer("Account Balance: " + acc.getBalance());
Date dt = new Date(System.currentTimeMillis());
strBuff.append(" on date: " + dt);
return strBuff.toString();
}
// Use the method you defined
// also print the statement using the 'logger' object that you
// setup in the 'Logger' page of the operator
logger.info(getStatement(acct));

Note: To execute this statement, set the logger to true and provide the log file
name. Otherwise an error occurs during execution.

At the end of execution, the log message contains:
Account Balance: 124. on date: Wed Jul 13 12:53:37 EDT 2011

(The message includes the correct date and time of execution.)

Chapter 14: Utilities 395

Invoke Java Operator

Input/Output

Parameters

The CA Process Automation parameters to pass to the main method. Enter the
parameters in the order that they are to be passed to the main method. Leave this
field blank if no parameters are required.

Only simple CA Process Automation parameter types can be passed to the main
method as follows:

m PAM Boolean is passed as a Boolean object.

m PAM Date is passed as a Date object.

m PAM Double is passed as a Double object

m PAM Integer is passed as an Integer object.

m PAM Long is passed as a Long object.

m PAM String is passed as a String object.

m PAM Object Reference is passed as a String object

m PAM JavaObject is deserialized and loaded into a Java object instance of its
original class type, and then passed to the Java code.

Note: The operator (or operator category) must contain the path to the JAR file that
contains the class definition of this object. Otherwise, the operator fails with the
reason:

Class Not Found Error when deserializing object. Make sure the class jar is in the
operator or module list of jars.

Complex CA Process Automation parameters types (indexed types, ValueMaps, and
so on) cannot be passed to the Java code.

The main method can access the passed parameters through the args array of
objects:

m args[0] corresponds to the first parameter in the list.

m args[1] corresponds to the second parameter in the list, and so on.

Output Variable Names

The names of the variables that are saved in the operator dataset at the end of
execution of the main method. These variables must be defined in the scope of the
main method. Leave this field blank if no output variables are to be saved in the
operator dataset.

The output variables are saved as follows:
m Boolean object is saved as a PAM Boolean

m Date object is saved as a PAM Date

Integer object is saved as a PAM Integer

m Number object is saved as PAM Long or Double object

396 Content Designer Reference

Invoke Java Operator

m String object is saved as PAM string
m Character object is saved as PAM string

m An array of any of these listed objects is saved as an indexed CA Process
Automation type. The type of the first object in the array of objects defines the
CA Process Automation type.

m Undefined is saved as a CA Process Automation string with 'undefined’ as its
value.

m Any other Java object not listed here is serialized and saved as a CA Process
Automation JavaObject.

Note: The Java object must be serializable (implements java.io.Serializable) to
save it as a CA Process Automation JavaObject. Otherwise, the operator fails
with the reason:

Error when serializing object of class: x. Object is not serializable.

Where x is the class name of the object.

Lodger
Use Logger?

Set this field to true to use an instance of an org.apache.log4j.Logger object to log
data to the specified log file. The logger handles opening and closing the file. The
logger is available in the context of the main method and can be used as
'logger.debug()', 'logger.info()', and so on.

True
Prompts the operator to use true. The operator uses an instance of ‘logger’.
False

Prompts the operator to use false. The operator does not use an instance of
‘logger’.

Blank

Prompts the operator to use the value set in the Use Default Logger field of the
operator category. If this value is blank at the operator category level, Use
logger? is set to false by default.

Any other value prompts the operator to use false, and the operator does not use
an instance of ‘logger’.

Chapter 14: Utilities 397

Invoke Java Operator

If an instance of ‘logger’ is used, then it is available in the context of the main
method of the operator. 'logger' is used as follows:

logger.debug("my log message")
logger.info("my log message")
logger.warn("my log message")
logger.error("my log message")

logger.fatal("my log message")

If an instance of ‘logger’ is not used, the 'logger' object does not exist in the context
of the main method of the operator.

Log File Path

The path to the log file used by the logger. This path must point to a file that resides
on the CA Process Automation agent host. If this field is empty, the operator
inherits the value set in the Default Log File Path field of the operator category.

Log Level

Specify the log level of the logger.

0

Prompts the operator to use DEBUG, which causes the logger to write Debug,
Info, Warn, Error, and Fatal log messages.

Prompts the operator to use INFO, which causes the logger to write Info, Warn,
Error, and Fatal log messages.

Prompts the operator to use WARN, which causes the logger to write Warn,
Error, and Fatal log messages.

Prompts the operator to use ERROR, which causes the logger to write Error and
Fatal log messages.

Prompts the operator to use FATAL, which causes the logger to write Fatal log
messages.

398 Content Designer Reference

Invoke Java Operator

Blank

Prompts the operator to inherit the value set in the Default Log Level of the
operator category. If this value is blank at the operator category level, Log Level
is set to Debug by default.

Any other integer value
Prompts the operator to use DEBUG.

Note: You can overwrite the log level at run time in the main method of the
operator. This example sets the log level to Fatal:

import org.apache.log4j.Level;
logger.setlLevel((Level) Level.FATAL);

Append to Log File?

Set this field to true to append any data from this operator to the log file (if it
exists).

True
Prompts the operator to use true. The operator appends to the log file.
False

Prompts the operator to use false. The operator deletes the content of the
existing log file before writing the new data from the operator.

Blank

Prompts the operator to use the value set in the Append to Default Log File?
field of the operator category. The operator can append to the log file
depending on what the value is set at. If this value is blank at the operator
category level also, Append to Log File? is set to false by default.

Any other value prompts the operator to use false, and the operator does not
append to the log file.

Chapter 14: Utilities 399

Invoke Java Operator

Log Data Without Logging Info?

Set to true to let the logger write the data with no additional logging information.
Only the log message is written.

Set to false to write additional logging information in the following format:

Day Month Year Hours:Minutes:Secs Log level [UUID of the Invoke Java operator that
logged this messagel: log message

True

Prompts the operator to use true. The logger writes data with no additional
logging information.

False

Prompts the operator to use false. The logger writes data with additional
logging information.

Blank

Prompts the operator to use the value set in the Default Log Data Without
Logging Info? field of the operator category. If this value is blank at the
operator category level, Log Data Without Logging Info? is set to false by
default.

Any other value prompts the operator to use false. The logger writes data with
additional logging information.

Output Parameters
ErrorLineNumber

If an error occurs due to the executing main method, this variable contains the
number of the line of code that caused an error (if available). This field is empty if
no error occurs due to the executing Java code.

ErrorMessage

If an error occurs due to the executing main method, this variable contains the
error message. This field is empty if no error occurs due to the executing Main
method.

ErrorRoot

If an error occurs due to the executing main method, this variable contains the line
of code that caused the error (if available). This field is empty if no error occurs due
to the executing main method.

ErrorException

If the executing main method throws an exception, this variable contains the
exception that was thrown. This field is empty if no error occurs due to the
executing main method.

400 Content Designer Reference

Invoke Java Operator

Result

The operator finishes successfully.
-1
The operator fails.
Reason
Completed
The operator finishes successfully.
Error Message

The operator fails. If an error occurs due to the executing main method, this
variable contains the ErrorMessage, the ErrorLineNumber, the ErrorRoot, and
the ErrorException (when applicable).

ResponseMessage

ResponseCode

externalOplarsType
externalOpJars
externalOplJarsExpression
inlineScriptType
inLineScript
scriptExpression
parameters
outputVariables
uselogger

logFile

logLevel
appendTologFile

useSimpleLoggerLayout

Chapter 14: Utilities 401

Invoke Java Operator

Java Example

The following example is located in the Examples section of the Required Main Method
field.

/*

The Main Method is used to invoke objects and methods defined in the Java SDK or in external Jars.
The Main Method consists of normal Java statements and expressions.

You can also:

- Define your own methods and use them inside the Main Method

- Pass input parameters to the Main Method

- Save output variables in the Operator's dataset at the end of execution of the Main Method

- Use a logger object in the Main Method

Typically, you would complete all class definitions in external Jars and list them in the External
Jar Paths of the operator, then initialize and use these objects in the Main Method.
*/

/*
Below is an example on how to initialize and use a MyAccount object, which is defined in an external
Jar file.
Operator Configuration:
1. Specify the path:
“Invoke Java Op Example Jars/MyAccount.jar” in the operator's list of External Jar Paths.
MyAccount.jar contains the ca.tech.pam.MyAccount class, which is used in the code below. During the
installation of CA Process Automation, MyAccount.jar is uploaded as a User Resource.
2. Specify a dataset variable of type Date as the first object in the list of Input Parameters of the
Operator.

This Parameter can be accessed in the Main Method as args[0].
3. Specify a dataset variable of type Integer and value 100 as the second object in the list of Input
Parameters of the Operator.

This Parameter can be accessed in the Main Method as args[1].
4. Specify the variable name acct (without quotes) as the first object in the list of Output Variable
Names of the Operator.

acct is created in the Main Method as a MyAccount object, hence at the end of execution of the
operator, acct will be saved in the operator's dataset as a variable of type JavaObject.
5. Configure the operator to use a logger, set 'Log File Path' to a local file path, 'Log Level' to
Info, 'Append to Log File?' to false, and 'Log Data Without Logging Info?' to true.
*/

// Import the classes that you want to use
import ca.tech.pam.MyAccount;

// Note: no need to import StringBuffer and Date (used below) because they are part of the

// automatically imported packages (full list of these packages is provided in the documentation)
// import java.lang.StringBuffer;

// import java.util.Date;

// Initialize MyAccount object
// Note that the MyAccount constructor is defined in the external jar as:

402 Content Designer Reference

Invoke Java Operator

// public MyAccount(Date date, int balance)
MyAccount acct = new MyAccount(args[0], args[1l]);

// Use the public methods of the MyAccount object

// Note that addFunds is defined in the external jar as:
// public int addFunds (int amnt)

acct.addFunds(34);

// Note that subFunds is defined in the external jar as:
// public int subFunds (int amnt)
acct.subFunds(10);

// Define your own method

String getStatement(MyAccount acc) {
StringBuffer strBuff = new StringBuffer("Account Balance:
Date dt = new Date(System.currentTimeMillis());
strBuff.append(" on date: " + dt);
return strBuff.toString();

+ acc.getBalance());

// Use the method you defined and also print the statement using the 'logger' object that you
// setup in the 'Logger' page of the operator
logger.info(getStatement(acct));

// At the end of execution of the operator:

// acct will be saved in the operator's dataset as a variable of type JavaObject.
// The logger's log file will contain the message:

// Account Balance: 124 on date: Thu Aug 22 11:27:29 EDT 2013

// (The message includes the correct date and time of execution).

Resource for Running Invoke Java Operator Example

The installation process adds one resource to the User Resource folder under Repository
in the Manage User Resources palette on the Configuration tab. The JAR file,
MyAccount.jar, is located in the Invoke_Java_Op_Example_jars folder. You can use the
MyAccount.jar file to run the Java example that is provided in the Required Main
Method field of the Invoke Java operator.

Configuration Browser ~ User Resource : ".c2ouserresources/Invoke Java Op_ Example Jars"
Manage User Resources "] Name File Ty... File Path
Filter X |1 MyAccount jar .c2ouserresources/Invoke_Java_Op_Example_Jars/MyAccount.jar

4[5 Repository
7] Agent Resources
[Orchestrator Resources
4 [l User Resource
D Invoke Java_Op_Example_Jars

Chapter 14: Utilities 403

Invoke Java Operator

Operator Ports

Success

The operator finishes successfully.

Failure

The operator fails due to any of the following reasons:

You use a BeanShell command in the operator code when the operator is set to
run in Strict Java Mode. A BeanShell command may not be supported in Strict
Java Mode.

You use untyped variable declarations in the operator code when the operator
is set to run in Strict Java Mode.

An error occurs due to the executing code. For example: calling the wrong
method on a Java object.

The operator code threw an exception while it was executing.

You try to use the logger in the code of the operator while the operator is set
not to use the logger. The logger is not defined in the operator code context,
and the operator cannot resolve any of methods of the logger.

The logger is configured to use a read-only file.

The logger is configured to use a log file that is actually a directory.
You enter a bad path in the external JAR files of the operator category.

The Java object that CA Process Automation attempts to save in the operator at
the end of execution is not serializable. The operator fails with an error
message.

You pass a dataset variable of type: JavaObject to the operator. However, you
do not specify the JAR file where the class definition of the Java object resides.
An error indicates that the operator failed to read the class descriptor when
deserializing the object.

404 Content Designer Reference

Invoke Java Operator

m You pass an empty dataset variable of type: JavaObject (value: ‘[JavaObject]’)
to the operator. The operator fails with an error indicating that it failed when
deserializing object Null.

m The list of JARS for the operator contains a JAR file that does not exist.
m The list of JARS for the operator category contains a JAR file that does not exist.

m The Invoke Java operator cannot run on an Orchestrator. If the Target field
entry resolves to an Orchestrator, the operator fails with the following output
variables:

- ResponseMessage=The Invoke Java operator cannot be executed on an
Orchestrator.

- ResponseCode=SYSTEM_ERROR

m You did not specify Java code in the main method of the operator. The main
method consists of normal Java statements and expressions. You must initialize
and use objects defined in the Java SDK or the external jars.

The Invoke Java operator is typically used in a way where you specify external
jar paths in the operator or module. You must also enter java code in the main
method of the operator. This code uses the objects that you defined in the
external jar files.

Custom Ports

Available if set by the user during the process design.

Chapter 14: Utilities 405

Run JavaScript Operator

Run JavaScript Operator

The Run JavaScript operator executes calculations and performs dataset variable
assignments. The operator performs the following actions:

m Interprets JavaScript statements in its source code.

m Allows computations to set values for variables. These values can then be used for
parameter settings in subsequent operators in the same process or in other

processes.

— Frogramming computations using
= the C20 interpreted language
e/
wo
| I

) Completed

Cperator successiul
Result=2

Input Parameters

SourceCode

Opens the code editor.

2 Failed & Custom

Qperatar failed
Result=0

Boolean expression
returns True

Use the code editor to specify one or more JavaScript statements. Each statement
ends with a semicolon (;). For example, the following statements set the day,
month, and year variables in a named dataset:

Datasets["/exploit/variables/date"].day = "31";
Datasets["/exploit/variables/date"].month = "July";
Datasets["/exploit/variables/date"].year = "2013";

Note: See the Content Designer Guide for more information about using the CA Process

Automation Code Editor.

Output Parameters

SourceCode

406 Content Designer Reference

Chapter 15: Web Services

The Web Services operators support calls to remote services using SOAP or XML. These
operators also retrieve responses and save information from the response for use by
other operators in a process.

The Web Services operators also provide data management facilities over a network
using standard and widely available protocols like HTTP. Support for RESTful services is
also provided through the HTTP operators.

HTTP Operators: Common Input Parameters

The input parameters that apply to all HTTP operators fall into separate categories as
follows:

m HTTP URL Information (see page 408)

m HTTP Proxy Information (see page 411)

m HTTP Headers Information (see page 415)

m HTTP Cookies Information (see page 415)

m HTTP Response Content Information (see page 416)

m HTTP Configuration Information (see page 418)

The properties of HTTP operators require the following input parameters:
m HTTP Delete - Common only
m HTTP Get - Common and Get Information (see page 430)

m HTTP Head - Common and Head Information (see page 434)

m HTTP Options - Common only
m HTTP Post - Common and Post information (see page 442)

m HTTP Post Form - Common and Post Form information (see page 448)

m HTTP Put - Common and Put information (see page 455)

m HTTP Trace - Common only

Note: Unless otherwise specified, field entries override corresponding field values that
are inherited from the operator category level configuration.

Chapter 15: Web Services 407

HTTP Operators: Common Input Parameters

HTTP URL Information

HTTP URL Information includes input parameters that apply to the following operators:
m HTTP Delete
m HTTP Get
m HTTP Head
m HTTP Options
m HTTP Post
m HTTP Post to Form
m HTTP Put
m HTTP Trace
URL
Specifies the URL of the HTTP request. The URL starts with http:// or https://.
Valid SSL Certificate?

Specifies whether a valid SSL certificate is found. This field is relevant when
querying an HTTPS URL.

Values

m True - Validates the SSL certificate and fail the operator if the certificate is
invalid.

m False - Accepts the SSL certificate even if it is invalid and continue to make the
HTTP call.

m Empty - Uses the value set for "Default Validate SSL Certificate?" at the
operator category level.

408 Content Designer Reference

HTTP Operators: Common Input Parameters

Authentication Type
Select one of the following options.
HTTP Authentication

Specifies whether the HTTP server, at the specified URL, requires
authentication. The HTTP operators support Basic HTTP authentication, HTTP
Preemptive Authentication, or NTLM authentication. If either type of
authentication is needed, set this value to true.

Values
m True - Specifies that the HTTP server requires authentication.
m False - Specifies that the HTTP server does not require authentication.
m Blank - Specifies to use the value set at the operator category level.
m Any other value - Same as false.
Default
Blank - Specifies to use the value set at the operator category level.
Notes

m If HTTP authentication is set to false in the operator, then NTLM
Authentication, User name, Password, and Domain name are all disabled.

m If HTTP authentication is not set to false in the operator (true, dataset
variable or any other value), then the following are enabled:

- NTLM authentication
- User name
- Password

- Domain name

Chapter 15: Web Services 409

HTTP Operators: Common Input Parameters

HTTP Preemptive Authentication

During the interaction with a Web Service, a CA Process Automation HTTP
operator typically acts like a web browser where it first negotiates with the
Web service on the authentication scheme to use. This negotiation is done
before the operator issues its request to the Web service.

Normally, for Basic HTTP authentication, the Web service specifies during the
authentication negotiation, with the CA Process Automation operator, that it
requires Basic Authentication. If configured for HTTP Authentication, the CA
Process Automation operator then agrees with the Web service to use Basic
Authentication.

However, some Web services do not specify during the negotiation that they
require Basic Authentication. Instead, they assume that the operator will
preemptively send the Basic Authentication. This is typically done to reduce the
connection overhead. In this case, the CA Process Automation HTTP operator
should be configured to use HTTP Preemptive Authentication (instead of HTTP
Authentication), which prompts the operator to send Basic HTTP
Authentication to the Web service without negotiation.

NTLM Authentication

Specifies whether the HTTP server at the specified URL requires NTLM
authentication. CA Process Automation uses basic HTTP authentication if NTLM
authentication is not selected.

Values
m True - Specifies that the HTTP server requires NTLM authentication.

m False - Specifies that the HTTP server does not require NTLM
authentication. The server uses basic HTTP authentication

m Blank - Specifies to use the value set at the operator category level.

m Any other value - Same as false.

User name

Specifies the username to use when authenticating against the specified URL.

Password

Specifies the password for the specified User name.

Domain name

Specifies the name of the domain to use when authenticating against the specified

URL.

Use the following guidelines:

Enter the Domain name (required) if the operator uses NTLM authentication.

Leave blank if the Domain name is not required for authentication. A Domain
name may not be required if the operator uses basic HTTP authentication.

410 Content Designer Reference

HTTP Operators: Common Input Parameters

Usage Notes for Domain name, User name, and NTLM authentication

A blank Domain name field does not automatically prompt the operator to
inherit the Domain name value from the operator category. The Domain name
field is tied to the User name field as follows:

m If the Domain name for the operator is specified, the operator uses it.

m |f the Domain name of the operator is blank and the user name of the
operator is specified (not blank), the operator uses a blank Domain name.

The operator uses the default Domain name from the operator category if the
following are blank (not specified):

m The Domain name of the operator.
m The User name for the operator.
A specified Domain name is used as follows:

m [f the operator uses NTLM authentication, the Domain name is used as
provided without being appended to the user name.

m [f the operator uses Basic HTTP authentication, the Domain name is
appended to the user name as: User name = user name@domain name

HTTP Proxy Information

HTTP Proxy Information includes input parameters that apply to the following

operators:

m HTTP Delete

m HTTP Get

m HTTP Head

m HTTP Options

m HTTP Post

m HTTP Post to Form
m HTTP Put

m HTTP Trace

Note: Unless otherwise specified, field entries override corresponding field values
inherited from the operator category level configuration.

Chapter 15: Web Services 411

HTTP Operators: Common Input Parameters

Use Proxy?

Specifies whether the HTTP calls go through a proxy server. This field overrides the
modaule field. If left blank, the operator uses the default value set at the module
level.

Values
One of the following:
m True - Indicates to route HTTP calls through a proxy server.
m False - Indicates that HTTP calls do not go through a proxy server.

m Blank - Indicates to use the value set at the module level.

Any other value - Same as False.

Notes:

m Setting this field to False disables the remaining fields in HTTP Proxy
Information.

m Not setting this field to False in the operator (true, dataset variable or any
other value) enables the remaining fields in HTTP Proxy Information.

Proxy Host

Specifies either the URL (with http or https) of the proxy server or the FQDN of the
proxy server.

Note: If the FQDN is entered, the HTTP scheme is used to contact the Proxy server,
that is, http://<FQDN of proxy>:<port>.

Proxy Port
Specifies the port of the specified Proxy Host.
Values
One of the following:

m Blank - Inherits the Default Proxy Port value set at the module level, if
present. Otherwise, port 80.

m The specified port number.

412 Content Designer Reference

HTTP Operators: Common Input Parameters

Proxy Authentication?

Specifies whether the proxy server, at the specified proxy URL, requires
authentication. Proxy authentication can be either Basic HTTP authentication or
NTLM authentication. If either type of authentication is needed, set this value to
true.

Values
One of the following:
m True - Indicates the proxy server requires authentication.
m False - Indicates the proxy server does not require authentication.
m Blank - Indicates to use the default value set at the module level.
m Any other value - Same as False.

Proxy NTLM Authentication?

Indicates whether the specified Proxy Host requires NTLM authentication.

Values
One of the following:

m True - Indicates that the specified Proxy Host requires NTLM
authentication.

m False - Indicates that the specified Proxy Host does not require NTLM
authentication. The proxy host uses basic HTTP authentication.

m Blank - Specifies to use the value set at the module level.
m Any other value - Same as False.
Note

If Proxy Authentication is set to false in the operator then the following are
disabled:

m Proxy NTLM authentication
m Proxy User name

m Proxy Password

m Proxy Domain name

If Proxy Authentication is not set to false in the operator (true, dataset variable
or any other value) then the following are enabled:

m Proxy NTLM Authentication
m Proxy User name
m Proxy Password

m Proxy Domain name

Chapter 15: Web Services 413

HTTP Operators: Common Input Parameters

Proxy User name

Specifies the username to use when authenticating with the proxy.

Proxy Password

Specifies that password associated with the Proxy User name.

Proxy Domain name

Specifies the name of the domain to use when authenticating against the specified
Proxy server.

Use the following guidelines:

Enter the proxy domain name (required) if the operator uses NTLM
authentication against the Proxy server.

Leave blank if the Proxy Domain name is not required for authentication. If the
operator uses basic HTTP authentication against the Proxy server, a domain
name is typically not required.

Usage Notes for Proxy Domain name, Proxy User name, and Proxy NTLM
authentication

A blank Proxy Domain name field does not automatically prompt the operator
to inherit the proxy domain name value from the module.

The Proxy Domain Name field of the operator is tied to the Proxy User name
field of the operator as follows:

- If the Proxy Domain name of the operator is specified, the operator uses
this name.

- If the Proxy Domain name is blank and the Proxy User name is specified
(not blank), the operator uses a blank Proxy Domain name.

- If the Proxy Domain name is blank and the Proxy User name is not
specified (blank), the operator uses the inherited Default Proxy Domain
name.

A specified Proxy Domain name is used as follows:

- If the operator uses NTLM authentication against the proxy server, the
specified Proxy Domain name is used as provided. The Proxy Domain name
is not appended to the Proxy User name.

- If the operator uses Basic HTTP authentication against the proxy server,
the specified Proxy Domain name is appended to the Proxy User name as:

User name = user name@domain name

414 Content Designer Reference

HTTP Operators: Common Input Parameters

HTTP Headers Information
Use Indexed Value Map for HTTP Headers?
Specifies whether to use an indexed value map for HTTP request headers.
Values:

m Selected - Indicates to enter HTTP request headers as an indexed value
map in the HTTP Headers Indexed Value Map field.

m Cleared - Indicates to enter the HTTP request headers in the HTTP Headers
field.

HTTP Headers

Specifies the names of the HTTP headers in the Key column and the values of the
HTTP headers in the Value column. Headers must be in US-ASCII format.

Use the buttons to add, remove, or reorder headers.

Note: The operator ignores any header where the Key is blank, that is, where no
header name is specified.

HTTP Headers Indexed Value Map

Specifies the name of an indexed ValueMap that contains the HTTP header names
and corresponding values. The indexed ValueMap must be of the same format as
the one listed in the HTTP Headers field. The indexed value map must have both the
Key and Value parameters.

Note: The operator ignores any header where the Key is blank, that is, where no
header name is specified.

HTTP Cookies Information
HTTP Cookies Store Indexed Value Map
Type an indexed value map that contains the HTTP cookies to set in this operator.

This field enables HTTP state management by allowing users to pass the
HTTPCookiesStore from one operator to another who is targeting the same cookie
domain. The indexed value map must be of the same format as the ones returned
in the HTTPCookiesStore output variable of other HTTP operators. Typically, this
field has the following format:

PreviousHttpOperator.HTTPCookiesStore

By getting the HTTPCookiesStore of another operator, this operator can send any
applicable cookies. Applicable cookies include those set in the HTTP request or
HTTP response of the previous operator. This operator sends only the unexpired
cookies (from the HTTPCookiesStore) whose attributes are applicable to the URL of
this operator. Example attributes include domain, path, and isSecure.

Chapter 15: Web Services 415

HTTP Operators: Common Input Parameters

HTTP Response Content Information
Save HTTP Response Content to File?

Specifies whether to save the body of the HTTP response message to a file. Select
this field to enable the HTTP Response Content File Path field and the If Text
Response, Save it Using Encoding field.

Values
m Selected - Saves the body of the HTTP response message to a file.
m Cleared - Does not save the body of the HTTP response message to a file.
HTTP Response Content File Path

Specifies where to save the HTTP response message body. Type the path of the
local file on the host where the touchpoint is running.

If Response File exists?

Specifies the action to take if the response file exists. Available actions are to create
a file or overwrite the content of the existing file.

The path of the file is listed in the HTTPResponseContentFilePath operator output
variable.

Values
This value can be:
m createFile - Indicates to create a file.

m overwriteFile - Indicates to overwrite the content of the response file with
the new HTTP response message body.

m Blank - Same as createFile.

m Any other integer - Same as createFile.

416 Content Designer Reference

HTTP Operators: Common Input Parameters

If Text Response, Save it Using Encoding

Specify this encoding if you are expecting a text response. The content-type of the
response is of the format:

text/XXXX
This encoding is used to write the response in the Response File.
If the response received is not of type text/XXXX, this field is ignored.
Values
This value can be:

m 0 :Specified in HTTP Response Header - Enter O to use the encoding
specified in the HTTP response header.

m 1:PAM's Default System Encoding - Enter 1 to use CA Process
Automation's default system encoding.

m 2 :Specify an Encoding in 'User Specified Text Response Encoding' - Enter 2
to specify the encoding (to be used) in the User Specified Text Response
Encoding field.

m Blank - Prompts the operator to use 0 (use the encoding specified in the
HTTP Response Header).

m Any other integer - Prompts the operator to use 0 (use the encoding
specified in the HTTP Response Header).

If this field is set to 0 or 1, then field User Specified Text Response Encoding is
disabled.

User Specified Text Response Encoding
Specify an encoding to use when writing the text response in the Response File.
Save HTTP Response Content to Dataset Variable?

Specifies whether to save the body of the HTTP response message to the
HTTPResponseContent variable in the dataset of the operator. When saving is
selected, the HTTP Response Dataset Field Size Limit field is enabled.

Values

m Selected - Saves the body of the HTTP response content to the
HTTPResponseContent variable in the dataset of the operator.

m Cleared - Does not save the HTTP response content.

Chapter 15: Web Services 417

HTTP Operators: Common Input Parameters

HTTP Response Dataset Variable Size Limit (bytes)

Specifies the maximum number of bytes (of the HTTP response message body) to
save in the HTTPResponseContent dataset variable of the operator.

Value

A numerical value.
Default

4096 bytes (if left blank)

HTTP Confiduration Information
HTTP Version
Specifies the HTTP protocol version.
Values:
One of the following:
m 1.0 -Indicates that the operator is to use HTTP protocol version 1.0.
m 1.1-Indicates that the operator is to use HTTP protocol version 1.1

m Blank - Indicates the operator is to use the value set at the operator
category level, where blank or any value other than 1.1 or 1.0 at the
category level prompts the operator to use 1.1.

m Anyvalue other than 1.0 or 1.1 - use HTTP protocol 1.1
Default:
Blank
Connection Timeout (sec)

Specifies the maximum amount of time to wait for an HTTP connection to establish
before the operator times out.

Values:
One of the following:
m A numeric value indicating the connection timeout in seconds.
m Oindicates no timeout, that is, zero seconds.

m Blank indicates the Default Connection Timeout set at the operator
category level, if available, otherwise 0 seconds.

Default:
Blank.

418 Content Designer Reference

HTTP Operators: Common Input Parameters

Socket Timeout (sec)

Specifies the maximum amount of time to wait between two consecutive HTTP
response data packets.

Values:
One of the following:
m A numeric value indicating the socket timeout in seconds.
m Oindicates no timeout, that is, zero seconds.

m Blank - Indicates the Default Socket Timeout set at the operator category
level, if available, otherwise 0 seconds.

Default:
Blank.
Handle Redirects?
Indicates whether to handle redirects automatically.
Values:
One of the following:
m True - Handle redirects automatically.
m False - Do not handle redirects automatically.

m Blank - Use the Default Handle Redirects? value set at the operator
category level.

m Any other value - Indicates false.
Default:
Blank.
Maximum Number of Redirects

Specifies the maximum number of redirects to follow, when Handle Redirects? is
set to True.

Values:
One of the following:
m A numeric value indicating the maximum number of redirects to allow.

m Blank - The Default Maximum Number of Redirects, if set. Otherwise, 100.

Default:

Blank.

Chapter 15: Web Services 419

HTTP Operators: Common Output Parameters

HTTP Operators: Common Output Parameters

Output variables do not contain data when the operator does not receive an HTTP
response due to an error such as the following:

®m Input contains an unknown URL.
m The HTTP connection times out.
m The socket times out.
HTTPRequestUrl
Specifies the HTTP request URL, including any URL parameters.
HTTPResponseStatusLine

Specifies the status line of the HTTP response. The status line is the first line of the
HTTP response message. The status line consists of the protocol version, the status
code, and the associated reason phrase.

HTTPResponseStatusCode

Specifies the status code of the HTTP response. The operator fails or succeeds
depending on this status code.

m The operator fails if the status code is greater than or equal to 300.

m The operator succeeds if the status code is less than 300.
HTTPResponseReasonPhrase

Specifies the reason phrase of the HTTP response.
HTTPResponseProtocolVersion

Specifies the protocol version of the HTTP response.
HTTPResponseContentType

Specifies the content-type header of the HTTP response content.
HTTPResponseContentCharset

Specifies the character encoding of the HTTP response content. This character
encoding is part of the content-type header, and appears in the following form:

“content-type= xxxxx; charset=xxxx"
This charset is only set with an all character content-type such as text/xxx.
HTTPResponseContentLength

Specifies the number of bytes of the HTTP response content. A negative number
means that the content length is not known.

HTTPResponseContentEncoding

Specifies the content-encoding header of the HTTP response content. Blank
indicates that the content-encoding is unknown.

420 Content Designer Reference

HTTP Operators: Common Output Parameters

HTTPResponseContentlsChunked

True indicates that the HTTP response content was received with chunked
encoding. False is returned if the True condition is not met.

HTTPResponseContentFilePath

Specifies the path to the file where the HTTP response content was saved. Blank
indicates that the operator is not set up to save the HTTP response content
(message body) to a file.

m If the input for If Response File exists? was 0 and the file path that was
specified as input in HTTP Response Content File Path exists, then the
HTTPResponseContentFilePath field contains the path to the new file where
the HTTP response content was saved.

m [f the input for If Response File exists? was 1 and the file path that was
provided as input in HTTP Response Content File Path exists, then the
HTTPResponseContentFilePath field contains the path provided in HTTP
Response Content File Path.

HTTPResponseContent

Specifies the HTTP response content, up to the number of bytes entered in HTTP
Response Dataset Variable Size Limit (bytes) field. Blank can indicate that the
operator is not set up to save the HTTP response content (message body) to its
dataset. Blank also can indicate that the HTTP response content is empty.

HTTPResponseHtmlContent

Specifies the HTTP response content rendered as HTML in the dataset of the
operator. The content-type header starting with "text/html" indicates that the HTTP
response content is HTML. When CA Process Automation detects that the HTTP
response content is HTML, the HTTP response content is rendered as HTML in the
dataset of the operator. The raw data remains accessible for javascript code in
HTTPResponseContent. Blank can indicate that the operator is not set up to save
the HTTP response content (message body) to a dataset. Blank can also mean that
CA Process Automation detects that the HTTP response content is not HTML or that
the HTTP response content is empty.

Note: CA Process Automation renders only basic HTML pages. CA Process
Automation does not render complex HTML pages.

HTTPResponseHeaders

Specifies the HTTP headers of the HTTP response. The headers are returned as an
indexed ValueMap where each ValueMap contains a single header and the
following two parameters:

Key
Specifies the name of the HTTP header.
Value

Specifies the value of the HTTP header.

Chapter 15: Web Services 421

HTTP Operators: Common Output Parameters

HTTPRequestHeaders

Specifies the HTTP headers of the HTTP request that was sent. This field contains
the HTTP headers that were provided as input in the HTTP Headers or HTTP
Headers ValueMap fields of the operator. This field also contains the HTTP headers
for authentication, proxy, and others that the operator added before sending the
request.

The headers are returned as an indexed ValueMap where each ValueMap contains
a single header and the following parameters:

Key
Specifies the name of the HTTP header.
Value
Specifies the value of the HTTP header.
HTTPRequestLine

Specifies the request line of the HTTP request that was sent. The HTTP request line
contains the HTTP method, the URL, and the HTTP version.

HTTPCookiesStore

Specifies the parsed version of the HTTP cookies sent in the request and the HTTP
cookies embedded in the response headers. The cookies are returned as an indexed
ValueMap where each ValueMap contains a single cookie that was defined with the
following parameters:

Name

Specifies the name of this HTTP cookie.
Value

Specifies the value of this HTTP cookie.
Version

Specifies the version of the cookie specification that this HTTP cookie conforms
to.

Domain

Specifies the domain of this HTTP cookie. The HTTP cookie is valid in this
Domain.

422 Content Designer Reference

HTTP Operators: Common Output Parameters

Path

Specifies the path of this HTTP cookie. This value specifies the subset of URLs,
for which this HTTP cookie applies, on the original HTTP server.

ExpirationDate

Specifies the expiration date of this HTTP cookie. Some cookies return an
expiration date, while others return a maximum age. The expiration date is
returned in the following format:

"yyyy.MM.dd 'at' HH:mm:ss z"
MaxAge

Specifies the maximum age of this HTTP cookie. Some cookies return a
maximum age, while others return an expiration date.

Comment
Specifies the purpose of this HTTP cookie.
Ports

Specifies the ports of this HTTP cookie. The ports are returned as a string of
comma-separated values. This value specifies the ports on which this HTTP
cookie can be sent back in a request header.

IsSecure
One of the following options:

m True - Indicates that this HTTP cookie can be sent only on a secure
connection.

m False - Indicates that a secure connection is not necessary for sending this
cookie.

ResponseHeaderName

Specifies the name of the response header that contains this HTTP cookie. This
value can be “Set-Cookie” or “Set-Cookie2”.

Chapter 15: Web Services 423

HTTP Operators: Common Output Ports

Result

This value is one of the following options:

1
Indicates that the operator finished successfully.
-1
Indicates that the operator failed.
Reason

This value is one of the following options:
Completed

This reason is associated with the result of 1, successful completion.
<error message>

An explanation of why the error occurred; associated with the result of -1,
where the operator failed.

HTTP Operators: Common Output Ports

Success
The operator finished successfully.
Timeout

A connection timeout or a socket timeout occurred.

424 Content Designer Reference

HTTP Operators: Common Output Ports

Failure
The HTTP response has a status code greater than or equal to 300.

The HTTP Response Content can contain the HTTP status code and the reason for
operator failure. The HTTPResponseReasonPhrase can contain a generic reason of
failure. A generic reason for failure is returned in the HTTP response Status Line.
Examine the HTTPResponseContent for details.

Descriptions for status codes 401 and 407 and other failure reasons follow:
401

Status code 401 indicates one of the following conditions:

m Incorrect URL authentication credentials.

m Incorrect URL authentication scheme (Basic vs NTLM)

m No authentication credentials are provided when the HTTP URL requires
authentication.

m URL authentication failure.

With a 401 error code, the HTTP server typically returns the
WWW-Authenticate response header. This response header contains the
authentication scheme that the HTTP server is using. Use this information to
determine which authentication scheme to use against the URL. Basic HTTP
authentication and NTLM authentication are the two schemes that HTTP
operators support.

407
Status code 407 indicates one of the following conditions:
m Incorrect proxy authentication credentials.
m Incorrect proxy authentication scheme (Basic vs NTLM).

m No authentication credentials are provided when the proxy requires
authentication.

m Proxy authentication failure.

With a 407 error code, the HTTP proxy typically returns the Proxy-Authenticate
response header. This response header contains the authentication scheme
that the proxy server is using. Use this information to determine which
authentication scheme to use against the proxy. Basic HTTP authentication and
NTLM authentication are the two schemes that HTTP operators support.

Chapter 15: Web Services 425

HTTP Delete Operator

m The URL or Proxy Host that was specified as input is unknown.

m The HTTP call goes through a proxy but the input did not include specification
of a proxy. In this case, the operator can specify that the connection to the
HTTP URL is refused.

m Inputincluded an invalid proxy port. In this case, the operator can specify that
the connection to the ‘ProxyHost:ProxyPort’ is refused.

m Invalid input, such as the following information, was detected:
- Negative connection or socket time outs.
- Negative maximum number of redirects.
- Negative response data set field size limit.
- Save response to file with no file path provided.
Custom Ports

If set by the user during the process design.

HTTP Delete Operator

L%

The HTTP Delete operator sends an HTTP Delete to a URL. The HTTP Delete operation
causes the HTTP server to delete the resource that is located at the requested URL.

The HTTP Delete operator can be used for RESTful services.
Important! Use the HTTP Options operator to determine whether the HTTP Delete

method is supported. Typically, the HTTP Delete method is disabled on public HTTP
servers to prevent deletion of files on the HTTP servers.

Input Parameters

See the following sections for descriptions of the input parameters for the HTTP Delete
operator:

HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Proxy Information

See HTTP Proxy Information (see page 411) for descriptions of input parameters.

426 Content Designer Reference

HTTP Delete Operator

HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

Chapter 15: Web Services 427

HTTP Delete Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode

428 Content Designer Reference

HTTP Get Operator

HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmIContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Output Ports

Output ports for the HTTP Delete operator consist of only the common output port (see
page 424) for HTTP operators.

HTTP Get Operator

The HTTP Get operator sends an HTTP Get request to a URL.

If the specified URL points to a resource, then the HTTP Get operator retrieves the
resource. Use the HTTP Get operator to download a file from an HTTP server by
specifying the URL of the file.

If the specified URL points to a process that produces data, then the HTTP Get operator
retrieves the data produced by the process. The HTTP Get operator does not retrieve

data from the process source.

The HTTP Get operator can be used for RESTful services.

Chapter 15: Web Services 429

HTTP Get Operator

Input Parameters

HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Get Information
URL Parameters Encoding

Specifies the character encoding to use when encoding the URL parameters. ASClI is
the recommended encoding for URL parameters in an HTTP Get operation. The URL
parameters are transferred in the URL. Encodings other than ASCII, UTF-8, and
ISO-8859-1 typically do not work.

Values

One of the following:

m ASCl

s UTF-8

m ISO-8859-1
Default

Blank - Same as ASCII.
Use Indexed Value Map for URL Parameters?

Indicates which of the following fields to use for entry of URL parameters: URL
Parameters Indexed ValueMap or URL Parameters.

Values

Selected - Enter the URL parameters as an indexed Value Map in the URL
Parameters Indexed ValueMap field.

Cleared - Enter the URL parameters in the URL Parameters field.
URL Parameters

Specifies the names of the URL parameters in the Key column, and the values of the
URL parameters in the Value column.

Use the buttons to add, remove, or reorder parameters.

Note: The operator ignores any URL parameter where the Key is blank, that is, one
where no URL parameter name specified.

430 Content Designer Reference

HTTP Get Operator

URL Parameters Indexed Value Map

Specifies the name of an indexed ValueMap. This name is a dataset variable of type
indexed value map with keys and values, where the keys are URL parameter names.
The indexed ValueMap must consist of Key and Value parameters. The indexed
ValueMap must be in the same format as the one listed in the URL Parameters field.
The operator ignores any URL parameter with a blank Key.

HTTP Proxy Information

See HTTP Proxy Information (see page 411) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

Chapter 15: Web Services 431

HTTP Get Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReqUrlParamsEncoding
HttpReqUrlParamsType
HttpReqUrlParamsValueMap
HttpRegUrlParamsVarValueMap
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout

HttpHandleRedirects

432 Content Designer Reference

HTTP Get Operator

Operator Failure

HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent
HTTPResponseHeaders
TTPResponseContentisChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Output Ports

Output ports for the HTTP Get operator consist of the common output ports for HTTP

operators plus an additional failure case.

The HTTP Get operator can fail for the following reasons:

m Failures that are common to output ports for all HTTP operators.

Note: See HTTP Operators: Common Output Ports (see page 424) for descriptions.

m You specified an invalid encoding in the URL Parameters Encoding field.

Chapter 15: Web Services 433

HTTP Head Operator

HTTP Head Operator

W
Lol
The HTTP Head operator sends an HTTP Head request to a URL. The HTTP Head method
is similar to the HTTP Get method. The difference between the two methods is that with
HTTP Head, the HTTP server does not return the resource located at the URL. The HTTP
headers of the response are the same for the Head method and the Get method.

The HTTP Head method is typically used to obtain information about a resource without
actually getting (transferring) it.

Input Parameters
HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Head Information
URL Parameters Encoding

Specifies the character encoding to use when encoding the URL parameters. ASCIl is
the recommended encoding for URL parameters in an HTTP Head operation. The
URL parameters are transferred in the URL. Encodings other than ASCII, UTF-8, and
ISO-8859-1 typically do not work.

Values

One of the following:

m ASCl

m UTF-8

m [SO-8859-1
Default

Blank - Same as ASCII.

434 Content Designer Reference

HTTP Head Operator

Use Indexed Value Map for URL Parameters?

Indicates which of the following fields to use for entry of URL parameters.
Specifically, indicates whether to specify URL parameters as an indexed ValueMap
in the URL Parameters Indexed ValueMap field or to enter the URL parameters in
the URL Parameters field.

Values

Selected - Enter the URL parameters as an indexed ValueMap in the URL
Parameters Indexed ValueMap field.

Cleared - Enter the URL parameters in the URL Parameters field.
URL Parameters

Specifies the names of the URL parameters in the Key column, and the values of the
URL parameters in the Value column.

Use the buttons to add, remove, or reorder parameters.

Note: The operator ignores any URL parameter where the Key is blank, that is, one
where no URL parameter name is specified.

URL Parameters Indexed Value Map

Specifies the name of an indexed ValueMap. This name is a dataset variable of type
indexed ValueMap with keys and values, where the keys are URL parameter names.
The indexed ValueMap must consist of Key and Value parameters. The indexed
ValueMap must be in the same format as the one listed in the URL Parameters field.
The operator ignores any URL parameter with a blank Key.

HTTP Proxy Information

See HTTP Proxy Information (see page 411) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

Chapter 15: Web Services 435

HTTP Head Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReqUrlParamsEncoding
HttpReqUrlParamsType
HttpReqUrlParamsValueMap
HttpRegUrlParamsVarValueMap
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout

HttpHandleRedirects

436 Content Designer Reference

HTTP Head Operator

HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Note: The HTTP Head operator does not transfer the resource located at the specified
URL. Therefore, output variables such as HTTPResponseContentType and
HTTPResponseContentLength are blank. To find the information about the resource at
the specified URL, view the HTTPResponseHeaders. The HTTPResponseHeaders contain
information on headers such as content-type and content-length. This is information
returned by the HTTP server on this resource.

Output Ports

Output ports for the HTTP Head operator consist of the common output ports for HTTP
operators plus an additional failure case.

Chapter 15: Web Services 437

HTTP Options Operator

Operator Failure

The HTTP Head operator can fail for the following reasons:
m Failures that are common to output ports for all HTTP operators.

Note: See HTTP Operators: Common Output Ports (see page 424) for descriptions.

m The user specified an invalid encoding in the URL Parameters Encoding field.

HTTP Options Operator

L %
The HTTP Options operator sends an HTTP Options request to a URL. The HTTP Options
lets you determine what HTTP methods the HTTP server supports.

The supported HTTP methods are listed in the HTTPAllowedMethods output variable at
the end of the execution of the operator.

Input Parameters

See the following sections for descriptions of the input parameters for the HTTP Options
operator:

HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Proxy Information

See HTTP Proxy Information (see page 411) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

438 Content Designer Reference

HTTP Options Operator

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

Chapter 15: Web Services 439

HTTP Options Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode

440 Content Designer Reference

HTTP Post Operator

HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmIContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore
HTTPAllowedMethods

Specifies an indexed string containing the names of the methods that are supported

by the resource or server located at the specified URL.

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Output Ports

Output ports for the HTTP Options operator consist of only the common output ports
for HTTP operators.

See HTTP Operators: Common Output Ports (see page 424) for descriptions.

HTTP Post Operator

The HTTP Post operator sends an HTTP Post request to a URL. The HTTP Post operator
typically requests that the HTTP server store the resource that is enclosed as the HTTP
request content. The HTTP server process at the specified URL then processes the
resource.

Chapter 15: Web Services 441

HTTP Post Operator

Input Parameters

Note: Unlike the HTTP Put operator, the URL of an HTTP Post operator points to the
process that can handle the enclosed resource.

The HTTP Post operator can be used for RESTful services.

HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Post Information

HTTP Post Information specifies the body of the HTTP request.
Is Chunked?

Specifies whether to send the HTTP request chunked.

When chunk coding is set, the HTTP request does not contain the "content-length"
header.

Note: HTTP 1.0 does not support chunk coding. The HTTP Post operator fails with
an 'HTTP client protocol error' if chunk coding is set and the HTTP version is 1.0.

Values
One of the following:
m True - Indicates to send the HTTP request chunked.
m False - Indicates that the HTTP request is not to be sent chunked.
m Any other value - Same as False.
Default

Blank - Same as False.

442 Content Designer Reference

HTTP Post Operator

Content Type

Specifies the type of the content that composes the HTTP request body, which is set
as a header (content-type) in the HTTP request.

Values

This value is one of the following:

A media type selected from the drop-down list.

Blank, where the content is retrieved from a file specified in ‘Content File
Path.’

CA Process Automation sets the value to application/octet-stream. The
HTTP server is responsible for interpreting this generic content-type.

Blank, where content is retrieved from the ‘Content’ field.

CA Process Automation does not set the content-type. The HTTP server is
responsible for interpreting the no content-type header.

A valid media type that you type into the field.

For valid media types, see the IANA website pages on
assignments/media-types.

Note: Make sure to set the right content-type, especially when the content is
not retrieved from a file.

Content Character Encoding

Specifies the character encoding of the content of the HTTP request body. Set this
field only if the content type is all characters, for example: ‘text/XXX’.

Values

This value is one of the following:

A character set selected from the drop-down list.
A valid character set (encoding) that you type into the field.

For valid encodings, see the IANA website pages on
assignments/character-sets.

Note: Make sure to set the right character encoding, especially when the
content is not retrieved from a file.

Chapter 15: Web Services 443

HTTP Post Operator

Retrieve Content From File?

Specifies whether to retrieve the HTTP request body from a local file on the host
where the touchpoint is running.

Values
This value is one of the following:

m Selected - Indicates to retrieve the HTTP request body from a local file on
the host where the touchpoint is running.

m Cleared - Indicates to retrieve the HTTP request body from the Content
field.

Content File Path

Specifies the path to a local file on the host where the touchpoint is running. The
local file contains the HTTP request body.

Content

Specifies the HTTP request body.

HTTP Proxy Information

See HTTP Proxy Information (see page 411) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

444 Content Designer Reference

HTTP Post Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReglsChunked
HttpReqContentType
HttpRegContentCharset
HttpRegContentFromFile
HttpRegContentFilePath
HttpReqContent
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion

HttpConnectionTimeout

Chapter 15: Web Services 445

HTTP Post Operator

HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Output Ports

Output ports for the HTTP Post operator consist of the common output ports for HTTP
operators plus an additional failure case.

446 Content Designer Reference

HTTP Post Form Operator

Operator Failure

The HTTP Post operator can fail for the following reasons:
m Failures that are common to output ports for all HTTP operators.

Note: See HTTP Operators: Common Output Ports (see page 424) for descriptions.

m ‘HTTP client protocol error’ can occur if chunk coding is set and the HTTP version is
1.0. This can cause a ClientProtocolException.

m Theinput includes invalid encoding in the Content Character Encoding field.

Note: CA Process Automation does not verify that the Content Type value specified
in the input is valid when the content is retrieved from a file. The receiving HTTP
server is responsible for returning an error code if it detects an invalid Content
Type.

HTTP Post Form Operator

The HTTP Post Form operator posts data to an HTTP form. The data is of type
name-value pairs that can include values that are files.

Unlike the HTTP Post operator, the HTTP Post Form operator sends the HTTP post
request to an HTTP form. The URL of the operator is the action element of the form. For
example:

<form name="myForm” method="post” action ="XXXXXXXX">

Express the destination URL as the full path to the script or process on the HTTP server
that the action element points to. Do not use a relative path for the destination URL.

The script or process where the action element points must be publicly available for the
HTTP Post Form operator to call it.

Chapter 15: Web Services 447

HTTP Post Form Operator

Input Parameters
HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Post Form Information
Form Fields Encoding

Specifies the character encoding to use when encoding the form fields parameters.
The data in the HTTP Post Form operator goes in the body of the request.

Values
This field accepts the following values:
m Avalue from the drop-down list.
m Avalue entered by the user.
m Blank-1S0O-8859-1

Default
ISO-8859-1

Use Indexed Value Map for Form Fields?

Specifies whether to specify form fields in the Form Fields Indexed Value Map field
or in the Form Fields field. The choice enables entry to the corresponding field.

Values

m Selected - Indicates that the form fields are specified as an indexed Value
Map in the Form Fields Indexed Value Map field.

m Cleared - Indicates that the form fields are specified in the Form Fields
field.

Form Fields

Specifies the combination of key and value for each form field. The Key column
contains the names of the form fields and the Value column contains the values of
the form fields.

Use the buttons to add, remove, or reorder parameters.

Note: The HTTP Post Form operator ignores any form field with a blank Key.

Form Fields Indexed Value Map
Specifies the name of an indexed ValueMap.

This Value Map consists of Key and Value. A Key entry is the name of a form field;
the corresponding Value entry is the value of that form field. The indexed
ValueMap is in the same format as the one listed in the Form Fields field.

Note: The HTTP Post Form operator ignores any form field with a blank Key.

448 Content Designer Reference

HTTP Post Form Operator

File Fields in Form?

Indicates whether the form contains fields that allow for files to be uploaded to the
form. Selecting this check box lets you enter related data in the following fields: Use
Indexed Value Map for Form Files?, Form Files, and Form Files Indexed Value Map.

Note: The HTTP request header content-type depends on how the File Fields in
Form? field is set.

Values
This field is set in one of the following ways:

m Selected - The content type of the HTTP request follows, where XXXXXXX is the
boundary string that separates the different parts of the HTTP request. Each
part in the HTTP request body can have its own content-type.

content-type=multipart/form-data;boundary=XXXXXXX

- The form fields are encoded using the encoding specified in Form Fields
Encoding. Each form field is placed as a separate part in the request body.

- Each form field part has a content-type=text/plain; charset="encoding’
where ‘encoding’ is the value (or default value) of Form Fields Encoding.

— The form files are encoded using the encoding specified in the
ContentType and ContentCharacterEncoding (if applicable) columns
associated with each form file. Each form file is placed as a separate part in
the request body.

- The content-type of each form file part is specified in the ContentType
column of the Form Files or Form Files Value Map. If applicable, this
specification is combined with ContentCharacterEncoding.

m Cleared - The content type of the HTTP request follows, where ‘encoding’ is the
type of encoding specified in Form Fields Encoding.

content-type=application/x-www-form-urlencoded;charset="enc
oding'

— The form fields are URL encoded (using the ‘encoding’).
- The form fields are placed in the body of the request.
Use Indexed Value Map for Form Files?

Indicates whether to specify the form file fields in the Form Files field or in the Form
Files Indexed Value Map field.

m Selected - Indicates that the form file fields are specified as an indexed Value
Map in the Form Files Indexed Value Map field.

m Cleared - Indicates that the form file fields are specified in the Form Files field.

Chapter 15: Web Services 449

HTTP Post Form Operator

Form Files

Specifies each form file with four fields: Key, File Path, Content Type, and Content
Character Encoding. Descriptions of each field of a form file follow:

Key
Specifies the names of the form file fields.
FilePath

Specifies the path to the file to upload. (This field is required.) The operator
ignores any form file field with a blank FilePath.

ContentType

Specifies the content type of the file to upload. Valid content-types are listed
on the IANA website under assignments/media-types. If left blank, the
content-type of the corresponding file’s part in the HTTP request body is set to
application/octet-stream. It is then the responsibility of the HTTP server to
interpret this generic content-type.

ContentCharacterEncoding

Specifies the character set of the content of the files to upload, if the
corresponding content type is all characters such as ‘text/XXX’. Leave blank for
other kinds of content types.

Note: For a list of different character sets (encodings), see the IANA website
pages under assignments/character-sets.

Form Files Indexed Value Map

Specifies the name of an indexed ValueMap that contains the form file fields names
and corresponding values. The indexed ValueMap must be of the same format as
the one listed in the Form Files field. That is, it must consist of Key, FilePath,
ContentType, and ContentCharacterEncoding.

HTTP Proxy Information
See HTTP Proxy Information for descriptions of input parameters.
HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input

parameters.

450 Content Designer Reference

HTTP Post Form Operator

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

Chapter 15: Web Services 451

HTTP Post Form Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpFormFieldsEncoding
HttpFormFieldsType
HttpFormFieldsValueMap
HttpFormFieldsVarValueMap
HttpFormMultipartPost
HttpFormFilesToMultipartType
HttpFormFilesToMultipartValueMap
HttpFormFilesToMultipartVarValueMap
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset

HttpRespDatasetVarLimit

452 Content Designer Reference

HTTP Post Form Operator

HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent

HTTPResponseHeaders

HTTPResponseContentlsChunked

HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Output Ports

Output ports for the HTTP Post Operator consist of the common output ports for HTTP

Operators plus an additional failure case.

Chapter 15: Web Services 453

HTTP Put Operator

Operator Failure

The HTTP Post Form operator can fail for the following reasons:
m Failures that are common to output ports for all HTTP Operators.

Note: See HTTP Operators: Common Output Ports (see page 424) for descriptions.

m The input includes invalid encoding in the Form Fields Encoding or the
ContentCharacterEncoding fields.

Note: CA Process Automation does not verify that the ContentType input is valid
when the content is retrieved from a file. The receiving HTTP server is responsible
for returning an error code if it detects an invalid content type.

HTTP Put Operator

The HTTP Put operator sends an HTTP Put request to a URL. The HTTP Put operator
requests that the resource, enclosed as the HTTP request content, be stored at the
specified URL on the HTTP server. The URL must allow CA Process Automation to create
a resource or replace an existing one.

If the URL points to an existing resource, the HTTP server handles the enclosed resource
as a modified version of the existing resource.

If the URL does not point to an existing resource, then the HTTP server creates a
resource with the HTTP request content. The HTTP server then saves the new resource

at the specified URL.

Note: Unlike the HTTP Post operator, the URL of an HTTP Put operator identifies the
resource enclosed in the HTTP request content.

The HTTP Put operator can be used for RESTful services.

Important! Use the HTTP Options operator to determine whether you can use the HTTP
Put operator. The HTTP Put method is typically disabled on public HTTP servers.

454 Content Designer Reference

HTTP Put Operator

Input Parameters

HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Put Information

HTTP Put Information specifies the body of the HTTP request
Is Chunked?
Specifies whether to send the HTTP request chunked.

When chunk coding is set, the HTTP request does not contain the "content-length"
header.

Note: HTTP 1.0 does not support chunk coding. The HTTP Put operator fails with an
'HTTP client protocol error' if chunk coding is set and the HTTP version is 1.0.

Values
m True - Indicates to send the HTTP request chunked.
m False - Indicates that the HTTP request is not to be sent chunked.
m Any other value - Same as False.
Default
Blank - Same as False.
Content Type

Specifies the type of the content that composes the HTTP request body, which is set
as a header (content-type) in the HTTP request.

Values
This value is one of the following:
m Avalue selected from the drop-down list of different media types.

m Blank, where the content is retrieved from a file specified in ‘Content File
Path.’

CA Process Automation sets the value to application/octet-stream. The
HTTP server is then responsible for interpreting this generic content-type.

m Blank, where content is retrieved from the ‘Content’ field.

CA Process Automation does not set the content-type. The HTTP server is
then responsible for interpreting the no content-type header.

Chapter 15: Web Services 455

HTTP Put Operator

m Avalid media type that you manually enter into the field.

For valid media types, see the IANA website pages on
assignments/media-types.

Note: Ensure that you set the right content-type, especially when the content is
not retrieved from a file.

Content Character Encoding

Specifies the character encoding of the content of the HTTP request body. Set this
field only if the content type is all characters, for example: ‘text/XXX'.

Values
This value is one of the following:

m Avalue selected from the drop-down list of different character sets
(encodings).

m Avalid character set (encoding) that you manually enter into the field.

You can find valid encodings on the IANA website pages on
assignments/character-sets.

Note: Ensure that you set the right character encoding, especially when the
content is not retrieved from a file.

Retrieve Content From File?

Specifies whether to retrieve the HTTP request body from a local file on the host
where the touchpoint is running.

Values

m Selected - Indicates to retrieve the HTTP request body from a local file on
the host where the touchpoint is running.

m Cleared - Indicates to retrieve the HTTP request body from the Content
field.

Content File Path

Specifies the path to a local file on the host where the touchpoint is running. The
local file contains the HTTP request body.

Content

Specifies the HTTP request body.
HTTP Proxy Information
See HTTP Proxy Information for descriptions of input parameters.
HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

456 Content Designer Reference

HTTP Put Operator

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

Chapter 15: Web Services 457

HTTP Put Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReglsChunked
HttpReqContentType
HttpRegContentCharset
HttpRegContentFromFile
HttpRegContentFilePath
HttpReqContent
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion

HttpConnectionTimeout

458 Content Designer Reference

HTTP Put Operator

HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent

HTTPResponseHeaders

HTTPResponseContentlsChunked

HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Output Ports

Output ports for the HTTP Post operator consist of the common output ports for HTTP

operators plus an additional failure case.

Chapter 15: Web Services 459

HTTP Trace Operator

HTTP Trace Operator

1 Lq
The HTTP Trace operator sends an HTTP Trace to a URL. The trace method requests that
the HTTP server sends back the request that it received. This process can be beneficial
for testing purposes and for identifying changes that were made to the request by

proxies. The request is sent back as the Response content.

Use the HTTP Options operator to verify if the HTTP Trace is enabled.

Input Parameters

See the following sections for descriptions of the input parameters for the HTTP Options
operator:

HTTP URL Information

See HTTP URL Information (see page 408) for descriptions of input parameters.

HTTP Proxy Information

See HTTP Proxy Information (see page 411) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 415) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 415) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 416) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 418) for descriptions of input
parameters.

460 Content Designer Reference

HTTP Trace Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode

Chapter 15: Web Services 461

Invoke SOAP Method Operator

HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmIContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 420) for more information.

Invoke SOAP Method Operator

The Invoke SOAP Method operator invokes SOAP-based Web service methods, either to
trigger an action or to retrieve information. A SOAP request can also be generated using

a WSDL.
Irvoke SOAP-hased application
e
]
= Comnpleted @ Failed
Cperation was successiul Operation failed
Result=1 Result =0

462 Content Designer Reference

Invoke SOAP Method Operator

Input Parameters
Input parameters for the Invoke SOAP Method operator are as follows.

WSDL Explorer
WSDL Wizard

A wizard that lets you select SOAP methods. Click to open the WSDL Explorer
window, where you can enter:

WSDL URL

m Enter a WSDL URL, then click Load. Examples:
http://server:8080/itpam/soap?wsdl
https://server:8443/itpam/soap?wsdl

m Select a recently entered WSDL URL from the drop-down list, then click Load.
Note: The WSDL URL drop-down list contains the last ten applied entries.

The wizard populates the remaining fields. Revise as needed by selecting other
entries from the drop down lists and then click Apply.

WSDL services

WSDL ports

WSDL operations

m Use the default entry that was loaded

m Select an entry from the drop-down list.

For details on the listed Web Services methods, see the Web Services API
Reference.

Response area, for example:

<tns:AsyncSoapResponse xmlns:tns="http://www.ca.com/itpam">
<tns:MessageID>MessageID </tns:MessagelD>

<!--xsd:Any Type Here-->

</tns:AsyncSoapResponse>

SOAP Call Data Parameters

Service URL

Defines the URL for the SOAP service. The URL is typically accessed over HTTP or
HTTPS. The URL is typically an entry point for one or more methods.

Method Name

Defines the method or function to run on the SOAP server. The product passes this
method to the SOAP service as a MIME SOAPAction header.

Chapter 15: Web Services 463

Invoke SOAP Method Operator

Authentication Type
Specifies how to authenticate the call on the SOAP server.
This parameter can have one of the following values:
No Authentication
Do not authenticate the SOAP call.
Basic SOAP
Use the authorized user name and password for basic SOAP authentication.
HTTP Authentication

Use the authorized user name and password for HTTP authentication. If this
feature is enabled and the authorized user name and password are provided,
then the product uses these credentials for basic HTTP authentication. WS
Security applies if the user provides it in the WS Security input page (see
page 469).

NTLM Authentication

Use the authorized user name, password, and Domain name that are
associated with the SOAP Web Service server to connect to the SOAP server
with NTLM authentication.

SOAP Version

Specifies the SOAP server version on which the call is made. This option provides a
hint to the underlying logic, which uses the appropriate SOAP MessageFactory
when making the SOAP request.

This parameter can have one of the following values:
m SOAP1.1
m SOAP1.2

464 Content Designer Reference

Invoke SOAP Method Operator

Input Source
Defines the source for the SOAP service input request.

The input request can contain macros and XPath assignments that dynamically
modify the SOAP request at runtime. If necessary, these XPath assignments let the
SOAP request be updated with values obtained at run time.

The following methods include a complete, properly formatted XML message that
can include a SOAP envelope:

Inline Text

This option lets you use the Invoke SOAP Method operator to specify the input
request. To specify the formatted SOAP input message, use the Inline Text
parameter.

Preformatted SOAP File

This option lets you specify the input request in a preformatted SOAP file. To
specify the path to a file that contains a message in a valid XML document, use
the File Name parameter.

Expression

Select this option if a CA Process Automation expression contains the SOAP
request. Define the CA Process Automation expression in the Expression
parameter.

Inline Text

Take one of the following actions if you set the Input Source parameter to Inline
Text:

m To use a formatted SOAP input message, click (...) to open the Inline Text
dialog, and then type the message.

m Toread a SOAP message from a text file, click (...), Import from File, and then
select the file from a local or network drive.

File Name

Defines the fully qualified name of an appropriate file. To use this parameter, set
the Input source to Preformatted SOAP File. The product qualifies the file name
relative to the touchpoint that runs the Web Services operators.

Expression

Defines a CA Process Automation expression from which to extract the SOAP
request.

Saved Call File

Defines the full path to the file to which to write the final outbound SOAP request.
Use this file to validate that the data was sent to the Web Services operators. If the
call rejects the request because of incorrect values, use the file to debug the
request before retransmitting it to the Web Services operators.

Chapter 15: Web Services 465

Invoke SOAP Method Operator

Dynamic Parameters

The Dynamic Parameters provide update values in a SOAP request.
Parameter Style

Specifies the method with which to update values in a SOAP request. The Web
Services operators support the following methods at run time:

XPath Assignments

Specifies that XPath expressions in the Parameters List parameter update
values in a SOAP request.

Macro Expansions

Specifies that macros in the Parameters List parameter update values in a SOAP
request.

Parameters List
Specifies the unique data entries in the SOAP request.
m Click Add to add a parameter.
m Click Edit to modify the currently selected parameter.
m Click Delete to delete the currently elected parameter.

A best practice is to add the parameters in the same order in which the WSDL
specifies them for the SOAP call.

Each parameter contains the following values:
Macro Name/XPath Query

Defines the name of the macro or the XPath query. If the value is the name of a
macro, the value substitutes the macro name. If the value is an XPath query,
the value updates the node that the query returns.

Value
Specifies a runtime value for the parameter.
Type

Specifies one of the following data types for the parameter:

m Integer Value
m String Value
m ValueMap

m XML Fragment

466 Content Designer Reference

Invoke SOAP Method Operator

Call Results Parameters

The following Call Results parameters determine how to save the results of a SOAP call:

Response Save File

Defines the fully qualified path for the file that restores the response to the SOAP
request. Any existing file is overwritten by a new response.

Extract SOAP Response Body First-Level Elements to Individual Dataset Variables

Saves the first-level element in the body of the SOAP response to a separate
dataset variable if the SOAP response exceeds 12 KB.

Extract SOAP Response Body to Dataset Variable
Saves the body of the response to a dataset variable.
Extract SOAP Header to Dataset Variable
Saves the header of the response to a dataset variable.
Extract SOAP Header First-Level Elements into Individual Dataset Variables
Saves the first-level headers of the response into an individual dataset variable.
Strip XML Namespaces from Response

Strips the namespaces from a response so that a user can provide simpler XPath
expressions to find the value of a specific element. This option is available in all the
SOAP operators.

Chapter 15: Web Services 467

Invoke SOAP Method Operator

Additional Extracted Data (from Entire Response)

Specifies XPath expressions that extract data from the body of the SOAP response.
For each expression specified, define a dataset variable to which to store the
extracted data and a data type. Click Add to add an expression, Edit to modify a
selected expression, or Delete to delete a selected expression. The ordering of the
expressions has no significance to CA Process Automation.

Each parameter contains the following values:
XPath expression

Specifies the XPath expression.
Dataset Variable

Specifies the name of an operator dataset variable in which to save values
extracted based on the selected XPath expression.

Type

Specifies the type of element being extracted from the response. Select one of
the following currently supported types:

m Integer

m String

m Integer Array

m String Array

m XML Fragment

m XML Fragment Array

468 Content Designer Reference

Invoke SOAP Method Operator

MIME Attachments

WS Security

If the content that you want to send is already in a dataset variable, use the Expression
field.

Is an Expression?

If selected, an expression must resolve the attachment.

Expression

Defines the MIME (Multipurpose Internet Mail Extensions) expression that extracts
the attachment from the body of the SOAP response. For each expression defined,
specify a dataset variable to which to store the extracted data and a data type. The
ordering of the expressions has no significance to CA Process Automation. Click Add
to add an attachment, Edit to modify a selected attachment, or Delete to delete a
selected attachment.

Content Type

Defines the content type of the MIME attachment (for example, text).
Content ID

Defines the unique identifier for the MIME attachment.
File URL

Defines the URL of the MIME attachment.

Web services (WS) security enables CA Process Automation to conduct secure SOAP
message exchanges with a Web service that requires more security.

WS security features:

Timestamps
UsernameTokens
Signatures

Encryption

Note: The WS security parameters can only be set in the operators. No operator
category parameters are available for WS security.

After they are defined, the SOAP request header <wsse:Security> tag includes the
following parameters (or portions of the parameters). The Web service then:

Reviews the parameters for authentication.

Verifies that the SOAP request was not modified while in transit between the client
and the server.

Chapter 15: Web Services 469

Invoke SOAP Method Operator

Common WS Security Parameters
Actor

Sets the actor attribute of the SOAP request <wsse:Security> header. If you set any
of the following attributes, the product sets the actor attribute:

m Add Encryption

m Add Signature

m Add Timestamp

m Add Username Token

Note: Leave this parameter blank if no actor is specified or if you use SOAP 1.2.
Must Understand

If you set any of the following attributes, this parameter sets the mustUnderstand
attribute of the <wsse:Security> header to "true":

m Add Encryption

m Add Signature

m Add Timestamp

m Add Username Token

Note: The mustUnderstand attribute specifies whether the <wsse:Security> header
entry is mandatory or optional for the recipient to process.

Timestamp
Add Timestamp

Adds a timestamp to the <wsse:Security> header and enables all of the Timestamp
Parameters.

Timestamp Parameters
Includes the following values:
Time to Live (sec)

Defines the time difference between when the SOAP request was created and
when it expires (in seconds). If you leave this field blank, it defaults to 0 and the
product does not set the Expires time. If the timestamp expires, the web
service rejects the SOAP request.

Set Timestamp Precision to Milliseconds

If selected, the product sets the timestamp precision to milliseconds.

470 Content Designer Reference

Invoke SOAP Method Operator

Username Token

Keystore Parameters

Add Username Token

Adds a Username Token to the <wsse:Security> header and enables all of the
Username Token parameters.

Username Token Parameters

Includes the following values:
User Name
Defines the value of the Username token.
Password
Defines the password that is associated with the Username Token.
Password Type
Specifies the type of password.
Values:
m 0: The product delivers the password in clear text.

m 1: The product delivers the password in digest form (the password is
encrypted and not delivered in clear text).

m 2: The product delivers no password.
Add Nonce?

If selected, the product adds a nonce element (such as a hash value) to the
Username Token. The web service may not require this element.

Add Created?

If selected, the product adds a Created element that indicates when the
Username Token was created. The web service may not require this element.

Note: If you set the Password Type to Digest, the product automatically adds the
Nonce and the Created elements to the Username Token.

When you sign or encrypt a SOAP request, the product requires many keys to handle
various responsibilities. The product uses keys in WS Security to sign or encrypt the
SOAP request and to validate the SOAP response signature or decryption (if applicable).

CA Process Automation uses a keystore (a repository of security certificates) to maintain
the keys that are used in WS Security. Keystores provide organization and consolidation
for keys, and prevent other users from accessing the unique private keys. The product
requires that you create a keystore (see page 472) or use an existing one.

Chapter 15: Web Services 471

Invoke SOAP Method Operator

WS Security includes the following keystore options:
m Sign the SOAP request (or parts of it). The keystore contains the following items:
— The private key to use to sign the request.

- The associated public key with which the receiver validates the signature. The
product adds a reference to this public key to the signed SOAP request.

m Encrypt the SOAP request (or parts of it). The keystore contains the public key with
which to encrypt the symmetric key. The product uses the symmetric key to encrypt
the request.

m Validate the SOAP response signature. The keystore contains the public key with
which to validate the signature (if applicable).

m Decrypt the SOAP response. The keystore contains the private key with which to
decrypt the response.
The following parameters define the keystore with which to sign or encrypt a SOAP
request:
Signature/Encryption Keystore Path
Defines the path to the keystore.
Signature/Encryption Keystore Password
Defines the clear text password with which to access the keystore.

Note: This parameter is not the password to access a private key in the keystore,
but rather the password to access the keystore itself.

Signature/Encryption Keystore Type
Specifies the type of keystore.
Values:
m JKS
m PKCS12 (which typically has a .p12 extension)
m Blank (the product uses the default value)

Default: JKS
Create a Keystore

472 Content Designer Reference

Invoke SOAP Method Operator

Signature

You can use a third-party tool to create and build your keystore, or import new
certificates/private keys to an existing keystore. One keystore management tool is
Keytool, which comes with the Java JRE or JDK. Some keytool commands can be found
here:

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html

You can also execute:

keytool —help

Add Signature

If selected, the product signs the SOAP request and then it adds a signature to the
<wsse:Security> header. A private key in the keystore signs the SOAP request
content. The product also enables all of the Signature Parameters fields.

Signature Parameters
The following parameters define the signature:
Private Key Alias
Defines the key alias in the keystore that the product uses for signing.
Private Key Password
Defines the key password in the keystore.
Canonicalization Algorithm

Defines the canonicalization method with which to serialize the data (the SOAP
request body or the parts to be signed) before applying the signature. Leave
this field blank to use the implementation default exclusive XML
canonicalization algorithm xml-exc-c14n#.

Signature Algorithm

Defines the algorithm with which to define the signature. Leave this field blank
if you want the product to try to detect and use a signature algorithm that
matches the data in the key.

Chapter 15: Web Services 473

Invoke SOAP Method Operator

Public Key Identifier Type

Specifies the key identifier that sets up the certificate (public key) identification
elements in the signature. The receiver uses this value to identify the signature
certificate (public key) that validates the SOAP request signature.

Values:

1 (Binary Security Token): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a URI fragment in a <wsse:Reference> element to reference
the signature certificate (public key). The URI fragment references the
signature public key. The product includes the signature public key as
binary data in the <wsse:Security> header <wsse:BinarySecurityToken>
element.

2 (Issuer Name and Serial Number): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a <ds:X509Data><ds:X509:IssuerSerial> element to reference
the signature certificate (public key). This element uniquely identifies a
certificate by its X.509 issuer name and serial number.

3 (X509 Certificate Identifier): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a <wsse:Keyldentifier
ValueType="0asis-200401-wss-x509-token-profile-1.0#X509v3"> element
to reference the signature certificate (public key).

4 (Subject Key Identifier): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element to reference the signature certificate (public key).

Default: 0. The operator uses the default key identifier (the Issuer Name and
Serial Number) from the implementation.

474 Content Designer Reference

Invoke SOAP Method Operator

Encryption

Parts to Sign

Specifies which parts of the SOAP request to sign. Click Add Parameter to enter
either a security ID or a Name/Namespace combination of the element to sign.

Values:

m WSU ID: Defines the wsu:id attribute of the element to sign. You can add
wsu:id as an attribute of an element in the SOAP request and you can
specify your own value. For example:

<token wsu:id="123"> </token>

The following statement shows the definition of the WSU namespace:

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200
401-wss-wssecurity-utility-1.0.xsd"

m Name: Defines the name of the element to sign.

m Namespace: Defines the namespace URI (not the local name of the
namespace) of the element to sign. For example:

"http://www.ca.com/itpam"

Note: Leave this parameter blank to sign the body of the SOAP request. If you
specify the WSU ID, the product ignores the Name and Namespace values.

Add Encryption

Encrypts the SOAP request and adds a new encrypted symmetric key to the SOAP
request <wsse:Security> header. CA Process Automation uses a symmetric key to
encrypt the content of the SOAP request. The certificate (public key), provided in
the keystore, encrypts the symmetric key itself and includes it in the
<wsse:Security> header. If this field is selected, then all the fields in the Encryption
Parameters are enabled.

Encryption Parameters

The following parameters define the encryption:
Public Key Alias

Defines the certificate (public key) alias with which to encrypt the symmetric
key in the keystore.

Canonicalization Algorithm

Defines the canonicalization method with which to serialize the data before
applying the encryption. Leave this field blank to use a standard serialization.

Chapter 15: Web Services 475

Invoke SOAP Method Operator

Symmetric Encryption Algorithm
Specifies the type of symmetric algorithm with which to encrypt the data.
Values:

m Tripledes-chc: Use triple DES. This method uses a key that is 8 bytes - 24
bits long.

m aesl128-cbc: Use AES with a 128-bit key.
m aes192-cbc: Use AES with a 192-bit key.
m aes256-cbc: Use AES with 256-bit key.
Default: AES128

Note: If you set this parameter to aes192-cbc or aes256-cbc, the following
error can occur:

Illegal key size or default parameters.

If this error occurs, download the following Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files from the Oracle web site:

m US_export_policy.jar
m local_policy.jar

Overwrite the existing jars of the same name at
C:path_to_JRE_used_by_PAM\lib\security with the new ones.

Encrypt the symmetric key?

Encrypts the symmetric key with which the data was encrypted. The product
then includes the key in the <wsse:security><xenc:EncryptedKey> header.

Symmetric Key Encryption Algorithm

Defines the algorithm with which to encrypt the symmetric key. This parameter
is only applicable if the key is to be encrypted.

Default: RSA15

476 Content Designer Reference

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Invoke SOAP Method Operator

Public Key Identifier Type

Specifies the key identifier that sets up the certificate (public key) identification
elements in the <xenc:EncryptedKey> element. The receiver uses the private
key that corresponds to this certificate (public key) to decrypt the symmetric
key. The product then uses the symmetric key to decrypt the SOAP request.

Values:

1 (Binary Security Token): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a URI fragment in a <wsse:Reference>
element to reference the certificate (public key). The URI fragment
references the public key. The product includes the public key as binary
data in the <wsse:Security> header <wsse:BinarySecurityToken> element.

2 (Issuer Name and Serial Number): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <ds:X509Data><ds:X509:IssuerSerial>
element to reference the certificate (public key). This element uniquely
identifies a certificate by its X.509 issuer name and serial number.

3 (X509 Certificate Identifier): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <wsse:Keyldentifier
ValueType="0asis-200401-wss-x509-token-profile-1.0#X509v3"> element
to reference the certificate (public key).

4 (Subject Key Identifier): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element to reference the certificate (public key).

8 (Thumbprint SHA1 Identifier): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <wsse:Keyldentifier
ValueType="#oasis-wss-soap-message-security-1.1#ThumbprintSHA1">
element to references the certificate (public key).

Default: 0. The operator uses the default key identifier (the Issuer Name and
Serial Number) from the implementation.

Chapter 15: Web Services 477

Invoke SOAP Method Operator

Parts to Encrypt

Specifies which the parts of the SOAP request to encrypt. Click Add Parameter
to enter either a security ID (WSU ID) or a Name/Namespace combination of
the element to encrypt.

Values:

m WSU ID: Defines the wsu:id attribute of the element to encrypt. You can
add wsu:id as an attribute of an element in the SOAP request and you can
specify your own value. For example:

<token wsu:id="123"> </token>

The following statement shows the definition of the WSU namespace:

xmlns:wsu=http://docs.oasis-open.org/wss/2004/01/0asis-2004
01-wss-wssecurity-utility-1.0.xsd

m Name: Defines the name of the element to encrypt.

m Namespace: Defines the namespace URI (not the local name of the
namespace) of the element to encrypt. For example:

http://www.ca.com/pam

m Encode: Select Content to encrypt the content of the element, or Element
to encrypt the entire element.

Note: Leave this field blank to encrypt the body content of the SOAP request. If
you specify WSU ID, the product ignores the Name and Namespace values.

Signature First?

Specifies whether to apply the signature before encrypting the data. This parameter
is useful if the product encrypts and signs the same data in the SOAP request.

Decrypt and Validate Signature of SOAP Response

Specifies whether to decrypt the SOAP response content and (if applicable)
validates the signature. When you select this option, the product enables the
Decryption Private Key Password parameter.

Decryption Private Key Password

Defines the password with which to access the decryption private key in the
keystore. Use this password to access the private key with which to decrypt an
encrypted SOAP response.

Encryption/Signature Process for the SOAP Request

The Invoke SOAP Method operator and the Invoke SOAP Method Async operator sign or
encrypt all or part of the SOAP request body.

478 Content Designer Reference

Invoke SOAP Method Operator

Encryption

1.

CA Process Automation uses the Canonicalization Algorithm to serialize the
data to encrypt. This data includes either the entire request body or the parts
that you specify in Parts to Encrypt.

CA Process Automation uses a symmetric key (depending on the Symmetric
Encryption Algorithm) to encrypt the data. This data includes either the entire
request body or the parts that you specify in Parts to Encrypt.

CA Process Automation uses the Public Key Alias to retrieve the public key from
the keystore. The public key then uses the algorithm that you specify in the
Symmetric Key Encryption Algorithm to encrypt the symmetric key.

CA Process Automation adds the encrypted symmetric key to the SOAP request
in the <xenc:EncryptedKey> element.

Depending on the reference type you specified in the Public Key Identifier
Type, CA Process Automation adds to the SOAP request a reference to the
public key used to encrypt the symmetric key.

The receiver decrypts the symmetric key and then uses the decrypted
symmetric key to decrypt the SOAP request.

Signature

1.

Troubleshooting WS Security

CA Process Automation uses the Private Key Alias and the Private Key Password
to retrieve the private key from the keystore.

CA Process Automation uses the Canonicalization Algorithm to serialize the
data to sign. This data includes either the entire request body or the parts that
you specify in Parts to Sign.

CA Process Automation uses the private key from the keystore to sign the SOAP
request content using the Signature Algorithm that the user specifies. The
product signs either the entire request body or the parts that you specify in
Parts to Sign.

CA Process Automation adds a reference to the certificate/public key that is
associated with the private key to the SOAP request. The user specifies the
type of reference in the Public Key Identifier Type.

The receiver uses the public key to validate the signature in the SOAP request.

The Invoke SOAP Method and Invoke SOAP Method Async operators can fail when
applying WS Security in the following cases.

Unable to Build a Crypto to Manage the Keystore

An error displays if the operator is unable to build a crypto to manage the keystore:

SOAP invocation failed: Unable to build a Crypto for the keystore containing the
Signature/Encryption keys..

Chapter 15: Web Services 479

Invoke SOAP Method Operator

This error can be due to:

Bad keystore password
Bad keystore type

The keystore path points to a file that is not a keystore.

Monitor the CA Process Automation logs, in the error stack, to gain an indication of the
nature of the problem. For instance:

Signature Errors

Bad keystore password: Keystore was tampered with, or password was incorrect.

Bad keystore type: java.security.KeyStoreException: x not found (where x is the
type provided)

Keystore path points to a file that is not a keystore: Invalid keystore format.

When signing the SOAP request, problems can occur when:

The keystore path does not exist on the computer that contains the touchpoint.
The keystore path is missing.
The private key alias is missing.

You attempt to sign a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

The private key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for signature..
Where x is the private key alias provided.

The private key password is required but not provided, or the provided password is
wrong. The reason contains a message:

Cannot recover key..

You provide a bad canonicalization algorithm. The reason field contains a message:
Unknown canonicalizer. No handler installed for URI x..

Where x is the name of the canonicalization algorithm provided.

You provide a bad signature algorithm. The reason field contains a message:

The requested algorithm x does not exist...

Where x is the name of the signature algorithm provided.

480 Content Designer Reference

Invoke SOAP Method Operator

Encryption Errors

You provide a bad public key identifier type. The reason field contains a message:

Unsupported key identification..

When encrypting the SOAP request, problems can occur when:

The keystore path does not exist on the computer that contains the touchpoint.
The keystore path is missing.

You attempt to encrypt a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

You attempt to use symmetric encryption algorithm aes192-cbc or aes256-cbc
without upgrading to the unlimited strength jurisdiction policy jars. The reason field
contains a message:

Illegal key size or default parameters.

The public key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for encryption..

Where x is the public key alias provided.

You provide a bad encryption algorithm. The reason field contains a message:
SOAP invocation failed: Unable to encrypt the SOAP message.null.

The WSS4) library throws a null pointer error in this case.

You provide a bad symmetric key encryption algorithm. The reason field contains a
message:

unsupported key transport encryption algorithm: x
Where x is the symmetric key encryption algorithm provided.
You provide a bad public key identifier type. The reason field contains a message:

Unsupported key identification..

Note: If you are encrypting a part of the SOAP request, then signing it, be sure to
encrypt it as content. This action ensures its wsu:id (or name and namespace) remains
in the SOAP request after encryption and before signing. Otherwise, that part is not
found when attempting to sign it.

Chapter 15: Web Services 481

Invoke SOAP Method Operator

Decryption Errors

A bad password specified in the Decryption Private Key Password field fails the
operator. The reason field contains a message:

Unable to apply WSS security on incoming message (SOAP Response).

The signature or decryption is invalid. The nested exception is: java.security.
UnrecoverableKeyException: Get Key failed:

The given final block is not properly padded.

Output Parameters

SOAP Call Data

The Invoke SOAP Method operator includes the following output parameters.

serviceURL

Returns the service URL the SOAP call uses.
methodName

Returns the method name to call.
userName

Returns the user name for basic HTTP authentication.
password

Returns the password for basic HTTP authentication.
httpAuth

Displays true or false, depending on your Use HTTP Basic Authentication? selection.
soapVersion

Returns the SOAP version that the product uses to make SOAP calls, either SOAP 1.1
or SOAP 1.2.

inputSource
Returns one of the following values for the SOAP call input source:
m InlineText
m Preformatted SOAP File

m Expression

482 Content Designer Reference

Invoke SOAP Method Operator

inlineText

Returns the inline text data that is used for the SOAP call. This variable only
populates when you select Inline Text as the input source.

Example:

<checkServerStatus xmlns="http://www.ca.com/itpam">
CA AuthMinder

<token>token _</token>

<user>user__</user>

<password>password__</password>

</auth>

</checkServerStatus>

FileName

Returns the inline text data that is used for the SOAP call. This variable is only
populated when you select Preformatted SOAP File as the input source.

Expression Value

Returns the inline text data that is used for the SOAP call. This variable is only
populated when you select Expression as the input source.

SavedCallFileName

Returns the file name from the Saved Call File field. This file contains the actual
SOAP envelope that the product uses to make a SOAP call.

Example:

<?xml version="1.0" encoding="UTF-8"?><S0AP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"><S0AP-ENV
:Header/><S0AP-ENV:Body><checkServerStatus
xmlns="http://www.ca.com/itpam">

CA

AuthMinder<token>token </token><user>user </user><password>pa
ssword _</password></auth></checkServerStatus></SO0AP-ENV:Body><
/SOAP-ENV:Envelope>

Chapter 15: Web Services 483

Invoke SOAP Method Operator

Dynamic Parameters
Paramsyle

Returns the parameter style that you selected under the Dynamic Parameter field:
Xpath Assignments or MacroExpansion.

DynamicParamsinfo
An array of value maps; displays the number of value maps it contains.
DynamicParamsdata

Returns query, value, and type.

Call Results Parameters
responseFileName

Returns the file name that you provided in the Response File field. This file contains
the Response received from a SOAP call.

xPathQuery

Returns the xpath query that is defined for extracting the data from the call results.
datasetVar

Returns the variable that is created to hold the extracted call results.
Type

Returns the variable that holds the data type that the user defined to hold the call
results.

isExtractToDataSet

Returns true when you select Extract SOAP Response Body to Dataset Variable, or
false otherwise.

isExtractHeadersToDataSet

Returns true when you select Extract SOAP Header to Dataset Variable, or false
otherwise.

isExtractHeadersTolndividualDataSet

Returns true when you select Extract First-Level SOAP Header Elements into
Individual Dataset Variable, or false otherwise.

484 Content Designer Reference

Invoke SOAP Method Operator

Operation Results

MIME Attachments

isExtractTolndividualDataSet

Returns true when you select Extract First-Level SOAP Header Elements into
Individual Dataset Variables, or false otherwise.

isStripXMLNamespaces

Returns true when you select Strip XML Name Spaces from Response, or false
otherwise.

The operation results return the output of the SOAP Call Results depending on the Call
Results parameters you selected.

SOAPResponseBody

Stores the complete SOAP response body.
SOAPResponseHeaderData

Stores the response header.
SoapResponseHeader

Returns the stripped data of the SOAP header response.
SOAPResponseData

Returns the stripped data of the SOAP call results.

isResolvedByExpression

Returns true when you select the Is An Expression? option for the MIME
Attachment, or false otherwise. Selecting the Is An Expression? option indicates
that the MIME attachment is given as an expression and that expression refers to
the MIME attachment.

Expressionfield

Returns the expression that refers to the MIME attachment.
attachmentFields

Returns a ValueMap array that holds the number of elements it contains.
Content Type

Returns the content type of the MIME attachment.
ContentID

Returns the ContentID with which the MIME attachment is uniquely identified.
FileURL

Returns the path of the MIME attachment.

Chapter 15: Web Services 485

Invoke SOAP Method Async Operator

Invoke SOAP Method Async Operator

The Invoke SOAP Method Async operator supports asynchronous SOAP-based Web
service methods. The operator in this case sends a message asynchronously to a
receiver expecting a response at a later time. The sender tags the request with an
identifier allowing the response to be correlated with the originating request. This
operator is used and configured very much like the Invoke SOAP Method operator.

Invoke SOAP-hased application

"
]
i) Completed & Failed
Dperation was successiul Cperation failed
Fesult=1 Result =0

Input Parameters

The Invoke SOAP Method Async operator provides the following input parameters:

486 Content Designer Reference

Invoke SOAP Method Async Operator

WSDL Explorer
WSDL Wizard

A wizard that lets you select SOAP methods. Click to open the WSDL Explorer
window, where you can enter:

WSDL URL

m Enter a WSDL URL, then click Load. Examples:
http://server:8080/itpam/soap?wsdl
https://server:8443/itpam/soap?wsdl

m Select a recently entered WSDL URL from the drop-down list, then click Load.
Note: The WSDL URL drop-down list contains the last ten applied entries.

The wizard populates the remaining fields. Revise as needed by selecting other
entries from the drop down lists and then click Apply.

WSDL services

WSDL ports

WSDL operations

m Use the default entry that was loaded

m Select an entry from the drop-down list.

For details on the listed Web Services methods, see the Web Services API
Reference.

Response area, for example:

<tns:AsyncSoapResponse xmlns:tns="http://www.ca.com/itpam">
<tns:MessageID>MessageID </tns:MessagelD>

<!--xsd:Any Type Here-->

</tns:AsyncSoapResponse>

SOAP Call Data Properties

Service URL

Specifies the URL for the SOAP service. The URL is typically accessed over HTTP or
HTTPS. The URL is typically an entry point for one or more methods.

Method Name

Defines the method or function to start. The product passes the method to the
SOAP service as a MIME SOAPAction header.

Chapter 15: Web Services 487

Invoke SOAP Method Async Operator

Authentication Type

Specifies one of the following authentication types with which to call the SOAP
server:

No Authentication

Do not authenticate.
Basic SOAP

Use the authorized user name and password for basic SOAP authentication.
HTTP Authentication

Use the authorized user name and password for basic HTTP authentication if
this feature is enabled. WS Security applies if the user provides it on the WS
Security input page (see page 470).

NTLM Authentication

Use the authorized user name, password, and Domain name to connect to the
SOAP server with NTLM authentication.

Important! The user name, password, and Domain name that are supplied are
for the SOAP web service server.

SOAP Version

Specifies the SOAP server version the product uses to make SOAP calls, either SOAP
1.1 or SOAP 1.2. This option provides a hint to the underlying logic, which uses the
appropriate SOAP MessageFactory to make the SOAP request.

Input Source

Specifies the SOAP service input source. Each of the following methods includes a
complete, properly formatted XML message that can include a SOAP envelope:

Inline Text

The SOAP Client Call operator defines the input request. If you select this
option, use the Inline text option to specify the formatted SOAP input message.

Preformatted SOAP File

A preformatted SOAP file defines the input request. If you select this option,
specify the path to the file in the File Name field. Verify that the file contains a
message in a valid XML document.

Expression

A CA Process Automation expression defines the SOAP request. If you select
this option, specify the CA Process Automation expression in the Expression
field.

The input request can contain macros and XPath assignments that dynamically
modify the SOAP request at run time. These macros and XPath assignments enable
the product to update the SOAP request if necessary with values obtained at run
time.

488 Content Designer Reference

Invoke SOAP Method Async Operator

Dynamic Parameters

Inline Text

Click (...) to open the Inline Text dialog if you set Input Source to Inline Text. Enter a
formatted SOAP input message. To read a SOAP message from a text file on a local
or network drive, click Import from File in the Inline Text dialog.

File Name

Defines the fully qualified file name relative to the touchpoint running the Web
Services operators. The product uses this property when you set Input Source to
Preformatted SOAP File.

Expression

Defines a CA Process Automation expression from which to extract the SOAP
request.

Saved Call File

Defines the full path to the SOAP envelope that the product uses to make a SOAP
call. Use this option to validate that the product sent the data to the Web Services
operators. If the SOAP request is rejected, the saved file can assist you in debugging
the request before you resend it to the Web Services operators.

The Dynamic Parameters specify which values to update in a SOAP request.
Parameter Style

Specifies the method with which the Parameters List updates values in a SOAP
request at run time.

Macro Expansion
The Parameters list uses macros to update values in a SOAP request.
XPath Assignments

The Parameters list uses XPath expressions to update values in a SOAP request.

Chapter 15: Web Services 489

Invoke SOAP Method Async Operator

Parameters List

Specifies the parameters that specify unique data entries in the SOAP request. Click
Add to add a parameter, Edit to edit the currently selected parameter, or Delete to
delete the currently selected parameter. A best practice is to add the parameters in
the order in which the WSDL specifies them for the SOAP call.

To open the Dynamic Parameters dialog, click Add or Edit, and then set the
following parameter values:

Macro Name-X-Path

Defines the name of the macro or the XPath query used to extract data from
the body of the SOAP response.

m If the parameter defines a macro name, then the value replaces the macro
name.

m If the parameter defines an XPath query, then the value updates the node
that the query returns.

Value

Defines an expression that returns a run-time value for the parameter.
Type

Specifies one of the following data types for the parameter:

m Integer Value

m String Value

m XML Fragment

Call Results Properties

The following Call Results parameters determine how to save the results of a SOAP call.
Response Save File

Specifies the fully qualified path for the file that restores the response to the SOAP
request. The new response overwrites an existing response file.

Extract SOAP Response First-Level Elements to Individual Dataset Variables

If the SOAP response exceeds 12 KB, this parameter saves the first-level element in
the body of the SOAP response to a separate dataset variable.

Extract SOAP Response Body to Dataset Variable
Saves the response body to a dataset variable.
Extract SOAP Header to Dataset Variable
Saves the response header to a dataset variable.
Extract SOAP Header First-Level Elements to Individual Dataset Variables

Saves the response header to individual dataset variables.

490 Content Designer Reference

Invoke SOAP Method Async Operator

Strip XML Namespaces from Response

Strips the XML namespaces from the response so that you do not need to use the
local-name() function.

Additional Extracted Data (from Entire Response)

Defines XPath expressions to extract data from the SOAP response body. For each
expression specified, specify a data type and a dataset variable to which to store
the extracted data. Click Add to add an expression, Edit to edit a selected existing
expression, or Delete to delete a selected expression. The expression order has no
significance to CA Process Automation.

To modify the following parameters, click Add or Edit:

XPath Expression
Defines the XPath expression.

Dataset Variable

Defines the name of an operator dataset variable in which to save values extracted
based on the selected XPath expression.

Type
Specifies the type of element being extracted from the response:
m Integer
m String
m Integer Array
m String Array
m XML Fragment
m XML Fragment Array

Chapter 15: Web Services 491

Invoke SOAP Method Async Operator

MIME Attachments

If the content that you want to send is already in a dataset variable, use the Expression
field.

Is an Expression?

If selected, an expression must resolve the attachment.

Expression

WS Security

Defines the MIME (Multipurpose Internet Mail Extensions) expression that extracts
the attachment from the body of the SOAP response. For each expression defined,
specify a dataset variable to which to store the extracted data and a data type. The
ordering of the expressions has no significance to CA Process Automation. Click Add
to add an attachment, Edit to modify a selected attachment, or Delete to delete a
selected attachment.

Content Type

Defines the content type of the MIME attachment (for example, text).
Content ID

Defines the unique identifier for the MIME attachment.
File URL

Defines the URL of the MIME attachment.

Web services (WS) security enables CA Process Automation to conduct secure SOAP
message exchanges with a Web service that requires more security.

WS security features:

Timestamps
UsernameTokens
Signatures

Encryption

Note: The WS security parameters can only be set in the operators. No operator
category parameters are available for WS security.

After they are defined, the SOAP request header <wsse:Security> tag includes the
following parameters (or portions of the parameters). The Web service then:

Reviews the parameters for authentication.

Verifies that the SOAP request was not modified while in transit between the client
and the server.

492 Content Designer Reference

Invoke SOAP Method Async Operator

Common WS Security Parameters
Actor

Sets the actor attribute of the SOAP request <wsse:Security> header. If you set any
of the following attributes, the product sets the actor attribute:

m Add Encryption

m Add Signature

m Add Timestamp

m Add Username Token

Note: Leave this parameter blank if no actor is specified or if you use SOAP 1.2.
Must Understand

If you set any of the following attributes, this parameter sets the mustUnderstand
attribute of the <wsse:Security> header to "true":

m Add Encryption

m Add Signature

m Add Timestamp

m Add Username Token

Note: The mustUnderstand attribute specifies whether the <wsse:Security> header
entry is mandatory or optional for the recipient to process.

Timestamp
Add Timestamp

Adds a timestamp to the <wsse:Security> header and enables all of the Timestamp
Parameters.

Timestamp Parameters
Includes the following values:
Time to Live (sec)

Defines the time difference between when the SOAP request was created and
when it expires (in seconds). If you leave this field blank, it defaults to 0 and the
product does not set the Expires time. If the timestamp expires, the web
service rejects the SOAP request.

Set Timestamp Precision to Milliseconds

If selected, the product sets the timestamp precision to milliseconds.

Chapter 15: Web Services 493

Invoke SOAP Method Async Operator

Username Token
Add Username Token

Adds a Username Token to the <wsse:Security> header and enables all of the
Username Token parameters.

Username Token Parameters
Includes the following values:
User Name
Defines the value of the Username token.
Password
Defines the password that is associated with the Username Token.
Password Type
Specifies the type of password.
Values:
m 0: The product delivers the password in clear text.

m 1: The product delivers the password in digest form (the password is
encrypted and not delivered in clear text).

m 2: The product delivers no password.
Add Nonce?

If selected, the product adds a nonce element (such as a hash value) to the
Username Token. The web service may not require this element.

Add Created?

If selected, the product adds a Created element that indicates when the

Username Token was created. The web service may not require this element.

Note: If you set the Password Type to Digest, the product automatically adds the
Nonce and the Created elements to the Username Token.

Keystore Parameters

When you sign or encrypt a SOAP request, the product requires many keys to handle
various responsibilities. The product uses keys in WS Security to sign or encrypt the

SOAP request and to validate the SOAP response signature or decryption (if applicable).

CA Process Automation uses a keystore (a repository of security certificates) to maintain
the keys that are used in WS Security. Keystores provide organization and consolidation
for keys, and prevent other users from accessing the unique private keys. The product

requires that you create a keystore (see page 472) or use an existing one.

494 Content Designer Reference

Invoke SOAP Method Async Operator

WS Security includes the following keystore options:
m Sign the SOAP request (or parts of it). The keystore contains the following items:
— The private key to use to sign the request.

- The associated public key with which the receiver validates the signature. The
product adds a reference to this public key to the signed SOAP request.

m Encrypt the SOAP request (or parts of it). The keystore contains the public key with
which to encrypt the symmetric key. The product uses the symmetric key to encrypt
the request.

m Validate the SOAP response signature. The keystore contains the public key with
which to validate the signature (if applicable).

m Decrypt the SOAP response. The keystore contains the private key with which to

decrypt the response.

The following parameters define the keystore with which to sign or encrypt a SOAP
request:

Signature/Encryption Keystore Path
Defines the path to the keystore.
Signature/Encryption Keystore Password
Defines the clear text password with which to access the keystore.

Note: This parameter is not the password to access a private key in the keystore,
but rather the password to access the keystore itself.

Signature/Encryption Keystore Type
Specifies the type of keystore.
Values:
m JKS
m PKCS12 (which typically has a .p12 extension)
m Blank (the product uses the default value)

Default: JKS
Create a Keystore

Chapter 15: Web Services 495

Invoke SOAP Method Async Operator

Signature

You can use a third-party tool to create and build your keystore, or import new
certificates/private keys to an existing keystore. One keystore management tool is
Keytool, which comes with the Java JRE or JDK. Some keytool commands can be found
here:

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html

You can also execute:

keytool —help

Add Signature

If selected, the product signs the SOAP request and then it adds a signature to the
<wsse:Security> header. A private key in the keystore signs the SOAP request
content. The product also enables all of the Signature Parameters fields.

Signature Parameters
The following parameters define the signature:
Private Key Alias
Defines the key alias in the keystore that the product uses for signing.
Private Key Password
Defines the key password in the keystore.
Canonicalization Algorithm

Defines the canonicalization method with which to serialize the data (the SOAP
request body or the parts to be signed) before applying the signature. Leave
this field blank to use the implementation default exclusive XML
canonicalization algorithm xml-exc-c14n#.

Signature Algorithm

Defines the algorithm with which to define the signature. Leave this field blank
if you want the product to try to detect and use a signature algorithm that
matches the data in the key.

496 Content Designer Reference

Invoke SOAP Method Async Operator

Public Key Identifier Type

Specifies the key identifier that sets up the certificate (public key) identification
elements in the signature. The receiver uses this value to identify the signature
certificate (public key) that validates the SOAP request signature.

Values:

1 (Binary Security Token): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a URI fragment in a <wsse:Reference> element to reference
the signature certificate (public key). The URI fragment references the
signature public key. The product includes the signature public key as
binary data in the <wsse:Security> header <wsse:BinarySecurityToken>
element.

2 (Issuer Name and Serial Number): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a <ds:X509Data><ds:X509:IssuerSerial> element to reference
the signature certificate (public key). This element uniquely identifies a
certificate by its X.509 issuer name and serial number.

3 (X509 Certificate Identifier): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a <wsse:Keyldentifier
ValueType="0asis-200401-wss-x509-token-profile-1.0#X509v3"> element
to reference the signature certificate (public key).

4 (Subject Key Identifier): The product adds
<wsse:SecurityTokenReference> to the Signature element. The Signature
element uses a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element to reference the signature certificate (public key).

Default: 0. The operator uses the default key identifier (the Issuer Name and
Serial Number) from the implementation.

Chapter 15: Web Services 497

Invoke SOAP Method Async Operator

Parts to Sign

Encryption

Specifies which parts of the SOAP request to sign. Click Add Parameter to enter
either a security ID or a Name/Namespace combination of the element to sign.

Values:

m WSU ID: Defines the wsu:id attribute of the element to sign. You can add
wsu:id as an attribute of an element in the SOAP request and you can
specify your own value. For example:

<token wsu:id="123"> </token>

The following statement shows the definition of the WSU namespace:

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200
401-wss-wssecurity-utility-1.0.xsd"

m Name: Defines the name of the element to sign.

m Namespace: Defines the namespace URI (not the local name of the
namespace) of the element to sign. For example:

"http://www.ca.com/itpam"

Note: Leave this parameter blank to sign the body of the SOAP request. If you
specify the WSU ID, the product ignores the Name and Namespace values.

Add Encryption

Encrypts the SOAP request and adds a new encrypted symmetric key to the SOAP
request <wsse:Security> header. CA Process Automation uses a symmetric key to
encrypt the content of the SOAP request. The certificate (public key), provided in
the keystore, encrypts the symmetric key itself and includes it in the
<wsse:Security> header. If this field is selected, then all the fields in the Encryption
Parameters are enabled.

Encryption Parameters

The

following parameters define the encryption:

Public Key Alias

Defines the certificate (public key) alias with which to encrypt the symmetric
key in the keystore.

Canonicalization Algorithm

Defines the canonicalization method with which to serialize the data before
applying the encryption. Leave this field blank to use a standard serialization.

498 Content Designer Reference

Invoke SOAP Method Async Operator

Symmetric Encryption Algorithm
Specifies the type of symmetric algorithm with which to encrypt the data.
Values:

m Tripledes-chc: Use triple DES. This method uses a key that is 8 bytes - 24
bits long.

m aesl128-cbc: Use AES with a 128-bit key.
m aes192-cbc: Use AES with a 192-bit key.
m aes256-cbc: Use AES with 256-bit key.
Default: AES128

Note: If you set this parameter to aes192-cbc or aes256-cbc, the following
error can occur:

Illegal key size or default parameters.

If this error occurs, download the following Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files from the Oracle web site:

m US_export_policy.jar
m local_policy.jar

Overwrite the existing jars of the same name at
C:path_to_JRE_used_by_PAM\lib\security with the new ones.

Encrypt the symmetric key?

Encrypts the symmetric key with which the data was encrypted. The product
then includes the key in the <wsse:security><xenc:EncryptedKey> header.

Symmetric Key Encryption Algorithm

Defines the algorithm with which to encrypt the symmetric key. This parameter
is only applicable if the key is to be encrypted.

Default: RSA15

Chapter 15: Web Services 499

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Invoke SOAP Method Async Operator

Public Key Identifier Type

Specifies the key identifier that sets up the certificate (public key) identification
elements in the <xenc:EncryptedKey> element. The receiver uses the private
key that corresponds to this certificate (public key) to decrypt the symmetric
key. The product then uses the symmetric key to decrypt the SOAP request.

Values:

1 (Binary Security Token): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a URI fragment in a <wsse:Reference>
element to reference the certificate (public key). The URI fragment
references the public key. The product includes the public key as binary
data in the <wsse:Security> header <wsse:BinarySecurityToken> element.

2 (Issuer Name and Serial Number): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <ds:X509Data><ds:X509:IssuerSerial>
element to reference the certificate (public key). This element uniquely
identifies a certificate by its X.509 issuer name and serial number.

3 (X509 Certificate Identifier): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <wsse:Keyldentifier
ValueType="0asis-200401-wss-x509-token-profile-1.0#X509v3"> element
to reference the certificate (public key).

4 (Subject Key Identifier): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element to reference the certificate (public key).

8 (Thumbprint SHA1 Identifier): The product adds
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element. The
<xenc:EncryptedKey> element uses a <wsse:Keyldentifier
ValueType="#oasis-wss-soap-message-security-1.1#ThumbprintSHA1">
element to references the certificate (public key).

Default: 0. The operator uses the default key identifier (the Issuer Name and
Serial Number) from the implementation.

500 Content Designer Reference

Invoke SOAP Method Async Operator

Parts to Encrypt

Specifies which the parts of the SOAP request to encrypt. Click Add Parameter
to enter either a security ID (WSU ID) or a Name/Namespace combination of
the element to encrypt.

Values:

m WSU ID: Defines the wsu:id attribute of the element to encrypt. You can
add wsu:id as an attribute of an element in the SOAP request and you can
specify your own value. For example:

<token wsu:id="123"> </token>

The following statement shows the definition of the WSU namespace:

xmlns:wsu=http://docs.oasis-open.org/wss/2004/01/0asis-2004
01-wss-wssecurity-utility-1.0.xsd

m Name: Defines the name of the element to encrypt.

m Namespace: Defines the namespace URI (not the local name of the
namespace) of the element to encrypt. For example:

http://www.ca.com/pam

m Encode: Select Content to encrypt the content of the element, or Element
to encrypt the entire element.

Note: Leave this field blank to encrypt the body content of the SOAP request. If
you specify WSU ID, the product ignores the Name and Namespace values.

Signature First?

Specifies whether to apply the signature before encrypting the data. This parameter
is useful if the product encrypts and signs the same data in the SOAP request.

Decrypt and Validate Signature of SOAP Response

Specifies whether to decrypt the SOAP response content and (if applicable)
validates the signature. When you select this option, the product enables the
Decryption Private Key Password parameter.

Decryption Private Key Password

Defines the password with which to access the decryption private key in the
keystore. Use this password to access the private key with which to decrypt an
encrypted SOAP response.

Encryption/Signature Process for the SOAP Request

The Invoke SOAP Method operator and the Invoke SOAP Method Async operator sign or
encrypt all or part of the SOAP request body.

Chapter 15: Web Services 501

Invoke SOAP Method Async Operator

Encryption

1. CA Process Automation uses the Canonicalization Algorithm to serialize the
data to encrypt. This data includes either the entire request body or the parts
that you specify in Parts to Encrypt.

2. CA Process Automation uses a symmetric key (depending on the Symmetric
Encryption Algorithm) to encrypt the data. This data includes either the entire
request body or the parts that you specify in Parts to Encrypt.

3. CA Process Automation uses the Public Key Alias to retrieve the public key from
the keystore. The public key then uses the algorithm that you specify in the
Symmetric Key Encryption Algorithm to encrypt the symmetric key.

4. CA Process Automation adds the encrypted symmetric key to the SOAP request
in the <xenc:EncryptedKey> element.

5. Depending on the reference type you specified in the Public Key Identifier
Type, CA Process Automation adds to the SOAP request a reference to the
public key used to encrypt the symmetric key.

6. The receiver decrypts the symmetric key and then uses the decrypted
symmetric key to decrypt the SOAP request.

Signature

1. CA Process Automation uses the Private Key Alias and the Private Key Password
to retrieve the private key from the keystore.

2. CA Process Automation uses the Canonicalization Algorithm to serialize the
data to sign. This data includes either the entire request body or the parts that
you specify in Parts to Sign.

3. CA Process Automation uses the private key from the keystore to sign the SOAP
request content using the Signature Algorithm that the user specifies. The
product signs either the entire request body or the parts that you specify in
Parts to Sign.

4. CA Process Automation adds a reference to the certificate/public key that is
associated with the private key to the SOAP request. The user specifies the
type of reference in the Public Key Identifier Type.

5. The receiver uses the public key to validate the signature in the SOAP request.

Troubleshooting WS Security

The Invoke SOAP Method and Invoke SOAP Method Async operators can fail when
applying WS Security in the following cases.

Unable to Build a Crypto to Manage the Keystore
An error displays if the operator is unable to build a crypto to manage the keystore:

SOAP invocation failed: Unable to build a Crypto for the keystore containing the
Signature/Encryption keys..

502 Content Designer Reference

Invoke SOAP Method Async Operator

Signature Errors

This error can be due to:

Bad keystore password
Bad keystore type

The keystore path points to a file that is not a keystore.

Monitor the CA Process Automation logs, in the error stack, to gain an indication of the
nature of the problem. For instance:

Bad keystore password: Keystore was tampered with, or password was incorrect.

Bad keystore type: java.security.KeyStoreException: x not found (where x is the
type provided)

Keystore path points to a file that is not a keystore: Invalid keystore format.

When signing the SOAP request, problems can occur when:

The keystore path does not exist on the computer that contains the touchpoint.
The keystore path is missing.
The private key alias is missing.

You attempt to sign a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

The private key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for signature..
Where x is the private key alias provided.

The private key password is required but not provided, or the provided password is
wrong. The reason contains a message:

Cannot recover key..

You provide a bad canonicalization algorithm. The reason field contains a message:
Unknown canonicalizer. No handler installed for URI x..

Where x is the name of the canonicalization algorithm provided.

You provide a bad signature algorithm. The reason field contains a message:

The requested algorithm x does not exist...

Where x is the name of the signature algorithm provided.

Chapter 15: Web Services 503

Invoke SOAP Method Async Operator

®m You provide a bad public key identifier type. The reason field contains a message:

Unsupported key identification..

Encryption Errors

When encrypting the SOAP request, problems can occur when:
m The keystore path does not exist on the computer that contains the touchpoint.
m The keystore path is missing.

®m You attempt to encrypt a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

®m You attempt to use symmetric encryption algorithm aes192-cbc or aes256-cbc
without upgrading to the unlimited strength jurisdiction policy jars. The reason field
contains a message:

Illegal key size or default parameters.

m The public key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for encryption..
Where x is the public key alias provided.
®m You provide a bad encryption algorithm. The reason field contains a message:
SOAP invocation failed: Unable to encrypt the SOAP message.null.
The WSS4) library throws a null pointer error in this case.

®m You provide a bad symmetric key encryption algorithm. The reason field contains a
message:

unsupported key transport encryption algorithm: x
Where x is the symmetric key encryption algorithm provided.
®m You provide a bad public key identifier type. The reason field contains a message:
Unsupported key identification..
Note: If you are encrypting a part of the SOAP request, then signing it, be sure to
encrypt it as content. This action ensures its wsu:id (or name and namespace) remains

in the SOAP request after encryption and before signing. Otherwise, that part is not
found when attempting to sign it.

504 Content Designer Reference

Invoke SOAP Method Async Operator

Decryption Errors

A bad password specified in the Decryption Private Key Password field fails the
operator. The reason field contains a message:

Unable to apply WSS security on incoming message (SOAP Response).

The signature or decryption is invalid. The nested exception is: java.security.

UnrecoverableKeyException: Get Key failed:

The given final block is not properly padded.

Output Parameters

SOAP Call Data

serviceURL
methodName
userName
password
httpAuth
soapVersion
inputSource

inlineText

serviceURL

Returns the service URL the SOAP call uses.
methodName

Returns the method name to call.
userName

Returns the user name for basic HTTP authentication.
password

Returns the password for basic HTTP authentication.

Chapter 15: Web Services 505

Invoke SOAP Method Async Operator

httpAuth
Displays true or false, depending on your Use HTTP Basic Authentication? selection.
soapVersion

Returns the SOAP version that the product uses to make SOAP calls, either SOAP 1.1
or SOAP 1.2.

inputSource
Returns one of the following values for the SOAP call input source:
m InlineText
m Preformatted SOAP File
m Expression

inlineText

Returns the inline text data that is used for the SOAP call. This variable only
populates when you select Inline Text as the input source.

Example:

<checkServerStatus xmlns="http://www.ca.com/itpam">
CA AuthMinder

<token>token </token>

<user>user__</user>

<password>password__</password>

</auth>

</checkServerStatus>

FileName

Returns the inline text data that is used for the SOAP call. This variable is only
populated when you select Preformatted SOAP File as the input source.

506 Content Designer Reference

Invoke SOAP Method Async Operator

Expression Value

Returns the inline text data that is used for the SOAP call. This variable is only
populated when you select Expression as the input source.

SavedCallFileName

Returns the file name from the Saved Call File field. This file contains the actual
SOAP envelope that the product uses to make a SOAP call.

Example:

<?xml version="1.0" encoding="UTF-8"?><S0AP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"><S0AP-ENV
:Header/><S0AP-ENV:Body><checkServerStatus
xmlns="http://www.ca.com/itpam">

CA

AuthMinder<token>token </token><user>user </user><password>pa
ssword </password></auth></checkServerStatus></SOAP-ENV:Body><
/SOAP-ENV:Envelope>

Dynamic Parameters
Paramsyle

Returns the parameter style that you selected under the Dynamic Parameter field:
Xpath Assignments or MacroExpansion.

DynamicParamsinfo
An array of value maps; displays the number of value maps it contains.
DynamicParamsdata

Returns query, value, and type.

Call Results Parameters
responseFileName

Returns the file name that you provided in the Response File field. This file contains
the Response received from a SOAP call.

xPathQuery
Returns the xpath query that is defined for extracting the data from the call results.
datasetVar

Returns the variable that is created to hold the extracted call results.

Chapter 15: Web Services 507

Invoke SOAP Method Async Operator

Operation Results

Type

Returns the variable that holds the data type that the user defined to hold the call
results.

isExtractToDataSet

Returns true when you select Extract SOAP Response Body to Dataset Variable, or
false otherwise.

isExtractHeadersToDataSet

Returns true when you select Extract SOAP Header to Dataset Variable, or false
otherwise.

isExtractHeadersTolndividualDataSet

Returns true when you select Extract First-Level SOAP Header Elements into
Individual Dataset Variable, or false otherwise.

isExtractTolndividualDataSet

Returns true when you select Extract First-Level SOAP Header Elements into
Individual Dataset Variables, or false otherwise.

isStripXMLNamespaces

Returns true when you select Strip XML Name Spaces from Response, or false
otherwise.

Depending on the selection of check boxes in the Call Results parameters, the operation
results holds the output of the SOAP Call Results.

Soap Response Body
Stores the complete SOAP response body.
Soap Response Header Data
Stores the response header.
SoapResponseHeader
Contains the stripped data of the SOAP header response.
Soap Response Data

Contains the stripped data of the SOAP call results.

508 Content Designer Reference

Invoke SOAP Method Async Operator

MIME Attachments

AsyncSoaplntermediateResponse

Contains the complete response along with the headers received from the SOAP
call.

Example (using the CheckServerStatus method):

<SOAP-ENV: Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<checkServerStatusResponse xmlns="http://www.ca.com/itpam">
<serverStatus>Server status ok.</serverStatus>
</checkServerStatusResponse>

</SOAP-ENV: Body>

</SOAP-ENV:Envelope>

AsyncSoaplnterimResponseBody

Contains the body of the SOAP call response.
Example (using the CheckServerStatus method):

<checkServerStatusResponse xmlns="http://www.ca.com/itpam">
<serverStatus>Server status ok.</serverStatus>
</checkServerStatusResponse>

AsyncSoaplinterimResponseHeader

Contains the header of the SOAP call response.
Example (using the CheckServerStatus method):

<SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"/>

isResolvedByExpression

Returns true when you select the Is An Expression? option for the MIME
Attachment, or false otherwise. Selecting the Is An Expression? option indicates
that the MIME attachment is given as an expression and that expression refers to
the MIME attachment.

Expressionfield

Returns the expression that refers to the MIME attachment.

attachmentFields

Returns a ValueMap array that holds the number of elements it contains.

Content Type

Returns the content type of the MIME attachment.

Chapter 15: Web Services 509

Invoke SOAP Method Async Operator

ContentID

Returns the ContentID with which the MIME attachment is uniquely identified.
FileURL

Returns the path of the MIME attachment.

510 Content Designer Reference

Chapter 16: CA Process Automation System

Functions

Return Types

System functions can be used in:
m Pre-execution and post-execution of any operator.
m The source code of the Run JavaScript operator.

m Any field that accepts an expression.

In each of these areas, system functions can be accessed by pressing Ctrl+Alt.

System functions returns values of several types. In a few cases, the return type
depends on the input parameters or on whether the function is returning a “null”. In
most cases, system functions return Java types rather than pure Javascript values. For
instance, system functions that are described as returning a String are actually returning
a Java.lang.String. Typically, you can ignore the difference between Java.lang.String and
String. In some cases, this difference impacts behavior when executing and expression
or script. In the case of typeof x, where x is a variable holding the returned value from a
system function, the return type is “object”, rather than “string”.

For each system function return type, the following table describes the effect on the
following variables:

m A Javascript variable being assigned the return value

m A CA Process Automation dataset variable being created

System Function Return Javascript Variable Type Dataset Variable Type
Type after Assignment Created

boolean boolean Boolean

C20String object String

C20Value object ValueMap
C20ValueArray object ValueMap
C20ValueMap object ValueMap

Date object Date

int number Integer

Chapter 16: CA Process Automation System Functions 511

absPath

System Function Return Javascript Variable Type Dataset Variable Type
Type after Assignment Created

String object String

String (] object String []

void undefined/a n/a

absPath

The absPath function returns the absolute path that was created with the help of base
path and relative path. If the base path is not provided, the base path to the current
process is used.

Syntax
sAbsPath = absPath (path2).
sAbsPath = absPath (pathl, path2).
Arguments

pathl (String)
Specifies the base path.
path2 (String)

Specifies the relative path.

Return Value
sAbsPath (String)

The absolute path is returned as a String.

Examples

1. A process "Process" is in a folder "Folder". To get the full path of a "Process1"
Object (present in the same folder) inside "Process" Object, use absPath('Process1').
In this case, the base path is automatically taken as the base path of "Process"
object.

sPath = absPath('Processl')

2. Here, the first path is the base path of the object, and then the second is the
relative path with respect to the base path. The answer in this case is
/folder1/process.

sPath = absPath("/folderl/folder2","../process");

512 Content Designer Reference

adjustDate

adjustDate

The adjustDate function adjusts a date by a specified number of days, weeks, months or
years.

Syntax

newDt = adjustDate(dt, number, type)

Arguments
dt (java.util.Date)
Specifies the date that needs to be adjusted.
number (Int)
Specifies the value that needs to be adjusted.
type
Specifies the type of the value to be adjusted. Can be one of the following types:
= "y"(year)
s "d"(day)
n "w"(week)

. "m"(month)

Return Value
newDt (java.util.Date)

The adjusted date is returned as a java.util.Date.
Examples

Assume that today is 2/16/2012

1. The following example returns 2/18/2012, the date that is two days after today.
adjustDate(today(),2,'d")

2. The following example returns 2/16/2013, the date that is one year after today.
adjustDate(today(),1'y")

3. The following example returns 2/9/2012, the date that is one week before today.
adjustDate(today(),-1,'w")

4. The following example returns 1/16/2012, the date that is one month before today.

adjustDate(today(),-1,'m")

Chapter 16: CA Process Automation System Functions 513

adjustResourceVals

adjustResourceVals

This adjustResourceVals function modifies the values and state of a resource.

For more information about Resources, see the Content Designer Guide.

Syntax

bSuccess =
adjustResourceVals(resPath, resName, freeAmount,total, lock,unlock,re
set)
Arguments
resPath (String)

Specifies the path of the resources object.
resName (String)

Specifies the name of the resource in the resources object which must be adjusted.
freeAmount (Int)

Specifies the amount of free resources.
total (Int)

The value given in this argument adds up to the existing number of total resources.
lock (boolean)

Specifies True if the resource must be locked. When Lock is set to true, the values
freeAmount and total for that resource cannot be set, and the system function
returns false.

unlock (Boolean)
Specifies True if the resource must be unlocked.

Note: You cannot lock and unlock the same resource. Switch between lock and
unlock when using this system function.

reset (Boolean)
Specifies True if the resources object must be reset.

Note: Specifying true takes precedence over all the other operators. All the
parameters of the respective resource are reset to the default values (regardless of
the given inputs in the system function).

Return Value

bSuccess (Boolean)

This function returns true if successful or false if it fails.

514 Content Designer Reference

applyXPath

applyXPath

Example

bSuccess =
adjustResourceVals("\Resources", "LockResource", 20,20, false, true, fa
lse);

In this example, the variables are set as follows:

respath = "\Resources"
renName = "LockResource"
freeAmount = 20;

total = 20

lock = false

unlock = true

reset = false

The applyPath function uses an XPath query to extract XML data and returns an XML
fragment that lists the nodes that result from the query.

Syntax

sXML = applyXPath(xmlData, xpathQuery, namespaceAware, returnArray)

Arguments
xmlData (String)
Defines the XML on which to run the XPath query.
xpathQuery (String)
Defines the XPath query to run.
namespaceAware (Boolean)
(Optional) Specifies whether to strip name spaces before applying the XPath query.
Values:

True: CA Process Automation does not strip name spaces before applying the
XPath query.

False: CA Process Automation strips name spaces before applying the XPath
qguery, making the query simple.

Default: True

Chapter 16: CA Process Automation System Functions 515

applyXPathToUrl

returnArray (Boolean)
(Optional) Specifies whether to return an array of results or a single string.
Values:
True: The function returns an array of results.

False: The function returns a single string with multiple results concatenated in
the string.

Default: False

Note: If the XPath query does not find a match, it returns a blank array.
Return Values and Examples

One of the following return values, based on the value of the returnArray argument.
m When returnArray is false:

sXML (String)

If you omit the returnArray argument or you set it to false, the query returns
this value. The value that returns is an XML fragment that lists the nodes. For
example:

Process.xpathResult = applyXPath(Process.bookXML,
"/bookstore/book[2]", true, false);

m When returnArray is true:
sXMLArray (C20ValueArray)

If you set the returnArray argument to true, the query returns this value. The
value that returns is a C20ValueArray in which each element is an XML
fragment for a node. For example:

Process.xpathArrayResult = applyXPath(Process.bookXML,
"/bookstore/book", true, true);

applyXPathToUrl

The applyXPathToUrl function uses an XPath query to extract XML data from a specified
URL. The function returns an XML fragment that lists the nodes that result from the
query.

Syntax

sXML = applyXPathToUrl(url, xpathQuery, namespaceAware, returnArray)

516 Content Designer Reference

applyXPathToUrl

Arguments
url (String)
Defines the URL of the XML document on which to run the XPath.
xpathQuery (String)
Defines the XPath query to run.
namespaceAware (Boolean)
(Optional) Specifies whether to strip name spaces before applying the XPath query.
Values:

True: CA Process Automation does not strip name spaces before applying the
XPath query.

False: CA Process Automation strips name spaces before applying the XPath
query, making the query simple.

Default: True
returnArray (Boolean)
(Optional) Specifies whether to return an array of results or a single string.
Values:
True: The function returns an array of results.

False: The function returns a single string with multiple results concatenated in
the string.

Default: False

Note: If the XPath query does not find a match, it returns a blank array.

Chapter 16: CA Process Automation System Functions 517

checkCalendarDate

Return Values and Examples

One of the following return values, based on the value of the returnArray argument.
m When returnArray is false:
sXML (String)

If you omit the returnArray argument or you set it to false, the query returns an
XML fragment that lists the nodes. For example:

SXML =
applyXPathToUrl("http://localhost:8080/itpam tutorials/book
.xml", "/bookstore/book[2]", true, false);

m When returnArray is true:
sXMLArray (C20ValueArray)

If you set the returnArray argument to true, the query returns a C20ValueArray
in which each element is an XML fragment for a node. For example:

sXMLArray =
applyXPathToUrl("http://localhost:8080/itpam tutorials/book
.xml", "/bookstore/book", true, true);

checkCalendarDate

The checkCalendarDate function checks whether the specified date is inside the
specified condition. The condition includes the Include Calendar, Exclude Calendar,
Delta, Open Days and Max shifts. See Calendar Properties for more information about
these parameters.

Syntax

bIsAvail = checkCalendarDate(date, includeCalendar, excludeCalendar,
delta, openDays, maxShifts)
Arguments
date (java.util.Date)
Specifies the input date.
includeCalendar (String)
Specifies the path of the include calendar object.
excludeCalendar (String)
Specifies the path of the exclude calendar object.
delta (Int)

Specifies the delta.

518 Content Designer Reference

convertJson

convertlson

openDays (Int)
Specifies the openDays value.
maxShifts (Int)

Specifies the maxshifts value.

Return Value
blsAvail (Boolean)

This function returns true if the specified date is open and false if it not.

Example

Process.sIncCal=absPath("IncCal");
Process.sExcCal=absPath("ExcCal");Process.bCaldate =
checkCalendarDate(today(),sIncCal,sExcCal,0,false,0);

The convertlson function converts a valid JSON string into ValueMap. Use this method
to convert a JSON response from a REST service to a ValueMap object. The Valuemap
object can then be traversed and accessed using the standard expressions.

Syntax

vmResult = convertJson(jsonString)

Arguments
jsonString (String)
Specifies the JSON string that needs to be parsed.

Return Value
ValueMap
ValueMap representation of the data contained in the JSON string which can be

traversed or referenced with expressions.

If you pass a null value, it returns null value without an exception. If you pass an invalid
JSON string, the method returns a Null value and the exceptions are logged in the logs in
the server.

Chapter 16: CA Process Automation System Functions 519

convertJson

Example

vmResult = convertJson(Process.jsonString)

Consider an example where you invoked a REST service. The following response that is
received is stored in a variable name restResponse in a process dataset:

{
"UserName": "pamadmin",
"age": 25,
"address": {
"streetAddress": "CA Technologies, 115, IT Park Area",
"city": "Hyderabad",
"state": "AP",
"postalCode": "500084"
b
"phoneNumber": [
{
"type": "Office",
"number": "04066812345"
b

Iltypell : IIHomeII’
“number": "04066854321"

}

To access the values of the UserName, streetAddress, and phoneNumber, write the
following code:

// Code starts

// Parse the REST response using convertJson() method and store it in
a Process dataset variable named as “resultData”
Process.resultData=convertJson(Process.restResponse);

// Access “UserName” from the resultData varaible

Process.userName = Process.resultData.UserName;

// Street Address is inside address object hence it will be accessed
using the following syntax

Process.streetAddress = Process.resultData.address.streetAddress;
// Phone Number is an array and Office number is stored in the first
element, hence index [0] is used.

Process.officePhoneNumber =
Process.resultData.phoneNumber[0].number;

// Code ends

520 Content Designer Reference

convertValueToXml

convertValueToXml

The convertValueToXml function returns an XML fragment based on an array of simple
types or a ValueMap of simple types.

When using a ValueMap, the XML elements are created using field names as tags and
field values as the contents. You can specify a string or null for the tag parameter when
using ValueMaps. If you specify a string, the string is used to create a root element with
the specified tag. The elements that were created from the ValueMap are contained
within that root element. If you specify null, the elements are at the root level.

When using an array, specify a string for the tag parameter. That string is used to create
the element tags with the array values as the element contents.

Syntax

sXML = convertValueToXml(arrayOrVmap, tag)

Arguments

arrayOrVmap (String)
Specifies an array or ValueMap.

tag (String)
Specifies the mandatory tag to use with an array or the optional tag to use with a
ValueMap.

Return Value

sXML (String)

The return type is String.

Examples
1. Inthis example, Process.array contains values 1, 2, and 3.
Process.xml = convertValueToXml(Process.array, "test")
Process.xml contains the following XML fragment:
<test>l<test><test>2<test><test>3<test>

2. Inthis example, Process.valuemap has two fields with the names "field1" and
"field2" and values "valuel" and "value2".

Process.xml = convertValueToXml(Process.valuemap, null)
Process.xml contains the following XML fragment:

<fieldl>valuel</fieldl><field2>value2</field2>

Chapter 16: CA Process Automation System Functions 521

convertXml

convertXml

The convertXML function converts an XML fragment to a ValueMap.

Syntax
vmResult = convertXml(xmlString)
Arguments

xmliString (String)
Specifies the XML that needs to be parsed.

Return Value
vmResult (ValueMap)

ValueMap representation of the data contained in the XML string.
Example

vmResult = convertXml(Process.xmlString)

convertXmlUrl

The convertXmlUrl function converts the XML document accessible through a URL into a
ValueMap.

Syntax

vmResult = convertXmlUrl(url)

Arguments
url (String)
Specifies the URL of the XML document that needs to be parsed.

Return Value
vmResult (ValueMap)
ValueMap representation of the data that was retrieved from the XML document

that the URL identifies.

Example

vmResult = convertXmlUrl("
http://localhost:8080/itpam tutorials/book.xml");

522 Content Designer Reference

createHyperlink

createHyperLink

The createHyperLink function creates an HTML hyperlink element with the specified
parameters and returns a string that will be formatted as "ll+name+llll.

Syntax
sLink = createHyperLink(url, name)
Arguments
url (String)
Specifies the HTTP URL whose hyperlink needs to be created.

name (String)

Specifies the name of the hyperlink.

Return Value
sLink (String)

A hyperlink with a URL and name as defined by the arguments passed into the
function.

Example

sLink = createHyperLink("http://www.ca.com","CA Technologies");

createResourceObject

The createResourceObject function creates a resources object.

Syntax

bSuccess = createResourceObject(resourcePath)

Arguments
resourcePath (String)

Specifies the path of the resources object.

Return Value
bSuccess (Boolean)

This function returns true if successful or false if it fails.

Chapter 16: CA Process Automation System Functions 523

deleteAttachments

Example

bSuccess = createResourceObject("SyncRes")

deleteAttachments

The deleteAttachments function deletes attachments from the CA Process Automation
database given an array of unique IDs.

Syntax

bSuccess = deleteAttachments(AttachmentIDArray)

Arguments
AttachmentIDArray (Array)

Specifies an array of unique IDs. The IDs can be Strings, longs, or integers.

Return Value
bSuccess (Boolean)
m This function returns false only if its arguments are an empty array.

m This function throws an exception (that is, the operator fails) if it is unable to
delete attachments or if invalid arguments are passed.

m This function returns true if it is able to process the delete attachment request
successfully (including the case where the function is unable to delete a few or
all of the attachments).

Examples

Process.rglAttachIDs = new Array(1,2,3,4,5);
Process.del = deleteAttachments(Process.rglAttachIDs);

deleteObject

The deleteObject function deletes and purges the library object specified by the
"objectName" parameter. The input parameter can be a full or relative path. The
relative path is relative to the process in which the script is executed.

Syntax

bSuccess = deleteObject(objectName)

524 Content Designer Reference

deleteResource

Arguments

objectName (String)
Specifies the full/relative path of the library object which must be deleted and
purged.

Return Value

bSuccess (Boolean)

This function returns true if successful or false if it fails.

Examples

1. This example deletes the process object found on the path /folder/Process and
returns the value True.

bSuccess = deleteObject('/folder/Process')

2. This function is being executed inside the process "Process_1", and Process_1 is in
folder "Folderl" which is present inside the root folder. This function deletes the
process with full path "/Folder1/Process" and returns the value True.

bSuccess = deleteObject('Process')

deleteResource

The deleteResource function deletes a resource from a resources object.
Syntax

bSuccess = deleteResource(resourcePath, resourceName)

Arguments
resourcePath (String)

Specifies the path of the resources object.
resourceName (String)

Specifies the name of the resource in the resources object which needs to be
deleted.

Return Value
bSuccess (Boolean)
This function returns true if successful or false if it fails.

Example

bSuccess = deleteResource("/folder/ResObject", "fileLock");

Chapter 16: CA Process Automation System Functions 525

deleteValueMapField

deleteValueMapField

The deleteValueMapField function deletes a field from a ValueMap.

Syntax

bSuccess = deleteValueMapField(vMap, fieldName)

Arguments
vMap (ValueMap)

Specifies the ValueMap whose field needs to be deleted.
fieldName (String)

Specifies the name of the field that needs to be deleted.

Return Value
bSuccess (Boolean)

Returns true if the deletion was successful and false otherwise.

Example

bSuccess = deleteValueMapField(Process.vMap, "price");

existsCalendar

The existsCalendar function checks whether a calendar object exists in the given path.
The path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

Syntax

bExists = existsCalendar(calendarPath);

Arguments

calendarPath (String)
Specifies the full/relative path of the calendar object whose existence needs to be
checked.

Return Value

bExists (Boolean)

Returns true if the calendar object exists or false if it does not.

526 Content Designer Reference

existsCustomIcon

Example

bExists = existsCalendar("WorkCalendar");

existsCustomIcon

The existsCustomlcon function checks whether a custom icon object exists in the given
path. The path can be an absolute/relative path. The relative path is relative to the
process in which the script is executed.

Syntax
bExists = existsCustomIcon(customIconPath)
Arguments

customlconPath (String)

Specifies the full/relative path of the custom icon object whose existence needs to
be checked.

Return Value
bExists (Boolean)

Returns true if the custom icon object exists or false if it does not.
Example

if (existsCustomIcon(customIconPath))

{
Process.mseg custom_icon= "CustomIcon exists" ;
}
else
{
Process.mseg custom_icon= "CustomIcon does not exist" ;
}

existsCustomOperator

The existsCustomOperator function checks whether a custom operator object exists in
the given path. The path can be an absolute/relative path. The relative path is relative to
the process in which the script is executed.

Syntax

bExists = existsCustomOperator(customOperatorPath)

Chapter 16: CA Process Automation System Functions 527

existsDataset

Arguments

customOperatorPath (String)
Specifies the full/relative path of the custom operator whose existence needs to be
checked.

Return Value

bExists (Boolean)

Returns true if the custom operator exists or false if it does not.

Example

if (existsCustomOperator(customOperatorpath))

{
Process.mseg custom operator= "CustomOperator exists" ;
}
else
{
Process.mseg custom_operator= "CustomOperator does not exist"
}

existsDataset

The existsDataset function checks whether a dataset object exists in the given path. The
path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

Syntax

bExists = existsDataset(datasetPath)

Arguments
datasetPath (String)

Specifies the full/relative path of the dataset whose existence needs to be checked.

Return Value
bExists (Boolean)

Returns true if the dataset object exists or false if it does not.

528 Content Designer Reference

existsFolder

existsFolder

Example

if (existsDataset(datasetPath))

{
Process.mseg dataset= "Dataset Common exists" ;
}
else
{
Process.mseg dataset= "Dataset Common does not exist" ;
}

The existsFolder function checks whether a folder object exists in the given path. The
path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

Syntax

bExists = existsFolder(folderPath)

Arguments
folderPath (String)

Specifies the full/relative path of the folder whose existence must be verified.

Return Value
bExists (Boolean)

Returns true if the folder object exists or false if it does not.

Example

if(existsFolder(folderpath))
{

Process.mesg folder

}

else

{

Process.mesg folder

}

"Folder test exists";

"Folder test does not exist";

Chapter 16: CA Process Automation System Functions 529

existsInteractionRequestForm

existsInteractionRequestForm

existsProcess

The existsInteractionRequestForm function checks whether an interaction request form
object exists in the given path. The path can be an absolute/relative path. The relative
path is relative to the process in which the script is executed.

Syntax
bExists = existsInteractionRequestForm(irfPath)
Arguments

irfPath (String)

Specifies the full/relative path of interaction request form object whose existence
needs to be checked.

Return Value
bExists (Boolean)

Returns true if the interaction request form object exists or false if it does not.
Example

if (existsInteractionRequestForm(irfPath))

{
Process.mseg irf= "Interaction Request Form exists" ;
}
else
{
Process.mseg irf= "Interaction Request Form does not exist" ;
}

The existsProcess function checks whether a process object exists in the given path. The
path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

Syntax

bExists = existsProcess(processPath)

Arguments
processPath (String)

Specifies the full/relative path of the process object whose existence needs to be
checked.

530 Content Designer Reference

existsProcessWatch

Return Value
bExists (Boolean)

Returns true if the process object exists or false if it does not.

Example

if (existsProcess(processPath))
{
Process.mseg process= "\'Pass control to previous oper.\'
exists" ;
}

else

{
Process.mseg process= "\'Pass control to previous oper.\' does
not exist" ;

}

existsProcessWatch

The existsProcessWatch function checks whether a process watch object exists in the
given path. The path can be an absolute/relative path. The relative path is relative to the
process in which the script is executed.

Syntax

bExists = existsProcessWatch(processWatchPath)

Arguments

processWatchPath (String)
Specifies the full/relative path of process watch object whose existence needs to be
checked.

Return Value

bExists (Boolean)

Returns true if the process watch object exists or false if it does not.

Chapter 16: CA Process Automation System Functions 531

existsResource

Example

if (existsProcessWatch(processWatchPath))
{

Process.mseg process watch= "ProcessWatch exists" ;

Process.mseg process watch= "ProcessWatch does not exist" ;

existsResource

The existsResource function checks whether a resources object exists in the given path.
The path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

Syntax
bExists = existsResource(resourcePath)

Arguments
resourcePath (String)

Specifies the full/relative path of resources object whose existence needs to be
checked.

Return Value
bExists (Boolean)

Returns true if the resource object exists or false if it does not.

Example

bExists = existsResource("/Resources/Locks");

existsSchedule

The existsSchedule function checks whether a schedule object exists in the given path.
The path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

Syntax

bExists = existsSchedule(schedulepath)

532 Content Designer Reference

formatDate

formatDate

Arguments

schedulepath (String)
Specifies the full/relative path of the schedule object whose existence needs to be
checked.

Return Value

bExists (Boolean)

Returns true if the scheduleobject exists or false if it does not.

Example

if (existsSchedule("testSchedule"))

{Process.mseg schedule= "testSchedule exists" ;}

else

{Process.mseg schedule= "testSchedule does not exist" ;}
if (existsSchedule("testSchedule"))

{Process.mseg schedule= "testSchedule exists" ;}

else

{Process.mseg Schedule= "testSchedule does not exist" ;}

The formatDate function returns a string based on a date and a format specifier. See
this list for allowable date and time patterns.

Syntax

dateString = formatDate(dt, format)

Arguments
dt (java.util.Date)

Specifies the date object to be formatted.
format (String)

Specifies the format required (for example, MM/dd/yyyy).

Return Value
dateString (String)

This function returns the date as a string using the format specifier.

Chapter 16: CA Process Automation System Functions 533

http://docs.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

formatString

formatString

Examples

Process.logMessage = "Date value is " + formatDate
(Process.CurrentFootprintDate, 'yyyy-mm-dd hh:mm:ss');

The formatString function returns a string after formatting the specified string with the
mentioned arguments.

Syntax

resultString = formatString(format, args)

Arguments
format (String)

Specifies the format string.
args (Array)

Specifies the arguments for formatting.

Return Value
resultString (String)
This function returns a string, formatted according to the arguments provided in the

function arguments.

Example

var myArray = new Array();
myArray[0] = "a";

myArray[1] = "b";
myArray[2] = "c";
myArray[3] = "d";

sString = formatString("%4$s %3$2s %2$2s %1$2s", myArray);

This results in sString="d cb a".

534 Content Designer Reference

getAllAttachments

detAllAttachments

The getAllAttachments function returns information for all attachments that are present
in the CA Process Automation database.

Syntax

vmArrayAttachments = getAllAttachments()

Return Value
vmArrayAttachments (C20valueArray)

This function returns an array containing the following information for all
attachments that are present in the CA Process Automation database:

contentType
Attachment content type.
contentID
Attachment contentID, if present.
fileURL
URL that can be used to view or download the attachment.
name
Name of the attachment.
attachmentID

Unique ID for this attachment. This ID can be passed to other system functions.
Example

Process.attachments = getAllAttachments();

detAttachmentContent

The getAttachmentContent function retrieves the content from an attachment and
places it in a CA Process Automation dataset variable. This function has a 64KB limit to
the size of the content it can retrieve.

Syntax

sAttachment = getAttachmentContent(lAttachmentID)

Chapter 16: CA Process Automation System Functions 535

getCountOfProcessStates

Arguments
IAttachmentID (long)

The unique ID that identifies the attachment where the content resides that is
being retrieved.

Return Value
sAttachment (C20String)

The content is returned as a C20String.(com.optinuity.c2o.bean.C20String).

Example

var i = Process.attachments[0].attachmentID;
Process.cont = getAttachmentContent(i);

detCountOfProcessStates

The getCountOfProcessStates function returns the count of processes in all possible
states.

Syntax
Process.processStates = getCountOfProcessStates();

Return Value
processStates (ValueMap)

Returns a ValueMap consisting of all the states and the number of processes in that
state. If no processes are in the specified state, the count is 0.

Example

Process.processStates = getCountOfProcessStates();

detEEMArtifactToken

The getEEMArtifactToken function generates a CA EEM artifact token, typically for a
single use.

Syntax

getEEMArtifactToken (certificateFilePath, {certificatePassword |
KeyFilePath})

536 Content Designer Reference

getEEMArtifactTokenForUser

Arguments
certificateFilePath

The relative path (File Path) to the certificate file. The certificate file is uploaded
using Manage User Resources in the Configuration tab.

certificatePassword (String) | KeyFilePath (String)
One of the following arguments:

m When FIPS support is enabled in CA EEM, set this argument to the relative path
of the key file (KeyFilePath). The key file is uploaded to CA Process Automation
using Manage User Resources in the Configuration tab.

m When FIPS support is not enabled in CA EEM, set this argument to the
certificate password. This password is used as a String for the certificate that is
referenced in the certificateFilePath argument.

Return Value

CA EEM artifact token (String)
Examples

The following example shows FIPS support is enabled in CA EEM:

Process.artifactToken = getEEMArtifactToken
(".c2ouserresources/mycerts/pam.12", "mypassword")
Process.artifactToken = getEEMArtifactToken
(".c2ouserresources/mycerts/upload/pam.cer",
".c2ouserresources/mycerts/keys/pam.key")

getEEMArtifactTokenForUser

The getEEMArtifact function generates a CA EEM token for a single use.

Syntax

getEEMArtifactTokenForUser (username , password)

Arguments
username

The username for a CA EEM user.
password

The password for a CA EEM user.

Chapter 16: CA Process Automation System Functions 537

getEEMCredentialsToken

Return Value

CA EEM artifact token (String)

Example

Process.artifactToken = getEEMArtifactTokenForUser ("pamadmin",
"pamadmin")

detEEMCredentialsToken

The getEEMCredentialsToken function generates a CA EEM credential token, typically
for multiple uses. The certificateFilePath argument expects a relative path (File Path) of
the certificate file. This file is uploaded using Manage User Resources within the
Configuration tab.

In the case where FIPS is not enabled, the second argument is the certificate password.
This password is used as a String for the certificate referred within the first argument
(certificateFilePath).

In the case where FIPS support is enabled within CA EEM, the second argument is
KeyFilePath. KeyFilePath is the relative path of the key file. This file is uploaded to CA
Process Automation using Manage User Resources.

Syntax

getEEMCredentialsToken (certificateFilePath, {certificatePassword |
KeyFilePath})
Arguments
certificateFilePath
The relative path of the certificate file.
certificatePassword (String) | KeyFilePath (String)
One of the following arguments:
m For non-FIPS mode, this argument should be the certificate password.

m For FIPS-enabled mode, this argument should be the certificate KeyFilePath.
The KeyFilePath is file is uploaded to CA Process Automation using Manage
User Resources.

Return Value

CA EEM artifact token (String)

538 Content Designer Reference

getEEMCredentialsTokenForUser

Example

Before you write the code, first verify if CA EEM is FIPS-enabled or not by using the
isFIPSMode (see page 548) () function, so you can pass certificateFilePath,
certificatePassword, or certificatepath and KeyFilePath.

For example:

If (isFIPSMode ().equals(‘true’)){
Process.credentialToken =
getEEMCredentialsToken("/mycerts/upload/pam.cer",
"/mycerts/keys/pam.key")

} else {

Process.credentialToken = getEEMCredentialsToken("/mycerts/pam.12",
"mypassword")

}

detEEMCredentialsTokenForUser

The getEEMCredentialsTokenForUser function generates a CA EEM token for multiple
uses.

Syntax

getEEMCredentialsTokenForUser (username , password)

Arguments
username

The username for a CA EEM user.
password

The password for a CA EEM user.

Return Value
CA EEM artifact token (String)
Example

Process.credentialToken =
getEEMCredentialsTokenForUser("pamadmin", "pamadmin")

Chapter 16: CA Process Automation System Functions 539

getEnvVar

detEnvVar

The getEnvVar function returns the value of environment variable from the (OS)
environment which must have been set before starting the JVM.

Syntax
sEnvValue = getEnvVar(vname)
Arguments

vnhname (String)

Specifies the name of the environment variable whose value is required.

Return Value
sEnvValue (String)

The value of the specified environment variable, in string form.
Example

Process.username=getEnvVar("username");
Process.path = getEnvVar("path");

detOrchestratorURL

The getOrchestratorURL function returns the name of the Orchestrator.

Syntax
getOrchestratorURL()
Return Value
URL of the Orchestrator (String)
Specifies the URL of the Orchestrator or the Load balancer (in the case of a cluster).
Example

Process.x = getOrchestratorURL();

Where x is the process name. Once the process runs, variable x inside the process
dataset includes the Orchestrator name.

540 Content Designer Reference

getPartialAttachmentContent

detPartialAttachmentContent

The getPartialAttachmentContent function is used to retrieve content from an
attachment. The function has a 64 KB limit to the amount of content it can retrieve. Its
purpose is to allow the retrieval of a subset of the content.

Syntax

sContent = getPartialAttachmentContent(lAttachmentID,nStartIndex,
nRetrievelLength)

Arguments

IAttachmentID (long)

The unique ID that identifies the attachment where the content resides that is
being retrieved.

nStartindex (Int)
The location, in bytes

nRetrievelength (Int)

Return Value
sContent (C20String)

Contains the content, from the specified attachment, beginning with the
nStartindex byte and containing at most nRetrieveLength bytes. The return type is
C20String (com.optinuity.c2o.bean.C20String).

Example

var 1 = Process.attachments[0].attachmentID;
Process.part=getPartialAttachmentContent(i,i+1,100000);

detResourceAvail

The getResourceAvail function returns the value of the free field of a resource in a
resources object.

Syntax
nAvail = getResourceAvail(resourcePath, resourceName)
Arguments

resourcePath (String)

Specifies the path of the resource object.

Chapter 16: CA Process Automation System Functions 541

getResourceName

resourceName (String)

Specifies the name of the resource in the resources object whose free field needs to
be returned.

Return Value
nAvail (Int)

This function returns the number of resources available from the specified resource
in the resource object found on the specified path.

Example

nAvail = getResourceAvail ("/Resources/Locks", "DiskLock");

detResourceName

The getResourceName function returns an array of strings containing the names of the
resources inside a resources object.

Syntax

resourceNames = getResourceNames (resourcePath)

Arguments
resourcePath (String)

Specifies the path of the resource object.

Return Value
resourceNames (String Array)

Array of resource names contained in the specified resources object.

Example

resourceNames = getResourceNames("/Resources/Locks");

detResourceTotal

The getResourceTotal function returns the value of total amount for a particular
resource in a resources automation object.

Syntax

nTotal = getResourceTotal(resourcePath, resourceName)

542 Content Designer Reference

getTouchpoints

Arguments
resourcePath (String)
Specifies the path of the resource object.
resourceName (String)
Specifies the name of the resource in the resources object whose total amount
needs to be returned.
Return Value
nTotal (Int)
Returns the total number for the specified resource. If the resource does not exist,

-1is returned.

Example

nTotal = getResourceTotal("/Resources/Locks", "DiskLock");

detTouchpoints

The getTouchpoint function returns a list of touchpoints referenced by a touchpoint
name, or a touchpoint group name. This method returns an array of strings. An empty
array means that the touchpoint group is empty, or the touchpoint with the given name
does not exist.

Syntax
rgsTouchpoints = getTouchpoints(TouchpointOrGroupName)
Arguments

TouchpointOrGroupName (String)

Specifies the touchpoint or touchpoint group name.

Return Value
rgsTouchpoints (String Array)

An array of touchpoint string names.
Example

rgsTouchpoints = getTouchpoints("localhost");

Chapter 16: CA Process Automation System Functions 543

getValueFromValueMapArray()

detValueFromValueMapArray()

The getValueFromValueMapArray returns one field or column from an array that is
based on the provided parameters.

Syntax

getValueFromValueMapArray(groupName, arrName, fieldName,
fieldValue, requiredFieldName)
Arguments
groupName (String)
Defines the name of the Custom Group that you publish.
arrName (String)
Defines the name of a C20ValueMap array.
fieldName (String)

Defines the name of the field for which to retrieve the values of other columns or
fields in an array.

fieldvalue (String)

Defines the actual value of the field for which you retrieve the values of other
columns or fields in an array.

requiredFieldName (String)

Defines the name of the field or column that you require. For example, username,
password, or URL.

Return Value

The return value is a C20Value Return Type.

544 Content Designer Reference

getValueMapFields

Example

Consider a group named DemoGroup and an array as the following illustration shows:

MailServerCredentials

R |5
mMamedConn mServerHost mServerPort mProtocol mUsername mPassword
0 demo chaki0g-xp 143 IMAP test@mydomair test
MailServerCredentials
Page 1 of1 = Displaying 1 - 1 of 1

The following syntax retrieves the value of the mUsername field from the array for the
named connection DemoGroup:

getValueFromValueMapArray("DemoGroup", "MailServerCredentials",
"mNamedConnection", "demo", "mUsername")

The output is a C20Value where:
m The fieldName value is mUsername

m The fieldValue value is test@mydomain.com

detValueMapFields

The getValueMapFields function returns the list of field names inside a ValueMap as an
array of string variables.

Syntax

fieldNames = getValueMapFields(vmap)

Arguments
vmap (ValueMap)

Specifies the ValueMap object whose field names needs to be returned.

Return Value
fieldNames (String Array)

An array of Strings containing the names of the fields found in the ValueMap.

Chapter 16: CA Process Automation System Functions 545

getValuesFromValueMapArray()

Example

fieldNames = getValueMapFields(Process.vmBooks);

detValuesFromValueMapArray()

The getValuesFromValueMapArray returns all the columns or fields of an array.

Syntax

getValuesFromValueMapArray(groupName, arrName, fieldName,
fieldValue)
Arguments
groupName (String)
Defines the name of the Custom Group that you publish.
arrName (String)
Defines the name of an array of C20ValueMap.
fieldName (String)

Defines the name of the field against which you retrieve the value of other columns
or fields in an array.

fieldValue (String)

Defines the actual value of the field against which you retrieve the value of other
columns or fields in an array.

Return Values

The return value is a C20Value Return Type.

hasField

The hasField function determines if a field exists in a ValueMap.
Syntax

bHasField = hasField(valuemap, fieldName)

Arguments
valuemap (ValueMap)

Specifies the input ValueMap.

546 Content Designer Reference

include

include

fieldName (String)

Specifies the field name.

Return Value
bHasField (Boolean)

Returns true if the field exists in the ValueMap or false otherwise.

Example

bHasField = hasField(Process.vmBooks, "author");

The include function loads JavaScript code that is defined in a file for use in the
pre-execution or post-execution section of any operator or in the SourceCode section
(see page 406) of the Run JavaScript operator. The loaded JavaScript code is only good
for the duration of the pre-execution, post-execution or SourceCode section that it is
loaded in.

Syntax

include(jsFile)

Arguments
jsFile (String)

This parameter must refer to a JavaScript file. This parameter can be an HTTP URL in
which case the parameter must start with a file URL or it can be a path inside the
c2ouserresources folder. The path must be relative to the ".c2ouserresources"
folder itself. ".c2ouserresources" is present inside the .c2orepository folder in the
CA Process Automation installation folder.

Chapter 16: CA Process Automation System Functions 547

isFIPSMode

Return Value
No value returned (void).
Examples

The following example is an HTTP URL; the parameter starts with a file URL..

include('http://test.ca.com/test.js')

The following examples load the test file from a path relative to the .c2ouserresources
folder.

include('file://c:/test.js')
Include('test.js')

isFIPSMode

The isFIPSMode function lets you programmatically determine whether the CA EEM
server has FIPS mode enabled. This function returns true if the CA EEM server is running
when FIPS mode is enabled, and false if the server is not running.

Syntax
isFIPSMode()
Return Value
True

Returned if the CA EEM server is running when FIPS mode is enabled. (String)

False

Returned if the CA EEM server is running when FIPS mode is not enabled. (String)

isTouchpointUp

The isTouchpointUp function determines if a touchpoint is active.
Syntax

bIsUp = isTouchpointUp(touchpointName)

Arguments
touchpointName (String)

Specifies name of the touchpoint.

548 Content Designer Reference

load

load

Return Value
bisUP (Boolean)

Returns true if the touchpoint is active or false otherwise.

Example

bIsUp = isTouchpointUp("AccountingTouch");

The load function loads JavaScript code that is defined in a dataset variable for use in
the pre-execution or post-execution section of any operator or in the SourceCode
section (see page 406) of the Run JavaScript Operator. The loaded JavaScript code is
only good for the duration of the pre-execution, post-execution, or SourceCode section
where it is loaded.

Syntax

load(jsCode)

Arguments
jsCode (String)

Specifies the JavaScript code to load.
Return Value
No value returned (void).

Examples

1. Define a dataset object that is called Common with a parameter jsCode that
contains the following JavaScript:

function convertToUpperCase(sValue) {return
sValue.toUpperCase()};

2. Use the load function to load that piece of code and make functions in that code
available to you:

load(Datasets["Common"].jsCode);
Process.ucValue = convertToUpperCase("helloworld");

Chapter 16: CA Process Automation System Functions 549

lockResource

lockResource

The lockResource function locks or unlocks one or more resources in a resource object.
If you specify a value for resourceName, it resets only that resource. If you leave
resourceName empty, it resets all of the resources in the resources object.

Notes:

m [f resources that do not exist are provided as input, resources are still created.

m [f you specify a value for resourceName and that resource does not exist, the

resource is created with an amount of zero and set to the specified state.

Syntax
bSuccess = lockResource(resourcePath, resourceName, state)
Arguments
resourcePath (String)
Specifies the path of the resources object.
resourceName (String)
Specifies the name of the resource in the resources object.

state (Boolean)

Specifies whether the resource should be locked or unlocked. Set to true for locked
and false for unlocked.

Return Value
bSuccess (Boolean)

Returns true if the function succeeds or false if it fails.

Example

bSuccess = lockResource("/Resources/Locks", "InvLock", true);

logEvent

The logEvent function inserts a custom message into the logs of a process instance.

Syntax

logEvent(level, category, msg)

550 Content Designer Reference

newValueMap

Arguments
level (Int)
Specifies one of the following log levels:
4 = Error
3 =Warning
2 = Notice
1 =Normal
category (String) (this value is optional)
Specifies one of the following log categories:
m "CUSTOM" (the default)
m "FLOW_CATEGORY"
m "AGENDA_CATEGORY"
m "ICON_CATEGORY"
m "HANDLERS_CATEGORY"
m "RESPONSE_CATEGORY"

m "OTHERS_CATEGORY" (PROCESS,AGENDA,OPERATOR,HANDLER,
RESPONSE,OTHERS, CUSTOM,OTHERS)

msg (String)

Specifies the log message.
Return Values
No value returned (void).

Example

logEvent (1, "FLOW CATEGORY", "Start New Hire Process has completed");

newValueMap

The newValueMap function creates and returns a new ValueMap.

Syntax

vmData = newValueMap()
Arguments

None.

Chapter 16: CA Process Automation System Functions 551

newDataset

Return Value

vmData (ValueMap)

Example

Process.myVmap = newValueMap()

newDataset
The newDataset function dynamically creates and returns a new ValueMap that can be
assigned to a dataset object. If you create a dataset that already exists with this
function, that existing dataset is not affected.
Syntax
Datasets["/mydataset"]=newDataset()
Arguments
None.
Return Value
ValueMap
Example
Datasets["/mydataset"]=newDataset()
nextOpenDate

The nextOpenDate function returns an open date given a targetDate by considering the
includeCalendar, excludeCalendar, and maxShifts. If no open date is found with the
given inputs, the result is null.

Syntax

dtNextOpenDate = nextOpenDate(targetDate, includeCalendar,
excludeCalendar, maxshift)

552 Content Designer Reference

now

now

parseDate

Arguments
targetDate (java.util.Date)

Specifies the desired date.
include_calendar (String)

Specifies the path of the include calendar object.
exclude_calendar (String)

Specifies the path of the exclude calendar object.
maxshifts (Int)

Specifies the maximum acceptable number of shifts when searching for an open
date. Specify positive numbers to increment the date and negative numbers to
decrement the date. The system caps the maximum number of shifts at 5.

Return Value

dtNextOpenDate (java.util.Date)

The now function returns the current date including the time.

Syntax

dtNow = now()
Arguments
None.

Return Value
dtNow (java.util.Date)

The return value is the current date and time.

The parseDate function returns a date object after parsing the specified string in the
required format.

Syntax

dtDate = parseDate(dateStr, format)

Chapter 16: CA Process Automation System Functions

553

resetResource

Arguments

dateStr (String)
Specifies the string that needs to be parsed as a date.

format (String)
Specifies the format required to interpret the date string provided; for example:
MM/dd/yyyy.

Return Value

dtDate (Date)

Date equivalent of input dateStr String as parsed using the input format String.

Examples

1. Sets dtDate to a value of Dec 10, 2009 12:00:00 AM, when the format is

MM/dd/yyyy.
dtDate = parseDate('12/10/2009', 'MM/dd/yyyy")

2. Sets dtDate to a value of Oct12, 2009 12:00:00 AM, when the format is
dd/MM/yyyy
dtDate = parseDate('12/10/2009', 'dd/MM/yyyy")

3. Fails the following input because the input date string does not match the input
format.
dtDate = parseDate('12-10-/2009', 'dd/MM/yyyy"')

resetResource

The resetResource function resets one or more resources in a resource object by
unlocking them and setting the used count to zero. If you specify a value for
resourceName, only that resource is reset. If you leave resourceName empty, all of the
resources in the resources object are reset.

Note: If you specify a value for resourceName and that resource does not exist, the
resource is created with an amount of zero and set to the unlocked state.

Syntax

bSuccess = resetResource(resourcePath, resourceName)

554 Content Designer Reference

rollDate

Arguments
resourcePath (String)

Specifies the path of the resources object.
resourceName (String)

Specifies the name of the resource in the resources object.

Return Value
bSuccess (Boolean)

Returns true if the function call is successful and false if it fails.

rollDate

The rollDate function is used to roll a particular value that is based on a date. For
example, perhaps you want to send a feedback email one day after a service desk
request was closed. In that case, to write the automation logic, use this function.

When this function is executed, the value num is added to the date dt based on the
type.

Syntax

dtRollDate = rollDate(dt, num, type)

Arguments
dt (java.util.Date)
Specifies the date object that is based on the rolling to take place.
num (Int)
Specifies the value that must be rolled.
type (String)

Specifies the one of the following values:

"y"(year)
"d"(day)

n "w"(week)

= "m"(month)
Return Value

dtRollDate (java.util.Date)

Chapter 16: CA Process Automation System Functions 555

rollTime

Examples
1. Returns the date which is two days from today.
dtRollDate = rollDate(today(),2,'d")

2. Returns the next year from today; for example, if today is November 12, 2009, this
example will return January 1, 2010.

dtRollDate = rollDate(today(),1 'y')
3. Returns the first day of the previous week.
dtRollDate = rollDate(today(), -1,'w")
4. Returns the first day of the previous month.

dtRollDate = rollDate(today(),-1 ,'m")

rollTime

The rollType function rolls the current hour into the provided value and returns the
value in hours based on a 24-hour clock. In this convention of timekeeping, the day runs
from midnight to midnight and is divided into 24 hours, numbered from 0 to 23.

Syntax
nHTime = rollTime(num, type)
Arguments
num (Int)

Specifies the value that needs to be rolled.
type (String)

This value can only be "h".

Return Value

nHTime (Int)
Example

Returns the time three hours before the current time. For example, if it is currently 9
PM, this example returns 18, which is 6 PM on a 24-hour clock.

NHTime = rollTime(-3 ,'h")

556 Content Designer Reference

saveAttachmentToFile

saveAttachmentToFile

The saveAttachmentToFile function saves the content of an attachment, identified by a
unique ID, to the specified file location. The function returns the absolute path of the
new file with the attachment content.

Syntax

sFileName = saveAttachmentToFile(nAttachmentID, sFileDirName)

Arguments
IAttachmentID (long)

Specifies a unique ID that identifies the attachment containing the desired content.
sFileDirName (String)

Full path and file name to the location where the file will be written.

If a file path is not provided, then the file will be written to the
install_dir/server/c2o directory.

If a file is not specified, a unique file will be generated.

If only a path is specified, the path must include the path separator character at the
end of the path (‘\’ for Windows or ‘/’ for UNIX).

Return Value
sFileName (C20String)

The full path to the file, including the file name, is returned if the function is
successful. If the function fails, NULL is returned. The return type is C20String.

Example

var 1 = Process.attachments[0].attachmentID;
Process.save = saveAttachmentToFile(i, "attach.txt");

setOperatorStatus

The setOperatorStatus function is used to either force fail or force pass the operator.

Syntax

setOperatorStatus (operatorStatus, operationResult, reason)

Chapter 16: CA Process Automation System Functions 557

setProcessProgress

Arguments
Operator Status (String)

Specifies the state of the operator. This argument can take either success or failure
values only.

Operation Result (Int)

Specifies the operation result. This argument overrides the operator result in the
operator dataset.

Reason (String)

Specifies the reason that overrides the operator reason in the operator dataset.
Return Value
No value returned (void).
Example

The following example performs a force success on the operator with an operation
result of 1 and the reason as "force success".

setOperatorStatus("success",1,"force success")

setProcessProgress

The setProcessProgress function sets the progress of a process in the following areas:
m Pre-execution or post-execution operator code

® A RunlJavaScript operator

Syntax

setProcessProgress (ProcessProgress)

Arguments
ProcessProgress

Defines the percentage completion of a process.
Return Value

No value returned (void).

558 Content Designer Reference

setResourceTotal

Example

Use the setProcessProgress method to set the process progress to 30 percent as follows:

setProcessProgress(30)

When a process reaches the operator, the operation dashboard or the process dataset
displays the progress as 30.

setResourceTotal

The setResourceTotal function sets the total amount of resources with the resource
name "resName" to the "amount" specified in the resource object on the path
"resPath".

Notes:

m If you provide resources that do not exist as input, this function creates the
resources.

m [f the resName parameter is blank, this function sets the total amount for all of the

resources in the resources object.

Syntax

bSuccess = setResourceTotal(resPath, resName, amount)

Arguments
resPath (String)
Specifies the path of the resource object.
resName (String)
Specifies the resource name that you set in the resources object.
amount (Int)

Specifies the total amount that you set on the resource.

Return Value
bSuccess (Boolean)

Returns true if the function is successful or false if the function fails.

Chapter 16: CA Process Automation System Functions 559

today

Example

bSuccessl=setResourceTotal(Process.ResObjName, Process.ResName 1,
1);
bSuccess2=setResourceTotal(Process.ResObjName, Process.ResName 3,
3);

today

The today function returns the current date and time. The time returned is 12:00 AM.

Syntax

dtToday = today()
Arguments
None.

Return Value
dtToday (java.util.Date)

Returns the current date.
Example

If today is December 12, 2009, returns the date December 12, 2009 12:00 AM.

560 Content Designer Reference

Index

A

absolute path
absPath system function ¢ 512
retrieving with system function ¢ 512
Run Java Code operator ¢ 388

absPath system function
defined ¢ 512

Active Directory operator
set up share for user in ¢ 244

AD Join Computer to Domain operator
defined ¢ 188

AD Retrieve Domain Controllers operator
defined ¢ 211

Add User to Group operator
defined ¢ 190

adjustDate system function
defined ¢ 513

adjustResourceVals system function
defined « 514

And operator
defined ¢ 48

Apply Xpath operator
defined ¢ 381

Apply XSLT operator
defined ¢ 383

applyXPath system function
defined ¢ 515

applyXPathToUrl system function
defined ¢ 516

Assign User Task operator
defined « 361

Asynchronous SOAP Client Call operator
defined ¢ 486

authentication
JDBC Module » 147

B

Bulk Insert into Database operator
defined ¢ 152

C

Calculation operator
defined ¢ 406
calendar

checkCalendarDate system function ¢ 518
certificate for CA Process Automation
SSL for AD (LDAP module) 246
Change Lane operator
defined ¢ 55
Check Calendar operator
defined ¢ 183
Check Date-Time operator
defined ¢ 185
checkCalendarDate system function
defined 518
Comment operator
defined ¢ 43
Compress File operator
defined ¢ 271
convertValueToXml system function
defined ¢ 521
convertXml system function
defined ¢ 522
convertXmlUrl system function
defined ¢ 522
Copy File operator
defined ¢ 272
Create Folder operator
defined ¢ 253
defined for File Management Module ¢ 274
defined for File Transfer module » 301
Create Group operator
defined « 191
Create LDAP User operator
defined ¢ 200
Create Object operator
defined ¢ 195
Create operator
defined ¢ 59
Create Organizational Unit operator
defined ¢ 199
createHyperLink system function
defined ¢ 523
createResourceObject system function
defined ¢ 523

D

Databases module
Run Java Code operator ¢ 388

Index 561

Delay operator
defined ¢ 386

Delete Directory operator
defined ¢ 303

Delete File operator
defined for File Module ¢ 276

defined for File Transfer module ¢ 305

Delete Folder operator
defined ¢ 254
Delete from Database operator
defined ¢ 153
Delete Messages operator
defined ¢ 253
Delete Objects operator
defined ¢ 204
Delete operator
defined for Catalyst 61
deleteAttachments system function
defined * 524
deleteObject system function
defined » 524
deleteResource system function
defined ¢ 525
deleteValueMapField system function
defined ¢ 526
Download File operator
defined ¢ 307

E

Email module
defined ¢ 249

Evaluate Expression operator
defined ¢ 369

Exception operator
defined ¢ 55

Execute operator (ICF-USM)
defined ¢ 62

Execution Settings
defined ¢ 27

existsCalendar system function
defined ¢ 526

existsCustomlcon system function
defined ¢ 527

existsCustomOperator system function
defined ¢ 527

existsDataset system function
defined ¢ 528

existsFolder system function

defined ¢ 529

existsInteractionRequestForm system function

defined ¢ 530

existsProcess system function
defined ¢ 530

existsProcessWatch system function
defined ¢ 531

existsResource system function
defined ¢ 532

F

formatDate system function
defined ¢ 533

formatString system function
defined » 534

G

Get Database Schema operator
defined » 156

Get Directory Content operator
defined ¢ 277

Get Dormant Account operator
defined » 214

Get Email Content operator
defined * 256

Get Email Count operator
defined ¢ 259

Get Email Envelope operator
defined ¢ 260

Get Email List operator
defined ¢ 263

Get File Attributes operator
defined » 279

Get File Information operator
defined ¢ 309

Get Free Space operator
defined ¢ 157

Get Local Network Interfaces operator
defined ¢ 335

Get Network Service Status operator
defined ¢ 338

Get Object operator
defined ¢ 216

Get operator (UCF-USM)
defined ¢ 70

Get SNMP Variable operator
defined ¢ 345

Get Stored Procedure operator

562 Content Designer Reference

Get Stored Procedure operator, defined » 158
Get Table operator
defined ¢ 160
Get Used Space operator
defined ¢ 162
Get Version operator
defined « 164
Get View operator
defined ¢ 165
getAllAttachments system function
defined ¢ 535
getAttachmentContent system function
defined ¢ 535
getCountOfProcessStates
getCountOfProcessStates, defined ¢ 536
getEEMArtifactToken(certificateFilePath,
certPasswordOrKeyFilePath)
getEEMArtifactToken(certificateFilePath,
certPasswordOrKeyFilePath), defined ® 536
getEEMArtifactTokenForUser(username,password)
system function
getEEMArtifactTokenForUser(username,passwor
d), defined ¢ 537
getEEMCredentialsToken(certificateFilePath,
certPasswordOrKeyFilePath)
getEEMCredentialsToken(certificateFilePath,
certPasswordOrKeyFilePath), defined ¢ 538
getEEMCredentialsTokenForUser(username,passwor
d)
getEEMCredentialsTokenForUser(username,pass
word), defined ¢ 539
getEnvVar system function
defined ¢ 540
getPartialAttachmentContent system function
defined ¢ 541
getResourceAvail system function
defined ¢ 541
getResourceNames system function
defined ¢ 542
getResourceTotal system function
defined ¢ 542
getTouchpoints system function
defined ¢ 543
getValueMapFields system function
defined ¢ 545

H

hasField system function

defined ¢ 546

HTTP Delete operator
defined * 426

HTTP Get operator
defined « 429

HTTP Head operator
defined ¢ 434

HTTP Options operator
defined ¢ 438

HTTP Post Form operator
defined « 447

HTTP Post operator
defined « 441

HTTP Put operator
defined ¢ 454

HTTP Trace operator
defined ¢ 460

I

include system function
defined ¢ 547
Insert operator
defined » 167
Invoke Java operator
defined » 388
Invoke MBean Method operator
defined ¢ 327
Invoke SOAP Method operator
defined ¢ 462
isFIPSMode
isFIPSMode, defined * 548
isTouchpointUp system function
defined » 548

J

Java Management

defined ¢ 323
Javascript

in system functions ¢ 511
JMX Get operator

defined ¢ 324

L

LDAP login parameters
defined ¢ 187

link
defined ¢ 56

load system function

Index 563

defined ¢ 549
lockResource system function
defined ¢ 550
logEvent system function
defined ¢ 550
Loop operator
defined ¢ 51

M

Manage Resources operator
defined ¢ 370

module
overview ¢ 19

Monitor Event operator
defined » 374

Monitor File operator
defined ¢ 282

Monitor SNMP Variable operator
defined ¢ 348

Move Email operator
defined ¢ 264

Move File operator
defined « 313

Move Object operator
defined ¢ 237

N

Network Utilities module
defined ¢ 335
newValueMap system function
defined ¢ 551
nextOpenDate system function
defined ¢ 552
now system function
defined ¢ 553

0]

operator common properties
for operators in processes ¢ 32
for operators in schedules 38
operator common properties, for all operators
27
operators
adding to a Process ¢ 32
using in Agendas ¢ 38
Or operator
defined ¢ 48

P

parseDate system function
defined ¢ 553

Ping Host operator
defined ¢ 352

Post-execution Code
defined ¢ 33

Pre-execution Code
defined ¢ 33

Purge Folder operator
defined ¢ 266

Q

Query Database operator
defined ¢ 170

R

Read from File operator
defined ¢ 285
Remove User from Group operator
defined ¢ 238
Rename File operator
defined » 289
Rename Folder operator
defined ¢ 266
Reset operator
defined ¢ 49
resetResource system function
defined » 554
resources, system functions
adjust free and total amounts ¢ 514
check for existence 532
create object ¢ 523
delete object ¢ 525
get object names ¢ 542
get total available ¢ 541
get total for a named resource ¢ 542
lock named resource ¢ 550
reset named resource ¢ 554
set total for named resource ¢ 559
Retrieve LDAP Users operator
defined ¢ 230
rollDate system function
defined ¢ 555
rollTime system function
defined ¢ 556
Run Program operator

564 Content Designer Reference

defined ¢ 79

Run Script operator
defined « 84

Run SSH Command operator
defined ¢ 91

Run SSH Script operator
defined ¢ 102

Run Telnet Command operator
defined 118

Run Telnet Script operator
defined ¢ 130

S

saveAttachmentToFile system function
saveAttachmentToFile system function, defined
557
Search File Content operator
defined ¢ 291
Select from Database operator
defined ¢ 176
Send Email operator
defined ¢ 268
files, how to include * 268
Send Event operator
defined ¢ 376
Send SNMP Trap operator
defined ¢ 356
setResourceTotal system function
defined ¢ 559
SOAP
securing messages ¢ 469
Standard operators
defined ¢ 43
Start operator
defined ¢ 43
Start Process operator
defined ¢ 378
Stop Failure operator
defined ¢ 46
Stop Success operator
defined ¢ 44
SubscribeToChanges operator
defined 71
system functions
defined 511

T

TFTP Download File operator

defined « 314

TFTP Upload File operator
defined » 317

today system function
defined ¢ 560

u

Uncompress File operator
defined ¢ 275

Update File Ownership operator
defined ¢ 293

Update File Permission operator
defined ¢ 295

Update File Timestamp operator
defined ¢ 296

Update in Database operator
defined 179

Update MBean Attributes operator

defined ¢ 330

Update Object Attributes operator

defined ¢ 240
Update SNMP Variable operator
defined ¢ 359

Update User Home Directory Operator

defined » 244
Upload File operator
defined ¢ 320

W

Write File operator
defined ¢ 298

Index 565

	CA Process Automation Content Designer Reference
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction to Operators
	Operator Overview
	Where Operators Can Run
	Common Properties of all Operators
	Execution Settings (All Operators)
	Loop and Timeout Scenarios

	Common Properties of Operators in Processes
	Processing Group
	Simulation Properties
	Information Properties

	Common Properties of Operators in Schedules
	Calendar Settings
	Manually Included Dates
	Manually Excluded Dates
	Task Name

	Common Output Parameters for all Operators

	2: Standard Operators
	Start Operator
	Input Parameters

	Comment Operator
	Input Parameters

	Stop Success Operator
	Input Parameters

	Stop Failure Operator
	Input Parameters

	Process Progress Operator
	Input Parameters
	Output

	And Operator
	Parameters

	Or Operator
	Parameters

	Reset Operator
	Input Parameters
	How the Reset Operator Works with the Loop Operator

	Loop Operator
	Input Parameters
	Output Parameters
	Reset the Loop Operator Manually in a Process

	Change Lane Operator
	Input Parameters

	Exception Operator
	Input Parameters

	Links
	Link Properties

	3: Catalyst
	Generic USM Operators
	Create Operator
	Input Parameters
	Customizing the Properties

	Delete Operator
	Input Parameters

	Execute Operator
	Input Parameters
	Operation-Specific Parameters

	Get Operator
	Input Parameters

	SubscribeToChanges Operator
	Input Parameters
	Example

	Non-Generic USM Operators
	Catalyst Security Parameters

	4: Command Execution
	Run Program Operator
	Input Parameters
	Output Parameters

	Run Script Operator
	Input Parameters
	PowerShell Execution Policy

	Output Parameters

	Run SSH Command Operator
	Input Parameters
	Commands
	Remote Login Information
	Switch User Information

	Output Parameters
	Operator Ports
	Example

	Run SSH Script Operator
	Input Parameters
	SSH Script Attributes
	Run SSH Script Operator Inline Script APIs

	Remote Login Information

	Output Parameters
	Operator Ports
	Example

	Run Telnet Command Operator
	Input Parameters
	Commands
	Remote Login Information
	Switch User Information

	Output Parameters
	Operator Ports
	Example

	Run Telnet Script Operator
	Input Parameters
	Script
	Run Telnet Script Operator Inline Script APIs

	Remote Login Information

	Output Parameters
	Operator Ports
	Example

	5: Databases
	Oracle Parameters
	MSSQL Server Parameters
	MySQL Parameters
	Sybase Parameters
	Operator Level Properties
	Database Server Login Parameters
	Connection Wizard Properties

	Bulk Insert into Database Operator
	Input Parameters
	Output Parameters

	Delete from Database Operator
	Input Parameters
	Output Parameters

	Get Database Schema Operator
	Input Parameters
	Output Parameters

	Get Free Space Operator
	Input Parameters
	Output Parameters

	Get Stored Procedure Operator
	Input Parameters
	Output Parameters

	Get Table Operator
	Input Parameters
	Output Parameters

	Get Used Space Operator
	Input Parameters
	Output Parameters

	Get Version Operator
	Input Parameters
	Output Parameters

	Get View Operator
	Input Parameters
	Output Parameters

	Insert into Database Operator
	Input Parameters
	Output Parameters

	Query Database Operator
	Input Parameters
	Output Parameters
	Run a Stored Procedure

	Select from Database Operator
	Input Parameters
	Output Parameters

	Update in Database Operator
	Input Parameters
	Output Parameters

	6: Date-Time
	Check Calendar Operator
	Input Parameters
	Output Parameters

	Check Date-Time Operator
	Input Parameters
	Output Parameters

	7: Directory Services
	LDAP Login Parameters
	Add Computer to Domain Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Add User to Group Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Create Group Operator
	Input Parameters
	Notes

	Output Parameters
	Example
	Operator Failure

	Create Object Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Create Organizational Unit Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Create User Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Delete Object Operator
	Input Parameters
	Output Parameters
	Examples
	Operator Failure
	Failed Deletion
	Another failed deletion
	Operator Success

	Get Domain Controller Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Get Dormant Account Operator
	Input Parameters
	Output Parameters

	Get Object Operator
	Input Parameters
	Get Criteria
	Sort Criteria
	LDAP Search Filter Basics
	Common LDAP Attribute Names

	Output Parameters
	Examples
	Example - Use a generic filter
	Example - Use your own filter

	Operator Failure

	Get User Operator
	Input Parameters
	Get Criteria
	Sort Criteria

	Output Parameters
	Examples
	Operator Failure

	Move Object Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Remove User from Group Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Update Object Attributes Operator
	Input Parameters
	Objects Parameters
	Add Attributes Parameters Page
	Replace Attributes Parameters Page
	Remove Attributes Parameters Page

	Output Parameters
	Operator Failure

	Update User Home Directory Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Add an SSL Certificate to CA Process Automation

	8: Email
	Common Email Operator Parameters
	Message Filter Criteria
	Mail Server Login Parameters

	Create Folder Operator
	Input Parameters
	Output Parameters

	Delete Email Operator
	Input Parameters
	Output Parameters

	Delete Folder Operator
	Input Parameters
	Output Parameters
	Example

	Get Email Content Operator
	Input Parameters
	Output Parameters

	Get Email Count Operator
	Input Parameters
	Output Parameters

	Get Email Envelope Operator
	Input Parameters
	Output Parameters

	Get Email List Operator
	Input Parameters
	Output Parameters

	Move Email Operator
	Input Parameters
	Output Parameters

	Purge Folder Operator
	Input Parameters
	Output Parameters

	Rename Folder Operator
	Input Parameters
	Output Parameters

	Send Email Operator
	Input Parameters
	Output Parameters

	9: File Management
	Compress File Operator
	Prerequisites
	Input Parameters
	Output Parameters

	Copy File Operator
	Input Parameters
	Output Parameters

	Create Folder Operator
	Input Parameters
	Output Parameters

	Decompress File Operator
	Prerequisites
	Input Parameters
	Output Parameters

	Delete File Operator
	Input Parameters
	Output Parameters

	Get Directory Content Operator
	Input Parameters
	Output Parameters

	Get File Attributes Operator
	Input Parameters
	Output Parameters
	Example

	Monitor File Operator
	Input Parameters
	Output Parameters
	Example

	Read from File Operator
	Input Parameters
	Output Parameters
	Example (Read from File Operator)

	Rename File Operator
	Input Parameters
	Output Parameters

	Search File Content Operator
	Input Parameters
	Output Parameters

	Update File Ownership Operator
	Input Parameters
	Output Parameters

	Update File Permission Operator
	Input Parameters
	Output Parameters

	Update File Timestamp Operator
	Input Parameters
	Output Parameters

	Write File Operator
	Input Parameters
	Output Parameters

	10: File Transfer
	Create Directory Operator
	Input Parameters
	Output Parameters

	Delete Directory Operator
	Delete Remote Directory Properties
	Output Parameters

	Delete File Operator
	Input Parameters
	Output Parameters

	Download File Operator
	Get Remote File Properties
	Output Parameters

	Get File Information Operator
	Input Parameters
	Output Parameters

	Move File Operator
	Input Parameters
	Output Parameters

	TFTP Download File Operator
	Input Parameters
	Output Parameters
	Operator Ports

	TFTP Upload File Operator
	Input Parameters
	Output Parameters
	Operator Ports

	Upload File Operator
	Input Parameters
	Output Parameters

	11: Java Management
	JMX Login Parameters
	Get MBean Attributes Operator
	Input Parameters
	JMX Login Parameters (see page 323)

	Output Parameters
	Example

	Invoke MBean Method Operator
	Input Parameters
	JMX Login Parameters (see page 323)

	Output Parameters
	Example

	Update MBean Attributes Operator
	Input Parameters
	JMX Login Parameters (see page 323)

	Output Parameters
	Example

	12: Network Utilities
	Get Local Network Interfaces Operator
	Input Parameters
	Output Parameters
	Operator Ports
	Example

	Get Network Service Status Operator
	Input Parameters
	Output Parameters
	Operator Ports

	Get SNMP Variable Operator
	Input Parameters
	Output Parameters

	Monitor SNMP Variable Operator
	Input Parameters
	Output Parameters

	Ping Host Operator
	Input Parameters
	Output Parameters
	Operator Ports

	Send SNMP Trap Operator
	Input Parameters
	Output Parameters

	Update SNMP Variable Operator
	Input Parameters
	Output Parameters

	13: Process Control
	Assign User Task Operator
	Input Parameters
	Assignees Parameters
	Transfer/Delegates Parameters
	User Task Parameters

	Output Parameters
	Example

	Evaluate Expression Operator
	Input Parameters
	Output Parameters

	Manage Resources Operator
	Input Parameters
	Output Parameters

	Event Operators
	Monitor Event Operator
	Input Parameters
	Output Parameters

	Send Event Operator
	Input Parameters
	Output Parameters

	Usage Patterns for Events

	Start Process Operator
	Input Parameters
	Output Parameters

	14: Utilities
	Apply Xpath Operator
	Input Parameters
	Output Parameters

	Apply XSLT Operator
	Input Parameters
	Output Parameters

	Delay Operator
	Input Parameters
	Output Parameters

	Invoke Java Operator
	Input Parameters
	Code
	Java Code in the Invoke Java Operator

	Input/Output
	Logger

	Output Parameters
	Java Example
	Resource for Running Invoke Java Operator Example
	Operator Ports

	Run JavaScript Operator
	Input Parameters
	Output Parameters

	15: Web Services
	HTTP Operators: Common Input Parameters
	HTTP URL Information
	HTTP Proxy Information
	HTTP Headers Information
	HTTP Cookies Information
	HTTP Response Content Information
	HTTP Configuration Information

	HTTP Operators: Common Output Parameters
	HTTP Operators: Common Output Ports
	HTTP Delete Operator
	Input Parameters
	Output Parameters

	HTTP Get Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Head Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Options Operator
	Input Parameters
	Output Parameters

	HTTP Post Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Post Form Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Put Operator
	Input Parameters
	Output Parameters

	HTTP Trace Operator
	Input Parameters
	Output Parameters

	Invoke SOAP Method Operator
	Input Parameters
	WSDL Explorer
	SOAP Call Data Parameters
	Dynamic Parameters
	Call Results Parameters
	MIME Attachments
	WS Security
	Common WS Security Parameters
	Timestamp
	Username Token
	Keystore Parameters
	Create a Keystore

	Signature
	Encryption

	Encryption/Signature Process for the SOAP Request
	Troubleshooting WS Security
	Unable to Build a Crypto to Manage the Keystore
	Signature Errors
	Encryption Errors
	Decryption Errors

	Output Parameters
	SOAP Call Data
	Dynamic Parameters
	Call Results Parameters
	Operation Results
	MIME Attachments

	Invoke SOAP Method Async Operator
	Input Parameters
	WSDL Explorer
	SOAP Call Data Properties
	Dynamic Parameters
	Call Results Properties
	MIME Attachments
	WS Security
	Common WS Security Parameters
	Timestamp
	Username Token
	Keystore Parameters
	Create a Keystore

	Signature
	Encryption

	Encryption/Signature Process for the SOAP Request
	Troubleshooting WS Security
	Unable to Build a Crypto to Manage the Keystore
	Signature Errors
	Encryption Errors
	Decryption Errors

	Output Parameters
	SOAP Call Data
	Dynamic Parameters
	Call Results Parameters
	Operation Results
	MIME Attachments

	16: CA Process Automation System Functions
	Return Types
	absPath
	adjustDate
	adjustResourceVals
	applyXPath
	applyXPathToUrl
	checkCalendarDate
	convertJson
	convertValueToXml
	convertXml
	convertXmlUrl
	createHyperLink
	createResourceObject
	deleteAttachments
	deleteObject
	deleteResource
	deleteValueMapField
	existsCalendar
	existsCustomIcon
	existsCustomOperator
	existsDataset
	existsFolder
	existsInteractionRequestForm
	existsProcess
	existsProcessWatch
	existsResource
	existsSchedule
	formatDate
	formatString
	getAllAttachments
	getAttachmentContent
	getCountOfProcessStates
	getEEMArtifactToken
	getEEMArtifactTokenForUser
	getEEMCredentialsToken
	getEEMCredentialsTokenForUser
	getEnvVar
	getOrchestratorURL
	getPartialAttachmentContent
	getResourceAvail
	getResourceName
	getResourceTotal
	getTouchpoints
	getValueFromValueMapArray()
	getValueMapFields
	getValuesFromValueMapArray()
	hasField
	include
	isFIPSMode
	isTouchpointUp
	load
	lockResource
	logEvent
	newValueMap
	newDataset
	nextOpenDate
	now
	parseDate
	resetResource
	rollDate
	rollTime
	saveAttachmentToFile
	setOperatorStatus
	setProcessProgress
	setResourceTotal
	today

	Index

