

User Guide
Release 12.1

CA OPS/MVS® Event
Management and Automation

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA 1® Tape Management (CA 1)

■ CA 7™ Workload Automation (CA 7)

■ CA 11™ Workload Automation Restart and Tracking (CA 11)

■ CA ACF2™ for z/OS (CA ACF2)

■ CA Automation Point

■ CA Datacom® Database (CA Datacom)

■ CA DISK

■ CA DRAS

■ CA Jobtrac® Job Management (CA Jobtrac)

■ CA MIC Message Sharing (CA MIC)

■ CA MIM™ Resource Sharing (CA MIM)

■ CA NetMaster™ Network Automation (CA NetMaster)

■ CA OPS/MVS® Event Management and Automation (CA OPS/MVS)

■ CA PDSMAN® PDS Library Management (CA PDSMAN)

■ CA Scheduler® Job Management (CA Scheduler)

■ CA Spool™ (CA Spool)

■ CA SYSVIEW® Performance Management (CA SYSVIEW)

■ CA TLMS® Tape Management (CA TLMS)

■ CA Top Secret® for z/OS (CA Top Secret)

■ CA XCOM™ Data Transport® (CA XCOM)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

Note: In PDF format, page references identify the first page of the topic in which a
change was made. The actual change may appear on a later page.

■ Updated the Substituting Data (see page 222) section.

■ Added the Verification and Diagnostic Commands (see page 295) section.

■ Updated the Required REXX Programs (see page 284) section.

■ Updated the Fields on the SSM Snapshot Panel (see page 239) section.

■ Updated the Step 4: Set the Parameters (see page 279) section

■ Updated the Moving Resources (see page 275) section.

■ Updated the Step 5: Auto-Enable Rules (see page 281) section.

■ Updated the Step 6: Add SSM Resource Table Columns (see page 286) section.

■ Updated Step 5: Auto-Enable Rules (see page 281) section.

■ Updated the CA OPS/MVS Components (see page 649) section.

■ Added CMDALL (see page 697) component.

■ Added CMDALL (see page 662) rule.

■ Added CMDALLC (see page 674) component.

■ Added CMDALLR (see page 674) component.

■ Added CMDVARY (see page 674) component.

■ Added DSNP002I (see page 677) rule.

■ Added DSNT376I (see page 677) rule.

■ Added DSNT501I (see page 677) rule.

■ Added DSNT378I (see page 660) component.

■ Added DSNT376I and DSNT501I (see page 660) components.

■ Added EMAILMSG (see page 699) component.

■ Added EMAILMSG (see page 663) rule.

■ Updated EMAILTXT (see page 699) component.

■ Updated EMAILTXT (see page 663) rule.

■ Added IEA611I (see page 678) component.

■ Added IEA611I and IEA794 (see page 665) components.

■ Added IEA794I (see page 678) component.

■ Updated IPLINFO (see page 663) component.

■ Added OPS44020 (see page 665) component.

■ Added RESETOSF (see page 708) component.

■ Added SSM2XCEL (see page 712) component.

■ Added SSM2XCEL (see page 653) rule.

■ Added SYSVALRT (see page 713) component.

■ Added SYSVCHCK (see page 714) component.

■ Added SYSVCTDQ (see page 714) component.

■ Added SYSVCTDQ (see page 656) rule.

Contents 7

Contents

Chapter 1: Introduction 27

How to Use This Guide ... 27

Portrait of an Automater .. 28

Operations Overview—Historically Speaking ... 29

Chapter 2: How to Begin Using the Product 31

Overview .. 32

Ways to Automate ... 33

Purpose of These Lessons .. 34

How to Prepare Your System for Your Lessons ... 35

Allocate a Test Data Set .. 36

Some System Messages Create Visual Noise .. 37

Lesson 1: Create a Rule Using the AOF .. 38

Lesson 2: Test and Verify a Rule ... 40

Lesson 3: Establish More Rules .. 43

Lesson 4: How to Organize Rules into Rule Sets .. 45

Lesson 5: How to Enable and Disable Rules and Rule Sets... 46

Enable or Disable a Single Rule ... 48

Enable or Disable an Entire Rule Set ... 49

Lesson 6: Solve a Problem Using EasyRule ... 50

Create a Rule to Tailor the Display of Messages ... 51

Create a Rule to Suppress Messages... 61

Lesson 7: Suppress Messages Using the Automation Analyzer ... 67

Prepare to Use the Automation Analyzer ... 67

Gather Message Event Statistics Using Automation Analyzer .. 68

Suppress Messages ... 70

Delete Messages ... 71

Access EasyRule from the Automation Analyzer .. 71

Lesson 8: Create Rules from an MPF Suppression List ... 71

Prepare to Convert MPF to the Product ... 72

Convert MPF Suppression Lists to Rules ... 73

Chapter 3: Understanding CA OPS/MVS Messages 75

Message Format ... 75

Message Variable Data ... 77

How Messages Are Routed .. 78

8 User Guide

How Messages Are Captured ... 79

AOF Processing ... 80

Changing Message Severity Codes ... 82

Rules for Changing Message Severity Codes .. 83

View Messages Online ... 83

Chapter 4: Global Variables Explained 85

What Are Global Variables ... 85

Features of Global Variables ... 85

Finding More Information ... 86

Global Variable Basics and OPS/REXX .. 87

OPS/REXX Compound Symbols ... 87

Compound Symbol Format ... 88

Two or More Dimensions .. 88

Compound Symbol Derived Name .. 89

Global Compound Symbols ... 89

Global Variable Nodes and Subnodes ... 89

Permanent Versus Temporary Global Variables ... 90

Temporary Global Variables: Duration Specified .. 91

Global Variable Limits ... 91

Global Variable Database Warning Messages .. 92

Global Variable Characteristics .. 93

Backup and Restore Global Variables .. 94

Chapter 5: Using EasyRule 95

EasyRule Basics ... 95

Guidelines for Using EasyRule ... 96

How EasyRule Builds Rules .. 96

How EasyRule Benefits Different Types of Users .. 97

Configure EasyRule Settings .. 97

Introducing EasyRule Panels .. 97

Panel Descriptions ... 97

Access Additional Panel Information .. 98

How to Navigate the Panels .. 98

How to Access EasyRule ... 99

Access EasyRule from OPSVIEW and Specify a Rule Set ... 99

Access EasyRule from the AOF Test or AOF Control Facility ... 100

Choose Automatic Versus Manual Step-through .. 100

Scrollable Menu and Data Entry Panels ... 101

Select a Rule Type .. 102

Rule Type Main Menu Options... 103

Contents 9

Specify a Primary Event for a Rule ... 104

Specify Comments for a Rule ... 105

Specify Execution Conditions for a Rule ... 106

Specify Actions to Be Taken When a Rule Executes ... 107

Specify Actions to Be Taken When a Rule Is Enabled ... 108

Set Initial Variable Values for a Rule .. 109

Specify Actions to Be Taken When a Rule Is Disabled .. 110

EasyRule Final Options Menu Determines the Disposition of a Rule ... 111

Make Modifications with EasyRule ... 112

Work With User Code Areas in EasyRule .. 112

How to Test a Rule ... 113

EasyRule Error Messages.. 113

EasyRule Help ... 113

Basic Types of EasyRule Help Panels ... 113

Access and Use the Menu Help Panels ... 114

Access and Use the Standard Help Panels .. 115

Access and Use the Help Example Panels ... 117

Access and Use Help Glossary Panels ... 118

Chapter 6: Using OPS/REXX 119

OPS/REXX Overview ... 119

Why OPS/REXX ... 120

OPS/REXX Performs Better ... 120

OPS/REXX Is Easy to Learn .. 120

Powerful Data Handling Tools ... 120

Understandable Error Messages ... 120

Uses of OPS/REXX in the Product ... 121

Similarities Between OPS/REXX and Standard REXX ... 122

Differences Between OPS/REXX and Standard REXX .. 123

Characteristics of OPS/REXX Programs .. 124

Differences Between Precompiled and Source REXX Programs ... 124

Explicit and Implicit Program Execution .. 125

Formats for OPS/REXX Data Sets .. 125

How OPS/REXX Locates Stored OPS/REXX Programs .. 125

Execute a Program That Calls External Routines... 126

Use the Precompiled OPS/REXX Programs... 126

The OPSEXEC and OPSCOMP Libraries .. 126

Maintain Compiled OPS/REXX Programs .. 129

OICOMP Command ... 129

OXCOMP Command .. 129

Values You Specify for OICOMP and OXCOMP ... 130

10 User Guide

Execute Source OPS/REXX Programs.. 130

Ways to Invoke OPS/REXX Programs in Source Format .. 130

Explicitly Compared to Implicitly Specifying the OPS/REXX Program Data Set ... 130

Issue the OPSEXEC (OX) Command ... 131

Issue the OPSIMEX (OI) Command .. 131

Implicitly Invoke Source Programs .. 132

Execute OPS/REXX Source Programs from ISPF Dialogs ... 132

Execute OPS/REXX Source Programs from ISPF EDIT .. 133

How OPS/REXX Programs in the AOF Work .. 133

Call the Interpreter from an OPS/REXX Program .. 134

Execute OPS/REXX Programs from Batch ... 134

Execute OPS/REXX Programs from Batch (Under the Batch TSO TMP) .. 135

Execute OPS/REXX Programs from USS .. 136

The Interaction of OPS/REXX with Other Languages ... 138

Requirements for Non-REXX External Functions .. 138

Register Contents .. 138

EFPL Format .. 139

Outcome of Processing a REXX Routine .. 139

Pass Arguments ... 139

Omit Arguments .. 140

Return Information ... 140

Send Data to the External Queue .. 140

Create REXX Variables ... 141

OPS/REXX Execution Limits .. 141

Resource Use Monitoring.. 141

Parameters That Set Limits ... 142

Override Execution Limits ... 143

Elements of OPS/REXX ... 143

Symbolic Substitution in OPS/REXX .. 143

REXX Elements That OPS/REXX Supports .. 144

Implementation Limits .. 144

Constants in OPS/REXX ... 145

Symbols in OPS/REXX .. 145

Variable Values.. 145

Compound Symbols .. 145

Arithmetic Values and Operators .. 146

OPS/REXX Considerations .. 146

How to Implement Common Coding Guidelines .. 147

OPS/REXX Instructions ... 151

ADDRESS Instruction ... 151

CALL Instruction .. 152

INTERPRET Instruction .. 152

Contents 11

OPTIONS Instruction ... 153

RETURN Instruction ... 157

SIGNAL Instruction .. 157

TRACE Instruction .. 158

UPPER Instruction ... 159

OPS/REXX Built-in Functions ... 159

Automated Operator Facility (AOF) Global Variables ... 160

Parsing .. 161

The PARSE SOURCE Instruction ... 161

The PARSE VERSION Instruction .. 162

OPS/REXX Interfaces .. 163

OPS/REXX Interface with ISPF Dialog Management Services ... 163

OPS/REXX Interface with TSO ... 163

OPS/REXX Interface with the OSF ... 165

OPS/REXX Interface with the AOF ... 165

OPS/REXX Interface with EPI ... 166

OPS/REXX Interface to z/OS Operator Commands ... 166

OPS/REXX Interface to Messages .. 166

OPS/REXX Interface to OPSCTL ... 166

OPS/REXX Interface to WTO ... 167

OPS/REXX Interface to CA SYSVIEW .. 167

OPS/REXX Interface to Other CA Products Through CA GSS ... 168

Compiler Error Messages ... 169

More Errors Detected ... 170

OPS/REXX Usage Problems .. 170

Conflicts with Internal ISPF Variable Names ... 170

Received Message Address Space Is Not Active ... 171

Uninitialized Variables Yield Unpredictable Results.. 172

Problems with WTO and WTOR Messages in Subsystem Interface .. 173

Problems Related to Commands in Subsystem .. 174

Problems Related to DOM Events in Subsystem ... 175

Chapter 7: Using System State Manager 177

About SSM .. 177

SSM Enhancements .. 178

SSM Concepts ... 178

Understanding CURRENT and DESIRED Resource States .. 179

Understanding Prerequisites and Subrequisites ... 180

Detect State Changes for Resources ... 181

How SSM Works ... 181

Directory Table .. 182

12 User Guide

Resource Tables .. 183

Action Tables ... 186

Resource and Action Tables .. 187

Auxiliary Tables ... 188

SSM Resource Management Modes .. 189

Define Resource Management Modes for SSM ... 190

Prerequisites .. 191

Check the State of Prerequisite Resources ... 191

Desired Table States .. 192

The Effect of STATEMATCHPREFIX on Prerequisite Checking ... 193

Define Prerequisite Resources ... 194

Specify the Name of Prerequisite Resources .. 194

MINOF Statement—Define Prerequisite Resources ... 195

Define Positive and Negative Prerequisite Resources .. 196

Define Positive and Negative Subrequisite Resources .. 197

Define a Workload Manager Scheduling Environment as a Prerequisite Resource ... 199

The OPSWLM Function ... 199

Control Prerequisite Resources .. 200

PREMODE Column... 200

REFMODE Column ... 201

MODE Column ... 201

Initializing Data ... 201

Methods for Setting the Desired State .. 202

Set the Desired State Manually ... 202

Set the Desired State Automatically with a Time Rule.. 205

Set the Desired State Through the Schedule Manager ... 205

Set Desired States Through Checkpointing ... 205

Set Desired States Through OPSVIEW ... 206

Set Desired States Through SSMBEGIN ... 206

Customize the Startup with SSMBEGUX ... 207

Options for Initializing Desired States ... 207

Rules to Maintain Current State Values ... 208

Understanding Transient Resource States ... 211

ops--How Transient States Work ... 212

How SSM Decides What Action to Take ... 213

How to Specify and Store Actions .. 214

Action Clauses ... 214

Complex Actions.. 217

Specify Variables in Action Clauses ... 218

Built-in Variables ... 220

Substituting Data ... 222

Empty-string and NULL Actions ... 223

Contents 13

ACTMODE Column .. 223

Search Order for Action Tables ... 224

Process Events ... 228

The PROCESS Action Clause .. 230

SSM Action Processes Default Logic.. 231

SSM Global Events .. 233

RDF Monitor Events .. 233

BEGIN Event .. 234

How the BEGIN Event Works .. 234

Using SSM Global Events ... 235

DELETE Event Example .. 236

Non-standard and Complex Resource Management ... 236

Manage USS Deamon Server Processes .. 237

How to Use the Full Capabilities of SSM .. 237

Step 1: Take a Snapshot of Your System ... 238

Step 2: Review and Customize the STCTBL Table.. 241

Step 3: Review and Modify Your STCTBL_ACT Table .. 242

Step 4: Auto-enable Rules That Monitor Started Tasks .. 244

Step 5: Add STCTBL and STCTBL_ACT Tables to the Directory Table .. 247

Step 6: Test the SSM Operation .. 248

Step 7: Perform an IPL with SSM ... 252

Create Other Resource and Action Tables ... 256

Decide How Many Tables to Define .. 256

Add User Columns to an Existing SSM Table ... 257

Parameters That Control SSM Operation ... 259

Manage Tables with the OPSSMTBL Command ... 261

OPSSMTBL Command Syntax .. 261

Associated Variables ... 261

Modify Table Data with the STATESET Program .. 262

Use the STATESET Program ... 262

STATESET Syntax ... 263

STATESET Program Examples .. 263

Invoke the STATESET Program in Various Environments .. 263

Manage Tables Through OPSVIEW ... 264

Edit and Browse Tables Through the Table Editor .. 264

Edit or Browse Through the System State Manager Interface.. 264

Use the SSM Control Panel ... 265

SSMDISP Command—Display Resource Status .. 266

Output from SSMDISP ... 267

Examples of SSMDISP .. 267

SSMSHUT Command—Set Resource State to Down .. 267

14 User Guide

Chapter 8: Using SSM Global Application 271

About SSMGA ... 271

Sharing Resource Status Information ... 272

How SSMGA Works .. 273

Local Status Table (LST) ... 275

Moving Resources ... 275

Global Status Table (GST) .. 276

PREREQ and SSM#GRPLST Resource Column Changes ... 276

SSMGA Setup Requirements .. 277

Step 1: Activate the SSM Global Event Facility ... 277

Step 2: Deactivate SSM Processing ... 277

Step 3: Update the SSM Global Event Facility ... 278

Step 4: Set the Parameters ... 279

Step 5: Auto-Enable Rules ... 281

Step 6: Add SSM Resource Table Columns .. 286

Step 7: Enter Resource Configuration Values ... 288

Step 8: Add SSM Action Table Entries ... 290

Step 9: Replicate Parameters, RDF Tables, and Rules ... 291

Step 10: Activate SSM Processing and Verify the Setup ... 291

Using the SSM Subtask .. 292

Messages for Special Events .. 293

SSMGA Status Command ... 293

Verification and Diagnostic Commands ... 295

Chapter 9: Using Group Manager 297

Monitor Groups of Managed Resources .. 297

Tables Used by the Group Manager ... 298

Define Groups and Assign Resources to Them... 299

Define Statuses for Your Groups .. 300

Define Status Names ... 301

Associate a Status with a Group or Groups ... 302

Set the Priority of a Status .. 303

Use Substitution Parameters in Status Text .. 303

How Group Manager Assigns Statuses to Resources and Groups ... 304

Status Selection Table ... 305

Use the Group Manager Displays ... 307

Exclude Systems from Resource Monitoring ... 308

Choose Resource Groups to Monitor ... 309

View the Status of Groups .. 310

View the Status of Group Members ... 311

Automatically Monitor Groups or Resources ... 312

Contents 15

View Detailed Resource Information ... 313

Exit from Group Manager Panels ... 313

Chapter 10: Using Schedule Manager 315

Reasons to Use the Schedule Manager .. 316

What You Can Do With Schedule Manager .. 317

Definition of Terms... 318

Perform Schedule Manager Tasks .. 320

Select a Schedule .. 321

Insert a New Schedule .. 322

Edit a Schedule ... 322

Understand the Links Control Panel ... 323

Activate (Load) a Schedule ... 337

SHOW STATES Command—View the Scheduled States of Resources ... 338

CMDSONOFF Primary Command—Distinguish Active and Inactive Links .. 341

View Potential State Changes .. 342

The Primary Commands in Edit .. 343

Copy a Schedule ... 345

Rename a Schedule .. 346

Delete a Schedule ... 347

Free a Schedule .. 348

Synchronize a Schedule .. 349

Merge Schedules .. 350

View Schedule Overlaps ... 351

View Schedule Conflicts ... 352

The C and CX Commands .. 354

How Schedule Manager Resolves Schedule Conflicts ... 354

REPORT Command—Print Schedule Manager Data .. 355

Example: REPORT Command .. 358

Use the Schedule Manager Application Program Interface ... 359

API QUERY Command—Returns Schedule Manager Data .. 359

Keywords on the Schedule Manager API QUERY Command .. 366

Formats of All Other Schedule Manager API Commands ... 366

Keywords on All Other Schedule Manager API Commands .. 381

Override Schedule Manager... 382

The Effective Mode of SSM Resources .. 383

System State Manager Resource Tables ... 383

Chapter 11: Using the Relational Data Framework 395

The Relational Data Framework ... 396

Why We Chose SQL .. 396

16 User Guide

Assumptions ... 396

The Role of Relational Tables ... 397

How the Product Stores Table Data ... 397

Tables the Product Provides ... 398

Table Restrictions ... 398

Reserved Keywords in SQL Statements .. 398

Operations Performed With the CA OPS/MVS SQL .. 400

What Are the Differences From Standard SQL? ... 400

About the Sample Tables ... 400

Invoking SQL Statements.. 401

Restrictions for Cursor Operations .. 402

Formats for Invoking SQL Statements ... 402

How the Environment Determines Which Statements Are Permitted ... 403

Destinations of SQL-related Error Messages .. 403

Notes on Performing Cross-system SQL Operations ... 404

List of SQL Statements .. 405

Tools for Importing, Exporting, and Backing up Tables .. 407

The READTBL and WRITETBL OPS/REXX Programs ... 407

The OPCRTBDF Subroutine ... 407

Storing Data in and Requesting Data From Relational Tables .. 408

How SQL Statements Pass Values to a Table .. 409

How SQL Processes Host Variables ... 409

How SQL Processes Null Values .. 410

SELECT Statement—Request Data from a Table ... 411

The ADDRESS SQL Environment and Host Variables ... 412

Description of Host Variables .. 413

Specifying Stem Names ... 414

Return Codes from ADDRESS SQL Instructions ... 414

Searched, Cursor, and Table Management Operations ... 416

Searched Operations .. 416

Statements Used in Searched Operations .. 417

Clauses Used in Searched Operations ... 417

Use the ORDER BY Clause to Arrange Values ... 418

Use the WHERE Clause to Select Values .. 420

Use Comparison Predicates in WHERE Clauses .. 421

Use IN Predicates in WHERE Clauses ... 422

Comparing One or More Values .. 422

Using Boolean Expressions .. 423

Using LIKE Predicates in WHERE Clauses ... 423

Comparing Character Strings .. 423

Using the ESCAPE Keyword ... 424

Use Expressions and Functions .. 424

Contents 17

Expressions .. 424

Introduction to Functions ... 425

Character-oriented Functions ... 425

Numeric Aggregate Functions ... 429

Join Operations .. 433

Compare Values from Multiple Tables .. 434

Define Aliases or Correlation Values for Table Names ... 434

Using Subqueries .. 434

Reduce Amounts of Data Returned .. 435

Cursor Operations .. 436

Statements Used in Cursor Operations ... 436

Guidelines for Writing Cursor Operation Statements ... 438

OPS/REXX Program That Demonstrates Cursor Operations ... 439

Table Management Operations ... 440

Where to Perform Table Management Operations .. 440

Table Management Statements .. 441

Add Table Columns ... 441

Define a New Table to the Product ... 442

Delete Table Rows ... 442

Delete a Table ... 442

Insert a Row into a Table... 442

Update Values in a Table... 443

Use the Relational Table Editor Batch API.. 443

Maintaining Cross-system Serialization .. 443

Duplicate Keys ... 443

Chapter 12: Editing Relational Tables 445

Use the Relational Table Editor .. 445

Use Edit Option Commands ... 447

Protecting System State Manager Tables ... 450

Edit the Structure of a New Table .. 451

Special Criteria for Column Descriptions... 451

Primary Commands for Creating Table Structure ... 452

Line Commands for Editing Table Structure ... 454

Issuing the TJ and TS Line Commands ... 455

Edit the Contents of an Existing Table .. 457

Primary Commands for Editing Table Data ... 457

Line Commands for Editing Table Data ... 460

Edit a Table on Another System ... 461

End a Table Editing Session .. 462

18 User Guide

Chapter 13: External Product Interface 463

Overview .. 463

How the EPI Manages VTAM Applications .. 464

Components List ... 464

EPI Terminology .. 465

Install the EPI .. 466

Define Virtual Terminals to VTAM .. 466

Define Virtual Terminals to the EPI ... 467

Enable Virtual Terminals ... 469

Log a Virtual Terminal onto an External Product .. 469

Define and Activate EPI Sessions .. 470

External Products Acquiring Virtual Terminals ... 470

Display Virtual Terminal and EPI Session Information ... 471

Display Virtual Terminal Status ... 471

EPI LIST Command ... 472

Shut Down the EPI .. 473

Disable Virtual Terminals .. 474

Delete Virtual Terminal Definitions ... 474

ops--Use OPS/REXX to Drive EPI Virtual Terminals .. 474

Issue ADDRESS EPI Host Commands ... 475

General Syntax Rules of ADDRESS EPI ... 475

Output from ADDRESS EPI Host Commands ... 475

ADDRESS EPI Return Codes ... 476

ADDRESS EPI Output Message Identification .. 477

Syntax of Selected ADDRESS EPI Words .. 478

REXX Use of the Virtual Terminal Temporary Ownership Mechanism .. 479

EPI Host Command Descriptions .. 479

Special EPI Host Commands .. 479

EPI Host Command Descriptions for Virtual Terminals ... 483

Other EPI Host Command Descriptions .. 494

OPS/REXX Programming Tips ... 495

REXX Statement Transformation .. 496

REXX Coding Considerations ... 496

ENQ/DEQ Notes .. 497

The TYPE Host Command .. 497

The HOSTKEYS Host Commands.. 498

Attribute Byte Representation in the EPI .. 498

EPI Failure Recovery ... 498

EPI System Failure ... 499

EPI Session Failure ... 499

EPI Command Failures .. 500

Contents 19

Security Considerations .. 500

VTAM APPLIDs ... 500

Issuing Commands to Other Applications ... 500

User Exit .. 500

Insert Mode ... 501

Hardcopy Command Logging .. 501

Passwords and the EPI .. 501

OMMVS—Sample OMEGAMON Interface Routine ... 502

OMMVS Implementation .. 503

OMMVS Customization Variables ... 504

Disable the OMEGAMON Use of Extended Attributes .. 505

CA7MVS—Sample CA 7 Interface Routine ... 506

CA7MVS Implementation .. 507

CA7MVS Customization Variables ... 508

Chapter 14: Using the EPI Recording and Playback Options 509

Overview: Recording REXX EXECs .. 509

Requirements for Recording ... 510

Plan Your Recording Session ... 510

How the Recording Option Works .. 511

Issue Recording Commands .. 511

Stack Recording Commands (For Advanced Users) .. 512

Recording Environment Set Up .. 512

Change Recording Options Permanently ... 513

Control Characters and Defaults ... 514

SESSCMD Keywords and Defaults ... 515

Change Recording Options Temporarily .. 516

Request Temporary Changes from the Command Line .. 516

Override the Automatic ENTER Option ... 517

Choose Where to Store the REXX EXEC .. 517

Record a Session... 518

How the Recording Process Works ... 519

Commands for Use in the EPI Recording Environment ... 520

Marking Text to Find on or Fetch from a Screen .. 521

Place the Cursor on a Screen Field .. 522

Find a Text String on a Screen ... 523

REXX Variables That the F Command Sets .. 524

Return Codes ... 525

Mark Screen Text to Assign to a REXX Variable .. 525

Insert Literal Strings or Variables into SESSCMDs .. 526

Direct a Literal String to an Input Field ... 526

20 User Guide

Direct a Variable to an Input Field .. 527

Edit Your Customized Automation EXEC .. 527

Test-run Your EXEC with the Playback Option ... 528

How Playback Works .. 529

Record an EXEC to Automate Info/Management Inquiries .. 530

The Opening Text of the Driver Section for a Recorded EXEC .. 531

Build the Rest of the Driver Section Using Recording Commands .. 532

Chapter 15: Enhanced Console Facility 545

Overview .. 545

Concepts.. 546

Commands Processed by the OSF ... 546

Commands Processed by the ECF ... 547

Restrictions on TSO Command Runs ... 547

ECF Operation .. 548

Log On the ECF .. 548

Conduct an Interactive ECF Session .. 550

Log Off the ECF .. 551

Recovery From Failures .. 551

Restrictions on TSO Commands Processed by the ECF and OSF .. 552

Security Considerations .. 553

Other Considerations ... 553

Chapter 16: Multi-System Facility 555

Understanding the MSF ... 556

MSF Support of JES3 (JES3 Only) ... 557

MSF Terminology .. 557

MSF Installation .. 558

The MSF and CAICCI .. 558

MSF Operation ... 558

Activate the MSF VTAM APPLID .. 559

Start the MSF .. 560

Starting the System Task ... 560

Set the Local System Identifier .. 560

Define Systems to the MSF ... 561

Start Cross-system Sessions .. 561

Activate MSF Sessions to Remote Systems ... 562

Define and Activate MSF Sessions .. 563

Auto-connecting MSF Sessions ... 563

Display Systems and MSF Sessions ... 564

Issue Commands to Remote Systems .. 565

Contents 21

Issue Cross-system TSO Commands .. 566

Issue JES3 Commands ... 566

OPSSEND Function and ADDRESS WTO—Pass Messages to Remote Systems .. 567

Shut Down MSF Sessions and Systems .. 567

Deactivate MSF Sessions ... 568

Stop the MSF ... 568

Remove System Definitions .. 569

Recovery from Failures... 569

MSF System Failures ... 570

MSF Session Failures ... 571

Cross-system Command Failures .. 572

Security Considerations .. 572

VTAM APPLIDs ... 572

OPSRMT and OPSCMD TSO Commands .. 573

Security for Other Cross-system Operations ... 574

Chapter 17: Expert System Interface 575

Overview .. 575

Calling Language Dependencies ... 575

Call OPSLINK from PL/1 Programs ... 575

Define an Output Array in PL/1 Programs .. 576

Define the OPSLINK Routine in PL/1 Programs ... 576

Call OPSLINK from COBOL Programs ... 577

Define an Output Array in COBOL Programs ... 577

Define the OPSLINK Routine in COBOL Programs ... 577

Call OPSLINK from Assembler Programs ... 578

OPSLINK Function Calls... 580

Execute TSO Commands ... 580

Execute Operator Commands ... 582

Access and Update Global Variables ... 583

Codes for the OPTION Argument .. 585

Return Codes from OPSLINK .. 587

Sample Programs that Use OPSLINK .. 588

Chapter 18: CICS Operations Facility 589

COF Overview ... 589

Install and Start the COF... 589

How You Can Use the COF ... 590

Some CICS Procedures You Can Automate .. 590

22 User Guide

Chapter 19: IMS Operation Facility 591

IMS IOF Overview ... 591

IOF Installation Considerations .. 591

IOF Installation Operations .. 592

Interpreting Type 2 API Return and Reason Codes .. 592

Issue Commands from a BMP Region .. 593

Chapter 20: NetView Operations Facility 595

About the NetView Operations Facility .. 595

NOF Alerts .. 596

Activate the NOF .. 596

Parameters for the OPNOF Program .. 597

The NetView Alerts .. 599

What Happens When You Generate an Alert .. 599

How the NOF Responds to NetView Alerts ... 600

Contents of GLOBAL.OPNF.ALERT ... 601

Alerts Generated from CA OPS/MVS .. 601

OPNFALRT REXX Function—Generate Alerts ... 602

Alert Type Parameter .. 603

Alert Description Parameter ... 604

Probable Cause Parameter ... 605

Action Parameter .. 606

Hierarchy Parameter ... 607

Alert Text Parameter ... 607

OPNFALRT Return Code Format .. 608

OPNFALRT Messages and Return Codes ... 608

Issuing NetView Commands ... 615

Establish NetView Autotasks ... 616

Retrieve Responses to NetView Commands ... 616

Find NetView System Recognition Character.. 617

Chapter 21: Using the Automation Measurement Environment 619

Overview of AME.. 619

Required Software .. 620

Advantages of the AME ... 620

Data Flow of the AME ... 621

Types of AME Reports ... 622

Define Destinations and Intervals for SMFLOG Records .. 624

Define the Content of the Automation Statistics Report ... 624

Subparameters Specified In the PARMDD File .. 625

Contents 23

Values You Can Specify for the OPSSTATS Subparameter .. 630

JCL PARM Parameters ... 631

Generate the Summary Section ... 631

Generate the AOFEVENT Segment ... 639

Generate the OSFEVENT Segment ... 641

Generate the OSFTERM Segment .. 643

Generate the IMS Segment .. 644

Appendix A: Supplied Sample Rules and Programs 647

Available Sample AOF Rules and OPS/REXX Programs .. 647

How to Locate Supplied Sample Rules and OPS/REXX Programs ... 648

CA OPS/MVS Components ... 649

AOF Component .. 649

API Component ... 649

HWS Component ... 650

OPSLOG Component ... 650

OSF Component .. 651

SOF Component .. 651

SSM Component ... 651

CA Products .. 653

CA Datacom ... 653

CA IDMS .. 653

CA MIM ... 653

CA PDSMAN ... 654

CA Process Automation ... 654

CA Scheduler ... 655

CA SYSVIEW ... 655

CA XCOM ... 657

CA DB2 DBM Products .. 657

CA Spool .. 657

CA TLMS .. 658

CA 7 ... 658

CA 11 ... 658

Other Vendor Products .. 658

CICS ... 658

DB2 .. 659

IMS .. 660

WebSphere MQ ... 661

JES ... 661

JES2 ... 661

TSO .. 661

24 User Guide

VTAM (Other Vendor Products) .. 662

z/OS Activities .. 662

Disaster Recovery .. 662

Information Utilities .. 662

Checking ASID Existence on Remote Systems ... 663

Message Suppression and Manipulation .. 663

Monitoring Batch Job Execution Times ... 664

Processing Cross-system Events.. 664

Processing Job Enqueues .. 665

Processing Hardware Failures ... 665

Processing Problem ASIDs ... 665

Processing WTORs ... 665

Processing z/OS Commands .. 666

Tape Mount Pendings ... 666

USS Processes Management ... 667

zFS File System .. 667

z/OS System IPL ... 667

z/OS System Shutdown ... 667

Appendix B: Sample AOF Rules 669

Available Sample Rules... 669

Appendix C: Sample OPS/REXX Programs 695

Supplied Sample OPS/REXX Programs ... 695

Installation and Configuration Considerations for PLEXSSM ... 716

Appendix D: CA OPS/MVS Health Checks 717

OPSMVS_ALLOC_OPSLOG .. 718

OPSMVS_ALLOC_SYSCHK1 ... 719

OPSMVS_PARM_AOFHLQ .. 720

OPSMVS_PARM_AOFMAX ... 721

OPSMVS_PARM_CMDMAX .. 722

OPSMVS_PARM_MSGMAX .. 723

OPSMVS_PARM_PROCBLK ... 724

OPSMVS_TSOMAXQUSG .. 725

OPSMVS_TSPMAXQUSG... 726

OPSMVS_TSLMAXQUSG ... 727

OPSMVS_USSMAXQUSG .. 728

OPSMVS_OPJ2CB ... 729

Contents 25

Index 731

Chapter 1: Introduction 27

Chapter 1: Introduction

This section contains the following topics:

How to Use This Guide (see page 27)
Portrait of an Automater (see page 28)
Operations Overview—Historically Speaking (see page 29)

How to Use This Guide

This guide provides information and data that can help you learn how to automate your
data center with the CA OPS/MVS product. It provides this information with varying
levels of complexity and detail.

The target audience for this guide is any data center automation personnel. It is written
so that data center automaters with varying degrees of experience and knowledge can
use its content.

Portions of this guide are written sequentially so that users with little knowledge or
experience can start at the beginning with CA OPS/MVS basics and, in order of lessons,
learn about topics with ever increasing complexity. This also enables users with higher,
varying levels of system automation proficiencies to learn about individual, selected
topics as single, usable portions of the whole.

Other portions of this guide conform to the more standard, user-guide format. They
present reference information about CA OPS/MVS facilities that enable you to
powerfully and efficiently design and implement your own system automation
blueprint.

If you have little or no experience, start at the beginning of the chapter “How to Begin
Using the Product” and proceed as far as you are comfortable. If you already have
experience with CA OPS/MVS and want to learn about a specific tool or concept that is
explained with a step-by-step lesson, choose that topic from the table of contents (or
index) and follow the guide from the point indicated, as long as appropriate. Note that,
if appropriate, each lesson refers you to the correct reference section with a
corresponding topic.

Portrait of an Automater

28 User Guide

Portrait of an Automater

This section discusses the role of the person or persons automating your data center.

Anybody can automate the z/OS system of a data center using CA OPS/MVS. Of course,
data center operations, systems programming experience, or both are helpful. In reality,
however, it is often not operations experience that makes a successful automater-it is
more an understanding of the following:

■ How your business operates

■ Methods and procedures your business follows on a day-to-day basis

■ The stated policies and procedures of your organization

■ How your enterprise runs its data center, uses its z/OS operating system, and uses
those computer programs that were written to help your business operate

Operations Overview—Historically Speaking

Chapter 1: Introduction 29

Operations Overview—Historically Speaking

This section explains how CA OPS/MVS has developed with respect to the history of
data center operations.

Towards the beginning of computer system history, when programs were run using card
decks and each line of program code had its own card, programs (jobs) were run one at
time. Output, usually in the form of a printout, was produced at the time a job ran. If a
job had errors or problems occurred when it ran, error messages were generally
indicated on its printout. In other words, computer operations were sequentially
oriented. One job ran at a time, and no complicated interfaces existed. At that time,
there were no operations to automate.

Later, computer systems shed the bulky card stack technology and had advanced to the
point that more than one job could run at the same time. Also, jobs themselves had
advanced. As examples, they could read different types of magnetic media for input and
print to more than one printer for output. To accomplish these things, operations
personnel needed a means of communicating with the operating system of the
computer, the programmers who were running jobs, and other operations-type
personnel. This communication was accomplished with the implementation of the
system console, the master terminal. Through this console, an operator could do things
like start all jobs in a data center or be notified about system errors.

As time went on, computer systems became more powerful and data centers became
more complex. Data centers were able to keep track of the information needs of an
entire business. To do this, some data centers ran more than one computer or operating
system 24 hours a day, seven days a week. And their operators began using multiple
system consoles to communicate efficiently with this complex of computer activity.

Today, computers and their operating systems have become so powerful that many
thousands of jobs can run every day in one data center. The z/OS operating system for
instance, the operating system of choice for many large data centers, can run multiple
versions of itself and each can run many jobs at the same time. In these complex data
centers, human operators cannot keep up with all system events. No person or persons
can.

That is why a system automation product such as CA OPS/MVS has become critical. It
can respond automatically to any or all events that occur in a z/OS system such as the
following:

■ Follow established procedures

■ Watch the message stream of the system

■ Issue DISPLAY commands and examine their output

■ Track time and execute scheduled actions based on time

■ Apply common sense

■ Take action

Operations Overview—Historically Speaking

30 User Guide

■ Call for help

■ Answer queries about the status of your system

Chapter 2: How to Begin Using the Product 31

Chapter 2: How to Begin Using the Product

This section contains the following topics:

Overview (see page 32)
Ways to Automate (see page 33)
Purpose of These Lessons (see page 34)
Lesson 1: Create a Rule Using the AOF (see page 38)
Lesson 2: Test and Verify a Rule (see page 40)
Lesson 3: Establish More Rules (see page 43)
Lesson 4: How to Organize Rules into Rule Sets (see page 45)
Lesson 5: How to Enable and Disable Rules and Rule Sets (see page 46)
Lesson 6: Solve a Problem Using EasyRule (see page 50)
Lesson 7: Suppress Messages Using the Automation Analyzer (see page 67)
Lesson 8: Create Rules from an MPF Suppression List (see page 71)

Overview

32 User Guide

Overview

This chapter provides a step-by-step approach to learning system automation
techniques using CA OPS/MVS. In it, you begin by using the Automated Operations
Facility, or AOF, to create a rule that suppresses one type of z/OS system message. Using
AOF, we also modify that rule, test it, and enable and disable it. In later lessons, you use
other CA OPS/MVS facilities to establish more rules in different ways.

OPSVIEW is the main user interface to CA OPS/MVS. It is through the OPSVIEW network
of panels and user menus that you can communicate with and use CA OPS/MVS.

The following OPSVIEW Primary Options Menu is the origination point from which you
enter all CA OPS/MVS facilities and functions:

CA OPS/MVS ------ CAxx --- OPSVIEW Primary Options Menu ----- Subsystem OPSA

 0 Parms Set OPSVIEW and ISPF default values User ID - USER01
 1 OPSLOG Browse OPSLOG Time - 12:43
 2 Editors AOF Rules, REXX programs, SQL Tables Release - 11.8
 3 Sys Cntl Display/Modify System Resources SP - 0
 4 Control Control CA OPS/MVS
 5 Support Support and Bulletin Board information
 6 Command Enter JES2/MVS/IMS/VM commands directly
 7 Utilities Run CA OPS/MVS Utilities
 A AutoMate CA AutoMate rules edit and control
 I ISPF Use ISPF/PDF services
 S SYSVIEW CA SYSVIEW
 T Tutorial Display information about OPSVIEW
 U User User-defined applications
 X Exit Exit OPSVIEW

 CA OPS/MVS Event Management and Automation
 Copyright © 2010 CA. All rights reserved.

By following this chapter from beginning to end, you should gain a fundamental
knowledge of how an automation rule works.

Ways to Automate

Chapter 2: How to Begin Using the Product 33

Ways to Automate

You can use several methods to automate your system and test your automation rules.

The following are the various automation methods and references to corresponding
lessons on the following pages:

AOF Edit

AOF Edit (OPSVIEW option 2.1) enables you to create rules using the OPS/REXX
programming language.

See Lesson 1: Create a Rule With the AOF in this chapter.

Test and Verify

With CA OPS/MVS, you can test and verify your automation rules before they get
into a production environment.

See Lesson 2: Test and Verify a Rule in this chapter.

Establish More Rules

With CA OPS/MVS, you can establish another message suppression rule and
establish a test command rule.

See Lesson 3: Establish More Rules in this chapter.

Organizing Rules

CA OPS/MVS gives you the ability to group rules in a meaningful way. These groups
are called rule sets.

See Lesson 4: How to Organize Rules into Rule Sets in this chapter.

Enable and Disable Rules and Rule Sets

With CA OPS/MVS, enabling and disabling rules and rule sets is how you turn them
on and off.

See Lesson 5: How to Enable and Disable Rules and Rule Sets in this chapter.

EasyRule

EasyRule (OPSVIEW option 2.3) is a fourth-generation facility that makes it easy to
create rules that will respond to various system events, including system messages.
It provides the ability to modify the display of system console messages without the
need for programming.

To create very complex rules, you may need to use the AOF edit facility rather than
EasyRule.

See Lesson 6: Solve a Problem Using EasyRule in this chapter.

Purpose of These Lessons

34 User Guide

Automation Analyzer

The Automation Analyzer (OPSVIEW option 7.2) examines and displays a statistical
analysis of the message activity of your system. You can use this information to
choose the messages you want to suppress, and then create message suppression
rules directly from the panels of the Automation Analyzer.

See Lesson 7: Suppress Messages Using the Automation Analyzer in this chapter.

MPF Conversion Facility

Most z/OS installations have used the IBM product for message suppression, called
the Message Processing Facility (MPF). CA OPS/MVS provides an MPF conversion
facility (OPSVIEW option 7.3) to enable these installations to migrate without losing
the time they have invested in MPF. The MPF conversion facility reads messages
from the MPF message suppression list and automatically generates CA OPS/MVS
rules.

The MPF conversion facility is limited to simple suppression entries. Messages
regarding console colors and exit information are not automatically processed. If
you use the MPF conversion facility, you must modify parmlib to remove message
suppression.

See Lesson 8: How to Create Rules From an MPF Suppression List in this chapter.

Purpose of These Lessons

The first lesson starts your automation education by showing you how to have CA
OPS/MVS automatically suppress system messages that you do not want to see. We
start with this topic for the following reasons:

■ Most system automaters start automating a system by suppressing unwanted
messages.

■ Rules that govern how message suppression operates can be fairly simple.

■ Once a few message suppression rules are established, we can illustrate how
several CA OPS/MVS facilities function by investigating how those rules affect your
system.

Purpose of These Lessons

Chapter 2: How to Begin Using the Product 35

How to Prepare Your System for Your Lessons

For the purposes of the lessons in this chapter, ensure that a normal, fully qualified,
partitioned data set without members has been allocated. Such a data set is used in the
lessons to act as a repository for automation rules, each member of which is a rule, and
for testing rules once they have been established. A good name for this test rule set
could be userid.TEST.RULES.

For testing, you should always use a test rule set, rather than a production rule set.

■ If a Test Rule Set Does Not Exist

Either proceed to Allocate a Test Data Set (see page 36) to establish your test rules
library or ask your systems programmer to do it for you.

■ If a Test Rule Set Exists

Proceed to Purpose of These Lessons (see page 34) in this chapter.

Purpose of These Lessons

36 User Guide

Allocate a Test Data Set

Begin at your ISPF Primary Option Menu. ISPF is the main user interface for your z/OS
operating system.

This panel is the origination point from which you enter all ISPF facilities and functions.

To allocate a test data set

1. Enter 3.2 in the Option field.

The Data Set Utility panel is displayed. Use this panel to enter the name of a data
set that you can use for testing rules. Your user ID, with TEST, and RULES, makes a
good name for such a data set.

2. Fill in the Data Set Utility panel with the following suggested entries.

■ Enter an A in the Option field.

■ Enter your user ID in the Project field.

■ Enter TEST in the Group field.

■ Enter RULES in the Type field.

The Data Set Utility panel will look similar to that shown here:

 Data Set Utility
Option ===>
 A Allocate new data set C Catalog data set
 R Rename entire data set U Uncatalog data set
 D Delete entire data set S Data set information (short)
blank Data set information M Enhanced data set allocation
 V VSAM Utilities

ISPF Library:
 Project . . USERID
 Group . . . TEST
 Type RULES
Other Partitioned, Sequential or VSAM Data Set:
 Data Set name . . .
 Volume Serial . . . (If not cataloged, required for option "C")
Data Set Password . . (If password protected)

3. Review your choices and press enter.

The Allocate New Data Set panel is displayed, similar to the one shown here:

Purpose of These Lessons

Chapter 2: How to Begin Using the Product 37

--------------------------- Allocate New Data Set ---------------------------
Command ===>
 More: +
Data Set Name . . . : USERID.TEST.RULES
Volume serial MVSNN0 (Blank for authorized default volume) *
Generic unit. (Generic group name or unit address) *
Space units TRACK (BLKS, TRKS, CYLS, KB, MB or BYTES)
Primary quantity. . . 20 (In above units)
Secondary quantity. . 10 (In above units)
Directory blocks. . . 100 (Zero for sequential data set)
Record format FB
Record length 80
Block size 3200
Expiration date . . . (YY/MM/DD, YYYY/MM/DD
 YY.DDD, YYYY.DDD in Julian form
 Enter "/" to select option DDDD for retentions in days
 Allocate Multiple Volumes or blank)

4. Provide the allocation data using the above panel as an example to enter values for
the data requested by the operating system. Perform the following actions:

■ Enter data in the fields as shown on the above panel. These values are
suggestions only; however, they will work for a rule testing data set.

■ Press your PF3 key twice or enter the END command twice.

Your test data set is allocated and you may proceed to the next section, Purpose of
These Lessons.

Some System Messages Create Visual Noise

Every computer application issues messages. They fall into two general categories:

■ Messages that call for an operator action, such as replying to a WTOR, calling a
customer engineer, or restarting a resource

■ Informational messages that do not call for operator action

Messages of the second category can be such an overwhelming part of the console
display of the operator that they make it hard for an operator to see and respond to
messages of the first category.

You can make the task of the operator more manageable by writing rules to suppress
particular messages from displaying on the console, appearing in SYSLOG, or both. If you
choose to only suppress a message, that message does not completely disappear; it is
routed to SYSLOG, where it can be referenced as needed. If you prefer, you can choose
to suppress and delete a message; it is not only suppressed from the console but also
deleted from SYSLOG. However, even if you choose to suppress and delete a message, it
is still recorded in OPSLOG, the very powerful and flexible system log provided with CA
OPS/MVS.

Lesson 1: Create a Rule Using the AOF

38 User Guide

Lesson 1: Create a Rule Using the AOF

By following the procedures outlined in this first lesson, you will:

■ Access the AOF edit facility.

■ Use AOF edit to create a suppression rule with the CA OPS/MVS own programming
language, called OPS/REXX.

To create a rule using the AOF

1. Access the AOF from the OPSVIEW Primary Options Menu by entering 2.1 in the
Option field.

The AOF Edit Entry panel displays:

AOF EDIT - Entry panel --- MSI1 --- OPSVIEW -------------------Subsystem OPSS
COMMAND ===>
RULE LIBRARY:
 PROJECT ===> USERID
 GROUP ===> TEST (* for all RULE SETs)
 TYPE ===> RULES
 MEMBER ===> (Blank for MEMBER selection list)
OTHER PARTITIONED DATA SET:
 DATA SET NAME ===>
--------------------------- AOF TEST DATA ---------------------------------
 (Blank all fields below in order to test with temporary data.)
TEST DATA SET NAME:
 PROJECT ===>
 GROUP ===>
 TYPE ===>
 MEMBER ===>
OTHER PARTITIONED DATA SET:
 DATA SET NAME ===>

2. Specify which rule library to access by typing in the name of your test data set,
leaving the Member field blank, and then press Enter.

The corresponding AOF Test Rule List panel displays:

AOF TEST - Rule List ------ USERID.TEST.RULES --------------------------------
COMMAND ===> SCROLL ===> PAGE
 Line Commands: R EasyRule S ISPF Edit T Test C Compile V View
 E Enable D Disable A Set Auto-Enable Z Reset Auto-Enable X Delcomp
 Test Start Date : 2009/10/12 Test Start Time : 13:54:00
 Test Current Date : 2009/10/12 Test Current Time: 13:54:00
 RULENAME STATUS AE TYP VV.MM CREATED MODIFIED SIZE INIT MOD ID
 END

Because this data set is empty, no rules are displayed. If there had been rules
(members) in the data set, they would be displayed.

Besides using this panel to select rules once they exist, you can also create a rule.
CA OPS/MVS automatically creates a rule when you select it on the COMMAND line.

Lesson 1: Create a Rule Using the AOF

Chapter 2: How to Begin Using the Product 39

3. Create a rule that suppresses system message IEF450I by typing S IEF450I on the
command line. When you are finished press Enter.

A rule named IEF450I is created and the AOF test edit panel appears:

AOF TEST ----- USERID.TEST.RULES(IEF450I) - 01.00--------- COLUMNS 000 000
COMMAND ===> SCROLL ===> PAGE
****** *************************** Top of Data ****************************
''''''
''''''

The format of the AOF Test edit panel is nearly identical to the editing display of the
ISPF/PDF editor. The two panels also function similarly.

You use the panel to enter and create a REXX-based message suppression rule.

For more information about rule names, see the AOF Rules User Guide.

4. Enter the text of the REXX program that is your first suppression rule. Your program
should look just like the following:

AOF TEST ----- USERID.TEST.RULES(IEF450I) - 01.00--------- COLUMNS 000 000
COMMAND ===> SCROLL ===> PAGE
****** **************************** Top of Data ***************************
'''''')MSG IEF450I
'''''')PROC
'''''' RETURN 'SUPPRESS'
''''''
''''''

This three-line REXX program is actually a rule that suppresses the system message
IEF450I. A rule to suppress a different message would look like the one shown here,
except a different message ID would appear in the first line of the rule.

5. Enter END on the command line or press your PF3 key.

Your rule is created.

Once you finish this part of Lesson 1, your rule is ready to test and verify. You
accomplish this by enabling it and applying several different CA OPS/MVS functions to it.
You can do all of this from the AOF Test Rule List panel as done in the next lesson Test
and Verify a Rule.

Lesson 2: Test and Verify a Rule

40 User Guide

Lesson 2: Test and Verify a Rule

By following the procedures in this lesson, you will:

1. Test your new rule.

2. Verify your new rule.

To test and verify a rule

1. Verify that the AOF Test Rule List panel is being displayed:

If not, proceed with the following instructions:

■ If the AOF Edit panel is being displayed, press your PF3 key (or enter END).

■ If the main OPSVIEW menu panel is being displayed, select 2.1, and then enter
your test library name in the AOF EDIT Entry panel.

■ If the AOF Edit Entry panel is being displayed, enter your test library name.

2. Enable your rule by typing E to the left of the name of your rule and then press
Enter.

In response, two fields on the Rule List Panel change, as shown in the following
example screen. This example shows how the panel looks after the changes. Notice
that for the rule named IEF450I, the value in the Status field has changed to
ENABLED and the value in the Typ field has changed to MSG. In addition, the
message AOF RULE ENABLED appears in the upper-right corner of the panel.

Note: For more information about enabling rules, see Lesson 5: How to Enable and
Disable Rules and Rule Sets in this chapter.

Note: If your rule contains syntax errors, the E command fails. If this happens, go
back to the AOF panel and ensure that your REXX rule program is exactly like that
shown in Lesson 1.

AOF TEST - Rule List ------ USERID.TEST.RULES ---------------AOF RULE ENABLED
COMMAND ===> SCROLL ===> PAGE
 Line Commands: R EasyRule S ISPF Edit T Test C Compile V View
 E Enable D Disable A Set Auto-Enable Z Reset Auto-Enable X Delcomp
 Test Start Date : 2009/10/12 Test Start Time : 13:54:00
 Test Current Date : 2009/10/12 Test Current Time: 13:54:00
 RULENAME STATUS AE TYP VV.MM CREATED MODIFIED SIZE INIT MOD ID
 IEF450I ENABLED Y MSG 01.04 09/10/12 09/10/12 18:38 7 5 3 SYSADM

3. Type T to the left of the name of the rule and press Enter.

When you select a message rule for testing, the AOF takes you to the AOF Test MSG
panel, which prompts you for information about the message rule you want to test.
A sample panel appears in the next step. At the bottom of this panel, a portion of
the OPSLOG is displayed.

4. Enter the following command in the Command field:

D TIME DISP

Lesson 2: Test and Verify a Rule

Chapter 2: How to Begin Using the Product 41

This command tells CA OPS/MVS to display the following information for each rule:

■ Time that the event with which the rule is connected appeared in OPSLOG

■ Final disposition of the event as determined by the AOF

AOF Test MSG ------------ MSI1 --- OPSVIEW --- 15:27:24 12OCT2009 COLS 001 070
COMMAND ===> SCROLL ===> PAGE
 REXX Trace ==> N Live Commands ==> NO Access Auto Test Data: (Y/N)
 Msg Id: Msg Disp: Hardcopy Log:
 Jobname ==> IMS Id ==>
 Job Id ==> Exit Type ==> MVS
 MSF Sys ==> Console Id ==>
 User ==> Console Nm ==>
 Sys Id ==> MCS Flags ==>
 Special Ch ==> Descriptor ==>
 Route ==>
 Term Name ==> Report Id ==>
 Message ==>
Time ----+----1----+----2----+----3----+----4----+----5----+----6----+----7
******** ********************* TOP OF MESSAGES *******************************
15:27:24 ENABLE TESTING.IEF450I

5. Enter values on the AOF Test MSG panel:

■ Type any characters in the Jobname field. Although it does not matter for
purposes of this lesson what characters are listed in the Jobname field, a rule
test will not run unless that field has been filled. For example, you could type
XXXX into the Jobname field.

■ Type the message ID and any text in the Message field. For example, you could
type IEF450I SAMPLE MESSAGE into the Message field.

■ Type 0 in the Console Id field.

6. Press Enter.

■ A test message is run against the enabled rule.

■ The following sample panel shows the results of your rule test.

■ The value SUP that appears in the Dis (for disposition) column indicates that
message IEF450I was successfully suppressed.

Lesson 2: Test and Verify a Rule

42 User Guide

AOF Test MSG ------------ MSI1 --- OPSVIEW --- 15:27:24 12OCT2009 COLS 001 070
COMMAND ===> SCROLL ===> PAGE
 REXX Trace ==> N Live Commands ==> NO Access Auto Test Data: (Y/N)
 Msg Id: IEF450I Msg Disp: Suppress Hardcopy Log:
 Jobname ==> XXXX IMS Id ==>
 Job Id ==> Exit Type ==> MVS
 MSF Sys ==> Console Id ==> 0
 User ==> Console Nm ==>
 Sys Id ==> MCS Flags ==> 000000
 Special Ch ==> Descriptor ==> 0000
 Route ==> 0000000000000000000000000000000000
 Term Name ==> Report Id ==>
 Message ==> IEF450I SAMPLE MESSAGE
Dis ----+----1----+----2----+----3----+----4----+----5----+----6----+----7
******** ********************* TOP OF MESSAGES *******************************
NON ENABLE TESTING.IEF450I
NON ENABLE TESTING.IEF450I
000 OPR39000 RULE TESTING.IEF450I FOR MSG IEF450I NOW ENABLED
SUP IEF4501 SAMPLE MESSAGE

7. Examine the results of the test in the OPSLOG and when satisfied, press PF3 or type
END on the command line.

Your rule is tested and verified.

Go to Lesson 3: Establish More Rules.

Lesson 3: Establish More Rules

Chapter 2: How to Begin Using the Product 43

Lesson 3: Establish More Rules

By following the procedures in this lesson, you can:

■ Establish another message suppression rule.

■ Establish a test command rule.

To establish more rules

1. Verify that the AOF Test Rule List panel is being displayed:

If not, proceed with the following instructions:

■ If the AOF Edit panel is being displayed, press your PF3 key (or enter END).

■ If the main OPSVIEW menu panel is being displayed, select 2.1, and then enter
your test library name in the AOF EDIT Entry panel.

■ If the AOF Edit Entry panel is being displayed, enter your test library name.

2. Type S IEC233I on the Command line and press Enter.

3. Enter the text of another suppression rule.

Your program should look just like the one shown here. This four-line REXX program
is another rule that suppresses the system message IEC233I.

AOF TEST ----- USERID.TEST.RULES(IEC233I) - 01.00--------- COLUMNS 000 000
COMMAND ===> SCROLL ===> PAGE
****** ***************************** Top of Data ****************************
'''''')MSG IEC233I
'''''')PROC
'''''' IF MSG.JOBNAME ='J1234' THEN RETURN 'SUPPRESS'
'''''' ELSE RETURN 'DELETE'
''''''
''''''
''''''
''''''

4. Press your PF3 key or enter END on the Command line.

Your newest rule is created and ready to test and verify as you did in Lesson 2: Test
and Verify a Rule.

5. Establish a Command Rule by typing S CMDTEST on the Command line of the AOF
Test Rule List panel.

6. Enter the text of a new command rule.

Your program should look just like the following one. This REXX program is a rule
that responds to a z/OS command event.

Lesson 3: Establish More Rules

44 User Guide

AOF TEST ----- USERID.TEST.RULES(CMDTEST) - 01.00--------- COLUMNS 000 000
COMMAND ===> SCROLL ===> PAGE
****** ***************************** Top of Data ****************************
'''''')CMD CMDTEST
'''''')PROC
'''''' SAY OPSINFO('CPUID') 'FOR THIS CPU'
'''''' RETURN 'ACCEPT'
''''''
''''''
''''''
''''''
''''''
''''''

7. Press your PF3 key or enter END on the Command line.

Your command rule is created and ready to test and verify as you did in Lesson 2:
Test and Verify a Rule.

Go to Lesson 4: How to Organize Rules into Rule Sets.

Lesson 4: How to Organize Rules into Rule Sets

Chapter 2: How to Begin Using the Product 45

Lesson 4: How to Organize Rules into Rule Sets

CA OPS/MVS provides a flexible structure for organizing rules into rule sets, so that each
data center can use the classification system that best meets its needs.

In a well-designed classification system, rules are grouped in a useful and intuitive way,
and rule set names describe the rules they contain. For more information about
organizing rules, see the AOF Rules User Guide.

The process to organize rules into rule sets is as follows:

1. Choose a rule classification system

Rules are grouped in a useful and intuitive way. The following two issues are
involved in choosing a rule classification system:

■ Reason for grouping rules into a rule set

■ Choice of the rule set name

2. Choose rule set names and contents

Rule set names describe the rules they contain.

The following are example rule set names and contents:

■ Rules grouped by production environment into rule sets can be named SYSOP
for operators and SYSPROG for system programmers.

■ Rules grouped by application/event into rule sets can be named IPL and
WEEKEND.

■ Rules grouped by type of rule into rule sets can be named ACTION, SUPPRESS,
and TOD.

3. Choose where to put your rules

This scenario discusses placing message suppression rules, which are grouped by
the type of SUPPRESS.

■ Where to put the first message suppression rules

If you are installing the first CA OPS/MVS message suppression rules in your
system, you need to choose the classification system to use. We suggest you
place all message suppression rules into a rule set named SUPPRESS.

■ Where to put more message suppression rules

If message suppression rules have already been put into your production
system, you should follow the rules classification system that has already been
established. If an inspection of the rule set list (OPSVIEW option 4.5.1) does not
make the classification system clear, then ask the person who first installed
message suppression rules for guidance.

Go to Lesson 5: How to Enable and Disable Rules and Rule Sets.

Lesson 5: How to Enable and Disable Rules and Rule Sets

46 User Guide

Lesson 5: How to Enable and Disable Rules and Rule Sets

This lesson discusses how to enable or disable rules using the OPSVIEW Primary Options
Menu 4.5.1 panels.

Enabled rules respond to system events; disabled rules do not, even if their
corresponding events occur.

The following four line commands control whether a rule is enabled:

A

Sets auto-enable. When auto-enable is set for a rule, the rule is enabled every time
CA OPS/MVS starts running, and again whenever an Enable command is issued for
the rule set in which the rule is stored.

D

Disables the rule.

E

Enables the rule.

Z

Clears auto-enable

Important! Line commands A and Z affect every rule in the rule set, as if you had
entered it on every line of the Rule List panel. Since automation strategy often includes
selectively enabling rules, changing the status of all the rules in a rule data set may have
unintended consequences. There is no easy way to restore the distinction between
auto-enabled rules and others once all the rules of a set have been changed.

Line commands A and D sometimes interact with each other to determine whether a
given rule should be enabled. Their exact function depends on whether they are issued
in the Rule List panel or on the Rule Set List panel.

The following table describes how the commands operate on the Rule List and Rule Set
List panels, and the effect they have on rules:

Command On the Rule List
Table

On the Rule Set List
Table

Effect on the Rule

Enable Operates
unconditionally to
enable rules.

Enables only those
members of the rule
set that have
Auto-enable set.

Has an immediate effect
on whether a rule reacts
to a system event.

Lesson 5: How to Enable and Disable Rules and Rule Sets

Chapter 2: How to Begin Using the Product 47

Command On the Rule List
Table

On the Rule Set List
Table

Effect on the Rule

Disable Operates
unconditionally to
disable rules.

Disables all members
of the rule set.

Has an immediate effect
on whether a rule reacts
to a system event.

Set Operates
unconditionally to
set Auto-enable.

Sets Auto-enable for all
members of a rule set.

Only controls future
enable events and does
not affect the current
enabled status.

Reset Operates
unconditionally to
reset Auto-enable.

Clears Auto-enable for
all members of a rule
set.

Only controls future
enable events and does
not affect the current
enabled status.

Lesson 5: How to Enable and Disable Rules and Rule Sets

48 User Guide

Enable or Disable a Single Rule

If you have not read Lesson 4: How to Organize Rules with Rule Sets, do so now. Then
proceed.

To enable or disable a single rule

1. Access the AOF control facility.

■ Access the AOF CTRL panel. Begin at the OPSVIEW Primary Options Menu
(shown in Lesson 1: Create a Rule Using the AOF). Type 4.5.1 in the Option field
and press Enter. As a result, the AOF CTRL Entry panel appears. A sample panel
is shown here:

AOF CTRL - Entry panel --- MSI1 --- O P S V I E W ------------ Subsystem OPSS
COMMAND ===>
Rule data sets of the form OPS.*.RULES:
 Rule sets ===> (* or blank for all rule sets)
 Either specify a specific rules et or request a list of all rule sets.
 Stats ===> Y (Y to list statistics or N to suppress them)
 When listing all rule sets, you can request suppression of cumulative
 statistics and experience faster response by specifying 'N' above.
 System ===> *LOCAL* WAIT ===> 10
 Either specify the name of an MSF connected system or * for the local
 system. Enter ? for a list of MSF connected systems.

■ Access the Rule Set List Panel. On the AOF CTRL Entry panel, type an asterisk (*)
in the Rule sets field and press Enter. Or, just press Enter without making an
entry.

■ (Optional) Fill in the Stats field before pressing Enter to indicate whether the
Rule Set List panel includes the cumulative statistics.

Note: When requesting the Rule Set List panel, place a Y in the Stats field of the AOF
CTRL Entry Panel so that statistics are included.

In response to your entries, the Rule Set List panel appears, as shown in the
following sample:

AOF CTRL - Rule Set List ------ MSI1 --- OPS.*.RULES -------------- ROW 1 OF 3
COMMAND ===> SCROLL ===> PAGE
 Line Commands: S Select E Enable D Disable U Utilities
 A Set Auto-Enable Z Reset Auto-Enable C Compile X Delete Compile
 System: *LOCAL*
RuleSet Status AE CNT VV.MM Created Changed Size Init Mod ID
ACTION ENABLED Y 2 01.00 09/02/18 09/02/18 13:17 101 101 0 OPSLCD
CICS ENABLED Y 2 01.00 09/01/12 09/02/21 15:59 15 20 1 OPSKED
DB2 ENABLED Y 25 01.00 09/03/30 09/03/30 08:42 237 237 1 OPSRF

2. Enable or disable an individual rule. Follow these steps to enable or disable a single
rule:

a. Select the rule set that contains the rule you want. From the Rule Set List panel,
select a rule set by typing S to the left of the name of the rule set and pressing
Enter.

Lesson 5: How to Enable and Disable Rules and Rule Sets

Chapter 2: How to Begin Using the Product 49

In response, the following Rule List panel appears listing all of the selected
rules in the rule set:

AOF CTRL - Rule List ------ MSI1 --- OPS.IMS.RULES Row 1 to 2 of 2
Command ===> Scroll ===> PAGE
 Line Commands: R EasyRule S ISPF Edit C Compile X Delete Compile
 V View E Enable D Disable A Set Auto-Enable Z Reset Auto-Enable
 System: *LOCAL*
 RuleName Status AE TYP VV.MM Created Changed Size Init MOD ID
 DFS994I ENABLED N MSG 01.00 09/11/14 09/11/14 06:32 3 3 0 USER123
 IMSCTRL DISABLED N *** 01.00 09/11/14 09/11/14 06:33 3 3 0 USER123

b. Enable a rule by typing E to the left of the name of the rule and press Enter. To
disable a rule on the Rule List panel, type D to the left of the name of the rule
and press Enter.

Enable or Disable an Entire Rule Set

This exercise illustrates the interaction between the Set auto-enable and Enable
commands.

These steps use Enable and Disable commands on the Rule Set screen to enable or
disable all the rules in a rule set. Rule sets do not have a group Enabled indicator. The
Enable or Disable operations you use change the settings of all the individual members
of the rule data set.

To enable or disable an entire rule set

1. Identify the rule set that you want to enable or disable. Use a test rule set, rather
than a production set, to avoid harmful effects on your system automation. On the
Rule Set List panel, look for the name of the target rule set. The Status field
immediately to the right of each rule set name provides information about the rules
in that rule set:

■ ENABLED means that at least one rule in the rule set is currently enabled.

■ DISABLED means that every rule in the rule set is currently disabled.

2. To disable all the rules in the set, type D to the left of the name of the rule set and
press Enter.

Disable works unconditionally on all the rules in the rule data set.

3. To enable all the rules in the set, type A to the left of the name of the rule set and
press Enter, then type E to the left of the name of the rule set and press Enter.

Enable works on rules in the set that have their Auto-enable bit set, therefore, to
enable all the rules, ensure that the Auto-enable bit is set for all rules.

Note: This exercise destroys the Auto-enable status of individual rules in the rule set on
which you practice. Use a test rule data set for the exercise to avoid damaging a
production rule data set.

Lesson 6: Solve a Problem Using EasyRule

50 User Guide

Lesson 6: Solve a Problem Using EasyRule

Suppose that you want to increase the visibility of NOT CATALOGED 2 conditions. Such
conditions occur when a data set cannot be cataloged because a data set with the same
name already exists on another volume.

Messages with an ID of IEF287I notify you of NOT CATALOGED 2 conditions, while those
with an ID of IEF285I are related normal messages that do not require action. You need
to be aware of IEF287I messages, because they are indicative of production problems.
However, the presence of IEF285I messages creates visual noise, making it difficult for
you to see and respond to the important IEF287I messages.

You can solve the problem by performing these tasks:

■ Reword the text of IEF287I messages so that they indicate what the problem is and
that CA OPS/MVS is taking actions to correct it.

■ Highlight the reworded message text.

■ Suppress IEF285I messages.

This lesson describes how you can use EasyRule to create two rules to perform these
tasks.

■ The first rule, called NOTCTLG (see page 51), rewords and highlights IEF287I
messages.

■ The second rule, called MNSTATUS (see page 61), not only suppresses IEF285I
messages from displaying on the console, but also keeps them from appearing in
the SYSLOG.

More information:

Using EasyRule (see page 95)

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 51

Create a Rule to Tailor the Display of Messages

To practice using EasyRule, access OPSVIEW and follow along with these steps.

To create a rule that tailors the display of messages

1. Access the EasyRule Primary panel. Begin at the OPSVIEW Primary Options Menu.
Enter 2.3 into the Option field. As a result, the EasyRule Primary panel appears, a
sample of which is shown here:

EasyRule --------------- MSI1 --- O P S V I E W --------------- Subsystem OPSS
Command ===>
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
ISPF LIBRARY:
 PROJECT ===>
 GROUP ===>
 TYPE ===>
 MEMBER ===>
OTHER PARTITIONED DATA SET:
 DATA SET NAME ===>
Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

2. Specify a data set and member for the first rule. Before you can create the first rule,
you must tell EasyRule the name of the rule set that will contain the rule. Use the
Project, Group, and Type fields of the EasyRule Primary panel to do so. You must
also specify a new member name in the Member field. Each member of a rule set
contains a single rule, thus the name of the member is the name of the rule. To
follow along with this example, specify these values on the EasyRule Primary panel:

■ Indicate that you want the SYS1.OPS.TEST.RULES data set to contain the new
rule. This example assumes that you have already allocated a data set by this
name. You can use another data set if you prefer. Type SYS1.OPS in the Project
field, TEST in the Group field, and RULES in the Type field.

■ Name the rule NOTCTLG. Type NOTCTLG in the Member field.

■ Do not select automatic step-through for panel navigation. Instead, you will use
the EasyRule menus to access the appropriate panels. Accept the default of N
for the automatic step-through prompt.

Lesson 6: Solve a Problem Using EasyRule

52 User Guide

Your panel should now be similar to the one shown here:

EasyRule --------------- MSI1 --- O P S V I E W ------------- Subsystem OPSS
Command ===>
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
ISPF LIBRARY:
 PROJECT ===> SYS1.OPS
 GROUP ===> TEST
 TYPE ===> RULES
 MEMBER ===> NOTCTLG
OTHER PARTITIONED DATA SET:
 DATA SET NAME ===>
Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

After you type in the suggested field values and press Enter, the Rule Type Selection
panel appears, a sample of which is shown next.

3. Select the type of rule you want to create by entering its code in the Option field of
the Rule Type Selection panel.

To follow along with this example, enter 1 to create a message rule, as shown here:

EasyRule ---
Option ===> 1
 R U L E T Y P E S E L E C T I O N
 1 MSG - Create Message Event Rule
 2 CMD - Create Command Event Rule
 3 GLV - Create Global Variable Event Rule
 4 TOD - Create Time-Of-Day Event Rule
 5 OMG - Create OMEGAMON Event Rule
 6 DOM - Create Delete-Operator-Message Event Rule
 7 EOJ - Create End-Of-Job Event Rule
 8 EOM - Create End-Of-Memory Event Rule
 9 EOS - Create End-Of-Step Event Rule
 10 TLM - Create Time-Limit-Exceeded Event Rule
 11 USS - Create UNIX System Services (USS) Message Event Rule

Press END to return

EasyRule provides a main menu for each type of rule. Since you chose option 1 on
the Rule Type Selection panel to create a message rule, the Message Rule Main
Menu appears next. A sample is shown next.

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 53

4. Select option 1 MESSAGE ID from the Message Rule Main Menu.

Notice that 1 has been specified in the sample panel shown here:

EasyRule ---
Option ===> 1
 M E S S A G E R U L E M A I N M E N U
 1 MESSAGE ID - Specify the ID of the message(s) to be processed
 2 DOCUMENTATION - Add comments to this Rule
 3 CONDITIONS - Supply additional criteria for this Rule to fire
 4 ACTIONS - Take action with respect to the message(s)
 5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
 6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

In response to your selection, the Primary Event Specification Panel for message
rules appears. A sample is shown next.

5. Supply the primary selection criterion. There is a unique Primary Event Specification
panel for each type of rule. The primary event is the criterion that is used to
execute the rule. For message rules, the primary event is always a message ID. To
continue with this example, enter IEF287I in the MSG ID field.

Notice that this has already been done in the sample panel shown here:

EasyRule ---
Command ===>
 S P E C I F Y M E S S A G E I D
 MSG ID ===> IEF287I JUST SUPPRESS ===> N (Y/N/D)
 or
 JUST DELETE ===> N (Y/N/D)
 DELETE FROM OPSLOG === N (Y/N)
 MSG ID is used to determine if this Rule should perform an Action.
 It must be 1 to 10 characters in length and may optionally include a
 "wildcard" character '*'. MSG ID is the only required field.
 If you just want to SUPPRESS or DELETE the message, type Y next to the
 appropriate entry. Subsequent panels are bypassed if using Step-thru mode.
 DELETE is like SUPPRESS, but also deletes the message from SYSLOG.
 D is the same as Y except that in Step-thru mode, you will be given a
 chance to enter comments about the rule

After you specify the message ID for the rule, EasyRule returns you to the Message
Rule Main Menu, which is shown next.

Lesson 6: Solve a Problem Using EasyRule

54 User Guide

6. Select option 2 DOCUMENTATION from the Message Rule Main Menu. Notice that
this sample specifies 2:

EasyRule ---
Option ===> 2
 M E S S A G E R U L E M A I N M E N U
 1 MESSAGE ID - Specify the ID of the message(s) to be processed
 2 DOCUMENTATION - Add comments to this Rule
 3 CONDITIONS - Supply additional criteria for this Rule to fire
 4 ACTIONS - Take action with respect to the message(s)
 5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
 6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

In response to your selection, the Create Rule Comments panel appears. A sample
panel is shown next.

7. Document the rule you are creating. It is always a good idea to provide comments
for a rule. Continue with this example by entering the comments shown in the next
sample of your own Create Rule Comments panel. These comments provide you
with an audit trail of changes in the History section, and a general explanation of
the original problem in the Rule Function section.

EasyRule -------------- CREATE RULE COMMENTS EXAMPLE ----------------- Tutorial
 C R E A T E R U L E C O M M E N T S

 Rule Name ===> ARC0027I
 Rule Type ===> MSG
 Rule Function ===> When the log is switched, submit a job named "HSMLOG"
 ===> followed by our 2-character system ID. For example:
 ===> HSMLOGS4 for the system we call "S4".
 Author ===> CA
 Support ===> CA
 Related Rules ===> ARC0026I,ARC0028I
 Related CPs ===> NONE
 History ===> ADA 2009/01/03 Original Implementation
 ===> ADA 2009/02/01 Changed diskrdr name so it is generic

 This example will generate the highlighted OPS/REXX statements:

)MSG ARC0027I
 /* Rule Name: ARC0027I */
 /* Rule Type: MSG */
 /* Rule Function: When the log is switched, submit a job named "HSMLOG" */

 Press ENTER to return, or END to terminate tutorial

After you enter comments for the rule, EasyRule returns you once more to the
Message Rule Main Menu.

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 55

8. Select option 4 ACTIONS from the Message Rule Main Menu. Notice that 4 has been
specified in the sample shown here:

EasyRule ---
Option ===> 4
 M E S S A G E R U L E M A I N M E N U
 1 MESSAGE ID - Specify the ID of the message(s) to be processed
 2 DOCUMENTATION - Add comments to this Rule
 3 CONDITIONS - Supply additional criteria for this Rule to fire
 4 ACTIONS - Take action with respect to the message(s)
 5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
 6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

In response to your entry, the Take Action menu for message rules appears. Use
this menu to specify the actions that you want to take place when the rule is
enabled. A sample Take Action menu appears next.

9. Select O, Issue Operator commands, from the Take Action menu.

This lets you issue operator commands.

For this example, suppose that you want CA OPS/MVS to write the IEF287I
messages to your job log. To do this, you need to instruct CA OPS/MVS to issue two
console commands. Before you can specify these commands, you must select O, for
Issue Operator Commands, from the Take Action menu. Notice that in the sample
panel illustrated, O has been specified in the Option field.

EasyRule --
Option ===>

 M E S S A G E R U L E -- T A K E A C T I O N

 The actions you specify via these panels will be taken for all messages that
 have the Message ID you specified and pass any additional tests you supplied
 via the "Additional Criteria" panels.

 1 Suppress G Update Global variables
 2 Message deletion L Update Local or Global variables
 3 Re-route to other consoles M Issue z/OS messages
 4 Re-word the Message N Send a NetMaster Alert
 5 Hilite/Color/Change DESC codes O Issue Operator commands
 6 Reply (WTORs only) P Page support people
 7 Send to another system (MSF) Q Perform SQL update or insert
 8 Throttle Message display rate S Send messages to TSO users
 9 Update Environmental variables U Issue UNIX commands
 X Run REXX/CLIST program in Server

Press ENTER to step thru EasyRule, or END to return

After you enter O in the Option field, the Issue Console Commands panel appears. A
sample panel appears next.

Lesson 6: Solve a Problem Using EasyRule

56 User Guide

10. Write messages to the job log. You can now enter the commands that you want CA
OPS/MVS to issue when the rule is enabled. On your Issue Console Commands
panel, type the commands as shown in the next example. These entries will cause
CA OPS/MVS to issue two display message commands to record the problem in the
job log.

Note: These sample entries apply to a JES2 environment only. For JES3
environments, you would need to use a slightly different procedure.

In the first command, msg.jobnm will be replaced by the name of the job that had
the cataloging problem, followed by the text of the original IEF287I message. The
second command is a warning to verify the results of the job.

EasyRule ---
Command ===>
 I S S U E C O N S O L E C O M M A N D S
 CMD 1 ===> $d m {msg.jobnm},received {msg.text}___________
 CMD 2 ===> $d m {msg.jobnm},verify results________________
 CMD 3 ===> ___
 CMD 4 ===> ___
 CMD 5 ===> ___
 CMD 6 ===> ___
 CMD 7 ===> ___
 CMD 8 ===> ___
 CMD 9 ===> ___
 CMD 10 ===> ___
 CMD 11 ===> ___
 CMD 12 ===> ___
 CMD 13 ===> ___
 CMD 14 ===> ___
 CMD 15 ===> ___
 CMD 16 ===> ___

After you enter the console commands, EasyRule returns you to the Take Action
menu. A sample is shown next.

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 57

11. Select 5 Hilite/Color/Change DESC Codes from the Take Action menu. Notice that in
the following sample, 5 has been specified:

EasyRule ---
Option ===>

 M E S S A G E R U L E -- T A K E A C T I O N

 The actions you specify via these panels will be taken for all messages that
 have the Message ID you specified and pass any additional tests you supplied
 via the "Additional Criteria" panels.

 1 Suppress G Update Global variables
 2 Message deletion L Update Local or Global variables
 3 Re-route to other consoles M Issue z/OS messages
 4 Re-word the Message O Issue Operator commands
 5 Hilite/Color/Change DESC codes P Page support people
 6 Reply (WTORs only) Q Perform SQL update or insert
 7 Send to another system (MSF) S Send messages to TSO users
 8 Throttle Message display rate U Issue UNIX commands
 9 Update Environmental variables X Run REXX/CLIST program in Server

Press ENTER to step thru EasyRule, or END to return

After you select option 5, the Hilite/Descriptor Codes panel appears. A sample is
shown next.

12. Specify descriptor code as SYSFAIL. On the Hilite/Descriptor Codes panel, place the
letter S in the space in front of SYSFAIL, as shown in the following example. Doing so
indicates that you want to change the old descriptor code to a value of 1.

EasyRule ---
Command ===>
 M E S S A G E R U L E -- H I L I T E / D E S C R I P T O R C O D E S
Use S to select one or more of the following NEW Descriptor codes:
 S SYSFAIL (1) - (Hilite, non-scrollable)
 _ IMEDACTN (2) - (Hilite only)
 (NOTE: Codes 1-6 and 11 _ EVENACTN (3)
 are mutually exclusive) _ SYSSTAT (4)
 _ IMEDCMD (5)
 _ JOBSTAT (6)
 _ APPLPRGM (7)
 _ OOLMSG (8)
 _ OPERREQ (9)
 _ DYNSTAT (10)
 _ CRITEVET (11)
Other Descriptor code(s) ===> __ __ __ __ __
Variable containing Descriptor code(s) ===> _____________________________

After you type S and press Enter, EasyRule returns you to the Take Action menu.

13. Access the EasyRule Final Options menu. From the Take Action menu, press PF3
until the EasyRule Final Options menu appears. You use the EasyRule Final Options
menu to determine the disposition of the OPS/REXX code EasyRule built from your
panel entries. A sample EasyRule Final Options menu is shown next.

Lesson 6: Solve a Problem Using EasyRule

58 User Guide

14. Review the OPS/REXX code that EasyRule built. We recommend that you review the
code EasyRule generated for your rule. To do so, choose option 3, for BROWSE, on
the EasyRule Final Options menu. Notice that 3 has been specified in the sample
panel shown here:

EasyRule --------------- MSI1 --- O P S V I E W --------------- Subsystem OPSS
Option ===>3
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
 1 SAVE - SAVE the Rule that was built and EXIT
 2 CANCEL - EXIT and DO NOT SAVE the Rule that was built
 3 BROWSE - Browse the generated OPS/REXX code
 4 ALTER - Return to the panels to modify the Rule
 DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)
 DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 59

When you enter 3 on the EasyRule Final Options menu, a panel similar to the
sample here appears:

BROWSE -- EASY_RULE_BROWSE ------------------------- Line 00000000 Col 001 080
 Command ===> Scroll ===> CSR
********************************* Top of Data *********************************
)MSG IEF287I
)PROC
/*--*/
/* The following code is executed each time the rule is fired. */
/*--*/
 /*--*/
 /* Modify the descriptor codes. This may cause the */
 /* message highlighting to change on the consoles. */
 /*--*/
 MSG.DESC = OPSBITS("SYSFAIL ")
 /*--*/
 /* Issue MVS/JES/VM commands. */
 /*--*/
 address OPER
 "$d m "msg.jobnm",received "msg.text
 if RC ̂ = 0 then
 do
 address WTO "TEXT('"||OPSINFO('PROGRAM') ,
 "issue operator command 01 failed;" ,
 "address OPER RC="||rc||"')" ,
 "MSGID('OPEASYERR')"
 do while QUEUED() ̂ = 0
 pull opererr
 address WTO "TEXT('"||opererr||"')" ,
 "MSGID('OPEASYERR')"
 end
 end

 "$d m "msg.jobnm",verify results"
 if RC ̂ = 0 then
 do
 address WTO "TEXT('"||OPSINFO('PROGRAM') ,
 "issue operator command 02 failed;" ,
 "address OPER RC="||rc||"')" ,
 "MSGID('OPEASYERR')"
 do while QUEUED() ̂ = 0
 pull opererr
 address WTO "TEXT('"||opererr||"')" ,
 "MSGID('OPEASYERR')"
 end
 end
 return

Note: The above sample is actually two separate screens. We combined them for
the purpose of this example.

The panel shown on the previous page presents the OPS/REXX code EasyRule
generates as a result of the panel entries suggested in this sample session. This
code exists only in storage; later you will save it to the data set and member that
you specified on the EasyRule Primary panel.

Lesson 6: Solve a Problem Using EasyRule

60 User Guide

The following shows the OPS/REXX code and the panel entries that correspond to it:

MSG IEF287I

Rule Type Selection panel and Primary Event Specification panel

Comments box

Create Rule Comments panel

Value of MSG.DESC

Hilite/Descriptor Codes panel

Commands in the Address OPER section

Issue Console Commands panel

Return

Primary Event Specification panel

15. Save the OPS/REXX code as a new rule. When you finish browsing the generated
OPS/REXX code, press PF3 to return to the EasyRule Final Options menu, shown
here:

EasyRule --------------- MSI1 --- O P S V I E W --------------- Subsystem OPSS
Option ===> 1
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
 1 SAVE - SAVE the Rule that was built and EXIT
 2 CANCEL - EXIT and DO NOT SAVE the Rule that was built
 3 BROWSE - Browse the generated OPS/REXX code
 4 ALTER - Return to the panels to modify the Rule
 DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)
 DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

Select 1 from the menu, as shown in the sample above. As a result, EasyRule saves
the rule to the data set and member you specified earlier and returns you to the
EasyRule Primary panel.

More information:

Using EasyRule (see page 95)

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 61

Create a Rule to Suppress Messages

To practice using EasyRule, access OPSVIEW and follow along with these steps to create
your second rule, a message suppression rule.

To create a message suppression rule

1. Access the EasyRule Primary panel. Begin at the OPSVIEW Primary Options Menu.
Enter 2.3 into the Option field. As a result, the EasyRule Primary panel appears.

2. Specify a data set and member for this second rule. You should now be on the
EasyRule Primary panel. You must now tell EasyRule the name of the rule set that
will contain the second rule. As you did for the first rule, use the Project, Group, and
Type fields on the EasyRule Primary panel to do so. You must also specify a new
member name in the Member field. Specify these values:

■ Indicate that you want the SYS1.OPS.TEST.RULES data set to contain the
MNSTATUS rule. Type SYS1.OPS in the Project field, TEST in the Group field, and
RULES in the Type field.

■ Name the rule MNSTATUS. Type MNSTATUS in the Member field.

■ Once again, accept the default of N for the automatic step-through prompt.

Your panel should now look like the one shown here:

EasyRule --------------- MSI1 --- O P S V I E W --------------- Subsystem OPSS
Command ===>
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
ISPF LIBRARY:
 PROJECT ===> SYS1.OPS
 GROUP ===> TEST
 TYPE ===> RULES
 MEMBER ===> MNSTATUS
OTHER PARTITIONED DATA SET:
 DATA SET NAME ===>
Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

After you enter the data set and member name for the new rule, the Rule Type
Selection panel appears. A sample is shown next.

Lesson 6: Solve a Problem Using EasyRule

62 User Guide

3. Select the type of rule you want to create. From the Rule Type Selection panel,
choose option 1 to create a message rule. Notice that this has already been done in
the following sample panel:

EasyRule ---
Option ===> 1
 R U L E T Y P E S E L E C T I O N
 1 MSG - Create Message Event Rule
 2 CMD - Create Command Event Rule
 3 GLV - Create Global Variable Event Rule
 4 TOD - Create Time-Of-Day Event Rule
 5 OMG - Create OMEGAMON Event Rule
 6 DOM - Create Delete-Operator-Message Event Rule
 7 EOJ - Create End-Of-Job Event Rule
 8 EOM - Create End-Of-Memory Event Rule
 9 EOS - Create End-Of-Step Event Rule
 10 TLM - Create Time-Limit-Exceeded Event Rule
 11 USS - Create UNIX System Services (USS) Message Event Rule

Press END to return

After you select option 1, the Message Rule Main Menu appears. A sample is shown
next.

4. Select MESSAGE ID from the Message Rule Main Menu. From the Message Rule
Main Menu, select 1, for MESSAGE ID. Notice that 1 has been specified in the
Option field in the following sample:

EasyRule ---
Option ===> 1
 M E S S A G E R U L E M A I N M E N U
 1 MESSAGE ID - Specify the ID of the message(s) to be processed
 2 DOCUMENTATION - Add comments to this Rule
 3 CONDITIONS - Supply additional criteria for this Rule to fire
 4 ACTIONS - Take action with respect to the message(s)
 5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
 6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

When you choose 1 from the Message Rule Main Menu, the Primary Event
Specification panel for message rules appears. A sample is shown next.

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 63

5. Supply the primary selection criterion. Use the Primary Event Specification panel to
specify a primary event for the MNSTATUS rule. The primary event for a message
rule is always a message ID. To continue with this example, type IEF285I in the MSG
ID field. Also, specify D in the Just Delete field to indicate that you not only want to
suppress the message, but you also want to keep it from appearing in SYSLOG. In
the following sample, the MSG ID and Just Delete fields have been filled in:

EasyRule --
Command ===>
 S P E C I F Y M E S S A G E I D
 MSG ID ===> IEF285I JUST SUPPRESS ===> N (Y/N/D)
 or
 JUST DELETE ===> D (Y/N/D)
 DELETE FROM OPSLOG === N (Y/N)
 MSG ID is used to determine if this Rule should perform an Action.
 It must be 1 to 10 characters in length and may optionally include a
 "wildcard" character '*'. MSG ID is the only required field.
 If you just want to SUPPRESS or DELETE the message, type Y next to the
 appropriate entry. Subsequent panels are bypassed if using Step-thru mode.
 DELETE is like SUPPRESS, but also deletes the message from SYSLOG.
 D is the same as Y except that in Step-thru mode, you will be given a
 chance to enter comments about the rule.

When you finish specifying values on the Primary Event Specification panel and
press Enter, EasyRule returns you to the Message Rule Main Menu, which is shown
next.

6. Select DOCUMENTATION from the Message Rule Main Menu. From the Message
Rule Main Menu, select 2, for DOCUMENTATION. Notice that this has been done in
the sample shown here:

EasyRule ---
Option ===> 2
 M E S S A G E R U L E M A I N M E N U
 1 MESSAGE ID - Specify the ID of the message(s) to be processed
 2 DOCUMENTATION - Add comments to this Rule
 3 CONDITIONS - Supply additional criteria for this Rule to fire
 4 ACTIONS - Take action with respect to the message(s)
 5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
 6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

When you select 2, the Create Rule Comments panel appears. A sample Create Rule
Comments panel is shown next.

Lesson 6: Solve a Problem Using EasyRule

64 User Guide

7. Document the MNSTATUS rule. To continue following along with this example, type
the comments that are shown in the following example onto your own Create Rule
Comments panel:

EasyRule ---
Command ===>
 C R E A T E R U L E C O M M E N T S
Rule Name ===> MNSTATUS
Rule Type ===> Message
Rule Function ===> Monitor status is enabled to get not cat 2 msg.________
 ===> This rule deletes normal disp messages.________________
 ===> ___
 ===> ___
 ===> ___
 ===> ___
 ===> ___
Author ===> CA Customer Support__________________
Support ===> ___
Related Rules ===> NOTCTLG (IEF287I)______________________________________
Related CPs ===> ___
History ===> 93/10/31 - Original Development________________________
 ===> ___
 ===> ___
 ===> ___

After you enter comments for the rule, EasyRule returns you to the following
Message Rule Main Menu:

EasyRule ---
Option ===>
 M E S S A G E R U L E M A I N M E N U
 1 MESSAGE ID - Specify the ID of the message(s) to be processed
 2 DOCUMENTATION - Add comments to this Rule
 3 CONDITIONS - Supply additional criteria for this Rule to fire
 4 ACTIONS - Take action with respect to the message(s)
 5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
 6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

8. Access the EasyRule Final Options Menu. From the Message Rule Main Menu, press
PF3 to access the EasyRule Final Options menu (shown next).

Lesson 6: Solve a Problem Using EasyRule

Chapter 2: How to Begin Using the Product 65

9. Review the OPS/REXX code that EasyRule built. On the EasyRule Final Options
menu, choose option 3, as shown here:

EasyRule --------------- MSI1 --- O P S V I E W --------------- Subsystem OPSS
Option ===>3
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
 1 SAVE - SAVE the Rule that was built and EXIT
 2 CANCEL - EXIT and DO NOT SAVE the Rule that was built
 3 BROWSE - Browse the generated OPS/REXX code
 4 ALTER - Return to the panels to modify the Rule
 DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)
 DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

When you select option 3, a panel similar to the one in the following example is
displayed:

BROWSE -- EASY_RULE_BROWSE ------------------------- Line 00000000 Col 001 080
Command ===> Scroll ===> PAGE
******************************** Top of Data *********************************
MSG IEF285I
**/
* Rule Name: MNSTATUS */
* Rule Type: Message */
* Rule Function: Monitor status is enabled to get not cat 2 msg. */
* This rule deletes normal disp messages. */
* Author: CA Customer Support */
* Related Rules: NOTCLG (IEF287I) */
* History: 93/10/31 - Original Development */
**/
PROC
--/
* The following code is executed each time the rule is fired. */
--/
 return "DELETE" /* from console and SYSLOG */
******************************* Bottom of Data *******************************

This panel presents the OPS/REXX code EasyRule generates as a result of the panel
entries suggested in the second part of this sample session. This code exists only in
storage; later you will save it to the data set and member you indicated on the
EasyRule Primary panel. The next sample panel shows the OPS/REXX code and the
panel entries that correspond to it.

Lesson 6: Solve a Problem Using EasyRule

66 User Guide

The CA OPS/MVS base product has the following components:

OPS/REXX Code: MSGIEF285I

Panel Entries: Rule Type Selection Panel and Specify Message ID Panel

OPS/REXX Code: Comments box

Panel Entries: Create Rule Comments Panel

OPS/REXX Code: Return DELETE

Panel Entries: Specify Message ID Panel

When you finish browsing the generated OPS/REXX code, press PF3 to return to the
EasyRule Final Options menu. A sample menu is shown next.

10. Save the OPS/REXX code as a new rule. From the EasyRule Final Options menu,
select 1, for SAVE. Notice that 1 appears in the following Option field:

EasyRule --------------- MSI1 --- O P S V I E W --------------- Subsystem OPSS
Option ===> 1
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
 1 SAVE - SAVE the Rule that was built and EXIT
 2 CANCEL - EXIT and DO NOT SAVE the Rule that was built
 3 BROWSE - Browse the generated OPS/REXX code
 4 ALTER - Return to the panels to modify the Rule
 DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)
 DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)
 DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

When you choose 1 from the EasyRule Final Options Menu, EasyRule saves the rule
to the data set and member you specified earlier, and returns you to the EasyRule
Primary panel.

More information:

Using EasyRule (see page 95)

Lesson 7: Suppress Messages Using the Automation Analyzer

Chapter 2: How to Begin Using the Product 67

Lesson 7: Suppress Messages Using the Automation Analyzer

By following the procedures outlined in this section, you can access and use the
Automation Analyzer to create message suppression rules.

The Automation Analyzer is a powerful facility designed to help you analyze and modify
the messages displayed by your z/OS system.

The Automation Analyzer uses the record of events stored in OPSLOG to compile a
statistical analysis of the message traffic in your system. This information can help you
determine which messages should be suppressed from the system console display.

Based on the information the Automation Analyzer gathers, you can ask the Analyzer to
generate the rules you need or, for more elaborate automation, start EasyRule directly
from the panels of the Automation Analyzer.

Prepare to Use the Automation Analyzer

Allocate a test rule set for the rules you create rather than using a production rule set.

To use the Automation Analyzer, CA OPS/MVS and OPSVIEW must be installed on your
system, and you must have access to them.

For the analysis to be meaningful, sufficient time must have passed for CA OPS/MVS to
collect a representative sample of events in the OPSLOG.

Lesson 7: Suppress Messages Using the Automation Analyzer

68 User Guide

Gather Message Event Statistics Using Automation Analyzer

Use the Automation Analyzer to process message events only. You can use other CA
OPS/MVS components o gather other types of system information.

To gather message event statistics for analysis

1. Access the OPSVIEW Primary Options Menu and enter 7.2 in the Option field.

The Automation Analyzer Specification panel appears. A sample is shown here:

Automation Analyzer --- MSI1 --- O P S V I E W ---------------- Subsystem OPSS
Command ===>
Enter Automation Analyzer start and end date/time
 or leave blank to use entire OPSLOG.
 DATE TIME
 YYYY/MM/DD HH:MM
 Start ===>
 End ===>
 Use * to specify the current date or time
Analyze WTORs only? ===> N (Y/N) and REPLIES? ===> N (Y/N)
Ignore if: Command Echo? ===> Y (Y/N) MPF Suppressed? ===> Y (Y/N)
 Command Response? ===> Y (Y/N) Hardcopy Only? ===> Y (Y/N)
Use OPSLOG data from: *
 Use * to specify OPSLOG for current subsystem

2. Select the time range of events to be analyzed. Type start and end dates, and start
and end times in the corresponding fields on the Automation Analyzer Specification
panel.

The date and time range you specify tells the Analyzer to process that portion of the
OPSLOG.

3. Indicate any additional limiting criteria. In the remaining fields on the Automation
Analyzer Specification Panel, indicate any additional ways in which you want to limit
the analysis:

■ Restrict the analysis to only WTORs, or to only WTORs and WTOR replies.

■ Indicate whether the analysis should include echoes of commands that were
issued by z/OS or other subsystems.

■ Indicate whether the analysis should include messages that MPF is suppressing.

■ Indicate whether the analysis should exclude command response messages.

■ Indicate whether the analysis should exclude messages that were issued with
the hardcopy only attribute.

■ Specify the data set name of a particular OPSLOG for analysis.

4. After you complete the panel, press Enter to generate the message event statistics.

The following Automation Analyzer Results panel appears with the generated
message event statistics:

Lesson 7: Suppress Messages Using the Automation Analyzer

Chapter 2: How to Begin Using the Product 69

Automation Analyzer --- MSI1 --- O P S V I E W ------------------ ROW 1 OF 100
Command ===> SCROLL ===> PAGE
 Sel options: E - Easy Rule S - Suppress Message D - Delete Message
 Q - Quick-Ref X - Extract Replies
 Analysis done from 2009/07/13 00:00 to 2009/07/13 23:59
 Total messages found : 8784
 Total messages suppressed: 72 (0.81%)
 Message Action # of Percent IBM OPS RuleSet Rule
Sel Identifier Taken Occr of Total Supp Supp.? Name Name
 IST663I 859 13.00% 0.0% SAMPLE SAM
 IEF196I 815 12.33% C 0.0% SAMPLE SAM
 IST530I 393 5.94% C 0.0% SAMPLE SAM
 IST314I 329 4.97% 0.0% SAMPLE SAM
 IST664I 329 4.97% 0.0%
 IST889I 329 4.97% 0.0%
 OPS1000I 312 4.72% 0.0%
 OPC4403O 196 2.96% 0.0%
 READY 170 2.57% 0.0%
 OPS4320H 148 2.24% 0.0%
 OPS3724H 121 1.83% 0.0%

5. Review the Automation Analyzer Results panel. The above example panel shows a
sample scrollable message event list produced by the Automation Analyzer. By
default, events appear in descending order by number of occurrences. You can view
different parts of the list by pressing PF7 and PF8, or by using the TOP, BOTTOM, UP
n, and DOWN n commands. To change the sort order, use the SORT command. For
example, issue this command to change the sort order to alphabetical order
according to message ID:

SORT MESSAGE

6. Evaluate the displayed statistics. Pay particular attention to these columns of data
on the Automation Analyzer Results panel:

Message Identifier

Lists IDs of messages occurring in the portion of the OPSLOG you selected.

of Occr (Number of Occurrences)

Shows the number of times the message ID appeared in the OPSLOG.

Percent of Total

Shows the percentage of total selected messages that the message ID
represents.

IBM Supp (IBM Message Suppression)

Indicates whether the message ID appears on the IBM conservative (C),
aggressive (A), or neither (blank) message suppression list.

OPS Supp.? (CA OPS/MVS Suppressed)

Shows the percentage of message occurrences in the selected period that was
suppressed by CA OPS/MVS rules. This field should read 100 percent if the
message was suppressed for the entire period.

Lesson 7: Suppress Messages Using the Automation Analyzer

70 User Guide

As you evaluate the statistics, examine the messages that occur very frequently to
determine whether it is important that they appear on the system console display.

For more information about the Automation Analyzer, see the OPSVIEW User Guide.

Suppress Messages

Use the Automation Analyzer to create message suppression rules.

After you evaluate the statistics on the Automation Analyzer Results panel, follow these
steps to suppress a message.

To suppress messages

1. Find the message that you want to suppress and locate the message ID on the
Automation Analyzer Results panel.

2. Type S in the Sel column next to the Message Identifier you want to suppress, and
press Enter.

The selected message will be suppressed.

3. Check the results. Make sure that the message Rule Saved appears in the Action
Taken column next to the Message Identifier you selected for suppression.

4. Test and verify. Test and verify rules according to the procedures of your
installation, the specific needs of your installation, or both. Use Lesson 2: Testing
and Verifying a Rule as a guide.

5. Obtain approvals. Obtain installation approvals for moving the message suppression
rule to a production rule set and for implementation.

6. Implement. Move the rule from the test rule set to an appropriate production rule
set.

Your suppression rule is created and the messages will be suppressed.

More information

Lesson 4: How to Organize Rules into Rule Sets (see page 45)

Lesson 8: Create Rules from an MPF Suppression List

Chapter 2: How to Begin Using the Product 71

Delete Messages

Using the Automation Analyzer, you can create a rule that not only suppresses a
message, but also deletes the message from the SYSLOG.

To delete a message, enter D in the Sel column next to the corresponding message ID.

Occurrences of a message that has been deleted are still recorded in the CA OPS/MVS
OPSLOG.

Access EasyRule from the Automation Analyzer

This option is meaningful only if you want to use EasyRule for something other than
message suppression since the Automation Analyzer lets you generate message
suppression rules directly.

To access EasyRule from the Automation Analyzer

1. Access the Automation Analyzer Results panel.

2. Enter either E or R in the Sel column.

You are moved directly from the Automation Analyzer Results Panel into the
EasyRule environment.

Lesson 8: Create Rules from an MPF Suppression List

The CA OPS/MVS MPF conversion facility lets you:

■ Take advantage of the effort that your site has put into maintaining MPF message
suppression lists

■ Move message suppression into a more available and maintainable location

■ Use libraries other than the Logical parmlib Concatenation

Use of the MPF conversion facility is limited to suppression entries. Messages regarding
console colors and exit information are not automatically processed.

Lesson 8: Create Rules from an MPF Suppression List

72 User Guide

Prepare to Convert MPF to the Product

You must review the preparation steps listed in this topic before you can begin creating
rules from an MPF suppression list.

To prepare to convert MPF suppression lists to rules

■ Use ISPF option 3.2 to allocate a partitioned data set with sufficient directory space
for the CA OPS/MVS rules that will be created. There will be one data set member
for each MPF suppression list entry that you convert. The term rule set refers to a
partitioned data set containing CA OPS/MVS rules.

■ Use a non-production environment for testing.

Do not use a live rule set as the initial target for your conversion. The conversion
process places the source code for rules into the target data set; it is safer to use a
non-production environment for testing.

■ Before you can perform the conversion, CA OPS/MVS and OPSVIEW must be
installed at your data center, and you must have access to them.

■ If you use the MPF conversion facility, modify parmlib to remove message
suppression.

Lesson 8: Create Rules from an MPF Suppression List

Chapter 2: How to Begin Using the Product 73

Convert MPF Suppression Lists to Rules

By following the procedures outlined in this section, you can:

■ Access the CA OPS/MVS MPF conversion facility.

■ Automatically generate CA OPS/MVS rules from an MPF suppression list.

To convert MPF suppression list to rules

1. Begin at the OPSVIEW Primary Options Menu. Enter 7.3 into the Option field.

As a result of your selection, the MPF Conversion panel appears:

MPF Conversion ------------ MSI1 --- O P S V I E W ------------ Subsystem OPSS
Command ===>
Specify data sets below, then press ENTER key
Logical parmlib MPF list member:
 Member name ===>
AOF RULE DATA SET (Do not specify a member name):
 DATA SET NAME ===>

2. Enter the following data in the MPF Conversion panel and press enter:

■ Type the name of the MPF list member that you want to convert in the
Member name field.

■ Type the name of the test rule set (enclosed in single quotes) in the Data Set
Name field.

As a result, conversion proceeds automatically.

Note: In recent versions of z/OS, multiple active MPF list members may exist. If this
is the case at your installation, use the Member name field (as described in step 1)
to enter the name of the MPF list member that you want to convert, and repeat the
step as necessary. If you are using an older version of z/OS, the panel automatically
displays the currently active MPF list member in the Member field.

3. Test and verify. Test and verify rules according the procedures of your installation,
the specific needs of your installation, or both. Use Lesson 2 as a guideline.

Your newly created rule is tested and verified.

4. Obtain approvals. Obtain installation approvals for canceling MPF message
suppression and enabling the CA OPS/MVS rules for production.

5. Implement. Because the conversion process usually introduces CA OPS/MVS
message suppression to an installation that has not used it before, you will probably
need to create a new rule set to hold the generated rules.

More information:

How to Prepare Your System for Your Lessons (see page 35)
Lesson 2: Test and Verify a Rule (see page 40)

Lesson 8: Create Rules from an MPF Suppression List

74 User Guide

Chapter 3: Understanding CA OPS/MVS Messages 75

Chapter 3: Understanding CA OPS/MVS
Messages

This section contains the following topics:

Message Format (see page 75)
Message Variable Data (see page 77)
How Messages Are Routed (see page 78)
How Messages Are Captured (see page 79)
AOF Processing (see page 80)
Changing Message Severity Codes (see page 82)
Rules for Changing Message Severity Codes (see page 83)
View Messages Online (see page 83)

Message Format

CA OPS/MVS messages have the following format:

xx OPsnnnnc

The following explains the format of the messages.

xx

The reply number (only for WTOR, Write-To-Operator-with-Reply messages).

s

The last (fourth) character of the subsystem identifier of the copy of CA OPS/MVS.
that is issuing the message. This is almost always the letter S (OPSS is the default
value of the SSID parameter for the CA OPS/MVS JCL procedure member). For more
information, see the Administration Guide.

nnnn

The message serial number.

c

The severity code for the message. The following are possible codes:

I

Informational messages. No action required.

J

Automateable informational messages. No action required. However these
messages are also sent to the AOF where they are eligible to execute MSG
rules.

Message Format

76 User Guide

O

Automateable messages. No action required. However these messages are
also sent to the AOF where they are eligible to execute MSG rules. These
messages are written to syslog and OPSLOG only.

W

Warning messages. Processing continues, but some assumptions (perhaps
erroneous) are made.

E

Error messages. Some product function is lost.

S

Severe error messages. The function for an entire component is lost. These
messages are non-scrollable and highlighted on the system console.

U

Unrecoverable error messages. Most, if not all, product function is lost.

A

Action messages. These messages are related to an associated operator reply
message (WTOR) and provide information on the action(s) that the operator
must take.

H

Hardcopy messages. These messages are written to syslog and OPSLOG only.

R

Reply messages. These messages are non-scrollable and highlighted on system
consoles.

T

Trace messages. These messages are written to OPSLOG only.

Text

The text of the message. The message can contain fixed and variable data.

Note: To maintain consistency in rules you write against CA OPS/MVS messages, you
must always copy and uppercase the value of the MSG.TEXT environmental variable
before using it. This prevents the rules from being impacted by changes to the case of
messages. For example: msgtext = TRANSLATE(MSG.TEXT).

Message Variable Data

Chapter 3: Understanding CA OPS/MVS Messages 77

Message Variable Data

Many messages contain variable data. The two types of variable data are local and
built-in.

Local variable data is information specific to a particular message. The definitions for
local variables can be found in the description of each message in the Message
Reference.

Built-in variable data is drawn from information that is always available to messages.
The following are the names and definitions of these variables:

ad

The address at which OPSNMG (the message module) was called.

The following format is used:

CSECTNAME+OFFSET

Note: This is equivalent to cs+of. See below.

a2

The address at which the module that called OPSNMG (the message module) was
called.

The following format is used:

CSECTNAME+OFFSET

This is equivalent to cs+o2. See below.

cs

The CSECT name of the module calling OPSNMG.

c2

The CSECT name of the module that indirectly called module OPSNMG.

d1

The date in YYYY/MM/DD format.

d2

The date in month day, year format.

jb

The job name of the current home address space.

js

The primary Job Entry Subsystem (JES).

of

The offset in the calling module where OPSNMG was called.

How Messages Are Routed

78 User Guide

o2

The offset in the callers calling module where OPSNMG was called.

pd

The product name.

ss

The subsystem name.

t2

The time in HH.MM.SS format.

How Messages Are Routed

The destination of a particular message and the method used to send it depend upon
the environment from which the message was issued.

■ Messages originating in the product main address space are issued using the WTO
(Write-To-Operator) macro instruction. These messages are routed to system
consoles and to the system log. They also appear in the OPSLOG Browse component
of OPSVIEW. The specific consoles upon which a WTO generated message appears
depends upon routing codes. These are described for the WTO macro in the IBM
manual z/OS V1R8.0 MVS Assembler Services Reference IAR-XCT, SA22-7607-11.

■ Messages issued from the TSO-based components (such as the TSO command
processor, OPSCMD) are produced using the PUTLINE macro. The destination of
PUTLINE output is dependent on context:

– Interactive TMP output is routed to a TSO terminal.

– Messages issued from within a server address space are re-sent using the WTO
macro instruction.

– Batch TMP output is routed to the SYSTSPRT ddname.

How Messages Are Captured

Chapter 3: Understanding CA OPS/MVS Messages 79

How Messages Are Captured

TSO command processor messages may be captured using one of the following
methods:

■ In CLISTs, messages may be captured by setting the SYSOUTTRAP CLIST variable. For
more information regarding the trapping of command processor output, consult the
IBM manual entitled z/OS V1R8.0 TSO/E CLISTs, SA22-7781-04.

■ In TSO/E REXX, messages may be captured by using the OUTTRAP function. For
more information regarding the trapping of command processor output, consult the
IBM manual entitled z/OS V1R8.0 TSO/E REXX Reference, SA22-7790-07.

■ In OPS/REXX programs, you can use the external data queue to trap TSO command
output from commands run under the ADDRESS TSO host command environment.

Note: In OPS/REXX programs, it is generally easier and more efficient in CPU overhead
to use an OPS/REXX function or host command environment instead of a TSO command
processor.

AOF Processing

80 User Guide

AOF Processing

In general, CA OPS/MVS messages cannot be trapped by the Automated Operations
Facility (AOF). However, messages that end with a severity code of O or J are exceptions
to this rule. Message rules may be written for these product messages only. For
information on the writing of AOF rules, consult the AOF Rules User Guide.

The following is a list of CA OPS/MVS messages that by default end with a severity code
of O or J. This list can change with new releases of the CA OPS/MVS product, or even
between releases through product fixes. Circumstances triggering a particular message
and the message text itself also are subject to change. For these reasons, carefully
consider the advantages and disadvantages of capturing and processing these CA
OPS/MVS messages using the AOF:

■ OPS0050O

■ OPS0123O

■ OPS0125O

■ OPS1093J

■ OPS1094J

■ OPS1095J

■ OPS1096J

■ OPS1097J

■ OPS2000O

■ OPS2085O

■ OPS3163O

■ OPS3187O

■ OPS3199O

■ OPS3420O

■ OPS3440O

■ OPS3441O

■ OPS3442O

■ OPS3477O

■ OPS3485O

■ OPS3486O

■ OPS3487O

■ OPS3488O

■ OPS3505O

AOF Processing

Chapter 3: Understanding CA OPS/MVS Messages 81

■ OPS3519O

■ OPS3521O

■ OPS3716O

■ OPS3719O

■ OPS3755O

■ OPS3866O

■ OPS3900O

■ OPS3904O

■ OPS4110O

■ OPS4111O

■ OPS4290O

■ OPS4292O

■ OPS4402O

■ OPS4403O

■ OPS5006O

■ OPS7593O

■ OPS7903O

■ OPS7940O

■ OPS7941O

■ OPS7942O

■ OPS8300O

■ OPS8320O

■ OPS8328O

■ OPS8350O

■ OPS8568O

■ OPS8900O

■ OPS8901O

■ OPS8902O

■ OPS8903O

■ OPS9528O

Changing Message Severity Codes

82 User Guide

Changing Message Severity Codes

The severity code of most CA OPS/MVS messages can be changed by using the
OPSPARM command processor or OPSPRM OPS/REXX function.

Each message description in the Message Reference contains an indicator (Modifiable:
Yes/No) that tells you whether the severity code of the message is eligible to be
changed.

You may change message severity codes while CA OPS/MVS is initializing or after it
becomes active.

Use this form of the OPSPRM OPS/REXX function to change a message severity code:

T = OPSPRM(“SET”,”OPSnnnn”,”c”)

Use this form of the OPSPARM command to change a message severity code:

OPSPARM SET(OPSnnnn) VALUE('c')

Reasons to change message severity codes include:

■ To suppress a message

– Setting the message severity code to H removes an unwanted message from all
system consoles. The message is written only to the system log and OPSLOG.

– Setting the message severity code to T removes an unwanted message from all
system consoles and the system log. The message is written only to OPSLOG.

■ To reduce product initialization time

You can modify the startup OPS/REXX EXEC OPSSPA00 in the hlq.CLXSAMP library to
suppress messages issued during CA OPS/MVS initialization.

For example, you could customize the following code and place it in your OPSSPA00
EXEC:

/***

 * *

 * Change message severity levels *

 * *

 ***/

 T = OPSPRM("SET","OPS0049","T") /* Avoid flooding consoles */

 T = OPSPRM("SET","OPS3900","T") /* Reduce initialization time */

 T = OPSPRM("SET","OPS4320","T") /* Reduce initialization time */

Once initialization is complete, you may want to change the message severity codes
back to their original values.

Rules for Changing Message Severity Codes

Chapter 3: Understanding CA OPS/MVS Messages 83

■ To highlight a message

Setting the message severity code to S makes a message non-scrollable and
highlighted on system consoles.

■ To automate a message

– Setting the message severity code to J allows the message to be automated by
the AOF.

– Setting the message severity code to O allows it to be automated by the AOF.
The message is written only to the system log and OPSLOG.

Rules for Changing Message Severity Codes

Review the following rules before changing the severity code of any CA OPS/MVS
message.

■ A severity code of T must not be changed. Doing so may result in serious
problems.

■ A severity code of R must not be changed.

■ A severity code of I should only be changed to severity code J.

■ A severity code of J should only be changed to severity code I.

If none of the above rules apply, you can generally make a message available to be
trapped by the AOF by changing its severity code to J or O.

View Messages Online

You can find information about CA OPS/MVS messages online using only the numeric
portion of the message ID.

To view message information online

1. Use OPSVIEW option 5.5 CA OPS/MVS Message ID Lookup.

2. On the resulting display, enter the numeric portion of the CA OPS/MVS message ID
you wish to review.

3. Choose the display mode (Browse or View) and press enter.

The message information displays.

Note: For more information, see the OPSVIEW User Guide.

Chapter 4: Global Variables Explained 85

Chapter 4: Global Variables Explained

This section contains the following topics:

What Are Global Variables (see page 85)
Global Variable Basics and OPS/REXX (see page 87)
Global Variable Database Warning Messages (see page 92)
Global Variable Characteristics (see page 93)
Backup and Restore Global Variables (see page 94)

What Are Global Variables

The following pages explain basic and sometimes-theoretical concepts of the CA
OPS/MVS global variables, as well as information that can help you use them.

Global variables are:

■ OPS/REXX compound symbols

■ Compound symbols that contain a defined, global stem

Features of Global Variables

CA OPS/MVS global variables have the following characteristics:

■ They can contain many types of data. This data may be critical to the proper
operation of CA OPS/MVS itself, and all its components, or it may be relevant only
to one small, user-written application.

■ They can be shared globally throughout the entire CA OPS/MVS architecture. They
can be shared by, among others, TSO address spaces, AOF rules, CA OPS/MVS
servers, and batch jobs.

■ They can be saved across system IPLs and CA OPS/MVS restarts, as is the case with
the non-volatile, standard global variables; or they can be volatile, life of the
product variables that are not kept across IPLs, as is the case with temporary global
variables.

What Are Global Variables

86 User Guide

Finding More Information

This table indicates where you can find more information about global variables:

Subject Description See…

OPS/REXX and global
variables

A description of global variables
in an OPS/REXX context

Global Variable Basics and
OPS/REXX (see page 87) in
this chapter

Global variables and
CA OPS/MVS
installation

Things to consider about global
variables before and during the
installation of CA OPS/MVS

The Administration Guide

Using global variables Tips to help you use global
variables

Global Variable
Characteristics (see
page 93) in this chapter

Global variables and
OPSVIEW

An explanation of how you can
manipulate global variables
using OPSVIEW, the menu
driven, CA OPS/MVS user
interface

The OPSVIEW User Guide

Global variables and
AOF

How to use global variables
from the Automated Operations
Facility perspective

The AOF Rules User Guide

Global variables and
ESI

How you can access global
variables with the Expert
System Interface

Access and Update Global
Variables (see page 583) in
the chapter “Expert System
Interface (ESI)”

Global variable backup
and restore

An overview of the CA OPS/MVS
feature that can backup and
restore your global variable
database

Backup and Restore Global
Variables (see page 94) in
this chapter

OPSVALUE function Information about when you
should use the OPSVALUE
function

The AOF Rules User Guide
and the Command and
Function Reference

Global Variable Basics and OPS/REXX

Chapter 4: Global Variables Explained 87

Global Variable Basics and OPS/REXX

This section describes global variables in the context of OPS/REXX.

To begin, the most basic definition of a global variable is that it is an OPS/REXX
compound symbol that has a unique stem. An example is:

GLOBAL.xyz

To understand this definition, you must first know what an OPS/REXX compound symbol
is.

OPS/REXX Compound Symbols

Compound symbols let you establish an accurate and efficient way to address values. By
design, they are a good way to implement tables or arrays.

An OPS/REXX compound symbol is a named object that you can assign a value or data
to. It is a powerful kind of variable because one or more variables can be included in the
name of the compound symbol itself. In other words, what makes a compound symbol
unique is that a portion of the name of the compound symbol itself can be a variable.

Let us back up a little. Typically, the name of the most simple type of a variable is an
identifiable constant; most likely a character string.

On the other hand, consider a variable that is a compound symbol:

■ It can have one or more fields of assignable, variable data in its name.

■ It is identified first by the constant string portion of its name, the stem, and
subsequently identified by the variable portion of its name, the tail.

Example: Compound Symbols

An analogy of this is the address system of a city.

In this analogy:

■ A one dimensional, simple variable, which has only a constant string for a name, is
like an address that consists only of a street name.

■ A two-dimensional compound symbol, one that has a constant stem and a variable
as part of the name, is like an address that includes both a street name and a
number.

For more information about compound symbols, see THE REXX LANGUAGE: A Practical
Approach to Programming by M.F. Cowlishaw (Prentice Hall, 1990).

Global Variable Basics and OPS/REXX

88 User Guide

Compound Symbol Format

All compound symbols have an uppercase stem that is separated from the variable
name fields by a . (period or dot) character. And all the following, variable fields are also
separated by a period (.) character.

Example: Format of the Compound Symbol

GLOBAL.a

GLOBAL.b

GLOBAL.xyz

GLOBAL.abc.xyz

Note: All the examples shown have GLOBAL as their stem portions. This is important
later in this discussion.

Two or More Dimensions

Compound symbols can have more than two dimensions. To understand this, let us look
at our city address analogy again. We have already considered the two-dimensional
street address that includes a street number. In compound symbol parlance, the
address 123 Main St. might look like this:

MAIN.123

What if we put in a third dimension? Consider what 123 Main St., Suite 987 would look
like in compound symbol parlance:

MAIN.123.987

You could put in more dimensions; say office number 12 in Suite 987. Another
dimension could be a particular in-basket in office 12. These might be represented in
compound symbol parlance as:

MAIN.123.987.12.inbskt1

Global Variable Basics and OPS/REXX

Chapter 4: Global Variables Explained 89

Compound Symbol Derived Name

To take the concept of a compound symbol to its conclusion, consider the value of its
entire name, the stem portion, and the actual value of the variable portion. This is the
derived name of a compound symbol.

Example: Illustrate the Derived Name

Suppose you have an application that has a line of code that assigns the value of 9 to a
simple variable called z. And suppose that application has a subsequent line of code that
initializes a compound symbol called GLOBAL.z. The derived name of GLOBAL.z, in this
case, would be GLOBAL.9.

Global Compound Symbols

Now that you understand the compound symbol, consider one that can be touched by,
or can touch, all components of CA OPS/MVS. Think of a compound symbol that can
receive data from, or hold data for, all CA OPS/MVS components and many user-written
applications. Once you have done this, you understand the CA OPS/MVS global variable.

Global Variable Nodes and Subnodes

The CA OPS/MVS terms of node and subnode are names that enable you to identify
different portions of the name of a global variable and they can help you understand the
relationships between global variables.

The best way to convey what nodes and subnodes represent, with respect to global
variables, is by example. So consider the following:

Suppose you have the following global variables:

GLOBAL.A

GLOBAL.B

GLOBAL.C

GLOBAL.A.B

GLOBAL.A.B.C

GLOBAL.A.B.D

Let us start at the bottom and work up.

■ GLOBAL.A.B.D is a subnode of GLOBAL.A.

■ GLOBAL.A.B.D is an immediate subnode of GLOBAL.A.B.

■ GLOBAL.A.B.C is an immediate subnode of GLOBAL.A.B.

■ GLOBAL.B is a node that has no subnodes shown.

Global Variable Basics and OPS/REXX

90 User Guide

■ All variables that begin with GLOBAL.A are subnodes of GLOBAL.A.

■ All variables that begin with GLOBAL are subnodes of GLOBAL.

Note: In this example, GLOBAL.A.B is a totally different variable than GLOBAL.A. In fact,
GLOBAL.A does not need to exist for GLOBAL.A.B to exist.

Permanent Versus Temporary Global Variables

CA OPS/MVS supports the following two basic types of global variables:

Standard or permanent

Standard global variables are non-volatile, so they are saved across system IPLs or
CA OPS/MVS starts.

Temporary

Temporary global variables are not saved at these times. The set of temporary
global variables is always empty when CA OPS/MVS is first started.

The following are the stems that identify these two types of global variables:

■ Standard global variables

– GLOBAL.

– GLOBALx. where x is any alphanumeric character (A-Z or 0-9)

■ Temporary global variables

– GLVTEMPx. where x is any alphanumeric character (A-Z or 0-9)

– GLVEVENT

– GLVJOBID

Global Variable Basics and OPS/REXX

Chapter 4: Global Variables Explained 91

Temporary Global Variables: Duration Specified

CA OPS/MVS provides two temporary variable types that exist only for the duration of
either an event or a job. GLVEVENT variables are associated with the duration of a
specified event and GLVJOBID variables are associated with the duration of a specified
job.

■ GLVEVENT.stem variables are deleted when the event for which they were created
terminates.

For example, suppose that CA OPS/MVS creates GLVEVENT.MSGTEXT during the
processing of an IEF405I message rule; the variable exists for all rules that process
that particular IEF405I message. After the last rule associated with that individual
message issuance executes, this example occurrence of GLVEVENT.MSGTEXT is
automatically deleted.

Uses for such a variable could include passing data between rules or accumulating
data about a message.

■ GLVJOBID.stem variables are deleted when the job or started task for which they
were created terminates.

For example, suppose that CA OPS/MVS creates GLVJOBID.MSGTEXT during the
processing of a particular job; the variable exists only while that job is active.
Furthermore, the variable is associated only with that job. Other jobs could have a
variable by the same name containing a different value; after the last rule
associated with our example job executes, this occurrence of GLVJOBID.MSGTEXT is
automatically deleted.

You can use such a variable to save data generated by one event in a job for
processing in another event in that same job.

Note: As with all CA OPS/MVS temporary global variables, the number of GLVEVENT and
GLVJOBID variables you have influences the amount of storage you must allocate using
the GLOBALTEMPMAX parameter.

Global Variable Limits

We strongly recommend that you create no more than 10,000 global variables under a
single global variable stem. The absolute product limit is 32,768 variables under a single
global stem. If you do create too many variables, you will not be able to view them
under OPSVIEW option 4.8 or access them using the OPSVALUE function.

Global Variable Database Warning Messages

92 User Guide

Global Variable Database Warning Messages

So that you can closely monitor your global variable databases, CA OPS/MVS issues
warning messages as the database becomes full. CA OPS/MVS provides parameters that
enable you to closely control and monitor these database indicators. They are described
in the Administration Guide.

CA OPS/MVS also issues warning messages each time database usage increases by 5
percent above the threshold (for instance, at 85 percent, 90 percent, and 95 percent of
capacity), even between GLOBALWARNINTVAL intervals. The usage levels triggering the
warning messages are not reset while CA OPS/MVS is active unless you change the
GLOBALWARNTHRESH parameter to a different value. In this case, the high-usage level
is reset to the threshold value.

The warning message OPS4290O, which can apply to either the permanent global
variable database or the temporary global variable database, contains the following
information:

■ Whether the warning is for the temporary or the permanent global variable
database.

■ Current percentage of the database that is full.

■ Number of blocks currently in use.

■ Total number of blocks in the database (GLOBALMAX or GLOBALTEMPMAX).

■ Name of the program or rule that, once executed, caused the threshold to be met
or exceeded. This program or rule may or may not be responsible for filling the
database.

Note: CA OPS/MVS checks for the threshold being exceeded only when a new global
variable is allocated or an existing global variable is extended. Therefore, the interval
between the messages may be greater than the defined interval.

Global Variable Characteristics

Chapter 4: Global Variables Explained 93

Global Variable Characteristics

Knowing the characteristics of global variables can help you properly use CA OPS/MVS
global variables.

All global variables have the following characteristics:

■ They can be as long as 32,000 bytes. However, global variables containing fewer
than 44 bytes operate the most efficiently and expeditiously.

■ They are not declared. A global variable is created when you use a variable that
contains a valid global stem.

■ They can trigger global events if their values change. Changing the value of a global
variable triggers a global variable event unless that variable has a stem of GLOBALx.
or GLVTEMPx. (where x is a number from 0 to 9).

■ They are not as suited to applications that need serialization, as is the OPSVALUE
function.

■ The OPSVALUE function (see the Command and Function Reference) enables you to
manipulate global variables in many ways. Because there are so many ways to use
it, you must be careful that you use the correct syntax for the task that you want to
accomplish. Two of the most important syntax-critical facets of OPSVALUE are as
follows:

– OPSVALUE evaluates the derived name of your global variable differently,
depending on whether it is entered with quotation marks. For example:

var = OPSVALUE('GLOBAL.A','C' ,1,2)

var = OPSVALUE(GLOBAL.A,'C' ,1,2)

In the first case with the single quotes, OPS/REXX evaluates the first parameter
as the derived name of GLOBAL.A, whereas without quotes, it evaluates the
first parameter as the actual value of GLOBAL.A

– OPSVALUE is case sensitive when it evaluates the characters of a global variable
after its stem; for example, GLOBAL.XYZ and GLOBAL.xyz are two different
variables

■ Global variables have derived names.

■ Global variables are available to all rule-based and TSO-based OPS/REXX programs
in all address spaces. You can set the value of a global variable in one rule, and then
check or reset the value in another rule.

Backup and Restore Global Variables

94 User Guide

Backup and Restore Global Variables

CA OPS/MVS provides a method for you to backup and restore your global variable
database.

CA OPS/MVS enables you to schedule the global variable backups or you can take a
backup on demand by submitting a batch job or started task.

To schedule your global variable backups, use one of the following three methods:

■ (Recommended) Internally scheduled by the CA OPS/MVS global variable
checkpoint task.

■ Scheduled by a CA OPS/MVS TOD rule.

■ Externally controlled batch job or started task; usually controlled by a job scheduler.

For more information about the global variable backup and restore program, see the
Administration Guide.

Chapter 5: Using EasyRule 95

Chapter 5: Using EasyRule

This section contains the following topics:

EasyRule Basics (see page 95)
Introducing EasyRule Panels (see page 97)
How to Access EasyRule (see page 99)
Scrollable Menu and Data Entry Panels (see page 101)
Select a Rule Type (see page 102)
Rule Type Main Menu Options (see page 103)
Specify a Primary Event for a Rule (see page 104)
Specify Comments for a Rule (see page 105)
Specify Execution Conditions for a Rule (see page 106)
Specify Actions to Be Taken When a Rule Executes (see page 107)
Specify Actions to Be Taken When a Rule Is Enabled (see page 108)
Set Initial Variable Values for a Rule (see page 109)
Specify Actions to Be Taken When a Rule Is Disabled (see page 110)
EasyRule Final Options Menu Determines the Disposition of a Rule (see page 111)
How to Test a Rule (see page 113)
EasyRule Error Messages (see page 113)
EasyRule Help (see page 113)

EasyRule Basics

Use the CA OPS/MVS EasyRule facility to build rules without the need for programming.

EasyRule is a panel-driven rule generator, offering a fill-in-the-blanks approach to
building a CA OPS/MVS rule. EasyRule not only makes generating rules fast and easy,
but it also makes updating them quick and convenient.

Because you can use EasyRule to generate complex rules, even the most experienced
REXX programmer will appreciate the savings in labor that EasyRule provides for
producing sophisticated programming. In addition, the rules that you create with
EasyRule are readily available for tailoring and maintenance.

The REXX code generated by EasyRule contains descriptive REXX comments describing
the conditions and actions being performed. This makes generated REXX code easier to
understand. It also makes EasyRule more useful as a way for someone unfamiliar with
the REXX language to learn REXX.

EasyRule Basics

96 User Guide

Guidelines for Using EasyRule

To use EasyRule, you must be familiar with ISPF line editing and navigation, and you
must understand how the console works. It is recommended that you read the AOF
Rules Guide to familiarize yourself with rule structure.

Follow these guidelines when using EasyRule:

■ You can use EasyRule to create a new rule or to modify a rule that was originally
created with EasyRule. However, if you used another editing tool to create or
modify a particular rule, you usually cannot use EasyRule to modify it.

■ You can select the EasyRule automatic step-through feature, which takes you from
one fill-in-the-blanks panel to the next without your having to make menu
selections.

Note: For more information, see Choose Automatic Versus Manual Step-through
(see page 100) in this chapter.

■ Any time that you want information while using EasyRule, such as an example or
the definition of an unfamiliar term, press PF1/13 to access EasyRule help.

■ Do not imbed syntax for REXX comments (for example, /* comment-text */) in your
panel entries.

How EasyRule Builds Rules

EasyRule is comprised of numerous fill-in-the-blanks panels. As you create your rule,
EasyRule keeps track of the entries you make on each panel.

Note: Your entries will include information such as events, conditions, and actions that
affect the execution of the rule.

When you finish making entries on the panels, EasyRule generates the rule as OPS/REXX
code (in mixed case) and retains it in memory. On the final EasyRule panel you
encounter, you must choose to take one of these actions for the new rule:

■ Save the rule and exit EasyRule.

■ Exit EasyRule without saving the rule.

■ Browse the OPS/REXX code that EasyRule generated.

■ Return to the EasyRule panels to alter the rule.

You can also determine whether you want the rule to be modifiable with EasyRule,
whether you intend to include user-written code in the rule, or both.

If you choose to save the rule, you can then enable, test, and disable it as you would any
other rule.

Finally, you can move the rule to the production environment.

Introducing EasyRule Panels

Chapter 5: Using EasyRule 97

How EasyRule Benefits Different Types of Users

If you are a novice user, you can use EasyRule to generate most of the automation you
need with a few panel entries.

If you are an advanced user, you can use EasyRule to generate enough OPS/REXX code
to create a basic rule. Later, you can use the ISPF editing tools to add more complex
logic to the rule.

The code that EasyRule generates is clean and efficient. Therefore, if you want to learn
how to write OPS/REXX code, you can browse the rules EasyRule generates to learn
about the OPS/REXX language.

Configure EasyRule Settings

You may want to customize your EasyRule profile. You can configure your EasyRule
settings by using OPSVIEW Option 0.5, as described in the OPSVIEW User Guide.

Introducing EasyRule Panels

To help you to build a rule, EasyRule presents you with a series of panels that is
dependent upon the type of rule you want to create. Although each set of panels is
unique to the type of rule you are creating, there are similarities among them in both
format and content.

For example, regardless of the type of rule you are creating, EasyRule will present a
primary event specification panel on which you specify the primary criterion that is used
to execute the rule. Thus, if you are creating an OMEGAMON rule, EasyRule presents
you with a panel prompting you to specify an OMEGAMON exception ID; if you are
creating a message rule, a panel prompting you for a message ID appears instead.

Panel Descriptions

Because of the similarities among EasyRule panels, not every EasyRule panel is
presented in this chapter. Instead, EasyRule panels that are representative of the series
of panels you see when you create any rule are discussed. Reviewing these pages will
acquaint you with the look and feel of the EasyRule facility.

More information:

Lesson 6: Solve a Problem Using EasyRule (see page 50)

Introducing EasyRule Panels

98 User Guide

Access Additional Panel Information

If you need more specific information about how to use a particular EasyRule panel,
press PF1/PF13 to access help directly from that panel.

More information:

EasyRule Help (see page 113)

How to Navigate the Panels

The typical route one takes through the EasyRule panels is as follows:

1. EasyRule primary panel

2. Rule Type Selection Panel

3. Rule Type Main Menu

4. EasyRule primary event specification panel

5. Create Rule Comments Panel

6. Conditions Menu

7. Take Action Menu

8. Initialize Rule Variables Panel

9. Actions to Take at Rule Disable Panel

10. EasyRule final options menu

Note: If you select the EasyRule automatic step-through feature, you bypass all EasyRule
selection menus.

More information:

Choose Automatic Versus Manual Step-through (see page 100)

How to Access EasyRule

Chapter 5: Using EasyRule 99

How to Access EasyRule

You can use these methods to access EasyRule:

■ From the OPSVIEW Primary Options Menu, type 2.3 and press Enter.

■ From the AOF TEST Rule List panel (OPSVIEW option 2.1) or the AOF CTRL Rule List
panel (OPSVIEW option 4.5.1), enter the rule set name and press Enter. Do either of
the following:

– Type R next to the name of the rule you want to modify and press Enter.

– Enter the EASYRULE primary command in the Command field to create a new
rule.

■ From the Automation Analyzer Results panel (OPSVIEW option 7.2), type E or R next
to the message ID for which you want to create or modify a rule, and then press
Enter.

Access EasyRule from OPSVIEW and Specify a Rule Set

Before you can create or modify a rule, you must tell EasyRule the name of the rule set
that will contain (or already contains) the rule.

To access EasyRule from OPSVIEW and Specify a Rule Set

1. From the OPSVIEW Primary Options Menu, enter 2.3 into the Option field and press
Enter.

As a result, the EasyRule primary panel appears. A sample panel is shown here:

EasyRule --------------- MSI1 --- O P S V I E W --------------- Subsystem OPSS
COMMAND ===>
 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE
ISPF LIBRARY:
 PROJECT ===>
 GROUP ===>
 TYPE ===>
 MEMBER ===>
OTHER PARTITIONED DATA SET:
 DATA SET NAME ===>
Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

2. Complete the Project, Group, and Type fields.

3. Specify a new or existing member name in the Member field. Each member of a
rule set contains a single rule.

How to Access EasyRule

100 User Guide

Access EasyRule from the AOF Test or AOF Control Facility

You can access EasyRule in three ways:

To modify an existing rule:

1. From the AOF TEST Rule List panel (OPSVIEW option 2.1) or the AOF CTRL Rule List
panel (OPSVIEW option 4.5.1), enter the rule set name and press Enter.

2. Type R next to the name of the rule you want to modify and press Enter.

In response, EasyRule takes you directly to the main menu for the type of rule you
selected.

To create a new rule:

1. From the AOF TEST Rule List panel (OPSVIEW option 2.1) or the AOF CTRL Rule List
panel (OPSVIEW option 4.5.1), enter the rule set name and press Enter.

2. Enter the EASYRULE primary command in the Command field.

In response, the EasyRule primary panel appears displays.

To access EasyRule from the Automation Analyzer:

1. Access the Automation Analyzer Results panel (OPSVIEW option 7.2)

2. Type R or E next to the message ID for which you want to create or modify a rule;
then press Enter.

In response, the EasyRule primary panel appears.

Choose Automatic Versus Manual Step-through

When you access EasyRule, you must decide how you want to proceed: manually or
automatically.

To choose either automatic or manual step-through

When the EasyRule primary panel prompts you for your choice:

■ If you want to move through the EasyRule panels by making menu selections, type
N in response to the prompt.

■ If you want EasyRule to move you from one fill-in-the-blanks panel to the next,
without presenting you with menus, type Y in response to the prompt.

Scrollable Menu and Data Entry Panels

Chapter 5: Using EasyRule 101

Scrollable Menu and Data Entry Panels

Many EasyRule menu and data entry panels are scrollable so that more information can
be included in the panel than will fit on a single terminal screen. The OPSINFO Data
Conditions panel, for example, includes many more choices than can fit on a single
display screen. When scrollable text is present, the word More: appears near the
upper-right corner of your screen. Use the PF7 and PF8 keys to scroll up and down,
respectively.

PF10 and PF11 are used to control scrolling in Help panels.

Select a Rule Type

102 User Guide

Select a Rule Type

EasyRule lets you create many different types of rules. The Rule Type Selection panel
lets you easily choose the type of rule to create.

To select a rule type

1. If you specified the member name for a new rule on the EasyRule primary panel,
the Rule Type Selection panel appears. EasyRule provides a main menu for each
type of rule.

EasyRule ---
OPTION ===>
 R U L E T Y P E S E L E C T I O N
 1 MSG - Create Message Event Rule
 2 CMD - Create Command Event Rule
 3 GLV - Create Global Variable Event Rule
 4 TOD - Create Time-Of-Day Event Rule
 5 OMG - Create OMEGAMON Event Rule
 6 DOM - Create Delete-Operator-Message Event Rule
 7 EOJ - Create End-of-Job Event Rule
 8 EOM - Create End-Of-Memory Event Rule
 9 EOS - Create End-Of-Step Event Rule
 10 TLM - Create Time-Limit-Exceeded Event Rule
 11 USS - Create Unix Systems Services (USS) Message Event Rule

If you specified an existing rule on the EasyRule primary panel, EasyRule bypasses
the panel shown above and takes you directly to the series of panels you can use to
modify the rule.

2. Enter the code into the Option field. For example, if you want to create a message
rule, enter 1 in the Rule Type Selection panel.

The Message Rule Main Menu appears. A sample is shown here:

EasyRule ---
OPTION ===>
 M E S S A G E R U L E M A I N M E N U
 1 MESSAGE ID - Specify the ID of the message(s) to be processed
 2 DOCUMENTATION - Add comments to this Rule
 3 CONDITIONS - Supply additional criteria for this Rule to fire
 4 ACTIONS - Take action with respect to the message(s)
 5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
 6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

The rule type of Message Rule is selected and you are ready to specify a primary
event for your rule.

Rule Type Main Menu Options

Chapter 5: Using EasyRule 103

Rule Type Main Menu Options

Although there is a unique Rule Type Main Menu for every type of rule you can create
with EasyRule, all the panels offer similar options:

Option 1 MESSAGE ID

Accesses a panel on which you specify the primary selection criterion for this type
of rule. For example, if you are creating a command rule, specify the command; if
you are creating an OMEGAMON rule, specify the exception ID.

Option 2 DOCUMENTATION

Accesses a panel on which you enter comments for the rule. EasyRule incorporates
your comments into the OPS/REXX code it generates for the rule. This panel is the
same regardless of what type of rule you are creating.

Option 3 CONDITIONS

Accesses a sub-menu from which you can choose conditions for EasyRule to use as
selection criteria for the rule. The content of this sub-menu varies for different
types of rules.

Note: These conditions include the primary selection criterion you specify with
option 1.

Option 4 ACTIONS

Accesses a sub-menu from which you specify the actions the rule should take when
the conditions set in option 3 are met (if any). If no conditions are set in option 3,
the actions you specify in option 4 will occur unconditionally. The content of this
sub-menu is different for each type of rule.

Option 5 INITIALIZATION

Accesses a panel on which you specify the initial values of local and global variables.
EasyRule performs the initialization when the rule is first enabled. This panel is the
same for all types of rules.

Option 6 TERMINATION

Accesses a panel on which you specify the actions CA OPS/MVS should take when
the rule is disabled. Possible actions include sending messages, setting global
variables, and so on. This panel is the same for all types of rules.

Specify a Primary Event for a Rule

104 User Guide

Specify a Primary Event for a Rule

The primary event is the criterion that is used to execute the rule. For message rules,
the primary event is a message ID; for OMEGAMON rules, it is an OMEGAMON
exception ID, and so on.

To specify a primary event for a rule

1. From the Message Rule Main Menu, choose option 1 Message ID to access the
primary event specification panel to specify a primary event for your rule.

Following is a sample primary event specification panel pertaining to message rules:

EasyRule --
Command ===>

 S P E C I F Y M E S S A G E I D

 MSG ID ===> IEF287I JUST SUPPRESS ===> N (Y/N/D)
 or
 JUST DELETE ===> N (Y/N/D)

 DELETE FROM OPSLOG === N (Y/N)

 MSG ID is used to determine if this Rule should perform an Action.
 It must be 1 to 10 characters in length and may optionally include a
 "wildcard" character '*'. MSG ID is the only required field.

 If you just want to SUPPRESS or DELETE the message, type Y next to the
 appropriate entry. Subsequent panels are bypassed if using Step-thru mode.
 DELETE is like SUPPRESS, but also deletes the message from SYSLOG.

 D is the same as Y except that in Step-thru mode, you will be given a
 chance to enter comments about the rule.

Press ENTER to step thru EasyRule, or END to return

When EasyRule generates the OPS/REXX code for your rule, the type of the rule and
the primary event of the rule make up the first line of the code.

In some cases, the only rule type-specific panel that you need to complete to create
a rule is the primary event specification panel. For example, if your goal is simply to
suppress a message, you can do so by making only two field entries (MSG ID and
Just Suppress) on the primary event specification panel for message rules.

2. You can then press PF3

The EasyRule final options menu displays, from which you can end your EasyRule
session.

Specify Comments for a Rule

Chapter 5: Using EasyRule 105

Specify Comments for a Rule

The Create Rule Comments panel provides a structured format that you can use to
create useful documentation for your rule.

To specify comments for a rule

1. Access the Create Rule Comments panel.

A sample panel, the same for all types of rules, follows:

EasyRule ---
COMMAND ===>
 C R E A T E R U L E C O M M E N T S
Rule Name ===> ___
Rule Type ===> ___
Rule Function ===> ___
 ===> ___
 ===> ___
 ===> ___
 ===> ___
Author ===> ___
Support ===> ___
Related Rules ===> ___
Related CPs ===> ___
History ===> ___
 ===> ___
 ===> ___

2. Enter comments about the rule.

No editing is performed on your entries, all of which are optional. EasyRule takes your
entries and generates valid REXX comment lines from them. Do not imbed syntax for
REXX comments (for example, /* comment-text */) in your entries.

Specify Execution Conditions for a Rule

106 User Guide

Specify Execution Conditions for a Rule

Use the Conditions Menu to choose conditions for EasyRule to use as selection criteria
for the rule. These conditions are in addition to the primary selection criterion you
specified on the primary event specification panel. A unique Conditions Menu exists for
each rule type. A sample panel, showing the Conditions Menu for message rules,
appears here.

Note: If you select the EasyRule automatic step-through feature, you bypass the
Conditions Menu (and all other EasyRule menus).

EasyRule --
Option ===>

 M E S S A G E R U L E -- C O N D I T I O N S M E N U

 These panels allow you to specify additional criteria (beyond the Message
 ID) which must be satisfied for this Rule to fire.

 1 Message text A Other address spaces
 2 Current console routing (ROUTCDEs) D Day/Time/Shift/Calendar
 3 Highlighting/Color (DESC codes) G Global variables
 4 Message Environmental variables L Local or other Global variables
 5 Multi-line WTO support O OPSINFO variables
 V Device or VOLSER status

 C Specify how multiple conditions are to be evaluated (AND/OR)

Press ENTER to step thru EasyRule, or END to return

Although the total number of options on the menus differs among rule types, the
format of the menus is the same. The column on the left of each Conditions Menu lists
conditions that are unique to the type of rule you are creating. The column on the right
lists conditions that are common to all rule types.

To choose an option from a Conditions Menu

1. Type its option code into the Option field and press Enter.

2. When you complete the resulting panel, press PF3

You are returned to the Conditions Menu.

You can repeat this procedure to choose several or all options, as long as you do so one
at a time.

Specify Actions to Be Taken When a Rule Executes

Chapter 5: Using EasyRule 107

Specify Actions to Be Taken When a Rule Executes

Use the Take Action menu to specify the actions that you want to occur when the rule
executes and all criteria are satisfied. A unique Take Action menu exists for each rule
type. The following sample panel shows the Take Action menu for message rules.

Note: If you select the EasyRule automatic step-through feature, you bypass the Take
Action menu (and all other EasyRule menus).

EasyRule --
Option ===>

 M E S S A G E R U L E -- T A K E A C T I O N

 The actions you specify via these panels will be taken for all messages that
 have the Message ID you specified and pass any additional tests you supplied
 via the "Additional Criteria" panels.

 1 Suppress G Update Global variables
 2 Message deletion L Update Local or Global variables
 3 Re-route to other consoles M Issue z/OS messages
 4 Re-word the Message N Send a NetMaster Alert
 5 Hilite/Color/Change DESC codes O Issue Operator commands
 6 Reply (WTORs only) P Page support people
 7 Send to another system (MSF) Q Perform SQL update or insert
 8 Throttle Message display rate S Send messages to TSO users
 9 Update Environmental variables U Issue UNIX commands
 X Run REXX/CLIST program in Server
Press ENTER to step thru EasyRule, or END to return

Although the total number of options on the menus differs among rule types, the
format of the menus is the same. The column on the left of each Take Action Menu lists
actions that are unique to the type of rule you are creating. The column on the right lists
actions that are common to all rule types.

To choose an option from a Take Action menu

1. From the Message Rule Main Menu, choose option 4 Actions.

The Message Rule Take Action menu displays.

2. When you complete the resulting panel, press PF3.

You are returned to the Take Action menu.

You can repeat this procedure to choose several or all options, as long as you do so one
at a time.

Specify Actions to Be Taken When a Rule Is Enabled

108 User Guide

Specify Actions to Be Taken When a Rule Is Enabled

Use the Initialization menu to choose the actions that you want to perform during
enable processing.

To specify actions to be taken when a rule is enabled

1. From the Message Rule Main Menu, choose option 5 Initialization.

The Initialization menu displays.

2. Choose the actions you want to perform during enable processing and press Enter.

While a rule is enabled, it executes when its primary criterion is met, such as when
a particular message is issued by the system, or when a particular job ends. A rule
that is not enabled never executes.

EasyRule provides two ways to specify a limited amount of processing during enable
processing:

■ You can set the value of a variable.

■ You can elect whether to allow the rule to enable.

If any variables are set during enable processing, they will remain set even if the rule
ultimately rejects the enable request.

Set Initial Variable Values for a Rule

Chapter 5: Using EasyRule 109

Set Initial Variable Values for a Rule

Use the Initialize Rule Variables panel to set variables to specific values before the rule
executes for the first time. The following sample panel applies to all types of rules:

EasyRule --
COMMAND ===>
 I N I T I A L I Z E R U L E V A R I A B L E S
 --LOCAL/GLOBAL VARIABLE NAME-- <---- INITIAL VALUE -------->
 ______________________________ ===> ______________________________
 ______________________________ ===> ______________________________
 ______________________________ ===> ______________________________
 ______________________________ ===> ______________________________
 ______________________________ ===> ______________________________
 ______________________________ ===> ______________________________
 -GLOBAL VARIABLE NAME-- <---- INITIAL VALUE -------->
 GLOBAL. _______________________ ===> ______________________________
 GLOBAL. _______________________ ===> ______________________________
 GLOBAL. _______________________ ===> ______________________________
 GLOBAL. _______________________ ===> ______________________________
 GLOBAL. _______________________ ===> ______________________________
 GLOBAL. _______________________ ===> ______________________________

To set initialize variable settings for a rule

1. Type the name of the variable in the left-hand column.

2. Type the desired initial value in the right-hand column.

The entries you make on this panel become OPS/REXX statements in the)INIT section of
the code EasyRule generates for your rule. These OPS/REXX statements execute only
when the rule is first enabled.

Specify Actions to Be Taken When a Rule Is Disabled

110 User Guide

Specify Actions to Be Taken When a Rule Is Disabled

Use this panel to specify the actions that CA OPS/MVS should take when the rule is
disabled.

To specify the actions CA OPS/MVS should take when a rule is disabled

1. From the rule type main menu, choose Option 6: Termination - Specify actions to be
taken when Rule is DISABLEd.

The following Actions to Take at Rule Disable menu displays, which applies to all
types of rules:

EasyRule --
COMMAND ===>
 A C T I O N S T O T A K E A T R U L E D I S A B L E
 Address OPER ===> __
 Address TSO ===> __
 Address AOF ===> __
 Send Message ===> __________________________________ USERID ===> ________
 WTO Message ===> __________________________________ MSGID ===> __________
 HILITE ===> N (Y or N)
 Set Globals:
 - GLOBAL VARIABLE NAME - <-------- NEW VALUE -------->
 GLOBAL. _______________________ ===> ______________________________
 GLOBAL. _______________________ ===> ______________________________
 GLOBAL. _______________________ ===> ______________________________

2. Complete the fields for the action you want. For example, you may want to send a
message, trigger some action on the system, or set a global variable to a new value.

The entries you make on this panel become OPS/REXX statements in the)TERM
section of the code EasyRule generates for your rule. These OPS/REXX statements
execute only when the rule is disabled.

EasyRule Final Options Menu Determines the Disposition of a Rule

Chapter 5: Using EasyRule 111

EasyRule Final Options Menu Determines the Disposition of a
Rule

After you complete all of the necessary EasyRule panels, the EasyRule final options
menu appears. You use this panel to determine the disposition of the OPS/REXX code
EasyRule built from your panel entries. The following sample panel applies to all types of
rules:

EasyRule --------------- XE44 --- O P S V I E W --------------- Subsystem OPSA
Option ===>

 EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
 EE AA AA SS YYYY RR R UU UU LL EE
 EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
 EE AA AA SS YY RR RR UU UU LL EE
 EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE

 1 SAVE - SAVE the Rule that was built and EXIT
 2 CANCEL - EXIT and DO NOT SAVE the Rule that was built
 3 BROWSE - Browse the generated OPS/REXX code
 4 ALTER - Return to the panels to modify the Rule

 DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)
 DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> Y (Y/N)
 DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> Y (Y/N)
 DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> Y (Y/N)

Press END to SAVE and return

Choose one of these options on the EasyRule final options menu:

Option 1 - SAVE

EasyRule saves the rule into the member you specified on the EasyRule primary
panel.

Note: If you prefer, you can press PF3 to achieve the same result.

Option 2 - CANCEL

EasyRule ignores all of your panel entries. No rule is created or updated.

Note: If you prefer, you can enter the CANCEL command into the Option field of the
panel to achieve the same result.

Option 3 - BROWSE

EasyRule takes you to the standard ISPF browse panel, where you can review the
OPS/REXX code that it built for your rule. You cannot make changes to the
OPS/REXX code from the ISPF browse panel. If you want to make changes, press PF3
to return to the EasyRule final options menu, and then choose option 4 (ALTER).

EasyRule Final Options Menu Determines the Disposition of a Rule

112 User Guide

Option 4 - ALTER

EasyRule returns you to the primary event specification panel and moves you
through all of the subsequent panels. The values that you entered appear on the
panels. You can make changes, additions, or deletions to the specifications of the
rule as you view your entries. When you finish, press PF3 to return to the EasyRule
final options menu.

Regardless of which option you choose, an ISPF message appears in the upper-right
corner of the panel to indicate whether the rule has been saved.

Make Modifications with EasyRule

The EasyRule final options menu prompts you to decide whether you want EasyRule to
be the mechanism with which you make further changes to the rule.

The default is Y. If you enter N, you will not be able to use EasyRule to modify the code
in the future.

Work With User Code Areas in EasyRule

Sometimes you might want to write a rule in which decisions are made or actions taken
that cannot be achieved with EasyRule. For example, you might want to test system
status using a complex set of AND/OR logic equations, or you might want to choose one
of several actions depending on system status or other criteria. EasyRule provides
optional user code areas, which are reserved spaces in a rule that was generated by
EasyRule. In these user code areas you can add your own REXX statements to the
automatically generated ones, so you can extend EasyRule-generated rules to support
decisions and actions of any degree of complexity. You can use ISPF edit to add or
change REXX code in a user code area. Code generated by EasyRule and saved as an
EasyRule-modifiable rule should only be changed by using EasyRule.

The EasyRule save panel provides three user code area controls:

■ Initialization

■ Termination

■ Processing

Your responses to the three questions on this panel determine whether the respective
user code areas will be generated for that rule. You can also allow all three responses to
default to the OPSVIEW 0.5 value (for details on using this option, see the OPSVIEW User
Guide).

How to Test a Rule

Chapter 5: Using EasyRule 113

How to Test a Rule

After you create a rule, use the AOF test facility to test it before you put it into
production.

EasyRule Error Messages

Error messages generated by EasyRule have a message ID of OPEASYERR.

EasyRule Help

EasyRule help is designed to provide detailed information about each EasyRule panel at
the touch of a key. Through EasyRule help, you can learn:

■ What a panel does

■ What the valid input values are for a panel

■ What OPS/REXX code EasyRule will generate as a result of typical panel entries

■ What an unfamiliar term means

From any EasyRule panel, take either of these actions to access help:

■ Press PF1/13.

■ Enter the HELP command in the Command or Option field.

Basic Types of EasyRule Help Panels

EasyRule provides the following types of help panels:

■ Menu help panels

■ Standard help panels

■ Help example panels

■ Help glossary panels

EasyRule Help

114 User Guide

Access and Use the Menu Help Panels

Menu help panels provide a little more detail about each of the available menu options.
If you access help from an EasyRule menu panel, you access the help panel for that
menu.

To access and use the menu help panels

1. Press PF1/13 from any EasyRule panel, in this example from the Conditions Menu
for message rules.

The following menu help panel appears:

EasyRule --------------- MESSAGE RULE -- CONDITIONS MENU ------------- Tutorial
Option ===>

MENU INSTRUCTIONS: Type the menu selection number in the Option ==> field.

These options look for:

1 - MESSAGE TEXT - Generic or specific message words
2 - CURRENT CONSOLE ROUTING - Route Code(s)
3 - HIGHLIGHTING/COLOR - Descriptor Code(s)
4 - ENVIRONMENTAL VARIABLES - Generically or exactly specified values
5 - MULTI-LINE WTO - Test for multi-line or single line WTO

These options make use of:

A - OTHER ADDRESS SPACES - Determine whether other address spaces are active
D - DAY/TIME/SHIFT/CALENDAR - Include or exclude by time/day conditions
G - GLOBAL VARIABLES - Exact or generic global variable values
L - LOCAL/GLOBAL VARIABLES - Exact or generic local or global variable values
O - OPSINFO VARIABLES - Values about the product and/or its environment
V - OPSDEV STATUS - ONLINE/OFFLINE status of a device or VOLSER

Type selection number for detailed tutorial, or press END to terminate

2. You may take these actions on menu help panels:

■ Enter a selection number or letter in the Option field.

A more detailed help panel for the selected option appears.

■ Press PF3.

The EasyRule help session is terminated.

EasyRule Help

Chapter 5: Using EasyRule 115

Access and Use the Standard Help Panels

Another type of help panel you can access from EasyRule is a standard help panel.

To access and use the standard help panels

1. Press PF1/13 from the Message Rule-Descriptor Code Conditions panel.

The following standard help panel appears:

EasyRule ------- MESSAGE RULE - HILITE/DESCRIPTOR CODES ---------- Tutorial
Option ===>

 PURPOSE: To assign new Descriptor Codes to this Message Rule.

 HOW TO: Type an S next to each character string whose Descriptor Code
 you wish applied to this Rule.

 Type in up to five additional Descriptor Codes from 12 to 16
 to apply to this Rule OR type in a variable name that contains
 the desired Descriptor Codes.

 POSSIBLE See the Glossary for an explanation of Descriptor Codes.
 INPUTS: Type V for an explanation of valid variable syntax.

 Codes 1-6 and 11 are mutually exclusive. However, codes
 7 through 10 can be assigned in combination with other codes.

 RESULTS: Descriptor Codes selected on this panel will be placed as
 assignments in the)PROC section of the Rule's generated
 OPS/REXX code.

Type E for Example, G for Glossary, or press END to terminate tutorial

Standard help panels group information into these sections:

PURPOSE

Explains the purpose of the panel.

HOW TO

Provides basic instructions for the entries you need to make on the panel. Tells
you whether an entry is required or optional.

POSSIBLE INPUTS

Explains what types of entries are valid for a particular field. On some panels,
provides further details for particular fields.

RESULTS

Describes the OPS/REXX code that EasyRule will generate as a result of your
entries.

EasyRule Help

116 User Guide

2. You may take these actions on most standard help panels:

■ Enter E in Option field.

A help example panel appears. It presents you with both an example of a
correctly filled-in panel, and the OPS/REXX code that EasyRule would generate
from those entries.

■ Enter G in Option field.

A help glossary panel appears. In the EasyRule glossary, you can look up the
definitions of unfamiliar terms.

■ Press Enter.

You are presented with a second standard help panel.

Note: This applies to two-part standard help panels only.

■ Press PF3.

Your EasyRule help session is terminated.

EasyRule Help

Chapter 5: Using EasyRule 117

Access and Use the Help Example Panels

On most of the EasyRule standard help panels, you can see an example of a correctly
filled-in panel, along with the OPS/REXX code that EasyRule would generate from those
entries.

To access and use the help example panels

1. Enter E on a standard help panel.

The example of a correctly filled-in help example panel appears:

EasyRule ----- MESSAGE RULE - DESCRIPTOR CODE CONDITIONS EXAMPLE ----- Tutorial
COMMAND ===>
M E S S A G E R U L E - D E S C R I P T O R C O D E C O N D I T I O N S
Use S to select one or more of the following Descriptor Codes:
 S SYSFAIL (1) (Hilite, non-scrollable)
 EVENACTN (2) (Hilite only)

 S DYNSTAT (10)
 CRITEVET (11)
Other Descriptor Code(s) ===>

 This example will generate the highlighted OPS/REXX statements:
)PROC
 EASYRULEDESC = OPSBITS("SYSFAIL")
 EASYRULEDESC = BITOR(EASYRULEDESC,OPSBITS("DYNSTAT"))
 IF (BITAND(MSG.DESC,EASYRULEDESC) = BITOR(EASYRULEDESC,"0000"X))
 THEN DO ...

Help example panels group information into two sections:

■ The top half of the panel shows the EasyRule panel of which you wanted an
example. The panel is filled in with a typical set of entries, which are
highlighted.

■ The bottom half of the panel shows the OPS/REXX code that EasyRule would
generate for the entries in the top half. If necessary, the bottom half also
describes the entries.

Note: Sometimes, due to space limitations, not all lines of generated code appear.

2. Take these actions on help example panels:

■ Press Enter.

Returns you to the previous help panel.

■ Press PF3.

Terminates your EasyRule help session.

The help example panel has been accessed and reviewed.

EasyRule Help

118 User Guide

Access and Use Help Glossary Panels

On most of the EasyRule standard help panels, you can enter G in the Option field to
access the EasyRule glossary.

To access and use the EasyRule glossary

1. Enter G in the Option field to access the EasyRule glossary.

The following sample help glossary displays:

EasyRule ------------------------ GLOSSARY --------------------------- Tutorial
COMMAND ===>
 DESCRIPTOR CODES: Two-digit values that indicate the means of message
 presentation and message deletion on display devices.
 1 System Failure 8 Out-of-Line Message
 2 Immediate Action Required 9 Operator Request
 3 Eventual Action Required 10 Dynamic Status Display
 4 System Status 11 Critical eventual
 5 Immediate Command Response action requested
 6 Job Status 12-16 Reserved for
 7 Application program/processor; future use
 message is to be deleted when
 issuing task is terminated
 Codes 1-6 and 11 are mutually exclusive. Codes 7-10
 can be assigned in combination with any other code.

Help glossary panels are arranged in alphabetical order. Typically, when you access
the glossary, you are not positioned at its beginning.

2. Take these actions on help glossary panels:

■ Enter B in Command field.

Moves you to the TOP of the glossary, or back to the previous help panel.

■ Press Enter.

Moves you forward in the glossary.

■ Press PF3

Terminates your EasyRule help session.

Chapter 6: Using OPS/REXX 119

Chapter 6: Using OPS/REXX

This section contains the following topics:

OPS/REXX Overview (see page 119)
Why OPS/REXX (see page 120)
Uses of OPS/REXX in the Product (see page 121)
Characteristics of OPS/REXX Programs (see page 124)
Use the Precompiled OPS/REXX Programs (see page 126)
Execute Source OPS/REXX Programs (see page 130)
The Interaction of OPS/REXX with Other Languages (see page 138)
OPS/REXX Execution Limits (see page 141)
Elements of OPS/REXX (see page 143)
OPS/REXX Considerations (see page 146)
How to Implement Common Coding Guidelines (see page 147)
OPS/REXX Instructions (see page 151)
Parsing (see page 161)
OPS/REXX Interfaces (see page 163)
Compiler Error Messages (see page 169)
OPS/REXX Usage Problems (see page 170)

OPS/REXX Overview

A crucial part of the CA OPS/MVS product, OPS/REXX is a powerful, SAA-compliant
programming language that adds to standard REXX a set of extensions that automate
and enhance the productivity of z/OS operations.

Because OPS/REXX differs only slightly from standard REXX, this chapter explains the
differences between OPS/REXX and standard REXX instead of describing the REXX
language completely.

Additional OPS/REXX and standard REXX documentation:

■ For a list of OPS/REXX built-in functions that differ from and extend standard REXX,
see the chapter “OPS/REXX Built-in Functions” in the Command and Function
Reference.

■ For more detailed information about standard REXX, consult the book THE REXX
LANGUAGE: A Practical Approach to Programming by M.F. Cowlishaw. If you do not
have a copy of this book, you can order one from Prentice Hall.

Important! If you are not already familiar with REXX, see the Cowlishaw book
before you read further in this chapter.

■ You also may want to read Modern Programming Using Rexx by Robert P. O'Hara
and David Roos Gomberg (Prentice Hall). This book includes many practical
examples of REXX programming.

Why OPS/REXX

120 User Guide

Why OPS/REXX

We chose REXX as the programming language for CA OPS/MVS because it is the most
powerful and easiest-to-use command language available. OPS/REXX provides a simple
but capable high-level language to write operating system exits.

OPS/REXX Performs Better

The OPS/REXX interpreter runs many times faster than the TSO EXEC command for
similar programs. Also, when you use OPS/REXX in the AOF environment, all the code is
pre-interpreted to speed processing even further. OPS/REXX generally runs so speedily
that most users do not need to rewrite functions in assembler language.

OPS/REXX provides automation from the point where it intercepts messages and
commands from JES2 or JES3 and z/OS. Approaches that try to use TSO/E REXX or
NetView for automation are more limited; they can only compare command and
message events against categories in an event table and execute a program if the event
matches one of those categories.

OPS/REXX Is Easy to Learn

If you can program in any language, you can learn to program in OPS/REXX. All variables
are treated as character strings, which OPS/REXX can convert to numeric values and
reconvert to character strings automatically as required.

Powerful Data Handling Tools

OPS/REXX provides facilities for writing structured programs. It supports all common
program structures such as DO WHILE ... END and IF ... THEN ... ELSE. OPS/REXX also
provides many built-in functions to handle dates and times, and to convert binary and
hexadecimal data to or from decimal or character formats.

OPS/REXX also supports subroutine and function calls to and from other languages, as
well as to and from other OPS/REXX programs.

Understandable Error Messages

In developing standard REXX, IBM designed understandable error messages. Because
OPS/REXX is so similar to standard REXX, we have adopted these well-thought-out error
messages for our product. The Cowlishaw book describes messages with error codes up
to 49. The CA OPS/MVS online message documentation describes errors with higher
codes.

Uses of OPS/REXX in the Product

Chapter 6: Using OPS/REXX 121

Uses of OPS/REXX in the Product

The following CA OPS/MVS components use OPS/REXX:

■ The rules of the CA OPS/MVS AOF component are actually OPS/REXX programs that
can respond automatically to system events. The availability of the OPS/REXX
general purpose programming tools in rules gives you an unlimited ability to
automate responses to these events.

■ Important parts of OPSVIEW such as AOF EDIT, the ISPF Dialog Manager application
with which you create and update rules, are written in OPS/REXX. The OPS/REXX
interface to the Dialog Manager is as complete and powerful as that of TSO/E REXX.

■ You can write AOF asynchronous procedures (which execute in CA OPS/MVS server
address spaces) in both OPS/REXX and the TSO/E REXX language.

■ OPS/REXX differs from other REXX implementations in processing numeric values
and implementing NUMERIC DIGITS. OPS/REXX attempts to optimize numeric
processing for values that fit in a 32 bit fullword as a signed integer. OPS/REXX
always converts numeric values that fit in a signed fullword (integer values in the
range -2147483648 through 2147483647) to binary values and performs register
arithmetic on them irrespective of the NUMERIC DIGITS setting. For NUMERIC
DIGITS settings, up to and including 10, in cases where the numeric value will fit in a
signed fullword, OPS/REXX internally uses binary register arithmetic. This is one of
the reasons why OPS/REXX significantly outperforms IBM REXX.

The following example illustrates this difference:

/* REXX */

numeric digits 5

a = 2147483646+1

say a

OPS/REXX output is: 2147483647

IBM REXX output is: 2.1475E+9

Note: OPS/REXX is not strictly correct in its numeric processing but the
performance advantages are significant and CA does not intend to change
OPS/REXX to comply with the REXX language definition in this case. For
performance reasons CA recommends that, unless your REXX program requires
greater precision, you allow NUMERIC DIGITS to default to 9.

Uses of OPS/REXX in the Product

122 User Guide

Similarities Between OPS/REXX and Standard REXX

Both OPS/REXX and the standard REXX language enable you to issue commands to
various host environments. Both versions of REXX offer symbolic substitution that is
simpler than in the TSO/E CLIST language or in z/OS JCL.

The current version of OPS/REXX supports these standard REXX features:

■ All REXX programming structures as defined in the book THE REXX LANGUAGE: A
Practical Approach to Programming by M.F. Cowlishaw. For example, OPS/REXX
supports counter variables on DO statements and the PROCEDURE statement.

■ All standard SAA REXX functions plus most of the functions documented in the
second edition of the Cowlishaw book, except for the I/O functions (CHARIN,
CHAROUT, CHARS, LINEIN, LINEOUT, and LINES).

■ Numbers with decimal points and exponents, as well as numeric digits with a
precision up to 20 (default 9).

■ Strings containing as many as 32,000 characters, including strings to ISPEXEC to
support long commands and values of all REXX variables including global variables.
OPS/REXX can build dynamic display areas in panels.

The CA OPS/MVS REXXMAXSTRINGLENGTH parameter enables you to use a lower
maximum string length if you want.

Uses of OPS/REXX in the Product

Chapter 6: Using OPS/REXX 123

Differences Between OPS/REXX and Standard REXX

In addition to the similarities listed above, there are several important differences
between OPS/REXX and standard REXX. These include:

■ In OPS/REXX, external subroutines are resolved and bound with the main program
prior to execution. This characteristic provides a major performance benefit for
OPS/REXX when calling external subroutines, particularly in the AOF rule
environment. One negative aspect of this characteristic is that all subroutines must
be available at the time an OPS/REXX program or AOF rule is compiled or enabled
on any system, even if some subroutines are never actually called during execution
in that environment. For example, consider the following code:

if OPSINFO("SMFID") == "SYSA" then

 call EXTSUB1

else

 call EXTSUB2

Clearly, the EXTSUB1 subroutine is called only when the code executes on SYSA.
Nevertheless, OPS/REXX requires the EXTSUB1 subroutine (or load module) to be
available on every system. In TSO/E REXX, external subroutines are resolved only
when they are called during execution.

In CA OPS/MVS, you can use the OPSWXTRN keyword of the OPTIONS instruction to
indicate to OPS/REXX which external subroutines, built-in functions, and load
modules are not absolutely required to be present prior to execution. The presence
of the OPSWXTRN keyword in an OPTIONS instruction allows programs containing
this OPTIONS instruction to be used by both OPS/REXX and TSO/E REXX, so the
portability of REXX code that uses this instruction is unaffected. For more
information, see OPTIONS Instruction in this chapter.

■ In the Cowlishaw definition of REXX, when a PULL instruction is executed and the
external data queue is empty, a read is done from the default character input
stream. In OPS/REXX, this is not practical because in a rule, the only possible default
character input stream is the console. Prompting the operator for the next line of
input would be undesirable to say the least. Therefore, in OPS/REXX a PULL on an
empty external data queue results in a null (zero length) line being returned.

■ The PUSH instruction is not implemented in OPS/REXX. Its use results in REXX error
number 64, which is the unimplemented feature error. The QUEUE instruction is
implemented in OPS/REXX, and in most cases, you can use it to accomplish the
same results.

■ Because OPS/REXX is required to run efficiently in different environments, some
differences exist in REXX instructions such as the INTERPRET instruction, where a
limited implementation is available. Since the INTERPRET instruction causes the
compiler to be reinvoked, any storage required to process the instruction is
retrieved from existing sources, to avoid dynamically getting storage. In most cases
the VALUE function would serve as a much more efficient alternative to INTERPRET.

■ When converting from date format B to any other format, standard REXX adds one
day to the resulting date, whereas OPS/REXX does not.

Characteristics of OPS/REXX Programs

124 User Guide

Note: For more information see the OPS/REXX DATE function in the Command and
Function Reference.

Characteristics of OPS/REXX Programs

You can execute an OPS/REXX program in any of these ways:

■ Explicitly, through the OPSEXEC (or OX) command

■ Implicitly, through the OPSIMEX (or OI) command

■ As batch jobs

■ As started tasks

Use the OPSEXEC and OPSIMEX commands to execute OPS/REXX programs in source
code or precompiled format. Use the OXCOMP and OICOMP commands to compile
OPS/REXX programs without executing them.

When used with the AOF, OPS/REXX programs have a special structure and are called
rules. Outside the AOF environment, OPS/REXX programs are called programs.

Unless you have precompiled rules, the CA OPS/MVS product compiles rules when you
activate them with the ENABLE command and runs them strictly from their internal
form (rather than reloading and reinterpreting them each time they are needed).
Outside the AOF environment, OPS/REXX programs execute from source code or from
staged internal forms.

Differences Between Precompiled and Source REXX Programs

The CA OPS/MVS product has always supported running OPS/REXX programs in source
code format. Now, the product also supports storing and running precompiled
OPS/REXX programs. You can issue OXCOMP and OICOMP commands to compile
OPS/REXX programs without executing them; both commands store the compiled REXX
code in the data set allocated to the OPSCOMP ddname. You can copy data sets
containing precompiled OPS/REXX programs with no restrictions.

Precompiled OPS/REXX programs use exactly the same REXX functions as source code
programs, but the precompiled programs are loaded faster. When you call a
precompiled program, OPS/REXX loads and executes it, eliminating the time needed to
read the source code and compile it. In contrast, source code programs take more time
to load because OPS/REXX has to read and compile the code first.

Characteristics of OPS/REXX Programs

Chapter 6: Using OPS/REXX 125

Explicit and Implicit Program Execution

The only difference between implicit and explicit program execution is how you specify
the name of the program to execute and where OPS/REXX looks for the name:

■ With explicit execution, you supply the name of the data set containing the
program.

■ With implicit execution, you provide only a program name. OPS/REXX then locates
that program in the library or libraries allocated to ddname OPSEXEC or SYSEXEC.

Formats for OPS/REXX Data Sets

Data sets containing OPS/REXX programs can have RECFM=V or RECFM=F record
formats, with or without line numbers. For variable records, OPS/REXX checks columns
1 through 8 of the first line in the program to determine if line numbers exist. For fixed
records, OPS/REXX checks the last eight columns of the first record to determine if line
numbers exist.

Note: This checking follows standard TSO conventions.

If the first line in the program has no line number, be sure to check that no subsequent
lines have numbers. This can occur if someone uses ISPF EDIT to copy lines from a
line-numbered program into a program without line numbers.

The maximum logical record length supported is LRECL=255.

How OPS/REXX Locates Stored OPS/REXX Programs

OPS/REXX programs can reside in OPSEXEC data set libraries or in data sets elsewhere in
the SYSEXEC concatenation. Programs in data sets allocated to OPSEXEC execute faster
because OPS/REXX can execute them without compiling them first.

When you invoke a program, OPS/REXX always looks for it first in the OPSEXEC libraries.
This is true as long as you have allocated the OPSEXEC ddname. If the program is not
there, OPS/REXX looks in the SYSEXEC libraries and, after finding it, reads, compiles, and
runs it.

Note: To avoid slowing down CA OPS/MVS processing, use the OPSEXEC DD, which
prevents REXX code from being compiled at runtime.

Use the Precompiled OPS/REXX Programs

126 User Guide

Execute a Program That Calls External Routines

Compiling an OPS/REXX program also compiles all subroutines associated with it.

The way CA OPS/MVS scans for external routines depend upon whether you are editing
a sequential data set or the member of a partitioned data set.

When you explicitly execute an OPS/REXX program that is not precompiled and that
resides in a partitioned data set, CA OPS/MVS scans that data set to try to locate any
external routines. If external routines are not found in the data set containing this
program, CA OPS/MVS then searches in the libraries concatenated under the SYSEXEC
ddname.

When you explicitly execute a program residing in a sequential data set,
CA OPS/MVS scans only the SYSEXEC ddname for external routines.

To explicitly execute a program, use either the !OI or !OX edit macro.

Use the Precompiled OPS/REXX Programs

The following section discusses the use of precompiled OPS/REXX programs.

The OPSEXEC and OPSCOMP Libraries

As described earlier, when you invoke a program, OPS/REXX first looks for a
precompiled version of it in the OPSEXEC libraries. If the program is found, OPS/REXX
loads and executes it. If OPS/REXX cannot find the program in the OPSEXEC libraries, it
looks in the SYSEXEC libraries and, after finding it, reads, compiles, and runs it.

If you plan to precompile and execute OPS/REXX programs, you must allocate two
different ddnames, OPSCOMP and OPSEXEC. If you never intend to precompile
OPS/REXX programs, but you do plan to execute them, you need to allocate only the
OPSEXEC ddname.

Use the Precompiled OPS/REXX Programs

Chapter 6: Using OPS/REXX 127

Allocate the OPSCOMP DDname

The OPSCOMP ddname contains the output of the compile process. When you compile
an OPS/REXX program using either the OICOMP or OXCOMP command, CA OPS/MVS
saves the compiled version of the program as a member in the data set you have
allocated to the OPSCOMP ddname. Because the OPSCOMP ddname is an output data
set, it must be a single data set rather than a concatenation. This rule conforms to
standard z/OS restrictions on output data sets.

To allocate the OPSCOMP data set, use either the JCL or the TSO ALLOC command
shown here:

■ JCL

//OPSCOMP DD DISP=SHR,DSN=user.compile.library

■ TSO

ALLOC FILE (OPSCOMP) DATASET('user.compile.library') SHR

In the previous examples, user.compile.library is the name of the data set that is to store
the output of the compile process. Different user.compile.library data sets can be in use
at different times.

Follow these guidelines when allocating OPSCOMP:

■ For additional flexibility, do not allocate OPSCOMP permanently.

■ Allocate OPSCOMP to an output partitioned data set with a minimum block size of
4096 (at least 8192 is recommended) and a logical record length of 4096. You may
want to reblock the data set for efficiency; the larger the block size, the better the
performance. The OPEXRBLK member of the OPS.CCLXCNTL library contains JCL to
reblock this data set or any compiled library.

■ Place the data set you allocate to the OPSCOMP DDNAME first in your OPSEXEC
concatenation (as described below).

Use the Precompiled OPS/REXX Programs

128 User Guide

Allocate the OPSEXEC DDname

When you invoke an OPS/REXX program, OPS/REXX first searches the OPSEXEC ddname
for a precompiled version of it.

For this reason, the same data set that you allocated to the OPSCOMP ddname typically
should also be the first data set in your OPSEXEC ddname concatenation.

If you are an OPSVIEW user, second in your OPSEXEC ddname concatenation should be
the SYS1.OPS.CCLXOPEX data set. The SYS1.OPS.CCLXOPEX data set stores all previously
compiled REXX programs for the OPSVIEW feature, and should be allocated to the
OPSEXEC ddname of all OPSVIEW users for improved performance. In case you have
customized any of these programs for use at your site, placing this CA-distributed data
set second ensures that OPS/REXX finds your versions first.

The SYS1.OPS.CCLXOPEX data set has a block size of 8192. For performance reasons, you
may want to re-block the SYS1.OPS.CCLXOPEX data set (the larger the block size, the
better the performance). To do so, use the JCL in the OPEXRBLK member of the
OPS.CCLXCNTL library.

To allocate the OPSEXEC ddname, use either the JCL or the TSO ALLOC command shown
in the following examples.

Note: In these examples, the SYS1.OPS.CCLXOPEX data set appears second in the
concatenation:

■ JCL

//OPSEXEC DD DISP=SHR,DSN=user.compile.library

// DD DISP=SHR,DSN=SYS1.OPS.CCLXOPEX

■ TSO

ALLOC FILE (OPSEXEC)

 DATASET('user.compile.library' 'SYS1.OPS.CCLXOPEX') SHR

In the examples, user.compile.library is the name of the data set where you store your
OPS/REXX programs. Different user.compile.library data sets can be in use at different
times.

Use the Precompiled OPS/REXX Programs

Chapter 6: Using OPS/REXX 129

Maintain Compiled OPS/REXX Programs

At times, internal changes in OPS/REXX can make all of your precompiled REXX
programs and rules incompatible with the current OPS/REXX execution environment.
When this occurs, CA OPS/MVS issues message OPS0990 to warn you to recompile your
REXX programs and rules.

To maintain compiled OPS/REXX programs

1. Use OPSVIEW options 2.4 and 2.5 to do maintenance on precompiled REXX
programs.

2. Use OPSVIEW options 2.5 and 4.5.2 to help you recompile.

OICOMP Command

Using the CA OPS/MVS OICOMP command, you can compile any program in the
SYSEXEC ddname and save it in the data set allocated to the OPSCOMP ddname. When
using OICOMP, you need to provide only a program name.

Use either of these OICOMP formats:

■ Format 1

OICOMP member [NOSOURCE]

■ Format 2

OICOMP PROGRAM(member) [NOSOURCE]

OXCOMP Command

The OXCOMP command enables you to compile any program in any partitioned or
sequential data set and save it in the data set allocated to the OPSCOMP ddname. When
using OXCOMP, you need to provide the name of the data set containing the program.
You can also use OXCOMP to compile an entire partitioned data set by omitting the
specification of a value for member. If you are compiling a particular program in a
partitioned data set, be sure to include the name of the program as the value for
member.

Use either of these OXCOMP formats:

■ Format 1

OXCOMP 'dsname(member)' [NOSOURCE]

■ Format 2

OXCOMP PROGRAM('dsname(member)') [NOSOURCE]

Execute Source OPS/REXX Programs

130 User Guide

Values You Specify for OICOMP and OXCOMP

The member value specifies the name of the member containing the OPS/REXX source
program. The NOSOURCE keyword causes the compiled version of the program to be
saved without any SOURCE statements, generating a smaller data set member that can
be loaded into storage more quickly. If you specify NOSOURCE, TRACE statements and
error messages from the SYNTAX routine do not include SOURCE statements, and the
REXX SOURCELINE() function is unusable. Instead, OPS/REXX displays the number of the
line containing the statement in error.

Execute Source OPS/REXX Programs

The following section discusses the execution of source OPS/REXX programs.

Ways to Invoke OPS/REXX Programs in Source Format

You can invoke OPS/REXX programs in source code format as follows:

■ From READY mode in an interactive TSO session

■ From ISPF dialogs

■ From ISPF EDIT

■ From AOF rules

■ From other OPS/REXX programs

■ In a batch job, by directly executing the OPS/REXX interpreter

■ In a batch job, under the batch TSO TMP

■ From programs written in other languages

The following sections describe each of these OPS/REXX program invocations in detail.

Explicitly Compared to Implicitly Specifying the OPS/REXX Program Data Set

Using the OPSEXEC (alias OX) command executes an OPS/REXX source program
explicitly, while using the OPSIMEX (alias OI) command invokes a source program
implicitly.

Execute Source OPS/REXX Programs

Chapter 6: Using OPS/REXX 131

Issue the OPSEXEC (OX) Command

The OPSEXEC or OX command has the following syntax:

OPSEXEC|OX PROGRAM('dsname[member]')

 [ARG('arguments')]

 [ITRACE('x')]

 [MAXEDQ(lines)]

 [SUBSYS(ssid)]

 [WORKSPACE(size)]

To execute an OPS/REXX source program directly from TSO READY mode (or ISPF PDF
menu 6) using the OPS/REXX interpreter, use either of the following formats for
OPSEXEC:

OPSEXEC "dsname" argument

OX "dsname" argument

For detailed explanations on each OPSEXEC keyword, see OPSEXEC Command Processor
in the Command and Function Reference.

Issue the OPSIMEX (OI) Command

You can execute any source program located in ddname SYSEXEC directly from TSO
READY mode (or ISPF PDF Menu 6) using the OPSIMEX (alias OI) command. This
command executes programs implicitly. You must preallocate the SYSEXEC file name to
one or more partitioned data sets before issuing the command.

The OPSIMEX or OI command has the following syntax:

OPSIMEX|OI PROGRAM('dsname[member]')

 [ARG('arguments')]

 [ITRACE('x')]

 [MAXEDQ(lines)]

 [SUBSYS(ssid)]

 [WORKSPACE(size)]

You can also use these abbreviated formats for OPSIMEX:

OPSIMEX member argument

OI member argument

The OPSIMEX command uses exactly the same keywords and arguments as the OPSEXEC
command; the only difference is that OPSIMEX invokes a program implicitly. When you
invoke OPS/REXX implicitly, the argument string is passed exactly as it is passed when
you invoke OPS/REXX explicitly.

Execute Source OPS/REXX Programs

132 User Guide

Note: When using the form of the OPSIMEX or OI command that uses PROGRAM or
other keywords, enclose the argument string in single quotation marks.

The record formats supported for the SYSEXEC libraries are the same as those supported
for REXX data sets used to invoke OPS/REXX explicitly.

Implicitly Invoke Source Programs

To invoke a REXX program called ABC with a null argument, issue the following
command:

OI ABC

To invoke the same program with an argument of Now is the time, issue either of the
following commands. These commands work only if the member ABC exists in the
library or libraries allocated to either ddname OPSEXEC or ddname SYSEXEC.

OI ABC Now is the time

OI PROGRAM(ABC) ARG("Now is the time")

Execute OPS/REXX Source Programs from ISPF Dialogs

You can invoke OPS/REXX source programs from in ISPF dialogs explicitly or implicitly as
shown in the following example. Implicitly invoking a program, however, uses less
overhead.

SELECT PGM(OI) PARM(member argument)

SELECT CMD(OI PROGRAM (member) [ARG(argument)] [SUBSYS(ssid)])

SELECT PGM(OX) PARM(member argument)

SELECT CMD(OX PROGRAM (dataset(member)) [ARG(argument)] [SUBSYS(ssid)])

Note: If you use PGM calls to issue the OX or OI command, you can specify the
subsystem ID as an argument.

The PGM calls differ from the CMD calls only in the way parameters are passed.
However, for CMD calls, ISPF Dialog Management services move the cursor to the
bottom of the screen before the command starts to execute. This can be annoying; to
avoid it, use PGM calls.

The OPS.CCLXEXEC library distributed with CA OPS/MVS contains examples of writing
complex ISPF dialogs in OPS/REXX.

Execute Source OPS/REXX Programs

Chapter 6: Using OPS/REXX 133

Execute OPS/REXX Source Programs from ISPF EDIT

If you are editing an OPS/REXX program using ISPF EDIT, you can execute it directly
under ISPF EDIT using one of the following forms of the OX ISPFEDIT macro call. You can
omit the exclamation point that precedes the OX or OI command if the following
statement appears in your initial ISPF EDIT macro:

ISREDIT DEFINE OX PGM MACRO

!OX

!OI

!OX "argument"

!OI "argument"

Entering any of these commands on the command line while in ISPFEDIT causes the
current ISPFEDIT data set to execute. The program is not saved to disk; instead, the
OPS/REXX interpreter uses the program copy being kept by ISPFEDIT in virtual storage.
This feature is especially handy when you are debugging OPS/REXX programs.

For details about ISPF EDIT macros, see ISPF/PDF Edit and Edit Macros.

How OPS/REXX Programs in the AOF Work

In the AOF environment, the OPS/REXX interpreter does the following:

■ Compiles an AOF rule when it is enabled if no precompiled version of that rule
exists. While compiling a rule, the interpreter reads the rule source code from the
rule data set library on disk and places the code in internal CA OPS/MVS storage.
The interpreter does the same for any external subroutines that are called directly
or indirectly.

■ Runs the)INIT section of a rule when a rule is being enabled.

■ Runs the)TERM section of a rule when a rule is being disabled.

■ Runs the)PROC section of a rule when an event matching the event type specified
for the rule occurs.

All other uses of OPS/REXX require you to invoke the OPS/REXX interpreter explicitly.

Execute Source OPS/REXX Programs

134 User Guide

Call the Interpreter from an OPS/REXX Program

An OPS/REXX program can call the OPS/REXX interpreter as an OPS/REXX function or
subroutine. This calling method is not efficient, but it can be useful in special situations.

Use either of the following statements to call the interpreter from another OPS/REXX
program:

variable = OI("member argument")

CALL OI "member argument"

ADDRESS TSO

 "OI member argument"

 "OX dsname argument"

The value returned by the function calls (or into variable RESULT by the CALL
instructions) is the error code of the interpreter. Usually, this value is the same as any
standard REXX error code (or zero if the program was interpreted without errors).

When you use the ADDRESS TSO form, any messages and output produced by the
program (including TRACE output) are returned in the external data queue just like
other TSO commands (unless the calling program is executing under an AOF rule).

Execute OPS/REXX Programs from Batch

You can invoke OPS/REXX programs implicitly or explicitly from batch.

Invoke an OPS/REXX Program Implicitly

To invoke an OPS/REXX program implicitly and run it as a batch job, use the following
JCL:

//stepname EXEC PGM=OI,PARM='member argument'

//OPSEXEC DD DSN=user.compiled.library

// DD DSN=OPS.SYS.CCLXOPEX

//SYSEXEC DD DSN=library,DISP=SHR

The DSN parameter must give a fully qualified data set name without quotation marks.
No prefix or suffix is added to the name you specify.

Invoke an OPS/REXX Program Explicitly

To invoke an OPS/REXX program explicitly and run it as a batch job, you need only the
JCL shown here:

//stepname EXEC PGM=OX,PARM='dataset(member) argument'

Execute Source OPS/REXX Programs

Chapter 6: Using OPS/REXX 135

Considerations for Batch Execution

Before executing an OPS/REXX program as a batch job, note that:

■ Positive numeric values specified on the RETURN statement are retrieved as the
return code.

■ You cannot use the ADDRESS TSO and ADDRESS ISPEXEC environments in batch
mode.

■ Batch programs may be a better place to run long-running REXX programs than
servers, which do best at processing short-term jobs.

■ When an OPS/REXX program runs as a batch job or as a started task and you are
either running multiple CA OPS/MVS copies on one system or the subsystem where
CA OPS/MVS runs is not called OPSS, you can ensure that the program executes on
the correct subsystem. To do so, specify the following when invoking the program
or submitting the batch job:

OPS$ssid DD DUMMY

The ssid is the subsystem name.

Execute OPS/REXX Programs from Batch (Under the Batch TSO TMP)

Use the following JCL to run the TSO TMP as a batch job step:

// EXEC PGM=IKJEFT01

// PARM='first command or CLIST to be executed'

//SYSPROC DD DISP=SHR,DSN=user.clistlib

//SYSEXEC DD DISP=SHR,DSN=user.rexxlib

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 (TSO commands or clists to be executed

 * including *

 OX commands to invoke OPS/REXX programs from data sets,

 OI commands to invoke OPS/REXX programs from //SYSEXEC,

 or both)

/*

Execute Source OPS/REXX Programs

136 User Guide

Execute OPS/REXX Programs from USS

OPS/REXX programs can be executed in the USS shell by invoking the OI or OX command
from an HFS or zFS in compatibility mode file. The only restriction is that TSO must not
be active in the same address space in which OPS/REXX is invoked. For an OMVS session
invoked from TSO or ISPF, the parameter NOSHAREAS must be specified with the OMVS
command. This ensures that the USS shell actually runs in a USS transaction server
address space. Command syntax parsing in USS is also different than in TSO. USS parses
the parameter string that follows the command file name for imbedded variable
substitution and other USS commands. Therefore the parameters destined for
OPS/REXX must be enclosed in single or double quotes. Double quotes are not as
restrictive as single quotes and may result in the need to use the escape character to
prevent undesired substitutions.

While OX dynamically allocates the data set containing the desired OPS/REXX program,
OI assumes a pre-allocated SYSEXEC data set. SYSEXEC must be allocated in the USS
transaction server address space for OI to work. Although OPSDYNAM is an OPS/REXX
host command, it can also be used as a USS shell command to allocate the required
SYSEXEC data sets. Other POI commands that can execute as USS shell commands are
OPSGETV, OPSGETVL, OPSSETV, OPSDELV, and OPSQL. All other OPS/REXX functions and
host commands such as ADDRESS WTO are available in an OPS/REXX program run as a
USS command using OI or OX.

There are two ways to place CA OPS/MVS commands in the USS HFS or zFS in
compatibility mode file system. The first method is to copy the desired commands with
all their aliases to a PDSE data set, and then use the TSO OPUT command to copy the
PDSE load modules to the desired HFS or zFS in compatibility mode directory. In the case
of OPS/REXX, you would use ISPF 3.3 to copy module OPSIMEX and all its aliases (OI,
OICOMP, OIDB, OPSEXEC, OX, OXCOMP, OXDB, and OXSCAN) to a PDSE. Then issue the
OPUT command from TSO for any aliases you want to place in the HFS or zFS in
compatibility mode:

OPUT 'OPS.PDSELOAD(OX)' '/opsmvs/ox' BINARY

OPUT 'OPS.PDSELOAD(OI)' '/opsmvs/oi' BINARY

The disadvantage of this method is that maintenance applied to the product must be
propagated manually to the HFS or zFS in compatibility mode.

The second method is to create null HFS or zFS in compatibility mode files for the
commands and use the sticky bit feature of HFS or zFS in compatibility mode files to
cause USS to search for the real load modules from STEPLIB and LINKLIST/LPA. To create
the null files, issue the following USS command:

touch /opsmvs/oi

To set the sticky bit for the file, issue the USS command:

chmod o=+s /opsmvs/oi

Execute Source OPS/REXX Programs

Chapter 6: Using OPS/REXX 137

To verify the permissions of the command files, issue the USS command:

ls -EH /opsmvs/oi

The advantage of this method is that no special procedures are required to recopy
module maintenance, no PDSE is required for copies, and no significant HFS or zFS in
compatibility mode file space is used. However, when the sticky bit method is used,
dynamic allocations using OPSDYNAM as a command to allocate SYSEXEC is not retained
for subsequent commands. In this case the OI command is of no practical use and only
OX can be used.

To execute the OPS/REXX commands in the HFS or zFS in compatibility mode from a
Telnet or OMVS NOSHAREAS session, the CA OPS/MVS load library must be in the
system LINKLIST/LPA or a STEPLIB must be used. For example, you could use the
following sequence of USS shell commands to execute the MYEXEC OPS/REXX program:

export STEPLIB=SYS1.OPS.CCLXLOAD

/opsmvs/ox "'SYS2.OPS.REXX(MYEXEC)'"

Following is an example of how to call OPSQL directly:

/opsmvs/opsql "SELECT RULENAME FROM AOF_PERIODS WHERE NODE='XE33'"

To use OPS/REXX in the IBM USS REXX, OI and OPSDYNAM can be called as functions if
they are located in the LINKLIST/LPA or STEPLIB. The argument list consists of a single
argument using the same syntax as the TSO command. The following USS REXX program
invokes OI to execute an OPS/REXX program:

 /* Rexx */

 /* Invoke OPS/REXX program TESTINFO */

 opsrc = OPSDYNAM("ALLOC DD(SYSEXEC) DSN(SYS2.O.REXX) SHR REUSE")

 say "Calling OPS/REXX"

 opsrc = OI("TESTINFO")

 do while QUEUED() > 0

 pull qmsg

 say "XDQ="qmsg

 end

 return opsrc

The following USS REXX program invokes OPSQL as a function:

 /* Rexx */

 z = OPSQL("SELECT RULENAME FROM AOF_PERIODS WHERE NODE='XE33'")

 say 'RC'z

 if RULENAME.0>0 then

 do I=1 to RULENAME.0

 say RULENAME.i

 end

The Interaction of OPS/REXX with Other Languages

138 User Guide

The Interaction of OPS/REXX with Other Languages

One of the most powerful features of OPS/REXX is its extendability by users. You can
write OPS/REXX external subroutines and functions in assembler language; source
module OPSMFID in the ASM library shipped with all copies of CA OPS/MVS provides an
excellent reference for users wanting to do so.

Requirements for Non-REXX External Functions

An OPS/REXX external function or routine not written in REXX must meet these
requirements:

■ It must be a load module. The CA OPS/MVS product uses the z/OS LOAD macro to
load the external routine.

■ If the routine is called from an AOF rule:

– The load module must be reentrant.

– The code must be able to run in cross-memory mode.

– The code cannot issue SVC calls (such as GETMAIN, WTO, I/O, and so on).

– The code cannot acquire resources from the home address space.

These restrictions are inflexible and require in-depth knowledge of cross-memory mode
programming. In many cases, you must move data to areas accessible in cross-memory
mode, suspend cross-memory mode to be able to call a system service, or both.

Register Contents

On entry to a REXX function, the registers contain the following:

■ Register 0 contains the address of an ENVBLOCK

■ Register 1 contains the address of an EFPL

■ Registers 2 through 12 are unpredictable

■ Register 13 points to a save area for the routine

■ Register 14 contains the return address to the caller

■ Register 15 contains the entry point address of the routine

The Interaction of OPS/REXX with Other Languages

Chapter 6: Using OPS/REXX 139

EFPL Format

The External Function Parameter List (EFPL) format is compatible with the IBM TSO/E
REXX EFPL and can be mapped by the TSO/E REXX macro IRXEFPL. OPS/REXX supports
only two fields: EFPLARG, which points to the argument, and EFPLEVAL, which points to
the word containing the address of the result EVALBLOCK (OPS/REXX supports all the
fields in the EVALBLOCK). The TSO/E REXX macro IRXEVALB maps the EVALBLOCK.

The save area pointed to by register 13 is 72 bytes long. To store the contents of the
registers on entry in this save area, use the z/OS SAVE macro.

Outcome of Processing a REXX Routine

When the REXX routine has completed processing, it should do the following:

1. Store a function result in the EVALBLOCK pointed to by the EFPL. This is required for
a function call and optional for routines called through the REXX CALL instruction.

2. Restore all registers to the state they were in upon entry to the routine.

3. Set a return code in register 15.

4. Return control to the address passed in register 14 on entry.

Pass Arguments

Field EFPLARG in the EFPL (whose address is passed in register 1 on entry to a REXX
function) contains the address of the argument list. The argument list consists of two
full words (eight bytes) for each argument specified on the routine or function call. The
first word points to the address of a string and the second word contains the length of
the string. X'FFFFFFFFFFFFFFFF' terminates the argument list.

For example, this function call:

a = UserFunc("First",2,"Argument 3")

Results in this argument list:

DC A(ARG1),F"5"

DC A(ARG2),F"1"

DC A(ARG3),F"10"

DC X"FFFFFFFF",X"FFFFFFFF"

Pointed to by field EFPLARG. In this example:

ARG1 DC C"First"

ARG2 DC C"2"

ARG3 DC C"Argument 3"

The Interaction of OPS/REXX with Other Languages

140 User Guide

Omit Arguments

A value of zero in the first word of the argument and a zero in the second word denotes
an omitted argument. An omitted argument is different from a null string argument
(indicated by a non-zero first word and a zero in the second word). For example, this
function call:

x = abc(,"",3)

Results in this argument list:

DC A(0),F"0"

DC A(ARG2),F"0"

DC A(ARG3),F"1"

DC X"FFFFFFFF",X"FFFFFFFF"

In this example:

ARG2 DC C" " or ARG2 EQU 1

ARG3 DC C"3"

The "" symbol denotes a null argument.

Return Information

On entry to an OPS/REXX program, the field EFPLEVAL in the external function
parameter list (the EFPL whose address is passed in register 1) points to an EVALBLOCK,
an evaluation control block. The evaluation control block is an area the caller
preallocated to return a function result. A routine need not return a result if a REXX
CALL instruction invoked it; but a function result must be returned in all other cases.

Copy the result (a string) into the EVALBLOCK_EVDATA. Check the maximum length of
this field to make sure that you do not overlay storage. The EVALBLOCK that CA
OPS/MVS builds can contain a 32,000-byte result value.

The length of the returned string should be stored as a fullword integer in field
EVALBLOCK_EVLEN. On entry to a routine, the caller has primed this field with the value
X'80'. If this value returns unchanged, the function returns no result.

Send Data to the External Queue

User-designed functions written in assembler language can send data to the OPS/REXX
external data queue using the standard TSO/E REXX IRXSTK service. You can get the
address of the REXX stack service routine from the EXTE pointed to by the environment
block (register 0 on entry to the function). QUEUE is the only supported function.

For more information on the stack service, see the IBM documentation.

OPS/REXX Execution Limits

Chapter 6: Using OPS/REXX 141

Create REXX Variables

User-written functions written in assembler language can create and extract REXX
variables using the standard TSO/E REXX IRXEXCOM service. You can get the address of
the REXX variable service routine from the EXTE pointed to by the environment block
(register 0 on entry to the function). QUEUE is the only supported function.

For more information on the IRXEXCOM service, see the IBM documentation.

OPS/REXX Execution Limits

The following section discusses OPS/REXX execution limits.

Resource Use Monitoring

When OPS/REXX executes a REXX program, it checks to see that a program does not
consume an excessive amount of resources. This checking is especially important for
executing AOF rules that process system events, as runaway rules can degrade system
performance significantly, causing poor response time and other problems.

Specifically, OPS/REXX monitors:

■ Program execution time

■ How many REXX clauses executed

■ How many REXX SAY instructions executed

■ How many host commands were issued

■ How many output lines the external data queue contains

OPS/REXX Execution Limits

142 User Guide

Parameters That Set Limits

CA OPS/MVS product parameters set limits for the execution values listed on the
previous page. You can limit these values separately for AOF rules and for other REXX
programs run through OX and OI commands.

The following parameters set limits:

AOFMAXSECONDS

For AOF rules except request rules, sets the maximum time, in seconds, that a rule
can execute for a given event.

AOFMAXCLAUSES

For AOF rules except request rules, sets the maximum number of clauses that a rule
can execute for a given event.

AOFMAXSAYS

For AOF rules except request rules, sets the maximum number of SAY instructions
that a rule can execute for a given event.

AOFMAXCOMMANDS

For AOF rules except request rules, sets the maximum number of host commands
that a rule can execute for a given event.

AOFMAXQUEUE

For AOF rules including request rules, sets the maximum number of lines that a rule
can have in the external data queue for a given event.

REXXMAXSECONDS

For request rules and REXX programs, sets the maximum time, in seconds, that a
REXX program or request rule can execute for a given event.

REXXMAXCLAUSES

For request rules and REXX programs, sets the maximum number of clauses that a
REXX program or request rule can execute for a given event.

REXXMAXSAYS

For request rules and REXX programs, sets the maximum number of SAY
instructions that a REXX program or request rule can execute for a given event.

REXXMAXCOMMANDS

For request rules and REXX programs, sets the maximum number of host
commands that a REXX program or request rule can execute for a given event.

Elements of OPS/REXX

Chapter 6: Using OPS/REXX 143

REXXMAXQUEUE

For REXX programs, sets the maximum number of lines that a REXX program can
have in the external data queue for a given event.

REXXMAXSTRINGLENGTH

For request rules and REXX programs, sets the maximum length of any string in a
REXX program or request rule.

Important! OSF TSO servers are not intended for running an OPS/REXX program that
takes a long time to execute. You should use OSF TSL servers for those programs. When
an OPS/REXX program running on an OSF TSO server exceeds the server execution limits
set by the CA OPS/MVS OSFCPU, OSFOUTLIM, OSFRUN, or OSFWAIT parameters, the
OSF terminates that program even if it has not exceeded any of the AOF or REXX
execution limits described above. For example, both the OSFRUN parameter and the
REXXMAXSECONDS parameter specify how long a rule or REXX program can take to
execute. So, if the value of OSFRUN is lower than the REXXMAXSECONDS value, the OSF
stops a program executing on an OSF TSO server as soon as it exceeds the time limit that
OSFRUN set.

To prevent programs executing in OSF TSO servers from terminating prematurely, either
raise the values of the CA OPS/MVS OSFCPU, OSFOUTLIM, OSFRUN, and OSFWAIT
parameters or run the program as a separate started task or batch job. Equivalent
parameters (OSFTSLCPU, OSFTSLOUTLIM, OSFTSLRUN, and OSFTSLWAIT) control the
limits for the OSF TSL servers and (OSFTSPCPU, OSFTSPOUTLIM, OSFTSPRUN, and
OSFTSPWAIT) control the limits for the OSF TSP servers.

Override Execution Limits

OPS/REXX programs and AOF rules can override most of the execution limits by issuing
the REXX OPTIONS instruction. However, you cannot change the maximum number of
lines allowed in the external data queue once a REXX program begins executing. For a
more detailed discussion, see OPTIONS Instruction in this chapter.

Elements of OPS/REXX

The following section discusses the elements of OPS/REXX.

Symbolic Substitution in OPS/REXX

If you are familiar with z/OS JCL and the TSO CLIST language, you will notice that
OPS/REXX does not use ampersands (the & symbol). Symbolic substitution in REXX is
different from that in the TSO CLIST language or in z/OS JCL, and is much easier to use.

Elements of OPS/REXX

144 User Guide

REXX Elements That OPS/REXX Supports

OPS/REXX implements all of the elements of the SAA standard REXX language except for
the following instructions and functions:

■ FORM

■ OPTIONS ETMODE

■ PUSH

■ The input/output functions CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, LINES,
and STREAM

■ SCAN portion of TRACE

In most cases, using an unsupported feature results in OPS/REXX error code 64 -
UNIMPLEMENTED FEATURE.

Implementation Limits

The following table describes the minimum limits that SAA imposes and the maximum
limits that OPS/REXX imposes on REXX elements:

Item SAA OPS/REXX

Literal strings 100 bytes 32000 bytes

Symbol (variable name) length 250 bytes 250 characters for local symbols; 50
characters for global symbols; 32
characters for function and routine name
labels

Nesting control structures 100 Varies, depending upon the complexities
of the structures that are involved

Call arguments 20 10

MIN and MAX function arguments 20 20

Queue entries 100 Controlled by parameter; defaults to 3000

NUMERIC DIGITS value 1000 No maximum limit

Notational exponent value 999 999 999 999 999 999

Hexadecimal strings 250 bytes 32000 bytes

C2D input string Limit is either 250 or the
NUMERIC DIGITS value divided
by 2, whichever is smaller

4 (must be a positive number)

Elements of OPS/REXX

Chapter 6: Using OPS/REXX 145

Item SAA OPS/REXX

D2C output string Limit is either 250 or the
NUMERIC DIGITS value divided
by 2, whichever is smaller

256

X2D output string Limit is either 500 or the
NUMERIC DIGITS value minus 1

32000

Constants in OPS/REXX

OPS/REXX supports character strings up to 32,000 characters long.

Numeric values can include decimal points and exponential notation.

Symbols in OPS/REXX

Local symbols can contain up to 250 characters; global symbols, up to 50 characters, and
labels used in function or subroutine calls, up to 32 characters.

Variable Values

Variables containing character strings can contain no more than 32000 bytes (or a lower
value set by the REXXMAXSTRINGLENGTH parameter). This limitation also applies to
intermediate results.

Compound Symbols

The limits on the symbol name (pre-substitution) and the derived name
(post-substitution) of a compound symbol and on the value that a compound symbol
may take are the same as the limits for the name and value of a regular variable.

You must treat the environmental variables of the CA OPS/MVS product as compound
symbols. For example, if you have defined the variable SYSID in a rule and you refer to
MSG.SYSID elsewhere, the SYSID part of MSG.SYSID is interpreted as the content of the
previously defined variable of the same name.

OPS/REXX Considerations

146 User Guide

Arithmetic Values and Operators

OPS/REXX supports floating point arithmetic. Although you can set NUMERIC DIGITS
higher than 9, higher values can impair performance.

OPS/REXX normalizes all values based on the NUMERIC digits setting before it performs
any other operations with the value. Unless NUMERIC DIGITS is set to a value larger
than the largest value in the program, the results will not be the same as in other REXX
implementations.

OPS/REXX Considerations

Before using OPS/REXX, consider the following points:

■ OPS/REXX uses the following search order to locate external functions as it compiles
a program:

1. Built-in functions.

2. The SYSEXEC concatenation or the ddname concatenation as specified in the
REXXDDNAME product parameter.

3. When using non-REXX external functions, a LOAD issued for a module with the
name of the external reference (that is, the standard z/OS load module search
mechanism is used).

■ Avoid using OPS as the first characters of the names of REXX functions that you
create because these names may conflict with built-in function names that may be
added to the product in future releases.

How to Implement Common Coding Guidelines

Chapter 6: Using OPS/REXX 147

How to Implement Common Coding Guidelines

The REXX programming language coupled with many of the CA OPS/MVS Host
Environments and functions let you create effective and efficient automated
applications. When creating your AOF rules and OPS/REXX programs, you should
establish common coding guidelines (upper or lower case,comment blocks,number of
spaces to indent,and so on).

To begin implementing common coding standards within CA OPS/MVS automated
applications, review the following coding guidelines:

1. Design a template to be used as a beginning comment block within all programs
and rules.

Include informative data fields such as purpose, related programs rules, logic
outline, and so on.

The following is an example beginning comment block template:

/**/

/* Name - Rule_or_pgm_name */

/* Purpose - Brief sentence or two to identify what this AOF */

/* rule or OPS/REXX program accomplishes. */

/* Related - List any other related rules pgms here.Include */

/* ruleset name if an AOF rule is related,and complete */

/* PDS name if an OPS/REXX pgm. Such as: */

/* TOD.CICSSHUT */

/* SYS2.OPSMVS.USER.REXX(CICSSHUT) */

/* Globals - List any GLOBAL,GLVTEMP,or GLVJOBID variables */

/* being used within program. Such as: */

/* GLVTEMP1.PRIMARY.MUF - Contains system of the */

/* primary CA Datacom/AD */

/* MUF system */

/* GLVTEMP1.PRODFAIL.jobname - Contains failure info */

/* of the specific jobname */

/* */

/* History - 25 OCT 2010 DAG - Original implementation */

/* 22 JAN 2010 DAG - Added logic to */

/* */

/* Notes - This section would list detailed information of */

/* of this rule or program. Begin with more details */

/* of why the automation is needed. List an overview */

/* of the logic in an 1-x format. Such as: */

/* */

/* Outline of the logic flow : */

/* 1. ABENDLOG AOF rule processes the triggering */

/* IEF450I event and inserts desired event data */

/* into a RDF table created within rule. */

/* 2. A dynamic TOD rule created within the ABENDLOG */

/* AOF rule will trigger this OPS/REXX program. */

/* 3. Logic in this program will simply read the data */

How to Implement Common Coding Guidelines

148 User Guide

/* stored in the RDF table, and write to some */

/* preallocated sequential data set. */

/* . */

/* . */

/**/

2. Create uniform comment blocks to be used before the instructions and logic.

Adhere to the following conventions:

■ Add a number line as last comment line to assist when indenting for wrap
around lines or specific instructions such a DO...END.

■ Use mixed case in your comment descriptions.

■ Optionally, comment the block sections of a program, such as:

– Main processing

– Sub-routines

Example comment block used before instructions or logic:

/*--*/

/* Uniform comment block to be placed prior to specific logic or */

/* instructions */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/

/*--*/

/*--------------------- Internal sub-routines ------------------------*/

/*--*/

/*--*/

/* subroutine name: */

/* -Brief description of work performed in this subroutine...... */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/

3. Create meaningful names for the variables based on the data that they will be
assigned.

Simple variables will be used widely across all your rules and programs. The more
descriptive the names, the easier it will be to maintain the code.

4. Use upper and lower case consistently to create variable names.

Various supplied CA OPS/MVS samples use lower case for simple variable names.
For example:

cicsregion = msg.jobname

abendcode = WORD(msg.text,4)

prod_systems = 'SYSA SYSB SYSC'

Adhere to the following case conventions:

■ Choose to upper case CA OPS/MVS reserved stemmed variable names
GLVJOBID, GLOBAL,or GLVTEMP.

For example:

How to Implement Common Coding Guidelines

Chapter 6: Using OPS/REXX 149

cics_regions = OPSVALUE('GLOBAL1.CICSREGIONS','O')

payroll_contacts = OPSVALUE('GLOBAL1.PAYROLL.CONTACTS','O')

■ If part of the stemmed variable name is that of a defined simple variable, then
use the same case for the variable as it was originally created.

■ Create clean coding of the OPSVALUE() by assigning the variable name and
value to be updated to a simple variable that will act as a staging variable.

For example:

cicsregion = msg.jobname

varname = 'GLVTEMP1.'cicsregion'.SHUTDOWN'

setvar = OPSVALUE(varname,'U','REQUESTED')

smfid = OPSINFO('SMFID')

ipldate = OPSINFO('IPLDATE')

ipltime = OPSINFO('IPLTIME')

iplvolser = OPSINFO('IPLVOLSER')

iplinfo = ipldate ipltime iplvolser

ipl_varname = 'GLVTEMP1.IPLINFO.'smfid

setvar = OPSVALUE(ipl_varname,'U',iplinfo)

5. Pick your case standard for coding OPS/REXX and TSO/E REXX functions.

Authors of CA OPS/MVS samples uppercase all function names and optional or
required arguments. If a variable name is used within a function argument, then use
the same case that it was created in, for example:

inits = OPSJES2('I','INIT','*','A')

isitactive = OPSTATUS('A','I',jobname)

device = WORD(SUBSTR(record,device_loc),1)

smfid = OPSINFO('SMFID')

6. Establish case guidelines for host environment commands, both CA OPS/MVS host
environments and other host commands.

Mixed case is mainly used within many of the CA OPS/MVS samples when coding
the keywords of the host environments, with the exception of the the SQL host
environment,where uppercase is used for table and column names.

For example:

address WTO

"Msgid(OPSNOTIFY) Text('Payroll schedule is late')",

 "Desc(1) Route(1)"

address OPER

"Command(D GRS,ANALYSE,BLOCKER) Nooutput"

address SQL

"Update STCTBL set DESIRED_STATE = 'DOWN' where",

 "TYPE = 'TESTCICS'"

How to Implement Common Coding Guidelines

150 User Guide

address OPER

"Command(DB1ADIS DB(DB2CA11) LIMIT(*) LOCKS)",

 "Cmdwait(30) Stopresp(DSN9022I) Interval(0) Stopend(NO)"

7. For OPS/REXX or REXX instruction, establish consistent case style, indenting, and
commenting using the following guidelines:

■ Choose either upper case or lower case as follows:

– if..then..else or If..Then..Else

– do..end or Do..End

– select..when..otherwise or Select..When...Otherwise

– parse var msgtxt or Parse Var msgtxt

■ Be consistent in the number of spaces you indent to begin instruction.

– To begin instruction, use the same number of spaces to indent your
do...end instructions.

– Use the same number of spaces to indent each instruction within the loop.
(such as two spaces).

■ Line up the end instruction with the associating do instruction. This is especially
helpful within nested the do...end loops.

■ Place a comment with the end instruction to identify what loop is ending.

This coding aid assists in the maintenance of your programs.

Note: The same rules apply when coding the select..when..otherwise instruction.

Example:

select

 when commands = 'HELP' then call help /*Ident when 2 spaces*/

 when commands = 'IPL' then call ipl /*Line up all when's */

 when commands = 'JACT' then call jact

 when commands = 'JSPOOL' then call jspool

 when commands = 'WTORS' then call wtors

 when commands = '' then call help

otherwise Nop /*Line up with 'select'*/

end /*Line up with 'select'*/

do i = 1 to total_msfnames /* Loop through all abends */

 pull msfedq /* Get msf record from EDQ */

 allmsfs = allmsfs + 1 /* Up counter of all msfs */

 msfname.allmsfs = WORD(msfedq,2) /* Set stemmed msf variable */

end /* End of loop for all MSFs */

OPS/REXX Instructions

Chapter 6: Using OPS/REXX 151

OPS/REXX Instructions

For a complete discussion of REXX language instructions, see THE REXX LANGUAGE: A
Practical Approach to Programming by M.F. Cowlishaw. The next few pages document
differences between OPS/REXX instructions and those of standard REXX.

ADDRESS Instruction

The default ADDRESS environment is different for AOF rules (except request rules) than
for REXX programs. These defaults are ADDRESS MESSAGE for all AOF rules except
request rules, and ADDRESS TSO for request rules and all other REXX programs.

To change these defaults, use the CA OPS/MVS AOFDEFAULTADDRESS and
REXXDEFAULTADDRESS parameters.

Important! The string following the ADDRESS keyword is treated as a constant and does
not need to be enclosed in quotation marks. For example, this instruction:

TSO = "MESSAGE"

ADDRESS TSO

"TIME"

results in the host command being sent to the TSO host command environment.

If your intention is to have the host command be determined dynamically, use the
following examples as a guideline, making sure to specify the host command on a
separate line. Otherwise, it is ignored.

TSO = "MESSAGE"

ADDRESS VALUE TSO

"TIME"

TSO = "MESSAGE"

ADDRESS (TSO)

"TIME"

For a complete discussion of the ADDRESS instruction, see THE REXX LANGUAGE: A
Practical Approach to Programming by M.F. Cowlishaw.

OPS/REXX Instructions

152 User Guide

CALL Instruction

OPS/REXX supports an extension to the REXX CALL instruction.

CALL (name) [expression][,[expression]]...

The name is evaluated to determine the actual name of the called routine. The name
cannot be an expression or a compound symbol itself. However, it can be a simple REXX
symbol that contains the name of the routine to be called.

Because OPS/REXX resolves all external REXX subroutines at compile time, the name of
any external subroutine must appear on a CALL instruction or a function call elsewhere
in the program. If not, this message is issued during the compile phase:

REXX error 43: Routine not found

You may use this technique:

ExtRtn = 'EXTSUB3' /* For example */

CALL (ExtRtn)

/* Other REXX code */

exit

/* The following code will never be executed but is used

 to define the external subroutines used in the dynamic

 CALL above */

CALL EXTSUB1

CALL EXTSUB2

CALL EXTSUB3

CALL EXTSUB4

INTERPRET Instruction

OPS/REXX supports INTERPRET instructions under these conditions:

■ An INTERPRET instruction can find an external function or a load module only if
another instruction refers to that function or module. Most CA OPS/MVS built-in
functions are dynamically located.

■ When an INTERPRET instruction refers to CA OPS/MVS global variables (for
example, x = GLOBAL.A), the global variable stem must be used directly in another
instruction (not another INTERPRET instruction) elsewhere in the program. You can
use global variables accessed through the OPSVALUE function in an interpreted
instruction.

Note: The INTERPRET instruction executes more slowly than other REXX instructions.
Therefore, use it only when system performance is not an issue or when absolutely
necessary.

OPS/REXX Instructions

Chapter 6: Using OPS/REXX 153

OPTIONS Instruction

The OPTIONS instruction under OPS/REXX accepts the following keywords:

OPTIONS [MAXTIME=seconds | NOMAXTIME]

 [MAXSECONDS=seconds | NOMAXSECONDS]

 [MAXCLAUSES=clauses | NOMAXCLAUSES]

 [MAXSAYS=count | NOMAXSAYS]

 [MAXCMDS=count | NOMAXCMDS]

 [MAXCOMMANDS=count | NOMAXCOMMANDS]

 [MAXSTRING=bytes | NOMAXSTRING]

 [FIRELIMIT=times | NOFIRELIMIT]

 [OPSWXTRN=name]

MAXTIME=seconds or MAXSECONDS=seconds

(Optional) Changes the limit on execution time.

NOMAXTIME or NOMAXSECONDS

(Optional) Skips monitoring of execution time.

MAXCLAUSES=clauses

(Optional) Changes the limit on clauses executed.

NOMAXCLAUSES

(Optional) Skips monitoring of clause execution.

MAXSAYS=count

(Optional) Changes the limit on how many SAY instructions executed.

NOMAXSAYS

(Optional) Skips limit checking for SAY instructions.

MAXCMDS=count or MAXCOMMANDS=count

(Optional) Changes the limit on host commands executed.

NOMAXCMDS or NOMAXCOMMANDS

(Optional) Skips monitoring of host command execution.

MAXSTRING=bytes

(Optional) Sets maximum string length for all strings.

The maximum value you can specify for the MAXSTRING keyword is 32000. The
limit set by the MAXSTRING keyword is approximate; you cannot set an exact limit
on string length.

NOMAXSTRING

(Optional) Uses the default maximum string length of 32000.

OPS/REXX Instructions

154 User Guide

FIRELIMIT=times

(Optional) Changes how many times a rule can execute. This keyword is valid only
for rules. Setting a FIRELIMIT value of zero is equivalent to setting no limit on rule
execution.

NOFIRELIMIT

(Optional) Skips monitoring of rule executions.

OPSWXTRN

(Optional) Indicates to OPS/REXX which external subroutines, built-in functions, and
load modules are not absolutely required to be present prior to execution. The
name represents the name of an external subroutine whose presence in the
environment is optional and whose absence is accounted for by the program logic.

The value of name must be a valid member name from 1 to 8 characters in length.

Format for OPTIONS Instructions

In an OPTIONS instruction, you must enclose all arguments except for variable names in
single or double quotation marks. Enclosing arguments in quotes prevents OPS/REXX
from parsing subclauses (such as MAXSAYS=5) before passing them to the OPTIONS
instruction processor. CA OPS/MVS supports OPTIONS instructions in mixed case.

Duration of OPTIONS Settings

Subroutines called by a REXX program inherit the OPTIONS settings, but the settings do
not apply to any calling programs. If a subroutine changes a limit or skips monitoring,
the previous limit is reinstated when the subroutine returns to its caller.

If you use multiple keywords referencing the same OPTIONS setting in the same REXX
statement, OPS/REXX uses the last keyword. For example, OPS/REXX will not limit the
number of host commands if you code this instruction:

OPTIONS "MAXCOMMANDS=100 NOMAXCMDS"

OPS/REXX Instructions

Chapter 6: Using OPS/REXX 155

Usage Notes for OPTIONS Instructions

Keep these guidelines in mind when you specify the OPTIONS instruction:

■ In an OPTIONS instruction containing the OPSWXTRN keyword, the complete
OPSWXTRN keyword phrase must appear on a single OPTIONS source line. In fact,
we strongly recommend that OPTIONS instructions that contain OPSWXTRN
keywords contain no other OPTIONS keywords.

■ Because OPSWXTRN keywords are analyzed during the compile phase, no REXX
substitution can be performed.

■ When specifying the OPSWXTRN keyword in an OPTIONS instruction, the name
represents the name of an external subroutine whose presence in the environment
is optional and whose absence is accounted for by the program logic. The value of
name must be a valid member name from 1 to 8 characters in length.

Note: The validity of name is not checked; however, invalid member names simply
waste space in an internal table.

Some syntax errors in OPTIONS instructions that contain the OPSWXTRN keyword
are flagged only during execution. See the following example.

■ Regardless of whether the OPSWXTRN keyword is used, if an external REXX
subroutine will ever be called at execution time, its source code must be available
at compile time.

■ External load modules and product built-in functions can be resolved just prior to
execution and do not need to be present at compile time.

■ A maximum of 24 unresolved external subroutine names are permitted in a main
program or AOF rule (or any of its external subroutines). If you specify more than 24
unresolved external subroutine names, CA OPS/MVS ignores the extra ones and
issues warning message OPS0924W.

■ If an unresolved external subroutine is called, CA OPS/MVS issues message
OPS0992E, and the REXX program terminates with error 43 to indicate that the
routine was not found. The SYNTAX handler can trap this error at execution time.

■ OPTIONS instructions are reprocessed during execution. Therefore, for
performance reasons, it is not a good idea to place these OPTIONS instructions in a
repetitive code path (for example, in a DO loop). This is true for all OPTIONS
instructions, unless for some reason dynamic substitution needs to be used
repetitively.

■ Options that correspond to OSF server limit parameters cannot be used to
selectively override the OSF server limit parameter. For example, REXX option
NOMAXTIME will not override the server OSFRUN limit. The OPS/REXX options are
designed to selectively override the OPS/REXX default value parameters such as
REXXMAXSECONDS.

OPS/REXX Instructions

156 User Guide

Sample Uses of OPTIONS Instructions

The following examples demonstrate the use of the OPTIONS instruction.

1. This overrides the default maximum string length for REXX programs:

LENGTH = 30000

OPTIONS "MAXSTRING="LENGTH

2. These illustrate how to limit or not limit the number of times an individual rule
executes per minute:

■ To turn execution limit checking off, specify one of the following:

OPTIONS "NOFIRELIMIT"

OPTIONS "FIRELIMIT=0"

■ To execute an individual rule no more than 10 times per minute, specify:

OPTIONS "FIRELIMIT=10"

Note: If an OPTIONS statement specifying the execution limit for a rule appears in
the processing section of that rule, that limit does not take effect the first time CA
OPS/MVS encounters the statement. However, the limit applies to all subsequent
executions of the rule.

3. The following example, when inserted at the beginning of a REXX program executed
through the OI or OX command, enables you to skip monitoring all execution limits
in the program:

OPTIONS "NOMAXCLAUSES NOMAXTIME NOMAXSAYS NOMAXCMDS"

4. These illustrate valid OPTIONS instructions that use the OPSWXTRN keyword:

OPTIONS 'NoMaxClauses OPSWXTRN=NOTFOUND MaxSays=200'

OPTIONS "OPSWXTRN=NOTFOUND"

OPTIONS 'OPSWXTRN=NOTF'

OPTIONS 'OPSWXTRN=EXTSUB1 OPSWXTRN=EXTSUB2'

5. This example of the OPSWXTRN keyword used in an OPTIONS instruction illustrates
a case in which CA OPS/MVS will not flag the instruction as an error but will ignore
it because it is on a continuation line rather than on the OPTIONS source line:

OPTIONS 'NoMaxClauses MaxSays=512' || ,

 " OPSWXTRN=NOTFOU99"

6. These examples illustrate invalid OPTIONS instructions that use the OPSWXTRN
keyword:

■ This is invalid because the value of name is too long. This error is flagged at run
time only:

OPTIONS "OPSWXTRN=NOTFOUNDX"

■ This is invalid because the keywords in an OPTIONS instruction must be
separated by blanks, not commas:

OPTIONS 'NoMaxClauses,OPSWXTRN=NOTF,MaxSays=200'

OPS/REXX Instructions

Chapter 6: Using OPS/REXX 157

RETURN Instruction

OPS/REXX fully supports the RETURN instruction.

The)INIT,)TERM, and)PROC sections of AOF rules are OPS/REXX programs called by the
AOF. The values returned by these rule sections (through the RETURN instruction) guide
the actions of the AOF. For example, if a)INIT section returns REJECT, the rule is neither
enabled nor executed. For details on how sections of rules execute, see the AOF Rules
User Guide.

SIGNAL Instruction

The SIGNAL statement in OPS/REXX supports the SYNTAX operand to trap certain errors
detected during execution. Because OPS/REXX uses a compile and run phase approach,
true syntax errors (an invalid DO statement, for example) are detected at compile time
and cannot be trapped using the SIGNAL ON SYNTAX statement. However, the SIGNAL
ON SYNTAX statement can trap most run-time errors as well as global variable access or
update requests that a security rule denied.

OPS/REXX Instructions

158 User Guide

TRACE Instruction

Like standard REXX, OPS/REXX accepts the following syntax:

TRACE setting

Unlike standard REXX, OPS/REXX also supports the following syntax, which traces all
changes made to the variables listed in variables:

TRACE VAR variables

A variable specified on the TRACE VAR instruction is ignored (not traced) if it is a:

■ Global variable

■ Static variable

■ Repetition control variable on a DO loop

OPS/REXX supports all values for setting except:

!

Inhibit host command execution

?

Control interactive tracing

n or -n

Set interactive trace counts

S

Scan trace (without execution)

Unlike standard REXX, program lines consisting solely of comments do not appear in
OPS/REXX trace output.

OPS/REXX Instructions

Chapter 6: Using OPS/REXX 159

UPPER Instruction

The UPPER instruction translates the contents of one or more variables to uppercase.
The variables are translated in sequence from left to right.

In OPS/REXX, the UPPER instruction uses this syntax:

UPPER variable {variable...} {;}

The variable is a symbol that is separated from any other variables by one or more
blanks or comments. Specify only simple symbols and compound symbols.

a1='Hello'; b1='there'

Upper a1 b1

say a1 b1 /* Displays "HELLO THERE" */

If a constant symbol or stem is encountered, an error messaged is issued.

Notes:

■ Any uninitialized variables will be trapped if the NOVALUE condition (SIGNAL or
NOVALUE) is enabled.

■ The following classes of variables cannot be used in an UPPER instruction:

– Global variables

– Static variables

– AOF environmental variables

For a definition of these classes of variables, see the AOF Rules User Guide.

OPS/REXX Built-in Functions

OPS/REXX offers both standard REXX functions and a set of built-in functions designed
for automation. The REXX comprehensive set of built-in functions is one of its significant
attractions. OPS/REXX supports all standard REXX functions as defined by the second
edition of The REXX Language: A Practical Approach to Programming by M.F. Cowlishaw,
plus functions specifically added for CA OPS/MVS.

For information about these built-in functions, see the chapter “OPS/REXX Built-in
Functions” in the Command and Function Reference.

OPS/REXX Instructions

160 User Guide

Automated Operator Facility (AOF) Global Variables

Global variables are variables that can be shared by multiple AOF rules, OPS/REXX
programs, or both running in different address spaces.

Global variables are also compound symbols with any of the following stems:

■ GLOBAL.

■ GLOBALn.

■ GLVTEMPn.

■ GLVEVENT.

■ GLVJOBID.

Note: The n is a single digit or letter.

Use global variables as you would any other OPS/REXX variable.

The CA OPS/MVS product uses two types of global variables: standard and temporary.
Standard global variables are checkpointed to data-in-virtual data sets. Temporary
global variables are not checkpointed, and they do not exist across IPLs or restarts of CA
OPS/MVS. The stems GLVTEMPn., GLVEVENT., and GLVJOBID. all identify temporary
global variables.

The difference among the temporary global variable stems is the variable duration that
each indicates. Consider this:

■ Variables with the GLVEVENT. stem are deleted when the event for which they
were created terminates.

For example, if variable GLVEVENT.MSGTEXT is created during the processing of a
message IEF405I rule, it exists for all rules that process that particular IEF405I
message.

The GLVEVENT. stem might come in handy, for instance, if you want to pass data
between rules that are processing the same event, or to accumulate data of
interest during the processing of the event.

After the last rule to process the event finishes executing, the variable is deleted.
The value of a GLVEVENT. variable is not shared across events-for example, the
GLVEVENT.MSGTEXT variable described here will not exist when the next IEF405I
message is processed by the same rules.

■ A variable with the GLVJOBID. stem is deleted when the address space associated
with it terminates.

For example, if variable GLVJOBID.MSGTEXT is created during the processing of a
particular job, it exists for the time during which the job is active (unless it is
explicitly deleted).

Parsing

Chapter 6: Using OPS/REXX 161

As an example, you could use a GLVJOBID. variable to save data generated during
one event created by the job (such as when the job issues a particular message),
which could then be used to automate another action taken by the same job.

When the address space that created the GLVJOBID. variable terminates, the
variable is deleted. The value of a GLVJOBID. variable is associated with only one
address space; for example, references by different jobs to the GLVJOBID.MSGTEXT
variable described here will have different values.

For a detailed description of uses and characteristics of both temporary and standard
global variables, see the chapter “Global Variables Explained.”

Note: Because we may add other types of global variables in the future, avoid giving
OPS/REXX variables stems that begin with the characters GLV.

Parsing

The following section discusses parsing.

The PARSE SOURCE Instruction

The PARSE SOURCE instruction has this format:

PARSE SOURCE

This instruction returns a string describing the source of the program being executed.

Values PARSE SOURCE Returns

The string that PARSE SOURCE returns contains these tokens:

■ The characters OPS/REXX

■ One of the following strings:

– RULE, in an AOF rule

– PROGRAM, in an OPS/REXX program

– SUBROUTINE, in an external subroutine

■ The name of the ruleset.rulename or program issuing the PARSE SOURCE instruction

■ The name of a subroutine, if a subroutine and not a program or ruleset.rulename
issued the PARSE SOURCE instruction

Parsing

162 User Guide

■ One of the following:

– The ddname from which the program was loaded

– The ? character, if in a rule, in an external subroutine, or if invoked through an
edit macro such as !OI

– SYSnnnnn (where nnnnn is a numeric value), if the OX or OPSEXEC command
invoked the program

■ The data set name from which the program was loaded, or the ? character if a rule
or a subroutine invoked the program

■ The name of the initial host command environment, for instance TSO or OPER

Following are examples of strings that PARSE SOURCE returns if the source of a program
is:

■ An AOF rule

OPS/REXX RULE RS1.RULE1 RS1.RULE1 ? ? OPER

■ An external subroutine called by a rule

OPS/REXX SUBROUTINE RS1.RULE1 EXSUB1 ? ? OPER

■ An OPS/REXX program invoked by the OI command processor

OPS/REXX PROGRAM PGM1 PGM1 SYSEXEC OPS/REXX TSO

■ An OPS/REXX program invoked by the OX command processor

OPS/REXX PROGRAM PGM1 PGM1 SYS00007 OPS/REXX TSO

The PARSE VERSION Instruction

The PARSE VERSION instruction has this format:

PARSE VERSION

This instruction returns a string describing the REXX language level and the release date
of the REXX language processor.

Note: The REXX language level and the release date are likely to change frequently.
When changed, the language level is always higher than it was in the previous release.

OPS/REXX Interfaces

Chapter 6: Using OPS/REXX 163

Values PARSE VERSION Returns

The string that PARSE VERSION returns contains these tokens:

■ The characters REXX/CA

■ The characters 3.92, which are a description of the REXX language level

■ The characters 18 Oct 2009, which are three tokens describing the REXX language
processor release date

Thus, the complete string returned by PARSE VERSION is:

REXX/CA 3.92 18 Oct 2009

OPS/REXX Interfaces

The following section discusses OPS/REXX interfaces to various components and
products.

OPS/REXX Interface with ISPF Dialog Management Services

In AOF request rules and in OPS/REXX programs, you can use the ADDRESS ISPEXEC
statement to pass host commands to the ISPEXEC command processor. For example,
the following statement tells the ISPEXEC command processor to position the current
row pointer at the top of MYTABLE:

address ISPEXEC

 "TBTOP MYTABLE"

OPS/REXX Interface with TSO

Use the ADDRESS TSO statement to pass host commands to the TSO command
processor. For example, the following statement tells the OSF to submit a command for
execution in an OSF TSO address space to list the attributes of data set SYS1.LINKLIB:

ADDRESS TSO "LISTDS 'SYS1.LINKLIB'"

If you execute the above instruction using the OX or OI command or through an AOF
request rule executed from a TSO session, the TSO LISTDS command executes in the
address space of the user. In this case, the output from the TSO command returns to the
REXX program in its external data queue.

If any AOF rule other than a request rule executes the above instruction, the LISTDS
command goes to a CA OPS/MVS server for execution there. Should this occur, no
output returns to the AOF rule.

OPS/REXX Interfaces

164 User Guide

Support for the TSO Host Command EXECIO

The CA OPS/MVS product implements its own version of EXECIO as a TSO host
command. You can use EXECIO, as documented for TSO/E REXX, in an OPS/REXX
program. You cannot use EXECIO in a rule of any kind. The OPS/REXX version of EXECIO:

■ Does not support the LIFO option.

■ Checks the syntax of the stem name.

■ Prohibits use of global variable stems with the STEM option.

■ Supports DISKRU only for true sequential data sets. You cannot use DISKRU against
a partitioned data set member.

■ Supports mixed case variable names with the STEM option

The following OPS/REXX program segment demonstrates how you might use the EXECIO
command to read and display the first 72 characters from each record in a sequential
data file:

ADDRESS TSO

"ALLOC F(DD77) DA('SOME.DATASET.NAME') SHR REU"

IF RC <> 0 THEN

 DO

 SAY "ALLOC RC="RC

 /* Error recovery */

 EXIT

 END

"EXECIO * DISKR DD77 (FINIS"

IF RC <> 0 THEN

 DO

 SAY "EXECIO RC="RC

 /* Error recovery */

 END

DO WHILE QUEUED() > 0

 PULL REC

 SAY SUBSTR(REC,1,72)

END

"FREE F(DD77)

IF RC <> 0 THEN

 SAY "FREE FAILED; RC="RC

OPS/REXX Interfaces

Chapter 6: Using OPS/REXX 165

Capture TSO Command Output

The CA OPS/MVS product allocates a VIO data set to capture TSO command output. The
CA OPS/MVS VIO parameter specifies the unit name to use for such VIO data sets.

Also, a known problem with the IBM TSO Terminal Monitor Program causes message
IEC223I to be issued when a TSO command returns a non-zero return code. This
message indicates that the VIO data set could not be closed because the TMP already
freed it. Except for this extraneous message, the TMP bug has no effect on your REXX
program.

OPS/REXX Interface with the OSF

Use the ADDRESS OSF statement to pass host commands to the CA OPS/MVS OSF TSO
servers for execution there. For example, the following statement tells the OSF to
schedule a TSO command for execution in an OSF TSO server to list the attributes of
data set SYS1.LINKLIB:

address OSF "LISTDS 'SYS1.LINKLIB'"

Note: If you need information to help you decide which host environment to use (for
example, to decide whether ADDRESS TSO or ADDRESS OSF better suits your purposes),
see the AOF coding guidelines. The AOF Rules User Guide provides a summary of AOF
guidelines.

Use ADDRESS OSFTSL and ADDRESS OSFTSP to schedule long-running or high priority
TSO commands to OSFTSL and OSFTSP servers respectively. Use ADDRESS USS to
execute USS commands in OSF USS servers.

OPS/REXX Interface with the AOF

You can use the ADDRESS AOF statement to pass host commands to the AOF. For
example, the following statement tells the AOF to enable the rule named MSGRULE
from a rule set named MYSET. For details, see the AOF Rules User Guide.

address AOF

 "ENABLE MYSET.MSGRULE"

OPS/REXX Interfaces

166 User Guide

OPS/REXX Interface with EPI

Use the ADDRESS EPI statement to pass host commands to the External Product
Interface. For example, the following statement tells EPI to log virtual terminal OPSS01
to TSO:

address EPI

 "LOGON OPSS01 APPLID(TSO)"

OPS/REXX Interface to z/OS Operator Commands

Use the ADDRESS OPER statement to pass operator commands to the z/OS operating
system. For example, the following statement causes z/OS to display all active address
spaces:

address OPER

 "D A,L"

The ADDRESS OPER host command environment is described in the Command and
Function Reference.

OPS/REXX Interface to Messages

Use the ADDRESS MESSAGE statement to specify an alternative environment during
debugging. CA OPS/MVS customers typically use the MESSAGE host environment as the
default host environment to prevent badly coded rules from issuing invalid commands,
but you can specify a different default environment through the AOFDEFAULTADDRESS
parameter. For more information, see the description of the AOFDEFAULTADDRESS
parameter in the Parameter Reference.

All commands issued to ADDRESS MESSAGE generate a message (with the ID OPS4200I)
displaying the command text. For example, the following statement generates the
message D A,L:

address MESSAGE

 "D A,L"

You can control the disposition of such messages (and all normal CA OPS/MVS
messages) by changing the message suffix.

OPS/REXX Interface to OPSCTL

Use the ADDRESS OPSCTL statement to issue commands to the CA OPS/MVS COF, ECF,
MSF, and OSF components. All output from these commands goes into the external data
queue, with each field separated by a blank.

OPS/REXX Interfaces

Chapter 6: Using OPS/REXX 167

The OPSCTL host environment supports the following commands:

Type of Command Command

COF ACTIVATE, DEACTIVATE, DEFINE, DELETE, LIST

ECF LIST

MSF ACTIVATE, DEACTIVATE, DEFAULT, DEFINE, DELETE, LIST,
START, STOP

OSF EXECSTATS, LIST, QUEUES, RESETQ, STOP

For more information about the OPSCTL host environment, see the Command and
Function Reference.

OPS/REXX Interface to WTO

Use the ADDRESS WTO instruction to issue synchronous WTO messages.

For more information, see the Command and Function Reference.

OPS/REXX Interface to CA SYSVIEW

Use the ADDRESS SYSVIEWE statement to send commands to the CA SYSVIEW product.
You can use this statement in OPS/REXX programs, but not in any type of AOF rule. The
CA SYSVIEW responses to commands go into the OPS/REXX external data queue.

For a description of ADDRESS SYSVIEWE and an example of how you can use an
ADDRESS SYSVIEWE statement in an OPS/REXX program, see the Command and
Function Reference.

OPS/REXX Interfaces

168 User Guide

OPS/REXX Interface to Other CA Products Through CA GSS

OPS/REXX programs (but not AOF rules) can send commands to any CA product that
interacts with the CA GSS product, including all currently supported releases of CA
Jobtrac and CA Scheduler (Release 8.0 and higher). A future release of CA 7 will also
support this interface. CA GSS is packaged as part of CA Common Services (CCS) for
z/OS.

When an ADDRESS statement issues a command to any host environment that exists
outside of CA OPS/MVS, OPS/REXX passes the command to CA GSS. CA GSS then
forwards the command to the appropriate product for execution. For example, if you
issue a command through an ADDRESS JOBTRAC statement, CA Jobtrac executes that
command. The command output goes into the external data queue of the OPS/REXX
program containing the ADDRESS statement.

When the ADDRESS statement executes, OPS/REXX sets the RC variable to one of the
following:

RC has this value... When...

-20 CA GSS fails or is not active when the program
containing the ADDRESS statement executes.

-3 CA GSS is active but does not recognize the host
environment.

The return code from the host
command

In all other cases.

To use ADDRESS CASCHD, you must allocate the CA Scheduler Master and tracking files
to the CA GSS address space. The following example shows how to send a command to
CA Scheduler and retrieve the responses:

address CASCHD "STATUS"

SAY "RC is:" RC

do while queued() > 0

 pull line

 say line

end

The output should resemble the following:

RC is: 0

SC STATUS

 SCHEDULE JOB NAME JNO ST RC JCNT SYSID S T A T U S

 DB2DAILY 01 0002 XAE1 STARTED

 DB31DAY4 01 40 01 WAIT START TIME 12/31 01:00

 DB31DLY4 01 40 01 WAIT START TIME 12/31 01:00

Compiler Error Messages

Chapter 6: Using OPS/REXX 169

For more information on the CCS for z/OS components that are required to run
ADDRESS CASCHD and ADDRESS JOBTRAC, see the appendix “CCS for z/OS Component
Requirements” in the Administration Guide.

Compiler Error Messages

When the OPS/REXX compiler finds syntax errors in an OPS/REXX program or an AOF
rule, the compiler generates a numbered error message. Because OPS/REXX is an
implementation of standard REXX, you can find descriptions of these messages in
Section 17, “Error Numbers And Messages,” of The REXX Language: A Practical
Approach to Programming by M.F. Cowlishaw. In addition to the error codes listed
there, OPS/REXX defines the following error codes:

■ 91 - INVALID OR MISPLACED OPTIONS STATEMENT

The keywords specified in the OPTIONS statement contain an error.

■ 93 - GLOBAL VARIABLE WORKSPACE OVERFLOW (size)

The maximum amount of storage reserved for global variables (the value set by the
GLOBALMAX parameter) was exceeded.

■ 94 - OVER seconds SECONDS USED FOR EXECUTION

The program exceeded the maximum execution time for AOF rules (set through the
AOFMAXTIME parameter) or REXX programs (set through the REXXMAXTIME
parameter).

■ 95 - OVER count HOST COMMANDS ISSUED

The program issued the maximum number of host commands for AOF rules or REXX
programs. For more information, see the descriptions of the AOFMAXCOMMANDS
and REXXMAXCOMMANDS parameters in this chapter.

■ 96 - OVER count “SAY” CLAUSES EXECUTED

The program executed the maximum allowed SAY instructions for AOF rules or
REXX programs. For more information, see the descriptions of the AOFMAXSAYS
and REXXMAXSAYS parameters in this chapter.

■ 97 - OVER count CLAUSES EXECUTED

The program executed the maximum allowed number of clauses for AOF rules or
REXX programs. For more information, see the descriptions of the AOFMAXCLAUSES
and REXXMAXCLAUSES in this chapter.

The OPTIONS statement for an OPS/REXX program can also generate error codes 94
through 97.

Note: For descriptions of the parameters listed above, see the Parameter Reference.

OPS/REXX Usage Problems

170 User Guide

More Errors Detected

Because OPS/REXX is a semi-compiler rather than a pure interpreter, its compile phase
detects many errors that other versions of REXX do not catch at execution time.
Especially when converting programs to OPS/REXX, you may encounter errors at
compile time in supposedly error-free code. This can happen because many REXX
interpreters do not detect errors in statements that do not execute.

OPS/REXX Usage Problems

The following section describes problems you may have while using OPS/REXX and ways
to avoid them.

Conflicts with Internal ISPF Variable Names

Symptom:

When I use simple symbols in OPS/REXX to write ISPF dialogs, conflicts occur with the
ISPF internal variables.

Solution:

When you use OPS/REXX to write ISPF dialogs, do not use simple symbols whose names
begin with Z in the ISPF dialogs. Using such names causes conflicts with the ISPF internal
variables.

OPS/REXX Usage Problems

Chapter 6: Using OPS/REXX 171

Received Message Address Space Is Not Active

Symptom:

My program received the following message:

OPS3148E ADDRESS SPACE NOT ACTIVE

Solution:

OPS/REXX programs that update global variables or issue AOF, EPI, OPSCTL, TSO, or
OPER commands require that the main CA OPS/MVS started task be active.

If you are running multiple copies of CA OPS/MVS, or you use a CA OPS/MVS subsystem
name different from OPSS, you may have to either:

■ Issue the ADDRESS AOF SUBSYS OPSx instruction to identify the correct subsystem
to which subsequent ADDRESS AOF (or ADDRESS EPI, ADDRESS OPSCTL, and so in)
commands will be directed, as well as subsequent global variable updates.

■ Change the job step name of the TSO logon, started task, or batch job from which
the REXX program is executed so that the first four characters are OPSx (the name
of the correct subsystem).

If you fail to do either of the above, your program may get the message:

OPS3148E ADDRESS SPACE NOT ACTIVE

Always allocate the DD statement for the job running OPS/REXX to the subsystem where
global variables reside or that will receive ADDRESS AOF, ADDRESS EPI, ADDRESS
OPSCTL, ADDRESS TSO, or ADDRESS OPER commands. To do so, use JCL like that shown
in the following example:

//OP$OPST DD DUMMY

The example above causes any REXX program in this subsystem to connect to subsystem
OPST.

OPS/REXX Usage Problems

172 User Guide

Uninitialized Variables Yield Unpredictable Results

Symptom:

My statements (usually host commands) that rely on uninitialized variable values are
yielding unpredictable results.

Solution:

REXX sets any uninitialized variable to the character string that comprises the name of
that variable, so you do not have to enclose literal strings in quotation marks. For
example, if a variable named TSO is not initialized, REXX evaluates both TSO and "TSO"
identically.

Relying on this feature to avoid using quotes can be dangerous, because if the variable is
ever initialized somewhere, suddenly statements (usually host commands) that have
been relying on its uninitialized value yield unpredictable results.

For instance, consider the following SAY statements:

say "TSO"

SAY TSO

If you want the value of the variable TSO to always be TSO, it is safer to use the SAY
statement with quotation marks (say "TSO"). This coding ensures that TSO, even if
initialized as a variable somewhere for another purpose, will not be evaluated, and that
the literal string value will always be returned.

OPS/REXX Usage Problems

Chapter 6: Using OPS/REXX 173

Problems with WTO and WTOR Messages in Subsystem Interface

Symptom:

I am finding problems related to WTO and WTOR messages in the subsystem interface.

Solution:

When you find problems related to WTO and WTOR messages in the subsystem
interface, CA Customer Support may ask you to invoke a special REXX function called
OPS09TRC. This function returns a string containing a z/OS control block useful for
debugging purposes.

Important! Use this function only when CA Customer Support asks you to do so,
because it is not intended as a programming interface and we may change it at any
time.

One way to use the OPS09TRC function is to trap a WTO message through a rule and
copy the returned control block strings into global variables. You can then use the
OPSVIEW option 4.8 to examine the returned data.

Use the following format to call the OPS09TRC function:

CB = OPS09TRC("functioncode")

The functioncode argument can be any of the following values:

MAJWQE

Returns the major WQE being processed. The length of the control block returned
depends on the version of z/OS you have.

MINWQE

Returns the minor WQE being processed. The length of the control block returned
depends on the version of z/OS you have.

SSOB

Returns the SSOB related to the current subsystem interface call.

SSWT

Returns the WTO SSOB extension related to the current subsystem interface call.

OPS/REXX Usage Problems

174 User Guide

Problems Related to Commands in Subsystem

Symptom:

I am finding problems related to commands in the subsystem interface.

Solution:

When you find problems related to commands in the subsystem interface, CA Customer
Support may ask you to invoke a special REXX function called OPS0ATRC. This function
returns a string containing a z/OS control block useful for debugging purposes.

Important! Use this function only when CA Customer Support asks you to do so,
because it is not intended as a programming interface and we may change it at any
time.

One way to use the OPS0ATRC function is to trap a particular command through a rule
and copy the returned control block strings into global variables. You can then use the X
line command (for hexadecimal browse) of OPSVIEW option 4.8 to examine the
returned data.

A sample rule, called DEBUGCMD, demonstrates how to use the OPS0ATRC function.
The DEBUGCMD rule is in the OPS.CCLXRULS data set.

Use the following format to call the OPS0ATRC function:

CB = OPS0ATRC("functioncode")

The functioncode argument can be any of the following values:

SSOB

Returns the SSOB related to the current subsystem interface call. Mapped by macro
IEFJSSOB.

SSCM

Returns the command SSOB extension related to the current subsystem interface
call. Mapped by macro IEFSSCM.

MGCR

Returns the first part of the MGCR parameter list (control portion and command
buffer) related to the current subsystem interface call. Mapped by macro IEZMGCR.

OPS/REXX Usage Problems

Chapter 6: Using OPS/REXX 175

Problems Related to DOM Events in Subsystem

Symptom:

I am finding problems related to DOM events in the subsystem interface.

Solution:

When you find problems related to DOM events in the subsystem interface, CA
Customer Support might ask you to invoke a special REXX function called OPS0ETRC.
This function returns a string containing a z/OS control block useful for debugging
purposes.

Important! Use this function only when CA Customer Support asks you to do so because
it is not intended as a programming interface and we may change it at any time.

One way to use the OPS0ETRC function is to trap a DOM event through a rule and copy
the returned control block strings into global variables. You can then use the X line
command (for hexadecimal browse) of OPSVIEW option 4.8 to examine the returned
data.

Use the following format to call the OPS0ETRC function:

CB = OPS0ETRC("functioncode")

The functioncode argument can be any of the following values:

SSOB

Returns the SSOB related to the current subsystem interface call. Mapped by macro
IEFJSSOB.

SSDM

Returns the command SSOB extension related to the current subsystem interface
call. Mapped by macro IEFSSDM.

DOMC

Returns the DOM control block related to the current DOM. Mapped by macro
IHADOMC.

Chapter 7: Using System State Manager 177

Chapter 7: Using System State Manager

This section contains the following topics:

About SSM (see page 177)
SSM Enhancements (see page 178)
SSM Concepts (see page 178)
How SSM Works (see page 181)
SSM Resource Management Modes (see page 189)
Define Resource Management Modes for SSM (see page 190)
Prerequisites (see page 191)
Define Prerequisite Resources (see page 194)
Control Prerequisite Resources (see page 200)
Initializing Data (see page 201)
Methods for Setting the Desired State (see page 202)
Rules to Maintain Current State Values (see page 208)
Understanding Transient Resource States (see page 211)
ops--How Transient States Work (see page 212)
How SSM Decides What Action to Take (see page 213)
How to Specify and Store Actions (see page 214)
SSM Global Events (see page 233)
Non-standard and Complex Resource Management (see page 236)
How to Use the Full Capabilities of SSM (see page 237)
Create Other Resource and Action Tables (see page 256)
Parameters That Control SSM Operation (see page 259)
Manage Tables with the OPSSMTBL Command (see page 261)
Modify Table Data with the STATESET Program (see page 262)
Manage Tables Through OPSVIEW (see page 264)
SSMDISP Command—Display Resource Status (see page 266)
SSMSHUT Command—Set Resource State to Down (see page 267)

About SSM

The CA OPS/MVS SSM facility automates and controls the management of system
resources such as started tasks, subsystems, JES initiators, and VTAM nodes.

The states of started tasks, subsystems, and other resources are always changing. They
are continually started, stopped, and recycled. Often there are dependencies between
resources and you cannot stop or start a resource until some other resource has been
initialized or stopped. For example, TSO cannot start until VTAM initializes, and VTAM
cannot be stopped while TSO remains active. Sometimes, a system ABEND or other
system problem causes a started task or subsystem to terminate abnormally, requiring
the operator to recover or restart it.

SSM Enhancements

178 User Guide

SSM Enhancements

SSM Version 2 is an enhanced version of the original SSM facility that provides a
framework for cross-system resource management. With this framework, customers
can extend their SSM applications in environments where there are resources with
cross-system prerequisite relationships and resources that may run on alternative
backup systems to the primary system. Specifically, SSM Version 2 includes
enhancements for naming cross-system prerequisites and handling cross-system events.
These enhancements allow for gathering, communicating, and maintaining information
on cross-system resource relationships, and initiating actions based on this information.

SSM has also been enhanced to provide more robust prerequisite capabilities in single
system and sysplex environments, exploitation of a new SQL capability to support
variable length character data, new global variable syntax that simplifies defining
automation actions across both sysplex and non-sysplex systems, and an audit trail for
SSM table updates.

Note: The SSMVERSION parameter controls what version of SSM is started. In CA
OPS/MVS Release 11.6, the SSMVERSION parameter defaults to a value of 2, and may
not be set to any other value. If you are migrating to Release 11.6 from a prior release of
CA OPS/MVS that was running with parameter SSMVERSION set (or defaulting) to a
value of 1, you must run the OPS/REXX program OPSSM2CV to convert your SSM
resource and action tables for use by SSM Version 2.

SSM Concepts

This section covers the basic concepts of SSM. SSM supervises system resources, such as
running tasks and peripheral devices. The goal of the SSM engine is always to keep a
resource in its desired state. When the current state differs from the desired state, SSM
dispatches an action (as specified in the action text) to restore the resource to its proper
state.

SSM Concepts

Chapter 7: Using System State Manager 179

Understanding CURRENT and DESIRED Resource States

The terms desired state and current state refer to the contents of the DESIRED_STATE
and CURRENT_STATE columns respectively for a selected resource. These columns can
be set to any value that is convenient for automation needs. For example, current state
can be set to INIT, STARTING, STOPPING, ACTIVE, and so on.

abstract states

SSM defines three abstract states, named UP, DOWN, and UNKNOWN. The state
names that represent these states for tables are known as the table-relative UP,
DOWN, and UNKNOWN states. Each resource table can have its own name for
these three states; however, you can define new names to the table-relative UP
and DOWN states only when adding a resource table to the SSM directory table. For
example, one table of resources can have ACTIVE defined as its table-relative UP
state and INACTIVE defined as its table-relative DOWN state. Another resource
table can have ONLINE and OFFLINE defined as it's table-relative UP and DOWN
states respectively. SSM recognizes the table-relative value by comparing the
CURRENT_STATE and DESIRED_STATE columns with the UP_STATE, DOWN_STATE,
and UNKNOWN_STATE columns in the directory table.

table-relative states

The state that the CURRENT_STATE and DESIRED_STATE columns are actually set to,
such as ACTIVE, INACTIVE, ONLINE, and OFFLINE are table-relative states.
References to the UP state refer to the table-relative state that is designated as UP.
For each resource table, the value of the UP and DOWN states is defined in the
directory table. The table-relative UP, DOWN, and UNKNOWN states can be
referred to symbolically in action text with the corresponding column names of the
SSM directory table, such as &UP_STATE, &DOWN_STATE, and
&UNKNOWN_STATE.

Current state is the actual state of the resource as it appears on the system. Desired
state is the state in which a resource should be. For example, if you want a subsystem to
be up (desired state is UP) but it is down (current state is DOWN), the action text could
be a command to start or restart the subsystem.

Note: SSM records all actions taken in response to resource state changes in OPSLOG.

SSM Concepts

180 User Guide

Understanding Prerequisites and Subrequisites

Prerequisites are resources whose current state must be in the table-relative UP state
for another resource to be started. For example, the current state of JES must be UP for
TSO to be started. Prerequisites are evaluated only when the desired state of the
selected resource is table-relative UP and the current state is table-relative DOWN.
When this specific mismatch occurs, SSM checks the state of all prerequisites for the
starting resource and defers issuing any action until all prerequisite resources are UP.
For all other combinations of current and desired states, except when the desired state
is DOWN and the current state is UP, SSM dispatches an action without checking any
prerequisites.

Subrequisites are dependent resources that cannot be up when a prerequisite resource
is down. A subrequisite is the mirror image of a prerequisite. Subrequisites are
evaluated only when the desired state of the selected resource is table-relative DOWN
and the current state is table-relative UP. When this specific state mismatch occurs, SSM
checks the state of all resources that are subrequisite to (dependent upon) the stopping
resource, and defers any action until all subrequisites are down. For all other
combinations of current and desired states, except when the desired state is UP and the
current state is DOWN, SSM dispatches an action without checking any subrequisites or
prerequisites.

Prerequisites are named in a list (the PREREQ column) that is part of the description of
each resource, kept in an RDF table. An SQL SELECT call can retrieve all the direct
prerequisites of a resource from the table. However, there is no explicit subrequisite list.
Instead, SSM creates a list of subrequisites for a resource, when needed, by scanning all
the prerequisites for every resource in all resource tables. In the TSO/JES2 example,
before SSM would terminate JES2, it would find that TSO is a subrequisite, and would
add the TSO resource name to the MISSING_PREREQ column for JES2, and then take no
further action on JES2 until TSO came down.

Indirect prerequisites and subrequisites are possible. For example, CICS may depend on
TSO. That would make JES2 an indirect prerequisite of CICS. The searching capability of
the SSM engine will find indirect prerequisites and subrequisites, even if they are
indirect multiple times.

SSM uses prerequisite and subrequisite dependencies between resources to make
certain that all prerequisites are satisfied before a resource is brought up, and
conversely, that all subrequisite (dependent) resources are brought down before
terminating their prerequisite.

You can use OPSVIEW option 4.11.2 to observe prerequisite or subrequisite conflicts
from a TSO session, or use the SSMDISPC sample CMD rule to display SSM resource
status from a console.

How SSM Works

Chapter 7: Using System State Manager 181

Detect State Changes for Resources

Each resource that SSM controls is represented by a row in a resource table. This row
contains information about the resource, such as its current and desired states, the
resource name, and the names of its prerequisite resources. Information on the current
and desired states of a resource is maintained in the CURRENT_STATE and
DESIRED_STATE columns respectively. An AOF message rule usually updates the
CURRENT_STATE column; however, in some cases, such as during startup, it may be
updated by other programs. Either a CMD rule or the Schedule Manager usually updates
the DESIRED_STATE column. Both the DESIRED_STATE and CURRENT_STATE columns
are monitored columns; therefore, if a change is made to either one, then the RDF posts
the SSM engine to run.

When the SSM engine is posted to run, it compares the desired state of all resources to
their current state and checks to see whether any missing prerequisites have been
satisfied. If the current or desired state of a resource has changed, and the current state
does not equal the desired state, then the SSM engine dispatches an action. The action
is taken from the action text column of an action table.

In addition to scanning the resource tables when a change occurs, the SSM engine also
scans all resource states every nnnn seconds, based on the value you set in the
STATEMAXWAIT parameter. For more information about this parameter, see the
chapter “Parameters for Facilities” in the Parameter Reference.

How SSM Works

At the heart of SSM are the Relational Data Framework (RDF) tables that store related
information about each of your resources.

The RDF stores data about system resources and delivers that data to SSM through SQL
queries. The data tables in the RDF keep track of the current and desired states of the
system resources, and what actions to take when a resource is not in its desired state.

SSM uses the following tables to manage your system resources:

■ Directory table (see page 182)

■ Resource tables (see page 183)

■ Action tables (see page 186)

■ Auxiliary tables (see page 188)

More information:

Using the Relational Data Framework (see page 395)
Editing Relational Tables (see page 445)

How SSM Works

182 User Guide

Directory Table

The directory table stores the names of all resource tables and the name of the action
table associated with each resource table. Action table names are stored in the same
row as resource table names. SSM consults the directory table to find out which
resource tables should be processed. The default name of the directory table is
SSM_MANAGED_TBLS, but its name can be changed in the STATETBL parameter.

Note: For information on the STATETBL parameter, see the Parameter Reference.

The directory table and all of the resource tables it names are SSM managed tables.
When any ADDRESS SQL function inserts or deletes a row from a managed table, the
SSM engine immediately wakes up and reevaluates its missing prerequisites,
subrequisites, and resource states. In addition, the SSM engine designates some
columns as monitored columns. When an SQL UPDATE state affects a monitored
column, the SSM engine wakes up and scans the same data.

The following shows a directory table as viewed in the CA OPS/MVS table editor. When
column definitions extend past the right margin of your terminal screen, issue RIGHT
commands or press the PF11 key to display more of the data.

SSM_MANAGED_TBLS ----------------------- TABLE DATA EDITOR ------------------- COLUMNS 000

Command ===> Scroll =

MANAGED_TABLE TABLE_MODE UP_STATE DOWN_STATE UNKNOWN_STATE ACTION_TABLE TNGELIGIBLE

**

SWZ_STCTBL ACTIVE UP DOWN UNKNOWN STCTBL_ACT YES

********************************** BOTTOM OF DATA ******************** *******************

The descriptions of the columns in the directory table are as follows:

MANAGED_TABLE

Identifies the name of a resource table SSM should manage.

TABLE_MODE

Indicates the operating mode of the resource table. This mode determines whether
SSM checks the state of the prerequisites for each resource and tries to manage the
resource.

Values: ACTIVE, INACTIVE, NOPREREQ, and PASSIVE

UP_STATE

Indicates the table-relative UP state (such as ACTIVE or UP) for a resource.

DOWN_STATE

Indicates the table-relative DOWN state (such as INACTIVE or DOWN) for a
resource.

How SSM Works

Chapter 7: Using System State Manager 183

UNKNOWN_STATE

Indicates the table-relative state for the resource when SSM is to determine the
state. This column is usually set to UNKNOWN, but you can change it.

ACTION_TABLE

Identifies the action table associated with the table specified in the
MANAGED_TABLE column.

TNGELIGIBLE

(Optional) Displays a YES or NO value to indicate whether a resource table is eligible
for display by the CA Network and Systems Management System Status Manager
CA OPS/MVS Option product.

The resource directory table cannot contain more than 256 managed tables. If the 256
limit is exceeded, the error message OPS7911E is generated and the SSM mode changes
to INACTIVE.

Resource Tables

Resource tables store information about the status of each resource. Although you
could place data on all of your system resources in a single table, we recommend that
you create a separate resource table for each type of resource; for example, a table for
VTAM nodes, another table describing printers, and so on.

The following resource table named STCTBL shows a subsystem resource table as
viewed in the CA OPS/MVS table editor. When column definitions extend past the right
margin of your terminal screen, issue RIGHT commands or press the PF11 key to display
more of the columnar data.

STCTBL --- TABLE DATA EDITOR --------------------------------- COLUMNS 00001 00124

Command ===> Scroll ===> PAGE

COL--> NAME CURRENT_STATE DESIRED_STATE MODE PREMODE REFMODE ACTMODE SCHEDMODE JOBNAME TYPE CHK

****** *** TOP OF DATA ***

000001 APPC UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE APPC APPC UNK

000002 ASCH UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ASCH APPC UNK

000003 ASM2 UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE IXRASUBS ASM2 UNK

000004 BALFSG UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE BALFSG UNKNOWN UNK

000005 BBOASR2 UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE BBOASR2 UNKNOWN UNK

000006 BBODMN UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE BBODMN UNKNOWN UNK

000011 MIMGX DOWN UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE MIMGX UNKNOWN UNK

000007 NBOIR UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE BBOIR UNKNOWN UNK

000008 NBOLDAP UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE BBOLDAP UNKNOWN UNK

000009 PBONM UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE BBONM UNKNOWN UNK

000010 PBOSMS UP UP ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE BBOSMS UNKNOWN UNK

The descriptions of the columns in the STCTBL resource table are as follows:

NAME

Identifies the name of the resource, such as JES2 or VTAM. This resource name is
usually the job name of the subsystem.

How SSM Works

184 User Guide

CURRENT_STATE

Indicates the actual state of the subsystem.

DESIRED_STATE

Indicates the preferred state of the subsystem.

MODE

Indicates the way in which SSM will monitor and control the subsystem.

PREMODE

Specifies a setting that controls whether prerequisites and subrequisites are
processed for the resource when the desired state of a resource is UP and the
current state is DOWN, or the desired state is DOWN and the current state is UP.

Note: Setting both PREMODE='INACTIVE' and REFMODE='INACTIVE' disconnects the
current resource from any prerequisite or subrequisite processing.

REFMODE

Specifies a setting that controls whether the current resource permits other
resources to reference the state of the current resource for purposes of
prerequisite and subrequisite processing.

Note: Setting both PREMODE='INACTIVE' and REFMODE='INACTIVE' disconnects the
current resource from any prerequisite or subrequisite processing.

ACTMODE

Displays an additional mode value that can temporarily override the resource
processing mode or be used to execute different actions for the same state
combinations. A change in the value of the ACTMODE column of a resource causes
the resource to be selected for processing, regardless of the values of its current
and desired state.

The ACTMODE column is compared to the ACTION_MODE column in the action
table during the select action procedure.

Note: For more information on the select action procedure, see How SSM Decides
What Action to Take (see page 213) in this chapter.

SCHED_MODE

(Optional) If the value of this column is INACTIVE, then Schedule Manager RESET
processing bypasses any updates to the DESIRED_STATE column of this resource.

Note: For more information on this schedule override feature, see the chapter
“Using Schedule Manager (see page 315).”

JOBNAME

Specifies the job name for the subsystem.

TYPE

Identifies the type of subsystem, for example, IMS, CICS, or VTAM.

How SSM Works

Chapter 7: Using System State Manager 185

CHKPOINT_STATE

Same as the value for DESIRED_STATE. The CHKPOINT_STATE column provides one
way to reset desired resource states after a restart of CA OPS/MVS.

IPL_STATE

Displays the state in which the subsystem should be following an IPL.

TNGNOTIFY

(Optional) Determines whether the resource is displayed as an icon on the CA map
created by the CA Event Manager product to monitor SSM resources.

RESOURCE_TEXT

(Optional) Contains documentation for the SSM resource. This information is
displayed on the CA Network and System Management System Status Manager CA
OPS/MVS Option workstation. You could use this column to display the text of the
last z/OS message that has changed the state of the resource.

PREREQ

Displays a list of resources that must be in an UP state before SSM can start the
subsystem. Maximum length is 1000 characters.

MISSING_PREREQ

Displays a list of the prerequisite resources that have not been satisfied. Maximum
length is 1000 characters. A VARCHAR definition is used to conserve memory.

PREV_STATE

Tells SSM whether the state of a subsystem has changed.

INTERNAL_DATA1

Contains data that SSM uses internally to control the subsystem.

PRIMARY_SYSTEM

(Optional) If present, the contents of this column sets the variable SSM!PRISYS.

More information:

Resource and Action Tables (see page 187)

How SSM Works

186 User Guide

Action Tables

Columns in action tables determine the action SSM takes to change a resource from its
current state to its desired state. When the current and desired states of a resource do
not match (for instance, if the desired state is UP and the current state is DOWN), SSM
searches the action table associated with the resource table defining that resource,
finds the action required to perform the state change, and executes that action.

The following shows a subsystem action table as viewed in the CA OPS/MVS table
editor. When column definitions extend past the right margin of your terminal screen,
issue RIGHT commands or press the PF11 key to display more of the columnar data.

STCTBL_ACT -- TABLE DATA EDITOR --------------------------------- COLUMNS 00001 00124

Command ===> Scroll ===> PAGE

COL--> ACTION_PROCESS ACTION_CURRENT ACTION_DESIRED ACTION_MODE ACTION_RES_TABLE ACTION_RES_TYPE ACTION_TEXT

****** ** TOP OF DATA **

000001 ACTION DOWN UP MVSCMD("START &JOBNAME")

000002 ACTION DOWN UP MONITOR MVSCMD("D A,&JOBNAME")

000003 ACTION UNKNOWN RULE("SSMSTATE

000004 ACTION UP DOWN MVSCMD("STOP &JOBNAME")

000005 ACTION UP DOWN MONITOR MVSCMD("D A,&JOBNAME")

000006 ACTION DOWN DOWN CYCLE SETCOL("ACTMODE,ACTIVE")

000007 ACTION UP UP CYCLE SETCOL("DESIRED_STATE,&DOWN_STATE")

000008 SELECT STCTBL PROCESS("MATCH,XPREREQ")

000009 SELECT UNKNOWN ACTIVE STCTBL PROCESS("MAT,XPRE,XSUB")

000010 XPREREQ RULE("SSMXPRE &NAME")

000011 XSUBREQ RULE("SSMXPRE &NAME")

****** *** BOTTOM OF DATA **

The descriptions of the columns in the STCTBL action table are as follows:

ACTION_PROCESS

Displays the primary selection criterion SSM uses when selecting an action to
dispatch. To be eligible for selection, ACTION_PROCESS must match the process
event for the action. The event name for selecting an action to be dispatched in
response to a resource state mismatch is ACTION. Other possible values are
MPREREQ, MSUBREQ, and the other process event types listed in Process Events in
this chapter.

ACTION_CURRENT

Displays a particular CURRENT state in which the subsystem resides.

ACTION_DESIRED

Displays a particular DESIRED state that the subsystem can be in.

ACTION_MODE

Displays an additional action selection key that corresponds to the ACTMODE
column of the resource table. An empty string value in this column (the default
value) causes this column to be ignored in action selection.

How SSM Works

Chapter 7: Using System State Manager 187

ACTION_RES_TABLE

Displays the name of the resource table that defines the subsystem to SSM. This
column enables one action table to supply actions for the resources in more than
one resource table.

ACTION_RES_TYPE

Displays either the name or the type of the subsystem as defined in the NAME or
TYPE columns in the resource table. This column enables SSM to act upon a specific
resource.

ACTION_TEXT

Indicates the action to take for a state change. This text is either the text of a TSO
command or the name of an automation procedure that can restore the resource
to its desired state.

More information:

Resource and Action Tables (see page 187)

Resource and Action Tables

Resource tables contain a list of resources and information about these resources, such
as names, types, prerequisites, current and desired states, and previous states. The RDF
may contain many different resource tables.

Each resource table is associated with one action table. Action tables contain action
clauses that execute when a resource is not in its desired state. They tell SSM what to do
to manage the resources. An action table can be associated with many resource tables,
but each resource table can be associated with only one action table.

For an example of how resource and action tables work together, see the sample
resource table (see page 183) and action table (see page 186) in this chapter. These
sample resource and action tables show that MIMGX has a current state value of DOWN
and a desired state value of UP. SSM reads the action table and finds the row where the
ACTION_PROCESS column value equals ACTION, the ACTION_CURRENT column value
(DOWN) matches the CURRENT_STATE column value (also DOWN), and the
ACTION_DESIRED column value (UP) matches the UP value in the DESIRED_STATE
column.

Since none of the ACTION_RES_TYPE columns for DOWN to UP match the resource
name or type of MIMGX, the default DOWN to UP action table row (the first row) is
selected. This matching causes SSM to perform the action in the ACTION_TEXT column
of this row, which in this case issues a z/OS command to restart job MIMGX.

How SSM Works

188 User Guide

Auxiliary Tables

Auxiliary tables should be used as follows:

■ To store status information about resources that reside outside of the local system,
such as the status of started tasks on an external system

The SSM engine can reference these statuses as needed without the complication
and delay imposed by communicating with another system.

■ When SSM requires the status of many external resources

If you write an application that uses an auxiliary table, then you need to supply a
task to manage communications and keep the table current. Using auxiliary tables
in situations where SSM references only a low volume of external statuses is not
justified. Changes to auxiliary tables cause the SSM engine to reevaluate the status
of known resources, but do not provide any information about how the auxiliary
table was changed.

■ To implement a global control and response feature under SSM

■ To track status changes to non-local resources

Sample programs are available that make use of auxiliary tables; however, they are for
example purposes only. We do not guarantee correct or useful results from tables
created by these sample programs.

Note: There are no required columns in auxiliary tables and they are not listed in the
directory table.

Important! Auxiliary tables should be used only for SSM-related activity because
changes to these tables wake up SSM and cause it to check the status of all local
resources. For this reason, overusing auxiliary tables creates unnecessary overhead.

The only way SSM can distinguish an auxiliary table from other tables is by its name. If
the prefix of a table name matches the prefix defined in the SSMAUXTBLPREFIX
parameter, then the table is an auxiliary table. This prefix can be one to six characters
long.

When an auxiliary table is updated (except by the SSM engine), for example by adding,
deleting, or updating a row, the SSM engine is posted, causing the engine to reevaluate
all missing prerequisites. Updates to auxiliary tables by the SSM engine do not cause the
engine to post. Auxiliary tables are loosely coupled with SSM since no data is
transmitted to the SSM engine when activity wakens the engine. An action, executed by
the SSM engine, can examine the contents of the SSM auxiliary tables at any time.
Auxiliary tables are not SSM tables, and do not produce SSM global event activity.
Specifically, ADD, DELETE, and UPDATE events are not generated for auxiliary tables.

SSM Resource Management Modes

Chapter 7: Using System State Manager 189

SSM Resource Management Modes

SSM can operate in four resource management modes, ACTIVE, NOPREREQ, PASSIVE,
and INACTIVE. These modes define how SSM responds to state changes in resources
that it controls. Mode can be set individually for each resource, for all resources in a
table, or for all resources in all tables on the local system. When settings conflict, the
more restrictive setting applies. For example, if a table is set to PASSIVE mode and a
resource in the table is set to ACTIVE mode, then the resources are managed in PASSIVE
mode.

The following list describes the four management modes listed in order of increasing
restrictiveness:

■ ACTIVE

SSM functions fully, managing resources and tables and taking actions when the
desired state of a resource differs from its current state. SSM can start and stop
resources while in ACTIVE mode.

■ NOPREREQ

SSM operates as it does in ACTIVE mode, except that it bypasses checking
prerequisites or subrequisites. NOPREREQ is most often applied to an individual
resource, but it can be applied to a table or an entire system if needed. An
EMERGENCY shutdown procedure can set NOPREREQ mode for a table or system to
quickly terminate resources.

■ PASSIVE

SSM does not trigger any action for deviations between current state and desired
state except when the current state is equal to the table-relative UNKNOWN state.
If the current state is equal to the table-relative UP or DOWN states, then desired
state is set to the current state. Otherwise, the desired state is set to the
table-relative UNKNOWN state.

You can use MODE=PASSIVE when you are not sure what action SSM will take but
you want to synchronize the current state and desired state values of managed
resources with their actual state on your system. You can also use MODE=PASSIVE
when you do not want to take control of a resource but want SSM to track its
current state.

■ INACTIVE

SSM does not react to deviation between the current state value and the desired
state value for a resource.

Important! When a prerequisite resource is set to INACTIVE mode, it still affects the
ability of its subrequisites to run.

Define Resource Management Modes for SSM

190 User Guide

Define Resource Management Modes for SSM

Mode can be set for all SSM resources, all resources in a table, or per resource. The
mode you specify for the STATEMAN parameter causes SSM to use that mode to
manage all of its tables and resources. For example, if you set STATEMAN=PASSIVE, all
tables listed in the directory table and all the resources defined in those tables will be
monitored in PASSIVE mode.

Similarly, if you set STATEMAN=ACTIVE and want to use INACTIVE mode for one table
without affecting the other tables, you can do so by setting the TABLE_MODE value for
that table to INACTIVE in the directory table's definition of that table. You can also set
the management mode for an individual resource by setting the MODE column in the
resource table's definition of that resource. In the hierarchy of mode values, the most
restrictive mode always applies.

Some aspects of resource management mode are also affected by settings other than
resource management mode. For example, the PREMODE and REFMODE columns of the
resource tables affect prerequisite and subrequisite processing.

The mode SSM uses to monitor resources directly affects what values the
CURRENT_STATE and DESIRED_STATE columns of your resource tables contain. If CA
OPS/MVS becomes active, both the CURRENT_STATE and DESIRED_STATE columns for a
resource will be set to the value in the table-relative UNKNOWN state for that resource
as defined in the directory table. The same is true if SSM is running in INACTIVE mode
and you change the mode to ACTIVE or PASSIVE, or if you set the monitoring mode for a
specific table using the OPSSMTBL command.

To take full advantage of operating in PASSIVE or ACTIVE mode, you need to prime the
DESIRED_STATE column. For an explanation of how to do this, see Setting the Desired
State in this chapter.

To define resource management modes for SSM

■ Set the processing mode of a system, table, or resource using OPSVIEW option
4.11.1 (System State Manager Control) or option 4.11.2 (System State Manager
Resource Control).

You can also use the following methods:

■ To set the SSM monitoring globally

Set the STATEMAN parameter by editing the CA OPS/MVS parameter file, by using
OPSVIEW option 4.1.1, or by using the OPS/REXX OPSPRM function or the
OPSPARM TSO command:

xxx=OPSPRM('SET','STATEMAN','ACTIVE')

OPSPARM SET(STATEMAN) VALUE(ACTIVE)

■ To set the mode for a particular table

Issue the OPSSMTBL command processor as follows:

Prerequisites

Chapter 7: Using System State Manager 191

OPSSMTBL CHANGE(tablename) MODE(modevalue)

■ To set the SSM management mode for an individual resource

Use the MODE column in the resource table:

OI STATESET table.name MODE(newmode)

MODE

The MODE column in a resource table can be used to set the resource
management mode of an individual resource to a more restrictive level than
the level set by the STATEMAN parameter or the value of the MODE column in
the directory table; however, it cannot override a more restrictive general
setting. For example, if the management mode of a table is set to ACTIVE and
the STATEMAN parameter is set to PASSIVE, then setting the value of the
MODE column to ACTIVE for a resource would result in an effective mode of
PASSIVE. In the same situation, setting the value of the MODE column of a
resource to INACTIVE would make the resource management mode of that
resource INACTIVE.

Prerequisites

As stated earlier in the chapter, prerequisites are resources whose current state must
be in the table-relative UP state for another resource to be started. The following
sections describe how prerequisites work and how to define and control them.

Check the State of Prerequisite Resources

Prerequisite checking occurs when the desired or current state of a resource changes,
and the resulting desired state is UP and the resulting current state is DOWN.
Subrequisite checking occurs when the desired or current state of a resource changes,
and the resulting desired state is DOWN and the resulting current state is UP. The terms
UP and DOWN refer to table-relative up and down states, which are defined in the
directory table. Prerequisite and subrequisite checking do not occur if the desired and
current states match each other (that is, both are UP or both are DOWN), or if either
state does not match one of the table-relative UP or DOWN states. Table-relative states
are considered prefixes when compared to the desired state and current state to
determine a match. For example, a desired state of UPWAIT matches a table-relative
state of UP because UP is considered a prefix and it matches the prefix UP in UPWAIT.

Prerequisites

192 User Guide

Desired Table States

A resource table has a table-relative UP state of RUN, and a table-relative DOWN state
of STOP. The desired state is RUNPEND and the current state is STOPPED. This is
considered to be a DOWN to UP transition because the first three characters of desired
state RUNPEND match the table-relative UP state of RUN, and the first four characters
of current state STOPPED match the table-relative DOWN state. This transition will
match the STOPPED/RUNPEND entry in the action table, and prerequisite checking will
also be done.

Consider a VTAM resource table, for which the table-relative UP state is defined as
ACTIVE and the table-relative DOWN state is defined as INACTIVE. If the desired state
changes to ACTIVE or the current state is INACTIVE, then prerequisite checking occurs.
Likewise, if the desired state changes to INACTIVE and the current state is ACTIVE, then
subrequisite checking occurs. If, however, the desired state changes to ACTIVE and the
current state changes to STARTING, then neither prerequisite nor subrequisite checking
occurs; however, an action will still be asserted.

For example, suppose that you have a directory table containing the following columns
and values:

MANAGED_
TABLE

TABLE_ MODE UP_STATE DOWN_STATE UNKNOWN_
STATE

ACTION_TABLE

STCTBL ACTIVE UP DOWN UNKNOWN STCTBL_ACTION

VTAM_NODES ACTIVE ACTIVE INACTIVE UNKNOWN VTAM_ACTION

Also suppose that you have the following entries in the STCTBL resource table (not all
columns shown):

NAME DESIRED_
STATE

CURRENT_
STATE

PREREQ MISSING_PREREQ

JES2 UP UP NULL NULL

VTAM UP STARTING JES2 NULL

PRODCICSA UP DOWN VTAM,
VTAM_NODES.CICSA

VTAM, VTAM_NODES.CICSA

Finally, suppose that you have the following entries in the VTAM_NODES resource table
(not all columns shown):

NAME DESIRED_STATE CURRENT_ STATE PREREQ MISSING_ PREREQ

CICSA INACTIVE INACTIVE NULL NULL

Prerequisites

Chapter 7: Using System State Manager 193

The resource PRODCICSA in the STCTBL resource table has a desired state value of UP,
which is defined as its table-relative UP state in the directory table. However, SSM will
not execute the automation procedure to set the current state of PRODCICSA to UP
because the prerequisites for PRODCICSA are not in their defined UP states. As you can
see in the examples, PRODCICSA has prerequisites of VTAM, whose current state is
STARTING, and CICSA in the VTAM_NODES table, whose current state is INACTIVE.

Note: These unsatisfied prerequisites are also listed in the MISSING_PREREQ column of
the STCTBL resource table.

Once the current state of VTAM is set to UP and the current state of CICSA is set to
ACTIVE, SSM can take the action needed to place PRODCICSA in its defined UP_STATE.

A resource that is a prerequisite for another resource may exist in any SSM table. When
a resource and its prerequisites are defined in different monitored tables, the
prerequisite resource must be defined as tablename.resourcename, as shown with
VTAM_NODES.CICSA in the preceding examples.

The Effect of STATEMATCHPREFIX on Prerequisite Checking

Once SSM determines that a prerequisite check is needed, it compares the current state
of each prerequisite with the table-relative UP state for the table in which the
prerequisite is stored.

The STATEMATCHPREFIX parameter can be set to NO to indicate that resources should
be considered UP for prerequisite purposes only if their current state exactly matches
the table-relative up state.

If the STATEMATCHPREFIX parameter is set to YES, then the prerequisite is considered
to be UP if the table-relative UP state, treated as a prefix, matches the current state of
the prerequisite.

This allows a started task that is in an UPBEGIN state to be considered UP for
prerequisite purposes.

The effect of this parameter on positive and negative prerequisites and subrequisites is
the same as that of normal prerequisites.

More information:

Define Positive and Negative Prerequisite Resources (see page 196)

Define Prerequisite Resources

194 User Guide

Define Prerequisite Resources

This section discusses naming prerequisite resources, the various methods you can use
to define prerequisite resources, and the types of prerequisite resources that can be
defined.

Specify the Name of Prerequisite Resources

The automation programmer has the option of specifying a system name as part of a
prerequisite resource name. The system name is parsed by SSM and passed to process
action code as an environmental variable. SSM processes the prerequisite as local if any
of the following occurs:

■ The system name is omitted.

■ The XPREREQ process action is not enabled. For more information, see Process
Events in this chapter.

■ The system name is specified as a single asterisk (*).

To specify a system name as part of a prerequisite name, use the following syntax:

[[[system name.][ssid].]table.]resource

system name

1 to 9 characters in length. There are two special cases for prerequisite names that
have a non-blank system name:

■ If the value of system name is an asterisk (*), then the prerequisite is on the
local system

■ For a Work Load Manager (WLM) resource request, if system name is specified,
the value of ssid is WLM, and the value of table is *SCHENV, then the WLM API
evaluates the resource

Both of the above are handled by SSM without asserting an XPREREQ process
event. For all other cases when system name is non-blank, SSM asserts an XPREREQ
event to process the name. However, if XPREREQ is not enabled, then SSM
processes the prerequisite as if it were local.

Customers are encouraged to use system name to implement their own
prerequisite types, such as a system affinity requirement or an ARM element name
status. However, to avoid future conflicts over naming conventions, an exclamation
point (!) should be used as the first character of any system name. The remaining 8
characters of the name can be any character string. System names starting with any
character other than an exclamation point may cause unpredictable results in
future releases of CA OPS/MVS.

When a system other than local or WLM is specified, the automation programmer is
responsible for providing a REXX program that obtains any cross-system status
needed.

Define Prerequisite Resources

Chapter 7: Using System State Manager 195

Important! If you designate a system name, then you must provide an XPREREQ
action and enable the event. If this action is not present and enabled, then the SSM
engine will process the specification as if it were local.

ssid

1 to 4 characters in length. ssid cannot be specified unless system name is specified.
If only one character is specified, then the prefix OPS is added to it to form the
subsystem name. If ssid is blank or an asterisk (*), then the name of the local CA
OPS/MVS SSID is used.

Note: An SSID name of WLM is reserved for use by WLM-related resources only.

table

1 to 18 characters in length. The name of the RDF table that contains the resource
description.

resource

1 to 18 characters in length. The name of the resource.

MINOF Statement—Define Prerequisite Resources

In the previous example, all of the resources in the prerequisite list had to be in their
table-relative UP state before SSM could dispatch an action to cause the desired state of
a resource to get to its table-relative UP state or DOWN state. With the MINOF
(minimum of) statement, you define how many prerequisite resources must be in their
table-relative UP state before a resource can be brought to its desired state.

For example, suppose you have the following MINOF statement:

MINOF(1,VTAM,VTAMTEST)

1

Defines the minimum number of prerequisite resources that must be in their
table-relative UP state

VTAM and VTAMTEST

Defines the prerequisite resources.

In the above statement, VTAM, VTAMTEST, or both can be in their table-relative UP
state for SSM to take the action needed to place the resource in its table-relative UP
state.

Define Prerequisite Resources

196 User Guide

Following is additional information about the MINOF statement:

■ The MINOF statement can be combined with other prerequisites and with other
MINOF statements. Also, MINOF statements can be nested in MINOF statements;
however, do not nest them more than three levels. Following is an example of a
MINOF statement combined with other resources:

MINOF(1,VTAM,VTAMTEST),JES2

Following is an example of a nested MINOF statement:

MINOF(1,MONTH_END,MINOF(1,DAY_SUMRY,DAY_TOTALS))

■ The MINOF statement is evaluated for subrequisite processing as well as for
prerequisite processing. Subrequisites are found by searching prerequisites for
other resources. When a MINOF statement is found in a subrequisite resource, the
state of the subrequisite resource (UP or DOWN) is evaluated as if the state of the
current resource, for which subrequisites are being evaluated, was DOWN.

Define Positive and Negative Prerequisite Resources

Any resource in a prerequisite list can be qualified as a positive or negative prerequisite
by adding a plus (+) or minus (-) sign before its name. A positive prerequisite resource is
considered to be satisfied when the specified resource is UP, and a negative prerequisite
resource is considered to be satisfied when the specified resource is DOWN. Note

Note: Prerequisites that have been prefixed with a plus or minus are never evaluated as
subrequisites.

A plus or minus prefix can be applied to a MINOF statement, to resources in a MINOF
statement, and to individual resources.

Making two resources negative prerequisites of each other creates a mutually exclusive
relationship. For example:

VTAMPROD PREREQ(-VTAMTEST)

VTAMTEST PREREQ(-VTAMPROD)

Define Prerequisite Resources

Chapter 7: Using System State Manager 197

Define Positive and Negative Subrequisite Resources

The positive and negative subrequisite capability is the equivalent of the positive and
negative prerequisite capability described above.

To define positive and negative subrequisite resources

1. You can qualify the resources in a prerequisite list as a positive or negative
subrequisite by adding a less than (<) or a greater than (>) sign before its name.

■ A positive subrequisite is considered to be satisfied when the resource with the
subrequisite is DOWN.

■ A negative subrequisite is considered to be satisfied when the resource with
the subrequisite is UP.

Notes:

■ Resources in a prerequisite list that have been prefixed with a less than or greater
than character are never evaluated as prerequisites. They are only evaluated as a
subrequisite to the resource in the NAME column.

■ To avoid over complexity, the positive and negative subrequisite capability can not
be utilized within a MINOF statement.

Example: Positive and Negative Subrequisite Resources Definitions

Suppose that you are managing two resources; TASK1 and TASK2. Although you are not
concerned in which order they start, you want to make sure that TASK2 is always
stopped before TASK1. This is an example of when a positive subrequisite would be
useful. The table would look like this:

NAME DESIRED_STATE CURRENT_STATE PREREQ

TASK1 UP UP

TASK2 UP UP >TASK1

In this table, TASK1 is listed as a positive subrequisite for TASK2. When System State
Manager goes to start TASK2, it ignores the >TASK1 value in the PREREQ column.
Furthermore, TASK1's definition as a positive subrequisite for TASK2 has no influence on
System State Manager's starting process for TASK1.

The result is that either resource can be started first. However, any attempt to stop
TASK1 first before stopping TASK2 will fail because TASK1 is a subrequisite for TASK2.

Define Prerequisite Resources

198 User Guide

In a variation of this example, suppose you are not concerned in which order they start,
but you wanted to make sure TASK1 could only be stopped when TASK2 was UP. This
could be achieved by making TASK1 a negative subrequisite for TASK2:

NAME DESIRED_STATE CURRENT_STATE PREREQ

TASK1 DOWN DOWN

TASK2 UP UP <TASK1

In this table, TASK1 is listed as a negative subrequisite for TASK2. When System State
Manager goes to start TASK2, it ignores the <TASK1 value in the PREREQ column.
Furthermore, TASK1's definition as a negative subrequisite for TASK2 has no influence
on System State Manager's starting process for TASK1. However, any attempt to stop
TASK1 will only be honored if TASK2 is UP. Attempts to stop TASK1 will fail if TASK2 is
already DOWN.

Define Prerequisite Resources

Chapter 7: Using System State Manager 199

Define a Workload Manager Scheduling Environment as a Prerequisite Resource

SSM can define the status of a Workload Manager (WLM) scheduling environment as a
prerequisite resource. A special naming convention must be used to specify the status
of a WLM environment as a resource. The format is:

System.WLM.*SCHENV.Name

System

Specifies a valid z/OS system name that is known to WLM

Name

Specifies the WLM scheduling environment name. Name can be up to 16 characters
in length.

WLM

Provides a placeholder that must be used in the SSID position for WLM resources if
System is specified.

To access the status of only the local WLM, specify the following:

*SCHENV.Name

Notes:

■ The WLM scheduling environment is the only cross-system resource that SSM
evaluates without asserting a process event.

■ The status of a WLM scheduling environment cannot be used as a subrequisite
resource.

■ The status of a WLM scheduling environment can be used by SSM to recognize an
abstract condition such as Prime Shift or Batch Window.

The ability of SSM to read the status of a WLM scheduling environment eliminates the
need for it to compute the status itself. This increases the efficiency of SSM and avoids
the possibility that SSM will compute a WLM status differently than WLM itself because
of sample timing differences.

The OPSWLM Function

OPSWLM is an OPS/REXX function that can be used to set the status of a WLM
scheduling environment resource. This function allows you to indirectly control the
status of a scheduling environment. The ability to set the status of a WLM scheduling
environment resource can be used in conjunction with the ability to synchronize CA
OPS/MVS with WLM.

For more information, see OPSWLM Function in the chapter “OPS/REXX Built-in
Functions” in the Command and Function Reference.

Control Prerequisite Resources

200 User Guide

Control Prerequisite Resources

The PREMODE, REFMODE, and MODE columns can be used to control prerequisite
processing. This section discusses each column in detail.

PREMODE Column

The PREMODE column in the resource table controls whether prerequisite and
subrequisite processing is performed for a resource, when DOWN to UP or UP to DOWN
transitions occur. Valid values for this column are:

ACTIVE

Both prerequisite and subrequisite processing is performed according to the
standard method used by SSM.

INACTIVE

Neither prerequisite nor subrequisite processing is performed. This is equivalent to
the SSM NOPREREQ mode.

PREREQ

Only prerequisite processing is performed for this resource. Subrequisite processing
is bypassed.

SUBREQ

Only subrequisite processing is performed for this resource. Prerequisite processing
is bypassed.

Initializing Data

Chapter 7: Using System State Manager 201

REFMODE Column

The REFMODE column controls whether other resources should process this resource
when testing their prerequisite or subrequisite references.

Valid values for this column are:

ACTIVE

Both prerequisite and subrequisite references are performed according to the
standard method used by SSM.

INACTIVE

Neither prerequisite nor subrequisite references to this resource are evaluated. This
is equivalent to the SSM NOPREREQ mode. When REFMODE INACTIVE is combined
with PREMODE INACTIVE, this resource is disconnected from all prerequisite and
subrequisite processing.

PREREQ

Only prerequisite processing references to this resource are evaluated. Subrequisite
references to this resource are ignored.

SUBREQ

Only subrequisite processing references to this resource are evaluated. Prerequisite
references to this resource are ignored.

MODE Column

The MODE column in a resource table controls the resource management mode of an
individual resource. When the MODE column is set to NOPREREQ, SSM operates as it
does in ACTIVE mode, except that it bypasses checking prerequisites or subrequisites.

More information:

Define Resource Management Modes for SSM (see page 190)

Initializing Data

When SSM becomes active, it sets the CURRENT_STATE and DESIRED_STATE columns to
the table-relative UNKNOWN state. An automation procedure must set the desired
state values or no action will occur. The SSMBEGIN request rule is provided for this
purpose. SSMBEGIN is automatically invoked at SSM initialization and whenever the
mode (STATEMAN parameter) is upgraded from INACTIVE to PASSIVE or ACTIVE, or from
PASSIVE to ACTIVE.

Methods for Setting the Desired State

202 User Guide

Methods for Setting the Desired State

SSM provides several methods, described below, for initializing the desired states for
resources. The method or methods chosen depend on the state that CA OPS/MVS is in,
the type of resource, and how your system manages the resource.

These methods are:

■ Manually starting and stopping resources

■ CA OPS/MVS TOD rules

■ The CA OPS/MVS Schedule Manager feature

■ Checkpointing resources

■ The CA OPS/MVS OPSVIEW feature

■ The CA OPS/MVS SSMBEGIN request rule

■ A method you define

Set the Desired State Manually

Manually starting and stopping system resources that are being actively controlled by
SSM is a common daily activity within any z/OS environment, and can be performed
using the following methods:

■ The standard z/OS START and STOP commands

■ A pseudo command to trigger a CMD rule to control SSM activity

■ The supplied STATESET OPS/REXX program

Methods for Setting the Desired State

Chapter 7: Using System State Manager 203

Use z/OS START and STOP Commands

With SSM actively monitoring the resources that are being manually requested to START
or STOP, the request must be intercepted and the DESIRED_STATE of the resource set
accordingly (UP or DOWN). This informs SSM of the request to change the state of the
resource (DS=UP or DS=DOWN), and also ensures that the defined DOWN_UP or
UP_DOWN action of the resource is always issued. The supplied SSMSTART and
SSMSTOP command rules intercept z/OS START and STOP commands for SSM controlled
resources.

With these two rules (or rules created with similar logic) enabled, 'S jobname' and 'P
jobname' are the only commands ever needed to manually control any active SSM
resource.

To START and STOP an SSM controlled resource

1. To start an SSM controlled resource, enter the manual command of 'S jobname'.

The SSM controlled resource starts, within the SSM DOWN_UP action, the true start
command of 'S JOBNAME,PARM=XX' would be correctly issued by SSM if needed.

2. To stop an SSM controlled resource, enter the manual command of 'P DB2MSTR' on
an active DB2MSTR region.

SSMSTOP intercepts the command, sets the DS=DOWN and thus causes SSM to
process the specified DOWN_UP action. This action would then invoke the
SHUTDB2 OPS/REXX program to initiate the formal DB2 shutdown procedures, all of
which was triggered from the manual 'P DB2MSTR' command.

For details on using and implementing this manual intercept method, see the comments
within the SSMSTART and SSMTOP rules.

Methods for Setting the Desired State

204 User Guide

Use a Pseudo CMD Rule to Manually Control SSM Activity

Providing a pseudo command rule similar to the sample SSMCNTL, creates an effective
console interface for manually controlling the SSM component.

You can create a controlling command rule to inform SSM to perform tasks that include
the following:

■ Start and stop resources

■ Start/stop specific types of resources

■ Recycle resources

■ Remove resources from SSM control

■ Begin system shutdown

To use a pseudo CMD rule to manually control SSM activity

1. Enable the SSMCNTL rule.

2. Classify a group of resources with a TYPE of TESTCICS within the STCTBL.

3. Issue the pseudo command 'SSM PT TYPE=TESTCICS'.

SSM is informed to stop all these TESTCICS resources.

For details on using and implementing this manual intercept method (or one with site
specific customized functionality), see the comments within the SSMCNTL sample rule.

Invoke STATESET OPS/REXX Program from a Console

You can invoke the supplied STATESET OPS/REXX program through a console command
to set the DESIRED_STATE of any SSM controlled resource as well as start and stop
dependent prereqs/subreqs of a resource, and changing mode processing values of a
resource.

To invoke the STATESET OPS/REXX program

Issue the following command from a console:

xxOI STATESET arguments

xx

The OSFCHAR OPS/MVS parameter.

arguments

Valid arguments to the STATESET program.

For complete details on using and implementing this manual intercept method, see the
comments with the STATESET OPS/REXX program.

Methods for Setting the Desired State

Chapter 7: Using System State Manager 205

Set the Desired State Automatically with a Time Rule

You can write time rules to set the desired state.

Suppose that you want to bring many of your online CICS regions up at a certain time
specified in the resource information table. You could add a START_TIME column to the
table to identify all CICS regions to be brought up at that time. The following time rule
would then start all CICS regions that are supposed to be up at 6:00 a.m.:

)TOD 06:00:00

)PROC

 Address 'SQL' "Update STCTBL Set DESIRED_STATE = 'UP'",

 "where TYPE='CICS' and START_TIME='06:00'"

)END

Set the Desired State Through the Schedule Manager

SSM also includes a scheduling component that sets the desired state of a resource
based on conventional scheduling criteria such as time, date, and day of the week.

The Schedule Manager enables you to define a schedule and periods that set or change
the desired state of resources at specific dates and times. For instance, one schedule
period might define the desired state for a resource on Monday through Friday, another
schedule period might control the desired state on weekends, and a third schedule
period might take effect on holidays.

More information:

Using Schedule Manager (see page 315)

Set Desired States Through Checkpointing

SSM resource tables contain a column called CHKPOINT_STATE. The CHKPOINT_STATE
value mirrors the desired state, and SSM updates the checkpoint state each time the
desired state value changes. Therefore, when SSM becomes active, you can reset the
DESIRED_STATE columns to the values they had when SSM was last active.

For example, suppose a system problem occurs and you must perform an emergency
IPL. Once SSM becomes active again, it sets the current state and desired state values to
table-relative UNKNOWN, and you can then reset the DESIRED_STATE values to what
they were before the emergency IPL by copying the values from the CHKPOINT_STATE
column into the DESIRED_STATE column.

Methods for Setting the Desired State

206 User Guide

Set Desired States Through OPSVIEW

You can update the desired state of your resource tables by accessing option 4.11 of the
OPSVIEW interface. For more information about this method, see the OPSVIEW User
Guide.

Set Desired States Through SSMBEGIN

The SSMBEGIN request rule enables you to choose how you want to initialize the
DESIRED_STATE column. This gives you complete control over initializing this column
each time SSM becomes active and when the SSM mode parameter is upgraded to a
more active mode. When executed, this REXX program lists startup options and prompts
you to reply. One option allows you to specify the mode (ACTIVE/PASSIVE/INACTIVE) of
SSM.

To set the desired states through SSMBEGIN

1. You must enable the SSMBEGIN request rule to be invoked at SSM startup.

When invoked, the SSMBEGIN request rule displays the following z/OS message:

SSMBEGIN start options:

1) Use current schedule

2) Use an alternate schedule

3) Use IPL_STATE as desired state and no schedule

4) Use previous desired state and no schedule

5) Use current desired state and no schedule

---------- Stateman restarted. Mode=ACTIVE -------------

Reply with an option number and/or the first letter of a

valid stateman mode (Active/Passive/Inactive) to replace

the current mode (i.e. R nn,1/1A/A). Default=1

015SSMBEGIN ENTER DESIRED STATEMAN STARTUP OPTION (1-5) AND/OR MODE

A/P/I):

2. Choose the option that sets the desired states of resources closest to what you
want those states to be.

■ If you are restarting the SSM after recycling CA OPS/MVS or in response to an
abend, select option 4, because the DESIRED_STATE values in the
CHKPOINT_STATE column will most closely reflect what you want the desired
states of system resources to be.

■ If you are restarting SSM after it previously shut your system down, determine
whether the desired states defined in a schedule or in the IPL_STATE column
most closely reflect what you want the desired states to be, and choose option
1, 2, or 3 accordingly.

Specifying nA or nP overrides the type of SSM monitoring specified on the CA
OPS/MVS STATEMAN parameter. For example, if the STATEMAN parameter is set to
ACTIVE and you select option 1P when the SSM starts up, the SSM monitors your
system resources passively and does not act when a resource changes state.

Methods for Setting the Desired State

Chapter 7: Using System State Manager 207

More information:

Options for Initializing Desired States (see page 207)

Customize the Startup with SSMBEGUX

The SSMBEGUX REXX program is a user exit called by the SSMBEGIN request rule before
the options message is displayed. SSMBEGUX may be customized to automatically select
the correct start up options or defaults and bypass the normal options message.

Use this exit for customizing SSM startup rather than modifying the SSMBEGIN request
rule. The sample SSMBEGIN program contains programming information for this exit.

Options for Initializing Desired States

You can select the following options to initialize the desired state of SSM resources:

■ Option 1: Use if you are using the Schedule Manager and all of the resources on
your system are defined in the current schedule.

Causes SSM to reset the desired states of resources to the desired states named in
the schedule that is currently active under the Schedule Manager feature. For
example, if the current schedule lists the desired state of a DASD as ONLINE, the
Schedule Manager changes the desired state of that DASD from UNKNOWN to
ONLINE.

■ Option 2: Use if you are using the Schedule Manager and all of the resources on
your system are defined in a schedule different from the active one.

Causes SSM to reset the desired states of resources to the desired states named in
a schedule other than the currently active one. Selecting option 2 produces a
message asking you to enter the name of the schedule you want. Once you supply a
schedule name, the Schedule Manager uses the desired state values specified in
that schedule.

■ Option 3: Use after a system IPL to reset the desired states of all resources if you
are not using the Schedule Manager feature.

Causes SSM to extract the desired state value for each resource from the value in
the IPL_STATE column for that resource.

■ Option 4: Use to reset the desired states of all resources if you are recycling CA
OPS/MVS or restarting it after an abend, and you are not using the Schedule
Manager.

Causes SSM to extract the desired state value for each resource from the value in
the CHKPOINT_STATE column for that resource. The values in the CHKPOINT_STATE
column are the desired states that resources had before the last CA OPS/MVS or
system shutdown.

Rules to Maintain Current State Values

208 User Guide

■ Option 5

Use the current desired state value for each resource. Do nothing.

■ Option U

Take the default response value specified in the options message.

If you customize SSM for your environment, you also must define your own method for
initiating the DESIRED_STATE values for your resources.

Rules to Maintain Current State Values

After you set the values in the DESIRED_STATE columns of your resource tables and SSM
dispatches the correct action to get the resource into its desired state, the rules
processing (another key element of SSM) takes over.

rules packets

Used by SSM to maintain the current state for resources it manages.

These rules packets intercept messages and update the CURRENT_STATE column using
ADDRESS SQL. The rules intercept messages and update the current state of resources
as indicated by the message content. A rules packet is a set of rules that work together
to perform a common goal. An SSM rules packet might handle all of the messages that
pertain to a single resource. For example, the)MSG rule SSMJES2, which is part of SSM,
responds to all the $HASP messages that indicate a state change for JES2.

The messages are:

■ $HASP085

■ $HASP099

■ $HASP492

■ $HASP493

If the SSMJES2 rule was written as four independent)MSG rules that handle the same
messages, then it would still be considered a rules packet.

A rules packet is a logical concept, not a physical entity. When a rules packet is
comprised of multiple rules, nothing physically binds the rules together. Rules react to
messages that a resource generates and set the CURRENT_STATE value of the resource
accordingly when:

■ The resource starts

■ The resource initializes

■ The resource stops or ends

■ Error events occur

Rules to Maintain Current State Values

Chapter 7: Using System State Manager 209

The OPS.CCLXRULM library on the CA OPS/MVS distribution media contains a number of
sample rules packets for started tasks and sample OPS/REXX programs, including the
SSMCAAPI rule that processes events from the API interface.

The API interface of CA OPS/MVS lets participating CA products generate common
current state APIs. This allows for a single AOF rule, such as the SSMCAAPI rule , to set
the CURRENT_STATE of such CA products accordingly within a SSM table. This eliminates
enabling and maintaining a unique SSM rule packet to monitor each different CA
product. The CASTATE API events are similar to the following:

■ State of CA-MIM is UP

■ State of CA-MIM is STARTING

■ State of CA-MIM is STOPPING

Refer to the documentation of the specific CA product that is being added to SSM to
determine if it is generating CASTATE API events to CA OPS/MVS. If it is, then a unique
SSMxxxx rule packet is not needed to monitor its state within SSM (only need SSMCAAPI
rule enabled). This can also be easily determined by ensuring that the CA OPS/MVS
APIACTIVE and BROWSEAPI parameters are set to YES prior to the CA product starting,
and then viewing the CA OPS/MVS OPSLOG looking for a CASTATE API event (OPSLOG
PROFILE for MSGID=CASTATE) being generated by the CA product.

We test each sample rule and OPS/REXX program to ensure that any changes to the
state of a resource are represented accurately. However, message identifiers may
change, which may affect the operation of sample rules or OPS/REXX programs. If you
notice a change in operation, notify CA Customer Support.

If you want to make changes to a sample rule or OPS/REXX program to meet the needs
of your site, we strongly recommend that you make a copy of the rule or OPS/REXX
program and modify the copy. Do not make changes to the original sample rule or
program. If you think that your modification would be of interest to other SSM users,
contact CA Customer Support.

Your contributions to state rules are encouraged. If you have created an SSM rule or
OPS/REXX program that manages the started task of a vendor-supplied product, contact
CA Customer Support, who will determine whether your rule or program should be
included in a future release of CA OPS/MVS. For assistance, contact Customer Support
at http://ca.com/support.

Rules to Maintain Current State Values

210 User Guide

The sample code that follows shows you a sample rules packet:

)MSG DFH*

)PROC

/***/

/* */

/* PROPRIETARY AND CONFIDENTIAL INFORMATION */

/* AND INTELLECTUAL PROPERTY OF CA. */

/* Copyright (C) 2009 CA. ALL RIGHTS RESERVED. */

/* */

/* NAME - SSMCICS */

/* PURPOSE - Set the current state of CICS regions based on */

/* message traffic. */

/* RELATED - STATEMAN */

/* GLOBALS - None */

/* PARMS - None */

/* KEYWORDS - None */

/* LANGUAGE - OPS/REXX */

/* HISTORY - 27 APR 2009 GEM - Original implementation */

/* */

/* NOTES - */

/* */

/***/

If Opsinfo('EXITTYPE') ^== 'MVS' Then Return

job = msg.jobname

msgid = msg.id

Select

/*---*/

/* DFHSI1500 applid element startup is in progress for CICS ... */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 When msgid == 'DFHSI1500' then

 If wordpos('startup is in progress',msg.text) > 0 then

 Address SQL "Update STCTBL set current_state='STARTING'",

 "where jobname=:job and type='CICS'"

/*---*/

/* DFHSI1517 applid Control is being given to CICS */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

Understanding Transient Resource States

Chapter 7: Using System State Manager 211

 When msgid == 'DFHSI1517' then

 If wordpos('Control is being given to CICS',msg.text) > 0 then

 Address SQL "Update STCTBL set current_state='UP'",

 "where jobname=:job and type='CICS'"

/*---*/

/* DFHTM1715 applid product is being quiesced by userid ... */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 When msgid == 'DFHTM1715' then

 Address SQL "Update STCTBL set current_state='STOPPING'",

 "where jobname=:job and type='CICS'"

/*---*/

/* DFHKE1799 applid TERMINATION OF CICS IS COMPLETE */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 When msgid == 'DFHKE1799' then

 Address SQL "Update STCTBL set current_state='DOWN'",

 "where jobname=:job and type='CICS'",

 "and current_state <> 'ERROR'"

/*---*/

/* Not interested in this message */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 Otherwise nop

End

Return

Understanding Transient Resource States

The state of the resource goes from STARTING to UP without SSM having to execute any
STARTING_UP action, even if the actions table defines a STARTING_UP action.

transient states

States such as STARTING, which change to something else without SSM intervening.

stable states

States that do not change unless SSM takes action.

The events that cause a resource to change state usually are external events that rules
can interpret, such as system messages or commands the operator issues. However,
actions defined in the action table of the SSM also can trigger state changes.

A single SSM action can also cause two or three events to occur in sequence. For
example, when the TSO resource is DOWN and the desired state is set to UP, SSM
executes a START TSO action. This action causes two separate state-changing events to
happen for the same resource:

■ The message $HASP373 TSO STARTED triggers a rule that sets the current state to
STARTING.

■ The message IKT007I triggers a rule that sets the current state to UP.

ops--How Transient States Work

212 User Guide

ops--How Transient States Work

States such as STARTING, which change to something else without SSM intervening, are
called transient states. States that do not change unless SSM takes action are called
stable states.

SSM reacts to changes in the finite state machine by executing actions defined in its
actions table. So, the DOWN_UP transition must initiate an action to make the resource
leave the (stable) DOWN state.

Any action defined for a transient state may or may not execute, depending on the
timing of events, nor does it need to execute for things to happen:

■ The action defined for a transient state may not execute if the triggering event
occurs before SSM discovers that state. If SSM does queue and execute the action,
the current state of the machine may have changed by the time the action routine
begins. Therefore, if you define any actions involving transient states such as
STARTING, make them actions that do not necessarily have to execute.

For example, you may want to define an action for a transient state such as
STARTING that will execute an automation procedure that checks in two minutes to
see if the current resource state is UP and issues an error message if the state is
anything else. This is a safe, prudent action to take, because if the rule executes, an
error condition may exist. Actions such as issuing a VARY command or setting a
critical global variable, or any action that is required for the resource that is starting,
are not safe to take for the STARTING transition, because these actions may not
execute (and if they do, they may execute after the state of the resource has
already changed to UP).

■ Actions defined for transient states execute mostly for resources that are defined in
the first table listed in the directory table. Remember that the directory table lists
the resource tables in alphabetical order. But, the lower resources are in the table
list order in the directory table, the more likely it is that external state changes will
occur before the actions defined for transient states execute, or that these actions
never execute.

■ If you have critical actions that must be taken for transient resource states, the
safest place to specify those actions is in the rules packet for the applicable
resource type. In our example, if you want to take a critical action at START TSO
time, execute this action at the same point where you detect and set the STARTING
state. Do this before updating the table row for the appropriate resource.

How SSM Decides What Action to Take

Chapter 7: Using System State Manager 213

How SSM Decides What Action to Take

Various events can cause the current and desired operating states of a resource to
differ. Therefore, the values in the ACTION_CURRENT and ACTION_DESIRED columns of
your action table should take different types of resource state changes into account. For
example, you probably want to specify the following pairs of values in the
ACTION_CURRENT and ACTION_DESIRED columns of your action table:

ACTION_CURRENT
Column Value

ACTION_DESIRED Column
Value

Meaning of This Value Pair

UNKNOWN null The current state of a resource is UNKNOWN and its
desired state is anything else.

DOWN UP The current state of a resource is DOWN and its desired
state is UP.

UP DOWN The current state of a resource is UP and its desired state
is DOWN.

ERROR UP The current state of a resource is ERROR and its desired
state is UP.

ERROR DOWN The current state of a resource is ERROR and its desired
state is DOWN.

STOPPING UP A resource is stopping and its desired state is UP.

STARTING DOWN A resource is starting and its desired state is DOWN.

How to Specify and Store Actions

214 User Guide

How to Specify and Store Actions

Actions tell the SSM engine what steps need to be taken when:

■ A resource state changes

■ An action event occurs

■ A global event occurs

To specify actions, use the following guidelines:

■ Use the table editor to insert action clauses into the ACTION_TEXT field. The field is
type VARCHAR and can accept a maximum of 450 characters.

■ Combine multiple clauses into a single ACTION_TEXT field by using a semicolon as a
separator. If it is necessary to include a semicolon in a clause, enter two consecutive
semicolons.

To store actions, use the following guidelines:

■ Actions are always stored in the ACTION_TEXT field of an action table.

■ Store actions for global events in the global action table. There is only one global
action table, and it is referenced only during global events.

■ Store actions for both the resource state changes and for process events in a
resource action table. There can be multiple resource action tables.

Action Clauses

There are eight possible action clauses, which are listed below.

Following are descriptions of the eight action clauses:

CLIST("cmdname prm1,prm2,…")

Uses %CMDNAME to send the specified CLIST command and optional arguments to
the CLIST interpreter. The command runs on a server task level, so the CLIST script
is permitted to execute commands that run for a long period. The CLIST script must
exist in either the SYSPROC or SYSEXEC concatenation.

Note: The CLIST clause is included for compatibility. For new code, use TSOCMD to
invoke OPS/REXX programs.

Example: CLIST("STARTDB2") runs a CLIST named STARTDB2.

How to Specify and Store Actions

Chapter 7: Using System State Manager 215

EVRULE("rulename prm1,prm2,…")

Dispatches an AOF request rule and waits for the rule to complete. EVRULE is the
same as RULE, except that the return code from the request rule is checked. If the
return code is 500 or higher, then any clauses following the EVRULE are not
executed. The return code that is checked is set on the return statement in the
request rule.

WARNING! The rule triggered by this action executes to its conclusion before
control returns to the action. To avoid slow response time from the SSM engine,
avoid logic that could create lengthy wait times.

Example: EVRULE("SSMRECYCLE &NAME");MVSCMD("START &JOBNAME")
dispatches the SSMDOWN rule and check the return code from the rule. If the
return code is equal to or greater than 500, then action processing is terminated
without executing the MVSCMD clause.

MVSCMD("mvs command text")

Issues a z/OS command and does not wait for output. The name of the console that
will be used to execute the command is specified in the OCCONSOLENAME
parameter.

Example: MVSCMD("START &JOBNAME,SUB=MSTR") issues a start command and
does not return results.

PROCESS("event1,event2,…")

Used only in a process event action. Usually, it should be used in the SELECT process
event action, but there could be valid uses for a process clause in other global
events actions. For example, it could be used to suppress an event that was enabled
earlier in the processing of the resource state change event.

Process tells the SSM engine which process events to dispatch as SSM processes a
resource state change. For an explanation of process events, see Process Events in
this chapter.

Example: PROCESS("MATCH,MPREREQ") enables the MATCH and MPREREQ events
for the current resource.

RULE("rulename prm1,prm2,…")

Dispatches an AOF request rule and waits for the rule to complete.

WARNING! The rule triggered by this action executes to its conclusion before
control returns to the action. To avoid slow response time from the SSM engine,
avoid logic that could create lengthy wait times.

Example: RULE("SSMDOWN &NAME") dispatches SSMDOWN request rule.

How to Specify and Store Actions

216 User Guide

SETCOL("column name, column value")

Updates the indicated column of the current resource with the specified value. You
can use SETCOL to store a column value directly in an action. The column value
operand is limited to 140 characters, and must be enclosed in single quotes if it
contains blanks or other special characters such as quotes, parenthesis, commas, or
equal signs. To set a column value to null, specify a value of NULL for the column
value operand.

Note: If other action clauses follow SETCOL in the same action text, then references
to the updated column will see the original value of the column, not the updated
value. The new value will not be visible until the resource is reselected. This is
consistent with the capability of other SSM action clauses.

Example: SETCOL("DESIRED_STATE,&DOWN_STATE") sets the desired state of the
current resource to the table-relative DOWN state.

TSLCMD("cmdname prm1,prm2,…")

The command and parameters specified are routed to a CA OPS/MVS TSL Server
address space. This is an asynchronous action, and therefore will not degrade SSM
response time. This action is primarily used to invoke OPS/REXX programs in which
long running logic is needed to manage a SSM Controlled resource.

Example: TSLCMD("OI PROGRAM(MOVECICS) ARG(&JOBNAME)") runs an OI TSO
command, which invokes an OPS/REXX program named MOVECICS. The program
MOVECICS must be stored in the SYSEXEC concatenation, or as a compiled
OPS/REXX program in the OPSEXEC concatenation within the OPSOSF server
Procedure.

For more information on defining and controlling CA OPS/MVS TSL server address
spaces, see the Administration Guide.

TSOCMD("cmdname prm1,prm2,…")

The command and parameters specified are routed to a CA OPS/MVS TSO Server
address space. This is an asynchronous action, and therefore will not degrade SSM
response time. This action invokes OPS/REXX programs in which in depth logic is
needed to start or stop the SSM controlled resource.

Example: TSOCMD("OI PROGRAM(SHUTCICS) ARG(&JOBNAME)") runs an OI TSO
command, which invokes an OPS/REXX program named SHUTCICS. The program
SHUTCICS must be stored in the SYSEXEC concatenation, or as a compiled OPS/REXX
program in the OPSEXEC concatenation within the OPSOSF server Procedure.

For more information on defining and controlling CA OPS/MVS TSO server address
spaces, see the Administrations Guide.

How to Specify and Store Actions

Chapter 7: Using System State Manager 217

TSPCMD("cmdname prm1,prm2,…")

The command and parameters specified are routed to a CA OPS/MVS TSP Server
address space. This is an asynchronous action, and therefore will not degrade SSM
response time. This action is primarily used to invoke OPS/REXX programs by SSM
that must have execution priority over other OPSOSF triggered automation.

Example: TSPCMD("OI PROGRAM(PRODABND) ARG(&JOBNAME)") runs an OI TSO
command, which invokes an OPS/REXX program named PRODABND. The program
PRODABND must be stored in the SYSEXEC concatenation, or as a compiled
OPS/REXX program in the OPSEXEC concatenation within the OPSOSF server
Procedure.

For complete details on defining and controlling CA OPS/MVS TSP server address
spaces, see the Administrations Guide.

Complex Actions

A series of action clauses may be sufficient to do all the processing you need in an
action, but you can use TSOCMD to dispatch an OPS/REXX program of arbitrary
complexity. Since the program will run in a server subtask, the SSM engine is free to
proceed with another action before the program completes. CLIST and REXX action
clauses also dispatch the called program on a server subtask. RULE and EVRULE run an
AOF request rule. The rule will run to conclusion before your action regains control, so
long-running rules should be avoided.

How to Specify and Store Actions

218 User Guide

Specify Variables in Action Clauses

CA OPS/MVS enables you to specify variables in an action clause. This product enables
variables by assigning values to the variables when SSM initiates the action in the
clause.

You can specify action text variables in two ways. The first method is compatible with
previous versions of SSM, and the second method follows the rules of REXX host
command string processing.

When using the first method (ampersand prefixed variable name), CA OPS/MVS
provides a substring functionality to extract desired substring from the variable name.

To specify variables in action clauses.

■ The first method is compatible with previous versions of SSM, you specify variables
in a manner similar to TSO/E CLIST syntax. Follow this procedure:

– Place an ampersand (&) as the first character of the variable name.

– The first invalid character terminates the variable name.

– A period (.) following the variable name indicates concatenation with
subsequent text.

– To include an ampersand character (&) as part of the text, enter two
ampersands together.

– To use a substring functionality, specify starting position and length in the
following notation: &varname(start,length).

– If the variable name is not a column name in the directory or resource table,
the variable name is assumed to be a CA Automate rules variable that has been
processed by the CA OPS/MVS rules converter. The prefix table established by
the ATM*SCOPEnn parameters are searched and the appropriate converted
variable name is used to find the variable value. If the variable does not exist, a
null string is substituted. Quotes have no special meaning as the command text
is being scanned for variables.

■ The second method for specifying action text variables follows the rules of REXX
host command string processing. Follow this procedure:

– All text in quotation marks, either single (') or double ("), remain as entered.

– Text outside of quotes can be treated as a variable name.

– Strings of valid variable names are evaluated for substitution as column names
or global variables.

– Characters that are not valid variable names remain as entered.

– Multiple blanks are reduced to a single blank.

– A uninitialized variable is treated as the value of its own name.

How to Specify and Store Actions

Chapter 7: Using System State Manager 219

When CA OPS/MVS evaluates action text, it first evaluates according to the TSO/E CLIST
method, and then evaluates again using the REXX syntax method. To prevent an
inadvertent variable substitution, enclose all command text in quotes in the action
keyword specification.

Example: Variables that are specified in action clauses.

The following command text string is enclosed in quotes to prevent variable
substitution.

TSOCMD("OPSCMD COMMAND(START &JOBNAME..&JOBNAME) NOOUTPUT

SUBSYS("GLOBAL0.MYSUB")")

In this example, if the JOBNAME column in the resource table has the value of RMF and
the GLOBAL0.MYSUB variable has the value OPSX, then the following command is
submitted to the server:

OPSCMD COMMAND(START RMF.RMF) NOOUTPUT SUBSYS(OPSX)

For a DB2 subsystem that uses a quotation mark (") as a command character, suppose
that you have this action text:

TSOCMD("OPSCMD COMMAND(OI STOPDB2 CMDCHAR("")) JOBNAME("JOBNAME")")

This text yields the following command:

OPSCMD COMMAND(OI STOPDB2 CMDCHAR(") JOBNAME(DSN2MSTR)

The following command text string is the DB2 START command.

MVSCMD("-&JOBNAME(1,4) START DB2”)

To start a DB2, use the DB2 command prefix which in most cases is first four letters of
the master address space. In this example, if the JOBNAME column in the resource table
has the value of DB2PMSTR following command is submitted to MVS:

-DB2P START DB2

Shorthand global variables can also be used. These variables have the format
&.varname. SSM resolves these variables by replacing the ampersand (&) with a
system-specific prefix, and then treating them as global variables. The system prefix is
set by the SSMGLVPREFIX parameter, which you set independently on each system.

During the REXX substitution phase of action text processing, the & can be omitted if the
variable name is not embedded in a quoted string.

How to Specify and Store Actions

220 User Guide

Built-in Variables

Built-in variables that begin with the prefix SSM! are designed to provide global and
process exits with certain data that is not found in RDF columns or global variables.

The following describes the built-in variables:

SSM!XRESNAME

A short form of the concatenation of the variables
&SSM!PRISYS..&SSM!TABLE..&SSM!NAME which is usually passed as an action
parameter for the XPREREQ and XSUBREQ process events.

SSM!USERDATA

Contains the job name and program name of the SQL statement issuer that caused
the global event.

SSM!TABLE

Contains the name of the resource table or SSM directory table for a global event or
process event or the current resource table being processed by SSM for process
events and normal resource actions.

SSM!RESNAME

A short form of the concatenation of the variables &SSM!TABLE..&SSM!NAME
which is often passed as an action parameter.

SSM!PROCESS

Contains the name of the global or process event or ACTION for normal resource
action processing.

SSM!PRISYS

Contains the primary or local system name of the resource in the format
system.subsys. If a column called PRIMARY_SYSTEM does not exist in the resource
table, then the local system name is always returned.

SSM!PREREQ

Contains the text of the prerequisite to be evaluated by the XPREREQ process
event.

SSM!NAME

Contains the name of the resource or managed table name for a global event or
process event or the current resource name being processed by SSM for process
events and normal resource actions.

SSM!MAXRC

Contains the maximum return code that has occurred for any global event or
resource action table processing when multiple actions are defined in the text
column of the action table.

How to Specify and Store Actions

Chapter 7: Using System State Manager 221

SSM!LASTRC

Contains the return code from the last completed action.

SSM!IPL

Contains YES or NO. YES implies the first call to SSMBEGIN and the BEGIN global
event since IPL. The value is NO at all other times.

SSM!COLUMN

Contains the name of the first monitored column that was updated by the SQL
statement that triggered an UPDATE global event.

Notes:

■ The only valid variables for the BEGIN global event are SSM!IPL, SSM!MAXRC, and
SSM!LASTRC.

■ Resource and directory table column variables and SSM!PRISYS are not available for
action text substitution in global event actions. The REXX program invoked for a
global event action must read the resource or directory table to obtain any column
data.

■ The SSM!COLUMN variable is only valid for the UPDATE global event.

■ The SSM!PREREQ variable is only valid for the XPREREQ process event.

■ The SSM!USERDATA variable is only valid for all global events except BEGIN.

■ The SSM!MAXRC and SSM!LASTRC values are always valid and initialized to zero
before any action processing begins.

How to Specify and Store Actions

222 User Guide

Substituting Data

Action text variables consist of an ampersand (&) followed by a 1- to 32-character name.

CA OPS/MVS substitutes data into the variable in these ways:

■ From the current row of the directory table.

■ From the current row of the resource information table.

■ From a global variable, as follows:

– If the variable is the name of a column in the directory table, then the value of
that column for the current row becomes the value for the variable.

– If the variable has the name &SSMTABLE, its value is the current name of the
resource information table.

– If the variable is the name of a column in the current resource information
table, then the value of that column for the current row becomes the value for
the variable.

– If the variable is a global variable, the value of the global variable becomes the
value of the action clause variable.

– If the variable is a system symbol, the value of the symbol becomes the value of
the action clause variable.

– In all other cases, CA OPS/MVS substitutes a null string for the variable when
you use the CLIST method, and the variable name for the REXX method.

■ When using substring notation - &varname(start,length) as follows

start

This parameter is the starting position parameter, which is determined from
the substring beginning position. A value of 1 indicates the first value of the
string. When the position exceeds the length of the original string, then only
pad characters are returned.

length (Optional)

This parameter determines the length of substring to extract. When this
argument is absent, the remainder of the string is returned. When the length
exceeds the number of characters remaining, pad characters are added at the
end.

Note: Pad character is a blank.

How to Specify and Store Actions

Chapter 7: Using System State Manager 223

Empty-string and NULL Actions

If the action specified in the ACTION_TEXT column is an empty string, the SSM interprets
it as a valid action (in this case, a do nothing action). No other processing occurs.

If the ACTION_TEXT column contains a NULL value, the SSM interprets it as a non-action
and continues searching the action table for another match.

ACTMODE Column

The ACTMODE column in a resource table provides a way for the automation designer
to specify different actions for the same mismatch event based on any relevant criteria.
For example, a DOWN/UP mismatch might be responded to differently immediately
following an IPL when some subsystems are not ready, than it would after the system
has reached full production.

The ACTMODE column strongly influences the action selection process when SSM
responds to a resource state change.

When the value of the ACTMODE column of a resource is changed, the SSM engine
immediately selects that resource for processing, even if there is no state mismatch.
This selection occurs regardless of what caused the value of the ACTMODE column to
change. For example, the following actions all cause selection to occur:

■ An SQL UPDATE statement in an AOF rule

■ A manual change through the table editor

■ Use of the SETCOL action clause in action text

The purpose of the ACTMODE column is to define special actions. For example, consider
the relationship between CICS and IMS, where IMS is a prerequisite of CICS and CICS is a
subrequisite of IMS. Suppose you want to restart IMS without shutting down CICS. To do
this, you could cause the IMS resource to be selected for processing by SSM by setting
ACTMODE='BOUNCE' for IMS, and then supplying the following action to your action
table:

 ACTION_PROCESS ACTION_CURRENT ACTION_DESIRED ACTION_MODE ACTION_RES_TYPE ACTION_TEXT

 1 ACTION UP UP BOUNCE RULE("BOUNCE &JOBNAME")

The rule BOUNCE ignores the subrequisite relationship between CICS and IMS and cycles
IMS as requested.

More information:

How SSM Decides What Action to Take (see page 213)

How to Specify and Store Actions

224 User Guide

Search Order for Action Tables

Two kinds of events use the resource action table:

■ State change events

State change events take action in response to resource state changes.

■ Process events

Process events affect what action the SSM engine takes for the state change event
that it is currently processing.

The SSM engine applies different rules when evaluating these two kinds of events.

How to Specify and Store Actions

Chapter 7: Using System State Manager 225

Evaluating Resource State Change Events

For an action to be taken in response to a resource state change event, the following
values must be set:

■ The value of the ACTION_PROCESS column of the action table must be set to
ACTION

■ The value of the ACTION_CURRENT column of the action table must match the
current state of the resource.

■ Any column in an action table that is set to a non-null, non-blank value must match
the value of the corresponding column in the resource table.

For example, if the value of the ACTION_DESIRED column of an action table is READY
and the desired state of a resource is RUNNING, then the action is not eligible for
execution. However, if the desired state of the resource equals the value of the
ACTION_DESIRED column, then the action is eligible for execution and its score is
incremented by the weight assigned to the ACTION_DESIRED column, which is 16. If the
value of the ACTION_DESIRED column is null or blank, then the action is eligible for
execution regardless of the desired state of the resource; however, no increment is
added to the score. The same evaluation is carried out for all four weighted columns
listed in the table on the following page.

Note: Actions are selected based on their score. The action with the highest score is the
one executed in response to the resource state change event.

The least specific action of all possible actions sets the value of all four columns listed
below to null or blank. The score assigned to this type of action is zero. The most
specific action of all possible actions sets the value of all four columns to a non-null,
non-blank value. The score assigned to this type of action is 29 or 30, depending on
whether the value of the NAME column or the value of the TYPE column matched the
value of the ACTION_RES_TYPE column. Only one of these columns can match the
ACTION_RES_TYPE column, not both.

Following is a list of the action table columns for state change events and their
corresponding weights:

Column Weight

ACTION_DESIRED 16

ACTION_MODE 8

ACTION_RES_TABLE 4

ACTION_RES_TYPE 1 or 2

How to Specify and Store Actions

226 User Guide

As mentioned above, the ACTION_RES_TYPE column is evaluated once against the
NAME column and once against the TYPE column to see if a match occurs. If the value of
the NAME column matches the value of the ACTION_RES_TYPE column, then a value of
2 is added to the action score. The TYPE column is an optional column in the resource
definition. If it is present and if its value matches that of the ACTION_RES_TYPE column,
then a value of 1 is added to the action score.

Evaluating Process Events

For an action to be selected in response to a process event, the value of the
ACTION_PROCESS column in the action table must match the process event type. The
eligible action event names are SELECT, MATCH, PREREQ, SUBREQ, MPREREQ,
MSUBREQ, XPREREQ, and XSUBREQ. If the value of the ACTION_PROCESS column
matches one of these reserved names for one or more actions, then the action assigned
the highest score is executed. The scoring of process events is similar to that of state
change events except that the action tables of process events contain an
ACTION_CURRENT column.

Following is a list of the action table columns for process events and their corresponding
weights:

Column Weight

ACTION_CURRENT 32

ACTION_DESIRED 16

ACTION_MODE 8

ACTION_RES_TABLE 4

ACTION_RES_TYPE 1 or 2

How to Specify and Store Actions

Chapter 7: Using System State Manager 227

Example of Action Selection

This example shows the state mismatch action selection. Some columns were omitted
for clarity.

NAME CURRENT_STATE DESIRED_STATE ACTMODE TYPE
 RES1 DOWN UP STC
 RES2 DOWN UP STC
 RES3 DOWN UP BOUNCE STC
 RES4 STARTING UP STC

Following is an example of the actions that were selected in response to the above state
mismatch:

 ACTION_PROCESS ACTION_CURRENT ACTION_DESIRED ACTION_MODE ACTION_RES_TYPE ACTION_TEXT

 1 ACTION DOWN UP MVSCMD("START &JOBNAME")

 2 ACTION DOWN UP RES2 MVSCMD("S DJOB,PARM='IPL'")

 3 ACTION DOWN BOUNCE TSOCMD("OI BOUNCE")

 4 ACTION DOWN UP BOUNCE TSOCMD("OI REBOUNCE")

 5 ACTION STARTING UP SETCOL("CURRENT_STATE,DOWN")

In the previous example, the following actions are taken in response to the resource
state change events:

■ For RES1-Action 1 is selected with a score of 16. Action 5 is not considered for this
resource because the current state does not match the ACTION_CURRENT column
of the action table. Actions 2, 3, and 4 are bypassed because there are non-null
columns in the action table that do not match the resource.

■ For RES2-Action 2 is selected with a score of 18. Action 1 also matches the resource;
however, its score is 16. Actions 3 and 4 are rejected because the ACTION_MODE
column is non-null and it does not match the resource. Action 5 is not even
considered because the current state does not match the value of the
ACTION_CURRENT column of the action table.

■ For RES3-Action 4 is selected with a score of 24. Actions 1 and 3 are also matches
with scores of 16 and 8 respectively.

■ For RES4-Action 5 is selected with a score of 16. No other actions are considered.

How to Specify and Store Actions

228 User Guide

Process Events

The process event facility allows users to influence resource processing when state
transitions occur. This facility allows users to enhance the decision making process in
the SSM engine. For example, a process event may execute a user-supplied action that
determines whether a prerequisite resource is available on a remote system. There are
eight events at critical points in SSM where an event can occur.

The PROCESS action clause gives users control over process action invocation on a per
event and per resource basis. The PROCESS action command is discussed in the next
section.

Following are the process events and their descriptions. SSM!PROCESS will be set to the
event name when the action gets control.

MATCH

Occurs once when the current state equals the desired state for the first time.
Typically, a MATCH action can be used to start a dependent resource. In this case,
dependent refers to a resource that lists the current resource as a subrequisite. For
example, if the desired state of VTAM is UP, then the MATCH exit might start CICS.

SELECT

Occurs for each resource every time the SSM engine finds a reason to process the
state of a resource. SELECT occurs if the current state does not match the desired
state, if the missing prerequisite column or previous state column is not null, or
when the ACTMODE column has changed for the resource. A SELECT action should
be used to issue a PROCESS command that enables or disables subsequent process
events as needed to implement your automation strategy.

MPREREQ

Occurs once if any missing prerequisites remain after usual prerequisite processing.
This event allows a user-supplied action to apply its own criteria to the missing
prerequisites. The event action must be a synchronous action (EVRULE or RULE)
that updates the MISSING_PREREQ column to remove a prerequisite that is UP or
possibly adds a prerequisite that is DOWN.

Notes:

■ XPREREQ events execute before the MPREREQ event.

■ If the status of a MINOF statement is DOWN, then SSM stores the entire text of
the MINOF statement in the missing prerequisite column. In the case of a
MINOF statement, the event action must evaluate the entire MINOF statement
again to determine its true state.

How to Specify and Store Actions

Chapter 7: Using System State Manager 229

XPREREQ

Occurs once for every prerequisite name that includes a system name such as
SYST01.OPSW.TABLE.NAME. If the action determines that a prerequisite is missing,
then the action must return to SSM with a non-zero return code. This causes SSM to
add the prerequisite to the missing prerequisite list.

Note: The action for this event should be a synchronous action (EVRULE or RULE) so
the user code can return a non-zero return code if the prerequisite is missing. If you
execute an asynchronous action such as REXX, then the return code passed back to
SSM is zero and the prerequisite is not added to the missing prerequisite list, even if
your asynchronous REXX code determines that the prerequisite is missing.

MSUBREQ

Occurs once for any number of missing subrequisites if any missing subrequisites
are found by SSM standard processing. An MSUBREQ action must be an
asynchronous action (EVRULE or RULE) that can use its own logic to determine
subrequisite status and may override the SSM subrequisite decision by updating the
MISSING_PREREQ column.

Note: XUSBREQ events execute before the MSUBREQ event.

XSUBREQ

Occurs once for the resource being evaluated after SSM processing, even if multiple
subrequisites are missing. Action code must be a synchronous action (EVRULE or
RULE) that must discover subrequisite dependence on other systems, and update
the MISSING_PREREQ column for the current resource if any missing subrequisite is
found, or if a missing subrequisite is satisfied.

How to Specify and Store Actions

230 User Guide

The PROCESS Action Clause

As mentioned in the previous section, the PROCESS action command gives users control
over the process exit invocation on per decision point and per resource basis. The
PROCESS action command is issued in the SELECT exit. Its purpose is to selectively
enable each of the process exits for the current resource by providing a list of process
names. Following is an example of the format of the command:

PROCESS(MATCH,XPREREQ,XSUBREQ)

The following are valid names that can be specified on the PROCESS command:

DEBUG

A miscellaneous value. DEBUG enables the same diagnostic messages as the
SSMDEBUG parameter, but for the current resource only.

MATCH

A positive name that enables the action to be invoked.

MPREREQ

A positive name that enables the action to be invoked.

MSUBREQ

A positive name that enables the action to be invoked.

NOACTION

A negative name that prevents the SSM engine from asserting any action for the
resource event.

NOPREREQ

A negative name that prevents the SSM prerequisite processes and their affiliated
actions from being performed.

NOSUBREQ

A negative name that prevents the SSM subrequisite processes and their affiliated
actions from being performed.

SQLTRACE

A miscellaneous value. SQLTRACE produces the same diagnostic messages as the
STATETRACE parameter for the current resource.

XPREREQ

A positive name that enables the action to be invoked.

XSUBREQ

A positive name that enables the action to be invoked.

How to Specify and Store Actions

Chapter 7: Using System State Manager 231

SSM Action Processes Default Logic

The SSM action table, created using the Snapshot facility (default name of STCTBL_ACT),
provides the following default actions:

■ Handles failures that may occur with SSM controlled STCs

■ Provides a technique to control and monitor STCs that start, perform some type of
work, and then end (does not remain active)

This section describes the default logic supplied within these actions. Review and
customize the default actions to fit the requirements of your SSM environment or
remove the triggering actions as documented from the action table, if they are not
desirable.

How SSMRETRY Limits a Repetitive Action Sequence

The SSMRETRY request rule is a technique used to limit a repetitive action sequence
from occurring, such as starting a problem resource.

The SSMRETRY request rule performs the following actions and causes these effects:

■ Parameters passed to SSMRETRY specify how many start attempts should be made
within a defined time period.

For example, if a resource is started on a system by SSM as a result of
DESIRED_STATE='UP', the resource starts on the system
(CURRENT_STATE='STARTING') but then terminates abnormally
(CURRENT_STATE='DOWN'), the SSMRETRY logic limits SSM from attempting
another start of the resource and sets the current state to failed
(CURRENT_STATE='FAILED').

■ Parameters passed to SSMRETRY specify a maximum time that a resource should
reach its initialization state. If a resource does not reach its initialization state
(CURRENT_STATE='UP' as set by associating SSM rule packet), then the SSMRETRY
logic will set the current state to timeout (CURRENT_STATE='TIMEOUT').

For example, if the maximum initialization time for JES2 is set to five minutes, when
SSM starts JES2, and if it goes into some internal loop (never produces $HASP492),
then after five minutes the logic created by SSMRETRY will set the CURRENT_STATE
= 'TIMEOUT' for JES2.

■ The SSMRETRY request rule is invoked as a nested action within the DOWN_UP
action process for a resource such as:

EVRULE("SSMRETRY &SSMTABLE &JOBNAME,1,300,START UP");MVSCMD("START &JOBNAME")

How to Specify and Store Actions

232 User Guide

This START UP action process is limited to one start attempt and the resource
should reach its initialization state (CURRENT_STATE = UP) within 300 seconds.
These parameters can be change accordingly. The invocation of the SSMRETRY as
an EVRULE action allows the code to inform SSM to either process or bypass the
nested or subsequent start resource action. (start resource)

For further details and complete implementation guidelines, see the comments
within the SSMRETRY request rule.

How SSMFAIL Responds to SSM Resource Start-up, Termination, and Timeout Conditions

The SSMFAIL request rule generates an alert to start-up failures as determined from
logic within the SSMRETRY routine (CURRENT_STATE=FAILED, or
CURRENT_STATE=TIMEOUT). The SSMFAIL request rule also generates an alert when the
logic with the SSMEOM rule sets CURRENT_STATE=TERM upon an initialized SSM
resource abnormally terminating.

■ For FAILED conditions (SSMRETRY action retry limits exceeded), the SSMFAIL
request rule is triggered through the FAILED_UP action text specification:

ACTION_CURRENT ACTION_DESIRED ACTION_TEXT

FAILED UP RULE("SSMFAIL &NAME FAILED &SSMTABLE")

The default SSMFAIL logic for this condition leaves the resource in the FAILED_UP
condition and produces a highlighted message similar to the following:

OPSNOTIFY DB2MSTR failed and will not be restarted. Action retry limits

defined in SSMRETRY have been exceeded.

■ For TIMEOUT conditions (SSMRETRY detected a resource has started but it has not
reached its 'UP' state), the SSMFAIL request rule is triggered through the
TIMEOUT_UP action text specification:

ACTION_CURRENT ACTION_DESIRED ACTION_TEXT

TIMEOUT UP RULE("SSMFAIL &NAME TIMEOUT &SSMTABLE")

The default SSMFAIL logic for this TIMEOUT_UP condition produces the highlighted
message similar to the following:

OPSNOTIFY DB2MSTR has not reached initialization as defined within SSMRETRY

Parameters.

■ For TERM conditions (SSMEOM detected an initialized SSM resource that was in the
states CURRENT_STATE='UP' and DESIRED_STATE='UP' has abnormally terminated),
the SSMFAIL request rule is triggered through the TERM_UP action text
specification:

ACTION_CURRENT ACTION_DESIRED ACTION_TEXT

TERM UP RULE("SSMFAIL &NAME TERM &SSMTABLE")

SSM Global Events

Chapter 7: Using System State Manager 233

The default SSMFAIL logic for this TERM_UP condition produces the highlighted
message similar to the following:

OPSNOTIFY DB2MSTR has abnormally terminated. SSM is restarting.

For further details and complete implementation guidelines, refer to the comments
within the SSMFAIL request rule.

How SSMHOOK Controls Quick Work Cycles

Various products are started at IPL time that simply start, perform some work, and then
quickly end. These jobs are classified as hook jobs within SSM and need to be treated
differently than those SSM resources that start, initialize, and remain active until they
are requested to shutdown. The SSMHOOK request rule can be used to manage these
hook jobs within SSM.

The SSM action tables created from the Snapshot facility in release r11.6 or higher of CA
OPS/MVS will insert the following default actions for a HOOKSTC resource:

■ UP_DOWN

■ DOWN_UP

■ HOOKED_UP

These actions can be repeated and modified accordingly, to manage any hook job.

Refer to the comments within the SSMHOOK request rule for further details and
complete implementation guidelines for handling hook jobs within SSM.

SSM Global Events

There are two types of SSM global events, RDF monitor events (ADD, DELETE, and
UPDATE) and the BEGIN event. Users can take action for these events by adding entries
to the global action table.

RDF Monitor Events

SSM monitors the resource directory table and all tables named in it for changes. If a
column has the monitored attribute, then SSM monitors that individual column as well.
When a monitored column is changed or a row is added or deleted from a managed
table, the RDF stores information about the change and notifies SSM through a global
event. As a result of the global event being issued, SSM comes out of its usual wait state
and processes the information stored by the RDF. A user-defined action can now run
when these events occur.

SSM Global Events

234 User Guide

RDF-triggered events occur after the table has been modified, not synchronously with
the change. The corresponding action can react to changes; however, it cannot prevent
them.

Note: Auxiliary tables are not considered to be SSM managed tables, and changes to
them do not create global events.

BEGIN Event

SSM initialization occurs when SSM is started, or when the status of SSM is changed
from INACTIVE to ACTIVE or PASSIVE, or from PASSIVE to ACTIVE. During initialization,
SSM attempts to execute a global action named BEGIN. This global action is optional. Its
purpose is to obtain the status of resources that exist on an external processor and are
potential prerequisites for local resources; however, other initialization can be
performed in this action at the discretion of the user. You will not be able to install and
run this application until you stop using your action, or until you combine the
CA-supplied action with your own.

How the BEGIN Event Works

Only one BEGIN action may be specified in the SSMV2_GBLEXIT_TBL global action table.
The BEGIN event runs after the SSMBEGIN request rule.

In the action, SSM!PROCESS is always set to BEGIN and SSM!IPL is always set to YES for
the first pass following a system IPL. Otherwise, SSM!IPL is NO.

Example: BEGIN Event

Following is an example of a BEGIN event that will execute a request rule called
SSMSTART, which is passed to the SSM!IPL built-in variable:

SSMV2_GBLEXIT_TBL ------------ TABLE DATA EDITOR ----------- COLUMNS 00001 00072
Command ===> Scroll ===> CSR
COL--> EXIT_EVENT EXIT_RES_TABLE EXIT_RES_NAME EXIT_ACTION
***********************************TOP OF DATA**********************************
000001 ADD
000002 BEGIN RULE("SSMSTART &SSM!IPL")
000003 DELETE
000004 UPDATE
*********************************BOTTOM OF DATA*********************************

SSM Global Events

Chapter 7: Using System State Manager 235

Using SSM Global Events

The SSMGLOBALEXITS parameter controls whether the global action is enabled. This
parameter defaults to NO, the global action is not enabled.

You must also create a global action RDF table, which contains the following four
required columns:

EXIT_EVENT CHAR(8) PK UC NULL

EXIT_RES_TABLE CHAR(18) PK UC

EXIT_RES_NAME CHAR(18) PK UC

EXIT_ACTION VARCHAR(450) NULL

Additional columns are allowed.

If the global action is enabled by setting the SSMGLOBALEXITS parameter to YES and the
global action RDF table does not exist, then the SSM global action process does the
following:

■ Creates an empty table containing the four required columns.

The table editor or other table manipulation tools can be used to populate the rows
of the global action table and to add columns as needed.

■ Names the global action table SSMV2_GBLEXIT_TBL by default.

Its name can be changed in the SSMGLOBALEXITTBL parameter. Only one global
action table can be active. However, you can switch between multiple global action
tables by setting the SSMGLOBALEXITTBL parameter.

There can be multiple actions that match a global event in the global table. The SSM
engine assigns a numerical score to each action that matches, so that it can choose the
action that most closely matches the event. Actions can be generic, meaning they only
specify the event type (ADD, DELETE, or UPDATE), or they can be specific, meaning they
specify the generic information and also more specific information, such as the table
name being updated. The numerical score increases for each column of the action that
matches the corresponding event type. The highest score is the closest match.

The RDF-triggered global events share the global action table that is used by the global
BEGIN action. These actions also share the parameters for setting the action table name
and enabling the action.

There are a number of variables available to global actions.

More information:

Built-in Variables (see page 220)
Process Events (see page 228)
BEGIN Event (see page 234)

Non-standard and Complex Resource Management

236 User Guide

DELETE Event Example

The following example shows how the DELETE event can execute a request rule called
SSMDELGX, which is passed in the name and table of the deleted resource. The rule
checks whether that deleted resource is a prerequisite for another resource in the table
and issues a warning message.

SSMV2_GBLEXIT_TBL ----------- TABLE DATA EDITOR ----------- COLUMNS 00001 00124
Command ===> Scroll ===> PAGE
COL--> EXIT_EVENT EXIT_RES_TABLE EXIT_RES_NAME EXIT_ACTION
*********************************TOP OF DATA **********************************
000001 DELETE RULE("SSMDELGX &SSM!TABLE,&SSM!NAME")
********************************BOTTOM OF DATA*********************************
)REQ SSMDELGX
)PROC

/**/
/* Throw away rule name and parse input parameters */
/**/
PARSE UPPER ARG . parms
PARSE VAR parms xtable ',' xname

/**/
/* See if deleted resource is a prereq for another resource in this */
/* table */
/**/
ADDRESS SQL
"SELECT NAME FROM "xtable" WHERE PREREQ IN ('"xname"')"

/**/
/* If a row is returned then issue a warning message */
/**/
IF name.0 > 0
THEN DO
 msgtext = 'Resource 'xname' was deleted from table 'xtable' and is',
 'a prereq for 'name.1
 ADDRESS WTO "TEXT('"msgtext"') ROUTE(1)"
END /* THEN DO */
)END

Non-standard and Complex Resource Management

Standard resources managed within the SSM component start through a traditional
z/OS START command initialize, and then stay active until it is desired to stop them or
the system is being IPLd. Additionally, these standard resources produce specific WTO's
that indicate their true current state, such as when it reached its initialization or UP
state or when it is being STOPPED. Within SSM, it may be desired to manage the state of
resources that do not adhere to the characteristics of these standard types of resources.
This section describes the actions needed to manage various non-standard resources
within SSM and identify supporting sample rules and programs in which more
information can be found.

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 237

Manage USS Deamon Server Processes

USS daemon server processes such as INETD and FTP can be managed within SSM by
implementing logic as described within the SSMUSS1 sample OPS/REXX program. This
sample OPS/REXX program located in the opsmvshlq.CCLXSAMP dsn, is intended to
demonstrate an automated technique that can be used within the System State
Manager component to monitor and control specific USS processes. The default logic of
this sample program is intended to handle USS daemon server processes specifically
INETD and/or FTP, but can be used to managing any USS process that behaves in the
same manner. Refer to this sample program for complete logic details as well as
implementation steps needed to manage these types of resources.

How to Use the Full Capabilities of SSM

The next sections guide you through the steps required to create and implement tables,
rules, and procedures that will control your started tasks:

1. Take a snapshot of your system (see page 238)

2. Review and customize the STCTBL table (see page 241)

3. Review and modify the STCTBL_ACT table (see page 242)

4. Auto-enable rules that monitor the started tasks (see page 244)

5. Add STCTBL and STCTBL_ACT tables to the SSM directory table (see page 247)

6. Test the SSM operation (see page 248)

7. Perform an IPL with SSM (see page 252)

How to Use the Full Capabilities of SSM

238 User Guide

Step 1: Take a Snapshot of Your System

The Snapshot function captures data about started tasks on your system and uses it to
create a started task resource table that contains a row for each started task that runs
on your system. Snapshot also creates an action table, which contains the appropriate
actions needed to control the started tasks. Using Snapshot greatly simplifies
configuring and maintaining the started task data.

To take a snapshot of your system

1. Choose option 4.11 from the primary OPSVIEW panel.

The panel displays listing SSM functions as shown here:

System State Manager---------- CA99 -- O P S V I E W ---------- Subsystem OPSX
 Date/Time: 2009/04/05 10:31

 1 Control - Set/Display SSM parameters and resource tables
 2 Status - Set/Display states of SSM controlled local resources
 3 Snapshot - Create/Modify a local SSM started task resource table
 4 Scheduler - Set/Display schedules for SSM controlled resources
 5 Group Manager - Create/Manage groups of SSM resources
 A Action Editor - Create and maintain SSM action tables
 G Global Status - Set/Display states of SSM controlled global resources
 R Resource Edit - Create and maintain SSM resource tables

 Press END to return

2. Choose option 3 Snapshot from the main System State Manager panel.

The following SSM Snapshot panel displays:

SSM Snapshot-------------- XE44 -- O P S V I E W -------------- Subsystem OPSX
COMMAND ===>
The Snapshot facility scans the current system for active started tasks and
creates a System State Manager table for them. This process may take several
minutes to complete. After the Snapshot table is built, the SQL table editor
will be invoked to allow you to view and customize the resulting table.

SNAPSHOT RULES DATASET:
 Rules DSN ===> 'OPSDEV.O.CCLXRULM' (Required)

SNAPSHOT INPUT FROM PARMLIB MEMBER LOAD
 SYSPARM ===> 00

STC IDENTIFICATION DATASET(S):
 User DSN ===> Opt)
 CA DSN ===> 'OPSDEV.O.CCLXCNTL(SNAPDATA)' Req)

SNAPSHOT OUTPUT:
 Mode ===> A (Add/Refresh/Update) SSMO Cols ===> Y (Y/N)
 Table Name ===> STCTBL SSM version ===> (Currently 2 only)
Enter SNAPSTART to BEGIN Snapshot, Press PF3 to EXIT without taking Snapshot

3. First-time users of SSM should enter the following data:

■ The data set name containing the SNAPRUL1 and SNAPRUL2 rules.

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 239

■ The name of OPS.CCLXCNTL(SNAPDATA) data set for the CA DSN field.

■ A for the Mode field.

■ STCTBL for the Resource Table Name field. If you prefer to use a different name
for this table, you will have to modify the SSM rules packets. For more
information, see Step D: Auto-enable Rules That Monitor Started Tasks in this
chapter.

■ 2 for the SSM version.

■ Y for the SSMO Cols option only if you are running CA Network and Systems
Management System Status Manager CA OPS/MVS Option.

4. After you have typed entries into all required fields, enter the SNAPSTART
command on the command line.

The Snapshot process begins. It may take several minutes to survey your system
and create the started-task resource and action tables. You will see several
messages as the process progresses. Step A is complete when the Snapshot facility
invokes the CA OPS/MVS table editor so that you can view and edit the resource
table.

You should now have two new tables, the STCTBL resource table and the STCTBL_ACT
action table.

Fields on the SSM Snapshot Panel

The following is a list of fields on the SSM Snapshot Panel:

Rules DSN

The full name of the data set containing the SNAPRUL1 and SNAPRUL2 rules. The
data set does not have to be a valid rules data set for the active CA OPS/MVS on the
system. The rules are read from the specified PDS and installed using the
*DYNAMIC rule set.

The SNAPRUL1 and SNAPRUL2 rules are shipped to you in the OPS.CCLXRULM data
set.

SYSPARM

The suffix list of IEASYSxx members of the system parmlib that was used to IPL the
system. The IEASYSxx members are used to locate other members that are relevant
to system task initialization.

The suffix is obtained using the OPSIPL REXX function, and is not modifiable.

How to Use the Full Capabilities of SSM

240 User Guide

User DSN

The full name of the data set that contains user-supplied started task data. The
Snapshot facility uses the data to determine the type of a started task, to specify
START and STOP commands, and to override some Snapshot actions.

This field is optional. If you do specify a data set name, entries (identified by the
TYPE parameter) in this data set override matching entries in the data set supplied
by CA. See CA DSN below.

CA DSN

The full name of the data set containing started task data supplied by CA. The
Snapshot facility uses the data to determine the type of a started task, to specify
START and STOP commands, and to override some Snapshot actions.

As shipped on the CA OPS/MVS distribution media, this data set is the
OPS.CCLXCNTL(SNAPDATA) member. Because we maintain the data in the
OPS.CCLXCNTL(SNAPDATA) member, do not modify it. Instead, you can copy any
entries you want to modify into the User DSN (described above) and make the
modifications there.

This field is required.

Mode

The Snapshot execution mode. Valid values are:

ADD

Adds started task data to an existing resource information table without
modifying any entries in the table.

If the table that you specify in the Table Name field does not exist, the
Snapshot facility creates a new table and places all of the started task data it
finds into the new table.

REFRESH

Clears and rebuilds an existing resource information table.

Note: This is the same process that occurs when you specify a value of ADD,
and the table in the Table Name field does not exist.

UPDATE

Modifies existing data in the table but does not add any new started tasks to
the table.

Resource Table Name

The name of the resource table that is to contain the started task control data. The
action table name is assumed to be the resource table name suffixed with _ACT.

SSM version

Specifies SSM version for which required columns should be defined. Currently 2 is
the only supported SSM version

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 241

SSMO Cols

Specifies whether the required columns for the CA Network and Systems
Management System Status Manager CA OPS/MVS Option product should be
included when a new SSM resource table is created.

Step 2: Review and Customize the STCTBL Table

After the Snapshot table is built, the SQL table editor is invoked to let you view and
customize the resulting table.

Your STCTBL table will resemble the resource table in How SSM Works (see page 273) in
this chapter. It will contain data regarding the started tasks that the Snapshot facility
found running on your system or contained in the specified or active SYSPARM.

To review and customize the STCTBL table

For each row in STCTBL, perform these steps:

1. Decide if SSM should control this started task. If not, delete the row from the table.

2. Verify that the started task has the correct job name.

3. Verify that the PREREQ column contains the correct prerequisite task names.

4. Modify the TYPE column to fit your environment. Generally, the TYPE value that the
Snapshot facility provides will be suitable, but you may want to be more specific.
For example, if you have several CICS regions defined in STCTBL, the Snapshot gives
each region a type of CICS. You may prefer to group your production regions with a
TYPE value of PRODCICS and give your test regions a TYPE value of TESTCICS.

5. When you test SSM operation as discussed in Step F: Testing SSM Operation and
Step G: Perform an IPL With SSM in this chapter, your testing environment may
prohibit you from testing specified tasks such as VTAM or JES. If this is the case,
then change the MODE column value from ACTIVE to PASSIVE for those tasks that
you want to leave out of your initial tests.

How to Use the Full Capabilities of SSM

242 User Guide

6. Supply the correct IPL_STATE value that will tell SSM how this task should be
handled after an IPL. The IPL_STATE column initiates the DESIRED_STATE column
after an IPL. Valid values for the IPL_STATE column are:

UP

SSM should start the task at IPL.

DOWN

SSM should not start the task at IPL.

IPL

Something outside of SSM will start the resource, but SSM should manage it
after it becomes active.

This step is complete when your STCTBL table is tailored for your environment.

Step 3: Review and Modify Your STCTBL_ACT Table

The STCTBL_ACT table should contain the correct START and STOP commands for the
resources in your STCTBL (started task) table.

To review and modify your STCTBL_ACT table

1. From the table editor primary panel (=2.6), press Enter.

The list of tables for editing displays.

2. Review the default actions that the Snapshot facility creates for the ACTION_TEXT
column. These default actions will invoke one of the request rules or OPS/REXX
programs described in the following Base Product Components table:

Component Description

SSMSTATE A request rule that determines the current state of the started
task. This EXEC runs when the current state is UNKNOWN and
the desired state is set to some other value. SSMSTATE
determines the actual state of the task and sets the current
state value accordingly.

STOPCICS An OPS/REXX program that shuts down CICS regions.

STOPDB2 An OPS/REXX program that shuts down a DB2 region.

STOPJES2 An OPS/REXX program that shuts down JES2.

STOPNETV An OPS/REXX program that shuts down a NetView region.

STOPSTC An OPS/REXX program that passes up to three shutdown
commands to stop a started task.

STOPVTAM An OPS/REXX program that shuts down a VTAM region.

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 243

Component Description

SSMUPIPL A request rule that sets the desired state to UP for those
resources that had an IPL_STATE of IPL.

Various SSM related OPS/REXX programs including the above STOPCICS, STOPDB2,
STOPJES2, STOPNETV, and STOPSTC are distributed as user modifiable samples
located within your installed hlq.CCLXSAMP data set.

3. Review the default resource control logic within these SSM samples (as well as
other SSM* and SHUT* samples that reside in this same data set) to determine if
they are needed within your SSM configuration. If so, copy them into your
hlq.USER.REXX library.

SSM issues the basic commands of START jobname or STOP jobname for all started
tasks, and more specific commands will be issued for tasks defined under the
ACTION_RES_TYPE column.

For more information about STOPxxxx REXX programs, review the members in the
OPS/REXX library.

This step is complete when your STCTBL_ACT table contains the correct START and STOP
commands for the resources in your STCTBL (started task) table.

How to Use the Full Capabilities of SSM

244 User Guide

Step 4: Auto-enable Rules That Monitor Started Tasks

You need to enable and auto-enable the rules packets that update the current state for
each started task in the STCTBL table. Many of these rules packets are prewritten. You
can find them in the OPS.CCLXRULM data set. Each rules packet contains subsystem
specific rules that correspond to the data in the TYPE column of your started task table.
The names of these rules packets have the format SSMxxxx, where xxxx is the
subsystem name.

Note: For instructions on how to enable and auto-enable rules packets, see Lesson 5:
How to Enable and Disable Rules and Rule Sets in the chapter “How to Begin Using the
Product.”

Some rules packets are composed of multiple rule members. Rules packets use the SQL
update instructions to update the STCTBL with the appropriate status.

To auto-enable rules that monitor started tasks

1. If you did not use the recommended name of STCTBL, you will have to change this
table name.

2. Create rules for started tasks for which we supply no prewritten rules.

3. Use an existing rules packet as a model, and change the MSGID text to the IDs of
messages representing the UP and DOWN states for that task.

Besides updating the CURRENT_STATE column values to UP or DOWN, rules packets
track the starting and stopping of the resources and so prevent duplicate tasks from
being started. You do not need to track starting and stopping, but doing so is useful
because it enables you to see how far the task has progressed in trying to reach its
desired state.

4. Besides enabling the rules packets that monitor the CURRENT_STATE for each
started task, you must also enable the following rules members:

■ SSMBEGIN

■ SSMEOM

■ SSMHASP3

■ SSMIEF4

■ SSMSTART

■ SSMSTATE

■ SSMSTOP

■ SSMUPIPL

These members include the command trapping rules that are needed to intercept
manually entered S or P commands.

The following sample OPS/REXX programs are provided in the OPS.CCLXRULM data
set:

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 245

■ SSMBEGUX is a user exit program called by rule SSMBEGIN, and therefore must
exist in the same rule set in order for the rule to be enabled. For information on
customizing SSMBEGUX, see section Customizing Startup with SSMBEGUX in
this chapter.

■ SSMSTAUX is a user exit program called by rule SSMSTATE, and therefore must
exist in the same rule set in order for the rule to be enabled. For information on
customizing SSMSTAUX, see documentation in the sample SSMSTAUX program.

This step is complete when the required rule members and rules packets for each
started task are auto-enabled.

How to Use the Full Capabilities of SSM

246 User Guide

Sample Code

The following is an example of the SSMCICS rules packet:

)MSG DFH*

)PROC

/***/

/* */

/* NAME - SSMCICS */

/* PURPOSE - Set the current state of CICS regions based on */

/* message traffic. */

/* RELATED - STATEMAN */

/* GLOBALS - None */

/* PARMS - None */

/* KEYWORDS - None */

/* LANGUAGE - OPS/REXX */

/* HISTORY - 27 APR 1993 GEM - Original implementation */

/* */

/* NOTES - */

/* */

/***/

If Opsinfo('EXITTYPE') ^== 'MVS' Then Return

job = msg.jobname

msgid = msg.id

Select

/*---*/

/* DFHSI1500 applid element startup is in progress for CICS ... */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 When msgid == 'DFHSI1500' then

 If wordpos('startup is in progress',msg.text) > 0 then

 Address SQL "Update STCTBL set current_state='STARTING'",

 "where jobname=:job and type='CICS'"

/*---*/

/* DFHSI1517 applid Control is being given to CICS */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 When msgid == 'DFHSI1517' then

 If wordpos('Control is being given to CICS',msg.text) > 0 then

 Address SQL "Update STCTBL set current_state='UP'",

 "where jobname=:job and type='CICS'"

/*---*/

/* DFHTM1715 applid product is being quiesced by userid ... */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 When msgid == 'DFHTM1715' then

 Address SQL "Update STCTBL set current_state='STOPPING'",

 "where jobname=:job and type='CICS'"

/*---*/

/* DFHKE1799 applid TERMINATION OF CICS IS COMPLETE */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 When msgid == 'DFHKE1799' then

 Address SQL "Update STCTBL set current_state='DOWN'",

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 247

 "where jobname=:job and type='CICS'",

 "and current_state <> 'ERROR'"

/*---*/

/* Not interested in this message */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+----*/

 Otherwise nop

End

Return

Step 5: Add STCTBL and STCTBL_ACT Tables to the Directory Table

The Stateman Controls panel lets you add your tables to the control of the SSM
directory table.

To add your STCTBL and STCTBL_ACT tables to the SSM directory table

1. Choose option 1 from the Stateman Controls panel (=4.11).

The following panel displays:

SSM Control--------------- XE44 -- O P S V I E W ------------- Row 1 to 2 of 2
 Command ===> Scroll ===> CSR
 Date/Time: 2009/07/16 16:39 Wait ===> 10
 System ===> *
 Parameters: Stateman ===> ACTIVE (Active/Passive/Inactive/Noprereq)
 Statetbl ===> SSM_MANAGED_TBLS
 Version ===> 2
 State Names
 Cmd Managed Table Mode Action Table Up Down Unknown TNG
 --- ------------------ ---- ------------------ -------- -------- -------- ---
 ADD A UP DOWN UNKNOWN N
 ZSMQAT1 A ZSMQAT_ACT UP DOWN UNKNOWN Y
 ZSMQAT2 A ZSMQAT_ACT ONLINE OFFLINE UNKNOWN N
 ******************************* Bottom of data *******************************

This panel displays the current operating mode that SSM is using, the name of the
directory table (SSM_MANAGED_TBLS is the default), and a control section.

2. In the control section, add your tables to the control of the SSM.

3. Change data on this panel by tabbing to the Stateman field, type PASSIVE and press
Enter.

This places SSM in PASSIVE mode.

4. Tab to the following fields and type the data shown above in Add Table.

5. After you have placed entries in all fields, press Enter.

This step is complete when the STCTBL_ACT and STCTBL tables are defined in the
directory table of the SSM, SSM is in PASSIVE mode, and the current state and desired
state match for each system resource defined in the STCTBL table.

You can view and change the states using OPSVIEW option 4.11.2.

How to Use the Full Capabilities of SSM

248 User Guide

Step 6: Test the SSM Operation

In this step, you use the started task resource table, STCTBL and the action table
STCTBL_ACT, to test that SSM correctly starts and stops resources. To simplify testing,
use the ISPF split screen feature to create two viewing windows:

■ In the first window, use the System State Manager Resource Control panel, which is
option 4.11.2 in OPSVIEW.

■ In the second window, run a product that enables you to view the SYSLOG data set
and issue commands, such as the CA SYSVIEW product or the IBM SDSF product.

Test the STATEMAN Rules Packet

To ensure that the rules in the STATEMAN rules packet correctly set the
CURRENT_STATE columns in your started task table (STCTBL), do the following:

1. Issue z/OS commands to start and stop the started tasks defined in the table.

2. Verify that the current states are DOWN when the tasks are actually stopped and
UP when the tasks are initialized completely.

3. Because SSM is running in PASSIVE mode, check that the desired states change
along with the current states.

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 249

Test SSM

To determine whether SSM correctly starts and stops your started tasks, do the
following:

1. Issue z/OS commands to stop the tasks.

2. Verify that both the current state and desired state are set to down.

On the System State Manager Control panel, enter ACTIVE in the Stateman field to
change the SSM resource monitoring mode to ACTIVE. Doing this causes the
SSMBEGIN request rule to execute, prompting you with the messages shown in
Setting the Desired State in this chapter. Because you have already set the desired
state, select option 5 in response to these messages.

Note: The WTOR message from the SSMBEGIN request rule will not be sent to your
TSO session.

3. Start one of your started tasks by issuing the following z/OS command:

S taskname

This should cause the SSMSTART rule to capture the S taskname command and
update the desired state to UP for that resource. SSM then initiates the action
defined in the STCTBL_ACT table to get the task started.

4. Check that the task starts correctly. Once it has initialized fully, verify that both the
current state and desired state for the task are set to UP.

While SSM is restarting the task, you can check its progress by locating these
messages in the SYSLOG or in the OPSLOG. In this sample, SSMSTART changes the
desired state of a job to up.

S taskname

SSMSTART: DESIRED_STATE OF taskname CHANGED TO UP

OPS7902H STATEMAN ACTION FOR STCTBL.taskname:

DOWN_UP=OPSCMD COMMAND('START taskname') NOOUTPUT

OPSCMD COMMAND('START taskname') NOOUTPUT

START taskname

5. Issue this command:

P taskname

6. Verify that SSM correctly stops the started task and that both the current state and
desired state are set to DOWN after the task has ended. The process SSM uses to
stop the task is much the same as the process that executes when you issued the S
taskname command, except that the messages in the SYSLOG or OPSLOG will
reflect the stopping actions.

How to Use the Full Capabilities of SSM

250 User Guide

Test Maintenance of Desired States

To test how well SSM keeps a resource in its desired state, perform these steps:

1. Start a started task and verify that the current state and desired state are set to UP.

2. Simulate the task abending by entering the z/OS command to stop the resource.
Use the command STOP taskname if the task usually requires a P taskname
command.

The STOP command will bypass the command trapping rules, causing the desired
state not to be set to DOWN.

3. When the task ends, verify that SSM restarts it.

A restart should take place because initially you set current state and desired state
to UP, and then the STOP taskname command triggered a rule that changed the
current state of the task to DOWN. This mismatch of current state (DOWN) and
desired state (UP) should cause SSM to dispatch the action needed to restore the
task to its desired state.

Test Prerequisite Checking

To test whether SSM checks prerequisites (if any are defined) for your started tasks,
follow a procedure like the one described below.

Suppose that your STCTBL table contains rows defining these tasks:

NAME DESIRED_STATE CURRENT_STATE PREREQ MISSING_PREREQ

TESTTASK1 DOWN DOWN NULL NULL

TESTTASK2 DOWN DOWN TESTTASK1 NULL

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 251

TESTTASK1 has no prerequisites but is itself a prerequisite for TESTTASK2, so TESTTASK1
must be active before TESTTASK2 can start.

To verify this

1. Issue the command S TESTTASK2.

The desired state for TESTTASK2 will change to UP, and the MISSING_PREREQ
column value will change to TESTTASK1, indicating that TESTTASK2 cannot start
until this prerequisite is satisfied.

2. Next, issue the command S TESTTASK1 and verify that first TESTTASK1 and then
TESTTASK2 start.

3. After both tasks become active, issue the command P TESTTASK1 to stop the first
task.

The desired state for TESTTASK1 changes to DOWN and the MISSING_PREREQ value
for the task changes to TESTTASK2, indicating that SSM cannot stop TESTTASK1 until
the task that requires it. TESTTASK2 is also stopped.

4. Issue the command P TESTTASK2 now.

SSM will stop TESTTASK2 first, then TESTTASK1.

Step 6 is complete when you have successfully tested the SSMSTART and SSMSTOP rules
and the following SSM operations:

■ Starting and stopping of started tasks

■ Ability to keep a resource in its desired state

■ Prerequisite checking

How to Use the Full Capabilities of SSM

252 User Guide

Step 7: Perform an IPL with SSM

You need to test how SSM functions during system shutdown and at IPL time. Before
you do so, make sure that:

■ The CA OPS/MVS STATEMAN parameter is set to ACTIVE.

■ You have successfully completed Steps 1 through 6. If you set the monitoring mode
to PASSIVE for started tasks that you did not want to include in your other SSM
tests, change the MODE value for those tasks to ACTIVE and repeat Step 6 for each
task.

■ The MODE value for the STCTBL table and each started task is ACTIVE.

■ The current states and desired states in your STCTBL table are UP for tasks that are
active or DOWN for inactive tasks.

■ You have created a new COMMNDnn member of the Logical Parmlib Concatenation
that contains the CA OPS/MVS START command, the tasks (if any) that SSM will not
control, and the tasks that SSM will not start at IPL but will manage after those tasks
become active (these tasks will be those for which you set the IPL_STATE value to
IPL in Step 2).

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 253

Perform a System Shutdown

With SSM, system shutdown is nothing more than setting the DESIRED_STATE to DOWN
for all active started tasks that SSM controls. The OPS.CCLXSAMP data set contains a
member called SSMSHUT, which provides various options you can tailor to meet your
shutdown requirements.

If you intend to use the SSMSHUT program when you implement SSM on your
production system, see The SSMSHUT Program in this chapter to understand how it
works. For now, invoke SSMSHUT by issuing the following console command:

!OI SSMSHUT

Note: In the console command above, the ! represents the OSF command character.

In response, you will see the following message:

002 SSMSHUT MVS System shutdown requested at 12:20. Reply

 within 00:01 'A' to abort or 'N' to shutdown now.

Reply N to initiate the shutdown process. The following occurs:

■ The SSMSHUT program sets the DESIRED_STATE column for all started tasks in the
STCTBL table to DOWN.

■ SSM responds to the mismatch of current state (UP) and desired state (DOWN) by
invoking the correct shutdown command or procedure specified in the STCTBL_ACT
table.

■ The started tasks end and the appropriate rules packets set the current state to
DOWN.

■ SSMSHUT will enable the SSMSHUTM rule, which will display all resources that have
not terminated due to prerequisite constraints every 60 seconds. The SSMSHUTM
rule must be present in the active rule sets.

Once you start a system shutdown or IPL, you can invoke the SSMDISP OPS/REXX
program. By using this command periodically, you can keep track of what the current
state is and what the desired state is as time lapses.

The following variables can help you diagnose any problems with SSM that may occur
during your initial system shutdown or IPL.

OI SSMDISP

Displays resources where the current state does not equal the desired state.

!OI SSMDISP ALL

Displays all resources.

For more information, see The SSMDISP Program in this chapter.

How to Use the Full Capabilities of SSM

254 User Guide

The SSMDISP REXX program should display all started tasks that do not have both their
current state and desired state set to DOWN. If you have any tasks that do not have a
current state of DOWN, then one of the following is true:

■ The task ended but the rule did not execute correctly and set the CURRENT_STATE
to DOWN. To correct the problem, invoke the STATESET OPS/REXX program using
this command:

!OI STATESET STCTBL.taskname CURRENT(DOWN)

■ The task has a dependent resource and the MISSING_PREREQ column for the task
lists a task that has not ended. SSM will not stop the task until the current state is
DOWN for the prerequisite task. Check the actual status of the prerequisite task, or
issue the following command to bypass prerequisite checking for the task:

!OI STATESET STCTBL.taskname MODE(NOPREREQ)

■ SSM initiated the action to stop the task, but the task is hung.

Proceed with your shutdown of the system and note any tasks that needed special
attention.

Perform a System IPL

Perform the IPL using your newly created COMMNDnn member. Once CA OPS/MVS
initializes and SSM becomes active, the SSMBEGIN request rule executes and prompts
you to choose a startup option.

Note: Remember that you must use a startup option to initiate SSM at IPL time.

At this point, both the CURRENT_STATE and DESIRED_STATE columns in the STCTBL
table are set to the table-relative UNKNOWN state. Your STCTBL entries will resemble
the following example (not all columns are shown):

NAME CURRENT_STATE DESIRED_STATE IPL_STATE

TASK1 UNKNOWN UNKNOWN UP

TASK2 UNKNOWN UNKNOWN IPL

TASK3 UNKNOWN UNKNOWN DOWN

How to Use the Full Capabilities of SSM

Chapter 7: Using System State Manager 255

Reply 3 to the WTOR to initiate the startup process. The following occurs:

1. The SSMBEGIN rules copy the contents of the IPL_STATE column of the STCTBL
table into the DESIRED_STATE column. TASK1 now has DESIRED_STATE and
IPL_STATE values of UP, TASK2 has DESIRED_STATE and IPL_STATE values of IPL,
and TASK3 has DESIRED_STATE and IPL_STATE values of DOWN.

2. A mismatch of the CURRENT_STATE (UNKNOWN) and the DESIRED_STATE (UP,
DOWN, or IPL) causes SSM to search the STCTBL_ACT table and dispatch the
appropriate start up action. In this case, you invoke the request rule as shown here:

RULE("SSMSTATE TABLE(&SSMTABLE) NAME(&NAME) JOBNAME(&JOBNAME)...")

3. The SSMSTATE request rule detects what actual state the task is in on your system
and sets its CURRENT_STATE accordingly. Because this is an IPL, most tasks will be
DOWN except for those that SSM does not start. These tasks may be UP.

The entries in the STCTBL table now look like this:

NAME CURRENT_STATE DESIRED_STATE IPL_STATE

TASK1 DOWN UP UP

TASK2 UP IPL IPL

TASK3 DOWN DOWN DOWN

4. SSM reacts to the mismatched DESIRED_STATE and CURRENT_STATE again,
searches the STCTBL_ACT table, and dispatches the correct start command or
procedure for each task that has a CURRENT_STATE of DOWN and a
DESIRED_STATE of UP. If any tasks have a CURRENT_STATE of UP and a
DESIRED_STATE of IPL, the SSMUPIPL request rule changes the DESIRED_STATE of
those tasks to UP. SSM takes no action for any task that is not supposed to be
started at IPL time. Such tasks have CURRENT_STATE and DESIRED_STATE values of
DOWN.

5. Once the started tasks initialize, the SSM rules packets set the CURRENT_STATE
columns to UP for each task.

Note: As long as TSO is available, use OPSVIEW option 4.3 to view server activity. This
data can help you diagnose any problems you may encounter during system shutdown
or IPL by showing server commands in progress and any excessive queue delay times.
You can also use OPSVIEW option 4.11.2 (System State Manager Resource Control) to
watch the states of resources change.

Create Other Resource and Action Tables

256 User Guide

Create Other Resource and Action Tables

To create additional SSM tables, see the chapter “Editing Relational Tables (see
page 445).” You can use the STCTBL and STCTBL_ACT tables you created using the
Snapshot facility as a template for other tables, or the Insert option of the table editor
will create table models with the columns SSM requires.

To create tables outside of the table editor, you can issue SQL CREATE TABLE statements
in a REXX program, from native TSO, or from a CLIST. The sample CREATE TABLE
statements shown under Deciding How Many Tables to Define in this chapter list the
column requirements for resource and action tables.

Decide How Many Tables to Define

In general, define a separate table for each type of resource instead of mixing different
resource types in one table. This approach ensures that most of the columns in each
table are specific to a particular resource.

For example, suppose that your company has a remote warehouse that uses a
CICS-based inventory application. This type of application requires a cluster controller at
the remote site, an SNA communications line, a 3745 communications controller, the
CICS region, VTAM, and JES. With all of these resources defined in one table, certain
data items required for the communications controller (NCP name, for example) or CICS
region (JOBNAME) would be null for other resources and would waste space in the
table. Wasted space is the main disadvantage of defining too few tables.

Create Other Resource and Action Tables

Chapter 7: Using System State Manager 257

Sample SQL statement creating a resource table

SQL CREATE TABLE SSM_TBL1

(NAME CHAR(18) UPPER CASE NULL PRIMARY KEY,

CURRENT_STATE CHAR(8) UPPER CASE DEFAULT 'UNKNOWN',

DESIRED_STATE CHAR(8) UPPER CASE DEFAULT 'UNKNOWN',

MODE CHAR(8) UPPER CASE DEFAULT 'ACTIVE',

PREMODE CHAR(8) UPPER CASE DEFAULT 'ACTIVE',

REFMODE CHAR(8) UPPER CASE DEFAULT 'ACTIVE',

ACTMODE CHAR(8) UPPER CASE DEFAULT 'ACTIVE',

SCHEDMODE CHAR(8) UPPER CASE DEFAULT 'ACTIVE',

JOBNAME CHAR(8) UPPER CASE,

TYPE CHAR(18) UPPER CASE,

CHKPOINT_STATE CHAR(8) UPPER CASE DEFAULT 'UNKNOWN',

IPL_STATE CHAR(8) UPPER CASE DEFAULT 'UNKNOWN',

PREREQ VARCHAR(250) UPPER CASE,

MISSING_PREREQ VARCHAR(250) UPPER CASE,

PREV_STATE CHAR(16) UPPER CASE,

INTERNAL_DATA1 HEX(32),

RESOURCE_TEXT VARCHAR(128), optional

PRIMARY_SYSTEM CHAR(8)) optional

PRIMARY_SYSTEM CHAR(8)) optional

Sample SQL statement defining an action table

SQL CREATE TABLE SSM_ACTIONS (ACTION_PROCESS CHAR(8) UPPER CASE PRIMARY

KEY DEFAULT 'ACTION',

ACTION_CURRENT CHAR(8) UPPER CASE NULL PRIMARY KEY,

ACTION_DESIRED CHAR(8) UPPER CASE PRIMARY KEY DEFAULT '',

ACTION_MODE CHAR(8) UPPER CASE PRIMARY KEY DEFAULT '',

ACTION_RES_TABLE CHAR(18) UPPER CASE PRIMARY KEY DEFAULT '',

ACTION_RES_TYPE CHAR(18) UPPER CASE PRIMARY KEY DEFAULT '',

ACTION_TEXT VARCHAR(450))

Add User Columns to an Existing SSM Table

You may need to insert additional user control columns within an SSM resource table
after the initial SSM implementation.

To add additional user columns to an existing SSM table

1. Enter OPSVIEW option 2.6 to list all RDF tables

2. Type an I (Insert) beside the SSM table (using STCTBL as example), tab to the 'New
Table' column, and enter a new table name (such as STCTBL_NEW).

3. Press enter from the 'Specify Attributes Panel.'

The table structure of the current STCTBL that you are modifying displays.

Create Other Resource and Action Tables

258 User Guide

4. Use ISPF edit to insert new column names and their corresponding structures and
then press PF3.

Important! Do not remove or modify any required SSM monitor columns as
documented. Do not name any new column with values that may be used as the
desired or current state value of a resource.

The table is saved with the new column names and their corresponding structures.

5. Type a T (Transfer) beside the STCTBL, tab to the 'New Table Column,' and then
enter the name of the newly created table, which is STCTBL_NEW in this example.

All existing data is transferred from the old table to the new table and the new
table is ready to be placed in SSM control.

6. Place the new table in SSM control by first removing the existing STCTBL from SSM
control using the OPSVIEW option 4.11.1 SSM control panel.

7. Once removed from SSM control, rename the existing STCTBL to a back-up name
such as STCTBL_OLD using option R in the RDF table editor (OPSVIEW option 2.6).

8. Rename STCTBL_NEW to STCTBL using the same R option in the RDF table editor.

9. Re-add the new STCTBL back to SSM control. Keep in mind that depending on the
user SSM automation that is in place, the SSMBEGIN routine may fire upon the
re-adding of the table. You should first verify what the impact of any user code
within this routine may perform. The SSMBEGIN rule can be safely disabled prior to
re-adding the table using 4.11.1 if the automated logic path is unknown. Upon the
re-adding of the table to SSM control, both the CURRENT_STATE and
DESIRED_STATE columns are set to UNKNOWN.

To re-prime these states to their current values:

a. Set the SSM global MODE column to PASSIVE using the OPSVIEW 4.11.1 panel.

b. Issue the TSO command 'OPSQL UPDATE STCTBL SET DESIRED_STATE =
CHKPOINT_STATE'.

This sets the DESIRED_STATE column to the value that it was in prior to the
table renaming.

The SSMSTATE (UNKNOWN action) will fire and set the CURRENT_STATE to the true
state of the resource (UP or DOWN). After the CURRENT_STATE and
DESIRED_STATES are synchronized correctly, the mode of SSM should be set back to
ACTIVE.

Parameters That Control SSM Operation

Chapter 7: Using System State Manager 259

Parameters That Control SSM Operation

The following CA OPS/MVS parameters directly affect the operation of SSM. These
parameters may be set at product initialization and changed at any time. For more
detailed information on these parameters, see the Parameter Reference.

SSMACTIVEGLOBAL

Sets a globally visible status for the local system and immediately transmits the
status to all CA OPS/MVS systems that are connected through MSF.

SSMAUDIT

If set to YES, causes OPS7914T messages to be sent to OPSLOG for every significant
change to the resource tables or directory table.

SSMAUXTBLPREFIX

Specifies an auxiliary table name prefix, making that RDF table eligible for change
monitoring by the SSM engine.

SSMDEBUG

Causes messages OPS7913T, OPS7914T, and OPS9999T to be sent to OPSLOG.

SSMGLOBALEXITTBL

Specifies a valid 1- to 18-character RDF table name. The specified table is used to
process the SSMGLOBALEXITS parameter.

SSMGLOBALEXITS

Determines whether the global exit facility will be active while SSM is executing.

SSMGLVPREFIX

Specifies a global variable name prefix that will be substituted for the & when the
string &.nnnn is found in an action string.

SSMMONITOREDCOLn

Five parameters that each specify a 1- to 18-character RDF table column name.
Columns specified here will be actively monitored for changes by SSM.

SSMPLEXNAME

Sets the local system's SSMplex name and then transmits that name to all systems
that have an MSF connection to the local system.

SSMPRIORITY

Sets a global priority for the local system and transmits this value to all CA OPS/MVS
systems that are connected through MSF.

SSMSUBPREFIX

Specifies an RDF table name prefix that awakens the SSM subtask manager from a
wait state.

Parameters That Control SSM Operation

260 User Guide

SSMSUBRULE

Specifies the name of an enabled AOF request rule to be executed by the SSM
subtask manager whenever the subtask manager is awakened.

SSMVERSION

Specifies the version of SSM to activate. Currently 2 is the only supported version.

STATEGROUPMAN

Determines whether SSM automatically maintains Group Manager tables.

STATEIGNOREMPRE

Controls whether nonexistent SSM resource prerequisites are considered missing
when prerequisite processing is performed by the SSM engine task.

STATEMAN

Controls the overall mode SSM uses to monitor resources. The default monitoring
mode is ACTIVE.

STATEMATCHPREFIX

Controls whether SSM prerequisite and subrequisite processing uses the defined UP
and DOWN states for a resource table as states that must match exactly or as prefix
values that must match only up to the length of the state names.

STATEMAXACTION

Limits the number of actions per minute that SSM can take for any resource that it
manages (five is the default). When this limit is exceeded, SSM issues the message
OPS7903W STATEMAN ACTION LIMIT EXCEEDED FOR table.name.

This allows SSM to detect and correct any repetitive actions for a problem task. You
can write a rule triggered by message OPS7903W that updates the CURRENT_STATE
value to ERROR, which could then trigger some action to take care of the problem
task.

STATEMAXWAIT

Determines how often SSM scans its tables to detect resources with mismatched
CURRENT and DESIRED states.

STATETBL

Names the directory table. The default name is SSM_MANAGED_TBLS.

STATETBLLOG

Determines whether messages are produced in OPSLOG when a change is made to
the active SSM directory table using the OPSSMTBL command.

Manage Tables with the OPSSMTBL Command

Chapter 7: Using System State Manager 261

Manage Tables with the OPSSMTBL Command

The SSM uses the directory table to manage the resource information table or tables.
The OPSSMTBL command allows you to maintain the directory table; for example, you
can:

■ Add resource information tables to the directory table.

■ Delete resource information tables from the directory table.

■ Change the operating mode and attributes of resource information tables listed in
the directory table.

■ Return the names of resource information tables in the directory into CLIST
variables or as messages on your TSO terminal.

OPSSMTBL Command Syntax

The following is the syntax for the OPSSMTBL command:

OPSSMTBL (keywords)

Note: For detailed information about the OPSSMTBL command and its keywords, see
OPSSMTBL Command Processor in the chapter “POI Command Processors” in the
Command and Function Reference.

Associated Variables

The following table shows the CLIST and REXX variables created by the OPSSMTBL LIST
command with CMDRESP(CLIST/REXX). The default value for prefix is SSMTBL and n is an
ascending index number.

Variable Contents Variable Name if
CMDRESP(CLIST)

Variable Name if
CMDRESP(REXX)

The number of resource information
tables listed in the directory table

Prefix prefix.0

The resource information table
name

Prefixn prefix.n

The resource table mode PrefixnMODE prefix_MODE.n

The up-state name PrefixnUP prefix_UP.n

The down-state name PrefixnDOWN prefix_DOWN.n

The unknown-state name PrefixnUNKNOWN prefix_UNKNOWN.n

The action table name PrefixnACTION prefix_ACTION.n

Modify Table Data with the STATESET Program

262 User Guide

Variable Contents Variable Name if
CMDRESP(CLIST)

Variable Name if
CMDRESP(REXX)

The TNGELIGIBLE value PrefixnTNG prefix_TNG.n

Modify Table Data with the STATESET Program

After you create resource tables for the use of SSM, you can change the current state,
desired state, and MODE values specified for a resource in three ways:

■ By invoking an SQL UPDATE statement from a rule or OPS/REXX program. The rule
or OPS/REXX program should contain a clause like the following:

ADDRESS SQL

"UPDATE tablename SET columnname = 'state' WHERE NAME = 'name'"

■ By invoking an SQL UPDATE statement from a CLIST or TSO/E REXX program. This
CLIST or REXX program should contain a clause like the following:

OPSQL UPDATE tablename SET columnname = 'state' WHERE NAME = 'name'

■ By using the STATESET program

Use the STATESET Program

Invoke the STATESET OPS/REXX program to:

■ Change the current state, desired state, or mode of a system resource.

■ Change the desired state of other resources associated with this resource.

■ Specify whether CA OPS/MVS waits, and how long it waits, for the current state of a
resource to equal the desired state.

■ List the current state (or desired state) of a resource. If you do not specify the
CURRENT, DESIRED, PREREQ, or SUBREQ keywords, STATESET lists the current state
of the resource.

Note: The state names UP, DOWN, and UNKNOWN can be used for any resource, and
will be changed internally to the values specified in the resource directory table entry
for the particular resource table in use.

Modify Table Data with the STATESET Program

Chapter 7: Using System State Manager 263

STATESET Syntax

The following is the syntax for the STATESET command:

STATESET (keywords)

Note: For detailed information about the STATESET program, including its required and
optional keywords, see STATESET Program in the chapter “POI Command Processors” in
the Command and Function Reference.

STATESET Program Examples

The following examples demonstrate ways to use the STATESET program:

■ To set the desired state of all resources that depend on VTAM to DOWN (and see a
listing of the status of VTAM and all the resources immediately subordinate to it),
use this syntax:

STATESET VTAM SUBREQ(DOWN)

■ To list the current and desired states, and the mode of VTAM use this syntax:

STATESET VTAM

■ To change the desired state of VTAM to DOWN, use this syntax:

STATESET VTAM DESIRED(DOWN)

Invoke the STATESET Program in Various Environments

You can invoke the STATESET program from:

■ Another REXX program (in an AOF rule or automation procedure) in either TSO/E
REXX or OPS/REXX. Use this format:

CALL 'STATESET' resourcename [options]

■ A TSO environment using the CA OPS/MVS OI command. Use this format:

OI STATESET resourcename [options]

■ The TSO command line (such as ISPF option 6 or TSO Ready mode). Use this format:

STATESET resourcename [options]

Important! The library containing the STATESET program must be concatenated to
the SYSPROC ddname.

Note: You can also use this format as a host command in a TSO/E REXX program or
CLIST. In any of the above formats, you can specify tablename.resourcename
instead of resourcename. It is more efficient to include tablename.

Manage Tables Through OPSVIEW

264 User Guide

Manage Tables Through OPSVIEW

To view or edit the contents of SSM tables (and all other CA OPS/MVS relational tables),
you can use the CA OPS/MVS Relational Data Framework (RDF) table editor of OPSVIEW.

Edit and Browse Tables Through the Table Editor

To edit or browse tables with the RDF table editor, select option 2.6 from the OPSVIEW
Primary Options Menu. CA OPS/MVS responds by displaying the RDF Table Editor
Primary Panel, as shown:

RDF Table Editor --------------- Primary Panel --------------------------------

OPTION ===>
 B - Browse table R - Rename table
 C - Copy table D - Delete table
 E - Edit table F - Free table
 I - Insert new table T - Transfer table contents

 blank - Display table list
SPECIFY RELATIONAL TABLE (see note below):
 NAME ===> ___________________________ (Required for B, C,D,E,F,R,T)
 NEWNAME ===> ___________________________ (Required for C,I,R,T)
CONFIRM DELETES: YES (Enter YES to require delete confirmation)
NOTE: To use a table on another system specify the table name as system>table
 Specify ? as the system name to get a list of all systems.

Edit or Browse Through the System State Manager Interface

To edit or browse tables from the OPSVIEW System State Manager interface, select
option 4.11 from the OPSVIEW Primary Options Menu.

CA OPS/MVS responds by displaying the System State Manager menu panel, as shown:

System State Manager---------- S034 -- O P S V I E W ---------- Subsystem OPSD
OPTION ===>
Date/Time: 2009/10/13 08:54
 1 Control - Set/Display SSM parameters and resource tables
 2 Status - Set/Display states of SSM controlled resources
 3 Snapshot - Create/Modify a local SSM started task resource table
 4 Scheduler - Set/Display schedules for SSM controlled resources
 5 Group Manager - Create/Manage groups of System State Manager resources
 A Action Editor - Create and maintain SSM action tables
 G Global Status - Set/Display states of SSM controlled global resources
 R Resource Edit - Create and maintain SSM resource tables
Press END to return

Manage Tables Through OPSVIEW

Chapter 7: Using System State Manager 265

Use the SSM Control Panel

From the SSM Control panel, you can perform these tasks:

■ Activate or deactivate the SSM or operate it in PASSIVE mode.

■ Specify a new directory table.

■ Add a resource information table to the directory table.

■ Associate an action table with a resource information table.

■ Activate or deactivate monitoring for a resource information table or place the
table in PASSIVE mode.

Note: For more information about the OPSVIEW SSM Control option as well as all the
options available under the OPSVIEW System State Manager facility, see the OPSVIEW
User Guide.

SSMDISP Command—Display Resource Status

266 User Guide

SSMDISP Command—Display Resource Status

The SSMDISP sample OPS/REXX program located in your opsmvshlq.CCLXSAMP library,
displays the status of SSM resources using a multi-line WTO. To utilize this sample
program, copy it into your opsmvshlq.USER.REXX library, or a valid user REXX library that
is allocated to your OPSMAIN, and OPSOSF procedures.

You can filter the resources you wish to display by mode or whether the current state is
equal to the desired state. Also, you can direct the output of the program to a specific
console or areaid. If you use the SSMDISP program in conjunction with the SSMDISPC
command rule, an OSF server is not required to run SSMDISP. You can call SSMDISP as a
subroutine from any OPS/REXX program.

This command has the following syntax:

SSMDISP

 [EXC|ALL]

 [MODE(ssmmode)]

 [CNNAME(console name)]

 [AREAID(display area)]

The keywords of the SSMDISP command have these values:

EXC|ALL

(Optional) One of the following:

■ EXC-Displays only the SSM resources whose current state does not match the
desired state; this is the default.

■ ALL-Displays all SSM resources, regardless of their state.

MODE(ssmmode)

(Optional) Displays only the SSM resources whose mode matches the specified
mode. Valid values are ACTIVE, INACTIVE, PASSIVE, and NOPREREQ. The default is
to not filter by mode.

CNNAME(console name)

(Optional) Specifies the name of the z/OS console to which the multi-line output is
directed. The default is MSTRINFO routing with no specific console.

AREAID(display area)

(Optional) Specifies the z/OS console display area in which the multi-line output
appears if the output is directed to a console through CNNAME or CNID. The default
is Z.

SSMSHUT Command—Set Resource State to Down

Chapter 7: Using System State Manager 267

Output from SSMDISP

The SSMDISP multi-line WTO output consists of a control line that indicates the overall
status of SSM, output column labels, and one or more resource lines. As shown in the
following example, the resource lines include the table.resource name, mode, current
and desired states, and a portion of the missing prerequisite column:

OPX1371I Stateman Status: ACTIVE

Resource Name Mod Current Desired Missing Prerequisites

---------------------- --- -------- -------- -------------------------

DGTBL1.DG1 ACT DOWN UP DG2

DGTBL1.DG2 ACT DOWN UP

Examples of SSMDISP

The following examples demonstrate ways to use the SSMDISP program:

■ To display the status of all active resources whose current state does not match the
desired state on all consoles that display MSTRINFO routed messages, use this
syntax:

!OI SSMDISP MODE(ACTIVE)

■ The following example assumes that the SSMDISPC rule is enabled, intercepts the
command, and calls SSMDISP as a subroutine:

SSMDISPC ALL

The resulting multi-line WTO output is automatically routed back to the originating
console. In this case, all resources are displayed, regardless of their state.

SSMSHUT Command—Set Resource State to Down

As part of a general shutdown of resources, usually in preparation for an IPL, the
SSMSHUT sample OPS/REXX program located in your opsmvshlq.CCLXSAMP library, sets
the desired state of all SSM resources to DOWN. To utilize this sample program, copy it
into your opsmvshlq.USER.REXX library or a valid user REXX library that is allocated to
your OPSMAIN and OPSOSF procedures.

The progress of the shutdown and any bottlenecked resources are periodically displayed
by the SSMSHUTM rule through a multi-line WTO. The SSMSHUT program enables the
SSMSHUTM rule when the shutdown begins. The AT and IN keywords of the SSMSHUT
command allow you to initiate the shutdown at any time in 23 hours of the current
time. The SSMSHUT program also provides the operator with an opportunity to cancel
the shutdown.

SSMSHUT Command—Set Resource State to Down

268 User Guide

The EXCLUDE keyword of the SSMSHUT command allows you to perform a partial
shutdown of resources by providing a list of the resources (explicit resource names,
global variable names, or both) you want to exclude. SSMGA inactive copies of movable
resources are automatically excluded when SSMGA is active.

This command has the following syntax:

SSMSHUT

 [AT(hh:mm)|IN(hh:mm)]

 [WARNTIME(hh:mm)]

 [CONFIRM(Y|N)]

 [MONITOR(Y|N)]

 [EXCLUDE(resource list|glv names)]

Note: The SSMSHUT command uses dynamic time rules to reschedule itself periodically
to avoid exceeding the OSFWAIT and OSFRUN time limits in the server.

The keywords of the SSMSHUT command have these values:

AT(hh:mm)|IN(hh:mm)

(Optional) One of the following:

AT-The time at which the shutdown is to occur

IN-The amount of time from the current time at which the shutdown is to occur

The maximum value is 23:00. The default is IN(00:01) if AT is not specified.

WARNTIME(hh:mm)

(Optional) The amount of time prior to the actual shutdown time specified by the
AT or IN keyword that a z/OS SEND command will be issued to notify users about
the impending shutdown. A WTOR will also be issued, allowing the operator to
cancel the shutdown if desired. The default is 00:10.

CONFIRM(Y|N)

(Optional) Specifies whether a WTOR is issued to the operator for confirmation that
a system shutdown is desired at the specified time. A reply of U allows the
shutdown to continue. The default is Y.

MONITOR(Y|N)

(Optional) Specifies whether the SSMSHUTM TOD rule should be enabled to
monitor resource shutdown progress once the shutdown has been started. The
default is Y.

SSMSHUT Command—Set Resource State to Down

Chapter 7: Using System State Manager 269

EXCLUDE(resource list|glv names)

(Optional) A string of resource names specified as name or table.name. Global
variable names may also appear in the list of names. The values of the variables will
be resolved and added to the resource name string.

Example: SSMSHUT

The following example illustrates changing the desired state of all SSM resources except
JES2 to the DOWN state in 30 minutes from the current time. It also issues a warning
message to all TSO users five minutes before the shutdown and provides the operator
with an opportunity to cancel the shutdown.

!OI SSMSHUT IN(00:30) EXCLUDE(STCTBL.JES2) WARNTIME(00:05)

Chapter 8: Using SSM Global Application 271

Chapter 8: Using SSM Global Application

This section contains the following topics:

About SSMGA (see page 271)
Sharing Resource Status Information (see page 272)
How SSMGA Works (see page 273)
SSMGA Setup Requirements (see page 277)
Messages for Special Events (see page 293)
SSMGA Status Command (see page 293)
Verification and Diagnostic Commands (see page 295)

About SSMGA

The System State Manager Global Application (SSMGA) uses some basic features of
SSM, and a new REXX-coded application, to implement monitoring and control of
operations that span multiple systems. Using SSMGA, you can:

■ Apply cross-system prerequisite and subrequisite to resource status determination.

■ Move a resource, or group of resources, from one processor to another with
minimum transition time.

■ Monitor the status of resources from multiple systems on a single, integrated ISPF
display.

■ Display and control SSMGA from an operator console or automation procedure by
using a command rule.

■ Restore the operation of a resource automatically, when its preferred host fails, by
restarting the resource on an alternate host.

Sharing Resource Status Information

272 User Guide

Sharing Resource Status Information

Two or more systems can share resource status information if they have the same
SSMPLEXNAME setting. The SSMplex may include the same systems as a SYSplex, or
may include a subset or superset of systems in a SYSplex.

Shared data is maintained in the GST (Global Status Table), which is maintained by the
global system. Only one global system is active at any time.

Every SSMplex member has an SSMPRIORITY value between 0 and 999 that is used to
select the “global” system.

■ Priority 0 systems can never be assigned as the global system.

■ Priority 1 is the last priority that will be chosen.

■ Priority 999 is the first to be chosen.

■ Priority 1000 is used to force an eligible alternate global system to become the
global system. The system’s normal priority is added to 1000 to create a priority
that is higher than any other normal priority. Once the new system becomes the
new global system, the priority is reset to the original priority by subtracting 1000.

Priority affects the choice of a new global system when no global system is active, but
otherwise has no effect. See the SSMPRIORITY section in this chapter for more
information.

Only systems that have a multi-system facility (MSF) connection to every other system
in an SSMplex are eligible to be the global system. Eligibility and priority are both taken
into account when selecting a new global system.

In normal operation, the global system uses MSF connections to collect status
information and also distribute commands to the other systems.

SSMGA data collection is performed asynchronously by multiple subtasks. Using
subtasks for data collection:

■ Enables SSMGA global processing to continue, using the most recent data available,
even if data collection is delayed on one or more systems in the SSMplex.

■ Avoids interference with existing SSM processing.

How SSMGA Works

Chapter 8: Using SSM Global Application 273

How SSMGA Works

The global system in the SSMplex does the following:

■ Maintains its own consolidated local resource status in a single RDF table called the
LST (local status table)

■ Moves resources

■ Maintains the consolidated resource status of all local systems in another RDF table
called the GST (global status table)

■ Examines changes in the prerequisite and group names resource columns

■ Processes the SSMGA commands generated by the SSMGAOPR command rule and
queued to the global command RDF table for execution.

Important: Resources defined to Schedule Manager cannot be defined as movable
resources to SSMGA.

How SSMGA Works

274 User Guide

The advantages of global status management are a high level of multi-tasking and
minimal data transfer between systems. Recovery from a global system failure is
reduced to selecting a new global system and rebuilding the GST from the remaining
systems LST tables.

Equation 1: Shows how SSMGA works.

SSMGA

 G lobal System

CA OPS/MVS

SSM Task

LST

SSM Subtask

GST

System A

SSMGA

 Local System

CA OPS/MVS

SSM Task

LST

SSM Subtask

System B

SSMGA

 Local System

CA OPS/MVS

SSM Task

LST

SSM Subtask

System D

Alt. SSMGA

 G lobal System

CA OPS/MVS

SSM Task

LST

SSM Subtask

System C

M
SF

M
SF M

SF

M
SF

Legend

LST=Local Status Table

GST=G lobal Status Table

MSF=Multi-system Facility

M
S

F

How SSMGA Works

Chapter 8: Using SSM Global Application 275

Local Status Table (LST)

The LST table is maintained by the SSM global event actions that execute when one or
more monitored column changes occur in an SSM resource.

■ The global event action request rule, SSMGALCL, updates and timestamps resource
status information in the LST.

■ A system status record is also maintained in the LST with the highest timestamp of
any local resource status record in the LST. The highest system timestamp is
referred to as the local update time (LUTIME).

■ When a resource status change occurs in the LST, the SSM subtask is awakened and
transmits the LST system record information to the global system.

Moving Resources

Preventing duplicate starts of the resources when eligible systems fail or are restarted
requires special handling of the movable resources by SSMGA; such as:

■ Lets the resource ownership take place after every eligible system knows the status
of the movable resource in the SSMplex.

■ Replicates movable resource definitions, rules, and action table actions on all
systems on which the resource can run.

■ Determines if a resource is active on the system by using the global event exit for
the LST processing.

■ Continuous updating of the statuses of the inactive copies by the global system.

■ When no system owns the resource, the global system assigns the resource to the
first available system in the eligible system list or the system waits for a specific
system to join or rejoin the SSMplex.

■ Moves the resource back to its home system by using of the optional AUTOHOME
functionality once the home system becomes active.

How SSMGA Works

276 User Guide

Global Status Table (GST)

In addition to the LST, the global system maintains the consolidated resource status of
all the local systems, including itself, in another RDF table called the GST (global status
table). The structure of the LST and GST are identical.

■ The SSM subtask invokes the SSMGAGBL request rule to perform both global and
local system processing, as required.

■ On the designated global system:

– SSMGAGBL processes commands queued in the global command table.
Command processing is suspended during the initial build or rebuild of the GST
in order to prevent premature resource movement commands.

– SSMGAGBL examines the global copies of the LST system records.

– If a system record LUTIME is higher than the maximum global read timestamp
previously processed for the system (GRTIME), another subtask is attached to
read and process all the LST records whose LUTIME is greater than GRTIME for
the system. This insures no global system processing delays by any one local
system communication problem.

PREREQ and SSM#GRPLST Resource Column Changes

In addition to updating the GST with LST status information, the system specific subtask
examines the PREREQ and SSM#GRPLST resource columns for changes.

■ When a cross-system prerequisite specification is detected, a remote status record
for both the prereq and subreq relationship between the resources is created or
updated.

■ These remote records are later read into the LST of the affected local systems for
use by the SSM XPREREQ and XSUBREQ process events that are required to
evaluate cross-system resource relationships.

■ A group membership table (GRT) record is maintained for each defined group name
for a resource.

■ The system subtask tracks the maximum LST LUTIME processed, which becomes the
new GRTIME value in the system record.

■ The maximum global status update timestamp (GUTIME) is also recorded in the
system record.

■ The system subtask updates the LST system record timestamps on the specific
system that it processed.

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 277

Once the system record is updated in the LST by the global system, the local system
processing phase of SSMGAGBL running in the SSM subtask occurs. If the LST system
record has a GUTIME that is greater than the maximum GUTIME previously read by local
processing (LRTIME) then local processing will read any updated remote status records
and any movable resource local records whose GUTIME is greater than LRTIME. Remote
status records only exist in the LST. Movable local resource status is propagated to the
actual SSM resource records. Non-movable local resource status is never read back from
the GST. The highest GUTIME processed by local system processing becomes the new
system record LRTIME.

SSMGA Setup Requirements

The SSMGA setup requirements for OPS/MVS parameter settings, auto-enabled rules,
REXX programs, resource table columns, and action table entries are discussed in this
section. These requirements apply to all systems that will participate in the global
SSMplex.

To setup one system, follow Steps 1-8. To replicate these changes to external systems,
follow Step 9.

Step 1: Activate the SSM Global Event Facility

In this step you activate the SSM global event facility, which SSMGA uses to process the
LST. If you are already using the SSM global event facility, then you can skip this step.

To activate the global event facility, specify the following parameters:

SSMGLOBALEXITS=YES

SSMGLOBALEXITTBL=RDF table name

Suggested RDF table name value (Default): SSMV2_GBLEXIT_TBL

The specified RDF table name is the name of the global events action table. SSM
automatically creates it when parameter SSMGLOBALEXITS is set to YES. For information
on manually creating the table before setting parameter SSMGLOBALEXITS, see the
chapter “Using System State Manager (see page 177).”

Step 2: Deactivate SSM Processing

Before making any more changes to an existing SSM configuration, it is strongly
recommended that you deactivate SSM processing by setting the OPS/MVS parameter
STATEMAN as follows:

STATEMAN=INACTIVE

SSMGA Setup Requirements

278 User Guide

Step 3: Update the SSM Global Event Facility

SSMGA uses the SSM global event facility activated in Step 1 to maintain a copy of all
local resource status information in the LST. In this step, you update the SSM global
events action table specified by parameter SSMGLOBALEXITTBL.

The BEGIN, UPDATE, ADD, and DELETE global events in the global events action table
must have actions that invoke the SSMGALCL request rule. The action text for each
event name should be as follows. If the global event facility is already in use, then add
the action text to the end of the existing action text separated by a semicolon.

ADD … RULE("SSMGALCL &SSM!PROCESS &SSM!RESNAME")

BEGIN … RULE("SSMGALCL &SSM!PROCESS IPL(&SSM!IPL)")

DELETE … RULE("SSMGALCL &SSM!PROCESS &SSM!RESNAME")

UPDATE … RULE("SSMGALCL &SSM!PROCESS &SSM!RESNAME

 COLUMN(&SSM!COLUMN) USERDATA(&SSM!USERDATA)")

Note: (…) represents empty key values in the action table.

The following list describes the global events:

■ ADD—Reads all the resources in the resource table, checks for the existence of
optional columns, and calls the ADD status routine to insert or update the resource
status record in the LST.

■ BEGIN—Deletes the LST table and then reads the SSM directory table using
OPSSMTBL. Each resource table is processed as an ADD table global event.

■ DELETE—Updates all LST resource status records for a resource table with a delete
flag and update time for global system cleanup processing. The monitored column
indicators in the RDF column table for the resource table are removed.

■ UPDATE—Updates all LST resource status records for a resource table by
repeatedly calling the update status routine.

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 279

Step 4: Set the Parameters

To adjust the CA OPS/MVS parameter settings.

Follow these steps:

1. Assign an SSMPLEXNAME and SSMPRIORITY to each system that participates in an
SSMGA global status management complex.

SSMPLEXNAME=SSMplex name

SSMplex name (eight chars max) is the collective name for all systems in an
SSMplex. To be an SSMplex member, a system must have an MSF connection to at
least one other system, and both must have the same SSMPLEXNAME.

SSMPRIORITY=priority value

The Global selection priority (0-999).

A priority of zero prevents a system from becoming a global system. If no global
system is active or the global system goes offline, the eligible system having the
highest SSMPRIORITY becomes the global system. For a system to be eligible, it
must have an MSF connection to all other systems in the SSMplex, and must be
operating normally. If after a global system is selected, a higher priority system
becomes eligible to be the global system, the global system does not change
automatically. To select any eligible system as the new global system, use the
special priority of 1000. SSMGA makes the system that you set to priority 1000 the
new global system, and then restore the original priority of the new global system.

Once you move a global system, the new system gathers data from the other
systems. During this time, it is normal for the SETSYS processing display to show
two global systems briefly in OPSLOG.

2. Activate the subtask for SSMGA. SSM allows the creation of a separate SSM subtask
whose primary function is to perform asynchronous operations on behalf of the
primary SSM task.

To activate the subtask for SSMGA, specify the following parameters:

SSMSUBRULE=SSMGAGBL

SSMSUBPREFIX=RDF table name prefix (6 chars max)

The Suggested RDF table name prefix: 'SSMGA_'

SSMGA Setup Requirements

280 User Guide

The subtask is activated by specifying a request rule name other than 'NONE' for
the SSMSUBRULE parameter. Each time the SSM subtask is posted, the specified
request rule is invoked. The SSMSUBPREFIX specifies an RDF table name prefix that
results in a post of the SSM subtask whenever a prefix matching table modification
is made by any task other than SSM and the SSM subtask. In addition, a
POST(SSMSUB) operand is available on the OPSSMTBL POI command for
on-demand posting of the SSM subtask from any environment without a table
modification.

Note: Note: Leave the SSMSUBRULE parameter set to NONE (default) until all other
changes to an existing SSM configuration are made. Then set the STATEMAN
parameter back to ACTIVE. See Step 10.

SSMGA creates the following GLOBAL TEMPORARY tables using the SSMSUBPREFIX
value specified:

■ LST - local status table on all systems

prefix||#L#_STATUS

■ GST - global status table on the global system

prefix||#G#_STATUS

■ GRT - global group membership table on the global system.

prefix||#G#_GROUPS

■ GCT - global command table on the global system.

prefix||#G#_CMDS

3. Increase the value of the AOFSIZE parameter.

The AOFSIZE parameter determines the size of the AOF workspace, which is used to
store REXX variables. You can increase the value of the AOFSIZE parameter,
depending on its current value and the number of SSM resources defined. Error
message OPS0998E indicates that the value of parameter AOFSIZE to increase.

4. Increase the value of the GLOBALTEMPMAX parameter.

The GLOBALTEMPMAX parameter determines the maximum number of temporary
global variables that OPS/MVS can create. Temporary global variables are used to
store the RDF tables. You can increase the value of the GLOBALTEMPMAX
parameter, depending on its current value and the number of SSM resources
defined. Error message OPS7593O indicates that the value of parameter
GLOBALTEMPMAX to increase.

5. Increase the value of the SQLPOOLSIZE parameter.

The SQLPOOLSIZE parameter determines the size of the storage pool that is used by
the RDF to contain SQL data. You can increase the value of the SQLPOOLSIZE
parameter, depending on its current value and the number of SSM resources
defined. Error message OPS3032T indicates that the value of parameter
SQLPOOLSIZE to increase.

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 281

6. Increase the value of the MSFPOOLSIZE parameter.

The MSFPOOLSIZE parameter determines the size of the storage pool that is used
by MSF to contain data being passed between CA OPS/MVS systems through MSF.
You can increase the value of the SQLPOOLSIZE parameter, depending on its current
value and the number of SSM resources defined. Error message OPS3032T indicates
that the value of parameter MSFPOOLSIZE to increase.

7. Activate the AUTOHOME functionality.

Use the parameter SSMAUTOHOME=YES to enable the functionality to move
resources back to their home system once this system becomes active.

8. Activate the prerequisite checking.

Use the parameter SSMGAPREREQCHK=YES to enable the premove prerequisite
validation for an initial assignment of a resource at initialization, system recovery,
and resource movement commands.

NOTE: Use the keyword PRECHK for movement commands to explicitly prevent the
move when missing prerequisites found.

Step 5: Auto-Enable Rules

In addition to the normal SSM resource status rules, SSMGA execution requires that the
following AOF rules be enabled prior to SSM initialization:

SSMGAATH

Performs the AUTOHOME functionality.

This message rule detects the startup of SSMGA and enables the dynamic TOD Rule
which executes the AUTOHOME procedure by starting the SSMGAATH OPS/REXX
program.

SSMGACCI

Notifies SSMGA of a change in an MSF connection status.

This message rule posts the SSM subtask when the status of an MSF CCI connection
changes to ACTIVE or INACTIVE.

SSMGACOM

Notifies SSMGA of a potential MSF connection failure.

This message rule posts the SSM subtask when the monitor task issues the
OPS3440O message.

SSMGA Setup Requirements

282 User Guide

SSMGAEND

Notifies the SSMGA global system that CA OPS/MVS is terminating.

If MSF is already terminated, the early notification may not complete and the global
system will know of the termination when its own MSF link with the terminating
system goes inactive. This message rule also deletes any outstanding WTOR's issued
by the local SSMGA application that may be in a wait state.

SSMGAGBL

Performs both global and local resource processing.

The SSM subtask invokes this request rule. True global processing is only performed
when the system is the designated global system. Local processing consists of
reading new or updated resource status records for the local system and updating
the local status table and replicated movable SSM resources.

SSMGALCL

Keeps the local status table synchronized with the SSM resource table changes.

The SSM global events invokes this request rule. Changed LST records will
ultimately be reflected in the global status table and selectively distributed to the
LSTs of other systems dependent on the status of cross-system prereq/subreq
resources.

SSMGAMSF

Notifies SSMGA of a change in an MSF connection status.

This message rule posts the SSM subtask when the status of an MSF APPC
connection changes to ACTIVE or INACTIVE.

Note: When enabled, this rule changes the severity of message OPS3504I to J.

SSMGAMSR

Executes the SUBREQ process events for subreq evaluation.

This request rule checks for moveable resources running on a remote system and
removes them from the MISSING_PREREQ column of local resources.

SSMGAOPR

Directs command replies back to the console.

This command rule is the operator interface for queries and commands directed to
the global system. When a command is issued from a real or extended console the
command replies are directed back to this console. Otherwise, replies are issued as
generic WTOs.

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 283

The following commands are supported by this command rule.

DPLEX

Displays all SSMGA SSMplex names whose global systems are MSF connected
to the system issuing this command. This command determines which SSMplex
names can be used in other SSMGA commands that are sent to a SSMGA global
system for execution.

DSYSTEMS ssmplex

Displays the status of all systems that are in the specified SSMplex.

DGROUPS ssmplex grpname [MEMBERS]

Displays the number of resources that are members of the specified group
name. In addition, lists the members of that group when the optional keyword
MEMBERS is present. Member names appear in the format
system.subsys.table.name

DRES ssmplex resname [EXC MOVABLE GROUPS SYSLST]

Displays status information for the resource name specified.

MRES ssmplex resname TOSYS(sysname) DESIRED(desired state)

Moves the movable resource to a new system and sets the desired state to
designated value.

SSYS ssmplex sysname [GLOBAL PLEXNAME(ssmplex) PRIORITY(0-999)]

Changes the OPS/MVS SSMGA parameter values on the indicated system.

■ PRIORITY changes the global priority value of the system.

■ PLEXNAME changes the SSMplex name to a new name.

■ GLOBAL forces the indicated system to become the SSMGA global system
provided the priority is greater than zero.

MGROUP ssmplex groupname TOSYS(sysname) DESIRED(desired state)

Moves the movable resources in the specified group to a new system and sets
the desired state to designated value.

UGROUP ssmplex groupname START/STOP

Starts or Stops all of the resources in the specified group.

SSMGA Setup Requirements

284 User Guide

URES ssmplex resname

 [MODE(I/P/A/N) PREMODE(A/P/S/I) REFMODE(A/P/I/S)

 ACTMODE(action mode) SCHMODE(I/A)

 CURRENT(current state) DESIRED(desired state)]

Updates the resource with the corresponding new column values.

Note: The SCHMODE(I/A) parameter of URES lets you set the value of the
SCHEDMODE column for a specific resource. If the value is set to inactive, then
the Schedule Manager reset processing bypasses any updates to the
DESIRED_STATE column of this resource. For more information, see the chapter
"Using Schedule Manager."

HELP command

Displays the syntax for the indicated command

Syntax Notes:

■ ssmplex is a valid SSMplex name or * that indicates the SSMplex to which the
current system belongs.

■ sysname may be in the form system.subsys, system, or *. Omitted portions of
the sysname will be completed with values for the current system.

■ resname may be in the form system.subsys.table.name, table.name, or just
name. A full resource name will only update or display one resource. A partial
resource name may update or display multiple resources.

SSMGAPRX

Executes the XPREREQ and XSUBREQ process events for cross-system
prereq/subreq evaluation.

This request rule uses the remote resource status records created and transmitted
by the global system to the LST of the local system in order to evaluate each
xprereq/xsubreq relationship. The global system determines the required remote
status records by analyzing the prereq column specifications of each local resource
on every system in the group.

Required REXX Programs

Most of the SSMGA rules are simple shells that adjust the parameter list and call
another REXX program that actually contains the logic to be performed. This technique
avoids the requirement to account for the request rule name as the first parameter in
the REXX calling sequence.

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 285

The required REXX programs are:

SSMGAATH

Performs the AUTOHOME functionality. Sends resources back to their home
systems when the original home system becomes active and reconnects to the
SSMGA SSMPLEX.

SSMGAGCM

Displays global data and updates the local resources. This REXX program is attached
by SSMGAGST.

SSMGAGST

Processes the GST and LST table. The SSM subtask program is called by the
SSMGAGBL request rule.

SSMGALST

Processes SSM global events. The SSM global event program is called by the
SSMGALCL request rule.

SSMGAPCK

Performs the premove prerequisite checking to avoid moving resources to the
system where the prerequisites are not satisfied. If this system not found resource
will be moved to the first system in an alternate system list. This REXX program is
called by SSMGASYS to perform validation logic for system recovery and by
SSMGAGCM for resource movement commands. To enable this logic, set
SSMGAPREREQCHK=YES. This validation works for non-moveable prerequisites only.

SSMGAPRE

Evaluates XPREREQ and XSUBREQ process events. The SSM xprereq/xsubreq
evaluation program is called by the SSMGAPRX request rule from the action table. It
also supports the user-defined *SYS.AFF.table.name prereq specification for
insuring that a movable resource prereq is actually running on the same system as
the resource with the prereq specification.

SSMGASYS

Contains the core logic of the SSMGA application. This REXX program is attached by
SSMGAGST to process LST and GST changes for a single system in a separate
subtask.

SSMGATRM

Contains the OPS/MVS termination global system notification program called by
request rule SSMGAEND.

SSMGA Setup Requirements

286 User Guide

Step 6: Add SSM Resource Table Columns

SSMGA requires several new columns in SSM resource tables to support the
functionality provided by SSMGA. Use REXX program OPSSM2CV to add the required
SSMGA columns to SSM resource tables by specifying a parameter of SSMGA(Y).

Strictly local resources that cannot be moved to another system do not require any
column changes. Defaults for non-existent columns are supplied for the LST and GST
tables.

All system name values in SSMGA are in the form:

sysname.subsys

sysname

Specifies the real z/OS system name.

subsys

Specifies the OPS/MVS subsystem name on the system (usually OPSS).

Movable resources require the following new columns:

PRIMARY_SYSTEM CHAR(14) UPPER CASE DEFAULT('*.*')

SSM#CURSYS CHAR(14) UPPER_CASE DEFAULT('*.*')

SSM#DESSYS CHAR(14) UPPER CASE DEFAULT('*.*')

SSM#MOVMOD CHAR(8) UPPER CASE DEFAULT('INACTIVE')

SSM#SYSLST VARCHAR(350) UPPER CASE

SSM#GRPLST VARCHAR(350) UPPER CASE

AUTOHOME CHAR(1) UPPER CASE DEFAULT('N')

The following list describes the new columns:

■ PRIMARY_SYSTEM

Specifies the preferred system to run the resource and is also the constant
cross-system prereq specification name for resources that use the movable
resource as a prerequisite but do not have a local SSM replicated copy of the
movable resource. Even when the movable resource is running on an alternate
system, the primary system name is still the cross-system prerequisite name; that
is, system.subsys.table.name.

■ SSM#CURSYS

Contains the current system that owns the resource.

■ SSM#_DESSYS

Specifies the system name to which the resource should be moved. Changing the
desired system to an alternate system name on the current system copy of the
resource will cause the resource to stop on the current system and move to the
alternate system.

■ SSM#MOVMOD

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 287

Controls how the current system is selected. A value other than INACTIVE indicates
that the resource is movable from the primary system to any other system specified
in the SSM#SYSLST column. The alternate systems are specified as word or comma
delimited list. System names are in sysname.subsys format. The sequence of
alternate system names in the list is an implied priority of alternate systems for
automatic selection of an alternate system.

SSMGA recognizes three special values for SSM#MOVMOD:

– AUTO - Causes SSMGA to automatically move a resource to the next available
system in the system list hierarchy when the recovery option is chosen for a
detected movable resource owning system failure.

– WAITSYS - Causes SSMGA to wait to assign ownership of a movable resource
until the current desired system rejoins the SSMGA plex.

– WAITPRI - Causes SSMGA to wait to assign ownership of a movable resource
until the primary system joins the SSMGA plex.

Any other value of move mode will allow movement of resources by manually
changing the desired system to an alternate system.

■ SSM#SYSLST

Lists all of the available alternate systems to which you can move data.

■ SSM#GRPLST (Optional)

Specifies SSM resources, such as a workload, global status, or disaster recovery
eligibility, using arbitrary 1-18 character names. The ISPF monitoring tool uses the
group names in SSMGA to move groups of resources and in the operator command
facility for query and action commands. The list of group names is word or comma
delimited. SSMGA monitors the resource group name list for changes

■ AUTOHOME (Optional)

Specifies the Yes/No value that determines if the resource can move back to its
home system once this system becomes active.

SSMGA Setup Requirements

288 User Guide

Step 7: Enter Resource Configuration Values

Once the required columns have been added to the resource tables, enter the column
data values.

■ Enter values for non-movable resources

– Leave the primary system, current system and desired system columns at their
default values of *.* which means the current system.

– Ensure that the SSM#MOVMOD column contains the value INACTIVE.

– Ensure that the system list column is empty.

■ Enter values for all movable resources:

– Enter the primary system name with a valid system.subsys name.

The combination of primary system and resource table names must be unique
within the SSMplex. All duplicate names are treated as replicated resources of
one active resource.

– Set the current and desired systems to the primary system name.

– Set the ACTMODE mode to ACTIVE on the primary system. Set the ACTMODE in
INACTIVE on all other systems.

Note: The resource MODE should always be ACTIVE. SSMGA uses the
ACTMODE column to control moveable resources. The ACTMODE will be set to
ACTIVE on the system the resource is running on and set to INACTIVE on all
other systems.

– Set the SSM#MOVMOD column value to the appropriate resource recovery
value for normal operations.

– Populate the alternate system list column with the desired system names
specified in the order in which they are to be selected.

■ Assign optional group names to both movable and non-movable resources by
entering values in the group names column.

– For movable resources a group name would most likely represent a workload
group that can be used in a 'move group' command.

– For non-movable resources the group names serve no useful purpose in the
current version of SSMGA. In a future release, the group names will be used for
global group monitoring similar to the current SSM Group Manager application.

– Any group names specified are implicitly global in scope and must have a
unique significance within the SSMplex.

■ Define cross-system resource prerequisites by updating the prereq column with the
full cross-system name of the resource:

system.subsys.table.name

For movable resource workloads that must always run on the same system, the
following user designed prereq is provided in SSMGA to indicate system affinity
with the base resource of the workload group:

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 289

*SYS.AFF.table.name

This prereq prevents moved resources from starting on the new system until all the
resources in the group have shutdown and moved to the new system.

■ Populate the alternate system list column with the desired system names specified
in the order they are to be selected.

■ You can update any combination of the PRIMARY_SYSTEM, SSM#MOVMOD and the
SSM#SYSLST column for a single resource by using the SSMGAMRS routine
contained in your SYS1.CCLXEXEC library. It is particularly useful for modifying
multiple copies of a movable resource without having to modify each copy
manually. The syntax of SSMGAMRS, together with all possible keywords, is as
follows:

SSMGAMRS {prisys.}table.resource PRISYS() MOVMOD() SYSLST() SYSADD() SYSDEL()

SSMPLEX() SYSTEM()

{prisys.}table.resource

Is required and refers to an individual resource that is to be modified. Specify
table.resource with, or without the primary system portion of the name. At
least one keyword of PRISYS, MOVMOD or SYS***.

Example:

SYSLST or SYSADD and/or SYSDEL must be specified alongside this resource
name.

PRISYS()

Can be used to change the primary system name of the resource. It must be in
the format system.subsys. If used in combination with SSMPLEX keyword, every
copy of the specified resource will have its PRIMARY_SYSTEM column updated
to the value you specified here. If a new Primary system is specified, and it
appears in the current system list of the resource you are modifying, then it is
removed from the system list (unless a new complete SYSLST is also specified).

MOVMOD()

Can be used to specify a new move mode for the resource.

SYSLST()

Can be used to specify a new complete system list to go in the SSM#SYSLST
column for the resource. It will replace any existing values in the SSM#SYSLST
column if used.

SYSADD()

Can be used to add a single new system to the existing SSM#SYSLST column for
the resource. It consists of two comma-separated operands: the system name
in the format system.subsys and the position in SSM#SYSLST that the new
system name will be placed. For example, SYSADD(SYSA.OPSS,1) will add
system SYSA.OPSS to the front of the system list in column SSM#SYSLST for the
resource specified.

SSMGA Setup Requirements

290 User Guide

SYSDEL()

Can be used with or without SYSADD to remove system names. The value *ALL
indicates an empty SYSLST.

SYSTEM()

Accepts a list of system names in the format system.subsys. Only copies of the
resource on those systems in the list are updated.

SSMPLEX()

Accepts the name of an SSMPLEX that the resource is part of. Only copies of
the resource on that SSMPLEX will be modified. If SSMPLEX is not specified
then the resource on all MSF connected systems in the current system’s
SSMPLEXNAME are updated. If SSMPLEX(NONE) is specified , then only the
system names in the SSM#SYSLST are updated together with the primary
system.

Step 8: Add SSM Action Table Entries

SSMGA requires that the following actions be added to the SSM resource action tables.

ACTION_ ACTION_ ACTION_

PROCESS CURRENT MODE ACTION_TEXT

MSUBREQ … RULE("SSMGAMSR &SSM!TABLE &SSM!NAME")

SELECT … … PROCESS("XPREREQ,XSUBREQ,MSUBREQ ")

SELECT … INACTIVE … PROCESS("NOSUBREQ,NOPREREQ,NOACTION")

SELECT UNKNOWN … INACTIVE …

XSUBREQ … … RULE("SSMGAPRX &SSM!PROCESS &SSM!XRESNAME")

XPREREQ … … RULE("SSMGAPRX &SSM!PROCESS

 &SSM!PREREQ PRERES(&SSM!RESNAME)")

Note: (_) denotes one or more empty columns in the table entry.

SSMGA Setup Requirements

Chapter 8: Using SSM Global Application 291

Step 9: Replicate Parameters, RDF Tables, and Rules

Each eligible system (the primary system and all alternate systems) for each movable
resource must have an identical resource table definition, an identical associated action
table, and identical AOF rules (if not using shared AOF rule sets) for that movable
resource. Required SSMGA parameters must be set on each system that will participate
in the global SSMplex.

Note: Before executing this step, it is strongly recommended that you deactivate SSM
processing on each system that will participate in the global SSMplex by setting the
STATEMAN parameter as follows:

STATEMAN=INACTIVE

To replicate parameters, RDF tables, and rules

1. On each eligible system, replicate resource tables containing movable resources by
using the copy function of either the RDF Table Editor (OPSVIEW 2.6) or the SSM
Resource Editor (OPSVIEW 4.11.R).

2. On each eligible system, replicate action tables associated with resource tables
containing movable resources by using the copy function of either the RDF Table
Editor (OPSVIEW 2.6) or the SSM Action Editor (OPSVIEW 4.11.A).

3. If not using shared AOF rule sets, on each eligible system, replicate and auto-enable
any AOF rules (such as start, stop, state detection, and so on) for a movable
resource.

4. If not using a shared OPSPA00 initialization OPS/REXX program, update the
OPSPA00 initialization OPS/REXX program with the required SSMGA parameters on
each system that will participate in the global SSMplex.

Step 10: Activate SSM Processing and Verify the Setup

After making all changes to an existing SSM configuration, you need to activate SSM
processing and then verify that the setup is complete.

To activate SSM processing and verify the setup

1. Set the parameter STATEMAN as follows:

STATEMAN=ACTIVE

The SSM processing is activated.

Note: SSMGA is not activated until the SSMSUBRULE parameter is set to
SSMGAGBL. See Step 4 above, and section Using the SSM Subtask below.

2. Verify the setup by issuing the VERSYS command from the OPSVIEW 4.11.G panel.

The SSMGA local setup is validated.

SSMGA Setup Requirements

292 User Guide

Using the SSM Subtask

You control the starting and stopping of the SSM subtask using the following
SSMSUBRULE parameter values:

■ A value other than 'NONE' starts the SSM subtask

■ Setting the value to 'NONE' stops the SSM subtask

Note: The value of the SSMSUBRULE parameter must be an enabled AOF request rule
name in order for any productive work to be performed.

The SSM subtask is posted for an event by any of the following conditions:

■ An explicit post by the OPSSMTBL command with the keyword operand
POST(SSMSUB).

■ Anytime an MSF connection with the same SSMPLEXNAME value changes to
INACTIVE status.

■ Anytime an MSF connection's SSMPLEXNAME, SSMACTIVEGLOBAL, or SSMPRIORITY
value changes.

■ Anytime an external RDF table modification SQL statement changes a table whose
name matches the table name prefix specified in the SSMSUBPREFIX parameter.
Table modifications that originate from the local SSM main task and the SSM
subtask do not cause a post event.

Although the new SSMGA feature will use this subtask for transmitting status
information from system to system, the use of the SSM subtask is not limited to SSMGA.
You can use this subtask to perform continuous auxiliary automation in support of SSM
events.

Some possible uses for the subtask are as follows:

■ Execute a designated AOF request rule each time it is posted

■ Handle repetitive SSM processing that involves long execution times that could
impede the performance of the primary SSM task

■ Implement an alternate automation procedure such as MSF connection
management

Messages for Special Events

Chapter 8: Using SSM Global Application 293

Messages for Special Events

SSMGA issues the following WTOR messages when human intervention is required:

■ SSMGA01O

■ SSMGA02O

■ SSMGA03O

■ SSMGA04O

You can develop automated responses to these WTOR messages using AOF message
rules. Pay careful attention to the consequences of answering these messages
incorrectly.

Note: For detailed descriptions of these messages, see the Message Reference.

SSMGA Status Command

An CA OPS/MVS modify command provides the return status for OPS/MVS, MSF, SSM,
and SSMGA. This command determines the SSMGA system status within a sysplex when
MSF communication has been lost. The z/OS sysplex ROUTE command can be used to
issue this modify command on the target system within the same sysplex. Examination
of the z/OS or the OPS/MVS messages returned can determine if the loss of
communication warrants the recovery or movement of SSMGA resources. The SSMGA
automatic WTOR reply Rexx program, SSMGARPL, uses this command.

Command Syntax

MODIFY OPSx,STATUS(SSMGA)

where x = the fourth character of your CA-OPS/MVS subsystem name.

Returns message

OPx3269I SSMGA: OPS=var1 MSF=var2 SSM=var3 SSMPLEX=var4 GBL=var5 PRI=var6

var1

CA OPS/MVS product status

var2

MSF component status

var3

Stateman mode (Same as OPSINFO)

var4

SSMPLEXNAME (name/NONE). Used in SSMGA.

SSMGA Status Command

294 User Guide

var5

SSMACTIVEGLOBAL value (Y/N). Used in SSMGA.

var6

SSMPRIORITY (0-1999). Used in SSMGA.

Example

F OPSK,STATUS(SSMGA)

OPK3269I SSMGA: OPS=ACTIVE MSF=ACTIVE SSM=ACTIVE SSMPLEX=QSSMPLEX GBL=Y PRI=300

Verification and Diagnostic Commands

Chapter 8: Using SSM Global Application 295

Verification and Diagnostic Commands

Several ISPF primary commands for detecting SSMGA configuration and runtime errors
are available in the OPSVIEW 4.11.G SSMGA resource monitor. These commands detect
the most common errors in SSMGA and in a few cases repair them automatically. When
new SSMGA tables are added to the configuration, to insure a valid configuration all of
these commands should be executed in order.

VERSYS command (Rexx program: SSMGAPH1):

■ Validates the local system SSMGA required parameter settings

■ Checks for MSF connections to an SSMGA global system

■ Checks for required tables and their column structures

■ Checks SSMGA resource column values for syntax, contents, and consistency

■ Verifies that required rules are enabled

■ Checks action table columns for the SSMGA required actions

■ For some parameter and table errors the proper SSMGA value is set

VERGBL command (Rexx program: SSMGAPH2):

■ Verifies that all SSM resource table rows on accessible systems in the SSMplex have
corresponding resource rows in the local LST and in the GST

■ Detects rows in the LST and GST that do not have corresponding SSM resource rows

VERMOV (Rexx program: SSMGAPH3:

■ Diagnoses problems with movable resources

■ Identifies any outstanding SSMGA WTORs that require a response

■ Verifies that a specific movable resource has the same primary system name on all
systems

■ Verifies that movable resources exist on systems that are consistent with their
primary and alternate system definitions

■ Identifies movable resources that are not assigned to a system or are waiting for a
particular system that is not active

■ Evaluates the current and desired system in light of the action mode and move
mode for consistency on all systems

Chapter 9: Using Group Manager 297

Chapter 9: Using Group Manager

This section contains the following topics:

Monitor Groups of Managed Resources (see page 297)
Tables Used by the Group Manager (see page 298)
Define Groups and Assign Resources to Them (see page 299)
Define Statuses for Your Groups (see page 300)
How Group Manager Assigns Statuses to Resources and Groups (see page 304)
Use the Group Manager Displays (see page 307)
Exclude Systems from Resource Monitoring (see page 308)
Choose Resource Groups to Monitor (see page 309)
View the Status of Groups (see page 310)
View the Status of Group Members (see page 311)
Automatically Monitor Groups or Resources (see page 312)
View Detailed Resource Information (see page 313)
Exit from Group Manager Panels (see page 313)

Monitor Groups of Managed Resources

Use the Group Manager feature of CA OPS/MVS to group system resources under the
control of the System State Manager and to monitor the status of resource groups.

To help you find resources that are not in their correct state among the hundreds or
even thousands of system resources that the System State Manager may be monitoring
at your data center, the System State Manager offers a Group Manager feature. Using
the Group Manager and its tables and ISPF panels, you can:

■ Categorize resources that the System State Manager monitors into groups.

■ Monitor the status of groups from all systems connected through MSF to CA
OPS/MVS on the local system, or monitor only a subset of those groups.

■ Display a list of the resources belonging to each group.

■ For each resource, change the desired state, the mode in which System State
Manager monitors the resource, and whether the status of the resource
contributes to the status of the group to which it belongs.

To use Group Manager

1. Set the STATEGROUPMAN parameter to YES

2. Set the System State Manager to active.

For more detailed information on the STATEGROUPMAN parameter, see the Parameter
Reference.

Tables Used by the Group Manager

298 User Guide

Tables Used by the Group Manager

To keep track of the status of groups and resources, the Group Manager uses four
relational tables:

■ The group membership table SSM_GROUP_MEMBERS defines groups of resources.
You can edit this table using the CA OPS/MVS table editor.

■ The status definitions table SSM_GROUP_STDEF defines the statuses groups can
have and how those statuses display on Group Manager panels. You can edit this
table using the CA OPS/MVS table editor.

■ The status selection table SSM_GROUP_STSEL is used to determine the current
status of resources in each group. You can edit this table using the CA OPS/MVS
table editor.

■ The current status table provides the data that is to be displayed by the Group
Manager monitor. The Group Manager creates this table at System State Manager
startup and updates it for each monitor display. Using the current and desired
states of each resource being monitored, the System State Manager assigns a status
and priority in this table for each group in which the resource participates. This
table is used to determine the display status of each group being monitored.

WARNING! Do not edit the current status table; doing so can seriously disrupt Group
Manager and System State Manager operation.

Define Groups and Assign Resources to Them

Chapter 9: Using Group Manager 299

Define Groups and Assign Resources to Them

An individual resource can belong to more than one group, and each group can contain
more than one resource. The group membership relational table
SSM_GROUP_MEMBERS defines which resources belong to which groups.

The SSM_GROUP_MEMBERS has the following format:

M_TABLE

The name of the table that defines the resource to System State Manager

Type: CHAR(18)

Primary Key: Yes

M_RESOURCE

The name of the resource

Type:CHAR(18)

Primary Key: Yes

M_GROUP

The name of the group to which the resource belongs

Type: CHAR(18)

Primary Key: Yes

The group membership table on a given system is automatically created by Group
Manager and initially consists of data extracted from the SSM_MANAGED_TBLS table on
that system. Each table in SSM_MANAGED_TBLS is defined as a group, and all resources
defined in a table become members of the same group. To edit a group membership
table, select the following option from the Group Manager Main Menu (OPSVIEW
option 4.11.5) and specify an MSF system ID (defaults to the local system):

_ Specify group membership on system ===> ________

Define Statuses for Your Groups

300 User Guide

Define Statuses for Your Groups

Each group you create can be in a variety of statuses.

To define most of these statuses, edit the status definitions table SSM_GROUP_STDEF.

The following describes the SSM_GROUP_STDEF table columns:

D_STATUS

The name of the status.

Type: CHAR(18)

Primary Key: Yes

D_GROUP

The name of the group to which the status belongs.

Type: CHAR(18)

Primary Key: Yes

D_PRIORITY

The priority of this status, a value from 1 (highest priority) to 231 -1 (lowest
priority).

Type: INTEGER

Primary Key: No

D_COLOR

The color to use when displaying the status text. Possible colors are:

■ Blue

■ Green

■ Pink

■ Red

■ Turquoise

■ Yellow

■ White

You can abbreviate the color names, using only the first character of each name.

Type: CHAR(9)

Primary Key: No

Define Statuses for Your Groups

Chapter 9: Using Group Manager 301

D_HIGHLIGHT

The type of highlighting to be used (if your terminal allows highlighting) when
displaying the status text. You may specify only one of the following possible types
of highlighting:

■ None (abbreviated as NON)

■ Normal (abbreviated as NOR)

■ Blinking (abbreviated as B)

■ Reverse (abbreviated as R)

■ Underscore (abbreviated as U)

Type: CHAR(10)

Primary Key: No

D_TEXT

The text that the Group Manager displays when a resource or a group is in this
status.

Type: CHAR(120)

Primary Key: No

Define Status Names

You can define your own names for the statuses of resources. Define names that point
to the condition that the statuses represent. For instance, you could define
WTNG_MOUNT as the name for the status of a tape drive that is being mounted.

CA OPS/MVS uses three default status names:

■ CUR_EQ_DES (the current state of the resource equals its desired state)

■ CUR_NE_DES (current state of the resource does not match its desired state)

■ DEF_ERROR (status name not defined in the SSM_GROUP_STDEF table is
referenced in another table called SSM_GROUP_STSEL)

Define Statuses for Your Groups

302 User Guide

Unless you define them differently in the SSM_GROUP_STDEF table, these three
statuses have the following characteristics:

CUR_EQ_DES

D_Group Column: No group

D_PRIORITY Column: 231 - 1 (lowest possible priority)

D_COLOR Column: GREEN

D_HIGHLIGHT Column: No highlighting

D_TEXT Column: Resource &RN State &CS (&RN is a variable containing the name of
the resource)

CUR_NE_DES

D_Group Column: No group

D_PRIORITY Column: 1 (highest priority)

D_COLOR Column: RED

D_HIGHLIGHT Column: No highlighting

D_TEXT Column: Resource &RN State &CS (&CS is a variable containing the current
state of the resource)

DEF_ERROR

D_Group Column: No group

D_PRIORITY Column: 1

D_COLOR Column: RED

D_HIGHLIGHT Column: UNDER (underscore)

D_TEXT Column: Status status Not Defined

Example: SSM_GROUP_STDEF table

The following is an example of the SSM_GROUP_STDEF table:

D_STATUS D_GROUP D_PRIORITY D_COLOR D_HIGHLIGHT D_TEXT

*************************** TOP OF DATA ********************************** TOP OF DATA ********************************

MATCH 200 GREEN NULL DESIRED_STATE MATCHES CURRENT_STATE

MISMATCH 1 RED B DESIRED_STATE DOES NOT MATCH CURRENT_STATE

TRANSIENT 100 YELLOW NULL RESOUSCES IN TRANSIENT STATUS

UNKNOWN_ERR 25 TURQUOISE R MISMATCH IN DESIRED_STATE AND CURRENT_STATE. CHECK SSMSTATE

UP_IPL 50 PINK U &RN IS UP

Associate a Status with a Group or Groups

To have a status apply to a particular group, specify the group name in the D_GROUP
column. If you specify no group name, the status applies to all groups.

Define Statuses for Your Groups

Chapter 9: Using Group Manager 303

Set the Priority of a Status

Assigning a priority to a status allows the Group Manager panels to call the attention of
the system operator to statuses reflecting resource availability problems. For example,
the status name CUR_NE_DES defaults to the highest priority, 1, because it indicates
that the current state of a group does not match the desired state.

Note: Differences between these states usually point to a resource problem that the
system operator needs to know about.

Conversely, the status CUR_EQ_DES indicates that the current and desired states match,
which usually means that the resources in a group are operating without problems.
Therefore, the CUR_EQ_DES status has the lowest possible priority.

The Group Manager requires you to specify a priority for each status you define. If two
resources in the same group have statuses with the same priority, the resource that had
that priority first determines the group status.

The Group Manager takes the status of a group from the resource that has the
highest-priority status. For example, suppose that in a group of 10 DASDs, one has the
status CUR_NE_DES but the other nine DASDs have low-priority statuses. The Group
Manager assigns the high-priority CUR_NE_DES status to the entire group. This allows
the operator viewing Group Manager panels to detect a problem with this group of
DASDs, then use the Group Members panel of the Group Manager to identify which
DASD has the problem.

Use Substitution Parameters in Status Text

As you add status definitions to the SSM_GROUP_STDEF table, you can use substitution
parameters in defining the text that goes into the D_TEXT column, that is, the text that
describes a status on Group Manager panels. These parameters allow you to determine
which status data is most relevant. For example, by putting parameters referencing the
resource name and current state into the status text, you allow an operator viewing
group display of the Group Manager to see the current state of the resource that is
causing a problem.

All substitution parameters begin with an ampersand (&). You can place a period after a
parameter when you want to concatenate it in front of normal text.

Parameter Substitution Value

&CS Current state of the resource

&DS Desired state of the resource

&GN Name of the group to which the resource belongs

&GO Order that the Group Manager uses to sort resources by priority

How Group Manager Assigns Statuses to Resources and Groups

304 User Guide

Parameter Substitution Value

&PF Whether the resource has missing prerequisite resources

&RN Resource name

&RT Resource table

&RY Resource type

&SC Color in which the status text appears

&SD The date when this status was assigned to the resource or group

&SH Highlighting used to display status text

&SM System State Manager processing mode

&SN Status name

&SP Status priority

&ST The time when this status was assigned to the resource or group

How Group Manager Assigns Statuses to Resources and Groups

The current and desired state of a resource is used by Group Manager.

Group Manager initiates the following process:

■ Assigns a status to each resource for each group.

■ Uses the status of each resource in a group to assign a status to each group.

■ Stores current status information for each resource for each group in the current
status table.

The current status table is built dynamically by Group Manager and should not be
altered by the user.

■ Builds the current status table using the status selection table built by the user.

Important! Do not edit the current status table; doing so can seriously disrupt Group
Manager and System State Manager operation.

How Group Manager Assigns Statuses to Resources and Groups

Chapter 9: Using Group Manager 305

Status Selection Table

The status selection table SSM_GROUP_STSEL contains the data required to associate a
status to each combination of resource states for each group.

The structure of the columns status selection table is as follows:

S_GROUP

Specifies the group name

Type: CHAR (18)

Primary Key: Yes

S_CURRENT

Current state of a resource

Type: CHAR (8)

Primary Key: Yes

S_DESIRED

Desired state of a resource

Type: CHAR (8)

Primary Key: Yes

S_TABLE

Resource table name

Type: CHAR (18)

Primary Key: Yes

S_TYPE

Resource name or resource type (if the type column is present)

Type: CHAR (18)

Primary Key: Yes

S_STATUS

Name of the status to be assigned; must be defined in SSM_GROUP_STDEF

Type: CHAR (18)

Primary Key: No

How Group Manager Assigns Statuses to Resources and Groups

306 User Guide

The status selection assignment algorithm is similar to that of the System State Manager
action table search. In a matching group name and current state, the most specific
match of the remaining key fields in hierarchical sequence is selected. For instance, a
match on desired state outweighs a row where desired state is null but resource table
name and resource name match. Once the status name is assigned, the status definition
table is accessed to obtain priority and display data.

If no status selection table rows are defined for the group name, default status rows
without a group name may also be defined for each current state value and subsequent
portions of the table key. If the default rows are not in the table, the status
CUR_EQ_DES or CUR_NE_DES is assigned as appropriate.

The following is an example of the SSM_GROUP_STSEL table:

S_GROUP S_CURRENT S_DESIRED S_TABLE S_TYPE S_STATUS
************************ TOP OF DATA **
 DOWN DOWN MATCH
 DOWN UP MISMATCH
 STARTING UP TRANSIENT
 STOPPING DOWN TRANSIENT
 UNKNOWN DOWN UNKNOWN_ERR
 UNKNOWN UNKNOWN MATCH
 UNKNOWN UP UNKNOWN_ERR
 UP DOWN MISMATCH
 UP IPL UP_IPL
 UP UP MATCH

Use the Group Manager Displays

Chapter 9: Using Group Manager 307

Use the Group Manager Displays

Group Manger displays let you view resource and resource group information.

To use Group Manager Displays

1. Select System State Manager from the OPSVIEW primary panel.

2. Choose option 5 from the Ssytem State Manager Functions panel to view the
resource and resource group information displayed on Group Manager panels.

The Main Menu of the Group Manager appears.

Group Manager --------------------- Main Menu ---------------------------------
COMMAND ===>

------------------------------ Individual Resources ---------------------------
 _ Specify which systems you want to monitor
 _ Specify which groups you want to monitor and their position on the display

------------------------------ Individual Parameters --------------------------
 Refresh the monitor display every 15_ seconds.

-------------------------------- Global Resources -----------------------------
 _ Specify group membership on system ===> ________
 _ Specify group status selection on system ===> ________
 _ Specify status definitions (colors, text, etc.) on system ===> ________
 _ Synchronize with the StateMan table definitions on system ===> ________

To select any option, type S beside it and press ENTER.
Press ENTER with no options selected to enter the monitor display

3. Choose one of the options from the Main Menu by typing an S beside it and
pressing the Enter key.

You receive one of the following panels:

If you select... The following happens...

Specify which systems you want to
monitor

You see the System Selection List panel

Specify which groups you want to
monitor

You see the Group Selection/Ordering panel

Enter, that is, if you press Enter without
selecting any Main Menu options

You see the Group Display panel

Specify group membership The CA OPS/MVS table editor is entered for
table SSM_GROUP_MEMBERS

Specify group status selection The CA OPS/MVS table editor is entered for
table SSM_GROUP_STSEL

Exclude Systems from Resource Monitoring

308 User Guide

If you select... The following happens...

Specify status definitions The CA OPS/MVS table editor is entered for
table SSM_GROUP_STDEF

Synchronize with Stateman table
definitions

A message is displayed on the main menu
panel indicating that System State Manager
has been told to rebuild the current status
table

Exclude Systems from Resource Monitoring

Some systems do not need monitoring and should be excluded from the list of
monitored systems.

To exclude some systems from being monitored

1. In the System Selection List panel, type an X in the Sel column beside the systems to
be excluded. If a system is stopped, you need not exclude it.

The Group Manager stores the list of excluded systems, and any changes to that list,
in your ISPF profile. Once excluded from monitoring, a system stays excluded until
you include it (by removing the X beside it).

Group Manager -------------- System Selection List ----------- Row 1 to 7 of 7
Command ===> Scroll ===> PAGE

Mark systems you do NOT wish to monitor with an "X". Press END to continue.

Sel System Status
___ APPC04K ACTIVE
___ OPS03K ACTIVE
___ OPS04K ACTIVE
___ OPS04M STOPPED
___ OPS44K LOCAL
___ OPS44M ACTIVE
___ OPS44X STOPPED

2. When you have indicated which systems the System State Manager should exclude
from monitoring, press the End key.

Choose Resource Groups to Monitor

Chapter 9: Using Group Manager 309

Choose Resource Groups to Monitor

Use the following Group Selection/Ordering panel to specify:

■ Which groups of resources System State Manager should not monitor.

■ The order in which monitored groups will appear on the Group Monitor Display
panel. Specifying a display order for groups ensures that status information for a
group always appears on the same line of the screen, allowing on operator to
determine the status of a group at a quick glance from the position and color of the
line.

Group Manager ---------- Group Selection/Ordering List ----- Row 1 to 10 of 10
Command ===> Scroll ===> PAGE

Mark groups you do NOT wish to monitor with an "X" or place a number next to a
group to position it on the group display. Press END to continue.

SEL SYSTEM GROUP STATUS
___ OPS03K CICS1 ACTIVE
___ OPS03K CICS2 ACTIVE
___ OPS04K NETSPY ACTIVE
___ OPS04K ASTEX ACTIVE
___ OPS04K SYSVIEW ACTIVE
___ OPS44K BUNDL LOCAL
___ OPS44K NVISION LOCAL
___ OPS44K ASTEX DELETED
___ OPS44K SYSVIEW DELETED
___ OPS44K CICS3 LOCAL

To choose resource groups to monitor

1. Exclude a group from System State Manager monitoring by typing an X beside it in
the Sel column.

2. Specify where the status information of a group appears in the displayed group list
by entering a number instead of an X.

The position of this information is relative. For instance, if you assign the numbers
1, 9, and 25 to three groups, the group marked with number 1 appears on the first
line the group indicated with 9 appears on the second line, and the group indicated
with 25 appears on the third line.

As you add groups, the Group Manager automatically adds them to the Group
Ordering/Selection List panel, listing them ahead of the groups for which you
specified positions. Groups excluded from monitoring appear at the bottom of the
list.

Note: DELETED status means that although you have assigned a position to this
group, the administrator of the system where this group resides has deleted that
group. STOPPED status indicates that you have assigned a position to this group but
the MSF link to the system of that group is currently down.

3. When you have finished specifying which groups should be monitored and the
screen positions of those groups, press the End key.

View the Status of Groups

310 User Guide

The Group Display panel displays.

View the Status of Groups

The following Group Display panel lists the status of all resource groups that you have
asked to be displayed.

To view the status of groups

1. Press Enter on the Main Menu of the Group Manager without selecting any options.

The following the Group Display panel displays:

Group Manager ------------------------- Group Display --------------------------
Command ===> Scroll ===> PAGE
CMDS: A R S (Type MONitor on the command line for continuous monitoring.)
 SYSTEM GROUP-NAME STATUS
__ OPS04K NETSPY MISMATCH IN DESIRED_STATE AND CURRENT_STATE
__ OPS04K ASTEX MISMATCH IN DESIRED_STATE AND CURRENT_STATE
__ APPC44K SYSVIEW DESIRED_STATE MATCHES CURRENT_STATE
__ OPS44K NVISION DESIRED_STATE MATCHES CURRENT_STATE
__ OPS44K CICS3 GROUP HAS NO MEMBERS

The priorities you assign to groups on the Group Selection/Ordering List panel
determine the order in which groups appear on the Group Display panel. Groups
not excluded or that have no assigned position appear first, sorted in order of the
priority of their status. Groups assigned the same relative position are sorted by
status priority.

2. Enter the following three line commands on the Group Display panel to view the
status of the groups:

A

Causes the Group Manager to display its Group Members panel, which lists all
the resources in the selected group

R

Goes directly to the Resource Details Display panel for the resource that is
determining the status of the group

S

Causes the Group Manager to display only the resources in the selected group
whose current states do not match their desired states

Note: When the Group Display panel is in automatic monitoring mode, you must press
the PA1 key before entering these line commands.

View the Status of Group Members

Chapter 9: Using Group Manager 311

View the Status of Group Members

The Group Members panel, shown here, displays the status of resources in the currently
selected group:

Group Manager: ------------ Members of group GROUP1 -------- System: S008
COMMAND ===> SCROLL ===> PAGE
 CMDS: Q R S (Type MONitor on the command line for continuous monitoring
 updates)
 Table-Name Resource-Name Status
___ STC_TABLE RESOURCE4 RESOURCE4 IN STC_TABLE IS DOWN
___ T2 RESOURCE2 RESOURCE2 IS IN STATE5
___ T2 RESOURCE3 RESOURCE3 IS IN STATE3
___ T2 RESOURCE1 RESOURCE1 IS IN STATE2
___ T1 RESOURCE1 OK
___ T1 RESOURCE3 RESOURCE3 IS IN STATE6
___ T3 RESOURCE1 RESOURCE1 IS IN STATE4

The Group Members panel has three line commands:

Q

Toggles the resource in and out of Group Manager quiesced mode. While a
resource is in quiesced mode, its status cannot be used as the status of a group. So,
if a quiesced resource is the only resource in a group operating abnormally, then
the status of the group is OK. To remind you that a resource is quiesced, the letter
Q appears immediately after the CMDS column of the Group Display and Group
Members panels. Quiesce mode is useful when a resource is in an abnormal status
but the operator can do nothing about it, for instance when a piece of hardware
has a problem that will make it inoperative until someone replaces a part.

R

Included for compatibility with the Group Display panel, the R command on the
Group Members panel has the same function as the S command.

S

Causes the Group Manager to display the Resource Details Display panel for only
the selected resource.

Note: When the Group Members panel is in automatic monitoring mode, you must
press the PA1 key before entering these line commands.

Automatically Monitor Groups or Resources

312 User Guide

Automatically Monitor Groups or Resources

You can have Group Manager automatically monitor the status of groups or resources.

To monitor groups or resources automatically

1. Type MONITOR (or MON) primary command in either the Group Display panel or
the Group Members panel.

The MONITOR (or MON) primary command checks the status of all resources every
nn seconds and refreshes the display. The nn value is the number of seconds
between refreshes that you specify on the Main Menu of the Group Manager.
During monitoring, you have an up-to-date display of the status of the groups at all
times without having to enter any keystrokes.

2. To turn monitoring off, press either the ATTN key or the PA1 key.

Automatic monitoring is turned off.

View Detailed Resource Information

Chapter 9: Using Group Manager 313

View Detailed Resource Information

The following Details Display panel displays status information for a specific resource:

Group Manager: Resource Details Display---------------------------------
 COMMAND ===>

Resource information:
 Group ===> CICS
 Table ===> GRG_STCTBL
 Type ===> CICS
 Resource ===> CICSA

Group status information:
 Name ===> CUR_EQ_DES
 Priority ===> 258
 Quiesced ===> NO
 Text ===> CICSA IN STATUS CUR_EQ_DES AT 00:45:58 ON 05/30/04

SSM state information:
 Current ===> UNKNOWN (To set current state to UNKNOWN type S here ===>)
 Desired ===> UNKNOWN
 Mode ===> ________
 Missing ===>
 Prereqs

From this panel you can change the resource's:

■ System State Manager desired state

■ System State Manager processing mode

■ Group Manager quiesced mode

To change any of these values, enter new values over those shown on the panel. The
current state can only be changed to the unknown state by entering an S in the input
field. System State Manager re-determines the correct current state as prescribed by
the unknown action in the action table.

Exit from Group Manager Panels

To exit from any Group Manager panel and return to the previous panel, issue the END
command from the command line.

Chapter 10: Using Schedule Manager 315

Chapter 10: Using Schedule Manager

This section contains the following topics:

Reasons to Use the Schedule Manager (see page 316)
Definition of Terms (see page 318)
Perform Schedule Manager Tasks (see page 320)
Insert a New Schedule (see page 322)
Edit a Schedule (see page 322)
Activate (Load) a Schedule (see page 337)
SHOW STATES Command—View the Scheduled States of Resources (see page 338)
CMDSONOFF Primary Command—Distinguish Active and Inactive Links (see page 341)
View Potential State Changes (see page 342)
The Primary Commands in Edit (see page 343)
Copy a Schedule (see page 345)
Rename a Schedule (see page 346)
Delete a Schedule (see page 347)
Free a Schedule (see page 348)
Synchronize a Schedule (see page 349)
Merge Schedules (see page 350)
View Schedule Overlaps (see page 351)
View Schedule Conflicts (see page 352)
REPORT Command—Print Schedule Manager Data (see page 355)
Use the Schedule Manager Application Program Interface (see page 359)
Override Schedule Manager (see page 382)

Reasons to Use the Schedule Manager

316 User Guide

Reasons to Use the Schedule Manager

Using the CA OPS/MVS Schedule Manager facility, you can schedule the desired state of
one or more resources by date, by day of the week, or by time of day.

Being able to schedule the desired state of resources enables you to automatically
configure them at any time, including system IPL time, when batch job schedules may
not be active. The only requirement is that CA OPS/MVS be active. You can define many
alternate configurations of system resources into one or more Schedule Manager
schedules. Some examples of alternate system configurations are:

■ Shift changes

■ Company holidays

■ Weekend test time

■ Disaster recovery mode

The benefits of using the Schedule Manager to manage the state of system resources
are:

■ No time-of-day (TOD) rules are used. This eliminates the need to code sophisticated
catch-up logic.

■ Sophisticated rules or REXX routines no longer need to be created to verify what is
running.

■ Schedules are created and maintained through ISPF.

■ Recovery from unplanned system outages is automatic. The Schedule Manager
configures your system resources in the proper state no matter what date, day of
the week, or time of day the unplanned outage occurs. You do not need to
manually verify what should be active and what should be inactive.

For example, if certain printers defined to System State Manager need to be
available only during regular working hours (such as Monday through Friday
between 7:00 a.m. and 8:00 p.m.), then you can use the Schedule Manager to
change the desired state of those printers to DOWN between 8:00 p.m. and 7:00
a.m. on weekdays and all day on Saturday and Sunday. You can also have the
Schedule Manager automatically change the desired state of the printers back to
UP on Monday through Friday morning at 7:00 a.m.

It is possible to manually override Schedule Manager control of specific resources
while maintaining usual scheduled control over remaining resources. Using the
example above, if a printer needed to be UP for an hour at noon on a Saturday,
then various mechanisms in the Schedule Manager exist to allow the printer to be
brought UP without having to unload the active schedule.

Note: The Schedule Manager is not a batch job scheduler.

Reasons to Use the Schedule Manager

Chapter 10: Using Schedule Manager 317

What You Can Do With Schedule Manager

You can define one or more schedules to the Schedule Manager; however, only one
schedule is active at a time. Note that it is possible to merge multiple schedules into one
schedule. In each schedule, define one or more periods of time by date, by day of the
week, and by time of day. To schedule the desired state of a System State Manager
resource, link both it and its desired state (ON or OFF) to a period of time in a schedule.
After you tell the Schedule Manager what schedule to activate (or load), the Schedule
Manager determines what periods in the schedule are active and sets the scheduled
desired state of any resources linked to those periods. This process is called reset
processing. The time of day when a scheduled period starts or ends is a time of possible
change in desired states, and the Schedule Manager automatically performs reset
processing at those times. To manually request a Schedule Manager reset, use the
Schedule Manager SSM@OVER sample command rule or use the Schedule Manager API.

Note: The Schedule Manager stores period and schedule definition data in the database
of the Relational Data Framework (RDF). It uses an internal schedule called ACTIVE to
set the desired state of resources under System State Manager control. You cannot edit
the ACTIVE schedule, but you can create a new schedule or edit an existing schedule,
and then load it as the ACTIVE schedule.

The remainder of this chapter provides information on how to do the following:

■ Add, copy, delete, edit, print, or rename a schedule

■ Add, delete, edit, or rename a period in a schedule

■ Link or unlink resources and periods

■ Synchronize a schedule with System State Manager resource table updates

■ Merge the information from two schedules into a single schedule

■ Load a schedule to make it the ACTIVE schedule

■ View or print schedule period overlaps and conflicts

■ View or print the schedule state of system resources

■ Override the ACTIVE schedule

■ Use the Schedule Manager application program interface (API)

Note: Most Schedule Manager functions can operate using schedule data on any
MSF-connected system.

Definition of Terms

318 User Guide

Definition of Terms

The description of the Schedule Manager in this document and the Schedule Manager
panels use the following set of special terms:

Schedule

A complete, self-contained set of scheduling information, including:

■ A list of time periods included in this schedule. See the description of period
below.

■ Information about system resources and their respective states during a
specified time period.

Resource

A component of your system, such as a DASD controller, a printer, or an application
program. The Schedule Manager schedules desired state changes only to resources
defined in one of the relational tables included in the SSM_MANAGED_TBLS table
of the System State Manager.

Period

The dates and times governing when System State Manager changes the desired
state of one or more resources. A period has start and end times specified in hours
and minutes and either a cyclic or a fixed start date and end date:

■ A cyclic date consists of one or more days of the week (Sunday, Monday, and
so on). If you use a cyclic date, then the period takes effect every week on the
same day or days.

■ A fixed date consists of specific days of specific months. If you specify one fixed
date, then the period takes effect only on the specified day (for example,
March 27). If you specify two fixed dates, then the period begins on the first
date and ends on the second date. For example, if you specify 11/11-12/12, the
period begins on November 11 and continues until December 12. You can
optionally specify the year of the first date. If the year of the first date is
specified, then the period is active only once beginning on the first date in the
specified year. If the year of the first date is not specified, then the period is
active every year beginning on the first date (unless it is February 29, which is
active in leap years only). The year of the second date is assumed from the first
date, whether a year has been specified on the first date. A fixed date period
cannot span more than 365 days.

A single period can change the desired state of many resources, and more than one
period can control the desired state of a single resource.

Period set

All periods that apply to a specific date and time.

Link

A link is the association between a resource and a period.

Definition of Terms

Chapter 10: Using Schedule Manager 319

Link item

A link item is either the resource or the period that is part of a link.

Link item column

The column on Schedule Manager panels containing the link item. For example, if
the link item is a resource, then the resource column is the link item column.

Link group

The group of system resources or periods that is associated with the link item. For
example, if the link item is a resource, then the link group is all periods that change
the desired state of that resource.

Link group column

The column on Schedule Manager panels that contains the link group. For instance,
if the link item is a period, then the link group column is the resources column.

Conflict

A Schedule Manager conflict occurs when two periods specify opposite desired
states for the same resource at some point in time.

Conflict group

The periods specifying conflicting desired states for a resource.

Overlap

The situation that occurs when a new period begins before the previous period
ends. Overlapping periods may or may not produce a conflict.

Commands column

The column on Schedule Manager panels where you issue line commands. When
the commands column resides in the period column (its default location), you can
issue line commands against periods. To issue line commands against resources,
you need to move the commands into the resource column. PF11 moves the
commands column to the resource (right) side of the screen; PF10 moves the
commands column to the period (left) side of the screen.

Perform Schedule Manager Tasks

320 User Guide

Perform Schedule Manager Tasks

The Schedule Manager lets you control the states of system resources over specific time
periods, both on the system you are working on, and on other systems that are running
the Schedule Manager.

To access Schedule Manager and perform tasks

1. From the CA OPS/MVS main OPSVIEW panel, select option 4.11.4.

The following Schedule Manager Primary Panel displays:

Schedule Manager --------------- Primary Panel --------------------------------

COMMAND ===>
 C - Copy schedule D - Delete a schedule
 E - Edit a schedule F - Free a schedule
 I - Insert a new schedule L - Load schedule (make it ACTIVE)
 M - Merge schedules R - Rename schedule
 Y - Synchronize schedule blank - Display schedule list

SPECIFY SCHEDULE:
 NAME ===> (If option C,D,E,F,L,M,R or Y selected)
 NEWNAME ===> (If option C,I,M or R selected)

CONFIRM DELETES: YES (Enter YES to require delete confirmation)

NOTE: To use a schedule on another system specify the name as system>schedule
 Specify ? as the system name to get a list of all systems.

2. From this panel, choose a schedule maintenance task by issuing one of the listed
commands from the command line and specifying the name of the schedule you
want in the NAME field (and if required, the name of a new schedule in the
NEWNAME field).

3. On any Schedule Manager panel, press Enter

The command or action you have specified executes.

For more information about the main Schedule Manager panel, or any OPSVIEW panel,
see the OPSVIEW User Guide.

Perform Schedule Manager Tasks

Chapter 10: Using Schedule Manager 321

Select a Schedule

The Schedule Manager can maintain schedules defined on the system you are working
on, as well as schedules from other systems running CA OPS/MVS and the Schedule
Manager.

Schedule names are in the format of sysname>schedname, where sysname is the name
of the system and schedname is the name of the schedule. For example,
SYSA>SCHEDULE1.

Schedule lists can be displayed in a variety of formats.

To select a schedule or schedule list, use the following chart. This chart describes what
you need to enter to view a specific schedule or schedule list:

To select... Enter this value in the NAME field...

One of the schedules defined on
the current system

The name of that schedule in the format
schedname or sysname>schedname, where
sysname is the name of the current system

A schedule from a list of
schedules on the current system

An asterisk (*), or leave the NAME field blank

A specific schedule on another
system

The name of the system followed by the
greater-than symbol (>) and the schedule name, as
shown in the following example:

sysname>schedname

A list of all systems having
defined schedules

?

A list of all schedules on all
systems

>

A list of all schedules named
schedname on all systems

>schedname

A list of all schedules on the
specified system

sysname>

All schedules beginning with the
characters SCHED on the current
system

SCHED*

All schedules beginning with the
characters SCHED on all systems

>SCHED*

All schedules beginning with the
characters SCHED on a specific
system

sysname>SCHED*, where sysname is the name of
the specific system

Insert a New Schedule

322 User Guide

Insert a New Schedule

To create a new schedule using Schedule Manager panels, do either of the following:

■ On the Primary Panel, type an I on the command line, specify a schedule name in
the NEWNAME field, and then press Enter. Press Enter again to confirm that you
want to insert a new schedule; the new schedule name is moved up to the NAME
field.

■ From the Schedule List panel (see “Select a Schedule”), type an I in the SEL column,
and then type the name of the new schedule in the New Schedule field of the same
line. Press Enter. Press Enter again to confirm that you want to insert a new
schedule. The new schedule name is added to the schedule list.

Schedule names have the format:

sysname>schedname

sysname

Specifies the name of the system on which the schedule resides

schedname

Specifies the unique name for the schedule. If you do not specify a system
name, > character, or both the current system name and > are automatically
added as a prefix to the schedule name.

When you first create a schedule, system resources are associated with it but the
schedule contains only the default period until you change it or define new periods.

Edit a Schedule

The two ways to edit a schedule are:

From the Primary Panel

1. Type the name of the schedule you want to edit in the NAME field.

2. Type E on the command line and press Enter.

From the Schedule List Panel

1. Type an E in the SEL column next to the name of the schedule you want to edit.

2. Press Enter to edit the schedule.

The Links Control panel is displayed.

Edit a Schedule

Chapter 10: Using Schedule Manager 323

Understand the Links Control Panel

The Links Control panel of the Schedule Manager controls basic editing functions for
schedules.

You can use the Links Control panel, shown next, to do the following:

■ Define or delete the periods controlling when System State Manager alters the
desired states of resources.

■ Specify which resources have their desired states changed at a given time.

■ Select the new desired states that these resources will have.

You can return to the Links Control panel of the schedule you are editing at any time by
issuing the following primary command:

[SHOW] LINK[S]

The following is a sample Links Control panel:

Schedule Manager ---------------- Links Control ----------------- System:OPS44R
Command ===> Scroll ===> CSR

CMDS: A D I L LC LD LX + ++ - -- |
-- --------------------------------
 -PRODUCTION | -ACF2_STCTBL
 |-WENDLITE S.....S 0800-2000 | |-STASK
 |-WENDDARK S.....S 2000-3200 | | |-ACF2
 |-EVERYNOON SMTWTFS 1200-1300 | -CICS_STCTBL
 |-WEEKDAY .MTWTF. 0800-1600 | |-STASK
 |-WEEKEVENING .MTWTF. 1600-2400 | | |-CICS
 |-WEEKNIGHT .MTWTF. 2400-3200 | | |-CICSTEST
 |-THNXLITE03 11/27/2007-11/28 0800-2000 | -DB2_STCTBL
 |-THNXDARK03 11/27/2007-11/28 2000-3200 | |-STASK
 |-XMASLITE03 12/24/2007-12/25 0800-2000 | | |-DB2
 |-XMASDARK03 12/24/2007-12/25 2000-3200 | -IMS_STCTBL
 |-XMASALL03 12/25/2007 0000-2400 | |-STASK
 |-XMASEVERY 12/25 0000-2400 | | |-IMS
 |-DEFAULT | -JES2_STCTBL
 | |-STASK
 | | |-JES2
 | -TSO_STCTBL
 | |-STASK
 | | |-TCAS
 | | |-TCASTEST
 |
(4) (1) (2) | (3)

Edit a Schedule

324 User Guide

Each of the following numbered paragraphs describes the fields on the Links Control
panel designated with a number in bold:

1. The Period Names Column

2. The period names column contains the name of the schedule being edited
(-PRODUCTION in this example) followed by the names of periods belonging to the
schedule.

3. The Period Definitions Column

The period definitions column displays when the period is active (that is, the days of
the week or dates that the period is active, followed by the period start and stop
times).

A seven-character combination of dots and letters is used to display the days of the
week when a cyclic period is active. The first character represents Sunday, the
second character represents Monday, and so on, with the last character
representing Saturday. If a period is to be active on a given day, then you see the
first letter of the name of the day. A dot indicates that the period does not take
effect on that day. Using this example, period WENDLITE is active on Sunday and
Saturday (S…..S), period WEEKDAY is active Monday, Tuesday, Wednesday,
Thursday, and Friday (.MTWTF.), and period EVERYNOON is active every day of the
week (SMTWTFS).

Notes:

■ Fixed date periods may (such as period XMASLITE in this example) or may not
(such as period NEWYEARLITE in this example) have a year specified (see
Defining a Fixed Dates Period in this chapter.)

■ Periods can go beyond midnight into the next day. Using this example, period
WENDDARK is active from 10:00 p.m. (2000) on Saturday until 8:00 a.m. (3200)
on Sunday, and from 10:00 p.m. (2000) on Sunday until 8:00 a.m. (3200) on
Monday. For more information, see The Time Interval for a Period in this
chapter.

4. The Resources Column

The resources column contains nested information about your system resources.
The Schedule Manager gets this information from the SSM_MANAGED_TBLS table.
The values starting in the leftmost position are the names of the System State
Manager tables, such as table -ACF2_STCTBL in this example. The values nested one
level below the table names are the names of resource types, such as type -STASK
in this example. The values nested at the lowest level are resource names, such as
resource -ACF2 in this example.

Edit a Schedule

Chapter 10: Using Schedule Manager 325

5. The CMDS Column

The CMDS column contains fields for entering the line commands listed on the
CMDS line of the panel. Line commands can be issued against either periods or
resources by positioning the CMDS column in the appropriate place on the panel.
To position the CMDS column to enter the commands against periods, press the
PF10 key or issue the LEFT command. This is the default display, shown in the
previous example.

To position the CMDS column to issue line commands against resources, press the
PF11 key or issue the RIGHT command. The following is an example of the Links
Control panel after the PF11 key was pressed or the RIGHT command was issued to
toggle the CMDS column. Note that the list of valid line commands changes
according to where the CMDS column is positioned.

Schedule Manager ---------------- Links Control ----------------- System:OPS44R
Command ===> Scroll ===> CSR

 | CMDS: F L LD LX N R + ++ - --
-- --------------------------------
 -PRODUCTION | ___ -ACF2_STCTBL
 |-WENDLITE S.....S 0800-2000 | ___ |-STASK
 |-WENDDARK S.....S 2000-3200 | ___ | |-ACF2
 |-EVERYNOON SMTWTFS 1200-1300 | ___ -CICS_STCTBL
 |-WEEKDAY .MTWTF. 0800-1600 | ___ |-STASK
 |-WEEKEVENING .MTWTF. 1600-2400 | ___ | |-CICS
 |-WEEKNIGHT .MTWTF. 2400-3200 | ___ | |-CICSTEST
 |-THNXLITE03 11/27/2007-11/28 0800-2000 | ___ -DB2_STCTBL
 |-THNXDARK03 11/27/2007-11/28 2000-3200 | ___ |-STASK
 |-XMASLITE03 12/24/2007-12/25 0800-2000 | ___ | |-DB2
 |-XMASDARK03 12/24/2007-12/25 2000-3200 | ___ -IMS_STCTBL
 |-XMASALL03 12/25/2007 0000-2400 | ___ |-STASK
 |-XMASEVERY 12/25 0000-2400 | ___ | |-IMS
 |-DEFAULT | ___ -JES2_STCTBL
 | ___ |-STASK
 | ___ | |-JES2
 | ___ -TSO_STCTBL
 | ___ |-STASK
 | ___ | |-TCAS
 | ___ | |-TCASTEST
 |
 (1) (2) | (4) (3)

Edit a Schedule

326 User Guide

The Meaning of Display Colors

Field display colors used on the Schedule Manager panels help you to distinguish which
periods are linked to which resources.

Blue

Periods and resources usually appear on the screen in blue.

White

When you issue the L line command (see Line Commands on the Links Control Panel
in this chapter) against a period or a resource, that period or resource becomes the
link item and its display color changes to white.

Green

The resources linked to the selected period (or the periods linked to the selected
resource) become the link group and their display color changes to green or red.
Green indicates a link group item that is supposed to be active (or online, up, and so
on) for this period or resource pair.

Red

Red indicates a link group item that is supposed to be inactive (or offline, down, and
so on).

Control What Appears Onscreen

You can expand and collapse the period or resource data trees displayed on the Links
Control panel by issuing the following line commands:

Line command Description

+ Expands the information tree one level

++ Expands the information tree two levels

- Collapses the information tree one level

-- Collapses the information tree two levels

These commands are most useful on the resource tree.

Edit a Schedule

Chapter 10: Using Schedule Manager 327

The following example shows the above panel after line command -- was entered to
collapse table -TSO_STCTBL and line command - was entered to collapse the -STASK
types in table -CICS_STCTBL:

Schedule Manager ---------------- Links Control -------------- System:OPS11.7R
Command ===> Scroll ===> CSR

 | CMDS: F L LD LX N R + ++ - --
-- --------------------------------
 -PRODUCTION | ___ -ACF2_STCTBL
 |-WENDLITE S.....S 0800-2000 | ___ |-STASK
 |-WENDDARK S.....S 2000-3200 | ___ | |-ACF2
 |-EVERYNOON SMTWTFS 1200-1300 | ___ -CICS_STCTBL
 |-WEEKDAY .MTWTF. 0800-1600 | ___ |+STASK
 |-WEEKEVENING .MTWTF. 1600-2400 | ___ -DB2_STCTBL
 |-WEEKNIGHT .MTWTF. 2400-3200 | ___ |-STASK
 |-THNXLITE03 11/27/2007-11/28 0800-2000 | ___ | |-DB2
 |-THNXDARK03 11/27/2007-11/28 2000-3200 | ___ -IMS_STCTBL
 |-XMASLITE03 12/24/2007-12/25 0800-2000 | ___ |-STASK
 |-XMASDARK03 12/24/2007-12/25 2000-3200 | ___ | |-IMS
 |-XMASALL03 12/25/2007 0000-2400 | ___ -JES2_STCTBL
 |-XMASEVERY 12/25 0000-2400 | ___ |-STASK
 |-DEFAULT | ___ | |-JES2
 | ___ +TSO_STCTBL
 |
 (1) (2) | (4) (3)

The following is an example of the Links Control panel after the line command ++ was
issued to expand table -TSO_STCTBL and line command + was issued to expand the
STASK types in table -CICS_STCTBL:

Schedule Manager ---------------- Links Control ----------------- System:OPS11.7R
Command ===> Scroll ===> CSR

 | CMDS: F L LD LX N R + ++ - --
-- --------------------------------
 -PRODUCTION | ___ -ACF2_STCTBL
 |-WENDLITE S.....S 0800-2000 | ___ |-STASK
 |-WENDDARK S.....S 2000-3200 | ___ | |-ACF2
 |-EVERYNOON SMTWTFS 1200-1300 | ___ -CICS_STCTBL
 |-WEEKDAY .MTWTF. 0800-1600 | ___ |-STASK
 |-WEEKEVENING .MTWTF. 1600-2400 | ___ | |-CICS
 |-WEEKNIGHT .MTWTF. 2400-3200 | ___ | |-CICSTEST
 |-THNXLITE03 11/27/2007-11/28 0800-2000 | ___ -DB2_STCTBL
 |-THNXDARK03 11/27/2007-11/28 2000-3200 | ___ |-STASK
 |-XMASLITE03 12/24/2007-12/25 0800-2000 | ___ | |-DB2
 |-XMASDARK03 12/24/2007-12/25 2000-3200 | ___ -IMS_STCTBL
 |-XMASALL03 12/25/2007 0000-2400 | ___ |-STASK
 |-XMASEVERY 12/25 0000-2400 | ___ | |-IMS
 |-DEFAULT | ___ -JES2_STCTBL
 | ___ |-STASK
 | ___ | |-JES2
 | ___ -TSO_STCTBL
 | ___ |-STASK
 | ___ | |-TCAS
 | ___ | |-TCASTEST
 |
 (1) (2) | (4) (3)

Edit a Schedule

328 User Guide

Line Commands on the Links Control Panel

The CMDS line of the Links Control panel displays a set of line commands that let you
create and modify periods, link resources with periods, and determine which periods
and resources the Schedule Manager displays on your screen.

The following provides a description of each line command:

A

Lets you alter a period definition, changing the name, times and days, or both
associated with an existing period. You can also use the A line command to replace
the group of resources currently linked to a period with the link group from another
existing period.

For information about defining periods, see Defining a Period in this chapter.

D

Deletes a period definition.

F or OFF

Operating only on items in the link group column, the F line command or the OFF
line command creates a link between a resource and a period that turns the
resource OFF during that period. The display color of the item against which you
issue the command changes to red.

If an existing link between this resource and period specifies the desired state of the
resource as ON or its equivalent, then the F line command or OFF line command
changes the desired state to OFF or its equivalent. If you issue either command
against the name of a table or a resource type, then the Schedule Manager creates
links that set to OFF (or its equivalent) the desired states of the resources of that
table or that type.

I

Lets you define a new period. For information about defining periods, see Defining
a Period in this chapter.

L

Issuing this command against a period or resource makes that period or resource
the current Link Item, and makes the items that are linked to that period or
resource the Link Group. If the link item is a period, then the Schedule Manager
displays all resources linked to that period, and each resource appears in red or
green depending on whether the link specifies that the resource is ON or OFF
during the period. If the link item is a resource, then you see all periods linked to
that resource and the periods appear in red or green as appropriate.

LC

Issuing the LC line command against a resource or period copies the links of the
current Link Item to the item against which the LC was issued. The LC line command
is only available from the Link Item Column.

Edit a Schedule

Chapter 10: Using Schedule Manager 329

LD

Issuing the LD line command against a resource or period deletes all the links
associated with that item.

LX

Issuing the LX line command against an item makes that item the Link Item and
displays only the resources or periods linked to that item.

Note: Hidden items can be redisplayed using the +/++ or L line commands.

If the link item is a period, then the Schedule Manager displays:

■ The names of all active System State Manager tables, shown in blue.

■ The names of types that have one or more resources linked to the chosen
period, shown in blue.

■ The resources associated with the period, in red or green.

If the link item is a resource, then the Schedule Manager displays only:

■ The name of the schedule, shown in blue.

■ The names of the periods linked to the resource, in red or green.

N or ON

Operating only on items in the link group column, the N line command or the ON
line command creates a link between a resource and a period that turns the
resource ON during that period. The display color of the item against which you
issue the command changes to green.

If an existing link between this resource and period specifies the desired state of the
resource as OFF or its equivalent, then the N line command or the ON line
command changes the desired state to ON or its equivalent. If you issue either
command against the name of a table or a resource type, then the Schedule
Manager creates links that set to ON (or its equivalent) the desired states of all of
the resources of that table or that type.

R

Issuing the R line command against a period or a resource removes a link between
that item and the current link item. If you issue the R line command against a table
or a resource type, then the Schedule Manager removes all links for the resources
of that table or type and changes their display color to blue. You can issue the R line
command only in the link group column.

+, -, ++, and --

For descriptions of these line commands and what they do, see Controlling What
Appears Onscreen in this chapter.

Edit a Schedule

330 User Guide

Define a Period

To define a period

1. Issue the I line command from the Links Control panel.

The Schedule Manager displays its Period Maintenance Panel, shown here:

Schedule Manager ----------- Period Maintenance Panel ----------- System:OPS11.7R
Command ===>

Period Name: ___________ (Required. Up to eleven alphanumeric characters)
Start Time : ____ (Required. HHMM - Any value from 0000 to 4800)
End Time : ____ (Required. HHMM - Any value from Start Time to 4800)

Specify values for ONLY ONE of the following types of period definitions:

1. Place an S beside each day of the week that this period will be active:
 _ Sunday _ Monday _ Tuesday _ Wednesday _ Thursday _ Friday _ Saturday

2. Specify a first (and optional last) day of the year that this period will be
 active. (Period will only be active First Date if Last Date not specified.)
 First Date ===> Month: __ (1 - 12)
 Day : __ (1 - last day of month)
 Optional Year : ____ (Period active EVERY YEAR if not specified)
 Last Date ===> Month: __ (1 - 12)
 Day : __ (1 - last day of month)

_ Select this option to make the set of links for this period a DUPLICATE of
 the set of links for the period named: ___________

■ The Default Period of the Schedule Manager

The set of periods that applies to a certain time may not describe the desired
state of all resources on your system, and you may not have defined periods to
cover all times. So, the Schedule Manager uses a period called DEFAULT to
define the desired states of those resources whose desired states are not
defined by any other period.

If the Schedule Manager cannot find a resource in the set of periods that
control a certain point in time or in the DEFAULT_STATE period, then the
Schedule Manager does not set the desired state of the resource.

■ The Period Names

The period name can contain 1 to 11 characters and must start with an
alphabetic or national character. National characters for the United States are
$, @, and #.

Edit a Schedule

Chapter 10: Using Schedule Manager 331

2. Specify the time interval that this period covers as hours and minutes.

In most cases, specify this time in military time on a 24-hour clock, without a colon
between hours and minutes (for example, 10:00 p.m. becomes 2200). However, if
the time interval for a period starts before midnight and ends after midnight, you
must specify the time on a 48-hour clock with 2400 representing midnight. For
instance, a start time of 2300 and an end time of 3700 specifies a time interval
lasting from 11:00 a.m. until 1:00 p.m. the following afternoon.

If a resource must be UP or DOWN continuously over two consecutive periods, then
make the end time of the earlier period and the start time of the later period
exactly the same. Otherwise, System State Manager may bring the resource UP or
DOWN for the interval between when the earlier period expires and the next period
becomes active.

3. Define a cyclic days of the week period.

To specify each day of the week that the period should be active, type an S beside
the name of that day on the Period Maintenance Panel. For example, to make a
period active Monday through Wednesday and on Saturday, type an S beside
Monday, Tuesday, Wednesday, and Saturday.

The cyclic days of the week period are defined.

4. Define a fixed dates period.

■ To specify a single date when the period should be active, enter numeric values
for month, day, and optional year for the First Date field. Numeric values are
automatically padded to the left as necessary. For example, you can specify the
month of February as 2; the 4th day of the month as 4; and the year 2009 as 9.

■ To specify a range of dates when the period should be active, enter month and
day values for both the First Date and Last Date fields. Enter an optional year
value for the First Date field only; the year for the Last Date field is assumed
from the First Date field. A single period cannot span more than one year. The
first date can be later in the year than the last date. If it is, then the period
remains active into the following year. For example, a period with a first date of
April 12 and a last date of April 10 is active every day of the year except April
11.

If the optional year is not specified, then the period is active every year on the
specified dates (unless the start date is February 29, in which case the period is
active only in leap years).

Edit a Schedule

332 User Guide

Resolving Conflicts

When two periods overlap in time with one period containing an active link and the
other period containing an inactive link to the same resource, then those periods
are said to be in conflict. For a description of how the Schedule Manager resolves
schedule conflicts, see How Schedule Manager Resolves Schedule Conflicts in this
chapter.

When a fixed period and a cyclic period are in conflict over scheduled control of a
common resource, the Schedule Manager gives control to the fixed period.

When a fixed period with a year specified and a fixed period without a year
specified are in conflict over scheduled control of a common resource, the Schedule
Manager gives control to the fixed period with the year specified.

The SHOW CONFLICTS command (see View Schedule Conflicts in this chapter), the
SHOW OVERLAPS command (see View Schedule Overlaps in this chapter), and the
REPORT CONFLICTS command (see The REPORT Primary Command in this chapter)
all report only on conflicts between periods not resolved by the above rules (that is,
between two cyclic periods or between two fixed periods both with or without the
year specified). Those conflicts are resolved by start time (see How Schedule
Manager Resolves Schedule Conflicts in this chapter).

Any schedule can contain periods that span the same point in time. In other words,
more than one period may be active at any given time. Periods that are active at
the same time are said to overlap. A schedule overlap may be created intentionally
or unintentionally. In either case, the affect of the overlap may be good or bad. For
a discussion on the affect of overlaps, see Viewing Schedule Conflicts in this
chapter.

Note: Schedule Manager brings resources defined for a period up when that period
begins, but does not take those resources down when that period ends, in case a
subsequent or overlapping period needs those resources to be active. In addition:

■ The definition of the default period for your site must include links to all resources
under the control of the Schedule Manager.

■ The periods you define should keep control of the desired state of each resource
continuously throughout all 24 hours of a day. You can define multiple periods to
accomplish this, but at minimum you should define the desired state of a resource
for the default period.

Edit a Schedule

Chapter 10: Using Schedule Manager 333

Period Overlap Conflicts

When two periods overlap in time with one period containing an active link and the
other period containing an inactive link to the same resource, then those periods are
said to be in conflict.

■ When a fixed period and a cyclic period are in conflict over scheduled control of a
common resource, the Schedule Manager gives control to the fixed period.

■ When a fixed period with a year specified and a fixed period without a year
specified are in conflict over scheduled control of a common resource, the Schedule
Manager gives control to the fixed period with the year specified.

The SHOW CONFLICTS command (see View Schedule Conflicts in this chapter), the
SHOW OVERLAPS command (see View Schedule Overlaps in this chapter), and the
REPORT CONFLICTS command (see The REPORT Primary Command in this chapter) all
report only on conflicts between periods not resolved by the above rules (that is,
between two cyclic periods or between two fixed periods both with or without the year
specified). Those conflicts are resolved by start time.

Any schedule can contain periods that span the same point in time. In other words,
more than one period may be active at any given time. Periods that are active at the
same time are said to overlap. A schedule overlap may be created intentionally or
unintentionally. In either case, the affect of the overlap may be good or bad.

Note: Schedule Manager brings resources defined for a period up when that period
begins, but does not take those resources down when that period ends, in case a
subsequent or overlapping period needs those resources to be active. In addition:

■ The definition of the default period for your site must include links to all resources
under the control of the Schedule Manager.

■ The periods you define should keep control of the desired state of each resource
continuously throughout all 24 hours of a day. You can define multiple periods to
accomplish this, but at minimum you should define the desired state of a resource
for the default period.

More information:

View Schedule Conflicts (see page 352)
How Schedule Manager Resolves Schedule Conflicts (see page 354)
View Schedule Overlaps (see page 351)
REPORT Command—Print Schedule Manager Data (see page 355)

Edit a Schedule

334 User Guide

Change a Period Definition

To edit a period definition

1. Place the cursor on the line for that period, type A in the CMDS column, and press
Enter.

The Period Maintenance Panel appears.

2. Make the changes you want by typing over the values in the appropriate input
fields.

3. Press Enter.

Your changes are saved and you return to the Links Control panel.

Delete a Period

To delete a period from a schedule

1. From the Links Control panel, place the cursor on the line for that period.

2. Type D in the CMDS column.

3. Press Enter.

The deleted period disappears from the screen.

Establish Unique Links

Links between periods and system resources determine the following:

■ Which resources have their desired state controlled when a period is active

■ Whether the desired state is set to ON (or equivalent statuses such as UP, ACTIVE,
ONLINE, and so on), to OFF (or equivalent statuses such as DOWN, INACTIVE,
OFFLINE, and so on), or is not set at all

To establish a unique set of links between a period and various system resources

1. On the Links Control panel, issue the L line command in the command column on
the line describing a period.

The selected period becomes the link item and its display color changes to white.

2. Press the PF11 key to move the CMDS column into the resource column.

3. Look at the list of resources, resource types, and tables displayed in the resources
column.

Note: Press the PF7 key to scroll up or the PF8 key to scroll down.

Decide which resources you want to link this period to and what you want the
desired states of those resources to be. A period can be linked to as many resources
as you want, including resources belonging to different resource types or different
tables.

Edit a Schedule

Chapter 10: Using Schedule Manager 335

4. Place the cursor on the line beside the item you want to link to the currently
selected period.

■ To link to a single resource, place the cursor on the line listing that resource.

■ To link to all resources under the same resource type, place the cursor on the
line listing that type.

■ To link to all resources belonging to the same table, place the cursor on the line
listing the table name.

5. Type either F (off) or N (on) in the CMDS column.

■ Type F if you want the resource or resources in this link to have a desired state
of OFF or its equivalent during the current period.

■ Type N if you want the resource or resources to have a desired state of ON or
its equivalent during the current period.

6. Press Enter.

The Schedule Manager links the selected resource or resources to the current
period and saves the link, making it part of the current schedule. The resources you
chose turn green if their desired state is ON or its equivalent, or red if their desired
state is OFF or its equivalent.

7. Repeat the previous two steps if you want to create links to other resources.

Define the Same Links for Several Periods

This step gives a period the same links to resources as another period.

To define the same links

1. On the Links Control panel, type an A next to the period name and press Enter.

The Period Maintenance Panel displays.

2. On the Period Maintenance Panel, type an S beside the paragraph beginning with
Select this option.

3. Type the name of another period.

The period you are defining will have the same links to resources as the period
whose name you enter in this step.

4. Press Enter.

The Schedule Manager deletes all existing links for this period, duplicates the links
of the period whose name you specified, and returns you to the Links Control panel.

Edit a Schedule

336 User Guide

Delete a Period/Resource Link

To delete a link between a period and one or more resources:

1. Place the cursor on the line for the period, type L in the CMDS column, and press
Enter.

The selected period becomes the link item, and its display color becomes white.

2. Press the PF11 key to move the CMDS column to the resource column.

3. Place the cursor beside the resource, the resource type, or the table to which you
want to dissolve the link.

4. Type R and press Enter.

The Schedule Manager removes the link or links to the selected resource or the
resources in the selected type or table. The display color for these resources
changes from red or green to blue.

Note: You can also delete a period/resource link by typing L next to the resource,
pressing the PF10 key, typing R next to the period, and pressing Enter.

Activate (Load) a Schedule

Chapter 10: Using Schedule Manager 337

Activate (Load) a Schedule

System State Manager always draws its scheduling information from the schedule
named ACTIVE.

The ACTIVE schedule sets the desired states of resources according to the links set for
each period.

The two ways to load a schedule are:

■ From the Primary Panel

■ From the Schedule List Panel

To load a schedule from the Primary Panel

1. Type the name of the schedule to activate in the NAME field.

2. Type L on the command line and press Enter.

3. Press Enter again to load the schedule.

To load a schedule from the Schedule List Panel

1. Type an L in the SEL column next to the name of the schedule you want to activate.

2. Press Enter, and then Enter again to confirm that you want to load the selected
schedule.

Result-The schedule you selected is copied into the ACTIVE schedule, allowing System
State Manager to use its data to determine when and how the desired states of
resources are to be set.

SHOW STATES Command—View the Scheduled States of Resources

338 User Guide

SHOW STATES Command—View the Scheduled States of
Resources

The Schedule Manager allows you to display the scheduled state of all your system
resources at a given time and date. To do so, issue the SHOW STATE primary command
from the command line.

This command has the following format:

[SHOW] STAT[ES] [AT hhmm ON [mm/dd/yyyy]]]

hhmm

Specifies the time values. Specify this time value in military time (for example, use
1500 for 3:00 p.m.).

mm/dd/yyyy

Specifies the date values.

If you specify no hhmm time or mm/dd/yyyy date values, then the Schedule
Manager shows you the scheduled system state at the current date and time. If you
specify only a time, then the Schedule Manager shows you the scheduled system
state at that time today. If you specify a mm/dd date value without the optional
/yyyy year value, then the Schedule Manager shows you the system state at the
specified hhmm time on the next occurrence of the specified mm/dd date.

The following examples assume that the current time is 3:00 p.m. on February 21, 2010:

■ This command will show the system state as it is now at 3:00 p.m. today, on
February 21, 2004:

SHOW STATE

■ This command will show the system state as it was at 1:00 p.m. today, on February
21, 2004 (assuming that the schedule has not changed since then):

SHOW STATE AT 1300

■ This command will show the system state as it will be at 1:00 p.m. tomorrow, on
February 22, 2004:

SHOW STATE AT 1300 ON 02/22

■ This command will show the system state as it was at 2:00 p.m. yesterday, on
February 21, 2004 (assuming that the schedule has not changed since then):

SHOW STATE AT 1400 ON 2/21/2004

■ This command will show the system state as it will be at 2:00 p.m. a year from
yesterday, on February 21, 2005:

SHOW STATE AT 1400 ON 2/21

SHOW STATES Command—View the Scheduled States of Resources

Chapter 10: Using Schedule Manager 339

Given the sample schedule PRODUCTION used in Understanding the Links Control Panel
in this chapter, the following panel would appear if the command SHOW STATE AT 1400
ON 2/21 was issued:

Schedule Manager ----- State at 1400 on 02/21/2005 (MON) -------- System:OPS44R

Command ===> Scroll ===> CSR

 | CMDS: F N R + ++ - --
-- --------------------------------
 - ___ -ACF2_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ___ | |-ACF2
 - ___ -CICS_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ___ | |-CICS
 WEEKDAY .MTWTF. 0800-1600 - ___ | |-CICSTEST
 - ___ -DB2_STCTBL
 - ___ |-STASK
 - ___ | |-DB2
 - ___ -IMS_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ___ | |-IMS
 - ___ -JES2_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ___ | |-JES2
 - ___ -TSO_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ___ | |-TCAS
 WEEKDAY .MTWTF. 0800-1600 - ___ | |-TCASTEST

The above example shows the State panel that displays the system state information.
The title of the panel and the separator between the period and resource columns
change to remind you that you are seeing scheduled states of resources instead of
period/resource links. The periods no longer are displayed in a tree structure; instead, in
each row you see the period that is controlling the resource in that row at the time
shown on the title line.

Note: The period column is blank if the resource is not controlled by any period at the
given date and time.

When displaying the State panel, you can issue commands only against resources, and
you can issue only the commands shown. The +, ++, -, and -- line commands work as
they do when you display links. The F and N line commands work as they do when you
display links except that:

■ The commands change only the state of the resource in the period on that row.

■ When you issue the N line command or the F line command against a resource not
controlled by any period, you see a list of possible periods to link the resource to
and are asked to select a period.

SHOW STATES Command—View the Scheduled States of Resources

340 User Guide

The R line command, when issued against a resource associated with a period, removes
that resource from the period. If no other period is linked to that resource, then the
period column becomes blank and the resource display color changes to blue. But, if
there is a link for that resource in another period that covers the time displayed on the
title line:

■ The period name in the row where you issued the R line command becomes the
name of the other period, and

■ The display color for the resource changes to match the link definition for the other
period

The links in the previous sample display would be color-coded-green for active links and
red for inactive links. In a black and white environment such as this guide, color-coding
is not sufficient to identify the direction of the displayed links.

More information:

The Meaning of Display Colors (see page 326)

CMDSONOFF Primary Command—Distinguish Active and Inactive Links

Chapter 10: Using Schedule Manager 341

CMDSONOFF Primary Command—Distinguish Active and
Inactive Links

In addition to the field display colors green and red, you can have the Schedule Manager
include the words ON and OFF on the CMDS column to help you distinguish between
active and inactive links.

The primary command CMDSONOFF accepts the following keyword settings to control
this feature:

ON

Green (for active) links contain the word ON in the CMDS column and red (for
inactive) links contain the word OFF in the CMDS column.

OFF

The keywords ON and OFF are not used for display purposes in the CMDS field.

Default: OFF

After issuing the command CMDSONOFF ON, the previous panel would look similar to
the one below:

Schedule Manager ----- State at 1400 on 02/21/2005 (MON) -------- System:OPS44R
ommand ===> Scroll ===> CSR

 | CMDS: F N R + ++ - --
-- --------------------------------
 - ___ -ACF2_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-ACF2
 - ___ -CICS_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-CICS
 WEEKDAY .MTWTF. 0800-1600 - OFF | |-CICSTEST
 - ___ -DB2_STCTBL
 - ___ |-STASK
 - ___ | |-DB2
 - ___ -IMS_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-IMS
 - ___ -JES2_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-JES2
 - ___ -TSO_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-TCAS
 WEEKDAY .MTWTF. 0800-1600 - OFF | |-TCASTEST
 -

View Potential State Changes

342 User Guide

View Potential State Changes

From the State panel, you can view the scheduled state of system resources at the next
or previous scheduled period start or stop time. The next or previous scheduled period
start or stop time is the next or previous time for a potential change to the scheduled
state of system resources. Schedule Manager does not verify that there is an actual
change in the scheduled state of any system resources at the time of potential change.

To view potential state changes

1. Issue the following command:

[SHOW] NEXT

The scheduled state of system resources at the time of the next scheduled period
start or end displays.

2. From the State panel, press the PF11 key or issue the RIGHT command to
automatically execute the command SHOW NEXT.

After issuing a SHOW NEXT command from the State panel shown on the previous
page, the following State panel would appear. Note the short help message in the
upper right corner of the screen, indicating that the period has started or stopped
(in this example, period WEEKDAY has stopped).

Schedule Manager ----- State at 1600 on 02/21/2005 (MON) -------- WEEKDAY ENDS
Command ===> Scroll ===> CSR

 | CMDS: F N R + ++ - --
-- --------------------------------
 - ___ -ACF2_STCTBL
 - ___ |-STASK
 WEEKEVENING .MTWTF. 1600-2400 - ON_ | |-ACF2
 - ___ -CICS_STCTBL
 - ___ |-STASK
 - ___ | |-CICS
 - ___ | |-CICSTEST
 - ___ -DB2_STCTBL
 - ___ |-STASK
 - ___ | |-DB2
 - ___ -IMS_STCTBL
 - ___ |-STASK
 - ___ | |-IMS
 - ___ -JES2_STCTBL
 - ___ |-STASK
 WEEKEVENING .MTWTF. 1600-2400 - ON_ | |-JES2
 - ___ -TSO_STCTBL
 - ___ |-STASK
 WEEKEVENING .MTWTF. 1600-2400 - ON_ | |-TCAS
 - ___ | |-TCASTEST

The Primary Commands in Edit

Chapter 10: Using Schedule Manager 343

3. Issue the following commands to see you the scheduled state of system resources
at the time of the most recent period start or stop that occurred:

[SHOW] PREVious

or

[SHOW] PRIOR

4. Press the PF10 key or issue the command LEFT from the State panel to
automatically execute the command SHOW PRIOR.

After issuing a SHOW PRIOR command from the previous State panel, the State
panel would look like the one below. Note that except for the time stamp, this
display is identical to the first State panel sample display at time 1400. No periods
start or stop between 1300 and 1400, therefore, no scheduled state changes can
occur.

Schedule Manager ----- State at 1300 on 02/21/2005 (MON) -------EVERYNOON ENDS
Command ===> Scroll ===> CSR

 | CMDS: F N R + ++ - --
-- --------------------------------
 - ___ -ACF2_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-ACF2
 - ___ -CICS_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-CICS
 WEEKDAY .MTWTF. 0800-1600 - OFF | |-CICSTEST
 - ___ -DB2_STCTBL
 - ___ |-STASK
 - ___ | |-DB2
 - ___ -IMS_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-IMS
 - ___ -JES2_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-JES2
 - ___ -TSO_STCTBL
 - ___ |-STASK
 WEEKDAY .MTWTF. 0800-1600 - ON_ | |-TCAS
 WEEKDAY .MTWTF. 0800-1600 - OFF | |-TCASTEST

The Primary Commands in Edit

The following describes all of the primary commands available when editing a schedule:

CMDSONOFF OFF|ON

Controls the display of the words ON and OFF in the CMDS column in addition to
the colors green and red when displaying active or inactive links. The default is OFF.

The Primary Commands in Edit

344 User Guide

END

The default setting of the PF3 key. Enter this command to return to the Schedule
List.

ENQTRACE OFF|ON

Controls tracing for use by CA technicians.

Default: OFF

LEFT

The default setting of the PF10 key. Issue this command from the Links Control
Panel to toggle the CMDS column to the periods. Issue this command from the
State panel to execute the SHOW PRIOR command.

NEXTRACE OFF|ON

Controls tracing for use by CA technicians.

Default: OFF

REPORT [args]

Print formatted schedule data to a data set. Optional args control what schedule
data is printed and to where it is printed. See REPORT Command—Print Schedule
Manager Data (see page 355).

RIGHT

The default setting of the PF11 key. Issue this command from the Links Control
Panel to toggle the CMDS column to the resources. Issue this command from the
State panel to execute the SHOW NEXT command.

[SHOW] CONF[LICTS]

Display in the Conflicts panel periods that overlap in time and contain at least one
conflicting link to a common resource. For more information, see View Schedule
Conflicts (see page 352).

[SHOW] LINK[S]

Display link items in the Links Control panel. Use the L line command to display link
groups. This is the default display. For more information, see Understanding the
Links Control Panel (see page 323).

[SHOW] NEXT

Display the next potential state change (period start or stop) after the state
currently being displayed in the State panel. For more information, see View
Potential State Changes (see page 342) in this chapter.

[SHOW] OVER[LAPS]

Display in the Overlaps panel periods that overlap in time. For more information,
see View Schedule Overlaps (see page 351) in this chapter.

Copy a Schedule

Chapter 10: Using Schedule Manager 345

[SHOW] PREV[IOUS]

Issue the SHOW PRIOR command.

[SHOW] PRIOR

Display the last potential state change (period start or stop) before the state
currently being displayed in the State panel. For more information, see View
Potential State Changes (see page 342) in this chapter.

[SHOW] STAT[ES]

Display the scheduled state of resources in the State panel. For more information,
see SHOW STATES Command—View the Scheduled State of Resources (see
page 338) in this chapter.

STATRACE OFF|ON

Controls tracing for use by CA technicians.

Default: OFF

Copy a Schedule

The two ways to create a copy of a schedule are:

■ From the Primary Panel

■ From the Schedule List Panel

To create a copy of a schedule from the Primary Panel

1. Type the name of the schedule to be copied into the NAME field.

2. Type the name to assign to the copy in the NEWNAME field.

3. At the command line, type C and press Enter.

4. Press Enter again to confirm that you want to copy the schedule.

To create a copy of a schedule from the Schedule List Panel

1. Type a C in the SEL column next to the name of the schedule you want to copy.

2. Type the name of the target schedule in the New Schedule field on the same
line.

3. Press Enter, and then Enter again to confirm that you want to copy that
schedule.

Result-The Schedule Manager creates an exact duplicate of the named schedule and
gives the copy the name specified in the NEWNAME/New Schedule field. The duplicate
schedule contains the same periods and links to the same resources as the original
schedule.

Rename a Schedule

346 User Guide

Rename a Schedule

The two ways to rename a schedule are from the following panels:

■ Primary Panel

■ Schedule List Panel

From the Primary Panel

1. Type the name of the schedule in the NAME field.

2. Type the new schedule name in the NEWNAME field.

3. Type R on the command line and press Enter.

4. Press Enter again to confirm that you want to rename the schedule.

From the Schedule List Panel

1. Type an R in the SEL column next to the name of the schedule you want to rename.

2. Type the new schedule name in the New Schedule field.

3. Press Enter, and then Enter again to confirm that you want to rename the schedule.

Result-The Schedule Manager replaces the schedule name with the name you specified.

Delete a Schedule

Chapter 10: Using Schedule Manager 347

Delete a Schedule

The two ways to delete a schedule are from the following panels:

■ Primary Panel

■ Schedule List Panel

From the Primary Panel

1. Type the name of the schedule to delete in the NAME field.

2. Type D on the command line and press Enter.

From the Schedule List Panel

1. Type a D in the SEL column next to the name of the schedule you want to delete.

2. Press Enter to delete the selected schedule.

Result-If the Confirm Deletes field on the Primary panel has the value YES, then you see
a message prompting you to confirm your delete request. Press Enter again to confirm
that you want to delete the specified file. Cancel a delete by typing END at the
command line when asked to confirm a delete.

If you do not want to confirm delete requests, type NO over the YES value before
deleting the schedule. The schedule is deleted without issuing a confirmation message.

Free a Schedule

348 User Guide

Free a Schedule

System State Manager enqueues the processing of schedules. So, in case of failed links
with cross-system MSF, or CAICCI cross-platform communications services or failed TSO
address spaces, a user can own the enqueue for a schedule but be unable to free it for
other users to access.

The two ways to free a schedule are from the following panels:

■ Primary Panel

■ Schedule List Panel

From the Primary Panel

1. In the NAME field, type the name of the schedule to be freed.

2. Type F on the command line and press Enter.

From the Schedule List Panel

1. Type an F in the SEL column next to the name of the schedule you want to free.

2. Press Enter to free the schedule.

Result-The F line command releases the schedule from the user who enqueued it,
allowing other users access to that schedule.

Synchronize a Schedule

Chapter 10: Using Schedule Manager 349

Synchronize a Schedule

The two ways to synchronize a schedule are from the following panels:

■ Primary Panel

■ Schedule List Panel

From the Primary Panel

1. Type the name of the schedule you want to synchronize in the NAME field.

2. Type Y on the command line and press Enter.

From the Schedule List Panel

1. Type a Y in the SEL column next to the name of the schedule you want to
synchronize.

2. Press Enter to synchronize the schedule.

Result-The Schedule Manager finds all links that point to periods that no longer exist or
to resources that are no longer managed by System State Manager. Primarily, these
invalid links are caused by removing a resource from System State Manager control
without first removing it from Schedule Manager control; however, they can also be
caused by system failures while a schedule is being edited. When an invalid link is found,
the following menu of choices appears:

Schedule Manager ----------- SYNCH Selection List ---------- SELECT ONE ACTION
Command ===> Scroll ===> PAGE

Select one of the following actions for invalid TABLE: SSMTEST

_ change all the links containing this item to use a new item name selected
 from the list of valid names shown below,

_ leave all the links containing this item as is,

_ delete all links containing this item,

_ stop showing this panel and leave as is all future links that contain an item
 that has not already had an action (change name/leave as is/delete) assigned,

_ stop showing this panel and delete all future links that contain an item that
 has not already had an action (change name/leave as is/delete) assigned.

Sel TABLE
___ SWZ_STCTBL

You must select one and only one action by typing an S next to the action and pressing
the Enter key.

Merge Schedules

350 User Guide

Merge Schedules

The two ways to merge a schedule are from the following panels:

■ Primary Panel

■ Schedule List Panel

From the Primary Panel

1. Type the name of the schedule to combine with another schedule in the NAME
field.

2. Type the name of an existing schedule in the NEWNAME field.

3. Type M on the command line and press Enter.

4. Press Enter again to confirm that you want to merge the schedules.

From the Schedule List Panel

1. Type an M in the SEL column next to the name of the first schedule you want to
merge.

2. In the New Schedule field, type the name of the second schedule you want to
merge.

3. Press Enter, and then Enter again to confirm that you want to merge the schedules.

Result-The Schedule Manager merges the data from the two schedules into a schedule
specified in the NEWNAME/New Schedule field.

If the names of the two schedules to be merged conflict, then Schedule Manager uses
the name of the first schedule (the one listed in the NAME field). If the same period or
link name appears in both schedules, then the data from the period specified in the
NAME field overlays that of the period specified in the NEWNAME field.

View Schedule Overlaps

Chapter 10: Using Schedule Manager 351

View Schedule Overlaps

A schedule can contain periods that span the same point in time. In other words, more
than one period can be active at any given time. Periods that are active at the same
time are said to overlap. A schedule overlap may be created intentionally or
unintentionally. In either case, the affect of the overlap may be good or bad. The affect
of overlaps is discussed in the next section Viewing Schedule Conflicts.

Schedule Manager provides the following primary command to display scheduled period
overlaps on the Overlaps panel:

[SHOW] OVERlaps

If no schedule overlaps exist, then you receive the short help message NO OVERLAPS in
the upper right corner of the display you are currently in.

Issuing a SHOW OVERLAPS command while editing the sample schedule PRODUCTION
would result in the following sample Overlaps panel being displayed:

Schedule Manager ------------------- Overlaps ------------------- System:OPS44R
Command ===> Scroll ===> CSR

CMDS: A D I L LC LD LX + ++ - -- |
-- --------------------------------
___ EVERYNOON SMTWTFS 1200-1300 | -ACF2_STCTBL
___ WENDLITE S.....S 0800-2000 | |-STASK
___ | | |-ACF2
___ EVERYNOON SMTWTFS 1200-1300 | -CICS_STCTBL
___ WEEKDAY .MTWTF. 0800-1600 | |-STASK
___ | | |-CICS
___ XMASLITE03 12/24/2007-12/25 0800-2000 | | |-CICSTEST
___ XMASALL03 12/25/2007 0000-2400 | -DB2_STCTBL
___ | |-STASK
___ XMASDARK03 12/24/2007-12/25 2000-3200 | | |-DB2
___ XMASALL03 12/25/2007 0000-2400 | -IMS_STCTBL
 | |-STASK
 | | |-IMS
 | -JES2_STCTBL
 | |-STASK
 | | |-JES2
 | -TSO_STCTBL
 | |-STASK
 | | |-TCAS
 | | |-TCASTEST

Similar to the Links Control panel, the Overlaps panel lists the SSM resource tree on the
right side of the display. On the left side of the display it lists each schedule overlap
separated by a blank line. For each overlap, the two overlapping period definitions are
listed. Again, similar to the Links Control panel, line commands L and LX (listed on the
CMDS line) are available to display defined links. Line commands C and CX are also
available to display only links in conflict.

View Schedule Conflicts

352 User Guide

Note: The Overlaps panel does not display any overlaps between a cyclic day of week
period and a fixed date period. For example, the above Overlaps panel displays overlaps
between cyclic day of week period EVERYNOON and cyclic day of week periods
WEEKLITE and WEEKDAY, but it does not display overlaps between cyclic day of week
period EVERYNOON and any of the fixed date periods.

More information:

How Schedule Manager Resolves Schedule Conflicts (see page 354)
The C and CX Commands (see page 354)

View Schedule Conflicts

When two overlapping periods (discussed in the previous section Viewing Schedule
Overlaps) each contain a link to the same resource, there may be a schedule conflict. A
schedule conflict occurs when one of the links schedules the state of the resource to
active and the other link schedules the state of the resource to inactive.

To identify schedule conflicts, issue the following command from the command line of
the Links Control panel:

[SHOW] CONFlicts

If no schedule conflicts exist, then you receive the short help message NO CONFLICTS in
the upper right corner of the display you are currently in.

View Schedule Conflicts

Chapter 10: Using Schedule Manager 353

Issuing a SHOW CONFLICTS command while editing the sample schedule PRODUCTION
would result in the following sample Conflicts panel being displayed:

Schedule Manager ------------------- Overlaps ------------------- System:OPS44R
Command ===> Scroll ===> CSR

CMDS: A D I L LC LD LX + ++ - -- |
-- --------------------------------
___ EVERYNOON SMTWTFS 1200-1300 | -ACF2_STCTBL
___ WENDLITE S.....S 0800-2000 | |-STASK
___ | | |-ACF2
___ XMASLITE03 12/24/2007-12/25 0800-2000 | -CICS_STCTBL
___ XMASALL03 12/25/2007 0000-2400 | |-STASK
 | | |-CICS
 | | |-CICSTEST
 | -DB2_STCTBL
 | |-STASK
 | | |-DB2
 | -IMS_STCTBL
 | |-STASK
 | | |-IMS
 | -JES2_STCTBL
 | |-STASK
 | | |-JES2
 | -TSO_STCTBL
 | |-STASK
 | | |-TCAS
 | | |-TCASTEST

The Conflicts display of a schedule is identical to its Overlaps display, except that
non-conflicting schedule overlaps are filtered out and only those schedule overlaps that
contain conflicting links are listed.

The first period listed in each conflict pair is the period that sets the desired state of the
resource.

Line commands L and LX are available to display defined links. Line commands C and CX
are available to display only the links in conflict.

More information:

How Schedule Manager Resolves Schedule Conflicts (see page 354)

View Schedule Conflicts

354 User Guide

The C and CX Commands

From either the Overlaps or Conflicts panel, you can issue the following line commands
against a link item (a period or resource) to display conflicting links:

C

Displays information about periods that specify conflicting resource states. This
data includes information about all resources linked to the conflicting periods.

CX

Displays information about conflicting periods but excludes information about
linked resources not involved in conflicts.

Schedule Manager excludes resource link items from the display by collapsing nodes on
the resource tree (similar to the - and -- line commands). Excluded period link items are
simply removed from the display.

How Schedule Manager Resolves Schedule Conflicts

When a cyclic day of week period and a fixed date period are in conflict over scheduled
control of a common resource, Schedule Manager gives control to the fixed date period.

When a fixed date period with a year specified and a fixed date period without a year
specified are in conflict over scheduled control of a common resource, Schedule
Manager gives control to the fixed date period with the year specified.

Note: The SHOW CONFLICTS and SHOW OVERLAPS commands do not display any
schedule conflicts resolved by the above rules. Also, the SHOW OVERLAPS command
does not display any non-conflicting overlaps that would be resolved by the above rules
if they were conflicts. This is done to make the displays more understandable and less
complex.

Important! The user needs to keep this in mind when reading these displays.

REPORT Command—Print Schedule Manager Data

Chapter 10: Using Schedule Manager 355

Conflicts between periods not resolved by the above rules (that is, conflicts between
two cyclic day of week periods or between two fixed date periods both with or without
the year specified) are resolved as follows:

■ The period with a start time closest to the time of conflict gains control of the
resource. For instance, if period A takes effect Monday through Friday from 09:00
to 17:00 and period B takes effect Wednesday and Thursday from 10:00 to 22:00,
then the times of conflict are between 10:00 and 17:00 on Wednesday and
Thursday. Since 10:00, the start time of period B, is closer to the times of conflict
than 09:00, the start time for period A, then period B controls the resource during
the times of conflict between 10:00 and 17:00 on Wednesday and Thursday.

■ If two conflicting periods have the same start time, then the period with a start date
closest to the date of the conflict controls the resource. For example, if period A
takes effect Monday through Friday from 09:00 to 12:00 and period B takes effect
Wednesday and Thursday from 09:00 to 17:00, then period A controls the resource
on Monday, Tuesday, and Friday between 09:00 and 12:00, and period B controls
the resource from 09:00 until 12:00 on Wednesday and Thursday.

■ If neither of the above criteria favors one period over the other, then the Schedule
Manager uses the period whose name is first in alphabetical sequence. For
instance, period A is used since A precedes B alphabetically.

REPORT Command—Print Schedule Manager Data

While editing a schedule, issue the REPORT commands at the command line to save to
disk the same schedule information that is displayed by the SHOW commands.

Similar to the SHOW commands, the following are the REPORT commands:

REPORT

Report the SHOW display currently being viewed in Edit.

REPORT CLOSE

Close the report data set and stop it from receiving any more REPORT output.

REPORT CONFLICTS

Report conflicts between periods.

REPORT LINKS

Report links between periods and system resources.

REPORT OPEN [dsn]

Open the specified dsn or default report data set.

REPORT OVERLAPS

Report overlapping periods.

REPORT Command—Print Schedule Manager Data

356 User Guide

REPORT STATES . . .

Report the scheduled state of all your system resources.

Note: All of the command options available on the SHOW STATES command are
also available on the REPORT STATES command.

Issuing the REPORT command by itself without any command options results in
Schedule Manager reporting the SHOW display currently being viewed.

The first REPORT command to be issued with or without any command options creates a
default report data set that is named using the following template:

hlq.SM.opssysid.schstrip.Dyyymmdd.Thhmm

Following is a description of the values in this template:

hlq

The default value returned by the standard OPDSPF() REXX routine, or the TSO
userid of the user if OPSDSPF() returns null.

Note: If OPDSPF() is not customized by the user, then it returns a default value of
either the TSO PREFIX setting, if one exists, or the TSO userid of the user.

opssysid

The system ID of the CA OPS/MVS system on which the schedule resides.

schstrip

The leftmost eight non-blank characters of the schedule name excluding any
underscore characters.

yyymmdd

The current date without the high-order year digit (millennium).

hhmm

The current time of day in 24-hour military time.

You may optionally specify your own report data set name by issuing the following
command first before issuing any other REPORT commands:

REPORT OPEN datasetname

The datasetname may be specified with or without quotes (' or "). If the datasetname is
specified without quotes, then it is prefixed by hlq as described above.

Any errors that occur while attempting to allocate either the default or user-specified
report data set result in the Dataset Creation Attributes panel being displayed. From
there you are able to alter the data set name for allocation re-try by Schedule Manager,
or SWAP into another ISPF screen to allocate the data set using ISPF, batch JCL, TSO
commands, and so on.

REPORT Command—Print Schedule Manager Data

Chapter 10: Using Schedule Manager 357

After the first REPORT command completes, the output from any subsequent REPORT
commands issued are appended to the end of the same report data set. The report data
set is closed after each REPORT command completes and can be viewed, printed,
copied, edited, and so on.

To close the report data set and stop it from receiving any more REPORT output, the
user must issue the following command:

REPORT CLOSE

Note: Issue the HELP command after the REPORT CLOSE command returns to display
the name of the report data set that was closed.

REPORT Command—Print Schedule Manager Data

358 User Guide

Example: REPORT Command

The next REPORT command to be issued after a REPORT CLOSE command creates a new
report data set.

REPORT STATES AT 1300 ON 2/21/2005

The following would be the contents of data set
JOEUSER.SM.OPS44R.PRODUCTI.D0030415.T1509. Note that this report is for the
identical point in time that is shown in the example SHOW STATES display in Viewing
Potential State Changes in this chapter.

 Schedule: OPS44R>PRODUCTION ----------- STATES ----------- 15 Apr 2007
 ------------------------- AT 1300 ON 02/21/2005 (MON) -----------------

 Table: ACF2_STCTBL
 Type: *NULL*
 ACF2 ON WEEKDAY .MTWTF. 0800-1600

 Table: CICS_STCTBL
 Type: *NULL*
 CICS ON WEEKDAY .MTWTF. 0800-1600
 CICSTEST OFF WEEKDAY .MTWTF. 0800-1600

 Table: IMS_STCTBL
 Type: *NULL*
 IMS ON WEEKDAY .MTWTF. 0800-1600

 Table: JES2_STCTBL
 Type: *NULL*
 JES2 ON WEEKDAY .MTWTF. 0800-1600

 Table: TSO_STCTBL
 Type: *NULL*
 TCAS ON WEEKDAY .MTWTF. 0800-1600
 TCASTEST OFF WEEKDAY .MTWTF. 0800-1600

The REPORT LINKS command generates a report identical to that of a REPORT call to the
Schedule Manager API. The next section describes the API in general and the REPORT
call, and also includes a sample report.

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 359

Use the Schedule Manager Application Program Interface

In addition to using the Schedule Manager ISPF application through OPSVIEW primary
option 4.11.4, a user can invoke Schedule Manager programmatically by calling the
Schedule Manager Application Program Interface (API). This includes user-coded
commands on the ISPF command line, user-coded programs running in batch JCL,
user-coded programs running interactively under ISPF, user-coded AOF rules, and so on.

The CA OPS/MVS REXX program ASOSMAPI processes the Schedule Manager API calls.
To use the Schedule Manager API, call ASOSMAPI in the proper environment using the
proper command syntax as documented in this section.

API QUERY Command—Returns Schedule Manager Data

The API QUERY command returns Schedule Manager data, such as schedule names,
period definitions, defined links, and so on. The data returned depends on the keywords
entered on the QUERY command text. Syntax and examples of the numerous possible
keyword combinations on the QUERY command are shown below.

Data is returned by the QUERY command in the following format:

delimit||code||delimit||count||delimit||value1||delimit||value2|

|delimit||...

In the format above, the first character returned is used to delimit values in the
returned data. The first value returned is the return code of the QUERY operation. The
second value returned is the count of data values that follow. The data always ends with
the delimit character. When return code > 0, then count is actually the text of an error
message. When return code = 0, then count may also be 0.

Use the Schedule Manager Application Program Interface

360 User Guide

Examples given in this section were generated by calling the following REXX program
named SM$APIQ to call the Schedule Manager API and display the results at the
terminal:

/*--*/
/* REXX test ASOSMAPI API QUERY calls. */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+---*/
/* */
 PARSE UPPER ARG sm_api_parms
 CALL ASOSMAPI sm_api_parms
 SAY 'SM$APIQ Result='result
IF result='RESULT' THEN DO
 say 'Bad QUERY'
 END
 ELSE DO
 PARSE VAR result rdelim 2 rcode (rdelim) rcount (rdelim) +0 rresult
 IF rcode<>0 THEN DO
 say 'QUERY returned error code "'||rcode||'" and error '
 say 'text: "'||rcount||'"'
 END
 ELSE DO i = 1 TO rcount
 PARSE VAR rresult rdelim 2 rentry (rdelim) +0 rresult
 SAY RIGHT(i,3)||':'||rentry
 END
 END
EXIT result

Program SM$APIQ above was called by issuing the following command from the ISPF
command shell on a TSO user ID logged on to a system with a single copy of CA
OPS/MVS running:

OI SM$APIQ arg

Argument arg in the above command text contains the QUERY command syntax to call
Schedule Manager, documented below.

For more information on the OI command, see OPSIMEX Command Processor in the
chapter “POI Command Processors” in the Command and Function Reference.

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 361

Syntax:

QUERY

 {SCHEDULE(ACTIVE) SOURCE}

Returns the name of the schedule that is loaded into the ACTIVE schedule.

Example: Query the schedule name

Command (and response) to query the name of the schedule that is loaded into the
ACTIVE schedule on system OPS44R:

OI SM$APIQ QUERY SCHEDULE(OPS44R>ACTIVE) SOURCE

SM$APIQ MESSAGE: LOAD_GET API RESPONSE (continued...)

SM$APIQ MESSAGE: OPS44R>SLEJO01>15:42:17.590471 GLOBAL0.ATMSM_ACTIVE_OPS44R=(PR

ODUCTION ON OPS44R)

SM$APIQ Result=:0:1:PRODUCTION ON OPS44R:

 1:PRODUCTION ON OPS44R

Syntax:

QUERY

 {SCHEDULE(*)}

Returns a list of all schedules that are defined in Schedule Manager.

Example: Query names of all schedules

Command (and response) to query the names of all schedules that are defined in
Schedule Manager on the local system:

OI SM$APIQ QUERY SCHEDULE(*)

SM$APIQ Result=:0:7:DEVELOPMENT:PRODUCTION:PRODUCTIONA:PRODUCTIONB:PRODUCTIONC:S

ERVER:TESTBED:

 1:DEVELOPMENT

 2:PRODUCTION

 3:PRODUCTIONA

 4:PRODUCTIONB

 5:PRODUCTIONC

 6:SERVER

 7:TESTBED

Use the Schedule Manager Application Program Interface

362 User Guide

Syntax:

QUERY

 {PERIOD(*)}

 {SCHEDULE(ssss)}

Return a list of all periods that are defined in schedule ssss.

Example: Query the names of all periods

Command (and response) to query the names of all periods that are defined in schedule
PRODUCTION on the local system:

OI SM$APIQ QUERY SCHEDULE(PRODUCTION) PERIOD(*)

SM$APIQ Result=:0:13:WENDLITE S.....S 0800-2000:WENDDARK S.....S 2000-3200:EVER

YNOON SMTWTFS 1200-1300:WEEKDAY .MTWTF. 0800-1600:WEEKEVENING .MTWTF. 1600-2400:

WEEKNIGHT .MTWTF. 2400-3200:THNXLITE03 11/27/2007-11/28 0800-2000:THNXDARK03 11/

27/2

 1:WENDLITE S.....S 0800-2000

 2:WENDDARK S.....S 2000-3200

 3:EVERYNOON SMTWTFS 1200-1300

 4:WEEKDAY .MTWTF. 0800-1600

 5:WEEKEVENING .MTWTF. 1600-2400

 6:WEEKNIGHT .MTWTF. 2400-3200

 7:THNXLITE03 11/27/2007-11/28 0800-2000

 8:THNXDARK03 11/27/2007-11/28 2000-3200

 9:XMASLITE03 12/24/2007-12/25 0800-2000

 10:XMASDARK03 12/24/2007-12/25 2000-3200

 11:XMASALL03 12/25/2007 0000-2400

 12:XMASEVERY 12/25 0000-2400

 13:DEFAULT

Syntax:

QUERY

 {PERIOD(pppp)}

 {SCHEDULE(ssss)}

Return a list of all resources that are linked to period pppp in schedule ssss.

Example: Query the names of all resources

Command (and response) to query the names of all resources that are linked to period
EVERYNOON in schedule PRODUCTION on the local system:

OI SM$APIQ QUERY SCHEDULE(PRODUCTION) PERIOD(EVERYNOON)

SM$APIQ Result=:0:1:DB2_STCTBL.ACF2:

 1:DB2_STCTBL.DB2

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 363

Syntax:

QUERY

 {SCHEDULE(ssss)}

 {TABLE(*)}

Returns a list of all SSM resource tables.

Note: Keyword SCHEDULE(ssss) is required to allow the user to specify the system to be
queried. You must specify a valid schedule name, although only the system> portion (if
any) of the specified schedule name affects the operation of this command.

Example: Query the name of all SSM resource tables

Command (and response) to query the name of all SSM resource tables on the local
system:

OI SM$APIQ QUERY SCHEDULE(PRODUCTION) TABLE(*)

SM$APIQ Result=:0:6: ACF2_STCTBL: CICS_STCTBL: DB2_STCTBL: IMS_STCTB

L:JES2_STCTBL: TSO_STCTBL:

 1:ACF2_STCTBL

 2:CICS_STCTBL

 3:DB2_STCTBL

 4:IMS_STCTBL

 5:JES2_STCTBL

 6:TSO_STCTBL

Use the Schedule Manager Application Program Interface

364 User Guide

Syntax:

QUERY

 {RESOURCE(*)}

 {SCHEDULE(ssss)}

 {TABLE(tttt)}

Returns a list of all resources in SSM resource table tttt.

Note: Keyword SCHEDULE(ssss) is required to allow the user to specify the system to be
queried. You must specify a valid schedule name, although only the system> portion (if
any) of the specified schedule name affects the operation of this command.

Example: Query the names of all resources in SSM resource table

Command (and response) to query the names of all resources in SSM resource table
TSO_STCTBL on the local system:

OI SM$APIQ QUERY SCHEDULE(PRODUCTION) TABLE(TSO_STCTBL) RESOURCE(*)

SM$APIQ Result=:0:2:TSO:TSOTEST:

 1:TSO

 2:TSOTEST

Syntax:

QUERY

 {RESOURCE(rrrr)}

 {SCHEDULE(ssss)}

 {TABLE(tttt)}

Returns a list of all periods defined in schedule ssss that are linked to resource rrrr in
table tttt.

Example: query the names of all periods

Command (and response) to query the names of all periods defined in schedule
PRODUCTION on the local system that are linked to resource TSO in table TSO_STCTBL:

OI SM$APIQ QUERY SCHEDULE(PRODUCTION) TABLE(TSO_STCTBL) RESOURCE(TSO)

SM$APIQ Result=:0:2:WEEKDAY:XMASALL03:

 1:WEEKDAY

 2:XMASALL03

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 365

Syntax:

QUERY

 {PERIOD(pppp)}

 {RESOURCE(rrrr)}

 {SCHEDULE(ssss)}

 {TABLE(tttt)}

Returns the DESIRED_STATE of the link defined in schedule ssss between period pppp
and resource rrrr in table tttt, or else return nothing if there is no link defined.

Example: query the DESIRED_STATE of the link

Command (and response) to query the DESIRED_STATE of the link defined in schedule
PRODUCTION on the local system between period WEEKDAY and resource TSO in table
TSO_STCTBL:

OI SM$APIQ QUERY SCHEDULE(PRODUCTION) TABLE(TSO_STCTBL) RESOURCE(TSO)

 PERIOD(WEEKDAY)

SM$APIQ Result=:0:1:OFF:

 1:OFF

Example: query the DESIRED_STATE of a non-existent link

Command (and response) to query the DESIRED_STATE of a non-existent link in
schedule PRODUCTION on the local system between period WEEKNIGHT and resource
TSO in table TSO_STCTBL:

OI SM$APIQ QUERY SCHEDULE(PRODUCTION) TABLE(TSO_STCTBL) RESOURCE(TSO)

 PERIOD(WEEKNIGHT)
SM$APIQ Result=:0:0:

Use the Schedule Manager Application Program Interface

366 User Guide

Keywords on the Schedule Manager API QUERY Command

The following is a list of keywords on the API QUERY command and their values:

PERIOD(period_name)

Any valid Schedule Manager schedule period name or the wildcard character *.

RESOURCE(resource_name)

Any valid SSM resource name or the wildcard character *.

SCHEDULE(schedule_name)

Any valid Schedule Manager schedule name or the wildcard character *.

Note that the name of a schedule (including the wildcard character *) on an
MSF-connected system is allowed when schedule_name is fully qualified as
system>name.

TABLE(table_name)

Any valid SSM resource table name or the wildcard character *.

Formats of All Other Schedule Manager API Commands

Examples given in this section were generated by calling the following REXX program
named SM$API to call the Schedule Manager API and display the results at the terminal:

/*--*/

/* REXX test ASOSMAPI API calls. */

/*--+----1----+----2----+----3----+----4----+----5----+----6----+---*/

/* */

 PARSE UPPER ARG sm_api_parms

 CALL ASOSMAPI sm_api_parms

 SAY 'SM$API Result='result

EXIT result

Program SM$API above was called by issuing the following command from the ISPF
command shell on a TSO userid logged on to a system with a single copy of CA OPS/MVS
running:

OI SM$API arg

Argument arg in the above command text contains the command syntax to call
Schedule Manager, documented below.

For more information on the OI command, see OPSIMEX Command Processor in the
chapter “POI Command Processors” in the Command and Function Reference.

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 367

Syntax to copy a schedule on the local system:

COPY

 {SCHEDULE(ssss)}

 {TARGET(tttt)}

Copy schedule ssss to schedule tttt. Schedule tttt is deleted before the copy is made so
that schedule tttt is identical to schedule ssss after the copy.

Example: copy schedule on the local system

Command (and response) to copy schedule PRODUCTION on the local system to
schedule TEST_IMAGE on the local system:

OI SM$API COPY SCHEDULE(PRODUCTION) TARGET(TEST_IMAGE)

SM$API MESSAGE: *COPIED

SM$API Result=0

Syntax to create an empty schedule:

Create

 {SCHEDULE(ssss)}

Example: Create empty schedule

Command (and response) to create empty schedule TEST_EMPTY on the local system:

OI SM$API CREATE SCHEDULE(TEST_EMPTY)

SM$API MESSAGE: *CREATED

SM$API Result=0

Syntax to delete a schedule on the local system:

DELETE

 {SCHEDULE(ssss)}

Example: Delete schedule on local system

Command (and response) to delete schedule TEST_IMAGE on the local system:

OI SM$API DELETE SCHEDULE(TEST_IMAGE)

SM$API MESSAGE: *DELETED

SM$API Result=0

Use the Schedule Manager Application Program Interface

368 User Guide

Syntax to insert empty period in the schedule

INSERT

 {SCHEDULE(ssss)}

 {PERIOD(pppp)}

 {DATE(dddd)}

 {TIME(tttt-uuuu)}

Insert (create) empty period pppp in schedule ssss on the local system, active on days
dddd with a start time of tttt and end time of uuuu.

Example: Insert empty period in schedule

Command (and response) to insert empty period WENDALL in schedule TEST_EMPTY on
the local system, active all day Saturday and Sunday:

OI SM$API INSERT SCHEDULE(TEST_EMPTY) PERIOD(WENDALL)

 DATE(S.....S) TIME(0000-2400)

SM$API Result=0

Syntax to create a link in the schedule

LINK

 {SCHEDULE(ssss)}

 {PERIOD(pppp)}

 {TABLE(tttt)}

 {RESOURCE(rrrr)}

 {DESIRED_STATE(dddd)}

Create a link in schedule ssss between period pppp and resource rrrr in table tttt with a
DESIRED_STATE of dddd.

Example: Create a link in schedule

Command (and response) to create a link in schedule TEST_EMPTY on the local system
between period WENDALL and resource JES2 in table JES2_STCTBL with a
DESIRED_STATE of ON:

OI SM$API LINK SCHEDULE(TEST_EMPTY) PERIOD(WENDALL)

 TABLE(JES2_STCTBL) RESOURCE(JES2)

 DESIRED_STATE(ON)

SM$API Result=0

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 369

Syntax to create links in the schedule:

LINK_COPY

 {SCHEDULE(ssss)}

 {PERIOD(pppp)}

 {TARGET_PERIOD(tttt)}

Create links in schedule ssss between period tttt and all of the same resources that are
linked to period pppp.

Example: Create links in schedule

Command (and response) to create links in schedule PRODUCTION on the local system
between period EVERYNOON and all of the same resources that are linked to period
DEFAULT:

OI SM$API LINKS_COPY SCHEDULE(PRODUCTION) PERIOD(DEFAULT)

 TARGET_PERIOD(EVERYNOON)

SM$API Result=0

Syntax to create links to a schedule:

LINK_COPY

 {SCHEDULE(ssss)}

 {TABLE(tttt)}

 {RESOURCE(rrrr)}

 {TARGET_TABLE(aaaa)}

 {TARGET_RESOURCE(cccc)}

Create links in schedule ssss between resource cccc in table aaaa and all of the same
periods that are linked to resource rrrr in table tttt.

Example: Create links to schedule

Command (and response) to create links to schedule TEST_EMPTY on the local system
between resource DB2 in table DB2_STCTBL and all of the same periods that are linked
to resource JES2 in table JES2_STCTBL:

OI SM$API LINKS_COPY SCHEDULE(TEST_EMPTY)

 TABLE(JES2_STCTBL) RESOURCE(JES2)

 TARGET_TABLE(DB2_STCTBL) TARGET_RESOURCE(DB2)

SM$API Result=0

Use the Schedule Manager Application Program Interface

370 User Guide

Syntax to delete all links in a schedule:

LINK_DELETE

 {SCHEDULE(ssss)}

 {PERIOD(pppp)}

Delete all links in schedule ssss between all resources and period pppp.

Example: Delete all links in schedule

Command (and response) to delete all links in schedule PRODUCTION on the local
system between all resources and period EVERYNOON:

OI SM$API LINKS_DELETE SCHEDULE(PRODUCTION) PERIOD(EVERYNOON)

SM$API Result=0

Syntax to delete all links:

LINK_DELETE

 {SCHEDULE(ssss)}

 {PERIOD(pppp)}

 {RESOURCE(rrrr)}

Delete all links in schedule ssss between all periods and resource rrrr in table tttt.

Example: Delete all links

Command (and response) to delete all links in schedule TEST_EMPTY on the local system
between all periods and resource DB2 in table DB2_STCTBL:

OI SM$API LINKS_DELETE SCHEDULE(TEST_EMPTY)

 TABLE(DB2_STCTBL) RESOURCE(DB2)

SM$API Result=0

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 371

Syntax to load a schedule:

LOAD

 {SCHEDULE(ssss)}

 {TARGET(ACTIVE)}

Load (activate) schedule ssss by making it the ACTIVE schedule.

Example: Load schedule

Command (and response) to load (activate) schedule PRODUCTION on the local system
by making it the ACTIVE schedule on the local system:

OI SM$API LOAD SCHEDULE(DEVELOPMENT) TARGET(ACTIVE)

SM$API MESSAGE: LOAD_SET API RESPONSE (continued...)

SM$API MESSAGE: OPS44R>SLEJO01>16:06:49.286188 GLOBAL0.ATMSM_ACTIVE_OPS44R=()

SM$API MESSAGE: LOAD_SET API RESPONSE (continued...)

SM$API MESSAGE: OPS44R>SLEJO01>16:06:49.370434

 LOBAL0.ATMSM_ACTIVE_OPS44R=(PRODUCTION ON OPS44R)

SM$API MESSAGE: *LOADED

SM$API Result=0

Syntax to merge a schedule:

MERGE

 {SCHEDULE(ssss)}

 {TARGET(tttt)}

Merge schedule ssss and schedule tttt and place the result in schedule tttt.

Example: Merge schedule

Command (and response) to merge schedule TEST_EMPTY on the local system and
schedule PRODUCTION on the local system and place the result in schedule
PRODUCTION on the local system:

OI SM$API MERGE SCHEDULE(TEST_EMPTY) TARGET(PRODUCTION)

SM$API MESSAGE: *MERGED

SM$API Result=0

Use the Schedule Manager Application Program Interface

372 User Guide

Syntax to remove a schedule:

REMOVE

 {SCHEDULE(ssss)}

 {PERIOD(pppp)}

Remove period pppp from schedule ssss.

Example: Remove period from schedule

Command (and response) to remove period EVERYNOON from schedule PRODUCTION
on the local system:

OI SM$API REMOVE SCHEDULE(TEST_EMPTY) PERIOD(EVERYNOON)

 SM$API Result=0

Syntax to print a report of a schedule:

REPORT

 {SCHEDULE(ssss)}

 [DSNAME(dddd)]

Print a report on links between periods and resources in schedule ssss to data set dddd,
if specified, or to the default data set if dddd is not specified. For a description of the
default data set name, see Printing Schedule Manager Data in this chapter. The report
generated by this command is identical to the report generated by the Edit primary
command REPORT LINKS.

If this command is successful, then it returns the name of the data set containing the
report. If this command is not successful, then it returns a value of 8.

Example: Print a report

Command (and response) to print a report on the links between periods and resources
in schedule PRODUCTION on the local system:

OI SM$API REPORT SCHEDULE(PRODUCTION) DSNAME('JOEUSER.TEST.REPORT')

SM$API Result='JOEUSER.TEST.REPORT'

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 373

The following would be the contents of data set JOEUSER.TEST.REPORT:

Schedule: OPS44R>PRODUCTION ----------- LINKS ------------ 15 Apr 2007

 * * * PERIOD LIST * * *

 WENDALL S.....S 0000-2400

 WENDLITE S.....S 0800-2000

 WENDDARK S.....S 2000-3200

 WEEKDAY .MTWTF. 0800-1600

 WEEKEVENING .MTWTF. 1600-2400

 WEEKNIGHT .MTWTF. 2400-3200

 THNXLITE03 11/27/2007-11/28 0800-2000

 THNXDARK03 11/27/2007-11/28 2000-3200

 XMASLITE03 12/24/2007-12/25 0800-2000

 XMASDARK03 12/24/2007-12/25 2000-3200

 XMASALL03 12/25/2007 0000-2400

 XMASEVERY 12/25 0000-2400

 DEFAULT

 1Schedule: OPS44R>PRODUCTION ----------- LINKS ----------- 15 Apr 2007

 * * * SORTED BY PERIOD * * *

 Period: DEFAULT

 Table: ACF2_STCTBL

 ACF2 ON

 Table: JES2_STCTBL

 JES2 ON

 Period: THNXDARK03 11/27/2007-11/28 2000-3200

 Table: ACF2_STCTBL

 ACF2 ON

 Table: CICS_STCTBL

 CICS OFF

 Table: IMS_STCTBL

 IMS OFF

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

Use the Schedule Manager Application Program Interface

374 User Guide

 Period: THNXLITE03 11/27/2007-11/28 0800-2000

 Table: ACF2_STCTBL

 ACF2 ON

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

 Period: WEEKDAY .MTWTF. 0800-1600

 Table: ACF2_STCTBL

 ACF2 ON

 Table: CICS_STCTBL

 CICS ON

 CICSTEST OFF

 Table: IMS_STCTBL

 IMS ON

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

 TCASTEST OFF

 1Schedule: OPS44R>PRODUCTION ----------- LINKS ----------- 15 Apr 2007

 * * * SORTED BY PERIOD * * *

 Period: WEEKEVENING .MTWTF. 1600-2400

 Table: ACF2_STCTBL

 ACF2 ON

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 375

 Period: WEEKNIGHT .MTWTF. 2400-3200

 Table: ACF2_STCTBL

 ACF2 ON

 Table: CICS_STCTBL

 CICS OFF

 Table: IMS_STCTBL

 IMS OFF

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

 Period: WENDALL S.....S 0000-2400

 Table: JES2_STCTBL

 JES2 ON

 Period: WENDDARK S.....S 2000-3200

 Table: ACF2_STCTBL

 ACF2 ON

 Table: CICS_STCTBL

 CICS OFF

 Table: IMS_STCTBL

 IMS OFF

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

 1Schedule: OPS44R>PRODUCTION ----------- LINKS ----------- 15 Apr 2007

 * * * SORTED BY PERIOD * * *

 Period: WENDLITE S.....S 0800-2000

 Table: ACF2_STCTBL

 ACF2 ON

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

Use the Schedule Manager Application Program Interface

376 User Guide

 Period: XMASALL03 12/25/2007 0000-2400

 Table: DB2_STCTBL

 DB2 OFF

 Table: TSO_STCTBL

 TCASTEST OFF

 Period: XMASDARK03 12/24/2007-12/25 2000-3200

 Table: ACF2_STCTBL

 ACF2 ON

 Table: CICS_STCTBL

 CICS OFF

 Table: IMS_STCTBL

 IMS OFF

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

 Period: XMASEVERY 12/25 0000-2400

 Table: CICS_STCTBL

 CICSTEST OFF

 Period: XMASLITE03 12/24/2007-12/25 0800-2000

 Table: ACF2_STCTBL

 ACF2 ON

 Table: DB2_STCTBL

 DB2 ON

 Table: JES2_STCTBL

 JES2 ON

 Table: TSO_STCTBL

 TCAS ON

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 377

1Schedule: OPS44R>PRODUCTION ----------- LINKS ---------- 15 Apr 2007

 * * * SORTED BY RESOURCE * * *

 Resource: ACF2_STCTBL.ACF2

 ON DEFAULT

 ON THNXDARK03 11/27/2007-11/28 2000-3200

 ON THNXLITE03 11/27/2007-11/28 0800-2000

 ON WEEKDAY .MTWTF. 0800-1600

 ON WEEKEVENING .MTWTF. 1600-2400

 ON WEEKNIGHT .MTWTF. 2400-3200

 ON WENDDARK S.....S 2000-3200

 ON WENDLITE S.....S 0800-2000

 ON XMASDARK03 12/24/2007-12/25 2000-3200

 ON XMASLITE03 12/24/2007-12/25 0800-2000

 Resource: CICS_STCTBL.CICS

 OFF THNXDARK03 11/27/2007-11/28 2000-3200

 ON WEEKDAY .MTWTF. 0800-1600

 OFF WEEKNIGHT .MTWTF. 2400-3200

 OFF WENDDARK S.....S 2000-3200

 OFF XMASDARK03 12/24/2007-12/25 2000-3200

 Resource: CICS_STCTBL.CICSTEST

 OFF WEEKDAY .MTWTF. 0800-1600

 OFF XMASEVERY 12/25 0000-2400

Resource: DB2_STCTBL.DB2

 ON XMASLITE03 12/24/2007-12/25 0800-2000

 OFF XMASALL03 12/25/2007 0000-2400

Resource: IMS_STCTBL.IMS

 OFF THNXDARK03 11/27/2007-11/28 2000-3200

 ON WEEKDAY .MTWTF. 0800-1600

 OFF WEEKNIGHT .MTWTF. 2400-3200

 OFF WENDDARK S.....S 2000-3200

 OFF XMASDARK03 12/24/2007-12/25 2000-3200

 Resource: JES2_STCTBL.JES2

 ON DEFAULT

 ON THNXDARK03 11/27/2007-11/28 2000-3200

 ON THNXLITE03 11/27/2007-11/28 0800-2000

 ON WEEKDAY .MTWTF. 0800-1600

 ON WEEKEVENING .MTWTF. 1600-2400

 ON WEEKNIGHT .MTWTF. 2400-3200

 ON WENDALL S.....S 0000-2400

 ON WENDDARK S.....S 2000-3200

 ON WENDLITE S.....S 0800-2000

 ON XMASDARK03 12/24/2007-12/25 2000-3200

 ON XMASLITE03 12/24/2007-12/25 0800-2000

Use the Schedule Manager Application Program Interface

378 User Guide

1Schedule: OPS44R>PRODUCTION ----------- LINKS ------------ 15 Apr 2007

 * * * SORTED BY RESOURCE * * *

 Resource: TSO_STCTBL.TCAS

 ON THNXDARK03 11/27/2007-11/28 2000-3200

 ON THNXLITE03 11/27/2007-11/28 0800-2000

 ON WEEKDAY .MTWTF. 0800-1600

 ON WEEKEVENING .MTWTF. 1600-2400

 ON WEEKNIGHT .MTWTF. 2400-3200

 ON WENDDARK S.....S 2000-3200

 ON WENDLITE S.....S 0800-2000

 ON XMASDARK03 12/24/2007-12/25 2000-3200

 ON XMASLITE03 12/24/2007-12/25 0800-2000

 Resource: TSO_STCTBL.TCASTEST

 OFF WEEKDAY .MTWTF. 0800-1600

 OFF XMASALL03 12/25/2007 0000-2400

Syntax to have Schedule Manager perform a reset function:

RESET OI

 [SCHEDULE(ACTIVE)]

Request Schedule Manager to perform a RESET function resulting in the following:

■ The ACTIVE schedule and the @OVERRIDE@ schedule are reevaluated.

■ The desired states of SSM resources are set as scheduled.

■ The next schedule RESET time (period start or stop) is recomputed.

The Schedule Manager RESET function is always executed using the ACTIVE schedule
and the @OVERRIDE@ schedule, if one exists. The optional keyword SCHEDULE may be
specified on the RESET_OI command to direct the request to another system. If the
keyword SCHEDULE is specified, then the schedule name must be ACTIVE. If the
keyword SCHEDULE is not specified, then the request is directed to the local system.

Example: Have Schedule Manager perform a RESET function

Command (and response) to have Schedule Manager perform a RESET function on the
local system:

OI SM$API RESET_OI

SM$API MESSAGE: RESET SCHEDULED (continued...)

SM$API MESSAGE: Check OSF logs on system OPS44R.

SM$API Result=0

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 379

Syntax to synchronize a schedule:

SYNCH_AUTO

 {SCHEDULE(ssss)}

Synchronize schedule ssss with SSM table updates by automatically removing all links
containing deleted SSM tables, resources, or both.

This command and the Y (synch) line command in Edit cannot be executed against the
ACTIVE schedule. If the ACTIVE schedule becomes out-of-synch due to deleted SSM
tables, resources or both, then the source schedule used to build the ACTIVE schedule
will also be out-of-synch. You can use the SYNCH_AUTO command to synchronize the
source schedule and then use the LOAD command to re-load it into the ACTIVE
schedule.

Schedule Manager issues the following WTO during its RESET processing whenever it
recognizes the ACTIVE schedule as being out-of-synch:

OPS7913E FATAL|Non-fatal SSM Schedule Manager error. ACTIVE schedule
out-of-synch. Synch and re-load source schedule sssssssssss.

Schedule sssssssssss last loaded into the ACTIVE schedule is listed in the message text. It
is most likely out-of-synch also. The error condition is not resolved until a synchronized
schedule is loaded into the ACTIVE schedule.

If period definitions are missing, then this is a FATAL error and it will be indicated in the
WTO text.

Notes:

■ Schedule Manager RESET processing halts after encountering a fatal error due to
missing period definitions and does not restart until the error condition is resolved.
In other words, Schedule Manager no longer schedules the desired states of your
SSM resources.

■ A fatal error due to missing period definitions cannot be resolved programmatically
using the Schedule Manager API. The user has to go into the ISPF Schedule Manager
application (OPSVIEW option 4.11.4) to resolve the errors.

Use the Schedule Manager Application Program Interface

380 User Guide

Example: Synchronize schedule

Failing command (and response) to synchronize schedule PRODUCTION on the local
system that contains links to deleted period definitions:

OI SM$API SYNCH_AUTO SCHEDULE(DAMAGED)

SM$API MESSAGE: MISSING PERIODS (continued...)

SM$API MESSAGE: Links to missing SSM tables/resources were deleted. Use OPSVIEW

 4.11.4 to SYNCH other links to missing period definitions.

SM$API Result=8

If SSM tables, resources, or both are missing, then this is a non-fatal error and it will be
indicated in the WTO text. Schedule Manager RESET processing continues for remaining
SSM resources after encountering a non-fatal error. In other words, Schedule Manager
continues to schedule the desired states of your remaining SSM resources. A non-fatal
error due to missing SSM tables, resources, or both can be resolved programmatically
using the Schedule Manager API commands SYNCH_AUTO and LOAD, as described
above. Of course, the user can also resolve the errors using the ISPF Schedule Manager
application (OPSVIEW option 4.11.4).

Note: An AOF MSG rule could be written against the OPS7913E WTO to automate a
programmatic resolution to a non-fatal Schedule Manager error due to an out-of-synch
ACTIVE schedule.

Example: Remove all links to deleted SSM tables

Command (and response) to remove all links to deleted SSM tables, resources, or both
from all periods defined in schedule PRODUCTION on the local system:

OI SM$API SYNCH_AUTO SCHEDULE(PRODUCTION)

SM$API MESSAGE: *SYNCHED

SM$API Result=0

Syntax to delete a single link:

UNLINK

 {SCHEDULE(ssss)}

 {PERIOD(pppp)}

 {TABLE(tttt)}

 {RESOURCE(rrrr)}

Delete single link in schedule ssss between period pppp and resource rrrr in table tttt.

Use the Schedule Manager Application Program Interface

Chapter 10: Using Schedule Manager 381

Example: Delete link

Command (and response) to delete the link in schedule PRODUCTION on the local
system between period DEFAULT and resource ACF2 in table ACF2_STCTBL:

OI SM$API UNLINK SCHEDULE(PRODUCTION) PERIOD(DEFAULT)

 TABLE(ACF2_STCTBL) RESOURCE(ACF2)

SM$API Result=0

Keywords on All Other Schedule Manager API Commands

The following is a list of keywords on all other Schedule Manager API commands and
their values:

DATE(date)

mask

Defines a cyclic days-of-week period where mask is a seven-character mask of
the format SMTWTFS specifying the weekdays that the period is active, with a
dot indicating each weekday that the period is inactive. For example, the mask
SM…FS specifies a period that is active on Sunday, Monday, Friday, and
Saturday.

mm/dd[/yyyy]

Defines a fixed-date period active on one day dd of one month mm only. If
optional year yyyy is specified, then the period is active in year yyyy only.
Otherwise, the period is active on day mm/dd of every year (unless day 02/29 is
specified, in which case the period is active only in leap years).

mm/dd[/yyyy] -nn/ee

Definnes a fixed-date period active during a range of dates, starting on day dd
of month mm and ending on day ee of month nn. If optional year yyyy is
specified, then the period starts in year yyyy only. Otherwise, the period starts
on day mm/dd of every year (unless day 02/29 is specified, in which case the
period starts only in leap years).

DESIRED_STATE(desired_state)

ON|OFF

DSNAME(data_set_name)

Any valid TSO data set name.

PERIOD(period_name)

Any valid Schedule Manager schedule period name.

RESOURCE(resource_name)

Any valid SSM resource name.

Override Schedule Manager

382 User Guide

SCHEDULE(schedule_name)

Any valid Schedule Manger schedule name. Note that the name of a schedule on an
MSF-connected system is allowed when schedule_name is fully qualified as
system>name.

TABLE(table_name)

Any valid SSM resource table name.

TARGET(tschedule_name)

Any valid Schedule Manager schedule name.

Note that the name of a schedule on an MSF-connected system is allowed when
schedule_name is fully qualified as system>name.

TARGET_PERIOD(period_name)

Any valid Schedule Manager schedule period name.

TARGET_RESOURCE(resource_name)

Any valid SSM resource name.

TARGET_TABLE(table_name)

Any valid SSM resource table name.

TIME(time)

hhmm-iinn-The period start time hhmm and the period stop time iinn on a 48-hour
military clock. Stop time iinn must be greater than start time hhmm.

Override Schedule Manager

This section discusses the various ways you can override Schedule Manager.

Override Schedule Manager

Chapter 10: Using Schedule Manager 383

The Effective Mode of SSM Resources

The effective mode of any resource is determined by the most restrictive of the
following modes:

■ The global mode of System State Manager.

This mode is set by the CA OPS/MVS parameter STATEMAN.

■ The mode of the resource table that contains the resource.

This mode is set by the value for the resource table in the TABLE_MODE column in
the SSM_MANAGED_TBLS table.

■ The mode of the individual resource.

This mode is set by the value for the resource in the MODE column in the resource
table.

The CA OPS/MVS parameter STATESCHEDEXCLUDE may be used to have Schedule
Manager bypass updates to the DESIRED_STATE column of resources during its RESET
processing based on the effective mode of each resource. For more information about
this parameter, see the Parameter Reference.

System State Manager Resource Tables

Schedule Manager RESET processing looks for a SCHEDMODE column in a resource
table. If one is present, then Schedule Manager looks for a value of INACTIVE. For any
resource having a value of INACTIVE in its SCHEDMODE column, Schedule Manager
bypasses any updates to its DESIRED_STATE column during RESET processing.

To use this feature, manually add a SCHEDMODE column to resource tables if one is not
already present. The BASIC and STC model tables available in the RDF Table Editor
(OPSVIEW primary option 2.6) contain a SCHEDMODE column with a default value of
ACTIVE.

This feature makes it possible for the user to override the scheduled state of a resource
through a single SQL statement similar to the following example:

UPDATE table SET SCHEDMODE='INACTIVE' WHERE NAME='resource'

Likewise, the user can return control of the resource to Schedule Manager through a
single SQL statement similar to the following example:

UPDATE table SET SCHEDMODE='ACTIVE' WHERE NAME='resource'

Such SQL statements can be inserted into user-coded CA OPS/MVS rules to override the
scheduled state of selected resources while allowing Schedule Manager to maintain the
usual scheduled states of other system resources. For example, the user can code
emergency START or STOP started task command (CMD) rules that set the SCHEDMODE
of the resource to INACTIVE and the DESIRED_STATE of the resource to UP or DOWN.

Override Schedule Manager

384 User Guide

SSMSCHED Sample Rule

The SSMSCHED sample command rule allows operators or automated procedures to set
or display the SCHEDMODE of resources. You must enable the SSMSCHED sample rule
before you can begin to use it. Descriptions of the two SSMSCHED commands follow.

Syntax to update the SSM schedule:

SSMSCHED UPDATE

 {RESOURCE(table.resource, . . .)}

 {SCHEDMODE(ACTIVE|INACTIVE)}

This command sets the SCHEDMODE values for each table.resource entry specified in
the RESOURCE() list to the value specified on the SCHEDMODE() keyword. For each
table.resource entry specified in the RESOURCE() list, the following SQL statement is
executed:

UPDATE table SET SCHEDMODE='mode' WHERE NAME LIKE 'resource'

As shown in the above SQL statement, each table value specified must be a literal value;
each resource value specified could be any valid value specified on an SQL LIKE keyword.
Specify up to twenty table.resource entries in the RESOURCE() list.

Examples:

1. Command (and response) to turn off Schedule Manger control of some resources:

SSMSCHED UPDATE RESOURCE(CICS_STCTBL.CICS%) SCHEDMODE(INACTIVE)

OPR1000I SSMSCHED: UPDATE returned RC=00 / SQLCODE=00000 for resource

CICS_STCTBL.CICS%

2. Command (and response) to turn on Schedule Manager control of a resource:

SSMSCHED UPDATE RESOURCE(CICS_STCTBL.CICSTEST) SCHEDMODE(ACTIVE)

OPR1000I SSMSCHED: UPDATE returned RC=00 / SQLCODE=00000 for resource

CICS_STCTBL.CICSTEST

Syntax to select the SSM schedule:

SSMSCHED SELECT

 {RESOURCE(table.resource,...)}

 [SCHEDMODE(ACTIVE|INACTIVE)]

This command displays the SCHEDMODE values for each table.resource entry specified
in the RESOURCE() list. Optionally, you may limit the display to only those resources
whose SCHEDMODE value is equal to the value specified on the SCHEDMODE() keyword.
For each table.resource entry specified in the RESOURCE() list, the following SQL
statement is executed, and the results displayed:

SELECT SCHEDMODE NAME INTO :dmode dname FROM table

 WHERE NAME LIKE 'resource' {AND SCHEDMODE='mode'}

Override Schedule Manager

Chapter 10: Using Schedule Manager 385

As shown in the previous SQL statement, each table value specified must be a literal
value; each resource value specified could be any valid value specified on an SQL LIKE
keyword. Specify up to twenty table.resource entries in the RESOURCE() list.

Examples:

1. Command (and response) to display the status of Schedule Manager control of
some resources:

SSMSCHED SELECT RESOURCE(CICS_STCTBL.CICS%)

OPR1000I SSMSCHED: SELECT returned RC=00 / SQLCODE=00000 for resource

CICS_STCTBL.CICS%

OPR1000I SSMSCHED: SCHEDMODE=INACTIVE for resource CICS_STCTBL.CICS

OPR1000I SSMSCHED: SCHEDMODE=ACTIVE for resource

CICS_STCTBL.CICSTEST

2. Command (and response) to display only those resources in a table that are under
Schedule Manager control:

SSMSCHED SELECT RESOURCE(CICS_STCTBL.CICS%) SCHEDMODE(ACTIVE)

OPR1000I SSMSCHED: SELECT returned RC=00 / SQLCODE=00000 for resource

CICS_STCTBL.CICS

OPR1000I SSMSCHED: SCHEDMODE=ACTIVE for resource

CICS_STCTBL.CICSTEST

Override Schedule Manager

386 User Guide

Schedule Manager Overrides

You can schedule temporary overrides to all Schedule Manager schedules by creating a
schedule named @OVERRIDE@, which is a reserved name. The @OVERRIDE@ schedule
is automatically merged into all other schedules when they are edited, and it is
automatically merged into the ACTIVE schedule during RESET processing to set the
desired states of resources.

The period names in the @OVERRIDE@ schedule are also reserved and are prefixed
with the characters @OVER. You can only make changes to the @OVERRIDE@ schedule
when editing it directly. If you try to modify @OVERRIDE@ period or link entries when
editing another schedule, then your changes are rejected.

The following Links Control panel shows an example of an @OVERRIDE@ schedule to
turn off all resources except JES2 for one hour every night at midnight. In this example,
an L line command has been executed against the @OVER_MNIT period to display its
links:

Schedule Manager ---------------- Links Control ----------------- System:OPS44R

Command ===> Scroll ===> CSR

CMDS: A D I L LC LD LX + ++ - -- |

-- --------------------------------

___ -@OVERRIDE@ | -ACF2_STCTBL

L__ |-@OVER_MNIT SMTWTFS 0000-0100 | |-STASK

___ |-DEFAULT | OFF | |-ACF2

 | -CICS_STCTBL

 | |-STASK

 | OFF | |-CICS

 | OFF | |-CICSTEST

 | -DB2_STCTBL

 | |-STASK

 | | |-DB2

 | -IMS_STCTBL

 | |-STASK

 | OFF | |-IMS

 | -JES2_STCTBL

 | |-STASK

 | | |-JES2

 | -TSO_STCTBL

 | |-STASK

 | OFF | |-TCAS

 | OFF | |-TCASTEST

 |

Override Schedule Manager

Chapter 10: Using Schedule Manager 387

The following Links Control panel demonstrates the @OVERRIDE@ schedule being
merged into the PRODUCTION schedule:

Schedule Manager ---------------- Links Control ----------------- System:OPS44R

Command ===> Scroll ===> CSR

CMDS: A D I L LC LD LX + ++ - -- |

-- --------------------------------

___ -PRODUCTION | -ACF2_STCTBL

___ |-@OVER_MNIT SMTWTFS 0000-0100 | |-STASK

___ |-WENDLITE S.....S 0800-2000 | | |-ACF2

___ |-WENDDARK S.....S 2000-3200 | -CICS_STCTBL

___ |-EVERYNOON SMTWTFS 1200-1300 | |-STASK

___ |-WEEKDAY .MTWTF. 0800-1600 | | |-CICS

___ |-WEEKEVENING .MTWTF. 1600-2400 | | |-CICSTEST

___ |-WEEKNIGHT .MTWTF. 2400-3200 | -DB2_STCTBL

___ |-THNXLITE03 11/27/2007-11/28 0800-2000 | |-STASK

___ |-THNXDARK03 11/27/2007-11/28 2000-3200 | | |-DB2

___ |-XMASLITE03 12/24/2007-12/25 0800-2000 | -IMS_STCTBL

___ |-XMASDARK03 12/24/2007-12/25 2000-3200 | |-STASK

___ |-XMASALL03 12/25/2007 0000-2400 | | |-IMS

___ |-XMASEVERY 12/25 0000-2400 | -JES2_STCTBL

___ |-DEFAULT | |-STASK

 | | |-JES2

 | -TSO_STCTBL

 | |-STASK

 | | |-TCAS

 | | |-TCASTEST

Override Schedule Manager

388 User Guide

The following State panel demonstrates the @OVERRIDE@ schedule being merged into
the PRODUCTION schedule:

Schedule Manager ----- State at 0030 on 03/31/2007 (MON) -------- System:OPS44R

Command ===> Scroll ===> CSR

 | CMDS: F N R + ++ - --

-- --------------------------------

 - ___ -ACF2_STCTBL

 - ___ |-STASK

 @OVER_MNIT SMTWTFS 0000-0100 - OFF | |-ACF2

 - ___ -CICS_STCTBL

 - ___ |-STASK

 @OVER_MNIT SMTWTFS 0000-0100 - OFF | |-CICS

 @OVER_MNIT SMTWTFS 0000-0100 - OFF | |-CICSTEST

 - ___ -DB2_STCTBL

 - ___ |-STASK

 - ___ | |-DB2

 - ___ -IMS_STCTBL

 - ___ |-STASK

 @OVER_MNIT SMTWTFS 0000-0100 - OFF | |-IMS

 - ___ -JES2_STCTBL

 - ___ |-STASK

 WEEKNIGHT .MTWTF. 2400-3200 - ON_ | |-JES2

 - ___ -TSO_STCTBL

 - ___ |-STASK

 @OVER_MNIT SMTWTFS 0000-0100 - OFF | |-TCAS

 @OVER_MNIT SMTWTFS 0000-0100 - OFF | |-TCASTEST

The user deactivates the @OVERRIDE@ schedule by deleting it or renaming it.

Suppose, for example, that the sample @OVERRIDE@ schedule above was copied to a
schedule named @OVERMNIGHT. Schedule @OVERMNIGHT could then be activated as
the override schedule at any time by copying it or renaming it to schedule
@OVERRIDE@.

SSM@OVER Sample Rule

The SSM@OVER sample command rule allows operators or automated procedures to
maintain temporary fixed date periods in the @OVERRIDE@ schedule in the CA
OPS/MVS Schedule Manager facility. This rule allows you to add, modify, display, or
delete links in the @OVERRIDE@ schedule. You must enable the SSM@OVER sample
rule before you can begin using it.

Override Schedule Manager

Chapter 10: Using Schedule Manager 389

SSM@OVER Command Formats

The SSM@OVER commands and their formats are described below. Keywords are
described in the following section.

■ The SSM@OVER ADD command has the following syntax:

SSM@OVER ADD

 {NAMES(table.resource,...)}

 {STATE(ON|OFF|UP|DOWN|ACTIVE|INACTIVE)}

 {FROM(hhmm)}

 {UNTIL(hhmm)}

 [DATE(mm/dd)]

 [RESET]

Add links with the specified STATE to the specified resource NAMES in the
@OVERRIDE@ schedule. Add the links in a temporary fixed date period with the
specified DATE, the specified FROM start time, and the specified UNTIL end time. If
DATE is not specified, then it defaults to the current date. After the links are added,
perform a Schedule Manager RESET function if RESET was specified.

Examples

1. Command (and response) to add some temporary override links to turn some
resources ON:

SSM@OVER ADD NAMES(CICS_STCTBL.CICS,TSO_STCTBL.TCAS) STATE(ON) FROM(2200)

UNTIL(2400)

OPR1000I PROD.SSM@OVER: Override for CICS_STCTBL.CICS set ON at 2200-2400 03/31-03/31

added to @OVER000001.

OPR1000I PROD.SSM@OVER: Override for TSO_STCTBL.TCAS set ON at 2200-2400 03/31-03/31

added to @OVER000001.

OPR1000I SSM@OVER: Command completed with RC=0.

2. Command (and response) to add some temporary override links to turn some
resources OFF:

SSM@OVER ADD NAMES(CICS_STCTBL.CICSTEST, TSO_STCTBL.TCASTEST) STATE(OFF) FROM(2200)

UNTIL(2400)

OPR1000I SSMQAN.SSM@OVER: Override for CICS_STCTBL.CICSTEST set OFF at 2200-2400

03/31-03/31 added to @OVER000001.

OPR1000I SSMQAN.SSM@OVER: Override for TSO_STCTBL.TCASTEST set OFF at 2200-2400

03/31-03/31 added to @OVER000001.

OPR1000I SSM@OVER: Command completed with RC=0.

Override Schedule Manager

390 User Guide

■ The f SSM@OVER CHANGE command has the following syntax:

SSM@OVER CHANGE

 {NAMES(table.resource,...)}

 {STATE(ON|OFF|UP|DOWN|ACTIVE|INACTIVE)}

 {FROM(hhmm)}

 {UNTIL(hhmm)}

 [DATE(mm/dd)]

 [RESET]

– Change existing links to the specified resource NAMES in the @OVERRIDE@
schedule. Change the links to the specified STATE and move them to a
temporary fixed date period with the specified DATE, the specified FROM start
time, and the specified UNTIL end time. If DATE is not specified, then it defaults
to the current date. After the links are changed, perform a Schedule Manager
RESET function if RESET was specified.

– Example 1: Command (and response) to change a temporary override link from
ON to OFF and move it to a different time on a different day:

SSM@OVER CHANGE NAMES(TSO_STCTBL.TCAS) STATE(OFF) FROM(2100) UNTIL(2300)

DATE(4/1)

OPR1000I PROD.SSM@OVER: Overrides for TSO_STCTBL.TCAS deleted from @OVER000001.

OPR1000I PROD.SSM@OVER: Override for TSO_STCTBL.TCAS set OFF at 2100-2300

04/01-04/01 added to @OVER000002.

OPR1000I SSM@OVER: Command completed with RC=0.

– Example2: Command (and response) to change a temporary override link from
OFF to ON and move it to a different time on a different day:

SSM@OVER CHANGE NAMES(TSO_STCTBL.TCASTEST) STATE(ON) FROM(2100) UNTIL(2300)

DATE(4/1)

OPR1000I PROD.SSM@OVER: Overrides for TSO_STCTBL.TCASTEST deleted from

@OVER000001.

OPR1000I PROD.SSM@OVER: Override for TSO_STCTBL.TCASTEST set ON at 2100-2300

04/01-04/01 added to @OVER000002.

OPR1000I SSM@OVER: Command completed with RC=0.

■ The SSM@OVER DELETE command has the following syntax:

SSM@OVER DELETE

 {NAMES(table.resource,...)}

 [STATE(ON|OFF|UP|DOWN|ACTIVE|INACTIVE)]

 [FROM(hhmm)]

 [UNTIL(hhmm)]

 [DATE(mm/dd)]

 [RESET]

Override Schedule Manager

Chapter 10: Using Schedule Manager 391

Delete existing links to the specified resource NAMES in the @OVERRIDE@
schedule. Optionally, delete only links with the specified STATE, and only those in
the temporary fixed date period with the specified DATE, the specified FROM start
time, and the specified UNTIL end time.

Example: Command (and response) to delete all temporary override links in an SSM
resource table:

SSM@OVER DELETE NAMES(CICS_STCTBL.*)

OPR1000I PROD.SSM@OVER: Overrides for CICS_STCTBL.* deleted from @OVER000001.

OPR1000I SSM@OVER: Command completed with RC=0.

■ The SSM@OVER RESET command has the following syntax:

SSM@OVER RESET

This command causes the main Schedule Manager to perform a RESET function,
resulting in the following:

– The ACTIVE schedule and the @OVERRIDE@ schedule are reevaluated.

– The desired states of System State Manager resources are set as scheduled.

– The next scheduled RESET time (period start or stop) is recomputed.

Example: Command (and response) to have Schedule Manager execute a RESET
function:

SSM@OVER RESET

OPR1000I SSM@OVER: Command completed with RC=0.

■ The SSM@OVER SHOW command has the following syntax:

SSM@OVER SHOW

 {NAMES(table.resource,...)}

 [STATE(ON|OFF|UP|DOWN|ACTIVE|INACTIVE)]

 [FROM(hhmm)]

 [UNTIL(hhmm)]

 [DATE(mm/dd)]

 [RESET]

Show existing links to the specified resource NAMES in the @OVERRIDE@ schedule.
Optionally, show only links with the specified STATE, and only those in the
temporary fixed date period with the specified DATE, the specified FROM start
time, and the specified UNTIL end time. After the links are shown, perform a
Schedule Manager RESET function if RESET was specified.

Example: Command (and response) to show all temporary override links:

SSM@OVER SHOW

OPR1000I PROD.SSM@OVER: TSO_STCTBL.TCAS set OFF at 2100-2300 04/01-04/01 in

@OVER000002.

OPR1000I PROD.SSM@OVER: TSO_STCTBL.TCASTEST set ON at 2100-2300 04/01-04/01 in

@OVER000002.

OPR1000I SSM@OVER: Command completed with RC=0.

Override Schedule Manager

392 User Guide

The following Links Control panel shows the same example @OVERRIDE@ schedule
shown earlier after all of the above example SSM@OVER commands have been
executed. In this example, an L line command has been executed against the
@OVER000002 period to display its links:

Schedule Manager ---------------- Links Control ----------------- System:OPS44R
Command ===> Scroll ===> CSR

CMDS: A D I L LC LD LX + ++ - -- |
-- --------------------------------
___ -@OVERRIDE@ | -ACF2_STCTBL
___ |-@OVER_MNIT SMTWTFS 0000-0100 | |-STASK
L__ |-@OVER000002 04/01 2100-2300 | | |-ACF2
___ |-DEFAULT | -CICS_STCTBL
 | |-STASK
 | | |-CICS
 | | |-CICSTEST
 | -DB2_STCTBL
 | |-STASK
 | | |-DB2
 | -IMS_STCTBL
 | |-STASK
 | | |-IMS
 | -JES2_STCTBL
 | |-STASK
 | | |-JES2
 | -TSO_STCTBL
 | |-STASK
 | OFF | |-TCAS
 | ON | |-TCASTEST
 |

Override Schedule Manager

Chapter 10: Using Schedule Manager 393

Keywords for the SSM@OVER Commands

The keywords for the SSM@OVER commands are:

NAMES

The list of System State Manager resource names to be acted upon. You may
specify up to 20 names. Be sure to separate multiple names with a comma.

Notes:

■ If the table name of the resource is not specified, the first resource table
specified in the current System State Manager resource directory table that
contains the specified resource name is used.

■ An asterisk (*) at the end of the resource name causes all like-named resources
in the table to be selected.

■ An asterisk (*) at the end of the table name is permitted only for the
SSM@OVER DELETE and SSM@OVER SHOW commands to process any
matching table name.

STATE

The desired state for the resource during the period. Values are:

■ ON or OFF

■ UP or DOWN

■ ACTIVE or INACTIVE

FROM

The period start time in hhmm format. You can use the following abbreviations for
hhmm:

■ hh

■ h

■ hmm

UNTIL

The period end time in hhmm format. You can use the following abbreviations for
hhmm:

■ hh

■ h

■ hmm

Override Schedule Manager

394 User Guide

DATE

The period start date in mm/dd format. You can use the following abbreviations for
mm/dd (zeros are added accordingly):

■ m

■ m/d

■ m/

■ /d

Notes:

If the month or day is not specified, then the current month or day is used.

This keyword defaults to the current date when the SSM@OVER ADD and
SSM@OVER CHANGE commands are specified.

RESET

When specified by itself or with another command, this keyword invokes the
scheduler reset function, performing desired state changes according to the active
schedule and any override schedule entries.

You must use the RESET keyword when the SSM@OVER ADD, SSM@OVER CHANGE,
or SSM@OVER DELETE commands have made one or more changes to the override
schedule.

The reset function is not performed automatically after every override change,
allowing for multiple changes and verification prior to the activation of schedule
changes.

Obsolete Override Periods

Obsolete override periods created by the SSM@OVER command rule are automatically
deleted whenever Schedule Manager executes a RESET function. An obsolete override
period is defined as when the ending date of the period is greater than 2 and less than
60 days prior to the current date. Therefore, future overrides may be predefined up to
305 days in advance.

Chapter 11: Using the Relational Data Framework 395

Chapter 11: Using the Relational Data
Framework

This section contains the following topics:

The Relational Data Framework (see page 396)
Why We Chose SQL (see page 396)
Assumptions (see page 396)
The Role of Relational Tables (see page 397)
How the Product Stores Table Data (see page 397)
Tables the Product Provides (see page 398)
Table Restrictions (see page 398)
Reserved Keywords in SQL Statements (see page 398)
Operations Performed With the CA OPS/MVS SQL (see page 400)
What Are the Differences From Standard SQL? (see page 400)
About the Sample Tables (see page 400)
Invoking SQL Statements (see page 401)
Tools for Importing, Exporting, and Backing up Tables (see page 407)
Storing Data in and Requesting Data From Relational Tables (see page 408)
Searched, Cursor, and Table Management Operations (see page 416)
Searched Operations (see page 416)
Use the ORDER BY Clause to Arrange Values (see page 418)
Use the WHERE Clause to Select Values (see page 420)
Use Comparison Predicates in WHERE Clauses (see page 421)
Use IN Predicates in WHERE Clauses (see page 422)
Using LIKE Predicates in WHERE Clauses (see page 423)
Use Expressions and Functions (see page 424)
Join Operations (see page 433)
Using Subqueries (see page 434)
Cursor Operations (see page 436)
Table Management Operations (see page 440)
Use the Relational Table Editor Batch API (see page 443)

The Relational Data Framework

396 User Guide

The Relational Data Framework

The SQL-based Relational Data Framework provided by CA OPS/MVS stores system
information used by AOF rules and automation procedures.

The CA OPS/MVS Relational Data Framework facility lets you use Structured Query
Language (SQL) statements to manage the large amounts of data required by AOF rules
and automation procedures. Instead of using large sets of variables, you can use the
Relational Data Framework to:

■ Collect data

■ Organize the data into a relational table containing rows and columns of related
information

■ Retrieve related data by selecting it from a particular row or column

■ Update data in relational tables

For reference information, see the chapter “Relational Data Framework Reference” in
the Command and Function Reference.

Why We Chose SQL

We chose SQL to manage automation data because of the wide popularity of SQL with
mainframe and PC users. The Relational Data Framework consists of relational SQL
tables plus a subset of the SQL language that conforms to American National Standards
Institute (ANSI) standards. If you already know SQL, you can use the CA OPS/MVS subset
of it right away.

Assumptions

This guide does not attempt to completely explain SQL or relational database concepts;
it assumes that CA OPS/MVS SQL users have previous SQL experience. If you need more
information, consult a book about SQL. One place to start is Understanding the New
SQL: A Complete Guide by Jim Melton and Alan R. Simon (Morgan Kaufmann Publishers).

The Role of Relational Tables

Chapter 11: Using the Relational Data Framework 397

The Role of Relational Tables

The CA OPS/MVS product uses SQL to create a database containing relational tables that
store automation data. Each table contains one or more rows consisting of one or more
columns. The relationship among the tables, rows, and columns of a relational table
resembles the relationship among z/OS data set components, as shown in the following
table:

z/OS Data Set Component Relational Data Framework Equivalent

Data set Relational table

Record Row

Record field Column

In most languages, you map the fields in a record yourself, so you know how the data is
stored and which offset contains a certain field. SQL, however, controls where data goes
in a table. Therefore, with SQL you do not need to know the arrangement of the data,
only the names of the table and the columns where the data is located.

How the Product Stores Table Data

CA OPS/MVS implements its relational tables as a set of global variables. One global
variable stores one row of a relational table, which you can access only through SQL
statements.

The CA OPS/MVS product keeps Relational Data Framework global variables in a
data-in-virtual (DIV) data set. Storing the variables in this way speeds up processing and
allows the Relational Data Framework to operate in a time-sensitive environment. To
have a permanent database for these variables, you must include the SYSCHK1 DD
statement in your CA OPS/MVS startup procedure.

When CA OPS/MVS updates a row in a relational table, the change takes place in main
storage, and occurs quickly. To ensure that the updated information remains safe if the
system fails without warning, the representation of the relational table in main storage
is periodically flushed to the DASD image of the DIV data set. However, updates that
have not been saved to DASD can be lost if the system fails. By default, the flush to
DASD occurs every 15 seconds (the system administrator can adjust this interval), so
data that has changed in 15 seconds of failure may be lost.

When CA OPS/MVS starts up, it loads all relational tables into memory and checks the
integrity of data in the tables. If any data is damaged, CA OPS/MVS either repairs the
damage or marks the affected table as inaccessible.

Tables the Product Provides

398 User Guide

Tables the Product Provides

Since it is so important to know the default values in your tables and the names of the
tables and columns in which your data resides, CA OPS/MVS provides three tables that
describe all CA OPS/MVS relational tables:

■ The table named TABLE contains the names of relational tables.

■ The table named COLUMN defines the columns in each table.

■ The table named DEFAULT contains one row for each table that has default values;
the row contains all of the default values for the table.

You cannot search, delete, or alter the DEFAULT table. The TABLE and COLUMN tables
are data dictionary tables. You can search them, but you cannot delete or alter them.
When you create or alter any other table using the SQL statements described in this
chapter, an entry is made by CA OPS/MVS in the TABLE table for each new table, the
COLUMN table for each new column, and the DEFAULT table for each new default value
(if any were defined).

Table Restrictions

The CA OPS/MVS product supports up to 1000 relational tables. You can define as many
as 100 columns per table, with as many rows as you need. The sum of the width of all
columns cannot exceed 16,000 per table.

Reserved Keywords in SQL Statements

Following is a list of reserved keywords in SQL statements. When specifying columns for
relational tables, do not use these keywords as column names. The list may grow in
future versions of the SQL standard component.

ADD DELETE KEY SCHEMA*

ALTER DESC LEADING SECOND

AND DISTINCT LEFT* SELECT

AS DOUBLE* LIKE SET

ASC DROP LOCK* SMALLINT

AVG ESCAPE LOWER SQLCODE

BETWEEN EXISTS* MAX SQLMSG

BOTH EXTRACT MIN SUBSTR

BY FETCH MINUS* SUM

Reserved Keywords in SQL Statements

Chapter 11: Using the Relational Data Framework 399

BYTE FIRST MINUTE SYNONYM*

BYTES FLOAT* MONTH TABLE

CASE FOR NATURAL* TEMPORARY

CHAR FORMAT NEXT TIME

CHAR_LENGTH FROM NOT TIMESTAMP

CLOSE FULL* NULL TO

COALESCE GLOBAL NUMBER TRAILING

COLUMN GRANT* NUMERIC TRIGGER*

COMMIT* GRAPHIC* OF TRIM

COUNT GROUP ON* UNION*

CREATE HAVING OPEN UNIQUE

CROSS HEX OPTION* UPDATE

CURRENT HOUR OR UPPER

CURSOR IN ORDER USER

DATABASE INDEX OUTER* USING*

DATE INDICATOR POSITION VALIDATE*

DAY INNER* PRECISION* VALUES

DEBUG INSERT PRIMARY VARCHAR

DEC INT PRIOR* VIEW*

DECIMAL INTEGER REAL* WHERE

DECLARE INTO RIGHT* WHILE

DEFAULT IS ROLLBACK* WITH

DEFINITION JOIN ROW WITHIN

 YEAR

* Currently unsupported under CA OPS/MVS. However, these keywords may be
supported in future releases of the product.

Operations Performed With the CA OPS/MVS SQL

400 User Guide

Operations Performed With the CA OPS/MVS SQL

Using the CA OPS/MVS version of SQL, you can perform tasks that create, modify,
access, or delete relational tables. The CA OPS/MVS SQL allows you to perform three
types of operations:

■ Searched operations retrieve, update, or delete data in rows that meet some search
criteria you specify. Through searched operations, the CA OPS/MVS product can
process many rows of a table all at once.

■ Cursor operations retrieve, update, or delete data in a range of rows that you
select, one row at a time. To select rows, you point to them with a cursor.

■ Table management operations manage your tables, including altering, creating, or
deleting them.

More information:

Cursor Operations (see page 436)
Clauses Used in Searched Operations (see page 417)
Table Management Operations (see page 440)

What Are the Differences From Standard SQL?

The CA OPS/MVS version of SQL supports the tasks required to create, modify, access,
and delete tables. It also has several features not offered by standard SQL:

■ The CA OPS/MVS SQL converts numeric values to printable text strings, allowing
you to compare numeric fields and character fields. After removing leading and
trailing blanks from the character string and the converted numeric string, CA
OPS/MVS compares the two strings.

■ The CA OPS/MVS SQL always returns values passed to or fetched from SQL in a
printable format. For example, CA OPS/MVS passes or retrieves values stored in
binary format as a string of numeric digits and retrieves hexadecimal values in a
printable X'n' format.

About the Sample Tables

The rest of this chapter describes what you can do with SQL statements and presents
statement syntax examples. Many of these examples manipulate the sample relational
tables named SYSTEMS and APPLICATIONS.

Invoking SQL Statements

Chapter 11: Using the Relational Data Framework 401

The Sample SYSTEMS Table

The SYSTEMS table contains this information:

ROW NAME CURRENT_ STATE DESIRED_ STATE RECOV_PROC

Row 1 CICS DOWN UP FIXCICS

Row 2 IMS UP UP FIXIMS

The Sample APPLICATIONS Table

The APPLICATIONS table contains this information:

ROW APPL_ID USER_ID UPDATE STATUS

Row 1 APPL1 TSOUSR1 1992-02-13 UP

Row 2 APPL2 TSOUSR2 1992-02-05 DOWN

Row 3 APPL5 TSOUSR8 1992-01-31 DOWN

Row 4 APPL10 TSOUSR22 1992-03-04 UP

Invoking SQL Statements

You can invoke SQL statements from any of these sources:

■ A TSO terminal

■ A TSO/E REXX program

■ A TSO CLIST program

■ An AOF rule running in either the production or the AOF test environment

Note: You may use the AOF test environment to test rules that use ADDRESS SQL
commands without having to set the Live Commands field on the AOF test panels to
YES. All testing occurs on the private test copy of the Relational Data Framework
database. For details, see the chapter “Using the OPSVIEW Editors Option” in the
OPSVIEW User Guide.

■ An OPS/REXX program

For examples, see the chapter “Relational Data Framework Reference” in the Command
and Function Reference.

Invoking SQL Statements

402 User Guide

Restrictions for Cursor Operations

SQL statements that perform cursor operations may be invoked from all of the sources
listed above with the exception of a TSO terminal.

More information:

How the Environment Determines Which Statements Are Permitted (see page 403)
Cursor Operations (see page 436)

Formats for Invoking SQL Statements

To invoke an SQL statement from a TSO terminal, a TSO/E REXX program, or a TSO CLIST,
CA OPS/MVS provides the OPSQL command processor. The SQL statement has a
maximum length of 2048 characters.

Use this format for OPSQL:

OPSQL sqlstatement

Note: Although the abbreviation SQL is an alias of the OPSQL command processor, we
strongly recommend that you specify the complete text of the command. Doing so
prevents confusion that can occur with other products having SQL command processors.

To invoke an SQL statement from an AOF rule (running under the production or the test
facility) or an OPS/REXX program, CA OPS/MVS provides the ADDRESS SQL host
environment. Use this format for ADDRESS SQL:

ADDRESS SQL

 "sqlstatement"

Diagrams that show the detailed syntax of each SQL statement (for example, ALTER
TABLE, CREATE TABLE, and so on) appear later in this chapter. For a list of statements,
see List of SQL Statements in this chapter.

Invoking SQL Statements

Chapter 11: Using the Relational Data Framework 403

How the Environment Determines Which Statements Are Permitted

The environment where you are using SQL determines the kinds of SQL statements you
can invoke:

■ Native TSO sessions or TSO running under ISPF cannot invoke SQL statements that
perform cursor operations. Cursor operations deal directly with REXX and CLIST
variables. Therefore, the CA OPS/MVS product does not allow you to invoke cursor
operation statements from a TSO terminal.

■ TSO/E REXX programs, TSO CLISTs, and OPS/REXX programs (including AOF rules)
can invoke all of the SQL statements CA OPS/MVS supports, including statements
that do cursor operations.

Destinations of SQL-related Error Messages

When an SQL statement is processed, it produces a return code that becomes the value
of a variable named SQLCODE. When the value of the SQLCODE variable is not equal to
0, CA OPS/MVS writes error messages to a particular destination. The destination is
dependent upon the environment from which the SQL statement was invoked.

When you use the ADDRESS SQL host environment to invoke an SQL statement from an
AOF rule or OPS/REXX program, error messages are sent to the external data queue.

When you use the OPSQL command processor to invoke an SQL statement from:

■ A TSO terminal, error messages are PUTLINEd to the terminal.

■ A TSO/E REXX program, error messages are either trapped in stem variables or
PUTLINEd to the terminal, depending on the current setting of the OUTTRAP()
function.

■ A TSO CLIST, error messages are either trapped in &SYSOUTLINE variables or
PUTLINEd to the terminal, depending on the value of &SYSOUTTRAP.

Invoking SQL Statements

404 User Guide

Notes on Performing Cross-system SQL Operations

When you invoke an SQL statement using the ADDRESS SQL format, you can perform
cross-system SQL operations.

Note the following:

■ In terms of return codes and the SQLCODE, there are no differences between local
and cross-system SQL operations. However, if you specify SYSTEM(EXT) or
SYSTEM(ALL), the value of SQLCODE is always 0. You must specify each specific
system, and then check the value of SQLCODE if you need to perform validity
checking. For more information, see Return Codes from ADDRESS SQL Instructions
in this chapter.

■ When performing cross-system operations, error messages are sent to the external
data queue.

■ If you want, you can use the ADDRESS OPSCTL host command environment to send
an SQL command to a remote system. This example illustrates the usage of
ADDRESS OPSCTL in conjunction with ADDRESS SQL (where sqlstatement is any valid
SQL statement):

ADDRESS OPSCTL

 "MSF DEFAULT SYSTEM(SYS1) SYSWAIT(20)"

ADDRESS SQL

 "sqlstatement"

If you choose to use ADDRESS OPSCTL in this way, you may specify only one system
name as the value for the SYSTEM keyword. For more information, see the AOF
Rules User Guide.

Invoking SQL Statements

Chapter 11: Using the Relational Data Framework 405

List of SQL Statements

The SQL statement has a maximum length of 2048 characters. The following table
describes the SQL statements the CA OPS/MVS product supports.

Note: For syntax information, see the chapter “Relational Data Framework Reference”
in the Command and Function Reference.

ALTER TABLE

Adds columns to a table.

Type of operation: Table

Invoke from a TSO terminal: Yes

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

CLOSE

Ends a cursor operation

Type of operation: Cursor

Invoke from a TSO terminal: No

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

CREATE TABLE

Defines a new relational table to CA OPS/MVS.

Type of operation: Table

Invoke from a TSO terminal: Yes

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

DECLARE CURSOR

Defines a cursor operation.

Type of operation: Cursor

Invoke from a TSO terminal: No

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

DELETE FROM

Deletes the current row (in a cursor operation) or rows that meet your selection
criteria (in a searched operation).

Type of operation: All

Invoke from a TSO terminal: Yes

Invoking SQL Statements

406 User Guide

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

DROP TABLE

Deletes a table.

Type of operation: Table

Invoke from a TSO terminal: Yes

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

FETCH

Retrieves all of the column values for the current row.

Type of operation: Cursor

Invoke from a TSO terminal: No

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

INSERT

Inserts a row into a table.

Type of operation: Table

Invoke from a TSO terminal: Yes

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

OPEN

Initiates a cursor operation and executes a SELECT statement.

Type of operation: Cursor

Invoke from a TSO terminal: No

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

SELECT

Retrieves column values in rows that meet your search criteria.

Type of operation: Searched

Invoke from a TSO terminal: Yes

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

UPDATE

Updates column values for the current row (in a cursor operation) or rows that
meet your selection criteria (in a searched operation).

Tools for Importing, Exporting, and Backing up Tables

Chapter 11: Using the Relational Data Framework 407

Type of operation: All

Invoke from a TSO terminal: Yes

Invoke from a TSO/E REXX, TSO CLIST, or OPS/REXX program or from an AOF Rule:
Yes

Tools for Importing, Exporting, and Backing up Tables

The following section contains information on tools for importing, exporting, and
backing up tables.

The READTBL and WRITETBL OPS/REXX Programs

You can use two OPS/REXX programs called READTBL and WRITETBL to do the following:

■ Import and export Relational Data Framework tables from different systems.

■ Make a backup copy of a table.

■ Remove an unwanted column from a table.

Note: For more information, see the chapter “Relational Data Framework Reference” in
the Command and Function Reference.

The OPCRTBDF Subroutine

The OPS/REXX subroutine, OPCRTBDF, is provided for user programs that may want to
copy or save the definition of an existing table in the format of an SQL CREATE TABLE
statement. OPCRTBDF analyzes the structure and defaults of an existing table and
returns a return code and an SQL CREATE TABLE statement with the original table name
or a new table name. The CREATE TABLE statement may be executed or saved as
required. The keyword syntax for this program is contained in the comment section at
the beginning of the program.

Storing Data in and Requesting Data From Relational Tables

408 User Guide

Storing Data in and Requesting Data From Relational Tables

You store automation data in a relational table in one of two ways:

■ By specifying all of the data on an SQL UPDATE or INSERT statement.

The following sample rule clause invokes an UPDATE statement that:

– Looks for a row in the SYSTEMS table where the NAME column contains the
value CICS

– Assigns the values UP and DOWN to the CURRENT_STATE and DESIRED_STATE
columns in that row

ADDRESS SQL

 "UPDATE SYSTEMS SET CURRENT_STATE = 'UP',",

 "DESIRED_STATE = 'DOWN' WHERE NAME = 'CICS'"

In this series of SQL statements, a table named TESTTBL is created, and two rows
are inserted into it:

ADDRESS SQL

 "CREATE TABLE TESTTBL (ACTION_NAME CHAR(17) NOT NULL PRIMARY KEY,",

 "ACTION_TYPE CHAR(8) NOT NULL PRIMARY KEY, ACTION_TEXT CHAR(200))"

ADDRESS SQL

 "INSERT INTO TESTTBL (ACTION_NAME, ACTION_TYPE, ACTION_TEXT)",

 "VALUES ('UNKNOWN', 'TEST1', 'TSOCMD(OPSWTO TEXT(''UNKNOWN FIRED''))')"

ADDRESS SQL

 "INSERT INTO TESTTBL (ACTION_NAME, ACTION_TYPE, ACTION_TEXT)",

 "VALUES ('DOWN_UP', 'TEST1', 'TSOCMD(OPSWTO TEXT(''DOWN_UP FIRED''))')"

■ By having the SQL statement specify host variables containing the values you want
to set. For example, the following sample command tells the CA OPS/MVS product
to place REXX variable values in the CURRENT_STATE and DESIRED_STATE columns:

ADDRESS SQL

 "UPDATE SYSTEMS SET CURRENT_STATE= "CICS.CUR",",

 "DESIRED_STATE = "CICS2.DES" WHERE NAME = '”CICS"'"

More information:

Description of Host Variables (see page 413)

Storing Data in and Requesting Data From Relational Tables

Chapter 11: Using the Relational Data Framework 409

How SQL Statements Pass Values to a Table

An SQL statement passes values in these ways:

■ As strings. You can specify character, numeric, or hexadecimal strings:

– Character strings-These strings always must be enclosed in single quotation
marks. The CA OPS/MVS product does not translate the text in the quotation
marks to uppercase characters, nor does it translate any variable names that
appear in the text. For example, a character string might look like this:

'This is a character string'

– Numeric strings-A numeric string is a sequence of integers. To make the string
represent a negative value (for example, -717), use a minus sign as a prefix.

– Hexadecimal strings-You express a hexadecimal string as shown in the
following example. The xxxx value represents hexadecimal digits.

X'xxxx'

Note: If a hexadecimal string has an odd number of hexadecimal digits, the digits
are right adjusted to form the value. For example, X'123' is the same as X'0123'.

■ As the value NULL. SQL defines this value as a null data value. SQL does not consider
a zero-length character string to be a null value.

■ As host variables. You can use dynamic variables or portions of variables in SQL
statements you invoke from AOF rules or OPS/REXX programs. You also can use a
host variable in any part of an SQL statement where you can use a string value.

■ As a date, a time, a time stamp, or a packed decimal value. Specify these values as
shown in the table that follows.

How SQL Processes Host Variables

If you defined a column as character data, SQL copies the data verbatim from the host
variable. Therefore, the data SQL inserts into the table exactly matches the characters in
the variable.

If you defined a column as numeric data, SQL assumes that the variable is a single
sequence of digits that may have a leading minus sign. SQL ignores leading and trailing
blanks.

If you defined a column as a hexadecimal value, SQL responds as follows:

■ It accepts values in the form X'xxxx'.

■ If the variable value is not in this form, SQL checks to see whether the value
contains only hexadecimal digits 0-9, A-F, or both. If so, SQL converts the variable
value into hexadecimal text.

■ If the variable value does not have the form X'xxxx' or does not contain only
hexadecimal digits, SQL sets the text exactly as is.

Storing Data in and Requesting Data From Relational Tables

410 User Guide

How SQL Processes Null Values

Standard SQL explicitly defines a null state for column values. This means that there may
be no data value set for a column. A null column value for SQL is not the same as it
would be for TSO/E REXX or a CLIST.

When a null table column is displayed, a four-byte NULL string is shown or represented
in the variables.

When setting a column to a null value (that is, a zero length value), do not use a host
variable. Rather, use the value NULL.

For example, to set a null column value in SQL, you could invoke the SQL UPDATE
statement from a rule or an OPS/REXX program as follows:

ADDRESS SQL

 "UPDATE tablename SET colname = NULL..."

When SQL returns a null column value to CA OPS/MVS, it does so by returning a
zero-length text string. This means that a null value looks just like an SQL column value
that is of zero length. In SQL comparative expressions, though, a null column value is
equivalent only to another null column value.

Storing Data in and Requesting Data From Relational Tables

Chapter 11: Using the Relational Data Framework 411

SELECT Statement—Request Data from a Table

You request data from a table through the SELECT statement. For example, to fetch the
current state of the CICS system from the SYSTEMS table, you could include this line in
an AOF rule:

ADDRESS SQL

 "SELECT CURRENT_STATE INTO :CUR_STATE FROM SYSTEMS",

 "WHERE NAME='CICS'"

The syntax for this statement breaks down like this:

■ The ADDRESS SQL command invokes SQL to process the statement.

■ The clause SELECT CURRENT_STATE INTO:CUR_STATE tells CA OPS/MVS to fetch an
item from the CURRENT_STATE column and place it in a REXX variable called
CUR_STATE.

■ The clause FROM SYSTEMS WHERE NAME='CICS' tells SQL which item to fetch from
which table. In this case, the item is the current state value from the row in the
SYSTEMS table where CICS appears in the NAME column.

When this statement executes, CA OPS/MVS sets the following variables:

■ CUR_STATE.0 = 1 (1 is the number of rows selected)

■ CUR_STATE.1 = DOWN (DOWN is the value in the first row selected)

■ SQLCODE=0 (0 is the result of the SELECT statement)

More information:

Specifying Stem Names (see page 414)

Storing Data in and Requesting Data From Relational Tables

412 User Guide

The ADDRESS SQL Environment and Host Variables

Issued through ADDRESS SQL statements, SQL commands such as SELECT and FETCH
create stem REXX variables. For example, suppose that you have this statement:

ADDRESS SQL

 "SELECT NAME FROM MYTABLE"

The statement shown above generates these stem REXX variables:

■ NAME.0 set to the value equaling the number of variables created

■ NAME.1 through NAME.n, each of which is set to a value found in the NAME
column of MYTABLE

Using the ADDRESS SQL statement above, you could write the following REXX code to
display the retrieved NAME column information on your terminal, or to display error
messages if the SELECT statement fails:

ADDRESS SQL

"SELECT NAME FROM MYTABLE"

IF SQLCODE ¬= 0 THEN

 DO

 SAY "ADDRESS SQL HOST COMMAND RET CODE =" SQLCODE

 DO WHILE QUEUED() <> 0

 PULL MESSAGES

 SAY MESSAGES

 END

 RETURN

 END

SAY "Number of Variables Created =" NAME.0

DO I = 1 TO NAME.0

 SAY NAME.I

END

Storing Data in and Requesting Data From Relational Tables

Chapter 11: Using the Relational Data Framework 413

Description of Host Variables

When you fetch information from a relational table through a SELECT statement, CA
OPS/MVS always returns values in the form of host variables unless you invoked the
statement from a TSO terminal.

Note: If you invoke a SELECT statement manually, your TSO terminal displays the
returned values.

What a host variable is depends on how you invoke an SQL statement. For instance, if
you invoke a statement from a rule or an OPS/REXX program, then the host variables
are OPS/REXX variables. Static variables can be used as host variables, but global and
compound variables cannot.

However, you can use this technique:

ADDRESS SQL

 "SELECT XYZ FROM TABLEX WHERE COLDATA='"stem.abc"'"

In this example, REXX evaluates the compound symbol (stem.abc) because it is outside
of the host command string, and substitutes its value in the SQL host command so that
SQL sees a constant value rather than a host variable. This process is slightly more
efficient than having SQL do the host variable resolution. When you use this technique,
you may use global variables as well as compound symbols.

If you invoke a Statement from:

■ TSO/E REXX

■ Host variables are TSO/E REXX variables. OPS/REXX and TSO/E REXX resolve
variables through different methods, so the two environments do not share
common variables.

■ A TSO CLIST

Host variables are CLIST variables.

■ A TSO Terminal Using the OPSQL TSO Command

No variables exist in this context. Therefore, you cannot invoke SQL statements that
require host variables (such as the SQL statements for cursor operations) outside of
a CLIST or some type of REXX program.

A host variable can contain as many as 32,000 characters of data. If you provide no
specific host variable names, CA OPS/MVS uses the names of the columns in the
relational table as variable names. In an SQL statement, you indicate a host variable
(where the host is a REXX program) by prefixing the variable name with a colon (:).

Storing Data in and Requesting Data From Relational Tables

414 User Guide

Specifying Stem Names

As illustrated by the example shown in Requesting Data From a Table in this chapter, for
SQL statements that generate REXX variables, you can specify a stem name. For
example, to fetch information about user names from the TABLE table and insert it into
a series of variables with the stem USER_NAME, use an instruction like the following:

ADDRESS SQL

 "SELECT NAME INTO :USER_NAME FROM TABLE"

Executing this statement produces variable USER_NAME.0, which contains the number
of variables produced by this instruction; and variables named USER_NAME.1 through
USER_NAME.n, which contain user names taken from the database of the Relational
Data Framework.

Return Codes from ADDRESS SQL Instructions

ADDRESS SQL instructions produce a return code in REXX variable RC. RC=0 indicates
that the requested operation was successful. RC=4 indicates that the requested
operation was at least partially successful, but that SQL issued a warning message. RC=8
indicates that the operation failed.

When RC=0, SQLCODE may be set to 0 or 100. An SQLCODE of 0 indicates that the
operation was successful. An SQLCODE of 100 also indicates that the operation was
successful and that the end-of-file (EOF) was reached as a result of the operation.

When RC=4 or 8, one or more messages are stacked in the External Data Queue (EDQ),
and SQLCODE is set to a negative number that identifies the message number of the
first message in the queue. For example, when the first queued message is OPS7407E, a
second message, OPS7463E, may also be queued; however, SQLCODE is set to -7407.

When RC is greater than 8, it indicates that a problem occurred in the interface to SQL.
The nature of the problem is indicated in the following table. EDQ and SQLCODE are not
applicable when RC is greater than 8.

Return Code Description Program Action/Advice

0 Normal completion Check SQLCODE for a possible EOF
indication.

4 Warning completion EDQ contains one or more messages
describing the warning condition and
SQLCODE indicates the number of the first
message.

Storing Data in and Requesting Data From Relational Tables

Chapter 11: Using the Relational Data Framework 415

Return Code Description Program Action/Advice

8 An SQL error occurred EDQ contains one or more messages
describing the error condition, and
SQLCODE indicates the number of the first
message.

20 Interface error The CA OPS/MVS subsystem is not active.

24 Interface error A security rule or the security exit has
rejected the SQL statement.

28 Interface error At CA OPS/MVS startup time, a serious SQL
database error was encountered. As a
result, SQL is unavailable and all requests to
it are denied.

40 Interface error A serious control block error occurred.

50 Interface error An internal SQL abend occurred.

54 Interface error An abend occurred in either the security
interface routine or the security user exit.

60 Interface error The CA OPS/MVS product could not find a
host variable specified in the SQL
statement.

61 Interface error The SQL statement specified an invalid host
variable name.

62 Interface error The SQL statement specified an invalid host
variable name.

63 Interface error The variable name is invalid because it did
not conform to variable naming
conventions.

64 Interface error There is not enough storage to allow access
to host variables.

80 Interface error Invalid system parameter list.

Searched, Cursor, and Table Management Operations

416 User Guide

Searched, Cursor, and Table Management Operations

The CA OPS/MVS product supports SQL statements that define tables to store
automation data and add, change, or reference this data. These statements support
three types of operations:

■ Searched Operations (see page 416)

Searched operations update or delete only the contents of rows that meet some
search criteria you specify. SQL statements that perform searched operations can
process many rows of a table at once.

■ Cursor Operations (see page 436)

Cursor operations update or delete the contents of a range of rows you select
specifically by pointing to them with a cursor. For example, you could invoke a set
of statements to update rows A through E in a table.

Since cursor operations process one row at a time, they are useful for automation
applications written in the REXX or CLIST languages where processing only one row
at a time is desired.

■ Table Management Operations (see page 440)

Table management operations manage your tables, including altering, creating, or
deleting them.

Searched Operations

Searched operations let you retrieve and subsequently update or delete data in rows
that meet some search criteria you specify. You can use these search criteria to compare
values in rows of one table, or to compare values in rows from different tables. You can
invoke searched operations from any of these sources:

■ TSO terminal

■ TSO/E REXX program

■ TSO CLIST

■ AOF rule (running in either the production or the test environment)

■ OPS/REXX program

Searched Operations

Chapter 11: Using the Relational Data Framework 417

Statements Used in Searched Operations

You can specify the WHERE clause and search criteria on four SQL statements-SELECT,
UPDATE, DELETE FROM, and INSERT. When the data in a row meets the search criteria
specified on a WHERE clause, SQL processes that data as follows:

■ If a SELECT statement contains the WHERE clause, then SQL returns the data to the
source that invoked the SELECT statement.

■ If an UPDATE statement contains the WHERE clause, then SQL updates the rows
containing data that matches the search criteria.

■ If a DELETE FROM statement contains the WHERE clause, then SQL deletes the row
containing data that matches the search criteria.

■ If an INSERT statement contains the WHERE clause, then SQL retrieves the values to
be inserted from rows matching the search criteria.

Clauses Used in Searched Operations

When performing search operations, you can use the following clauses:

■ WHERE clause

This is the most commonly used clause in searched operations. The WHERE clause
allows you to specify the conditions that determine which data is to be retrieved
and optionally updated or deleted. The WHERE clause is also used in cursor
operations to search for data.

■ ORDER BY clause

This clause may be used in searched operations. The ORDER BY clause allows you to
specify the order in which values are returned from tables.

Use the ORDER BY Clause to Arrange Values

418 User Guide

Use the ORDER BY Clause to Arrange Values

When you select values from a table without specifying detailed search criteria (as you
would with the WHERE clause), you can get a random listing of elements that are not in
any particular order. If you have a large table, it can be difficult to locate the value you
are after. The ORDER BY clause allows you to order the rows according to the values in
one or more of the columns.

Review the following tips for using the ORDER BY clause:

■ The data type of the column specified in the ORDER BY clause determines how the
rows are ordered. For example, if the SELECT statement in the example had enacted
the ORDER BY clause using the USER_ID column, the rows would have been
arranged in alphabetical order, using the first characters found in the USER_ID
column of each row.

■ You can also arrange the values in descending order by using the DESC operator.
This causes the values to be ordered with the largest value first, descending to the
lowest value.

■ The NULL value is higher than all other values for every data type.

■ If the ORDER BY clause specifies a column that contains duplicate values, then rows
that have the same ORDER BY value are arranged in random order.

To arrange values using the ORDER BY clause

1. The following statement selects all rows from the APPLICATIONS table:

OPSQL SELECT * FROM APPLICATIONS

This statement would retrieve all of the rows of the table. If the table happened to
contain hundreds of entries, you might have a hard time locating a particular user.

2. Include the ORDER BY clause to order the listing by update time, starting with the
oldest update:

OPSQL SELECT * FROM APPLICATIONS ORDER BY UPDATE ASC

Produces this result:

APPL_ID USER_ID UPDATE STATUS

APPL5 TSOUSR8 2009-01-31 DOWN

APPL2 TSOUSR2 2009-02-05 DOWN

APPL1 TSOUSR1 2009-02-13 UP

APPL10 TSOUSR22 2009-03-04 UP

Use the ORDER BY Clause to Arrange Values

Chapter 11: Using the Relational Data Framework 419

The rows are now arranged by ascending values in the UPDATE column. The ASC
operator specified ascending order, which caused it to start with the lowest value
and increase.

The data type of the column specified in the ORDER BY clause determines how the rows
are ordered. For example, if the SELECT statement in the example had enacted the
ORDER BY clause using the USER_ID column, the rows would have been arranged in
alphabetical order, using the first characters found in the USER_ID column of each row.

You can also arrange the values in descending order by using the DESC operator. This
causes the values to be ordered with the largest value first, descending to the lowest
value.

The NULL value is higher than all other values for every data type.

If the ORDER BY clause specifies a column that contains duplicate values, then rows that
have the same ORDER BY value are arranged in random order.

Use the WHERE Clause to Select Values

420 User Guide

Use the WHERE Clause to Select Values

There are various tools that you can use to perform searches using the WHERE clause.
Following is a list of each of these tools:

■ A predicate is an expression that can be true or false and can contain either
uppercase or lowercase characters. You can specify various types of predicates,
including comparison predicates, the IN predicate, and the LIKE predicate.

■ The substring function allows you to retrieve parts of character strings that are to
be used as search criteria. The substring function may be used in conjunction with
the predicates previously mentioned.

■ A join allows you to select values from multiple tables to be used in your search.
You need only specify the table names in your statement; the joining of the tables
actually occurs internally in CA OPS/MVS.

■ A subquery allows you to perform a query function that may be nested in another
expression. Subqueries appear in parentheses in an SQL statement, and they can
use all of the tools previously mentioned.

■ Aggregate functions perform simple numeric calculations, mostly on values in a
specified column in a table.

To select values in a WHERE clause

Use the following syntax:

WHERE

 [NOT]{predicate}

 [AND|OR [NOT] predicate]

Example: WHERE Clause

Suppose you want all rows from the APPLICATIONS table where the last updated date is
equal to 2009-02-13 and the status is equal to UP. To select these rows, use this WHERE
clause:

WHERE UPDATE = DATE '2009-02-13' AND STATUS = 'UP'

By including the NOT operator, you can use a WHERE clause to find all rows except those
that were last updated on February 13, 2009:

WHERE NOT UPDATE = DATE '2009-02-13'

Use Comparison Predicates in WHERE Clauses

Chapter 11: Using the Relational Data Framework 421

Use Comparison Predicates in WHERE Clauses

A comparison predicate is an expression that compares a column name to one of these
values:

■ Another column name

■ A character string

■ A numeric string

■ A hexadecimal string

■ A host variable name

■ NULL

Operators for Comparison Predicates

A WHERE clause containing a comparison predicate uses this syntax:

WHERE colname relationaloperator value

The relationaloperator can be any of the following:

■ = (equal)

■ <> (not equal)

■ > (greater than)

■ >= (greater than or equal to)

■ < (less than)

■ <= (less than or equal to)

Example: Comparison Predicate

Suppose that you invoke this SELECT statement:

SELECT * FROM SYSTEMS WHERE CURRENT_STATE = 'UP'

In this statement, the search criteria is the predicate CURRENT_STATE = 'UP'. This
predicate instructs SQL to select all rows in the SYSTEMS table where the predicate is
true-that is, where the value in the CURRENT_STATE column equals UP. In the SYSTEMS
table, the predicate is true only for the row containing information about IMS, so only
that row is selected.

Now suppose that you alter the predicate in the SELECT statement above so that it
becomes true when the value in the CURRENT_STATE column is not UP. Your revised
statement might look like this:

SELECT * FROM SYSTEMS WHERE CURRENT_STATE <> 'UP'

Use IN Predicates in WHERE Clauses

422 User Guide

The predicate in this new statement tells SQL to select all rows where the
CURRENT_STATE column contains a value other than UP. In the SYSTEMS table, this
predicate is true only for the row containing CICS information. Therefore, SQL selects
only that row when it executes the revised SELECT statement.

Use IN Predicates in WHERE Clauses

The following section discusses the use of IN predicates in WHERE clauses, and using
Boolean expressions.

Comparing One or More Values

An IN predicate compares the column name to one or more strings or host variable
names. Use this syntax to specify an IN predicate:

WHERE colname IN (string | :hostvar,...)

Although you could compare a column name to multiple values using multiple Boolean
ORs, do this more efficiently by including an IN predicate in your WHERE clause. For
example, these two SELECT statements are equivalent:

"SELECT CURRENT_STATE INTO :SYSTEMS_UP",

 "FROM SYSTEMS WHERE NAME IN ('CICS','IMS','VTAM')"

"SELECT CURRENT_STATE INTO :SYSTEMS_UP",

 "FROM SYSTEMS WHERE NAME = 'CICS'",

 "OR NAME = 'IMS' OR NAME = 'VTAM'"

When either statement executes, SQL selects the values in the CURRENT_STATE column
from all rows where the value in the NAME column is CICS or IMS.

Note: The SYSTEMS table does not contain a row where the NAME column has the value
VTAM, so SQL ignores this part of the WHERE clause.

An IN predicate is true only if the column value exactly matches any of the specified
strings or host variable values. For example, suppose that you invoke this SQL
statement:

"SELECT CURRENT_STATE INTO :RECOV_PROC",

 "FROM SYSTEMS WHERE RECOV_PROC IN ('FIX')"

Using LIKE Predicates in WHERE Clauses

Chapter 11: Using the Relational Data Framework 423

When this statement executes, it selects no rows from the SYSTEMS table because the
text string (FIX) does not exactly match any values in the column named RECOV_PROC.
However, if you rewrite the statement as follows, the predicate is true because the
string matches the column contents. In this case, SQL selects both values in the
RECOV_PROC column.

"SELECT CURRENT_STATE INTO :RECOV_PROC",

 "FROM SYSTEMS WHERE RECOV_PROC IN ('FIXCICS','FIXIMS')"

Using Boolean Expressions

If you want to, you can combine predicates into compound Boolean expressions. For
example, you can create a WHERE clause like the following:

"WHERE (NAME = 'IMS' AND RECOV_PROC <> FIXCICS)",

 "OR DESIRED_STATE = 'DOWN'",

 "AND CURRENT_STATE IN ('UP','UNKNOWN')"

The CA OPS/MVS product supports up to three nested levels of Boolean expressions in
parentheses.

Using LIKE Predicates in WHERE Clauses

The following section discusses the use of LIKE predicates in WHERE clauses, comparing
character strings, and use of the ESCAPE keyword.

Comparing Character Strings

A LIKE predicate compares a column to a wildcard value you specify and selects columns
conforming to the wildcard value. Use this syntax for a LIKE predicate:

WHERE colname LIKE 'wildcard'

You must enclose the wildcard value in single quotes. A wildcard can include any
combination of characters and either the percent sign (%) or the underscore (_).

The percent sign denotes any set of characters, including blanks. For example, the
following clause shown selects from the NAME column all of the following values: CIC,
ACICX, ABCIC, CICXYZ.

WHERE NAME LIKE '%CIC%'

Use Expressions and Functions

424 User Guide

The underscore denotes only one character in a specific position. For each character of
column data you do not want to match, the wildcard must include an underscore. For
instance, to find the NAME column in the SYSTEMS table that contains exactly three
characters with M as the middle character, use the following LIKE predicate:

WHERE NAME LIKE '_M_'

The predicate shown above finds the value IMS, the only value in SYSTEMS matching the
wildcard. This predicate does not find other columns with M as their second data
character, such as a column containing the text OMEGAMON. To find that row, you
would use the following LIKE predicate:

WHERE NAME LIKE '_M______'

Using the ESCAPE Keyword

When the percent sign or underscore character is part of the column data you want to
match, add the ESCAPE keyword to your LIKE predicate. The ESCAPE keyword prevents
SQL from interpreting the percent and underscore characters in column text as
wildcards. For example, to find the column containing the characters I_MS, use the
following predicate:

WHERE NAME LIKE 'I#_MS' ESCAPE '#'

Use Expressions and Functions

The following sections discuss how to use expressions, character-oriented functions,
and numeric aggregate functions.

Expressions

An SQL expression is a series of operands related by arithmetic or character string
operators that yields a value that can be used in other SQL clauses as an operand.

Valid operands for expressions are column names, host variables, literals, functions, and
other expressions enclosed by parentheses. Valid operators for numeric expressions are
(+, -, /, *) while character expressions have only the concatenation operator (||). If a
value in an expression is NULL the expression value will be NULL. Numeric and character
operands cannot be mixed in expressions. All operands must match the expected data
type of the resulting value: numeric or character. Date, time, and timestamp data types
are not supported in expressions. Like REXX the conventional rules of operator
precedence and parenthetical evaluation order are applied.

Use Expressions and Functions

Chapter 11: Using the Relational Data Framework 425

The following are some examples of expressions:

Add 1 to an integer column value:

“UPDATE TBL1 SET TOTAL_TIMES = TOTAL_TIMES + 1”

Use a function, literal, and character columns to produce a 'LAST NAME, FIRST NAME'
value into a host variable:

“SELECT TRIM(LAST_NAME) || ', ' || FIRST_NAME INTO :NAME”

Introduction to Functions

Functions may appear in the column list of Select SQL statements or in any SQL
statement clause where expressions are allowed such as the WHERE clause. Generally,
the operands of a character string function can be literal character strings, host
variables, or column names. Hexadecimal columns and literals are treated as character
strings. When a function expression is used as a SELECT value in the column list, the
resulting output variable stem name is function name_n or function name_colname
depending upon the particular function and arguments used. The SQL INTO host
variable list clause can be used to assign definite names to function result values.
Compatible functions may also be nested. Any function value output variables will use
the outermost function as the function name portion of the stem variable name.

Operands of functions should be of the data type expected by the function. If an SQL
NULL column or value is used as an operand, the resulting value is always NULL. Except
for the row COUNT function, aggregate functions such as AVG skip column values that
are NULL. The function result is NULL when all the column values are NULL.

Character-oriented Functions

The optional SUBSTR keyword, specified as part of the search criteria on an SQL
statement, allows that statement to examine or return parts of character strings. Use
the following syntax for the SUBSTR keyword:

SUBSTR (colname FROM xx FOR yy)

The SUBSTR clause fetches from the named column yy characters starting with the
character in position xx. For example, the following SUBSTR clause selects characters 5
through 8 from the RECOV_PROC column of the SYSTEMS table:

SUBSTR (RECOV_PROC FROM 5 FOR 3)

Use Expressions and Functions

426 User Guide

The TRIM Function

The TRIM function removes repeated occurrences of a specific character from the
beginning and/or end of another character string. The return value of the TRIM function
is the resulting character string. This function is very similar to the REXX STRIP function.
The syntax for the TRIM function is:

TRIM(LEADING|TRAILING|BOTH 'trimchar' FROM 'target string'/colname)

The default value for the first keyword is BOTH and the default value for the trim
character is a blank. The statement TRIM('target string'/colname) is equivalent to
trimming leading and trailing blanks from a string value. The FROM keyword is only
required when the trim character is specified.

In this example the character '2' is removed from the end of the USER_ID column value:

“SELECT APPL_ID TRIM(TRAILING '2' FROM USER_ID)

FROM APPLICATIONS WHERE NAME = 'APPL10'”

The REXX variable returned for the TRIM function is:

TRIM_USER_ID.1=TSOUSR

The POSITION Function

The POSITION function returns the integer value of the first location of a search
character string within a target character string. If the search string does not occur in
the target character string, zero is returned. A string of blanks is a valid search string.
The syntax of the POSITION function is:

POSITION('search string'/colname IN 'target string'/colname)

In the following example, the position of a literal string in a column is returned in a
select statement:

“SELECT NAME POSITION('CICS' IN RECOV_PROC) FROM SYSTEMS”

This statement returns the following variables for the POSITION column:

■ POSITION_RECOV_PROC.0=0

■ POSITION_RECOV_PROC.1=3

■ POSITION_RECOV_PROC.2=0

In the following example, the position of a column value in a literal value is used in the
where clause of a select statement:

“SELECT NAME FROM SYSTEMS WHERE POSITION(NAME IN 'XYZ IMS')

> 0”

Use Expressions and Functions

Chapter 11: Using the Relational Data Framework 427

Because the NAME column value of IMS does occur in the literal value specified, the
NAME='IMS' row is selected.

The CHAR_LENGTH Function

The CHAR_LENGTH function returns the length of a character string literal or character
column. For VARCHAR columns the actual used string length is returned. For CHAR
columns the length of the column is returned. For literals the length of the literal is
returned. If a column is NULL, NULL is returned. Output variable names for
CHAR_LENGTH are shortened to simply LENGTH_n. The syntax for this function is:

CHAR_LENGTH('string'/colname)

In the following example, the TRIM function is combined with the CHAR_LENGTH
function to find the used length of the column RECOV_PROC in each row. The following
SQL statement returns the actual length of the data in the column for each row:

“SELECT CHAR_LENGTH(TRIM(RECOV_PROC)) FROM SYSTEMS”

The following array of variables is returned:

■ LENGTH_1.0=2

■ LENGTH_1.1=7

■ LENGTH_1.2=6

The COALESCE Function

The COALESCE function returns the first non-null SQL value of a list of column names or
literals. If all the operands are NULL, the result is NULL. Column and literal operands for
this function must be of the same data type. The syntax is:

COALESCE('string'/colname, 'string'/colname, 'string'/colname, …)

In the following example, assume that only one of the columns of column names COL1,
COL2, and COL3 contains a value for an application in any one row. The remaining
columns are SQL NULL. All the columns could be NULL. The COALESCE function can
display the one value in the columns or a default value.

“SELECT COALESCE(COL1, COL2, COL3, 'NOVALUE') FROM APPLTAB WHERE NAME='APPL10'”

Because this is the first COALESCE function reference in the SQL statement, the REXX
variable stem created for the function value is COALESCE_1. If COL2=YES, then
COALESCE_1.1=YES. If all the columns are NULL, COALESCE_1.1=NOVALUE.

Use Expressions and Functions

428 User Guide

The EXTRACT Function

The EXTRACT function returns the month, day, year, hour, minute, or second value from
a date, time, or time stamp column value or literal. The syntax is:

EXTRACT(timeunit FROM date-time string/column)

where timeunit can have one of the following values:

■ YEAR

■ MONTH

■ DAY

■ HOUR

■ MINUTE

■ SECOND

In this example, rows whose last update month is February are selected using the
extract function in the WHERE clause:

“SELECT NAME FROM APPLICATIONS WHERE EXTRACT(MONTH FROM UPDATE) = 2”

The APPL1 and APPL2 rows are returned.

The LOWER Function

The LOWER function translates a character string literal or column value to all lower
case characters. This function's primary use is in SQL expression evaluation where
character data in a column can be in mixed case. The syntax for this function is:

LOWER('string'/colname)

In the following example, the value of two columns assumed to be mixed-case are
translated into lowercase for comparison.

“SELECT NAME FROM SYSTEMS WHERE LOWER(CURRENT_STATE) = LOWER(DESIRED_STATE)”

Only the NAME='IMS' row is selected.

Use Expressions and Functions

Chapter 11: Using the Relational Data Framework 429

The UPPER Function

The UPPER function translates a character string literal or column value to all upper case
characters. This functions primary use is in SQL expression evaluation where character
data in a column can be in mixed case. The syntax for this function is:

UPPER('string'/colname)

Example: UPPER function

In the following example the value of two columns assumed to be mixed-case are
translated into uppercase for comparison.

“SELECT NAME FROM SYSTEMS WHERE UPPER(CURRENT_STATE) = UPPER(DESIRED_STATE)”

Only the NAME='IMS' row is selected.

Numeric Aggregate Functions

The following section provides a list of numeric aggregate functions, discusses return
values based on numeric calculations, and provides usage information. For use as an
example in the descriptions of the AVG, COUNT, MAX, MIN, and SUM functions, the
following WORKSTATIONS table lists the workstations and their cost:

Workstation Cost

Macintosh IIci 4840

NEC PC386 2520

IBM3270 1200

Macintosh IIcx 4840

Use Expressions and Functions

430 User Guide

Return Values Based on Numeric Calculations

There may be instances when you want to retrieve a value that is based on a
mathematical calculation of a collection of values. Aggregate functions perform simple
numeric calculations, mostly on values in a specified column in a table. SQL NULL
column values are ignored for all aggregate functions except the row count function,
COUNT(*).

For example, the following statement returns the average of the values in the COST
column from the WORKSTATIONS table:

OPSQL SELECT AVG (COST) FROM WORKSTATIONS

Note: This particular function is to be used on numeric data type columns only.

When using the INTO keyword on a SELECT statement, the stem variables created use
the specified variable stem name, as in the following example using the WORKSTATIONS
table:

ADDRESS SQL

“SELECT COUNT (*) INTO VAR FROM WORKSTATIONS”

The above statement results in the following stem variables being created:

VAR.0=1 (the number of values returned)

VAR.1=4 (the number of rows in the table)

When the INTO keyword is not used on a SELECT statement, as in the following
example:

ADDRESS SQL

“SELECT MIN (COST) FROM WORKSTATIONS”

The variables created are:

MIN_COST.0=1 (the number of values returned)

MIN_COST.1=1200 (the lowest value in the COST column)

Note that the compound variable stem names above are created by prefixing the
aggregate function name (MIN), followed by an underscore (_), followed by the column
name (COST).

Use Expressions and Functions

Chapter 11: Using the Relational Data Framework 431

List of Aggregate Functions

Keep this information in mind when using aggregate functions:

■ You can use more than one aggregate function in a SELECT statement, but you must
specify each function separately.

■ To obtain the values of aggregate functions, your SELECT statement must include
values for the INTO keyword. For example, consider the following:

SELECT AVG (COST) COUNT (*) INTO :variable1 :variable2 FROM WORKSTATIONS

There are five aggregate functions provided with CA OPS/MVS:

■ AVG-Returns the average value in a specified column

■ COUNT-Returns the number of rows in a specified table

■ MAX-Returns the maximum value in a specified column

■ MIN-Returns the minimum value in a specified column

■ SUM- Returns the sum of all values in a specified column

AVG Function

The AVG function returns the average of all values in a specified column. For example,
to obtain the average cost of all workstations in the table named WORKSTATIONS, you
could use the following statement:

OPSQL SELECT AVG (COST) FROM WORKSTATIONS

This function would yield a result of 3350.

The AVG function is limited to use on numeric data types only.

COUNT Function

The COUNT function returns the number of rows in a specified table. In the simplest
example, you could count all of the rows in the APPLICATIONS table with this statement:

OPSQL SELECT COUNT (*) FROM WORKSTATIONS

You can also use the WHERE clause in conjunction with COUNT to narrow the scope of
your tally. For example, to count the number of applications in the APPLICATIONS table
that user TSOUSR1 altered, you would use this statement:

OPSQL SELECT COUNT (*) FROM WORKSTATIONS WHERE COST < 3000

Use Expressions and Functions

432 User Guide

MAX Function

The MAX function returns the maximum value in a specified column.

To find the maximum cost of a workstation in the WORKSTATIONS table, you could use
this statement:

OPSQL SELECT MAX (COST) FROM WORKSTATIONS

This yields an answer of 4840.

As you may have noticed, there are two workstations with a cost of 4840. Suppose you
want to retrieve the station and the cost of all of the workstations that have that
maximum cost. You could accomplish this by nesting a subquery in your statement as
follows:

ADDRESS SQL

 "SELECT STATION, COST FROM WORKSTATIONS",

 "WHERE COST = (SELECT MAX (COST) FROM WORKSTATIONS)"

This yields the following result:

Workstation Cost

Macintosh IIci 4840

Macintosh IIcx 4840

MAX is not limited to numeric values, contrary to what it would seem. You can also use
it on characters and dates. When used with character data, MAX means last in
alphabetical order.

Join Operations

Chapter 11: Using the Relational Data Framework 433

MIN Function

The MIN function returns the minimum value in a specified column. For example, to find
the minimum cost of a workstation in the WORKSTATIONS table, use this statement:

OPSQL SELECT MIN (COST) FROM WORKSTATIONS

This yields a result of 1200.

You can also combine the MAX and MIN functions in a single statement, as follows:

ADDRESS SQL

"SELECT MAX (COST), MIN (COST) FROM WORKSTATIONS"

This yields a result of 4840 and 1200.

As with MAX, the MIN function is not limited to numeric data. When used with
character data, MIN means first in alphabetical order.

SUM Function

The SUM function returns the sum of all values in a specified column. For example, to
obtain the total cost of all workstations in the WORKSTATIONS table, use this statement:

OPSQL SELECT SUM (COST) FROM WORKSTATIONS

This would yield a result of 13,400.

The SUM function is limited to use on numeric data types only. All integer and decimal
data types are accepted.

Join Operations

SELECT statements can search for data stored in more than one relational table.
Selecting data from more than one table is called a join operation; it produces a new
temporary table containing all rows and columns of all tables referenced in the SELECT
statement. This temporary table remains in memory only until the SELECT statement
finishes executing.

The following section discusses comparing values from multiple tables, and defining
aliases or correlation values for table names.

Using Subqueries

434 User Guide

Compare Values from Multiple Tables

A single SELECT statement can now contain as many as eight different table references.
Each usage of the same table name in a single statement counts as a separate table
reference.

When using more than one table name in a SELECT statement, consider whether any
column references in that statement clearly indicate to which table each column
belongs. Where necessary, indicate which table each referenced column belongs to by
specifying column names as follows: tablename.colname. A period must separate the
table and column names.

Define Aliases or Correlation Values for Table Names

Referencing several tables in a SELECT statement can make that statement long and
complex. So, you can define aliases or correlation values for table names, using the AS
keyword as shown in the following example:

FROM tablename1 AS alias1, tablename2 AS alias2

You may use a single blank in place of the AS keyword to define an alias or correlation
value for a table. For example, the following statement is equivalent to the preceding
example:

FROM tablename1 alias1, tablename2 alias2

A comma separates distinct table names, in contrast to a blank without a comma, which
separates the original table name from its alias or correlation value.

Once you define an alias or a correlation value for a table name, you can use it in
subsequent parts of your SELECT statement. For example, a WHERE clause like the one
below might follow the clause defining alias1 and alias2:

WHERE alias2.colname1 = tablename2.colname2

 AND alias1.colname1 = tablename3.colname3

Using Subqueries

The following section discusses using subqueries. It explains the purpose of using
subqueries to reduce the amount of table data returned, and provides an example of a
subquery being used on the SELECT statement.

Using Subqueries

Chapter 11: Using the Relational Data Framework 435

Reduce Amounts of Data Returned

On any SQL statement that specifies search criteria, you can use subqueries to reduce
the amount of table data returned. A subquery is a SELECT statement that is part of the
WHERE clause of another statement.

A subquery allows CA OPS/MVS to make decisions based on data values from tables
other than the table currently being accessed. For example, you might want to extract
an application name from the current table only if that name matches a value from a
column in another table.

The following SELECT statement uses a subquery to compare data from the
CURRENT_STATE and DESIRED_STATE columns of the SYSTEMS table to the contents of
the CURRENT_STATE column of another table called CICS_TABLE:

ADDRESS SQL

 "SELECT CURRENT_STATE, DESIRED_STATE FROM SYSTEMS",

 "WHERE CURRENT_STATE = (SELECT CURRENT_STATE FROM",

 "CICS_TABLE WHERE NAME = 'CICSA')"

In the above statement, the subquery defines the current state value for resource CICSA
as the value which data fetched from the SYSTEMS table must match. Assuming that
CICSA has a current state of UP, this statement fetches from SYSTEMS the current and
desired state values from row 2 (both also UP).

A subquery must fetch only one piece of table data, except when the WHERE clause
using that subquery also contains an IN keyword. Subqueries can operate on more than
one column or row. For instance, the following INSERT statement copies every row from
CICS_TABLE into the SYSTEMS table, so long as the column definitions for both tables
are compatible and defined in the same order:

ADDRESS SQL

 "INSERT INTO SYSTEMS SELECT * FROM CICS_TABLE"

Cursor Operations

436 User Guide

Cursor Operations

SQL statements typically alter or fetch data from many rows of a table at once. If 2,000
rows satisfy the search criteria you specify on a statement, CA OPS/MVS processes all
2,000 rows. However, this complicates matters when you invoke SQL statements from
OPS/REXX. When you do not know how much output a statement will generate, it may
become inefficient to assign that output to REXX variables.

SQL (and the CA OPS/MVS product) resolve this problem through a set of statements
that manage cursor operations. In a cursor operation, you specify a range of rows to
update or delete. Starting with the first row, CA OPS/MVS then updates or deletes each
row one at a time until it processes all rows in the range.

You can execute cursor operations from a TSO/E REXX program, a TSO CLIST, an
OPS/REXX program, or an AOF rule. You cannot execute cursor operations from a TSO
terminal.

Statements Used in Cursor Operations

A cursor operation consists of these SQL statements, which you must invoke in the
following order:

1. The DECLARE CURSOR statement. Before you start a cursor operation, you must
invoke a DECLARE CURSOR statement. This special form of the SELECT statement
defines a cursor to point to the rows you want to process. This cursor is a key that
you pass to CA OPS/MVS in subsequent statements so that those statements act
upon the proper rows. The CA OPS/MVS product holds this statement in reserve
until you are ready to process the selected rows.

2. The OPEN statement. To start the cursor operation, you invoke the OPEN
statement. This statement tells CA OPS/MVS to select the first of the rows specified
on the DECLARE CURSOR statement.

3. The FETCH statement. Once you have opened the cursor, the FETCH statement
fetches the values in the first selected row. Using the FETCH statement to access a
row makes that row current. You can then invoke the UPDATE or DELETE FROM
statement to modify or delete that row.

CA OPS/MVS executes one FETCH statement for each row to be fetched, until it has
processed all of the rows in your table or you end the cursor operation.

4. The UPDATE or DELETE FROM statement. The UPDATE and DELETE FROM
statements work in cursor operations as they do when you invoke them alone, with
one exception. When an UPDATE or DELETE FROM statement invoked as part of a
cursor operation contains a WHERE clause, that clause instructs the CA OPS/MVS
product to update or delete the currently selected row.

Cursor Operations

Chapter 11: Using the Relational Data Framework 437

5. The CLOSE statement. This statement ends the cursor operation, telling CA
OPS/MVS to stop processing rows. If you omit the CLOSE statement, the update or
delete operation continues until CA OPS/MVS finishes processing all of the rows in
the table. When CA OPS/MVS processes the last row, it sets the SQLCODE global
variable to 100.

Example: Syntax for Cursor Operations

Because the statements that control cursor operations function in sets, the examples
that follow show groups of statements you invoke together to update or delete rows
one at a time.

Note: You may specify the text ADDRESS SQL on each statement, as shown in Example
2. However, since these statements should follow one another in the order shown, it is
necessary to specify the text ADDRESS SQL only on the DECLARE CURSOR statement, as
shown in the following example.

■ To perform a cursor update operation, invoke this set of statements from an
OPS/REXX program:

ADDRESS SQL

 "DECLARE cursorname CURSOR FOR selectstatement"

 "OPEN cursorname"

 "FETCH cursorname INTO hostvarlist"

 "UPDATE tablename

 SET colname = string | :hostvar | NULL

 [, colname = string | :hostvar | NULL]

 WHERE CURRENT OF cursorname"

 "CLOSE cursorname"

For descriptions of the operands, see the text following Example 2.

■ To perform a cursor delete operation, invoke this set of statements from an
OPS/REXX program:

ADDRESS SQL

 "DECLARE cursorname CURSOR FOR selectstatement"

ADDRESS SQL

 "OPEN cursorname"

ADDRESS SQL

 "FETCH cursorname INTO hostvarlist"

ADDRESS SQL

 "DELETE FROM tablename WHERE CURRENT OF cursorname"

ADDRESS SQL

 "CLOSE cursorname"

cursorname

This is the 1- to 18-character name of the cursor (pointer) that provides a common
reference point for a set of related SQL cursor operation statements.

Cursor Operations

438 User Guide

selectstatement

This is the text of a SELECT statement to execute when you invoke the OPEN
statement. This SELECT statement should use the syntax described in SELECT
Statement in this chapter.

hostvarlist

Used on the FETCH statement, the hostvarlist variable identifies a set of host
variable names to store the selected column values. The order in which you specify
REXX stem names should correspond to the order in which column names are
specified on the DECLARE CURSOR statement.

tablename

This is the table containing the rows to be updated by the UPDATE statement or
deleted with the DELETE FROM statement.

Guidelines for Writing Cursor Operation Statements

The following REXX program outline demonstrates how you might use SQL cursor
operations.

Suppose that you want to examine the SYSTEMS table and write a message to the
operator each time you find a system whose current state is DOWN but should be UP.
You can do this using an SQL cursor operation, invoked by SQL statements in an
OPS/REXX program as follows:

(first few lines of program)

.

.

ADDRESS SQL

 "DECLARE X CURSOR FOR"

 .

 .

ADDRESS TSO

 (TSO command)

 .

 .

ADDRESS SQL

 "OPEN X"

 .

 .

 "FETCH X INTO NAME"

Once the DECLARE CURSOR statement invokes the SQL host environment, subsequent
SQL statements do not need to include the text ADDRESS SQL as long as the program
does not switch to another default host environment.

Cursor Operations

Chapter 11: Using the Relational Data Framework 439

However, because a statement invoking another host environment appears in the
program above (the ADDRESS TSO statement shown before the SQL OPEN and FETCH
statements), you have to invoke the TSO host environment with an ADDRESS statement
and then switch back to the SQL host environment.

You can explicitly declare the host environment on each SQL statement by using the
following form:

ADDRESS SQL 'sqlstatement'

It is a good idea to use the above form in a large program or a program that sends
commands to several different host environments, since you will never send the wrong
command to the wrong environment.

OPS/REXX Program That Demonstrates Cursor Operations

This sample program demonstrates the use of cursor operations:

/*--*/

/* Declare a cursor that will select 3 columns from any */

/* "broken" (CURRENT <> DESIRED) DB2 regions. */

/*--*/

ADDRESS SQL 'DECLARE CSR1 CURSOR FOR',

 'SELECT NAME CURRENT_STATE DESIRED_STATE FROM STCTAB',

 "WHERE CURRENT_STATE <> DESIRED_STATE AND TYPE = 'DB2'"

IF sqlcode <> 0 THEN CALL SQLERROR /* Check return code!*/

ADDRESS SQL 'OPEN CSR1' /* SQL will now get the data */

IF sqlcode = 100 THEN /* Were any rows selected? */

 DO /* No, issue msg & exit */

 SAY 'All resources in table are at desired state'

 EXIT 0

 END

IF sqlcode <> 0 THEN CALL SQLERROR /* Check return code!*/

/*--*/

/* Fetch each selected row, one row at a time. */

/*--*/

DO WHILE SQLCODE <> 100

 ADDRESS SQL 'FETCH CSR1 INTO :NAME, :CURRENT, :DESIRED'

 IF sqlcode = 100 THEN LEAVE /* No more rows, done*/

 IF sqlcode <> 0 THEN CALL SQLERROR /* Check ret code! */

 /* Note that name.1, is returned, not just "name". */

 SAY 'NAME='name.1',',

 'CURRENT='current.1', DESIRED='desired.1

Table Management Operations

440 User Guide

 /*--*/

 /* If CURRENT_STATE is neither UP nor DOWN, update */

 /* this row in the table to set it to UNKNOWN. */

 /*--*/

 IF WORDPOS(current.1,'UP DOWN') = 0 THEN

 DO

 /* Set host variable. This must be a simple */

 /* variable (CURRENT), not a stem (like CURRENT.1)*/

 current = 'UNKNOWN'

 ADDRESS SQL 'UPDATE STCTAB', /* Perform update*/

 'SET CURRENT_STATE = :current',

 'WHERE CURRENT OF CSR1'

 IF sqlcode <> 0 THEN

 CALL SQLERROR /* Check ret code*/

 END

END

ADDRESS SQL 'CLOSE CSR1' /* Be sure to close cursor */

EXIT 0

/* Subroutine to display diagnostic data and exit */

SQLERROR:

PARSE SOURCE . . pgm .

SAY 'SQL error in program 'pgm' called from line 'sigl

SAY 'RC='rc', SQLCODE='sqlcode

ADDRESS SQL 'CLOSE CSR1' /* Be sure to close cursor! */

EXIT 12

Table Management Operations

The following section discusses table management operations.

Where to Perform Table Management Operations

Using the OPSQL command processor, you can perform table operations from a TSO
terminal, a TSO/E REXX program, or a TSO CLIST program. Using the ADDRESS SQL host
environment, you can perform table operations from an AOF rule or any other
OPS/REXX program.

Table Management Operations

Chapter 11: Using the Relational Data Framework 441

Table Management Statements

The following statements let you perform table management operations:

ALTER TABLE

Adds columns to a table

CREATE TABLE

Defines a new table

DELETE FROM

Deletes rows from a table

DROP TABLE

Deletes a table

INSERT

Inserts rows in a table

UPDATE

Updates column values in a table

For more information about the statements described here, see the Command and
Function Reference.

Add Table Columns

To add a column to a table, use the ALTER TABLE statement.

Suppose the APPLICATIONS table needs a column added to it called RET_CODE, which
holds a return code for the last execution of the application. To add this column, issue
this command:

OPSQL ALTER TABLE APPLICATIONS ADD COLUMN RET_CODE CHAR(2)

This example uses a CHAR (character) data type definition, specifying that the column
being added is 2 characters in width. Other valid data types for columns include integer,
small integer, decimal, hexadecimal, date, time, and time stamp.

Table Management Operations

442 User Guide

Define a New Table to the Product

To define a new table, use the CREATE TABLE statement.

For example, this statement defines the SYSTEMS table.

ADDRESS SQL

 "CREATE TABLE SYSTEMS (NAME CHAR(8) PRIMARY KEY,",

 "CURRENT_STATE CHAR(4),",

 "DESIRED_STATE CHAR(4),",

 "RECOV_PROC CHAR(8))"

Delete Table Rows

To delete rows from a table, use the DELETE FROM statement.

For example, to delete all rows from the table APPLICATIONS when the status is DOWN,
issue this command:

ADDRESS SQL

 "DELETE FROM APPLICATIONS WHERE STATUS = 'DOWN'"

Delete a Table

To delete a relational table, use the DROP TABLE statement.

For example, to delete the APPLICATIONS table, issue this command:

OPSQL DROP TABLE APPLICATIONS

Insert a Row into a Table

To insert a row into a relational table, use the INSERT statement.

For example, to add a row into the APPLICATIONS table, issue this command:

ADDRESS SQL

 "INSERT INTO APPLICATIONS",

 "(APPL_ID, USER_ID, UPDATE, STATUS)",

 "VALUES ('APPL33' 'TSOUSR33' DATE '1992-04-15' 'DOWN')"

Use the Relational Table Editor Batch API

Chapter 11: Using the Relational Data Framework 443

Update Values in a Table

To update values in a table, use the UPDATE statement.

Suppose you want to update values in the table APPLICATIONS when the STATUS
column has a value of DOWN. To change the status to UP for these rows, issue this
command:

OPSQL UPDATE APPLICATIONS SET STATUS = 'UP' WHERE STATUS = 'DOWN'

Use the Relational Table Editor Batch API

You can use the relational table editor OPS/REXX program, ASOTEAPI, in a batch API
mode to perform some of the operations that are currently part of the ISPF
menu-driven interface of OPSVIEW option 2.6. Using this API interface instead of
conventional ADDRESS SQL statements can reduce your amount of effort in copying or
changing table structures.

For a description of the batch API functions provided by the ASOTEAPI OPS/REXX
program, see the chapter “Relational Data Framework Reference” in the Command and
Function Reference.

Maintaining Cross-system Serialization

To prevent the simultaneous updating of a relational table by more than one user, the
batch API mode of ASOTEAPI uses the same serialization mechanism as the OPSVIEW
relational table editor. This pseudo ENQ/DEQ mechanism is implemented using global
variables, maintaining cross-system serialization. Thus, any attempt to change a table
using the batch API fails if the table is in use by the ISPF relational table editor user or
another batch API operation. Therefore, you should generally limit the primary use of
the batch API to occasional table modification operations that do not conflict with
normal table usage. If you choose to use the batch API as a part of your production
operations, you should anticipate possible serialization conflicts in the automation
procedure code.

Duplicate Keys

When the batch API is executed in an active ISPF environment, it uses ISPF message
services. When the transfer of relational table rows results in duplicate keys, a panel
may be displayed in the TRANSFER API. Without an active ISPF environment, all
messages are issued using a REXX SAY statement and the duplicate key transfer
operation fails. Therefore, you should be aware of the ISPF status of the environment in
which the batch API is running.

Chapter 12: Editing Relational Tables 445

Chapter 12: Editing Relational Tables

This section contains the following topics:

Use the Relational Table Editor (see page 445)
Use Edit Option Commands (see page 447)
Edit the Structure of a New Table (see page 451)
Edit the Contents of an Existing Table (see page 457)
Edit a Table on Another System (see page 461)
End a Table Editing Session (see page 462)

Use the Relational Table Editor

CA OPS/MVS provides a relational table editor to simplify saving, updating, and fetching
data from relational tables. These relational tables organize the information about your
system that rules and automation procedures collect. You create relational tables
through the CA OPS/MVS Relational Data Framework facility, described in the chapter
“Using the Relational Data Framework.”

The table editor is an ISPF application you can access from the primary menu of the CA
OPS/MVS OPSVIEW Interface. During a table editing session, you can use ISPF dialogs
and panels and ISPF-like edit commands to:

■ Display a list of existing relational tables.

■ Copy an existing table and rename it.

■ Create a new table.

■ Edit the contents of a table.

■ Delete a table.

■ Rename a table.

Note: When you add rows to or delete rows from a table and save your changes, CA
OPS/MVS rearranges the rows in one of these ways:

■ If the table has a primary key, CA OPS/MVS arranges the rows in alphabetical order
by key.

■ If the table has no primary key, CA OPS/MVS arranges the rows in the order in
which they were added.

Note: CA OPS/MVS appends the most recently added rows to the end of the table.

Use the Relational Table Editor

446 User Guide

To access the table editor:

1. Choose CA OPS/MVS from your primary ISPF menu. The CA OPS/MVS OPSVIEW
Primary Option Menu panel appears.

2. Select option 2, Editors.

3. Select option 6, for Table Edit.

Important! The table editor prevents multiple users from editing the same relational
table simultaneously. However, the SQL rules keyword and the SQL, STATESET, and
OPSSMTBL command processors do not prevent simultaneous editing of a table.
Therefore, during your table editing session, rules, CLISTs, REXX EXECs, or other users
may be making changes to the table you are editing but you cannot see these changes.

When you access the table editor, CA OPS/MVS displays the RDF Table Editor Primary
Panel, shown here:

RDF Table Editor --------------- Primary Panel --------------------------------
OPTION ===>
 B - Browse this table C - Copy table
 E - Edit table R - Rename table
 I - Insert new table F - Free table
 D - Delete table T - Transfer table contents

 blank - Display table list

SPECIFY RELATIONAL TABLE (see note below):
 NAME ===> ___________________________ (Required for B, C,D,E,F,R,T)
 NEWNAME ===> ___________________________ (Required for C,I,R,T)
CONFIRM DELETES: YES (Enter YES to require delete confirmation)
NOTE: To use a table on another system specify the table name as system>table
 Specify ? as the system name to get a list of all systems.

This is the main menu for the table editor.

By default, CA OPS/MVS asks you to confirm any requests to delete information from a
table. To delete information without confirming delete requests, specify NO in the
Confirm Deletes field, as shown on the panel above, instead of YES.

To edit a table, do either of the following:

■ Type one of the edit option commands described on this panel.
CA OPS/MVS prompts you to enter the name of the table to copy, delete, edit, free,
browse, or insert in the Name field. The table name goes into the Newname field
when you copy a table. After typing the table name, press Enter.

Use Edit Option Commands

Chapter 12: Editing Relational Tables 447

■ Press Enter without entering a command. CA OPS/MVS displays its Table List panel.
From there, you can choose a table to edit; following is an example of this panel:

 RDF Table Editor ------ RDF Table List for System OPSQA --------- ROW 1 OF 22
 COMMAND ===> SCROLL ===> PAGE
 OPTIONS: Browse Copy Delete Edit Free Insert Rename S(edit) Transfer
 Sel Table New Table
 ___ COLUMN ___________________________
 ___ ABCXYGTBL ___________________________
 ___ DCXA ___________________________
 ___ DCYZSTC ___________________________

This panel lists all relational tables in use at your site and the system where each table
resides.

When working with the Relational Table List panel, you can issue these primary
commands from the command line:

DOWN

Scrolls toward the bottom of the table list.

UP

Scrolls toward the top of the table list.

END

Cancels all pending line commands and exits from this panel.

Use Edit Option Commands

Both the RDF Table Editor Primary Panel and the Table List panel use the edit option
commands listed just below the command line. If you use the RDF Table Editor Primary
Panel, type these commands from the command line and press Enter. If you use the
Table List panel, type one of these commands to the left of the table you want to edit
and press Enter:

B

Browse this table. None of the columns are modifiable. When you enter the B
command, CA OPS/MVS displays the Table Data Editor panel shown in Editing the
Contents of an Existing Table in this chapter. The RDF TABLE and COLUMN tables
are always displayed in browse mode.

C

Copies this table. If you enter this command from either panel, CA OPS/MVS
requires you to type the name of the new table in the Newname field.

Specifying the system name with the table name is optional. If you specify an
asterisk in place of a system name, the table editor displays its System List panel
and allows you to choose one system from the list.

Use Edit Option Commands

448 User Guide

D

Deletes this table. CA OPS/MVS asks you to press Enter a second time to confirm
that you want to delete the table.

E

Edit (modify) this table. When you enter the E command, CA OPS/MVS displays the
Table Data Editor panel shown in Editing the Contents of an Existing Table in this
chapter. From this panel, you can edit the table contents.

Note: To edit a new table, issue the I command instead of the E command.

F

Frees a table. This command releases a table enqueued by another user. This other
user may be on a remote system.

In response to the F command, CA OPS/MVS displays a panel (not shown) reporting
which user on which system has locked the table and asking you to notify that user
before confirming your request to free the table. If the remote user tries to save the
table after you have freed it, the table editor rejects the save request.

I

Insert a table. This command causes CA OPS/MVS to display a panel that asks you to
do one of the following:

Tell CA OPS/MVS to give your new table the standard column definitions for a
System State Manager table.

Enter the name of an existing table that contains the column definitions you want
to use for your new table. Specifying the system name with the table name is
optional. If you specify an asterisk in place of a system name, the table editor
displays its System List panel and allows you to choose one system from the list.

After you tell CA OPS/MVS how to define columns for your new table, CA OPS/MVS
displays the Edit Table Structure panel.

Important!

■ When inserting a new table, do not select a table name beginning with the
characters ATM. This is a prefix, and causes the table to be hidden when you
view tablenames from OPSVIEW.

■ When defining a new table, be sure to define all of the rows and columns you
need. If you forget to add one or more rows or columns when you create a
table, or you want to change the structure of a table, or both, you can do so
only through one of these methods:

– From a CLIST, a REXX EXEC, or foreground TSO, invoke the ALTER TABLE
SQL statement.

– From the table editor, issue the D command to delete the table in error.
Then, issue the I command and redefine the table.

Use Edit Option Commands

Chapter 12: Editing Relational Tables 449

R

Rename a table. CA OPS/MVS asks you for a new table name. Specifying the system
name with it is optional. If you specify an asterisk in place of a system name, the
table editor displays its System List panel and allows you to choose one system
from the list.

blank

If you press Enter from the RDF Table Editor Primary Panel without specifying a
table name, the table editor displays a list of available tables.

S

Select a table. This command takes the same actions as the E (Edit) command.

Point-and-shoot is enabled to issue the E or S line command for any displayed table. To
issue the E or S line command for a displayed table using the point-and-shoot method,
place the cursor in the Sel column to the left of the table name and press the ENTER key.
Point-and-shoot is enabled only if no primary or line commands have been entered.

Use Edit Option Commands

450 User Guide

Protecting System State Manager Tables

The active System State Manager directory table specified by the STATETBL parameter
may not be modified using any table editor commands in ISPF on-line mode. Use the
OPSSMTBL TSO command and OPS/REXX function or the System State Manager control
panel (4.11.1 of OPSVIEW) to modify this table. Browse is the only table editor
command that you can use on System State Manager directory tables.

Active System State Manager resource tables are protected from potentially destructive
command operations of the RDF table editor by requiring or requesting that the target
System State Manager resource table be removed from System State Manager control
before performing an operation that could damage the logical integrity of the resource
table. Potentially destructive operations include:

■ Delete a System State Manager resource table

■ Rename a System State Manager resource table

■ Insert a System State Manager resource table

Note: Insert implies that this table does not currently exist.

■ Copy a table into a System State Manager resource table

■ Transfer a table into a System State Manager resource table

When such an operation is detected, a panel is displayed, asking you if you want to
remove the System State Manager resource table from System State Manager control.
Press Enter to accept the default (Y/YES). The table is removed from System State
Manager control, and the table editor operation is completed.

Note: You can optionally bypass the removal of a resource table from System State
Manager for the copy and transfer operations by the entering N (NO) on this panel.

If the System State Manager resource table was removed from System State Manager
control, a panel is displayed, asking you if you want to return the modified resource
table to System State Manager control. Press Enter to accept. The resource table is
returned to System State Manager with the same properties it had when it was
removed.

Note: When a resource table is returned to System State Manager control using the
OPSSMTBL command, both the current and desired states are set to the UNKNOWN
state. The desired state must be reset to the correct value using either the checkpoint
state value, the System State Manager schedule manager reset function, or by some
programmatic or manual procedure.

When you start the table editor OPS/REXX program ASOTEAPI in batch API mode,
protection of System State Manager resources tables is controlled by the System State
Manager PROT keyword of the API command.

Note: For details on this keyword, see the Command and Function Reference.

Edit the Structure of a New Table

Chapter 12: Editing Relational Tables 451

Edit the Structure of a New Table

You can use the following Table Structure Editor panel to create a new relational table:

Table Structure Editor ---------- SSM>XYZ----------------- COLUMNS 00001 00072
Command ===> Scroll ===> PAGE
COL--> COLUMN-NAME DATA-TYPE ATTRIBUTES DEFAULT
****** **************************** TOP OF DATA ******************************
000001 TABLE_ID CHAR(4) PK
000002 TABLE_NAME CHAR(18)
000003 DESIRED_STATE CHAR(8) NOT NULL UP
000005 DATA_TYPE HEX(2)
000006 DATA_OFFSET SMALLINT
000007 DATA_LENGTH SMALLINT
000008 SCALE SMALLINT
000009 AVMAN HEX(4)
****** *************************** BOTTOM OF DATA ****************************

From this panel, you configure columns for a new table. This sample display shows the
contents of a table called SSM>XYZ.

When defining a new table through the Table Structure Editor panel, follow the same
requirements that you would follow if creating the table using the CREATE TABLE
statement of SQL.

Note: For a detailed discussion of these requirements, see the Command and Function
Reference.

Special Criteria for Column Descriptions

For a column to be null, the first byte of that column must contain the word NULL.
However, you receive error messages if NULL appears in the first column byte and you
defined that column as NOT NULL. A column defined as NOT NULL can contain the word
NULL only if the word begins after the first byte.

If you edit data in the DEFAULT column of a table, CA OPS/MVS reads that data exactly
as you enter it. For example, if you are using the Table Structure Editor panel and you
insert two blanks and a word into the DEFAULT column, the first two characters in the
DEFAULT column remain blank.

Edit the Structure of a New Table

452 User Guide

Primary Commands for Creating Table Structure

To manage your table creation session, you can issue the following primary commands
(similar to ISPF edit commands) from the command line. If a command appears in all
uppercase letters, you must enter the full command name. Otherwise, enter only the
part of the command shown in uppercase.

CANcel

Exits this table creation session without creating the table.

CAPS

Converts the column names you enter to uppercase or lowercase characters. If you
enter the column name in uppercase, the table editor converts data entered in that
column to uppercase. If you enter the column name in lowercase, data entered in
that column remains in the case in which you entered it.

The CAPS command applies only to columns containing character data.

Note: By default, CA OPS/MVS sets the names of columns with non-character data
to uppercase.

Issue one of these versions of the CAPS command:

■ CAPS ON-Sets the names of all character columns to uppercase

■ CAPS OFF-Sets the names of all character columns to lowercase

■ CAPS ASIS-Resets the case of column names to match the case of the data you
entered in those columns

Consider the following when issuing the CAPS command:

■ CA OPS/MVS does not change the case of data in columns containing
unmodified data, no matter which version of the CAPS command you issue.

■ CA OPS/MVS always translates hexadecimal data to uppercase.

■ CAPS ASIS mode is in effect when you first enter an editing session.

Change

Replaces one text string with another:

■ The command C string1 string2 substitutes string2 for this occurrence of
string1.

■ To search forward and change the next occurrence of string1, issue the
command C string1 string2 NEXT.

■ To search backward and change the previous occurrence of string1, issue the
command C string1 string2 PREV.

■ To change all occurrences of string1, issue the command C string1 string2 ALL.

Note: If you substitute an asterisk (*) for one or both of the strings in any of these
CHANGE commands, the table editor uses the string value or values specified on the
previous CHANGE command.

Edit the Structure of a New Table

Chapter 12: Editing Relational Tables 453

DOWN

Scrolls down toward the bottom of the table.

END

Saves changes and exits this editing session.

FIND

Finds a specified text string and places the cursor on that string:

■ To search forward for the string, issue the command
F string NEXT.

Note: The table editor searches forward by default.

■ To search backward for the string, issue the command
F string PREV.

■ To search for the string specified on the last FIND command, issue the
command F *.

To change the direction of a search (but search for the same string), issue the
command F * NEXT or F * PREV.

LEFT

Scrolls toward the left side of the column definitions.

RCHANGE

Repeats the last Change command issued.

RESet

Cancels all pending line commands and removes all SQL error messages from your
screen.

RFIND

Repeats the last Find command issued.

RIGHT

Scrolls toward the right side of the column definitions.

UP

Scrolls toward the top of the table definition.

Edit the Structure of a New Table

454 User Guide

Line Commands for Editing Table Structure

To edit column definitions for a new table, enter these commands in the line number
field, on the line you want to edit:

A

Places the copied or moved data in the table after this column.

B

Places the copied or moved data in the table before this column.

C

Copies this column definition.

CC

Uses this command to select a range of columns for copying. Enter CC beside the
first line and the last line of the range.

D

Deletes this column.

DD

Uses this command to select a range of columns to delete. Enter DD beside the first
line and the last line of the range.

I

Inserts a column.

M

Moves this column.

MM

Uses this command to select a range of columns to move. Enter MM beside the first
line and the last line of the range.

R

Repeats this column.

RR

Uses this command to select a range of columns to repeat. Enter RR beside the first
line and the last line of the range.

TJnnnn

Uses this command to join text, shift it to the left, delete a word, or delete text to
the right of the cursor.

Edit the Structure of a New Table

Chapter 12: Editing Relational Tables 455

TSnnnn

Uses this command to split text or to shift it to the right.

To begin editing a new table, issue I line commands to insert columns and type in the
required data for each column. After you have inserted some columns, you can issue
other line commands to manipulate those columns (for example, to copy or move
columns).

Issuing the TJ and TS Line Commands

The TJ (Text Join) and TS (Text Split) line commands allow you to shift data easily when
you insert or delete data in columns. For example, if you delete data from a column
using the delete key for the ISPF/PDF editor, characters in that column that are beyond
the right side your screen do not move into the space that data vacated. However, if you
use the TJ command to delete characters, the characters in that column beyond the
right border of your screen shift left.

The TJ line command works as follows:

■ It determines where the cursor is.

■ If the cursor is on a non-blank character, it deletes all data between the current
cursor position and the next blank character.

■ It deletes all blank characters until it finds the next non-blank character.

Suppose that you are editing a column called CURRENT_STATE, which contains these
characters:

REGION IS DOWN

You can use the TJ line command to delete text from this column and join the characters
to the left and right of the deleted text. Which characters are deleted depends on where
the cursor is when you issue the TJ command.

For example, the following table shows you how different cursor positions affect the
outcome of a TJ command. The underscore represents the cursor position. On the
second line of the table, the TJ command deletes the word IS because the cursor is on
the first character of that word.

Column Contents Result of TJ Command

REGION_IS DOWN REGIONIS DOWN

REGION IS DOWN REGION DOWN

REGION IS DOWN REGION IDOWN

Edit the Structure of a New Table

456 User Guide

If you insert characters into a column using the insert key for the ISPF/PDF editor,
characters to the right of the inserted characters do not shift beyond the right border of
your screen. However, if you use the TS command to insert characters, CA OPS/MVS
shifts the existing characters as far right as necessary to make space for the new
characters. For example, the following table shows you how different cursor positions
affect the outcome of a TS command. The underscore represents the cursor position.

Column Contents Result of TJ Command

REGION_IS DOWN REGION IS DOWN

REGION IS DOWN REGION IS DOWN

REGION IS DOWN REGION I S DOWN

Usually, when you issue the TJ and TS commands, the table editor shifts data in a
column as far right as possible without deleting any non-blank characters. However, to
shift data past the end of a column and delete the data, you can specify an optional
value (a number from 1 to 9999) with TJ or TS.

You can also use the optional number value when you want to delete or insert a certain
number of characters to the right of (and including) the current cursor position. For
example, if you issue the command TJ6, the table editor deletes the character in the
current cursor position and the next five characters to the right of the cursor.

The following table shows you the results of issuing the TJ command with numeric
values:

Command Cursor Position Result of TJ Command

TJ4 REGION_IS DOWN REGIONDOWN

TJ9999 REGION_IS DOWN REGION (all characters to the left of the
cursor are deleted)

The following table shows you the results of issuing the TS command with numeric
values.

Note: The bar character (|) represents the end of the column.

Command Cursor Position Result of TS Command

TS2 REGION IS DOWN | REGION I S DOWN|

TS99 REGION IS DOWN | REGION I |

Edit the Contents of an Existing Table

Chapter 12: Editing Relational Tables 457

Both the TJ and TS commands affect only the data in the column where the cursor
currently rests. Data in other columns does not change position. For example, suppose
that you issue the command TJ99 but the current column contains only 12 characters.
The TJ command deletes the character in the current cursor position and all characters
to the right of the cursor in the current column. However, any characters in columns to
the right of the current column stay where they are.

Edit the Contents of an Existing Table

To edit the data in an existing table, use the Table Data Editor panel, shown here:

Table Data Editor --------------- TBLNAME ---------------- COLUMNS 00001 00072
Command ===> Scroll ===> PAGE
COL--> TABLE_ID NAME TABLE_NAME COL# DATA_TYPE DATA_OFF
****** *************************** TOP OF DATA ******************************
000001 0001 AVMAN TABLE 12 0300 62
000002 0001 COLUMN_NUMBER TABLE 5 0500 28
000003 0001 CREATE_TIME TABLE 11 0400 58
000004 0001 ID TABLE 2 0100 20
000005 0001 NAME TABLE 1 01A0 2

This example shows you a relational table. If the table contains more columns than fit
on the screen, you can scroll left or right to see the rest of the columns.

Primary Commands for Editing Table Data

The primary commands available to edit table data resemble those used to edit table
structure, except that the commands operate on actual data instead of column
definitions.

The Table Data Editor panel also has an extended set of primary commands. If a
command is shown in all uppercase letters, you must enter the full command name.

CANcel

Exits this table editing session without saving changes, or cancels a request to free a
table.

Edit the Contents of an Existing Table

458 User Guide

Change

Replaces one text string with another:

■ The command C string1 string2 substitutes string2 for this occurrence of
string1.

■ To search forward and change the next occurrence of string1, issue the
command C string1 string2 NEXT.

■ To search backward and change the previous occurrence of string1, issue the
command C string1 string2 PREV.

■ To change all occurrences of string1, issue the command C string1 string2 ALL.

Note: If you substitute an asterisk (*) for one or both of the strings in any of these
CHANGE commands, the table editor uses the string value or values specified on the
previous CHANGE command.

COLUMN

Scrolls the display until the column name specified, colname, is at the far left of the
display area. For example, issuing the command COLUMN PRE positions the first
column name that begins with the characters PRE at the far left of the scrollable
display area.

COPY [system>]tablename

Copies the named table into this edit session. You must specify the A line command
or the B line command with the COPY command.

DOWN

Scrolls toward the bottom of the table.

Note: This command does not work if there is a pending line command or an SQL
error.

END

Saves changes and exits this editing session.

Find

Finds a specified text string and places the cursor on that string:

■ To search forward for the string, issue the command F string NEXT.

Note: The table editor searches forward by default.

■ To search backward for the string, issue the command F string PREV.

■ To search for the string specified on the last FIND command, issue the
command F *.

To change the direction of a search (but search for the same string), issue the
command F * NEXT or F * PREV.

Edit the Contents of an Existing Table

Chapter 12: Editing Relational Tables 459

KEYFIX

Adds a non-scrollable protected area of size nn characters nn/ON/OFF/? containing
as much of the primary key value of the table as will fit in the area. Trailing blanks
are removed from the key values. Multiple key values are separated by a single
blank. A minimum of 19 characters is reserved for a scrollable column area,
regardless of the fixed size specified. If the actual key length is less than the amount
specified, the actual size will be substituted.

■ KEYFIX ON-sets the display area size to the actual key size

■ KEYFIX OFF, KEYFIX0, or KEYFIX-removes the key display area from the panel
and restores the maximum size scrollable area to KEYFIX 0

The last KEYFIX command is stored in the ISPF profile of the user and is used
subsequently to set the initial KEYFIX for all relational displays.

LEFT

Scrolls to the left side of the row.

RCHANGE

Repeats the last Change command issued.

REFRESH

Fetches and displays a new copy of the table data currently being edited. This
command works only if the table data has not changed since you last saved it. If a
rule or another user has altered the table, the REFRESH command produces an
error message.

REPLACE [system>]tablename

Replaces the named table with the data currently being edited. You must specify
one of these line commands with the REPLACE command: C, CC, M, or MM.

RESet

Cancels all pending line commands.

RFIND

Repeats the last Find command issued.

RIGHT

Scrolls toward the right end of the row.

SAVE

Saves the data without ending this table editing session.

UP

Scrolls toward the top of the table.

Note: This command does not work if there is a pending line command or an SQL
error.

Edit the Contents of an Existing Table

460 User Guide

If an SQL error involving the whole table occurs when you issue the END, SAVE, or
REPLACE command, an error message appears at line 3 of the Edit Table Display panel.
You can delete this message only by issuing the RESET command.

If an SQL error involving only one line of a table occurs when you issue the END, SAVE,
or REPLACE command, CA OPS/MVS displays an error number (in the format <nnnn>) in
the line number field for the affected line. CA OPS/MVS also displays the text of the bad
row and the text of the associated error message. To delete the associated error
message, either issue the RESET command or type blanks over the error number in the
line field.

Line Commands for Editing Table Data

From the Table Data Editor panel, you can issue the same line commands that are
available in the Table Structure Editor panel.

More information:

Line Commands for Editing Table Structure (see page 454)

Edit a Table on Another System

Chapter 12: Editing Relational Tables 461

Edit a Table on Another System

When CA OPS/MVS copies are running on two or more systems and communicating
through the CA OPS/MVS MSF or CAICCI cross-platform communications services, you
can edit a relational table residing on a remote system using the table editor on the
local system.

To edit a table on a remote system, you specify both the system name and the table
name on the RDF Table Editor Primary Panel. Separate the system name and the table
name with a greater-than symbol (>) instead of a blank, like this:

systemname>tablename

You can specify the ? and * characters instead of a specific system name. The following
list shows how to use these characters as wildcards:

■ To select one of the tables defined on the current system:

Enter the name of that table.

■ To select a table from a list of tables on the current system:

Enter an asterisk (*), or leave the Name field blank. In response, you see a panel
listing available tables.

■ To select a specific table on another system:

Enter the name of the system followed by the greater-than symbol (>) and the table
name, as shown here:

sysname>tablename

■ To select a list of all systems having defined tables:

Enter the characters ?>* or ?>(blank)

In response, you see a list of systems running CA OPS/MVS. To select one or more
systems, type S beside the system name or names.

Note: You cannot select systems whose status is not active.

Result-You see a list of all relational tables on the selected systems.

■ To select a list of all tables named tablename:

Enter the following text: ?>tablename

This text causes the table editor to display a list of systems running CA OPS/MVS.
After you choose one or more systems, the table editor displays a list of all tables
on the selected systems that have the name tablename.

■ To select a list of all tables on all systems

Enter any of the following character sets:

(blank)>(blank)

(blank)>*

End a Table Editing Session

462 User Guide

*>(blank)

>

■ To select a list of all tables named tablename on all systems:

Enter one of the following:

(blank)>tablename

*>tablename

This text displays a list of all tables with the specified name without displaying a list
of systems.

■ To select a list of all tables on the specified system:

Enter one of the following:

sysname>(blank)

sysname>*

End a Table Editing Session

To end a table editing session, saving any changes that you made to a relational table,
press PF3 or type END at the command line and press Enter. CA OPS/MVS updates the
table automatically and returns you to the RDF Table Editor Primary Panel or the Table
List panel. To return from this panel to the main OPSVIEW panel, press PF3 or type END
again.

To end a table editing session without saving your changes, type CANCEL at the
command line and press Enter. Your session ends, leaving your table unchanged.

Chapter 13: External Product Interface 463

Chapter 13: External Product Interface

This section contains the following topics:

Overview (see page 463)
Install the EPI (see page 466)
Display Virtual Terminal and EPI Session Information (see page 471)
Shut Down the EPI (see page 473)
ops--Use OPS/REXX to Drive EPI Virtual Terminals (see page 474)
REXX Use of the Virtual Terminal Temporary Ownership Mechanism (see page 479)
EPI Host Command Descriptions (see page 479)
OPS/REXX Programming Tips (see page 495)
EPI Failure Recovery (see page 498)
Security Considerations (see page 500)
OMMVS—Sample OMEGAMON Interface Routine (see page 502)
CA7MVS—Sample CA 7 Interface Routine (see page 506)

Overview

The External Product Interface, or EPI, allows CA OPS/MVS systems running on
processors that use VTAM to interface with any VTAM application that supports IBM
3270 (SLU2) type virtual terminals. The EPI appears to VTAM as a real 3270 terminal that
can emulate any number of 3270 type virtual terminals connected to any number of
VTAM applications.

Note: The EPI supports virtual IBM 3278 models 2, 3, and 4 only. Extended attributes
and programmed symbols are not supported in the initial release. For information about
the OPSVIEW panels that control EPI virtual terminals, see the OPSVIEW User Guide.

The OPS/REXX programming language enables you to automate operator actions and
tasks; REXX programs can drive 327X sessions with other VTAM applications.
Specifically, the EPI enables you to create REXX programs to:

■ Log on to a VTAM application.

■ Enter commands and data from a virtual terminal keyboard.

■ Read data from the virtual terminal screen.

■ Log off from VTAM.

In addition, the EPI gives you a way to share a session. For example, a single session with
OMEGAMON (running in VTAM mode) can be shared by multiple OPS/REXX programs
without requiring each program to go through the logon/transaction/logoff sequence.
Through a mechanism similar to ENQ/DEQ logic, used to share data sets between z/OS
tasks, the EPI enables you to share VTAM sessions between OPS/REXX programs.

Overview

464 User Guide

How the EPI Manages VTAM Applications

Together with the Automated Operations Facility (AOF), you can use the EPI to interact
with VTAM applications in the following specific ways:

■ A message is issued from a message rule.

■ A command is issued.

■ An OMEGAMON event occurs from an OMEGAMON rule.

■ A user-initiated event occurs from a request rule.

■ A time of day event occurs from a TOD rule.

Components List

The EPI consists of the following components:

■ A host command environment for the OPS/REXX language (ADDRESS EPI)

■ A control panel (option 4.10 of OPSVIEW) that allows you to control and monitor
the EPI facility

■ An extension to AOF that supports screen rules

■ Sample OPS/REXX programs (such as CA7MVS, OMMVS, OPEPCM, and OPEPDFAL
located in data set SYS1.OPS.CCLXEXEC) that demonstrate the use of the EPI

Overview

Chapter 13: External Product Interface 465

EPI Terminology

The EPI is not complicated, but to use it you should understand the following terms:

VTAM application

A VTAM application is an application known to VTAM by its VTAM application ID.

External product

An external product is an application or group of applications external to CA
OPS/MVS with which the EPI can communicate. Usually each external product uses
a single VTAM application ID, but this is not always true. A single product can use
multiple VTAM application IDs, or a single VTAM application ID can give access to
multiple external products.

Note: The EPI communicates only with external products that support IBM 327X
type virtual terminals under VTAM. The EPI establishes sessions only with
applications that are in the same VTAM domain as CA OPS/MVS or which are
accessible as resources from that domain.

Virtual terminal

A virtual terminal is anything that looks like a physical terminal to VTAM. In this
sense, the EPI emulates a physical terminal.

Disabled virtual terminal

A disabled terminal is not connected to VTAM (no ACB is open for it) and cannot
communicate or establish a session with any external product. Disabling a virtual
terminal is the equivalent of shutting the power off on a physical terminal.

Enabled virtual terminal

An enabled terminal is connected to VTAM (an ACB is open for it). An enabled
virtual terminal can establish a session with any external product, or can be in
session with an external product.

Active virtual terminal

A virtual terminal is active when it is enabled and has established a session with an
external product.

Note: After the EPI establishes a VTAM session with an external product, the
external product can present a prompt sequence for signon information. While the
EPI shows that a session has been established at that point, the external product
cannot consider the session established.

Session

An EPI session is a logical connection through a VTAM session between CA
OPS/MVS and an external product. The EPI communicates only with an external
product if a session exists between the two products.

Install the EPI

466 User Guide

Install the EPI

You cannot start the EPI automatically at product initialization and then leave it alone;
this is because the EPI communicates with other VTAM applications that may be active
when the EPI (CA OPS/MVS) starts. The EPI depends on VTAM availability, unlike the rest
of CA OPS/MVS. The following discussion assumes that you operate the EPI manually.
However, to automate any EPI operation task that you perform regularly and manually,
you should make the maximum use of the CA OPS/MVS AOF component.

Take the following steps to prepare to use the EPI:

1. Add and activate virtual terminal definitions to VTAM.

This step adds APPL statements to the VTAM definition library and activates these
definitions in VTAM.

2. Define virtual terminals to the EPI.

This step notifies the EPI of the virtual terminal names it should use, their
characteristics, and which external products they will be used to logon to (see the
EPI DEFINE command).

3. Enable the virtual terminal or terminals.

This step connects the virtual terminals to VTAM (see the EPI ENABLE command).

4. Log the virtual terminal onto an External Product.

This step establishes the connection between the virtual terminal and an external
product (see the EPI LOGON command).

These steps are discussed in detail in the following sections.

Define Virtual Terminals to VTAM

You can install and initialize most of the EPI. However, virtual terminal APPLs must be
written to VTAM when CA OPS/MVS is installed or must be active before you define the
virtual terminals to the EPI. If the terminals already have VTAM IDs, continue to define
the terminals to the EPI.

Note: For details about writing APPLs, see the Installation Guide.

Install the EPI

Chapter 13: External Product Interface 467

Define Virtual Terminals to the EPI

Once CA OPS/MVS has been initialized, you must define the virtual terminals to the EPI.

To define virtual terminals to the EPI, use one of the following methods:

■ Use the OPEPDFAL routine provided in the REXX distribution library to define all
terminals under a given VTAM major node.

■ Use the DEFALL command under option 4.10 of OPSVIEW to define all terminals
under a given VTAM major node.

■ Write an OPS/REXX program to issue an EPI DEFINE command for each terminal.

■ Use option 4.10 of OPSVIEW to manually define each terminal.

OPEPDFAL Routine—Define All Terminals to the EPI

The OPS/REXX program OPEPDFAL can be called from any REXX program to define all
terminals to the EPI under a given VTAM major node.

This routine takes one argument, a character string composed as follows:

RETCODE = OPEPDFAL('majnode keywords')

majnode

The name of the VTAM major node (see the VBUILD statement discussed
previously).

keywords

Any keywords allowed on the EPI DEFINE command.

Example: OPEPDFAL Routine

This example defines all APPLIDs under VTAM major node name OPSSAPPL as virtual
terminal names under the EPI, using a VTAM logmode table entry named T3278M3:

RETCODE = OPEPDFAL('OPSSAPPL LOGMODE(T3278M3)')

Install the EPI

468 User Guide

DEFALL Command—Define All Terminals in OPSVIEW

While viewing the terminal list under option 4.10 of OPSVIEW, you can issue the DEFALL
command to define all terminals under a given VTAM major node name.

This command has the following syntax:

DEFALL majnode keywords

majnode

The name of the VTAM major node (see the VBUILD statement discussed
previously).

keywords

Any keywords allowed on the EPI DEFINE command.

Example: DEFALL Command

This example will define all APPLIDs under VTAM major node name OPSSAPPL as virtual
terminal names under the EPI:

DEFALL OPSSAPPL LOGMODE(T3278M3)

Write an OPS/REXX Program

You can write a small OPS/REXX program to define each virtual terminal to the EPI.

For example, this defines three virtual terminals to the EPI:

ADDRESS "EPI"

 'DEFINE OPSS0001 LOGMODE(T3278M3)'

 'DEFINE OPSS0002 LOGMODE(T3278M3)'

 'DEFINE OPSS0003 LOGMODE(T3278M3)'

Note: For detailed information about the EPI DEFINE command, see the Command and
Function Reference.

Use the EPI DEFINE Command

Issue an EPI DEFINE command for each virtual terminal you intend to use. You can issue
the command automatically using the AOF, or from any OPS/REXX program.

Install the EPI

Chapter 13: External Product Interface 469

Enable Virtual Terminals

After you have defined a virtual terminal to the EPI, it should be enabled.

To enable virtual terminals

Issue the following EPI ENABLE command automatically using the AOF, or from any
OPS/REXX program:

ENABLE keywords

When one of these commands is issued, the EPI issues a VTAM OPEN ACB request.

Option 4.10 of OPSVIEW provides a panel to accomplish this same task.

Note: For descriptions of the keywords for the ENABLE command, see the Command
and Function Reference.

Log a Virtual Terminal onto an External Product

Once you enable a virtual terminal through the EPI ENABLE command, you can log the
virtual terminal onto an external product.

To log a virtual terminal onto an external product

Issue the following EPI LOGON command automatically using the AOF, or from any
OPS/REXX program:

LOGON keywords

When this command is issued, the EPI issues a VTAM REQSESS request.

For descriptions of the keywords for the LOGON command, see the Command and
Function Reference.

Install the EPI

470 User Guide

Define and Activate EPI Sessions

This procedure builds an EPI configuration consisting of three virtual terminals.

To define and activate EPI sessions

1. Execute the following REXX program once CA OPS/MVS has completed initialization:

EPI DEFINE OMTERM1,APPLID(OMVTAM) LOGONPARM()

EPI DEFINE TSOTERM1 APPLID(TSO) LOGONPARM('TSOID1')

EPI ENABLE ALL

EPI LOGON ALL

The above example defines three virtual terminals, enables all of them, and logs all
of them to their respective external products.

Example: Define and activate EPI sessions

The following ADDRESS EPI example does the following:

■ Defines a specific terminal name (CA7TERM1)

■ Enables all terminals

■ Logs the CA7TERM1 on to its external product

■ Enables and logs on all other terminals but does not assign them to a specific
external product

ADDRESS EPI

 DEFINE CA7TERM1,APPLID(CA7)

 ENABLE ALL

 LOGON CA7TERM1

External Products Acquiring Virtual Terminals

As soon as the EPI ENABLE command is issued for a virtual terminal, an external product
can acquire that terminal. The external product initializes and activates the terminal
instead of the terminal being activated by an EPI LOGON command.

The ACCEPT/REJECT setting of a virtual terminal determines whether the EPI allows a
particular virtual terminal to be acquired by any external product. The default value of
ACCEPT, indicates that any external product will be allowed to acquire the virtual
terminal. The operand REJECT prevents any attempt to acquire the terminal.

Display Virtual Terminal and EPI Session Information

Chapter 13: External Product Interface 471

Display Virtual Terminal and EPI Session Information

You can display the virtual terminals defined to the EPI and their status, by issuing the
EPI LIST command from a REXX program:

ADDRESS EPI "LIST keywords"

Note: For descriptions of the keywords for the LIST command, see the Command and
Function Reference.

Display Virtual Terminal Status

A virtual terminal can have the following status:

DISABLED

The virtual terminal has been defined but is not running a session. An ENABLE and
LOGON command are necessary to start a session.

ENABLED

The virtual terminal has been defined and enabled, but no session is active on it. A
LOGON command or an external product acquire request is necessary to start a
session.

ACTIVE

The virtual terminal has been defined and enabled and a session with an external
product is active. A DISABLE command is necessary to disable the virtual terminal.

RETRYING

The virtual terminal has been defined and enabled, but a LOGON command did not
complete successfully, or a session was in progress and terminated prematurely and
RETRY mode was in effect. The EPI will attempt to reestablish the session up to the
maximum number of retries allowed. A DISABLE command takes the virtual
terminal out of service. A LOGON command reestablishes the session before the
next retry attempt.

Display Virtual Terminal and EPI Session Information

472 User Guide

EPI LIST Command

The following is a sample display of the information returned by the EPI LIST ALL
command:

 VTAM VTAM === RETRY === VTAM
TERMINAL USERNAME STATUS APPLNAME LOGMODE SECS MAX NOW RTNCD FDBK2
-------- -------- ------ -------- -------- --- --- --- ----- -----
OMTERM1 ACTIVE OMVTAM T3278M2 30 30 0 X'00' X'00'
OMTERM2 ENABLED OMCICS T3278M3 30 30 0 X'10' X'01'
CA7TERM RETRYING CA7 T3278M4 30 4 2 X'10' X'00'
OPS00001 ACTIVE TSOTULD T3278M3 NO RETRY X'00' X'00'
OPS00002 ACTIVE TSOIPD0 T3278M2 NO RETRY X'00' X'00'

This display shows the following information:

■ Five virtual terminals have been defined.

■ The first virtual terminal (OMTERM1) is enabled and in session with an external
product whose VTAM application name is OMVTAM.

■ The second virtual terminal (OMTERM2) is enabled but not in session with any
external product.

■ An EPI LOGON command at this point would attempt to establish a session with an
external product whose VTAM application name is OMCICS.

■ The third virtual terminal (CA7TERM) is enabled and has a problem establishing a
session to an external product whose VTAM name is CA7.

■ This virtual terminal was defined with RETRY mode for a maximum of four retries.
The EPI is retrying to establish the session. So far the EPI has retried twice to
establish the session.

■ An attempt to establish a session failed with a VTAM RTNCD of 10 and FDBK code of
0. For a detailed explanation of these codes, see your VTAM Programming guide.

Note: Like any part of the z/OS environment, you can operate the EPI with the AOF. If
the NORETRY and RETRY options supported by the EPI are not sufficient to establish EPI
sessions and keep them active in your environment, you can program more
sophisticated procedures using the same AOF environment control facilities.

Shut Down the EPI

Chapter 13: External Product Interface 473

Following is sample output from the EPI LIST OMTERM1 command:

 VTAM VTAM === RETRY === VTAM
TERMINAL USERNAME STATUS APPLNAME LOGMODE SECS MAX NOW RTNCD FDBK2
-------- -------- ------ -------- -------- --- --- --- ----- -----
OMTERM1 ACTIVE OMVTAM T3278M2 30 30 0 X'00' X'00'
LOGONPARM =
ROWS = 24
COLUMNS = 80
VTAM SENSE = 00000000
MAX RCVE RU SIZE = 512
MAX SEND RU SIZE = 512
ACCEPT
NORETRY
TRACE&=&OFF
ENQ USER=TSOUSER1 ASCB=X'00F31C00' TCB=X'007E83C0'
ENQ USER=TSOUSER2 ASCB=X'00F32C00' TCB=X'008E8440'

Shut Down the EPI

To shut down the EPI facility, do one of the following:

■ Log off each active virtual terminal.

■ Disable all virtual terminals.

The procedure to log off a virtual terminal that is in session with an external product
depends on the external product. For example, to log off from TSO, you must get to TSO
READY mode, and then type in the TSO LOGOFF command at the virtual terminal.

A quick shutdown can be accomplished by merely disabling all virtual terminals with the
EPI command:

DISABLE ALL

This action takes all virtual terminals out of service.

Note: The DISABLE ALL command should be used with caution. One or more of your
external products can require a proper logoff sequence before a virtual terminal is
disabled.

ops--Use OPS/REXX to Drive EPI Virtual Terminals

474 User Guide

Disable Virtual Terminals

When you disable a virtual terminal, it can no longer communicate between the
external product the terminal was in session with and the EPI.

To disable an EPI virtual terminal and kill any session in progress

1. Issue the following EPI DISABLE command from a TSO virtual terminal or from a
console logged on to the CA OPS/MVS ECF facility:

DISABLE keywords

Communications are cut between the external product the terminal that was in
session with and the EPI. Any commands in progress over the EPI session are
aborted and a message is issued that indicates that the virtual terminal was
disabled.

For descriptions of the keywords for the DISABLE command, see the Command and
Function Reference.

Delete Virtual Terminal Definitions

You can delete the definition of a virtual terminal (previously added with an EPI DEFINE
command).

Note: You cannot delete a definition for a virtual terminal on which a session is active
until you have disabled the virtual terminal using EPI DISABLE.

To delete virtual terminal definitions

Issue the following EPI DELETE command:

DELETE keyword

You need to issue this command only if you want to change the name of a virtual
terminal. To change any other virtual terminal characteristic, use the EPI DEFINE
command.

For descriptions of the keywords for the DELETE command, see the Command and
Function Reference.

ops--Use OPS/REXX to Drive EPI Virtual Terminals

Once an EPI virtual terminal has logged onto an external product, you can use the
OPS/REXX ADDRESS EPI environment to drive the session. This environment provides a
set of commands that you can use to read information from the virtual 3270 screen and
enter information from the virtual 3270 keyboard.

ops--Use OPS/REXX to Drive EPI Virtual Terminals

Chapter 13: External Product Interface 475

Issue ADDRESS EPI Host Commands

To issue commands to the EPI from an OPS/REXX program, you must code an ADDRESS
statement of the form:

ADDRESS EPI

For clarity, the word EPI can be specified as the first word of each host command, but
this is not required. The following host commands are functionally equivalent:

LIST TERM1

'LIST' TERM1

'LIST TERM1'

EPI LIST TERM1

EPI 'LIST' TERM1

The first and simplest form is the one that is used in all of the examples.

General Syntax Rules of ADDRESS EPI

ADDRESS EPI command syntax, the same as other REXX statements, is as follows:

■ The EPI supports words with a generated length of up to 64 characters.

■ All words can be in uppercase, lowercase, or mixed case. If they convey literal
information, all words must be placed in quotes.

■ Symbols, integers, quoted strings, hex strings, and comments are all supported.

■ Numbers are restricted to integers.

Output from ADDRESS EPI Host Commands

Output from the EPI host commands is always returned in the REXX external data
queue.

The commands that can generate multiple lines of output are:

■ LIST

■ HELP

■ PEEK

■ RDSCREEN

■ TYPETEST

ops--Use OPS/REXX to Drive EPI Virtual Terminals

476 User Guide

ADDRESS EPI Return Codes

Subsequent to execution of an ADDRESS EPI command in a REXX program, the variable
RC in the program will contain the execution return code.

<0

Host command failure. An ABEND occurred while processing the EPI command.

0

OK. Command executed successfully.

>0

Host command errors.

4

Warning message was issued.

8

Command timeout error. Not all responses were received. The command took too
long to complete.

12

Command failed. An error message was issued.

16

EPI command syntax error.

20

Subsystem is not active. CA OPS/MVS is not running.

24

Incompatible subsystem version.

28

SENDMG failed.

32

Authorization exit rejected EPI command.

36

User exit abended.

ops--Use OPS/REXX to Drive EPI Virtual Terminals

Chapter 13: External Product Interface 477

ADDRESS EPI Output Message Identification

Each line stored in the external data queue contains a message identification section in
the first eight positions.

OPSnnnna

 OPS = fixed text

 nnnn = four numeric characters

 a = the message i.d. suffix

 I - information

 A - action

 W - warning

 E - error

 S - severe error

 U - unrecoverable error

 H - hardcopy

Range 0075 thru 0076 is reserved for messages from OPINEP

Range 3550 thru 3589 is reserved for messages from OPEPEX

Range 4380 thru 4399 is reserved for messages from OPRXEP

ops--Use OPS/REXX to Drive EPI Virtual Terminals

478 User Guide

Syntax of Selected ADDRESS EPI Words

The following describes the syntax of selected EPI words.

■ The following syntax is the name of the virtual terminal:

termname

The termname can exist in one of the following three different forms:

– A single character * representing the current virtual terminal defined with the
SETTERM command.

– The name of the virtual terminal as defined to VTAM (the name from the APPL
statement in the VTAM definition list.); this name can be from one to eight
characters long

– The name assigned by the SETUNAME command

■ The following syntax is the screen row number:

Row

The top row is row 1. Operator information area (OIA) is row 0 (even though it is
physically on the bottom of the screen).

■ The following syntax is the screen column number.

Col

The leftmost column of any screen row is col 1.

■ The following syntax is the length of the data to be displayed:

Length

■ The following syntax indicates that the string is either ON or OFF:

ON|OFF

Any string starting with Y (that is, YES) is the same as ON. Any string starting with N
(that is, NO) is the same as OFF.

REXX Use of the Virtual Terminal Temporary Ownership Mechanism

Chapter 13: External Product Interface 479

REXX Use of the Virtual Terminal Temporary Ownership
Mechanism

For some operations, you should consider a virtual terminal as a serially reusable
resource. For example, when two REXX programs use the same virtual terminal to issue
a sequence of OMEGAMON commands, problems occur if both programs try to issue
the commands at the same time. The mechanism of temporary ownership exists to
alleviate this type of problem. Temporary ownership basically locks the terminal to a
specific program until it is released. Ownership is either of the following:

■ implicit

■ explicit

Implicit

As the REXX program is being run, virtual terminal ownership is implicitly obtained
whenever the program issues a command requiring the virtual terminal. Ownership
is released as soon as the command has executed.

Explicit

A REXX program can first explicitly issue the ENQ or BIND command to establish
virtual terminal ownership, and then use the virtual terminal for a series of
commands, and finally issue the DEQ or UNBIND command to release ownership.

EPI Host Command Descriptions

The next sections describe the EPI host commands. They are:

■ Special host commands

■ Virtual terminal host commands

■ Other host commands

Special EPI Host Commands

The EPI host commands in this section affect the output format of all other host
commands.

At the start of execution of any REXX program or AOF rule, the following defaults are in
effect for the program.

MSGID ON

This default causes the message IDs to be prefixed to each output line returned in the
EPI external data queue.

EPI Host Command Descriptions

480 User Guide

SUBATTR 64 OFF

This default returns all attribute bytes as values between X'20' and X'3F' (no translation).

SUBUNPT : ON

This default returns all unprintable characters as colons.

Detailed explanations of the special host commands are presented next.

MSGID [ON|OFF]

This command turns the OPS message prefix in output lines ON or OFF. Output lines
with a message prefix are nine characters longer than those without one. Message
prefixes are comprised of an eight-byte message ID and a trailing blank.

Default: ON

Note: The program return code indicates the value of the setting before the command
was issued. A subroutine can be used to temporarily alter the value, and then restore
the environment to its former state. For example:

mysubroutine:

 MSGID OFF

 saved_value = rc

 IF saved_value = 1 then

 MSGID ON

 Else

 MSGID OFF

 return

Following are the return codes:

0

Normal completion, former setting was MSGID OFF

1

Normal completion, former setting was MSGID ON

EPI Host Command Descriptions

Chapter 13: External Product Interface 481

SUBATTR [sub_char] [ON|OFF]

This command affects the way the RDSCREEN and RDSCRROW commands return
information.

If you specify a single character operand (sub_char), the SUBATTR command sets the
substitute character to be used for all host attribute byte characters. The argument can
be a single character or a numeric value in the range 0 through 255 corresponding to
the EBCDIC value of the desired character. The program return code indicates the value
the setting before the command was issued. A subroutine can be used to temporarily
alter the value, and then restore the environment to its former state. If you specify OFF,
attribute characters are not translated.

If you specify ON, attribute characters are translated. This reverses the effect of a
previously issued SUBATTR OFF command.

Default: OFF

Note: The SUBATTR command only affects the output returned from the RDSCREEN and
RDSCRROW commands. Attribute bytes are not actually modified on the screen of the
virtual terminal by this command.

The following example sets the value to a percent sign:

SUBATTR %

Return codes represent the EBCDIC equivalents of the previous SUBATTR value.

EPI Host Command Descriptions

482 User Guide

SUBUNPT [sub_char] [ON|OFF]

Use this command to affect the way the RDSCREEN and RDSCRROW commands return
information.

If you specify a single character operand (sub_char), the SUBUNPT command sets the
substitute character to be used for unprintable characters. The argument can be a single
character or a numeric value in the range of 0 through 255 that corresponds to an
EBCDIC value. The program return code indicates the setting value before the command
was issued. A subroutine can be used to temporarily alter the value, and then restore
the environment to its former state.

If you specify OFF, unprintable characters are not translated. If you specify ON,
unprintable characters are translated. This reverses the effect of a previously issued
SUBUNPT OFF command.

Default: OFF

The SUBUNPT command only affects the output returned from the RDSCREEN and
RDSCRROW commands. Unprintable characters are not actually modified on the screen
of the virtual terminal by this command.

The following example sets the value of SUBUNPT to a slash:

SUBUNPT / ON

Return codes represent the EBCDIC equivalents of the previous SUBUNPT value.

SUBSYS ssid

Use this command to direct all subsequent EPI host commands from the current
OPS/REXX program to an EPI other than that using the default CA OPS/MVS z/OS SSID of
OPSS. You will only need this command if you are running multiple copies of CA
OPS/MVS at once and are, therefore, using multiple SSIDs.

Note: This command is not allowed in any AOF rules with the exception of request rules.

ssid

This operand is the four-character z/OS subsystem identifier (SSID) of the copy of CA
OPS/MVS. All subsequent EPI host commands from the current OPS/REXX program are
directed to this subsystem until another EPI SUBSYS command is encountered.

The following example directs all subsequent EPI commands to subsystem OPSM:

SUBSYS OPSM

EPI Host Command Descriptions

Chapter 13: External Product Interface 483

TIMEOUT seconds

Use this command to change the default timeout value. Usually, the EPI waits for 60
seconds before timing out. When a timeout occurs, the message EPI COMMAND TIMED
OUT BEFORE ALL RESPONSES RECEIVED is returned in the external data queue. If you
want to wait a longer or shorter interval for subsequent EPI commands to time out, use
the TIMEOUT command to specify a different value (in seconds).

Seconds

The number of seconds (from 1 to 86400) to wait before subsequent EPI commands will
time out. The following example will change the timeout value for all subsequent EPI
commands to two minutes (120 seconds):

TIMEOUT 120

EPI Host Command Descriptions for Virtual Terminals

Use the following EPI host commands to control virtual terminals.

CHANGE [termname|ALL|*] keywords

Use the CHANGE command to change the attributes of a previously defined terminal.
Any of the parameters used to define a terminal can be changed later with a CHANGE
command.

ADDRESS EPI "CHANGE keywords"

For descriptions of the keywords for the CHANGE command, see the Command and
Function Reference.

DEBUG [ON|OFF]

Turns VTAM exit debugging on or off. When DEBUG mode is on, the EPI will write a
message to hardcopy every time a VTAM exit is entered.

Default: OFF

DEBUG ON

EPI Host Command Descriptions

484 User Guide

DEFINE termname keywords

This command is explained in full in a previous section.

DEFINE TERM1 APPLID(OMVTAM) LOGMODE(T3278M2)

Return code:

 0 - Terminal now defined.

 4 - ALL cannot be used as a terminal name.

12 - DEFINE command failed. An error message was issued:

 Terminal name is blank.

 Username or terminal name already defined.

DELETE termname

This command is explained in full in a previous section.

DELETE TERM2

Return code:

 0 - Terminal(s) now deleted.

 4 - DELETE command was not executed. A warning message was issued:

 No disabled terminals were found to delete (DELETE ALL).

 Terminal name not found.

 Terminal is enabled.

12 - DELETE command failed. An error message was issued.

DEQ termname [FORCE]

Use this command to release ownership (dequeue) of the virtual terminal. If you specify
the FORCE operand, it forces the current ownership to be released (even if the program
current program does not have ownership). The FORCE operand should be used with
extreme caution.

Note: This command is not allowed in any AOF rules with the exception of request rules.

DEQ TERM2

Return code:

 0 - DEQ completed successfully.

 4 - DEQ command was not executed. A warning message was issued:

 No enabled terminals were found to deq (DEQ ALL).

 Terminal name not found.

 Terminal is disabled.

12 - DEQ command failed. An error message was issued:

 No ENQ was found.

 Error posting next enq in chain.

EPI Host Command Descriptions

Chapter 13: External Product Interface 485

DISABLE termname

Use this command to disable a virtual terminal. This is equivalent to placing the
TEST/NORM switch to the TEST position. Following is an example of the command and
its associated return codes:

DISABLE TERM1

Return code:

 0 - Normal completion.

 4 - No terminals disabled (DISABLE ALL).

 - Terminal is not defined.

 - Terminal is already disabled.

ENABLE termname

Use this command to enable a virtual terminal. This is equivalent to placing the
TEST/NORM switch to the NORM position. Following is an example of the command and
its associated return codes:

ENABLE *

Return code:

 0 - Normal completion.

 4 - No terminals enabled (ENABLE ALL).

 - Terminal is not defined.

 - Terminal is already enabled.

 12 - ENABLE failed. Error msg was issued.

EPI Host Command Descriptions

486 User Guide

ENQ termname [TEST|WAIT|NOWAIT]

Use this command to enqueue a virtual terminal or test for terminal ownership. Note
that this command is not allowed in any AOF rules with the exception of request rules.

The operands have the following meanings:

WAIT

If you specify WAIT or no operand, control is not returned until the virtual terminal
is owned.

TEST

If you specify TEST, control is returned immediately and the return code is set to
indicate the ownership status.

NOWAIT

If you specify NOWAIT, ownership of the virtual terminal is assigned if it is
immediately available; otherwise, no ownership is assigned.

Note: You must perform multiple ENQs in ascending order by terminal name.

If DEQ is not called after an ENQ, the virtual terminal is automatically dequeued when
the REXX program ends.

ENQ TERM1

Return code:

 0 - Normal completion:

 For WAIT - ownership has been assigned.

 For TEST - terminal was available without wait.

 For NOWAIT - ownership has been assigned.

 4 - ENQ command not executed. A warning message was issued.

 No enabled terminals found to ENQ (ENQ ALL).

 Terminal is not defined.

 Terminal is disabled.

 You are already enqueued on terminal.

 You already have an ENQ pending for this terminal.

 12 - ENQ failed. An error message was issued.

 Terminal is already enqueued by another user.

 Conflict with another ENQ you issued previously.

 ENQ request area GETMAIN failed.

EPI Host Command Descriptions

Chapter 13: External Product Interface 487

INQINPUT termname [WAIT|NOWAIT]

This host command is helpful before you use the TYPE command to ensure that the
virtual keyboard is not locked (the Input Inhibited indicator is off). A TYPE command
issued when the virtual keyboard is locked is usually rejected (the TYPE !RESET and TYPE
!ATTN being the notable exceptions). If you specify neither WAIT nor NOWAIT, NOWAIT
is assumed. When you specify NOWAIT, the current state of the input inhibit flag is
returned immediately. When WAIT is coded, the issuing program will be placed into a
wait until the external product turns off input inhibited.

Note: If you want to force the input inhibit light off, you can issue a TYPE command as
follows:

TYPE termname !RESET

This resets the input inhibited indicator. It is possible, however, that the external
product will immediately turn the indicator back on.

Note: This command is not allowed in any AOF rules with the exception of request rules.

An example of the command and its associated return codes follows:

INQINPUT *

Return code:

 0 - Input is not inhibited.

 1 - Input is inhibited.

 Most scancodes (except !RESET) will not work.

 4 - virtual terminal is not defined.

 12 - virtual terminal is not enabled.

 - INQINPUT command failed.

You can use the LIST host command to get a list of all or selected virtual terminals
before you issue control commands.

EPI Host Command Descriptions

488 User Guide

LIST [termname|ALL|*]

The LIST command displays the status of virtual terminals. If an operand is omitted, all
defined virtual terminals are displayed. If you specify ALL, then all virtual terminals are
displayed. If you specify a termname, only the selected virtual terminal is displayed.

Note: This command runs synchronously in AOF rules and will return data in the
external data queue.

LIST ALL

 VTAM === RETRY === VTAM

TERMNAME USERNAME STATUS APPLNAME LOGMODE SECS MAX NOW RTNCD FDBK2

-------- -------- ------ -------- ------- --- --- --- ----- -----

OMTERM3 OMEGAMON ACTIVE OMVTAM T3278M3 30 30 0 X'00' X'00'

OMTERM1 OMVTAM ACTIVE OMVTAM T3278M3 30 30 0 X'00' X'00'

OMTERM2 OMCICS ENABLED OMVTAM T3278M3 30 30 0 X'10' X'01'

CA7TERM CA7 RETRYING CA7 30 4 2 X'10' X'00'

OPSS0001 TSO ACTIVE TSO NO RETRY X'00' X'00'

OPSS0002 TSO ACTIVE TSO NO RETRY X'00' X'00'

 Or

LIST OMTERM3

 VTAM === RETRY === VTAM

TERMNAME USERNAME STATUS APPLNAME LOGMODE SECS MAX NOW RTNCD FDBK2

-------- -------- ------ -------- ------- --- --- --- ----- -----

OMTERM3 OMEGAMON ACTIVE OMVTAM T3278M3 30 30 0 X'00' X'00'

Return code:

 0 - Normal completion.

 4 - No terminals defined (LIST ALL).

 - Terminal is not defined.

LOGON termname [keywords]

This command is described in detail in a previous section.

MSGID OFF

LOGON TERM4

TERMINAL TERM4 LOGON ACCEPTED

Return code:

 0 - Normal completion.

 4 - No terminals logged on (LOGON ALL).

 - virtual terminal is not defined.

 - virtual terminal is disabled.

 - virtual terminal is already logged on.

 12 - LOGON command failed.

EPI Host Command Descriptions

Chapter 13: External Product Interface 489

LOGOFF termname

This command disconnects the session between an external product and the virtual
terminal. After the command completes, the virtual terminal is inactive, but enabled.

MSGID OFF

LOGOFF TERM4

TERMINAL TERM4 LOGGED OFF

Return code:

 0 - Normal completion.

 4 - No terminals logged off (LOGOFF ALL).

 - virtual terminal is not logged on.

 - virtual terminal is not defined.

 12 - LOGOFF command failed.

MVCURSOR termname row column

Moves the cursor to a specific row and column on the screen.

MVCURSOR TERM1 1 1

Return code:

 0 - Command completed successfully.

 4 - MVCURSOR command not executed. Warning message was issued:

 Terminal name is not defined.

 Terminal is disabled.

12 - Invalid row/column specified.

PEEK termname row col length

Use this command to display virtual terminal screen buffer contents. This command
displays the raw buffer code in hexadecimal. Sixteen bytes are displayed in hexadecimal
for each output line.

The typical use of this command is to interrogate 3278 host attribute bytes or to
examine the Operator Information Area (Row 0). This buffer code is returned in EBCDIC
format by the PEEK command. The ranges X'20' through X'3f' are attribute bytes. For an
easier way to read the screen, see the RDSCRROW and RDSCREEN commands. The
following example shows the beginning of the TSO READY message. The first 24 is a
high-intensity unprotected attribute byte. The next five characters are READY in 3278
buffer code. The next 20 is a low-intensity unprotected attribute byte.

This command runs synchronously in AOF rules and will return data in the external data
queue.

EPI Host Command Descriptions

490 User Guide

PEEK * 22 1 30

24 D9 C5 C1 C4 E8 20 00 00 00 00 00 00 00 00 00 *.READY..........*

00 00 00 00 00 00 00 00 00 00 00 00 00 00

Return code:

 0 - Normal completion.

 4 - virtual terminal is not defined.

 - virtual terminal is not enabled.

 12 - Invalid row/column/length specification.

 The row or column is larger than the screen size

 or the length spans beyond the end of the screen.

POKE termname row col poketext

Use this command to modify virtual terminal screen buffer contents.

Note: Row zero (the Operator Information Area line) cannot be updated with POKE
under the EPI.

WARNING! This host command can wreak havoc with the 3270 terminal protocols. It is
intended solely for debugging purposes.

The operand Poketext is a REXX hex-string in quotes. The value is the actual 3278 buffer
code. See the note about 3278 buffer code in the PEEK command above. The following
example pokes the string READY at row 22, column 2:

POKE TERM4 22 2 "D9 C5 C1 C4 E8 20"x

 0 - Normal completion.

 4 - POKE command was not executed. A warning message was issued.

 Virtual terminal is not defined.

 Virtual terminal is disabled.

 12 - POKE command failed. An error message was issued.

 Invalid row/column/length specified for screen size.

RDCURSOR termname

This command returns cursor location. The location of the cursor is returned as two
numbers, row, and column.

Note: This command runs synchronously in AOF rules and will return data in the
external data queue.

MSGID ON

RDCURSOR TERM3

OPS3582I 23 1

Return code:

 0 - Normal completion.

 4 - RDCURSOR command was not executed. A warning message was issued.

 Terminal name is not defined.

 Terminal name is disabled.

EPI Host Command Descriptions

Chapter 13: External Product Interface 491

RDSCREEN termname

This command returns the entire virtual terminal screen as multiple output lines. The
first output line is the operator information area, which is the status line at the bottom
of the display screen. The remaining lines are the contents of the screen starting with
the top row.

Note: This command runs synchronously in AOF rules and will return data in the
external data queue.

In the following example, the SUBATTR and SUBUNPT commands affect which
characters are used as substitutes for attribute bytes and unprintable characters:

MSGID ON
RDSCREEN TERM4
OPS3581I
OPS3581I -------------- ISPF/PDF PRIMARY OPTION MENU ---------------------
OPS3581I OPTION ===>
OPS3581I _
OPS3581I USERID - TSOUSER
OPS3581I 0 ISPF PARMS - Specify terminal and user parameters TIME - 15:35
OPS3581I 1 BROWSE - Display source data or output listings TERM - 3278
OPS3581I 2 EDIT - Create or change source data PF KEYS - 24
OPS3581I 3 UTILITIES - Perform utility functions
OPS3581I 4 FOREGROUND - Invoke language processors in foreground
OPS3581I 5 BATCH - Submit job for language processing
OPS3581I 6 COMMAND - Enter TSO command or CLIST
OPS3581I 7 DIALOG TEST - Perform dialog testing
OPS3581I C CHANGES - Display summary of changes for this release
OPS3581I T TUTORIAL - Display information about ISPF/PDF
OPS3581I X EXIT - Terminate ISPF using log and list defaults
OPS3581I
OPS3581I
OPS3581I
OPS3581I
OPS3581I
OPS3581I
OPS3581I Enter END command to terminate ISPF.
OPS3581I
Return code:
 0 - Normal completion.
 4 - RDSCREEN command not executed. A warning message was issued.
 Virtual terminal is not defined.
 Virtual terminal is disabled.

This command places the screen contents into the REXX external data queue, one line
per screen row. The first line in the external data queue is the operator information area
line (the bottom status line on a real terminal). Screen row 1 is returned as line 2 in the
queue, screen row 2 as line 3, and so on. The number of lines added to the data queue
equals the number of screen rows plus one.

Due to the MSGID OFF command, these lines will not be prefaced with the OPSnnnn
message ID.

EPI Host Command Descriptions

492 User Guide

RDSCRROW termname row

The selected row is returned as one output line.

This command runs synchronously in AOF rules and will return data in the external data
queue.

MSGID ON

RDSCRROW TERM1 24

OPS8042I READY

Return code:

 0 - Normal completion.

 4 - RDSCRROW command not executed. A warning message was issued.

 Virtual terminal is not defined.

 Virtual terminal is disabled.

 12 - Invalid row specified.

SETMODEL termname model

Use this command to set the model number to 2, 3, or 4. If the virtual terminal is
enabled, this command will internally disable the virtual terminal, set the model
number, and then enable the virtual terminal.

SETMODEL TERM1 3

Return code:

 0 - Normal completion.

 4 - virtual terminal is not defined.

Important! We strongly recommend you do not use this command because it will be
removed in a future release.

SETTERM termname

Use this command to set the current virtual terminal. Subsequent commands with a
termname of '*' will refer to this virtual terminal. When the REXX program begins, the
current virtual terminal as used by REXX is set as the current virtual terminal undefined.

SETTERM TERM1

Return code:

 0 - Normal completion.

EPI Host Command Descriptions

Chapter 13: External Product Interface 493

SETUNAME termname [user_termname]

Use this command to set the user-defined name for a virtual terminal. To remove the
current user-defined name, omit the second argument.

SETUNAME TERM1 CICS

SETUNAME TERM1

Return code:

 0 - Normal completion.

 4 - SETUNAME command not executed. A warning message was issued.

 Virtual terminal name is not defined.

 12 - User name is already defined.

TRACE termname [ON|OFF]

The TRACE command is used to turn terminal tracing on or off. When terminal tracing is
on, messages are written to hardcopy to display RPLs and buffers being sent and
received.

TRACE TERM1 ON

Return code:

 0 - Normal completion.

 4 - TRACE command not executed. A warning message was issued.

 No terminals found to trace (TRACE ALL).

 Terminal name is not defined.

TYPE termname 3278_keyboard_text

Use this command to simulate typing at a 3278 keyboard. The operand consists of literal
text and host key names. For a detailed description of HOSTKEYS and TYPE, see
OPS/REXX Programming Tips in this chapter.

TYPE TERM1 !HOME!ERASE_EOF=x!ENTER

Return code:

 0 - Normal completion.

 4 - TYPE command not executed. A warning message was issued.

 virtual terminal is not defined.

 virtual terminal is not enabled.

 12 - Invalid keystroke (typing in protected field or

 when keyboard is inhibited for input).

EPI Host Command Descriptions

494 User Guide

TYPESEC termname 3278_keyboard_text

Use this command to simulate typing at a 3278 keyboard. It is exactly the same as the
TYPE host command with the exception that this command does not write anything to
the OPSLOG. It is provided to keep passwords from appearing in the OPSLOG.

TYPESEC TERM1 !HOME!ERASE_EOFsecret!ENTER

Return code:

 0 - Normal completion.

 4 - TYPESEC command not executed. A warning message was issued.

 virtual terminal is not defined.

 virtual terminal is not enabled.

 12 - Invalid keystroke (typing in protected field or

 when keyboard is inhibited for input).

TYPETEST termname 3278_keyboard_text

This command is provided for debugging a TYPE command. Instead of actually
simulating the typing at a 3278 keyboard, the resulting keystrokes are returned as
output lines, one for each key.

TYPETEST * !HOME!BACKTAB!ERASE_EOF'K E,D'!ENTER

 0 04 HOME

 0 0C BACKTAB

 0 08 ERASE_EOF

 0 7D '

 0 D2 K

 0 40

 0 C5 E

 0 6B ,

 0 C4 D

 0 7D '

 0 7D ENTER

Return code:

 0 - Normal completion.

 4 - TYPE command not executed. A warning message was issued.

 virtual terminal is not defined.

 virtual terminal is not enabled.

In the above example, the first (one-digit) field can be 0 for a normal key, 1 for a shifted
key, or 2 for a key pressed while the ALT key is held down. The next (two-digit) field is
the EPI scancode (an internal code useful only for debugging purposes.) The last field is
the EPI host key name.

Other EPI Host Command Descriptions

The following EPI host commands are those that do not fit into one of the above
sections. Other than the HELP command, all the rest is are alphabetical order.

OPS/REXX Programming Tips

Chapter 13: External Product Interface 495

HELP

Use this command to display the set of recognized host commands. This command can
be used when you receive a new release of the EPI to determine what the new
commands are.

EPI HELP

WAIT seconds

Use this command to delay processing for a specified number of seconds (from 1 to
86400 seconds = 24 hours). Its value can be either an integer or a real number with two
places available to the right of the decimal point. The time delay value is guaranteed to
be at least as long as the requested value. A value of zero is valid.

Note: This command is not allowed in any AOF rules with the exception of request rules.

WAIT 3

Return code:

 0 - Normal completion.

WAITTOD hh mm ss

Use this command to hold further execution until a specific time of day has been
reached. The values hh mm ss are integers, in military time, that stand for the time of
day. The time must be at least one second and not more than 24 hours into the future.

Note: This command is not allowed in any AOF rules with the exception of request rules.

WAITTOD 12 35 0

Return code:

 0 - Normal completion.

 12 - Time specified is not 1 second to 24 hours into the future.

OPS/REXX Programming Tips

Use these notes in creating OPS/REXX programs for use with the EPI.

OPS/REXX Programming Tips

496 User Guide

REXX Statement Transformation

A REXX statement (actually a clause in REXX terminology) recognized as a host command
is transformed before it is passed to the EPI. The EPI sees only the transformed
statement, not the original statement that you specified.

The following is the order in which REXX commands are processed:

■ Expressions in the statement are evaluated

■ The values of REXX variables are substituted for REXX variable names

■ Enclosing quotes are removed from literal strings

■ Multiple blanks between words are reduced to one blank

REXX Coding Considerations

REXX handles the asterisk (*) both as a wildcard character and as the multiplication
character:

■ Many of the host commands use an asterisk (*) to indicate an omitted parameter. If
you do not place the asterisk in quotes, REXX will assume that the asterisk is the
multiplication operator.

If you enter:

RDSCRROW * 5

REXX will try to multiply the variable RDSCRROW times 5. Depending on the value
of RDSCRROW, REXX can fail. In the worst case, the value of RDSCRROW would be
an integer, which would cause an incorrect result.

If you enter:

RDSCRROW '*' 5

REXX understands that the asterisk is used as a substitute character. When the
command executes, REXX transforms the statement to:

RDSCRROW * 5

■ The REXX abuttal operator (||) accomplishes string abuttal concatenation. In the
examples, the abuttal operator is only used when absolutely necessary, usually
between two REXX variables. If string concatenation is performed using one or
more blanks, only one blank will be passed to the EPI.

■ The fact that REXX removes enclosing quotes should not be a problem. A means is
provided for supplying single and double quotes in the TYPE and TYPETEST host
commands. If you want to pass a single or double quote to the EPI in a host
command, be sure to enclose it in another set of quotes. Only the outer quotes will
be removed by REXX before passing it to the EPI.

OPS/REXX Programming Tips

Chapter 13: External Product Interface 497

ENQ/DEQ Notes

The ENQ/DEQ mechanism allows multiple OPS/REXX programs to share a virtual
terminal. Since nothing prevents a program from getting exclusive control of a virtual
terminal (ENQ) and never releasing control of it, the EPI will automatically issue a DEQ
for any virtual terminals ENQd by a program under the following circumstances:

■ The TCB under which the EPI ENQ was issued terminates

■ The address space under which the EPI ENQ was issued terminates

In addition, the possibility exists that two REXX programs get into a deadlock situation
when ENQing on multiple virtual terminals. Consider the situation of two REXX
programs (PGM1 and PGM2) trying to use two virtual terminals (TERMA and TERMB) as
follows:

1. PGM1 issues ENQ TERMA and gets exclusive control of TERMA.

2. PGM2 issues ENQ TERMB and gets exclusive control of TERMB.

3. PGM1 issues ENQ TERMB and waits for TERMB.

4. PGM2 issues ENQ TERMA and waits for TERMA.

Neither program will be able to continue and both virtual terminals are inaccessible by
all other REXX programs. To prevent this situation, the following additional protocol is
enforced by the EPI: All ENQs must be performed in alphabetical order by virtual
terminal name. Therefore, in the above example, the fourth step (ENQ TERMA by
PGM2) would have been rejected by the EPI, as PGM2 has already issued an ENQ for
TERMB.

The TYPE Host Command

The TYPE host command is used to type on the terminal keyboard as if it were the
keyboard of the device it is simulating through the currently selected virtual terminal.

The TYPE command is a combination of text and 3278 key names, as the following
examples illustrate:

TYPE TERM1 'k e,d'!ENTER

Note: If there was a space between k e, d and! ENTER, the result would be the typing of
an additional space. In this case, this would not be significant, but in others it might be.

The following example issues an MCS reply command, the reply number, being in the
REXX variable reply_nbr, and the response in the REXX variable mcs_response:

TYPE TERM1 'r 'reply_nbr','!QUOTE1||mcs_response||!QUOTE1||!ENTER

Note: This example used the minimum number of abuttal operators (||).

EPI Failure Recovery

498 User Guide

The HOSTKEYS Host Commands

The HOSTKEYS command is not necessary under the EPI. The EPI only checks the syntax
of the HOSTKEYS command.

The EPI allows the following (equivalent) syntax:

 TYPE TSOTERM !HOME'HELLO'!ENTER'

 TYPE TSOTERM '!HOMEHELLO!ENTER'

 'TYPE TSOTERM !HOMEHELLO!ENTER'

 TYPE TSOTERM !HOME'HELLO'!ENTER

 TYPE TSOTERM !HOMEHELLO!ENTER

Attribute Byte Representation in the EPI

When SUBATTR OFF is in effect, the EPI will return 3270 attribute bytes imbedded in the
responses returned by the RDSCREEN and RDSCRROW commands. The attribute bytes
are always in the range X'20' through X'3F' and have the following bit definitions:

B'001.' Set for all attribute bytes

B'...1' Protected field

B'.... 1...' Numeric field

B'...1 1...' Autoskip field

B'.... .01.' Low intensity / Non-Sel-pen detectable

B'.... .01.' Low intensity / Sel-pen detectable

B'.... .10.' High intensity / Sel-pen detectable

B'.... .11.' Non-display / Non-Sel-pen detectable

B'.... ...1' Modified Data Tag (MDT)

You can use the TRANSLATE function to translate these values. For example, the
following text will cause all modified fields to be preceded by an exclamation point:

ATTRBYTES = XRANGE(X'20', X'3F')

NEWVALUES = COPIES("!",16)

NEWSTRING = TRANSLATE(OLDSTRING, NEWVALUES, ATTRBYTES)

EPI Failure Recovery

The EPI distinguishes between three types of failures: system failures, session failures,
and command failures, as discussed in the following sections.

EPI Failure Recovery

Chapter 13: External Product Interface 499

EPI System Failure

When the EPI on a particular system is unable to continue, all sessions to and from that
EPI will fail. Any of the following conditions can cause an EPI system failure:

■ A VTAM shutdown

■ Deactivation of the EPI VTAM application in VTAM

■ Failure of the CA OPS/MVS address space

EPI Session Failure

When a session between the EPI and an application fails, all communication between
the two ceases. Any of the following conditions can cause an EPI session failure:

■ An EPI system failure will result in a failure of all sessions using that EPI.

■ Deactivation of an EPI application name in VTAM will result in a failure of all
sessions using that EPI application ID.

■ An EPI session to a cross-domain application will fail if disruption of the
communications link between two systems (lost phone connection, lost satellite
link, and so on) occurs.

After an EPI session failure, no commands can be issued over that session. If the session
is the only one to a particular VTAM application, all communication is lost to that
application. If other sessions exist to the same application, communication may still be
possible over the remaining sessions.

If possible, the EPI will write messages to the system log to identify the commands that
were being processed at the time a session failed.

After a session failure, systems that have defined the session with the RETRY option will
automatically attempt to reestablish the session (assuming that both systems involved
in the session are still operative).

Security Considerations

500 User Guide

EPI Command Failures

An EPI command can fail for a variety of reasons:

■ An EPI system failure

■ An EPI session failure

■ The application that will process the command fails

With the exception of the first two cases, the EPI automatically recovers from EPI
command failures.

In most cases, the command issuer receives a message to show the specific cause of the
command failure (that is, session disabled, VTAM shutdown, application logged off) and
a negative return code from the last issued EPI host command.

If possible, the EPI also writes a message to the system log to identify a failing EPI
command.

Security Considerations

You need to consider the points in this section with respect to the security of your EPI
facility.

VTAM APPLIDs

The APPLIDs used by the EPI itself can be used to fake access to other applications,
unless the APPLIDs themselves are protected. This means protecting the VTAM list
libraries with RACF or CA ACF2 and using the PRTCT operand on all EPI application
definitions.

Issuing Commands to Other Applications

The EPI could potentially establish a session with any VTAM application. Assuming that
the correct protocols are used, nothing prevents a REXX program from accessing the
VTAM application once the EPI has logged onto it.

User Exit

The user exit OPUSEX is called for every EPI command before it is executed. You can
validate each request and accept or reject it in this exit.

Security Considerations

Chapter 13: External Product Interface 501

Insert Mode

The Insert mode is not supported by the TYPE and TYPESEC commands. Neither
command will reject the !INSERT keyword, but all subsequent typing is still performed in
replace mode (that is, typed characters overlay existing characters on the screen).

Hardcopy Command Logging

The EPI writes a copy of every EPI command issued to the hardcopy log. If passwords
were being entered during a logon sequence, they would appear in the hardcopy log. To
prevent this, use the TYPESEC command instead of the TYPE command. The character
string typed with a TYPESEC command is not written to the hardcopy log.

Passwords and the EPI

If you are writing dialogs that include entering passwords or other confidential
information, keep in mind that even though passwords are not visible on a real screen,
they are visible on a virtual screen (using the RDSCREEN or RDSCRROW or PEEK
commands). Follow these guidelines:

■ Secure all EPI commands through security rules.

■ Store REXX programs that include passwords in read-protected libraries to prevent
others from reading the password from the REXX source code.

■ Do not leave a session logged on if it gives access to secured facilities, unless you
can control access to the virtual terminal once it is logged on.

OMMVS—Sample OMEGAMON Interface Routine

502 User Guide

OMMVS—Sample OMEGAMON Interface Routine

The routine OMMVS in the REXX library (data set SYS1.OPS.CCLXEXEC documented in
the Administration Guide) is an OPS/REXX program that issues OMEGAMON commands
and gets responses returned in the external data queue of the calling program. For
example, to issue the EXSY OMEGAMON command, use:

CALL OMMVS 'EXSY|EXECUTE'

The vertical bar | is the default command separator. Editing the OMMVS separator
parameter can modify the default command separator. The EXECUTE command is the
equivalent of pressing the Enter key. A DO WHILE QUEUED() loop can process the
returned response lines.

You can stack multiple commands, including major and minor command combinations.
For example, the following CALL command executes the LLT minor command (LinkList
Table) of the XSYS major command, which returns a list of data sets in the system link
list:

CALL OMMVS 'XSYS|LLT|EXECUTE'

You can make multiple calls to OMMVS and cause commands to be stacked until you call
OMMVS with the EXECUTE command. The previous example could have been written:

CALL OMMVS 'XSYS'

CALL OMMVS 'LLT'

CALL OMMVS 'EXECUTE'

or

CALL OMMVS 'XSYS|LLT'

CALL OMMVS 'EXECUTE'

or

CALL OMMVS 'XSYS'

CALL OMMVS 'LLT|EXECUTE'

By default, EXECUTE presses the Enter key, which can be overridden by specifying a PF
key or other attention key (PF1, ..., PF24, PA1, PA2, PA3, CLEAR, or Enter).

For example:

CALL OMMVS 'EXECUTE CLEAR'

CALL OMMVS 'EXSY|EXECUTE ENTER'

OMMVS—Sample OMEGAMON Interface Routine

Chapter 13: External Product Interface 503

OMMVS Implementation

The following process discusses the OMMVS implementation.

■ The OMMVS REXX program uses the ADDRESS EPI environment to do the following:

– Define a virtual terminal

– Enable it

– Log it on to OMEGAMON/VTAM

When a user wants to execute a sequence of commands, they are stacked in global
variables (uniquely named for each address space) until an EXECUTE command is
encountered.

■ The OMEGAMON virtual terminal is then enqueued on exclusively and:

– The commands are entered onto the screen.

– Responses are scrolled through to retrieve all output, and are placed in the
REXX external data queue.

– The virtual terminal is dequeued after completion.

■ The OMMVS program allows multiple users to issue commands using a single
OMEGAMON virtual terminal. OMMVS takes care of the details of sharing the
virtual terminal.

OMMVS—Sample OMEGAMON Interface Routine

504 User Guide

OMMVS Customization Variables

You must customize the OMMVS REXX program before using it. The initial section of the
program contains several assignment statements for variables whose values are
installation dependent.

The following variables are installation dependent:

separator

Changes the command separator from the default vertical bar (|) to a character or
string of your own choice.

Note: Choosing a single character can be problematic. You must use a character
that will not be interpreted as part of an OMEGAMON command.

termname

Specifies the name of the virtual terminal to be used by OMMVS. This name must
be defined to VTAM, but need not be defined to the EPI.

termpswd

If the virtual terminal was defined to VTAM with a password (PRTCT= keyword on
the APPL statement), then you must specify that same password here.

applname

Specifies the name of the OMEGAMON VTAM application ID.

logmode

Specifies the logmode name to be used for the virtual terminal.

subsys

If you will be using a secondary copy of CA OPS/MVS with OMMVS (a copy other
than subsystem OPSS), then you must specify its four-character subsystem name
here.

OM_Userid

Specifies the OMEGAMON user ID (if required by OMEGAMON).

OM_Password

Specifies the OMEGAMON user ID password (if required by OMEGAMON).

The OMEGAMON password and user ID are only required if OMVTAM security was
implemented.

OMMVS—Sample OMEGAMON Interface Routine

Chapter 13: External Product Interface 505

Disable the OMEGAMON Use of Extended Attributes

OMEGAMON can assume that your EPI virtual terminal is capable of handling extended
color and attributes even though EPI terminals identify themselves as IBM 3278 type
terminals that do not have extended attribute capability. This will cause the EPI to
generate an error when OMEGAMON sends its first screen to an EPI virtual terminal.

To prevent this and to allow OMEGAMON to be used on an EPI virtual terminal, you
must ensure that OMEGAMON disables the use of extended attributes before displaying
the first screen.

To disable the OMEGAMON use of extended attributes

1. Ensure that one of the following OMEGAMON commands is issued before the first
screen is displayed by OMEGAMON:

.SCC DISPLAY=BASIC

or

.CLRXOF

You can now use OMEGAMON on an EPI virtual terminal.

The release of OMEGAMON you are running will determine which of these two
commands should be used.

CA7MVS—Sample CA 7 Interface Routine

506 User Guide

CA7MVS—Sample CA 7 Interface Routine

The routine CA7MVS in the REXX library (data set SYS1.OPS.CCLXEXEC documented in
the CA OPS/MVS Administration Guide) is an OPS/REXX program that issues CA 7
commands and gets responses returned in the external data queue of the calling
program.

■ This syntax issues the CA 7 LACT command:

CALL CA7MVS 'LACT|EXECUTE'

Vertical bar |

The default command separator. Editing the CA7MVS separator parameter can
modify the default command separator.

EXECUTE command

The equivalent of pressing the Enter key. A simple DO WHILE QUEUED() loop
can process the returned response lines.

■ To enter data on a multiple field screen, you can input using the split vertical bar.

For example, This syntax places the command PF in the first (top) input field, the
command I20 in the second input field, and then presses the Enter key (EXECUTE
command):

CALL CA7MVS 'PF|I20|EXECUTE'

■ You can make multiple calls to CA7MVS and cause input to be stacked until you call
CA7MVS with the EXECUTE command. The previous example could have been
written:

CALL CA7MVS 'PF'

CALL CA7MVS 'I20'

CALL CA7MVS 'EXECUTE'

 or

CALL CA7MVS 'PF|I20'

CALL CA7MVS 'EXECUTE'

or

CALL CA7MVS 'PF'

CALL CA7MVS 'I20|EXECUTE'

By default, EXECUTE presses the Enter key, which can be overridden by specifying a PF
key or other attention key (PF1, ..., PF24, PA1, PA2, PA3, CLEAR, or Enter). For example:

CALL CA7MVS 'EXECUTE CLEAR'

CALL CA7MVS 'LACT|EXECUTE ENTER'

CA7MVS—Sample CA 7 Interface Routine

Chapter 13: External Product Interface 507

CA7MVS Implementation

The CA7MVS REXX program uses the ADDRESS EPI environment to define a virtual
terminal, enable it, and log it on to CA 7. When a user wants to execute a sequence of
input commands, they are stacked in global variables (uniquely named for each address
space) until an EXECUTE command is encountered.

The CA 7 virtual terminal is then enqueued on exclusively, and the input data is entered
onto the screen. Responses are scrolled through to retrieve all output and are placed in
the REXX external data queue. The virtual terminal is dequeued after completion.

The CA7MVS program handles scrollable output such as that from LACT, LPRRN, LJOB,
and most other list commands (Lxxx) in a special way, as follows:

■ All blank lines are removed.

■ Page number lines are removed.

■ Duplicate column header lines are removed from page 2 and all subsequent pages.

This causes the returned output to start with a single set of column header lines,
followed by detail data lines without intervening headers or blank lines, followed
optionally by a command completion line from CA 7.

The intended use for the CA7MVS is primarily for command/response type applications,
where a single command is used to inquire CA 7 (non-interactive commands).
Commands that invoke an interactive dialog (such as QJCL) can be issued through
CA7MVS, but will leave the terminal unusable for other callers of CA7MVS in that case.

The CA7MVS program does allow multiple users to issue non-interactive commands
using a single CA 7 virtual terminal. CA7MVS takes care of the details of sharing the
virtual terminal in such case.

CA7MVS—Sample CA 7 Interface Routine

508 User Guide

CA7MVS Customization Variables

The CA7MVS REXX program must be customized before using it. The initial section of
the program contains several assignment statements for variables whose values are
installation dependent.

Separator

Changes the command separator from the default vertical bar (|) to a character or
string of your own choice.

Note: Choosing a single character can be problematic. You must use a character
that will not be interpreted as part of a CA 7 command.

termname

Specifies the name of the virtual terminal to be used by CA7MVS. This name must
be defined to VTAM, but need not be defined to the EPI.

termpswd

If the virtual terminal was defined to VTAM with a password (PRTCT keyword on the
APPL statement), then you must specify that same password here.

applname

Specifies the name of the CA 7 VTAM application ID.

logmode

Specifies the log mode name to be used for the virtual terminal.

subsys

If you will be using a secondary copy of CA OPS/MVS with CA7MVS (a copy other
than subsystem OPSS), then you must specify its four-character subsystem name
here.

CA7_Userid

Specifies the CA 7 user ID (if required by CA 7).

CA7_Password

Specifies the CA 7 user ID password (if required by CA 7).

The CA 7 password and user ID are only required if CA 7 security was implemented.

Chapter 14: Using the EPI Recording and Playback Options 509

Chapter 14: Using the EPI Recording and
Playback Options

This section contains the following topics:

Overview: Recording REXX EXECs (see page 509)
Recording Environment Set Up (see page 512)
Change Recording Options Permanently (see page 513)
Change Recording Options Temporarily (see page 516)
Choose Where to Store the REXX EXEC (see page 517)
Record a Session (see page 518)
Marking Text to Find on or Fetch from a Screen (see page 521)
Insert Literal Strings or Variables into SESSCMDs (see page 526)
Edit Your Customized Automation EXEC (see page 527)
Test-run Your EXEC with the Playback Option (see page 528)
How Playback Works (see page 529)
Record an EXEC to Automate Info/Management Inquiries (see page 530)

Overview: Recording REXX EXECs

Using the EPI recording and playback options makes designing REXX automation EXECs
for VTAM application sessions easier. The EPI generates a REXX EXEC containing generic
routines to simplify these programming tasks:

■ Finding a text string in the current session screen image

■ Converting the text, if found, into REXX variables

■ Fetching a screen using the GETSCRN command processor

■ Pasting a sample copy of the screen image into the REXX EXEC

■ Issuing commands or sending text strings to the session through SESSCMD
command processors

■ Monitoring the status of the current session

■ Verifying that a screen image contains certain data

Overview: Recording REXX EXECs

510 User Guide

Requirements for Recording

Before you record screen images from an EPI session and use them to create a REXX
EXEC through the EPI, you must meet these requirements:

■ The session is defined to the EPI.

Note: If defined, the session appears on the EPI Virtual Terminals List panel.

■ TSO/E Version 2 is present on your system. The EPI REXX facilities require this
version of TSO/E.

Note: The EPI supports Model 2 through Model 4 terminals, but we recommend that
you use a Model 4 terminal for session recording. The 43 x 80 character screen size of
the Model 4 terminal is large enough to display both the EPI recording command list and
the full session screen image. If you use a terminal with a smaller screen, you will have
to scroll the session screen more frequently.

Plan Your Recording Session

Before starting a recording session, you need plan what you want to record and how to
record your choices.

To plan your recording session

1. Operate the session for a while.

This helps you determine which tasks you want your automation EXEC to automate.

2. Select the EPI recording option and start recording, using the commands used in the
EPI Recording Environment to interact with the session screen images.

In response, the EPI inserts the captured screen data, along with comments, into
the appropriate REXX routines.

3. After customizing the generic automation routines with screen data, you can use
the ISPF editor to further tailor the routines and delete the automation routines
you will not use.

4. You can call the ISPF editor to revise your new automation EXEC without leaving the
EPI.

You have planned your session and have customized and tailored the routines.

More information:

Commands for Use in the EPI Recording Environment (see page 520)

Overview: Recording REXX EXECs

Chapter 14: Using the EPI Recording and Playback Options 511

How the Recording Option Works

Using the recording option is basically a four-task process:

1. Set up the recording environment.

2. Record the automation REXX EXEC.

3. Edit and customize the recorded REXX EXEC.

4. Test the recorded EXEC by executing it in playback mode and observing how it
affects the session.

Issue Recording Commands

The EPI recording option provides a set of commands to define the recording
environment, to mark text from the application screen to insert into your REXX EXEC, to
enter keystrokes or to issue CA OPS/MVS command processors, and to turn recording
on or off. You can issue most commands in either of two modes:

■ Novice Mode

When you issue a command in novice mode, the EPI displays a panel describing
what the command does and telling you what keystrokes to enter.

■ Experienced Mode

When you issue a command in experienced mode, the EPI lets you execute that
command without displaying its explanatory panel.

To issue a recording command in experienced mode

■ Type the command and any other necessary keywords or characters on the
command line.

■ Press Enter.

The command executes.

Important! Choose novice mode if you are new to the EPI. Experienced mode provides a
shortcut for users familiar with recording commands.

Recording Environment Set Up

512 User Guide

Stack Recording Commands (For Advanced Users)

For advanced EPI users, the recording option offers a command stacking feature. This
feature lets you issue a series of recording commands from the command line with a
single Enter keystroke.

To stack commands

1. Type the commands on the command line.

2. Place a separator character such as an exclamation point (!) between the
commands.

For example, the following command stack sets a variable called varname, appends a
SAY statement using the variable to the end of the EXEC being recorded, and then
shows you the revised EXEC in edit mode:

S varname!A SAY 'varname=' varname!E

Recording Environment Set Up

Before you do any recording, decide whether you want to alter the EPI recording
options, which include:

■ Set special control characters for use in recording sessions.

■ Specify default values for SESSCMD command processors in the REXX EXECs you will
record.

Changes you make to the default recording option values can take effect permanently
(until you revise them again) or temporarily (for only the life of the current recording
session). However, you need to make any changes before you activate session
recording.

Change Recording Options Permanently

Chapter 14: Using the EPI Recording and Playback Options 513

Change Recording Options Permanently

You can alter the recording options for the current recording session and have the
options take effect permanently.

To permanently alter the default recording options

1. Choose the R (Record) option from the EPI Virtual Terminals List panel.

As a result, the EPI Record and Playback Primary Menu appears:

-------------------- EPI Record and Playback Primary Menu ------------------
OPTION ===> DATE - 04/03/11
 TIME - 08:13
 MODE - PROD
 0 OPTIONS - Permanent Change to the EPI recorder options
 R RECORD - Record EPI session REXX's
 B playBack - Execute previously recorded EPI session EXEC
 Enter END command to terminate EPI Recording.

2. Type O in the Option field and press Enter.

The following Permanent Change to the EPI Recorder Options panel appears. This
panel shows you the current option settings for the recording environment:

----------------- Permanent Change to the EPI Recorder Options -------------
 COMMAND ===>
 Control characters:
 Relative screen location character (RL)..(@)
 Absolute screen location character (AL)..(#)
 Command Stacking character (CS)..(!)
 Cursor position character (CP)..(*)
 SESSCMD options:
 AUTOMATIC ENTER OPTION(NO)
 CMDWAIT (60)
 MAXCMDOUT (200)
 PREFIX(LINE)
 TRUNCATE (NO)
Enter END command to enter option and exit, CANcel to abort

3. Change any default control character by typing the character you want to use over
the default.

Do not use the following as control characters:

■ A character that appears on the target session screen

■ An alphanumeric character

■ A blank

4. Change any default SESSCMD options by typing the value you want to use over the
default value. The value you substitute cannot be either alphanumeric or a blank.

5. After you have finished altering the recording options:

■ Issue the END command to save your changes exit.

Change Recording Options Permanently

514 User Guide

■ Issue the CAN command to undo your changes.

Your recording options are permanently changed.

Control Characters and Defaults

The following explains the purpose of the control characters and lists the default of
each:

Control Character: Relative screen location character

Marks the screen data to be searched for. This character allows you to search for
data in either full-screen or split-screen mode.

Abbreviated Name: RL

Default Character: @

Control Character: Absolute screen location character

Marks the screen data to be captured and inserted into the EXEC being recorded.

Abbreviated Name: AL

Default Character: #

Control Character: Command stacking character

Separates recording commands when you issue multiple commands together from
the command line of the EPI Recorder panel.

Abbreviated Name: CS

Default Character: !

Control Character: Cursor position character

Represents the current cursor position when a new session screen image appears.

Abbreviated Name: CP

Default Character: *

Change Recording Options Permanently

Chapter 14: Using the EPI Recording and Playback Options 515

SESSCMD Keywords and Defaults

The following lists the keywords you can specify for SESSCMD command processors in
your REXX EXEC, their purpose, and their default values:

AUTOMATIC ENTER OPTION

Determines whether the REXX EXEC automatically appends an Enter keystroke to
each character string you send to a session through the SESSCMD command
processor. The default value for the ENTER parameter is NO, for these reasons:

■ Setting the parameter to YES gives you the option of issuing multiple SESSCMDs
to place multiple character strings on the session screen-or to fill out
information about multiple screens-before issuing an ENTER keystroke.

■ If you issue the C, L, or N command while recording and the automatic ENTER
option is set to NO, the session receives the keystroke but will not execute it
until you use the K command to issue an ENTER keystroke.

Default: NO

CMDWAIT

Sets the maximum number of seconds CA OPS/MVS waits for the session to
respond to a SESSCMD command processor. This number can be any value from 0
to 600.

Default: 60

MAXCMDOUT

Sets the number of lines of the SESSCMD response that should be captured and
returned to the REXX EXEC. This number can be any value from 0 to 1000.

Default: 200

PREFIX

Provides the prefix for a set of REXX variables.

Default: LINE

TRUNCATE

Specifies whether CA OPS/MVS truncates the screen image display when you issue
a SESSCMD command processor.

Default: NO

Change Recording Options Temporarily

516 User Guide

Change Recording Options Temporarily

You can alter the recording options for the current recording session without affecting
the permanent option settings.

To change recording options temporarily

1. Issue the O (set Options) command from the EPI Recorder panel.

In response, you will see the Temporary Change panel, which looks just like the
Permanent Change to the EPI Recorder Options panel.

2. Use the same procedure to enter your temporary changes that you would use to
enter permanent changes.

3. Issue the END command to save your changes or the CAN command to cancel them.

Request Temporary Changes from the Command Line

Experienced EPI users can set control characters or SESSCMD keywords from the
command line of the EPI Recorder panel without displaying the Temporary Change
panel.

To request temporary changes from the command line

1. Type the following text on the command line and press Enter:

O abbreviation newchar

abbreviation is the two-character abbreviation for the control character; newchar is
the character that will replace the default character. For example, the following text
changes the absolute location character from # to $:

O AL $

2. Set a SESSCMD keyword, type the following text on the command line before
pressing the Enter key:

O keyword value

You must specify the complete keyword name. For example, to direct CA OPS/MVS
to wait 75 seconds for a SESSCMD response, you would enter this text on the
command line:

O CMDWAIT 75

Choose Where to Store the REXX EXEC

Chapter 14: Using the EPI Recording and Playback Options 517

Override the Automatic ENTER Option

You can override the automatic ENTER option by specifying either the ENTER keyword
or the NOENTER keyword when you issue the C, K, L, or N commands. For example, if
the automatic ENTER option is set to YES and you want to issue a tab keystroke to your
session without appending an automatic ENTER keystroke, you would issue this
command:

K TAB NOENTER

Choose Where to Store the REXX EXEC

After you choose a session for recording, the REXX Destination panel appears.

To choose where to store the REXX EXEC

1. On the Destination panel, enter the names of a data set and a member to store the
REXX EXEC you will create in the recording session.

Specify a cataloged data set; otherwise, you will receive an error message.

2. Press Enter.

The destination data set for storing the REXX EXEC is created and the EPI Recorder
panel displays.

Note: If you are making changes to a REXX EXEC that already exists, make sure that the
EXEC points to the session you chose for the current recording session.

Record a Session

518 User Guide

Record a Session

After you have specified a valid data set member to store your recorded REXX EXEC, the
EPI displays its EPI Recorder panel, and you are ready to start recording.

To record a session

1. Review the EPI Recorder panel.

■ The bottom part of the following EPI Recorder panel displays the current
screen image of the session you chose for this recording session.

■ The top (highlighted) part of the panel displays a set of commands you can use
to work with text on the session screen or to make changes to the REXX EXEC
you are building.

----------------------------- EPI Recorder ------------------------------
COMMAND ===>
 SCROLL=> CSR
 A -Append line to exec C -place the Cursor E -Edit the exec
 F -Find a string K -press a Key (eg. PF1) L -enter Literal data
 N -eNter variable data O -set Options P -take a Picture
 R -turn Recording OFF S -Set variable V -Verify data
==
 ISPF/PDF PRIMARY OPTION MENU
OPTION ===> SCROLL ===> PAGE
 SYSTEM - S028
 USERID - DSIAA33
 TIME - 16:40
0 ISPF PARMS - Specify terminal and user parameters
1 BROWSE - Display source data or output listings
2 EDIT - Create or change source data
3 UTILITIES - Perform utility functions
6 COMMAND - Enter TSO Command, CLIST, or REXX EXEC
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES - Perform library administrator utility functions
9 SDSF - System Display and Search Facility
I IBM - IBM Applications
C CA - CA Products

2. What you do during a recording session depends on what you want to add to or
alter in the generic session automation EXEC. Typically, though, you will perform
the following tasks in something close to the following order:

a. Use the EPI V (Verify data) command to specify what screen data your session
automation EXEC should look for to determine whether it is examining the right
session screen.

b. Use the EPI L (enter Literal data), C (place the Cursor), N (eNter variable data), K
(press a Key) command, or all four commands to build SESSCMDs into your
EXEC.

These SESSCMDs will issue the keystrokes and commands that bring up the
session display from which your EXEC pulls data.

Record a Session

Chapter 14: Using the EPI Recording and Playback Options 519

c. Use the EPI V (Verify data) command to recheck that the correct session screen
is present.

d. Issue the EPI P (take a Picture) command to insert a copy of the current session
screen image into your REXX EXEC.

e. Use the EPI S (Set variable) command to insert the found screen data into a
single REXX variable.

f. Use the EPI R (Turn recording off) command if or when you need to scroll the
screen image to fetch data for your EXEC and then turn recording back on.

g. Use the EPI E (Edit the EXEC) command to display and revise the contents of
your automation EXEC through the ISPF editor.

h. Use the EPI Playback option to test and debug your session automation EXEC.

You have recorded your session.

How the Recording Process Works

During recording, you customize the EPI generic automation REXX EXEC, importing data
from session screens, and building SESSCMD command processors to either issue
commands to the session or respond to prompts from the session.

Which data you import and which SESSCMD command processors you place in your
REXX EXEC depend on the type of session management task you want the EXEC to
automate.

Example: Recording Process

Suppose that you want the EXEC to automate extracting statistics about terminal
response time from CA NetSpy screens. You would do the following:

1. First you need to insert into your EXEC SESSCMDs that cause CA NetSpy to display
its Terminal Response Time Analysis screen.

2. Then, you would need to capture some of the information that this CA NetSpy
screen displays-such as the average and last response time for transactions on the
terminal-into REXX variables.

Record a Session

520 User Guide

Commands for Use in the EPI Recording Environment

The following briefly explains what you can do with each command provided on the EPI
Recorder panel, including the commands mentioned above. From the EPI Recorder
panel, you can access online information about these commands. To do so, place the
cursor on the command name and press the PF1 key.

A (Append line to EXEC)

Appends a text string you specify to the last recorded line in your REXX EXEC.

C (place the Cursor)

Places the cursor at a location (that you specify) on the session screen image.

E (Edit the EXEC)

Allows you to edit the REXX EXEC being recorded.

F (Find a string)

Finds a character string you specify on the session screen image.

K (press a Key)

Lets you issue an aid key or escape instruction to the session.

L (enter Literal data)

Inserts a SESSCMD command processor containing the literal string you specify into
your REXX EXEC.

N (eNter variable data)

Inserts a SESSCMD command processor containing the REXX variables you specify
into your REXX EXEC.

O (set Options)

Allows you to temporarily or permanently reset the recording environment for the
current recording session.

P (take a Picture)

Captures the current session screen image and places it in your REXX EXEC as a
comment.

R (turn Recording ON/OFF)

Starts or stops session recording.

S (Set variable)

Lets you set a variable.

V (Verify data)

Allows you to verify that you are on the proper screen image.

Marking Text to Find on or Fetch from a Screen

Chapter 14: Using the EPI Recording and Playback Options 521

Marking Text to Find on or Fetch from a Screen

The next few sections show examples of how to mark the text you want your session
automation EXEC to import from or find on a session screen.

Marking Text to Find on or Fetch from a Screen

522 User Guide

Place the Cursor on a Screen Field

When placing the cursor on a screen field, you can specify the following:

■ An absolute position if your target is screen text that never changes

■ The cursor position relative to other screen data if the cursor will go on screen text
that can vary

To have your EXEC place the cursor on a specific piece of screen text

1. Issue the C command at the command line.

The following novice mode screen for the C command appears. This illustration
shows a CA NetSpy statistics screen displayed for session recording. Suppose that
you want to place the cursor at the CA NetSpy command line (shown at the bottom
of the screen).

------------------------------- PLACE THE CURSOR ------------------------------
 COMMAND ===> SCROLL ===> CSR
 To specify Relative Positioning, use @ to mark the screen data
 to search for. Then use # to mark where you want the script to place
 the cursor after the data is found. To specify Absolute Positioning,
 use # to mark the position where the cursor will be placed.
 The default for SESSCMD is NOENTER

 HOST=S032 MEASURED INTERVAL= 3.8M 27MAR95.178 FRI 15:18:49 ***
 *** NETSPY RESPONSE TIME STATISTICS (INTERVAL) ***
 APPL AVGE=RSP WORST NO. NO. NO. NO. INPUT OUT-SZE OUT-SZE
 NAME HOST NET HOST SESS INPUT OUTPUT NETRSP SIZE TRANSCT WRITE
 ----------------------------- NETSPY= S032 ---------------------------------
 NETSPY32 0.1 0.0 0.6 1 8 8 8 6 1629 1629
 TSO32 0.6 0.0 1.7 8 8 9 8 7 1366 1214
 ----------------------------- NETSPY= S028 ----------------------------------
 NETSPY28 0.0 0.0 0.4 4 16 16 16 8 1246 1246
 TSO28 1.1 0.1 8.8 51 42 68 38 12 470 290
 CICSA 0.4 0.1 0.9 3 210 226 186 136 1575 1108
 CICST 0.3 0.2 0.6 2 22 24 20 130 1525 1075
 PRESS PFK1= HELP, 3= MENU, 5= DA, 6= DT, 9=DNCPS, 10= DLINES, 12=LOGOFF
 OR ENTER A NEW COMMAND BELOW
--->

2. Type one or more control characters over screen text to indicate where to place the
cursor.

You can specify an absolute position for the cursor if your target is screen text that
never changes. Or, you can indicate the cursor position relative to other screen data
if the cursor will go on screen text that can vary.

3. Assuming that the absolute screen location character is # and the relative screen
location character is @:

■ Type C on the EPI Recorder panel command line at the top of the screen

■ Type # to the right of the arrow on the CA NetSpy command line

■ Then type @ over the first character and the last character in the word BELOW
as follows:

Marking Text to Find on or Fetch from a Screen

Chapter 14: Using the EPI Recording and Playback Options 523

OR ENTER A NEW COMMAND @ELO@

---> #

The EPI first finds the screen text overtyped with @ characters, shown in Find a Text
String on a Screen (see page 523), and then places the cursor on the CA NetSpy
command line.

Find a Text String on a Screen

You can mark a text string that you want your automation EXEC to find on a session
screen.

To find a text string on a screen

1. Type the absolute screen location character over the first and the last character in
the string.

This marks the text string that your automation EXEC should find on a session
screen.

2. Issue the F (Find a string) command from the command line.

If the text to be found is a changeable value (like the host response time values in the
CA NetSpy Statistics Screen), your automation EXEC will have to find that value in
relation to fixed screen text, such as a field name.

Example: Find a text string on a screen

Suppose that you want to find the value of the HOST=systemid field shown in the CA
NetSpy Statistics Screen. Because this system ID will vary, you need to use relative
positioning to indicate where the value is on the screen. On this screen, the HOST part
of the field is always constant no matter which system ID appears. Therefore, you can
direct your REXX EXEC to find the location of the system ID value as it relates to the text
string HOST. To do so, you would type over the HOST=systemid field as shown in the
following example:

Original screen text... As it looks after overtyping...

HOST=S032 @OST@#03#

This causes your automation EXEC to find the system ID, S032, indicated by the #
characters.

Marking Text to Find on or Fetch from a Screen

524 User Guide

REXX Variables That the F Command Sets

When you find a string using the F command, the EPI sets values for the following REXX
variables in the EXEC you are recording:

FINDSTR_RP

Stores the relative location string

FINDSTR_RP_ROW

Stores the screen row where the relative location string appears

FINDSTR_RP_COL

Stores the screen column where the relative location string appears

FINDSTR_RP_LENGTH

Stores the number of characters in the relative location string

FINDSTR_RP_OFFSET

Stores the offset position in a single integer

FINDSTR_RP_RC

Stores the return code from the Find operation

FINDSTR_AP

Stores the absolute location string

FINDSTR_AP_ROW

Stores the screen row where the absolute location string appears

FINDSTR_AP_COL

Stores the screen column where the absolute location string appears

FINDSTR_AP_LENGTH

Stores the number of characters in the absolute location string

FINDSTR_AP_OFFSET

Stores the offset position in a single integer

FINDSTR_AP_RC

Stores the return code from the Find operation

Marking Text to Find on or Fetch from a Screen

Chapter 14: Using the EPI Recording and Playback Options 525

Return Codes

Possible return code values for FINDSTR_RP_RC and FINDSTR_AP_RC are:

0

The EPI found the string.

4

The EPI did not look for the relative location or absolute location string.

8

The EPI did not find the string.

Mark Screen Text to Assign to a REXX Variable

The S (Set variable) command of the EPI allows you to fetch a piece of screen text and
assign its value to a single REXX variable. The experienced mode version of the S
command has this format:

S varname

You can use either absolute or relative positioning to specify which screen text to
capture depending on whether the text you are capturing can vary. For example, if you
want to capture the text 3.8M from the CA NetSpy Statistics Screen and make that text
the value of a variable called MEASURED_INTERVAL, you would type over the
appropriate screen text as follows:

MEASURED @NTERVAL@ #3.8M#

Then, you would issue this command:

S MEASURED_INTERVAL

As a result, the EPI finds the screen text marked with the @ character, inserts the
MEASURED_INTERVAL variable into your automation EXEC, and gives it the value 3.8M.

Note: You use the absolute screen location character to mark the start and end of the
screen text to be captured.

Insert Literal Strings or Variables into SESSCMDs

526 User Guide

Insert Literal Strings or Variables into SESSCMDs

Using the EPI C, K, L, and N commands, you can build SESSCMDs into your REXX EXEC to
issue keystroke and command instructions or text strings to automate session
management. The L and N commands not only specify the text that a SESSCMD sends to
the session, they also allow you to specify which input field or fields will receive the sent
text.

The next few paragraphs explain how to direct a literal string or a variable to a specific
input field or fields on the screen. Online help for the C, K, L, and N commands also
provides usage information.

Direct a Literal String to an Input Field

To specify where a literal string sent by a SESSCMD will go on your session screen, do
either of the following:

Absolute Positioning Method

1. On the EPI Recorder panel, type an L on the command line and press Enter.

2. Type the literal string into the appropriate input field or fields on the session
screen and press Enter.

Relative Positioning Method

1. On the EPI Recorder panel, type an L on the command line and press Enter.

2. Type the relative screen location character over the first and the last character
in the screen data (for example, the input field name) that the SESSCMD
command processor should look for before sending the literal string.

3. Type the literal string into the appropriate input field on the session screen and
press Enter.

For example, to enter the command text HELP on the CA NetSpy Statistics Screen, you
would type over the command line characters as shown in the following example:

Original screen text... As it looks after overtyping, with literal text HELP
added...

---> @--@ HELP

Edit Your Customized Automation EXEC

Chapter 14: Using the EPI Recording and Playback Options 527

Direct a Variable to an Input Field

The N (enter variable data) command allows a SESSCMD command processor to send
any of the following data to a session:

■ REXX variable or variables and literal text, sent to multiple input fields on the screen

■ REXX variable or variables and literal text, sent to a single input field on the screen

■ A single REXX variable, sent to multiple input fields

■ Multiple REXX variables, sent to a single input field

To specify which input fields will receive this data

1. On the EPI Recorder panel, type an N on the command line. The novice mode
display for the N command will appear.

2. Type the relative screen location character over the first and the last character in
the screen data (for example, the input field name) that the SESSCMD command
processor should look for before sending the REXX variable, literal data, or both.

3. Type the absolute screen location character into the input field or fields on the
session screen that will receive input from the SESSCMD. Press Enter.

For example, suppose that you have a REXX variable called HELP_CMD set to the value
HELP. To have your SESSCMD place this variable on the command line of the CA NetSpy
Statistics Screen, you would type over the command line characters as shown in the
following example:

Original screen text... As it looks after overtyping, with # representing the
word HELP...

---> @--@ #

Edit Your Customized Automation EXEC

The EPI allows you to edit the automation REXX EXEC you are building without ending
your recording session.

To edit your customized automation EXEC

1. Issue the E command from the EPI Recorder panel.

The EPI displays the text of your EXEC using the ISPF editor.

2. Revise the EXEC using the ISPF editing commands.

3. When you have finished editing, issue the END command from the command line of
the ISPF edit panel.

In response, the EPI returns you to the EPI Recorder panel.

Test-run Your EXEC with the Playback Option

528 User Guide

Test-run Your EXEC with the Playback Option

The playback option allows you to test-run an automation REXX EXEC in the EPI
environment, enabling you to revise the EXEC easily if it does not affect session activity
as you intended. The playback option tests only EXECs created using the recording
option of the EPI.

To playback a recorded REXX EXEC

1. Choose option B (playBack) from the EPI Record and Playback Primary Menu.

As a result, you see a panel asking you to enter the name of the data set and
member where the EXEC to play back resides.

2. Enter the data set name and member name.

Playback begins.

How Playback Works

Chapter 14: Using the EPI Recording and Playback Options 529

How Playback Works

After you supply the member and data set information for the EXEC to play back, the EPI
follows the following process:

1. The playback function:

■ Starts running the selected REXX EXEC

■ Displays the current screen image for the affected session

This results in short messages describing the first keystroke or keystrokes the EXEC
will issue.

2. Press enter.

The first SESSCMD command processor in the EXEC executes.

3. The playback function does the following:

■ Displays new session screen image that reflects the response of the session to
the SESSCMD Displays the current screen image for the affected session

■ Freezes the screen image

This provides time for you to study the frozen screen image and observe how the
SESSCMD affected the session.

4. Press Enter

The playback function displays the next screen image.

5. The playback function displays new messages describing what action the next
SESSCMD in the EXEC will do.

The next SESSCMD executes.

6. The playback function freezes the screen image again.

This lets you review the effect of the SESSCMD that just executed.

7. Press Enter again.

The next session screen image appears and steps 5 through 7 repeat until the EXEC
finishes executing.

8. The playback function:

■ Returns you to the EPI Recording Primary Menu, if your EXEC contains no SAY
statements to display output from the EXEC

■ Uses the SAY statements in the EXEC to write output data to your screen

Record an EXEC to Automate Info/Management Inquiries

530 User Guide

Record an EXEC to Automate Info/Management Inquiries

The following sample scenario uses the EPI to create a REXX EXEC that automates
fetching status information about customer support incidents from a CA archive system
based on the IBM Info/Management product. You first set up an EPI recording session
with the archive system. Then, you use the EPI recording commands to build an EXEC
including subroutines that:

■ Issue the keystrokes required to display (and exit from) the appropriate CA and
Info/Management screens

■ Ensure that the EXEC displays the correct screens

■ Respond to screen prompts

■ Pull the desired incident status information into a REXX variable

The sample EXEC contains both the CA generic automation routines and a driver section
containing REXX code generated by commands issued during recording. The next few
sections describe only the code in the driver section.

To create the sample automated inquiries EXEC

1. Select the R (Record) option from the EPI Virtual Terminals List panel.

2. Choose the R (Record) option from the EPI Record and Playback Primary Menu.

3. Choose a data set member to store the recorded EXEC.

The EPI Recorder panel appears, displaying the TSO session screen image and a list
of recording commands.

More information:

Choose Where to Store the REXX EXEC (see page 517)

Record an EXEC to Automate Info/Management Inquiries

Chapter 14: Using the EPI Recording and Playback Options 531

The Opening Text of the Driver Section for a Recorded EXEC

The driver section of this sample REXX EXEC contains the user-defined REXX code that
drives EXEC execution, including subroutines created while recording the session.

The following illustration shows you the user-modifiable text of the first part of the
driver section:

/* If you need to PARSE input parameters, use a statement similar to */

/* the following. */

/* */

/* PARSE VAR parm parm_x "," parm_y "," parm_z . */

/* */

/* The variable "parm" contains all input parms except "DEBUG" and */

/* "PLAYBACK", which were stripped out in the unmodifiable */

/* initialization section of this EXEC. */

/*---*/

/* ----- You must include the following PARSE statement -------- */

 PARSE VAR parm inc_# /* inc_# is the name of a REXX variable */

/*---*/

/* The following SESSCMD keywords are set via the O command on the EPI */

/* Recorder panel. STOPMSG is the only keyword not set from the panel. */

/* If using STOPMSG, then set the following STOPMSG variable: */

/* STOPMSG = "STOPMSG(string1,string2,string3)" */

/*--*/

 CMDWAIT = ''

 MAXCMDOUT = ''

 PREFIX = ''

 TRUNCATE = ''

 STOPMSG = ''

/*---*/

/* Call external function ATMOPOOL and set REXX variable epi_session */

/* The function will bind the session and return the CA OPS/MVS */

/* session ID to use during the REXX procedure. */

/*---*/

pool_returned_data = ATMOPOOL("POOL=INFOMAN" "HOME=YES")

PARSE UPPER VAR pool_returned_data epi_session home_rc

IF epi_session = '' THEN DO

 rc = "No sessions available for BIND"

 SIGNAL ERROR_HANDLER

END

IF home_rc > 4 THEN DO

 rc = "HOME_RC ="home_rc

 SIGNAL ERROR_HANDLER

END

/*---*/

/* Call ATM_GETSCRN to fetch a screen. */

/*---*/

CALL ATM_GETSCRN

Record an EXEC to Automate Info/Management Inquiries

532 User Guide

/*---*/

/* If PLAYBACK mode active, display first screen. */

/*---*/

IF playback = "ON" THEN

 CALL PLAYBACK

Build the Rest of the Driver Section Using Recording Commands

To create the rest of the drive section of the sample EXEC, you would issue the following
recording commands in novice mode as follows:

To build the rest of the driver section using recording commands

1. Type this text:

■ Issue the V (Verify data) command on the command line of the EPI Recorder
panel.

■ On the TSO session display, block the TSO READY prompt by typing the relative
position character over the first and last characters, as follows:

@EAD@

To produce these results:

Enable your REXX EXEC to locate the READY prompt and verify that a TSO session is
displayed. Issuing this V command builds the following subroutine into your REXX
EXEC:

CALL ATM_VERIFY "VERIFY_RP(READY)"

Record an EXEC to Automate Info/Management Inquiries

Chapter 14: Using the EPI Recording and Playback Options 533

2. Type this text:

■ On the command line of the EPI Recorder panel, issue the L (enter Literal data)
command.

■ On the TSO session display, block the READY prompt using the relative position
character.

■ Type ISPF seven bytes to the right of @EAD@ on the TSO screen.

Using a SESSCMD command processor, the EPI sends the text ISPF to the session
and enters to the right of the READY prompt. If the automatic ENTER option is set to
YES, an ENTER keystroke will also be sent.

To produce these results:

Invokes the ISPF Primary Option Menu. Issuing the L command builds the following
subroutine into your EXEC:

 CALL ATM_PLACE_CURSOR,

 "INPUT(ISPF "||,

 " "||,

 ")",

 "PLACE_CURS_STR(READY)",

 "PLACE_CURSOR_RP(7)",

 "ENTER(YES)"

3. Type this text:

■ On the command line of the EPI Recorder panel, issue the V (Verify data)
command.

■ On the ISPF main menu, block the phrase, ISPF Primary Option Menu using the
relative position character as follows:

@SPF/PDF PRIMARY OPTION MEN@

To produce these results:

Enable your REXX EXEC to determine whether the main ISPF menu is displayed.
Issuing this V command builds the following subroutine into your EXEC:

CALL ATM_VERIFY

"VERIFY_RP(ISPF/PDF PRIMARY OPTION MENU)"

Record an EXEC to Automate Info/Management Inquiries

534 User Guide

4. Type this text:

■ On the command line of the EPI Recorder panel, issue the L command.

■ Block the screen text OPTION ===> using the relative position character as
follows:

@PTION ===@

■ Type PROD on the command line of the ISPF menu, seven bytes to the right of
the O in OPTION.

Using a SESSCMD command processor, the EPI sends the text PROD to the session
and enters it to the right of the command line arrow. If the automatic ENTER option
is set to YES, an ENTER keystroke will also be sent.

To produce these results:

Display the CA Production Applications menu and place the cursor on the command
line of the menu. Issuing this L command builds the following subroutine into your
EXEC:

CALL ATM_PLACE_CURSOR,

 "INPUT(PROD)",

 "PLACE_CURS_STR(OPTION ===>)",

 "PLACE_CURSOR_RP(12)",

 "ENTER(YES)""

5. Type this text:

■ On the command line of the EPI Recorder panel, issue the V command.

■ On the production applications menu, block the phrase, CA Production
Applications, using the relative location character as follows:

@CA PRODUCTION APPLICATION@

To produce these results:

Enable your REXX EXEC to determine whether the correct panel is displayed. Issuing
this V command builds the following subroutine into your EXEC:

CALL ATM_VERIFY "VERIFY_RP(CA PRODUCTION APPLICATIONS)"

Record an EXEC to Automate Info/Management Inquiries

Chapter 14: Using the EPI Recording and Playback Options 535

6. Type this text:

■ On the command line of the EPI Recorder panel, issue the L command.

■ On the ISPF menu, block the screen text OPTION ===> using the relative
location character as follows:

@PTION ===@

■ Type LS on the command line of the ISPF menu.

Using a SESSCMD command processor, the EPI sends the text LS to the session and
enters it to the right of the Option field. If the automatic ENTER option is set to YES,
an ENTER keystroke will also be sent.

To produce these results:

Display the logon panel for the CA Support System and place the cursor on the
command line. Issuing this L command builds the following subroutine into your
EXEC:

CALL ATM_PLACE_CURSOR,

"INPUT(LS)",

"PLACE_CURS_STR(OPTION ===>)",

"PLACE_CURSOR_RP(12)",

"ENTER(YES)"

7. Type this text:

■ On the command line of the EPI Recorder panel, issue the V command.

■ On the logon panel, type the relative location character over the first and last
characters of the text CCL09NEW.

To produce these results:

Enable your REXX EXEC to confirm that the logon panel is displayed. Issuing this V
command builds the following subroutine into your EXEC:

CALL ATM_VERIFY "VERIFY_RP(CCL09NEW)"

Record an EXEC to Automate Info/Management Inquiries

536 User Guide

8. Type this text:

■ On the command line of the EPI Recorder panel, issue the L command.

■ On the logon panel, block the screen text ===> using the relative location
character as follows:

@==@

Using a SESSCMD command processor, the EPI sends the text 2 to the session and
enters it to the right of the ===> field. If the automatic ENTER option is set to YES,
an ENTER keystroke will also be sent.

To produce these results:

Display the Info/Management Inquiry panel and place the cursor on the command
line. Issuing this L command builds the following subroutine into your EXEC:

CALL ATM_PLACE_CURSOR,

"INPUT(2 "||,

")",

"PLACE_CURS_STR(===>)",

 "PLACE_CURSOR_RP(5)",

 "ENTER(YES)"

9. Type this text:

■ On the command line of the EPI Recorder panel, issue the V command.

■ On the inquiry panel, block the screen text CCL1IC0E using the relative location
character as follows:

@CL1IC0@

Using a SESSCMD command processor, the EPI sends the text 2 to the session and
enters it to the right of the ===> field. If the automatic ENTER option is set to YES,
an ENTER keystroke will also be sent.

To produce these results:

Enable your REXX EXEC to confirm that the inquiry panel is displayed. Issuing this V
command builds the following subroutine into your EXEC:

CALL ATM_VERIFY "VERIFY_RP(CCL1IC0E)"

Record an EXEC to Automate Info/Management Inquiries

Chapter 14: Using the EPI Recording and Playback Options 537

10. Type this text:

■ On the command line of the EPI Recorder panel, issue the L command.

■ On the logon panel, block the screen text ===> using the relative location
character as follows:

@==@

■ Type 1 on the command line of the inquiry panel.

Using a SESSCMD command processor, the EPI sends the text 1 to the session and
enters it to the right of the ===> field. If the automatic ENTER option is set to YES,
an ENTER keystroke will also be sent.

To produce these results:

Display the Incident Search panel and place the cursor on the command line. Issuing
this L command builds the following subroutine into your EXEC:

CALL ATM_PLACE_CURSOR,

 "INPUT(1 "||,

 ")",

 "PLACE_CURS_STR(===>)",

 "PLACE_CURSOR_RP(5)",

 "ENTER(YES)"

11. Type this text:

■ On the command line of the EPI Recorder panel, issue the V command.

■ On the Incident Search panel, type the relative location character over the first
and last characters of the text CCL2SI0X and the absolute location character
over the first and last characters of INCIDENT SEARCH, as follows:

@CL2SI0@ #NCIDENT SEARC#

To produce these results:

Enable your REXX EXEC to confirm that the search panel is displayed. Issuing this V
command builds the following subroutine into your EXEC:

CALL ATM_VERIFY,

"VERIFY_RP(CCL2SI0X)",

 "VERIFY_AP(INCIDENT SEARCH)",

 "REL_POS(30)",

 "LEN_AP(15)"

Record an EXEC to Automate Info/Management Inquiries

538 User Guide

12. Type this text:

■ On the command line of the EPI Recorder panel, issue this command:

L NOENTER

■ On the command line of the Incident Search panel, type this text:

90

Using a SESSCMD command processor, the EPI sends the text 90 to the session and
enters it to the right of the ===> field. The NOENTER clause on the L command lets
you override the automatic ENTER option setting of YES, allowing you to set the
REXX variable described below before displaying the Table Display Options panel.

To produce these results:

Send Info/Management code 90 to the session with no ENTER keystroke. Issuing
this L command builds the following subroutine into your EXEC:

CALL ATM_PLACE_CURSOR,

 "INPUT(90 "||,

 ")",

 "PLACE_CURS_STR(===>)",

 "PLACE_CURSOR_RP(5)",

 "ENTER(NO)"

13. Type this text:

■ On the command line of the EPI Recorder panel, issue this command:

N INC_#

■ On the Incident Search panel, type the absolute location character (#) over the
first character of the value in the Incident # field.

To produce these results:

Fetch the incident number in the Incident # field and place its value in a REXX
variable, INC_#. Issuing this N command builds the following subroutine into your
EXEC:

CALL ATM_SESSCMD,

 "INPUT("INC_#")",

 "ROW(5)",

 "COLUMN(29)",

 "ENTER(YES)"

Record an EXEC to Automate Info/Management Inquiries

Chapter 14: Using the EPI Recording and Playback Options 539

14. Type this text:

■ On the command line of the EPI Recorder panel, issue the V command.

■ On the Table Display Options panel, type the relative location character over
the first and last characters of the text CCL3II5I and the absolute location
character over the first and last characters of TABLE DISPLAY OPTIONS, as
follows:

@CL3II5@ #ABLE DISPLAY OPTION#

To produce these results:

Enable your REXX EXEC to confirm that the Table Display Options panel is displayed.
Issuing this V command builds the following subroutine into your EXEC:

CALL ATM_VERIFY,

 "VERIFY_RP(CCL2SI0X)",

 "VERIFY_AP(INCIDENT SEARCH)",

 "REL_POS(20)",

 "LEN_AP(21)"

15. Type this text:

■ On the command line of the EPI Recorder panel, issue the L command.

■ On the Table Display Options panel, block the screen text CCL3II5I using the
relative location character as follows:

@CL3II5@

■ Type 2 on the command line of the Table Display Options panel.

Using a SESSCMD command processor, the EPI sends the text 2 to the session and
enters it to the right of the ===> field.

To produce these results:

Selects display option 2, which displays an Info/Management panel containing
information about specific support incidents. Issuing this L command builds the
following subroutine into your EXEC:

CALL ATM_PLACE_CURSOR,

 "INPUT(2 "||,

 ")",

 "PLACE_CURS_STR(===>)",

 "PLACE_CURSOR_RP(5)",

 "ENTER(YES)"

Record an EXEC to Automate Info/Management Inquiries

540 User Guide

16. Type this text:

■ On the command line of the EPI Recorder panel, type this command.

S REC_#

■ On the Info/Management panel, block the screen text “RECORD #” using the
relative location character as follows::

@RECORD @

To produce these results:

Find the value in the Record # field and assign its value to a REXX variable called
REC_#. Issuing this S command builds the following subroutine into your EXEC:

 REC_# = ATM_SET_VAR(,

 "SET_VAR_RP(RECORD #)",

 "START_AP(80),

 ""LEN_AP(8)")

The EPI also inserts the following subroutine, which compares the value of the
REC_# variable to the value entered earlier for the INC_# variable and issues an
error message if the values do not match:

 IF REC_# <> INC_# THEN DO

 SAY"RECORD NUMBER" REC_# "NOT FOUND"

 SIGNAL EXIT_RC8

 END

17. Type this text:

■ On the command line of the EPI Recorder panel, type this command:

S STATUS

■ On the incident information panel, block the screen text ST using the relative
location character as follows:

@@

To produce these results:

Find the value in the Incident Status field and assign its value to a REXX variable
called STATUS. Issuing this S command builds the following subroutine into your
EXEC:

 STATUS = ATM_SET_VAR(,

 "SET_VAR_RP(ST)",

 "START_AP(80),

 ""LEN_AP(1)")

Record an EXEC to Automate Info/Management Inquiries

Chapter 14: Using the EPI Recording and Playback Options 541

18. Type this text:

■ On the command line of the EPI Recorder panel, type this command:

A

To produce these results:

The EPI displays the last group of lines in your EXEC in edit mode. You then insert
the following text at the end of the EXEC:

SAY "STATUS FOR INCIDENT" INC_# "IS" STATUS

19. Type this text:

■ On the command line of the EPI Recorder panel, type this command:

K @3

To produce these results:

Issue a PF3 keystroke to return you to the Table Display Options panel. Issuing this K
command builds the following subroutine into your EXEC:

CALL ATM_SESSCMD "INPUT(@3) ENTER(YES)"

20. Type this text:

■ On the command line of the EPI Recorder panel, issue the L command.

■ On the Table Display Options panel, block the screen text CCL3II5I using the
relative location character as follows:

@CL3II5@

■ Type BACK on the command line of the Table Display Options panel.

Using a SESSCMD command processor, the EPI sends the text BACK to the session
and enters it to the right of the ===> field.

To produce these results:

Ensure that you are back at the Table Display Options panel, and then issue the
BACK command to return to the Incident Search panel. Issuing this L command
builds the following subroutine into your EXEC:

CALL ATM_PLACE_CURSOR,

"INPUT(BACK "||,

")",

"PLACE_CURS_STR(CCL3II5I)",

"PLACE_CURSOR_RP-155)",

"ENTER(YES)"

Record an EXEC to Automate Info/Management Inquiries

542 User Guide

21. Type this text:

■ On the command line of the EPI Recorder panel, issue the L command.

■ On the Incident Search panel, block the screen text CCL2SI0X using the relative
location character as follows:

@CL2SI0@

■ Type 60 on the command line of the Table Display Options panel.

Using a SESSCMD command processor, the EPI sends the text 60 to the session and
enters it to the right of the ===> field.

To produce these results:

Ensure that you are back at the Incident Search panel, and then issue the BACK
command to return to the inquiry panel. Issuing this L command builds the
following subroutine into your EXEC:

CALL ATM_PLACE_CURSOR,

"INPUT(60 "||,

")",

"PLACE_CURS_STR(CCL2SI0X)",

"PLACE_CURSOR_RP-155)",

"ENTER(YES)"

22. Type this text:

■ On the command line of the EPI Recorder panel, type the L command.

■ On the inquiry panel, type the absolute location character over column 7 of the
first screen row.

■ Type Q on the command line of the Table Display Options panel.

Using a SESSCMD command processor, the EPI sends the text Q to the session and
enters it to the right of the ===> field.

To produce these results:

Enter a Q command to exit from the CA Support System. Issuing the L command of
the EPI Recorder inserts the following subroutine into your EXEC:

CALL ATM_SESSCMD,

 "INPUT(Q "||,

 ")",

 "ROW(1)",

 "COLUMN(7)",

 "ENTER(YES)"

Record an EXEC to Automate Info/Management Inquiries

Chapter 14: Using the EPI Recording and Playback Options 543

23. Type this text:

On the command line of the EPI Recorder panel, type this command:

K @3

To produce these results:

Issue a PF3 keystroke to return to the CA Production Applications menu. Issuing this
K command builds the following subroutine into your EXEC:

CALL ATM_SESSCMD "INPUT(@3) ENTER(YES)"

24. Type this text:

On the command line of the EPI Recorder panel, type this command:

K @3

To produce these results:

Issue a PF3 keystroke to return to the ISPF main menu. Issuing this K command
builds the following subroutine into your EXEC:

CALL ATM_SESSCMD "INPUT(@3) ENTER(YES)"

Chapter 15: Enhanced Console Facility 545

Chapter 15: Enhanced Console Facility

This section contains the following topics:

Overview (see page 545)
ECF Operation (see page 548)
Recovery From Failures (see page 551)
Restrictions on TSO Commands Processed by the ECF and OSF (see page 552)
Security Considerations (see page 553)
Other Considerations (see page 553)

Overview

The Enhanced Console Facility(ECF) component of CA OPS/MVS enhances the
capabilities of the z/OS existing console support by providing the following functions to
operators using MCS consoles:

■ An operator can run a single TSO command or a command procedure written in
either OPS/REXX or the TSO CLIST language. This function is implemented using the
CA OPS/MVS Server Facility, so you will see the term OSF associated with it. The
command procedure can use the OPSCMD command supplied with CA OPS/MVS to
issue z/OS, JES, and subsystem commands. If z/OS runs under VM, then VM
commands can be issued. If the IMS Operation Facility (IOF) optional feature is
installed, then IMS commands can also be issued.

The interactive facilities of TSO do not have to be functioning for
CA OPS/MVS to run TSO commands and CLISTs. CA OPS/MVS uses the TSO service
routines, which are available to any address space, to execute commands issued
from z/OS consoles through the ECF in one of the CA OPS/MVS Server address
spaces.

■ An operator can log on to the ECF, which creates a line-mode TSO session. The most
common use of such a session is to run TSO EDIT to repair a member of
SYS1.PROCLIB (for instance, the JES procedure) that is required to bring TSO up.
Such a use of the ECF is called a system rescue.

To use the ECF for system rescue, you must be able to run CA OPS/MVS with
SUB=MSTR. SUB=MSTR allows CA OPS/MVS to be started independently of JES,
which is necessary because JES might need rescuing.

Note: For more information, see the CA OPS/MVS Administration Guide.

Overview

546 User Guide

Concepts

The ECF component is an integral part of the CA OPS/MVS base product, and is available
as soon as the CA OPS/MVS main product address space finishes initialization. As CA
OPS/MVS is usually installed, this is before JES, VTAM, and TSO are started. The ECF
monitors commands entered from all z/OS consoles looking for one that begins with
one of its special characters, as discussed in the following sections: Commands
Processed by the OSF and Commands Processed by the ECF in this chapter.

Note: Enter ECF commands from real consoles only.

Commands Processed by the OSF

When the ECF sees a command that begins with an exclamation mark (!), it routes the
command to one of its OPSOSF (Server) address spaces for processing.

An exclamation mark is the default OSF character string. It can be changed to any other
1- to 3-character string (other than the current ECF command character string) with the
OPSPRM OPS/REXX function or the OPSPARM command. For additional information, see
the OSFCHAR parameter in the Parameter Reference.

What follows that character must be one of the following:

■ The name of a TSO command (that is, LISTC) followed by its operands, if any.

■ A percent sign (%) followed by the name of a command procedure that has been
written in the TSO CLIST language and has been put in one of the libraries in the
//SYSPROC concatenation specified in the JCL of the OPSOSF procedure. Such
procedures can contain any combination of TSO commands and CLIST logic, but
they will almost always contain calls to the
CA OPS/MVS OPSCMD command to issue system commands and retrieve the
responses they generate.

A CLIST that has not been stored in //SYSPROC can still be run by calling it directly
through the TSO EXEC command.

■ OI followed by the name of a command procedure that has been written in
OPS/REXX and has been placed in one of the libraries in the //SYSEXEC
concatenation specified in the JCL of the OPSOSF procedure. Again, while in theory
any OPS/REXX program can be called, the assumption is that these programs
perform some operational task by their routing commands to ADDRESS OPER.

OI is an alias of OPSIMEX. OPSIMEX could be used in place of OI, but it is
considerably less convenient to type.

■ OX followed by the name of a data set containing a command procedure written in
OPS/REXX. OX is an alias of OPSEXEC, and must be used if the OPS/REXX command
procedure needed is not in the //SYSEXEC concatenation.

Overview

Chapter 15: Enhanced Console Facility 547

Each command entered with a prefix of ! must stand alone. These commands cannot
request more input from the operator, and they cannot see commands entered after
they were entered through this facility.

Note: Commands cannot issue a TSO GETLINE or TGET request. A command procedure
could issue an OPSWTO command with the REPLY operand to prompt the operator
through a standard z/OS WTOR, but such command procedures are best run through
the OPSECF facility of the ECF.

For more information about the CA OPS/MVS Server Facility, see the Administration
Guide.

Commands Processed by the ECF

When the ECF sees a command that begins with a question mark, it routes the
command to the OPSECF address space associated with the z/OS console from which
the command was entered.

Note: A question mark is the default ECF character string. It can be changed to any other
1- to 3-character string (other than the current OSF command character string) with the
OPSPRM OPS/REXX function or the OPSPARM command. For additional information, see
the ECFCHAR parameter in the Parameter Reference.

OPSECF address spaces are created when a ?LOGON command is entered from a z/OS
console, so ?LOGON must be the first question mark command entered.

TSO commands, TSO CLISTs, and OPS/REXX procedures run in OPSECF address spaces by
being invoked after a ?LOGON can obtain additional input through the TSO GETLINE
service routine (and its OPS/REXX equivalent), and any output they generate is routed
back to the requesting console by the ECF.

Restrictions on TSO Command Runs

Neither commands run in an OPSOSF address space nor those run in an OPSECF address
space can use TGET (they will hang) or TPUT (their output will be discarded). Full screen
applications cannot be run under either mechanism; only line mode commands will
work.

ECF Operation

548 User Guide

ECF Operation

The ECF is part of the CA OPS/MVS base product, so it requires no separate installation.
The ECF is controlled by a number of product parameters, which are set with the
OPSPRM OPS/REXX function or the OPSPARM TSO command. For more information
about ECF installation and control, see the Administration Guide.

As with any part of z/OS, there are operational aspects to the ECF. These are described
in the Administration Guide. For information about the ADDRESS OPSCTL command, see
the Command and Function Reference.

Log On the ECF

You log onto the ECF by issuing a ?LOGON command to create an OPSECF address space
to conduct a session with you by entering the following command at a z/OS (or JES3)
console:

?LOGON userid/password

The userid specified must be a valid TSO user ID on the machine on which the command
was entered, and password must be a valid password for that user ID. The ability of the
ECF session to access data sets will be the same as if the logon had been to TSO.

The ?LOGON command shown above takes the CA OPS/MVS default for creating the
OPSECF address space:

■ If CA OPS/MVS itself started with SUB=JES2 (or JES3), then the OPSECF address
space will be started with SUB=JESx. This is usually desirable, but if JES is down, or
even if its health is suspect, then you should start your session with SUB=MSTR as
described on the following page.

■ If CA OPS/MVS itself started with SUB=MSTR, then the OPSECF address space
attempts to start SUB=MSTR unless you code SUB(JESx) on your ?LOGON command.

Note: CA OPS/MVS only allows SUB(MSTR) ECF sessions from a locally attached
MCS console with Master authority; therefore you must code SUB(JESx) on your
?LOGON command if CA OPS/MVS is running SUB=MSTR and you are using any
console other than the z/OS MCS console with master authority.

■ If you log on using ?LOGON with SUB(MSTR), the ECFSECURITY parameter is
ignored. This in effect sets the parameter to NOSECURITY and occurs whether the
SUB(MSTR) is set explicitly or through starting CA OPS/MVS with SUB=MSTR.

ECFSECURITY is bypassed if the ECF is run in SUB=MSTR. In this case, the only security
will be that defined for the ECF address space. Any ECF security defined in the
initialization parameters during installation is ignored.

ECF Operation

Chapter 15: Enhanced Console Facility 549

The most reliable means of running an ECF session is SUB=MSTR, even if
CA OPS/MVS itself is being run SUB=JES3. You can use the following form of the ?LOGON
command only from a locally attached MCS console with Master Authority:

?LOGON userid/password sub(mstr)

For this form of the command to work, the OPSECF JCL PROC must be in SYS1.PROCLIB
and, if you are using DFSMS, all data sets referenced by that PROC must be cataloged in
the z/OS master catalog.

You must use the ECF in this way to take advantage of its system rescue capability.
When an OPSECF session is created SUB=MSTR, it has the security profile defined for the
OPSECF address space. That is, it does not assume the security profile of the TSO ID with
which you logged on, as it would if you had logged on SUB=JESx. This is so you can be
sure to have a high enough data set access authority level to perform any system rescue
that might be needed.

ECF Operation

550 User Guide

Conduct an Interactive ECF Session

Once you have successfully logged onto an ECF session from a console, you have a TSO
session in READY mode with which you can interact. Output from your session will be
routed back to your console automatically by CA OPS/MVS, but every line of input you
enter for this session must be explicitly routed to it by prefixing it with a question mark
(?). Do not use the OSF command character string. It is reserved for routing single-line
requests to OSF TSO servers. This can be confusing at first because the OSF is still
available, even while you are using the ECF. Worse, many commands you might enter
through the ECF will also work if entered through the OSF, adding to the potential
confusion.

This is an example session with the ECF to fix a broken VTAM procedure:

?LOGON syssup02/secret sub(mstr)

OPS1000I START OPSECF.SYSSUP02,SSID=OPSS,UID=SYSSUP02 START

<logon-related messages from your security product, if any>

OPS2106H SYSSUP02 LOGON FOR OPSS(1) AT 00:18:39 ON JANUARY 12, 2004

IKJ56644I NO VALID TSO user ID, DEFAULT USER ATTRIBUTES USED

READY

?edit 'sys1.proclib(vtam)' data

EDIT

?verify on

EDIT

?f '//vtamlst'

6000 //VTAMLST DD DSN=SYS1.VTAMLST,DISP+SHR

EDIT

?c 'disp+shr' 'disp=shr'

6000 //VTAMLST DD DSN=SYS1.VTAMLST,DISP=SHR

EDIT

?end save

READY

?LOGOFF

This use of the ECF is referred to as system rescue since it allows you to fix z/OS when it
is in such a bad state that the typical tools you use (for example, TSO/ISPF) are not
available. Naturally, the above session is somewhat simplified. Since it is happening at a
console, unsolicited messages can interleave with the messages generated by the ECF
session.

The IKJ56644I message above is typical and does not indicate any sort of error in the ECF
session.

Recovery From Failures

Chapter 15: Enhanced Console Facility 551

Log Off the ECF

You can logoff from an ECF session by entering the ?LOGOFF command from the console
where the ECF session was started (from which the ?LOGON command was issued).

 ?LOGOFF

Recovery From Failures

ECF sessions can be prematurely terminated without a ?LOGOFF command having been
issued under the following circumstances:

■ The OPSECF address space is cancelled (ABEND S222).

■ The OPSECF address space times out (ABEND S522).

■ The OPSECF address space reaches CPU time limit (ABEND S322).

■ A program running in the OPSECF address space incurs a system failure.

The ECF runs the TSO TMP in batch mode. The TMP will terminate when a command
processor incurs a system ABEND. This is a limitation of the IBM TSO TMP, not of the
ECF.

The ECF automatically detects such TSO address space failures and issues an automatic
logoff from the console that started the TSO session. A ?LOGON command can be issued
from the console to re-logon to the ECF.

Restrictions on TSO Commands Processed by the ECF and OSF

552 User Guide

Restrictions on TSO Commands Processed by the ECF and OSF

The following restrictions apply to TSO commands or CLISTs executed by the ECF, OSF
TSO, OSF TSL, and OSF TSP:

■ TGET/TPUT requests are ignored, since the TSO TMP is executed in batch mode.

■ Only PUTLINE requests that typically would be printed to the SYSTSPRT file are
returned by the ECF and OSF.

■ Any GETLINE requests that typically would result in additional input being read from
the SYSTSIN file will cause termination of the TSO command or CLIST being
executed.

■ In the ECF environment, the user PROFILE PREFIX value will not be set to the ID with
which the operator logged on. Users of the ECF (OPSECF) facility and the OSF
(OPSOSF) facility should run a PROFILE PREFIX(prefix) command before accessing
anything but fully qualified data set names.

■ LOGOFF commands should not be coded in CLISTs executed through the OSF
(OPSOSF) facility. LOGOFF will terminate the OPSOSF address space, which the main
CA OPS/MVS address space detects, and then immediately restarts it. If this
happens often enough, the CA OPS/MVS address space stops restarting the servers.

■ If CLISTs or REXX EXECs will be run through the OSF (OPSOSF) facility that issues
long waits, tell CA OPS/MVS to start extra OPSOSF address spaces to make sure
there are always some available to process operator and internal CA OPS/MVS
requests or preferably schedule these CLISTs/REXX EXECs to run in OSF TSL servers
that are intended for this purpose.

Security Considerations

Chapter 15: Enhanced Console Facility 553

Security Considerations

Consider the following items regarding security for the ECF:

The OPSRMT and OPSCMD can potentially issue commands whose authority level
checking is bypassed. When OPSRMT or OPSCMD issues a cross-system command, the
OSF of the remote system using the authority levels assigned to the server address
space eventually executes the command.

This same problem can arise when OPSRMT or OPSCMD is invoked to execute a TSO
command on the local system. The command is ultimately executed by the OSF of the
local system, and hence will be checked by your security system against the authority
level of the server address space.

For this reason, you must secure the usage of the OPSRMT and OPSCMD TSO
commands. This can be done in several ways:

■ Read-protect the library in which the OPSRMT and OPSCMD load modules are
placed.

■ Use the OPUSEX exit routine to check the authority of the user when the OPSRMT
or OPSCMD command is invoked. Both routines call this exit. The sample exit, as
distributed, checks to make sure the caller has the TSO OPER privilege.

■ Use CA ACF2, CA TopSecret, or RACF to restrict the use of OPSRMT and OPSCMD by
user ID.

■ Set the authority level of the server address spaces to the lowest common
denominator of all users. This ensures that no user can gain more authority than he
or she already has.

Note: CA OPS/MVS assigns all OSF server address spaces SUBMIT and OPER privileges by
default.

Other Considerations

The ECFSECURITY parameter is bypassed if the ECF is run SUB=MSTR. This means that
the only available security is that established for the ECF address space.

Note: Any ECF security defined in the initialization parameters is ignored.

Chapter 16: Multi-System Facility 555

Chapter 16: Multi-System Facility

This section contains the following topics:

Understanding the MSF (see page 556)
MSF Operation (see page 558)
Display Systems and MSF Sessions (see page 564)
Issue Commands to Remote Systems (see page 565)
OPSSEND Function and ADDRESS WTO—Pass Messages to Remote Systems (see page
567)
Shut Down MSF Sessions and Systems (see page 567)
Recovery from Failures (see page 569)
Security Considerations (see page 572)

Understanding the MSF

556 User Guide

Understanding the MSF

The Multi-System Facility(MSF) allows multiple copies of the product running on
different z/OS images to communicate with each other through a variety of
communication protocols. These z/OS images may be in a single data center, or they
may be spread out around the world. Many of the CA OPS/MVS command processors,
OPS/REXX host command environments, and OPS/REXX functions can perform their
operations on any connected system. For example, when the MSF is installed and
configured, you can perform any of these actions:

■ Issue z/OS or subsystem commands to another system and retrieve the responses.

■ Issue WTOs to consoles on other systems.

■ Execute an OPS/REXX program in an OSF server address space that is on another
system and retrieve the output.

■ Issue SQL commands to retrieve or update rows in a relational table that resides on
another system.

■ Manage System State Manager resources on another system.

■ Retrieve or update global variables that reside on another system.

■ Browse the OPSLOG of another system.

■ Control these CA OPS/MVS components on another system:

– COF

– MSF

– OSF

■ Issue commands and messages to CA Automation Point

The MSF supports the following communication protocols:

■ LU 6.2

■ XCF (through CAICCI)

■ XES (through CAICCI)

■ TCP/IP (through CAICCI)

Understanding the MSF

Chapter 16: Multi-System Facility 557

MSF Support of JES3 (JES3 Only)

JES3 supports the routing of JES3 commands that are entered from a local processor.
JES3 routes these commands to the global by using the JES3 PLEXSYN (syplex scope) CPF
prefix. CA OPS/MVS submitted JES3 commands from a local processor will automatically
make use of this facility.

However, there are cases where CA OPS/MVS users need to route a JES3 command
from a local in one JESPLEX to JES3 a global in a different JESPLEX. Or, perhaps they do
not have the JES3 PLEXSYN prefixes in place to do the command routing. For these
cases, CA OPS/MVS can be configured to use MSF along with the JES3SYSID parameter.
CA OPS/MVS will route JES3 commands entered on the local via MSF to the global MSF
name that is defined in the JES3SYSID.

MSF Terminology

The MSF is not all that complicated, but since it uses network facilities, some of the
following terms may be unfamiliar to you:

System

A system is equivalent to a VTAM domain. It usually consists of one CPU running
one copy of VTAM (the SSCP) that controls all VTAM (network) resources connected
to that CPU. A copy of CA OPS/MVS must be running on each system. A unique
system identifier (sysid) identifies each system using the MSF.

MSF session

A logical connection through a VTAM session between two systems running CA
OPS/MVS. Two copies of CA OPS/MVS can communicate if an MSF session exists
between them.

Accessible

A system is said to be accessible to another system if an MSF session has been
established between the two MSFs in each system.

Cross-system command

A command that is issued on one system and passed on to another system for
processing through the MSF.

Local system

The system to which your terminal or console is connected if you are using MSF
facilities interactively. If a program is using the MSF, then the local system is the
one on which the program is running.

Remote system

Any system other than the local system.

MSF Operation

558 User Guide

Note: An MSF system can only communicate with other MSF systems with which it has
established a session. For example, if systems A and B have established a session, and
systems B and C have established a session, systems A and C will not be able to
communicate with each other (unless a session has also been established between
systems A and C).

MSF Installation

The installation of the MSF is covered in the Installation Guide. The discussion in that
guide covers not only putting in MSF code, but also coding the parameters necessary to
define the other copies of CA OPS/MVS with which the MSF will be communicating, as
well as the system on which the MSF runs (the local system).

The MSF and CAICCI

The MSF supports the cross-system communication services provided by CAICCI. CAICCI,
or the CAI Common Communications Interface, is one of the CCS for z/OS. It is a
communications facility that allows CA solutions to communicate with one another. For
information on the CCS for z/OS component that is required to run CAICCI, see the
appendix “CCS for z/OS Component Requirements” in the Installation Guide.

For information about setting up MSF connections using CAICCI, see the Administration
Guide. Review your CCS for z/OS documentation for information about installing CAICCI,
and for further details about its features and functions.

MSF Operation

The MSF is a CA OPS/MVS component that cannot be started automatically when CA
OPS/MVS is started and left to run on its own. This is because the MSF communicates
with other systems that may or may not be up when your particular MSF initializes, and
then may or may not stay up.

The following discussion assumes that the MSF is being operated manually. You are
encouraged, however, to make the maximum use of the CA OPS/MVS AOF feature to
automate any MSF operational tasks that you perform manually on a regular basis.

MSF Operation

Chapter 16: Multi-System Facility 559

Activate the MSF VTAM APPLID

If you are using the LU 6.2 protocol, the MSF VTAM APPLID should be active at the time
the MSF attempts to establish sessions with any other (all) CA OPS/MVS systems in your
network. APPLID activation will usually be done at VTAM initialization time. If you defer
activation until after VTAM initialization is complete, you can use the following VTAM
operator command when you want to activate the MSF APPLID:

VARY NET,ACT,ID=msfname

The msfname value is the name of the member in SYS1.VTAMLST where the APPL
statement of the MSF is stored.

Note: The member often has the same name as that of the APPL definition it contains,
but VTAM does not require this.

The MSF APPLID must be active on each system on which CA OPS/MVS is running.

To activate the MSF VTAM APPLID

Assuming that you have three systems, System A, System B, and System C, and the
SYS1.VTAMLST on each system contains a member defining the MSF APPLID for that
system (assume the names are OPSMVSA, OPSMVSB and OPSMVSC respectively), you
can activate the MSF application names with the following operator commands:

VARY NET,ACT,ID=OPSMVSA issued on system A

VARY NET,ACT,ID=OPSMVSB issued on system B

VARY NET,ACT,ID=OPSMVSC issued on system C

You can use the AOF to issue these commands at the end of VTAM initialization, or use
OPSVIEW (logged on to each system in turn) to issue them.

MSF Operation

560 User Guide

Start the MSF

The MSF must be active on all your z/OS systems before you can use it to issue
cross-system commands. Starting the MSF requires that you perform the following steps
(usually automatically rather than manually) on each of your systems.

To start the MSF

1. Start the CA OPS/MVS main product address space. This is usually done through the
appropriate COMMNDnn member of the Logical Parmlib Concatenation.

2. Tell CA OPS/MVS the name to use for the local system (the one on which it is
running).

The MSF picks up this parameter and uses it during MSF initialization. Setting this
name, the SYSID of the local system, is usually done with an OPSPRM OPS/REXX
function executed from the OPSSPAnn member of the Logical Parmlib
Concatenation during CA OPS/MVS initialization.

3. Define the systems to the MSF (using ADDRESS OPSCTL MSF).

4. Start the local MSF (using ADDRESS OPSCTL MSF).

5. Activate the MSF sessions to remote systems (using ADDRESS OPSCTL MSF).

Each initialization step is explained in detail in the sections that follow.

Starting the System Task

Instructions for starting the CA OPS/MVS system task appear in the Administration
Guide.

Set the Local System Identifier

You can set the local system identifier, the SYSID parameter, by using the OPSPRM
OPS/REXX function from an OPS/REXX program.

Use this form of the OPSPRM function:

var = OPSPRM("SET","SYSID","value"[,,"system"])

For detailed descriptions of the arguments for the OPSPRM function, see the Parameter
Reference.

MSF Operation

Chapter 16: Multi-System Facility 561

Define Systems to the MSF

You must define the system on which the MSF is running (the local system) and all other
systems with which it can communicate (the remote systems).

To define systems to the MSF

■ Use OPSVIEW option 4.2

or

■ You can issue the MSF DEFINE command through one of these methods:

– From the OPS/REXX program specified in the AOFINIT REXX parameter

– In the OPSTART2 OPS/REXX program

– From an OPS/REXX program or an AOF rule

– From a console using the OPSMSF command rule in the sample libraries

The syntax for the MSF DEFINE command is:

ADDRESS OPSCTL "MSF DEFINE keywords"

For detailed descriptions of the keywords for the MSF DEFINE command, see the
Command and Function Reference.

Start Cross-system Sessions

Before MSF sessions can be established with a remote CA OPS/MVS system, you must
first start MSF processing on the local CA OPS/MVS system. When using the LU 6.2
protocol, the MSF responds by opening its VTAM ACB.

To start cross-system sessions

Issue the MSF START command through one of these methods:

■ In the AOF

■ From an OPS/REXX program

■ From a console using the OPSMSF command rule in the sample libraries

Note: You can issue the MSF START command only after the local system has been
defined using the MSF DEFINE command described in the previous section.

The syntax for the MSF START command is as follows:

ADDRESS OPSCTL "MSF START keywords"

For detailed descriptions of the keywords for the MSF START command, see the
Command and Function Reference.

MSF Operation

562 User Guide

Activate MSF Sessions to Remote Systems

Once MSF processing has been started on the local system (the one on which the CA
OPS/MVS system you are dealing with is running), you can tell the MSF to initiate
sessions with all the other CA OPS/MVS systems you have defined to it (with previous
MSF DEFINE statements).

To activate MSF sessions to remote systems

1. Issue one or more MSF ACTIVATE commands through one of these methods:

■ In the AOF

■ From an OPS/REXX program

■ From a console using the OPSMSF command rule in the sample libraries

When using the LU 6.2 protocol, the MSF responds by issuing VTAM OPNDST to
establish the session requests.

The syntax for the MSF ACTIVATE command is as follows:

ADDRESS OPSCTL "MSF ACTIVATE keywords"

For detailed descriptions of the keywords for the MSF ACTIVATE command, see the
Command and Function Reference.

MSF Operation

Chapter 16: Multi-System Facility 563

Define and Activate MSF Sessions

Assume you need to define and activate your complex of three domains with VTAM
application names already set up (OPSMVSA, OPSMVSB, and OPSMVSC) in each domain
with MSF system IDs SYSA, SYSB, and SYSC.

To define and activate the MSF sessions

■ Issue the following set of commands on all systems once CA OPS/MVS has
completed its initialization:

ADDRESS OPSCTL "MSF DEFINE MSFID(SYSA) APPLID(OPSMVSA)"

ADDRESS OPSCTL "MSF DEFINE MSFID(SYSB) APPLID(OPSMVSB)"

ADDRESS OPSCTL "MSF DEFINE MSFID(SYSC) APPLID(OPSMVSC)"

ADDRESS OPSCTL "MSF START NORETRY"

ADDRESS OPSCTL "MSF ACTIVATE MSFID(ALL)"

Usually, you issue these commands in the OPSTART2 OPS/REXX program. CA
OPS/MVS runs the OPSTART2 OPS/REXX program automatically immediately after it
finishes initialization. For more information about this program, see the
Administration Guide.

■ However, you can also issue the commands through one of these methods:

– In the AOF

– From an OPS/REXX program

– From a console using the OPSMSF command rule in the sample libraries

Exactly the same parameters can be used on all three systems. This is because the
MSF learns which one of the three systems defined is the local system from the
specification through OPSPRM and does different ACTIVATE processing for the local
system (the MSF OPENs the VTAM ACB) than for the remote systems (the MSF
executes OPNDSTs to start sessions with them). The parameters of the MSF were
purposely designed this way to reduce the number of parameters that must be set.

Auto-connecting MSF Sessions

As soon as the MSF START command has been issued, other systems can establish MSF
sessions with the local system. This is true even when no other remote systems have
been defined to the local system. An undefined remote system that tries to establish a
session with the local system will automatically be defined in the local system as if an
MSF DEFINE command of the following form was actually issued on the local system:

ADDRESS OPSCTL "MSF DEFINE MSFID(sysname) APPLID(vtamname) NORETRY"

The sysname operand is passed by the remote system to the local system when the MSF
session is established. When using the LU 6.2 protocol, the vtamname operand is the
application name by which the VTAM domain of the local system identifies the VTAM
application of the remote system.

Display Systems and MSF Sessions

564 User Guide

Display Systems and MSF Sessions

You can display the status of the local system and remote sessions by issuing the MSF
LIST command.

Note: For detailed descriptions of the keywords for the MSF LIST command, see the
Command and Function Reference.

To display systems and MSF sessions

1. Issue the MSF LIST command through either of these methods:

■ From an OPS/REXX program

■ From a console using the OPSMSF command rule in the sample libraries

2. The syntax for the MSF LIST command is as follows:

ADDRESS OPSCTL "MSF LIST keywords"

The following is a sample display of the information returned by the MSF LIST command:

Local Status Applid VTAM Retry Max Current VTAM
System VTAM VTAM Password Secs Retry Retry Open Error
-------- -------- -------- -------- ----- ----- ------- -----------
SYSA ACTIVE OPSMVSA 30 0

---------------------------- Remote System---------------------------------
 System Delay Retry Max Current VTAM
Sel Name Status APPLID Value Secs Retry Retry Rtncd Fdbk2 Type
--- -------- -------- -------- -------- ----- ----- ------- ----------- -----
 SYSB ACTIVE OPSMVSB 1 30 5 0 X'00' X'00' APPC
 SYSC INACTIVE OPSMVSC 1 30 5 1 X'00' X'00' APPC
 SYSD FAILED OPSMVSD 1 NO RETRY X'08' X'01' APPC
 SYSE INACTIVE OPSMVSF 1 30 4 4 X'00' X'00' APPC
 SYSF FAILED OPSMVSF 30 30 4 2 X'08' X'01' APPC

In the above display:

■ The local system is called SYSA.

■ Five remote systems have been defined.

■ Only one MSF session from the local system is active (the session to system SYSB).

■ The MSF session from SYSA to SYSC has been deactivated using the MSF
DEACTIVATE command.

■ The MSF session from SYSA to SYSD has not been established because it was
activated with the NORETRY keyword and the remote system (SYSD) has not been
able to establish the MSF session.

■ Both sessions to SYSE and SYSF failed. The session to SYSE was activated in RETRY
mode, but has reached the maximum number of RETRYs and must be reestablished
by the MSF on the SYSE system.

Issue Commands to Remote Systems

Chapter 16: Multi-System Facility 565

■ The session to SYSF is using RETRY mode, with retries every 30 seconds and a
maximum of 4 retries. The MSF is currently retrying for the second time to
reestablish the session.

Like any part of the z/OS environment, the MSF can operate with the CA OPS/MVS AOF.
Thus, if the NORETRY and RETRY options supported by the MSF cannot establish MSF
sessions and keep them up in your environment, you can program more sophisticated
procedures using the same AOF facilities with which you control all the other systems in
your environment.

Issue Commands to Remote Systems

You can issue commands to other systems using either of the following commands:

■ OPSRMT command

Use the OPSRMT command to issue any TSO command to another system
(including the OPSCMD command).

■ OPSCMD command

Use the OPSCMD command to issue any operator command (z/OS or JES) to
another system.

Issue Commands to Remote Systems

566 User Guide

Issue Cross-system TSO Commands

You can issue TSO commands to other systems by issuing the OPSRMT command (alias
OR). This command enables you to issue TSO commands to other systems from either a
TSO terminal or a console logged into the CA OPS/MVS ECF component. For the syntax
of the OPSRMT command, see the Command and Function Reference.

Issuing the OPSRMT command without specifying command text causes the OPSRMT
command processor to enter subcommand mode. The CA OPS/MVS product routes all
TSO commands you enter while in subcommand mode to the subsystem you specified
on the OPSRMT command.

When the TSO command immediately follows the system ID on an OPSRMT command,
CA OPS/MVS considers all text beyond the system ID to be part of the command text.
For example, in the following example, the TSO command text is LISTCAT LEVEL(SYS1):

OR SYSTEM3 LISTCAT LEVEL(SYS1)

Note: When the MSF is not installed or is not active on the local system, the OPSRMT
command returns an error message when you specify any system ID other than that of
the local system (or *).

The OPSRMT command with the system ID of the local system (or *) is always valid as
long as the CA OPS/MVS address space is active. The MSF does not need to be installed
or active when specifying the local system ID on the OPSRMT command.

Issue JES3 Commands

When you issue a JES3 command from a local processor using OPSCMD or ADDRESS
OPER, CA OPS/MVS by default uses the JES3 PLEXSYN (sysplex scope) CPF prefix to route
the command to the global system in the JESPLEX and return the output.

When the JES3SYSID parameter is set, MSF connections are use to route the JES3
command from the JES3 local system to the JES3 global system. The global here refers
to the MSF SYSID the JES3 global system as defined by the JES3SYSID parameter.

The JES3SYSID parameter should only be defined if either of the following are true:

■ There is no sysplex scope JES3 PLEXSYN prefix defined.

■ The JESPLEXes are in different sysplexes and there is a need to route JES3
commands from a local to a global that is in a different sysplex.

OPSSEND Function and ADDRESS WTO—Pass Messages to Remote Systems

Chapter 16: Multi-System Facility 567

OPSSEND Function and ADDRESS WTO—Pass Messages to
Remote Systems

WTO messages issued on one system can be passed to another system through the
OPSSEND function or the ADDRESS WTO instruction.

OPSSEND Function

The OPSSEND function can only be called from in an AOF rule; it sends the message
intercepted by the rule to a remote system.

The OPSSEND function has the following format:

If the following AOF rule is enabled on system SYSA, all messages whose message ID
starts with IEF will be sent to system SYSB:

)MSG IEF*

)PROC

CALL OPSSEND 'SYSB' 'B'

)END

The first operand passed to the OPSSEND function call is the target system ID.

ADDRESS WTO Instruction

You can also use the ADDRESS WTO instruction to issue messages from any
OPS/REXX program to a remote system.

The ADDRESS WTO instruction has the following format:

ADDRESS WTO "TEXT('messagetext') keywords"

For more information about the ADDRESS WTO instruction, see the Command and
Function Reference.

Important! Although you can use both the OPSSEND function and the ADDRESS WTO
instruction to pass messages to remote systems, we recommend that you use the
ADDRESS WTO instruction.

Shut Down MSF Sessions and Systems

To shut down the MSF, do the following:

1. Deactivate all active MSF sessions.

2. Stop the local MSF.

These tasks are described in this section.

Shut Down MSF Sessions and Systems

568 User Guide

Deactivate MSF Sessions

You can deactivate an MSF session between the local system and any remote system.

To deactivate your MSF session

1. Issue the MSF DEACTIVATE command through either of these methods:

– From an OPS/REXX program

– From a console using the OPSMSF command rule in the sample libraries

2. Use the following syntax for the MSF DEACTIVATE command:

ADDRESS OPSCTL "MSF DEACTIVATE keywords"

For detailed descriptions of the keywords for the MSF DEACTIVATE command, see
the Command and Function Reference.

After an MSF session is deactivated, you cannot issue cross-system commands between
the two systems involved in the MSF session, and unsolicited messages are not passed
between the two systems. If any commands were in progress, they are aborted with a
message showing that the MSF session was deactivated.

Stop the MSF

You can stop the local MSF.

To stop the MSF

1. Issue the MSF STOP command through either of these methods:

– From an OPS/REXX program

– From a console using the OPSMSF command rule in the sample libraries

2. Use the following syntax for the MSF STOP command:

ADDRESS OPSCTL "MSF STOP keywords"

For detailed descriptions of the keywords for the MSF STOP command, see the
Command and Function Reference.

After the local MSF is stopped, you cannot issue any cross-system commands or
messages from or to the local system until an MSF START command has restarted the
local MSF. If any commands were in progress, they are aborted with a message showing
that the MSF session was stopped.

Recovery from Failures

Chapter 16: Multi-System Facility 569

Remove System Definitions

You can delete the definition of a system (previously added with an MSF DEFINE
command).

To remove system definitions

1. Issue the MSF DELETE command through either of these methods:

– From an OPS/REXX program

– From a console using the OPSMSF command rule in the sample libraries

2. Use the following syntax for the MSF DELETE command:

ADDRESS OPSCTL "MSF DELETE keywords"

For detailed descriptions of the keywords for the MSF DELETE command, see the
Command and Function Reference.

A system that has an active MSF session cannot be deleted until you deactivate the MSF
session through the MSF DEACTIVATE command. You cannot delete the definition of the
local system until an MSF STOP command has been issued.

Recovery from Failures

The MSF distinguishes between these types of failures:

■ MSF system failures

■ MSF session failures

■ Cross-system command failures

The failures are described in the sections that follow.

Recovery from Failures

570 User Guide

MSF System Failures

When the MSF on a particular system is unable to continue, all sessions to and from that
system will fail. Any of the following conditions may cause an MSF system failure:

■ An operating system crash

■ A VTAM shutdown

■ Deactivation of the CA OPS/MVS VTAM application definition

■ Failure of the CA OPS/MVS address space

Any remaining MSF systems can try to reestablish their sessions with the failing system,
depending on how the failing system was defined. If the failing system was defined or
activated with the RETRY option, the other system will try to reestablish the session. If it
was defined or activated with the NORETRY option, the other system waits for the
failing system to reestablish the session.

Note: This occurs after the MSF has been restarted and the session is restarted with the
RETRY option on the failing system.

Recovery from Failures

Chapter 16: Multi-System Facility 571

MSF Session Failures

When a session between two MSF systems fails, all communication between the two
MSF systems halts.

Any of the following conditions can cause an MSF session failure:

■ Two things can cause a session failure on the local system:

– MSF system failure on a remote system

– Deactivation of the VTAM application definition of a remote system

■ Sessions will fail on both systems involved in the session if the communications link
between two systems is disrupted (a lost phone connection, a lost satellite link, and
so on).

After an MSF session failure:

■ You cannot issue cross-system commands between the two systems involved in the
MSF session.

■ Unsolicited messages are no longer passed between the two systems.

■ Any commands that were in progress will be aborted with a message showing that
the MSF session was deactivated.

■ Systems that have defined the session with the RETRY option automatically try to
reestablish the session (assuming that both systems involved in the session are still
active).

If possible, the MSF writes messages to the system log to identify the commands,
messages, or both, that were being processed when a session failed.

Security Considerations

572 User Guide

Cross-system Command Failures

A cross-system command can fail for a variety of reasons:

■ An MSF system failure

■ An MSF session failure

■ An excessive number of messages are returned in response to the command

■ The command takes an excessive amount of time to complete

■ The z/OS (sub)system that will process the command fails

Except for the first two causes, the MSF automatically recovers from cross-system
command failures.

In most cases, the command issuer receives a message to show the specific cause of the
command failure; for example, session deactivated, VTAM shutdown, excessive output.
If the originating OPSRMT command was issued from a TSO CLIST, the return code from
OPSRMT also indicates the type of failure.

If possible, the MSF also writes a message to the system log to identify a failing
cross-system command.

Security Considerations

Consider the items described in the following sections when establishing security for the
MSF.

VTAM APPLIDs

Any VTAM application can establish an MSF session with CA OPS/MVS. Assuming that
the correct VTAM protocols are used, nothing prevents another VTAM application from
introducing commands (TSO or operator commands) into the MSF by emulating a
remote system.

For this reason, it is critical to protect the use of VTAM application names using the
PASSWORD operand on the VTAM APPL statement defining each application name.

For this same reason, you must read-protect your VTAM definition library so that
unauthorized users cannot read these passwords.

Security Considerations

Chapter 16: Multi-System Facility 573

OPSRMT and OPSCMD TSO Commands

OPSRMT and OPSCMD can issue commands whose authority level checking is bypassed.
When OPSRMT or OPSCMD issues a cross-system command, the command eventually
executes on the remote system using the authority levels assigned to the CA OPS/MVS
address space.

This same problem can arise when OPSRMT or OPSCMD is invoked with the name of the
local system. The command executes in the CA OPS/MVS address space of the local
system and will be checked by your security system against the authority level of the CA
OPS/MVS address space.

In general, OPSRMT executes the TSO command on the target system using the same
security that the issuing user would have, had he or she logged onto TSO on the target
system manually and issued the TSO command from a session. Specifically, before each
command executes on the target system, CA OPS/MVS sets up the RACF, CA Top Secret,
or CA ACF2 environment to ensure that the security products use the security clearance
of the issuing user.

The security system on the target system must know the user ID of the user issuing a
remote command and the user must have the same user ID on the target system. If this
is not the case, a user can bypass security checks (and password checking of user IDs).

For example, suppose that user ID ABC is known on two MSF systems (called SYS1 and
SYS2) but the user ID belongs to user X on SYS1 and user Y on SYS2. User X can log on to
system SYS1 and issue an OPSRMT command to SYS2. The command will execute on the
SYS2 system using the security clearance of user Y, without user X ever knowing the
password of user Y.

You can install additional security beyond that available for your security package using
any of these methods:

■ Read-protecting the library in which the OPSRMT and OPSCMD load modules are
placed.

■ Using the OPUSEX exit routine to check the authority of the user when the OPSRMT
or OPSCMD command is invoked. Both routines call this exit. The sample exit, as
distributed, checks to make sure the caller has the TSO OPER privilege.

■ Writing security rules.

■ Using CA ACF2, CA Top Secret, or RACF to restrict the use of OPSRMT and OPSCMD.
Note that the OPSECURE OPS/REXX function can be used in security rules to check
the authority of the user to issue these commands.

Security Considerations

574 User Guide

Security for Other Cross-system Operations

There are two categories of cross-system operations:

■ Display- or query-type operations that do not affect the state of the system or CA
OPS/MVS. An example of this type of operation is the use of the cross-system
OPSLOG Browse facility.

■ Update-type operations that alter the state of the system or CA OPS/MVS. An
example of this type of operation is a cross-system ADDRESS SQL UPDATE.

When you define the remote systems on each system, you specify whether each remote
system is considered to be a SECURE system. SECURE remote systems can send both
query- and update-type operations to this system. Systems that are defined as
NOSECURE systems can only send display- or query-type operations to this system. For
example, if you connect a non-secure test system to your production systems through
the MSF, you should specify the NOSECURE keyword on the ADDRESS OPSCTL MSF
DEFINE statement when defining the test system as a remote MSF system to each of the
production systems.

Chapter 17: Expert System Interface 575

Chapter 17: Expert System Interface

This section contains the following topics:

Overview (see page 575)
Calling Language Dependencies (see page 575)
OPSLINK Function Calls (see page 580)
Return Codes from OPSLINK (see page 587)
Sample Programs that Use OPSLINK (see page 588)

Overview

You can use the Expert System Interface(ESI), or OPSLINK programming interface, to
gain access to some CA OPS/MVS facilities from an application written in a high-level
language or in assembler language. Specifically, you can use OPSLINK to:

■ Execute operator commands.

■ Execute TSO commands (if running under the TSO TMP interactively or in batch).

■ Access CA OPS/MVS global variables, update them, or both.

This programming interface is implemented as a subroutine load module also named
OPSLINK.

Note: The INITESI parameter must be set to YES, if you are licensed for and are using the
ESI. When the INITESI parameter is set to NO, most ESI requests will fail and the
following message will appear in the OPSLOG/SYSLOG:

OPS9526H ESI FEATURE HAS NOT BEEN LICENSED

Calling Language Dependencies

You can call OPSLINK from any language that supports the calling sequence described in
the following sections. The rest of this chapter describes in detail how to call OPSLINK
from PL/1, COBOL, and assembler language routines.

Call OPSLINK from PL/1 Programs

The arguments passed to OPSLINK are either text strings or integer values. All text
strings passed should be defined in the calling programs as CHAR(length) VARYING. All
integers passed should be defined as FIXED BIN(31).

Calling Language Dependencies

576 User Guide

Important! Failure to observe these definition requirements may result in obscure
storage overlay problems, S0Cx type abends, or both.

Define an Output Array in PL/1 Programs

The optional sixth argument of all OPSLINK calls is an output array that should be
defined as:

DCL ARRAY(1000) CHAR(256) VARYING;

The size 1000 is arbitrary, but should be large enough to accommodate the maximum
number of output lines expected from each call. The argument passed to OPSLINK
before the sixth argument sets the size of the array (1000 in the above example).

Define the OPSLINK Routine in PL/1 Programs

The OPSLINK routine should be defined as follows:

DCL OPSLINK ENTRY OPTIONS(ASM,INTER,RETCODE);

Before the first call is made to OPSLINK, you must load the subroutine into memory by
issuing the FETCH PL/1 instruction, as follows:

FETCH OPSLINK;

After the last call is made to OPSLINK, unload the subroutine from memory by issuing
the RELEASE PL/1 instruction, as follows:

RELEASE OPSLINK;

OPSLINK returns a return code in PL/1 variable RETCODE. Return codes from OPSLINK
and their meanings are explained at the end of this section.

Calling Language Dependencies

Chapter 17: Expert System Interface 577

Call OPSLINK from COBOL Programs

The arguments passed to OPSLINK are either text strings or integer values. All text
strings passed should be defined in the calling programs as follows:

DATA DIVISION.

01 ARGSTR.

 03 STRING-LENGTH PIC 9(4) COMP VALUE 0.

 03 STRING-TEXT PIC X(256) VALUE SPACES.

The STRING-LENGTH should be set to the number of significant characters in
STRING-TEXT. Zero indicates a null string.

All integers passed should be defined in the calling program as:

DATA DIVISION.

01 ARGINT PIC 9(8) COMP.

Important! Failure to observe these definition requirements may result in obscure
storage overlay problems, S0Cx type abends, or both.

Define an Output Array in COBOL Programs

The optional sixth argument of all OPSLINK calls is an output array that should be
defined as:

DATA DIVISION.

 01 ARRAY OCCURS 200 TIMES.

 03 LINE-LENGTH PIC 9(4) COMP.

 03 LINE-TEXT PIC X(256).

The size 200 is arbitrary, but should be large enough to accommodate the maximum
number of output lines you expect each call to return. The fifth argument passed to
OPSLINK sets the size of the array.

Note: The fifth argument had set it to 200 in the above example.

Define the OPSLINK Routine in COBOL Programs

The OPSLINK routine should be defined as follows:

DATA DIVISION.

 77 OPSLINK PIC X(8) VALUE 'OPSLINK'.

 77 RET-CODE PIC X(4) VALUE SPACES.

OPSLINK returns a return code in COBOL variable RETCODE. Return codes from OPSLINK
and their meaning are explained at the end of this section.

Calling Language Dependencies

578 User Guide

Call OPSLINK from Assembler Programs

The arguments passed to OPSLINK are either text strings or integer values. All text
strings passed should be defined in the calling program as follows:

ARGSTR DC H'length',C'text'

The length indicates the number of characters in text. Zero indicates a null string. All
integer values are fullword signed binary and should be defined as follows:

ARGWORD DC F'value'

The optional 6th argument of all OPSLINK calls is an output array that should be defined
as:

ARRAY DS 1000CL258

The number 1000 is arbitrary but should be large enough to accommodate the
maximum number of output lines expected to be returned by each call. The fifth
argument passed to OPSLINK sets the size of the array. The size was set to 1000 in the
above example. Each element is 258 bytes long, starting with a halfword-length field,
followed by a 256-byte string area.

Assembler programs must turn on the VL bit when calling OPSLINK. The VL bit is the
high-order bit in the last word of the parameter list. Also, the calling program must have
an AMODE of 31 if a LOAD followed by either a BALR or a BASR is issued.

Before the first call is made to OPSLINK, you must load the subroutine into memory by
issuing the LOAD macro instruction. After the last call to OPSLINK, delete the subroutine
from memory using the DELETE macro instruction. On return from the LOAD macro, if
register 15 is zero, register 0 contains the address of the load module in bits 1-31. Check
the appropriate IBM manual for further details on the LOAD and DELETE macros.

Calling Language Dependencies

Chapter 17: Expert System Interface 579

The CA OPS/MVS API calling sequence from assembler is as follows:

 LOAD EP=OPSLINK Load the subroutine

 LTR R15,R15

 JNZ ERROR

 ST R0,OPSLINKA Save the subroutine address .

 .

 .

 OC PARMLAST(1),=X'80' Turn on VL bit

 LA R1,PARMLIST Parameter list address

 L R15,OPSLINKA Load OPSLINK address

 BASR R14,R15 Call OPSLINK

 .

 .

 .

 DELETE EP=OPSLINK Delete OPSLINK

ERROR DS 0H

 .

 .

OPSLINKA DS A Address of OPSLINK

*

PARMLIST DS 0A Parameter list passed to OPSLINK

 DC A(SUBFUNC) ARG1

 DC A(SYSID) ARG2

 DC A(SUBSYS) ARG3

 DC A(CMDSTR) ARG4

 DC A(LINECNT) ARG5

 DC A(ARRAY) ARG6

 DC A(IMSID) ARG7

PARMLAST DC A(MFORM) ARG8

*

SUBFUNC DC H'6',C'OPSTSO' Issue TSO command

SYSID DC H'0',C' ' No system ID

SUBSYS DC H'0',C' ' No OPS/MVS subsystem name

CMDSTR DC H'5',C'LISTC' TSO command

IMSID DC H'0',C' ' No IMSID

MFORM DC H'1',C'M' MFORM(M)

LINECNT DC F'100' Allow for 100 lines

ARRAY DS H,CL256 Room for 1 Line

 DS 99CL258 Room for 99 more lines

OPSLINK returns a return code in register 15. Return codes from OPSLINK and their
meaning are explained at the end of this section.

OPSLINK Function Calls

580 User Guide

OPSLINK Function Calls

The OPSLINK function can be called for three different purposes. The first argument
passed to OPSLINK specifies which of these three functions you want to use. Valid values
for the first argument are:

■ OPSTSO (to execute a TSO command)

■ OPSCMD (to execute a system command)

■ OPSGLOBL (to access, update, or both CA OPS/MVS global variables)

The following sections describe each subfunction call in detail.

Note: PL/1 calling syntax is used to describe the arguments. For COBOL and assembler
calling routines, you must convert this syntax to that appropriate for the calling
language (as described in the preceding sections).

Execute TSO Commands

You can execute TSO commands by calling OPSLINK with the following arguments:

CALL OPSLINK('OPSTSO',

 SYSID,

 SUBSYS,

 CMDSTR

 [,LINECOUNT

 [,ARRAY

 [,DDNAME]]])

You can execute TSO commands only if the calling program is running under the TSO
Terminal Monitor Program (TMP) interactively or in batch.

CALL OPSLINK statements that execute TSO commands can have these arguments:

SYSID

The eight-character ID of the system where the TSO command should execute. If
you specify a value of all blanks or all binary zeroes, the local system is assumed
(the one on which the calling program is running). The name used will be the
uppercased version of the one passed.

Note: This parameter is currently ignored.

SUBSYS

The four-character subsystem name of the target CA OPS/MVS subsystem that
should process this request. The name used will be the uppercased version of the
one passed.

Note: This parameter is currently ignored.

OPSLINK Function Calls

Chapter 17: Expert System Interface 581

CMDSTR

The TSO command to be executed. The command can include a leading percent sign
(for implicit execution of CLISTs). The maximum length of the command string is
256 characters.

LINECOUNT

A fullword binary value that indicates the maximum number of output lines to be
returned in the ARRAY argument (see below). The value should be non-negative. If
zero is specified, the default is used. If you specify the LINECOUNT parameter, you
should also specify the ARRAY parameter. The number of lines actually placed in the
output array by OPSLINK is returned in this field.

You should not use a constant in the calling sequence; instead, use the name of a
program variable for this argument. Also, before each subsequent OPSLINK call, you
must reinitialize this variable to the maximum number of lines that the array can
hold.

ARRAY

A character string array in which the output from the request is returned.

DDNAME

An eight-character string specifying the ddname to which output will be redirected
before it is placed in the output array. This operand is optional and if omitted will
result in dynamic allocation of a VIO data set to hold the TSO command output.

If you intend to issue a sequence of TSO commands, you can improve performance
by pre-allocating a VIO (or disk) data set and passing its ddname to OPSLINK. The
ddname actually used by OPSLINK is returned in this field.

You should not use a constant in the calling sequence; instead, use the name of a
program variable for this argument.

OPSLINK Function Calls

582 User Guide

Execute Operator Commands

You can execute JES, VM, and z/OS operator commands as well as any command that
can be issued using the OPSCMD TSO command by calling OPSLINK with the following
arguments:

CALL OPSLINK('OPSCMD',

 SYSID,

 SUBSYS,

 CMDSTR

 [,LINECOUNT

 [,ARRAY

 [,IMSID

 [,MFORM]]]])

The SYSID and SUBSYS arguments have the same meanings as they do in CALL OPSLINK
statements that execute TSO commands. The other arguments have these meanings:

CMDSTR

The system command to be executed. The command can be any command that can
be issued using the OPSCMD command. The maximum length of the command
string is 256 characters.

SYSID

The eight-character MSFID of the MSF system where the system command should
execute. If you specify a value of all blanks, all binary zeroes or a single asterisk
followed by seven blanks, the local system is assumed (the one on which the calling
program is running). The name used will be the uppercased version of the one
passed.

Note: The MSF feature must be installed and licensed if you specify anything other
that the local system.

SUBSYS

The four-character subsystem name of the target CA OPS/MVS subsystem that
should process this request. The name used will be the uppercased version of the
one passed.

LINECOUNT

A fullword binary value that indicates the maximum number of output lines to be
returned in the ARRAY argument. The value should be non-negative. If you specify
zero, the default is used. If you specify the LINECOUNT parameter, you should also
specify the ARRAY parameter.

The number of lines actually placed in the output array by OPSLINK is returned in
this field. Instead of using a constant in the calling sequence, use the name of a
program variable for this argument. Also, before each subsequent OPSLINK call, you
must reinitialize this variable to the maximum number of lines that the array can
hold.

OPSLINK Function Calls

Chapter 17: Expert System Interface 583

ARRAY

A character string array in which the output from the request is returned.

IMSID

The IMSID of the IMS system where the command should be sent. The maximum
length of the command string is four characters.

MFORM

A one-character operand that indicates the format of your output. If used, this
operand must be either of the following:

■ M, which specifies that the output be not stamped with the job name and
number.

■ J, which specifies that the output be stamped with this data.

Access and Update Global Variables

You can access or update global variables by calling OPSLINK with the following
arguments:

CALL OPSLINK('OPSGLOBL',

 SYSID,

 SUBSYS,

 VARNAME

 [,LINECOUNT

 [,ARRAY

 [,OPTION

 [,VARVALUE

 [,OLDVALUE]]]])

Note: This subfunction call is equivalent to the OPSVALUE() REXX function call to
access/update global variables from in REXX programs and AOF rules. Results normally
returned in the external data queue by the OPSVALUE() function are returned in the
output ARRAY (if any) instead.

Arguments you can use in CALL OPSLINK statements that operate on global variables
are:

SYSID

An eight-character system ID where the request should be executed. If you specify a
value of all blanks or all binary zeroes, the local system is assumed (the one on
which the calling program is running). The name used will be the uppercased
version of the one passed.

Note: This parameter is currently ignored.

OPSLINK Function Calls

584 User Guide

SUBSYS

The four-character subsystem name of the target CA OPS/MVS subsystem that
should process this request. The name used will be the uppercased version of the
one passed.

VARNAME

The name of the global variable. This name must start with a valid global variable
prefix (GLOBAL or GLVTEMP). No substitution of qualifiers is made for the
compound symbol. For additional information on global variables see the chapter
titled Global Variables Explained in this book.

LINECOUNT

A fullword binary value that indicates the maximum number of output lines to be
returned in the ARRAY argument (see below). The value should be non-negative. If
zero is specified, the default is used. If you specify the LINECOUNT parameter, also
specify the ARRAY parameter. The number of lines actually placed in the output
array by OPSLINK is returned in this field.

Instead of using a constant in the calling sequence, use the name of a program
variable for this argument. Also, before each subsequent OPSLINK call, you must
reinitialize this variable to the maximum number of lines that the array can hold.

ARRAY

A character string array in which the output from the request is returned.

OPTION

A one-character string containing a code that represents the operation you want to
perform on a global variable.

Note: The OPTION code is related to the equivalent OPS/REXX OPSVALUE function
action code. For additional information, see the OPSVALUE documentation.

VARVALUE

A character string variable in which the current value of the specified global variable
is returned (options O and V), or which contains the new value for a global variable
(options A and U only). The string variable should be large enough to contain a
string of 256 characters.

Instead of using a constant in the calling sequence, use the name of a program
variable for this argument. Also, before each OPSLINK that retrieves a value
(options O and V), you must reinitialize the length of the string to its maximum size.

OLDVALUE

A character string variable in which the current or old value of the specified global
variable must be specified and is used for verification prior to update (option C).
This argument must only be specified for option C.

OPSLINK Function Calls

Chapter 17: Expert System Interface 585

Codes for the OPTION Argument

You can specify one of the following codes for the OPTION argument:

6

Delete single global variable

Removes the single global variable specified by VARNAME without removing any of
its subnodes. After the operation VARVALUE contains 1 if the node was deleted or a
0 if the node was not found. ARRAY is not modified.

A

Add a value to a global variable

Adds a numeric value, specified by the VARVALUE argument to the existing global
variable. If VARVALUE is not numeric the operation fails with return code 41. After
the operation VARVALUE contains the sum of the global variable and the increment.
ARRAY is not modified.

C

Compare and update

Updates a global variable after verifying its current value against the oldvalue
provided. VARVALUE contains 1 if the update was successful or a 0 if the
comparison failed. ARRAY is not modified.

D

Drop a global variable

Drops the global variable, see the REXX definition of DROP. The global variable still
exists but its value is reset to its uninitialized value. This value is returned in
VARVALUE. However, the L call (described below) still lists it. ARRAY is not modified.

E

Check existence of a global variable

Checks the global variable for existence. After the operation, VARVALUE contains
one of the following global variable status value characters:

I-Initialized

U-Uninitialized

N-Does not exist

ARRAY is not modified.

I

Return information for a global variable

OPSLINK Function Calls

586 User Guide

Returns information about all of the immediate subnodes of the global variable in
the ARRAY. Two consecutive array entries are returned for each global variable
node. The first entry contains the next segment of the global variable name and the
second entry contains information about that global variable. See the OPSVALUE('I')
OPS/REXX function for additional details. After the operation, VARVALUE contains
the number of processed global variables.

J

Immediate subtree count

Returns a count of all the immediate subnodes of a global variable. ARRAY is not
modified.

K

Subtree count

Returns a count of all the subnodes of a global variable. ARRAY is not modified.

L

List the name or names of global variables

List the names of all immediate subnodes for a partial global variable symbol.
Returns information about all of the immediate subnodes of the global variable in
the ARRAY. See the OPSVALUE('L') OPS/REXX function for additional details. After
the operation, VARVALUE contains the number of global variables processed.

N

Return the value of a global variable

Returns a null string if the global variable does not exist. VARVALUE contains the
value of a global variable.

ARRAY is not modified.

O

Obtain the value of a global variable

Returns the global variable value in VARVALUE. If global variable does not exist, it is
not created, but an error is returned instead - Return code 40. ARRAY is not
modified.

R

Remove a global variable

Deletes the global variable and all of its subnodes and the L call (described above)
will no longer list it. VARVALUE contains the number of global variables deleted.
ARRAY is not modified.

Return Codes from OPSLINK

Chapter 17: Expert System Interface 587

U

Update the value of a global variable

Updates the value of the global variable with the value specified in the VARVALUE
argument (see below). ARRAY is not modified.

V

Return the value of a global variable

Returns the value of the global variable in VARVALUE. If the global variable does not
exist, it is created, and its name is returned as the value. ARRAY is not modified.

Return Codes from OPSLINK

OPSLINK will return one of the following return codes. In most cases, an appropriate
error message is also issued to explain the specific error.

0

Function executed successfully

4

Product or system service failed

12

TSO service routine error

16

TSO service routine ABEND

20

TSO service routine error

24

Output array overflow

80

TSO/E is not installed

88

Main product address space is not active

92

Parameter list error

100

Serious product control block error

Sample Programs that Use OPSLINK

588 User Guide

104

Main product address space terminated

184

ABEND failure

Sample Programs that Use OPSLINK

To find sample programs that demonstrate the use of the ESI, see the appendix “Sample
Programs” or preferably use your local scan utility (for example: the ISPF SRCHFOR
utility) to scan the OPS/MVS sample data set for the text string OPSLINK.

Sample programs are provided written in C, COBOL and PL/1.

Chapter 18: CICS Operations Facility 589

Chapter 18: CICS Operations Facility

This section contains the following topics:

COF Overview (see page 589)
Install and Start the COF (see page 589)
How You Can Use the COF (see page 590)
Some CICS Procedures You Can Automate (see page 590)

COF Overview

The CICS Operations Facility(COF) enables CA OPS/MVS to control, operate, and
administer one or more CICS regions.

The COF is an optional feature of CA OPS/MVS. Some CICS messages are written only to
internal data sets called transient data queues. These messages are not broadcast
through the normal z/OS subsystem message interface; therefore, AOF rule processing
will not see them. Rather, the COF selectively traps the messages and forwards them to
the AOF for rule processing.

The functionality provided by the COF is part of the integrated and unified solution for
controlling z/OS subsystems such as CICS, JES, and IMS.

Install and Start the COF

To install the COF, you need only define a single CICS transaction and program using
RDO. Once the COF is installed, you can start it automatically at CICS initialization
through the PLT or a batch terminal.

In CA OPS/MVS, you can control the activation of the COF interface by setting the
INITCOF and CICSAOF parameters to YES or NO. Once activated, you can then tailor the
way in which the COF intercepts transient data queue messages through the ADDRESS
OPSCTL COF commands or OPSVIEW option 4.12.

For complete instructions on how to install the COF, see the Installation Guide.

How You Can Use the COF

590 User Guide

How You Can Use the COF

Here are some things you can do with the COF:

■ If security and console definitions are properly defined to CICS, you can issue
various operator-oriented CICS transactions (CEMT) through the z/OS MODIFY
console command.

The COF provides the additional CICS internal message traffic to detect
automateable events. From these events, you can invoke complex automation
procedures to handle most CICS subsystem availability and recovery issues for daily
operations.

■ Several CA OPS/MVS COF parameters enable you to WTO all transient data
messages so that they can be displayed on a specific console, the system log, and in
OPSLOG.

Periodically, you may produce a special CICS heartbeat message, OPS3420O, to
ensure that transaction activity is proceeding normally in CICS.

Some CICS Procedures You Can Automate

Using the combined features of the AOF and the COF, you can develop automation
procedures to:

■ Control the startup of CICS for normal, cold start, and emergency restart situations.

■ Recover terminals and communication links that experienced communication
failures.

■ Monitor the logon and logoff activities of the users.

■ Perform CICS journal archives when journals are full.

■ Close groups of CICS files for batch processing at scheduled times.

Chapter 19: IMS Operation Facility 591

Chapter 19: IMS Operation Facility

This section contains the following topics:

IMS IOF Overview (see page 591)
IOF Installation Considerations (see page 591)
IOF Installation Operations (see page 592)
Interpreting Type 2 API Return and Reason Codes (see page 592)
Issue Commands from a BMP Region (see page 593)

IMS IOF Overview

The IMS Operation Facility(IOF) is an optional feature of CA OPS/MVS. It allows CA
OPS/MVS to operate one or more IMS Control Regions so as to seamlessly integrate
them with the CA OPS/MVS operation of z/OS and JES.

The IOF is needed to operate the IMS because the IMS does not use the usual z/OS
console interface to communicate with Operations. Instead, the IMS requires its own
Master Terminal (MTO) that receives most (but not all) IMS-related messages. The IOF
dynamically inserts an IMS Automated Operations Interface (AOI) exit to capture the
IMS command and message traffic and also takes special care to identify and capture
z/OS messages that are associated with the IMS.

CA OPS/MVS allows as many as 32 IMS Control Regions to be automated under the IOF.
You can pre-define a total number of 16 IMS SVCs to the IOF for recognition.

IOF Installation Considerations

You may need to set CA OPS/MVS parameters that pertain to IMS control regions, for
example, IMS1ID or IMS1DUPLICATE, during CA OPS/MVS installation. For information
about these parameters, see the Parameter Reference. For information about installing
the IOF, see the Installation Guide.

If IMS Type 2 messages and commands will be issued, two IMS modules included in the
IMS RESLIB must be made available to CA OPS/MVS. For a detailed description of this
requirement, and suggestions for several methods of implementation, see the
Installation Guide.

IOF Installation Operations

592 User Guide

IOF Installation Operations

Once installed, the IOF is only apparent as a set of extensions to the other facilities of CA
OPS/MVS. For this reason, it is documented in the sections that describe the CA
OPS/MVS facilities extended by the IOF.

Note: By accessing the CA OPS/MVS Identify IMS function (OPSVIEW Option 7.4), you
can create the parameter cards necessary for the IMS Operation Facility. For
information about OPSVIEW, see the OPSVIEW User Guide.

Interpreting Type 2 API Return and Reason Codes

Type 2 messages and commands utilize a specialized API to communicate with the
IMSPLEX manager, and therefore are exposed to a new series of return and reason
codes unique to conditions within the API.

Return and reason codes generated by this API have a distinctive format, where both
return and reason codes are represented as:

X’nnnnnnnn’

For example, X'01000010'/X'00004004' is defined in the IBM documentation as
CSLSRG00 could not be loaded, which indicates that the two required IMS modules are
not available to CA OPS/MVS processing.

Note: The new series of type 2 return and reason codes are produced by IBM code, and
documented in the IBM manual IMS V10 System Programming API Reference manual
number SC18-9967-00, which is applicable to IMS version 10. Errors associated with API
registration can be found under the section CSLSCREG Return and Reason Codes, and
those with API dialog under CSLOMI Return and Reason Codes.

Issue Commands from a BMP Region

Chapter 19: IMS Operation Facility 593

Issue Commands from a BMP Region

If a batch message processing (BMP) region is available, the IOF can use it to issue IMS
commands and retrieve command responses. This ability is an alternative to CA
OPS/MVS using the IMS WTOR method whenever it needs to issue an IMS command.

The IOF use of a BMP region for IMS commands has these advantages:

■ The IOF can issue most IMS commands without waiting for the IMS WTOR.

■ Command responses are more reliable and more efficient because command
output is neither automatically routed to the consoles (as it would be if the
commands were issued through the IMS WTOR) nor routed through the subsystem
interface (SSI).

Perform these steps to take advantage of the CA OPS/MVS ability to use a BMP to issue
IMS commands:

1. Set the IMS parameter AOIS= to a value other than N, which is the default value.

Note: For a list of possible values, see the IMS installation manuals.

2. Authorize the BMP TRAN to Issue All Commands

You must run the IMS Security Maintenance Utility (SMU) to specify that the BMP
TRAN has authority to issue all commands.

3. Create a Batch BMP Started Task JCL

Use the IMS PROCLIB member IMSBATCH, and make sure the RESLIB that it is using
matches the RESLIB of the control region that you want to target. Add the CA
OPS/MVS load module library to the STEPLIB concatenation.

Set the CA OPS/MVS IMSnBMPSTC parameter to the member name of the BMP
started task JCL.

4. Specify CA OPS/MVS Parameters

To control the activation or deactivation of the BMP region that the IOF uses to
issue commands, you need to set these CA OPS/MVS parameters:

■ IMSnBMPSTC

■ IMSnINITBMP

■ IMSnPSBNAME

■ IMSnTRANNAME

■ DEBUGBMP

For more information about these parameters, see the Parameter Reference.

Issue Commands from a BMP Region

594 User Guide

Note: You do not need to change any of your existing automation to take advantage of
the ability of CA OPS/MVS to use a BMP in this way. As long as you have performed the
steps above, you can continue issuing your IMS commands as you always have (for
example, through the OPSCMD command processor or the ADDRESS OPER host
environment) and CA OPS/MVS will use the BMP mechanism if it is available.

Chapter 20: NetView Operations Facility 595

Chapter 20: NetView Operations Facility

This section contains the following topics:

About the NetView Operations Facility (see page 595)
NOF Alerts (see page 596)
Activate the NOF (see page 596)
Parameters for the OPNOF Program (see page 597)
The NetView Alerts (see page 599)
What Happens When You Generate an Alert (see page 599)
Alerts Generated from CA OPS/MVS (see page 601)
OPNFALRT REXX Function—Generate Alerts (see page 602)
Issuing NetView Commands (see page 615)

About the NetView Operations Facility

The CA OPS/MVS NetView Operations Facility (NOF) component enables you to combine
the CA OPS/MVS system automation capabilities with the network automation features
of NetView.

The benefits of the NOF include:

■ Two-way management for NetView alerts

■ VTAM message handling

■ An interface to the NetView STATMON (status monitoring) feature

The features available in the NOF enable NetView and CA OPS/MVS to function as a
unit, with automation done where it logically belongs and with both CA OPS/MVS and
NetView aware of the activities of each other.

NOF Alerts

596 User Guide

NOF Alerts

A NetView alert provides information about system problems. Each alert consists of
several pieces of information encoded (mostly) in two-byte hexadecimal strings called
code points.

Information in these code points describes specific problem conditions. For example,
code points can describe:

■ An abend

■ What probably caused a problem, for example, System Programmer Error

■ The action to take to resolve a problem, for example, Restart the program

■ The type of problem, for instance, Performance

Note: For more information about code points, see the IBM documentation.

Activate the NOF

When you installed the NOF, you copied the OPNOF REXX program into the NetView
CLIST library. To test that you did this successfully, log on to NetView and issue the
following command with no operands:

OPNOF

In response, you should see a message listing the valid parameters for the OPNOF
program.

Note: For the steps to install the NOF, see the Installation Guide.

Parameters for the OPNOF Program

Chapter 20: NetView Operations Facility 597

Parameters for the OPNOF Program

The OPNOF REXX program controls the functions that the NOF performs and how it
executes those functions. To call the OPNOF program, use the following REXX code:

OPNOF SET ALRTMLWTO ON|OFF

 SET ECHOVTAM WTO|MLWTO|NONE

 SET ECHOSTAT ON|OFF

 SET ALRTOPSGLV ON|OFF

 SET OPSID opsid1 (opsid2...opsidn)

 SHOW

 STAT|STATS

In calling OPNOF, you can specify any of these parameters:

SET ALRTMLWTO

Tells the NOF what to do when it receives a network alert. If you specify ON, the
NOF sends the alert as a multi-line WTO message to the console, where your
operators and CA OPS/MVS will see it. If you specify OFF, the NOF does not send
alerts to the console.

If your main reason for sending alerts to the console is to allow CA OPS/MVS to see
them, you may want to use the SET ALRTOPSGLV parameter instead.

SET ECHOVTAM

Tells the NOF what to do when it receives an unsolicited VTAM message. When
NetView is active, unsolicited VTAM messages no longer flow to the console. SET
ECHOVTAM gives you the option of echoing such messages to the console. If you
use the PPOLOG option of VTAM (for example, F VTAM,PPOLOG=YES), the SET
ECHOVTAM parameter also controls solicited command responses.

Possible subparameters for SET ECHOVTAM are:

■ WTO-Issues single-line WTO messages for each line of the message.

■ MLWTO-Causes the NOF to issue a multi-line WTO message to the console for
the message.

■ NONE-Tells the NOF not to echo the message to the console.

SET ECHOSTAT

Tells the NOF what to do when it receives a NetView status monitor update. The
NetView status monitor receives such updates directly from VTAM over a
proprietary interface and gives you the option of generating message CNM094I
when one of these updates occurs.

If you specify SET ECHOSTAT ON, the NOF echoes these CNM094I messages to the
console where CA OPS/MVS can see them. If you specify SET ECHOSTAT OFF, the
NOF ignores status monitor updates.

Parameters for the OPNOF Program

598 User Guide

SET ALRTOPSGLV

Tells the NOF whether to generate a CA OPS/MVS global variable called
GLOBAL.OPNF.ALERT when it receives a NetView alert. This variable, generated if
you specify SET ALRTOPSGLV ON, is generated in automatable format so that you
can write global variable rules against it. This has the benefit of keeping alert
information off the console if you only want to automate the response to the alert.

A sample rule called OPNFPALR processes the contents of the GLOBAL.OPNF.ALERT
variable. If you specify SET ALRTOPSGLV OFF, the NOF generates no variable.

SET OPSID

Tells the NOF which CA OPS/MVS subsystems to send the global variable to. This
command is meaningful only if you are sending alerts to CA OPS/MVS global
variables. You can specify up to five CA OPS/MVS subsystems. For example, to
generate global variables for alert in the CA OPS/MVS copy running under
subsystem OPSS, you would specify the following command:

NOF SET OPSID OPSS

SHOW

Displays the values of the NOF parameters.

STAT or STATS

Displays the number of messages and alerts that the NOF has processed.

Because NOF parameters do not survive restarts of NetView, you should modify the
initial CLIST that is invoked when NetView starts up so that the CLIST calls the
sample NOF initialization routine. This routine, located in member OPNFINIT in the
OPS.CCLXCLS0 data set, issues NOF SET commands for the default parameters.

To find your initial CLIST, look at the NCCFIC parameter in the DSIDMN member of
the NetView parameter data set.

The NetView Alerts

Chapter 20: NetView Operations Facility 599

The NetView Alerts

In its most basic form, an alert is a control block called a Network Management Vector
Transport (NMVT). The NMVT contains items called vectors, which may contain
subvectors. Each vector or subvector represents part of the alert.

The NMVT control block also contains a few fields for text. Two important fields are:

HIERARCHY

This field is a network management construct that can be useful for both
NetView-generated alerts and CA OPS/MVS generated alerts. The Hierarchy field
describes the components that are involved in a failure. For example, a hierarchy
can consist of two CICS regions and a DB2 region that jointly caused a single failure.

TEXT

This field enables the alert to include random text.

What Happens When You Generate an Alert

When NetView receives alerts, they flow into a NetView component called the
hardware monitor, also known as the Network Problem Determination Analyzer (NPDA).
NPDA both displays and manages alerts. From NPDA, you can automatically open
records in the IBM INFO/Management product when problems occur.

To get into NPDA, issue the following command from any NetView command line:

NPDA

What Happens When You Generate an Alert

600 User Guide

How the NOF Responds to NetView Alerts

In much the same way that CA OPS/MVS can send alerts into NetView, other system
components (both hardware and software) also send alerts into NetView. This gives
NetView access to an important systems management data stream that CA OPS/MVS
can also tap into. Depending on your configuration, the alert stream can include DASD
information, messages from NetView/6000, or even AS/400 messages. The next few
sections explain how the NOF sees NetView alerts.

The NOF sees NetView alerts and responds:

■ A function in NetView Version 2.2 and above allows the NetView automation table
to see network alerts and drive automation based on those alerts.

■ CA OPS/MVS supplies the entries in this automation table and the programs that do
the automation. This enables CA OPS/MVS to capture all NetView alerts and
forward those alerts to the CA OPS/MVS internal rules processor for resolution.

■ The ALRTMLWTO and ALRTOPSGLBV parameters you specified when calling the
OPNOF REXX program determine what the NOF does when it encounters an alert.

■ Before sending the alerts to CA OPS/MVS, a REXX program called OPNFMSUR
formats the information in the alert so that an automation procedure can make
sense of it:

– The OPNFMSUR program first translates the code points into English

– Then places the result in a single global variable.

You can then write a CA OPS/MVS global variable rule to process the alert.

Alerts Generated from CA OPS/MVS

Chapter 20: NetView Operations Facility 601

Contents of GLOBAL.OPNF.ALERT

The GLOBAL.OPNF.ALERT global variable that the OPNFMSUR REXX program sends to CA
OPS/MVS is specially formatted so that you can easily find the fields in the alert in which
you are looking. The variable contents are formatted as follows:

alert-field-name=alert-field-value####

Alert-field-name is the name of one of the following CA NetView alert fields:

■ ALERT_DESCRIPTION

■ HIERARCHY_NUMBER

■ ALERT_TEXT

■ HIERARCHY_n

■ ALERT_TYPE

■ PROBABLE_CAUSE_NUMBER

■ EVENT_CODE_NUMBER

■ PROBABLE_CAUSE_n

■ EVENT_CODE_TYPE

■ RECOMMENDED_ACTION_NUMBER

■ EVENT_CODE_n

■ RECOMMENDED_ACTION_n

The alert-field-value is the value of the field for a particular alert. To process the alert,
write a global variable rule modeled after the sample rule in member OPNFPALR of the
OPS.CCLXRULB library. This sample rule echoes the contents of the alert to the console
of the operator.

Alerts Generated from CA OPS/MVS

Generating alerts from CA OPS/MVS enables you to:

■ Correlate network events and system events.

■ Use NPDA to track problems.

■ Notify NetView of events that NetView has no other way of seeing, such as
OMEGAMON exceptions.

OPNFALRT REXX Function—Generate Alerts

602 User Guide

OPNFALRT REXX Function—Generate Alerts

CA OPS/MVS generates alerts through an OPS/REXX function called OPNFALRT.
OPNFALRT accepts parameters, generates an NMVT, and passes the alert to NetView
using the NetView program-to-program interface (PPI).

The OPNFALRT function is available in both rules and REXX programs. It is not available
uner TSO/E REXX.

Note: If your data center runs CA products that use CA GSS, you should be aware that
CA GSS Versions 2.5 and above have a NETVIEW function that operates exactly like the
OPNFALRT function.

The REXX code for calling the OPNFALRT function has the following syntax:

rc = OPNFALRT(alerttype,

 alertdesc,

 probcause1;probcause2;probcause3,

 action1;action2;action3,

 hierarchy,

 alerttext)

alerttype

Specifies the type of alert to be generated.

alertdesc

Describes the condition for the alert.

probcause1, probcause2,...

Describes the probable cause for the problem.

action1, action2,...

Lets you specify actions to correct the problem.

hierarchy

Specifies all system resources relating to the problem.

alerttext

Lets you specify up to 136 bytes of arbitrary text.

Example: OPSFALTR function

This sample code demonstrates the use of OPNFALRT:

/* rexx */

rc = OPNFALRT('PERF',, /* Performance alert */

 'X1111',, /* Code point 1111 for description*/

 'IODEVICE',, /* Probable cause is an IODEVICE */

 'X2111;VARYOFF',,/* First action is code point 2111*/

OPNFALRT REXX Function—Generate Alerts

Chapter 20: NetView Operations Facility 603

 /* second action is VARY OFFLINE */

 'IMSPROD IMS DASD721 DASD',,

 /* hierarchy includes IMS and DASD*/

 'Alert detected and processed by CA OPS/MVS')

 /* text message */

en,

do

 say 'Return code from OPNFALRT was' word(rc,1)

 say subword(rc,2)

end

Alert Type Parameter

This parameter specifies the type of alert to be generated. Specify one of the following
alerttype values:

Value Generates an alert reporting...

AVAL A loss of system availability

BYPS An alert bypassed condition

CUST A condition caused by an end user

DLRC A delayed response condition

IMPD Something that will cause immediate impact on your system

IMRE Intensive mode recording

INST The installation of a product or component

INTV An intervention required condition

NTFY A system notification

PAFF A permanently affected resource

PERF A condition that will affect system performance

PERM A permanent condition

PROC An operator procedure error

SCUR A security violation

TEMP A temporary condition

REDL The loss of a redundant system

UNKN This alert concerns a condition that is of an unknown type or does
not fall into one of the above categories

OPNFALRT REXX Function—Generate Alerts

604 User Guide

Alert Description Parameter

This parameter is a code point describing the condition for the alert. Code points in the
OPNFALRT function can be one of two things:

■ A five-character string, starting with the letter X. The other four characters are the
two-byte hexadecimal code point for the description. You can find valid code points
for the description in the IBM documentation.

■ A word describing the condition. You can find the supported words in the SNA
Format Reference Guide.

The alert description parameter is required and you can specify it only once.

You can enter one of the following words instead of a code point:

Word Means that an alert concerns...

ABEND A software program that abended

INCOROUT A program providing incorrect output

PERFDEGRADED A situation that is degrading performance

OUTOFRESOURC A situation involving a depleted resource

FILEREORG A situation involving a file that needs to be reorganized

OPERERR An operator error

RESNOTACT An error caused by an inactive resource

CONFIGERR An error caused by a configuration error

OPNOTIFY An operator notification

SECURITYEVNT A security event

OPNFALRT REXX Function—Generate Alerts

Chapter 20: NetView Operations Facility 605

Probable Cause Parameter

You can use the probcause parameter to enter one to three code points describing a
probable cause for the problem. You must specify at least one probable cause
parameter.

The code points for probcause are similar to the ones described for the alertdesc
parameter. If you specify more than one code point, separate the code points with a
semicolon (;). You can mix and match English-language format with hexadecimal
(Xnnnn) format.

Words you can specify in place of code points are:

Word Means that the probable cause of the error is...

PROCESSOR The processor

SOFTWARE Software

APPLPROG An application program

IOACCMETH An I/O access method

COMM Communications problems

IODEVICE An I/O device

PRINTER A printer

DASD A DASD

CONSOLE A console

If you need to specify a probable cause different from those listed above, use the Xnnnn
format. The SNA Format Reference Guide documents probable cause code points. If you
specify more than one probable cause parameter, specify them in decreasing order of
probability. For example, you might specify the probable cause of a CICS failure
SOFTWARE;IOERROR when software is more likely to cause the problem than an I/O
error.

OPNFALRT REXX Function—Generate Alerts

606 User Guide

Action Parameter

Use the action parameter to enter one to three possible actions to correct the problem.
You must specify at least one alert action parameter.

The code points for action are similar to those for the alertdesc parameter. If you specify
more than one action parameter, separate them with a semi-colon (;). You can mix and
match the Xnnnn format with English word format. Valid words for action code points
are as follows:

Word Specifies this action...

PROBDETERMIN Perform problem determination procedures

TAKEADUMP Generate a dump

DUMP Generate a dump

PERFPROBREC Perform problem recovery procedures

PROBRCVY Perform problem recovery procedures

REFERGUIDE See the SNA Formats Reference Guide

VARYOFF Vary the failing component offline

CONTACTREP Contact a service representative

RETRY Retry the failing procedure

RESTARTJOB Restart the failing job

If you need to specify an action different from those listed above, use the Xnnnn format.
The SNA Formats Reference Guide describes the action code points. If you specify more
then one action, put them in the order in which you want the operator or network
manager to try to implement them.

OPNFALRT REXX Function—Generate Alerts

Chapter 20: NetView Operations Facility 607

Hierarchy Parameter

Use the hierarchy parameter to specify all the system resources relating to the problem.
This enables NPDA to draw a picture of these resources, and also enables you to filter
alerts based on the resources. Specify the hierarchy parameter as a character string
containing 0 to 60 bytes, which can contain up to five 12-byte entries. Each 12-byte
entry consists of:

■ An eight-byte resource name. This is arbitrary, and can be something like IMSPROD.

■ A four-byte resource type. This is also arbitrary, but can be something like IMS or
INIT.

Suppose that you want to generate an alert because of an IMS failure. You might specify
the hierarchy parameter as follows:

IMSPROD IMS

Note the spacing of the blanks in this string. In any given 12-byte hierarchy item, the
first eight bytes are the resource name and the next four bytes are the resource type.
This structure is then copied up to five times to make the complete hierarchy
parameter.

Now suppose that the IMS failure in the previous example resulted from an I/O error.
You can specify the hierarchy parameter as follows:

IMSPROD IMSDASD721 DASD

The above parameter specifies that the IMS outage resulted from a problem with the
resource name DASD721 of type DASD.

The hierarchy parameter is optional. If you omit it, the OPNFALRT function specifies it
for you, but you must include a comma if you want to specify the alert text parameter.

Alert Text Parameter

The alerttext parameter allows you to specify up to 136 bytes of arbitrary text. This text
will be available on the NetView NPDA alert screens. You might use this parameter to
include the message that triggered the alert, or to clarify the conditions under which
you issued the alert.

The alert text parameter is optional. If you do not specify it, the OPNFALRT function
includes the phrase ALERT GENERATED BY CA OPS/MVS.

OPNFALRT REXX Function—Generate Alerts

608 User Guide

OPNFALRT Return Code Format

Return codes from OPNFALRT have a slightly different format than return codes from
other OPS/REXX functions. Executing OPNFALRT generates both a return code and a
description of what the return code means, and OPNFALRT places nothing in the
OPS/REXX external data queue.

OPNFALRT return codes have this format:

■ The first word is a numeric value.

■ The second word is a message identifier.

■ The rest of the return code describes the error.

The OPS/REXX code shown above shows how to process return codes from OPNFALRT.

More information:

OPNFALRT REXX Function—Generate Alerts (see page 602)

OPNFALRT Messages and Return Codes

This section provides explanations of OPNFALRT messages, and the return codes that
correspond to them.

OPNF001E

Could not find CMNETV in LPA

Reason:

You tried to issue the OPNFALRT from a CA OPS/MVS rule, but the CA OPS/MVS
NetView interface module CNMNETV is not in the system LPA.

Return code 4-CA OPS/MVS could not find the CNMNETV interface module.

Action:

Do one of the following:

■ Copy CNMNETV and re-IPL your system.

■ Use a product such as the CA SYSVIEW to dynamically load CNMNETV into LPA.

■ Issue the OPNFALRT function only from OPS/REXX programs.

OPNFALRT REXX Function—Generate Alerts

Chapter 20: NetView Operations Facility 609

OPNF002E

OPNF002E Could not load CNMNETV

Reason:

You tried to issue OPNFALRT from an OPS/REXX program, but CA OPS/MVS could not
load its CNMNETV module. The CNMNETV module must be available in the system LPA,
the LINKLIST, or the STEPLIB concatenation for the program issuing the OPNFALRT
function.

Return code 4-CA OPS/MVS could not find the CNMNETV interface module.

Action:

Make CNMNETV available to that program.

OPNF003E

Specified description not in table

Reason:

The English-language value you used for the alert description parameter is not a valid
description. Therefore, OPNFALRT rejected your alert.

Return code 8-The call to OPNFALRT had an invalid description field. Message
OPNF003E or OPNF004E accompanies this return code.

Action:

Specify a valid description value and retry the alert.

OPNF004E

Specified code point is invalid

Reason:

The code point value you specified for the alert description parameter was not in the
correct format, so OPNFALRT rejected your alert. A code point starts with the letter X
and is followed by exactly four hexadecimal characters.

Return code 8-The call to OPNFALRT had an invalid description field. Message
OPNF003E or OPNF004E accompanies this return code.

Action:

Specify a valid description value and retry the alert.

OPNFALRT REXX Function—Generate Alerts

610 User Guide

OPNF005E

More than three probable causes specified

Reason:

You tried to specify more than three (the maximum allowed) probable cause
parameters. Therefore, OPNFALRT rejected your alert.

Return code 12-The call to OPNFALRT had an invalid probable cause parameter.
Message OPNF005E, OPNF006E, or OPNF007E accompanies this return code.

Action:

Specify a valid number of parameters, and be sure to separate them with semicolons.

OPNF006E

Error in PC n - PC was not in table

Reason:

You tried to specify a probable cause in English format, but the parameter value you
used is not valid so OPNFALRT rejected your alert. The n value indicates the position of
the invalid parameter in a string of parameters.

Return code 12-The call to OPNFALRT had an invalid probable cause parameter.
Message OPNF005E, OPNF006E, or OPNF007E accompanies this return code.

Action:

Substitute a valid parameter value for the one in error and retry the alert.

OPNF007E

Error in PC n - PC code point invalid

Reason:

You tried to specify a probable cause parameter in hexadecimal format, but the
parameter value you used is not valid so OPNFALRT rejected your alert. The n value
indicates the position of the invalid parameter in a string of parameters.

Return code 12-The call to OPNFALRT had an invalid probable cause parameter.
Message OPNF005E, OPNF006E, or OPNF007E accompanies this return code.

Action:

Substitute a valid parameter value for the one in error and retry the alert.

OPNFALRT REXX Function—Generate Alerts

Chapter 20: NetView Operations Facility 611

OPNF008E

More than three action parameters specified

Reason:

You tried to specify too many action parameters, so OPNFALRT rejected your alert.

Return code 16-The call to OPNFALRT had an invalid action parameter. Message
OPNF008E, OPNF009E, or OPNF010E accompanies this return code.

Action:

Retry the alert, specifying no more than three action parameters. Be sure to separate
the parameters with semicolons.

OPNF009E

Error in action code n - action was not in table

Reason:

The English-format parameter indicated by n specifies an invalid action. Therefore,
OPNFALRT rejected your alert.

Return code 16-The call to OPNFALRT had an invalid action parameter. Message
OPNF008E, OPNF009E, or OPNF010E accompanies this return code.

Action:

Retry the alert, specifying a valid action.

OPNF010E

Error in action n - action code point invalid

Reason:

The code point you specified for the parameter indicated by n is an invalid code point.

Return code 16-The call to OPNFALRT had an invalid action parameter. Message
OPNF008E, OPNF009E, or OPNF010E accompanies this return code.

Action:

Replace the invalid code point with one that starts with the letter X followed by four
hexadecimal characters. Then, retry the alert.

OPNFALRT REXX Function—Generate Alerts

612 User Guide

OPNF011E

Hierarchy format invalid

Reason:

The format of the hierarchy parameter is invalid. This parameter is free format, but the
value you specify for it must contain a number of characters that is evenly divisible by
12.

Return code 20-The call to OPNFALRT had an invalid hierarchy parameter. Message
OPNF011E accompanies this return code.

Action:

Correct the hierarchy parameter value and retry the alert.

OPNF012E

Text format invalid

Reason:

The text parameter value contains too many characters.

Return code 24-The call to OPNFALRT had an invalid alert text parameter. Message
OPNF012E accompanies this return code.

Action:

Specify a parameter value that has 136 or fewer characters and retry the alert.

OPNF013E

Error calling OPNFGENR RC=xxxx

Reason:

The OPNFALRT function encountered an internal error.

Return code 28-The call to OPNFALRT encountered an error. Message OPNF013E
describes this error.

Action:

Contact CA Technical Support. If you can reproduce the error, convert the return code
to hexadecimal format using the C2X function of REXX.

OPNFALRT REXX Function—Generate Alerts

Chapter 20: NetView Operations Facility 613

OPNF014E

NetView PPI is not active

Reason:

The NetView program-to-program interface was not active when you invoked the
OPNFALRT function, probably because the NetView subsystem address space was not
active.

Return code 32-The call to OPNFALRT encountered an error. Message OPNF014E
describes this error.

Action:

Start the NetView subsystem address space. If the error persists, call CA Technical
Support.

OPNF015E

Error in NetView PPI, RC=xxxx

Reason:

The NetView program-to-program interface returned an unexpected return code to
OPNFALRT. The xxxx is the return code from the NetView PPI.

Return code 36-The call to OPNFALRT encountered an error. Message OPNF015E
describes this error.

Action:

Contact CA Technical Support.

OPNFALRT REXX Function—Generate Alerts

614 User Guide

OPNF016E

CNMCALRT is not active in NetView

Reason:

The CNMCALRT task is not active in the NetView address space. This task is required if
alerts will be processed over the NetView program-to-program interface.

Return code 40-The call to OPNFALRT encountered an error. Message OPNF016E
describes this error.

Return code 44-The call to OPNFALRT encountered an error.

Action:

Start the CNMCALRT task using the following NetView command:

START TASK=CNMCALRT

This task normally starts automatically when NetView initializes. Contact your NetView
system programmer if this problem persists. If the CNMCALRT task is active and you
receive message OPNF016E, call CA Customer Support.

OPNF017E

OPNFALRT not executing in primary mode

Reason:

An internal error occurred while the alert was being processed.

Return code 48-The call to OPNFALRT encountered an error.

Action:

Contact CA Customer Support.

Issuing NetView Commands

Chapter 20: NetView Operations Facility 615

OPNF019E

Less than three or more than six parameters

Reason:

You specified either too many or too few parameters to OPNFALRT.

Return code 52-The call to OPNFALRT encountered an error. Message OPNF019E
describes this error.

Return code 60-The call to OPNFALRT encountered an error. Message OPNF021E
describes this error.

Action:

Correct the call to OPNFALRT, specifying a valid number of parameters. Then, retry the
alert.

OPNF021E

TYPE parameter invalid

Reason:

The alert type parameter is not valid, either because it does not contain exactly four
characters or because it does not specify one of the alert type values.

Return code 56-The call to OPNFALRT encountered an error.

Action:

Specify a correct type parameter value and retry the alert.

Issuing NetView Commands

NetView supports a console interface, so you can issue NetView commands and receive
the command responses. To issue a NetView command, you need to know the NetView
system recognition character and to establish NetView autotasks for each console from
which you will issue NetView commands.

Issuing NetView Commands

616 User Guide

Establish NetView Autotasks

NetView requires an autotask for every console that it might receive a command from.
When you issue a command through the ADDRESS OPER host environment in a rule, CA
OPS/MVS usually uses the console ID of the master console. Therefore, you should at
least establish an autotask for the z/OS master console. Doing this enables you to issue
NetView commands from CA OPS/MVS rules, but not to retrieve the responses.

To establish an autotask for the master console, issue this NetView command:

AUTOTASK OPID=operator,CONSOLE=mstrconsole

operator

Specifies a NetView operator ID defined in the DSIOPF member of the NetView
parameter data set.

mstrconsole

Specifies the name of your master console.

Retrieve Responses to NetView Commands

If you want OPS/REXX programs to issue NetView commands and receive command
responses, these programs must run in an environment where operator command
responses are returned. When you issue a command, CA OPS/MVS chooses an available
subsystem console from its pool of subsystem consoles. Because you do not know which
console CA OPS/MVS will select, you need to define all CA OPS/MVS subsystem consoles
to NetView using the autotask command.

The DEFNVCON program in the CA OPS/MVS OPS.CCLXSAMP library is a sample
OPS/REXX program that issues the NetView autotask command for each CA OPS/MVS
subsystem console.

To define autotasks to retrieve responses to NetView commands

1. Use the DEFNVCON sample program to define the consoles.

This guarantees that the current set of CA OPS/MVS subsystem consoles are always
defined to NetView, even if your subsystem consoles change from one CA OPS/MVS
startup to another startup.

Issuing NetView Commands

Chapter 20: NetView Operations Facility 617

2. Before running DEFNVCON, do the following tasks:

■ Change the assignment statements in the beginning of the DEFNVCON sample
to reflect your naming standards for NetView user IDs.

■ Define the maximum number of CA OPS/MVS subsystem consoles you want to
define to NetView.

The default operator ID prefix is OPSMVS, and DEFNVCON will define all CA
OPS/MVS subsystem consoles to NetView.

The autotasks are defined for all of your consoles.

For more information, see the comments in DEFNVCON.

Find NetView System Recognition Character

Once you have defined NetView autotasks for all of your consoles, you can issue
NetView commands from z/OS consoles or from CA OPS/MVS using the OPSCMD
function in OPS/REXX or the ADDRESS OPER host environment. However, you also need
to know the subsystem recognition character to issue commands.

To find the NetView system recognition character

1. The OPSNETV function of OPS/REXX returns the names and subsystem recognition
characters of all NetView copies. This function has the following syntax:

rc= OPSNETV('I','SRC')

This function returns a character string composed of one or more three-word
substrings called triplets. In each triplet:

■ The first word is the subsystem recognition character.

■ The second word is the name of the job running NetView.

■ The third word is the name of the NetView subsystem address space.

2. Review the DEFNVCON sample program and the OPNFFNET and OPNFSEC sample
rules.

They demonstrate the use of the OPSNETV function.

Example:Find the Recognition Character

Suppose that the OPSNETV function returns the following string:

% NETV230 NETVSSI # NV240 NV240SSI

Issuing NetView Commands

618 User Guide

This string indicates that you have two versions of NetView running. The first runs in
address space NETV230; its address space is NETVSSI and its subsystem recognition
character is %. The other NetView version runs in address space NV240 with a
subsystem recognition character of #.

Chapter 21: Using the Automation Measurement Environment 619

Chapter 21: Using the Automation
Measurement Environment

This section contains the following topics:

Overview of AME (see page 619)
Define Destinations and Intervals for SMFLOG Records (see page 624)
Define the Content of the Automation Statistics Report (see page 624)
Generate the Summary Section (see page 631)
Generate the AOFEVENT Segment (see page 639)
Generate the OSFEVENT Segment (see page 641)
Generate the OSFTERM Segment (see page 643)
Generate the IMS Segment (see page 644)

Overview of AME

The Automation Measurement Environment(AME) collects, records, and reports on the
system events that CA OPS/MVS reacts to and the actions that it takes to address those
events.

CA OPS/MVS continuously records statistical data. Much of this data can be obtained
online as well as in OPS/REXX programs using product facilities such as:

■ OPSVIEW option 4.1 and its suboptions

■ OPSVIEW option 7.2 (the Automation Analyzer)

■ The OPSPRM OPS/REXX function or the OPSPARM TSO command

■ The ADDRESS OPSCTL OSF host command environment in OPS/REXX

■ The ADDRESS AOF host command environment in OPS/REXX

You can also request that CA OPS/MVS write SMF records. The SMF records will go to
SMF data sets or the MVS System Logger (LOGR) depending on your system definitions.
CA OPS/MVS produces two types of SMF records:

■ Summary-type records that are written at product shutdown

■ Event-type records that are written after certain events are completed

Overview of AME

620 User Guide

Required Software

To run the AME, you must have CCS for z/OS installed. For more information on the CCS
for z/OS component that is required to run AME, see the appendix “CCS for z/OS
Component Requirements” in the Installation Guide.

Note: This software is automatically shipped with CA OPS/MVS.

Advantages of the AME

The AME provides these advantages:

■ It produces a detailed statistics report, the Automation Statistics Report, to help
you monitor your automation functions.

■ It lets you print and retain historical automation information.

■ It lets you use the PARM='PARMDD=ddname' to tailor the report so that it includes
only the information you need.

Overview of AME

Chapter 21: Using the Automation Measurement Environment 621

Data Flow of the AME

The OPAME010 program scans data streams for SMF records. It then summarizes the
data and prints it in an Automation Statistics Report.

The following diagram shows the flow of the data that CA OPS/MVS collects:

Equation 2: Flow of data collected by CA OPS/MVS

CA OPS/MVS

IFASMFDP

IFASMFDL

OPAME000

(record m ap)

OPAME010
PARMDD

(optional)

SM F

D ata

Extract

from SMF

data

Printed Reports

Here is a description of some of the important items shown in the previous diagram:

■ CA OPS/MVS

Your copy of CA OPS/MVS.

■ SMF data

The SMF data sets or System Logger logstream of the operating system, which are
the possible destination for the SMF records that CA OPS/MVS collects. The
destination is dependent on your system settings.

Overview of AME

622 User Guide

■ IFASMFDP or IFASMFDL

– IFASMFDP for SMF dump data sets

If you choose to send SMF records to the data set of the operating system,
IFASMFDP is the IBM utility used to extract the exact data you want. For a
sample of the JCL, see OPS.OPS.CCLXCNTL(OPAMESMF).

– IFASMFDL for MVS System Logger logstream

If you choose to send SMF records to the MVS System Logger, IFASMFDL is the
IBM utility used to extract the exact data you want. For a sample of the JCL, see
OPS.CCLXCNTL (OPAMESML).

■ OPAME010

The program that summarizes the data and produces an Automation Statistics
Report. It will accept the data that IFASMFDP extracted from the SMF data set of
the operating system or the data that IFASMFDL extracted from the logstream.

■ OPAME000

The record map for SMF records. This is provided in OPS.CCLXCNTL(OPAME000).

■ PARMDD

A JCL subparameter that indicates the ddname from which OPAME010 reads
additional subparameters. See OPS.CCLXCNTL(OPAMERPT).

Types of AME Reports

The AME reports on statistical summaries and event-type data that is recorded while CA
OPS/MVS is active. CA OPS/MVS currently records only summary information; however,
the ability to record during intervals will be added to the product in a future release.

Following is a list of the statistical segments that the AME reports on:

AOFEVENT

Reports AOF event statistics

OSFEVENT

Reports OSF event statistics

OSFTERM

Reports OSF server termination event statistics

IMS

Reports IMS BMP event statistics

GENERAL

Reports general summary statistics

Overview of AME

Chapter 21: Using the Automation Measurement Environment 623

MESSAGE

Reports WTO/WTOR message summary statistics

PROCBLK

Reports virtual storage Process Block summary statistics

EVNTEXIT

Reports exit call frequency summary statistics

AOFSUMM

Reports automated Operations Facility (AOF) summary statistics

OSFSUMM

Reports operator Server Facility (OSF) summary statistics

COMMAND

Reports command processing summary statistics

PERMVAR

Reports permanent global variable summary statistics

TEMPVAR

Reports temporary global variable summary statistics

OPSVALUE

Reports OPSVALUE processing summary statistics

SQL

Reports SQL summary statistics

EPI

Reports EPI summary statistics

Define Destinations and Intervals for SMFLOG Records

624 User Guide

Define Destinations and Intervals for SMFLOG Records

Four CA OPS/MVS parameters determine how CA OPS/MVS collects and records your
SMF records. These parameters are:

■ SMFRECORDING

Controls whether CA OPS/MVS writes SMF records after the SMFRECORDNUMBER
is set to a valid number.

■ SMFRECORDNUMBER

Sets the SMF record number used by CA OPS/MVS.

Use this parameter to indicate whether you want CA OPS/MVS to generate SMF
records. By default, the SMFRECORDNUMBER parameter is set to 0 (zero) and no
SMF records are generated.

■ SMFRULEDISABLE

Controls whether CA OPS/MVS will write an SMF record when a rule, rule set, or
both are disabled.

■ OSFTRANSSMFREC

Controls whether CA OPS/MVS creates SMF records after each server transaction.

For more information about these parameters, see the Parameter Reference.

Define the Content of the Automation Statistics Report

An EXEC statement in your JCL identifies the program that creates and prints your
Automation Statistics Report; this program is OPAME010. The AME lets you tailor your
report by specifying variable information for the PARM parameter of the JCL on this
EXEC statement. The PARM parameter passes this information to OPAME010 when it
executes. You can direct CA OPS/MVS to read parameters from a data set you specify in
the PARM parameter itself. For example:

// EXEC PGM=OPAME010,PARM='PARMDD=ddname'

You can use the subparameters specified in the ddname to specify the variable
information. These subparameters are not CA OPS/MVS parameters. The sample batch
JCL to submit an Automation Statistics Report is in member OPAMERPT of the
OPS.CCLXCNTL data set.

Define the Content of the Automation Statistics Report

Chapter 21: Using the Automation Measurement Environment 625

Subparameters Specified In the PARMDD File

The PARMDD itself is specified in the PARM field shown in the example above. If
PARMDD is not specified, the defaults are taken for the report.

You can specify the following subparameters on the PARMDD file:

REPORTDD

Indicates the ddname to which the OPAME010 writes.

Syntax:

REPORTDD={SYSPRINT|ddname}

SYSPRINT

OPAME010 writes to SYSPRINT.

ddname

OPAME010 writes to the ddname you specify in place of the variable ddname.

Default: REPORTDD=SYSPRINT

LINECNT

Indicates the number of lines per page of the report.

Syntax:

LINECNT=nn

nn

Indicates the number of lines you want per page; if you specify LINECNT=0, CA
OPS/MVS issues the titles only once.

Default: LINECNT=60

Define the Content of the Automation Statistics Report

626 User Guide

FROMDATE

Filters out data older than a date you specify.

Syntax:

FROMDATE={yyyy.ddd|yyyy/mm/dd|nnn}

yyyy.ddd

Indicates the cutoff date for data to appear on the report. Data older than the
date you specify instead of yyyy.ddd will not appear.

yyyy/mm/dd

Indicates the cutoff date for data to appear on the report. Data older than the
date you specify instead of yyyy/mm/dd will not appear.

nnn

Specifies a value to indicate the data cutoff date. For example, 0 is today, -1 is
yesterday, and so on.

Default: Data from any date not greater than the value for TODATE appears. If you
do not specify TODATE, data from all dates appears.

TODATE

Filters out data newer than a date you specify.

Syntax:

TODATE={yyyy.ddd|yyyy/mm/dd|nnn}

yyyy.ddd

Indicates the cutoff date for data to appear on the report. Data newer than the
date you specify instead of yyyy.ddd will not appear.

yyyy/mm/dd

Indicates the cutoff date for data to appear on the report. Data newer than the
date you specify instead of yyyy/mm/dd will not appear.

nnn

In place of nnn, specify a value to indicate the data cutoff date. For example, 0
is today, -1 is yesterday, and so on.

Default: Data from any date not less than FROMDATE appears on the report.

Define the Content of the Automation Statistics Report

Chapter 21: Using the Automation Measurement Environment 627

FROMTIME

Filters out data older than a time you specify.

Syntax:

FROMTIME=(hh:mm)

hh:mm

Indicates the cutoff time for data to appear on the report. Data older than the
time you specify instead of hh:mm will not appear.

Default: FROMTIME=(00:00)

TOTIME

Filters out data newer than a time you specify.

Syntax:

TOTIME=(hh:mm)

hh:mm

Indicates the cutoff time for data to appear on the report. Data newer than the
time you specify instead of hh:mm will not appear.

Default: TOTIME=(24:00)

RECMEGS

Specifies the SMF record accumulation buffer size in megabytes. The buffer is
allocated from extended private virtual storage.

Syntax:

RECMEGS=nnn

nnn

Indicates the number of megabytes allocated for the SMF record accumulation
buffer. You can specify a number from 1 to 100.

Default: RECMEGS=3

Define the Content of the Automation Statistics Report

628 User Guide

RECTYPE

Because the same data is collected in both event and summary records, you must
tell the OPAME010 program to process only event records or only summary records
for a given pass. Use the RECTYPE subparameter to indicate which type of records
you want OPAME010 to process.

Syntax:

RECTYPE={EVENT|SUMMARY}

EVENT

Indicates you want OPAME010 to process only event records.

SUMMARY

Indicates you want OPAME010 to process only summary records.

Default: RECTYPE=EVENT

SMFID

Filters out data so that only those SMF records from systems you specify are
included in the report.

Syntax:

SMFID={ALL|(smfids)}

ALL

Includes SMF records from all systems in the report.

smfids

Indicates that you do not want data from SMF records of all systems to be
included in the report. SMF records from only those systems you specify will be
included.

Default: SMFID=ALL

SMFTYPE

Specifies the SMF record type of the CA OPS/MVS SMF records to distinguish them
from other records sent to the SMF data set. This subparameter should always
match the SMFRECORDNUMBER parameter.

Syntax:

SMFTYPE=nnn

nnn

Indicates the number you want to assign to the SMF record. You can specify a
number from 128 to 255.

Default: There is no default for this subparameter.

Define the Content of the Automation Statistics Report

Chapter 21: Using the Automation Measurement Environment 629

SSNM

Filters out data so that only the SMF records from subsystems that you specify are
included in the report.

Syntax:

SSNM={ALL|(ssnms)}

ALL

Includes SMF records from all subsystems in the report.

ssnms

Indicates that you do not want data from SMF records of all subsystems to be
included in the report. SMF records from only those subsystems you specify
will be included.

Default: SSNM=ALL

WIDTH

Indicates the maximum width of the Automation Statistics Report.

Syntax:

WIDTH={80|132}

80

Prints the report with a width of 80 characters.

132

Reports the report with a width of 132 characters.

Default: WIDTH=132

OPSSTATS

Indicates whether you want CA OPS/MVS to create an Automation Statistics Report.

Syntax:

OPSSTATS={NO|(YES,[values])}

NO

Specifies that CA OPS/MVS will not create a report of statistical data.

YES

Specifies that CA OPS/MVS creates a report of statistical data. If you specify
OPSSTATS=YES, there are additional values that you can specify; for a list of
these values, see the table on the following page.

Note: These additional values are optional and will default if not specified.

Default: OPSSTATS=NO

Define the Content of the Automation Statistics Report

630 User Guide

Values You Can Specify for the OPSSTATS Subparameter

Here is a list of the values that you can specify for the OPSSTATS subparameter:

FROMDATE

This date overrides the global FROMDATE you specify.

Syntax:

FROMDATE={yyyy.ddd|yyyy/mm/dd|nnn}

TODATE

This date overrides the global TODATE you specify.

Syntax:

TODATE={yyyy.ddd|yyyy/mm/dd|nnn}

FROMTIME

This time overrides the global FROMTIME you specify.

Syntax:

FROMTIME=(hh:mm)

TOTIME

This time overrides the global TOTIME you specify.

Syntax:

TOTIME=(hh:mm)

SEGMENTS

If you specify SEGMENTS=ALL, CA OPS/MVS includes all statistics segments in the
report. If you do not want all statistics segments to be included in the report,
indicate those you want. For example, if you specify
SEGMENTS=(SUMMARY,AOFEVENT, your report includes only summary and AOF
event statistics.

Syntax:

SEGMENTS={ALL|(segments)}

Generate the Summary Section

Chapter 21: Using the Automation Measurement Environment 631

JCL PARM Parameters

To simplify the typical batch JCL, all of these subparameters have defaults. Therefore,
you may need to specify only the name of the report.

Examples: JCLPARM parameters

The following example shows JCL that requests an Automation Statistics Report that
includes all statistics segments. This is true because the SEGMENTS value, which
defaults to ALL, is not specified in the JCL.

//STEP1 EXEC PGM=OPAME010,PARM='PARMDD=PARMFILE'

//OPSSMF DD DISP=SHR,DSN=ops.smflog.dataset.name

//OPSSRM DD DISP=SHR,DSN=ops.cclxcntl(OPAME000)

//SYSPRINT DD SYSOUT=*

//PARMFILE DD *

OPSSTATS=YES,SMFTYPE=215

The following example shows JCL that requests an Automation Statistics Report that
includes only event data for OSF servers and disabled AOF rules. This JCL defines the
report further by specifying that only data between the hours of 8:00 a.m. and 5:00 p.m.
should be included and that the report should print with a width of 80 characters.

//STEP1 EXEC PGM=OPAME010,PARM='PARMDD=PARMFILE'

//OPSSMF DD DISP=SHR,DSN=ops.smflog.dataset.name

//SYSPRINT DD SYSOUT=*

//PARMFILE DD *

WIDTH=80,OPSSTATS=YES,

SEGMENTS=(OSFEVENT,AOFEVENT),FROMTIME=(8:00),

TOTIME=(17:00)'

The OPS.CCLXSAMP (OPAMEPRM) provides an example of how to build a REXX EXEC for
the parameters, and then have them go to a data set.

Generate the Summary Section

The statistics reported in the Summary Section of the Automation Statistics Report are
accumulated throughout the execution of CA OPS/MVS. When CA OPS/MVS is
terminated, these statistics are totaled and written to an SMF record. The OPSSMF
OPS/REXX function can also be used to write the cumulative summary records on
demand, instead of upon product termination. One reason to do this is when the SMF
address space is terminated prior to CA OPS/MVS terminating. For more information on
the OPSSMF function, see the Command and Function Reference. The Summary Section
reports the data in this SMF record.

To generate the Summary Section, specify SEGMENTS=(ALL) and RECTYPE=(SUMMARY).

Generate the Summary Section

632 User Guide

Example: Summary Section

Here is an example of a Summary Section:

 Automation Measurement Environment

Statistics For SMFID S034 First Record Start: 2009/08/07 08:04:03

SSNM OPSS Last Record End: 08:04:31

 GENERAL: General Summary Statistics

1> General Summary Statistics

 Approximate Product Start Time.2009/08/07 07:40:08

 Time Initialization Completed2009/08/07 07:40:29

 Time Shutdown Started 2009/08/07 08:04:00

2> MESSAGE: Message Summary Statistics

 NORMAL Messages Processed 734

 SUPPRESS Messages Processed 18

 DISPLAY Messages Processed 0

 DELETE Messages Processed 0

 NOOPSLOG Messages Processed 448

 Generic Dataset Interface Msgs Processed. 0

 Maximum NOOPSLOG MSG Rules Active 5

 Messages bypassed due to AOFMPFBYPASS 0

 Messages bypassed due to BYPASSCMDECHO. 0

 Internal product messages bypassed. 69

 Messages bypassed due to JES3 processing. 0

 Duplicate IMS messages bypassed 0

 Messages bypassed miscellaneous reasons 0

 Messages bypassed due to AOF inactive100

3> PROCBLK: Process Block Summary Statistics

 High Water Mark Block Usage Time. . . 2009/08/07 11:47:41

 Last Block Allocation Failure Time. <none>

 Total Number of Blocks Used 2,860

 Number of Block Allocation Failures 0

 High Water Mark Block Usage Count 7

 Actual Allocated Process Block Count. 27

 REXX Workspace Summary Statistics

 High-Used RXWS Water Mark Time. 2009/08/07 11:41:13

 RXWS Allocated Space (AOFSIZE parm)256K

 High-Used RXWS Water Mark 41,472

 High-Used RXWS Address. 0635A000

 High-Used RXWS Water Mark Program INT.OPS50060

 High-Used RXWS Water Mark Rule Name INT.OPS50060

 AOF Message Queue Summary Statistics

 Max pending GLV events (GLVPENDINGMAX). 100

 High-used GLV pending message queue0

 Maximum AOF EDQ entries (AOFMAXQUEUE) 3,001

 High-used AOF External Data Queue 6

Generate the Summary Section

Chapter 21: Using the Automation Measurement Environment 633

4> EVNTEXIT: Event Exit Summary Statistics

 Exit Call Summary Statistics

 IATUX18 Exit Calls. 0

 IATUX31 Exit Calls. 0

 Job Selection Calls 0

 Free/Deallocate Calls 0

 End Of Memory Exit Calls. 1

 WTO Exit Calls. .921

 Command Exit Calls. 22

 Job Termination Calls 3

 Job Re-enqueue Calls. 0

 DOM (SVC 87) Calls. 10

 Open/Close/Checkpoint/Restart Calls 12

 Step Initiation calls 0

 Failing SVC 34 Calls. 0

 Write To Log Calls. 989

 SUBSYS Keyword Converter Exit Calls 6

 Allocation Grouping of SUBSYS Calls 3

 Alternate End Of Task Calls 209

 Other Subsystem Exit Calls. 0

 IMS AOI Exit Message Calls. 0

 IMS AOI Exit Command Calls. 0

 SVC 95 function routine Exit Calls. 4

 SVC 95 function routine bypassed. 0

5> AOFSUMM: AOF Summary Statistics

 AOF Event Summary Statistics

 AOF Rules Bypassed (LIMIT). 0

 AOF Events Bypassed169

 AOF COMMAND Events. 22

 AOF Rule DISABLE Events 26

 AOF DOM Events. .0

 AOF Rule ENABLE Events. 26

 AOF EOM Events. .1

 AOF GLV Events. .0

 AOF MESSAGE Events. 752

 AOF OMEGAMON Events 0

 AOF REQUEST Events. 1

 AOF SECURITY Events 268

 AOF SCREEN Events . 0

 AOF TOD Events. 0

 AOF Rule Execution Summary Statistics

 AOF COMMAND rules executed. 22

 AOF rule DISABLE (TERM sections) exec 3

 AOF DOM rules executed. 0

 AOF rule ENABLE (INIT sections) exec. 3

 AOF EOM rules executed. 1

 AOF GLV rules executed. 0

 AOF MESSAGE rules executed. 1504

 AOF OMEGAMON rules executed 0

Generate the Summary Section

634 User Guide

 AOF REQUEST rules executed. 1

 AOF SECURITY rules executed150

 AOF SCREEN rules executed 0

 AOF TOD rules executed. 0

6> OSFSUMM: OSF Summary Statistics

 Count of Queued Server Transactions 24

 Count of Queued Trans With No Queue Time. 0

 OSF Queue Depth Statistics

 OSF Queue Depth 0 Occurrences 7

 OSF Queue Depth 1 Occurrences 2

 OSF Queue Depth 2 Occurrences 1

 OSF Queue Depth 3 Occurrences 2

 OSF Queue Depth 4 Occurrences 1

 OSF Queue Depth 5 Occurrences 1

 OSF Queue Depth 6 Occurrences 1

 OSF Queue Depth 7 Occurrences 2

 OSF Queue Depth 8 Occurrences 1

 OSF Queue Depth 9 Occurrences 1

 OSF Queue Depth 10 Occurrences 1

 OSF Queue Depth 11 Occurrences 1

 OSF Queue Depth 12 Occurrences 2

 OSF Queue Depth 13 Occurrences 1

 OSF Queue Depth 14 Occurrences 0

 OSF Queue Depth 15 Occurrences 0

 OSF Queue Depth 16 Occurrences 0

 OSF Queue Depth 17 Occurrences 0

 OSF Queue Depth 18 Occurrences 0

 OSF Queue Depth 19 Occurrences 0

 OSF Queue Depth >19 Occurrences 0

 OSF Initiation/Termination Statistics

 Total Server Initiations. 3

 OSFMIN Server Initiations 3

 OSFQADD Server Initiations. 0

 Server Failure Restarts 0

 Number of Terminations due to OSFRECYCLE. 0

 High Water Mark Server Count. 3

 OSF Execute Queue Statistics

 Average OSF Execute Queue Time. 14.08 secs

 Lowest OSF Execute Queue Time. 2 ms

 Highest OSF Execute Queue Time. 35.73 secs

 OSF Transaction Statistics

 Average OSF Transaction Time. 7.48 secs

 Lowest OSF Transaction Time. 54 ms

 Highest OSF Transaction Time. 50.34 secs

 Count of Completed OSF Transactions 24

Generate the Summary Section

Chapter 21: Using the Automation Measurement Environment 635

7> COMMAND: Command Summary Statistics

 NOACTION commands counter 20

 ACCEPT commands counter 2

 REJECT commands counter 0

 Number of OSF console commands. 1

 Number of ECF console commands. 2

 Number of commands reissued (length). 1

 Product Console Allocation Statistics

 Number of console allocation failures 0

 Number of console allocation timeouts 0

 Number of successful console allocations. 7

 Number times console allocation waited. 0

 Accumulated console allocation wait time. 0 ms

8> PERMVAR: Permanent GLV Summary Stats

 Number of Permanent Global Variables. 538

 Maximum Number of Blocks (GLOBALMAX). 5,000

 High-Used Blocks. 2,148

 In-Use Blocks . 980

 Free Blocks On Free Chain 1,168

 Free Areas On Free Chain. 18

 Pages In Global Workspace 313

 Global Variable Updates 43

 SYSCHK1 Checkpoint Interval 15

 SYSCHK1 Checkpoints 43

 SYSCHK1 Checkpoint Retries. 0

 Global Variable Error Messages. 0

9> TEMPVAR: Temporary GLV Summary Stats

 Number of Temporary Global Variables. 25

 Maximum Number of Blocks (GLOBALTEMPMAX). 5,000

 High-Used Blocks. 35

 In-Use Blocks . 35

 Free Blocks On Free Chain 0

 Free Areas On Free Chain. 0

 Pages In Temporary Global Workspace 313

 Temporary Global Variable Updates 68

 Temporary Global Variable Error Messages. 0

10> OPSVALUE: OPSVALUE Summary Statistics

 Number of OPSVALUE calls. 139

 Number of cross system OPSVALUE calls 0

 Number of internal OPSVALUE calls 400

 Internal OPSVALUE unknown type calls. 0

 Internal OPSVALUE SQL calls 384

 Internal OPSVALUE STATEMAN calls. 11

 Internal OPSVALUE TOD CATCHUP calls 1

 Internal OPSVALUE GLVEVENT cleanup calls. 0

 Internal OPSVALUE GLVJOBID cleanup calls. 4

Generate the Summary Section

636 User Guide

11> SQL: SQL Summary Statistics

 SQL Statements Executed

 Total number of SQL statements executed 116

 CREATE TABLE statements 2

 INSERT statements . 12

 UPDATE statements . 17

 SELECT statements . 83

 DELETE statements . 2

 DECLARE CURSOR statements 0

 OPEN statements . 0

 FETCH statements. 0

 CLOSE statements. 0

 DROP TABLE statements 0

 ALTER TABLE statements. 0

 SQL Engine Internal Operations

 Direct reads. 24

 Sweep reads . 561

 Insertions. 12

 Writes (Updates). 49

 Deletions . 1

 Compile errors. 0

 Execution errors. 2

 Logic errors. 0

 SQL Execution Timings

 Statements compiled 36

 Average compilation time. 1 ms

 Statements executed 116

 Average execution time. 5 ms

12> EPI: EPI Statistics

 Total count of Address EPI commands 366

 LIST commands . 96

 DELETE commands . 0

 DEFINE commands . 2

 CHANGE commands . 2

 LOGON commands. 11

 LOGOFF commands . 8

 INQuire INPUT commands. 32

 TYPE commands . 25

 RDSCRN commands . 46

 RDSCRN/ROW commands 0

 RDCURSOR commands . 25

 BIND commands . 0

 UNBIND commands . 0

 ENQ commands . 0

 DEQ commands. 0

 CLEANUP requests. 92

 Miscellaneous commands. 27

Generate the Summary Section

Chapter 21: Using the Automation Measurement Environment 637

The following list describes the major segments in the previous report:

1 GENERAL Segment

Contains general statistics related to the execution of CA OPS/MVS such as product
start time and stop time.

Specify SEGMENTS=(GENERAL) and RECTYPE=(SUMMARY) to report only this
segment.

2 MESSAGE Segment

Contains statistics related to WTO and WTOR message processing.

Specify SEGMENTS=(MESSAGE) and RECTYPE=(SUMMARY) to report only this
segment.

3 PROCBLK Segment

Contains statistics related to CA OPS/MVS process block usage. Process blocks
represent virtual storage used to process events intercepted by the product. The
number of process blocks and the size of each block are controlled by various
product parameters (for example, PROCESS, AOFSIZE).

Specify SEGMENTS=(PROCBLK) and RECTYPE=(SUMMARY) to report only this
segment.

4 EVNTEXIT Segment

Indicates the number of call occurrences for various system and subsystem
interface points.

Specify SEGMENTS=(EVNTEXIT) and RECTYPE=(SUMMARY) to report only this
segment.

5 AOFSUMM Segment

Contains statistics related to AOF events. This segment indicates the number of
times that specific event types occurred and were eligible for rules processing. This
segment also indicates the number of times that rules executed for specific event
types.

Note: Since an event can trigger multiple rules, the number of executions can be
greater than, less than, or equal to the number of events.

Specify SEGMENTS=(AOFSUMM) and RECTYPE=(SUMMARY) to report only this
segment.

6 OSFSUMM Segment

Contains statistics related to the OSF component. This segment reports various OSF
server transaction counts, OSF queue depth frequencies, and OSF queueing and
execution values.

Specify SEGMENTS=(OSFSUMM) and RECTYPE=(SUMMARY) to report only this
segment.

Generate the Summary Section

638 User Guide

7 COMMAND Segment

Contains statistics related to command processing. This segment reports command
disposition statistics such as rejected or accepted. The Product Console Allocation
Statistics section reports on the various extended, migration, and subsystem
consoles used by the product to issue commands and capture responses.

Specify SEGMENTS=(COMMAND) and RECTYPE=(SUMMARY) to report only this
segment.

8 PERMVAR Segment

Contains statistics related to permanent global variable processing. Permanent
global variables are checkpointed in the SYSCHK1 VSAM linear data set, and they
include global variables and relational tables.

Specify SEGMENTS=(PERMVAR) and RECTYPE=(SUMMARY) to report only this
segment.

9 TEMPVAR Segment

Contains statistics related to temporary global variable processing. Temporary
global variables are those variables that are not saved across product restarts and
that include the job ID and event classes of variables and the rows of GLOBAL
TEMPORARY relational tables.

Specify SEGMENTS=(TEMPVAR) and RECTYPE=(SUMMARY) to report only this
segment.

10 OPSVALUE Segment

Contains statistics related to the OPSVALUE OPS/REXX function and the internal
product facilities that use this interface for global variable and RDF (SQL)
processing.

Specify SEGMENTS=(OPSVALUE) and RECTYPE=(SUMMARY) to report only this
segment.

11 SQL Segment

Contains statistics related to the CA OPS/MVS SQL facility. This segment reports SQL
statement counts, internal operations counts, error counts, and various execution
timings.

Specify SEGMENTS=(SQL) and RECTYPE=(SUMMARY) to report only this segment.

12 EPI Segment

Contains statistics related to the External Product Interface (EPI) facility.

This segment reports counts of various ADDRESS EPI host commands and the
EPI-related command processors.

Note: SESSCMD is internally converted to a number of ADDRESS EPI commands.

Specify SEGMENTS=(EPI) and RECTYPE=(SUMMARY) to report only this segment.

Generate the AOFEVENT Segment

Chapter 21: Using the Automation Measurement Environment 639

Generate the AOFEVENT Segment

The statistics reported in the AOFEVENT Segment of the Automation Statistics Report
are accumulated throughout the life of a particular AOF rule. When the rule is disabled
and the SMFRULEDISABLE parameter is set to YES, CA OPS/MVS generates an SMF
record that describes the life of the AOF rule. The AOFEVENT segment reports the data
in this SMF record.

To generate the AOFEVENT Segment, specify SEGMENTS=(AOFEVENT) and
RECTYPE=(EVENT).

Example: AOFEVENT Segment

Here is an example of the AOFEVENT Segment for three different rules:

 Automation Measurement Environment

Statistics For SMFID S034 First Record Start: 2009/08/09 14:36:10

SSNM OPSS Last Record End: 14:36:11

 AOFEVENT: AOF Event Statistics

 General Rule Information

1> Rule type . Command

 Ruleset name. O

 Rule name . CMDCOUNT

2> Rule enablement time and date 2009/08/08 12:30:05

3> Total time rule enabled 1 days 2 hours 6 mins 5 secs

 Message ID or other criterion *

4> Rule Section Execution Counts

 Initialization section executions 1

 Processing section executions 224

 Termination section executions. 1

 Number of NOOPSLOG executions 0

 Rule Firing Statistics

 Rule firing limit 10,000

 Rule firing high water mark 39

5> Rule Execution Failure Statistics

 Last failure type .

 Number of execution failures. 0

 Abend code or REXX execution error. 0

 Last execution failure time <none>

 Last execution failure message ID

Generate the AOFEVENT Segment

640 User Guide

6> General Rule Information

 Rule type . Security

 Ruleset name. SEC

 Rule name . ARCHSECG

 Rule enablement time and date 2009/08/08 12:30:05

 Total time rule enabled 1 days 2 hours 6 mins 5 secs

 Message ID or other criterion OPSGLOBALGLOBAL0.ARCH_TRACK.*

 Rule Section Execution Counts

 Initialization section executions 1

 Processing section executions 14

 Termination section executions. 1

 Number of NOOPSLOG executions 0

 Rule Firing Statistics

 Rule firing limit 10,000

 Rule firing high water mark 0

 Rule Execution Failure Statistics

 Last failure type .

 Number of execution failures. 0

 Abend code or REXX execution error. 0

 Last execution failure time <none>

 Last execution failure message ID

7> General Rule Information

 Rule type . Message

 Ruleset name. VTAM

 Rule name . IST530I

 Rule enablement time and date 2009/08/08 12:30:02

 Total time rule enabled 1 days 2 hours 6 mins 8 secs

 Message ID or other criterion IST530I

 Rule Section Execution Counts

 Initialization section executions 1

 Processing section executions 16,372

 Termination section executions. 1

 Number of NOOPSLOG executions 16,372

 Rule Firing Statistics

 Rule firing limit 10,000

 Rule firing high water mark 44

 Rule Execution Failure Statistics

 Last failure type .

 Number of execution failures. 0

 Abend code or REXX execution error. 0

 Last execution failure time <none>

 Last execution failure message ID

Generate the OSFEVENT Segment

Chapter 21: Using the Automation Measurement Environment 641

The following list describes the important items in the above report:

1 Rule Type

Displays the type of rule. For example, command or security.

2 Rule Enablement

Contains the date and time the rule was enabled.

3 Total Time

Contains the total time that the rule was enabled.

4 Rule Section Execution Counts

Contains the execution counts of the various sections in the rule.

5 Rule Execution Failure Statistics

Contains the statistics related to execution failures that occurred for the rule.

6 General Rule Information

Contains statistics for the second rule.

7 General Rule Information

Contains statistics for the third rule.

Generate the OSFEVENT Segment

The statistics reported in the OSFEVENT Segment of the Automation Statistics Report
describe a particular OSF server transaction. When the OSF server transaction finishes
and the OSFTRANSSMFREC parameter is set to YES, CA OPS/MVS generates an SMF
record that describes the transaction. The OSFEVENT Segment reports the data in this
SMF record.

To generate the OSFEVENT Segment, specify SEGMENTS=(OSFEVENT) and
RECTYPE=(EVENT).

Generate the OSFEVENT Segment

642 User Guide

Example: OSFEVENT Segment

Here is an example of the OSFEVENT Segment:

 Automation Measurement Environment

 Statistics For SMFID S034 First Record Start: 2005/11/11 07:45:19

 SSNM OPSS Last Record End: 14:28:17

 OSFEVENT: OSF Transaction Statistics

 OSF Transaction Statistics

1> Server job name OPSOSF

 Server step name. OPSS010E

 Server procstep name. OPSS

 Server ASID . 010E

2> Command text SUBMIT 'OPS.O.CCLXCNTL(ARCHJOB)'

 Command length. 28

 Command count . 6

 Average command output lines. 3

 Average command I/O count 22

3> Average command elapsed time. 2 secs

4> Average command CPU (TCB + SRB) time. 193 ms

5> Average time spent on server queue. 2 ms

The following list describes the important items in the above report:

1

The job name of the OSF server that processed the transaction.

2

The text of the command that was sent to the OSF server that initiated the
processing of the transaction.

3

The average elapsed time that the OSF server took to process the transaction.

4

The average CPU time that the OSF server took to process the transaction.

5

The average amount of time this transaction waited on the internal OSF Execute
Queue until a server became available to process the transaction.

Generate the OSFTERM Segment

Chapter 21: Using the Automation Measurement Environment 643

Generate the OSFTERM Segment

The statistics reported in the OSFTERM Segment of the Automation Statistics Report are
accumulated throughout the life of a particular OSF server. When the server is
terminated, CA OPS/MVS generates an SMF record that describes the life of the server.
The OSFTERM Segment reports the data in this SMF record.

To generate the OSFTERM Segment, specify SEGMENTS=(OSFTERM) and
RECTYPE=(EVENT).

Example: OSFTERM Segment

Here is an example of the OSFTERM Segment:

 Automation Measurement Environment

 Statistics For SMFID S034 First Record Start: 2005/08/07 08:04:03

 SSNM OPSS Last Record End: 08:04:31

 OSFTERM: OSF Transaction Statistics

 General Server Information

1> Server job name OPSOSF

 Server step name. OPSS0044

 Server procstep name. OPSS

 Server ASID . 0044

 OPOSEX flags. 11000000

2> TSO Transaction Statistics

 Wait Time Limit Per Transaction 120

 Maximum Elapsed Time Per Transaction. 120

 Maximum CPU Seconds Per Transaction 15

 Maximum Output Lines Per Transaction. 1,000

 Total OSF Lines Output. 39

3> Total OSF Transaction Count 10

The following list describes the important items in the above report:

1

Contains the job name of the OSF server that processed the transaction.

2

Contains the statistics related to TSO transactions. The first part of this section
contains the values of various OSF parameters that control server operation. These
values represent the settings of these parameters at the time the server
terminated.

3

Contains the number of transactions processed by the OSF server.

Generate the IMS Segment

644 User Guide

Generate the IMS Segment

The statistics reported in the IMS Segment of the Automation Statistics Report describe
the execution of IMS Batch Message Processing (BMP) subtasks. Each IMS BMP is
reported as a separate set of statistics.

To generate the IMS Segment, specify SEGMENTS=(IMS) and RECTYPE=(EVENT).

Example: IMS Segment

Here is an example of an IMS Segment:

 Automation Measurement Environment

 Statistics For SMFID S034 First Record Start: 2005/08/07 08:04:03

 SSNM OPSS Last Record End: 08:04:31

 IMS: IMS Event Statistics

 BMP Statistics

 CA OPS/MVS subsystem ID. OPSS

1> IMS ID. IVP1

 Time BMP waiting for work 6 mins 18 secs

 Time BMP processing work. 3.55 secs

2> Average command processing time 0.71 secs

 Commands processed. 5

 Display-only commands processed 5

3> Failed commands . 0

 Output lines. 199

4> CA OPS/MVS subsystem ID. OPSS

 IMS ID. IVP2

 Time BMP waiting for work 9 mins 10 secs

 Time BMP processing work. 5.55 secs

 Average command processing time 1.11 secs

 Commands processed. 5

 Display-only commands processed 4

 Failed commands . 0

 Output lines. 308

The following list describes the important items in the above report:

1

Contains the IMS ID that is controlling the IMS BMP subtask.

2

Contains the average command processing time for all commands processed by this
BMP. It is computed by dividing the total elapsed time spent by this BMP processing
commands by the number of processed commands.

Generate the IMS Segment

Chapter 21: Using the Automation Measurement Environment 645

3

Contains the number of commands that failed in the BMP.

4

Contains statistics for each IMS BMP.

Appendix A: Supplied Sample Rules and Programs 647

Appendix A: Supplied Sample Rules and
Programs

This section contains the following topics:

Available Sample AOF Rules and OPS/REXX Programs (see page 647)
How to Locate Supplied Sample Rules and OPS/REXX Programs (see page 648)
CA OPS/MVS Components (see page 649)
CA Products (see page 653)
Other Vendor Products (see page 658)
z/OS Activities (see page 662)

Available Sample AOF Rules and OPS/REXX Programs

CA OPS/MVS distributes sample AOF rules and OPS/REXX programs that demonstrate
various aspects of automating operations in a mainframe environment. These
procedures adhere to the specific environment where they have been created and
tested, and depending on the desired outcome, the provided automation may need to
be modified from site to site.

The primary purpose of these rules and programs is to do the following:

■ Outline and demonstrate automated techniques that are needed across all data
centers

■ Illustrate the effective usage of the automation tools that CA OPS/MVS provides,
such as the OPS/REXX host environments, OPS/REXX functions, global variables,
local variables, and much more

■ Provide the syntax of these applications that you can use as references and
templates or starting points when you implement site-specific automation

How to Locate Supplied Sample Rules and OPS/REXX Programs

648 User Guide

How to Locate Supplied Sample Rules and OPS/REXX Programs

Many of the supplied sample rules and programs work together as an application to
automate a specific system component or event.

You can locate these sample rules and programs in the following data sets, which CA
OPS/MVS creates during installation:

■ hlq.CCLXRULS

Contains the sample AOF rules.

Important! Do not auto enable or enable the entire sample rule data set. You must
first carefully review each sample rule to determine its applicability to your system.
If the sample rule is desirable within your environment, you should copy it to an
existing production AOF ruleset.

■ hlq.CCLXSAMP

Contains the sample OPS/REXX programs.

All AOF rules and OPS/REXX program members for automated applications include the
following:

■ Comments that outline the logic flow of the application

■ Descriptions of the various automation tools that the application uses

■ Steps needed to implement the sample rule and/or OPS/REXX program

The following sections of this appendix will categorize the specific component or system
event that the supplied sample rules and programs address. Each individual sample rule
and OPS/REXX program utilized within these applications are listed in Appendixes B and
C.

CA OPS/MVS Components

Appendix A: Supplied Sample Rules and Programs 649

CA OPS/MVS Components

Several AOF rules and OPS/REXX programs demonstrate creating automation to utilize,
control, and monitor various components within CA OPS/MVS.

These include:

■ AOF

■ API

■ EPI

■ HWS

■ Opslog

■ OSF

■ SOF

■ SSM

AOF Component

The following applications provide automation for the AOF Component of CA OPS/MVS.

TIMECHNG

Resynchronizes AOF TOD rules during dynamic Daylight savings time changes. No
IPL is performed.

ZEROAOF

The AOF ZEROAOF request rule demonstrates a programmatic method of obtaining,
displaying, and saving AOF rule information for any enabled rule that has a zero fire
count. While this logic may provide some drop-in value, it primarily demonstrates
the programmatic manipulation that can be performed against AOF statistical
information across cycles of CA OPS/MVS.

API Component

The following applications provide automation for the API Component of CA OPS/MVS.

APIHRTB1

Issues a highlighted banner alert message in response to a warning or problem
heartbeat issued by a participating CA product.

CA OPS/MVS Components

650 User Guide

APIHRTB2

Processes a message issued from the CA OPS/MVS monitor task that indicates a
participating CA product has not generated any heartbeat events within an interval
determined by that CA product. This is useful if the CA product is in a state that is
causing it to not generate any normal heartbeat events.

APIHRTB3

DOMs previously issued heart beat interval failures upon participating CA products
re-issuing NORMAL API heart beat events.

SSMCAAPI

Provides general active status processing for any participating CA product. This API
communicates a product's active status (STARTING, UP, STOPPING, or DOWN) to CA
OPS/MVS, facilitating a common method for SSM to capture the current active
state of any CA mainframe product. The rule named SSMCAAPI is provided to
capture these events and communicate to SSM. You must enable this rule for it to
be used by SSM.

HWS Component

The following application provides automation for the HWS Component of CA OPS/MVS.

APIHWSV

Formats and issues HWS hardware event data (variables) as a multi-line WTO (MLWTO).

OPSLOG Component

The following applications provide automation for the OPSLOG Component of CA
OPS/MVS.

OPS34450

Automatically switches to another eligible active OPSLOG when it detects that the
current live OPSLOG is approaching the maximum internal message number limit.
This eliminates the need to restart CA OPS/MVS after deleting and reallocating the
OPSLOG.

OPSLGEXT

Demonstrates utilizing the OPS/REXX OPSLOG() function. This function can extract
data from the CA OPS/MVS OPSLOG using filter criterias, such as by jobname, asid,
or message ID. This type of automation may be useful in collecting diagnostic data
for some problem jobname that is occurring on a system, and then forwarding this
data to the responsible support teams to assist them with the debugging effort.

CA OPS/MVS Components

Appendix A: Supplied Sample Rules and Programs 651

OPSLGSCN

Periodically performs the following functions:

■ Scans the OPSLOG looking for specific OPS/REXX compiler and execution error
messages that might have occurred within rules and/or programs.

■ Generates an alert email of these messages to a list of designated users.

SECWEBV1, SECWEBV2, and SECWEBV3

Demonstrates setting up security within the OPSLOG Webview component.

OSF Component

RESETOSF

End-User OPS/REXX pgm to stop or force CA OPS/MVS servers and reset (delete) all
server requests in the specified server queue.

SOF Component

The following applications provide automation for the SOF Component of CA OPS/MVS.

SOFCMDR, SOFSECR, SOFCMDU, SOFSECU

Secures console commands that control the SOF component.

OPSOSF

Creates a pseudo command rule to simulate SOF commands from a console
command.

OPSOSF001

Varies devices offline or online as detected by the SOF API event.

SSM Component

The following applications provide automation for the SSM Component of CA OPS/MVS.

OP4UEXIT

User command exit allows user to trigger any type of end-user automation against
some SSM resource. Users can implement their own new line and primary
command to be able to invoke a program. For example, an OPS/REXX validation
program, SSM Note or a new ISPF application.

SECSSM1, SECSSM2, and SECSSM3

Demonstrate how to secure the updating of SSM components.

CA OPS/MVS Components

652 User Guide

SSMALTSB

Demonstrates how to alter normal SSM subrequisite processing to allow for a
different controlled shutdown of a group of resources using the XSUBREQ action
process.

For example, startup may be JOBA, JOBB, JOBC, and then JOBD. Upon shutdown the
normal SSM subrequisite processing would be to stop JOBD, JOBC, JOBB, and then
JOBA. This sample demonstrates how to alter the normal subrequisite shutdown so
that JOBC stops first, JOBA stops second, JOBD stops third, and JOBB stops last.

SSMCHECK

Implements a health check against SSM after IPL to ensure that any failed or
problem resource has been acted upon.

SSMCNTL

Demonstrates creating a console interface application to control and monitor SSM
functionality.

SSMEOJ

Demonstrate implementing end-user logic into SSM to monitor and control batch
jobs similar to SSMEOM that monitors STCs.

SSMEXCPS

Displays all SSM STCTBL resources for all CA OPS/MVS MSF connections where both
CURRENT and DESIRED states <> UP, or the CURRENT state is down.

SSMMAINT

Demonstrates how to dynamically implement SSM table changes during an IPL or a
recycle of CA OPS/MVS.

SSMMAINT uses the following process to implement the SSM table changes:

1. Creates backups of existing production tables

2. Loads and uses the predefined new tables

SSMMOVE, SSMPLEXC, SSMXPREQ, and SSMXSUBR

Illustrates one method of monitoring and configuring cross-system dependencies
within a sysplex.

SSMQUERY

Demonstrates the logic needed to identify the table where the SSM resource
resides, for SSM configurations that have STCs in multiple resource tables.

SSMTREE

Generates a formatted file representation of a system state managed resource
table. This file can then be used with GRAPHVIZ
http://www.graphviz.org/License.php to display a graphical representation of the
table's resource relationships.

http://www./
http://www./

CA Products

Appendix A: Supplied Sample Rules and Programs 653

SSMWEBSP

Provides rules and procedures to control a deployment manager WebSphere
configuration within SSM.

SSMXCHCK

Determines the state of a remotely monitored SSM resource within the MSF
connected or sysplex environment.

SSM2XCEL

Insert SSM resource and action table data into a sequential dsn so that it can be FTP'd
and viewed as an Xcel document.

CA Products

This section provides specific system components or events automated by the supplied
samples for CA products.

CA Datacom

The following applications provide CA Datacom environment automation.

SYSVDTCM

Utilizes the CA SYSVIEW interface to obtain the active CA Datacom ASIDs to
determine if any of the data areas for each CA Datacom exceeds the defined
percentage value. If a threshold is exceeded, an alert is generated.

SHUTDTCM and STRTDTCM

Initiates the start up and shutdown of a master CA Datacom/AD Multi User Facility
region that is being used within a CA 11 environment.

CA IDMS

IDMSAREA

Invoke and manipulate the collected DCMT D AREA command output. If the LOCK
status is in ‘OFL’ for any area then send out an alert message.

CA MIM

The following applications provide CA MIM environment automation.

CA Products

654 User Guide

APIMIMGR

Responds to problem related CA MIM API events.

The MIM2211 API event: This API event triggers when CA MIM detects a delay to a
VARY ONLINE/OFFLINE request to a tape drive. The default logic within this API rule
allows the VARY ONLINE/OFFLINE request to pend for 90 seconds before aborting
back to CA MIM. This allows CA MIM across the MIMplex to continue processing.

The MIM2225 API event: This particular API event is triggered when Vary
commands initiated by CA MIM are requeued because IEEVARYD is unable to obtain
a SYSIEFSD ENQ within 5 seconds.

MIAIBR14

Causes tape volume dismounts to occur under CA MIA GLOBAL Tape Device
Allocation Serialization for Tape Volumes that remain mounted in unallocated
MIA-managed tape devices.

MIMQUERY

Creates a utility that TSO users can invoke to obtain and view the status of a specific
QNAME or RNAME enqueue resource within a CA MIM MIMplex environment.

MIMTAPE

Reports on outstanding tape mounts for CA MIM managed tape devices. It replaces
the existing TAPEMNT* sample rules.

MEDSMIM

The Mainframe Environment Discovery Service MIM (MEDSMIM) is an
environmental reporting application used by CA MIM customers. This diagnostic
tool greatly reduces the time needed to gather CA MIM complex environmental
information. It can also regularly ensure your CA MIM address spaces are setup and
running optimally.

CA PDSMAN

The following provides CA PDSMAN environment automation.

APIPDSMN

Responds to various CA PDSMAN API events, including LLA out of synch conditions,
space, thresholds, and invalid libraries.

CA Process Automation

The following provides CA Process Automation environment automation.

CA Products

Appendix A: Supplied Sample Rules and Programs 655

PAZ*

Demonstrate the extension of CA OPS/MVS SSM functionality to the distributed
environment by controlling SAP, running on Linux, through CA Process automation.
The functions of these sample applications are invoked using SSM actions as
specified in the action table.

CA Scheduler

The following provides CA Scheduler environment automation.

APISCHED

Provides sample API rules that generate alerts when it processes the CA Scheduler
events SCHDJABEND, SCHDJLATE, and SCHDJFAIL.

For SCHDJABEND events, additional logic demonstrates how to restart or cancel a
specific job based on the number and type of abends.

CA SYSVIEW

The following applications provide CA SYSVIEW environment automation.

APISYSVC and SYSVCICS

Outlines and demonstrates the process of creating an effective CA OPS/MVS
application that monitors and responds to CICS threshold alerts collected by CA
SYSVIEW. This application provides a foundation of implementing a more granular
automated decision making application that is needed when processing these CA
SYSVIEW alerts.

DB2WLMCK

Utilizes the CA SYSVIEW interface to identify and activate failed DB2 WLM
applications.

GSVXSSM*, GSVXLINE, GSVXUSER

Demonstrates the basic code needed to create a CA SYSVIEW REXX program that
manipulates and displays CA OPS/MVS SSM data. The primary purpose of this
sample REXX program is to demonstrate utilizing the CA SYSVIEW RXDISP command
to manipulate CA OPS/MVS data. This sample specifically manipulates the SSM
component of CA OPS/MVS. The out-of-the-box functionality will allow for specific
SSM resource monitoring and control from within CA SYSVIEW.

SPOOLMON

Utilizes the CA SYSVIEW interface to identify the top spool user when the JES2 TGS
spool warning level has been exceeded.

CA Products

656 User Guide

SYSVALRT

You can create proactive automation between the CA OPS/MVS and CA SYSVIEW
interface that alerts on and resolves potential problem ASIDs before they impact
system performance.

This sample application monitors and responds to system alerts collected by CA
SYSVIEW. This application provides automated decision making when processing
these alerts.

SYSVCHCK

Demonstrates a coding technique you can use to obtain and interrogate various CA
SYSVIEW related data and generate SMTP email alerts for any exceeded defined
thresholds.

The specific CA SYSVIEW data you can obtain include:

■ Coupling facility related data

■ MQ related data

■ Page data set related data

■ WLM related data

SYSVCTDQ

Invoke the CA SYSVIEW CICS CTDATA GLOBAL command to obtain transient data queues
for all active CICS regions. This application also generates an alert for any TDQ that that
has a current QCount greater than a defined threshold.

SYSVDSNX

The logic within this OPS/REXX program demonstrates the basic code needed to
extract data set extent usage information for data sets active to a specific job. The
CA SYSVIEW interface is used to obtain this information.

SYSVDTCM

Utilizes the CA SYSVIEW interface to obtain the active CA Datacom ASIDs to
determine if any of the data areas for each CA Datacom exceeds the defined
percentage value. If a threshold is exceeded, an alert is generated.

SYSVE

Illustrates creating a pseudo CMD rule to obtain CA SYSVIEW data from a console
command.

SYSVIEWE

Demonstrates the basic OPS/REXX code needed to extract CA SYSVIEW data using
the ADDRESS SYSVIEWE OPS/REXX host environment. This program uses the
XVEXTRAC CA SYSVIEW command.

CA Products

Appendix A: Supplied Sample Rules and Programs 657

SYSVINIT

Determine if a batch jobs execution or clocktime is exceeding defined run times
based on the initiator class in which it is running.

SYSVMSU

Process MSU4HAVG threshold alerts (Averages MSU usage). For warning/problem
alerts, output from the ACTSUM AVERAGE CA Sysview command will be obtained
and emailed through SMTP to a specific list of email IDs. An 'All OK' email will be
generated when the MSU4HAVG alert returns a 'NORMAL' status.

SYSVOUTP

Uses the CA SYSVIEW LISTFILE command to extract spooled output of a job that is
not being sent to the operator and therefore is not seen by normal means for CA
OPS/MVS to process.

CA Workload Automation (CA WAEE)

WAEE2OPS

Demonstrate a technique that can be used to forward CA Workload Automation EE
(CA WAEE) job monitoring data to CA OPS/MVS for further automated processing.
Refer to sample member WAEE2OPS for complete implementation details.

CA XCOM

The following applications provide CA XCOM environment automation.

XCOPSEOJ and XCOPMSG

Initiates CA XCOM failover procedures in the event CA XCOM terminates
abnormally.

CA DB2 DBM Products

The following application provides automation for CA DB2 DBM products.

PDT0170

Demonstrates logic needed to process data collector messages from the Execution
Manager (Xmanager) component and invoke TSFBATCH Proc Unload to submit
detector data to TSF.

CA Spool

The following provides CA Spool environment automation.

Other Vendor Products

658 User Guide

SHUTSPL

Initiates shutdown procedures for CA Spool print management.

CA TLMS

The following provides CA TLMS environment automation.

TLMSCHCK

Verifies that all components of the CA Dynam/TLMS product have successfully
initialized.

CA 7

The following applications provide CA 7 environment automation.

CA7ABEND, CA7BRWSE, and CA7LATE

Demonstrates logic needed to process CA 7 browse log messages as collected using
the CA 7 browse log interface. Specific logic browses CA 7 abend and late events.

SHUTCA7 and SHUTCA7I

Demonstrates logic needed to process CA 7 browse log messages as collected
through the CA 7 browse log interface. Specific logic browses CA 7 abend and late
events.

CA 11

The following provides CA 11 environment automation.

CA11MSG

Illustrates rule logic needed for message IDs that are longer than 10 characters,
such as CA 11 generated messages. Sample logic processes and replies to the CA 11
shutdown WTOR.

Other Vendor Products

This section provides specific system components or events automated by the supplied
samples for other vendor products.

CICS

The following applications provide CICS automation.

Other Vendor Products

Appendix A: Supplied Sample Rules and Programs 659

CICSEOJ

Monitors CICS regions, using an end-of-job event, that are abnormally terminating
within a non CA OPS/MVS SSM environment. Demonstrates how to use EOJ rules.

CICSMON1, CICSMON2, CICSMON3

This application does the following:

■ Monitors CICS regions that are abnormally terminating within a non CA
OPS/MVS SSM environment.

■ Demonstrates logic needed to correlate different events from the same ASID
(msg1,msg2,eom, and so on) using unique global variables.

CICSREGS

Saves all CICS regions in an OPS/MVS variable. This data will be used during the
aggressive SSM system shutdown sample procedures to invoke CICS shutdown
procedures for non SSM CICS regions.

DFHS0126

Creates notification alerts for CICS regions that produce recursive MAXSOCKET
reached conditions within a defined threshold period. (x times in y minutes.)

SHUTCICS

Demonstrates logic that can be used to initiate a controlled shutdown of a CICS
region.

DB2

The following applications provide DB2 automation.

DB2MSTRS

Saves all DB2 master ASIDs in an CA OPS/MVS variable. This data will be used during
the aggressive SSM system shutdown sample procedures to invoke DB2 shutdown
procedures for non SSM DB2 regions.

DB2LOGDB

Collect the output of a DB2 command, specifically the DIS DB(dbname) command
and store output in a sequential data set.

DB2TASKS

Saves all DB2 children tasks, which are internally started through the master DB2,
into a CA OPS/MVS global variable.

The aggressive SSM system shutdown sample procedures use this data to allow the
logic not to process non SSM controlled DB2 children tasks. Terminating the master
DB2 region stops these tasks internally.

Other Vendor Products

660 User Guide

DB2THRD

Invoke the DIS THREAD(*) command and manipulate the output, canceling any
thread with a non-zero token count.

DB2WLMCK

Utilizes the CA SYSVIEW interface to identify and activate failed DB2 WLM
applications.

DSNT378I

Responds to DB2 IRLM lockouts caused by a system or DB2 failure within a shared
data group.

DSNT376I and DSNT501I

Process DB2 Thread time out events and generate a single alert email with data
from both related events.

DSNL027I

Suppress and deletes from syslog specific DB2 Distributed Agent abend failure
MLWTO messages as determined by the last line of the MLWTO that indicates the
failure reason.

DSNP002I

Processes DB2 data set definition failure MLWTO messages.

Alerts upon the first occurrence of each CSECT failure from the issuing DB2 master
region. All other identical alerts of this failure for the same CSECT will wait 10
minutes before processing. This eliminates reacting to the same event more than
once.

SHUTDB2

Performs shutdown of a DB2 region.

IMS

The following applications provide IMS automation.

IMSREGS

Saves all IMS regions in an OPS/MVS variable. This data will be used during the
aggressive SSM system shutdown sample procedures to invoke IMS shutdown
procedures for non SSM IMS regions.

SHUTIMS

Performs shutdown of an IMS region.

Other Vendor Products

Appendix A: Supplied Sample Rules and Programs 661

WebSphere MQ

The following applications provide WebSphere MQ automation.

SHUTMQS

Initiates a controlled shutdown of a WebSphere MQ region.

MQQCHK

Illustrates how to put and get messages on WebSphere MQ queues using the
Address MQ host environment.

JES

The following provides JES automation.

JOBINFO

Obtains and displays specific detailed JES SSI 80 function call job data using the
OPS/REXX OPSJESX().

JES2

The following provides JES2 automation.

JES2$TJ

Lets a user only perform a $TJ to a jobname that corresponds to the TSO user ID.

For example, user ID TSOUSR1 can only issue $TJ commands to TSOUSR1x
jobnames.

SPOOLMON

Utilizes the CA SYSVIEW interface to identify the top spool user when the JES2 TGS
spool warning level has been exceeded.

TSO

The following applications provide TSO automation.

TSOCHECK

Monitors TSO/E connectivity and response time.

IKT010D

Shuts down TSO even though TSO users are still logged on.

z/OS Activities

662 User Guide

VTAM (Other Vendor Products)

The following application provides VTAM automation.

DVTMNODE

Demonstrates the logic needed to issue commands to the system and then collect
and interrogate the command response, specifically the status of a VTAM node.

z/OS Activities

This section provides specific system components or events automated by the supplied
samples for z/OS activities.

Disaster Recovery

Several AOF rules and OPS/REXX programs are used to demonstrate the automation of
disaster recovery related activities.

The automated applications demonstrate initiating true disaster recovery scenarios and
tests.

The applications:

■ Address the issuing and interrogating of the commands needed to configure the
storage subsystem.

■ Outline the steps needed to create an SSM application to manage the started tasks
that are started and monitored within a mirrored production and disaster recovery
storage environment.

Note: For more information, see the DISASTER AOF rule.

Information Utilities

The following applications automate your information utilities.

CMDALL

Create a focal point of view for the command output of z/OS commands that is issued
across many CA OPS/MVS MSF connected systems within the OPSLOG.

EMAILMSG

Create a focal application that can be called by any AOF rule or OPS/REXX program
when a multi-line informational automated SMTP email needs to be generated.

z/OS Activities

Appendix A: Supplied Sample Rules and Programs 663

EMAILTXT

Sends a single-line message as an SMTP email.

IPLINFO

Obtains various IPL data information, stores that data in a variable, and then issues
a MLWTO OPSLOG only message with the data.

The MLWTO can be used as a quick tool within OPSLOG to locate the started IPLs,
and the variable will be accessed using the OPSINQRY sample OPS/REXX program as
a tool to present the collected IPL data across MSF connected systems.

OPSINQRY

Creates an end-user utility to issue commands or a series of commands and present
the output in a scrollable response area.

SRCHLNKL

Determines if a module is found within any current link listed library.

SYSINFO

Obtains various system related IPL information for a system and saves it within the
CA OPS/MVS shared variable data base. It then obtains this data from one focal
point within TSO.

Checking ASID Existence on Remote Systems

The following applications provide automation for checking whether ASIDs exist on
remote systems.

XJOBSTAT

Processes a pseudo sysplex routed command using the OPSTATUS() that can be
used to remotely determine if an ASID is active.

XSYSASID

Determines if an ASID is active on a remote CA OPS/MVS MSF connected system, or
within a specific sysplex system.

This OPS/REXX sample program can be called as an external function from another
CA OPS/MVS OPS/REXX program when the status of an ASID on a remote system is
needed. The sample logic assumes that the remote system is MSF connected, and a
system within the local sysplex configuration.

Message Suppression and Manipulation

The following applications provide automation for the message suppression and
message manipulation.

z/OS Activities

664 User Guide

ACTNMSGS

Automating WTORs and action messages (descriptor codes 1, 2, 11) is an ongoing
effort towards the goal of implementing aggressive system automation.

ACTNMSGS demonstrates a technique to:

1. Quickly identify these types of action messages in which a corresponding CA
OPS/MVS rule is not logically processing them.

2. Use the OPSLOG to identify these events that are not currently being
automated upon.

3. Create a rule to automate them.

IPLSUPPR

Improves message suppression at IPL time only if you are not utilizing aggressive
suppression (as demonstrated within the SUPPRALL sample).

MLWTO*

Demonstrate various coding techniques needed to process MLWTO messages.

SUPPRALL

The AOF SUPPRALL rule details how you create a single suppression rule to suppress
all messages except highlighted messages (WTORs, descriptor codes of 1, 2) and
command responses.

WTOBUF

Clears console buffer backlogs.

Monitoring Batch Job Execution Times

SYSVINIT

Determine if a batch jobs execution or clocktime is exceeding defined run times
based on the initiator class in which it is running.

Processing Cross-system Events

The following provides automation for processing cross-system events.

EOJXSYS

Demonstrates the logic that can be used to obtain status or event data from
another system such as the maximum condition code (maxcc) of a batch job in
order to perform some automated action on a local system.

z/OS Activities

Appendix A: Supplied Sample Rules and Programs 665

Processing Job Enqueues

The following provides automation for processing job enqueues.

ENQCHECK

Monitors block times of system or job critical enqueues as reported through the D
GRS,ANALYSE,BLOCKER command.

Processing Hardware Failures

The following provides automation for processing hardware failures.

IEC606I

Processes the first occurrence of a VTOC error condition from the specific DASD
device within a sysplex. All other identical issuances of this failure for the same
VTOC error will not be processed for the next 10 minutes. This prevents reacting to
the same event more than once. Create dynamic JCL to invoke the ICKDSF utility to
reinitialize the VTOC when the IEC606I event occurs.

Processing Problem ASIDs

The following applications automate the processing of your problem ASIDs.

ABENDLOG

Collects all IEF450I messages and stores in a RDF table. Create a dynamic TOD rule
to trigger an OPS/REXX program to process this abend data and offload to a
sequential data set. This application demonstrates an effective technique needed to
collect and process frequently occurring events that require asynchronous actions
such as storing to an external file.

IEA611I and IEA794I

Process IEA611I dump messages and generate an alert with the captured dump dsn
for abends that are monitored from the IEA794I sample rule.

OPS44020

An address space identifier (ASID) may be looping and possibly generating excessive
message traffic. The MSGDRAINRATE and MSGTHRESHOLD parameters detect
address spaces that issue excessive message traffic. When this situation occurs, a
message is issued that triggers rule member OPS44020 to generate an alert if a
defined threshold is met.

Processing WTORs

The following applications provide WTOR automation.

z/OS Activities

666 User Guide

WTORS

This sample pseudo command rule creates a quick and easy tool for a manual
request of WTORS within a sysplex.

The sample utilizes the OPSTATUS() OPS/REXX function to return all WTOR
information and reformat the display to include:

■ Reply ID

■ Text

■ System

■ Jobname

■ Outstanding wait time for the WTOR

The jobname and wait time are unobtainable using the z/OS D R,L command.

MLWTOR

Sample code to demonstrate how to simulate a multi-line highlighted WTOR.

Processing z/OS Commands

The following applications provide automation for processing z/OS commands.

CMDAUTHW

Requests WTOR confirmation for a specific command or list of commands.

CMDVARY

Using CMDAUTHW as a template, CMDVARY requests WTOR confirmation for VARY
commands when the range count for the specified range of devices is greater than
the VARY command value. This safeguards against lengthy VARY commands from
impacting the system.

Tape Mount Pendings

The following provides automation for pending tape mounts.

TAPEMNT1, TAPEMNT2, TAPEMNT3

Generates alert for outstanding tape mounts that exceed a defined threshold value.

For more information, see CA MIM sample MIMTAPE if you are using CA MIM to
montor tape mounts.

z/OS Activities

Appendix A: Supplied Sample Rules and Programs 667

USS Processes Management

The following provides automation for USS process management.

SSMUSS1

Demonstrates a coding technique that can be used to monitor and control USS
daemon server processes such as INETD within System State Manager (SSM).

TCPIPUSS

Demonstrates a technique used to query the statuses of z/OS Unix processes
associated to a particular ASID.

zFS File System

The following provides automation for the z/FS file system.

BPXI078D

Replies to WTORs generated by the OMVS zFS files system during initialization.

SHUTZFS

Initiates the shutdown of the OMVS zFS file system.

STARTZFS

Restarts the OMVS zFS file system after being stopped using the following
command:

F OMVS,STOPPFS=ZFS command.

z/OS System IPL

The following application automates z/OS system IPL.

IPLTIME

Issues various system commands after a system IPL.

z/OS System Shutdown

The following application automates z/OS system shutdown.

SHUTSYS

These sample procedures demonstrate logic in implementing an aggressive system
shutdown for both non SSM managed resources and SSM controlled resources.

Appendix B: Sample AOF Rules 669

Appendix B: Sample AOF Rules

This section contains the following topics:

Available Sample Rules (see page 669)

Available Sample Rules

This section lists the details regarding the individual sample AOF rules as outlined in the
appendix Supplied Sample Rules and Programs, which overviews a specific automatable
system component or event.

You can find these rules in hlq.CCLXRULS.

ABENDLOG

Rule Type: Message

Subsystem: z/OS

Collects and stores all IEF450I messages in a RDF table. Creates a dynamic TOD rule
to trigger an OPS/REXX program to process the data and offload to a sequential
data set.

APISVMVS

Rule Type: API

Subsystem: z/OS

Process CA Sysview MVS threshold API events

ACF8A900

Rule Type: Message

Subsystem: Security

Restarts the CA OPS/MVS security interface after CA ACF2 is active.

ACTNMSGS

Rule Type: Message

Subsystem: z/OS

Creates an automated filtering tool to assist in identifying WTORs and action
messages (messages with descriptor codes 1,2,11) that have not been automated
upon using a corresponding unique CA OPS/MVS rule.

Available Sample Rules

670 User Guide

AMALRCV

Rule Type: Message

Subsystem: z/OS

Sets the name of the CA NetMaster EPS Receiver ID parameter value.

APIHRTB1

Rule Type: API

Subsystem: n/a

Detects heartbeat failures for CA products that internally generate API CAHEARTBT
events.

APIHRTB2

Rule Type: API

Subsystem: n/a

Detects abnormal heart beat intervals for CA products that internally generate API
CAHEARTBT events.

APIHRTB3

Rule Type: API

Subsystem: n/a

Detects DOMs previously issued heart beat interval failures upon participating CA
products reissuing NORMAL heart beat events.

APIMIMGR

Rule Type: API

Subsystem: n/a

Detects unique API events from CA MIM.

APIPDSMN

Rule Type: API

Subsystem: n/a

Demonstrates using an API rule for API events generated from CA PDSMAN.

APISCHED

Rule Type: API

Subsystem: n/a

Detects unique API events from CA Scheduler.

Available Sample Rules

Appendix B: Sample AOF Rules 671

APISYSVC

Rule Type: API

Subsystem: z/OS

Processes CA SYSVIEW CICS lifetime transaction threshold API events.

APNOTIFY

Rule Type: Message

Subsystem: TSO

Sends the IKJ574I Broadcast Data Set Full message to a list of TSO user IDs. If the
user does not respond after twelve messages, the CA Automation Point Notification
Manager is used to escalate the problem.

ARMSAMP

Rule Type: Automatic Restart Manager

Subsystem: z/OS

Provides synchronization for System State Manager (SSM) any time ARM restarts an
element that may be a resource managed by SSM.

ARMTASK

Rule Type: Message

Subsystem: z/OS

When z/OS issues message IEF403I for a started task initialization, this rule registers
the task with z/OS Automatic Restart Manager, using the OPSARM function. The
task name must be contained in GLOBAL0.ARMTASK.

ARMTASKE

Rule Type: Message

Subsystem: z/OS

Reacts when z/OS issues message IEF404I. If the task that is ending is defined to
ARM, then OPSARM is issued to DEREGISTER the task.

ASOABEND

Rule Type: Message

Subsystem: z/OS

Traps z/OS symptom dump multiline message IEA995I and saves dump data in a
relational table that you can review online using the table editor.

Available Sample Rules

672 User Guide

BMWRULE

Rule Type: Message

Subsystem: IMS

After starting IMS, you receive the outstanding REPLY:

*nn BMW001A REPLY DBDNAME TO STOP DATABASE.

The BMWRULE stops the database by REPLYing the DBDNAME to the BMW001A
WTOR if one of the following occurs:

■ Five occurrences of any mixture of the following two messages appear in any
one minute between 08:00 and 17:00:

– BMW002I dbdname LOGICAL ERROR

– BMW003I I/O-ERROR ON DATABASE dbdname

BPXI078D

Rule Type: MSG

Subsystem: z/OS

Respond to initialization WTOR from OMVS zFS file system.

CA11MSG

Rule Type: API

Subsystem: n/a

Demonstrates creating MSG rules for message IDs greater than 10 characters
(sample logic replies to CA 11 WTOR).

CANTSO

Rule Type: Request

Subsystem: TSO

Enables you to cancel TSO users and jobs that have the same user ID.

CAS9200I

Rule Type: Message

Subsystem: CAIENF

Restarts CA OPS/MVS when CAIENF is active.

CAS9300E

Rule Type: Message

Subsystem: CAIENF

Stops CA OPS/MVS when CAIENF is inactive.

Available Sample Rules

Appendix B: Sample AOF Rules 673

CA7ABEND

Rule Type: Message

Subsystem: CA7

Processes CA 7 SMF0-19 job failure messages.

CA7BRWSE

Rule Type: Message

Subsystem: CA7

Processes additional segment lines for multi-segmented CA 7 events.

CA7LATE

Rule Type: Message

Subsystem: CA7

Processes CA 7 SCNP-11 job late messages.

CHE

Rule Type: Command

Subsystem: IMS

Shuts down the IOF BMP at the termination checkpoint.

CHKSYS

Rule Type: Message

Subsystem: CA OPS/MVS

Shows you how to create a generic INIT section in situations where a rule set is
active on all systems, but certain rules are only intended to be ENABLEd on some
systems. The generic INIT section can be used in any rule to maintain such rules.

CICSEOJ

Rule Type: EOJ

Subsystem: z/OS

Monitors CICS regions that are abnormally terminating within a non CA OPS/MVS
SSM environment through an End-of-Job event. Demonstrates how to use EOJ
rules.

CICSMON1,CICSMON2,CICSMON3

Rule Type: MSG,EOM

Subsystem: z/OS

Monitors CICS regions that are abnormally terminating within a non CA OPS/MVS
SSM environment. Demonstrates logic needed to correlate different events from
the same ASID (msg1,msg2,eom,etc) using unique global variables.

Available Sample Rules

674 User Guide

CICSREGS

Rule Type: Message

Subsystem: CICS

Saves the name of a CICS region within a CA OPS/MVS global variable. The variable
is needed within the aggressive system shutdown sample procedure SHUTSYS2, to
initiate the proper shutdown of a CICS region that may have started outside of
STATEMAN.

CMDALLC

Rule Type: Command

Subsystem: z/OS

The CMD rule component of the CMDALL application. This command initiates the
CMDALL OPS/REXX program.

CMDALLR

Rule Type: Request

Subsystem: z/OS

The REQ rule component of the CMDALL application. Triggered through the
CMDALL OPS/REXX program on each system to issue desired command, collect
response output, then send back to the requesting system.

CMDAUTHW

Rule Type: Command

Subsystem: z/OS

Requests WTOR confirmation for a specific command or list of commands.

CMDCOUNT

Rule Type: Command

Subsystem: z/OS

Keeps track of the number of times each z/OS and subsystem command has been
used since the last IPL occurred. You can use this count to determine the types of
commands being used most on the system, which will give you an idea of where
automation of commands would be most valuable.

CMDVARY

Rule Type: CMD

Subsystem: z/OS

Forces WTOR verification if a VARY command exceeds a defined maximum range
threshold.

Available Sample Rules

Appendix B: Sample AOF Rules 675

DB2CMD

Rule Type: Command

Subsystem: DB2

Enables you to enter DB2 commands without suspending JES3. The command goes
to an OSF server address space for execution.

DB2MSTRS

Rule Type: Message

Subsystem: DB2

Saves the name of a DB2 master region (ssidMSTR) within a CA OPS/MVS global
variable. This variable is needed by the DB2TASKS sample rule which saves the
starting of spawned DB2 regions. The variable is also needed within the aggressive
system shutdown sample procedure, SHUTSYS2, to initiate the proper shutdown of
a DB2 region that may have started outside of STATEMAN.

DB2TASKS

Rule Type: Message

Subsystem: DB2

Saves the names of DB2 tasks (ssidIRLM, ssidDIST, and so on.) that are spawned or
started from a master DB2 subsystem within an OPS/MVS global variable. This
variable is interrogated within the aggressive system shutdown procedures
performed by the SHUTSYS2 OPS/REXX sample program. This variable allows the
shutdown logic to bypass the stopping of a spawned DB2 tasks. These tasks are
stopped through the shutdown of the associating DB2 master region.

DEBUGDOM

Rule Type: Delete-operator message

Subsystem: z/OS

Traps the DOM related z/OS and subsystem interface control blocks for debugging
purposes. The control block information is saved in the CA OPS/MVS temporary
global variables and can be viewed using OPSVIEW option 4.8.

DEBUGCMD

Rule Type: Command

Subsystem: z/OS

Traps the command related z/OS and subsystem interface control blocks for
debugging purposes. The control block information is saved in the CA OPS/MVS
temporary global variables and can be viewed using OPSVIEW option 4.8.

Available Sample Rules

676 User Guide

DEBUGWTO

Rule Type: Message

Subsystem: z/OS

Traps the z/OS and subsystem interface control blocks for debugging purposes.

DFHS0126

Rule Type: Message

Subsystem: N/A

Creates threshold (x times y seconds) monitoring logic for CICS max socket error
conditions.

DFS690A

Rule Type: Message

Subsystem: IMS

Replies to the DFS690A message to allow the IOF BMP to wait for the control region
to become active.

DFS8000A

Rule Type: Message

Subsystem: IMS

Highlights IMS MTO message ERROR CHECK TO MTO on the z/OS console any time
the message is issued.

DFS994I

Rule Type: Message

Subsystem: IMS

Starts the IOF BMP only after the control region is fully active.

DISASTER

Rule Type: Command

Subsystem: z/OS

Initiates disaster recovery procedures.

DOM

Rule Type: Delete-operator message

Subsystem: z/OS

DOM events are triggered to remove high intensity messages from MCS consoles.
This rule displays the WTO sequence number of the message being deleted.

Available Sample Rules

Appendix B: Sample AOF Rules 677

DRL

Rule Type: Command

Subsystem: z/OS

Enables an operator to get a complete list of the outstanding replies using the old
form of the D R,L command. The command will be converted to D R,L,CN=(ALL) if
your release of z/OS requires this format.

DSNL027I

Rule Type: MSG

Subsystem: z/OS

Suppress and deletes from syslog specific DB2 Distributed Agent abend failure
MLWTO messages as determined by the last line of the MLWTO that indicates the
failure reason.

DSNP002I

Rule Type: MSG

Subsystem: z/OS

Process DB2 data set-definition failure MLWTO messages.

DSNT376I

Rule Type: Message

Subsystem: DB2

Process DB2 Thread timeout conditions.

DSNT378I

Rule Type: Message

Subsystem: DB2

Responds to DB2 IRLM lockouts caused by a system or DB2 failure within a shared
data group.

DSNT501I

Rule Type: Message

Subsystem: DB2

Process DB2 Thread timeout conditions.

EOJXSYS

Rule Type: EOJ

Subsystem: z/OS

Demonstrates the logic that can be used to obtain status or event data from
another system such as the maximum condition code (maxcc) of a batch job in
order to perform some automated action on a local system.

Available Sample Rules

678 User Guide

EOMDEQ

Rule Type: End-of-memory

Subsystem: CA OPS/MVS

Dequeues remaining table editor and schedule manager enqueues after TSO users
terminate.

EPITSO

Rule Type: Command

Subsystem: CA OPS/MVS

Demonstrates EPI capabilities by logging on a TSO user ID to get a data set name list
based on the AOF rule set prefix and suffix.

GCM

Rule Type: Message

Subsystem: CA MIM

Keeps CA MIC internal messages out of OPSLOG.

IAT3100

Rule Type: Message

Subsystem: JES3

Informs the operator when JES3 has been initialized and issues a prompt to start
the XYZ job.

IEA611I

Rule Type: MSG

Subsystem: z/OS

Process IEA611I dump messages and generate an alert with the captured dump dsn
for abends that are monitored from the IEA794I sample rule.

IEA794I

Rule Type: MSG

Subsystem: z/OS

Process IEA794I dump messages and store relevant dump data in a unique CA
OPS/MVS global variable so that it can be manipulated in the IEA611I sample rule
which generates a detail email of the dump event.

IEA989I

Rule Type: MSG

Subsystem: z/OS

Restarts the SMSVSAM address space if it produces a specific abend. Demonstrates
throttle logic to process this event on time in 10 minutes.

Available Sample Rules

Appendix B: Sample AOF Rules 679

IEC606I

Rule Type: MSG

Subsystem: z/OS

Processes the first occurrence of a VTOC error condition from the specific DASD
device within a sysplex. All other identical issuances of this failure for the same
VTOC error will not be processed for the next 10 minutes. This prevents reacting to
the same event more than once. Create dynamic JCL to invoke the ICKDSF utility to
reinitialize the VTOC when the IEC606I event occurs.

IEE043I

Rule Type: Message

Subsystem: z/OS

Starts a sample external writer when the SYSLOG data set is full and informs the
operator.

IEE362A

Rule Type: Message

Subsystem: z/OS

Submits a disk reader command to JES3 to read in the job when an SMF data set is
full.

IEE391A

Rule Type: Message

Subsystem: z/OS

Starts a job that dumps a full SMF data set.

When z/OS issues message IEE391A, this rule issues the following command:

MVS START SMFDMP,DSN=smfdsn

No JCL or procedure for dumping the SMF data set is provided in the rule. You must
tailor the rule to fit your needs.

Note: When the SMF data set name does not use the SYS1.MANn naming
convention, message IEE391A is issued instead of message IEE362A.

IEF

Rule Type: Message

Subsystem: z/OS

Issues information messages for job management messages IEF403I and IEF404I.

Available Sample Rules

680 User Guide

IEF176I

Rule Type: Message

Subsystem: z/OS

Stops the external writer when it becomes idle.

IEF433D

Rule Type: Message

Subsystem: z/OS

When a job wait is requested with the reply HOLD or NOHOLD, this rule issues an
operator REPLY command using the reply number from the first word of the
message.

IFB040I

Rule Type: Message

Subsystem: z/OS

When z/OS issues message IFB040I to indicate that the SYS1.LOGREC data set is full,
this rule submits and issues an MVS START command and notifies four users. No JCL
or procedure for dumping/printing or clearing the data set is provided in the rule.
You must tailor the rule to fit your needs.

IKJ574I

Rule Type: Message

Subsystem: TSO

Reduces the number of Broadcast Data Set Full messages to one every five minutes.

IKT010D

Rule Type: Message

Subsystem: TSO

Replies to the message indicating that a STOP command was entered to stop TCAS,
but a number of TSO users are still active. The sample replies with the FSTOP
response. If you prefer, you can change the response to SIC.

IMSREGS

Rule Type: Message

Subsystem: IMS

Saves the name of an IMS region within an CA OPS/MVS global variable. The
variable is needed within the aggressive system shutdown sample procedure
SHUTSYS2 to initiate the proper shutdown of an IMS region that may have started
outside of STATEMAN.

Available Sample Rules

Appendix B: Sample AOF Rules 681

INFOSAMP

Rule Type: Message

Subsystem: z/OS

When z/OS issues message IEA404A for WTO buffers full, the rule executes a CLIST
that inserts a record into the IBM INFO/SYSTEM problem database. This CLIST is
included in the CA OPS/MVS sample CLIST library.

INVKISPF

Rule Type: Message

Subsystem: z/OS

Dispatches a program to invoke ISPF services.

IOS

Rule Type: Message

Subsystem: z/OS

Highlights all IOS messages.

IPLINFO

Rule Type: Message

Subsystem: z/OS

Obtains various IPL data information, stores that data in a variable, and then issues
a MLWTO OPSLOG only message with the data.

The MLWTO can be used as a quick tool within OPSLOG to locate the started IPLs,
and the variable will be accessed using the OPSINQRY sample OPS/REXX program as
a tool to present the collected IPL data across MSF connected systems.

IPLSUPPR

Rule Type: Message

Subsystem: MVS

Aggressively suppresses the numerous WTOs generated during a system IPL.

Rule Type: MSG

Subsystem: z/OS

Issues commands after a system IPL has been performed.

IRA200I

Rule Type: Message

Subsystem: z/OS

Responds to the Auxiliary Storage Shortage message by adding a page data set and
highlighting the message.

Available Sample Rules

682 User Guide

IRA201I

Rule Type: Message

Subsystem: z/OS

Responds to the Auxiliary Storage Shortage message by adding a page data set and
highlighting the message.

JES2$TJ

Rule Type: Command

Subsystem: z/OS

Allows a user to issue a $TJ command to only a jobname that corresponds to the
TSO user ID. For example, user ID TSOUSR1 can issue $TJ commands only to
TSOUSR1x jobnames.

JOBINFO

Rule Type: CMD

Subsystem: z/OS

Create pseudo command rule to trigger JOBINFO OPS/REXX program to extract
specific JES data for a job and display data back to the console.

MIMTAPE

Rule Type: TOD

Subsystem: N/A

Invokes the MIMTAPE OPS/REXX program to determine if any outstanding mount
pendings are occurring for locally managed CA MIM tape devices.

MLWTO1

Rule Type: Message

Subsystem: z/OS

Demonstrate rule logic needed to manipulate data across different lines of an
MLWTO message in order to take some automation action. Specific logic processes
the IEA995I event.

MLWTO2

Rule Type: Message

Subsystem: z/OS

Demonstrate rule logic needed to store each data line of an MLWTO so it can be
manipulated within an OPS/REXX program to perform some type of asynchronous
automation. The MLWTO keyword of the)MSG specifier is utilized.

Available Sample Rules

Appendix B: Sample AOF Rules 683

MLWTO3

Rule Type: Message

Subsystem: z/OS

Demonstrate rule logic needed to manipulate data across different lines of an
MLWTO message in order to create a single alert message. Specific logic processes
the DSNT376I event.

MLWTO4

Rule Type: Message

Subsystem: z/OS

Demonstrate rule logic needed to process MLWTO events without the MLWTO
keyword being specified.

MSFROUTE

Rule Type: Command

Subsystem: z/OS

Enables operators to route console commands to a remote system using the MSF
component of CA OPS/MVS.

MSFTERM

Rule Type: Global Variable

Subsystem: MSF

Deactivates all active MSF sessions and deletes all MSF-defined nodes when the
rule is disabled during normal product termination.

MSGBHOLE

Rule Type: Message

Subsystem: z/OS

Demonstrates how to completely eliminate a message from the OPSLOG, SYSLOG,
consoles, JESMSGLG (joblog), and JESYSMSG data sets.

OPAODIGL

Rule Type: Request

Subsystem: TSO

Provides a full screen control application for viewing or updating OPS/REXX global
variables. This rule provides a good illustration of the power and flexibility of REXX
programs.

Note: This program must be invoked under ISPF.

Available Sample Rules

684 User Guide

OPNFFNET

Rule Type: Command

Subsystem: NetView

Displays all copies of NetView in the system.

OPS1000J

Rule Type: Message

Subsystem: CA OPS/MVS

Prevents the messages that result from SAY statements in rules from appearing in
the JES JOBLOG.

OPS3014O

Rule Type: Message

Subsystem: CA OPS/MVS

Sets SVCDUMP parameter to ON after ESTAE routine has set SVCDUMP to OFF and
issued this message.

OPS3445O

Rule Type: Message

Subsystem: z/OS

Switches automatically to an alternate active OPSLOG when current live OPSLOG
nears a wrap condition.

OPS3487O

Rule Type: Message

Subsystem: CA OPS/MVS

Detects when the CA OPS/MVS to CAICCI interface is activated and attempts to
activate CCI connections.

OPS3716O

Rule Type: Message

Subsystem: CA OPS/MVS

Executes when the OSF execute processor detects that a server address space has
been cancelled but not terminated.

Available Sample Rules

Appendix B: Sample AOF Rules 685

OPS4402O

Rule Type: Message

Subsystem: z/OS

Triggers on the OPS/MVS message that is issued when some asid may be looping
and generates a formal alert if a defined threshold is met. The MSGDRAINRATE and
MSGTHRESHOLD parameters within CA OPS/MVS detect address spaces that issue
excessive message traffic.

OPSAOF

Rule Type: Command

Subsystem: z/OS

Enables console operators to issue AOF commands and receive responses at the
z/OS console.

OPSCMD

Rule Type: Security

Subsystem: CA OPS/MVS

Prohibits certain TSO user IDs from issuing the OPSCMD command. Replace the
USERID parameter with a valid TSO user ID before you enable this rule.

OPSLGSCN

Rule Type: TOD

Subsystem: z/OS

Invokes OPSLGSCN OPS/REXX program to periodically scan OPSLOG looking for
specific OPS/REXX compiler and execution error messages that might have occurred
within rules and programs. Generates an alert email of these messages to a list of
designated users.

OPSLOGCK

Rule Type: Time-of-day

Subsystem: CA OPS/MVS

Warns when OPSLOG sequence numbers are approaching a wrap condition.

OPSMEDS

Rule Type: Command

Subsystem: z/OS

Invokes Mainframe Environment Discovery Script (MEDS) for specific CA products.

Available Sample Rules

686 User Guide

OPSMSF

Rule Type: Command

Subsystem: CA OPS/MVS

Allows for display and control of MSF facilities from a console. It can also be used to
start MSF on another system in a sysplex using the MVS ROUTE command.

OPSOF001

Rule Type: API

Subsystem: SOF

Demonstrates how to bring selected devices online in response to API event
OPSOF001 issued by SOF.

OPSOSF

Rule Type: Command

Subsystem: CA OPS/MVS

Lets you display and control OSF servers from a console.

OPSPARM

Rule Type: Command

Subsystem: CA OPS/MVS

Lets you display and set CA OPS/MVS parameters from a console.

OPSTORE

Rule Type: Command

Subsystem: z/OS

Displays home address space virtual storage on the console.

PDT0170

Rule Type: MSG

Subsystem: z/OS

Processes data collector messages from CA Xmanager and invokes TSFBATCH Proc
unload to submit detector data to TSF.

PLEX*, STAP*

Rule Type: Message

Subsystem: z/OS

Indicates various sample rules that provide support to sample SSM Sysplex
applications.

Available Sample Rules

Appendix B: Sample AOF Rules 687

REPLY

Rule Type: Command

Subsystem: JES3

Enables console operators to reply to WTOR messages by entering only a reply
number and reply text. JES2 provides this facility as a standard feature. This rule
provides the same capability for JES3.

SECAOF

Rule Type: Command

Subsystem: CA OPS/MVS

Allows console operators to enter AOF commands and receive the responses. This
version executes a request rule in the server to prompt for a password for CA ACF2
validation.

SECAOFRQ

Rule Type: Request

Subsystem: z/OS

Works with the SECAOF command to CA ACF2 to protect a command.

SECOC

Rule Type: Security

Subsystem: z/OS

Illustrates how generalized resource rules can be used to protect the OPSCMD
command processor.

SECREQ

Rule Type: Security

Subsystem: CA OPS/MVS

Allows all users to issue the OPSREQ TSO command.

SECSSM*

Rule Type: Security

Subsystem: n/a

Demonstrates techniques to secure SSM control from OPSVIEW panels.

SECWEBV*

Security

Subsystem: n/a

Demonstrates techniques to secure the OPSLOG WebView component.

Available Sample Rules

688 User Guide

SENTINEL

Rule Type: Time-of-day

Subsystem: N/A

Starts the QUERYRES REXX program every five minutes to query the status of
resources and update global variables.

SHUT

Rule Type: Command

Subsystem: z/OS

Enables console operators to issue a shutdown for CICS. The rule starts the REXX
program CICSSHUT in a CA OPS/MVS server address space to perform the
shutdown.

SHUTSYS

Rule Type: Time-of-day

Subsystem: STATEMAN

This TOD rule is part of the aggressive system shutdown sample procedures (as
described within the SHUTSYS1 OPS/REXX program sample). This rule issues
highlighted MLWTO system shutdown status messages within a specified 10-minute
shutdown window, and stops the security package and CA OPS/MVS if all resources
have stopped. Manual intervention alerts are generated if resources are still active
at the end of the ten-minute shutdown window.

SOFCMDR

Rule Type: Command

Subsystem: SOF

Secures access to SOF from MVS console commands by using resources defined to a
security product.

SOFCMDU

Rule Type: Command

Subsystem: SOF

Secures access to SOF from MVS console commands issued by user IDs defined in
the rule.

SOFSECR

Rule Type: Security

Subsystem: SOF

Secures access to SOF from OPS/REXX ADDRESS SOF and OPSVIEW panels by using
resources defined to a security product.

Available Sample Rules

Appendix B: Sample AOF Rules 689

SOFSECU

Rule Type: Security

Subsystem: SOF

Secures access to SOF from OPS/REXX ADDRESS SOF and OPSVIEW panels used by
user IDS defined in the rule.

SPOOLMON

Rule Type: Message

Subsystem: JES2

Invokes sample SPOOLMON OPS/REXX program when JES2 TGS (spool space/track
groups) threshold warnings are received. Application creates an alert of the
problem which includes the jobname of the top spool user.

SSMALTSB

Rule Type: Request

Subsystem: n/a

Demonstrates using SSM v2 techniques to perform a reverse order shutdown of
resources. Start A, then B, then C, but stop B, then A, then C.

SSMCNTL

Rule Type: Command

Subsystem: STATEMAN

Provides the ability to monitor and control SSM resources using a pseudo command
that can be entered from anywhere a system command can be issued.

SSMEOJA

Rule Type: EOJ

Subsystem: z/os

Process all End-Of-Job events on a system if a large amount of batch jobs and STCs
are being monitored in SSM and Type 30 records are being generated for STCs.

SSMEOJB

Rule Type: EOJ

Subsystem: z/os

Process all End-Of-Job events on a system if a large amount of batch jobs and STCs
are being monitored in SSM and Type 30 records are not being generated for STCs.

Available Sample Rules

690 User Guide

SSMEOJC

Rule Type: EOJ

Subsystem: z/os

Process End-Of-Job events for a particular batch job or jobs that are being
monitored within SSM.

SSMEXCPS

Rule Type: Request

Subsystem: N/A

An end-user TSO tool to display SSM mismatches (exceptions) from all
MSF-connected systems.

SSMMOVE, SSMPLEXC

Rule Type: Request

Subsystem: N/A

Demonstrates using SSM v2 techniques to move resources between sysplex
systems.

SSMXPREQ, SSMXSUBQ

Rule Type: Request

Subsystem: N/A

Demonstrates using SSM techniques to perform cross sysplex prerequisite and
subrequisite checking.

STARTMII

Rule Type: Command

Subsystem: N/A

Intercepts a command and modifies command contents.

STCB4OPS

Rule Type: Message

Subsystem: N/A

Saves the names of all system related STCS that are started prior to CA OPS/MVS
within global variable. The variable is needed within the aggressive system
shutdown sample procedure SHUTSYS2 to bypass the stopping of these tasks that
will be internally stopped by the operating system.

SUPPRALL

Rule Type: Message

Subsystem: n/a

Implements aggressive message suppression.

Available Sample Rules

Appendix B: Sample AOF Rules 691

SYSINFO, SYSINFO2

Rule Type: Message, Request

Subsystem: N/A

Obtains various system-related IPL information for a system and saves it in a CA
OPS/MVS shared variable database. Query the data from a TSO focal point.

SYSVALRT

Rule Type: Time-of-day

Subsystem: n/a

Invokes SYSVALRT OPS/REXX program to monitor and respond accordingly to any
CA SYSVIEW Alerts.

SYSVE

Rule Type: Command

Subsystem: COMMAND

Issues CA SYSVIEW commands on the console with information returned to the
console. This rule must be implemented together with the OPS/REXX program
SYSVECMD.

TAPEMNT1, TAPEMNT2, TAPEMNT3, TAPEMNT4

Rule Type: Message, Delete-operator-message, Time-of-day

Subsystem: N/A

Creates notification alerts for outstanding tape mounts that are pending for some
defined threshold.

TIMECHNG

Rule Type: Time-of-day

Subsystem: N/A

Schedules the TIMECHNG REXX EXEC to run in an OSF TSO server, prior to the time
the system clocks are changed. This rule is typically used for Daylight Savings time
changes. See the TIMECHNG sample REXX program.

TIMERUL2

Rule Type: Time-of-day

Subsystem: N/A

Illustrates a rule that executes at time intervals for multiple days. The example rule
executes every 15 minutes starting on August 2, 2007, at 1:50 and continuing until
December 31, 2007.

Available Sample Rules

692 User Guide

TIMERUL3

Rule Type: Time-of-day

Subsystem: N/A

Illustrates a rule that executes 10 seconds after it is enabled. The rule is disabled
after its first and only execution.

TIMERULE

Rule Type: Time-of-day

Subsystem: N/A

Demonstrates how a rule can execute multiple times in one day. The example
executes nine times between 3:00 and 4:00 on August 3, 2007.

TIMING*

Rule Type: Time-of-day

Subsystem: N/A

Illustrates comparative rules to be used as directed by CA OPS/MVS support.

TSOCHECK

Rule Type: Time-of-day

Subsystem: TSO

Monitoring time rule to trigger the TSOCHECK sample OPS/REXX program that
monitors TSO/E access and response time.

TSS90001

Rule Type: Message

Subsystem: Security

Restarts the CA OPS/MVS security interface after CA Top Secret is active.

UEJM*

Rule Type: Message

Subsystem: z/OS, CA7

Demonstrates creating a focal point for UEJM messages destined to OPSLOG.

WAEE2OPS

Rule Type: GLV

Subsystem: z/OS

Interrogate and process job monitoring data stored in a global variable as set
through CA Workload Automation EE script.

Available Sample Rules

Appendix B: Sample AOF Rules 693

WAEE2SEC

Rule Type: SEC

Subsystem: z/OS

Allow CA Workload Automation EE to create a global variable through the
WAEE2OPS sample CA WAEE script.

WTOBUF

Rule Type: Message

Subsystem: z/OS

Responds to IEA404A and IEA405E MCS console backlog messages by detecting and
clearing the backed-up consoles.

WTORS

Rule Type: Command

Subsystem: z/OS

Creates pseudo command rule for manual display request of sysplex WTOR
information.

XCOPSEOJ

Rule Type: EOJ

Subsystem: z/OS

Initiate CA XCOM failover procedures if CA XCOM abnormally terminates.

XCOPSMSG

Rule Type: MSG

Subsystem: z/OS

Set a flag to be used within XCOPSEOJ to indicate CA XCOM is requested to
shutdown.

XCSA

Rule Type: OMEGAMON

Subsystem: z/OS

Performs a shutdown on CICS when a z/OS CSA shortage exists.

XJOBSTAT

Rule Type: CMD

Subsystem: z/OS

Processes a pseudo sysplex routed command that can be used to remotely
determine if an ASID is active using the OPSTATUS().

Available Sample Rules

694 User Guide

ZEROAOF

Rule Type: Request

Subsystem: N/A

Extracts and retains any enabled AOF rule that has a zero fire count.

Appendix C: Sample OPS/REXX Programs 695

Appendix C: Sample OPS/REXX Programs

This section contains the following topics:

Supplied Sample OPS/REXX Programs (see page 695)
Installation and Configuration Considerations for PLEXSSM (see page 716)

Supplied Sample OPS/REXX Programs

This section lists the details regarding the individual sample OPS/REXX programs as
outlined in Appendix A, which overviews a specific automatable system component or
event.

The following lists and describes all the supplied sample programs:

ABENDLOG

Program Type: OPS/REXX

Subsystem: z/OS

Processes abend data stored in a RDF table using the ABENDLOG AOF rule, and
offloads to a sequential data set.

ADDRCA7

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrates issuing and interrogating output from CA 7. The interface between
CA OPS/MVS and CA 7 must be implemented as outlined in the Administration
Guide.

ALLOCSPF

Program Type: REXX

Subsystem: ISPF

Allocates files necessary to run ISPF in a server.

AOFCMDS

Program Type: REXX

Subsystem: AOF

Issues a series of commands to ADDRESS AOF and retrieves the AOF command
output. The AOF command output is sent to the user.

Supplied Sample OPS/REXX Programs

696 User Guide

AOFINIT

Program Type: REXX

Subsystem: AOF

Demonstrates how to initialize the AOF, based on the environment.

ASID

Program Type: CLIST

Subsystem: z/OS

Finds the address space IDs for jobs executing on a machine. The job name is
provided as input to the CLIST.

BATCHPRM

Program Type: JCL

Subsystem: IMS

Invokes the supplied OPIMTGCB REXX program as a batch version of the IDENTIFY
IMS utility, which is OPSVIEW option 7.4.

CANWTR

Program Type: CLIST

Subsystem: z/OS

Cancels scheduled writer jobs.

catwto

Program Type: UNIX shell script

Subsystem: USS

Displays the UNIX shell script. The UNIX shell script is called by the log2wto shell
script, which issues the catwto for each line in a log file.

Note: This script is only intended for use in conjunction with the log2wto script. The
program name is in lowercase because the UNIX environment is case sensitive.

CGLOBALV

Program Type: C

Subsystem: ESI

Demonstrates how to use OPSLINK from a C/370 program. To use this sample, you
must license the ESI component in advance.

CHECKTM5

Program Type: OPS/REXX

Subsystem: CA 1

Checks to see if CA 1 is active, and if it is, whether it is running TMS Version 5.2.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 697

CHECKTMS

Program Type: OPS/REXX

Subsystem: CA 1

Checks to see if CA 1 is active.

CICS

Program Type: CLIST

Subsystem: CICS

Enables you to stop, start, or display status information about CICS regions.

CICSSHUT

Program Type: OPS/REXX

Subsystem: CICS

Performs a controlled CICS shutdown if possible and takes more drastic shutdown
actions if necessary. The program expects to be invoked by the SHUT command rule
from a z/OS console.

CLEARQ

Program Type: REXX

Subsystem: N/A

Purges the external data queue and returns to the caller.

CMDALL

Program Type: OPS/REXX

Subsystem: z/OS

Create a focal point of view for the command output of commands that are issued
across many CA OPS/MVS MSF connected systems.

CMDAUTHW

Program Type: OPS/REXX

Subsystem: z/OS

Creates a verification WTOR back to the console that issued a specific command.

COBCMDS1

Program Type: COBOL

Subsystem: z/OS

Issues (z/OS, JES, VM, IMS, CICS) commands and returns the output to an array
supplied by the caller.

Supplied Sample OPS/REXX Programs

698 User Guide

COMPAOF

Program Type: REXX

Subsystem: AOF

Shows how a batch job can be used to compile an entire AOF rule set.

COMPREXX

Program Type: JCL

Subsystem: REXX

Demonstrates how to compile an OPS/REXX program from a batch job.

COMPRSDS

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrates using the OPSUBMIT OPS/REXX function to submit JCL to compress a
data set.

Note: This sample program is related to and scheduled by the APIPDSMN sample
rule.

CPIND

Program Type: OPS/REXX

Subsystem: VM

Displays the result of a VM command.

DAPPL

Program Type: CLIST

Subsystem: VTAM

Displays currently active VTAM application IDs.

DATE2SEC

Program Type: REXX SUBROUTINE

Subsystem: N/A

Converts either a yy/mm/dd hh:mm:ss or yyyymmdd hh:mm:ss string value to the
number of seconds past midnight on January 1, 1980.

DB2

Program Type: CLIST

Subsystem: DB2

Enables you to stop, start, cancel, and display active DB2 sessions.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 699

DB2LOGDB

Program Type: OPS/REXX

Subsystem: DB2

Issue and store DB2 Display command output in a sequential file specifically a DIS
DB(dbname) command.

DB2THRD

Program Type: OPS/REXX

Subsystem: DB2

Issue and manipulate the output of a DB2 Display command specifically a DIS
THREAD(*) command.

DEFNVCON

Program Type: OPS/REXX

Subsystem: NetView

Defines CA OPS/MVS Subsystem Consoles to NetView.

DVTMNODE

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrates the logic needed to issue commands to the system and collect and
interrogate the command response, specifically the status of a VTAM node.

EMAILMSG

Program Type: REXX

Subsystem: JES

Create a focal application that can be called by any AOF rule or OPS/REXX program
when a multi-line automated SMTP email needs to be generated.

EMAILTXT

Program Type: REXX

Subsystem: JES

Sends a single-line SMTP email.

EOJXSYS

Rule Type: OPS/REXX

Subsystem: z/OS

Demonstrates the logic that can be used to obtain status or event data from
another system such as the maximum condition code (maxcc) of a batch job in
order to perform some automated action on a local system.

Supplied Sample OPS/REXX Programs

700 User Guide

EPICICS

Program Type: OPS/REXX

Subsystem: CICS

An EPI subroutine that executes CICS transactions and returns the results and
response times.

EPITSO

Program Type: OPS/REXX

Subsystem: EPI

Demonstrates EPI capabilities by logging on a TSO user ID to get a data set name list
based on the AOF rule set prefix and suffix.

GDITEST

Program Type: JCL

Subsystem: GDI

Shows how you can use the generic data set interface to route the output from a
sequential file to the AOF for automation in messages rules.

GETSTORD

Program Type: OPS/REXX

Subsystem: z/OS

Examines the LDA (VSM local data area) and derives data concerning user-storage
usage.

GTERMID

Program Type: REXX SUBROUTINE

Subsystem: z/OS

Gets the terminal ID associated with the current job.

IDMSAREA

Program Type: OPS/REXX

Subsystem: z/OS

Invoke and manipulate the collected DCMT D AREA command output. If the LOCK
status, is in ‘OFL’ for any area then send out an alert message.

IEC606I

Program Type: OPS/REXX

Subsystem: z/OS

Creates JCL to invoke ICKDSF utility to reinitalize the VTOC when IEC606I events
occur within a sysplex.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 701

IN

Program Type: REXX SUBROUTINE

Subsystem: z/OS

Simulates an SAA REXX built-in function.

INITMGR

Program Type: OPS/REXX

Subsystem: JES2

Manages and controls some or all JES2 initiators based on day-of-week and
time-of-day.

INSERT

Program Type: REXX

Subsystem: CA OPS/MVS

Demonstrates the ability of an OPS/REXX subroutine to simulate a built-in function
of SAA REXX.

JOBINFO

Program Type: OPS/REXX

Subsystem: z/OS

Utilize the OPSJESX() to obtain JES SSI 80 function call data for a specific job and
display the information to the requesting console.

LINKLIST

Program Type: OPS/REXX

Subsystem: z/OS

Displays the names of the data sets in the LNKLST.

log2wto

Program Type: UNIX shell script

Subsystem: USS

Displays UNIX shell script to route messages from a log file to z/OS CA Event
Manager. The program name is in lowercase because the UNIX environment is case
sensitive.

Example: log2wto filename prefix

filename is the name of the UNIX log file, and prefix is the optional character string
that is inserted in front of each message in the log file. The prefix makes it possible
for USS rules to determine the source of the message.

Supplied Sample OPS/REXX Programs

702 User Guide

Program Type: OPS/REXX

Subsystem: z/OS

Causes tape volume dismounts to occur under CA MIA GLOBAL Tape Device
Allocation Serialization for tape volumes that remain mounted in unallocated
MIA-managed tape devices.

MEDSMIM

Program Type: OPS/REXX and CA OPS/MVS batch job

Subsystem: CA MIM

Gathers CA MIM complex environmental information quickly and ensures your CA
MIM address spaces are setup and running optimally.

MIMTAPE

Program Type: OPS/REXX

Subsystem: CA MIM

Determines if any outstanding mount pendings are occurring for locally managed
CA MIM tape devices.

MLWTOR

Program Type: OPS/REXX

Subsystem: z/OS

Uses the ADDRESS WTO host environment to demonstrate how to simulate the
issuing of a multi-line WTOR.

MQQCHK

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Illustrates how to put and get messages on WebSphere MQ Series queues using the
Address MQ host environment.

NETVIEW

Program Type: CLIST

Subsystem: NetView

Stops, starts, and displays NetView session status.

NOTIN

Program Type: REXX SUBROUTINE

Subsystem: z/OS

Simulates an SAA REXX built-in function.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 703

OMVSPID

Program Type: OPS/REXX

Subsystem: USS

Illustrates how the D OMVS command can be used to determine or validate the
OMVS process ID of an executing OMVS program. The PID is required by the UNIX
kill command to stop a running process.

OP4UEXIT

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

User command exit allows user to trigger any type of end-user automation
against some SSM resource. Users can implement their own new line and
primary command to be able to invoke a program. For example, an OPS/REXX
validation program, SSM Note or a new ISPF application.

OPAMEPRM

Program Type: REXX

Subsystem: ISPF

Creates a dynamic parameter file for the AME report program.

OPAMINIT

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Provides support for the Automate ICLIST and IREXX parameters when modified.

OPCMDOUT

Program Type: REXX

Subsystem: CA OPS/MVS

Generates the OSCMD format of the CMDRESP(REXX) keyword output from the
OPS/REXX format of the ADDRESS OPER command output.

OPCONCAT

Program Type: CLIST

Subsystem: OPSVIEW

Adds a data set to an existing concatenation of partitioned data sets.

Note: The OPCONCAT program is distributed in the OPS.CCLXCLS0 data set.

Supplied Sample OPS/REXX Programs

704 User Guide

OPDECONC

Program Type: CLIST

Subsystem: OPSVIEW

Removes a data set from an existing concatenation of partitioned data sets.

Note: The OPDECONC program is distributed in the OPS.CCLXCLS0 data set.

OPINFSYS

Program Type: CLIST

Subsystem: INFO/SYS

Enables a record to be added to the IBM INFO/SYSTEM problem management
database. Also includes a sample REXX rule that executes the CLIST when message
IEA404A is issued.

OPSLGEXT

Program Type: OPS/REXX

Subsystem: z/OS

Utilize the OPSLOG() to extract filtered OPSLOG data.

OPRXINFO

Program Type: REXX

Subsystem: N/A

A working example of a REXX program that adds a problem record to the
INFO/SYSTEM problem management database.

OPSFTP

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Copies one sequential data set or member to and from MVS host using FTP. The
target node can be a PC with FTP server software (such as FileZilla Server) installed
and configured.

OPSFTP supports both binary and text transfer modes and saves encrypted
passwords in global variables.

OPSINFOT

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Demonstrates the use of all the OPSINFO function codes.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 705

OPSLGSCN

Program Type: OPS/REXX

Subsystem: z/OS

ScanS OPSLOG looking for specific OPS/REXX compiler and execution error
messages that might have occurred within rules and programs. Generates an alert
email of these messages to a list of designated users.

OPSOF

Program Type: OPS/REXX

Subsystem: z/OS

Issues the SOF command supplied by the caller to the specified SOF server. Returns
the command response to the console specified by the caller.

Note: This sample program is related to and invoked by the OPSOF sample rule.

OPTNGCOL

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Adds TNGNOTIFY and RESOURCE_TXT columns to all System State Manager
resource tables and to the directory table.

OPVMGLV

Program Type: REXX

Subsystem: Server

Extracts client messages from GLV storage and writes them as individual records to
an output DASD file.

OPVMJCL

Program Type: JCL

Subsystem: Server

Shows a JCL sequence which can be used to activate the z/OS server.

OVERLAY

Program Type: REXX SUBROUTINE

Subsystem: z/OS

Simulates an SAA REXX built-in function.

PAZGEVENT

Program Type: OPS/REXX

Subsystem: z/OS

Generate a CA Process Automation event from CA OPS/MVS.

Supplied Sample OPS/REXX Programs

706 User Guide

PAZSPROC

Program Type: OPS/REXX

Subsystem: z/OS

Start a CA Process Automation process from CA OPS/MVS.

PAZSSM

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrate the extension of CA OPS/MVS SSM functionality to the distributed
environment by controlling SAP, running on Linux, through CA Process automation.
The functions of these sample applications are invoked using SSM actions as
specified in the action table.

PAZWSCMD

Program Type: OPS/REXX

Subsystem: z/OS

Create the common portion of a web services client request to be sent to CA
Process Automation using Address USS.

PLEXSSM

Program Type: REXX

Subsystem: CA OPS/MVS

Lets sysplex and shared tape (STAPE) resources be monitored using sample
message rules that update the resource status based on the severity of messages
issued in the sysplex. The status of a resource can be NORMAL, WARNING, or
CRITICAL. If the current state of a resource is UNKNOWN, then the resource is most
likely not in use. STAPE resources are individual tape devices that have been
defined as auto-switchable. Parsing the response to an operator DISPLAY command,
which displays all auto-switchable devices, automatically populates the STAPE
resource table. Use OPSVIEW option 4.11.2 to view these resources.

The monitored sysplex resources include the following:

■ Automatic restart manager (ARM)

■ Coupling facility resource manager (CFRM)

■ Cross-system coupling facility (XCF)

■ Cross-system extended services (XES)

■ Sysplex timers (ETR)

■ Sysplex failure management (SFM)

■ System logger (LOGR)

■ Workload manager (WLM)

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 707

Important! The PLEXSSM application, built on System State Manager (SSM),
monitors sysplex resources and does not let actions be taken against a resource,
such as starting, stopping, or recovering a resource associated with an application.
Such actions are accomplished using customer extensions to the application.

For installation instructions, see the section Installation and Configuration
Considerations for PLEXSSM.

PLICMDS1

Program Type: PL/1

Subsystem: z/OS

Issues system (z/OS, JES, VM, IMS, CICS) commands and returns the output to an
array supplied by the caller.

PLICMDS2

Program Type: PL/1

Subsystem: TSO

Issues TSO commands and returns the output to an array supplied by the caller.

PLIGLOBV

Program Type: PL/1

Subsystem: CA OPS/MVS

Uses global variables from a high-level language program.

PRINTMSG

Program Type: CLIST

Subsystem: TSO

Prints a message on a printer.

PRODPERF

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Resets the CA OPS/MVS execution statistics in the PRODPERFORM parameter
group.

PROFNOTE

Program Type: REXX

Subsystem: PROFS

Prepares, generates, and sends a PROFS note.

Supplied Sample OPS/REXX Programs

708 User Guide

QUERYRES

Program Type: REXX

Subsystem: z/OS

Queries the status of predefined resources and stores the information in global
variables.

RDFSIZE

Program Type: OPS/REXX

Subsystem: z/OS

Calculates the amount of storage that Automate relational tables will require in CA
OPS/MVS.

RESETOSF

Program Type: OPS/REXX

Subsystem: z/OS

End-User OPS/REXX pgm to stop or force CA OPS/MVS servers and reset (delete) all
server requests in the specified server queue.

REXXIMAC

Program Type: CLIST

Subsystem: ISPF

This is an ISPF edit macro that defines OI and OX as edit macro programs.

REXXIN

Program Type: OPS/REXX

Subsystem: z/OS

Reads a file in REXX.

REXXOUT

Program Type: REXX

Subsystem: z/OS

Writes a file in REXX.

RXGRAPHIC

Program Type: OPS/REXX

Subsystem: ISPF

Displays a graphic image in REXX.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 709

SAMPTSO

Program Type: OPS/REXX

Subsystem: TSO

Provides a full-screen control application for issuing TSO commands and allows
paging in the output.

SCANSSCT

Program Type: OPS/REXX

Subsystem: z/OS

Displays the names of all subsystems in use.

SEC2DATE

Program Type: REXX SUBROUTINE

Subsystem: N/A

Converts a seconds value since midnight January 1, 1980 into a 17-byte date and
time string in the format yyyymmdd hh:mm:ss.

SENDPROF

Program Type: OPS/REXX

Subsystem: PROFS

Prepares, generates, and sends a PROFS note.

SETSLIP

Program Type: OPS/REXX

Subsystem: z/OS

Sets a dynamic SLIP trap. CA Customer Support personnel may direct you to use this
sample.

SHUTCICS

Program Type: OPS/REXX

Subsystem: z/OS

Initiates shutdown for a CICS region.

SHUTMUFT

Program Type: OPS/REXX

Subsystem: z/OS

Stops a CA Datacom region. This sample program contains examples that use the
OPSJES2 function to interrogate a specific initiator class, the OPSTATUS function to
evaluate specific active jobs, and an example of creating a dynamic TOD rule.

Supplied Sample OPS/REXX Programs

710 User Guide

SHUTSYS1

Program Type: OPS/REXX

Subsystem: z/OS

Initiates STATEMAN system shutdown procedures. This sample and other sample
AOF rules and OPS/REXX programs work together to create a system shutdown
application. Specific details are outlined within this SHUTSYS1 sample.

SHUTSYS2

Program Type: OPS/REXX

Subsystem: z/OS

Triggered using the SHUTSYS1 sample program. This sample stops non SSM-related
tasks, and then initiates the STATEMAN shutdown. This sample and other sample
AOF rules and OPS/REXX programs work together to create a system shutdown
application. Specific details are outlined within the SHUTSYS1 sample.

SHUTZFS

Program Type: OPS/REXX

Subsystem: z/OS

Initiates shutdown for the OMVS zFS file system.

STARTZFS

Program Type: OPS/REXX

Subsystem: z/OS

Restarts the OMVS zFS file system after the following command was issued:

F OMVS,STOPPFS=ZFS

SPOOLMON

Program Type: OPS/REXX

Subsystem: JES2

Uses the CA OPS/MVS to CA SYSVIEW interface to monitor and respond to JES2 TGS
(spool space/track groups) threshold warnings. Application creates an alert of the
problem, which includes the job name of the top spool user.

SSMGLSST

Program Type: OPS/REXX

Subsystem: STATEMAN

Handles the BEGIN, ADD, UPDATE, and DELETE global events of SSM. In this sample,
a new SSM-related table of resources whose statuses must be transmitted to other
systems is built and maintained. The SSM global event table invokes this program
through the SSMGEVNT request rule.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 711

SSMMXREQ

Program Type: OPS/REXX

Subsystem: STATEMAN

Handles the XPREREQ, XSUBREQ, MPREREQ, MSUBREQ, and MATCH process events
of SSM. A local SSM auxiliary table is used by these sample exits to evaluate
cross-system prerequisite status requests. The SSM global event sample program
SSMGLSST maintains the auxiliary table.

SSMPSREQ

Program Type: OPS/REXX

Subsystem: STATEMAN

The logic of this program emulates the standard prerequisite and subrequisite logic
of the SSM engine. It can be modified and called from any REXX program to emulate
a prerequisite and subrequisite evaluation.

SSMQUERY

Program Type: OPS/REXX

Subsystem: z/OS

Locate the SSM resource table in which a particular resource resides.

SSMSNSST

Program Type: OPS/REXX

Subsystem: STATEMAN

Transmits the SSM resource status records built by the sample SSM global event
program, SSMGLSST, to the remote status SSM auxiliary table on the target
systems. The SSM XPREREQ and XSUBREQ process events use the remote status
table on each system to evaluate the status of cross-system prerequisites and
subrequisites.

SSMTREE

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Generates a formatted file representation of a system state managed resource
table. You can use this file with GRAPHVIZ to display a graphical representation of
the table's resource relationships.

Supplied Sample OPS/REXX Programs

712 User Guide

SSMUSAPL

Program Type: OPS/REXX

Subsystem: STATEMAN

Determines the current state of a USS application-level pseudo resource using the
states of the component SSM USS resources and synchronizes the desired states of
the component resources. This program is called by the SSMUSSRQ request rule.
For an explanation of the use of a USS application resource, see the documentation
in the beginning of the program.

SSMUSRES

Program Type: OPS/REXX

Subsystem: STATEMAN

Determines the current state of a USS resource using the OPSUSS REXX function
and starts and stops a USS resource. This program is called by the SSMUSSRQ
request rule. For the expected RDF table columns required to use this program, see
the documentation in the beginning of the program.

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrates a coding technique that can be used to monitor and control USS
daemon server processes such as INETD within System State Manager (SSM).

SSMXCHCK

Program Type: OPS/REXX

Subsystem: z/OS

Determines the state of a remotely monitored SSM resource within a MSF
connected or sysplex environment.

SSM2XCEL

Program Type: OPS/REXX

Subsystem: z/OS

Insert SSM resource and action table data into a sequential dsn so that it can be
FTP'd and viewed as an Xcel document.

STARTIMS

Program Type: CLIST

Subsystem: IMS

Performs a typical IMS startup.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 713

STOPUSS

Program Type: OPS/REXX

Subsystem: USS

Demonstrates how to stop all the OSF USS servers. You may need to use this
procedure if you plan to shut down the Job Entry Subsystem (JES) prior to shutting
down CA OPS/MVS.

SVCTABLE

Program Type: OPS/REXX

Subsystem: z/OS

Displays the system SVC table.

SYMBOLS

Program Type: OPS/REXX

Subsystem: z/OS

Displays the static system symbols.

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrate a coding technique that can be used to obtain and interrogate specific
CA SYSVIEW related data. Specifically the coupling facility related data, MQ related
data, Page data set related data, and WLM related data.

SYSVCICS

Program Type: OPS/REXX

Subsystem: z/OS

Outlines and demonstrates the process of creating an effective CA OPS/MVS
application that monitors and responds to CICS threshold alerts collected by CA
SYSVIEW. This application provides a foundation of implementing a more granular
automated decision making application, that is needed when processing these CA
SYSVIEW alerts.

SYSVALRT

Program Type: OPS/REXX

Subsystem: z/OS

Create proactive automation between the CA OPS/MVS and CA SYSVIEW interface
that alerts on and resolves potential problem ASIDs before they impact system
performance.

Supplied Sample OPS/REXX Programs

714 User Guide

SYSVCHCK

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrates a coding technique that you can use to obtain and interrogate
various CA SYSVIEW related data and generate SMTP email alerts for any exceeded
defined thresholds.

SYSVCTDQ

Program Type: OPS/REXX

Subsystem: z/OS

Invoke the CA SYSVIEW CICS CTDATA GLOBAL command to obtain transient data
queues for all active CICS regions and generate an alert for any TDQ that that has a
current QCount greater than a defined threshold.

SYSVDSNX

Program Type: OPS/REXX

Subsystem: z/OS

The logic within this OPS/REXX program demonstrates the basic code needed to
extract data set extent usage information for data sets active to a specific job. The
CA SYSVIEW interface will be utilized to obtain this information.

SYSVECMD

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Issues CA SYSVIEW commands. This program is designed to run under a CA
OPS/MVS server; therefore, it must be placed in the SYSEXEC (or equivalent)
concatenation of an OSF TSO class server.

SYSVINIT

Program Type: OPS/REXX

Subsystem: z/OS

Determine if a batch jobs execution or clocktime is exceeding defined run times
based on the initiator class in which it is running.

SYSVMSU

Program Type: OPS/REXX

Subsystem: z/OS

Process MSU4HAVG threshold alerts (Averages MSU usage). For warning/problem
alerts, output from the TOPCPU CA Sysview command will be obtained and emailed
through SMTP to a specific list of email IDs. An 'All OK' email will be generated
when the MSU4HAVG alert returns a 'NORMAL' status.

Supplied Sample OPS/REXX Programs

Appendix C: Sample OPS/REXX Programs 715

TCPIPUSS

Program Type: OPS/REXX

Subsystem: z/OS

Demonstrates a technique used to query the statuses of z/OS UNIX processes
associated to a particular ASID.

TIMECHNG

Program Type: OPS/REXX

Subsystem: CA OPS/MVS

Waits for the time change to complete and then disables and reenables all
non-dynamic TOD rules. See the related TIMECHNG sample rule.

TSOAUTH

Program Type: OPS/REXX

Subsystem: TSO

Displays the TSO attributes for a TSO user or server address space. Useful for
debugging TSO-related problems.

TSOCHECK

Program Type: OPS/REXX

Subsystem: TSO

Sample program that uses the CA OPS/MVS External Program Interface (EPI) to
respond to TSO/E logon or poor response time failures.

UCC7

Program Type: REXX

Subsystem: CA 7

Demands a job from the scheduler.

WORDFIND

Program Type: REXX

Subsystem: ISPF

Extracts all lines of a file containing a given string.

WTOBUF

Program Type: OPS/REXX

Subsystem: z/OS

Responds to IEA404A and IEA405E MCS console backlog messages by detecting and
clearing the backed up consoles.

Installation and Configuration Considerations for PLEXSSM

716 User Guide

XSYSASID

Program Type: OPS/REXX

Subsystem: z/OS

Determine if an ASID is active on a remote CA OPS/MVS MSF connected system, or
within a specific sysplex system.

Installation and Configuration Considerations for PLEXSSM

Following are the steps required to install and configure the sysplex resource monitor
for the PLEXSSM sample program:

1. Start CA OPS/MVS, and then run the PLEXSSM REXX EXEC to build the following RDF
tables:

■ PLEXRTBL-sysplex resource table

■ PLEXATBL-sysplex resource action table

■ STAPRTBL-STAPE resource table

■ STAPATBL-STAPE resource action table

2. Copy the PLEX* and STAP* rules to the active rule set and set the auto-enable
option:

■ SSMBEGIN-Includes modifications to set the DESIRED state of sysplex resources

■ PLEXINIT-Rule that executes to set the current state when sysplex resources
are in the UNKNOWN state

■ PLEX*ARM-Rules to maintain the status of ARM resources

■ PLEX*ASW-Rules to maintain the status of auto-switch resources

■ PLEXCFRM-Rules to maintain the status of CFRM resources

■ PLEXETR-Rules to maintain the status of ETR resources

■ PLEXGRS-Rules to maintain the status of GRS resources

■ PLEX*LOG-Rules to maintain the status of LOGGER resources

■ PLEXSFM- Rules to maintain the status of SFM resources

■ PLEXWLM-Rules to maintain the status of WLM resources

■ PLEX*XCF-Rules to maintain the status of XCF resources

■ PLEX*XES-Rules to maintain the status of XES resources

■ STAPINIT-Rules that execute to populate the STAPRTBL and STAPATBL tables
and set the current state when STAPE resources are in the UNKNOWN state

■ STAP*ASW-Rules to maintain the status of the individual STAPE devices

Appendix D: CA OPS/MVS Health Checks 717

Appendix D: CA OPS/MVS Health Checks

This Appendix describes health checks for CA OPS/MVS. The product owner for all CA
OPS/MVS health checks is CA_OPSMVS.

This section contains the following topics:

OPSMVS_ALLOC_OPSLOG (see page 718)
OPSMVS_ALLOC_SYSCHK1 (see page 719)
OPSMVS_PARM_AOFHLQ (see page 720)
OPSMVS_PARM_AOFMAX (see page 721)
OPSMVS_PARM_CMDMAX (see page 722)
OPSMVS_PARM_MSGMAX (see page 723)
OPSMVS_PARM_PROCBLK (see page 724)
OPSMVS_TSOMAXQUSG (see page 725)
OPSMVS_TSPMAXQUSG (see page 726)
OPSMVS_TSLMAXQUSG (see page 727)
OPSMVS_USSMAXQUSG (see page 728)
OPSMVS_OPJ2CB (see page 729)

OPSMVS_ALLOC_OPSLOG

718 User Guide

OPSMVS_ALLOC_OPSLOG

This health check checks to see if you have allocated a data set for OPSLOG use. If it
detects a possible loss of historical information, a low-severity Health Check exception is
reported and CA OPS/MVS continues normally. This condition is checked periodically.

Best Practice

Make sure you allocate a data set for OPSLOG use. Otherwise, historical information
will most certainly be lost. You can activate the OPSLOG facility without allocating a
data set, but in that case, log information is kept in storage and becomes subject to
periodic overlays as the storage fills up.

Parameters Accepted

No

Debug Support

No

Verbose Support

No

Reference

For information on allocating an OPSLOG data set, see the DEFDIV utility and the
OPSSPA00 OPS/REXX program. This is further documented in the section Define
OPSLOG and Checkpoint VSAM Linear Data Sets in the Installation Guide.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_ALLOC_SYSCHK1

Appendix D: CA OPS/MVS Health Checks 719

OPSMVS_ALLOC_SYSCHK1

This health check checks to see if the SYSCHK1 data set has been allocated. This data set
maintains high-impact system components, such as global variables and RDF tables.
Critical system automation will be compromised if these resources are not available. If
the SYSCHK1 data set is not allocated, a medium severity health check exception is
reported and CA OPS/MVS continues. This condition is checked once.

Best Practice

Make sure you allocate a SYSCHCK1 data set.

CA OPS/MVS can run at a significantly reduced level without a SYSCHK1 data set,
but functionality is severely impaired.

Parameters Accepted

No

Debug Support

No

Verbose Support

No

Reference

For information on allocating an SYSCHK1 data set, see the DEFDIV utility and the
OPSSPA00 OPS/REXX program. This is further documented in the section Define
OPSLOG and Checkpoint VSAM Linear Data Sets in the Installation Guide.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_PARM_AOFHLQ

720 User Guide

OPSMVS_PARM_AOFHLQ

This health check checks to see if the high level qualifier for the rule data set name is
‘SYS1’. This condition can cause potentially high overhead. This condition is checked
once, and reports a medium-severity health check exception if the HLQ ‘SYS1’ is
detected.

Best Practice

Specify a less common high-level qualifier for the value of the RULEPREFIX
parameter that is consistent with your data set naming standards. Avoid the
familiar system prefix ‘SYS1’.

Parameters Accepted

No

Debug Support

No

Verbose Support

No

Reference

For more information, see the section Setting a Prefix and Suffix for Rule Sets in the
Installation Guide.

For more information on the RULEPREFIX command, see the Command and
Function Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_PARM_AOFMAX

Appendix D: CA OPS/MVS Health Checks 721

OPSMVS_PARM_AOFMAX

This health check measures the REXX external data queue's (EDQ) use of AOF rules
against a threshold percentage. AOF rules are intended for maximum performance and
small amounts of output. A rule that contributes to excessive use of EDQ may result in
loss of data and performance degradation.

This condition is checked periodically, and reports a medium severity health check
exception if the threshold is exceeded.

Best Practice

Review and improve CA OPS/MVS automation applications that are queuing a high
number of entries in any of the external data queues. If your applications need
additional EDQ capacity, increase the value of the AOFMAXQUEUE parameter by a
reasonable amount.

Parameters Accepted

THRESHOLD(nnn)

Specifies the threshold queue percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

Debug Support

No

Verbose Support

No

Reference

See the AOF Rules Guide and the discussion of the AOFEDQHIGH and
AOFEDQWARNTHRESH parameters in the Parameter Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_PARM_CMDMAX

722 User Guide

OPSMVS_PARM_CMDMAX

This health check samples the rate of operator commands issued per second by any
automation application. The percentage of the rate is calculated against the
COMMANDMAX parameter, and is measured against the threshold value provided as
the parameter nn. Exceeding the COMMANDMAX value can cause a CA OPS/MVS
shutdown, so this health check can contribute to system up-time.

This condition is checked periodically, and reports a medium-severity health check
exception if the threshold is exceeded.

Best Practice

Review and improve CA OPS/MVS automation applications that are causing a high
number of operator commands to be issued. If nothing can be addressed in the
short-term, increase the COMMANDMAX parameter value.

You can also eliminate this health check exception by increasing the value of the
COMMANDRATE parameter.

Parameters Accepted

THRESHOLD(nnn)

Specifies a threshold rate percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

Debug Support

No

Verbose Support

No

Reference

See the Parameter Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_PARM_MSGMAX

Appendix D: CA OPS/MVS Health Checks 723

OPSMVS_PARM_MSGMAX

This health check samples the rate of messages issued per second. The rate is calculated
as a percentage of the MESSAGEMAX parameter, and compared against the threshold
value provided as the parameter nn. Exceeding the MESSAGEMAX value can cause a
system shutdown, so this health check can contribute to system up-time.

This condition is checked periodically, and will report a medium severity health check
exception if the threshold is exceeded.

Best Practice

Review and improve CA OPS/MVS automation applications that issue a high number
of operator messages. If nothing can be addressed in the short-term, increasing the
value of MESSAGEMAX parameter value. You can also eliminate this health check
exception by increasing the value of MESSAGERATE parameter.

Parameters Accepted

THRESHOLD(nnn)

Specifies a threshold rate percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

Debug Support

No

Verbose Support

No

Reference

See the Parameter Reference, and the section Using Message Control Parameters in
the Administration Guide.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_PARM_PROCBLK

724 User Guide

OPSMVS_PARM_PROCBLK

This health check ensures that enough process blocks are available for CA OPS/MVS
events or requests.

This is accomplished through the following process:

1. The PROCESS parameter determines how many process blocks are allocated in the
extended private area of the CA OPS/MVS main address space when the CA
OPS/MVS address space initializes.

2. The value of the SSEXEXITHICOUNT parameter indicates the high-water mark for
the number of used process blocks.

3. The percentage of used process blocks is calculated against the PROCESS
parameter, which is then measured against the threshold value provided as the
parameter.

4. When an attempt to allocate a process block from the process block pool fails
because no process blocks were available, the check provides the number of failed
attempts and the date and time of the last failed allocation attempt.

This condition is checked periodically, and reports a medium-severity health check
exception if the threshold is exceeded.

Best Practice

Allocating the right number of process blocks is critical. The number cannot be too
low, because each event processed by CA OPS/MVS requires its own process block.
If a process block is not available, then CA OPS/MVS will not capture or respond to
the event, which in turn could lead to undesirable results on your system.
Furthermore, setting the value too high has its own implications; the number of
process blocks you specify may use so much virtual storage that CA OPS/MVS fails
to function correctly.

Parameters Accepted

THRESHOLD(nnn)

Specifies a threshold rate percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

AGE(nn)

Specifies delay between first exception and message informing that problem
has not been fixed. nn is a number of hours between 0 and 24, inclusive.

Default: 6

Debug Support

No

Verbose Support

OPSMVS_TSOMAXQUSG

Appendix D: CA OPS/MVS Health Checks 725

No

Reference

See the Parameter Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_TSOMAXQUSG

This health check measures the maximum OSF TSO queue utilization. The percentage of
maximum number of commands that have been on the OSF TSO queue is calculated
against the OSFQUE parameter representing the maximum number of commands that
the OSF TSO queue can hold. The percentage is measured against the threshold value
provided as the parameter.

This condition is checked periodically, and reports a medium-severity health check
exception if the threshold is exceeded.

Best Practice

This queue is where CA OPS/MVS sends TSO commands to be executed in the OSF
TSO servers. The OSF execution scheduler dispatches these commands to OSF TSO
servers as the servers become available to process work. The key objective of this
health check is to provide you with appropriate warnings to prevent the situation
where this queue overflows and TSO commands are never executed.

Parameters Accepted

THRESHOLD(nnn)

Specifies a threshold rate percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

Debug Support

No

Verbose Support

No

Reference

See the Parameter Reference, Administration Guide, and Command and Function
Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_TSPMAXQUSG

726 User Guide

OPSMVS_TSPMAXQUSG

This health check measures the maximum OSF TSP queue utilization. The percentage of
maximum number of commands that have been on the OSF TSP queue is calculated
against the OSFTSPQUE parameter representing the maximum number of commands
that the OSF TSP queue can hold. The percentage is measured against the threshold
value provided as the parameter.

This condition is checked periodically, and reports a medium-severity health check
exception if the threshold is exceeded.

Best Practice

This queue is where CA OPS/MVS sends TSO commands to be executed in the OSF
TSP servers. The OSF execution scheduler dispatches these commands to OSF TSP
servers as the servers become available to process work. The key objective of this
health check is to provide you with appropriate warnings to prevent the situation
where this queue overflows and TSO commands are never executed.

Parameters Accepted

THRESHOLD(nnn)

Specifies a threshold rate percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

Debug Support

No

Verbose Support

No

Reference

See the Parameter Reference, Administration Guide, and Command and Function
Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_TSLMAXQUSG

Appendix D: CA OPS/MVS Health Checks 727

OPSMVS_TSLMAXQUSG

This health check measures the maximum OSF TSL queue utilization. The percentage of
maximum number of commands that have been on the OSF TSL queue is calculated
against the OSFTSLQUE parameter representing maximum number of commands that
the OSF TSL queue can hold. The percentage is measured against the threshold value
provided as the parameter.

This condition is checked periodically, and reports a medium-severity health check
exception if the threshold is exceeded.

Best Practice

This queue is where CA OPS/MVS sends TSO commands to be executed in the OSF
TSL servers. The OSF execution scheduler dispatches these commands to OSF TSL
servers as the servers become available to process work. The key objective of this
health check is to provide you with appropriate warnings to prevent the situation
where this queue overflows and TSO commands are never executed.

Parameters Accepted

THRESHOLD(nnn)

Specifies a threshold rate percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

Debug Support

No

Verbose Support

No

Reference

See the Parameter Reference, Administration Guide, and Command and Function
Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_USSMAXQUSG

728 User Guide

OPSMVS_USSMAXQUSG

This health check measures the maximum USS queue utilization. The percentage of
maximum number of commands that have been on the USS queue is calculated against
the USSQUE parameter representing maximum number of commands that the USS
queue can hold. The percentage is measured against the threshold value provided as
the parameter.

This condition is checked periodically, and reports a medium-severity health check
exception if the threshold is exceeded.

Best Practice

This queue is where CA OPS/MVS sends TSO commands to be executed in the USS
servers. The OSF execution scheduler dispatches these commands to USS servers as
the servers become available to process work. The key objective of this health
check is to provide you with appropriate warnings to prevent the situation where
this queue overflows and TSO commands are never executed.

Parameters Accepted

THRESHOLD(nnn)

Specifies a threshold rate percentage. nnn is a number between 0 and 100,
inclusive.

Default: 80

Debug Support

No

Verbose Support

No

Reference

See the Parameter Reference, Administration Guide, and Command and Function
Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

OPSMVS_OPJ2CB

Appendix D: CA OPS/MVS Health Checks 729

OPSMVS_OPJ2CB

This health check checks whether your product JES2 offset table corresponds to JES2 on
this system. It detects the following three possibilities:

■ The CA OPS/MVS JES2 offset table module, OPJ2CB, has been assembled and linked
with the current version of JES2.

■ A default JES2 offset table is being used because the module OPJ2CB has not been
assembled using the current release of JES2 on this system.

■ A JES2 offset table for the current release of JES2 cannot be found and automation
that relies on the OPSJES2 REXX function will not function correctly.

This condition is checked once, and reports a medium-severity health check exception if
the threshold is exceeded. This health check will not be activated in a JES3 environment.

Best Practice

An accurate JES2 offset table ensures that data returned by the OPSJES2 REXX
function is completely reliable.

Parameters Accepted

No

Debug Support

No

Verbose Support

No

Reference

See the Installation Guide and the Command and Function Reference.

Messages

See the Messages Reference and the chapter "Migration and Upgrade
Considerations" in the Installation Guide.

Index 731

Index

?

?LOGON • 547

3

3270 type virtual terminals • 463

A

access global variables • 575
access the table editor • 445
action tables • 181, 186
active virtual terminal • 465
add groups • 309
ADDRESS AOF statement • 165
ADDRESS EPI

component • 464
host commands • 475
output message identification • 477
return codes • 476
statement • 166

ADDRESS EPI statement • 166
ADDRESS instruction • 151
ADDRESS MESSAGE statement • 166
ADDRESS OPER statement • 166
ADDRESS OPSCTL statement • 166
ADDRESS OSF statement • 165
ADDRESS SYSVIEWE statement • 167
ADDRESS WTO and OPSSEND

passing messages to remote systems • 567
ADDRESS WTO statement • 167
alert • 596
AME

advantages of • 620
data flow of • 621
information AME reports on • 622

AOFEVENT • 622
AOFEVENT segment • 639
AOFSUMM • 622
API QUERY command • 359
APIHWSV • 650
arithmetic values and operators in OPS/REXX • 146
automate, ways to • 33
Automated Operations Facility (AOF)

interface to OPS/REXX • 165
automatic monitoring mode • 310

Automation Analyzer
accessing EasyRule from • 71
how to access • 68
preparing to use • 67
suppressing messages with • 67

automation statistics report
defining the content of • 624

auxiliary tables • 181
AVG function • 431

B

batch jobs
executing OPS/REXX programs as • 134
executing OPS/REXX programs under the TSO

TMP • 135
BMP • 593
built-in variables • 220

C

CA OPS/MVS
converting MPF to • 72
how table data is stored • 397
supported SQL features • 400

CA OPS/MVS system task
starting • 560

CA SYSVIEW product
interface to OPS/REXX • 167

CA7MVS • 506
CAICCI and MSF • 558
CALL instruction • 152
capture data • 238
change state • 211
CHAR_LENGTH function • 427
CHARIN function • 144
CHAROUT function • 144
CHARS function • 144
CICS Operations Facility (COF) • 589
CLISTs, invoking SQL • 402
CMDSONOFF primary command • 341
COALESCE function • 427
COBOL • 575
COF • 589
colors on Link Control panel • 326
COMMAND • 622
command trapping rules • 244

732 User Guide

commands for use in the recording environment of
the EPI • 520

commands in the subsystem interface
diagnosing problems related to • 174

compound symbol
derived name • 89

compound symbols • 85
conflict • 318
conflict group • 318
console support • 545
control characters, setting • 514
control subsystems • 177
controlling z/OS subsystems • 589
converting MPF to CA OPS/MVS • 72
copy a schedule • 345
COUNT function • 431
create a new schedule • 322
create a resource group • 300
create relational tables • 445
create tables • 256
cross-system command • 557, 560
cross-system serialization

maintaining • 443
cross-system sessions • 561
CUR_EQ_DES • 301
CUR_NE_DES • 301
current operating mode • 247
CURRENT state • 301
current status table • 298
cursor placement on screens • 522

D

DEF_ERROR • 301
define systems to MSF • 561
defining destinations and intervals for SMFLOG

records • 624
defining the content of the automation statistics

report • 624
delete a period from a schedule • 334
delete a schedule • 347
DELETED status • 309
derived name • 89
DESIRED state • 297, 301
directing a literal string to an input field • 526
directing a variable to an input field • 527
directory table • 182
disabled virtual terminal • 465
disabling rule sets • 46

displaying systems and MSF sessions • 564
DOM events

diagnosing problems related to • 175
driver section of the EXEC • 531
duplicate tasks • 244

E

EasyRule • 95
access • 99
accessing from Automation Analyzer • 71
error messages • 113
guidelines for using • 96
solving problems • 50
user code areas • 112

ECF • 545
default character • 547
monitoring commands • 546
operational aspects • 548

edit a period definition • 334
edit a schedule • 322
effective mode of resources • 383
enabled virtual terminal • 465
enabling rule sets • 46
Enhanced Console Facility (ECF) • 545
EPI • 463, 622

commands for use • 520
failure recovery • 498
installing • 466
recording and playback options • 509
security considerations • 500
shutting down • 473
terminology • 465

EPI host commands • 479
descriptions for virtual terminals • 483
other descriptions • 494
special • 479

EPI Recorder panel • 518
EPI virtual terminals

using OPS/REXX to drive • 474
ESI • 575
EVNTEXIT • 622
exclude systems • 308
EXECIO command

TSO • 164
exit Group Manager • 313
Expert System Interface (ESI) • 575
Expressions

in SQL statements • 424

Index 733

external product • 465
External Product Interface (EPI) • 463

interface to OPS/REXX • 166
EXTRACT function • 428

F

F command
REXX variables it sets • 524

failure, recovery from • 569
fill-in-the-blanks • 95
find resources • 297
first message suppression rules • 45
FORM function • 144
free a schedule • 348
FROMDATE • 625, 630
FROMTIME • 625, 630
functions

CHARIN • 144
CHAROUT • 144
CHARS • 144
FORM • 144
inSQL statements • 425
LINEIN • 144
LINEOUT • 144
LINES • 144
STREAM • 144

G

GENERAL • 622
generate rules automatically • 95
global BEGIN event • 234
global variable

characteristics • 93
concepts • 85
stem • 87
tail • 87
warning messages • 92

global variables
and INTERPRET instructions • 152
definition of • 160
relationship to RDF relational tables • 397
stem for temporary variables • 160
stems for • 160
temporary vs. standard global variables • 160

GLVEVENT • 91
GLVJOBID • 91
Group Display panel • 310
Group Manager • 297

group membership table • 298
group resource belongs to • 297
group status priority • 303
group/status associations table • 298
groups excluded • 309
groups of resources • 309

H

health checks • 717
host commands

ADDRESS EPI • 475
HWS Component • 650

APIHWSV • 650

I

Identify IMS function • 592
IFASMFDP • 621
IMS • 622

BMP • 593
Control Regions • 591
segment • 644
SVCs • 591
WTOR • 593

IMS Operation Facility (IOF) • 591
IMS1DUPLICATE • 591
IMS1ID • 591
information about system problems • 596
instructions

ADDRESS • 151
CALL • 152
INTERPRET • 152
OPTIONS • 123, 143, 144, 153
PARSE SOURCE • 161
PARSE VERSION • 162
PULL • 123
PUSH • 123, 144
QUEUE • 123
RETURN • 157
SIGNAL • 157
TRACE • 144, 158

interface to NetView • 595
INTERPRET instruction • 152
IOF • 591
ISPF, executing OPS/REXX programs under • 132
issuing recording commands • 511

J

JCL PARM parameter

734 User Guide

examples • 631
join operation in SQL • 434

L

lessons
preparing your system for • 35
where you are when you start • 34

LINECNT • 625
LINEIN function • 144
LINEOUT function • 144
LINES function • 144
link • 318
Link Control panel • 323
link group • 318
link group column • 318
link item • 318
link item column • 318
Links Control panel • 323
load a schedule • 317
local system identifier • 560
LOWER function • 428

M

manage tables • 261
marking text to find on or fetch from a screen • 521
Master Terminal • 591
MAX function • 432
merge a schedule • 350
merge schedule • 350
MESSAGE • 622
message event statistics • 68
messages

capturing • 79
deleting • 71
deleting and suppressing • 71
sending • 78
suppressing • 70, 71
suppressing with Automation Analyzer • 67
variable data in • 77
visual noise • 37

MIN function • 433
MINOF statement • 195, 196
MODE column • 191
monitor groups of resources • 309
monitor subsystems • 177
monitoring automation statistics with the

automation measurement environment (AME) •
619

more message suppression rules • 45
MPF

converting to CA OPS/MVS • 72
suppression list • 71

MSF
activating sessions to remote systems • 562
activating the VTAM APPLID • 559
define systems to • 561
operation • 558
sessions, failures • 571
starting • 560
stopping • 568
system failures • 570
terminology • 557

MTO • 591
Multi-System Facility (MSF) • 556

N

negative prerequisite resources • 196
NetView • 595
NetView alert • 596
NetView Operations Facility (NOF) • 595
NetView STATMON • 595
network automation • 595
node • 89
NOF • 595
non-volatile • 90

O

OICOMP command • 124
format • 129

OMEGAMON
disabling extended attribute use • 505
OMMVS • 502

OMMVS • 502
OPAME000 • 621
OPAME010 • 621
OPCRTBDF subroutine • 407
Operator Server Facility (OSF)

interface to OPS/REXX • 165
limiting execution time for OPS/REXX programs •

142
OPS.CCLXRULM • 239, 244
OPS.STATEMAN.RULES • 239, 244
OPS/REXX • 87

ADDRESS instruction • 151
advantages of • 120
allocating OPSEXEC and OPSCOMP libraries • 126

Index 735

arithmetic values and operators • 146
avoiding variable name conflicts • 170
CA OPS/MVS components using OPS/REXX • 121
CALL instruction • 152
calling external routines from a program • 126
calling the OPS/REXX interpreter • 134
capturing output from TSO commands • 165
CHARIN function • 144
CHAROUT function • 144
CHARS function • 144
compiler error messages • 169
compound symbols • 85
compound symbols in OPS/REXX • 145
considerations for batch execution of programs •

135
considerations for using OPS/REXX • 146
constants in OPS/REXX • 145
creating REXX variables • 141
data handling tools • 120
data set formats • 125
determining the REXX language level • 162
determining the source of an executing program

• 161
differences between explicit and implicit

execution • 125
duration of OPTIONS settings • 154
ease of use • 120
EFPL format • 139
error messages • 120
examples of implicitly invoking programs • 132
executing OPS/REXX programs from batch • 134
executing OPS/REXX source programs from ISPF

EDIT • 133
executing previously compiled programs • 124
executing programs as batch jobs • 124
executing programs as started tasks • 124
executing programs explicitly • 124
executing programs from ISPF dialogs • 132
executing programs implicitly • 124
executing with the OPSEXEC command • 131
executing with the OPSIMEX command • 131
explicitly as opposed to implicitly invoking

OPS/REXX programs • 130
External Function Parameter List format • 139
external subroutines • 123
FORM function • 144
format for OPTIONS instruction statements • 154
guidelines for allocating the OPSCOMP library •

127

implementation limits • 144
interface to AOF • 165
interface to CA SYSVIEW • 167
interface to EPI • 166
interface to message • 166
interface to MVS operator commands • 166
interface to OSF • 165
interface to WTO • 167
INTERPRET instruction • 152
invoking OPS/REXX programs in source format •

130
invoking OPS/REXX programs under AOF • 133
invoking SQL cursor operations under OPS/REXX

• 403
invoking the SQL host environment • 402
LINEIN function • 144
LINEOUT function • 144
LINES function • 144
locating stored programs • 125
maintaining precompiled programs • 129
monitoring resource usage • 141
omitting arguments • 140
OPS09TRC diagnostic function • 173
OPS0ATRC diagnostic function • 174
OPS0ETRC diagnostic function • 175
OPTIONS instruction • 143, 144, 153
outcome of a routine • 139
overriding execution limits • 143
PARSE SOURCE instruction • 161
PARSE VERSION instruction • 162
passing arguments • 131, 139
passing commands to the ISPEXEC command

processor • 163
passing commands to the TSO command

processor • 163
precompiled vs. source programs • 124
processing speed of • 120
PULL instructions • 123
PUSH instruction • 144
PUSH instructions • 123
QUEUE instructions • 123
register contents • 138
requirements for non-REXX external functions •

138
RETURN instruction • 157
returning information to an OPS/REXX program •

140
saving compiled REXX programs • 129
sending commands to via GSS • 168

736 User Guide

sending data to the external queue • 140
SIGNAL instruction • 157
similarity to standard REXX • 122
STREAM function • 144
support for character strings • 122
support for decimal and exponential numbers •

122
support for standard REXX functions • 122
symbolic substitution in • 143
symbols in OPS/REXX • 145
TRACE instruction • 144, 158
uninitialized variables • 172
UPPER instruction • 159
variable values in OPS/REXX • 145

OPS/REXX programming • 495
OPS/REXX programs

executing from USS • 136
OPSECF • 548
OPSEXEC command • 130

using to execute OPS/REXX programs • 124
OPSIMEX command

description • 124
format • 131
using to execute OPS/REXX programs • 131

OPSLINK programming interface • 575
OPSRMT and OPSCMD TSO commands • 573
OPSSEND and ADDRESS WTO

passing messages to remote systems • 567
OPSSTATS • 625
OPSSTATS subparameter

values • 630
OPSVALUE • 622
OPSVIEW interactive application

doing maintenance to precompiled REXX
programs • 129

relationship to OPS/REXX • 121
OPSWLM function • 199
OPSWXTRN argument • 123
OPTIONS instruction • 123, 143, 144, 153

character case in • 154
duration of OPSTIONS settings • 154
enclosing arguments • 154
format • 154
OPSWXTRN argument • 123
sample uses • 156

OSFEVENT • 622
OSFEVENT segment • 641
OSFSUMM • 622
OSFTERM • 622

OSFTERM segment • 643
OSFTRANSSMFREC • 624
output message identification

ADDRESS EPI • 477
overlap • 318
override Schedule Manager • 382
override the ACTIVE schedule • 317
overriding the automatic ENTER option • 517
OXCOMP command • 124

format • 129

P

parameters
AOFDEFAULTADDRESS • 151
AOFMAXCLAUSES • 142, 169
AOFMAXCOMMANDS • 142, 169
AOFMAXQUEUE • 142
AOFMAXSAYS • 142, 169
AOFMAXSECONDS • 142
AOFMAXTIME • 169
GLOBALMAX • 169
REXXDEFAULTADDRESS • 151
REXXMAXCLAUSES • 142, 169
REXXMAXCOMMANDS • 142, 169
REXXMAXQUEUE • 142
REXXMAXSAYS • 142, 169
REXXMAXSECONDS • 142
REXXMAXSTRINGLENGTH • 142
REXXMAXTIME • 169

PARMDD • 621
PARMDD file

subparameters • 625
PARSE SOURCE instruction • 161
PARSE VERSION instruction • 162
period • 318
period set • 318
permanent global variables • 90
PERMVAR • 622
PL/1 • 575
Playback option

summary of the playback process • 529
test-running a REXX EXEC • 528

point-and-shoot capability • 447
POSITION function • 426
positive prerequisite resources • 196
PREMODE column • 200
prerequisite resources • 191, 192

overview • 180

Index 737

primary key • 445
print Schedule Manager data • 355
priorities you assign to groups • 310
PROCBLK • 622
PROCESS action command • 230
process events • 226, 228
programs, samples • 695
PULL instruction • 123
PUSH instruction • 123, 144

Q

QUEUE instruction • 123

R

RDF • 445
RDF monitor event • 233
RDF table editor • 264
RECMEGS • 625
recording

assigning screen text to a REXX variable • 525
definition of experienced mode • 511
definition of novice mode • 511
editing a recorded REXX EXEC • 527
finding a screen text string • 523
how the playback option works • 529
inserting strings and variables into SESSCMDs •

526
placing the cursor on a screen field • 522
playing back a recorded REXX EXEC • 528
requirements for recording • 510
setting recording parameters • 513
setting SESSCMD operands • 515
specifying where to store the REXX EXEC • 517
stacking recording commands • 512
typical session recording procedure • 519

recording an EXEC to automate info/management
inquiries • 530

recording options
permanently changing • 513
temporarily changing • 516

recording process • 519
recording REXX automation procedures • 509
recording REXX EXECs • 509

four basic tasks • 511
issuing recording commands • 511
requirements • 510
setting up recording environment • 512

stacking recording commands (for advanced
users) • 512

RECTYPE • 625
REFMODE column • 201
Relational Data Framework • 445
Relational Data Framework (RDF)

cursor operations • 436
data dictionary tables • 398
description of host variables • 413
doing numeric calculations with column values •

430
fetching automation data from a table • 408
host variable names • 413
how RDF stores data • 397
integrity checking for data • 397
invoking SQL statements through • 401
list of SQL statements supported by • 405

DECLARE CURSOR statement • 436
DELETE FROM statement • 436
FETCH statement • 436
OPEN statement • 436
UPDATE statement • 436

non-standard SQL features • 400
passing values to SQL • 409
purpose of • 396
requesting data from a table • 397
restrictions for tables • 398
size of host variables • 413
specifying stem names for REXX variables • 414
SQL relational tables used by • 397
SQLCODE variable • 404, 411, 412, 439
storing automation data in a table • 408
types of SQL statements supported by • 416
use of SQL • 396

relational table
combining data from different tables • 434
data dictionary tables • 398
data storage in tables • 397
defining aliases for table names • 434
defining correlation values for table names • 434
editor batch API • 443
requesting data from • 411
restrictions • 398
usage by the Relational Data Framework • 397

relational table editor • 445
relational table editor batch API

duplicate keys • 443
use • 443

Relational Table Utilities panel • 445

738 User Guide

relational tables • 445
rename a schedule • 346
REPORT CONFLICTS command • 330
REPORTDD • 625
request rules

default ADDRESS environment for • 151
requesting temporary changes from the command

line • 516
RESET function • 366
resolving schedule conflicts • 354
resource • 318
resource down • 211
resource status • 297
resource tables • 181, 183
resources not in correct state • 297
return codes

ADDRESS EPI • 476
RETURN instruction • 157
REXX

assigning screen text to a variable • 525
editing a recorded EXEC • 527
inserting SESSCMD command processors into

recorded EXECs • 526
recording automation procedures • 509
using virtual terminal temporary ownership

mechanism • 479
REXX EXECs

recording • 509
REXX instructionsSee instructions • 123
REXX variables

creating • 141
set by the F command • 524

rule sets
disabling • 46
enabling • 46
how to organize rules with • 45

rules
creating with AOF • 38
default ADDRESS environment for rules • 151
establishing more • 43
first message suppression • 45
how rules are compiled • 124
how to create from an MPF suppression list • 71
how to organize with rule sets • 45
invoking the SQL host environment • 402
more message suppression • 45
overriding OPS/REXX execution limits • 143
relationship to OPS/REXX • 121
testing • 113

testing and verifying • 40
rules packets • 208

members • 244

S

sample programs • 695
saved across system IPL • 90
schedule • 318
schedule management tasks • 317
Schedule Manager API • 359
Schedule Manager Primary Panel • 320
schedule pieces • 326
scheduling temporary overrides to schedules • 386
screen images

automating data exchanges with • 509
screen text

assigning to a REXX variable • 525
finding • 523

security • 572
SEGMENTS • 630
SESSCMD command processor

literal strings or variables in SESSCMDs • 526
SESSCMD operands

setting for recording • 515
session • 465
sharing a session • 463
SHOW CONFLICTS command • 330, 352, 354
SHOW NEXT command • 342
SHOW OVERLAPS command • 330, 351, 354
SHOW PRIOR command • 342
shutting down MSF sessions and systems • 567
SIGNAL instruction • 157
SMF data (SYS1.MAN) • 621
SMFID • 625
SMFLOG records

defining destinations and intervals for • 624
SMFRECORDING • 624
SMFRECORDNUMBER • 624
SMFRULEDISABLE • 624
SMFTYPE • 625
SMU • 593
Snapshot facility • 238
SQL • 622

aggregate functions • 430
AVG • 431
COUNT • 431
MAX • 432
MIN • 433

Index 739

SUM • 433
and the Relational Data Framework facility • 396
Boolean expressions and predicates • 423
character-oriented functions

CHARLENGTH • 427
COALESCE • 427
EXTRACT • 428
LOWER • 428
POSITION • 426
TRIM • 426
UPPER • 429

combining data from different tables • 434
comparison predicates • 421
COUNT keyword • 431
creating stem REXX variables through ADDRESS

SQL statements • 412
cursor delete operations • 436
cursor update operation • 436
defining aliases for table names • 434
defining correlation values for table names • 434
definition of cursor operations • 416
definition of searched operations • 416
definition of table management operations • 416
DELETE FROM statement • 417
doing numeric calculations with column values •

430
FETCH statement • 412
fetching automation data from a table • 408
how SQL processes host variables • 409
IN predicates • 422
invoking cursor operations under TSO • 403
invoking statements • 401
LIKE predicates • 423
non-standard features in the RDF • 400
passing character strings • 409
passing hexadecimal strings • 409
passing numeric strings • 409
predicates, definition of • 420
processing null values • 410
receiving values passed by CA OPS/MVS • 409
requesting data from a table • 411
return codes from ADDRESS SQL instructions •

414
SELECT statement • 411, 412, 417
SELECT statements and host variables • 413
selecting parts of character strings • 425
specifying stem names for REXX variables • 414
SQLCODE variable • 404, 411, 412, 439
statements comprising a cursor operation • 436

storing automation data in a table • 408
subqueries • 434
SUBSTR keyword • 425
UPDATE statement • 417
using host variables in SQL statements • 409
WHERE clauses • 417, 434

SQLCODE variable • 404, 411, 412, 439
SSM

action table • 231
overview • 178
resource tables • 383
subtask, using • 292
Version 2 overview • 178

SSMAUXTBLPREFIX parameter • 188
SSMDISP • 253
SSMDISP program • 266
SSMDISPC command rule • 266
SSMFAIL request rule • 232
SSMGA

global status table (GST) • 276
local status table (LST) • 275
required REXX programs • 284
required SSM resource table columns • 286
using the SSM subtask • 292

SSMGLOBALEXITS parameter • 235
SSMGLOBALEXITTBL parameter • 235
SSMGLVPREFIX parameter • 218
SSMHOOK request rule • 233
SSMRETRY request rule • 231
SSMSHUT program • 267
SSNM • 625
stacking recording commands • 512
state change events • 225
state of a resource • 212
state of a subsystem • 177
STATEMATCHPREFIX parameter • 193
STATEMAXWAIT parameter • 181
STATESCHEDEXCLUDE parameter • 383
STATESET REXX program

ways to invoke • 263
status definitions table • 298
status name • 301
status of a resource • 297
status of groups • 297
STCTBL • 183, 192, 241
STREAM function • 144
subnode • 89
subparameters within the PARMDD file • 625
subrequisite resources

740 User Guide

overview • 180
subsystem interface

diagnosing problems related to commands in •
174

diagnosing problems related to DOM events •
175

diagnosing problems related to WTOs and
WTORs • 173

subsystem resource table • 183
subsystems • 177
SUM function • 433
summary section • 631
synchronize a schedule • 317, 349
SYS1.OPS.CCLXOPEX data set • 128
SYS1.OPS.OPSEXEC data set • 128
system exclusion • 308
system IPL • 90
System State Manager • 177

T

table editor primary commands • 457
Table List panel • 447
table primary key • 445
table-relative states

DOWN • 179
UNKNOWN • 179
UP • 179

temporary global variables • 90
temporary variable types • 91
TEMPVAR • 622
test rule set

if one does not exist • 35
if one exists • 35

testing rules • 40
TODATE • 625
TODATE) • 630
TOTIME • 625, 630
TRACE instruction • 144, 158
transmit status information amoung systems • 292
trapping TSO command output • 165
TRIM function • 426
TSO

cross-system commands • 566
TSO EXECIO command • 164
TSO sessions, invoking SQL • 402

U

update global variables • 575

UPPER function • 429
UPPER instruction • 159
user code areas in EasyRule • 112
USS

executing OPSREXX programs from • 136

V

values you can specify for the OPSSTATS
subparameter • 630

variable data in messages • 77
variables

SQLCODE variable • 404, 411, 412, 439
verifying rules • 40
view or print a schedule • 317
view potential state changes • 342
view schedule conflicts • 352
view schedule overlaps • 351
viewing status of resources • 311
virtual terminal • 465

disabling • 474
display status of • 471
temporary ownership mechanism • 479

visual noise, created by informational messages • 37
VTAM • 463

application • 465
APPLID • 559
message handling • 595

W

WIDTH • 625
WLM (Workload Manager) • 199
working with the automation measurement

environment
overview • 619

Workload Manager (WLM) • 199
WTO and WTOR messages

diagnosing problems with messages • 173

X

XPREREQ process action • 194
XPREREQ process event • 194

	CA OPS/MVS Event Management and Automation User Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	How to Use This Guide
	Portrait of an Automater
	Operations Overview--Historically Speaking

	2: How to Begin Using the Product
	Overview
	Ways to Automate
	Purpose of These Lessons
	How to Prepare Your System for Your Lessons
	Allocate a Test Data Set
	Some System Messages Create Visual Noise

	Lesson 1: Create a Rule Using the AOF
	Lesson 2: Test and Verify a Rule
	Lesson 3: Establish More Rules
	Lesson 4: How to Organize Rules into Rule Sets
	Lesson 5: How to Enable and Disable Rules and Rule Sets
	Enable or Disable a Single Rule
	Enable or Disable an Entire Rule Set

	Lesson 6: Solve a Problem Using EasyRule
	Create a Rule to Tailor the Display of Messages
	Create a Rule to Suppress Messages

	Lesson 7: Suppress Messages Using the Automation Analyzer
	Prepare to Use the Automation Analyzer
	Gather Message Event Statistics Using Automation Analyzer
	Suppress Messages
	Delete Messages
	Access EasyRule from the Automation Analyzer

	Lesson 8: Create Rules from an MPF Suppression List
	Prepare to Convert MPF to the Product
	Convert MPF Suppression Lists to Rules

	3: Understanding CA OPS/MVS Messages
	Message Format
	Message Variable Data
	How Messages Are Routed
	How Messages Are Captured
	AOF Processing
	Changing Message Severity Codes
	Rules for Changing Message Severity Codes
	View Messages Online

	4: Global Variables Explained
	What Are Global Variables
	Features of Global Variables
	Finding More Information

	Global Variable Basics and OPS/REXX
	OPS/REXX Compound Symbols
	Compound Symbol Format
	Two or More Dimensions
	Compound Symbol Derived Name
	Global Compound Symbols
	Global Variable Nodes and Subnodes
	Permanent Versus Temporary Global Variables
	Temporary Global Variables: Duration Specified
	Global Variable Limits

	Global Variable Database Warning Messages
	Global Variable Characteristics
	Backup and Restore Global Variables

	5: Using EasyRule
	EasyRule Basics
	Guidelines for Using EasyRule
	How EasyRule Builds Rules
	How EasyRule Benefits Different Types of Users
	Configure EasyRule Settings

	Introducing EasyRule Panels
	Panel Descriptions
	Access Additional Panel Information
	How to Navigate the Panels

	How to Access EasyRule
	Access EasyRule from OPSVIEW and Specify a Rule Set
	Access EasyRule from the AOF Test or AOF Control Facility
	Choose Automatic Versus Manual Step-through

	Scrollable Menu and Data Entry Panels
	Select a Rule Type
	Rule Type Main Menu Options
	Specify a Primary Event for a Rule
	Specify Comments for a Rule
	Specify Execution Conditions for a Rule
	Specify Actions to Be Taken When a Rule Executes
	Specify Actions to Be Taken When a Rule Is Enabled
	Set Initial Variable Values for a Rule
	Specify Actions to Be Taken When a Rule Is Disabled
	EasyRule Final Options Menu Determines the Disposition of a Rule
	Make Modifications with EasyRule
	Work With User Code Areas in EasyRule

	How to Test a Rule
	EasyRule Error Messages
	EasyRule Help
	Basic Types of EasyRule Help Panels
	Access and Use the Menu Help Panels
	Access and Use the Standard Help Panels
	Access and Use the Help Example Panels
	Access and Use Help Glossary Panels

	6: Using OPS/REXX
	OPS/REXX Overview
	Why OPS/REXX
	OPS/REXX Performs Better
	OPS/REXX Is Easy to Learn
	Powerful Data Handling Tools
	Understandable Error Messages

	Uses of OPS/REXX in the Product
	Similarities Between OPS/REXX and Standard REXX
	Differences Between OPS/REXX and Standard REXX

	Characteristics of OPS/REXX Programs
	Differences Between Precompiled and Source REXX Programs
	Explicit and Implicit Program Execution
	Formats for OPS/REXX Data Sets
	How OPS/REXX Locates Stored OPS/REXX Programs
	Execute a Program That Calls External Routines

	Use the Precompiled OPS/REXX Programs
	The OPSEXEC and OPSCOMP Libraries
	Allocate the OPSCOMP DDname
	Allocate the OPSEXEC DDname

	Maintain Compiled OPS/REXX Programs
	OICOMP Command
	OXCOMP Command
	Values You Specify for OICOMP and OXCOMP

	Execute Source OPS/REXX Programs
	Ways to Invoke OPS/REXX Programs in Source Format
	Explicitly Compared to Implicitly Specifying the OPS/REXX Program Data Set
	Issue the OPSEXEC (OX) Command
	Issue the OPSIMEX (OI) Command
	Implicitly Invoke Source Programs
	Execute OPS/REXX Source Programs from ISPF Dialogs
	Execute OPS/REXX Source Programs from ISPF EDIT
	How OPS/REXX Programs in the AOF Work
	Call the Interpreter from an OPS/REXX Program
	Execute OPS/REXX Programs from Batch
	Invoke an OPS/REXX Program Implicitly
	Invoke an OPS/REXX Program Explicitly
	Considerations for Batch Execution

	Execute OPS/REXX Programs from Batch (Under the Batch TSO TMP)
	Execute OPS/REXX Programs from USS

	The Interaction of OPS/REXX with Other Languages
	Requirements for Non-REXX External Functions
	Register Contents
	EFPL Format
	Outcome of Processing a REXX Routine
	Pass Arguments
	Omit Arguments
	Return Information
	Send Data to the External Queue
	Create REXX Variables

	OPS/REXX Execution Limits
	Resource Use Monitoring
	Parameters That Set Limits
	Override Execution Limits

	Elements of OPS/REXX
	Symbolic Substitution in OPS/REXX
	REXX Elements That OPS/REXX Supports
	Implementation Limits
	Constants in OPS/REXX
	Symbols in OPS/REXX
	Variable Values
	Compound Symbols
	Arithmetic Values and Operators

	OPS/REXX Considerations
	How to Implement Common Coding Guidelines
	OPS/REXX Instructions
	ADDRESS Instruction
	CALL Instruction
	INTERPRET Instruction
	OPTIONS Instruction
	Format for OPTIONS Instructions
	Duration of OPTIONS Settings
	Usage Notes for OPTIONS Instructions
	Sample Uses of OPTIONS Instructions

	RETURN Instruction
	SIGNAL Instruction
	TRACE Instruction
	UPPER Instruction
	OPS/REXX Built-in Functions
	Automated Operator Facility (AOF) Global Variables

	Parsing
	The PARSE SOURCE Instruction
	Values PARSE SOURCE Returns

	The PARSE VERSION Instruction
	Values PARSE VERSION Returns

	OPS/REXX Interfaces
	OPS/REXX Interface with ISPF Dialog Management Services
	OPS/REXX Interface with TSO
	Support for the TSO Host Command EXECIO
	Capture TSO Command Output

	OPS/REXX Interface with the OSF
	OPS/REXX Interface with the AOF
	OPS/REXX Interface with EPI
	OPS/REXX Interface to z/OS Operator Commands
	OPS/REXX Interface to Messages
	OPS/REXX Interface to OPSCTL
	OPS/REXX Interface to WTO
	OPS/REXX Interface to CA SYSVIEW
	OPS/REXX Interface to Other CA Products Through CA GSS

	Compiler Error Messages
	More Errors Detected

	OPS/REXX Usage Problems
	Conflicts with Internal ISPF Variable Names
	Received Message Address Space Is Not Active
	Uninitialized Variables Yield Unpredictable Results
	Problems with WTO and WTOR Messages in Subsystem Interface
	Problems Related to Commands in Subsystem
	Problems Related to DOM Events in Subsystem

	7: Using System State Manager
	About SSM
	SSM Enhancements
	SSM Concepts
	Understanding CURRENT and DESIRED Resource States
	Understanding Prerequisites and Subrequisites
	Detect State Changes for Resources

	How SSM Works
	Directory Table
	Resource Tables
	Action Tables
	Resource and Action Tables
	Auxiliary Tables

	SSM Resource Management Modes
	Define Resource Management Modes for SSM
	Prerequisites
	Check the State of Prerequisite Resources
	Desired Table States
	The Effect of STATEMATCHPREFIX on Prerequisite Checking

	Define Prerequisite Resources
	Specify the Name of Prerequisite Resources
	MINOF Statement--Define Prerequisite Resources
	Define Positive and Negative Prerequisite Resources
	Define Positive and Negative Subrequisite Resources
	Define a Workload Manager Scheduling Environment as a Prerequisite Resource
	The OPSWLM Function

	Control Prerequisite Resources
	PREMODE Column
	REFMODE Column
	MODE Column

	Initializing Data
	Methods for Setting the Desired State
	Set the Desired State Manually
	Use z/OS START and STOP Commands
	Use a Pseudo CMD Rule to Manually Control SSM Activity
	Invoke STATESET OPS/REXX Program from a Console

	Set the Desired State Automatically with a Time Rule
	Set the Desired State Through the Schedule Manager
	Set Desired States Through Checkpointing
	Set Desired States Through OPSVIEW
	Set Desired States Through SSMBEGIN
	Customize the Startup with SSMBEGUX
	Options for Initializing Desired States

	Rules to Maintain Current State Values
	Understanding Transient Resource States
	ops--How Transient States Work
	How SSM Decides What Action to Take
	How to Specify and Store Actions
	Action Clauses
	Complex Actions
	Specify Variables in Action Clauses
	Built-in Variables
	Substituting Data
	Empty-string and NULL Actions
	ACTMODE Column
	Search Order for Action Tables
	Evaluating Resource State Change Events
	Evaluating Process Events
	Example of Action Selection

	Process Events
	The PROCESS Action Clause
	SSM Action Processes Default Logic
	How SSMRETRY Limits a Repetitive Action Sequence
	How SSMFAIL Responds to SSM Resource Start-up, Termination, and Timeout Conditions
	How SSMHOOK Controls Quick Work Cycles

	SSM Global Events
	RDF Monitor Events
	BEGIN Event
	How the BEGIN Event Works
	Using SSM Global Events
	DELETE Event Example

	Non-standard and Complex Resource Management
	Manage USS Deamon Server Processes

	How to Use the Full Capabilities of SSM
	Step 1: Take a Snapshot of Your System
	Fields on the SSM Snapshot Panel

	Step 2: Review and Customize the STCTBL Table
	Step 3: Review and Modify Your STCTBL_ACT Table
	Step 4: Auto-enable Rules That Monitor Started Tasks
	Sample Code

	Step 5: Add STCTBL and STCTBL_ACT Tables to the Directory Table
	Step 6: Test the SSM Operation
	Test the STATEMAN Rules Packet
	Test SSM
	Test Maintenance of Desired States
	Test Prerequisite Checking

	Step 7: Perform an IPL with SSM
	Perform a System Shutdown
	Perform a System IPL

	Create Other Resource and Action Tables
	Decide How Many Tables to Define
	Sample SQL statement creating a resource table
	Sample SQL statement defining an action table

	Add User Columns to an Existing SSM Table

	Parameters That Control SSM Operation
	Manage Tables with the OPSSMTBL Command
	OPSSMTBL Command Syntax
	Associated Variables

	Modify Table Data with the STATESET Program
	Use the STATESET Program
	STATESET Syntax
	STATESET Program Examples
	Invoke the STATESET Program in Various Environments

	Manage Tables Through OPSVIEW
	Edit and Browse Tables Through the Table Editor
	Edit or Browse Through the System State Manager Interface
	Use the SSM Control Panel

	SSMDISP Command--Display Resource Status
	Output from SSMDISP
	Examples of SSMDISP

	SSMSHUT Command--Set Resource State to Down

	8: Using SSM Global Application
	About SSMGA
	Sharing Resource Status Information
	How SSMGA Works
	Local Status Table (LST)
	Moving Resources
	Global Status Table (GST)
	PREREQ and SSM#GRPLST Resource Column Changes

	SSMGA Setup Requirements
	Step 1: Activate the SSM Global Event Facility
	Step 2: Deactivate SSM Processing
	Step 3: Update the SSM Global Event Facility
	Step 4: Set the Parameters
	Step 5: Auto-Enable Rules
	Required REXX Programs

	Step 6: Add SSM Resource Table Columns
	Step 7: Enter Resource Configuration Values
	Step 8: Add SSM Action Table Entries
	Step 9: Replicate Parameters, RDF Tables, and Rules
	Step 10: Activate SSM Processing and Verify the Setup
	Using the SSM Subtask

	Messages for Special Events
	SSMGA Status Command
	Verification and Diagnostic Commands

	9: Using Group Manager
	Monitor Groups of Managed Resources
	Tables Used by the Group Manager
	Define Groups and Assign Resources to Them
	Define Statuses for Your Groups
	Define Status Names
	Associate a Status with a Group or Groups
	Set the Priority of a Status
	Use Substitution Parameters in Status Text

	How Group Manager Assigns Statuses to Resources and Groups
	Status Selection Table

	Use the Group Manager Displays
	Exclude Systems from Resource Monitoring
	Choose Resource Groups to Monitor
	View the Status of Groups
	View the Status of Group Members
	Automatically Monitor Groups or Resources
	View Detailed Resource Information
	Exit from Group Manager Panels

	10: Using Schedule Manager
	Reasons to Use the Schedule Manager
	What You Can Do With Schedule Manager

	Definition of Terms
	Perform Schedule Manager Tasks
	Select a Schedule

	Insert a New Schedule
	Edit a Schedule
	Understand the Links Control Panel
	The Meaning of Display Colors
	Control What Appears Onscreen
	Line Commands on the Links Control Panel
	Define a Period
	Period Overlap Conflicts
	Change a Period Definition
	Delete a Period
	Establish Unique Links
	Define the Same Links for Several Periods
	Delete a Period/Resource Link

	Activate (Load) a Schedule
	SHOW STATES Command--View the Scheduled States of Resources
	CMDSONOFF Primary Command--Distinguish Active and Inactive Links
	View Potential State Changes
	The Primary Commands in Edit
	Copy a Schedule
	Rename a Schedule
	Delete a Schedule
	Free a Schedule
	Synchronize a Schedule
	Merge Schedules
	View Schedule Overlaps
	View Schedule Conflicts
	The C and CX Commands
	How Schedule Manager Resolves Schedule Conflicts

	REPORT Command--Print Schedule Manager Data
	Example: REPORT Command

	Use the Schedule Manager Application Program Interface
	API QUERY Command--Returns Schedule Manager Data
	Keywords on the Schedule Manager API QUERY Command
	Formats of All Other Schedule Manager API Commands
	Keywords on All Other Schedule Manager API Commands

	Override Schedule Manager
	The Effective Mode of SSM Resources
	System State Manager Resource Tables
	SSMSCHED Sample Rule
	Schedule Manager Overrides
	SSM@OVER Sample Rule
	SSM@OVER Command Formats
	Keywords for the SSM@OVER Commands

	Obsolete Override Periods

	11: Using the Relational Data Framework
	The Relational Data Framework
	Why We Chose SQL
	Assumptions
	The Role of Relational Tables
	How the Product Stores Table Data
	Tables the Product Provides
	Table Restrictions
	Reserved Keywords in SQL Statements
	Operations Performed With the CA OPS/MVS SQL
	What Are the Differences From Standard SQL?
	About the Sample Tables
	Invoking SQL Statements
	Restrictions for Cursor Operations
	Formats for Invoking SQL Statements
	How the Environment Determines Which Statements Are Permitted
	Destinations of SQL-related Error Messages
	Notes on Performing Cross-system SQL Operations
	List of SQL Statements

	Tools for Importing, Exporting, and Backing up Tables
	The READTBL and WRITETBL OPS/REXX Programs
	The OPCRTBDF Subroutine

	Storing Data in and Requesting Data From Relational Tables
	How SQL Statements Pass Values to a Table
	How SQL Processes Host Variables
	How SQL Processes Null Values
	SELECT Statement--Request Data from a Table
	The ADDRESS SQL Environment and Host Variables
	Description of Host Variables
	Specifying Stem Names
	Return Codes from ADDRESS SQL Instructions

	Searched, Cursor, and Table Management Operations
	Searched Operations
	Statements Used in Searched Operations
	Clauses Used in Searched Operations

	Use the ORDER BY Clause to Arrange Values
	Use the WHERE Clause to Select Values
	Use Comparison Predicates in WHERE Clauses
	Use IN Predicates in WHERE Clauses
	Comparing One or More Values
	Using Boolean Expressions

	Using LIKE Predicates in WHERE Clauses
	Comparing Character Strings
	Using the ESCAPE Keyword

	Use Expressions and Functions
	Expressions
	Introduction to Functions
	Character-oriented Functions
	The TRIM Function
	The POSITION Function
	The CHAR_LENGTH Function
	The COALESCE Function
	The EXTRACT Function
	The LOWER Function
	The UPPER Function

	Numeric Aggregate Functions
	Return Values Based on Numeric Calculations
	List of Aggregate Functions
	AVG Function
	COUNT Function
	MAX Function
	MIN Function
	SUM Function

	Join Operations
	Compare Values from Multiple Tables
	Define Aliases or Correlation Values for Table Names

	Using Subqueries
	Reduce Amounts of Data Returned

	Cursor Operations
	Statements Used in Cursor Operations
	Guidelines for Writing Cursor Operation Statements
	OPS/REXX Program That Demonstrates Cursor Operations

	Table Management Operations
	Where to Perform Table Management Operations
	Table Management Statements
	Add Table Columns
	Define a New Table to the Product
	Delete Table Rows
	Delete a Table
	Insert a Row into a Table
	Update Values in a Table

	Use the Relational Table Editor Batch API
	Maintaining Cross-system Serialization
	Duplicate Keys

	12: Editing Relational Tables
	Use the Relational Table Editor
	Use Edit Option Commands
	Protecting System State Manager Tables

	Edit the Structure of a New Table
	Special Criteria for Column Descriptions
	Primary Commands for Creating Table Structure
	Line Commands for Editing Table Structure
	Issuing the TJ and TS Line Commands

	Edit the Contents of an Existing Table
	Primary Commands for Editing Table Data
	Line Commands for Editing Table Data

	Edit a Table on Another System
	End a Table Editing Session

	13: External Product Interface
	Overview
	How the EPI Manages VTAM Applications
	Components List
	EPI Terminology

	Install the EPI
	Define Virtual Terminals to VTAM
	Define Virtual Terminals to the EPI
	OPEPDFAL Routine--Define All Terminals to the EPI
	DEFALL Command--Define All Terminals in OPSVIEW
	Write an OPS/REXX Program
	Use the EPI DEFINE Command

	Enable Virtual Terminals
	Log a Virtual Terminal onto an External Product
	Define and Activate EPI Sessions
	External Products Acquiring Virtual Terminals

	Display Virtual Terminal and EPI Session Information
	Display Virtual Terminal Status
	EPI LIST Command

	Shut Down the EPI
	Disable Virtual Terminals
	Delete Virtual Terminal Definitions

	ops--Use OPS/REXX to Drive EPI Virtual Terminals
	Issue ADDRESS EPI Host Commands
	General Syntax Rules of ADDRESS EPI
	Output from ADDRESS EPI Host Commands
	ADDRESS EPI Return Codes
	ADDRESS EPI Output Message Identification
	Syntax of Selected ADDRESS EPI Words

	REXX Use of the Virtual Terminal Temporary Ownership Mechanism
	EPI Host Command Descriptions
	Special EPI Host Commands
	MSGID ON
	SUBATTR 64 OFF
	SUBUNPT : ON
	MSGID [ON|OFF]
	SUBATTR [sub_char] [ON|OFF]
	SUBUNPT [sub_char] [ON|OFF]
	SUBSYS ssid
	ssid
	TIMEOUT seconds
	Seconds

	EPI Host Command Descriptions for Virtual Terminals
	CHANGE [termname|ALL|*] keywords
	DEBUG [ON|OFF]
	DEFINE termname keywords
	DELETE termname
	DEQ termname [FORCE]
	DISABLE termname
	ENABLE termname
	ENQ termname [TEST|WAIT|NOWAIT]
	INQINPUT termname [WAIT|NOWAIT]
	LIST [termname|ALL|*]
	LOGON termname [keywords]
	LOGOFF termname
	MVCURSOR termname row column
	PEEK termname row col length
	POKE termname row col poketext
	RDCURSOR termname
	RDSCREEN termname
	RDSCRROW termname row
	SETMODEL termname model
	SETTERM termname
	SETUNAME termname [user_termname]
	TRACE termname [ON|OFF]
	TYPE termname 3278_keyboard_text
	TYPESEC termname 3278_keyboard_text
	TYPETEST termname 3278_keyboard_text

	Other EPI Host Command Descriptions
	HELP
	WAIT seconds
	WAITTOD hh mm ss

	OPS/REXX Programming Tips
	REXX Statement Transformation
	REXX Coding Considerations
	ENQ/DEQ Notes
	The TYPE Host Command
	The HOSTKEYS Host Commands
	Attribute Byte Representation in the EPI

	EPI Failure Recovery
	EPI System Failure
	EPI Session Failure
	EPI Command Failures

	Security Considerations
	VTAM APPLIDs
	Issuing Commands to Other Applications
	User Exit
	Insert Mode
	Hardcopy Command Logging
	Passwords and the EPI

	OMMVS--Sample OMEGAMON Interface Routine
	OMMVS Implementation
	OMMVS Customization Variables
	Disable the OMEGAMON Use of Extended Attributes

	CA7MVS--Sample CA 7 Interface Routine
	CA7MVS Implementation
	CA7MVS Customization Variables

	14: Using the EPI Recording and Playback Options
	Overview: Recording REXX EXECs
	Requirements for Recording
	Plan Your Recording Session
	How the Recording Option Works
	Issue Recording Commands
	Stack Recording Commands (For Advanced Users)

	Recording Environment Set Up
	Change Recording Options Permanently
	Control Characters and Defaults
	SESSCMD Keywords and Defaults

	Change Recording Options Temporarily
	Request Temporary Changes from the Command Line
	Override the Automatic ENTER Option

	Choose Where to Store the REXX EXEC
	Record a Session
	How the Recording Process Works
	Commands for Use in the EPI Recording Environment

	Marking Text to Find on or Fetch from a Screen
	Place the Cursor on a Screen Field
	Find a Text String on a Screen
	REXX Variables That the F Command Sets
	Return Codes
	Mark Screen Text to Assign to a REXX Variable

	Insert Literal Strings or Variables into SESSCMDs
	Direct a Literal String to an Input Field
	Direct a Variable to an Input Field

	Edit Your Customized Automation EXEC
	Test-run Your EXEC with the Playback Option
	How Playback Works
	Record an EXEC to Automate Info/Management Inquiries
	The Opening Text of the Driver Section for a Recorded EXEC
	Build the Rest of the Driver Section Using Recording Commands

	15: Enhanced Console Facility
	Overview
	Concepts
	Commands Processed by the OSF
	Commands Processed by the ECF
	Restrictions on TSO Command Runs

	ECF Operation
	Log On the ECF
	Conduct an Interactive ECF Session
	Log Off the ECF

	Recovery From Failures
	Restrictions on TSO Commands Processed by the ECF and OSF
	Security Considerations
	Other Considerations

	16: Multi-System Facility
	Understanding the MSF
	MSF Support of JES3 (JES3 Only)
	MSF Terminology
	MSF Installation
	The MSF and CAICCI

	MSF Operation
	Activate the MSF VTAM APPLID
	Start the MSF
	Starting the System Task
	Set the Local System Identifier
	Define Systems to the MSF
	Start Cross-system Sessions
	Activate MSF Sessions to Remote Systems
	Define and Activate MSF Sessions
	Auto-connecting MSF Sessions

	Display Systems and MSF Sessions
	Issue Commands to Remote Systems
	Issue Cross-system TSO Commands
	Issue JES3 Commands

	OPSSEND Function and ADDRESS WTO--Pass Messages to Remote Systems
	Shut Down MSF Sessions and Systems
	Deactivate MSF Sessions
	Stop the MSF
	Remove System Definitions

	Recovery from Failures
	MSF System Failures
	MSF Session Failures
	Cross-system Command Failures

	Security Considerations
	VTAM APPLIDs
	OPSRMT and OPSCMD TSO Commands
	Security for Other Cross-system Operations

	17: Expert System Interface
	Overview
	Calling Language Dependencies
	Call OPSLINK from PL/1 Programs
	Define an Output Array in PL/1 Programs
	Define the OPSLINK Routine in PL/1 Programs
	Call OPSLINK from COBOL Programs
	Define an Output Array in COBOL Programs
	Define the OPSLINK Routine in COBOL Programs
	Call OPSLINK from Assembler Programs

	OPSLINK Function Calls
	Execute TSO Commands
	Execute Operator Commands
	Access and Update Global Variables
	Codes for the OPTION Argument

	Return Codes from OPSLINK
	Sample Programs that Use OPSLINK

	18: CICS Operations Facility
	COF Overview
	Install and Start the COF
	How You Can Use the COF
	Some CICS Procedures You Can Automate

	19: IMS Operation Facility
	IMS IOF Overview
	IOF Installation Considerations
	IOF Installation Operations
	Interpreting Type 2 API Return and Reason Codes
	Issue Commands from a BMP Region

	20: NetView Operations Facility
	About the NetView Operations Facility
	NOF Alerts
	Activate the NOF
	Parameters for the OPNOF Program
	The NetView Alerts
	What Happens When You Generate an Alert
	How the NOF Responds to NetView Alerts
	Contents of GLOBAL.OPNF.ALERT

	Alerts Generated from CA OPS/MVS
	OPNFALRT REXX Function--Generate Alerts
	Alert Type Parameter
	Alert Description Parameter
	Probable Cause Parameter
	Action Parameter
	Hierarchy Parameter
	Alert Text Parameter
	OPNFALRT Return Code Format
	OPNFALRT Messages and Return Codes

	Issuing NetView Commands
	Establish NetView Autotasks
	Retrieve Responses to NetView Commands
	Find NetView System Recognition Character

	21: Using the Automation Measurement Environment
	Overview of AME
	Required Software
	Advantages of the AME
	Data Flow of the AME
	Types of AME Reports

	Define Destinations and Intervals for SMFLOG Records
	Define the Content of the Automation Statistics Report
	Subparameters Specified In the PARMDD File
	Values You Can Specify for the OPSSTATS Subparameter
	JCL PARM Parameters

	Generate the Summary Section
	Generate the AOFEVENT Segment
	Generate the OSFEVENT Segment
	Generate the OSFTERM Segment
	Generate the IMS Segment

	A: Supplied Sample Rules and Programs
	Available Sample AOF Rules and OPS/REXX Programs
	How to Locate Supplied Sample Rules and OPS/REXX Programs
	CA OPS/MVS Components
	AOF Component
	API Component
	HWS Component
	OPSLOG Component
	OSF Component
	SOF Component
	SSM Component

	CA Products
	CA Datacom
	CA IDMS
	CA MIM
	CA PDSMAN
	CA Process Automation
	CA Scheduler
	CA SYSVIEW
	CA Workload Automation (CA WAEE)

	CA XCOM
	CA DB2 DBM Products
	CA Spool
	CA TLMS
	CA 7
	CA 11

	Other Vendor Products
	CICS
	DB2
	IMS
	WebSphere MQ
	JES
	JES2
	TSO
	VTAM (Other Vendor Products)

	z/OS Activities
	Disaster Recovery
	Information Utilities
	Checking ASID Existence on Remote Systems
	Message Suppression and Manipulation
	Monitoring Batch Job Execution Times
	Processing Cross-system Events
	Processing Job Enqueues
	Processing Hardware Failures
	Processing Problem ASIDs
	Processing WTORs
	Processing z/OS Commands
	Tape Mount Pendings
	USS Processes Management
	zFS File System
	z/OS System IPL
	z/OS System Shutdown

	B: Sample AOF Rules
	Available Sample Rules

	C: Sample OPS/REXX Programs
	Supplied Sample OPS/REXX Programs
	Installation and Configuration Considerations for PLEXSSM

	D: CA OPS/MVS Health Checks
	OPSMVS_ALLOC_OPSLOG
	OPSMVS_ALLOC_SYSCHK1
	OPSMVS_PARM_AOFHLQ
	OPSMVS_PARM_AOFMAX
	OPSMVS_PARM_CMDMAX
	OPSMVS_PARM_MSGMAX
	OPSMVS_PARM_PROCBLK
	OPSMVS_TSOMAXQUSG
	OPSMVS_TSPMAXQUSG
	OPSMVS_TSLMAXQUSG
	OPSMVS_USSMAXQUSG
	OPSMVS_OPJ2CB

	Index

